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ANALYSE DU PROCÉDÉ ASYMÉTRIQUE DE ROULAGE: SIMULATION 
DYNAMIQUE PAR ÉLÉMENTS FINIS ET EXPÉRIMENTATIONS 

 

Hoang Quan TRAN 

RÉSUMÉ 

 

Le procédé de roulage est une technique efficace pour former des tôles à la courbure désirée 
en utilisant des rouleaux de formage. Ce type de procédé de formage de métal en feuille est 
l'une des techniques les plus utilisées pour la fabrication de formes creuses axisymétriques. 
En outre, ce processus commence à être sérieusement pris en considération par les industries 
pour produire de grandes pièces épaisses, comme la forme conique d’une couronne d'une 
roue de turbine Francis ou de celle de la tour d'une éolienne. 
 

A cause des nombreux paramètres du procédé, réduire la force de flexion et améliorer la 
précision de la forme finale sont des défis importants pour le cintrage. Par conséquent, 
l'objectif principal de cette recherche est de trouver des stratégies pour réduire les forces de 
formage et d’améliorer la qualité finale de la pièce en utilisant des méthodes numériques et 
expérimentales. Dans cette thèse, un modèle 3D dynamique par éléments finis (FE) d'un 
processus de formage par roulage asymétrique est développé en utilisant le logiciel 
Ansys/LS-Dyna. Les résultats des simulations sont ensuite comparés aux expériences 
réalisées avec des tôles instrumentées et une machine de roulage. Les paramètres qui 
influencent la précision de la forme finale, c’est-à-dire les forces de flexion et les contraintes 
résiduelles laissées dans la plaque formée, ont été étudiés. L'application de ce modèle EF 
dynamique en 3D dans un contexte industriel permet de prédire l’intensité des forces de 
formage ou la précision du rayon de la forme finale et donc diminue le temps de mise au 
point avant la fabrication. 
 

Les forces de formage peuvent être réduites en chauffant la plaque. Dans cette recherche, les 
relations entre la température de la plaque chauffée et les paramètres de sortie du procédé de 
cintrage tels que les forces appliquées et la qualité de la forme finale ont été étudiées en 
effectuant une simulation par EF et des calculs analytiques. Ces résultats amènent à une 
meilleure compréhension du mécanisme de formage avec ce procédé et permettent de fournir 
une opportunité pour la conception d'un système de chauffage efficace pour contrôler 
l’énergie thermique entrant dans la plaque pendant le processus de cintrage. 
 

Cette recherche propose également une nouvelle approche simple pour réduire l’étendue des 
zones non-cintrées et l’intensité des forces de formage. Cette approche consiste à déplacer 
légèrement le rouleau inférieur le long de la direction d'alimentation et à ajuster 
l'emplacement du rouleau inférieur. Les résultats par EF indiquent que cette nouvelle 
approche minimise efficacement l’étendue des zones planes et réduit également les forces de 
formage. 
 

Mots clés: procédé de roulage, analyse dynamique par éléments finis, force de formage, 
formage à chaud, étendue de plaque non-cintrée, Ansys/LS-Dyna 



 

 



 

ASYMMETRICAL ROLL BENDING PROCESS STUDY: DYNAMIC FINITE 
ELEMENT MODELING AND EXPERIMENTS 

 
Hoang Quan TRAN 

 
ABSTRACT 

 
Roll bending is an efficient metal forming technique, where plates are bent to a desired 
curvature using forming rolls. This type of sheet forming process is one of the most widely 
used techniques for manufacturing axisymmetric hollow shapes. Moreover, this process is 
beginning to be taken into serious consideration by industries for producing large, thick parts 
such as the conically shaped crown of a Francis turbine runner or of a wind turbine tower. 
 
Because of the numerous processing parameters, reducing the bending force and improving 
the accuracy of the final shape are significant challenges in the roll bending process. 
Therefore, the primary aim of this research is to find the strategies for reducing forming 
forces and improving final part quality by employing numerical and experimental methods. 
In this thesis, a 3D dynamic Finite Element (FE) model of an asymmetrical roll bending 
process is developed using the Ansys/LS-Dyna software. The simulation results are then 
compared with experiments performed with instrumented parts and roll bending machine. 
The parameters that affect the accuracy of the final shape, the bending forces and the residual 
strain left in the formed plate have been investigated. Applying this 3D dynamic FE model in 
an industrial context may predict the forming forces or the accuracy of the final shape’s 
radius and thus will decrease the setup time before manufacturing.  
 
The forming forces can be reduced by heating the plate. In this research, the relationships 
between the heating plate temperature and the output parameters of roll bending process such 
as applied forces and final shape quality have been studied by performing FE simulation and 
analytical computations. These results yield to a better understanding of the mechanism of 
the process and provide an opportunity for the design of an efficient heating system to 
control the heat energy to be input in the plate during the roll bending process.  
 
This research also proposes a new, simple approach for reducing flat areas and forming 
forces. This approach includes moving the bottom roll slightly along the feeding direction 
and adjusting the bottom roll location. The FE results indicate that this new approach 
effectively minimizes the flat area extents and reduces also the forming forces. 
 

 

Key words: roll bending process, dynamic FEM, forming force, hot forming, flat end areas, 
Ansys/Ls-dyna
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INTRODUCTION 

 

The high strength steel axisymmetric hollow shapes are widely used in many fields of 

industry dealing with heavy cyclic loads and corrosive environments. But processing this 

type of steel is not easy, and it becomes a hard-to-solve problem when the part to produce is 

large and quasi-unique. Examples of high strength steel axisymmetric hollow parts are the 

crown of a Francis turbine runner or the tower of a wind turbine. Several processes can be 

envisaged for the manufacturing processes of such large parts (welding or casting…), but few 

processes can deliver one within a reasonable time and at competitive cost. Among them the 

roll bending is considered as an interesting alternative method. 

 

Roll bending process is the plastic deformation of a metal that uses a set of rolls to bend a flat 

plate into various shapes such as cylinders, cones or ovals. It is a continuous three-point 

bending process with negligible change in plate thickness. Many different types of roll 

bending machines have been developed over the past few decades to adapt to various 

forming production specifications. However, the three-roll asymmetric model produces more 

accurate final shape, capable of forming a wider range of plate thicknesses, and especially, 

this kind of machine can be loaded and unloaded much faster than a three-roll pyramidal 

model. According to a literature review, most theoretical models, FE simulations and 

experimental verifications focused on four-roll model or three-roll pyramidal model but 

rarely on three-roll asymmetrical configuration.  

 

After Chapter 1, general information about the roll bending process, and Chapter 2, which 

presents literature review, the thesis continues with Chapter 3 where a 3D dynamic finite 

element to simulate the forming process of the asymmetrical roll bending machine is 

compared to experiments. Parameters that affect the accuracy of the final shape, the bending 

forces and the residual strain left in the formed plate are investigated. In Chapter 4, the 

second step of this research is to find the strategies for reducing forming forces and 

improving final part quality. Two techniques are proposed to reduce forming forces: heating 

plate and optimize the setup for the rolls position. Heat assisted metal forming will be 
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unavoidable if the forming forces necessary to bend the plate in cold working conditions 

exceed the capacity of the machine. The relationships between the heating plate temperature 

and the output parameters of roll bending process such as applied forces and final shape 

quality have been studied by performing FE simulation and analytical computations. These 

results yield to a better understanding of the mechanism of the process and provide an 

opportunity for the design of an efficient heating system to control the heat energy to be input 

in the plate during the roll bending process. Chapter 5 proposes one more method to reduce 

forming forces and to improve the accuracy of the cylindrical shapes obtained by the roll 

bending process. This approach includes moving the bottom roll slightly along the feeding 

direction and adjusting the bottom roll location. Sensitivity analyses were performed using a 

developed 3-D dynamic finite element model of an asymmetrical roll bending process in the 

Ansys/LS-Dyna software package. Simulations were validated by experiments run on an 

instrumented roll bending machine. The FE results indicate that this new approach not only 

minimizes the flat end areas but also reduces the forming forces. 

 

Since large-casting possibilities have disappeared from Canada’s industry, this research is a 

real opportunity for finding interesting alternatives to manufacture large and hollow 

axisymmetric parts.  

 



 

CHAPTER 1 
 
 

GENERAL INFORMATION AND THESIS ORGANIZATION 

This chapter gives first an overview of the roll bending process and secondly scope and 

structure of the thesis. 

 

1.1 Overview of the roll bending process 

Roll bending is a continuous forming process that uses a set of rolls to bend a flat plate into 

various shapes such as cylinders, cones or ovals. As categorized by German standard DIN- 

8580 in Figure 1.1, this is a subgroup of forming process which is the plastic deformation of 

a metal around a linear axis with little or no change in surface area and thickness (Schuler, 

1998).  

 

  

Figure 1.1  The roll bending process in the manufacturing process classification 
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Like other forming processes, roll bending can be used to form any plate or sheet having 

enough ductile properties to be cold formed. It includes mild steels, stainless steels and heat 

resistant alloys (Todd et al., 1994). Furthermore, nonferrous light alloys such as aluminum 

and copper alloys can also be successfully formed by this forming process. In practice, the 

minimum radius of the parts produced by roll bending process are typically limited by 

diameter of the rolls and type of machines, while the size and power of machine are the 

principal factors limiting the plate thickness and the width of final shape. As shown in Figure 

1.2, the process capable can range from 150 mm (6.0 inch) to 5000 mm (200 inch) in final 

shape diameter with the plate thickness of approximately from 0.5 mm (0.02 inch) to 254 

mm (10 inch) (Todd et al., 1994). Today, the products of the roll bending process can be 

larger, wider and very much thicker. In a few applications, final shape with 300 mm in plate 

thickness or 12000 mm in width can be successfully formed by roll bending process 

(Semiatin, 2006). 

 

  

Figure 1.2  The roll bending process capability (Semiatin, 2006) 

In comparison with other cold forming processes, such as deep drawing or contour roll 

forming, roll bending process has some unique advantages: wide range of final shape 

dimension, large plate thickness, numerous material applicability, process flexibility and 

good surface finish. Therefore, although it is an old process having a long history over of 

century, roll bending process is still the most practical method of producing large cylinders 
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and axisymmetric hollow shapes. Figure 1.3 illustrates some example parts could be 

produced by roll bending process.  

 

  

Figure 1.3  Examples of roll bending process’s products (Iseltek Co., 2010) 

This kind of forming process can be also used for manufacturing a wide range of products for 

various industries (see Figure 1.4) such as, asymmetrical cones (wind tower), silo 

construction or semi-finished products. 
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Wind tower Semi-finished products Silo-construction 

  

  

Figure 1.4  Products made by roll bending process (Haeusler, 2010)

Moreover, this process is beginning to be taken into serious consideration by industries for 

producing large, thick parts such as the thick, conically shaped of wind tower (Seravesi, 

2006) or the crown (see Figure 1.5) of Francis turbine runner (Seravesi, 2006; Zeng, 2007). 

Some Francis turbine runners installed in the dam basement of a hydraulic power plant are 10 

meters in diameter with more than 5 meters in height, while plate thickness can exceed 100 

millimeters (Zeng, 2007). Several processes can be envisaged for the manufacturing 

processes of such large parts (welding or casting…), but few processes can deliver one 

within a reasonable time and at competitive cost. Among them the roll bending process, 

causing plastic deformation of a plate around a linear axis with little or no change in plate 

thickness, is considered as an interesting alternative. 
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Figure 1.5  Example of Francis turbine runners (Alstom, 2014) 

1.2 Scope of research 

One goal of this research is to find the forces needed to shape axisymmetric hollow parts and 

thus to provide the methods for reducing the forming forces. Another goal is to predict the 

final shape geometry and quality. Currently, the finite element method is one of the most 

powerful numerical tools for achieving these goals. The diagram in Figure 1.6 indicates the 

relationship between input and output parameters of the roll bending process that have been 

investigated via this thesis. 

 

 

Band of a Francis turbine 

Crown of a Francis turbine 
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Figure 1.6  Scope of research diagram 

Throughout this research, contributions have been made in five areas on the roll bending 

process. 

 

1.2.1 Study the effects of the roll bending process parameters 

This model investigates the parameters that affect the accuracy of the final shape, the 

forming forces and the residual strains left in the formed plate. The relationships between 

temperature, forming forces and plate thickness have also been investigated. A setup for the 

rolls was proposed in order to reduce forming forces and the flat areas at leading and trailing 

edges. 

 

1.2.2 Develop 3D dynamic FE model of the roll bending process 

A 3D dynamic FE model was developed in the Ansys/LS-Dyna environment and was 

validated satisfactorily through experiments. In an industrial context, the radius of the final 

shape in the roll bending process is generally determined based on “trial-and-error” or an 
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empirical approach, which requires several attempts. Therefore, applying this FE model in 

manufacturing plants will be beneficial in providing the accuracy of the final shape’s radius. 

This FE model also provides a better understanding of forming force for selecting or 

designing a machine capacity based on the plate thickness and the final shape sizes. 

Additionally, using this FE model will considerably reduce the setup time before 

manufacturing and increase the effectiveness of an existing asymmetrical roll bending 

machine. 

 

1.2.3 Perform roll bending process experiments 

A three-roll asymmetric bending machine was used to validate the FE models. To ensure 

qualitative experimental results, different measuring devices were used to verify the same 

output quantities of forming forces in this research such as indicators, load-cells and laser 

sensors. The final shape radii were evaluated by EXAscan laser scanner. The rotational speed 

of the rolls, supplied power, friction coefficient between the plate and rolls was checked by 

suitable equipments. In addition, a new experimental approach for measuring strains with 

strain gauges to obtain the strain variation left in the formed plate is also proposed in this 

research. 

 

1.2.4 Analysis theory of roll bending process 

By equilibrium of forces for each zone of bending plate, the theoretical study was developed 

in this research to study the forming forces depending on the various forming parameters. 

 

1.2.5 Live strain gauge measurements 

The analysis and measurement of the residual strain left in a roll bent plate are usually 

difficult to obtain, and no rigorous study on measuring strains during roll bending has been 

reported in literature to our knowledge. In this study, the strain gauges were mounted on the 

specimen surface and passed the rolls through grooves at the bottom and lateral rolls during 
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the bending process to record the strain variations. FE results and experiments were 

compared and analysed for a better understanding of the deformation behavior of the 

workpiece before and after passing the bending roll. It also provides an accurate residual 

strain measurement procedure that relates the workpiece properties to the final shape 

dimensions and process parameters.  

 

1.3 Outline of thesis  

This thesis is divided in five chapters. It starts with chapter one about general information 

and chapter two on literature review. The three following chapters, presented as three journal 

articles, expose the main results of the research. Finally, conclusions, recommendations and 

suggestions for future work are also outlined. The detailed content is as follows:  

 

Chapter 2, literature review, gives a comprehensive review related to roll bending process 

of the published literature to gain a better understanding the scope of thesis. It starts with a 

review of classification, advantage and disadvantage and the state of art of the roll bending 

process. In the second section, three main investigation techniques usually used in the 

research of the roll bending process are discussed. It includes analytical study, experimental 

investigation and finite element analysis. Detailed reviews on heat assisted and finite element 

theory on sheet metal forming are also presented in the final section of this chapter 

 

Chapter 3, journal article No. 01 - “Analysis of the asymmetrical roll bending process 

through dynamic FE simulations and experimental study”, explains in details the 

techniques used to analyse the asymmetrical roll bending process through dynamic FE 

simulations and experimental study. This chapter then investigates the parameters that affect 

the accuracy of the final shape, the bending forces and the residual strains left in the formed 

plate. The FE simulation results are compared with experiments performed on an 

instrumented roll bending machine and are in good agreement. 
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Heat assisted roll bending process dynamic simulation is presented in Chapter 4, journal 

article No. 02 – “Heat assisted roll bending process dynamic simulation”. In this paper, a 

computer aided simulation program has been built in the Ansys/LS-Dyna environment to 

study the relationships between temperature, applied forces and plate thickness. The finite 

element modelling of the formed geometry is sequential with first a thermal simulation 

followed by a structural one. The numerical results are then compared to analytical ones. The 

analyses of the process with numerical simulations yield to a better understanding of the 

mechanism of the process and provide an opportunity for the design of an efficient heating 

system to control the heat energy to be input in the workpiece during the roll bending 

process.  

 

Chapter 5, journal article No. 03 – “FE study for reducing forming forces and flat end 

areas of cylindrical shapes obtained by roll bending process”, proposes one more method 

to reduce forming forces and to improve the accuracy of the cylindrical shapes obtained by 

the roll bending process. This approach includes moving the bottom roll slightly along the 

feeding direction and adjusting the bottom roll location. Sensitivity analyses were performed 

using a developed 3-D dynamic finite element model of an asymmetrical roll bending 

process in the Ansys/LS-Dyna software package. Simulations were validated by experiments 

run on an instrumented roll bending machine. The FE results indicate that this new approach 

not only minimizes the flat areas but also reduces the forming forces. 

 

The thesis will be concluded in final section. It summarises key conclusions of this research 

about the parameters that may affect the output of the roll bending process, the method to 

reduce the forming forces and improve the final shape quality. Recommendations and 

suggestions for future work are also proposed in this section. 



 



 

CHAPTER 2 
 
 

LITERATURE REVIEW 

This chapter presents a literature review of published studies on the roll bending process to 

enhance understanding of the thesis objective. As mentioned, this research deals with finding 

the forming forces and predicting the final shape geometry via experiments and FE 

simulations. The literature review is divided in four sections, as follow:  

 

1 The roll bending process - state of the art: history, classification, operation, advantage 

and disadvantage.  

2 Investigation techniques for studying the roll bending process: 

• Analytical approach; 

• Experimental approach; 

• Finite element analysis approach.  

3 Heat assisted sheet metal forming. 

4 Summary. 

 

2.1 The roll bending process - state of the art 

It is not known when the first roll bending machine was introduced in the industry (Jenkins, 

1936) but a similar machine was already operated in 1828. A few years later - in 1840, Sir 

William Fairbairn, a shipbuilder, built plate bending rolls to make boilers and other products 

made of iron and steel plates. During the Industrial revolution, steam engine was used to 

power the roll bending machine. Figure 2.1 shows a steam-powered plate bending rolls found 

at Sheepford Boiler Works, Scotland (Allen, 1985).  
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Figure 2.1  The steam-powered roll bending machine (Allen, 1985) 

Between the late 19th and mid-20th centuries, the core technology of the roll bending 

machines was handheld. Various patents relating to such machines were found in these times 

with Figure 2.2 showing an example. Individual electric motors replaced progressively steam 

engine as power source.  

 

Since the 1950's, servomechanisms and then hydraulic motors were applied to control the 

paths of the roll bending machine. The products of the roll bending machine are thus more 

accurate.  
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Figure 2.2  Example of patent relating to roll bending 
machine (Patented-US807352A, 1905) 

Nowadays, many different types of roll bending machines have been developed over the past 

few decades to adapt to various forming production specifications. However, these roll 

bending machines can be classified into two major types in the currently market: a three-roll 

model (including pyramidal and asymmetrical models) and a four-roll model (Hua and Lin, 

1999). Roll bending process operations can be described as follows:  
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Three-roll asymmetric configuration (shown in Figure 2.3) 

 

The manufacturing steps are described below (Semiatin, 2006) and (Faccin, 2014): 

 

 Feed the plate into machine and move up the roll No.1 to “pinch” the plate. 

 Rotate the roll No.1 and No.2 to pre-bent the plate. 

 Reverse the roll No.1 and No.2 to remove the plate. 

 Enter the plate into the machine from the other end and adjust the roll No.3 to  

final position. 

 Complete cylinder and move down the roll No.1 to remove the final part. 

 

 

 

Figure 2.3  Three-roll asymmetric configuration 

2 

1 
3
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Three-roll pyramidal configuration (shown in Figure 2.4)  

 

The manufacturing steps are described below (Semiatin, 2006), (Zeng, 2007) (Schleifstein, 

2014) and (Faccin, 2014) : 

 

 Feed the plate into machine and move down the roll No.2 to a defined position. 

 Rotate the roll No.1 and No.3 to rough forming the plate. 

 Edge bending 1 at the leading edge of the final part. 

 Reverse the roll No.1 and No.3 to edge bending 2 at the trailing edge of final part. 

 Complete cylinder and move up the roll No.2 to remove the final part. 

 

 

Figure 2.4  Three-roll pyramidal configuration 

2

1 3
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Four-roll configuration (shown in Figure 2.5) 

 

The manufacturing steps are described below (Zeng, 2007), (Roundo, 2012; Schleifstein, 

2014) and (Faccin, 2014): 

 

 Place the plate to machine and move up the roll No.1 to “pinch” the plate. 

 Move up the roll No 3-b and rotate the roll No.1 and No.2 to form the plate. 

 Swap the roll No.3-a up and move down the roll No.3-b to continue form the plate. 

 Complete cylinder and move down the roll No.1 and No.3-a to remove the final part. 

 

 

Figure 2.5  Four-roll configuration 

3-a 

3-b

1 

2 
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Selection between a three-roll model and four-roll model machines depends mainly on the 

accuracy requirements, the dimension of products to achieve, the shape of the parts to be 

produced and the cost of machine (Marshall, 2010). The biggest advantage of four-roll model 

that have over the other three-roll machines is simplicity and easy cone bending (Hua and 

Lin, 1999) and (Zeng, 2007). But one advantage of three-roll model is its cost in current 

market. Three-roll model typically cost less than comparable four-roll model machines 

(Marshall, 2010). In this thesis, three-roll asymmetric model is selected to study forming 

forces and bending quality. Since there are two types of three-roll bending machines, let’s 

briefly review the features of both. Table 2.1 compares main characteristics of three-roll 

bending machines. 

 

 

Three-roll asymmetric configuration Three-roll pyramidal configuration 

Capable to pre-bend, leaves a smaller flat area 

at the leading and trailing ends in comparison 

to a three-roll pyramidal machine. 

Unable to pre-bend, leave larger flat 

areas at both leading and trailing ends 

of the final shape. 

Capable of forming a wider range of plate 

thickness than a three-roll pyramidal machine 

because of the method of feeding. 

Definite limitations on the minimum 

thickness of the plate that can be 

rolled because the top roll is an idler 

Unsuitable for forming the workpieces from 

angles, channels, and other structural shape. 

Permissive for forming irregular 

shapes of the plate that is not 

adaptable to three-roll asymmetric 

model.  

More accurate final shapes and it can be 

loaded and unloaded much faster than the 

three-roll pyramidal machine. 

Less force demanded for a given 

deflection because forming forces are 

almost applied midway between the 

two bottom rolls. 

Table  2.1  The features of the three-roll asymmetric and pyramidal model 
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The three-roll asymmetric model produces more accurate final shape, capable of forming a 

wider range of plate thicknesses, and especially, this kind of machine can be loaded and 

unloaded much faster than a three-roll pyramidal model. 

 

The objective of this thesis is to study the feasibility of three-roll asymmetric model in 

forming axisymmetric hollow shapes for reducing forming forces and improving final part 

quality by employing numerical and experimental methods 

 

2.2 Investigation techniques for studying the roll bending process 

2.2.1 Analytical approach 

2.2.1.1 Relationship between the curvature and displacement of the forming roll 

Roll bending process seems to be a rather simple process, but the curvature of the bent plate 

is not that easy to handle by a theoretical analysis (Hansen and Jannerup, 1979). Since 1970s 

researchers focused on analysis of deformation of the plates in order to produce parts with 

better accuracy, (Hansen and Jannerup, 1979) proposed a function based on simple theory of 

plastic bending to find the position of top roller corresponding to a desired curvature for the 

final shape. (Hardt et al., 1982) developed a shape control for a three-roll pyramidal model. 

This closed-loop control was designed to determine the relationship between bending 

moment and curvature and to compensate the springback of the workpiece in real time. In a 

research by (Seddeik and Kennedy, 1987), theoretical analyses lead to the minimization of 

total potential energy with a Rayleigh-Ritz technique. This analytical approach is used to 

calculate the relationship between the radius of curvature of bent plate and the resulting 

distortion in the cross section. (Yang and Shima, 1988) simulated deformation of the plate 

with a U-shaped cross section bent in a pyramid type three-roll bending machine. In this 

study, based on the properties of the plate, the authors calculated the bending moment and 

the curvature distribution of the plate in accordance with the displacement of the center roll 

and the rotation of the side rolls. Via elementary method, (Yang et al., 1990) also analysed 
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the relationship between the bending moment and the curvature distribution of the plate. 

These results were then used to build an automatic control system for producing a U-shaped 

cross section bent bar with a pyramid type three-roll bending machine. The analysis of the 

motion of rolls for forming a plate into a desired curvature in a pyramid type three-roll 

bending machine has been carried out by (Yang et al., 1994). In this research, the authors 

used FEM simulation and fuzzy reasoning to determine the path of the forming roll. In each 

deformation step of FEM simulation, the movement of forming rolls is iteratively adjusted by 

a feedback control based on fuzzy reasoning. Others have concentrated on relationship 

between the curvature and displacement of the forming roll. By assuming the contact point to 

be shifting at the bottom roll plate interfaces and neglecting the changing of material 

properties during deformation and the effecting of initial strain, (Gandhi and Raval, 2008) 

proposed an analytical to estimate the position of the top roll as a function of final radius of 

curvature for a pyramid type three-roll plate bending machine.  

 

2.2.1.2 Forming process principle 

Most of the published literature along history focused on working principle and relevant 

deformation mechanisms see for example the work of Hua et al. However, all of these theory 

models were developed for four-roll model but not for three-roll asymmetric model.  

 

By separating the bending process into 1) the edge preparation bending mode and 2) the 

continuous bending mode, (Hua et al., 1994) discussed relevant mechanism and its 

influential parameters for the continuous four-roll model. (Hua et al., 1995) developed a 

mathematical model to determine the internal bending resistance at the top rolls contact for 

multiple pass process on a four-roll bending model. In 1997, (Hua et al., 1997) proposed a 

formulation by equilibrium of the internal and external bending moment about the top roll 

contact to determine the bending force on the rolls in the continuous single pass four-roll 

model. Some mathematical models have been also established by (Hua and Lin, 1999) to 

simulate the forming of elastic-perfectly plastic plates on a continuous four-roll model 

bending machine. 
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(Hua et al., 1999) analyzed the working principles and some relevant bending mechanics of 

the rolls to exploit more fully the potential of the benders for manufacturing large and 

medium sized tubular sections on four-roll model. 

 

(Hua and Lin, 1999) provided an analytic approach to study the effect of an arbitrary strain 

hardening plate in edge bending mode with the four-roll model. The mathematical model is 

developed by solving the governing differential equation for the large deflection of an elasto-

plastic thin plate having general strain-hardening law. Influence of material strain hardening 

on the mechanics relevant to the whole process of four-roll bending machine was then 

investigated via this mathematical model. Based on the same analysis technique of (Hua and 

Lin, 1999), in a more recent study, (Lin and Hua, 2000) analyzed influence of material strain 

hardening on the mechanics relevant to the continuous mode on the four-roll model bending 

machine. Deformation of plate for edge bending mode on four-roll model bending machine 

was discussed via mathematical model by (Lin and Hua, 1999). The parameters relevant to 

this forming process were also defined in this research. (Hu and Wang, 2001) applied upper 

bound and lower bound methods to study the mechanism of the roll bending process. In their 

paper, a new roll bending model was proposed. This model resolves a few inadequacies of 

traditional roll bending processes and allows more flexibility in the formation of large 

bending parts. 

 

2.2.1.3 Reaction force 

The reaction forces during bending process are dependent on several parameters: plate 

thickness, plate width, material properties and diameter of final shape to be bent. With 

consuming most of the machine power, the maximum bending force is one of the most 

important information for designing bending equipment. Analytical models developed in the 

literature addressed the problem of bending force prediction for three-roll pyramidal model. 

(Gajjar et al., 2007) developed analytical models for equivalent thickness and equivalent 

width, which are based on the power law material model for studying the bendability within 

the machine capacity. By equating the external bending moment to internal bending moment 
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developed in the plate, (Chudasama and Raval, 2012) proposed an analytical model for the 

prediction of bending force during the multiple pass 3-roller conical bending. A similar 

approach has also been employed by (Chudasama and Raval, 2013) to present mathematical 

model for force prediction for 3-roller conical bending process. Effects of various material 

properties and geometrical parameters on the bending forces have been studied in detail. 

(Chudasama and Raval, 2014) developed the numerical model for the prediction of the 

bending force during dynamic stage of 3-roller conical bending process. In considering shear 

stresses developed in the plate along with the normal stresses during the roll bending, this 

analyis can be effectively used to get the roller bending force as well as the effects of various 

parameters like material parameters and geometrical parameters on it. 

 

2.2.1.4 Accuracy of the final shape 

Most of the analytical models developed in previous studies focus on forming process 

principle, reaction forces and relationship between the curvature and displacement of the 

forming roll. But few references are addressing the problem of the flat ends extents and the 

accuracy of the final shape. 

 

The mechanics of the three-roll bending process for smoothly curved plates has been 

proposed by (Shin et al., 2001). Both analytical and finite element approaches were applied 

to develop a logical and accurate procedure for determining the center roller displacement 

required for the fabrication of a plate with the desired curvature. The analytical approach has 

been obtained by modifying and extending an existing model based on the beam theory. The 

finite element models built for comparison purposes, one with beam elements and the other 

one with plane strain shell elements, show that the analytical approach yields to sufficiently 

accurate results for smoothly curved plates and may be used to determine the center roller 

displacement according to the desired curvature. In order to improve the quality and 

productivity of final shape that is produced by roll bending process, (Gandhi et al., 2009) 

develop the formulation of springback and machine setting parameters for continuous multi-

pass bending of conical shape on three-roll bending machines. In this paper, effect of change 
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of flexural modulus during the deformation was incorporated to study the effect on spring-

back prediction. (Cai and Lan, 2011) analyzed the straight end problem in a thin plate, 

pyramid-type machine through the development of an analytical method. However, the 

authors did not discuss the flat areas produced by a three-roll asymmetric machine and did 

not propose a method to reduce the straight end. 

 

2.2.2 Finite element analysis approach  

Through the last decades it has been discovered that it is expensive and time consuming to 

run experimental investigations that may only give a limited understanding of the roll 

bending process. Moreover, the interest in simulating and accurately predicting the 

deformations during the roll bending process and the geometrical characteristics on the final 

product has been increased. Therefore, the application of numerical simulation of the roll 

bending process was suggested.  

 

According to (Logan, 2006), “The Finite Element Method (FEM) is a numerical method for 

solving problems of engineering and mathematical physics” The term FEM was coined by 

Ray W. Clough in his publish in 1960 (Logan, 2006). The first commercial finite element 

analysis code came of age in the early 1960’s with the replacement of analogue with digital 

computers. At this early stage, the application was confined to static analysis to evaluate the 

performance of the machine structure. For studying about roll bending machine stands, 

(Ramamurti et al., 1992) performed FE simulation to study the static response of the frame of 

a three-roll pyramidal machine when it is in operation. 

 

Roll bending process modeling is a high nonlinear problem and required intensive and costly 

computational operations. With the continuous development of computers, memory 

requirements and computer performance are extremely improved in recent years. The limited 

nonlinear solvers such as, nonlinear behaviors of material, nonlinearity due to contact or 

nonlinear loading, were developed and made available in commercial FEM software, such as 

ANYSY/LS-DYNA, ABAQUS, AUTOFORM, etc. Instead of using an implicit analysis, 3D 
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explicit FE analysis method has been chosen by most researchers to analyse and simulate 

such kind of nonlinear behaviour exhibited by the roll bending process. (Zeng et al., 2008) 

developed 3-D simulations based on the elastic-plastic explicit finite element method with 

Ansys/LS-Dyna to study the dynamic process of the three-roll pyramidal model. In this 

study, the kinematic relationship existing between rolls and workpieces, the geometrical 

setup and the finite element mode are discussed in detail for manufacturing a conical tube 

using the conical rolls of a three-roll pyramidal model. Feng et al conducted a considerable 

amount of FE modeling and simulation to investigate the three-roll bending process. In 2009, 

(Feng et al., 2009) developed a finite element model for studying non-kinematical pyramidal 

three-roll bending. By using the attachments to reduce the velocity on the area close to the 

top edge of the plate, this FE model can be used to simulate the manufacturing of the conical 

parts with cylindrical rolls on a pyramidal three-roll bending machine. Based on the same 

approach, (Feng and Champliaud, 2012) developed a FE model of pyramidal three-roll 

bending process to produce the conical shapes with conical rolls. In 2011, (Feng and 

Champliaud, 2011) proposed a three-stage process to improve the geometrical quality of a 

bent cylinder obtained from FE simulations. The asymmetrical three-roll bending process 

was also developed by (Feng and Champliaud, 2011) in 2011. This FE models were capable 

of predicting the position of the lateral roll and helped to increase the productivity by 

improving the traditional trial and error technique. (Ktari et al., 2012) and (Fu et al., 2013) 

also used the commercial finite element package, ABAQUS/Explicit environment, to study 

the forming process of the pyramidal three-roll bending. 

 

2.2.3 Experimental approach 

FE simulations or theoretical analyses may have the potential to provide a better 

understanding of the phenomena in the roll bending process, and can therefore decrease the 

setup time before manufacturing and the amount of materials wasted by using the trial-and-

error approach. However, before applying these techniques to the actual process, verification 

via experiments are used to validate the numerical model. Most of the experimental 

published works that addressed the relationship between the curvature and displacement of 
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the forming roll were used to validate the theoretical approach. It includes the publications of 

(Hansen and Jannerup, 1979), (Hardt et al., 1982), (Seddeik and Kennedy, 1987), (Yang and 

Shima, 1988), (Yang et al., 1990), (Yang et al., 1994) and (Gandhi and Raval, 2008). 

Different experiments have been conducted to study: a) the forming process principle (Hu 

and Wang, 2001) and (Ramamurti et al., 1992); b) the FE simulations (Feng and 

Champliaud, 2011) and (Fu et al., 2013). Experimental investigations of forming forces have 

been carried out by some researches. (Hua et al., 1999) used the load-cells to measure the 

forming force acting on the rolls of four model roll bending machine as shown in Figure 2.6.   

 

 

Figure 2.6  Location of load-cells of four-roll model bending machine 
 (Hua et al., 1999) 

Each load-cell can measure the axial force and bending force and the recorded signal was 

converted to a resultant force. Using the same measurement approach, (Chudasama and 

Raval, 2012) attached the load-cells to the rolls of a three-roll pyramidal model to measure 

the reaction force at the top and at the bottom roll as shown in Figure 2.7 
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Figure 2.7  Location of load-cells of three-roll model (Chudasama and Raval, 2012)

2.3 Heat assisted metal forming 

In metal forming industries, processes may be carried out for three basic working 

temperature ranges: cold, warm and hot (Mukherjee, 2013). The review of manufacturers’ 

practices indicated that most the metal forming process is generally performed at room 

temperature because it offers a number of distinct advantages at this working condition. 

However, heat assisted metal forming will be unavoidable if the forming forces necessary to 

bend the plate in cold working conditions exceeded the capacity of the machine.  

 

As shown in Figure 2.8, most of the metallic materials become softer at high temperatures. 

Strategic use of heat input could help to lower forces required for forming. 
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Figure 2.8  Effect of temperature on forming force (Juneja, 2013)  

Lower accuracy and surface finish, higher production cost and shorter tool life are basically 

drawbacks of the hot forming. But in comparison with cold and warm forming, hot forming 

has some advantages such as, lowering forces and power required, increasing the amount of 

deformation and reducing strain hardening (Mukherjee, 2013) and (Juneja, 2013). Therefore, 

at higher temperature any deformation operation can be performed with lower forces and less 

power. It leads to reduce the cost of equipment needed for the process. 

 

As shown in Figure 2.9, where TA is the room temperature and Tm is the melting temperature 

of the material, the boundary between warm and hot conditions is defined by temperature of 

re-crystallization. Cold working is metal forming at room temperature, warm forming is 

performed at a temperature higher than room temperature but lower than the re-

crystallization temperature while hot working is carried out at temperatures above the re-

crystallization temperature (Mukherjee, 2013).  
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Figure 2.9  Temperature for different metal forming conditions (Mukherjee, 2013)  

The metal forming process in hot condition is basically done using one of these two options: 

globally heated plate or locally heated plate (Larsson, 2005). Globally heated plate is heat 

assisted metal forming where the entire of the bent plate is heated uniformly to one target 

temperature in an oven. The heated plate is then fed into the machine for forming. Another 

method used for softening the material in hot forming is known as locally heating or line 

heating. This forming technique has been an active research topic in manufacturing, 

especially in ship-building (Yu et al., 2001). A simple example of conventional line heating 

work can see in Figure 2.10. 

 

Globally heated plate can be formed more easily than when it is locally heated, but the plate 

has to be removed from the oven to the machine itself with heat loss occurring during the 

transfer (Larsson, 2005). Maintaining the temperature at an acceptable working limit in the 

plate thus is a great challenge for this heat assisted forming process.  
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Figure 2.10  Example of conventional line heating work (Yoshihiko et al., 2011)   

The literature review illustrate that most of the researchers in previous studies focused on 

thermal forming, known as tool less or non contact material forming technology of sheet 

metals. There are limited studies available in heat assisted process in metal forming. For 

thermal forming, gas (oxy-fuel) flame, laser, plasma and inductor are mainly heat sources 

using for sheet metal bending (Tangirala, 2006), (Liu et al., 2009). With the earliest work on 

laser forming beginning in the mid-1980s (Yu et al., 2001), many of the process and material 

parameters were analyzed using laser heat sources both experimentally and analytically. In 

comparison with plasma, laser provides a highly controllable heat source. The plate surface 

therefore could be rapidly heated by this heat source (Tangirala, 2006). An alternative to 

lasers to provide a cheaper and safer means to bend plate (Tangirala, 2006), plasma jet 

forming used a non transferred plasma arc as a heat source to create the necessary thermal 

gradient in the plate. Compared to other heat sources, induction heating has good 

controllability, repeatability and a pollution-free working environment (Larsson, 2005). It is 
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therefore a promising technology that will be used in a wide range of industries for metal 

forming application. This system mainly consists of an induction coil, an electrically 

conductive part and switched power electronics as shown in Figure 2.11 (Larsson, 2005). 

According to Faraday's Law, an electrically conductive part is located inside or in the 

nearness of the coil and eddy currents will be induced in the object when alternating voltage 

is applied. As a result of the Joule effect, eddy currents will produce heat. 

 

Figure 2.11  Induction heating system (Larsson, 2005) 

Though heat input of the three heat sources are different, the forming mechanisms are the 

same (Liu et al., 2009). 

 

2.4 Summary 

This chapter presented a literature review of topic regarding the state of the art of the roll 

bending process, investigation techniques for studying it and heat assisted metal forming. 
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The roll bending process is a process having a long history over one century; it is still the 

most practical method of producing large cylinders and axisymmetric hollow shapes. Based 

on the discussions above, some major knowledge gaps can be drawn: 

 

The three-roll asymmetric model produces more accurate final shape, capable of forming a 

wider range of plate thicknesses, and especially, this kind of machine can be loaded and 

unloaded much faster than a three-roll pyramidal model. However, most theoretical models, 

FE simulations and experiment verifications in the literature focused on four-roll model or 

three-roll pyramidal model but none of them on three-roll asymmetrical model. The 

parameters that affect the accuracy of the final shape, the bending forces and the residual 

strains left in the formed plate is only partially understood. Thus, there are many challenges 

for understanding the forming process with this type of machine.  

 

The forming forces can be reduced by heating the plate. But, to the author’s knowledge, up to 

now, there is no published study about heat assisted roll bending process. In this research, the 

relationships between the heating plate temperature and the output parameters of roll bending 

process such as applied forces and final shape quality have been studied by performing FE 

simulation and analytical computations. These results yield to a better understanding of the 

mechanism of the process and provide an opportunity for the design of an efficient heating 

system to control the heat energy to be input in the plate during the roll bending process.  

 

A roll bending process that minimizes the flat areas at the leading and trailing ends of formed 

plates will produce more accurate and easier to butt joint the bent ends of the plate. There are 

several methods of minimizing flat areas, but these techniques are costly or difficult to apply 

for thick plates. Via FE simulations in Ansys/LS-Dyna software package, this study proposes 

a new, simple approach that reduces these flat areas. This approach includes moving the 

bottom roll slightly along the feeding direction and adjusting the bottom roll location. The FE 

results indicate that this new approach not only minimizes the flat areas but also reduces the 

forming forces. 
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The analysis and measurement of the residual strain left in a roll bent plate are usually 

difficult to obtain, and no rigorous study on measuring strains during roll bending has been 

reported, to our knowledge, in the literature. In this study, strain gauges were mounted on the 

specimen surface and passed through the rolls without been crushed, thanks to the grooves 

machined in the bottom and lateral rolls. Finite element results and experiments were 

compared and analysed for a better understanding of the deformation behaviour of the 

workpiece before and after passing the bending roll. 
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3.1 Abstract 

Because it is influenced by various processing parameters, predicting the bending force and 

improving the accuracy of the final shape are significant challenges in the roll bending 

process when the part to be produced is large and made of high-strength steel. In this paper, a 

3D dynamic Finite Element (FE) model of an asymmetrical roll bending process is developed 

using the Ansys/LS-Dyna software. This model investigates the parameters that affect the 

accuracy of the final shape, the bending forces and the residual strains left in the formed 

plate. The simulation results are then compared with experiments performed on an 

instrumented roll bending machine. Strain measurements are also performed during forming 

with strain gauges fixed onto plate blanks. A good agreement between the experiments and 

simulations has been obtained.  

 

Keywords Roll bending process • Dynamic FEM simulation • Ansys/LS-Dyna •  

Forming process 
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Résumé 

 

La prédiction de la force de formage et l’amélioration de la précision de la forme finale sont 

des défis importants dans le processus de cintrage lorsque la pièce à réaliser est de grande 

dimension et faite d’acier à haute résistance. Dans cet article, un modèle 3D dynamique par 

éléments finis (FE) d'un processus de formage par roulage asymétrique est développé en 

utilisant le logiciel Ansys/LS-Dyna. Ce modèle examine les paramètres qui influencent la 

précision de la forme finale, les forces de flexion et les contraintes résiduelles laissées dans la 

plaque déformée. Les résultats des simulations sont ensuite comparés aux expérimentations 

réalisées avec une machine de roulage instrumentée. Les mesures de déformation sont 

également effectuées pendant le formage avec des jauges de contrainte fixées sur la plaque. 

Une bonne corrélation entre les mesures expérimentales et les simulations a été obtenue. 

 

Mots-clés: Procédé de roulage • Analyse dynamique par éléments finis • Ansys/LS-Dyna • 

Procédé de formage 

 

Nomenclature 

 

a Center location of lateral roll along action line 

E Young’s modulus of plate material 

I Moment of inertia of plate 

Pt, Pb Coordinates of the top and the bottom laser dots on the deformed lateral roll 

Pt0, Pb0 Initial coordinates of the top and the bottom laser dots on the lateral roll 

t Plate thickness 

R Radius of the rolled cylinder 

r Radius of the rolls 

s Initial arc length made by two laser beams dotting in lateral roll 

xos, yos Initial location of the lateral roll center 

xod, yod Location of the lateral roll center under force 

λ Angle between the two laser beams 



37 

θ Operating action line angle of offset cylinder ν    Poisson’s ratio of the material 

υ  Deflection of the top roll 

υ lr Deflection of the lateral 

µ Friction coefficient 

 

3.2 Introduction 

Roll bending is a continuous forming process that uses forming rolls to bend plates, sheets, 

and even rolled shapes into the desired shape: cylinders, cones or ovals. Given the 

advantages, such as reducing the setup time, the raw material, and the tooling and equipment 

costs, the roll bending process is one of the most used techniques for manufacturing 

axisymmetrical shapes. Moreover, this process is a manufacturing method that is beginning 

to draw significant attention by industries for producing large, thick parts, such as the thick 

conical shape of the crown of a Francis turbine runner or of a wind turbine tower. 

Many different types of roll bending machines have been developed over the past few 

decades to adapt to various forming production specifications. However, these roll bending 

machines can be classified into two major types currently in the market: a three-roll model 

and a four-roll model. The three-roll model includes pyramidal and asymmetrical models, for 

which basic principles and operations can be found in Ref.[1]. Generally, an asymmetrical 

model produces a more accurate final shape. In addition, it can be loaded and unloaded 

significantly faster than the pyramidal model [2]. Therefore, this type of machine is currently 

more widely used [3].  

 

Roll bending process seems to be a rather simple process, but the curvature of the bent plate 

is not that easy to handle by a theoretical analysis [4]. Since 1960s, Bassett [5] performed 

experiments to measure the upper roll vertical force and the driving torque of the three-roll 

pyramid type plate bending machine. By assuming the contact point to be shifted at the 

bottom roll plate interfaces and neglecting the changing of material properties during 

deformation and the effecting of initial strain, Gandhi et al. [6] proposed an analytical 



38 

method to estimate the position of the top roll as a function of final radius of curvature for a 

pyramid type three-roll plate bending machine. Yang et al. [7] simulated deformation of the 

plate with a U-shaped cross section bent in a pyramid type three-roll bending machine. In this 

study, based on the properties of the plate, the authors calculated the bending moment and 

the curvature distribution of the plate in accordance with the displacement of the center roll 

and the rotation of the side rolls. Cai and Lan [8] analyzed the straight-end problem in a thin-

plate formed on a pyramid-type bending machine through the development of an analytical 

method. Hu et al. [9] applied upper-bound and lower-bound methods to study the mechanism 

of the roll bending process. In their paper, a new roll bending model was proposed. This 

model resolves a few inadequacies of traditional roll bending processes and allows more 

flexibility in the formation of large bending parts. 

 

Most the work of Hua et al. focused on working principle and relevant deformation 

mechanisms for four-roll model. Hua et al. [10-11] analyzed the working principles and some 

relevant bending mechanics of the rolls to exploit more fully the potential of the benders on 

four-roll model. In 1997, Hua et al. [12] proposed a formulation by equilibrium of the 

internal and external bending moment about the top roll contact to determine the bending 

force on the rolls in the continuous single pass roll bending process. Hua et al. [13] provided 

an analytic approach to study the effect of an arbitrary strain hardening plate in an edge 

bending mode. The mathematical model is developed by solving the governing differential 

equation for the large deflection of an elasto-plastic thin plate having general strain-

hardening law. Influence of material strain hardening on the mechanics relevant to the whole 

process of four-roll bending machine was then investigated via this mathematical model. Hua 

et al. [14] developed a mathematical model to determine the internal bending resistance at the 

top rolls contact for multiple pass process on a four-roll bending model. By separating the 

bending process into a) the edge preparation bending mode and b) the continuous bending 

mode, Hua et al. [15] discussed relevant mechanism and its influential parameters for the 

continuous four-roll model. Some mathematical models have been also established by Hua et 

al. [16] to simulate the forming of elastic-perfectly plastic plates on a continuous four-roll 

model bending machine. 
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3D explicit FE analysis has been used to simulate the roll bending process. However 

publications focused on four-roll model or three-roll pyramidal model and few of them on 

three-roll asymmetrical model. Zeng et al. [17] developed 3-D simulations based on the 

elastic-plastic explicit finite element method with ANSYS/LS-DYNA to study the dynamic 

process of the three-roll pyramidal model. In this study, the kinematic relationship existing 

between rolls and workpieces, the geometrical setup and the finite element mode are 

discussed in detail for manufacturing a conical tube using the conical rolls of a three-roll 

pyramidal model. Feng et al. conducted a considerable amount of FE modeling and 

simulation to investigate the three-roll bending process. In 2009, Feng et al. [18] developed a 

finite element model for studying non-kinematical pyramidal three-roll bending. By using 

attachments to reduce the velocity at the area close to the top edge of the plate, their FE 

model can be used to simulate the manufacturing of the conical parts with cylindrical rolls on 

a pyramidal three-roll bending machine. Based on the same approach, Feng et al. [19] 

developed a FE model of pyramidal three-roll bending process to produce the conical shapes 

with conical rolls. In 2011, Feng and Champliaud [20] proposed a three-stage process to 

improve the geometrical quality of a bent cylinder obtained from FE simulations. In addition, 

Ktari [21] and Fu [22] used the commercial finite element package, ABAQUS/Explicit 

environment, to study the forming process of the pyramidal three-roll bending. 

 

The 3D dynamic FE asymmetrical three-roll bending process was also developed by Tran et 

al. to a) study the relationships between heating input, applied forces and plate thickness [23-

24]; b) predict forming forces for manufacturing a conical shape [25]; and c) analyze the 

workpiece deformation [26] and flat ends areas [27]. Furthermore, Feng et al. [28] simulated 

the asymmetrical three-roll bending process to increase the productivity by improving the 

traditional trial and error technique.  

 

According to the literature review, the process parameters that affect the accuracy of the final 

shape, the bending forces and the residual strains left in the formed plate are only partially 

understood. In this paper, a 3D dynamic FE model was developed in the ANSYS/LS-DYNA 

environment for an asymmetrical roll bending machine. The plate material was considered 
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isotropic with an elasto-plastic behavior and friction was taken in account at the interfaces of 

the plate with the rigid rolls. Investigations were conducted to quantify the influence of 

process parameters on the forming forces and the accuracy of the final shape. Finally, 

numerical results were validated with an instrumented roll bending machine. In this paper, it 

is also proposed a new approach for measuring strain variations in the bent plate during the 

process. Applying this 3D dynamic FE model in an industrial context may predict the 

forming forces or the accuracy of the final shape’s radius and thus will decrease the setup 

time before manufacturing.  

 

3.3 Geometric setup of roll bending machine 

In this paper, a typical asymmetrical three-roll bending machine is used to shape a plate with 

a thickness t, as indicated in Figure 3.1 

 

 

Figure 3.1  Asymmetrical three-roll bending machine 



41 

The workpiece is fed and “pinched” between the top and bottom rolls while the lateral roll 

moves up or down to adjust the radius R of the final shape. The top roll is in a fixed position; 

the up and down displacement of the bottom roll is adjustable to pinch the workpiece, ensure 

a sufficient grid to feed the plate and allow the removal of the finished workpiece. The final 

radius R of a formed cylinder depends on the position of the lateral roll center, which is 

expressed by the center distance “a” from the top roll to the lateral roll. From the elastic 

relationship between the position of the lateral roll and the final radius R of the formed 

cylinder [28], the relationship between the final radius R and the center location of the lateral 

roll along the action line (shown in Figure 3.1) can be expressed by Equation 3.1 as follows: 

 

 
R=

a

2

a sin2θ

2r + t - a cosθ
- cosθ  

(3.1)

 

where “a” is the center location of lateral roll along the action line, “r” is the radius of the 

rolls, “t” is the thickness of the workpiece, and θ is the operating action line angle of the 

offset cylinder. 

 

3.4 Finite element model 

A 3D numerical FE model of the asymmetrical three-roll bending process described in the 

previous section was developed in the Ansys/LS-Dyna environment [29]. Some assumptions 

for FE simulations of the bending process are summarized below [20]:  

 The plate is considered as a shell since its thickness is small in comparison with its width 

and length. 

 For the plate, the material is isotropic, with bilinear elastoplastic (BISO) behavior 

described by three constant properties: elastic modulus, yield stress and tangent 

modulus. 

 The static and dynamic friction coefficients are constant. 

 The rolls are assumed as rigid bodies. 

 The weight of the plate is neglected. 
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3.4.1 Elements and mesh 

In the ANSYS/LS-DYNA environment, when the plate thickness is significantly smaller 

compared to its width and its length, the geometry can be modeled using the explicit 4-node 

SHELL163 element with elasto-plastic capabilities. 8000 elements were used to mesh the 

plate: 50 elements in plate width and 160 elements in plate length. The rolls are considered as 

rigid bodies in comparison with the deformable plate. The FE model consists of four main 

components: three rigid rolls and one flexible plate, which are illustrated in Fig. 2. 

 

 

Figure 3.2  FE simulation model of asymmetrical three-roll bending machine 

AISI-304 stainless steel plates of various thicknesses with a Young’s modulus E of 195 GPa 

and a Poisson’s ratio ν of 0.29 were used for the experiments in this study. The material 

constants E and nu were measured using tensile testing with dog-bone specimens cut with a 

water jet into shapes with dimensions based on ASTM-E8 testing standards. Figure 3.3 

illustrates the results of a tensile test run using a 2.5 mm thick specimen. A bilinear isotropic 

(BISO) material model defined in Ansys/LS-Dyna was used to represent the  

elasto-plastic behavior obtained from uniaxial tensile tests.  

  Lateral roll Top roll 

Workpiec

Bottom roll 
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Figure 3.3  Tensile testing curves and dog-bone specimen 

Table 3.1  FE model and material properties parameters 

FE model parameters of the plate 

 Type of element  SHELL-163 

 Type of interaction  Automatic node to surface  
 Number of element  8000 

 Static friction coefficient 0.2 

Material properties of plate 

 Material model Bilinear isotropic 

 Young’s modulus (GPA) 195 

 Yield stress 0.2% proof (MPa) 274 

 Tangent modulus (GPA) 1.90 

 Poisson’s ratio 0.29 

 Density (kg/m3) 7830 

 

plastic behaviour

elastic behaviour
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3.4.2 Contact surface and friction 

The interaction between components is characterized through contact surfaces. In the roll 

bending process model, the surface of the roll is smaller than the surface of the workpiece. 

Although Ansys/LS-Dyna supports a large selection of contact options to define the 

interaction between surfaces in the explicit analysis, the automatic node to surface algorithm 

is used for the interaction between the rolls and the plate. This type of surface contact is 

efficient when a smaller surface comes into contact with a larger surface [30]. The workpiece 

is driven and deformed to its final shape through these contact surfaces. Furthermore, the 

static friction coefficient μ of 0.2 between the plate and the rolls is directly measured 

experimentally.  

 

3.4.3 Loading 

In the numerical simulations, the top and bottom rolls are driven in rotation and fixed in 

translation. The lateral roll is constrained in translation and experiences no self-rotation to 

press the forming plate against the top roll. The plate is only constrained by the rolls through 

contacts. 

 

3.5 Experimental validation and measuring methodologies 

A three-roll asymmetric model machine with a roll radius r of 50.0 mm, a roll length of 

1500.0 mm and an operating action line angle of lateral roll θ of 60° (see Figure 3.1) was 

available in our lab and used to validate the FE simulation model.  

 

A series of experiments and FE simulations using the same forming conditions, machine 

parameters, workpiece dimensions, etc., were conducted to investigate the bending force 

variations and factors that may affect the accuracy of the final shape. Additionally, to ensure 

qualitative experimental results, different measuring devices were used to verify the same 

output quantities. 
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3.5.1 Verifying the final shape 

Examining the radius of the final shape is the first step in experimentally evaluating the FE 

models. A hand-held device called an EXAscan laser scanner (Figure 3.4) is generally used 

for scanning and measuring the formed plate without the inconvenience of setting up tools or 

tracking arms. Using an auto positioning system of targets ticked on the final shape’s surface, 

this system allows a quick and accurate data acquisition to investigate the forming characters 

of the workpiece and the final shape. 

 

Figure 3.4  Final shape radius verification 

3.5.2 Recording and computing the bending force acting on the lateral roll 

Two differential apparatuses are combined to measure the deflection of the lateral roll. It 

includes two indicators placed at the two ends of the lateral roll and two laser distance 

sensors fixed on the frame at the middle of the lateral roll. This measurement is necessary for 

Formed workpiece 

Reference points 
EXAscan laser 



46 

two reasons: first, laser sensors can record the deflection of the lateral roll during the roll 

bending process, and second, the sensors examine the possible backlash at the two ends of 

the lateral roll. Two lasers, based on optical displacement sensors using an extremely small 

spot (with 0.5 µm resolution and ±0.1% linearity), are attached to a prototype part that was 

designed to keep the angle λ constant, as indicated in Figure 3. 5.  

 

 

 

Figure 3.5  Recording deflection of the lateral roll with laser sensors 

Top roll 

Lateral roll 

Top laser

Bottom laser
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The deflection information of the lateral roll before and during the forming process is 

obtained via the reflection of the laser beam. With “s” defined as the initial arc length formed 

by two laser beam dots on the lateral roll, let λ = s/r be the angle of two laser beams 

produced from the top and bottom lasers (see Figure 3.6); the initial coordinates of the top 

and bottom laser dots on the lateral roll are expressed at point Pt0 (xt0, yt0) and Pb0 (xb0, yb0), 

respectively, as follows: 

 

Figure 3.6  Diagram of deflection checking by laser system 

 

 xt0 = r cos
λ

2
 

(3.2a)

 

  yt0 = r sin
λ
2

 
(3.2b)

 xb0 = xt0 (3.3a)

   yb0 = - yt0 (3.3b)
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Under bending forces, the lateral roll will be deflected in the direction of the applied force. 

Because the laser system is fixed to a prototype part with a constant angle λ, the dots of the 

two laser beams on the lateral roll at initial positions Pt0 (xt0, yt0) and Pb0 (xb0, yb0) are located 

at two new coordinates Pt (xt, yt) and Pb (xb, yb) after roll deflection. 

 

 

 xt	= xt0 + dt cos
λ

2
 

(3.4a)

 

  yt = t0 + dt sin
λ
2

 
(3.4b)

 

xb	= xb0 + db cos
λ

2
 

(3.5a)

 

yb = yb0 - db sin
λ
2

   
(3.5b)

 

With dt and db, which are the recorded distances provided by the top and bottom laser 

sensors, respectively, the new center of the lateral roll Od(xOd, yOd) under bending forces is 

computed as follows: 

 

 

 
xOd	= xm - r cos 

φ

2
cos α (3.6a)

 
yOd = ym + r cos 

φ

2
sin α (3.6b)

 

 

Where  

 

 
xm =

xt + xb
2

 
(3.7a)

 
ym =

xt + xb
2

 
(3.7b)
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and 

 

 α = arctan
−

yt - yb

 
(3.7c)

 

Then, the mid-distance deflection OsOd of the lateral roll center under bending force is 

expressed by Equation 3.8 as follows: 

 

 

 υ
lr
= xOd

2 +  yOd
2  

 

(3.8)

The potential “backlash” at the two ends of the lateral roll is examined using two indicators 

with 0.001 mm resolution and 25.0 mm maximum displacement.  

 

Along with the laser systems and the supporting indicators to define the bending force acting 

on the lateral roll via its deflections as mentioned above, two load cells are also designed to 

directly measure the bending force, as indicated in Figure 3.7. These compression strain 

gauge load cells, LC-321-500, have a capacity of 2200 N. The initial value of the load-cells 

are set to zero when both ends of the lateral roll are just in contact with the bearings without 

any applied bending load. This procedure is used to eliminate dead weight effects of the 

lateral roll bearing reaction measurements. The bending force acting on the lateral roll is 

calculated using the sum of all individual force values recorded by each load-cell as follows 

(see Figure 3.7): 

 

 Flr = Fi

4

i=1

 

 

(3.9)

where i is the number of load-cells. 
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Figure 3.7  Measuring the bending force of the lateral roll 

3.5.3 Computing the bending force acting on the top roll 

The method that measures the total deflection resulting from an applied load is also used to 

compute the bending force acting on the top roll. Three digital indicators are rigidly clamped 

on magnetic bases mounted on the machine frame, as presented in Figure 3.8. 
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Figure 3.8  Measurement of the top roll deflection 

The free body diagram of the system, including the deflection at points A, B and C, is shown 

in Figure 3.9. The deflection curve υ depending on the length x of the top roll is expressed as 

follows: 

 

 

 (x)	=	- R0x3

6EI
	+	 q

24EI
x -

L

2
-

bq

2

4

-
q

24EI
x -

L

2
+ bq

2

4

+	θ0x	+ 0 
(3.10)
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Figure 3.9  Free body diagram of deflection 

where R0 and υ0 are the reaction force and the deflection of the top roll at position zero, 

respectively; b is the width of the plate; q is the applied force acting on the top roll; and θ0 is 

the possible deflection angle of the top roll. It should be noted that in the following 

equations, it is assumed that the force exerted by the plate on the roll is uniformly distributed 

over the contact line of length b (see Figure 3. 8). Using the least squares method, it can be 

determined that: 

 

 

 
∂  xi

∂ q

n

i=1

 xi -i = 0 

∂  xi

∂ 0

n

i=1

 xi -i = 0 

∂  xi

∂ θ0

n

i=1

 xi -i = 0 

(3.11)

 

By solving Equation 3.11, the three unknown variables q, θ0 and ν0 can be determined. 
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3.5.4 Strain variation and deformed behavior of the plate 

To measure the strain variations left in the formed plate and the residual strain, a strain gauge 

is used to record the strain variations during the bending process. The strain gauges are 

directly fixed onto the plates. Special care is given at the beginning of the process to avoid 

any damages to strain gauges while handling blanks and feeding them between rolls. Three 

strain gauges J1, J2 and J3 with equal resistance of 120 Ohms ±0.4% were mounted on the 

specimen surface. They were equally distributed, as shown in Figure 3.10. When the plate 

deformed, the strain variations were recorded with an acquisition system programmed with 

Labview® [31]. 

 

 

Figure 3.10  Strain gauges fixed onto workpieces 

3.5.5 Examining the rotational speed and supplied power of the roll bending 

machine 

An encoder is used to determine the rotational speed of the rolls during the roll bending 

process. This is an electromechanical component with a shaft that converts its rotation to an 

analog signal. By directly connecting the rolls of the machine to the rotating shaft of the 

encoder, this measurement can provide high precision results, even for a slow rotational 

speed, and stable measurements. Furthermore, the amount of supplied power (W) during the 

 J1 J2 J3
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roll bending process is recorded. With features such as RS-232/communication, all 

measurement equipment outputs are saved in a file with Labview®. 

 

3.6 Results and discussion 

The precision of the radius of any final shape R of the roll bending process depends on many 

factors, such as the thickness “t” of the plate, the position “a” of the lateral roll, the 

dimension “R” of the final shape and even the skills of the machine operators.  

 
3.6.1 Geometric verification model 

To verify the geometry of the final shapes of the forming plate obtained from FE simulations 

in Ansys/LS-Dyna, a numerical check is applied. The successive shape of the forming plate 

using FE simulations is plotted at various steps, as depicted in Figure 3.11 and Figure 3.12. 

 

 

Figure 3.11  FE simulations of roll bending process at beginning of the 
process 
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a) 

 

b) 

Figure 3.12  FE simulations of roll bending process at a) midpoint of 
the process and b) completion of the process 
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When the process is completed, as illustrated in Figure 3.11c, the coordinates of the center of 

the circle xC, yC and its radius R, assuming that the nodes of the formed plate are distributed 

along a cylindrical geometry, are determined using the following objective function:  

 

 min F(xc, yc, R) (3.12a)

                                        with F=Σ (R - Ri)
2

 

Where   
                                               R = [(xi - xc)

2
 + (yi - yc)

2
] 

(3.12b)

 with xi= x(0)+ ux and yi= y(0)+ uy 

 

With grad(F) = 0, three nonlinear equations are solved simultaneously for xC, yC and R. 

Because these equations are differentiable, a Newton-Raphson scheme was applied to 

determine the circle parameters. Only the initial coordinates x(0), y(0) and displacements ux 

and uy of nodes located at the mid-width of the plate are imported into Matlab® [32] for 

processing, as indicated in Figure 3.13. 

 

 

Figure 3.13  Geometric verification model 

Results from ANSYS 

simulation 

Newton-Raphson 

scheme 

Node coordinates and 

displacements 
Matlab 

Find best circle 

parameters fitting 

(R, xC, yC) 
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3.6.2 Influence of plate thickness (t) and center location of lateral roll (i.e., a) on 

final shape radius (R) 

As mentioned above, among the many workpiece parameters that affect formability of the 

roll bending process, the plate thickness may have the highest influence. Therefore, it is 

necessary to capture the effects of plate thickness on the radius of the final shape of the 

workpiece. To compare with the FE model simulations, the same sheet material properties, 

machine parameters and workpiece dimensions are used in the experimental process. Figure 

3.14 provides a comparison of the FE simulation and experimental results for roll bending of 

flat plates with thicknesses of t = 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm at four different 

locations along the lateral roll of a = 110.0 mm, 115.0 mm, 120.0 mm and 125.0 mm. The 

positions of the lateral roll are defined by the length of value a, as provided in Figure 3.1.  

 

Figure 3.14  Final radius depending on the plate thickness and the lateral roll 
center location 
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A good agreement between the FE simulations and the experimental results over the entire 

range of all lateral positions and all plate thicknesses is observed in Figure 3.14. However, 

with the same forming conditions and location of the center of the lateral roll, the final 

shape’s radius from the FE simulation is slightly smaller compared to that of the 

experimental results. The maximum difference between the FE simulation and the 

experimental result is less than 10%. This difference may result from the assumption that the 

rolls are considered to be rigid in our numerical model. Moreover, experiments showed that 

the rolls actually deform under bending forces, which affects the final shape radius.  

 

The radius of the final shape is also dependent on the plate thickness. Figure 3.14 shows the 

resulting radius for the same location of the lateral roll (i.e., a) in comparison with the plate 

thickness. FE simulations and experimental results indicate the same trend; however, there is 

a slight difference in the resulting radii. The reason behind this result is that for exactly the 

same geometric configuration of rolls, the amount of plastic deformation through the 

thickness increases with the thickness of the rolled plate. Then, the final radius of the 

cylinder is dependent on the amount of plasticity built in through the thickness.  

 

In an industrial context, the radius of the final shape in the roll bending process is generally 

determined based on “trial-and-error” or an empirical approach, which requires several 

attempts. Therefore, applying these results in manufacturing plants will be beneficial in 

providing the accuracy of the final shape’s radius. Additionally, using this FE model will 

considerably reduce the setup time before manufacturing. 

 

3.6.3 Deformation characteristics of the forming plate 

To verify strain variations dependent on the radius of the shape, several FE simulations 

varying the value of the center location of the lateral roll (i.e., a) at 115.0 mm, 120.0 mm, 

122.0 mm and 125.0 mm were performed and then compared to experimental results using 

the same plate dimensions. Figure 3.15 presents how the strain gauges pass the rolls through 

the grooves at the bottom and lateral rolls.  
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Figure 3.15  Strain gauges setup for rolling 

The strain variations recorded by strain gauges J1, J2 and J3 are provided in Figure 3. 16. The 

strains at A, B and C are close from one strain gauge Ji to another.  

 

 

J3

J2

J1
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a) 

 

b) 

Figure 3.16  Strain variation at locations of strain gauges J1, J2 and J3 a) 
experiments; b) typical location of A, B and C 

A 

B 
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A good agreement between the FE simulations and experimental studies is shown in Figure 

3.17. As expected, the maximum strain variation was obtained for the smallest value of ”a”. 

It is clear that a smaller radius of curvature provides a larger value of strain. 

 

 

Figure 3.17  Strain variations depending on center location “a” of the lateral roll 

Figure 3.18 shows the strain gauge measurements during forming and the strains computed at 

the same locations as the FE model for four different plate thicknesses with the same position 

“a” (see Figure 3.1) for the lateral roll. The strain variations are plotted from when the strain 

gauge enters the gap between the top and bottom rolls until it passes the contact point of the 

lateral roll.  
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Figure 3.18  Strain variations depending on the plate thickness 

As expected, the thicker workpiece will obtain a higher strain value at the same value of a. 

The trends in strain variation are well captured by the FE simulations and experimental 

results that were recorded using strain gauges.  

 

Furthermore, it can be observed from Figure 3.17 and 3.18 that the strain variation curves 

end with a lower and constant value after the strain gauge passes the contact point on the 

lateral roll. This result illustrates the spring back of the plate, and the final radius can be 

obtained just seconds after the strain sensor records the peak value. The overall residual 

strain pattern is nearly the same, with a maximum difference of approximately 10 % in 

comparison with the peak of each strain. 

 

The analysis and measurement of the residual strain left in a roll bent plate are usually 

difficult to obtain, and no rigorous study on measuring strains during roll bending has been 
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reported in literature to our knowledge. Therefore, this FE simulation model evaluated by 

experiments is not only a new approach for a better understanding of the deformation 

behavior of the workpiece before and after passing the bending roll but also provides an 

accurate residual strain measurement procedure that relates the workpiece properties, final 

shape dimensions and process parameters.   

 

3.6.4 Influence of plate thickness “t” and center location “a” of lateral roll on 

bending forces F 

A series of simulations and experiments were performed with various final shape radii R 

(expressed by the center distance “a” from the top roll to the lateral roll, with a = 110.0 mm 

to 125.0 mm) and different plate thicknesses (from 1.0 mm to 2.5 mm) to study their effects 

on bending forces acting on the rolls.  

 

In Figure 3.19, the reaction forces applied on the top roll depending on final shape radius R 

and plate thickness t are displayed. The top roll forces are function of the final shape radius R 

and the plate thickness t: when R increases, the forming forces decrease because less bending 

is necessary for shaping the plate; when t decreases, the forming forces also decrease because 

the plate strength in bending decreases. This has been observed with FEM results and 

confirmed with experiments. It should be noted that experiment results are not displayed for 

larger R (i.e., a=120.0 mm, or 125.0 mm) and thinner plates (i.e., t=1.0 mm or 1.5 mm) 

because the deflections of the top roll cannot be measured accurately. 
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Figure 3.19  Top roll bending force based on the plate thickness and center 
location of the lateral roll 

Figure 3.20 shows the comparison between FE simulations and experimental results for 

bending forces acting on the lateral roll for different plate thicknesses t and different final 

radii R of the roll bent cylinder. The FE simulation results (solid line in the graph) are 

evaluated using two sources of experimental results: a laser system for computing the 

bending force via deflection of roll (single-dotted line in the graph); and load-cell systems for 

directly verifying the bending force (double-dotted line in the graph).  
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Figure 3.20  Lateral roll bending force depending on the plate thickness and 
center location of the lateral roll 

Overall, Figure 3.20 indicates that the FE simulation results are in good agreement with the 

experimental results (from both sources). The value of the applied force for a 1.0 mm thick 

sheet was found to be less compared to those in a 1.5 mm, 2.0 mm and 2.5 mm thick metal 

plate at the same final shape radius R. Typically, it is clear that the roll bending machine 

applies a larger force for bending thicker plates. Furthermore, the final radius directly 

influences the reaction forces of the lateral roll. The results confirmed that the reaction forces 

acting on the lateral roll increase with a decreasing final shape radius R. 

 

In comparison with other rolls, the top roll always yields the highest bending force. 

Therefore, this study not only provides a better understanding for selecting or designing a 

machine capacity based on the plate thickness and the final shape radius but is also the first 

step towards finding the best strategy for a heat assisted roll forming process to soften the 

workpiece. 
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3.6.5 Influence of the plate widths (H) on the bending force 

The influence of the plate width H on bending force acting on the top roll is shown in Figure 

3.21. Analyses were performed for various plate widths (80.0 mm, 100.0 mm, 120.0 mm, 

140.0 mm, and 155.0 mm) with the other input parameters, such as the plate thickness, final 

radii, process parameters and material properties, remaining constant. The bending forces 

acting on the top roll increase when the width of the final shape is increased.  

 

 

Figure 3.21  Top roll bending force depending on the plate width 

Figure 3.22 indicates that the forces exerted by the lateral roll vary nearly linearly with an 

increase in the plate thickness. 
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Figure 3.22  Lateral roll bending force depending on the plate width 

3.6.6 Influence of the plate thickness (t) on supplied power (W) and rotational 

speed (RPM) of the rolls 

The rotational speed of the rolls is an important but not well-known parameter that can affect 

the roll bending machine’s life and the mechanical properties of the final product. Therefore, 

it would have been interesting to study the effect of the rotational speed of the rolls on the 

formed shape. However, it is difficult to handle the large amount of experiments that are 

required to study this parameter’s effect. Therefore, only the relationship between the power 

supplied and the plate thickness for the same position of the lateral roll is provided here. An 

increase in the plate thickness was associated with an increase in the supplied power, as 

indicated in Figure 3. 23.  
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Figure 3.23  Supplied power depending on plate thickness 

For the same forming parameters and material conditions, the supplied power for a 1.0 mm 

thick sheet was found to be less compared to those in metal plates with thicknesses of 1.5 

mm, 2.0 mm and 2.5 mm. 

 

3.7 Conclusions 

A 3D-dynamic FE model of a roll bending process verified using experiments was developed 

in this paper. This model allowed the authors to identify the primary processing parameters 

of the roll bending process and to investigate the influence of these process factors on the 

precision of the final shape. The influence of several forming parameters, such as plate 

thickness, final shape radius, and width of final shape, on reaction forces were studied in 

detail. Furthermore, a new experimental approach for measuring strains with strain gauges to 

obtain the strain variation left in the formed plate is proposed. This comprehensive analysis 

will be beneficial in the industrial context for an accurate prediction of the final shape or 
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reaction forces acting on bending rolls to increase the effectiveness of an existing 

asymmetrical roll bending machine. 
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4.1 Abstract 

The forming forces during roll bending process can be reduced by heating the workpieces. 

Heat assisted roll bending is a promising alternative to the costly and time consuming casting 

process that is usually selected for manufacturing large and thick axisymmetric parts made of 

high strength steel. In this paper, a computer aided simulation program has been built in the 

Ansys/LS-Dyna environment to study the relationships between temperature, applied forces 

and plate thickness. The finite element modelling of the formed geometry is sequential with 

first a thermal simulation followed by a structural one. The numerical results are then 

compared to analytical ones. The analyses of the process with numerical simulations yield to 

a better understanding of the mechanism of the process and provide an opportunity for the 

design of an efficient heating system to control the heat energy to be input in the workpiece 

during the roll bending process.  

 

Key Words Roll bending process, FEM, Ansys/Ls-dyna, hot forming 
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Résumé 

 

Les forces de formage pendant le processus de cintrage peuvent être réduites par chauffage 

des pièces à former. Le cintrage assisté par chauffage est une alternative prometteuse à 

l'opération de coulée longue et coûteuse qui est généralement choisie pour la fabrication de 

pièces axisymétriques de grandes dimensions, épaisses et faites en acier à haute résistance. 

Dans cet article, un programme de simulation assistée par ordinateur a été construit dans 

l'environnement Ansys / LS-Dyna pour étudier les relations entre la température, les forces 

appliquées et l'épaisseur de la plaque. La modélisation par éléments finis de la géométrie 

formée est séquentielle avec une première simulation en thermique suivie d'une simulation 

structurale. Les résultats numériques sont ensuite comparés à ceux analytiques. Les analyses 

du procédé avec des simulations numériques donnent une meilleure compréhension du 

mécanisme du processus et fournissent une opportunité pour la conception d'un système de 

chauffage efficace afin de contrôler l'énergie thermique devant être transmise à la pièce à 

former pendant le processus de cintrage. 

 

Mots-clés: Procédé de roulage, analyse dynamique par éléments finis, Ansys/LS-Dyna, 

formage à chaud 

 

Nomenclature 

a Center location of lateral roll along action line 

E Young’s modulus of plate material 

I Moment of inertia of plate 

k1, k2, k3 Curvature of plate at region P1Pe, PeP2 and P2P3 

ke
 The maximum elastic curvature 

Kp The stiffness coefficient of system at P1 

M1, M2, M3 Bending moment of plate at P1, P2 and P3 

Me The maximum elastic moment 

q1, q2, q3 Contact forces at their respective angle θ1, θ2 and θ3 

Q1, Q2, Q3 The applied forces by the respective top, bottom and lateral roll 
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R Radius of the rolled cylinder 

r Radius of the rolls 

s1, s2, s3
 Arc length coordinate of P1Pe , PeP2 and P2P3 

s Initial arc length made by two laser beams dotting in lateral roll 

t Plate thickness 

Y The yield stress of plate 

θ1, θ2, θ3 Inclined angle of plate at P1, P2 and P3 

θ Operating action line angle of offset cylinder 

δ The deflection of the roll at contact point P1 ν    Poisson’s ratio of the material 

 

4.2 Introduction 

High grade stainless steel is widely used in the manufacturing of parts dealing with heavy 

cyclic loads and corrosive environments. High grade steel are hard to shape and for some 

applications like the thick conical shape of the crown in a Francis turbine runner tooling is 

dedicated to one single part. Some of the Francis turbine runners installed in the dam 

basement are 10 meters in diameter with more than 5 meters in height, while plate thickness 

can exceed 100 millimeters. The manufacturing technique currently applied in forming the 

crown of Francis turbine consists of a combination of several metal forming techniques, such 

as the foundry and welding, punching and welding or forging…Choosing one or more 

manufacturing processes for delivering a thick and heavy parts like a crown in due time and 

at a reasonable cost is a hard to solve problem. Here, the roll bending process can make the 

difference, because bending a plate around a linear axis could be feasible under specific 

conditions on a roll bending machine.  

 

Rolling plates into cylinders, cones or cylindrical segments is carried out on machines 

usually with three roll [1] and in some cases, four-rolls, and even two-rolls that rotate and 

bend the metal as it passes between them. With the advantages such as reducing the setting 

up time and material, lowering the cost in tooling investment and equipment and to achieve 
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high final shape quality, the roll bending process is one of the fundamental forms used in 

metalworking. The description of the basic principle and operation for the roll bending 

process can be found in [2, 3]. Bouhelier [4] gives the formulas for calculating the spring-

back, applied forces and the essential required power. Unfortunately, the author does not 

discuss the mechanism of this process clearly; the final shape is thus difficult to estimate 

using these formulas. Yang [5] constructed a model for estimating deformation during the 

various steps of the roll bending process. Hua et al [6-12] have done a considerable amount 

of work for studying the four-roll model bending process and for understanding the bending 

mechanism. Hu [13] applied FEM to the study of the mechanism of the roll bending process 

and proposed a new model which separated the top or bottom rolls into two parts. Analyses 

of pyramidal three-roll model bending process [5, 14-18] and asymmetrical three-roll model 

bending process [19] can also be found in some publications, but none of them deals with FE 

dynamic simulation of heat assisted roll bending process for manufacturing hollow 

cylindrical or conical parts. It is therefore important to study the roll bending process in hot 

conditions in order to reduce the force needed to bend a thick plate when manufacturing an 

axisymmetric part made from high strength steel, for which no rigorous study has been 

reported.  

 

4.3 Analytical model 

The heat assisted roll bending process model in this research consists of four main 

components: three roll and a plate. The initial and final position of roll and plate are plotted 

in Figure 4.1. 
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Figure 4.1  Asymmetrical three-roll bending machine geometry setup 

Roll bending machine is used to shape the plate with thickness t indicated in Figure 4.1. The 

radius R of the plate is computed based on the dimension and the position of rolls and is 

expressed in equation 4.1  

 

 

 R =
a2 + f2 - (r +

t
2 )

2
- 2 a f cos

2 r + 
t
2  + f - a cos

 

(4.1)

 

where “a” is the center location of lateral roll along the action line; “f” is the distance from 

the top roll center to the mid-plate (see Figure 4.1); “r” is the radius of the rolls; “t” is the 

thickness of the workpiece; and “θ” is the operating action line angle of the offset cylinder. 

 

Equation 4.1 is based only on geometrical consideration; it gives the formula of the 

geometric setup independently of the material properties and temperature. It helps to 
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compute the setup location of the rolls depending on the desired radius of the final shape. In 

practice, because of plastic deformation and spring-back effect, the setup is slightly corrected 

by trial and error to get the right shape. 

 

As seen in Figure 4.2, the plate between P1P3 is restricted by contacts with top roll, bottom 

roll and lateral roll during continuous roll bending mode. Therefore, the following 

assumptions about the deformation state of the material are made in this region: P1Pe 

encounters elastic deformation; PeP2 encounters elastic-perfectly plastic deformation, while 

P2P3 encounters elasto-plastic deformation. The free body diagram of the system, including 

the contact forces q1, q2, q3 and their respective angle θ1, θ2, θ3 is shown in Figure 4.2.  

 

 

Figure 4.2  Free body diagram of system 

Applying equilibrium of forces for each zone of bending plate are shown as in Figure 4.3 
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q2 sin2=q1 sin1+q3 sin3 (4.2)

 q2 cos2=q1 cos1+q3 cos3 (4.3)

where the inclined angle at P3 is define as θ3=arcsin[
a sin

R + 
t
2
 + r

]. Other inclined angle at P2, P1 

and the normal contact forces q1, q2, q3 by the respective forces applied at P1, P2 and P3 

correspondingly is found out by analyzing each zone of the deformed deformation of the 

plate as following 

 

 

Figure 4.3  Equilibrium of forces of deformation 

4.3.1 Elastic deformation P1Pe 

Figure 4.3 is equilibrium of forces of deformation zone. This equilibrium of forces is 

established based on free body diagram of system in Figure 4.2. It includes 3 contact forces 

at their respective angle θ1, θ2 and θ3. The maximum elastic moment of the bent plate in the 

elastic deformation zone are determined by applying engineering beam theory.  

 

 

 
M  = EIk  (4.4)

where I	=	 3t

12
 is the moment of inertia of plate section per unit width and E is the Young’s 

modulus of plate material 
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Equilibrium of moments in this zone (Figure 4.3) leads to the	M1	=	q1s1. Substituting the 

value of equation M1	=	EIkx into equation M1	=	q1s1 thus gives as an infinitesimal form  

 

 

 ds1 =
EI

q1

dkx 
(4.5)

Integrating both side of equation 4.5 at specific points (from θ1 to θe and from 0 to ke) with 

the replacement of ds1 =
1

kx
dx, the inclined angle of plate at Pe is obtained by solving the 

equation dx	=	 EI

q1
kxdkx

ke

0

e

1
      

 

 

 e =
EI

2q1

ke
2 + 1 

(4.6)

 

where ke = 2Y/Et 

           Y is the yield stress of plate 

 

Let y be the y-coordinate of contact point with ds1 =	 1

x
dyx. Substituting ds1 =	 1

x
dyx into 

equation 4.5 with θx from equation 4.6, integrating both side to specific points (from y3 to ye 

and from 0 to ke) and then solving the equation dyx	=	 EI

q1

EI

2q1
kx

2	+	1 dkx
ke

0

ye
y1

 thus gives 

 

 

 ye − y1	= EI

q1

EI

6q1

ke
3 + 1ke  

(4.7)

 

4.3.2 Elastic-perfectly plastic deformation PeP2 

In the region of PeP2 (see Figure 4.2) moment M2 and curvature k2 are following the 

assumptions of an elastic-perfectly plastic behaviour as discussed by Hua [12]. The 
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governing constitutive equation can be expressed as M2	=	Me
3

2
− 1

2

ke

kx

2
. Equilibrium of 

moments in this zone (see Figure 4.3) leads to the expression: 

 

 

 
M2 = q1s2 (4.8)

Upon substitution of equation M2=Me
3

2
-

1

2

ke

kx

2
 into equation 4.8, equation 4.8 may be 

written in an infinitesimal form  

 

 ds2 = Me
ke

2

q1

1

kx
3  dkx 

(4.9)

With ds2 =	 1

kx
dx, integrating both sides of equation 4.9 to specific points (from θe to θ2 and 

from ke to k2) and then solving equation dx	=	Meke
2

q1

1

kx
2 dkx

k2

ke

2

e
 leading to  

 

 

 2 = Me
ke

2

q1

1

ke
− 1

k2
+ e 

(4.10)

In addition, the equation 4.9 is also expressed as an infinitesimal form dyx	=	Meke
2

q1

1

kx
3 xdkx, 

with ds2 =
1

x
dyx. Substituting θx from equation 4.10 into equation dyx=

Meke
2

q1

1

kx
3 xdkx, 

integrating both side to specific points (from ye to y2 and from ke to k2) and then solving 

equation dyx	= eMeke
2

kx
3q1

	-	Me
2ke

4

kx
4q1

2 +
Me

2ke
3

kx
3q1

2 dkx
k2

ke

y2
ye

 gives 

 

 

 y2 − ye=
Me

2ke

q1
2

k2
3 + 2ke

3 − 3ke
2k2

6k2
3 + eMe

2q1

k2
2 	− 	ke

2

k2
2  

(4.11)
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4.3.3 Elasto-plastic deformation P2P3 

Under large deflection condition, the plate displacement in region of P2P3 is assumed as an 

elastoplastic deformation. The free body diagram is illustrated in Figure 4.3. The equilibrium 

of moment for this zone is expressed by equation 4.12, where s3	=	cos 1	-	x P2P3  

 

 

 
M3 = q3s3 (4.12)

The governing constitutive equation has been established in [9] as M3	=	M2	+	EI kx	-	k2 . 

Substituting equation M3	=	q3cos 1	-	 P2P3 into M3	=	M2	+	EI kx	-	k2  and solving this 

equation after integrating both side to generic points (from θ2 to θ3 and from k2 to k3), 

cos 1	-	 d 1	-	 	=	 EI

q3
k dk

k3


3

 gives 

 

 q3	=	 EI

2sin 3 − 2
k2

2 − k3
2  

(4.13)

By substituting equation 4.6 into equation 4.10, the relationship between θ2 and θ1 is shown 

as 

 

 2	-	1	=	Me
ke

2

q1

1

ke
-

1

k2
+

EI

2q1

ke
2 

(4.14)

Based on the geometric setup, the arc length s2 can be expressed by  

s2	=	 r	+	t
2

2 + 1 . Therefore, substitution this value of s2 into equation 4.8, thus gives an 

equation for showing the relationship between θ1 and θ2 as: 

 

 1 = 
2M2

q1 r + t
- 2 

(4.15)

The equation q1 = 
P0

22
 is established by substituting 1 = 

2M2

q1 r + t
− 2 into the above equation	

2	-	1	=	Me
ke

2

q1

1

ke
	-	 1

k2
	+	 EI

2q1
ke

2, where P0	=	ke
2 Me

1

ke
	-	 1

k2
	+	 EI

2
	+	 2M2

r	+	t  
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Again, solving equation 4.15 for θ1 with the value of q1 given from q1	=	 P0

22
 leads to a simply 

form 

 

 

 
 1 = D02 (4.16)

in which D0	=	1-
2ke

2 EI
2
	+	Me

1
ke
	-	 1

k2

P0
 

 

Substituting the equation 4.7 for ye into equation 4.11 gives the following equation as 

 

 

 y2	-	y1	=	Me
2 ke

q1
2

k2
3 + 2ke

3 - 3ke
2k2

6k2
3 + Me

e

2q1

k2
2 - ke

2

k2
2 +

EI

q1

EI

6q1

ke
3	+	1ke

(4.17)

 

Consequently, the substitution of e	=	 EI

2q1
ke

2 	+ 	 , q1	=	 P0

22
 and 1	=	D02 into equation 4.17 

thus gives a y2 - y1 relation as 

 

 y2 − y1 =
A0 + A1 2

2

3k2
3P0

2  
(4.18)

 

where A0	=	3P0D0k2 Meke
2 	− 	Meke

2 	+ 	2EIkek2
3    

and A1=2E2I2ke
3k2

3		+	2Me
2ke k2

3	+	2ke
3	-	3ke

2
k2 	+		3EIMeke

2k2 k2
2		+		ke

2   

Let δ	=	 q1

Kp
 be the deflection of the roll at contact point P1. By geometry analysis, plate 

deflection at contact P1 and P2 in y direction will be y1 and y2 respectively, as 

y1= - δ - r 1- cos1 	≈- δ - r
1

2

2
	 and y2 = δ + r 1 - cos2  ≈  δ	 + 	r   or	

y2	- y1
 = 2δ + 

r 2
2	- 1

2

2
 . Applying value or (y2 - y1) into equation y2 − y1 = 

A0 + A1 2
2

3k2
3P0

2  and 

then substituting above value of δ	=	 q1

Kp
 , 1 = D02 and q1 = 

22
, the value of θ2 is determined 

as: 
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 θ2	=	 √63 P0k2

Kp
3 2 A0	+	A1 	-	3k2

3r(1	+	D0
2)

3
 

 

(4.19)

The relationship between k2 and ke was developed by Salem et al [20] and expressed as 

k2	=	 ke

3	-	2γ , where 

 

 

γ	=	
(2kf	+	3)sin

arctan
√6 8kf

3 + 36kf
2 + 54kf - 27

36 kf 4kf
2	+	18kf	+	27

3 	+	 π3
3

-
4kf	-	3

6
 

(4.20)

 

with kf	=	 1

Rke
  

 

The equation 4.13 is used to determine for q3, where k3 = 1/R. Then q1 and θ1 can be 

evaluated by the above equation q1 = 
22

 and 1	=	D02 respectively. Applying equilibrium 

of forces in equation 4.2, the value of q2 can be computed. 

 

The above system of equations is programmed in Matlab® [21] software to study the 

variation of the applied forces in the roll bending process depending on the various 

parameters. Numerical predictions were conducted for high strength steel plate having 

dependent thermal properties shown in Figure 4.6. 

 

4.4 Computational modeling of heat forming technique 

Line heating method is used for softening the material in this simulation. By this process, the 

heating system is added directly on the spinning machine as shown in Figure 4.4.  
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a) 

 

b) 

Figure 4.4  Heating approach a) at the early stage of heating up; b) 
during the forming process 

During the forming process, the heat source that scans from left-hand to right-hand (Figure 

4.4) with a constant speed to generate necessary thermal gradient required for forming. The 

plate is heated directly and then bent in the same time steps. Through the plate thickness, the 

temperature gradient makes a different expansion. The numerical modeling of this heat 

forming technique has been discussed and established in a previous article [22]. 
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4.5 Finite element model 

Thermo-mechanical simulation of hot roll bending process includes two-step process. The 

nonlinear transient thermal analysis is done firstly with three dimensional heat conductions to 

determine the temperature distribution in the workpiece. Then results in the previous step are 

applied at various nodes of the mesh and used as the thermal loading for structural analysis 

and consequent effects of plastic deformation. The finite element model consists of four main 

components: three roll and a plate which are illustrated in Figure 4.5. All configuration of the 

model such as the geometry, material properties, mesh size, contacts and loading conditions 

are defined in the input file. 

 

 

Figure 4.5  FE simulation model of heating assisted roll bending process 

4.5.1 Element and mesh 

When the plate thickness is very much less than its width and its length, it is commonly 

modeled with shell elements giving a smaller FE model to solve. For thermal analysis, the 4-

  Lateral roll Top roll 

Workpiec

Bottom roll 

Heating source 
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node 3D thermal shell element SHELL57 with a single degree of freedom of temperature at 

each node is used. Following the thermal solving at each step, these elements are 

automatically converted into SHELL163 structural shell elements in Ansys/LS-Dyna [23] for 

explicit dynamic analyses. This process helps in maintaining the same geometrical and mesh 

of the model for both thermal and structural analysis. The rolls are considered as rigid in 

comparison with the elasto-plastic deformable plate. 

 

The stainless steel is commonly selected for turbines and hydraulic accessories. Simulation 

work is done with the stainless steel by using the data provided in reference [24]. The 

materials properties i.e. Young’s modulus, yield stress and thermal expansion coefficient as 

shown in Figure 4.6 and Figure 4.7 are taken as dependent thermal properties to determine 

the temperature distribution and the amount of plastic deformation induced in the model.  

 

  

Figure 4.6   Material properties: thermal expansion coefficient [24] 
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a) 

 

b) 

Figure 4.7  Material properties: a) Young's modulus and b) Yield  stress [24] 

The constitutive property of the material is characterized by a temperature dependent bilinear 

isotropic model (BISO), an extensive library of material models of Ansys/LS-Dyna that uses 

two slopes (elastic and plastic) to represent the behaviour of many different materials under 
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numerous conditions. Young’s modulus is used for the elastic slope. The plastic slope is 

given by the tangent modulus, which in this case was chosen very low (0.1 (Pa)) and 

temperature independent. The stress-strain relationship is specified at four different 

temperatures. This model is robust because of its adaptability and flexibility in a FE analysis. 

For the plate, a mapped mesh is used with quadrilateral shaped element in order to avoid 

triangular elements.  

 

4.5.2 Contact surface and friction model 

The interaction between components is defined by contact surface. Although  

Ansys/LS-Dyna support a large choice of contact options to define the interaction between 

surfaces in an explicit analysis but it should be noticed that the contact plays an important 

role in the modeling of explicit analyses. In general, for most typical analysis, three basic 

contact algorithms are available: single surface contact, nodes to surface contact and surface-

to-surface contact. In our roll bending process model, the surface of the roll is smaller than 

the surface of workpiece. Therefore, the automatic node to surface was used to define 

interaction between roll and plate. This kind of surface contact is efficient when a smaller 

surface come into contact with a larger one. There are three main contact surfaces defined 

between the plate and rolls for our roll bending FE model. The workpiece is driven and 

deformed to its final shape via these contact surfaces. 

 

Besides, two coefficients of friction include static friction and dynamic friction that must be 

defined for the contact model when defining the contact surface. The values of the two 

coefficients of friction are available in the current literature [18]. 

 

4.5.3 Loading 

In this simulation, the top and the bottom rolls are constrained as rotation and no translation. 

The lateral roll yield tool paths as no self-rotation and translate to press the forming plate 
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against the top roll (Figure 4.5). The plate is not typically constrained, but by the rolls 

through contacts in this simulation. 

 

4.6 Simulations and numerical results 

A series of simulations were performed on stainless steel with various heat fluxes and plate 

thicknesses (from 0.001 m to 0.008 m). While the width of workpiece always remains at 0.20 

m, its length (along its scanning direction) is found out by equation 4. 1 that depends on the 

plate thickness.  

 

To examine the effects of heat flux on temperature induced on the surface of the plate, 

thermal analyses were performed for various heat fluxes and plate thicknesses with other 

input parameters remaining unchanged. The temperature induced on the surface of the 

workpiece is dependent on heat flux power, heat source velocity and the thickness of 

workpiece. Temperature histories on the top surface of the plate during the moving time of 

heat flux at three selected times: time = 1 sec when heat source is at the early stage of heating 

up; time = 30 sec and when the process is completed are plotted in Figure 4.8 and Figure 4.9. 

 

 

Figure 4.8   Temperature distributions at 1 sec 
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a) 

 

b) 

Figure 4.9  Temperature distributions at: a) 30 sec and b) the process is 
completed 
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Figure 4.10 shows the temperature distributions at various heat flux for case of plate 

thickness equals 0.001 m, 0.002 m, 0.004 m and 0.008 m. Thermal gradient increases rapidly 

with an increasing heat flux. 

 

 

Figure 4.10  Temperature distributions at various heat flux values and plate 
thickness 

In order to heat up the surface of the plate from 415°C to 1175°C, a 0.001 m thick plate 

required a heat flux from 3.25e3 to 9.25e3 kW/m2. This value increases from 6.5e3 to 18.5e3 

and from 13.0e3 to 37.0e3 kW/m2 with 0.002 m and 0.004 m thick sheets, respectively. 

While surface temperature of a plate with thickness of 0.008 m is maximum for hot forming 

(1175°C) at 74e3 kW/m2 of heat flux input. The thicker plate needs higher heat flux inputs to 

produce a required temperature for hot forming. These results will help in selecting a heat 

flux that does not exceed the melting point of the material for various plate thicknesses. 
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In order to evaluate the difference in formability between hot and cold forming conditions, 

reaction force (or called applied force) is measured during the roll bending process. This 

force is given by total forces of the lateral roll required to form a plate. 

 

 As expected, Figure 4.11 and Figure 4.12 shows a decrease in the reaction force when heat 

flux value is increased. For sheet of greater thickness, increase temperature leads to increases 

of heat flux input. This means that the greater thickness plate needs more energy to heating 

up to an acceptable forming temperature in comparison with less thick plate. However, the 

bending force in hot forming is very much less than in cold forming, especially for thick 

plate. This is considered as an interesting alternative to apply to hot roll bending process for 

shaping the thick high strength steel axisymmetric part.  

 

Figure 4.11   Applied force as a function of heat input:  t = 0.001 m and 0.002 m 
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Figure 4.12    Applied force as a function of heat input: t = 0.004 m and 0.008 m 

Figure 4.13 shows the comparison between FEM and analytical results of bending force for 

different plate thicknesses at the room temperature. In general, the increasing trend of 

reaction force of the analytical results is in a quite good agreement in comparison to the FEM 

results when the plate thickness is increasing. However, the analytical solution in Matlab® is 

considered as static modeling while FEM is performed as dynamic simulation. Therefore, the 

reaction force value from analytical model is quite smaller than FEM results. The value of 

the applied force for a 0.001 m thick sheet was found to be less than in a 0.002 m and 0.004 

m thick metal plate at the same temperature. Typically this is because with the larger 

thickness of plate, the roll bending machine needs more force to form the shape.  
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Figure 4.13    Applied force for plate thicknesses at room temperature 

From the results of simulations in Ansys/LS-Dyna, the bending quality such as stress 

distribution, displacement and reaction forces can be plotted directly as shown in Figure 4.14 

and Figure 4.15. However, a numerical check must be performed to verify the geometric and 

radius of the final shapes. 

 

 

Figure 4.14    Stress distribution at 1 sec 
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a) 

 

b) 

Figure 4.15  Stress distribution at: b) 30 sec and c) the process is completed 

The purpose of geometric verification is to define bending quality i.e. the radius of the final 

shape computed from FE results. The coordinates of the center of the circle xC, yC and its 
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radius R, assuming that the nodes of the formed plate are distributed along a cylindrical 

geometry, are found using the following objective function:  

 

 

 
min F(xc, yc, R), with F=Σ (R - Ri)

2 (4.21)

Where 

 

 

 
Ri = [(xi-xC)2 + (yi-yC)2]1/2, with xi= x(0)+ ux and yi= y(0)+ uy (4.22)

With grad(F) = 0, three nonlinear equations are solved simultaneously for xC, yC and R. 

Because these equations are differentiable, a Newton-Raphson scheme was applied to 

determine the circle parameters. Only the initial coordinates x(0), y(0) and displacements ux 

and uy of nodes located at the mid-width of the plate are imported into Matlab® for 

processing, as indicated in Figure 4.16. 

 

 

Figure 4.16  Geometric verification procedure 
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Different shapes are obtained depending on the forming temperature. Figure 4.17 illustrates 

radius values of the final shape depending on the heating temperatures. When temperature 

increases, this value becomes smaller and smaller.  

 

 

Figure 4.17  Radius of final shape on the different of heating temperature           

It is clear that a significant change of the radius occurs at lower thicknesses but when the 

thickness is increased the radius tends to converge to a constant value, if we plot the resulting 

radius in comparison with the plate thickness. The reason is that for exactly the same 

geometric configuration of rolls the amount of plastic deformation through the thickness 

increases with the thickness of the rolled plate. The final radius of the cylinder is dependent 

of the amount of plasticity built in through the thickness. When the thickness of the plate 

increases the plastic zone increases too and the radius tends to converge to a constant value. 

The material properties change with the temperature but still there is an elastic part and a 

plastic part in the overall behavior. When the temperature goes over 800°C, the elastic limit 
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is very low and the plate plastifies through nearly all over its thickness leading again the 

resulting radius to stabilize to a constant value. Again, this shows that the heat energy input 

can be controlled to get a better bending quality.  

 

4.7 Conclusion 

In this research, a three-dimensional FEM shell elements of Ansys and Ansys/LS-Dyna for 

three-dimensional thermo-mechanical simulation of hot roll bending process has been 

developed. The analytical model is established based on equilibrium of forces approach and 

developed in Matlab® programming. As expected, the greater thickness plate needs more 

energy to heating up to an acceptable temperature for hot condition in comparison with 

smaller thick plate. However, the bending force in hot forming is very much less than in cold 

forming, especially for thicker plate. Different radius of final shape is obtained at different 

heating temperature that may give a chance in order to get better roll bending final shape 

quality. 
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5.1 Abstract 

A roll bending process that minimizes the flat areas on the leading and trailing ends of 

formed plates will produce more accurate and easier to assemble final shapes. There are 

several methods of minimizing flat areas, but they are costly or difficult to apply for thick 

plates. This study proposes a new, simple approach that reduces these flat areas. This 

approach includes moving the bottom roll slightly along the feeding direction and adjusting 

the bottom roll location. Sensitivity analyses were performed using a developed 3-D dynamic 

finite element (FE) model of an asymmetrical roll-bending process in the Ansys/LS-Dyna 

software package. Simulations were validated by experiments run on an instrumented roll 

bending machine. The FE results indicate that this new approach not only minimizes the flat 

areas but also reduces the forming forces. 

 

Key words: Roll bending process, flat end areas, dynamic FEM simulation,  

Ansys/LS-Dyna 
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Résumé 

 

Un processus de cintrage qui minimise les zones plates aux extrémités avant et arrière des 

plaques formées produira des formes finales plus précises et plus facile à assembler. Il existe 

plusieurs méthodes pour minimiser l’étendue des zones plates, mais elles sont coûteuses ou 

difficiles à appliquer pour les plaques épaisses. Cette étude propose une approche nouvelle et 

simple qui permet de réduire ces zones plates. Cette approche consiste à déplacer le rouleau 

inférieur légèrement le long de la direction d'alimentation de la tôle et d’ajuster 

l'emplacement du rouleau inférieur. Des analyses de sensibilité ont été effectuées en utilisant 

un modèle d’éléments finis (FE) 3D dynamique développé pour un processus de cintrage 

axisymétrique avec le logiciel ANSYS / LS-Dyna. Les simulations ont été validées par des 

expériences exécutées sur une machine de roulage instrumentée. Les résultats par éléments 

finis indiquent que cette nouvelle approche non seulement minimise les zones plates, mais 

réduit également les forces de formage. 

 

Mots clés: Procédé de roulage, étendue de plaque non-cintrée, analyse dynamique par 

éléments finis, Ansys/LS-Dyna 

 

5.2 Introduction 

Roll bending is an efficient metal forming technique, where plates are bent to a desired 

curvature using forming rolls. This type of sheet forming process is one of the most widely 

used techniques for manufacturing axisymmetric shapes. Moreover, this process is beginning 

to be taken into serious consideration by industries for producing large, thick parts such as 

the thick, conically shaped crown of a Francis turbine runner or of a wind turbine tower [1]. 

 

Over the past few decades, several bending machines were developed to adapt to various 

forming production specifications. However, these can be classified into two major types of 

roll bending machines in the current market: three-roll models and four-roll models. For 

three-roll models, depending upon the setup location of the forming rolls, they can be 
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arranged in two groups: three-roll pyramidal models and three-roll asymmetric models. The 

roll bending process is a continuous type of three-point bending, where the basic principles 

and operations can be found in Ref. [2-4]. Although the roll bending process can be 

performed for a wide range of cylindrical parts, for heavy to extremely thick plate 

applications, there are several issues that limit its application more widely in metal forming. 

One of them is the flat areas that are left at the leading and trailing edges of the final shape 

when the process is completed as shown in Figure 5.1.  

 

 

Figure 5.1  Flat areas left by a roll bending process                     

Forming parts with minimal flat areas on the leading and trailing ends are easier to assemble 

by welding and obtain a more accurate final shape. However, studies on the mechanisms that 

produce flat areas are still limited in the literature. Typical studies focus mainly on analyzing 

the bending mechanism. Hua et al. [5-11] conducted a considerable amount of research 

studying the four-rolls bending process to understand the bending mechanism. Hu et al. [12] 

applied an FEM to the study of the mechanism of the roll bending process. Analyses of the 

Flat areas
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pyramidal three-roll bending process and the asymmetrical three-roll bending process can 

also be found in [13-15]. Zeng et al. [16], Feng et al. [17-19] and Tran et al. [20-24] 

developed FE models using Ansys/LS-Dyna to simulate the three-roll bending process. 

However, an analysis of the flat lengths that remain at both ends of the final shape has not 

been addressed.  

 

The mechanism of the roll bending process inherently produces a certain amount of flat area 

at the leading and trailing edges of the part. It is observed that this amount of unbent area 

depends on the machine type. Usually, a three-roll asymmetric model leaves a smaller flat 

area at the leading and trailing ends of the final shape relative to a pyramid-type model 

because the workpiece is held more firmly in the former [3]. Zhong et al. [25] analyzed the 

straight-end problem in a thin-plate, pyramid-type machine through the development of an 

analytical method. However, the authors did not discuss the flat areas produced by a  

three-roll asymmetric machine and did not propose a method to reduce these. Therefore, the 

previous study of Tran [24] is expanded to study in additional detail the effect of the rolls 

setup on the length of the flat areas in this study.  

 

To reduce or even eliminate the unbent areas, a number of methods can be applied such as a) 

forming a small amount of extra length at each end and subsequently cutting them off or; b) 

hand hammering the flat end. However, these techniques are costly or difficult to apply for 

thick plates made of high-strength steel. Therefore, to obtain a better circularity for the final 

shape, the most common method used is to pre-bend both ends of the workpiece using the 

roll bending machine. This is done by inserting the leading end of the workpiece into the 

machine. A short section of the plate is fed for pre-bending, and, subsequently, the rotation of 

the rolls is reversed to remove the part. The pre-bending operation is then repeated at the 

other end of the blank. However, this is a drawback because the plate must be handled twice 

for pre-bending and requires more intensive labor at the production stage and additional 

safety measures.  
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The effect of moving the bottom roll to the left hand side by a distance di as shown in Figure 

5.2a and adjusting the bottom roll to a “gap” value gi (see Figure 5.2b) on the flat ends length 

is presented in this paper. The goal is to propose a new approach to minimize the apparent 

flat ends and to reduce the forming forces. 

 

 

a) 

 

b) 

Figure 5.2  Varying the location of the bottom roll a) offset 
di, and b) the “gap” value gi                             
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The paper is divided in six sections. The content is as follows: Section 2 introduces the 

asymmetrical roll bending machine setup and flat areas definition. Section 3 details the FE 

model of the asymmetrical roll bending process. Experimental study to validate the FE model 

is presented in section 4. Section 5 is the discussion about the results and section 6 

summarizes key conclusions of this research. 

 

5.3 Asymmetrical roll bending machine and flat areas definition 

In this study, an asymmetrical roll bending machine is used to shape a plate of thickness t as 

shown in Figure 5.3. 

 

 

 

Figure 5.3  Parameter of three-roll asymmetric roll bending machine          
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The radius R of a formed cylindrical shape depends on the position of the lateral roll [19] and 

can be expressed by Equation 5. 1. 

 

 2a a sin θ
R=  - cosθ

2 2r + t - a cosθ

 
 
 

 
(5.1)

  

where 

a: center location of lateral roll along action line; 

r: radius of the rolls; 

t: thickness of workpiece; and 

θ: operating action line angle of offset cylinder. 

 

The top roll is in a fixed position, while the bottom roll has an adjustable up and down 

displacement to pinch the workpiece and to allow for the removal of the finished workpiece. 

The workpiece is fed and “pinched” between the top roll and the bottom roll; the lateral roll 

location can be adjusted to achieve the desired radius of the final shape. At the end of the 

forming process, a cylindrical shape with a radius R is obtained if the length of the blank 

equals the developed length of the cylindrical shape and if the lateral roll is properly 

positioned. However, the workpiece must remain supported at all time by the rolls as 

mentioned previously. The process continually produces flat areas along the leading and 

trailing edges of the workpiece where the plate cannot be completely bent as shown in 

 Figure 5.4. 
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Figure 5.4  Flat-end definition                           

5.4 Finite element model of the asymmetrical roll bending process 

To study the flat areas produced by the roll bending process, a 3D numerical FE model of an 

asymmetrical roll bending machine described in the above section was developed in the 

Ansys/LS-Dyna software package. The FE model consists of four main components: three 

rigid rolls and one flexible plate, which are illustrated in Figure 5.5. The rolls are considered 

to be rigid in comparison with the deformable workpiece. 
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Figure 5.5  FE model of the asymmetrical roll bending process 

To describe the nonlinear behavior of the stress-strain curve of the workpiece, a material 

model obeying the Ludwik-Hollomon equation is used for this nonlinear analysis.  

Ludwik-Hollomon's equation relates the stress to the amount of plastic strain as a power law 

 

 

 
σ = K εn  (5.2)

where  

σ: the stress;  

K: material constants; 

ε: the strain;  

n: study hardening exponent. 

 

The constants K and n are approximated by a curve fitting based on the results from a tensile 

specimen. Figure 5.6 shows the stress-strain curves for the tensile testing model and the 

approximation model obtained by Ludwik-Hollomon's equation. The rate sensitive power 

  Lateral roll Top roll 

Workpiec

Bottom roll 
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law plasticity (PLAW) model in Ansys/LS-Dyna is applied to determine the stress-strain 

behavior of the workpiece. 

 

 

Figure 5.6  Stress-strain curve of plate material   

The interaction between the rigid and flexible components is characterized through contact 

surfaces. In this roll bending model, the surface of the roll is smaller than the surface of the 

blank. Although in the explicit analysis, Ansys/LS-Dyna supports a large number of contact 

options to define the interaction between the surfaces. The automatic node-to-surface 

algorithm was used for the interaction between the rolls and the plate because this type of 

surface contact is efficient when a smaller surface comes into contact with a larger one. In 

addition, the static friction coefficient μs between the plate and the rolls is directly measured 

via experiments.  

 

For the boundary conditions, the top and bottom rolls are driven in rotation and fixed in 

translation. The lateral roll is constrained in translation and experiences no self-rotation to 

press the forming plate against the top roll. 
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5.5 Experimental study to validate the FE model 

To validate the FE model developed in Ansys/LS-Dyna, experiments are conducted using the 

same parameters on an asymmetric roll bending machine. This instrumented roll bending 

machine has three rolls with diameters of 100.0 mm, roll length of 1500.0 mm and an 

operating action line angle of the lateral roll (i.e., θ) of 600 is shown in Figure 5.7. 

 

Figure 5.7  Instrumented roll bending machine 

The final shape radius from the experiments obtained by the roll bending machine is 

measured by an EXAscan laser scanner. This device is a hand-held laser system that allows 

for quick and accurate geometry data acquisition for verifying the characteristics of a  

formed plate.  

 

Figure 5.8 shows the flat ends at the leading and trailing edges of the cylinder shape in 

Ansys/LS-Dyna when the roll bending process is completed. 

 

EXA-scan Roll bending machine  

Workpiece 
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Figure 5.8  Final shape obtained by the FEM 

To compute the flat end lengths of the formed plate from the FE simulations in  

Ansys/LS-Dyna, a numerical procedure is applied as summarized in Figure 5.9. 

 

 

 

 

The trailing 
edge flat end 

The leading  
edge flat end 
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Figure 5.9  Flat end and radius computational procedure 

 
Compute the 

length of flat ends 
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Remove the flat 
ends and find the 
final shape radius 

R 
 

 
Compute the final 
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Because the nodes of the formed plate are distributed along a cylindrical geometry, the 

coordinates of the center of the cylinder xC, yC and its radius R0 are determined using the 

least squares method  

 

 

 
min F(xc, yc, R), with F=Σ (R - Ri)

2 (5.3)

Where 

 

 

 
Ri = [(xi-xC)2 + (yi-yC)2]1/2 (5.4)

 

With     xi= xi (0) + uxi and yi= yi (0) + uyi. 

 

With grad(F) = 0, three nonlinear equations are simultaneously solved for xc, yc and R0. 

Only the initial coordinates xi (0), yi (0) and the displacements uxi and uyi of the nodes 

located at the mid-width of the plate are imported into Matlab® for numerical processing. A 

Newton-Raphson scheme is subsequently applied to determine the circle’s parameters. 

 

We assume that the nodes at the mid-width and at the trailing or leading edges of the formed 

plate in Figure 5.8 are distributed along geometry as shown in Figure 5.10. 
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Figure 5.10  Flat end length computational procedure 

To determine which nodes at the leading or trailing ends belong to a straight line, based on a 

number of flatness criteria, a least-squares method was applied to compute the constants pi 

and b of the best straight line y = pix  + b passing through nodes [1 2 3 … i+1].  

 

With Δ = 0.2 t/R [25], the criterion for flatness, a node i+1 is considered to belong to the flat 

end if and only if the new slope pi+1 satisfies Equation 5.5:  

 

 

 
pi+1- pi  ≤ ∆ (5.5)

The procedure is terminated when adding a new subsequent node does not satisfy Equation 4. 

The final shape radius R is then recomputed following Equation 5.3 with the remaining 

nodes, i.e., by removing the flat-end nodes from the initial node list. 

 

It is costly to run a large number of experiments to study how the flat areas are related to the 

setup. Therefore, the idea is to compare the final shape radius R obtained by both the FE 

model and the experiment under the same forming conditions. The FE model is used to study 

the parameters affecting the extent of the flat areas. Figure 5.11 shows comparisons of the 
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final shape radius R for various plate thicknesses, i.e., t = 1.0 mm, 1.5 mm, 2.0 mm or 2.5 

mm for four different locations of the lateral roll, i.e., a = 110.0 mm, 115.0 mm, 120.0 mm or 

125.0 mm. The final shape radii R obtained by the FE simulations (solid lines in Figure 5.11) 

are slightly smaller than those obtained through experiments (dotted lines in Figure 5.11). 

However, a deviation is observed with a highest difference of less than 8.0 %, showing that 

the developed FE model is capable of accurately predicting the geometry of the formed plate.  

 

 

Figure 5.11  Final radius versus plate thickness and location of the lateral roll 

5.6 Results and discussion 

The flat end length for any given final shape obtained by the roll bending process depends on 

the machine type, workpiece thickness, final radius, roll positions and even the operators’ 

skills. In this study, correcting the position of the bottom roll of the roll bending machine is 

considered as a method to reduce the forming forces and flat ends on the leading and trailing 

edges of the final shape. Correcting the positions of the bottom roll involves moving this roll 

in the horizontal plane and lowering it vertically. Although it is not possible to eliminate the 
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flat areas inherent to the process, the challenge for future roll bending machine designs is to 

minimize these areas. 

 

5.6.1 Moving the bottom roll in the horizontal plane 

To study the flat area’s dependence on the bottom roll positions, the FE simulations were 

performed using plates 2.0 mm thick, 100.0 mm wide and having a center to center distance 

“a” (Figure 5.3) from the top roll to the lateral roll of 115.0 mm. While keeping the same 

input parameters, i.e., the roll radii, material properties, mesh, etc., the position of the bottom 

roll was moved to the left hand side for various distances di. Figure 5.12 shows the values of 

the forming force’s dependence on di, which is expressed as a function of r, ranging from 

10.0 % to 70.0 % of the bottom roll radius. 

 

Figure 5.12  Forming force on the rolls versus the values of di  
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The forming forces, for both the top and bottom rolls, quickly decrease when the bottom roll 

is moved away to the left hand side by a distance di of 20 % of r. The forces then slowly 

decrease when the bottom roll is moved to a distance di that is larger than 20 % of r. 

Meanwhile, the forming force on the lateral roll (q1) remains unchanged for every distance di.  

 

Figure 5.13 show the instantaneous free body diagram of the system’s roll bending process, 

including the contact forces qi and their respective angles θi. The equilibrium of the moments 

at point P2 leads to the Equation 5.7:  

 

 

Figure 5.13  Free body diagram of the roll bending process 

 

 

 
M P2

= 0 (5.6)
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Leading to: 

 

 

 
q3s3 = q1s1 (5.7)

Where s1 and s3 are the arc lengths of P1P2 and P2P3, respectively. 

 

The contact angle between the rolls and the plate varies when the bottom roll is moved to the 

left hand side. However, the value of s1 remains quasi constant. This may explain why the 

forming forces of the lateral roll do not change in Figure 5.12.    

 

The flat ends for various positions di of the bottom roll are shown in Figure 5.14. Knowing 

that the larger flat end is usually left at the leading end of the final shape [3], only the flat end 

length at this edge is studied in this research.  

 

Figure 5.14  Flat-end length at the leading-end versus the value of di  
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The value of the flat end length of the final shape was determined to be monotonically 

decreasing when the bottom roll is moved to the left hand side by a distance di of 10 % of r. 

This is because at this position, the bottom roll is not only used to “pinch” the plate but, it is 

also used to support the plate at the contact line “c” (Figure 5.15). The plate is therefore 

more efficiently bent with the lateral roll.  

 

 

Figure 5.15  Plate configuration when the bottom moves horizontally 

5.6.2 Moving the bottom roll in the vertical plane 

The bottom roll of the three-roll asymmetric model was adjusted (up or down) in the vertical 

plane to compensate for the various plate thicknesses and to provide the pressure needed for 

“pinching”. Therefore, choosing the matching “gap” between the top and the bottom roll is 

very important when using the roll bending process. For example, if the bottom roll pressure 
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is too tight, the final shape obtained may be a bell-mouthed shape. To avoid this defect, the 

bottom roll should leave a gap that is equal to or greater than the plate thickness.  

 

To study the “gap” effect on the flat ends and the forming forces, a series of FE simulations 

were performed for various values of the “gap” gi. These “gap” values range from 10.0 % to 

30.0 % of the plate thickness. The center locations of the top and bottom rolls were placed on 

the same vertical axis. For this FE simulation, the forming parameters and the material 

conditions held constant were the 2.0 mm plate thickness, 100.0 mm plate width and  

115.0 mm center-to-center distance “a” from the top roll to the lateral roll. The forming 

forces versus the “gaps” gi are shown in Figure 5.16.  

 

Figure 5.16  Forming force of the rolls versus the value of gi 

The top and bottom forces tend to decrease when the value of gi increase. A rapid decreasing 

tendency is observed when the “gap” is set to 5.0 % of the plate thickness. The forming 

forces then slowly decrease when the “gap” value continually increases, up to 30 % of the 
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plate thickness. The forming force of the lateral roll remains nearly constant for all the values 

of gi.  

 

Figure 5.17 shows the flat-end length variation’s dependence on the “gap” value gi. The flat 

end length monotonically increases when gi is less than 15 % of the plate thickness. Over this 

last value, the flat end length is nearly unaffected when the “gap” continues to open.  

 

 

Figure 5.17  Flat end versus the value of gi. 

This interesting phenomenon can be explained with the help of Figure 5.18. The plate is held 

less firmly when the “gap” in-between the top and bottom rolls is larger than the plate 

thickness. For these cases, the plate tilts with an angle ε (dotted lines in Figure 5.18), leading 

to a less bent plate. 



127 

 

Figure 5.18  Varying plate contact lines with rolls when moving the 
bottom roll downward 

 

Because the plate cannot be bent sharply, a larger amount of the blank at the leading edge 

remains flat.  

 

5.7 Conclusions 

A dynamic FE model was developed in the Ansys/LS-Dyna environment and was validated 

satisfactorily through experiments. In this study, we show how the flat-end lengths and 

forming forces are affected by the bottom roll setup. It is seen that by moving the bottom roll 

to the left hand side, the flat areas can be minimized, and the forming forces will be reduced 

on the top and bottom rolls. However, by adjusting the bottom roll with a “gap” value greater 

than the plate thickness in the vertical plane, the forming forces on the top and bottom roll 

are also reduced, but the flat area increases slightly. Therefore, in conclusion, maintaining the 
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bottom roll at a gap close to the plate thickness and moving it laterally will produce the best 

results: lower forming forces and shorter flat-end lengths.  
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CONCLUSION 

 

In this study, theoretical models, FE simulations and experiment verifications have been 

carried out to study the forming process of a three-roll asymmetric roll bending machine. 

Key contributions and conclusions on four major aspects of this study are pointed out in this 

section. Furthermore, for future areas of investigation on roll bending process that still 

remain open for further research and development are referred in the following 

recommendation section.  

 

1. Finite element simulation 

 

In this study, 3D-dynamic finite element model was built for simulating forming process of 

asymmetric roll bending process. This model allowed the authors to identify the primary 

processing parameters of the roll bending process and to investigate the influence of these 

process factors on the precision of the final shape. The influence of several forming 

parameters, such as plate thickness, final shape radius, width of final shape, and reaction 

forces were studied in detail. Besides that, a three-dimensional thermo-mechanical FE 

simulation of hot roll bending process has been developed in Ansys/LS-Dyna software. The 

finite element modelling of the formed geometry is sequential with first a thermal simulation 

followed by a structural one. The relationships between the heating plate temperature and the 

output parameters of roll bending process such as applied forces and final shape quality have 

been studied by performing FE simulations and analytical computations. These results yield 

to a better understanding of the mechanism of the process and provide an opportunity for the 

design of an efficient heating system to control the heat energy to be input in the plate during 

the roll bending process.  

 

2. Experiments verification 

 

A three-roll asymmetric model machine was used to validate the FE simulations. A series of 

experiments were conducted to investigate the bending force variations and factors that may 
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affect the accuracy of the final shape. The input parameters of a roll bending machine 

(rotational speed of the rolls, supplied power, friction coefficient between the plate and  

rolls …) and plate properties were carefully checked with suitable equipment. In addition, to 

verify the same output quantities of forming forces, different measuring devices such as 

indicators, load-cells and laser sensors were used to ensure qualitative experimental results. 

The final shape radii obtained by roll bending machine were evaluated by an accurate data 

acquisition-EXAscan laser scanner. Besides that, strain gauges were also stuck on the plate to 

investigate the strain variation, during and after the process, left in the formed plate 

 

3. Theory approach 

 

In this thesis, the analytical model is established based on equilibrium of forces approach to 

compare FE simulation results. The theory approach can applied to study the variation of the 

forming forces of the roll bending process depending on the various forming parameters. 

Besides that, to verify the geometry of the final shapes of the forming plate obtained from FE 

simulations in Ansys/LS-Dyna, a numerical check based on a Newton-Raphson scheme is 

applied to determine the geometry parameters. In addition, to compute the flat-end lengths of 

the formed plate from the FE simulations in Ansys/LS-Dyna, a numerical procedure is also 

developed and performed in this thesis. 

 

4. Reducing flat end areas 

 

As mentioned, a roll bending process that minimizes the flat areas on the leading and trailing 

ends of formed plates will produce more accurate and easier to assemble final shapes. In this 

study, a new and simple approach that reduces these flat areas is proposed. This approach 

includes moving the bottom roll slightly along the feeding direction and adjusting the bottom 

roll location. It is seen that by moving the bottom roll to the left hand side, the flat areas can 

be minimized, and the forming forces will be reduced for the top and bottom rolls. However, 

by adjusting the bottom roll with a “gap” value greater than the plate thickness in the vertical 

plane, the forming forces on the top and bottom roll are also reduced, but the flat area 



133 

increases slightly. Therefore, in conclusion, maintaining the bottom roll at a gap close to the 

plate thickness and moving it laterally will produce the best results: lower forming forces and 

shorter flat-end lengths.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

RECOMMENDATIONS 

 

The research trends of asymmetrical roll bending process can be enhanced in the future as 

listed below: 

 

1. Multi-pass roll bending process 

 

To the author’s knowledge, up to now, there is no published study about multi-pass roll 

bending process, although multi-pass forming is an interesting strategy for reducing the 

bending force and improving the accuracy of the final shape. Forming plate with multi-pass 

roll bending machines slows production and increases cost. However, this is a real 

opportunity and a new avenue in the manufacturing domain for finding interesting 

alternatives to forming large and high strength steel parts that cannot be achieved in one pass 

forming. Therefore, multi-pass roll bending process should be further investigated by  

3-D dynamic finite element as well as experiments to explore the advantages of  

multi-pass roll bending process for forming thick and high strength steel.  

 

2. Heat assisted roll bending machine experiment 

 

In this research, a 3-D thermo-mechanical FE simulation of hot assisted roll bending process 

has been developed in the Ansys/LS-Dyna environment to study the relationships between 

temperature, applied forces and plate thickness. The FE results are then compared with the 

analytical results. In addition, some experiments of heating a plate with an induction heating 

system were also conducted as shown in Appendix I. The experiment results are preliminary, 

but very promising i.e. the plate forming temperature can be reached very quickly. However, 

the current roll bending machine does not allow performing the heat assisted roll bending as 

described in the FE simulations. Therefore, the integration of the induction unit into the roll 

bending machine for heat assisted forming process is a recommendation for future work.  
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3. Multi-pass optimization 

 

Manufacturing time and cost for a multi-pass roll bending process relates to the number of 

passes involved. Reducing the number of steps could enhance the current research work. For 

this reason, optimization is strategic to determine the minimum number of passes within the 

machine capacity and the final shape quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

APPENDIX I: EXPERIMENTS OF HEATING PLATE BY INDUCTION 

The heat energy that the induction system generated in the plate depends on the current and 

the frequency of the equipment as well as the plate material properties. Therefore, the aim of 

this test is to determine the relationship between the induction machine parameters and the 

heat temperature generated on the plate surface. All experiments were conducted using high 

permeability (600-1100) - AISI 430 stainless steel plate having dimensions as shown in 

Figure I.1. 

 

  

Figure I.1  Specimen dimensions 

As shown in Figure I.2, the specimen was located inside the coil of the induction system. 

According to Faraday's Law as mentioned above, the plate will be induced in the object when 

alternating voltage is applied. As a result of the Joule effect, eddy currents will produce heat. 
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Figure I.2  Heating plate experiment setup 

Two cases of experiment were performed to check the relationship between induction 

machine parameters and heat generated into the surface of steel: stationary and moving heat 

source 

 

1. Stationary case 

 

This test is intended to examine the effects of current on temperature induced on the surface 

of the plate. The experiments were performed for two levels of induction currents with other 

parameters remaining unchanged. The plate was placed into the coil as shown in Figure I.3. 

The results showed that, with 100 amperes (A), it takes 90 seconds to heat the plate up to 

190oC on the outer surface.  

 

 

Induction coil 

Specimen 

Heated zone 
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Figure I.3  Heating plate experiment: stationary case 

However, with the same heating time (90 seconds), when the current of the induction 

machine was increased to 200 A, the temperature gain at the surface of the plate increased to 

260oC.  

 

2. Moving heat source case 

 

It was interesting to perform the experiment of heat conduction with a moving heat source 

because heat assisted roll bending process is a dynamic process, with the plate flowing in 

between forming rolls. In this experiment, as shown in Figure I.4, the plate moved from point 

A to point B inbetween the induction coil at a constant speed of 1.25 mm/s. The coil current 

of the induction system was set to 100 A. 
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Figure I.4  Heating plate experiment: moving heat source case 

It has been observed that the temperature gain of the 2.5 mm AISI - 430 stainless steel plate 

at point B was 140oC.  
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