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MÉCANISMES D'ÉROSION PAR IMPACTS DE GOUTTELETTES D'EAU SUR 

L’ALLIAGE TI-6AL-4V 

 

 Niloofar KAMKAR ZAHMATKESH 

 

RESUMÉ 

 
L’érosion par impact de gouttelettes est un phénomène pouvant mener à la ruine de 
matériaux métalliques dans de nombreux environnements. A titre d’exemple, l'érosion par 
gouttelette d’eau de pluie ou de vapeur sur les composants aéronautiques tels que les aubes 
de turbomachines et certaines parties du fuselage peut induire la détérioration progressive de 
ces dernières. Dans le cas spécifique des turbines à gaz couplées avec un système de 
brumisation (Inlet Fogging System), ce phénomène d’érosion est un point clé dans le 
dimensionnement de pièces. 
 
Le système de refroidissement par brumisation est la méthode la plus couramment utilisée 
dans les turbines à gaz pour compenser les variations de température entre les saisons. Une 
augmentation trop importante de la température provoquant une chute des performances de la 
turbine à gaz. L’introduction de gouttes d’eau dans le flux d’air en entrée permet alors la 
régulation de la température des systèmes d’admission et du compresseur et ainsi une 
puissance de sortie optimale des turbines à gaz. Cependant, l’endommagement par érosion 
induit par l’introduction de ces gouttelettes d’eau sur les premiers étages du  compresseur est 
problématique.   
 
L'objectif principal de ce travail (projet CRIAQ MANU419) est de comprendre les 
phénomènes induits par érosion par impact de gouttelette sur un alliage de titane, afin 
d'optimiser la résistance à l'érosion des aubes de compresseur généralement produites à base 
de titane. La caractérisation des phénomènes d’endommagement par érosion par impact de 
gouttelettes sur un Ti-6Al-4V a été de première importance. Les effets de la microstructure 
du matériau ainsi que des paramètres d’impact des gouttelettes ont été mis en évidence.  
 
Ce travail sur la caractérisation de l’endommagement de l'érosion sur l'alliage Ti-6Al-4V 
s’articule en deux parties : 

- L’endommagement par érosion par impacts de gouttelettes à travers une approche 
expérimentale originale. Les données collectées ont été traitées à la fois 
qualitativement et quantitativement pour effectuer une étude multi-échelle de 
l’endommagement.  

Les effets de l’influence de la vitesse d'impact sur les phénomènes d’érosion afin de 
représenter les sollicitations induites en service.  
 
Mots-clés : Impact de gouttelette d’eau, Érosion, Ti-6Al-4V, Turbine à gaz, Texture 
cristallographique 





WATER DROPLET EROSION MECHANISMS OF TI-6AL-4V 
 

Niloofar KAMKAR ZAHMATKESH 
 

 
ABSTRACT 

 

 
Water impingement erosion of materials can be a life-limiting phenomenon for the 
components in many erosive environments. For example, aircraft body exposed to rain, 
steam turbine blade, and recently in gas turbine coupled with inlet fogging system. The last is 
the focus of this study. 
 
Inlet fogging system is the most common method used to augment gas turbine output during 
hot days; high ambient temperature causes strong deterioration of the engine performance. 
Micro-scaled droplets introduced into the inlet airflow allow the cooling of entering air as 
well as intercooling the compressor (overspray) and thus optimizes the output power. 
However, erosion damage of the compressor blades in overspray stage is one of the major 
concerns associated with the inlet fogging system. 
 
The main objective of this research work (CRIAQ MANU419 project) is to understand the 
erosion induced by water droplets on Titanium alloy to eventually optimize the erosion 
resistance of the Ti-based compressor blade. Therefore, characterization of the water droplet 
erosion damage on Ti-6Al-4V receives the major importance. The influence of base material 
microstructure and impact parameters were considered in erosion evaluation in present study. 
 
This work covers the characterization of the erosion damage on Ti-6Al-4V alloy in two parts: 
  
- The water droplet erosion damage through a novel experimental approach. The collected 
data were processed both qualitatively and quantitatively for multi-aspects damage study. 
 
- The influence of impact velocity on erosion in an attempt to represent the in-service 
conditions.  
 
Keywords: Water impingement, Erosion, Ti-6Al-4V, Gas turbine, Crystallographic texture, 
Impact velocity  
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INTRODUCTION 

 

Liquid impingement erosion is the result of high speed liquid droplets impacting a solid 

surface. It has become a significant issue in several conditions such as rain erosion in 

aircrafts, missiles, and helicopter rotors (Heymann 1992) or more recently, in gas turbine 

engine applications where inlet fogging and overspray are used to increase the performance 

and power efficiency during hot days (Khan 2008, Bhargava et al. 2007). Inlet fogging is the 

most common method used to increase power during hot days due to its low cost. Water 

droplets are sprayed into the gas turbine inlet to cool the entering air to the engine and 

increase the air density. Remaining water droplets will enter the compressor, resulting in 

inter-cooling and increasing the output power (Giampaolo 2006). However, the most 

challengeable concern is the potential erosion of compressor blades resulted from entering 

the remaining water droplets to the compressor (over spray stage) which will reduce engine 

efficiency on a long run. 

 

This research project is part of the CRIAQ MANU 419 project in collaboration with Rolls-

Royce Canada. It pursues the main objective of improving the compressor components with a 

higher water erosion resistance. There are three research groups working on this project: 

Concordia University group who is working on developing the coatings and modeling of the 

water erosion phenomenon as well as manufacturing the water erosion rig, École 

Polytechnique de Montréal group who is also developing hard and super hard coatings, and 

École de Technologie Supérieure (ÉTS) whose objective is to understand the erosion 

mechanisms of Ti-6Al-4V alloy used for the in-service compressor blade. As a consequence, 

the present work mainly focuses on investigating the erosion mechanisms on initial as well as 

advanced stages of erosion. The influence of impact velocity is investigated regarding to the 

in-service conditions of the compressor blades. 

 

Over the past decades solid particle erosion has been mostly studied rather than liquid impact 

erosion. A large number of investigators worked on material removal behavior and especially 

the influence of impact parameters on erosion damage induced by solid particle on the solid 
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surface. Fewer studies recently investigated liquid impingement erosion. The concept of 

erosion rate dependence on mechanical properties or impact parameters received the major 

dedication through the previous works on liquid impact erosion. Erosion was investigated on 

various materials with great attempts on correlating the erosion phenomenon with material or 

mechanical properties like hardness, modulus of elasticity, ultimate tensile strength, etc. 

(Mann and Arya 2002, Heymann 1969). There are, however, only few studies focused on 

erosion mechanisms and in particular on the characterization of the damage through the 

different stages of erosion. In addition, there is little complete experimental data in the 

literature explaining the erosion mechanisms relative to other impact properties such as 

velocity. Understanding the influence of all impact parameters is beyond the scope of this 

work.  

 

Following the water erosion resistance improvement of compressor components, the main 

objective of the present study is the characterization of water droplet erosion mechanisms on 

Ti-6Al-4V alloy and the influence of base-material and impact properties relative to the in-

service conditions. To reach the main objective, the sub-objectives are defined as follow; 

- To understand the erosion mechanisms of Ti-6Al-4V alloy during the material 

removal process 

o To analyze the erosion behavior during the incubation stage  

o To analyze the advanced stages of material removal 

- To describe the influence of microstructural properties of base-material 

o To investigate both rolled and forged microstructure of Ti-6Al-4V 

- To understand the influence of water droplets impact velocity on erosion kinetic of 

Ti-6Al-4V 

 

To tackle these objectives, the document begins with a comprehensive overview of the 

erosion mechanisms and material removal behavior under water droplet impacts given in 

Chapter 1. The different viewpoints of previous investigators are discussed. Their attempts to 

obtain some correlations between the erosion mechanisms and mechanical or material 

properties are presented. This chapter also includes the review of the important parameters 
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which influence the erosion resistance and behavior of the materials; typically, impact 

velocity and droplet size. 

 

The first scientific article published from this work is presented in Chapter 2. It discusses the 

mechanisms of erosion at the advanced/steady state stages for a rolled Ti-6Al-4V. An 

original methodology is introduced to investigate different aspects of the erosion behavior. In 

particular, the crack propagation modes are quantified for the first time in impact erosion 

phenomenon. The relation of the crack propagation including nucleation is discussed relative 

to the rolled microstructural properties. A new mechanism for material removal is proposed 

for the erosion due to water droplet impingements. This chapter responds to the second part 

of the first objective which is to better understand and discuss the water droplet erosion 

mechanisms of Ti-6Al-4V alloy concentrating on crack nucleation and material removal. 

 

The initial stages of erosion damage on forged Ti-6Al-4V have been addressed in a second 

article which is presented in Chapter 3. The mechanisms involved at the earlier stages of 

material removal are investigated through different techniques such as Scanning Electron 

Microscopy (SEM) and Atomic Force Microscopy (AFM). The evidence of micro-plasticity, 

grain tilting and intergranular damage due to droplet impacts is discussed and a novel 

mechanism of damage initiation is proposed. Transgranular sub-surface cracks formation and 

surface protrusions were observed as the first indication of damage initiation. This chapter 

responds to the first part of the first objective, meaning understanding the nucleation of 

cracks at early stages of erosion. Chapter 2 and 3 together discuss the influence of 

microstructure on erosion mechanism and respond to the second objective of the work. 

 

The third article of this work investigates the influence of water droplet impact velocity on 

erosion behavior of Ti-6Al-4V in Chapter 4. Impact velocity is the parameter which 

influences the most the kinetics of erosion phenomenon (Hattori 2010). The influence of the 

impact velocity is investigated both qualitatively and quantitatively.  The base material and 

velocities range are selected based on the in-service conditions of gas turbines to simulate 

various regions of compressor blades. This work responds to the third objective of the 
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project, which is to understand the influence of representative impact velocities on erosion 

behavior. Other parameters should be investigated in future works for fully representation of 

the in-service conditions.  

 

Finally a substantial summary and discussion of the research work presented in Chapters 2 to 

4, is given in Chapter 5. It allows the outcomes of this work to be linked to obtain the 

objective of the work and discusses the understanding of the erosion phenomenon in certain 

aspects. Conclusions of the work are presented afterwards in this chapter following by 

general remarks and recommendations. 



 

CHAPTER 1 
 
 

LITERATURE REVIEW 

The progressive material loss induced by repeated solid or liquid impacts is called impact 

erosion. There are many kinds of erosion such as solid particle erosion, slurry erosion and 

abrasion, cavitation erosion, and liquid impingement erosion. Comparing with other kinds of 

erosion such as solid particle erosion, the liquid impingement erosion has been less studied. 

Especially there is a relatively limited experimental work on high velocity liquid impact 

erosion (Zhou et al. 2008) which is the main concern of gas turbines using inlet fogging 

systems. Understanding the erosion problem may be divided into two major parts. The first 

part of the problem is relevant to erosion resistance and material removal mechanisms and 

the second part is the particular influence of the water impingement conditions, such as 

angle, velocity, size, and etc. The first part of the problem which is understanding the 

mechanisms of the erosion has generally received less attention than the second part for 

which more studies may be found in the literature and are discussed afterward in Chapter 4. 

Erosion can be generally divided in two main stages, i.e., the initial stages of erosion damage 

and the advanced material removal. The later received the major attention among previous 

studies while there is limited work on initial stages of erosion.  For the purpose of this thesis, 

the review of the literature is limited here to two sections: discussing the previous work on 

erosion mechanisms and reviewing the influence of main water impingement parameters on 

erosion behavior.  

  

1.1 Erosion mechanisms 

The simplest mechanism of water impact erosion is referred to as the “water hammer”, and 

‘‘water hammer pressure’’ known as the pressure induced by the droplet impact on the 

surface which is confirmed by Heymann (1969). At a certain moment during the 

impingement, shock waves develop in the droplet and breaks away. The lateral out flow 

forms after and the energy transforms to kinetic energy and impact pressure is released into 

the base material. Shock wave formation is well known in a droplet impacting a solid. The 
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shock wave characteristics and stress field generation are presented in Fig. 1-1 (Zhou et al. 

2009). 

 

 

Figure 1-1 The schematic of liquid-solid impact stress 
and shock wave formation and possible microcrack 
caused by the impact (taken from Zhou et al. 2009) 

 

Various explanations are reported for material removal mode and great attempts were made 

in the past also on correlating the erosion with static mechanical properties such as energy 

absorption, hardness, elastic modulus, or ultimate tensile strength and some correlations have 

found so far (Garcia and Hammitt 1967, Rao et al. 1970, Frees et al. 1983, Feller and 

Kharrazi 1984). The common outcome for liquid impact erosion was that, in most cases, 

improving base material strength properties such as hardness and yield strength increases the 

erosion resistance. 

 

Another explanation for erosion resistance is its correlation with fatigue resistance of 

materials (Schmitt 1979). Indeed, due to the repetitive nature of water droplet impingement 

at high frequency, the erosion process may be associated with cyclic loading and fatigue-like 

mechanism. Fatigue-like mechanisms were reported for liquid impingement erosion by 

Hancox and Brunton in 1966; however, fatigue-based theory was initially developed by 

Richman and McNaughton in 1990 for cavitation erosion damage. They collected data on 
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various metals and alloys to correlate the cavitation erosion resistance with the introduced 

fatigue strength coefficient, σ΄f which is a measure of cyclic stress resistance and n΄ which is 

the cyclic strain hardening coefficient. The coefficients, σ΄f  and n΄, are firstly introduced by 

Manson and Hirschberg in 1963, through an equation to obtain the relation between total 

strain and number of cycles. The values can be obtained from cyclic strain-stress curve, 

strain-life curve, and in some cases from stress based tests reported in the literature (see 

Manson and Hirschberg 1963).   Richman and McNaughton (1990), showed that product of 

σ΄f  and n΄ (σ΄f n΄) presents a strong correlation between the erosion damage and cyclic 

deformation properties as is presented in Figs. 1-2 and 1-3. In the same way, features such as 

striations which accompanying fatigue, were previously reported by Marriott and Rowden 

(1966) investigating the cobalt-chromium alloy. Afterwards, Beckwith and Marriott (1967) 

investigated the rain erosion damage on chromium steel and their attempt to correlate the 

incubation time to the number of cycles for crack nucleation in bending fatigue showed good 

agreement. Similarly, Thomas and Brunton (1970) observed striation marks investigating the 

liquid impingement erosion of 50/50 brass. They suggested that fatigue is one probable 

mechanism of failure in erosion because the liquid impact erosion may be similar to the 

fatigue phenomenon as the loading is repetitive. A fatigue-based mechanism for water 

droplet erosion has been however recently questioned by Mann and Arya (2002) since they 

did not detect any fatigue features neither for cavitation, nor for water jet impingement of Ti-

6Al-4V. 

 



8 

 

Figure 1-2 Correlation of σ΄f n΄ and mean depth of 
penetration (taken from Richman and McNaughton 1990) 

 

 

Figure 1-3 Correlation of σ΄f n΄ and incubation time 
(taken from Richman and McNaughton 1990) 

 

1.2 Erosion behavior in Titanium alloys 

Among the influencing parameters on erosion behavior, material properties such as 

microstructure should not be neglected. The impact of local microstructure on solid and 

liquid particle erosion was shown by some researchers (Yerramareddy and Bahadur 1991, 
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Huang et al. 2012). Schmitt (1979) reported that, erosion mechanisms even in a certain 

material can be varied relative to its microstructure.  

 

Microstructural effect might have a considerable influence on erosion behavior of Titanium 

alloy due to its anisotropic behavior. The material under investigation in this study is a 

duplex Ti-6Al-4V, i.e. composed of globular primary hcp α-grains and secondary hcp α-

plates, embedded in a bcc β matrix. Duplex Titanium alloys with mainly hcp α-phase and 

some area of α secondary embedded in bcc β-matrix are known to display elastic/plastic 

anisotropy. Anisotropy exists in this alloy mainly due to the strong crystallographic texture 

induced due to the processes like rolling and texture effects play a significant role in the 

technological characteristics of Titanium alloys. 

 

To explain the elastic anisotropy of duplex Titanium alloys, the angular variation of the 

Young’s Modulus (E) is presented graphically in Fig. 1-4 where Ѳ is the angle between the 

c-axis and the loading direction. As is shown when Ѳ=0˚ meaning when the loading direction 

is parallel to c-axis, the maximum Young modulus (≈145 GPa) is achieved, while when 

Ѳ=90˚ and the loading direction is perpendicular to the c-axis the minimum Young modulus 

(≈100 GPa) is reported. The inverse pole figure projection of elastic anisotropy is presented 

in Fig. 1-5. 

 

 

Figure 1-4 Angular variation of E in uniaxial loading 
(taken from Bridier et al. 2008) 

 



10 

 

Figure 1-5 Inverse pole figure projection of elastic 
anisotropy (E) (taken from Bridier et al. 2008) 

 

Plastic anisotropic is also reported for Titanium alloys and is generally related to the different 

slip systems activated within a particular crystallographic texture. The plastic slip systems for 

duplex Titanium alloy are presented in Fig. 1-6.  
 

 

Figure 1-6 Basal : ‹a›, prismatic ‹a›, pyramidal ‹a› slip systems, and first and second-
order pyramidal ‹c+a› slip systems in hcp materials (taken from Balasubramanian and 

Anand 2002) 

 

For instance, Bache and Evans (2001) illustrated the significant differences in monotonic and 

cyclic loading properties of a rolled Ti-6Al-4V relative to the loading axis; rolling and 

transverse directions. They showed that loading in transverse direction promotes the yield 

stress and ultimate tensile strength. For the cyclic loading, loading along the rolling direction 

offers the optimum cyclic response as well as the increase in stress relation. Therefore, due to 
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the pronounced elasto/plastic anisotropic behavior of Ti-6Al-4V, an influence of the 

microstructural conditions on water impact erosion mechanisms may be expected. 

 

Few studies tackled the influence of microstructural features on water erosion resistance. The 

major contribution on initial damage investigation for a range of materials under water 

droplet impacts suggest that surface plastic deformation followed by pit formation and 

surface cracks formation as the damage initiation mechanisms (Thomas and Brunton 1970, 

Futakawa et al. 2003, Date and Futakawa 2005, Kong et al. 2010). Water droplet erosion 

mechanisms were investigated by some researchers on pure Titanium and a range of 

Titanium alloys and their erosion resistance was correlated to their hardness level 

(Yasugahira et al. 1990). A recent work reported sub-surface plasticity through hardness 

variations for Ti-6Al-4V submitted to plain water jet impingements without giving clear 

evidence (Chillman et al. 2007). Intergranular damage is also stated as the dominating 

mechanism for damage initiation in Ti-6Al-4V alloy under similar test (Huang et al. 2012) 

however there is no work stating transgranular damage at the initiation stages. The initial 

damage induced by water droplet is not comprehensively documented and there is still a need 

of initial local erosion damage investigation. Adler et al. (1974, 1976) reported also crack 

observations in Ti-6Al-4V subjected to supersonic rain erosion and reported the similarities 

between fatigue and erosion mechanisms. Similar observations were also stated by Robinson 

et al. (1995) for untreated and laser treated Ti-6Al-4V under water droplet erosion tests. 

However, they did not provide distinct evidence of fatigue features and, therefore, the cyclic 

nature of material removal is still indeterminate.   

 

The detailed review of the literature on the advanced and initial erosion mechanisms is 

presented in chapter 2 and 3 followed by discussing the work to fully characterize the erosion 

damage induced by water droplet impacts on Ti-6Al-4V alloy. Damage initiation and 

advanced material removal behavior are discussed on two separate articles with regards to 

the microstructural aspects.  
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1.3 Water impingement parameters and their influence on the erosion kinetic 

A good contribution of previous studies is on understanding the influence of operational 

parameters on erosion behavior of materials. The main influencing factors in impact erosion 

are reported to be impact velocity, impact angle, and drop shape and size. 

 

1.3.1 Impact velocity 

The impact velocity plays the most important role in distinction of erosion and corrosion 

phenomena as well as influencing the erosion behavior (Adler et al. 1972). Coulon (1985) 

defined the range of velocities for turbines in PWR power station where the corrosion and 

erosion phenomena can be formed. The velocity ranges achieved by him are presented in 

Table 1.1. 

 

Table 1.1 Phenomenon defined in velocity range (taken 
from Coulon 1985) 

Phenomenon Velocity m/s 

Corrosion 0-10 

Corrosion-erosion 10-50 

Erosion-corrosion 50-200 

Erosion 200+ 

 

Significant amount of work was carried out on the influence of impact velocity on erosion 

rate. It is reported that the relation between erosion rate (ɛ)̇, usually defined as the cumulative 

volume or weight loss per erosion time, and impact velocity (V) is in the form of: 

 

 ɛ ̇α Vn (1.1)

 

where n values varies for different materials (Yerramareddy and Bahadur 1991, Ahmad et al. 

2009). Lee et al. (2003), in their investigation on steam turbine blade erosion tested different 
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alloys for the calibration of erosion parameters. They have converged for a common n value 

about 5 for all the investigated alloys. Fig. 1-7 shows the influence of increasing the impact 

velocity on erosion rate for some alloys including Ti-6Al-4V. Therefore, increasing the 

impact velocity is logarithmically proportional to increasing the erosion rate, though it is 

desired for gaining the required efficiency (Schmitt 1979). Moreover, the variation of the 

speed along the leading edge for the compressor blades makes it interesting to investigate in 

the present study how erosion features changes with the variation of speed. This point will be 

specifically addressed in Chapter 4. 

 

 

Figure 1-7 Average erosion rate vs. impact velocity 
(taken from Lee et al. 2003) 

 

1.3.2 Impact angle 

The effect of impact angle is mainly discussed in solid particle erosion. Generally in solid 

impact erosion, maximum material removal occurs at 90˚ for brittle materials such as TiN 

and Titanium whereas the corresponding angle for ductile materials such as Copper, 

Aluminum, etc. is 22.5˚. Fig. 1-8 shows the influence of impact angle on erosion behavior of 

ductile and brittle material in solid impact erosion (Haugen et al. 1995). 

 



14 

 

Figure 1-8 Typical solid particle erosion behavior of 
ductile and brittle materials as a function of impact 

angle (Taken from Haungen et al. 1995) 

 

In case of liquid droplet erosion, since the roughness of the surface changes continuously 

during the process, the impact angle is not stable. Therefore due to this complexity there is no 

certain conclusion on the angle of maximum erosion rate (Heymann 1992, Stanisa and Ivusic 

1995). This gets more complex for the in-service conditions as the droplets impact the 

leading edge of compressor blades with the varied angles that induce different types of 

material removal modes and damage extents. 

 

1.3.3 Droplet size 

Adler (1995) found that the damage induced by water droplet erosion is strongly influenced 

by the droplet radius at the point of impact and not the droplet mass. Indeed shapes of 

droplets are not perfectly spherical due to different condition of injection force, gravity, etc. 

In this matter, the equivalent diameter which is the diameter of the flattened droplet that 

causes more damages is considered as the influencing diameter (Field 1999).  
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Increasing the droplet size, results in increasing the material removal if the number of 

impingements is constant (Lee et al. 2003). In water droplet erosion of the blade since there 

is wide range of droplet sizes, the mean diameter is used in the investigation of erosion (Lee 

et al. 2003). 

 

On the subject of droplet size, it is noteworthy that one of the issues concerning the use of 

inlet fogging system in gas turbine engine is the droplet sizing. This is mainly important 

because of the wide range of statistically distributed droplet size created by the fog nozzles, 

droplet coalescence, etc. (Chaker et al. 2004). 

 

The influence of droplet size has been studied in the present work and is presented in 

Appendix I. 

 

1.4 Conclusions of literature review and refining the problematic 

The review of the previous work was made in this chapter on general erosion mechanisms 

and the influencing parameters. 

 

The considerable amount of works on advanced stages of erosion with attempts to correlate 

the erosion resistance with the mechanical properties did not introduce a clear pattern, even if 

the general outcome shows that erosion resistance increases with increasing the strength 

properties. A number of mechanisms were indicated in the literature for material removal 

phenomenon including fatigue-like mechanism for a range of materials, though the erosion 

behavior of Titanium alloys, specifically Ti-6Al-4V, has not been well-defined. Also the 

previous studies concentrated mainly on the mechanical nature of water droplet erosion for 

advanced stages of erosion, while the number of research on material properties such as 

microstructural influence is very limited typically on water droplet impingement of Titanium 

alloys. Thus it is worth to fully characterize both initial and advanced damage induced by 

water droplet impact erosion considering the local microstructure. The mechanisms of 
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erosion are comprehensively described and discussed in Chapter 2 and 3 presenting the 

erosion behavior at advanced and initial stages of erosion, respectively. 

 

Among the influencing parameters, impact velocity is deemed to have the major influence on 

the erosion behavior. Increasing the velocity increases the initial kinetic energy resulting in 

more material loss. Experiments were conducted on the influence of the particle velocity on 

material loss rate and the relation is given by a power law. The power exponent for Titanium 

alloy was found to be 5.1 under a certain conditions (Lee et al. 2003). Specifically, the 

influence of impact velocity on erosion rate of Ti-6Al-4V alloy for the in-service speeds has 

not been studied as for the knowledge of the author, neither the mechanism of material 

removal is discussed for this alloy. Chapter 4 discusses the previous works in detail and 

presents the erosion behavior examination of the representative impact velocities to the in-

service conditions.   

 

Certain coupons were already available at the beginning of this PhD project, provided by 

Rolls-Royce. Several batches of tests were performed on different materials with specific test 

equipment due to sample and equipment availabilities. In particular some coupons were 

already tested at Alstom whose raw materials were hardly available. Thus, complementary 

tests were performed to build a scientific approach to the problem, but all possible 

combination could be studied. Moreover, the type of microstructure or texture of the coupons 

under investigation was not necessarily the one that would represent the industrial conditions. 

Some of the complementary tests were then run on new microstructure and using a new rig 

available at Concordia University to obtain the most possible coherent results. Therefore in 

light of the experimental procedures and materials under investigation in this work a 

summary of the test methods used to obtain the erosion mechanism and meet the objectives 

are presented hereafter. Following is the chart briefly explains the materials and tests in order 

to make it clearer for the reader.  
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1.5 Materials and the experimental plans accordingly 

1.5.1 Base materials under investigation 

Characterization of the base material is conducted at macro and micro scales as well as 

texture analyses using SEM and Electron Backscattered Diffraction (EBSD) maps at ETS 

using Schottky-SEM Hitachi SU70. EBSD is a quantitative method of microstructure 

characterization for the crystalline materials. Material characteristic such as grain size, grain 

boundary character, grain orientation, texture, and phase identification as well as meso/macro 

crystallographic texture of the material can be obtained through EBSD analyses. 

 

The erosion mechanism is studied for two base materials divided into two parts: initial and 

advanced stages of erosion. Characterizations of the two base materials are made at macro- 

and micro-scales. The brief presentation of the base materials’ microstructure and texture is 

presented in Figs. 1-9 and 1-10. The microstructures are very different both morphologically 

and crystallographically. The erosion evaluation is done relative to the two presented 

microstructure and the comparison is made in terms of the damage features and kinetic of the 

process. 

 

 

Figure 1-9 SEM micrograph showing the grain morphology: a) forged and b) rolled 
base materials 
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Figure 1-10 Pole figures showing the crystallographic texture of 
the grains: a) forged and b) rolled base material 

 

On the other hand there is another rolled material used for the analyses of the impact velocity 

effect (Chapter 4). This cold-rolled plate is selected based on the in-service blade 

microstructure and texture so that it represents the similar characteristics to the blade 

material. The microstructure and texture of the material is presented in Figs. 1-11 and 1-12. 
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Figure 1-11 SEM micrograph showing the microstructure of cold-rolled 
plate: a) low and b) high magnification 

 

 

Figure 1-12 Pole figures of the cold-rolled plate 

 

1.5.2 Coupons and erosion rig set up 

Coupons are extracted from the presented base materials and the erosion tests are performed 

on different basis explained later in following chapters to reach a specific objective. The 

coupons from the forged base material are in a bolt shape and from the two rolled base 

materials are flat (Fig. 1-13). 
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Figure 1-13 Coupons extracted from a) forged and b) rolled base 
materials. The impingement surface is showed with the arrows 

 

Water erosion test are performed on the coupons either at Alstom, Switzerland (for the first 

two objectives: understanding the erosion mechanism as well as influence of the 

microstructure), or at Concordia university, Canada (for the study of impact velocity 

influence). While there are some differences between the two water erosion rigs, the 

principals are the same. It means a static rig in which droplet streams are fixed and the 

coupons rotate. Through each revolution coupons hit the droplet stream. Therefore the impact 

velocity in the present study refers to the coupons rotational or linear speed. In the same 

regard, the number of impingements denotes the number of times the coupon intersects the 

droplet stream (once per revolution). The differences between the two rigs are mostly related 

to the number of nozzles (three vs. one for Alstom and Concordia rigs respectively), vertical 

(Alstom) and horizontal (Concordia) rotations, type of nozzles, speed limits (higher speed 

limits for rig at Concordia compare to Alstom) and accuracy. The schematic of the water 

droplet erosion rig is illustrated in Fig. 1-14. 
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Figure 1-14 Schematic drawing of the water droplet erosion test bench of a) Alstom 
(taken from www.materials-laboratory.power.alstom.com) and b) Concordia 

 

 The eroded coupons then present three lines of erosion if eroded at Alstom (Chapter 2 and 3) 

and one erosion line if at Concordia (Chapter 4) as presented in the following chapters.  

 

1.5.3 Erosion curves 

To obtain the erosion curves for all the investigated conditions, the interrupted tests were run 

until the coupons reach to the advanced stages of erosion. At each interruption based on the 

number of impingements or exposure time, the coupons are weighed and in the end, erosion 

curves are obtained through measurements of cumulative mass loss versus impingement 

numbers. Obtaining an erosion curve is a time consuming process as it requires a good time 

around 5-10 minutes between the each interval weighing the sample, turning off and on the 

machine, waiting for vacuum chamber to reach a certain value, etc. This time plus the run 

time of the machine is the required time to get one erosion curve. For the investigation of the 

coupons at different stages of erosion, once the erosion curves are obtained, the erosion 

stages can be identified. Then, other bare coupons were tested until the exact desired point on 

the curve (erosion stage). These points were obtained either based on the number of 

impingements or the exposure time of erosion. Certain set ups and conditions used for each 

test are discussed through the following chapters. 
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1.5.4 Erosion characterization 

Erosion characterizations are done on the coupons at different erosion stages using SEM at 

macro and microscopic scales as well as quantitative measurements. This provides the 

information on the erosion behavior at different scales and reveals the macro and micro-

scopic aspects of the erosion i.e. the features which are only visible through e.g. macro or 

microscopic observations. Quantitative measurements are performed in order to quantify the 

observations for example the sizes of cracks, inclination, etc. 

 

Macroscopic analyses of the erosion are carried out through width and depth of the erosion 

lines as a parameter to identify the erosion mechanism. These analyses are made observing 

the erosion damage from above the coupons or through cross sectional polishing and 

measurement of the damage depth. 

 

On the other hand, microscopic evaluation mainly addresses the crack studies in terms of 

nucleation and propagation modes. Observations are done on both eroded surfaces and cross 

sections which lead to obtain information about the possible sub-surface damages.  

 

Quantitative evaluation is mainly important to give a quantified insight on the dependence of 

the damage generated by water droplet erosion relative to base material microstructure. It is 

done through measurement of hundreds of cracks’ size and inclination. Crack inclination is 

referred to the angle of crack propagation relative to the erosion plane. The rules used in the 

measurement of size and inclination are presented in Appendix II. 

 

1.5.5 Summary of the experimental plans 

The following chart (Fig. 1-15) describes all the materials under investigation and 

corresponded tests as whole. 
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Figure 1-15 Materials and experimental plans 
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Abstract 

Water impingement erosion of Ti-based parts is an issue encountered in many situations: 

aircraft body exposed to rain during flight, steam turbine blade, and inlet fogging used in gas 

turbines. The present work focuses on identifying the mechanisms of water droplet erosion of 

Ti-6Al-4V. Coupons of rolled Ti-6Al-4V have been exposed to high-speed water 

impingement erosion tests up to the advanced stage. Progressive cross-sectional polishing 

revealed both surface and sub-surface damage features at different scales. Qualitative 

observations and quantitative measurements were done on the eroded surface craters. Many 

micro-cracks along the erosion craters have been observed. The damage appeared to be 

dependent on the local microstructure morphology and the crystallographic texture of base 

material. A progressive mechanism for water droplet erosion during maximum erosion rate 

stage is proposed. It involves the nucleation of crack networks under the droplets 

impingements, cracks’ propagation and/or merging, tunneling or removal of large fragments 

of material due to linkage of cracks, water smoothing and, cyclically, nucleation of new sets 

of cracks. 
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2.1 Introduction 

Liquid impingement erosion is the result of high-speed liquid droplets impacting a solid 

surface. It has become a significant issue in several applications such as low-pressure steam 

turbine blade as well as rain erosion in aircraft, missile and helicopter rotors [1]. Water 

droplet erosion could also be a challenge in gas turbines equipped with inlet fogging [2, 3]. 

Water droplets are sprayed into the gas turbine inlet and cool the air entering to the engine. 

Remaining water droplets enter the compressor (over spray), resulting in the inter-cooling of 

the compressor and increasing of the output power [4]. 

 

 Erosion under impingement of water has been studied by several authors over the years. The 

mechanical nature of erosion under water droplets or jet impingement is recognized by most 

of the researchers. Obara et al. [5] highlighted the strong influence of tensile stress waves on 

the occurrence of cracks during the impact of a liquid jet on polymethyl-methacrylate 

(PMMA). The resistance of base-materials to water impingement erosion is then generally 

linked to various mechanical properties of the investigated alloy: absorption energy, 

hardness, toughness, elastic modulus, or ultimate tensile strength. Regarding Titanium alloys, 

Yasugahira et al. [6] correlated the water droplet erosion resistance of pure Titanium and a 

range of Titanium alloys with their respective Vickers hardness. Adler et al. [7, 8] also 

reported in the 1970s the observation of cracking within a Ti-6Al-4V alloy submitted to 

supersonic rain erosion and underlined the similarities between fatigue and erosion 

mechanisms. Particularly, localized cracks and lateral sub-tunneling phenomena were 

reported at that time for the investigated Titanium alloy. Similar observations were made 

twenty years later by Robinson and Reed [9] who studied the water droplet erosion of 

untreated and laser surface treated Ti-6Al-4V. They revealed micro-cracking and suggested a 

link between erosion resistance and fatigue resistance, without however giving clear evidence 

of fatigue-related damage along the analyzed erosion craters. For cavitation erosion, 

Richman and McNaughton [10, 11] compiled a lot of data obtained on various metallic 

materials and also suspected the cyclic nature of erosion under repeated loading. They 

qualified the cavitation erosion process as a cyclic deformation mechanism and introduced 
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the fatigue strength coefficient as a driving parameter for cavitation resistance. Mann and 

Arya [12], however, questioned in 2002 the theory of Richman and McNaughton as they did 

not observed fatigue cracks neither for cavitation nor for water jet impingement of Ti-6Al-4V 

and other alloys. The cyclic nature of erosion damage and the intrinsic mechanism of 

material removal are nowadays still unclear. Moreover, the particular influence of the 

microstructure has not been specifically investigated, particularly in the case of water 

impingement at advanced stages of erosion of Titanium alloys which present very fine-

grained and complex microstructures. The impact of local microstructure was shown for 

sand-blast erosion as Yerramareddy and Bahadur [13] related solid particle erosion with 

microstructural precipitation due to thermal ageing of Ti-6Al-4V. The microstructural 

dependence of material removal at earlier stages of erosion under plain water jet 

impingement for Ti-6Al-4V were studied by Huang et al. [14], reporting the grain boundary 

damage as the most dominant mechanisms during the initial stages of erosion. If water 

impingement erosion induces high compressive and tensile stress/strain fields, localized 

plasticity is assumed to occur under the repetitive loading of water droplet impacts. It appears 

then very interesting to fully characterize the local erosion damage, particularly relative to 

surrounding microstructure. 

 

The present work focuses specifically on liquid droplet erosion of Ti-6Al-4V, an alloy which 

is frequently used in low-pressure blades of steam turbines and compressor blades in gas-

turbines, as well as many critical parts of aircrafts [1]. The advanced stages of water droplet 

erosion were investigated on rolled Ti-6Al-4V, with the objective of obtaining the erosion 

mechanism as well as influence of microstructure. A rolled microstructure was chosen for 

this study because it is characterized by a high anisotropy appropriate to investigate the 

effects of the microstructure on erosion mechanism. 
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2.2 Materials and methods 

2.2.1 Materials 

The base-material used for the study is a rolled Ti-6Al-4V. Analyses were conducted in 

terms of morphology and crystallographic texture of the microstructure using a scanning 

electron microscope (SEM) Schottky Hitachi SU70. The rolled Ti-6Al-4V microstructure is 

composed of elongated primary α-grains with locally some area of equiaxial α-grains (Fig. 2-

1(a)). At a macroscopic scale, the elongated primary α-grains are organized into macro-bands 

of a few hundreds of micrometers. The presence of very fine secondary α-phase platelets 

embedded in a β-phase matrix can also be found as depicted in Fig. 2-1(b). 

 

The crystallographic texture measurements were obtained by electron back-scattered 

diffraction (EBSD) with an Oxford- Channel 5 system. Large EBSD maps of 4.5x1.5 mm2 

with a 2 mm step size were realized and are depicted in Fig. 2-2. The local crystalline 

orientation is given in the EBSD map relative to the droplets impingement direction 

(ID//ND). The corresponding pole figures for both (0001) and {10–10} planes were 

calculated from the EBSD data and are shown in Fig. 2-3. It can be noted that the present 

material presents a strong crystallographic texture. The maximal multiple of uniform 

distribution (MUD) factor is 6.38 for the {0001} pole figure. The preferential orientation 

indicates that most α phase presents a <0001> direction inclined by 15 degrees with the 

normal direction (ND) of the rolled plate. Due to the elasto-plastic anisotropy of the hcp α-

phase in Titanium alloys, such a strong crystallographic texture is known to primarily 

influence the mechanical resistance of the alloy relative to the loading direction. As an 

example, Bache and Evans [15] showed an increase of yield strength from 970 MPa up to 

1100 MPa between longitudinal and transverse direction of a highly textured rolled plate of 

Ti-6Al-4V. Similar anisotropy in fatigue resistance was observed and such differences in 

mechanical behavior were related to the ability to induce slip in the various plate orientations 

[16]. Therefore, the present rolled Ti-6Al-4V alloy is of particular interest in investigating 

the influence of the microstructure on the erosion resistance. 
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Figure 2-1 SEM micrograph of rolled microstructure a) lower and b) higher 
magnification 

 

 

Figure 2-2 Large EBSD map of rolled microstructure 

 

 

Figure 2-3 Pole figures of rolled microstructure 
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2.2.2 Hardness of investigated alloy relative to measurement direction 

According to the literature, the hardness of the substrate is one of the important mechanical 

properties controlling the erosion resistance of a material [17, 18]. Even though they are 

results indicating the importance of other properties, it is generally accepted that increasing 

the hardness of the material results in increasing the erosion resistance. Hardness 

measurements of the investigated rolled microstructure were conducted on both the eroded 

surface, i.e., with a loading direction along ND//ID, and on the perpendicular plane ID-RD, 

i.e., with a loading direction along TD. The hardness measurements were realized using a 

Clemex CMT microhardness indenter with two loads (100g and 500g). Each hardness value 

is the average of minimum five indentations accurately measured under SEM. The hardness 

values are given in Fig. 2-4 for both directions ID and TD. The scatter of each measurement 

is given as an error bar reflecting maximal and minimal values. Note that the scatter of the 

results is reduced with 500g load relative to 100g since larger indents cover more grains and 

give more representative estimation of the hardness value in a single direction. Hardness 

values in the ID direction are much higher than in the perpendicular direction TD, i.e., 350 

HV vs. 300 HV, approximately. It is interesting to note that this variation of hardness is in 

the same order of magnitude as the increase of hardness reported for some surface treatment 

of similar Titanium alloys. As an example, Kim et al. [19] reported an increase from 300 for 

base metal to 360 HV within the hardened layer of a Ti-6Al-4V submitted to various levels 

of Laser Shock Peening. As no residual stresses are present in the investigated material (in an 

annealed state), the increase of hardness for the rolled plate relative to indent direction can be 

directly linked to the strong crystallographic texture and the associated elasto-plastic 

anisotropy of the material. 
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Figure 2-4 Microhardness values for rolled Ti-6Al-4V on 
different surface 

 

2.2.3 Water erosion testing 

A flat sample of 25 mm length, 8 mm width and 3 mm thickness was used for the water 

droplet erosion tests. Fig. 2-5 shows a schematic of the sample with ID direction being the 

water droplet impingement direction. This direction is parallel to the normal direction (ND) 

of the rolled plate. The water droplet erosion tests were performed according to the ASTM 

international G73 standard [20] with three parallel nozzles leading to three lines of erosion 

craters depicted in Fig. 2-5. Rotational speed of the disk was 5500RPM with the arm length 

around 60cm which gives the linear impact speed of 350m/s. The linear speed was controlled 

by controlling the rotational speed of the rotor and the droplet speed was neglected with 

respect to linear speed which is set to 350m/s. The samples were subjected to repetitive 

impact under three parallel jets. The samples were impacted once per revolution. The term 

‘‘number of impingement’’ will refer to the number of times the sample intersects the droplet 

stream. 

 

This impact velocity is well within the regime where erosion is the main driving mechanism 

for wear of impacted surface [21]. An average droplet size of 0.6 mm was used. Droplet size 

was controlled by calibrated nozzles. Nozzle diameter was 0.3mm. Droplet size 
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measurements were done according to Phase Doppler Anemometry (PDA) and it is validated 

for the 0.3mm diameter nozzle the mean droplet diameter is 0.6mm. 

 

The impact angle was 90 degrees relative to impacted surface and tests were done at ambient 

temperature and the vacuum pressure was 25 mbar. After a certain number of impingements, 

the weight of the sample was precisely measured. The total number of impingements was 

estimated to 300,000 for the investigated sample. 

 

 

Figure 2-5 Schematic of the eroded sample with 
three lines of water droplet impingement on top 

surface 

 

2.2.4 Methodology for erosion craters characterization 

The characterization of the erosion damage was performed at advanced stages of erosion. 

Characterization methods were conducted through qualitative observation and quantitative 

measurements using SEM. The systematic investigation of the three erosion lines provided 

sufficient repeatability of the results. The erosion craters were characterized through 

observations of the eroded surface as well as by progressive cross sectional polishing of the 

ID-RD plane; i.e. to increase the statistics samples were polished and observed at different 

cross sections. In order to observe the cross sections, samples were finely cut with diamond 

blade, grinded and then polished using Buehler vibratory polisher on the cross surfaces. In 

order not to alter the erosion features, backscattered electron microscopy was used to reveal 
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the local microstructure along the erosion craters and no chemical etching was used. The 

damage caused by water erosion was imaged at various magnifications; typically at x50 for 

larger scale evaluation of craters and tunnels geometry, as well as at x2500 for cracks 

observations and measurements. 

 

2.3 Results 

2.3.1 Cumulative mass loss during erosion testing 

Fig. 2-6 gives the cumulative mass loss of the sample as a function of number of water 

droplet impingements. An initial incubation time may be observed up to 30,000 

impingements, followed by an acceleration stage between 30,000 and 150,000 impingements 

and following by deceleration and steady state stage which are the advanced stages of 

erosion. This erosion kinetic under water droplet impingement has been largely described by 

Heymann [1], who for most materials identifies 5 successive stages: the incubation stage, the 

acceleration stage, the maximum rate stage, deceleration stage, and the final steady-state 

stage. Robinson et al. [9] reported the lack of any incubation time for a non-treated Ti-6Al-

4V when exposed to droplets with an impact speed of 500 m s-1. Although the incubation 

period is not the focus of the present work, it is interesting to note that the cumulative mass 

loss versus impingement numbers did present an incubation time for the investigated rolled 

Ti-6Al-4V. As the impact velocity in the present study is 350 m s-1, i.e., lower than the 

velocity used by Robinson et al., it is possible that the initial mechanisms behind early stages 

of erosion might change for different microstructures and future work should concentrate on 

this issue. In the present work, the erosion features were only characterized on the very last 

interruption of the test, i.e., after 300,000 impingements. This stage is circled in Fig. 2-6 and 

is considered as advanced stages of erosion. As at this stage, the erosion craters are relatively 

deep, the erosion features at both macroscopic and microscopic scales were analyzed all 

along the craters edges. The mechanisms which will be identified from these observations are 

then valid to describe only the advanced stages erosion mechanisms. Future work are planned 

to consider the early stages of erosion by running water impingement erosion tests on a self-
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designed rig with the possibility to fully characterize the samples after each interruption of 

the test. 

 

 

Figure 2-6 Cumulative mass loss vs. number of water 
droplet impingements 

 

2.3.2 Macroscopic characterization of erosion craters 

Macroscopic analyses of the samples were conducted on the eroded surface RD-TD and on 

the perpendicular cross-sectional plane ID-RD. Eroded surface examination reveals a 

localized damage along the three erosion lines as illustrated in Fig. 2-7. The erosion is largely 

advanced along the three impingement lines and some circular craters may be recognized. 

The diameter of all these erosion craters at the surface was roughly measured and an 

approximate diameter average was estimated to 1.27±0.2mm. The dimension of craters at the 

investigated steady stage is then roughly double the size of the droplet diameter of 0.6 mm. 

Lateral sub-tunnel formation could be observed through the cross section (Fig. 2-8). This 

phenomenon was also reported by Robinson et al. [9] for un-treated and laser surface treated 

Ti-6Al-4V submitted to water droplet erosion. Note that the observation of the erosion 

surface only, is not sufficient since sub-surface damage features such as sub-tunnel might be 

hidden and the eroded volume of material can be underestimated. 
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Figure 2-7 Localized damage craters induced by water 
droplets 

 

 

Figure 2-8 Cross-sectional view illustrating craters depth 
and lateral sub-tunnel formation (white arrows) 

 

2.3.3 Microscopic analyses of eroded sample 

From each cross section performed on the eroded sample, three craters corresponding the 

three lines of erosion could be observed and characterized. Thereby, several hundreds of 

SEM pictures were taken at high magnifications along the edge of the eroded craters and 

erosion features were systematically imaged using back-scattered electron imaging to reveal 
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local microstructure. Surface and sub-surface cracks were observed at various depths. Fig. 2-

9 shows an example of both surface (white arrows) and sub-surface (black arrows) cracks. 

Note that this cross sectional view only gives a two dimensional appreciation of a three 

dimensional erosion craters, as it can be observed on Fig. 2-8. However, due to the very 

small size of the cracks, particularly relative to the surrounding microstructure, the authors 

consider that the cross section view of such small cracks allows to consider these cracks as 

simply nucleated and not as the result of a crack propagation in the out-of-plane direction. 

Surface and sub-surface cracks were then identified to nucleate within the primary α-grains. 

Transgranular nucleation of cracks is consistent with various experimental observations of 

Low Cycle Fatigue in α and α/β Titanium alloys [22] and indicates high level of plastic 

strains along the craters, most probably due to intense pressures from impact of water 

droplets.  

 

Crack propagation cases are depicted in Fig. 2-10. Transgranular crack propagation mode 

was observed as illustrated in Fig. 2-10(a). Several cases of crack propagation through the 

merging of many isolated nucleated cracks were also noted as illustrated in Fig. 2-10(b). 

Such propagation mode implies the nucleation of many cracks at close locations and 

nucleated in a similar orientation. Such mechanism may be easily predictable within the 

investigated rolled microstructure since primary α-grains exhibit a strongly elongated shape 

and the alloy itself shows a strong crystallographic texture, i.e., most of the α-phase grains 

present a close crystal orientation relative to impingement direction. Numerous observations 

of striation marks were made for the sample as it is shown in Fig. 2-10(c). Striations confirm 

the transgranular nature of crack propagation mechanism and indicate the intrinsic cyclic 

damaging mechanism associated with water droplet impingement erosion. An example of 

two cracks about to merge together and to lead to the detachment of a larger fragment of 

material is given in Fig. 2-10(d). Figs. 2-10(e) and (f) illustrate surface cracks which 

propagated over many grains and which are about to result into the formation (Fig. 2-10(e)) 

or the continuation (Fig. 2-10(f)) of lateral sub-tunnels, respectively. The mechanism of 

lateral sub-tunnels is thought to produce even more intense pressures within them leading to 

damage propagation on a larger scale than the cracks imaged in Figs. 2-10(a) to (c). As sub-



37 

tunnels are running parallel to the eroded surface, their propagation leads to the removal of 

sizeable fragments of material.  

 

At a few locations of which an example is given in Fig. 2-11, the craters’ edge presented also 

a relatively smooth aspect as opposed to the rough aspect left from transgranular crack 

propagation depicted in Fig. 2-10. Such smooth edges are thought to be related to the 

polishing effect under repetitive impacts of water droplets. Some polishing may be an 

additional partial mechanism of erosion in the present case, following crack propagation and 

detachment of material fragments, and preceding the occurrence of new cracks nucleation. 

Note that the term polishing here does not refer to the mechanism detailed by some authors 

relative to erosion of ductile materials under impingement of fine solid particles, where 

polishing refers to surface friction heating either above the melting point of the alloy or 

through high temperature creep [7, 8]. For the present material, the polishing is thought to be 

due to a fine grain-scale surface smoothing process of rough surfaces left by former 

transgranular crack propagation. 

 

 

Figure 2-9 Surface (white arrows) and sub-surface (black 
arrows) cracks 
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Figure 2-10 Crack propagation cases 

 

 

Figure 2-11 Example of rough and smooth surface along 
erosion crater’s edge 

 

2.4 Discussion 

In the present work, characterizations were performed after water droplet erosion reached the 

steady stage leading to millimeter sized craters. Hence, it is important thereby to underline 

that the conclusions in terms of erosion mechanisms concern primarily the advanced stages 

of erosion. The erosion craters due to water droplet impingement were imaged and the 
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damage features directly associated to the microstructure of the investigated Ti-6Al-4V alloy. 

Surface and sub-surface crack nucleation, transgranular crack propagation or merging of 

multiple cracks was observed. These numerous observations lead the authors to propose a 

mechanism for erosion damage induced by water droplet impingement. As illustrated in Fig. 

2-12, the water impingement erosion mechanisms identified in the present Ti-6Al-4V during 

advanced stages of erosion are: 

1) nucleation of surface and sub-surface networks of cracks;  

2) transgranular propagation and/or merging of cracks;  

3) detachment of material fragments and potential formation of lateral sub-tunnels with 

rough surfaces;  

4) water smoothing of the surfaces.  

 

Cyclically, new networks of cracks will nucleate at or below the smoothed surface. These 

cracks will propagate outward the surface leading to the formation of sub-tunnels and/or 

removal of large fragments of material, and so on. 

 

 

Figure 2-12 Schematic of the water polishing mechanism 
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Cracking within the local microstructure appears to be a major contributor to the erosion 

mechanism. In order to give a more quantified insight on the dependency of the damage 

relative to base-material microstructure and crystallographic texture, the size and the 

inclination of all observed cracks were systematically measured at high magnification via 

SEM. A total number of 131 cracks were measured along the craters edges of the three 

erosion lines of the sample. The term inclination refers here to the angle between 

impingement direction ID and the main crack propagation direction observed on cross 

section. An inclination of 0 degree refers to a crack propagating in a perpendicular direction 

relative to ID, i.e., a parallel direction RD. 

 

Fig. 2-13 shows the quantitative measurements of the crack size. The average crack size of 

27 μm is very small relative to the diameter of the droplets and average size and depth of the 

erosion craters. This small scale of cracks is due to the very fine-grained nature of Titanium 

alloys, particularly in the case of near-α and α/β alloys used for many applications. The 

limited size of observed cracks indicates clearly that erosion mechanisms occur largely at the 

microscopic scale and in a very microstructure dependent manner. Concerning the crack 

inclination, its distribution is plotted in Fig. 2-14. It clearly centered around 20 degrees with a 

maximum and minimum value of 86 and 0 degrees, respectively. Such a non-random 

distribution in crack inclination shows that cracks tend to propagate in a preferential 

orientation, which in this case is the rolling direction. As illustrated in Fig. 2-10(e), cracks 

propagate in similar orientations. The authors are aware that the cracks propagate here in a 

three-dimensional direction and that cross-sectional view only gives partial information. 

However, the non-random character of the distribution observed for crack inclination gives a 

strong trend in how the microstructure may influence the crack propagation, and thereby the 

induced erosion. 
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Figure 2-13 Distribution in size of the cracks measured 
along the craters edges 

 

 

Figure 2-14 Distribution of cracks inclination relative to 
water droplets impact direction 

 

It is interesting to recall finally the variation in hardness observed in the investigated rolled 

plate with an indentation direction along either RD or TD directions. Considering this 

variation in hardness, as well as the preferential cracking orientation relative to the 

microstructure, a change in erosion rate may be expected with a very different impingement 

direction relative to rolled material. However, due to the thinness of the investigated rolled 
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plate, no water droplet impingement tests could be performed with an impingement direction 

along the TD or the RD directions for example. The variation in erosion resistance with 

different microstructures will be part of future work, specifically investigating Titanium 

alloys presenting different levels of crystallographic textures as well as water impingement 

tests with drastically different direction of impingement relative to the preferential texture.  

 

To conclude, the above results and discussion concern the advanced erosion stages under 

specific erosion conditions. It is not intended to suggest that there is, under all conditions of 

impingement speed, angle and droplet size, a single mechanism of material removal during 

water impingement erosion for Ti-6Al-4V alloys. The discussion simply stresses, under the 

classical conditions used in this work in terms of water droplets velocity, angle and size, the 

dominance of a particular mechanism implying crack initiation and propagation, i.e., fatigue 

based mechanism highly dependent on local microstructure. Therefore, the influence of 

Titanium alloys microstructure and its potential morphological and crystallographic 

anisotropy should be considered to predict more accurately water impingement erosion 

resistance. 

 

2.5 Conclusions 

Water droplet impingement erosion of a rolled Ti-6Al-4V alloy was investigated. The 

erosion features were analyzed at various scales relative to the local microstructures and an 

erosion mechanism could be proposed. The latter cyclically involves the nucleation of sub-

surface and surface cracks; their propagation and merging outward the surface; the removal 

of large fragments of material occasionally leading to the formation of lateral sub-tunnels; 

and eventually the water smoothing of freshly fractured surface under the repetitive impact of 

water droplets. Quantified analysis was possible with the measurements of hundreds of 

cracks along the eroded craters edge and the inclination of nucleated or propagated cracks 

relative to the impingement direction appears to be directly linked with the morphology and 

crystallographic texture of the alloy. 
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Abstract 

Identifying the mechanisms of water droplet erosion of Ti-6Al-4V parts is a critical issue 

encountered in many situations from aircraft body exposed to rain during flight to steam 

turbine blade. Understanding the erosion mechanism and particularly initiation mode of the 

damage is an essential need for the studies concerning improving erosion resistance of the 

components. The present work focuses on the early damage stages of forged Ti-6Al-4V 

parts exposed to high-speed water impact erosion. Qualitative observations and 

quantitative measurements were done both on and below the surfaces that are undergoing 

deformation due to water droplet impingements. Progressive cross-sectional polishing 

revealed surface and sub-surface microplasticity and micro-cracking. Microcracks have 

intergranular features at surface and present transgranular characteristics below the 

surface. From these observations a damage mechanism was proposed to explain the early 

stages of water erosion. These observations, together with information gathered from more 

advanced erosion stages tend to prove that a mechanism typical of low cycle fatigue may 

control the nucleation and early growth of cracks below the surface of the parts subjected 

to high-speed water droplet impingement.  
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3.1 Introduction 

Liquid impingement erosion has been of practical concerns for many years, primarily for 

low-pressure steam turbine blades as well as aircraft, missile, and helicopter components 

subject to rain erosion. Recently, the issue was also pointed out for gas turbines coupled 

with the inlet fogging system. Erosion may occur at the leading edge of compressor blade 

when inlet fogging system is used to improve engine efficiency. The droplets impacts 

result in erosion of these components and have become a challenge in recent gas turbine 

history [1-3]. 

 

Various studies have been carried out toward documenting material response to water 

impingement erosion phenomena [4-6]. Great attempts were made to correlate the erosion 

rate of a large range of materials to various mechanical properties such as absorption 

energy (absorbed energy through a controlled mechanism, here the energy of an impact on 

a solid), hardness, toughness (ability of a material to absorb energy and plastically deform 

without fracturing), elastic modulus, or ultimate tensile strength [4-6]. The general 

outcome of all the studies has been that enhancing the strength properties such as hardness 

and yield strength increases the erosion resistance. 

 

Fatigue-like mechanisms were discussed over the years for water impingement erosion due 

to the cyclic nature of the water impingement erosion. Conn and Rudy [7] reported fatigue 

as one probable mechanism associated with the rain erosion behavior of some elastomers 

and composites. Richman and McNaughton [8, 9] introduced fatigue strength as a driving 

parameter for cavitation erosion resistance. Momber et al. [10] proposed a low cycle 

fatigue model for a low-carbon steel under and water jetting process. This was questioned 

by Mann et al. [6] as they did not observe any fatigue related damage for Ti-6Al-4V under 

cavitation and water jet impingement erosion. Adler et al. [5, 11] observed localized 

cracks and reported similarities between fatigue and erosion mechanism for the Ti-6Al-4V 

alloy subjected to supersonic rain erosion. Robinson et al. [12] also suggested the link 

between erosion resistance and fatigue resistance of untreated and laser surface treated Ti-
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6Al-4V under water droplet erosion tests without however, giving any clear evidence of 

fatigue features. Recently, the cyclic nature of water droplet erosion damage was clearly 

identified by Kamkar et al. [13] through the observation of trans-granular cracks and 

striation marks in Ti-6Al-4V and the material removal mechanisms were reported to be a 

fatigue based mechanism. 

 

Despite the considerable amount of investigations on the advanced stages of erosion, 

limited studies have been carried out on the early stages of water erosion phenomena, 

particularly during the incubation and onset of material removal. It should be noted that 

there are still some arguments about the presence of incubation period in Ti-6Al-4V alloy 

[10]. Initial stages of water impingement erosion were merely considered by few 

researchers. Thomas and Brunton [14] have investigated the material removal mechanisms 

of several alloys and reported micro-scale surface plastic deformations as the first 

evidence of the erosion damage. They observed that for most of investigated materials, 

erosion begins with shallow depressions on the surface followed by grain tilting, pit 

appearance, groove formation, and material removal. Uniform yielded surface and slip 

bands were reported for cobalt contrary to surface depressions characteristics for other 

investigated materials. Consequently they argued that the presence of these local yieldings 

is due to the inhomogeneity of loading or material properties. Similarly, Futakawa et al. 

[15] and Date and Futakawa [16] have looked at some alloys under impact erosion test 

with mercury and reported plastic deformation on the surface and pit formation for the 

damage initiation in SS316. Slip bands around the pits were clearly observed. They 

showed from their SEM observations evidence of plastic deformations in the form of sharp 

edge protrusion and depression. Similarly Kong et al. [17] reported that plastic 

deformation followed by crack nucleation is the damage mechanism under high velocity 

impacts during plain water jet milling on gamma titanium aluminide. 

 

Regarding Titanium alloys, Chillman et al. [18] reported sub-surface plastic deformation 

in Ti-6Al-4V alloy through hardness variations after plain water jet exposure and 

announced compressive stresses on the target regions as the result of droplet impacting the 
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surface. No clear evidence of surface plastic deformation was reported. More recently in 

2012, Huang et al. [19] reported intergranular cracks at the initial stages of erosion on Ti-

6Al-4V under plain water jet impingement and proposed intergranular damage as the 

dominant mechanism for erosion initiation. It is worth noting here that transgranular 

cracks were also observed on the advanced stages of erosion for Ti-6Al-4V submitted to 

water droplet impact erosion test suggesting the possibility of different mechanisms 

controlling crack formation during water impingements [13]. 

 

The overall understanding of all these investigations points out that damage in water 

droplet impingement initiates by localized plastic deformation. However, the material 

behavior at the initial stage is still not clearly documented and local erosion damage 

characterization on the surface as well as beneath the surface under few numbers of 

impacts is essential. To this regard, the objective of the present work is to examine the 

water erosion impingement mechanisms in a forged duplex titanium alloy (Ti-6Al-4V) 

focusing on the early stages of material removal, i.e., the initial damage mechanisms 

during the incubation period and the onset of material removal under water droplet 

impingement. 
 

3.2 Materials and methods 

3.2.1 Experimental set up and water erosion test 

Water droplet erosion tests were performed with three parallel water jet nozzles on bolt 

coupons of 45 mm length, 8 mm width, and 8 mm thickness on a rig according to ASTM 

international G73 standard [20] at Alstom, Switzerland [21]. Fig. 3.1 presents a schematic 

of the eroded sample showing the three lines of erosion craters aligned with the Z 

direction. The Y-axis is parallel to impingement direction (ID). Controlling the linear 

speed was done through the rotational speed of the rotor and the droplet speed was 

neglected with respect to the rotor speed. The linear droplet impact speed was set to 350 

m/s with the disk rotational speeding at 5500 RPM and an arm length of 600 mm. This 
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impact velocity is well within the regime where erosion is the main driving mechanism for 

wear of impacted surface [22]. The samples were subjected to repetitive impacts under an 

angle of 90 degrees relative to the impacted surface. The coupons were impacted by the 

three droplet streams once per revolution and the term ‘‘number of impingements’’ refers 

to the number of times the sample intersects the streams. 

 

The test was performed under 25 mbar vacuum pressure, and at ambient temperature. 

Droplet size was controlled by calibrated nozzles. Nozzle diameter was 0.3 mm giving a 

mean droplet diameter of 0.6mm according to Phase Doppler Anemometry (PDA) 

measurements performed by the rig operator. 

 

 

Figure 3-1 Schematic of the eroded sample with 
three lines of water droplet impingement on top 

surface 

 

A primary concern in this study was to identify the earlier stages of erosion, which is 

commonly called incubation period. In this regard, tests were run up to an advanced stage 

of erosion on one coupon. The erosion curve was obtained thanks to many interruptions 

and weight measurements and the different erosion stages were identified. In particular, 

the incubation period was precisely determined and two tests were performed on other 

coupons up to the number of impingements corresponding to the incubation period and the 

onset of material removal (1000 and 20000 impingements respectively). 
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3.2.2 Materials and sample preparation 

The material subjected to water droplet impingement erosion test in this study is a forged 

duplex Ti–6Al–4V presenting a homogeneous globular microstructure with the large 

proportion (around 70 percent) of equiaxed primary α-grains with the average size of 

25µm as depicted in Fig. 3-2(a). The rest of the microstructure is very fine lamellae areas 

composed of secondary α plates (αs) embedded in a β-phase matrix as shown in Fig. 3-(b). 

 

The microstructure characterization and crystallographic texture measurement of the 

samples were obtained using a Scanning Electron Microscope (SEM) Schottky Hitachi 

SU70 and Electron Back-Scattered Diffraction (EBSD) mapping with an Oxford - Channel 

5 system. To perform SEM imaging and EBSD mapping, a specific surface preparation 

with SiC paper grinding and diamond vibromet polishing were applied to the coupons. A 

typical EBSD map of 4.5x1.5 mm2 with 2 microns step size is depicted in Fig. 3-3 bearing 

the local crystalline orientations presented with inverse pole figure coloring relative to the 

droplet impingement direction used during erosion tests (Y//ID). It can be noted that the 

investigated material has almost no macroscopic crystallographic texture but presents 

some regions, of few hundreds of microns large, with strong crystallographic textures 

(illustrated in Fig. 3-3). In these regions the α-phase has a major crystallographic 

orientation as they present the same color indicating the same crystallographic orientation. 

Since crystals in other parts of the material are randomly textured such features are called 

macrozones and are typical of forged α/β or near-α Ti-alloys. Macrozones are known to 

have a strong influence on the local mechanical response of the material, particularly 

under fatigue loading [23, 24]. Pole figures calculated from EBSD presents a few more 

pronounced poles located around the rim and in the center for basal plane (Fig. 3-4). But 

the maximal multiple of uniform distribution (MUD) factor is 2.4 for <0001> pole 

perpendicular to the impingement direction (Y//ID). The pole figure for the macrozone A 

(Fig. 3-3) shows much stronger values suggesting possible variations of mechanical 

properties in the material from one location to the next. The <0001> pole has a MUD 
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factor around 20 which is very high, meaning that distribution of grains’ crystal orientation 

in this region is almost all pointing in the same direction. 
 

 

Figure 3-2 Back-scattered electron micrograph of forged microstructure: a) lower and 
b) higher magnification 

 

Figure 3-3 Large EBSD map of the typical forged microstructure used for water 
impingement test (Y is the impingement direction). Zone A and B are macrozones 

found in the forged microstructure 
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Figure 3-4 a) pole figure of overall forged microstructure 
shown in Fig. 3-2 and, b) local macrozone A, (Y is 

impingement direction) 

 

Before impingements, the surface of the coupon was grounded with SiC papers, polished 

with monocrystalline diamond suspension and polishing cloth and finally 

electrochemically-polished with refrigerated A3 solution under 30 Volt for 7 seconds. The 

electrochemical polishing process was performed on the surface in order to attain an 

unstress surface as well as revealing the microstructure. Fig. 3-5 shows the SEM 

micrograph of the electro-polished surface on the XZ plane prior to the erosion test and 

damage. This perfectly reveals the microstructure and allowed later on to clearly relate the 

induced erosion damage with the local microstructural features of the material. 
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Figure 3-5 Secondary electron micrograph 
revealing electro-polished surface prior to 

erosion tests 

 

Hardness measurements were realized using the Clemex CMT microhardness indenter 

with 500g load on XY plane of the sample. An average hardness value of 293±12 HV was 

obtained from the averaging of 15 individual indentations whose diagonals were 

accurately measured under SEM. 

 

3.2.3 Characterization procedure and methodology 

Initial erosion damage features were examined by SEM and AFM to document the slight 

damage initiation on the impacted surface. The AFM scanning was realized in tapping 

mode with a scanning frequency of 0.2 Hz and a scan length of 95 to 97 µm using Si 

cantilever from Di Enviroscope 5.30 – Veeco. The data was processed via NanoScope 

Analysis 1.40 software. 

 

To evaluate the initial damage on the surface, SEM observations were made both on the 

slightly damaged surface as well as through progressive YZ sectional polishing of the 

plane along the erosion trace (YZ plane) following the similar methodology detailed by the 

authors in [13]. In order to reach this section, samples were finely cut using low speed 

diamond blade cutting machine at YZ plane. The cross surface were first ground with SiC 
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papers and then vibromet polished with monocrystalline diamond suspension. The induced 

damage was then imaged and evaluated both on the surface and the section. 

 

3.3 Results 

3.3.1 Cumulative mass loss curve 

The cumulative mass loss during water droplet erosion of forged Ti-6A1-4V versus 

impingement number is plotted in Fig. 3-6. Mass loss values were normalized through 

feature scaling to range the data between 0 and 1.The stages of erosion as described by 

Heymann can be clearly identified for the investigated material up to the advanced stages 

of erosion [23]. The present work showed an incubation period. 1000 impingements was 

chosen as intermediate within the initiation stage of erosion in order to be well within the 

incubation period and the onset of material removal was taken for 20000 impingements as 

the material loss is just started. Similar observation was also reported in the previous work 

for rolled Ti-6Al-4V under the same experimental condition [13]. Two new samples were 

impinged up to the required number of impingements. 
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Figure 3-6 Normalized cumulative mass loss vs. number of water droplet 
impingements 

 

3.3.2 Macroscopic observation of the damage 

The erosion features typically found at the incubation period are shown in Fig. 3-7(a) and 

(b). Around the incubation period no clear erosion lines can be noted. However, the 

sample presents local damage that can be observed at higher magnifications (Fig. 3-7(b)). 

The damage sites are found randomly distributed within the three impingement regions. 

They appear to be micro-scale surface protrusions which are out of the plane, isolated in 

some areas and can be only found along the droplet impact streams. These features are in 

contradiction with the general understanding of erosion mechanisms being initiated with 

mostly surface depressions, micro-voids or pit formation at the surface.  

 

Erosion damage advances as the number of impingement increases and the erosion lines 

are progressively revealed in Fig. 3-8. The damage is not distributed uniformly along the 

impact traces, giving the opportunity to see various degradation stages on a given sample. 

In this respect, different zones where identified showing the damage progression from 

grain boundary damage to crater formation corresponding to zone A to D respectively. As 
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in this study the focus was made on the damage progression at the very initial stages, 

protrusions and the following pits, surface cracks, and material removal features were 

investigated. 

 

 

Figure 3-7 SEM micrograph of erosion features typical of the incubation period 
(1000 impingements) showing: a) large scale and, b) high magnification 

 

 

Figure 3-8 SEM micrograph of erosion features at onset of material removal (20000 
impingements): a) traces of erosion line and b) high magnification of the erosion line 

(zone A to D present the erosion progression) 
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3.3.3 Microscopic observation of the damage 

Protrusions from Fig. 3-7(a) are illustrated at higher magnification in Fig. 3-9. The sizes of 

the protrusions are 10 to 50 µm in width and 2 to 20 µm in height. They were observed on 

both αp grains and αs lamellae. A slight depression sometimes was observed around the 

edges of the protrusions. 

 

Both the topography of original electro-polished surface and protruded surface were 

documented by AFM profilometric images. It is clear that the original surface topography 

is relatively flat as only little contrasts are found revealing grain boundaries; whilst, the 

protruded surfaces reveal detectable contrast on the impacted surface, indicating out of 

plane surface. The shallow depressions are clearly observed right off the edges of the 

protrusions (Fig. 3-10). The height of the protrusions and local depression were 

statistically analyzed using the profiles documented from the AFM. Fig 3-11, presents the 

section profiles along the 4 protrusions illustrated in Fig. 3-10 (b) and (c). As indicated, 

the heights of the protrusion are about 2µm and the shallow depression around the 

protrusions edges are clearly observed and are about half a micron. 

 

 

Figure 3-9 SEM surface protrusion at initial stage of erosion from Fig. 3-7 (1000 
impingements): a) zone A and b) zone B 
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Figure 3-10 AFM topography of a) original surface, and b,c) surface protrusions at 
(1000 impingements) 
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Figure 3-11 Section analyses of the protrusions heights, (1000 
impingements) 

 

Advanced erosion features were realized corresponding to zone A, B, C and D in Fig. 3-8 

where the erosion damage is progressed through A to D. Zone A illustrated in Fig. 3-12 

shows that the first evidence of erosion progression, is grain tilting if compared to the 

image of the original microstructure (Fig. 3-5). One can see that the contrast on the grain 

boundaries illustrates the height variation of the grains due to the grain tilting as a result of 

large number of droplet impacts and their pressure on the surface (Fig. 3-12(a)). Fig. 3-

12(b) reveals also the presence of many crystalline slip bands within primary α grains as 

discussed later. 
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AFM profilometric images of this zone also clearly shows the changes in surface 

topography. The undamaged surface (Fig. 3-13(a)) is relatively flat, whilst the damaged 

surface reveals a very slightly roughened surface with noticeable contrast and direct 

evidence of grain tilting which has resulted in considerable height variation across grain 

boundaries (Fig. 3-13(b)). In order to better understand the effect and magnitude of grain 

tilting, data processing has been conducted on the AFM data using Bruker NanoScope 

Analysis 1.40. Two average height profiles were displayed in Fig. 3-14. The angles of 

grain tilting were calculated for 13 selected grains. The average of measurements indicates 

tilting up to 2.3° with a mean value of 1.2±0.6°. Although the angles of grain tilting were 

considerably small, the tilting of grains has given rise to steps between the adjacent grains, 

and therefore the surface has roughened to some extent (Ra=0.103 µm) relative to the 

original polished surface (Ra=0.062 µm). 
 

 

Figure 3-12 Grain tilting observed around zone A after water droplet impacts (20000 
impingements): a) large scale b) high magnification 
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Figure 3-13 AFM height profiles of a) original surface and b)early damage induced 
by few droplets (20000 impingement stage) 
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Figure 3-14 Section height profile across the tilted grains 
(20000 impingement): a) AFM height image showing the 

extracted profiles, b) extracted height profile of line a, 
and c) extracted height profile of line b 
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Increasing the number of droplet impacts results in more grain tilting and severe grain 

boundary damage, as depicted in Fig. 3-15. Intergranular cracks were observed in the areas 

around zone B. Examples are illustrated with arrows in Fig. 3-15. These intergranular 

cracks tend to propagate along the grain boundaries and eventually meet at the triple 

junctions, leading to material chipping off and micro-voids formation. These features are 

particularly evident in zone C (Fig. 3-16). Advanced damage and significant material 

removal consequently occur and as the number of impact increases erosion progresses. 

Corresponding to zone D, craters are found on more advanced damaged surface seen in 

Fig. 3-17. Striation marks were also observed inside the craters which suggest a cyclic 

nature to water droplet impact damage mechanism. 

 

 

Figure 3-15 Intergranular damage observed at zone B (20000 impingements): a) large 
scale, b) high magnification 
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Figure 3-16 SEM micrograph of features observed at zone C (20000 impingements): 
a) triple junction and material tear off, b) material chip off and micro-voids formation 

 

 

Figure 3-17 SEM micrograph of features at zone D (20000 impingements): a) Crater 
formation and striation marks, b) deepening the craters and slip lines around the craters 

 

3.3.4 Local microplasticity 

Slip bands were observed in primary α-grains on the surface at both incubation stage as 

well as about onset of material removal as shown in Fig. 3-18. These slip lines were 

distributed sparsely over the surface at incubation stage; on the other hand they were 

systematically formed around the rim of craters at the stage of material removal (zone D). 

The presence of these slip bands suggest that the protrusions or grain boundary tilting and 

eventually small craters are the result of significant local plastic deformation. Such slip 

lines were also reported by Futakawa et al. [15] for some alloys under impact erosion test 

with mercury. 
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Figure 3-18 Slip bands a) incubation period (1000 impingements) and b) onset of 
material removal (20000 impingements) 

 

Cross surface polishing was performed on the sample along the erosion line in order to 

investigate underneath the protrusions observed at initial stages of erosion damage. In 

order to precisely reach the cross section of the protrusions, progressive polishing using 

micro caliper was carried out on the sample. Fig. 3-19(a) shows the polished cross section 

of a protrusion whereas Fig. 3-19(b) is the same area imaged with a 45 degrees tilt. The 

latter aims to present in one image, both the impinged surface and corresponding sub-

surface. The initial surface deformation mechanism of the material is related with the 

presence of micro-cracks right underneath the protrusion. At this stage, it is actually a 

network of micro-cracks that were formed at about 100-150 µm below the sample surface. 

The size of the observed cracks ranged from 10 µm to 30 µm which is around the average 

α-grain size. Cracks propagate in a transgranular mode, mostly within the α-grains and 

almost up to the grain boundaries which may act as a microstructure barrier. There are also 

some secondary cracks propagating within the lamellar matrix. 

 

The orientation of the cracks tend to propagate at 45 degrees with respect to the loading 

direction, suggesting that the high plasticity zone is in this region and that cracks have 

nucleated along high shear stress planes. Some cracks also propagate at around 90 degrees 

but they are likely to be secondary ones. Then their propagation path may depend on either 

the local stress state or the microstructure, both crystallographically and morphologically.  
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It should be noted that some protrusions were also observed without the presence of any 

cracks underneath (Fig. 3-20), showing that the protrusions formation is most probably 

due to the localized plastic deformation and is not necessarily the consequence of 

subsurface cracks. 

 

 

Figure 3-19 Sample cross section revealing underneath of the protrusions, (20000 
impingements) 

 

 

Figure 3-20 Protrusions without cracks underneath (20000 impingements): a) large scale 
and b) higher magnification 

 

3.4 Discussion 

As the work presented here focused on the early erosion damage of forged Ti-6Al-4V 

exposed to water droplet impacts, the regions under investigation were impacted with only 

limited numbers of impingements. It reveals the initiation mechanisms of the material 
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removal process. The investigated surface evolves from a slight local damage to a larger 

scale material removal in form of craters.  

 

Surface features indicated that severe plasticity is taking place due to the local pressure 

generated by droplet impacts. However, the Hertz theory of impact predicts that the 

maximum pressure and plasticity is expected under the surface and larger stress fields are 

expected at these locations [26]. As shown in Fig. 3-18, sub-surface cracks are formed 

underneath the protrusions at a distance of between 100 to 150µm, suggesting that the 

maximum impact pressure occurs around these depths. 

  

The surface protrusion or appearance of the protrusions on the surface then cannot be only 

related to the presence of sub-surface cracks as some protrusions did not present any 

cracks beneath the surface (Fig. 3-20). An explanation could lie in the local sub-surface 

plasticity as observed in several mechanical surface treatments [27-28]. 

  

Transgranular cracks were systematically observed on the primary cracks below the 

protrusions and these cracks were always observed at about 45° from the Y or impact 

direction. This nucleation mode is typical of low cycle fatigue of near-α and α/β Titanium 

[24]. The observation of transgranular cracks as the first damage mode of water erosion (at 

the incubation stages, i.e. the 1000 impingements) suggest that repetitive nature of water 

droplet impacts may result in low cycle fatigue induced by strong plastic strain of the 

water droplet impact pressure.  

 

Increasing the number of impingements results in more surface plastic deformation and 

more slips activations as shown in Fig. 3-18. Thus, intergranular cracks start to form at the 

initial stage, as depicted in Fig. 3-15(a) possibly due to some plastic incompatibilities 

between deformed grains. The non-uniform distribution of the grain boundary damage 

over the surface may be due to the different crystal orientation of the neighboring grains or 

the random nature of droplet impacts. At this stage the damage is heterogeneously 

distributed on the surface, both at macro and microscopic scale. Widely distributed 
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intergranular cracks as well as some central grain damage were also reported by Huang et 

al. [19] when analyzing a similar stage of damage induced by plain water jet on Ti-6Al-

4V. Striation marks were also reported in transgranular crack propagation mode. Striation 

marks were found in the most severely deformed regions of the sample at the initial stage 

of erosion. These marks are typical of the advanced erosion stages [13]. In both cases, the 

striations reveal the cyclic nature of material removal process and transgranular crack 

formation seems to be the primarily damage mechanism. Therefore it might indicate that 

the material removal mechanism of the initial stages of erosion is not distinct from the 

advanced stages of damage. Local severe plasticity issues seem to be the main 

mechanisms that lead to transgranular cracks that control the erosion damage mechanism, 

pointing out a fatigue-like mechanism in the previous work [13]. 

 

3.5 Conclusions 

The present work concentrates on the onset of water erosion damage in forged Ti-6Al-4V 

for typical industrial operation conditions. The damage initiation was documented at the 

incubation and the onset of material removal based on the experimental evidence. Sub-

surface cracks resulting from severe local plastic deformation appears to be a major 

contributor to early erosion and transgranular cracks are likely to form at first. The 

mechanism of damage initiation is proposed as follows: (i) droplet impact pressure causes 

high local stress field underneath the surface at the impact location, (ii) the region is 

plastically deformed and a local residual stress field is likely to be generated (significant 

compressive residual stresses close to the elastic limit), (iii) high local deformation cycles 

are generated and cracks form as in LCF conditions, (iv) the cracks will grow forming a 

network of sub-surface cracks, (v) the sub-surface plasticity is thought to be responsible 

for the surface upheaval. The repeated deformation cycles result in grain tilting and finally 

intergranular crack nucleation at the surface. Following transgranular crack nucleation 

were observed and are responsible for the material removal as the erosion advances due to 

the increased number of impacts. 
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Abstract 

Water droplet erosion is a concern in gas turbines application because it may cause 

operational problems such as performance degradation and reduction of service life. The 

parameters which mainly influence the liquid impingement erosion are the impact velocity 

and droplet size. Several studies have been conducted on the effect of droplet size; however, 

there are limited to the effect of impact velocity on erosion mechanisms, more specifically 

for the velocities correlated to the in-service conditions of gas turbines. In this study, effect 

of impact velocity on liquid impingement erosion was studied for Ti-6Al-4V alloy used as 

compressor blade in gas turbine. Three different velocities, i.e., 250, 300 and 350 m/s, were 

selected to represent typical linear speeds along the leading edge of gas turbines compressor 

blades. It is found that erosion mechanism by liquid impingement proceeds due to fatigue. 

The incubation period was correlated to the droplet velocity that is found to be similar to the 

fatigue S-N curve. Erosion rate is significantly influenced by impact velocity. The influence 

of the impact velocity on erosion rate was investigated and for a particular condition, it is 

realized to follow the power function of impact velocity and the velocity exponent was nine. 
 

4.1 Introduction 

Liquid impingement erosion is a serious problem in many critical components such as blades 

of low-pressure steam turbines, rain erosion in aircraft, missiles and helicopter and recently 
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in gas turbine engine where inlet fogging is used to increase power efficiency during hot days 

[1, 2]. Inlet fogging system may results in erosion damage at leading edge of compressor 

blade due to the droplet impacts and efficiency lost as a result of change in profile [3]. 

 

Among the operational variables which influence liquid impingement erosion, the velocity of 

the impact is an important variable in governing the severity of erosion and has the most 

remarkable influence on erosion rate [4, 5]. 

 

Considerable amount of works was directed at finding the relationship between erosion rate 

and impact velocity. The erosion rate markedly varied with impact velocity and preferably 

described by a power law equation as ER α Vn where ER is the erosion rate (instantaneous), V 

is the impact velocity and n values which varies for different materials are reported to be 4-5 

for ductile materials and 6-9 for brittle materials depending on the erodent size, impact angle, 

etc. [6-7]. For some materials a threshold velocity was obtained below which erosion was not 

detected or the erosion rate is negligible [8]. The threshold velocity was estimated for 

different pipe steels (low carbon steel S15C, stainless steel SUS304, and alloy steel STPA24) 

subjected to cavitation or liquid impact erosion; however there is not clear conclusion on its 

value for different alloys [4]. It is noteworthy that Coulon defined in 1985 ranges of 

velocities, for various materials including Titanium alloys, where corrosion and erosion 

phenomena can be distinct. It is reported that for the velocities below 10 m/s no erosion 

damage occurs and the process is only due to corrosion, from 10 to 50 m/s corrosion 

mechanism dominates with less erosion occurring, from 50 to 200 m/s erosion mechanism is 

dominant and above 200 m/s only erosion is observed [1, 9]. 

 

Regarding the erosion behavior of Ti-6Al-4V, the mechanisms of material removal have 

been studied previously [10]. However, only a couple of studies were carried out to 

investigate the effect of different impingement parameters and particularly of impact 

velocity. Yarramareddy and Bahadur [7] have investigated the variation of erosion rate with 

the average velocity of impacting droplets (35 m/s to 80 m/s) and found that the exponent n 

equals to 2.35 for the power law mentioned earlier. Recently Lee et al. [3] showed the 
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influence of increasing the water droplet particles impact velocity on erosion rate for some 

blade materials including Ti-6Al-4V for velocities ranging from 450 m/s to 650 m/s. It is 

reported in their work that exponent n is about 5. 

 

While such studies have empirically demonstrated the strong dependence of erosion rate on 

impact velocity, the mechanisms of the material removal relative to impact velocity has not 

been studied comprehensively. Moreover, no work has been done to correlate these results 

with the actual compressor rotation speeds and the actual microstructure seen for compressor 

blades. In this study, the effect of impact velocity on liquid impingement erosion is 

investigated with regards to the cracks behavior and erosion features for the selected Ti-6Al-

4V samples bearing similar microstructural features to the blade materials. The erosion 

mechanisms are discussed for impact velocities typical of compressor blades in gas turbine. 

 

4.2 Materials and methodologies 

4.2.1 Materials and sample preparation 

As typical water impingement specimen could not be machined directly from gas turbines 

compressor blades, the primary concern in this study was to find an appropriate sheet or bar 

material which would correlate most to the blade material in terms of microstructure and 

crystallographic texture. Crystallographic texture analyses of compressor blades were carried 

out and it was found that the blade material presents the typical texture of cold rolled Ti-6Al-

4V, although the manufacturing process might not be a plain rolling process. Cold rolled Ti-

6Al-4V alloy presents basal or near-basal texture with the [0001] poles up to 40◦ toward the 

transverse direction (TD) of the deformation path [11]. Therefore textures from cold rolled 

samples were analyzed on different Ti-6Al-4V plates in order to find the most representative 

of the blade material for both microstructure and texture conditions. 

 

The material subjected to water droplet impingement erosion test in this study is a 3mm thick 

cold rolled Ti–6Al–4V plate with a similar texture to a compressor blade (Fig. 4-1 (a)) with 
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RD//leading edge, TD//blade width direction, and ND//impingement direction. The 

crystallographic texture measurements were obtained thanks to an electron back-scattered 

diffraction map (EBSD) with a 2 micron step size on an Oxford - Channel 5 system. The 

corresponding pole figures for both (0001) and {10-10} planes were calculated from the 

EBSD data and are shown in Fig. 4-1. It can be noted that the present material is 

crystallographically textured. The maximal multiple of uniform distribution (MUD) factor is 

5.6 for the {0001} pole figure for the rolled plate which is slightly higher than that of in-

service blade. The preferential orientation indicates that most α phase presents a nearly basal 

texture with the poles tilted by 25 degrees with the normal direction (ND) of the rolled plate 

toward TD direction. Crystallographic texture is known to influence the mechanical 

resistance of the alloy relative to the loading direction due to the elasto-plastic anisotropy of 

the hcp α-phase in Titanium alloys. As an example, Bache and Evans in 2001 showed an 

increase of yield strength from 970 MPa up to 1100 MPa between longitudinal and transverse 

direction of a highly textured rolled plate of Ti-6Al-4V [12]. Similar anisotropy in fatigue 

resistance was observed and such differences in mechanical behavior were related to the 

ability to induce slip in the various plate orientations [13]. Therefore, the impact direction is 

important either in in-service conditions or in correlating experiments with the in-service 

conditions. 
 

The microstructure of the rolled plate, shown is Fig. 4-2, presents mostly elongated primary 

alpha grains αp and some area of equiaxed α-grains. The elongated primary α grains are 

organized into macro-bands of a few hundreds of microns. However, the microstructure of 

the blade (not shown here), presents mostly equiaxed α-grains with some area of elongated 

grains which can be due to the manufacturing process. 
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Figure 4-1 a) pole figure of the blade material, b) pole 
figure of rolled microstructure 

 

 

Figure 4-2 SEM micrograph of rolled microstructure: a) lower and b) higher 
magnification 

 

4.2.2 Hardness of investigated alloy relative to measurement direction 

Hardness is generally assumed to be the property which to a large extent determines the 

erosion resistance. Increasing the hardness of base material results in decreasing the erosion 

rate of the material [5, 8, 14, 15]. Hardness variations relative to the indentation direction 

were reported earlier for a rolled Ti-6Al-4V [10]. Therefore micro-hardness measurements of 

the investigated material were conducted with the indentation in two directions: in the 
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impingement direction, i.e., parallel to ND direction, and in TD direction. The hardness 

measurements were realized using a Clemex CMT microhardness indenter with 500g to 

minimize the scatter of the results as larger indents cover more metallurgic grains and give 

more representative estimation of the hardness value in a single direction. Each hardness 

value is the average of minimum ten indentations whose diagonals were accurately measured 

under SEM. The hardness values are obtained to be 313±17 HV and 285±13.2 HV in ND//ID 

and TD directions respectively. The variation of hardness is due to the strong 

crystallographic orientation [10].  

 

4.2.3 Experimental set up and water erosion test 

Flat samples of 25 mm length, 8 mm width and 3 mm thickness were exposed to water 

droplet impact erosion tests with a water jet nozzle on a rig according to ASTM international 

G73 standard [16]. The test was performed under 30mbar vacuum pressure at ambient 

temperature. Nozzle diameter was 400µm giving a mean droplet diameter of 450µm.  

 

Schematic of the eroded samples is depicted in Fig. 4-3 showing one erosion mark leading to 

one line of craters with the impingement direction ID parallel to the normal direction (ND) of 

the plate. The varied linear impact velocities were selected to 250, 300 and 350 m/s. The 

samples were subjected to repetitive impacts normal to the surface. The coupons were 

impacted by the droplet stream once per revolution and the term ‘‘number of impingements’’ 

refers to the number of times the sample has intersected the stream.  
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Figure 4-3 Schematic of the sample with an erosion 
line due to water droplet impingements on top surface 

and the reference directions of the cold rolled plate 

 

Two sets of experiments were designed and performed in order to investigate the influence of 

the impact velocity on erosion rate and features. The first set compares the samples at the 

same amount of material loss (0.005 g) to investigate the influence of velocity on early 

damage features. In the second set of experiment, coupons were eroded with the same 

number of impingements (100000) to relate erosion features with impact velocity under a 

certain numbers of impingements. Erosion curve were also obtained thanks to interruptions 

and weight measurements. 

 

4.2.4 Characterization procedure and methodology 

Erosion damage features were characterized at different conditions and the samples were 

compared through qualitative observation and quantitative measurements using SEM. 

 

To evaluate the erosion damage to greater extent, observation were carried out on both 

eroded surface and through progressive cross sectional polishing on ID-RD plane. 

Progressive cross sectional polishing helps to increase the statistics of the evaluations and to 

better document the damage mechanisms. In order to do that, coupons were carefully grinded 
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on the cross section with the SiC papers and then polished using Buehler vibratory polisher 

for 24 hours. The induced damages were then imaged and evaluated both on the surface and 

the section. This surface preparation does not alter the erosion feature as no chemical etching 

is used. The damages then were imaged with both secondary and back scattered microscopy 

at low and high magnifications. 

 

4.3 Results 

4.3.1 Cumulative mass loss during erosion testing 

The cumulative mass loss during water droplet erosion of rolled Ti-6A1-4V vs. impingement 

number is plotted in Fig. 4-4. The typical stages of erosion defined by Heymann can be 

clearly identified for the investigated material up to a steady state with 350 m/s and 300 m/s; 

however, for 250 m/s, only the onset of material removal could be documented [1]. It is 

generally found an incubation period in Titanium water droplet erosion; however the length 

of incubation period varies due to material or erosion parameters (droplet size and 

distribution, impact velocity, flow rate, etc.) [5, 10]. Taking into account the presence of 

incubation time for the material under investigation, the length time of the incubation appears 

to be strongly influenced by the impact velocity. It is relatively shorter when the impact 

velocity is higher presenting more severe erosion conditions. The incubation period is found 

to be at 360,000 impingements for 250 m/s, at 72,000 impingements for 300 m/s, and at 

14,000 impingements for 350 m/s, giving an approximate exposure time of 36, 6, and 1 

minute respectively. 
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Figure 4-4 Cumulative mass loss vs. impingements number and time 
of exposure 

 

4.3.2 Macroscopic observation of the damage 

Macroscopic analysis of the samples was conducted on the eroded surface RD-TD and on the 

perpendicular cross-sectional plane ID-RD. Eroded surface examination reveals a localized 

damage along the erosion lines as illustrated in Fig. 4-5. These lines are actually the 

accumulation of multiple circular craters. The damage distribution however varied along the 

line, i.e. erosion starts from the top of the coupons and progressed along the droplet stream. 

For the same amount of removed material (Fig. 4-5(a), (b), and (c)), the average width of 

erosion lines were estimated to be 0.88mm, 0.91mm, and 0.95mm for the coupons impacted 

with 250 m/s, 300 m/s, and 350 m/s respectively. From the macroscopic observation of the 

coupons impacted with the same number of impingements (Fig. 4-5(d), (e), and (f)), it is 

clear that the erosion is more advanced when the impact velocity is higher. The average 

widths of erosion lines are 1.20mm for 350 m/s, lower to 0.58mm for 300 m/s, and no 

significant damage were observed for 250 m/s. 
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Figure 4-5 Localized damage lines induced by water droplets with varied impact 
velocity; a, b, and c) same amount of material loss (0.005g) and d, e, and f) same 

impingements number (100000) 

 

The nearly circular damage induced by only few very first droplets, are referred to a crater in 

this paper. Note that this damage is not the result of single droplet but few numbers of 

impingements. The images were taken from the earlier stages of erosion for each velocity 

and show that the induced damage in Fig. 4-6 at higher velocity impacts results in wider and 

deeper craters. The craters are smaller when impact velocity slows down to 300 m/s and no 

visible crater were observed on the coupon impacted with 250 m/s velocity. The only damage 

in this coupon is some evidence of grain tilting followed by intergranular damage (see Fig. 3-

12, Chapter 3). 
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Figure 4-6 Initial damage induced with few impingements; a) 350 m/s, b) 300 m/s, and c) 
250 m/s 

 

However, top surface observation is not sufficient to capture the erosion mechanisms [10]. 

Average depths of penetration were measured via SEM through progressive polishing from 

top of the coupons where the maximum damage occurs. Some examples are given in Fig. 4-

7. For the same amount of material removal, the average depth of penetration was estimated 

to be 235 µm for 250 m/s, 205 µm for 300 m/s, and 275 µm for 350 m/s. However for the 

case of same impingement number the estimated average depth of penetration was found to 

be 240 µm for 300 m/s and 405 µm for 350 m/s. No sign of erosion was observed for 250 

m/s impact velocity. The coupons impacted with equal impingement numbers confirm the 

evidence of severer damage and more material removal as a result of increasing the impact 

velocity. Other sub-surface damages were also observed on the more damaged coupons such 

a sub-tunnel formations as indicated with the arrows in Fig. 4-7. Sub-tunnels as reported in 

[10] appear to form everywhere from close to the surface and further around the bottom of 

the induced damage. 

 



84 

 

Figure 4-7 Cross-sectional view illustrating craters depths (measure of a distance 
between deepest visible point of a crater and the sample surface on the cross section), 
and lateral sub-tunnel formation (white arrows): a, b, and c) same amount of material 

loss (0.005g) and d, e, and f) same impingements number (100000) 

 

4.3.3 Microscopic analyses of eroded samples 

Several hundreds of SEM images were taken at high magnifications along the edge of the 

eroded craters. Erosion features were systematically imaged using back-scattered electron 

imaging to reveal the erosion features involved in each coupon. The observed features are in 

accordance with the previous work for the rolled Ti-6Al-4V microstructure under similar 

experimental conditions [10]. Surface and sub-surface cracks are formed mostly within 

primary α-grains, transgranular mode of crack propagation, striation marks indicating the 

fatigue like mechanisms of material removal, merging of many isolated cracks, and crack 

propagation in a similar direction were observed more or less on all investigated coupons 

except for the case with 100000 impingements at 250 m/s where no erosion line and crater 

were found (Fig. 4-8). Detachment of a larger part of material occurs when two cracks merge 

together as shown in Fig. 4-8(d) resulting in rapid mass loss. Cracks linkage was observed 

more frequently on the coupon exposed to 100000 impingements with 350 m/s impact 
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velocity than 300 m/s. An example of several cracks propagating in a similar direction is 

given in Fig. 4-8(e), consequently when the cracks meet each other severe material removal 

will take place due to sub-surface tunnels formation and detachment of large fragment of 

material. New surface will then be exposed to impingements and the new cycle of crack 

formation will be started as shown in Fig. 4-8(f). The local morphological feature of the 

microstructure can eventually promote or restrain such kind of damage mechanisms.  

 

 

Figure 4-8 Cross sectional view of cracks behavior 

 

4.3.4 Cracks behavior quantification 

While the samples follow similar mechanisms of material removal the quantitative 

measurements of cracks showed there are some differences in terms of number, size and 

orientation of the cracks. 

 

Quantitative measurements of the crack size reveal that, when the amount of material 

removal is the same, the number of observed cracks as well as the average crack size do not 

change significantly with speed variation (crack number ranges from 30 to 35 for the average 

size of about  9.8 µm). The similarities of the crack size tend to prove that increasing number 

of impingements for lower velocities can result in the same type of damage as the one 



86 

obtained at higher energy but for lower number of impacts. The cracks tend to reach the same 

length before leading to material removal due to the increased number of impingements than 

higher impact energy.  

 

In contrary to the cracks size for the equal material removal set up (0.005 g), the cracks 

showed different statistics when the number of impingements are the same (100000 

impingements). For the same impingement numbers, the average crack size for the coupon 

which is impacted with velocity of 350 m/s was twice the value found for the 300 m/s (13.2 

µm versus 5.5 µm respectively). Also the number of observed cracks for 350 m/s is almost 

twice the number observed for 300 m/s (41 cracks versus 22 cracks respectively) resulting in 

more material loss and bigger damage (Fig. 4-7). Few very long cracks were also observed in 

the coupons with the higher impact velocity. This may results from the pronounced impact 

energy which promotes the crack propagation (Fig. 4-9). No craters and no cracks were 

observed for coupon with the impact velocity of 250 m/s with however greater time of 

exposure and volume injected water (see discussion in 4.2). When comparing the two other 

coupons, it is clear that the average crack size is greater for the higher impact velocity 

suggesting faster crack propagation during each cycle for higher impact velocities and 

consequently greater impact energy. The influence of exposure time is quite less pronounced 

than the impact velocity. 

 

 

Figure 4-9 Distribution in size of the cracks measured along the craters edges: a) same 
amount of material loss (0.005g) and b) same impingements number (100000) 
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Figure 4-10 Distribution of cracks inclination relative to water droplets impact direction: 
a) same amount of material loss (0.005g) and b) same impingements number (100000) 

 

The distributions of the cracks inclination, the angle between impingement direction ID and 

the main crack propagation direction observed on cross section, clearly show that the cracks 

inclined around 20-30 degrees relative to the rolling direction when the amount of removed 

material is the same (Fig. 4-10(a)).  

 

In case of same number of impingements the distribution varied from 350 m/s to 300 m/s. 

For the coupons impacted with 300 m/s, although the distribution is pronounced around 0-20 

degree to the extent to which showing the preferential crack orientations, the cracks 

inclination is more divers relative to the coupon impacted with 350 m/s where the higher 

percentage of cracks inclined by 10-20 degree toward the impinging direction (Fig. 4-10(b)). 

This difference may be due to the smaller size of the cracks in coupon impacted with 300 

m/s. In fact in this relatively early stage of erosion the cracks did not propagate enough to be 

oriented in the direction relative to the microstructure. Such non-random distribution in crack 

inclination shows that cracks tend to propagate in a preferential orientation, which in this 

case is the rolling direction. The microscopic observations were also showing that type of 

behavior (Fig. 4-8(e)). 

 

Study of the cracks inclination shows a significant influence of the microstructural 

characteristics (Fig. 4-10), i.e. the preferential orientation of the cracks along the rolling 
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direction. This is particularly more pronounced for impact velocity of 350 m/s. This, in 

combination with the observation of larger cracks in the higher velocity impacted coupon 

than lower velocity ones, explains evidently the influence of grains morphology and 

microstructural effect in cracks behavior (Fig. 4-11(a) and (b)). Cracks under higher impact 

velocity propagate faster at each cycle of impingements and preferably orient along the 

rolling direction. Longer cracks resulted from higher impact velocity lead to greater material 

removal and sub-tunnel formation similarly along the rolling direction (Fig. 4-11(c)). 

Therefore illustration of microstructural influence is more noticeable with the higher velocity 

impacts. 

 

 

Figure 4-11 a) 350 m/s impacted coupon showing larger cracks with preferential 
orientation, b) 300 m/s impacted coupon showing smaller cracks which are not yet 

oriented in a preferential direction (RD), and c) Sub-tunnels formation in preferential 
orientation (RD) 

 

4.4 Discussion 

4.4.1 Incubation period and erosion rate 

According to the erosion curves plotted in Fig. 4-4 it is clear that the incubation period is 

shorter for higher impact velocity. The values obtained for the incubation times indicate that 

increasing the impact velocity shortens the incubation period. Therefore, the significant 

influence of impact velocity on incubation time shows that higher impact velocity promotes 

the erosion phenomenon while lower impact velocity delays the material removal initiation. 

The number of impingement at the incubation time is plotted in Fig. 4-12(a) relative to the 
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impact velocity showing an exponentially trend. Fig. 4-12(b) gives the same data with 

inversed axes and a logarithmic scale. 

 

 

Figure 4-12 Relation between impingement number showing the incubation time and 
impact velocity 

 

In order to investigate the erosion behavior after the incubation period, the erosion rate was 

calculated for each condition and the curves are plotted in Fig. 4-13. The curves present the 

erosion rate (gs-1) relative to the impingement number after the incubation periods. Erosion 

rate is defined as cumulative mass loss per cumulative exposure time). The different slops 

clearly indicate that the maximum erosion rate (ER) is higher with the higher impact velocity 

from the onset of material removal to the advanced stages of erosion. As an example, the 

erosion rate versus impact velocity for 0.005 g material removal is plotted in Fig. 4-14 in 

which the erosion rate is related to the impact velocity in power law function with the 

velocity exponent of 9 for a particular investigated condition (0.005 g removed material). 

Therefore in contrary to the incubation time, which decreases with an increased droplet 

velocity, the erosion damage rate increases rapidly with an increased droplet velocity. 
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Figure 4-13 Erosion rate (Cumulative mass 
loss/cumulative time) vs. (cumulative mass loss per 
impingement number) after the incubation period 

 

 

Figure 4-14 Erosion rate vs. impact velocity (after 
incubation period) 

 

4.4.2 Width and depth of damage 

The two sets of experiments were evaluated in terms of erosion width and depth of 

penetration in order to investigate the influence of impact velocity on damaged zone 
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development. Fig. 4-5 and 4-7 illustrate the width and depth of the damage. The influence of 

impact velocity on the amount of erosion damage caused by water droplet impingement is 

plotted in Fig. 4-15 based on Mean Depth of Erosion (MDE) [17]. MDE is found through 

progressive polishing (minimum of 8 cross section measurements) and SEM measurements 

on coupons where maximum damage occurs. 

 

Fig. 4-5 showed that when the same amount of material is removed (0.005 g) (although the 

exposure time to erosion and impingement numbers are significantly different); the average 

erosion widths are roughly the same for the three investigated speeds. The induced pressure 

(P) by a single droplet impingement can be obtained by equation P=ρCV where ρ is the 

density of water (1000 Kgm-1), C is the speed of sound in water (1500 m/s), and V is the 

impact velocity (m/s) [18].  Therefore the pressure values of 375 MPa, 450 MPa, and 525  

MPa were calculated for 250 m/s, 300 m/s, and 350 m/s respectively. Given these pressure 

values, it should be noted that, although the crater width induced by few droplets is greater 

for higher speed impacts (Fig. 4-6) mostly due to the greater impact pressure [18]; the 

erosion line width is almost the same for the given amount of removed material. Similarly the 

variation of average erosion depth is not as considerable in this condition. This can be related 

to the damage spreading with increased testing time [18].  

 

For the same numbers of impingements (100000 revolutions), the aspect of erosion line with 

impact velocity is however quite significant (see the series of images on Fig. 4-5). Indeed, it 

is found that with 100000 impingements, the three coupons stand in three different stages of 

erosion according to Heymann’s classification [1]: i.e., Incubation, acceleration, and first 

steady state stages of erosion for the coupons impinged for 250 m/s, 300 m/s, and 350 m/s, 

respectively (Fig. 4-4). As illustrated in Fig. 4-15, mean depth of penetration is greater when 

the impact velocity is higher for the same number of impingements. The damage depth rate 

might be calculated using the equation proposed by Oka et al. for an aluminum alloy [18]: 

 

 Rd = Ed / (t – Ip) (4.1)



92 

where Ed is the erosion damage depth (µm), Rd is the damage depth rate (µm/s), t is the 

testing time (s), and Ip is the incubation period (s). From the present results and following the 

equation given by Oka et al. with the extension for Titanium alloy under investigation, it 

could be possible to relate the damage depth rate to the impact velocity. A damage depth rate 

of 7 µm/s, 32 µm/s, and 69 µm/s were obtained for 250 m/s, 300 m/s, and 350 m/s, 

respectively, for 0.005g material loss . For the same number of impingement, the damage 

depth rate were found to be 0 µm/s, 62.3 µm/s, and 240 µm/s for 250 m/s, 300 m/s, and 350 

m/s, respectively. The damage depth profiles for the investigated speeds were obtained 

accordingly (Fig. 4-16). The data present the linear dependence of damage depth rate on 

impact velocity for 0.005g material loss. Therefore the increase in the impact frequency of 

water droplets directly induces an increase in damage depth rate and a decrease in incubation 

period which explains how the coupons under the same conditions (for example 100000 

impingement) present different stages of erosion. 

 

 

Figure 4-15 Relation between impact velocity and MDE 
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Figure 4-16 Influence of the impact velocity on erosion damage depth rate 

 

4.4.3 Erosion mechanisms 

Erosion features such as cracks nucleation and propagation mode resulting in material 

removal were similar for all impact velocities as presented in Fig. 4-10, however, various 

volume of material were chipped off depending on the impingement conditions. The 

observed mechanisms related to crack formations and propagation modes is also reported for 

a rolled Ti-6Al-4V under 350 m/s in the previous work [10]: surface and sub-surface 

transgranular crack propagation, striation marks, linking and merging resulting in large 

material removal and sub-tunnel formation. Thus the mechanisms of material removal are 

similar, for the covered impact velocities. However, the influence of impact velocity exists 

and is mainly on erosion rate.  

 

The influence of impact velocity on damage characteristics can be discussed through amount 

of erosion damage caused by water droplet impingement relative to the impact velocity. The 

amount of erosion damage caused by solid particle is generally related to the square of the 

particle impact velocity [19]. Thus it might be applied also for liquid impact erosion, which 

gives the plot in Fig. 4-17. The trend line between the square of impact velocity and the 
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amount of material loss for acceleration stage seems to give a linear fit to the data. This linear 

relation illustrates the velocity dependence of the material loss. Therefore the amount of 

erosion damage can be basically proportional to the impact energy through equation by Oka 

et al. [18]:  

 

 Ek α mV2 (4.2)

 

 

Figure 4-17 Amount of material loss at acceleration stage vs. V2 

 

To summarize, erosion damage is dependent on both water pressure and impact energy. 

Increasing the impact velocity exponentially shortens the incubation time and speeds up the 

onset of material removal. Craters size and erosion damage are directly proportional to the 

impact velocity indicating that the impact pressure may control this type of damage 

parameters. On the other hand, the amount of erosion damage might be proportional to the 

square of the impact velocity. Time of exposure and number of impingements can result in 

wider eroded area since liquid impingement repeatedly acts on the formed craters, the area 

gradually expands and form bigger craters. Erosion features are not dependent on impact 

velocity, while erosion rate and cracks size are significantly influenced by the impact 

velocity. Since the impact energy is greater with higher velocity and the process is cyclic 

fatigue, cracks grow faster during each contact with the water jet comparing to lower velocity 
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impacts. Larger cracks then meet each other leading to chipping off large fragments of 

material. Increasing the impact velocity induces greater pressure as well as impact energy 

and thus speeding up the erosion process and decreasing the incubation period. Thus the 

erosion process and material removal action occurs faster with the greater impact velocity. 

 

4.5 Conclusions 

Water erosion tests were conducted on Ti-6Al-4V alloy under the conditions of different 

impact velocity (Related to the in-service conditions). The influence of three speeds (250 

m/s, 300 m/s, and 350 m/s) on erosion behavior was examined for two sets of experiments: 

coupons with the same amount of material loss (0.005 g) and coupons with the same number 

of impingements (100000 impingements). The conclusions are: 

- Erosion mechanisms were found to be in a good agreement with mechanisms reported 

earlier for the rolled Ti-6Al-4V. Material removal occurs due to the surface and sub-

surface cracks formation, transgranular crack propagation and linking together 

leading to chipping off the material.  These erosion features as well as sub-tunnel 

formation and striation marks are not influenced by the impact velocity and the 

erosion by water droplet impingement in Ti-6Al-4V alloy proceeds due to fatigue 

mechanism.  

- The two sets of test results, although varied in extent, proved the microstructural 

influence exists in erosion behavior of rolled Ti-6Al-4V. It was found that the cracks 

tend to orient along the rolling direction in their propagation process. This 

phenomenon appears to be more noticeable for the damage induced by higher speed 

droplets which results in longer crack sizes. 

- The relation between incubation period and droplet velocity was obtained. The 

incubation period is found to be exponentially influenced by the impact velocity. The 

impingement velocity versus the incubation period curve on logarithmic scale was 

similar to an S-N curve for fatigue and thus can be useful for predicting the life span 

of component materials. 
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- Craters’ size increases with the increased pressure induced by higher speed impacts. 

Increasing the time of exposure spreads the induced damage and increases the craters’ 

width. Mean depth of penetration is greater with the higher impact velocity and the 

damage depth rate found to be increased linearly with increasing the impact velocity 

for the same material removal. 

- The amount of material loss at acceleration stage is linearly proportional to the square 

of the impact velocity and so the impact energy. Erosion rate increases with 

increasing the impact velocity.  The droplet velocity dependence of the erosion rate 

for the same material removal condition was in power function of impact velocity on 

logarithmic scale and the velocity exponent was 9. 
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CHAPTER 5 
 
 

DISCUSSION 

This chapter aims to discuss the results as a whole and thus link the different items together 

in order to draw overall conclusions based on all work done in this thesis. 

 

5.1 Erosion mechanisms 

To understand the liquid droplet erosion mechanisms in a specific alloy, it is clear that the 

material removal behavior should be investigated through the entire process, meaning from 

the damage initiation to the advanced stages of material removal. In this regard, as discussed 

earlier in Chapters 2 and 3, the investigation of the erosion mechanism is divided into two 

parts; damage initiation and advanced stages of erosion.  

 

Initial erosion damage was studied on a forged Ti-6Al-4V focusing on incubation period and 

onset of material removal. These are earlier stages of erosion where the erosion is either not 

observable or the material removal is just initiated (Figs. 3-7 and 3-8). The erosion 

progression from induced shallow damages at early incubation to the material removal 

initiation damage was then thoroughly captured and certain mechanisms were identified. The 

erosion initiates from a slight local damage and appearance of surface protrusions due to the 

sub-surface crack or local sub-surface plasticity. Larger scale material removal takes place 

leading to the formation of craters. Induced local impact pressure results in high stress field 

and severe plasticity underneath the surface. Sub-surface transgranular cracks formation 

implies that the maximum pressure and plasticity occur under the surface which is in 

accordance with the Hertz theory of impact (Stronge 2004). This transgranular cracks just at 

very earlier stages is originally reported in this work and is as opposed to the intergranular 

damages reported by researchers for the initial damage mechanisms (Huang et al. 2012). It 

should also be pointed out that, the grain boundary damage on the surface was also observed 

(Fig. 3-15(a)) as a result of impacts repetition followed by yet again transgranular cracks and 

striation marks. These secondary transgranular cracks are responsible for the damage 
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progression to the severer stages and together with the observed striation marks indicate 

cyclic nature of material removal process. Largely distribution of transgranular mode of 

crack propagation and striation marks were observed at the damaged zones for advanced 

stages of erosion in both rolled and forged microstructures, as discussed in Chapter 2 and 

Appendix I. It therefore points to the fatigue based mechanism of water droplet erosion 

process from initiation to the advanced stages of material removal. The advanced stages of 

erosion, discussed comprehensively in Chapter 2 and Appendix I for rolled and forged base 

material and their differences, leads to propose a typical mechanism. It is found that in both 

cases, cracks nucleate from the craters’ edges (surface cracks) and/or under the stress 

concentration beneath the surface (sub-surface cracks) and propagate to the main eroded 

crater. Cracks propagate in transgranular manner which is more noticeable for forged 

microstructure as the grains are well equiaxed. 

 

Transgranular cracks initially form usually at about 45° of the impact direction underneath 

the surface which points to the stage I fatigue cracks that once nucleated, particularly adopt 

an angle of about 45° relative to the loading direction along high shear stress planes (45°). In 

LCF, high plastic deformation takes place along with inhomogeneous plastic strain field 

formation. It is then, expected to develop localized regions of preferential slip leading to 

localized regions of crack initiation. Strong localized plasticity region in this work occurs 

below the surface at about 100 µm resulted from high speed droplet impacts (sub-surface 

plasticity) providing the crack initiation site. Given the crack nucleation and propagation 

mode resulted from accumulation of high localized plasticity, together with the knowledge of 

impingement number (consider as the number of cycles), it is possible to relate the process 

with the suggested fatigue-like mechanism and particularly low cycle fatigue nature of water 

droplet impact erosion.   

 

Stating the crack propagation modes, no evidence of intergranular propagation was observed 

in advanced stage neither for forged microstructure nor for rolled one. Given the observation 

of transgranular cracks just at the beginning of the process as well as the advanced stages of 

erosion, it can be concluded that the transgranular damage is the dominant responsible for the 

erosion damage. It is while the intergranular damage takes the lead only at the onset of 
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material removal (i.e. after the incubation) and is a typical of the initiation stage due to the 

local plasticity and grain tilting. 

 

As the process advances, it involves merging of both surface and sub-surface cracks and 

leading to material removal, forming the craters, and occasionally forming the lateral sub-

tunnels. Crack coalescence, introduced in this work, is typical of rolled microstructure 

wherein multiple cracks, nucleated in a similar orientation, link together forming a longer 

crack and consequently larger removal of material fragment. This is an example of 

microstructural influence which is discussed hereafter along with comparison between the 

two microstructures. 

 

Removal of material fragments usually leaves a rough fracture surface. Water smoothing 

phenomenon, introduced firstly in this work, was observed in both cases, during which water 

impacts act on the fractured surface and wash out the freshly fractured fragments until the 

surface becomes very smooth. This explains the observation of both smooth and rough 

fracture surfaces at a damaged part. The process then returns to start from nucleation of 

surface and sub-surface cracks up to the material removal.  

 

To summarize, the erosion mechanism of Ti-6Al-4V under water droplet impact erosion 

through the whole process is proposed as: 

 

(i) High local stress field formation underneath the surface resulted from droplet impact 

pressure 

(ii) Plastic deformation and generation of a local compressive residual stress field close 

to the elastic limit 

(iii) Generation of high local deformation cycles and sub-surface cracks formation similar 

to LCF condition 

(iv) Surface upheaval appearance more likely attributed to the sub-surface plasticity 

(v) Grain tilting and intergranular damage at surface due to the local plastic deformation 

(vi) Secondary transgranular crack formation 
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(vii) Linking and/or merging  of trangranular cracks 

(viii) Detachment of the material fragments and occasional formation of sub-tunnels 

resulting the rough surfaces 

(ix) Water smoothing of the rough surface 

(x) New cycle of sub-surface plasticity and cracks nucleation (step I), propagation, 

material chipping off, and sub-tunnel formations. 

 

5.2 Influence of microstructural characteristics 

The erosion mechanisms of both rolled and forged microstructures were compared at 

advanced stages of erosion and published in the proceeding of the international solid/liquid 

impact erosion conference in Milan, Italy 2012 (Appendix I). The material loss curves 

obtained for both base materials under the same experimental conditions are presented in Fig. 

5-1. It clearly shows a significant difference in amount of material loss and erosion rate 

especially at advanced stages of erosion which was the focus of erosion evaluation. Under 

the same experimental conditions, the forged microstructure shows better erosion resistance 

after the damage initiation. In other words when the erosion starts, it goes faster in rolled 

base material than in forged one. This gives rise to observation of longer cracks in rolled 

material which is related to the microstructural features such as elongated grains.  
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Figure 5-1 Water droplet erosion curves for forged and rolled Ti-6Al-4V 

 

Hundreds of cracks analyses through SEM imaging and quantification methods (Appendix 

II) illustrate the microstructural influence in cracks behavior. As explained earlier in section 

5.1, crack coalescence is introduced as a mechanism of crack propagation in rolled 

microstructure. This trend was observed entirely in rolled microstructure while less observed 

in the forged one. This can, therefore, be typical crack behavior in rolled base material due to 

the elongated grains as well as presence of macrobands with the similar crystallographic 

orientation, that is, cracks tend to nucleate and propagate with similar orientation along the 

rolling direction. The appearance of such coalescence in forged base material can be due to 

the existence of the macrozones bearing the similar crystallographic orientations. The 

macrozones are more vulnerable to slips (basal or prismatic), provide the suitable 

environment for microcracks nucleation and their coalescence, considering that slip is a main 

mechanism leading to fatigue crack nucleation. Therefore, crack coalescence can also occur 

in forged microstructure at the scale of macrozones which needs further investigations. 

 

Crack coalescence appear to be another key process leading to crack growth, and thus, 

additional illustration for longer crack size observed mostly in rolled microstructure, along 

with the faster crack propagation due to the morphological reasons (elongated grains) as 
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explained in Chapter 2. The single cracks also tend to propagate along the rolling direction 

while in the forged microstructure cracks tend to propagate in any directions (Appendix I). 

The equiaxed grains in forged microstructure makes the cracks growth harder, given the 

grain boundaries acting as the barrier for crack propagation. The quantification of the cracks 

also showed the preferential inclination toward the rolling direction (around 20°) in the rolled 

base material and a random distribution of inclinations in forged one (around 45° relative to 

the impingement direction). Therefore, the orientation of the cracks and their inclination 

relative to the impingement direction are directly linked with the morphology and 

crystallographic texture of the alloy, which is more noticeable in rolled microstructure given 

the strongly textured base material.  

 

Water droplet erosion phenomenon is therefore quite a microstructure dependent process. 

Given the significant influence of the manufacturing processes (e.g. rolling and forging) on 

microstructure of the Titanium alloy which determine the size and shape of the grains, this 

parameter should stand on the primary considerations in material selection for the most 

industrial components. On the other hand, the microstructure and mechanical properties, 

typically fatigue behavior, are closely related (Le Biavant et al. 2001) and water droplet 

impact erosion phenomenon is considered as a fatigue-based process that also emphasize on 

the necessity of the microstructural consideration. For example, here in the present work, a 

bimodal forged Ti-6Al-4V showed higher resistance to crack propagation and thus presents 

less erosion damage than a rolled microstructure which is more vulnerable to crack growth 

and damage propagation. Therefore a fine grain duplex Ti-6Al-4V with the equiaxed grains, 

together with the texture considerations is expected to provide a good resistance to water 

droplet erosion relative to the rolled microstructure. The influence of texture and 

loading/impingement direction (for example loading parallel to C-axis), also need to be taken 

into account. Implementation of these considerations in material selection, design, and 

manufacturing of the parts will therefore lead to improve the mechanical behavior of the 

material, increase the water droplet erosion resistance, and consequently the lifetime of the 

components under potential erosion damage which is the primary objective of this study. 
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5.3 Representativeness of the in-service conditions 

Although erosion evaluation of the blade was studied by many investigators through 

numerical modeling with the attempt to identify mainly the erosion pattern and material loss 

on the blade (summarized and developed by Krzyzanowski et al. (1994)), the erosion 

representativeness through the experimental assessment was not investigated in the previous 

works as discussed earlier. Given the complexity of the subject, it is not thoroughly discussed 

in the present study either. However, two parameters were considered here: base material 

characteristics and droplet velocity. As discussed earlier in Chapter 4, a specific material was 

selected which presents similar texture characteristics as the in-service blade since it is 

proved that microstructural features have influence on erosion behavior. Therefore, to study 

the influence of the impact velocity corresponding to the in-service conditions, evaluation 

needs to be conducted on a similar base material firstly to make the evaluation more 

representative and secondly to avoid microstructural variation influence. The erosion 

behavior along the leading edge showed that the damage is severer at the tip of the blade and 

decreases along the leading edge down to the bottom of the blade. This trend in erosion 

damage occurs due to the different conditions along the leading edge including the rotational 

speed of the blade, and so the variation of droplet impact velocity which is the focus of the 

present work. The erosion damage evaluation on the coupons impacted with the impact 

velocities of 250 m/s, 300 m/s, and 350 m/s, resulted in realizing the influence of impact 

velocity on damage severity, cracks behavior, and material removal rate. The detailed 

discussion on erosion dependence on impact velocity, water pressure, and impact energy is 

presented in Chapter 4. It is found that impact velocity influences the incubation time with an 

exponential function and increases the erosion rate in the acceleration stage in a power law 

function. Damage distribution, crater size and amount of erosion damage are related to the 

impact pressure and energy (Chapter 4). Therefore, it can be generally concluded that the 

impact velocity influences the erosion process from initiation to the advanced stages of 

erosion relative to the conditions. However, for the purpose of full representation of the in-

service condition, other parameter such as droplet parameters and geometry of the coupons 

should also be taken into account in the future works.  



106 

5.4 Erosion resistance and application of surface treatment 

Since the phenomenon can be recognized as the fatigue process, the surface enhancement to 

increase the fatigue life of the component can be considered for erosion resistance 

improvement as well. Surface roughness and the deformation induced by droplet impacts on 

the surface can cause stress concentration that lower the fatigue strength of the material. 

Compressive residual stresses can be introduced on the surface by various processes to 

increase fatigue life of the component. Low plasticity burnishing (LPB) and laser shock 

(LSP) peening can produce this surface compressive stress and consequently increase the 

fatigue life.  

 

Such treatments are known to significantly improve resistance to wear, and in particular to 

increase the fatigue strength of metallic parts. The results of the previous works clearly 

indicate the beneficial effect of surface treatments, specifically by laser shock peening, in 

enhancing both the HCF and LCF resistance of Ti-6Al-4V. The results showed that these 

surface treatment techniques increase the lifetime and lower initial crack propagation rates 

which are reported to be due to the compressive residual stress formation close to the surface, 

together with the work hardening effect in the near-surface layer (Prevey et al. 2001, 

Montrose et al. 2002, Nalla et al. 2003). 

 

This improvement in fatigue properties of Ti-6Al-4V, resulting from surface treatments, is 

expected, as well, for droplet impact erosion behavior of this alloy given the cyclic nature 

and fatigue based mechanism of the process. While such improvements is still questioned for 

water droplet erosion, it is possible that the benefits of surface treatments, such as residual 

stress and work hardening, which might result in finer grain size and high dislocation density, 

help improving the erosion resistance, particularly by controlling the crack nucleation and 

initial growth. This is likely expected due to the decreasing of the plastic strain amplitude as 

a result of introducing the surface treatments, since fatigue damage mostly occurs due to the 

strong plastic strain field. However needs further investigations. 
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The surface treatments influence was partly investigated in this work and the results are 

presented hereafter (Annex II).  





 

CONCLUSIONS 

 

Water droplet impact erosion damage is studied in Ti-6Al-4V alloy used as the compressor 

blade material in gas turbine engine. This study allowed characterizing the erosion behavior 

of Ti-6Al-4V thoroughly from damage initiation to the advanced stages of erosion relative to 

the microstructure of the base material. Moreover the induced damage at various speeds 

corresponded to the in-service conditions were analyzed and the influence of the impact 

velocity was obtained for the investigated conditions. 

 

From the analysis and discussion of the results, the main contributions of this thesis are: 

 

- The water droplet impact erosion damage in Ti-6Al-4V alloy starts with the severe 

local plastic deformation underneath the surface due to the impact pressure resulting 

in sub-surface transgranular cracks. High local deformation cycles similar to LCF 

conditions are generated, resulting in network of sub-surface cracks. Surface 

protrusions are formed as a consequence of sub-surface plasticity. With the 

appearance of plasticity, grain tilting, and consequently grain boundary damage 

develop at the surface, and secondary transgranular cracks form afterwards which are 

responsible for the advanced stages of material removal.   

 

- Advanced erosion mechanisms are proposed to cyclically involve the formation of 

surface and sub-surface network of cracks which propagate in a transgranular manner. 

Cracks merge together leading to the detachment of the material fragments. Sub-

tunnels appear to form occasionally as a result of large material removal due to cracks 

linking and merging together leaving a rough fracture surface followed by water 

smoothing phenomenon. Water smoothing is introduced in this study presenting the 

action of surface polishing due to the water droplet impacts on a rough surface 

developing a smooth surface. Therefore the resulted rough surface of the sub-tunnels 

formation smoothens due to the water polishing/smoothing effect. New cycle of crack 
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nucleation till the material removal and water smoothing occurs afterward as a result 

of droplet impacts repetition; i.e. the mechanism is a cyclic phenomenon. 

 

- This work showed that a new approach in methodologies for erosion characterization 

should be used in order to involve detailed evaluation of the surface and the cross 

section of the eroded coupons, quantification of the erosion by measurement of cracks 

size and inclination systematically relative to the impingement direction. 

 

- Representation of the in-service conditions, made in this study in terms of base 

material characteristics as well as velocity of the impact correlating to the blade’s 

speeds along the leading edge, corresponds to the different stages of erosion. It is 

found that impact velocity exponentially influences the incubation period. Higher 

impact velocity induces greater impact pressure and energy resulting in greater 

damage and faster material removal. Damage depth rate increases linearly with 

increased impact velocity when the amount of removal is the same. The amount of 

material loss is linearly proportional to the impact energy at acceleration stage and the 

erosion rate increases with the 9th power of impact velocity for a certain amount of 

damage. 

 

- Microstructure features are found to influence the erosion mechanisms. The features 

such as crystals orientation and morphology of the grains are of the parameters which 

control the crack behaviors. Grain boundaries and morphology of the grains are the 

microstructural barrier for crack propagation. For instance, crack growth is slower in 

forged microstructure with equiaxed grain than rolled with elongated grains that 

actually promote crack growth in the rolling direction which is not desirable. 

Therefore base material characteristics, typically microstructure and texture, should 

be considered in material selection for in-service components.  

 

- Microstructural influence is documented through quantification method as well. It is 

reported that the cracks propagation and inclination are directly linked with the 
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morphological and crystallographic aspects of the microstructure. Cracks tend to 

orient in a preferential direction relative to the microstructure and grain morphology. 

This phenomenon appears to be more noticeable for the damage induced by higher 

speed droplets which results in longer crack sizes. 

 

- It is realized that cracks nucleate and propagate in a transgranular manner at the 

initiation (inclined by 45° from impingement direction) and advanced stages of 

erosion which indicate LCF condition for near-α and α/β Titanium. Transgranular 

mode of crack propagation and striation marks together with the cyclic nature of 

water droplet impact erosion strengthen the conclusion on the fatigue-based 

mechanism of the water droplet impingement of Ti-6Al-4V. 





 

RECOMMENDATIONS  

 

This section presents some other aspects of the subject for future investigation to help 

covering the issues and responding the problems.  

 

Identifying the erosion mechanisms and microstructure related issues 

The erosion mechanism was thoroughly investigated in the present study but only for specific 

microstructure and texture base materials. It is clearly stated that there is microstructure 

effect; however, the influence of the texture on erosion behavior were not primarily 

addressed. The subject of texture influence is very interesting topic to pursue for complete 

understanding of the base material properties influence on erosion mechanisms as it might 

have significant influence on material removal behavior. This is typically more pronounced 

for Titanium alloy which presents elastic/plastic anisotropic behavior.   

 

Texture influence for the purpose of water droplet impact erosion characterization can be 

investigated through different impingement directions. As explained in chapter one the 

impingement direction can be selected along ND, RD and at 45° based on the anisotropic 

behavior of Ti-alloy, where the greatest variation in elastic/plastic anisotropy of this alloy is 

expected. The angles might be a little varied due to the specific texture under investigation. A 

rolled Ti-6Al-4V is suggested for this study as it presents strongly textured base material. 

The coupons can be extracted at different angles relative to the material texture. Fig. 5.1 

illustrates the way of sample extraction from a rolled Ti-6Al-4V plate and the impingement 

directions. The impingement directions are along ND, RD, and at 45◦ which are selected 

based on the anisotropic behavior of the alloy and thus the influence of microstructure and 

texture can be obtained.  

 

The samples were extracted from a rolled Ti-6Al-4V on two directions: RD and ND. 

However, the width of the coupons are not enough to fit the holder for the erosion test at 

Concordia university unless the two coupons get to be used next to each other which was 

indeed the idea of the work at the beginning. The coupons on 45° could not be extracted due 
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to the thickness limitation of the rolled plate. For this, finding a thicker plate seems to be an 

option, however, it should be considered that a thicker plate normally does not present as 

strongly textured microstructure as a thinner one does. That is clearly due to the rolling 

process. 

 

 

Figure 5-2 a) pole figure presenting the typical texture of cold rolled Ti-6Al-4V, 
and b) sample extraction and impingement directions relative to the texture 

 

Another interesting subject to better understand the erosion mechanism, especially at the 

initial stage, is the stress state analyses during the impacts. This can make it easier to relate 

the formation of the surface upheaval to the generated stress underneath the surface at earlier 

stages of erosion.  

 

Influencing parameters and rig test representation 

Droplet size which has significant influence on erosion behavior of the blade along the 

leading edge should also be considered in future works to represent the in-service conditions. 

The experimental part of this asset was done during the course of this Ph.D work and 

presented in Annex I. It is noteworthy that one of the issues concerning the use of inlet 

fogging system in gas turbine engine, the droplet sizing, is important because of the wide 

range of statically distributed droplet size created by the fog nozzles, droplet coalescence, 
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etc. (Chaker et al. 2004). As droplet size influences the erosion of compressor blades to the 

good extent, it is worth to be investigated relative to the in-service conditions.  

 

To investigate the droplet size influence, three droplet sizes relative to the defined 

terminologies (Chaker et al. 2002) should be selected for the in-service conditions. The 

erosion tests then should be carried out on different coupons with varied nozzles corresponds 

to the selected droplet sizes. The tests on this were performed on 200µm, 400µm, and 600µm 

nozzle sizes as presented in Annex I. Following characterization and comparisons result in 

understanding the influence of droplet size. Other parameters can also be considered to make 

the comprehensive representation.  

 

One of the very important factors that should be taken into account is the influence of the 

geometry of the component. Although in the present work, the efforts were made to find a 

similar microstructure and texture to the in-service blade and to realize the main 

impingement direction relative to the texture of the in-service blade, the impingement 

direction is neither a certain direction, nor it remains the same along the leading edge. 

Therefore, using the airfoil coupons in a laboratory scale is an option to better represent the 

in-service condition with the similar geometry. Erosion test then can be performed on the 

similar geometry to investigate the influence of other parameters on erosion behavior. 

 

Influence of the surface treatments 

Surface treatment is one of the common methods to improve the erosion resistance of 

materials by increasing the hardness and inducing compressive residual stress on the 

component. Residual stress is a parameter which plays a major role in increasing the water 

droplet erosion resistance (Baker 2010). Indeed application of surface treatments or coatings 

extends the incubation periods and delay the material removal process (Robinson and Reed 

1995, Shipway and Gupta 2011). Compressive residual stress can be introduced in the 

surface by, for example, shot peening to increase the fatigue life. LSP and LPB are known as 

the two relatively novel methods to induce compressive residual stresses and improve the 

resistance to crack nucleation and propagation and increase the fatigue life. Recently, few 
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researchers have studied some aspects of LSP and LPB processing on various materials 

(Prevey et al. 2001, Montrose et al. 2002). It is generally reported that LSP and LPB increase 

the surface hardness and fatigue strength depending on the processing conditions, alloy type, 

and microstructure of the alloy. The influence of LSP and LPB and particularly residual 

stress effect were not investigated for the Titanium alloy especially in water droplet impact 

erosion. It is then worth to study the topic of residual stress on Ti-6Al-4V alloy especially on 

airfoil coupons to understand whether or not it can improve the erosion resistance of the 

blades. This topic is partially investigated in this work and the results are presented in Annex 

II. Together with the stress state analysis it sounds very interesting to continue this work 

toward understanding the hardness and residual stress effect on water droplet impact erosion 

damage resistance. 

 



 

ANNEX I 
 
 

Influence of droplet size on water droplet erosion mechanisms of Ti-6Al-4V 

In order to identify the influence of the droplet size on material removal action, rig tests were 

performed on the rolled Ti-6Al-4V coupons at Concordia University. The impact velocity of 

350 m/s was selected corresponding to the blade tip were the maximum erosion occurs. 

Various nozzle sizes were selected: 200, 400, and 600 µm given the average droplet sizes of 

250, 450, and 650 µm respectively which are corresponded to the droplet size distribution of 

the in-service compressor blade, obtained by Rolls-Royce, Canada. The results of this work 

are presented as follow. 

 

Material removal behavior and erosion curves 

The erosion curves were obtained for each coupon illustrated in Fig-A I-1 and Fig-A I-2 

presenting the cumulative mass loss versus volume injected water and impingement number 

respectively. 

 

 

Figure-A I- 1 Cumulative mass loss vs. volume injected water 
for different droplet sizes 
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Figure-A I- 2 Cumulative mass loss vs. impingement number 

 

The coupons were eroded up to the advanced or steady state stages of erosion in order to 

obtain the curves; however, other coupons were extracted at different stages of erosion in 

order to thoroughly study the erosion evolution from the early stages of erosion to the 

advanced stage material removal. Fig-A I- 3 shows the SEM images of the extracted eroded 

coupons at final stages of erosion. 

 

 

Figure-A I- 3 SEM micrograph of the coupons at advanced stages of erosion impacted 
through a) 600 µm, b) 400 µm, and c) 200 µm nozzle sizes 

 

Damage characterization and erosion mechanisms 

Material removal behavior can be characterized at different stages of erosion via SEM and 

AFM as stated in Chapters 2, 3, and 4 in terms of craters width and depth, cracks 
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nucleation/propagation mode, sub-tunnel formation, and material removal behavior. 

Quantification should be done in terms of crack size and inclination as well as erosion rate 

and roughness calculation in order to compare the coupons in different conditions so that the 

influence of droplet size on erosion rate and mechanisms can be obtained. 

  

 





 

ANNEX II 
 
 

Surface treatment influence on water droplet erosion resistance on Ti-6Al-4V 

As explained in section 10.5, surface treatments selected for this study are LSP and LPB. 

Coupons were made of forged Ti-6Al-4V alloy, LSP and LPB treated to compare with 

untreated coupon. LSP was performed on the coupons with two different conditions: two 

layers of peening (standard LSP) and three layers of peening (heavy LSP). Two different 

conditions of LPB treatment were also applied on the coupons: High Load Parameters (HLP) 

and Low Load Parameters (LLP). The coupons were then water eroded under the conditions 

of 350 m/s impact velocity and 600µm droplet size at Alstom, Switzerland.  

 

Base material studies 

Characterization of the base material microstructure was done on the coupons illustrated in 

Fig-A II-1 for LPB coupons. It should be noted that base material characterization as well as 

erosion behavior of the untreated forged Ti-6Al-4V were thoroughly investigated in this 

work as presented before. LSP coupons present the same microstructure and texture as the 

forged untreated Ti-6Al-4V discussed in article2, chapter 3, taken from the same part. The 

LPB coupons, however, present globular microstructure with some area of elongated grains 

as well. Texture evaluation is also needed. 

 

 

Figure-A II- 1 SEM micrograph of forged LPB microstructure a) 
lower and b) higher magnification 
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Hardness measurements 

Hardness and residual stress measurements provide the information of the surface 

modification depth so that the relative information to the erosion damage on the treated zone 

can be achieved.  

 

Microhardness profiles were performed on both LSP and LPB coupons on cross sections 

(Figs-A II-2 and 3) in order to relate the erosion behavior to the depth of treated zone in term 

of hardness. The hardness value should also be obtained on erosion direction so that the 

cumulative hardness that might influence the erosion behavior can be obtained. Each of the 

hardness values is the average of five indentations and the measurements were conducted at 

ETS using the Clemex CMT microhardness indenter with 500N load. 

 

It is realized from the microhardness profiles that there is a general increase in hardness 

values under the surface treatments; however, the amount of increase is not as significant in 

LPB coupons as in LSP coupons. 

 

 

Figure-A II- 2 Microhardness profiles of the LSP coupons, a) standard LSP, and b) 
heavy LSP 
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Figure-A II- 3 Microhardness profiles of the LPB coupons, a) LLP, and b) HLP 

 

Residual stress measurements 

Residual stress measurements are carried out on the surface treated samples at ETS through 

X-ray diffraction and progressive electro-polishing. Measurements were done on two 

directions; longitude direction (LD) and transvers direction (TD) and the values were 

corrected using ANSYS (Savaria et al. 2012). The measurements reveal the depths and 

magnitudes of residual stresses induced by surface treatments so that they can be related to 

the erosion rate and material removal mechanisms. The residual stress values are illustrated 

in Figs-A II-4 and 5 for LSP and LPB coupons. 

 

 

Figure-A II- 4 Residual stress measurements for LSP coupons, a) standard LSP, and b) 
heavy LSP 
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Figure-A II- 5 Residual stress measurements for LPB coupons, a) LLP, and b) HLP 

 

Material removal behavior and erosion curve 

Interrupted erosion rig tests were carried out on the coupons up to the advanced stages of 

erosion as plotted in Fig-A II-6. The erosion rate can be obtained using the provided data for 

each stages of erosion to analyze the erosion behavior and the effect of surface modification 

on erosion mechanism and kinetic of the material removal. The erosion behavior should be 

investigated through the whole process meaning from initiation of the damage to the 

advanced material removal; however, with the focus on earlier stages where more likely there 

is an influence of surface treatments. 

 

 

Figure-A II- 6 Cumulative mass loss vs. impingement number  
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Macroscopic characterization 

Macroscopic analyses should be conducted through observation from above the coupons to 

realize the erosion lines widths as well as from cross sectional view to investigated the depth 

of erosion damage and sub-tunnels formation through progressive polishing. 

 

Widths of the erosion damage were measured for LSP and LPB coupons as illustrated in 

Table-A II-1. It shows that LPB coupons present smaller erosion damage width (almost half 

of the LSP coupons). Also no significant decrease were observed in damage width from low 

parameter to high parameter LPB coupons, neither for LSP coupons from standard to heavy 

treatments. Depth of the damage also needs to be investigated and compared to the untreated 

coupons. 

 

Table-A II- 1 Width of the erosion line 

Standard LSP Heavy LSP LLP LPB HLP LPB 

1.12± 0.07 mm 1.13±0.05 mm 545 μm 577μm 

  

Microscopic characterization and cracks quantification 

Micro-analyses of the erosion features such as crack nucleation, propagation mode and 

material removal behavior needs to be done on the coupons to identify the erosion 

mechanisms and the influence of surface treatments on erosion behavior. 

 

Cracks studies as discussed in the articles, chapter 2, 3, and 4, give a quantified insight on the 

damage dependence on the material characteristics and surface treatments influence. Cracks' 

size and inclination were measured for LPB coupons presented in Fig-A II-7. The similar 

studies should be done on LSP coupons and then compared to the untreated one to 

investigate the influence of surface treatments on cracks behavior and material removal 

mechanisms. 
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Figure-A II- 7 a) cracks size and b) cracks inclination for LLP and HLP coupons



 

 

APPENDIX I 

Erosion mechanisms of rolled and forged Ti-6Al-4V presented at EPRI/RSE erosion 

conference, June 2012 
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APPENDIX II 

Crack quantification methods 

The quantification method in this work is introduced for the first time, presented in the 

chapter two. It is noteworthy to explain it in detail here since it is not mainly addressed 

previously. The idea lies on identifying the dependence of the induced damage to the base 

material characteristics typically microstructure through measurements of cracks size and 

inclination. Therefore, images of each observed crack along the erosion craters is taken at 

high magnification via SEM. Rules in the measurement of both crack features were defined 

in order to normalize the evaluation (Table- Ap II-1). Indeed, many different types of crack 

were observed. The size of the crack (L) is sum of the segments plotted on each crack and Ɵ 

illustrates the way of inclinations measurement. As shown in table Ap II-1, if the crack 

changes its direction, depending on the length of the segments, the longest segment is 

considered for the measurement of the inclination. 

 

Table- Ap II- 1 Measurement of crack size and inclination for 
various crack types 
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