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CONTRIBUTION À L’AMÉLIORATION DE LA PRÉCISION DES ROBOTS 
SÉRIELS 

 
Albert NUBIOLA BATLLE 

 
RÉSUMÉ 

 
Le but de la présente étude est de contribuer à l’amélioration de la précision absolue des 
robots manipulateurs sériels à six degrés de liberté. Ces méthodes consistent à identifier les 
valeurs des paramètres du robot, en vue d’améliorer la correspondance entre le robot réel et 
le modèle mathématique utilisé par son contrôleur. Le modèle du robot étalonné ajoute des 
paramètres d’erreur au modèle nominal; ces paramètres correspondent aux erreurs 
géométriques et au comportement élastique du robot. 
 
Les méthodes développées se concentrent sur les systèmes de mesure à faible coût. Le 
premier travail fait une comparaison entre un étalonnage robot fait avec un laser de poursuite 
(« laser tracker ») et une caméra stéréo (MMT optique). L’amélioration de la précision est 
validée en utilisant une barre à billes pour chacune des deux méthodes d’étalonnage. Le 
résultat de l’étalonnage est le même pour les deux méthodes tandis que le prix d’un laser de 
poursuite est plus que deux fois le prix d’une caméra stéréo. La méthode est validée avec un 
robot ABB IRB 120, un laser de poursuite Faro ION, et une caméra stéréo C-Track de 
Creaform. Une barre à billes Renishaw QC20-W permet de valider la précision obtenue de 
manière indépendante. 
 
Un système de mesure innovateur qui permet de mesurer un ensemble de poses est décrit à la 
deuxième partie de la thèse. Ce dispositif est basé sur une approche d’hexapode connu (la 
plateforme Stewart-Gough). Une plaque doit s’attacher à la base du robot et une autre à 
l’outil; chaque plaque contient trois supports magnétiques. Ce système permet de mesurer 
144 poses de l’outil par rapport au support de la base en prenant six mesures de la barre à 
billes pour chaque pose. La précision tridimensionnelle de ce dispositif est 3.2 fois la 
précision de la barre à billes QC20-W, soit ± 0.003 mm. Dans la troisième partie de cette 
thèse, on utilise ce nouvel système de mesure 6D pour faire un étalonnage absolue d’un 
robot. Le robot est étalonné dans 61 configurations et la précision de positionnement absolue 
est validée avec un laser de poursuite Faro dans environ 10,000 configurations de robot. 
L’erreur de distance moyenne est améliorée de 1.062 mm à 0.400 mm dans 50 millions de 
pairs de mesures dans tout l’espace de travail du robot. A titre comparatif, le robot est aussi 
étalonné avec un laser de poursuite et la précision est validée dans les mêmes 10,000 
configurations. 
 
Mots clés: étalonnage de robots, robots sériels, précision absolue. 
 





 

CONTRIBUTION TO IMPROVING THE ACCURACY OF SERIAL ROBOTS 
 

Albert NUBIOLA BATLLE 
 

ABSTRACT 

 
The goal of the present study is to improve the accuracy of six-revolute industrial robots 
using calibration methods. These methods identify the values of the calibrated robot model to 
improve the correspondence between the real robot and the mathematical model used in its 
controller. The calibrated robot model adds error parameters to the nominal model, which 
correspond to the geometric errors of the robot as well as the stiffness behavior of the robot. 
 
The developed methods focus on using low cost measurement equipment. For instance, the 
first work makes a comparison between a robot calibration performed using a laser tracker 
and a stereo camera (MMT optique) separately. The accuracy performance is validated using 
a telescoping ballbar for each of the two methods. While the calibration result is the same for 
both methods, the price of a laser tracker is more than twice the price of a stereo camera. The 
method is tested using an ABB IRB120 robot, a Faro ION laser tracker, and a Creaform C-
Track stereo camera to calibrate the robot. A Renishaw QC20-W ballbar is used to validate 
the accuracy. 
 
A novel measurement system to measure a set of poses is described in the second work. The 
device is an extension of a known approach using an hexapod (a Stewart-Gough platform). 
One fixture is attached to the robot base and the other to the robot end-effector, each having 
three magnetic cups. By taking six ballbar measurements at a time, it is possible to measure 
144 poses of the triangular fixture attached to the robot end-effector with respect to the base 
fixture. The position accuracy of the device is 3.2 times the accuracy of the QC20-W ballbar: 
± 0.003 mm. An absolute robot calibration using this novel 6D measurement system is 
performed in the third work of this thesis. The robot is calibrated in 61 configurations and the 
absolute position accuracy of the robot after calibration is validated with a Faro laser tracker 
in about 10,000 robot configurations. The mean distance error is improved from 1.062 mm to 
0.400 mm in 50 million pairs of measurements throughout the complete robot workspace. To 
allow a comparison, the robot is also calibrated using the laser tracker and the robot accuracy 
validated in the same 10,000 robot configurations. 
 
Keywords: robot calibration, serial robots, absolute accuracy 
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INTRODUCTION 

Industrial robots are mainly conceived and used in repetitive applications, therefore, they 

successfully perform tasks programmed in teach mode. Some examples of typical robot 

applications are pick and place operations, welding, painting, machine tending, palletizing 

and assembly. These types of applications do not require high robot accuracy levels as long 

as the robot path is manually taught; in this case, the accuracy is the same as the repeatability. 

However, there is an increasing demand of applications where the robot should be 

programmed through off-line programming (OLP). Robot paths can be more sophisticated by 

programming a robot using simulator software; therefore, the robot can be used in a more 

extended number of applications, such as inspection, machining, drilling or composite fiber 

placement. Furthermore, the production of the robot does not need to be interrupted. Even 

though robots are highly repeatable, their accuracy is far below their repeatability. Therefore, 

the accuracy of a robot can be improved through robot calibration. 

 

The demand of industrial robots having better accuracy and reduced cost has been constantly 

growing in the past decade, especially in the aerospace sector (Summers, 2005). Today, most 

industrial robot manufacturers and a few service providers offer robot calibration services. 

Furthermore, many industrial robot manufacturers now adopt the ISO 9283 norm, which was 

not the case a decade ago (Greenway, 2000; Schröer, 1999). Nevertheless, the only 

information regarding the positioning performance of an industrial robot continues to be a 

single measure specified as “positioning performance according to ISO 9283”, which 

actually refers to the average unidirectional position repeatability and accuracy at five poses 

obtained from thirty cycles. A few additional performance measures might be obtained from 

certain robot manufacturers (e.g., found in the product manual of the robot), such as linear 

path repeatability and linear path accuracy, but even this information is highly insufficient 

and impossible to use if we want to compare two robots manufactured by different 

companies. 
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The absolute accuracy of a robot is not usually specified by its manufacturer. The accuracy of 

a robot is not important as long as the robot path is manually taught. In this case we only 

want the robot to be repeatable. However, in off-line programming the accuracy becomes an 

important issue since positions are defined in a virtual space from an absolute or relative 

coordinate system. There are also some industrial applications where a robot is used as a 

measurement system, for example, when the robot holds a touch probe to locate the part to be 

processed; in this case, the accuracy of the robot becomes the accuracy of the measurement 

system. 

 

It is required to study the forward kinematic model to improve robot accuracy. Starting with 

the nominal kinematic model of a robot and adding error parameters we can find a 

mathematical model that represents the robot better than the nominal kinematic model. This 

improved model must make the robot more accurate, improving position and orientation 

errors. 

 

This work focuses on finding new robot calibration methods for six-revolute industrial serial 

robots. The calibration methods must give good accuracy results while maintaining the cost 

of the measurement equipment as low as possible. The calibrated robot model used only 

physically meaningful parameters into account, which allows for extrapolation if the robot 

environment is modified, such as the robot payload or the inclination angle of the robot. 

 

This thesis is organized in four chapters. Chapter 1 presents a literature review on robot 

calibration. Chapter 2 compares two different measurement systems to be used in robot 

calibration: a laser tracker and a stereo camera. A novel six-dimensional (6D) measurement 

system is introduced in Chapter 3. This measurement system can measure the pose of 144 

configurations by using only one telescoping ballbar, very accurate 6D measurements can be 

obtained with low-cost one-dimensional equipment. Finally, Chapter 4 performs a robot 

calibration using the novel 6D measurement system. Chapters 2, 3 and 4 have been published 

as articles in scientific journals (A Nubiola et al., 2013; A. Nubiola and Bonev, 2014; Albert 

Nubiola et al., 2013). 



 

CHAPTER 1  
 
 

LITTERATURE REVIEW 

This chapter describes the calibration methods established in the literature, more precisely 

the robot calibration process, the three levels of robot calibration, the kinematic 

representation used for calibrated robots and the optimization methods used for parameter 

identification. The most relevant commercial solutions for robot calibration are also 

mentioned in this chapter, as well as some recent robot calibration results reported in 

literature. 

 

Industrial robots propose an interesting alternative to dedicated machines. A robot should be 

calibrated to get the best production performance. Robots require high accuracy levels to 

perform advanced operations; for example, an accurate robot is much more suitable to 

perform tasks that have been programmed off-line. Furthermore, if we have a stiffness model 

of the robot, we could compensate any forces applied to the robot end-effector (EE), such as 

in a machining operation (Dumas et al., 2011). 

 

Although robot calibration has been studied for more than two decades, the theory remains 

the same as in the early 1980s (Barker, 1983). What is different nowadays is that robots are 

better built (i.e., their repeatability is greater) and the sources of errors, with respect to their 

nominal models, are slightly different. Measurement equipment is also better, i.e., more 

accurate, though certainly not much more affordable. The mathematical models that used to 

work for robots a decade or two ago are no longer optimal for today’s robots. Furthermore, 

the accuracy required today in some potential robot applications is much higher than a couple 

decades ago.  

 

Nowadays, two measures are commonly used for describing the positioning performance of 

industrial robots: repeatability and accuracy. 
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Loosely speaking, pose repeatability is the ability of a robot to repeatedly return to the same 

pose. In robotics, the ISO 9283 defines the repeatability term and it is used by most industrial 

robot manufacturers. The ISO norm actually refers to unidirectional repeatability only, which 

is the ability to return to the same pose coming from the same direction, thus minimizing the 

effect of backlash. Multidirectional repeatability can be twice the unidirectional repeatability 

or even worse. 

 

Repeatability can be improved by either high-precision gear trains (as in most Staübli 

robots), by placing high-resolution encoders at the output of the gear trains or using direct-

drive motors (as in some SCARA robots). However, all of these solutions raise the 

manufacturing cost of an industrial robot. 

 

Loosely speaking, volumetric accuracy (also called absolute accuracy) is the ability of a 

robot to attain a pose with respect to a reference frame. Since identifying such a reference 

frame is not always simple with a robot (for example, it might require using a touch probe), 

accuracy is most typically tested in relative measurements, e.g., distance accuracy is the 

ability of the robot to displace its tool center point (TCP) a prescribed distance. 

 

Robot accuracy is affected by the same factors as multidirectional repeatability; it is 

obviously lower bounded by the multidirectional repeatability of the robot. Accuracy is 

influenced mostly by geometric inaccuracies and elasticity, present in both the links and the 

transmissions. Fortunately, these two types of errors can be modeled to some extent in the 

robot calibration process (Abderrahim et al., 2007). 

 

There are five factors that cause robot errors (Andrew Liou et al., 1993; Karan and 

Vukobratovic, 1994): environmental (such as temperature or the warm-up process), 

parametric (for example, kinematic parameter variation due to manufacturing and assembly 

errors, influence of dynamic parameters, friction and other nonlinearities, including 

hysteresis and backlash), measurement (resolution and discretisation of joint position 
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sensors), computational (computer round-off and steady-state control errors) and application 

(such as installation errors). 

 

Robot calibration can be divided into several categories and subcategories. The following 

two sections compare an absolute calibration with a relative calibration and an open-loop 

with a closed-loop calibration respectively. 

1.1 Absolute vs. relative calibration 

An absolute calibration allows attaining accurate positions with respect to a physically 

measurable frame. A relative calibration disregards the actual location of the robot base 

whereas an absolute calibration takes into account where the robot base is placed. In other 

words, if we want more than one robot to share the same coordinate system they need to be 

“absolute” calibrated to agree with the same “absolute” reference frame (also called world 

frame). An absolute calibration is not needed if we are positioning the robot relatively to a 

local frame (also called object or user frame), so we need a tool, such as a touch probe, which 

allows us to locate objects in the robot working space. An absolute calibration needs six more 

parameters than a relative calibration because we need to represent the relative frame with 

respect to an absolute frame. 

1.2 Open-loop vs. closed-loop calibration 

In short, a closed-loop calibration uses the robot encoders as a measurement system and an 

object of precisely known geometry is used as a reference to perform calibration. Whenever 

we use a measurement system to directly measure the pose of the robot tool, such as a laser 

tracker, we apply an open-loop calibration. On the other hand, a closed-loop method is used 

if the robot tool is constrained to lie on a reference object of precisely known geometry. This 

method only needs a switch such as a touch probe to detect the contact with an obstacle, 

when the robot is placed at the contact position the joint values given by the encoders are 

registered. 
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We can find several methods used for measuring robot position as the measurement system 

technology has improved a lot in the past two decades. Some examples of open-loop methods 

are acoustic sensors (Stone and Sanderson, 1987), visual systems such as cameras (Meng and 

Zhuang, 2001; Puskorius and Feldkamp, 1987), coordinate measuring machines (CMM) (M 

R Driels et al., 1993; Lightcap et al., 2008; B. W. Mooring and Padavala, 1989) and, of 

course, laser tracking systems (Shirinzadeh, 1998). There has also been some research work 

that allows a laser tracking system to identify the 6 parameters of the tool pose (Vincze et al., 

1994). 

 

One example of closed-loop calibration is the MasterCal commercial product from American 

Robot, where the constraints are the diameter of two spheres and the distance between their 

centers. Other examples are the use of planar constraints (Ikits and Hollerbach, 1997), or 

point constraints (Meggiolaro et al., 2000) or (Houde, 2006). 

1.3 Robot calibration process 

A robot calibration process is divided in four sequential steps (Roth et al., 1987): modeling, 

measurement, identification and correction. The modeling step consists of finding a model 

that represents the real robot through its kinematics equations. It is the robot model that takes 

into account the various error parameters to calculate the pose with respect to the robot joints. 

Data from the real robot allows generating the equations that the identification algorithm will 

use to find an improved robot model, better than the nominal kinematic model. 

 

It is important to differentiate tool calibration from robot calibration. We may usually 

calibrate the tool at the same time as the robot is being calibrated. However, a separate tool 

calibration must be taken into account when the tool which we want to be precisely 

positioned is not the one that we used during calibration. 

 

Through robot calibration we obtain a new model that can represent the real robot better than 

the nominal model. The nominal model is the one used in the robot controller, and for 

decoupled robots, with the so-called inline wrists (the axes 4, 5 and 6 intersect at one point), 
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the inverse kinematics of the nominal model is simple and can be solved analytically. A robot 

calibration implies error parameters inserted to design parameters (nominal model) that 

represent the real source of errors. These parameters are called error parameters which must 

be found by the calibration method. 

 

Although optimization algorithms are not primordial when calibrating a robot, they can be 

very helpful in improving precision if they are used appropriately. Some optimization 

algorithms are described in Section 1.6. 

 

A robot calibration can be divided in three levels (B. Mooring et al., 1991). The calibration 

level will be defined depending on which real error parameters the model represents. 

1.3.1 Level-1 calibration 

The goal in a level-1 calibration is to properly define the relationship between the desired 

joint position (θd) and the real joint position (θr). In the nominal model we consider that they 

are both the same, however, in real life we have a more complex relationship where the real 

joint positions are a function of the desired joints f ( )r dθ θ= . This relationship may be 

difficult to obtain properly but we can reach good approximations with linear functions in a 

reduced workspace. The most basic linear relationship would be:  1 0r dk kθ θ= + . (1.1) 
Where k0 is the offset constant and is close to zero whereas k1 is the proportionality constant. 

A level-1 calibration is also known as a “joint level” calibration. 

1.3.2 Level-2 calibration 

A level-2 model is defined as a robot kinematic calibration. That means that some, or all, of 

the geometric parameters are modelled. Distance and angle offsets are added as error 

parameters to the robot’s nominal design. At the same time, a level-2 model can include a 

level-1 model to model the behavior of the joints. 



8 

 

When an entire kinematic calibration is needed we can identify the robot’s joint axes and 

extract the kinematic parameters placing frames that relate each joint axis with the next one. 

The calibration needs the virtual joint axes in the same absolute reference frame and the 

geometry of the end-effector referred to the robot’s tool frame. To extract the virtual axes we 

must set the robot at the home position, and moved each joint one by one taking measures by 

intervals (B. Mooring et al., 1991). A circle that minimizes the sum of error squares can fit 

these points. From these circles we can extract the axes. 

 

This idea was developed independently by several researchers. Once we have the virtual 

robot axes there are basically two methods to extract the kinematic parameters: Stone’s 

method and Sklar’s method (B. Mooring et al., 1991). Stone’s method (Stone and Sanderson, 

1987) finds the kinematic model known as “S-model” (6 parameters per joint) and Sklar’s 

method finds the D-H representation of the robot placing the frames at the appropriate place. 

Both methods are explained and compared in (B. Mooring et al., 1991). 

1.3.3 Level-3 calibration 

A level-3 model takes into account any non-geometrical error sources. Non-geometrical 

sources of errors can be stiffness, friction, backlash, dynamical parameters, etc. A level-3 

model usually contains level-2 and level-1 error parameters. Most common robot calibrations 

include a full kinematic calibration (level-2) and sometimes a few parameters describing the 

stiffness of the robot’s arm (level-3) (Aoyagi et al., 2010; Dumas et al., 2011; Lightcap et al., 

2008; Marie et al., 2013; Saund and DeVlieg, 2013). 

1.4 Kinematic modeling 

The best-known four-parameter representation model in robotics is the one given by Denavit-

Hartenberg (Denavit and Hartenberg, 1955). This so-called D-H notation is widely used in 

robotics. There is also a very similar and well-known representation commonly referred to as 

Denavit-Hartenberg Modified (D-H M) notation, which is the notation defined by (Craig, 
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1986). Both representations model the kinematic parameters of the robot, the main difference 

remains on the order of the geometrical transformations. Both make a translation and rotation 

over the X and Z axis (one translation and one rotation each). The D-H notation starts with a 

rotation about the X axis while the D-H M notation starts with a rotation about the Z axis 

(translation and rotation around the same axis can be alternated with no final effect). For a 

detailed review of the direct kinematic modeling, see (Craig, 1986; Paul, 1981; Slotine and 

Asada, 1992). 

 

The D-H notation has been used by several researchers for robot calibration, such as 

(Veitschegger and Wu, 1987; Wei and De Ma, 1993). However, this representation 

introduces singularity problems when two consecutive axes are parallel or almost parallel 

(Hayati and Mirmirani, 1985). The complete and parametrically continuous (CPC) model 

eliminates this problem (Hanqi Zhuang et al., 1992) by representing the relationship between 

each link with three translations and one rotation instead of two translations and two 

rotations. Similarly, the product of exponentials (POE) representation makes the error 

parameters vary smoothly with changes in joint axes so that no special descriptions are 

required when consecutive joint axes are close to parallel (Brockett, 1984; I.-M. Chen et al., 

1997; Okamura and Park, 1996; Park, 1994). 

 

Finally, other types of representations have also been used. There is a five-parameter 

representation for prismatic joints (Hayati and Mirmirani, 1985) or even six parameter 

representation (Stone and Sanderson, 1987), but if we insert more than four parameters the 

calibration problem becomes redundant. 

1.5 Inverse kinematics computation 

Solving the inverse kinematics of a decoupled 6R serial robot is straightforward, and it can 

be achieved using analytical methods (Craig, 1986). For a calibrated robot it is also necessary 

to find a way to calculate the inverse solution for a given model and pose, also known as the 

inverse displacement problem (IDP). Modifying the robot model’s parameters within the 

robot controller is usually difficult or impossible depending on the complexity of the model 
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chosen. Therefore, the best solution is to use fake targets which modify the real coordinates 

by a slightly modified target which takes into account the nominal model calculations of the 

robot controller.  

 

Once the robot model is defined, we should describe how we are going to solve the inverse 

solution of the calibrated robot. There are many solutions available in the literature but not all 

of them are suitable to all robot models. Depending on what level of calibration we use we 

will need one or another inverse solution. Inverse kinematics calculation can be divided in 

two main types: analytical and numerical. 

1.5.1 Analytical 

We should use an analytical solution to the IDP for the calibrated robot model whenever 

possible. However, as we add error parameters to our basic kinematic model, the 

simplifications that we can usually do on a nominal model can no longer be done due to the 

complexity of the equations. A semi-algebraic method to solve the IDP was found to simplify 

a level-2 model (geometric model) into a 16th degree polynomial (Angeles, 2007), at this 

point numerical computations are needed to obtain the solution. To the best of our 

knowledge, there has not been any work that obtains an analytical solution for a level-3 

calibration. 

1.5.2 Numeric 

Iterative solutions offer an easy way to solve complex problems at a cost of computation 

time. Obviously, when an algebraic solution cannot be found, an iterative method must be 

applied. This numerical method approaches the solution at each iteration. In some cases, the 

robot model can be seen as a black box that can only compute the forward calculation 

obtaining the pose given the joint angles. Industrial robots have path motion planners that cut 

a path (trajectory) into a large number of targets and the inverse solution must be applied to 

each point of the path. 
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Any generic optimization method could be applied to solve the IDP, such as the optimization 

algorithms used to obtain the modelled error parameters; however, better optimization 

methods exist as the problem is more specific. In the worst case we have to find as many 

parameters as the number of joints that the robot has. 

 

Numerical methods can be divided in three types (N. Chen and Parker, 1994): (1) Newton-

Raphson methods, (2) predictor-corrector type algorithms, and (3) optimization techniques 

using the formulation of a scalar cost function. Examples of the first method can be found in 

(Angeles, 1985), where a modified Newton-Gauss method is used. Such methods involve the 

computation of the Jacobian matrix. A comparison between Newton-Raphson methods and 

predictor-corrector-type algorithms is provided in (Gupta and Kazerounian, 1985), where the 

authors conclude that the latter are faster. 

 

An example of a predictor-corrector algorithm is given in (Tsai and Orin, 1987). This type of 

method often requires a large number of iterations, and does not always converge. Some of 

these algorithms also require computation of the Jacobian matrix, like the algorithm proposed 

in (Goldenberg et al., 1987), which combines a predictor-corrector type of algorithm with a 

least-squares optimization technique, or the closed-loop method (Siciliano, 2009) where the 

inverse kinematic problem is solved as a control problem for a simple dynamic system. 

However, optimization techniques are usually complex, and several iterations are needed to 

achieve a solution. 

 

Two approaches for level-2 calibrations are proposed in (Vuskovic, 1989) using the nominal 

inverse kinematics. However, the solution becomes complex when the number of error 

parameters increases. The resolution of a nonlinear programming problem is divided into two 

phases in (L. C. T. Wang and Chen, 1991) for greater efficiency. 

 

The amount of computing time to solve the IDP is greatly improved in (N. Chen and Parker, 

1994) by calculating a so-called pose shift by iteratively adding and subtracting computed 

poses based on a truncated-series expansion of the desired pose. However, we realized that 
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their method could be further improved by using pose multiplications based on a geometric 

principle, instead of adding and subtracting the poses of the truncated-series expansion of the 

desired pose. 

 

Finally, we introduced a new geometrical approach to solving the IDP (Albert Nubiola and 

Bonev, 2014). Similar to (N. Chen and Parker, 1994), our method does not need the 

computation of the Jacobian matrix or derivatives of any kind. Up to eight solutions can be 

obtained from the sixteen possible solutions of the IDP. 

1.6 Optimization algorithms 

Once we have defined a robot model we must obtain the error parameters by taking 

measurements from the real robot. The most suitable optimization algorithms for most types 

of robot models are nonlinear and unconstrained. Plenty of algorithms, more precisely the 

genetic algorithm (K. Wang, 2009), represent small variations of kinematic parameters and 

the end-effector error is represented by a fitness function. At every generation, a population 

of parameters is created and brings a better solution to replace the existing solution. This 

technique does not need computationally expensive calculations such as the inverse of the 

Jacobian matrix. 

 

Other alternatives for robot calibration have been reported in the literature, such as the 

Taguchi method (Judd and Knasinski, 2002; Karan and Vukobratovic, 1994) or (Judd and 

Knasinski, 2002). The work (H Zhuang and Roth, 2002), for example, uses different methods 

to identify the unknown error parameters (similar to the CPC model). 

 

Optimization methods can be mainly classified in two types: line-search methods and trust-

region methods. We can also describe an optimization method that differs from the first two 

types: the Nelder-Mead method.  
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1.6.1 Line-search methods 

There are different types of line-search optimization methods. They differ by the way they 

compute the line search direction. We can find the following line-search methods: Newton’s 

method, gradient descent method and Quasi-Newton method (Bonnans and Lemaréchal, 

2006). 

 

Newton’s method is also known as Newton-Raphson method. Newton algorithms are 

implemented in Matlab’s optimization toolbox in the functions fsolve, fminunc and 

lsqcurvefit. 

1.6.2 Trust-region method 

The trust-region method is also known as restricted step method. It handles the case when the 

Jacobian matrix is singular and it is useful when the initial guess is far from a local 

minimum. This method approximates the objective function with a simpler function in the 

neighborhood of the solution at each iteration. 

 

Trust region methods are dual to line search methods. The first one chooses a step size before 

a search direction while the second one chooses a search direction and then a step size. 

1.6.3 Nelder-Mead 

This optimization algorithm was proposed by John Nelder and Roger Mead (Nelder and 

Mead, 1965). It is also called simplex method (a non linear method that is different from the 

known linear simplex method). It evaluates the objective function over a polytope in the 

parameter space. If we have two parameters, the polytope is a triangle as we are in a 2D 

plane. If there are n-dimensions, we have an (n+1)-sided polytope. 

 

The algorithm compares these n+1 points and deletes the worst one. The worst point is 

replaced by its reflection through the remaining points in the polytope. This algorithm is 
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simple and does not need gradient information but it takes time to achieve a solution when 

we have more than six variables. This method is also implemented in Matlab’s optimization 

toolbox, in the function fminsearch. 

1.7 Commercial solutions for robot calibration 

Most robot manufacturers offer calibration as an option. For example, in the case of ABB 

Robotics, most of its robots can be calibrated at the factory with the CalibWare software for 

about C$2,000 per robot, using a Leica laser tracker, a single SMR (Spherically-mounted 

reflector) and around 40 error parameters. However, ABB does not offer an on-site 

calibration service, unlike KUKA. ABB also has a tool to improve resolver offsets due to 

motor exchange and maintenance: the calibration pendulum. 

 

As an example, L-3 MAS Canada at Mirabel use Motoman industrial robots and have them 

calibrated on-site by Motoman, who use a third-party calibration software (from Dynalog). 

Similarly, Messier-Dowty at Mirabel use three KUKA industrial robots and have them 

calibrated on-site by KUKA. 

1.7.1 Dynalog 

Dynalog is a Detroit-based privately held company founded in 1990 by Dr. Pierre De Smet, 

then professor at Wayne State University. Dynalog is the most renowned expert in robot 

calibration. While the company offers several products improving the accuracy of industrial 

robots, the two of greatest interest are the CompuGauge hardware and the DynaCal software. 

The first is a 3D (x, y ,z) measurement device based on four string encoders that intersect at 

one point. Dynalog claims that the volumetric accuracy of the CompuGauge measurement 

device is 0.150 mm and its repeatability is 0.020 mm inside a cubic working volume of side 

1.5 m. The price of this device is at least US$9,000, but while not expensive, the device is 

quite bulky and difficult to install. 
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Figure 1.1 Robot calibration using  
the CompuGauge device1 

DynaCal is the software for robot calibration that accepts measurement data from the 

CompuGauge device or from any other precise 3D or 6D measurement device. The software 

and the adapters for fixing SMRs are sold to industry for more than US$40,000. While all 

demonstrations of DynaCal show the use of a laser tracker and a single SMR, it seems that 

DynaCal can also work with three SMRs, thus calibrating the complete pose of the end-

effector. 

 

Dynalog also has a specific patented product to calibrate robots that is used for part 

inspections (De Smet, 2001). Dynalog offers a complete robot library which makes it 

possible to calibrate many robots from different brands. 

1.7.2 Nikon Metrology 

Metris International Holding was purchased by Nikon in 2009 to create Nikon Metrology. 

Metris, a market leader for CMM based laser scanning, was founded in 1995 and is 

                                                 
 
1 http://www.dynalog-us.com/images/imageLibrary/_ClientAndPartner/CompuGauge.jpg 
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headquartered in Belgium. In 2005, Metris acquired Belgium-based Krypton, which was 

specializing in robot calibration since 1989. 

 

Nikon Metrology offers a large number of metrology systems, but the two that are of 

particular interest to us are the K-Series Optical CMM and the ROCAL software. The first 

one is basically a three-camera system that measures the spatial coordinates of up to 256 

infrared LEDs (thus, it can provide 6D measurements). The volumetric accuracy of the K-

Series Optical CMM is better than 0.090 mm which is close to the laser tracker accuracy and 

certainly sufficient for robot calibration. Its price is about C$80,000. 

 

Figure 1.2 Nikon K-Series optical CMM2 

ROCAL is software for robot calibration, very similar to Dynalog’s DynaCal. It seems that 

some of the differences are a better integration with some robot brands (KUKA, Mitsubishi 

and COMAU) and the software’s incompatibility with measurement devices other than the 

K-Series Optical CMM. The software also relies on complete pose measurement data. 

                                                 
 
2 http://www.nikonmetrology.com/var/ezwebin_site/storage/images/products/portable-measuring/optical-
cmm/k-series-optical-cmm/179510-2-eng-GB/K-Series-Optical-CMM.jpg 
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1.7.3 Teconsult 

Teconsult is a Germany based university spin-off offering a unique 3D optional measurement 

device called ROSY and the robot calibration software that goes with it. Teconsult was 

founded by Prof. Lukas Beyer in 1999. ROSY is a measuring tool based on a videometric 

principle with two digital CCD cameras. Two cameras are used in order to get a more 

uniform volumetric accuracy. The tool is attached to the robot flange and is used to measure, 

with respect to the robot flange frame, the spatial position of the center of a small white 

ceramic ball that is fixed with respect to the robot’s base. The ROSY device itself is 

calibrated on a CMM before shipment. 

 

The calibration procedure consists of reorienting the tool and measuring the position of the 

ball for 40 different poses (Beyer and Wulfsberg, 2004), for a single location of the ceramic 

ball. According to reference (Beyer and Wulfsberg, 2004) the volumetric accuracy of ROSY 

is ±0.020 mm inside a spherical measurement range of ±2 mm. However, ROSY is offered in 

several different sizes, and there is no information whether that volumetric accuracy is for a 

small or for a large ROSY device. 

 

Figure 1.3 Rosy measurement device3 

                                                 
 
3 http://www.teconsult.de/sites/default/files/styles/header_content/public/1304_rosy1_695_240_0.jpg 
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ROSY is rather bulky and requires removal of the end-effector from the robot. Furthermore, 

it requires several relatively thick cables to be run along the robot arm. A complete ROSY 

system for tool, base and robot calibration is about €17,500 (US$21,000). However, it seems 

that Teconsult does not offer any means to calculate the inverse kinematics. 

1.7.4 Wiest AG 

Wiest is another Germany based university spin-off offering another unique 3D optical 

measurement device called LaserLAB and the robot calibration software that goes with it. 

Wiest AG was founded by Dr. Ulrich Wiest who has been working in the field of robot 

calibration since 1996 (he obtained his doctoral degree in 2001). 

 

LaserLAB is patent-pending (Wiest, 2003) and consists of five small-range one-dimensional 

laser distance sensors mounted to a common frame and with their lasers intersecting at a 

common point. A ball is attached to the end-effector of the robot while the LaserLAB device 

is stationary. By measuring the five distances to the ball (when the center of the ball is 

approximately at the lasers intersecting point), the spatial coordinate of the center of the ball 

with respect to the LaserLAB are determined. The repeatability of the LaserLAB is 

±0.020 mm, while its volumetric accuracy is better than ±0.100 mm (typically ±0.035 mm), 

inside a measurement range of 39.5 mm × 38.5 mm × 36.5 mm. 
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Figure 1.4 Robot calibration using LaserLAB4 

One disadvantage of the LaserLAB is the high likelihood of the sphere colliding with the 

measurement device while the robot is re-oriented. Furthermore, the only way to measure 

with a wide range of robot configurations is to use extension rods of different lengths at the 

end of which a sphere is mounted, rendering that solution practically inconvenient and 

therefore realistically inaccurate. 

1.7.5 American Robot Corporation 

American Robot Corporation (ARC) is a US company based in Pittsburg, Pennsylvania. 

ARC was established in 1982 and is a manufacturer of industrial robot controllers, industrial 

robots, and automation systems. It has three major product lines, the Universal Robot 

Controller, the Merlin articulated six axis robot, and the Gantry 3000 modular gantry robot. 

ARC also offers a robot calibration software called MasterCal, which makes use of a 

standard touch probe attached to the flange of a robot and two fixed precision balls separated 

by a precisely known distance. 

                                                 
 
4 https://www.youtube.com/watch?v=GywDyZIVwmI 
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Figure 1.5 MasterCal calibration setup5 

The MasterCal calibration procedure was invented and patented by Mr. Wally Hoppe 

(Hoppe, 2011), a Group Leader and Senior Research Engineer at the University of Dayton 

Research Institute in Ohio, USA. The basic concept for Mr. Hoppe’s calibration method is an 

extension of (Meggiolaro et al., 2000), where a single ball-in-socket mechanism was used. 

Mr. Hoppe’s institution had a huge military contract for robot inspection of aircraft engines 

and this is how he ended up devising a robot calibration method (he no longer works in 

robotics). In the course of the patent application, he eventually came across some inventions 

that are pretty close to this one, although he worked with his lawyer to demonstrate that they 

do not infringe. The closest method to his invention is by ABB (Snell, 1997). That method 

uses a single large-diameter precision ball of known diameter and a touch probe. Another 

very close invention is (Knoll and Kovacs, 2001), which is very general and does not give a 

lot of detail. 

                                                 
 
5 http://www.americanrobot.com/images_products/kinecal_image02_t.jpg 
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1.8 Recent calibration results reported in the literature 

Research in robot calibration has always been focused on level-2 and level-3 calibrations. A 

typical example of a level-3 calibration using a stiffness model is (Lightcap et al., 2008), that 

applies a torsional spring model to represent the flexibility of the harmonic drives by 

physically meaningful parameters, this model takes into account the flexibility caused by the 

end-effector. The model improves the mean / maximum error values from 1.77 mm / 4.0 mm 

to 0.55 mm / 0.92 mm for a Mitsubishi PA10-6CE when loaded at 44 N (validated with only 

ten measurements on a CMM). This method is more simple than the one proposed in (Khalil 

and Besnard, 2002) as it does not need the computation of the generalized Jacobian. Also 

(Caenen and Angue, 1990) represented the angular deformation caused by gravity force. A 

similar method exists dealing with joint angle dependent errors (Jang et al., 2001).  

 

An example of a kinematic calibration is given in (Ye et al., 2006), where an absolute 

calibration was performed to an IRB 2400/L with a Faro Xi laser tracker. The mean position 

error is reduced from 0.963 mm to 0.470 mm for twenty measurements (maximum values are 

not given, the area of calibration is not given either). 

 

Another example of absolute calibration with a laser tracker is (Newman et al., 2000). Using 

a Motoman P8 robot, the 27 error parameters from their kinematic model are identified by 

measuring 367 targets moving each axis separately. The kinematic model that gave best 

results (for a validation of 21 measurements) corresponds to a “circle-point” algorithm that 

improves the RMS error from 3.595 mm to 2.524 mm. 

 

We can also mention the work performed by (Bai et al., 2003) that uses a modified CPC 

model (MCPC) (H Zhuang et al., 1993) to improve the kinematics of a PUMA 560 with 30 

error parameters and a laser tracker measurement system. Using 25 measures for parameter 

identification and 15 measures for verification they reach a mean position error of 0.1 mm, 

however, when they use a CMM they find that the same position error is 0.4-0.5 mm. The 

CPC model avoids the singularities associated with parallel axes. 
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Other examples of stiffness kinematic models that do not use meaningful parameters are 

(Jang et al., 2001; Meggiolaro et al., 2005). As stated by (Lightcap et al., 2008), it is better to 

use meaningful parameters to be able to extrapolate to unknown charges. 

 

The most recent robot calibration research has been focused on modelling the joint stiffness 

to improve robotic machining applications (Dumas et al., 2011; Marie et al., 2013; Saund and 

DeVlieg, 2013; Sornmo et al., 2012). For example, (Marie et al., 2013) use a level-3 model 

(which they call elasto-geometrical) to improve the robot accuracy in machining, forming or 

assembly applications. The level-3 model contains 27 geometrical error parameters plus 10 

error parameters to model the stiffness behavior of the robot. To test the accuracy 

performance, a KUKA-IR663 robot is calibrated in 126 poses with a payload of 90 kg using 

the Nikon K600-10 optical CMM, the poses are distributed in a vertical plane grid. The robot 

accuracy is validated in another set of 63 poses for a 90 kg load and 60 kg separately, the 

maximum error accuracy of the robot is improved up to 0.371 mm. The robot calibration is 

compared to a fuzzy logic calibration in the vertical plane of interest. Using this fuzzy logic 

calibration the maximum error is improved to 0.183 mm. 

 

Another example that focuses on improving the robot accuracy for machining applications is 

(Sornmo et al., 2012). In this case, the accuracy is not improved through robot calibration but 

by using a piezo-actuated high-dynamic micro manipulator and a Keyence laser sensor LK-

G87 as a tracking system. This paper focuses on improving the surface roughness after a 

machining process. The surface roughness is improved by a factor of 2.7 in the best case 

scenario (from 67.0 µm to 24.5 µm). 

 

We can even find companies that perform robot calibration driving the robot using a custom-

made controller. This is the case of Electroimpact (Saund and DeVlieg, 2013), that calibrate 

a Kuka KR360-2 robot as well as the linear axis replacing the original controller for a 

Siemens 840Dsl CNC controller. 
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Finally, we can find a level-3 calibration using 26 geometrical error parameters plus 4 

parameters to model the stiffness of joints 2 to 5 (Albert Nubiola and Bonev, 2013). The 

ABB IRB 1600-6/1.45 robot is calibrated using a Faro ION laser tracker in 52 configurations 

using three different targets. The maximum position error of the robot is improved from 

2.158 mm to 0.696 mm in 1000 configurations using eight different targets. It is also found 

that the axis 6 has a peculiar error following a Fourier series, probably due to the gear chain 

in the robot wrist. In the product documentation of a calibrated ABB IRB 1600-6/1.45, it is 

stated that the typical mean / maximum positioning accuracy is 0.300 / 0.650 mm. We know 

from Dr. Torgny Brogardh, scientist at ABB Robotics, that this is validated for one tool 

target (apparently the same target used for calibration). However, we do not have more 

information regarding the validation procedure, such as the number of measurement 

configurations. 
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Abstract 

 

The absolute accuracy of a small industrial robot is improved using a 30-parameter 

calibration model. The error model takes into account a full kinematic calibration and five 

compliance parameters related to the stiffness in joints 2, 3, 4, 5, and 6. The linearization of 

the Jacobian is performed to iteratively find the modeled error parameters. Two coordinate 

measurement systems are used independently: a laser tracker and an optical CMM. An 

optimized end-effector is developed specifically for each measurement system. The robot is 

calibrated using fewer than 50 configurations and the calibration efficiency validated in 1000 

configurations using either the laser tracker or the optical CMM. A telescopic ballbar is also 

used for validation. The results show that the optical CMM yields slightly better results, even 

when used with the simple triangular plate end-effector that was developed mainly for the 

laser tracker. 

2.1 Introduction 

It is well known that the accuracy of an industrial robot can be improved through a process 

known as robot calibration (Roth et al., 1987). The first step in this process is to choose a 

theoretical model that is closer to reality than the nominal model used in the robot controller 

(e.g. the wrist axes are no longer concurrent and the gearboxes are flexible in the new 

model). The parameters of this model are then identified by measuring the complete pose or 
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partial pose of the robot end-effector in a set of calibration configurations. In practice, the 

most critical issue is the choice of measurement system, as the latter determines the 

efficiency and cost of the robot calibration process. 

 

The identification process can be performed using a wide range of commercially available or 

custom-designed measurement tools, such as a touch probe and a reference artifact (Besnard 

et al., 2000; Hayati and Mirmirani, 1985), a telescopic ballbar (M.R. Driels, 1993; Juneja and 

Goldenberg, 1997), a small-range 3D (position) measurement device, such as a camera-based 

system (Beyer and Wulfsberg, 2004) and acoustic sensors (Stone and Sanderson, 1987), a 

large-range 3D measurement device (such as a laser tracker (Dumas et al., 2010; Meng and 

Zhuang, 2001; Albert Nubiola and Bonev, 2013; Puskorius and Feldkamp, 1987) or CMM 

(M.R. Driels, 1993; Lightcap et al., 2008; B. W. Mooring and Padavala, 1989)) and a 6D 

(pose) measurement device, such as a camera-based system (Gatla et al., 2007; Meng and 

Zhuang, 2001; Puskorius and Feldkamp, 1987) or a laser tracker with a 6D probe (Boochs et 

al., 2010). 

 

To the best of our knowledge, most industrial robot manufacturers who offer calibration as 

an option use either a laser tracker (one manufactured by Leica, in the case of ABB and 

FANUC) or a 6D optical CMM (Nikon Metrology’s K-series optical CMM, in the case of 

KUKA). Furthermore, at least two commercial robot calibration software packages exist, 

based on 3D or 6D measurement data: DynaCal from Dynalog, and Rocal from Nikon 

Metrology (both companies based in the US). 

 

In practice, two types of commercially available position/pose measurement tools can be 

used for calibrating industrial robots: laser trackers (from Leica, FARO, or API) and optical 

CMMs (from Nikon Metrology, Northern Digital, Metronor, Geodetic Systems, AICON, 

GOM, or Creaform). Laser trackers are more accurate and have a very large measurement 

range, but they are highly sensitive to the ambient conditions (e.g. the air currents present in 

factory hangars) and are extremely expensive (from at least $100,000 US to nearly $200,000 

US or more). Laser trackers generally measure the 3D coordinates of a single point at a time, 
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but they can also be used to measure the complete pose of the robot end-effector in static 

conditions, by measuring three SMRs (spherically mounted reflectors), or, in dynamic 

conditions, by using a special 6D probe for measuring. However, at each moment, a laser 

tracker measures the position or pose of a single body relative to its own reference frame. 

Therefore, vibrations of the factory floor can significantly decrease the accuracy to which the 

position or pose of the robot end-effector is measured with respect to the robot base frame. 

 

In contrast, optical CMMs can measure the pose of the robot end-effector dynamically (i.e. at 

frequencies of 30 Hz or more) with respect to its base. Their measurement volume is smaller 

than that of laser trackers and they are slightly less accurate (though probably not in real 

factory conditions), but they are much less expensive and easier to use. Furthermore, optical 

CMMs can also be used to correct the pose of the end-effector iteratively, as is currently 

done by Nikon Metrology’s Adaptive Robot Control software in conjunction with their K-

series optical CMMs. 

 

Some optical CMMs (e.g. those from Nikon Metrology and Northern Digital) use active 

targets, which are basically infrared LEDs emitting light at prescribed frequencies. Active 

targets are relatively expensive and cumbersome, but have the advantage of being easily 

identifiable (targets are illuminated one at a time) and not sensitive to external light 

conditions. Other systems, such as Creaform’s C-Track, use passive targets, which are 

basically small circular stickers covered with retro-reflective material and costing no more 

than a few cents each. The main advantage of passive targets is that one can use plenty of 

them to build a spatial artifact, the pose of which can be measured with the optical CMM in 

virtually any orientation. 

 

What motivated this work is the question of whether or not an optical CMM that can measure 

the pose of a robot end-effector in any orientation is as efficient as a laser tracker in 

calibrating industrial robots, even in perfect laboratory conditions (where laser trackers have 

the advantage). Of course, a laser tracker can also be used to measure the pose of an object in 

any orientation, but this would either require too much operator intervention during the 
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measurement process, or an artifact with dozens of SMRs that would cost thousands of 

dollars to manufacture. Note that there are commercial 6D tracking devices that can be used 

in conjunction with a laser tracker (e.g. Leica’s T-Mac or API’s SmartTRACK); however, 

these are not only very expensive, but also function in a rather limited orientation range 

(Boochs et al., 2010). In contrast, developing such a spatial artifact out of passive reflectors 

would add only a small fraction to the cost of an optical CMM. 

 

We believe that our work here is the first to compare the efficiency of a laser tracker in 

industrial robot calibration and that of a commercially available optical CMM. In particular, 

we use a FARO laser tracker in conjunction with three SMRs and Creaform’s C-Track 

(launched in 2010), in conjunction with two custom designed artifacts. The robot to be 

calibrated is an ABB IRB 120. This model is ABB’s smallest industrial robot, launched in 

2009, and is one of the few robots for which ABB does not offer factory calibration. We used 

a standard calibration model that takes into account all 25 kinematic parameters, as well as 5 

compliance parameters, for the harmonic gearboxes of axes 2, 3, 4, 5, and 6. These 30 

parameters are identified by linearization of the model in fewer than 50 calibration poses 

obtained through an observability study. Finally, the efficiency of the robot calibration 

process in each of three different setups is validated with a Renishaw telescopic ballbar. 

The three experimental setups used are described in the next section. Section 2.3 describes 

the robot kinematic model, while Section 2.4 shows the sources of non geometric errors and 

summarizes the non kinematic model. The calibration procedure is described in Section 2.5, 

and the results are given in Section 2.6. Our conclusions are presented in Section 2.7. 

2.2 Experimental setups 

Figure 2.1 shows the installation used for calibrating the ABB IRB 120 robot with a FARO 

laser tracker ION. Our laser tracker has only the ADM option, which means that it is slightly 

less accurate (compared to when using the interferometry option) but allows full automation 

of measurements, as the laser beam can be redirected from one SMR to the other without the 

need for manual initialization. The robot was fixed to a heavy steel table which was 

immobilized with about 200 kg of additional load on its lower shelf. An SMR fixed on the 
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table was measured using the laser tracker in various robot configurations, and it was shown 

that the table top does not deflect by more than ±0.010 mm at the SMR’s location for the 

speeds and accelerations used. A special triangular artifact with three 0.5″ SMRs (and nine 

retro-reflective self-adhesive targets on each planar face) was used, and will be described in 

section 2.1. 

 

According to the specifications of our laser tracker, its typical accuracy when measuring the 

length of a 2.3 m horizontal scale bar at a distance of 2 m is 0.022 mm. According to our own 

tests, the largest error when measuring the length of a 1 m scale bar mounted on the end-

effector of our robot and located at various places within the robot workspace is about 

0.060 mm (the mean error being only 0.035 mm). The laser tracker was not moved from the 

position depicted in Figure 2.1 at any time during measurement. 

 

Figure 2.2a shows the installation used for calibrating the robot with Creaform’s C-Track and 

the same triangular artifact. Figure 2.2b shows the fifteen retro-reflective self-adhesive 

targets that were attached to the base of the robot. All measurements with the C-Track (with 

both artifacts) were taken relative to the robot’s base (unlike the case with the laser tracker). 

The device was not moved from the position depicted in Figure 2.2a at any time during 

measurement (with both the triangular and the spatial artifacts). 

 

The C-Track comes with a special hand-held planar artifact, called the HandyPROBE, which 

has a rigid probe. The HandyPROBE is used for measuring 3D coordinates, and its 

volumetric accuracy is 0.075 mm, as per ASME standard B89.4.22. Our own tests showed 

that the largest error when measuring the length of a 0.5 m scale bar using the HandyPROBE 

was about 0.065 mm. 

 

The C-Track model used for the tests is the 780, with a measurement volume of 7.8 m3. 

However, we calibrated it in a volume of 3.4 m3, which was enough for our tests. The 

accuracy recorded by the C-Track’s software after completion of the calibration procedure 

with a special 1 m scale bar was 0.040 mm. 
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Figure 2.3 shows a close-up of the installation used for calibrating the robot with the C-Track 

and the spatial artifact described in section 2.2. 

 

All measurements were performed in a relatively small laboratory at temperatures varying 

between 22.5°C and 23.5°C. The C-Track, the laser tracker, and the robot were controlled by 

MATLAB, via Ethernet LAN. Thus, the procedure for taking measures is fully automated 

and requires no manual intervention (e.g. for reorienting the SMRs or moving the tool-

changer’s two air hoses). The position commands sent to the robot are the joint values (i.e. 

we send jointtargets and use the RAPID instruction MoveAbsJ). 

 

In each of the three setups, the range of measurable end-effector orientations is obviously 

different. To take full advantage of each setup, any pose can be a candidate for the 

identification or the validation phase, as long as it is measurable (with the laser tracker in the 

first setup, and the C-Track in the second and third setups). In the first setup, the SMRs are 

orientated outward (see Figure 2.1), and the only end-effector orientations used are those in 

which the ±30° visibility cone of at least one of the SMRs covers the laser tracker. In the 

second setup, the angle between the normal to the planar surface of the triangular artifact and 

the line of sight of the C-Track is limited to 15° (both sides of the artifact are used). In the 

third setup, there are no limits to the orientation of the robot end-effector. However, because 

the robot arm partially hides the artifacts in some robot configurations, a condition is 

imposed such that at least nine retro-reflective targets from the triangular artifact are seen by 

the C-Track and twenty from the spatial artifact. 

 

Note that, initially, we also considered a fourth case in which the position of one of three 

SMRs mounted on the spatial artifact was measured with the laser tracker. However, this 

fourth case was promptly discarded, since there is obviously no advantage of using the 

spatial artifact with a laser tracker. 
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A video showing the experiments described in this paper can be seen at 

http://youtu.be/i0ztjX0jlSU. 

 

Figure 2.1 Experimental setup for calibrating the robot with 
FARO’s ION laser tracker 
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(a) 

 

(b) 

Figure 2.2 Experimental setup for calibrating the robot with Creaform’s C-Track and the 
triangular artifact: (a) overall setup; (b) close-up showing the back side of the triangular 

artifact and the fifteen retro-reflective targets on the robot’s base 
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Figure 2.3 Experimental setup for calibrating the robot with  
Creaform’s C-Track and the spatial artifact 

2.2.1 Triangular artifact 

The triangular artifact (Figure 2.1) is made of steel and holds three magnetic nests for 0.5″ 

spheres (SMRs or one end of Renishaw’s telescopic ballbar). The distance between the 

centers of these nests is 150 mm. One of the centers (nest 1) lies on axis 6 of the robot, about 

125 mm away from the robot tool flange xy plane, another (nest 3) lies in the plane passing 

through the first center and normal to axis 6, approximately 150 mm away from this axis, and 

the last one (nest 2) is about 115 mm away from axis 6 and about 215 mm away from the tool 

flange xy plane. Nine retro-reflective self-adhesive targets are attached to each side of the 

tool, as shown in Figures 2.2b and 2.4. 

 

Creaform’s MaxSHOT 3D photogrammetry system was used to acquire the position of all 

eighteen retro-reflective targets with respect to a common reference frame, located in the 

centroid of all targets. The positions of the centers of the three magnetic nests with respect to 

this reference frame are measured using the HandyPROBE. 
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The triangular artifact is mounted on an ATI QC-5 tool changer, and, along with the three 

magnetic nests, weighs approximately 2.4 kg. The master side of the tool changer weighs an 

additional 0.3 kg, so the complete end-effector weighs about 2.7 kg, the robot rated payload 

being 3 kg. The coordinates of the center of gravity of the complete end-effector are 

approximately {50 mm, 25 mm, 100 mm} with respect to the robot flange reference frame, 

according to the CAD model of the end-effector. 

2.2.2 Spatial artifact 

The design of the spatial artifact was based on the imposed condition that there be as many 

retro-reflective targets visible as possible, at any orientation, and the objective that these 

visible targets be as far as possible from one another. This artifact is to be used with the C-

Track and with the ballbar (using one of the three 0.5” nests), although it can also be used 

with the laser tracker (Figure 2.4). Indeed, there is no advantage of using such a complex 

artifact with a laser tracker. 

 

The artifact consists of a steel sphere 45 mm in diameter and with 26 facets. Seven of these 

facets are used for attaching steel poles 45 mm long, three are used for attaching magnetic 

nests for 0.5″ spheres (for use with Renishaw’s telescopic ballbar), twelve are used for fixing 

retro-reflective self-adhesive targets, and three have threaded holes for future needs 

(Figure 2.4). Six of the steel poles are orthogonal and of slightly different lengths. At the end 

of each of these six poles, there is a truncated icosahedron (the shape used for soccer balls) 

with twelve regular pentagonal faces and twenty regular hexagonal faces. Each truncated 

icosahedron is made by rapid prototyping from black thermoplastic (ABS-700) and has a 

diameter of about 54 mm. A retro-reflective self-adhesive target is fixed on 31 of its 32 

facets, randomly offset from the center of each facet. There are a total of 198 retro-reflective 

targets, the retro-reflective circle of which is 8 mm in diameter. Finally, the centers of the 

three magnetic nests are approximately 150 mm away from the robot flange xy plane, and 

45 mm offset from robot axis 6. 
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Creaform’s MaxSHOT 3D photogrammetry system was used to acquire the position of every 

target with respect to a common reference frame, located at the centroid of all targets 

(Figure 2.4). The positions of the centers of the three magnetic nests with respect to this 

reference frame are measured using the HandyPROBE. 

 

This spatial artifact, too, is mounted on an ATI QC-5 tool changer and, along with the three 

magnetic nests, weighs approximately 2.3 kg. The weight of the complete end-effector is 

about 2.6 kg. The coordinates of the center of gravity of the complete end-effector are 

approximately {−23 mm, 0 mm, 100 mm} with respect to the tool flange reference frame, 

according to the CAD model of the end-effector. Therefore, both end-effectors exert 

approximately the same reaction forces and moments on the robot flange. 

nest 2

nest 3

nest 1

 

Figure 2.4 The spatial artifact during photogrammetry 

To the best of our knowledge, very few such spatial artifacts exist. One is the cover of 

Creaform’s MetraSCAN 3D, but this artifact is an integral part of a hand-held 3D scanner 

and cannot be mounted on the tool flange of a robot. Another is Northern Digital’s Multi-

Sided Probe (MSP). The MSP is made of four orthogonal 50 mm struts, with five 

orthogonally placed active targets at the end of each strut, and weighs only 0.125 kg. The 
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problem with this artifact is that there exist orientations at which no target has a visibility 

angle of less than 45°. Finally, Boochs et al. (2010) presented another spatial artifact made up 

of 54 active targets equally distributed on a sphere and tracked by a custom optical CMM 

consisting of four 4-Mpx cameras. The problem with this artifact is that the visible targets are 

very close to each other. 

2.3 Robot kinematic model 

The level-3 robot model that we use corresponds to a complete kinematic calibration of the 

robot, including the base frame, and the five parameters related to the stiffness (Albert 

Nubiola and Bonev, 2013) of joints 2, 3, 4, 5, and 6. Tables 2.1 and 2.2 show a summary of 

all 31 parameters. 

Table 2.1 Pose of the base frame with respect to the world frame with six error 
parameters 

Parameter x y z α β γ 

Value xw + δxw yw + δyw zw + δzw αw + αxw βw + δβw γw + δγw 

* The parameters α, β, and γ are the Euler angles, according to the XYZ convention. 

Table 2.2 Complete D-H M (Craig, 1986) robot model with 25 error parameters 

i αi [º] ai [mm] θi [º] di [mm] 
1 0 0 θ1 290 
2 −90 + δα2 δa2 θ2 – 90 + δθ2 + c2τ2 δd2 
3 δα3 270 + δa3 θ3 + δθ3 + c3τ3 δd3 
4 −90 + δα4 70 + δa4 θ4 + δθ4 + c4τ4 302 + δd4

5 90 + δα5 δa5 θ5 + δθ5 + c5τ5 δd5 
6 −90 + δα6 δa6 θ6 + 180 + δθ6 + c6τ6 72 + δd6 

 

The location of the nominal robot base frame with respect to the world frame is first 

measured by rotating joints 1 and 2 (Albert Nubiola and Bonev, 2013). The nominal position 

of the tool frame is also initially measured by rotating joints 5 and 6 (Albert Nubiola and 

Bonev, 2013). However, we will keep the parameters δθ6 and δd6, which position the tool 

frame with respect to the robot end-effector frame. 
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Although neither the laser tracker nor the C-Track are displaced during measurement, the 

world frame is defined using three 0.5″ magnetic nests fixed in three of the four corners of 

the robot table (Figures 2.2b and 2.3). All measurements performed with the laser tracker and 

the C-Track will therefore be taken with respect to a world frame defined by the centers of 

these three nests. In the first setup, the base is measured only once, using the three 0.5″ 

SMRs. In the second and third setups, fifteen retro-reflective self-adhesive targets are 

attached to the robot base and table. 

 

We define the nominal base frame with respect to frame Φ1 (which depends on axes 1 and 2) 

using the corresponding nominal geometric parameters that relate these axes as follows: the 

base frame Φ0 is obtained by translating Φ1, when at the nominal θ1 = 0°, along the negative 

direction of its z1 axis by the nominal offset d1 = 290 mm. 

 

The robot flange frame can be directly measured, by probing the robot flange. However, for 

various reasons, we chose to identify this frame without having to remove our special-

purpose end-effector. In fact, this is often what happens in industry, in the case where a robot 

is already fully installed and its operators need to calibrate the whole system (i.e. improve the 

accuracy of the positioning of the tool frame with respect to the world frame) without having 

to remove the end-effector. 

 

For the nominal θ6 = 0°, we define Φ6 such that its z6 axis is along axis 6, its x6 axis is parallel 

to the normal between axes 5 and 6 and is obtained by normalizing z6×z5, and, finally, the 

distance from the normal to x6 is the nominal distance d6 = 72 mm. The tool frame Φtool is 

fixed with respect to Φ6, and is therefore measured directly. In the case of the C-Track 

(setups 2 and 3), the tool frame is the one in which the positions of the retro-reflective targets 

are obtained during photogrammetry. Because the C-Track measures the pose of this frame 

directly, we chose an end-effector pose that would be visible to the C-Track and reoriented 

the three SMRs so that all of them would be visible by the laser tracker. In the case of setups 

2 and 3, Φtool is found with respect to Φ6. Then, the position of the center of each nest is 
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measured using the HandyPROBE with respect to Φtool. In the case of setup 1, we measured 

the positions of the nests with respect to Φ6 directly, as we considered that Φtool is coincident 

with Φ6. Note that in all three setups, the positioning accuracy of the robot is evaluated at the 

centers of the magnetic nests, and so the location of Φtool has no effect on the final results. 

 

(a)       (b) 
Figure 2.5 The positions of the three magnetic nests with respect to 

Φ6 are measured directly 

2.4 Analysis of non kinematic robot behavior 

It is often said that the non geometric errors in an industrial robot (such as joint compliance) 

affect the robot accuracy very little, but this is not true for robots such as the ABB IRB 120, 

which use harmonic drive gearboxes. To gain an insight into the elastic behavior of the robot, 

a series of simple tests was performed. 

2.4.1 Axis analysis with the laser tracker 

A third end-effector was used for these tests. The weight of this end-effector is 2.75 kg and 

its center of gravity is located at {−31 mm, −13 mm, 85 mm} with respect to Φ6. One 1.5″ 

SMR is attached at position {−114.4 mm, −46.2 mm, 124.5 mm} with respect to Φ6. The 

position of this SMR is measured with the laser tracker when each joint is displaced in equal 

increments within an interval (Table 2.3), first in the positive and then in the negative 
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direction, while the other five joints are kept at 0°. (The configuration with all joints at 0° is 

shown in Figure 2.6). For each joint, errors are calculated with respect to the circle centered 

at the joint axis (obtained by least squares using all the measurements of each axis) and 

passing through the position of the target when the joint is at 0°. Radial and axial 

displacements are in the order of 0.050 mm, mostly corresponding to measurement noise. 

Therefore, we only analyze the tangential error, caused mainly by the elasticity of the 

gearboxes (Figure 2.6). 

Table 2.3 Ranges of motion for each joint for the test, 
 the results of which are shown in Figure 2.6 

Joint Interval Increment Tangential error range Angular error range Backlash 

1 −60°, 60° 5° 0.114 mm 0.013° 0.004° 

2 −40°, 40° 1° 1.363 mm 0.116° 0.002° 

3 −40°, 40° 1° 0.912 mm 0.098° 0.004° 

4 −155°, 155° 5° 0.445 mm 0.207° 0.037° 

5 −90°, 90° 5° 0.606 mm 0.153° 0.017° 

6 −400°, 400° 1° 0.156 mm 0.072° 0.037° 
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Figure 2.6 Tangential errors measured when rotating a single joint 

Note that the backlash between positive and negative rotation is very small for joints 1, 2, 

and 3 (less than 0.005°), which is because of the harmonic drives. However, it is relatively 

large for joints 4, 5, and 6, which also use harmonic drives.  

 

The tangential errors shown in Figure 2.6 are clearly due to the elasticity of the gear boxes. 

The displacement of joint 1 and joint 6 contributes to the smallest errors. In fact, there is 

virtually no change in the deflection of the robot as measured at the end-effector, since axis 1 

is parallel to the direction of gravity. Note that only the range [−200°, 200°] is displayed for 

axis 6, since the errors are no larger for the full range. This is because the motor and the 

harmonic drive gearbox of joint 6 are directly installed in link 6. 
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Due to the varying gravity effect of the robot arm as a function of θ2 and the long lever 

effect, the tangential errors caused by rotating joints 2, 3, and 5 are significant, and should be 

taken into account in the stiffness model. The tangential error associated with joints 4 and 6 

is smaller, but will also be taken into account. In fact, note that the peaks for these two joints 

are separated by 180°. This deflection is due mainly to the weight of the SMR and to an extra 

load mounted beneath SMR. In other words, if the center of gravity of the end-effector were 

farther from axis 6, the errors would have been much larger. 

2.4.2 Stiffness model 

As previously mentioned, a five-parameter model is used to represent the elastic behavior of 

the robot (Albert Nubiola and Bonev, 2013). This model takes into account the elasticity of 

the gearboxes of joints 2, 3, 4, 5, and 6 (one parameter per joint). The elasticity in each 

gearbox is modeled as a linear torsional spring, so this parameter represents the effective 

constant compliance ci of each joint i. Traction and compression effects are neglected. 

Torsional effects are also neglected. 

 

We took into account the gravity forces due to the masses of links 2, 3, 4, and the tool. We 

neglected the masses of links 5 and 6, as they are relatively small, as well as the mass of link 

0 (the base). The mass of link 1 is not needed, because we did not consider a compliance 

parameter to model the flexibility of joint 1, since the axis of that joint is parallel to the 

gravity vector. We simplified the specifications provided by ABB into the parameters shown 

in Table2.4. 
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Table 2.4 Masses and centers of gravity of each robot link in our model 

i 
im  

[kg] 

,
i

x ic  

[mm] 

,
i

y ic  

[mm] 

,
i

z ic  

[mm] 

1 0 0 0 0 

2 4.2 140 0 0 

3 0 0 0 0 

4 5 0 0 −193.6 

5 0 0 0 0 

6 (triangular artifact) 2.6 −23 0 100 

6 (spatial artifact) 2.7 50 25 100 

 

Note that links 3 and 4 are considered as one, and the effect of link 3 is transferred to link 4. 

The center of gravity of these two links lies on axis 4, and therefore the compliance 

parameter for that axis is not affected by the weight of links 3 and 4. 

2.5 Calibration 

The complete model consists of 31 error parameters: 6 parameters to locate the robot base 

frame, 20 geometric parameters (4 D-H M parameters for links 2 to 6), and 5 compliance 

parameters (for joints 2 to 6). However, since axes 2 and 3 are parallel, and because we find 

the parameters by linearization of the system, one of the 20 geometric parameters becomes 

redundant and so we exclude it from the model. 

 

In order to minimize the backlash effect, the robot is first moved, in absolute joint mode 

(MoveAbsJ), to the configuration {θ1 − 5°, θ2 − 5°, θ3 − 5°, θ4 − 5°, θ5 − 5°, θ6 − 5°} and then 

to the final configuration {θ1, θ2, θ3, θ4, θ5, θ6} for each calibration or validation robot 

configuration. Furthermore, θ2 ≥ 0° and θ3 ≥ −80°, in order to keep the torques in joints 2 and 

3 negative and be able to use a linear model for the stiffness of the gearboxes, which are, in 

fact, much less stiff when they are not loaded. In addition, the workspace of the robot is 

further limited by imposing −90° ≥ θ1 ≥ 90°, in order to maximize the visibility of both 
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artifacts, and −150° ≥ θ4 ≥ 150°, −90° ≥ θ5 ≥ 90°, and −180° ≥ θ6 ≥ 180° because of the tool 

changer pneumatic hoses. Finally, we recall that in each of the three setups, the range of end-

effector orientations is quite different, being virtually unlimited in the third setup. 

2.5.1 System linearization 

All the kinematic error parameters are considered very small. Those of the base are 

[ , , , , , ]b b b b b bx y zδ δ δ δα δβ δγ  according to Table 2.1, those of link 2 are 2 222[ , , , ]a dδα δ δθ δ  

according to the third row of Table 2.2, etc. The robot model can be expressed as  ( ),=f f p q  (2.1) 
where f = [x, y, z]T is the position of the end-effector (note that only the position data are 

taken into account), p is the vector containing all 31 error parameters, and q = [θ1, θ2, …, 

θ6]
T is the vector of the joint variables. The expression of equation (2.1) is quite complex, 

because it is a function of 37 parameters and other constant parameters, like masses and 

centers of gravity. If we derive the Jacobian matrix of this robot model, the expression 

becomes even more complex. Fortunately, this expression can be obtained easily using the 

MATLAB Symbolic Toolbox, so the linearized equations can be expressed at iteration i as  i i iΔ = Δf J p  (2.2) 
where iΔf  is the difference between the measured position and the position predicted by the 

model for a given robot configuration, iJ  is the Jacobian matrix, and iΔp  are the values to 

add to the error parameters. Using enough end-effector position measurements for different 

robot configurations, we can obtain the least squares solution of the error parameters using 

the pseudo inverse of the Jacobian:  ( ) 1T T−
Δ = ΔJ Jp J f . (2.3) 

The Jacobian is slightly different at each iteration, because it depends on the error parameters 

found in each step, where we verify that all the columns of J are linearly independent. If they 

are not, we must discard the useless error parameters. When we verified the linear 
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dependency, in our case, the error parameters 2dδ  and 3dδ  were found to be linearly 

dependent (because of the parallel axes). So we did not consider 3dδ  in the model. We also 

realized that the solution was stable after four iterations. 

2.5.2 Observability 

To measure the goodness of a set of robot configurations, we used an observability index and 

an iterative algorithm (Albert Nubiola and Bonev, 2013; Sun and Hollerbach, 2008). This 

index emphasizes the volume of a hyper-ellipsoid (Borm and Meng, 1991), the directions of 

which are represented by the singular values (Stone and Sanderson, 1987): 

 1 2σ σ  σm
mO

n

…
=  (2.4) 

where n is the number of configurations, m is the number of error parameters, and iσ  are the 

singular values of the singular value decomposition:  '=J UΣV  (2.5) 
where 

 
1σ 0 0

0 0 σ

0 0 0

0 0 0 

m

 
 
 
 

=  
 
 
 
 

Σ



   





   



 (2.6) 
We applied a numerical algorithm to find a good set of calibration measurements for each of 

the three setups (Albert Nubiola and Bonev, 2013). With a random set of 5000 robot 

configurations and a random start subset of 11 of them, we use an iterative algorithm to 

change this subset to obtain a better observability index. At each iteration, we remove from 

the subset the configuration that leaves the highest observability index (if the index increases 

by removing a configuration) and we add the configuration that results in the highest 
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observability index (again, if adding a configuration increases the observability index). 

Finding the optimal subset of calibration configurations is performed offline, through 

simulations. 

2.5.3 Laser tracker and triangular artifact (setup 1) 

The base reference frame is measured only once, using the three nests placed on the table 

depicted in Figures 2.2b and 2.3. For each robot configuration, we measure the position of 

only one of the three SMRs (shown in Figure 2.2b). Figure 2.7a shows the positions of the 

SMR that is measured, with those corresponding to calibration configurations depicted in red. 

There are only 38 calibration configurations, which are found using the observability study 

previously explained. The remaining black dots correspond to the position of one of the three 

SMRs in the 1000 random robot configurations used for validating the efficiency of the robot 

calibration. 

 

(a)    (b)    (c) 
Figure 2.7 Calibration and validation positions using (a) the laser tracker and the 

triangular artifact (setup 1); (b) the C-Track and the triangular artifact (setup 2); (c) the C-
Track and the spatial artifact (setup 3) 

2.5.4 C-Track and triangular artifact (setup 2) 

As already mentioned, both the front face and the back face of the triangular artifact are 

measured in the second setup. However, the back side is visible in only one of every five 

robot configurations. For each configuration, we measure the pose of the triangular artifact 

Φtool with respect to the base Φworld. The positions of the origin of Φtool (Figure 2.5a) 
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corresponding to each robot configuration measurement are shown in Figure 2.7b. We found 

36 calibration configurations, depicted in red, using the observability study explained above. 

The black dots correspond to the 1000 random robot configurations used to validate the 

calibrated model. In this study, we did not consider a measurement to be valid unless there 

were a minimum of 12 and 9 visible targets from the base and end-effector respectively. 

Note that, although the C-Track measures the pose of the robot end-effector, we only 

consider the position of all three magnetic nests (on the robot end-effector). Consequently, 

for each robot configuration measured, we have the position of all three magnetic nests. 

2.5.5 C-Track and spatial artifact (setup 3) 

As in setup 2, we measure the pose of the spatial artifact Φtool with respect to the base frame 

Φworld in each robot configuration. The positions of the origin of Φtool (Figure 2.5b) 

corresponding to each robot configuration measurement are shown in Figure 2.7c. There are 

35 calibration configurations, in red, which are found using the observability study 

explained. The black dots correspond to the 1000 random robot configurations used to 

validate the calibrated model. In this study, we did not consider a measurement to be valid 

unless there were a minimum of 12 and 20 visible targets from the base and end-effector 

respectively. 

2.6 Results 

The calibration method was first tested with simulations using the robot model described in 

Section 2.3. Forcing a set of error parameters that provoke a nominal position measurement 

of 5 mm (maximum value), the maximum position measurement error after calibration is 

0.004 mm, if we do not consider noise measurement and if the masses and their centers of 

gravity are perfectly known (note that these parameters are not identified by the model). If 

we apply a measurement noise of 0.070 mm and consider a 10% error for the masses and 

centers of gravity, the mean/maximum position measurement errors are in the order of 

0.050 mm to 0.100 mm for the 1000 random robot configurations for each of the three 

setups. We also tried several other observability indices (Morris R. Driels and Pathre, 1990; 
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Nahvi et al., 1994; Nahvi and Hollerbach, 1996) (with simulation and experimental results), 

but the results we obtained were worse. 

 

Note, too, that the 0.004 mm error after calibration and without noise measurement is due to 

the parametric redundancy caused by the consecutive and parallel axes 2 and 3. This error is 

so small that we discarded a specific link model between these two joints to properly 

represent the physical link (such as the CPC model (Caenen and Angue, 1990; Hayati and 

Mirmirani, 1985; H Zhuang and Roth, 1992; Hanqi Zhuang and Roth, 1993)). 

 

Finally, to perform the experimental tests, the robot was warmed up for one hour and then 

programmed to go to the planned configurations with the end-effector speed limited to 

500 mm/s and 20 degrees/s. Furthermore, for each robot configuration, the robot was 

programmed to pause for 4 seconds while either the laser tracker or the C-Track performed 

the measurement. As already mentioned, the measurement acquisition process is fully 

automated. 

2.6.1 Analysis of the measurement devices 

To evaluate the volumetric accuracy of each of the two measurement systems, both artifacts 

were measured on a Mitutoyo Bright-STRATO 7106 CMM with a total measurement 

uncertainty of 0.0027 mm at a 95% confidence level. The setup is shown in Figure 2.8. Four 

0.5″ precision balls were mounted on magnetic nests which were fixed with respect to the 

granite base of the CMM. Three of these balls were used to define the common reference 

frame, and, for each artifact, the coordinates of the centers of the three magnetic nests were 

measured with respect to that frame. In each setup, all seven centers were first measured by 

the CMM (by probing 0.5″ precision balls), then by the laser tracker (using 0.5″ SMRs), and 

finally by the C-Track (measurements obtained indirectly from the pose of the artifact). 

 

In the case of the C-Track, the pose of the end-effector was measured with respect to a set of 

eight retro-reflective targets fixed with respect to the CMM’s granite table. The centers of the 

four magnetic nests mounted on the base were measured using the HandyPROBE (equipped 
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with a 0.5″ precision ball tip) with respect to the eight targets. In a previous step, the 

positions of the centers of the magnetic nests on each artifact with respect to the 

photogrammetry frame were measured using the HandyPROBE. 

    

(a)       (b) 
Figure 2.8 Accuracy validation of the C-Track and laser tracker on the CMM 

Table 2.5 shows the distance errors between the centers of four of the seven magnetic nests 

measured using the C-Track and the laser tracker with respect to the centers measured by the 

CMM. All the measurements were taken by the CMM, the C-Track, and the laser tracker 

with respect to the common reference frame defined by three of the four magnetic nests 

mounted on the base of the CMM. The first three nests in Table 2.5 are the ones mounted on 

the artifact, while the fourth is the one mounted on the base and not used to define the 

common reference frame (the one being probed in Figure 2.8a). 
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Table 2.5 Distance errors for the C-Track and the laser tracker with respect to the CMM 

 Nest 1 

(on the 

artifact) 

Nest 2 

(on the 

artifact) 

Nest 3 

(on the 

artifact) 

Nest 4 

(on the 

base) 

Triangular  

artifact 

Laser tracker 0.034  mm 0.029  mm 0.035  mm 0.034  mm 

C-Track 0.124  mm 0.061  mm 0.082  mm 0.124  mm 

Spatial 

artifact 

Laser tracker 0.015 mm 0.015  mm 0.010  mm 0.038  mm 

C-Track 0.129  mm 0.118  mm 0.138  mm 0.177  mm 

 

We performed the same test for two other orientations for each artifact, and the results were 

very similar to the ones presented in Table 2.5. Nevertheless, these tests are inconclusive, and 

do not necessarily give an estimate of the volumetric accuracy of either the laser tracker or 

the C-Track. However, they demonstrate that, in perfect laboratory conditions, the accuracy 

of the C-Track is worse than that of the laser tracker, especially in the case of the spatial 

artifact. 

2.6.2 Validation using the laser tracker and the C-Track 

The validation tests compare the position errors at the three magnetic nests on each of the 

end-effectors with respect to the world reference frame defined on the robot table, between 

the uncalibrated robot and the calibrated one, in 1000 random robot configurations (which 

are different for the three setups). For each setup, the results are shown in the form of a 

histogram of the position errors, and a list of the parameters identified is included. 

It is very surprising that the nominal position accuracy of the ABB IRB 120 robot is worse 

than 5 mm. Note that the nominal model used is the one that corresponds to the nominal 

geometric parameters of the robot, but includes the base and tool frame identifications 

previously described. In other words, if these frames had been measured by probing the robot 

base and robot tool flange instead, the accuracy of the nominal model would most probably 

have been worse. 
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2.6.2.1 Laser tracker with triangular artifact (setup 1) 

Figure 2.9 shows the accuracy results after calibration for the 1000 position measurements 

illustrated in Figure 2.7a. For clarity, the results before calibration are not shown. Suffice to 

say that the mean position error improved from 3.168 mm to 0.146 mm. The robot model 

obtained after calibration is shown in Tables 2.6 and 2.7. As we can see, the errors are very 

small, but their combined effect is large. 

 

Figure 2.9 Histogram of position errors using the laser tracker and the triangular artifact 
 

Table 2.6 Robot base errors obtained with the laser tracker and the triangular artifact 

Parameter δxw [mm] δyw [mm] δzw [mm] δαw [°] δβw [°] δγw [°] 

Value −0.075 −0.096 0.103 0.003 0.008 −0.033 
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Table 2.7 Robot model obtained with the laser tracker and the triangular artifact 

i αi [º] ai [mm] θi [º] di [mm] 
1 0.000 0.000 θ1 290.000 

2 −90.006 0.134 θ2 − 89.909 + 0.032×10−6 τ2 0.000 

3 −0.011 270.236 θ3 + 0.054 + 0.130×10−6 τ3 0.006 

4 −90.009 70.138 θ4 − 0.027 + 0.605×10−6 τ4 302.246 

5 89.984 −0.061 θ5 + 0.067 + 0.419×10−6 τ5 −0.067 

6 −89.969 0.022 θ6 + 179.913 + 0.647×10−6 τ6 
72.050 

2.6.2.2 C-Track with triangular artifact (setup 2) 

Figure 2.10 shows the position errors after calibration for 3000 measurements of the centers 

of the three magnetic nests, obtained using the pose measurement of the 1000 configurations 

illustrated in Figure 2.7b. The errors before calibration are not shown, since they are too 

large. The mean position error improved from 4.639 mm to 0.176 mm. The robot model 

obtained after calibration is shown in Tables 2.8 and 2.9. Clearly, the robot accuracy after 

calibration is very similar to that obtained when calibrating with a laser tracker. 

 

Figure 2.10 Histogram of position errors using the C-Track and the triangular artifact. 
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Note that the nominal accuracy for this test is much worse than for the previous test. This 

may be because we had to modify the position of the end-effector orientation when moving 

axes 1 and 2 to identify the base frame, so that the front side of the tool was facing the C-

Track within a ±30° range. We can clearly see that, after calibration, the errors made when 

measuring the base frame were quite significant (δyw = 2.403 mm and δyw = −0.994 mm). 

These errors in the base only affect the nominal model, however, and are probably due to the 

flexibility behavior of the robot, which seems to be quite different when the wrist angles are 

changed (while moving axes 1 and 2, we kept θ3 = θ4 = 0°, θ5 = −40°, and θ6 = 80°). The 

results for the robot parameters are very similar (Table 2.9 vs. Table 2.7). 

Table 2.8 Robot base errors obtained with the C-Track and the triangular artifact 

Parameter δxw [mm] δyw [mm] δzw [mm] δαw [°] δβw [°] δγw [°] 

Value 0.047 2.403 −0.994 0.118 0.028 −0.070 

 

Table 2.9 Robot model obtained with the C-Track and the triangular artifact 

i αi [º] ai [mm] θi [º] di [mm] 
1 0.000 0.000 θ1 290.00 

2 −90.008 0.052 θ2 − 89.891 + 0.028×10−6 τ2 0.048 

3 −0.023 270.223 θ3 + 0.071 + 0.122×10−6 τ3 0.000 

4 −90.015 70.164 θ4 − 0.027 + 0.646×10−6 τ4 302.187 

5 89.988 −0.086 θ5 + 0.062 + 0.476×10−6 τ5 0.009 

6 −89.982 −0.007 θ6 + 180.000 + 0.243×10−6 τ6 
72.373 

2.6.2.3 C-Track with spatial artifact (setup 3) 

Figure 2.11 shows the accuracy results after calibration for the 3000 position measurements 

of the centers of the three magnetic nests, obtained using the pose measurement of the 1000 

configurations illustrated in Figure 2.7c. The mean position error improved from 2.913 mm 
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to 0.149 mm. The robot accuracy after calibration in this setup is very similar to the accuracy 

obtained in the first two setups. 

 

Figure 2.11 Histogram of position errors using the C-Track and the spatial artifact 
 

Table 2.10 Robot base errors obtained with the C-Track and spatial artifact 

Parameter δxw [mm] δyw [mm] δzw [mm] δαw [°] δβw [°] δγw [°] 

Value −0.099 0.024 0.184 0.003 −0.012 −0.023
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Table 2.11 Robot model obtained with the C-Track and the spatial artifact 

i αi [º] ai [mm] θi [º] di [mm] 
1 0.000 0.000 θ1 290.000 

2 −90.013 0.095 θ2 − 89.914 + 0.037×10−6 τ2 −0.024 

3 −0.018 270.156 θ3 + 0.073 + 0.112×10−6 τ3 0.000 

4 −90.018 70.153 θ4 − 0.026 + 0.462×10−6 τ4 302.232 

5 89.995 −0.055 θ5 + 0.064 + 0.301×10−6 τ5 0.062 

6 −90.004 0.004 θ6 + 179.946 + 2.000×10−6 τ6 
71.991 

2.6.3 Validation using a telescopic ballbar 

The results shown in Figures 2.9–2.11 suggest that the C-Track is as effective as the laser 

tracker in calibrating the ABB IRB 120 robot. However, these validation results are not 

directly comparable, since the robot configurations (although random and excessive in 

number) are not the same and are not measured with the same tool. Therefore, in order to 

perform a fair comparison, the efficiency of the three robot calibrations was tested using a 

QC20-W telescopic ballbar by Renishaw in the same (for calibration models 1 and 2) and 

almost the same (for calibration model 3) set of robot configurations and in the same manner 

(Figure 2.12). The ballbar sensor accuracy (at 20 °C) is ±0.5 μm, and its measuring range is 

only ±1.0 mm, which is why we have no measurements for the nominal model. 

 

The three calibration models were used to perform the spherical ballbar tests, around the 

same center point at a radius of 300 mm, and at a speed limited to 500 mm/s and 20 

degrees/s. The robot pauses for 2 seconds before each measurement (we repeated the tests 

twice, and found that the results were very repeatable). The ballbar is magnetically attached 

to two nests of the end-effector (using a different path for each nest). The center of the sphere 

was taught to the robot manually, using nest 1 for both artifacts. Finally, note that we do not 

perform the backlash suppression procedure that we use when measuring with the laser 

tracker or the C-Track. 
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(a)       (b) 
Figure 2.12 Measuring distance accuracy with a Renishaw telescopic ballbar 

2.6.3.1 Results using the triangular artifact 

Figures 2.13 and 2.14 show the results of the two paths performed with the triangular artifact, 

with the ballbar attached to nests 1 and 2 respectively. The laser tracker model (calibration 

model 1) and the C-Track model (calibration model 2) are therefore directly compared. The 

first path consists of 123 ballbar measurements using nest 1 (Figure 2.13), and the second 

path consists of 95 ballbar measurements using nest 2 (Figure 2.14). 

 

Figure 2.13 Results for the path with the ballbar attached to nest 1 of the triangular artifact 
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Figure 2.14 Results for the path with the ballbar attached to nest 2 of the triangular artifact 
 

Table 2.12 Summary of ballbar results obtained using the triangular artifact 

Ballbar 

attached to 
Robot model 

Mean 

error 

Standard 

deviation 

Maximum 

error 

nest 1 
laser tracker −0.105 mm 0.091 mm 0.327 mm 

C-Track 0.022 mm 0.110 mm 0.250 mm 

nest 2 
laser tracker −0.148 mm 0.118 mm 0.437 mm 

C-Track −0.048 mm 0.135 mm 0.363 mm 

 

From Figures 2.13 and 2.14, we can see that the two calibrations result in similar 

improvements for each robot configuration. From Table 2.11, however, we can see that the 

overall efficiency of the robot calibration with the C-Track is better. 

2.6.3.2 Results using the spatial artifact 

Figures 2.15 and 2.16 show the results of the two paths performed with the spatial artifact, 

with the ballbar attached to nests 1 and 3 respectively. Only calibration model 3 (C-Track 

and spatial artifact) is shown. The first path consists of 108 ballbar measurements using nest 
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1, and the second path consists of 90 ballbar measurement using nest 3. The center of the 

sphere is the same as the one used for the paths of the triangular artifact (Figure 2.12). 

 

Figure 2.15 Results for the path with the ballbar attached to nest 1 of the spatial artifact 

 

Figure 2.16 Results for the path with the ballbar attached to nest 3 of the spatial artifact 
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Table 2.13 Summary of ballbar results obtained using the spatial artifact 

Ballbar 

attached to 
Robot model 

Mean 

error 

Standard 

deviation 

Maximum 

error 

Nest 1 C-Track 0.091 mm 0.126 mm 0.328 mm 

Nest 3 C-Track 0.146 mm 0.130 mm 0.385 mm 

 

These results are similar to the results obtained using the triangular artifact. Note, however, 

that the robot configurations are not exactly the same, and neither are the measurements 

points. 

2.7 Conclusions 

We demonstrated clearly that the efficiency of the C-Track in calibrating the ABB IRB 120 

industrial robot is equivalent to that of the FARO laser tracker, and costs half as much. We 

also demonstrated, to our surprise, that there is no benefit to using the C-Track with a 

complex spatial artifact that allows the pose of the robot end-effector to be measured in any 

orientation. It is very difficult to manufacture such an artifact, to inspect it through 

photogrammetry, or even to handle it, so this observation comes as a relief. 

The C-Track has another advantage over the laser tracker. To acquire the laser tracker 

measurements, we need to make an initial guess as to the location of the target. Otherwise, 

the laser tracker will spend too much time searching for the SMR. Of course, we could track 

dynamically and always measure the same SMR, but measuring three SMRs (as we do) gives 

much better results that measuring only one. 

 

Furthermore, we showed that a relatively simple calibration model with only five non 

geometric error parameters can improve the volumetric accuracy of the ABB IRB 120 

industrial robot significantly. In fact, the mean and maximum position errors were reduced 

from more than 3 mm and 5 mm respectively to about 0.150 mm and 0.500 mm. Note that if 

we do not use the five compliance parameters in our robot model, the mean and maximum 

position errors are reduced to only 0.4 mm and 1.0 mm approximately.  
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Our calibration procedure, especially in the case of the C-Track, is very quick. In order to 

calibrate the robot using the C-Track and the triangular artifact, we need only measure the 

pose of the robot end-effector in 36 robot configurations. In contrast, ABB uses 100 position 

measurements taken with a Leica laser tracker. 

 

In conclusion, we demonstrated for the first time that using Creaform’s C-Track and a simple 

planar end-effector to calibrate a small industrial robot is as efficient as when using a laser 

tracker, yet much cheaper, quicker and easier.  
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Abstract 

 

This paper presents a novel method of measuring a set of more than fifty poses under static 

conditions, using a single telescoping ballbar and two fixtures, each bearing three equally 

spaced magnetic cups. The position accuracy of the device is in the ± 0.003 mm range, 

making it suitable for measuring the pose accuracy and repeatability of industrial robots and 

even calibrating them. The proposed method is an extension of a known approach using a 

hexapod (a Stewart-Gough platform) comprising telescoping ballbar legs and provides an 

original solution to the constraint imposed by the limited measurement range of current 

telescoping ballbars, namely an innovative hexapod geometry capable of assembly in 144 

different configurations. An additional advantage of the method is that the pose of one fixture 

with respect to the other can be obtained for each of these configurations by solving a 

cascade of three quadratic equations using the six hexapod leg lengths as input. The 

application of the device and method to measuring numerous poses of an ABB IRB 120 

industrial robot is presented. 

3.1 Introduction 

Precise and accurate measurement is required in order to evaluate the end-effector pose 

(position and orientation) repeatability and accuracy of six-degree-of-freedom (6-DOF) 

machines such as six-axis industrial robots, as it is for their calibration. Under static 
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conditions, any 3D coordinate measurement system can be used to measure the pose of a 

rigid body by measuring the position of three non-collinear points on that body. Conventional 

coordinate measurement machines (CMMs) provide some of the most accurate 

measurements for this purpose, but are bulky and very expensive. Laser trackers are an 

excellent alternative for applications involving industrial robots (robots being much less 

precise than machine tools), but they too are expensive (over $100,000) and have the 

additional drawback of high sensitivity to ambient disturbances. Measurement arms are 

probably the least expensive 3D measurement systems, and the smaller units may provide 

volumetric measurement accuracies of 0.020 mm. 

 

There are also 6D measurement systems such as so-called optical trackers (e.g. the C-Track 

from Creaform or the OPTOTRAK from NDI) or laser trackers combined with a 6D probe 

(e.g. Leica’s T-Mac or API’s Smart-TRACK). The cost of these systems is often prohibitive 

and the accuracy provided is not comparable to that of a CMM (A Nubiola et al., 2013). 

 

A much less expensive yet very accurate commercially available system for measuring 6D 

poses (under static conditions) is single-camera photogrammetry (e.g. the MaxSHOT 3D 

from Creaform or the DPA from AICON). The volumetric accuracy of these systems is 

comparable to that of measurement arms. Unfortunately, they are relatively difficult to 

operate. A single pose measurement requires a multitude of photos taken from relatively long 

distances and various viewpoints. 

 

Measurement arms and almost all conventional CMMs are based on so-called serial 

mechanisms (all links are connected in series through revolute or prismatic joints 

instrumented with encoders). However, parallel mechanisms can potentially improve 

accuracy and lower cost. For example, Lapic (Russian Federation) has been manufacturing 

CMMs for at least two decades, based on 6-DOF parallel mechanisms called hexapods 

(Figure 3.1). A hexapod (also called a Stewart-Gough platform) most often consists of an 

end-effector connected to a base through six telescoping legs. 
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Although the origin of hexapods with telescoping legs dates back at least to the late 1940s 

(Bonev, 2003), the idea of using them as passive 6D pose measurement devices seems more 

recent. Schiele et al. (Schiele et al., 1986) patented in 1986 a method for measuring the 

position or pose of a robot end-effector using respectively three (Figure 3.2a) or six 

telescoping ballbars. Seven years later, Goswarni et al. (Goswami et al., 1993) 

 reported the development of a very similar hexapod pose measurement device (Figure 3.2b, 

courtesy of Prof. Michael Peshkin) consisting of two fixtures with magnetic cups, the 

distances between each cup center of one fixture to at least two cup centers of the other 

fixture being measured using a single telescoping ballbar from API. An industrial robot was 

thus guided through the same path nine times, with dynamic measurement of one of the 

possible nine distances each time, and the resulting data were used to calibrate the robot. 

Renishaw co-founder David R. McMurtry was later granted a US patent for a very similar 

device (Figure 3.3c) and Paul C. Sheldon was granted a US patent (Sheldon, 1999) in 1999 

for a hexapod CMM such as the one shown in Figure 3.1. More recently, Gilles Diolez 

(Diolez, 2006) developed three 6D pose measurement devices, two of these being hexapods 

each using six custom-designed telescoping ballbars simultaneously and one being an 

octopod using eight custom-designed telescoping ballbars simultaneously. 

 

Since the telescoping ballbar is a relatively low-cost off-the-shelf high-accuracy device, the 

previously proposed pose measurement methods (Goswami et al., 1993; McMurtry, 2007; 

Schiele et al., 1986) illustrated in Figure 3.2 seem suitable for robotic applications. 

Unfortunately, these methods no longer work with today’s commercially available 

telescoping ballbars.  
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Figure 3.1 A CMM of hexapod design  
(courtesy of Lapic, Russian Federation) 

   

(a)    (b)    (c) 
Figure 3.2 Early designs using telescoping ballbars in a hexapod arrangement for pose 

measurements 

The telescoping ballbar was invented in the USA in the early 1980s by James B. Bryan at the 

Lawrence Livermore National Laboratory (J B Bryan, 1982; James B Bryan, 1984) and 

licensed in 1986 to Renishaw, who introduced their first commercial version in 1992. In 

1987, Drs Naren Vira and Kam Lau, then of the US National Bureau of Standards and 

unsatisfied with the limited measurement range of Bryan’s ballbar (making it unsuitable for 
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testing robot poses), developed a telescoping ballbar with a measurement range of 50 mm 

(Vira and Lau, 1987). Dr. Lau founded API that same year and commercialized the improved 

device (as well as the first laser tracker that he had invented). 

 

The problem with the previous designs (Goswami et al., 1993; McMurtry, 2007; Schiele et 

al., 1986) is that all of them rely implicitly on telescoping ballbars that have a broad 

measurement range. Their use essentially involves placing the tool in any pose within a 6D 

volume (which is very small even in the best case (Goswami et al., 1993)) and then 

measuring at least six base-fixture-to-tool-fixture distances between magnetic cups. 

However, even API eventually stopped offering telescoping ballbars with broad 

measurement ranges. Since the main application of the telescoping ballbar has always been 

evaluating the accuracy of numerically controlled machine tools as per standards such as 

ISO 230-4:2005 (“Test code for machine tools - Part 4: Circular tests for numerically 

controlled machine tools,” 2005), the measurement range of today’s telescoping ballbars is at 

most a mere few millimetres. 

 

The only telescoping ballbars currently available for commercial sale are those produced by 

Renishaw and Cullam Technologies (in Taiwan). API and Heidenhain ceased their 

manufacture a few years ago. The Renishaw device has a measurement range of only 2 mm, 

whereas the Cullam version has a 12 mm measurement range. 

 

In this paper, we expand ideas proposed previously (Goswami et al., 1993; McMurtry, 2007; 

Schiele et al., 1986) and apply them using today’s commercially available telescoping 

ballbars. Namely, we examine the idea that a hexapod with fixed leg lengths can be 

assembled in many different configurations to allow the measurement of many different 

poses. 

 

Section 3.2 of this paper describes Renishaw’s telescoping ballbar and presents the optimal 

hexapod design for our 6D measurement device. Section 3.3 presents the algorithm for 

computing the pose of the tool, given the six leg measurements. Section 3.4 presents our 
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analysis of the accuracy the measurement device. Section 3.5 presents the experimental 

validation of our device using an ABB IRB 120 industrial robot. Our conclusions are 

presented in Section 3.6. 

3.2 Choosing the Optimal Hexapod Design for our 6D Measurement Device 

For the purposes of the present study, we chose Renishaw’s latest telescoping ballbar, the 

QC20-W, since it is compact and wireless. Renishaw’s ballbars are also by far the most 

popular, many thousands of units having been sold. Figure 3.3 shows the main components 

of the QC20-W standard kit, which costs slightly less than $10,000. The nominal length of 

the QC20-W is 100 mm. The extension bars and calibrator allow highly accurate 

measurement of lengths near 100 mm, 150 mm and 300 mm. Other lengths can be measured 

using a custom-designed third-party calibrator. 

 

Figure 3.4a shows a general 6-6 hexapod design representing a possible candidate for our 

purpose. In this section, design refers to the relative locations of the base attachment points, 

the relative locations of the tool attachment points, and the way the legs are connected. The 

two digits indicate the number of leg attachment points to the base and tool fixtures. 

 

More than a century ago, Bricard (R Bricard, 1906; Raoul Bricard, 1897) studied the 6-DOF 

mechanism shown in Figure 3.4b, which he called an articulated octahedron. More 

specifically, he studied what we now call the direct kinematic problem (DKP). The objective 

of solving the DKP is to determine all possible poses of the tool, using the lengths of the six 

legs as input. Each of these solutions belongs to a different assembly mode, a term that is 

well suited to our application since we actually assemble our device in numerous 

configurations. 
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Figure 3.3 The main components of the standard QC20-W kit from Renishaw: (1) QC20-
W ballbar; (2) center pivot assembly; (3) Zerodur calibrator; (4) setting ball; (5) magnetic 

cup; (6-8) 50 mm, 150 mm and 300 mm extension bars 

      

 (a)       (b) 
Figure 3.4 (a) A general 6-6 hexapod and (b) the most common example of a  

3-3 hexapod 

It is now well known that the DKP of a general 6-6 hexapod design can have up to 40 real 

solutions (Dietmaier, 1998) and that these can be found by solving a univariate polynomial of 

degree 40 (Husty, 1996). However, the process is very complex and prone to numerical 

errors that can exceed the effects of leg length measurement errors. In addition, having six 
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distinct base attachment points and six distinct tool attachment points increases the cost of 

the 6D measurement device and the risks of mechanical interference, complicates the 

calculation of measurement uncertainty, and most importantly requires the use of a high-

accuracy 3D device in order to measure the relative positions of the base attachment and tool 

fixture attachment points. 

 

The fewer the attachment points (the minimum being three on the base and three on the tool 

fixture), the simpler the DKP of the hexapod design. In practice however, very few 

positioning hexapods have fewer than twelve attachment points, for the simple reason that 

double or triple spherical joints are difficult to manufacture. However, this is not an issue in 

our application, since we do not need to use six telescoping ballbars simultaneously the way 

Diolez did (Diolez, 2006). We therefore focused our attention on the so-called 3-3 hexapod 

design, meaning that there are only three attachment points to the base fixture and three to 

the tool fixture. This means that we need purchase from Renishaw only an additional two 

center pivot assemblies (part number A-8014-1281) and three magnetic cups (part number A-

8014-0522), for a cost of about $1500. 

 

For our application, the main advantage of the 3-3 hexapod design is that no 3D 

measurement device is necessary in order to measure the relative positions of the base and 

tool attachment points. The telescoping ballbar itself can be used to measure the distances 

between the attachment points, with increased accuracy. The nominal lengths provided with 

the standard QC20-W kit (100 mm, 150 mm, and 300 mm) were chosen, 300 mm (the 

longest) for the distance between base attachment points and 150 mm for the distance 

between tool fixture attachment points (for reasons explained in Section 3.3). Finally, since 

the lengths of six hexapod legs must be measured for each pose of the tool, it would be too 

time consuming to use more than one nominal length. Legs of equal nominal length were 

therefore chosen, and since the longer the legs the larger the measurement range of the 

device, this length was 300 mm. 
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In the most common 3-3 hexapod design, denoted 123213321 (ijk), base attachment point i is 

connected to tool attachment points j and k (i, j, k = 1, 2, 3; j ≠ k). Each attachment point is 

thus connected to two legs (Figure 3.4b). This design has sixteen DKP solutions, which can 

be obtained by solving a univariate polynomial of degree eight (Innocenti and Parenti-

Castelli, 1990). Of these solutions, only eight are above the base plane and hence propose 

usable assembly modes for our purpose. However, this design was rejected, since the DKP of 

a 123213321 hexapod with six legs of nearly equal length yields multiple solutions and is 

numerically unstable. We nevertheless note with interest that the approaches presented 

previously (Goswami et al., 1993; McMurtry, 2007; Schiele et al., 1986) used this exact 

design. 

 

There are three other 3-3 designs, denoted 112212331, 112212323 and 112212333, and each of these 

has a trivial DKP with eight solutions found by solving three quadratic equations in cascade 

(Faugère and Lazard, 1995). Unfortunately, the assembly of the latter two cannot be 

completed when the legs are of equal length and both the base attachment and tool 

attachment points form equilateral triangles. (The DKP has no solutions in this case.) These 

two designs were therefore also rejected for our application. 

The remaining hexapod design, namely 112212331, was first proposed in 1991 (Zhang and 

Song, 1992). The four assembly modes are illustrated in Figure 3.5. The other four DKP 

solutions place the tool below the base, making them unusable in practice. In fact, the 

solutions shown in Figures 3.5b and 3.5c are not usable either, due to interference between 

the telescoping ballbar and the tool fixture, although it would be possible to design the tool 

fixture so that all four of these DKP solutions are mechanically feasible. 

 

The ability to measure only two distinct poses (represented in Figures 3.5a and 3.5d) is 

obviously insufficient. Fortunately, for both of these poses, we can measure two additional 

poses simply by rotating the tool ±120° about the axis normal to and passing through the 

center of the tool fixture triangle. Furthermore, in the configurations shown in Figures 3.5b 

and 3.5c, we can flip the tool 180° and obtain three measurable poses by rotating the tool 

±120° about this axis. Finally, we can use all six permutations, namely 123, 132, 213, 231, 
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312, and 321 for the base connection points. The device can thus actually measure a total of 

72 poses (2×3×2×6) with 36 hexapod designs denoted as 112212331, 123223132, 131231233, 

132232133 and so on. Since this is difficult to visualize, we show all 72 configurations in 

Figure 3.6. 

 

A QC-5 tool changer from ATI for attaching the tool fixture to an industrial robot is visible 

in Figure 3.5, which also shows the robot flange reference frame, called the tool reference 

frame. The location of the tool changer with respect to the tool fixture was chosen for the 

purposes of a project in which the robot was being calibrated using a laser tracker and an 

optical tracker (A Nubiola et al., 2013) and is not likely optimal for the present study. In that 

project, we needed to have an end-effector with three measurement points that are located as 

differently as possible with respect to the robot’s flange. We only had a vague idea of the 

method proposed in this paper in mind. Figure 3.7 shows a plot of the angle of rotation 

between two poses (called orientation distance) according to the axis-angle representation 

versus the 3D distance (called position distance) between the two poses using the tool 

reference frame origin as the point of measurement for each pairing (72×71/2) of the 72 

poses shown in Figure 3.6. It should be noted that due to the symmetry of our device, each 

point in this plot corresponds to anywhere from 3 to 24 pairs of poses. 

 

Figure 3.7 shows that the pairs of poses very close to each other (less than 30° and 50 mm 

apart) are clustered in only three groups (represented as red points). This means that for the 

chosen tool reference frame, there are a few redundant measurement configurations that can 

be eliminated. The point closest to the origin thus corresponds to six pairs, namely {10, 37}, 

{46, 49}, {2, 70}, {34, 61}, {22, 25} and {13, 58} (numbers corresponding to the pose order 

presented in Figure 3.6, from left to right and top to bottom). The second closest point 

corresponds to pairs {14, 59}, {35, 62}, {11, 38}, {47, 50}, {23, 26} and {3, 71}. Finally, 

the third closest point corresponds to pairs {1, 72}, {12, 39}, {15, 60}, {48, 51}, {24, 27} 

and {36, 63}. We can therefore eliminate poses 1, 2, 3, 10, 11, 12, 13, 14, 15, 22, 23, 24, 34, 

35, 36, 46, 47 and 48 (marked with a white cross in Figure 3.6) and retain the remaining 54 

poses. Thus, the device described here can be used to measure 54 different poses of the 
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flange of an industrial robot, the positions of which are situated within a large portion of a 

sphere of approximately 240 mm in radius. Finally, it should be noted that a different choice 

of tool reference frame will produce different position distances, but the orientation distances 

will remain the same.  

           

(a) DKP solulution  (b) DKP solution 2 

           

(c) DKP solution 3  (d) DKP solution 4 
Figure 3.5 Four of the eight possible DKP solutions for the 112212331

 hexapod 
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Figure 3.6 The 72 different tool poses that can be measured using our device (18 of 
these, marked with a white cross, are superfluous) 
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Figure 3.6 (continued) The 72 different tool poses that can be measured using our device 
(18 of these, marked with a white cross, are superfluous) 
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Figure 3.7 Position and orientation distances between the tool reference frames of each 
pairing of the 72 measurable poses shown in Figure 3.6 

3.3 Direct Kinematics of our Hexapod Design 

As mentioned above, the DKP of the 112212331 hexapod design has eight solutions obtainable 

by solving three quadratic equations in cascade. Although there are 35 additional designs 

obtainable from the 112212331 design by permutation, the DPK solution is presented only for 

the 112212331 design shown in Figure 3.8. The solution for this design is nearly identical to 

that of the 35 other designs. 

 

B1, B2, and B3 represent the base attachment points, while T1, T2 and T3 represent the tool 

fixture attachment points. The base reference frame xyz is set arbitrarily as shown in 

Figure 3.8. The distances between Bi and Bj, Ti and Tj, and Bi and Tj are respectively bij, tij (i, 

j = 1, 2, 3; i ≠ j) and ρij (i,j = 1, 2, 3). The algebraic vectors that define the positions of the 

base attachment points are: 
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To find the pose of the tool, the DKP of a tripod (e.g. B1B2B3T1) must be solved. This can be 

achieved using the following function (Nair, 1992):  ( )1 2 3 1 2 3, , , , ,l l l s= +Tri v v v p k  (3.4) 
where v1, v2, and v3 are vectors containing the coordinates of the three base points of the 

tripod and l1, l2, and l3 are the lengths of the three legs, and 

 ( ) ( )
( ) ( ) ( )( ) ( )2 11

T T

T TT

ξ ξξ
 −   = + × ×     × × 
 
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 ( )2 2
1 1 2 2 2 1 1

1

2
T Tl lξ = − + −v v v v  (3.6) 

 ( )2 2
2 1 3 3 3 1 1

1

2
T Tl lξ = − + −v v v v  (3.7) 

 2 1= −u v v  (3.8)  3 1= −w v v  (3.9) 
 

( ) ( )T

×=
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u w
k

u w u w
 (3.10) 

 ( ) ( ) ( ) ( )2 2
1 1 1 1 1

TT Ts l= ± − − − +v k v k p v p v  (3.11) 
To determine the pose of the tool, the positions of the tool fixture attachments points are 

determined in the following order: 
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 ( )1 1 2 3 11 21 31, , , , ,ρ ρ ρ=t Tri b b b  (3.12) 
 ( )2 1 2 1 12 22 12, , , , ,tρ ρ=t Tri b b t  (3.13) 
 ( )3 2 2 1 23 23 31, , , , ,t tρ=t Tri t b t  (3.14) 
One of the two solutions for t1 is discarded because of its negative z coordinate, leaving a 

total of four solutions, already illustrated in Figure 3.5. 

Therefore, the DKP of the 112212331 hexapod design retained for our 6D measurement device 

can be solved in closed form, and there is virtually no numerical error for the chosen nominal 

lengths. 

Given the above explanation of the 112212331 design DKP, the choice of 150 mm for the 

nominal distance between the tool attachment points is justified. Indeed, if 300 mm is 

chosen, there will be a single feasible solution, since a tool attachment point will be 

extremely close to a base attachment point in all other solutions. The 100 mm option simply 

makes the tool fixture too small. 

 

Figure 3.8 A schematic representation of the 112212331 hexapod design 
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3.4 Calculating the Accuracy of the 6D Measurement Device 

The accuracy of the 6D measurement device in its 112212331 implementation (i.e. the four 

configurations shown in Figure 3.5) is calculated below for the nominal lengths only (i.e. b12 

= b23 = b31 = ρ11 = ρ12 = ρ22 = ρ23 = ρ21 = ρ31 = 300 mm and t12 = t23 = t31 = 150 mm). It is 

clearly the same for the 72 configurations shown in Figure 3.6 and varies negligibly with 

±1 mm variations of these 12 distances (i.e. the measurement range of the telescoping 

ballbar). 

 

Using the following expression of uncertainty in measurement (“Uncertainty of measurement 

- Part 3: Guide to the expression of uncertainty in measurement,” 2008), the uncertainty 

associated with the measurement of the coordinates of the three tool attachment points can be 

expressed in terms of the uncertainty of a single point-to-point distance measurement: 

 2 2 2

,, ,2 2 2
, , ,i yi x i z
i

T

s s s
j j jj j jq q q

σ σ σ
      ∂∂ ∂ =            ∂ ∂ ∂       
  t

tt t
u , (3.15) 

where ut,i is the uncertainty associated with the measurement of the coordinates ti of tool 

fixture attachment point i (i = 1, 2, 3), σs is the uncertainty associated with the measurement 

of the twelve distances (i.e. the uncertainty associated with the telescoping bar) and qj (j = 1, 

2, …, 12) are the measurements that contribute to determining ti (i.e. the twelve distances):  [ ]12 23 31 11 21 31 12 22 23 12 23 31, , , , , , , , , , ,b b b t t tρ ρ ρ ρ ρ ρ=q  (3.16) 
The partial derivatives of ti with respect to qj are called the sensitivity coefficients, since ti 

can be seen as a function that depends on q. Since the uncertainty is calculated for each axis 

of the Cartesian space, the total measurement uncertainty associated with the coordinates ti 

will be the Euclidean norm of ut,i. 

 

By applying Eq. (3.15) to each of the four DKP solutions shown in Figure 3.5, the 

measurement uncertainties given in Table 3.1 are obtained. It should be noted that the 

uncertainty specified by the manufacturer of the QC20-W telescoping ballbar is 2 μm at the 
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95 % confidence level (i.e. σs = 0.510 μm). Therefore, the standard deviation with which our 

device measures the position of the three tool fixture attachment points is better than ±1.622 

μm, and the accuracy is ±3.18 μm at the 95 % confidence level. 

 

Finally, the position measurement accuracy of our device at the tool reference frame shown 

in Figure 3.5 depends on the uncertainty of the measurement of this frame with respect to the 

three tool fixture attachment points and on the repeatability associated with the tool changer. 

This will not be calculated here. 

Table 3.1 Measurement uncertainties for each of the three tool attachment points in the 
four DKP solutions shown in Figure 3.5 

ti 
DKP solution 

number 
Uncertainty ,itu  ,itu  

t1 1, 2, 3, 4 [1.5, 1.6, 0.7] σs 2.309 σs 

t2 1, 2 [1.5, 1.9, 1.1] σs 2.646 σs 

t2 3, 4 [1.5, 1.2, 1.6] σs 2.480 σs 

t3 1 [1.6, 2.6, 1.0] σs 3.179 σs 

t3 2 [1.1, 2.5, 1.5] σs 3.054 σs 

t3 3 [1.0, 2.1, 1.7] σs 2.853 σs 

t3 4 [1.6, 2.2, 1.7] σs 3.180 σs 

3.5 Experimental Validation 

Experiments designed to test the effectiveness of our 6D measurement device are described 

below. The accuracy of the ballbar device was not validated, since no sub-micron CMM was 

available. The device was tested using an ABB IRB 120 industrial robot. 

 

The rated payload of this robot is 3 kg and its unidirectional repeatability is about 20 µm. The 

robot was previously calibrated using a laser tracker (A Nubiola et al., 2013) and the same 

tool fixture (http://youtu.be/i0ztjX0jlSU). The tool and base fixtures of the 6D device are 
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made of steel. For more flexibility, the base fixture of the device was attached to a pivoting 

platform (AP180 from Thorlabs) that can be locked into a large range of orientations. 

   

(a) measuring t12  (b) measuring b23  (c) measuring ρ12 
Figure 3.9 Measuring the base and tool distances as well as the leg distances in a given 

robot configuration 

Figure 3.9 shows the ABB IRB 120 robot in one of the poses measurable using the 6D 

device. While the device can measure 72 distinct poses, of which only 54 are sufficiently 

distinct (see the end of Section 3.2), many of these poses are not attainable by a small 

industrial robot such as the IRB 120, regardless of the position of the base fixture. For the 

position shown in Figure 3.9, which was chosen almost arbitrarily, the robot can assume only 

22 of the 72 measurable poses (Figure 3.10). Since the robot can assume 17 of these poses 

with both wrist configurations (known to some as flip and no-flip), the robot was tested in 39 

of its configurations. 

 

The procedure for measuring the accuracy of the robot using the device can be viewed at 

http://youtu.be/yMjUuv4J550, and is summarized as follows: 

1. The ballbar is first assembled with the 50 mm extension bar, initialized on the 

Zerodur calibrator, and each of the three distances between the tool attachment points 

is measured (Figure 3.9a). Since the tool fixture is made of steel (rather than Invar or 
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Zerodur), these distances vary with fixture temperature and should be measured 

before each group of pose measurements. 

2. The base fixture of the device is attached to the base of the robot. The position and 

orientation of the base fixture can be chosen using various criteria and robot 

simulation software (our RoKiSim program available at www.rokisim.com was used).  

3. The clamping mechanisms of the three center pivot assemblies on the base fixture of 

the device are released. The setting ball is placed in one of the three magnetic cups of 

the triangular tool fixture, its center defined as the TCP (tool center point) of the 

robot, and the robot is moved with respect to each of the three base attachment points 

(by programming, not by manual jogging) such that the programmed distances 

between these three TCP positions are 300.000 mm. When the robot brings the setting 

ball to each center pivot assembly, the magnetic cup thereof snaps onto the ball 

(provided that the center of the setting ball is no more than about 2 mm from the 

center of the magnetic cup) and the clamping mechanism is then manually locked. 

4. The ballbar is then assembled with the 150 mm and 50 mm extension bars, initialized 

on the Zerodur calibrator, and each of the three distances between the base attachment 

points is measured (Figure 3.9b). If the robot accuracy were perfect, these distances 

would be exactly 300.000 mm. In practice, there is an error of less than 1 mm (for an 

accurate robot), and the distances are measurable with the QC20-W. 

5. The robot is finally programmed to move through each of its 39 configurations, and 

the six leg distances are measured one by one (Figure 3.9c). Initializing the ballbar on 

the Zerodur calibrator before each group of six measurements is strongly 

recommended, otherwise the repeated magnetic snaps and the manipulation of the 

ballbar produce an accumulated error of as much as 0.003 mm in the ballbar readings. 

 

Since the above procedure may be very time consuming, it was automated using the 

application programming interface for the QC20-W telescoping ballbar, implemented in our 

robotics simulation software RoKiSim. Once the tool fixture is attached to the robot tool 

flange and the pose of the base fixture is selected manually, RoKiSim automatically 
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calculates the feasible robotic configurations, which are displayed one by one with prompts 

(e.g. “Attach the ballbar between B1 and T1”) using the Enter key. The entire procedure for 

measuring the pose of the end-effector of the robot in its 39 configurations (including 

attaching the base fixture to the robot’s table) requires less than one hour. Initializing the 

ballbar with the calibrator and then measuring the six leg distances for a given pose of the 

tool is completed in one minute. 

 

Table 3.2 shows the statistics of the position and orientation errors at the robot tool flange 

frame for the 39 robotic configurations measured, as well as of the position errors at the three 

tool fixture attachment points and the leg distance errors. Orientation errors are once again 

calculated as the rotation angle in the axis-angle orientation representation. Attachment point 

T1 lies on axis 6 of the robot, while T2 is the tool attachment point connected to the ballbar in 

Figure 3.9c. Attachment point T3 is farthest from robot axis 6, which is why the position 

errors measured at this point are greatest. 

Table 3.2 Errors for the 39 robotic configurations tested 

 

Pose errors at the robot

tool flange frame 
Position errors at T1, T2 and T3 

Leg distance 

errors 

position orientation T1 T2 T3  

min. 0.115 mm 0.263° 0.127 mm 0.298 mm 0.602 mm −0.452 mm 

max. 0.916 mm 0.512° 0.785 mm 0.958 mm 1.107 mm 1.025 mm 

mean 0.319 mm 0.333° 0.283 mm 0.643 mm 0.834 mm 0.220 mm 

The pose errors measured at the robot tool flange frame are considerable, even though the 

robot was already calibrated. This is due in part to the relatively poor repeatability associated 

with the tool changer (e.g. point T3 deviates as much as 0.100 mm between two successive 

attachments of the tool changer, even if the robot does not move), and to the delay (several 

months) between calibrating the robot and making the measurements shown in Table 3.2. 

Ideally, the validation procedure using our method should be performed immediately after 

robot calibration. However, as shown in the last column of Table 3.2, even though the robot 
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was not very accurate, all leg measurements were within the ballbar measurement range of 2 

mm (from −0.975 mm to +1.025 mm) except for only one measurement that reached the limit 

of 1.025 mm. 

 

Figure 3.10 The 22 tool poses measurable using our device for a single setup of the base 
fixture. In 17 of these poses (not identified here), the robot can be positioned with two wrist 

configurations. 

Although the measured robot configurations are sufficient in number and well distributed (as 

seen in Figure 3.10), there is no guarantee that the accuracy of the robot will not worsen in 

some other configuration in which the tool is in the vicinity of the base fixture. The positions 

of the three tool fixture attachment points were therefore measured using a four-foot 

FaroArm Platinum measurement arm equipped with a 0.5 inch steel ball probe in fifteen 

completely random robot configurations in which the tool fixture faced upwards rather than 

downwards. The results in Table 3.3 show that there is no major discrepancy between the 
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robotic accuracy in these 15 random configurations and that observed with the 6D 

measurement device in the 39 configurations. 

Table 3.3 Errors for 15 additional tool poses measured using the FaroArm 

Statistical 

parameter

s 

Pose errors at the robot

tool flange frame 
Position errors at T1, T2 and T3 

position orientation T1 T2 T3 

minimum 0.128 mm 0.261° 0.152 mm 0.373 mm 0.526 mm 

maximum 0.454 mm 0.369° 0.444 mm 1.105 mm 1.160 mm 

mean 0.246 mm 0.331° 0.256 mm 0.720 mm 0.980 mm 

 

Finally, the multidirectional repeatability of the robot was measured using our device in four 

of the robot configurations shown in Figure 3.10, with five repetitions per configuration. The 

maximum multidirectional position repeatability measured at points T1, T2, and T3 were 

0.036 mm, 0.041 mm, and 0.043 mm, respectively. The maximum multidirectional position 

repeatability at the origin of the tool flange frame was 0.021 mm. ABB specifies that the 

unidirectional position repeatability at that point is 0.010 mm. 

3.6 Conclusion 

We propose a novel low-cost but high-accuracy device and method for measuring a set of 

more than fifty distinct poses of an industrial robot. The device consists of Renishaw’s 

QC20-W telescoping ballbar standard kit plus certain accessories, a pivoting platform from 

Thorlabs, and two custom-machined steel triangular fixtures, for a total cost of about 

$13,000. The position accuracy of this novel 6D measurement device is approximately 

±0.003 mm. 

 

Our device can be used to measure the pose accuracy and multi-directional pose repeatability 

of any six-axis positioning mechanism, in particular six-axis industrial robots. Although the 
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measurement procedure using our device does not comply with the ISO 9283 robot 

performance standard (“Manipulating industrial robots - Performance criteria and related test 

methods,” 1998), we argue that it is in fact superior in some ways to the procedure proposed 

in that standard. In addition, our device can be used to calibrate any six-axis positioning 

mechanism (e.g., a hexapod (von Daake et al., 2013)). We intend to use it for calibrating 

industrial robots and believe that the improvement in robotic accuracy will be greater than 

that obtained using a laser tracker. 

 

While our 6D device can measure more than fifty sufficiently distinct poses, the position 

distance between these is relatively small (no more than 500 mm) and might not be enough 

for large industrial robots. A bigger device could be constructed, but the corresponding 

calibrator required might not be available off-the-shelf. Such a calibrator (e.g. for 600 mm) 

could be obtained on a custom order basis from American companies such as Brunson 

Instrument or Micro Surface Engineering.  
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Abstract 

 

A novel 6D measurement system was recently proposed, comprising a single commercially 

available telescoping ballbar and two custom-made fixtures. One fixture is attached to the 

robot base and the other to the robot end-effector, and each having three magnetic cups. In 

each of 72 poses of the tool fixture, with respect to the base fixture, it is possible to measure 

six distances with the ballbar between the magnetic cups on the tool fixture and the magnetic 

cups on the base fixture, and thus calculate the pose with high accuracy. This paper is the 

first to present the successful use of this measurement system for absolute robot calibration. 

The robot calibrated is a Fanuc LR Mate 200iC six-axis industrial robot and the telescoping 

bar used is the QC20-W by Renishaw. The absolute position accuracy of the robot after 

calibration is validated with a Faro laser tracker in almost 10,000 robot configurations. 

Considering the validation data in only the front/up configurations, the mean absolute 

positioning error is improved from 0.873 mm to 0.479 mm. To allow a comparison, the robot 

is also calibrated using the laser tracker and the robot accuracy validated in the same 10,000 

robot configurations.  

4.1 Introduction 

It is well-known that industrial robots are highly repeatable, but their nominal accuracy is 

relatively poor due to various sources of differences (errors) between the nominal robot 

model (used in the robot controller) and the real robot. These errors can be classified in five 
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categories (Andrew Liou et al., 1993; Karan and Vukobratovic, 1994): environmental (such 

as those caused by temperature drifts), parametric (for example, manufacturing and assembly 

errors), measurement (caused by the limited resolution of the motor encoders), computational 

(computer round-off and steady-state control errors) and application (such as installation 

errors). 

 

Fortunately, the accuracy of an industrial robot can be improved through calibration (Roth et 

al., 1987). The first step is to choose the mathematical model that will improve the 

representation of the position and orientation (pose) of the robot end-effector. This 

mathematical model is a function of the robot joint angles and takes into account the error 

parameters that need to be modelled. Models can be based on the Denavit-Hartenberg 

convention (Denavit and Hartenberg, 1955; Stone and Sanderson, 1987; Whitney et al., 

1986), Denavit-Hartenberg Modified convention (Craig, 1986) or other conventions that 

improve error parameter identification, such as the complete and parametrically continuous 

model (CPC) (H Zhuang and Roth, 1992; Hanqi Zhuang et al., 1992) or other models based 

on the product of exponentials (POE) (He et al., 2010; Okamura and Park, 1996). 

 

Depending on the type of errors modelled, the calibration can be classified as level-1, where 

only joint errors are modelled; level-2 calibration, also known as kinematic calibration 

(Ginani and Motta, 2011; Newman et al., 2000; Ye et al., 2006); and level-3 calibration, also 

called a non-kinematic calibration, which models errors other than geometric defaults such as 

stiffness (Jang et al., 2001; Lightcap et al., 2008; A Nubiola et al., 2013; Albert Nubiola and 

Bonev, 2013) and temperature (Gong et al., 2000). 

 

The error parameters can be identified by measuring the complete pose or partial pose of the 

robot end-effector in a set of calibration robot configurations. Many measurement devices 

have been used for robot calibration or validation, such as: a touch probe and a reference 

artifact (Hayati and Mirmirani, 1985; Khalil and Besnard, 2002), a telescoping ballbar (M.R. 

Driels, 1993; Juneja and Goldenberg, 1997; Ota et al., 2002; Schiele et al., 1986; Vira and 

Lau, 1987), a small-range 3D (position) measurement device (such as a camera-based 
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system), (Beyer and Wulfsberg, 2004) acoustic sensors(Stone and Sanderson, 1987), a large-

range 3D measurement device (such as a laser tracker (Dumas et al., 2010; Meng and 

Zhuang, 2001; A Nubiola et al., 2013; Albert Nubiola and Bonev, 2013; Puskorius and 

Feldkamp, 1987) or CMM (M.R. Driels, 1993; Lightcap et al., 2008; B. W. Mooring and 

Padavala, 1989)) and a 6D (complete pose) measurement device (such as a camera-based 

system (Gatla et al., 2007; Meng and Zhuang, 2001; Puskorius and Feldkamp, 1987) or a 

laser tracker with a 6D probe (Boochs et al., 2010)). 

 

In practice, the most critical issue is the choice of the measurement system, as the latter 

determines the efficiency and cost of the robot calibration process. For example, the so-called 

closed-loop method needs to be used if the robot tool is constrained to lie on a reference 

object of precisely known geometry (Besnard et al., 2000; Hayati and Mirmirani, 1985). 

Although the calibration algorithm might be more complex, this method is cheaper because it 

only needs a switch, such as a touch probe, to detect the contact with an obstacle and save the 

joint readings. On the other hand, open-loop calibration methods can be applied if a 3D or 6D 

measurement device is used. In general, these devices are either very expensive (such as laser 

trackers and CMMs), or not highly accurate (which is the case of some stereo cameras, also 

called optical CMMs). 

 

In contrast, a new 6D measurement system based on a telescoping ballbar was recently 

proposed (Albert Nubiola et al., 2013). This new 6D measurement device has the advantage 

of being more accurate than laser trackers and yet cheaper than even the cheapest optical 

CMM. The principal disadvantage of this system is that it can only measure a limited number 

of poses (maximum 72), which is a relatively small working volume. 

 

The goal of this work is to evaluate the use of this novel 6D measurement system for the 

absolute calibration of a small six-axis serial robot, a Fanuc LR Mate 200iC. The absolute 

calibration is validated with a laser tracker in nearly 10,000 arbitrary robot configurations. 
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The remainder of this paper is organized as follows: Section 4.2 presents the experimental 

setup, briefly outlines the 6D measurement system, and describes a new algorithm for setting 

up the world reference frame. Section 4.3 then describes the robot calibration model and the 

parameter identification procedure used. Section 4.4 presents the measurement procedure and 

the experimental results. Finally, conclusions are presented in Section 4.5. 

4.2 Experimental Setup and Description of Measurement System 

The experimental setup is shown in Figure 4.1. It consists of a Fanuc LR Mate 200iC six-axis 

industrial robot, a QC20-W telescoping ballbar from Renishaw, and custom-made base, and 

tool fixtures made of steel. A QC-5 tool changer from ATI is used for attaching the tool 

fixture to the robot flange. 

 

The tool and base fixtures each consist of three equidistant magnetic cups for 0.5 inch 

precision steel balls. The tool fixture, including the tool changer and the adaptors, weighs 

approximately 2.7 kg, which is within the 5 kg rated payload of the robot. The base fixture is 

attached to a ball-in-socket pivoting platform (AP180 from Thorlabs) that can be locked into 

a large range of orientations. 

 

The telescoping ballbar chosen for testing, the QC20-W, is the latest telescoping ballbar from 

Renishaw since it is compact and wireless. Renishaw’s ballbars are also by far the most 

popular, many thousands of units having been sold. The nominal length of the QC20-W is 

100 mm. The extension bars and calibrator allow highly accurate measurement of lengths 

near 100 mm, 150 mm, and 300 mm. 

 

As described in (Albert Nubiola et al., 2013), several authors have proposed the use of six 

custom-made telescoping ballbars arranged as the legs of a hexapod for continuous 6D 

motion measurement. However, it is obviously preferable (and much cheaper) to use off-the-

shelf telescoping ballbars such as the QC20-W. The problem with such ballbars is that their 

measurement range is very limited (only ±1 mm in the case of the QC20-W). To overcome 

this problem, and be able to measure a large number of discrete poses, the use of the so-
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called 3-3 hexapod design was proposed in (Albert Nubiola et al., 2013) (Figure 4.2). The 

main advantage of the 3-3 hexapod design is that no 3D measurement device is necessary in 

order to measure the relative positions of the three base and three tool attachment points. The 

telescoping ballbar itself can be used to measure the distances between the attachment points, 

with high accuracy. The nominal lengths provided with the standard QC20-W kit were 

chosen, 300 mm (the longest) for the distance between the base attachment points and 

150 mm for the distance between the tool fixture attachment points. Legs of equal nominal 

length were chosen, and since the longer the legs the larger the measurement range of the 

device, this length was 300 mm. 

           

 (a) experimental setup (b) composite image of the 
   six “leg” measurements 

Figure 4.1 Experimental setup for measuring the pose of the robot end-effector 

The main idea behind this novel 6D measurement device and method is that the 3-3 hexapod 

can be assembled in various configurations, thus allowing the measurement of several poses. 

To allow simpler and more robust computations of these poses (i.e. to simplify the direct 

kinematics of the hexapod), the triple-double-single attachment points arrangement was used 

(Zhang and Song, 1992), meaning that legs are attached to the base and tool fixtures in 

groups of three, two, and one (Figure 4.2). The four feasible assembly configurations for one 
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such arrangement of the base attachment points (referred to as the “231” arrangement) are 

shown in Figure 4.3. 

 

The ability to measure four poses is obviously insufficient. Fortunately, for each of these four 

poses, two additional measurable poses can be obtained simply by rotating the tool ±120° 

about the axis normal to, and passing through the center of the tool fixture triangle. Finally, 

all six permutations can be used, namely 123, 132, 213, 231, 312, and 321 for the base 

attachment points. The device can thus actually measure a total of 72 poses (4×3×6). 

Reference (Albert Nubiola et al., 2013) shows the complete set of poses and gives the 

equations for computing the coordinates of the tool attachment points from the six “leg” 

measurements with the ballbar. 

 

Figure 4.2 Illustration of one of the 3-3 hexapod designs used 
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(a) assembly configuration 1  (b) assembly configuration 2 

                     

(c) assembly configuration 3  (d) assembly configuration 4 
Figure 4.3 The four feasible assembly configurations for the 231 3-3 hexapod 

The accuracy of this 6D measurement device, in the worst case, is found to be 3.18 times the 

accuracy of the 1D measurement system (telescoping ballbar) (Albert Nubiola et al., 2013). 

The telescoping ballbar used has an uncertainty of 2 μm at the 95% confidence level (i.e. σs = 

0.510 μm). Therefore, the standard deviation, with which the 6D device measures the 

position of the three tool attachment points, is better than ±1.622 μm, and the accuracy is 

better than ±3.18 μm at the 95% confidence level. 

 

A world reference frame (Φworld) must be defined by the three base attachment points. In the 

original method (Albert Nubiola et al., 2013), the frame origin is placed at B1, the x axis 
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points to B2, and the z axis is normal to the plane containing the three points (Figure 4.1b and 

Figure 4.2). However, in this definition, the error in measuring base attachment point 1 has a 

major influence on the position accuracy of the robot, while the errors in measuring the other 

two base measurement points have minor effect on the position accuracy according to the 

robot (the robot can be seen as an inaccurate measurement system in this case). The distance 

measured with the ballbar is redundant but more accurate than the distance seen by the robot, 

so it is better to combine both measurement systems to maximize accuracy. Since the 

distance between the three base attachment points is measured with very high accuracy using 

the ballbar, it is possible to take this information into account and define a new world 

reference frame. The goal of the algorithm explained next is to combine the 3D coordinates 

of the three base points given by the robot with the distances measured with the ballbar to 

find another three 3D points that improve the accuracy of the first three. Recall that the first 

three points are only measured with the robot. 

 

Figure 4.4 shows the three base attachment points as measured by the robot or by the laser 

tracker, the coordinates of which are given by vectors pi (i = 1, 2, 3). The initial world 

reference frame is denoted by ΦA. The new world reference frame that is to be found is 

denoted by ΦC, and the corrected coordinates of the base attachment points are given by 

vectors qi (i = 1, 2, 3). The distances between these corrected base attachment points, d12, d23 

and d31, are the ones measured with the ballbar, while 12d ′ , 23d ′  and 31d ′  are the distances as 

measured by the robot or laser tracker. For simplicity, the xy planes of both world frames 

coincide, and pi and qi (i = 1, 2, 3) are homogeneous vectors. The idea is to find the 

homogeneous transformation between ΦA and ΦC so that the sum 

2 2 2

1 1 2 2 3 3− + − + −p q p q p q  is minimized. 

 

Vectors pi (i = 1, 2, 3) are defined as 
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while vectors qi (i = 1, 2, 3) are given by 
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Figure 4.4 Relationship between the initial and corrected world reference frames 
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where T is the 2D homogeneous matrix to be found 
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Thus, if vectors qi (i = 1, 2, 3) are expressed as 
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their first-order partial derivatives is 
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Then, the following system of six equations in three unknowns can be obtained:  Δ = Δp D x  (4.10) 
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This system of equations can be solved by using the least squares method. A solution can be 

obtained iteratively through the pseudo inverse, imposing zeros as first guess for the first 

iteration so that T = I3:  ( ) 1T T−
Δ = Δx D D D p . (4.12) 

Using this least squares approximation (instead of using the original method (Albert Nubiola 

et al., 2013)) improves about 15% the accuracy of the robot after calibration. 
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Figure 4.5 Robot axes and links 

4.3 Robot Calibration Model and Parameter Identification Procedure 

Figure 4.5 shows a CAD model of the robot studied with its seven links and the axes of the 

six joints. The level-3 robot model used in this paper corresponds to a complete kinematic 

calibration of the robot, including the end-effector, and five parameters related to the 

stiffness of the gearboxes of joints 2, 3, 4, 5, and 6. Table 4.1 summarizes the 25 error 

parameters. This model is very similar to the one used in (A Nubiola et al., 2013; Albert 

Nubiola and Bonev, 2013), the main difference being that it does not take into account the 

error parameters that locate the base frame. The D-H M (Denavit-Hartenberg Modified) 

model convention used is the one described in (Craig, 1986), which can be represented as  0 1 2 3 4 5
A6 1 A,2 A,3 A,4 A,5 A,6=T A A A A A A ,  (4.13) 

where 
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A, Rot , Trans ,0,0 Rot , Trans 0,0,i

i i i i ia dα θ− =A x z , (4.14) 
for 2,i ≥ constitute the homogeneous transformation matrix representing the pose of 

reference frame Φi with respect to reference frame Φi−1. 

 

It is important to note that although the robot base is not identified, an absolute calibration is 

performed. This is achieved with the relative model (Table 4.1) and the joint readings 

obtained when setting up the three 0.5 inch base attachment points (to be explained later). 

Using the relative calibrated model and computing the accurate forward kinematics for the 

joint readings just mentioned, the world frame Φworld can be found with respect to the base 

frame Φ0. 

Table 4.1 Robot calibration model used (25 error parameters) 

i αi (º) ai (mm) θi (º) di (mm) 
1 0 0 θ1 330 
2 −90+δα2 75+δa2 θ2–90+δθ2+c2τ2 δd2 
3 δα3 300+δa3 θ3+δθ3+c3τ3 δd3 
4 −90+δα4 75+δa4 θ4+δθ4+c4τ4 320+δd4 
5 90+δα5 δa5 θ5+δθ5+c5τ5 δd5 
6 −90+δα6 δa6 θ6+δθ6+c6τ6 80+δd6 

 

Table 4.2 Estimated masses and centers of gravity of each robot link for Fanuc LR Mate 
200iC robot 

i  
[kg] 

 
[mm] 

 
[mm] 

 
[mm] 

1 0 0 0 0 

2 10 150 0 0 

3 0 0 0 0 

4 10 0 0 −160 

5 0 0 0 0 

6 (with triangular artifact) 2.6 50 25 100 

The five-parameter stiffness model is used to represent the elastic behavior of the robot 

(Albert Nubiola and Bonev, 2013). This model takes into account the elasticity of the 

im ,
i

x ic ,
i

y ic ,
i

z ic
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gearboxes of joints 2, 3, 4, 5, and 6 (one parameter per joint). The elasticity in each gearbox 

is modeled as a linear torsional spring, so this parameter represents the effective constant 

compliance ci of each joint i. Traction and compression effects are neglected. Torsional 

effects are also neglected. 

 

The gravity forces due to the masses of links 2, 3, 4, and the tool, are taken into account but 

the weights of links 5 and 6 are neglected as they are relatively small, and so is the weight of 

link 0 (the base). The weight of link 1 is not needed because there is no compliance 

parameter that models the flexibility of joint 1, since the axis of that joint is parallel to the 

gravity vector.  

Note that links 3 and 4 are considered as one, and the effect of link 3 is transferred to link 4. 

The center of gravity of these two links lies on axis 4, and therefore the compliance 

parameter for that axis is not affected by the weight of links 3 and 4. 

 

In summary, the complete model consists of 25 error parameters: 20 geometric parameters (4 

D-H M parameters for links 2 to 6), and 5 compliance parameters (for joints 2 to 6). 

However, since axes 2 and 3 are considered perfectly parallel, and because parameters are 

identified by linearization of the system, one of the 20 geometric parameters ( 2dδ  or 3dδ ) 

becomes redundant and is therefore excluded from the model. 

 

All the kinematic error parameters are very small. The robot calibration model can be 

expressed as  ( ),=f f r θ  (4.15) 
where f = [x, y, z]T is the position of the end-effector (note that only the position data are 

taken into account), r is the vector containing all 25 error parameters, and θ = [θ1, θ2, …, θ6]
T 

is the vector of the joint variables. The expression of equation (4.15) is very complex. The 

Jacobian matrix of this robot model is even more complex. Fortunately, this expression can 
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be obtained using the MATLAB Symbolic Toolbox, so the linearized equations can be 

expressed at iteration i as   i i iΔ = Δf J r  (4.16) 
where iΔf  is the difference between the measured position and the position predicted by the 

model for a given robot configuration, iJ  is the Jacobian matrix, and iΔr  are the values to 

add to the error parameters. Using sufficiently many end-effector position measurements for 

different robot configurations, it is possible to obtain the least squares solution of the error 

parameters using the pseudo inverse of the Jacobian:  ( ) 1T T−
Δ = ΔJ Jr J f . (4.17) 

The first time that the Jacobian is calculated, it is verified whether the columns of J are 

linearly independent. If they are not, the redundant error parameters are discarded. Once the 

model parameters are chosen during the first iteration, the linear dependency is rechecked at 

each iteration. Through this verification, the error parameters 2dδ  and 3dδ  are found to be 

linearly dependent (because axes 2 and 3 are considered perfectly parallel), and so 3dδ  is not 

considered in the model. The solution is stable after four iterations. 

 

No observability analysis is performed since the choice of configurations is limited. 

Therefore, all possible measurements are used to calibrate the robot. 

4.4 Experimental Results 

For the base fixture disposition shown in Figure 4.1, it is possible to measure 46 different 

poses, and 124 configurations (the same pose may be measured twice or even three times 

using different robot joint configurations, i.e. front/up/flip, back/down/noflip, etc.). This is 

so, even though the ranges of axes 4 and 6 were limited to ±180º. Furthermore, front/down 

and back/up configurations were discarded because of mechanical interferences between the 

robot arm and the measurement device. In addition, to speed up the calibration process, 

instead of using both flip and noflip configurations (e.g. front/up/flip and front/up/noflip), 
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when possible, only one of the configurations was randomly chosen. This leaves a total of 61 

configurations that are used for calibration (46 are front/up/flip and front/up/noflip 

configurations and 15 are back/down/flip and back/down/noflip configurations). 

 

The validation was performed using a Faro ION laser tracker by placing three 0.5 inch 

spherically mounted retro reflectors (SMRs) in the magnetic cups of the tool fixture. The 

position of an SMR was then measured in 9,905 robot configurations randomly generated in 

the robot joint space avoiding collisions with the table and the robot itself and reorienting the 

SMR to face the laser tracker. The position of each SMR was measured in approximately one 

third of the robot configurations. 

 

The calibration procedure was automated with the RoKiSim simulation software 

(www.rokisim.com) and the Renishaw SDK to initialise, trigger, and retrieve the 

measurements of the telescopic ballbar. The procedure is summarized as follows 

(http://youtu.be/SDmH-FAxrtM): 

1. The ballbar is first assembled with the 50 mm extension bar, initialized on the 

calibrator, and each of the three distances between the tool attachment points is 

measured. 

2.  The base fixture is attached to the base of the robot. A first guess of the three base 

fixture attachment points must be manually taught (approximately) with the center 

pivot assemblies released. 

3. The setting ball is placed in one of the three magnetic cups of the tool fixture, its 

center defined as the TCP (tool center point) of the robot, and the robot is moved with 

respect to each of the three base attachment points (by programming, not by manual 

jogging) such that the programmed distances between these three TCP positions are 

300.000 mm according to the robot kinematics. When the robot brings the setting ball 

to each center pivot assembly, the magnetic cup thereof snaps onto the ball and the 

clamping mechanism is then manually locked. 
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4. The ballbar is then assembled with the 150 mm and 50 mm extension bars, initialized 

on the Zerodur calibrator, and each of the three distances between the base attachment 

points is measured (Figure 4.1a). If the robot accuracy is perfect, these distances 

would be exactly 300.000 mm. In general, the error is usually less than 1 mm, and the 

distances are measurable with the QC20-W. 

5. The robot is finally programmed to move through each of its 61 configurations, and 

the six leg distances are measured one by one. Verifying the ballbar bars on the 

calibrator is recommended from time to time, otherwise the repeated magnetic snaps 

and the manipulation of the ballbar produce an accumulated error of as much as 0.003 

mm in the ballbar readings. 

 

Once the tool fixture is attached to the robot tool flange and the pose of the base fixture is 

defined teaching the three base targets, RoKiSim automatically calculates the feasible robot 

configurations, which are displayed one by one with prompts using the Enter key (e.g. 

“Attach the ballbar between B1 and T1”). 

 

Figure 4.6 shows the 61 configurations, where the tags F and B stand for front/up and 

back/down configuration, respectively, and the number identifies the pose of the end-effector 

(there are 46 different poses). 

 

For each of the 61 configurations, it takes 6 measurements with the telescopic ballbar, of 

distances that are supposed to be equal to 300.000 mm (according to the robot kinematics). 

However the robot has not been calibrated and some errors may be more than ±1 mm. If this 

is the case, the non-measurable pose is skipped. After the calibration procedure was 

completed it was found that 15 configurations were not reachable. Not surprisingly, these 15 

configurations are all the back/down configurations. Therefore, a preliminary calibration is 

performed using the first measurable 46 front/up configurations. After this preliminary 

calibration, it was possible to measure the end-effector pose in the remaining 15 back/down 

configurations. Once the end-effector pose is measured in all 61 configurations, the robot is 

recalibrated. 
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The entire procedure for measuring the pose of the end-effector of the robot in its 61 

configurations requires less than one hour (including attaching the base fixture to the robot’s 

table).  

 

Figure 4.6 Robot configurations used for calibration (continues) 
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Figure 4.6 Robot configurations used for calibration (continued) 

The position of each of the three SMRs mounted to the tool magnetic cups is measured with 

a laser tracker, before calibration, after the preliminary calibration (only front/up 

configurations measured) and after the final calibration (in 9,905 robot configurations, of 
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which 3,672 are front/up configurations). Tables 4.3 and 4.4 show the statistics for the 

absolute position errors with respect to the world frame defined in Section 4.2. 

 

Note that the base of the robot needs to be identified for the validation of the nominal model 

(i.e. the robot before calibration) using the laser tracker. It was placed relative to robot axes 1 

and 2, which were identified by rotating only joint 1 and then only joint 2 and measuring the 

position of one of the SMRs.  

Table 4.3 Absolute position errors (in mm) in 9,905 robot configurations 

Robot model 
Mean

error 

Standard

deviation

Mean +

3*std 

Maximum 

error 

Nominal model 1.355 1.029 4.444 5.197 

Pre-calibrated model 0.517 0.219 1.174 1.223 

Final calibrated model 0.796 0.275 1.622 1.630 

 

Table 4.4 Absolute position errors (in mm) in 3,672 front/up robot configurations 

Robot model 
Mean

error 

Standard

deviation

Mean +

3*std 

Maximum 

error 

Nominal model 0.873 0.416 2.122 2.717 

Pre-calibrated model 0.479 0.214 1.121 1.039 

Final calibrated model 0.697 0.253 1.454 1.406 
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(a) Preliminary calibration   (b) Final calibration 
Figure 4.7 Absolute position error for the two steps of the calibration process 

Results show clearly that the robot accuracy is improved significantly for both calibrated 

models. However, results also show that the accuracy of the robot is better when only 

front/up configurations are considered into the identification process (i.e. the preliminary 

calibration is not only sufficient, it is better). 

 

Figure 4.7 shows the correlation between the position accuracy and the distance to a 

reference point that is 300 mm away from the three base points and above the base fixture. It 

can be clearly seen that there is a strong correlation between the position error after 

calibration and the distance to the calibration area (i.e. to the reference point). Naturally, the 

farther the end-effector position from the reference point, the less accurate the robot is. It can 

also be seen that not using the 15 back/down configurations leads to an even better 

improvement of the robot accuracy if only front/up configurations are used for the validation. 

For example, the position accuracy will be better than 0.4 mm if the end-effector position is 

no farther than 200 mm from the reference point and the robot is in a front/up configuration. 

However, if all 61 configurations are used for calibration (Figure 4.7b), the robot position 

accuracy is more homogeneous with regards to the different types of configurations. 
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Table 4.5 Distance errors (in mm) for all pairs of the 9,905 robot configurations 

Robot model 
Mean

error 

Standard

deviation

Mean +

3*std 

Maximum 

error 

Nominal model 1.062 0.960 3.941 7.873 

Pre-calibrated model 0.318 0.219 0.976 1.706 

Final calibrated model 0.400 0.244 1.132 1.666 

 

Table 4.6 Distance errors (in mm) for all pairs of the 3,672 front/up robot configurations 

Robot model 
Mean

error 

Standard

deviation

Mean +

3*std 

Maximum 

error 

Nominal model 0.595 0.511 2.127 4.963 

Pre-calibrated model 0.384 0.237 1.093 1.231 

Final calibrated model 0.456 0.243 1.185 1.394 

  
(a) Preliminary calibration  (b) Final calibration 

Figure 4.8 Distance errors between the two types of measured configurations 
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In addition, the distance accuracy was validated by calculating the distance error between 

each possible pair out of the 9,905 measured positions, which makes more than 49 million 

pairs. Tables 4.5 and 4.6 show the statistics of this distance error, while Figures.4.8(a) and 

4.8(b) each shows two histograms for this error, one (the smaller) for pairs in which both 

configurations are front/up, and another for all other pairs. It is interesting to note that about 

60% of the distance errors are positive for the preliminary calibration model, and this ratio is 

86% for the final model. This time, the difference between the preliminary calibration 

(Figure 4.8a) and the final one (Figure 4.8b) is very small. Furthermore, even if only front/up 

configurations are considered in the validation process, the distance accuracy is not 

significantly better. 

 

Finally, in order to allow a more objective evaluation of the calibration method proposed, a 

“standard” calibration was performed with 50 laser tracker position measurements (the same 

calibration method used in (A Nubiola et al., 2013)), where the 50 robot configurations were 

selected using observability analysis (only some of these configurations are front/up). After 

this new calibration, and validating in the same 9,905 robot configurations with respect to the 

same world frame, the mean position error was 0.156 mm, the standard deviation was 

0.067 mm, and the maximum position error was 0.490 mm. Similarly, considering each 

possible pair of position measurements (the same 49 million pairs), the mean distance error 

was 0.110 mm, the standard deviation was 0.083 mm, and the maximum distance error was 

0.803 mm. It is interesting to note that even if only front/up robot configurations (50 again) 

are considered for the identification process, and if the validation is then performed only in 

the 3,672 front/up robot configurations, the mean absolute position error, the standard 

deviation of the absolute position error and even the maximum position error are nearly the 

same. 

4.5 Conclusions 

This paper demonstrated through rigorous experimentations that the 6D measurement device 

proposed in (Albert Nubiola et al., 2013) is highly suitable for absolute calibration of small 

industrial robots, particularly if a relatively small workspace area is of interest (e.g. a sphere 
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of radius 0.2 mm). The calibration process is manual and labour intensive, but takes less than 

an hour to perform. Most importantly, the cost of the 6D measurement device is less than 

$13,000. 

 

Naturally, the use of a laser tracker for calibrating the same industrial robot produces 

significantly better results. The mean values and the standard deviation for the absolute 

position and the distance errors are about three times as small. However, if time is not an 

issue, there are various possible improvements to the method proposed. For example, the 

calibration can be repeated for different poses of the base fixture. Different calibration 

models can also be used for different workspace zones. Furthermore, it is possible to install a 

fourth magnetic cup on the base fixture, 300 mm away from the three other magnetic cups, 

and thus extend the range of measurable robot configurations by as much as four times. 

It is therefore believed that the proposed calibration procedure has a great potential for 

becoming a popular lower-cost alternative for absolute calibration of (small) industrial 

robots. Contrary to other lower-cost robot calibration procedures (e.g. the ones offered by 

Wiest AG, Teconsult GmbH and Isios GmbH), the method proposed can also be used to 

validate the absolute pose accuracy of the robot. 
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GENERAL CONCLUSION 

 

The goal of this thesis was to develop new robot calibration methods that improve the 

absolute accuracy of six-revolute serial robots. The calibration methods used provide 

successful accuracy results after calibration and work using low cost measurement 

equipment. The major contribution of this thesis remains in the novel 6D-measurement 

system based on a single telescopic ballbar. This measurement system is accurate and 

inexpensive and can measure 144 different poses by groups of six one-dimensional 

measurements. 

 

Two robots from two different brands have been used to test the methods presented in this 

work. The accuracy of an ABB IRB 120 robot was improved using a Faro laser tracker and a 

Creaform’s C-Track stereo camera separately. A validation through spherical movements 

with a ballbar showed that the accuracy is improved equally for both systems and there is no 

advantage in using one measurement system or the other for robot calibration. 

 

The Fanuc LR Mate 200 iC was successfully calibrated using a single Renishaw QC20-W by 

implementing the novel 6D-measurement system. Among the 144 measurable poses, 62 were 

used to perform an absolute calibration. The validation is done in 10,000 measurements 

throughout the complete robot workspace, improving the mean position error from 1.355 mm 

to 0.795 mm. The accuracy results of this method were compared to a calibration performed 

using a laser tracker. Although the robot calibration using a ballbar requires user interaction, 

it is inexpensive, accurate, and can be completed in less than one hour. 

 

The Renishaw QC20-W telescopic ballbar is designed and used for validating the accuracy of 

CMM’s and CNC’s. These machines operate in the order of microns, therefore, the 

measurement range of the device is very limited (±1.0 mm) but very accurate (1 µm). If the 

robot that needs to be calibrated is not very accurate, some robot configurations might not be 

measurable; therefore, some calibration iterations may be needed to perform a complete 

robot calibration (50 configurations or more). The accuracy of the 6D-measurement system is 
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3.2 times the accuracy of the ballbar (0.003 µm); however, if we had to redesign a new 

ballbar from scratch, it would be preferable to cease some accuracy for an increased 

measurement range. For example, there exist some optical scales or linear gages that operate 

in the range of ±5 mm while maintaining the accuracy under 0.005 µm (such as the Mitutoyo 

LGK 542-157 linear gage). A ballbar with such specifications would be more suitable for 

robot calibration. 

 

Calibrating a robot using a 3D measurement system is the most straightforward way to 

calibrate a robot if we do not take into account the price of the equipment. However, 

regarding the price of the measurement equipment, a 3D measurement system usually costs 

as much as a small-sized robot. Furthermore, this price can be twice or even three times the 

price of the robot if we use a laser tracker or a CMM for example. In this work, we proved 

that the robot accuracy after calibration is not proportional to the money spent on the 

measurement equipment. 

 



 

FUTURE WORK 

 

The main goal of this thesis was to find cheaper calibration methods for robot calibration. 

Although the last calibration method explained in this thesis is quite inexpensive, it is still not 

as accurate as if we performed a conventional robot calibration using a laser tracker. 

 

Future work about robot calibration should be focused on improving the robot accuracy 

results while maintaining cheap and simple measurement systems, such as a double ballbar. 

An interesting example would be calibrating a robot using one or multiple linear gages. 

Linear gages are very accurate and offer sufficient measurement range for robots. For 

example, the Mitutoyo LGB 542-222H has 1 µm accuracy and 10 mm of measurement range. 

Linear gages are usually cheaper than touch probes. A robot calibration using a single linear 

gage would work the same way as if we used a touch probe. However, with a linear gage we 

can provide some feedback to the robot to quickly touch at a predefined distance from the 

tool flange. 

 

Additionally, we could set up a fixture with three linear gages placed in a perpendicular 

pattern, which would measure an offset in the 3D space (X,Y,Z). This would allow 

calibrating the robot by reaching the same point with many different orientations. 

 





 

ANNEX I  
 

CALIBRATED ROBOT MODEL 

The robot model chosen to fit the accurate kinematics of the robot is based on the model 

defined by (Craig 1986), also known as the D-H M notation (Denavit-Hartenberg Modified). 

The robot’s forward kinematic model can be represented as  world 0 1 2 3 4 5 6
0 1 2 3 4 5 6 tool( ) =H q A A A A A A A A , (I.1) 

where  ( ) ( ) ( ) ( )world 0
0 1 b b 1 b b b b 1Trans , , Rot , Rot , Rot ,x y d z α β γ θ= + +A A x y z  (I.2) 

and  ( ) ( ) ( ) ( )1 Rot , Trans ,0,0 Rot , Trans 0,0,i
i i i i ia dα θ− =A x z  (I.3) 

for 2i ≥  is the homogeneous transformation matrix representing the pose of the reference 

frame Φi with respect to reference frame Φi-1, world
0A  is the transformation matrix representing 

the pose of the base frame Φ0 with respect to the world frame Φworld, 6
toolA  is the 

transformation matrix representing the pose of the tool frame Φtool with respect to the 

mechanical interface (tool flange) frame Φ6 (also referred to as tool0 by ABB), and q is the 

vector of the joint coordinates (θ1, θ2, …, θ6). 

 

Five error parameters are used to represent the robot elasticity. This model takes into account 

the elasticity of joints 2, 3, 4, 5 and 6 (one parameter per joint). The elasticity of joint 1 is 

ignored, because the axis of that joint coincides with the direction of gravity. Joint traction 

and compression effects are not taken into account. Torsional effects are also ignored. The 

elasticity is modeled as linear torsional springs, so this parameter represents the effective 

constant compliance ci of each joint i: 
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 i i icδθ τ= . (I.4) 
Torques due to gravity are calculated based on the mass of the links and end-effector (recall 

that only static errors are modeled without any other external force being applied). The 

deformations are supposed to be small enough so that we can apply the superposition theory 

and neglect beam foreshortening. The center of gravity of the end-effector can be estimated 

from its CAD model. The next figure represents an arbitrary configuration of the robot arm 

for joints 2 and 3. This configuration can be considered as two generic links. 

0 2

0

0

9.81

m

s

 
 =  
 − 

g

 

Figure A I-1  Schematics of two consecutive links under the effect of gravity 

 

Torques are calculated recursively from joint 6 down to joint 1, so for example joint 5 is 

affected by link 5, link 6 and the end-effector, joint 4 is affected by links 4, 5, 6 and the end-

effector, etc. In fact, the end-effector weight and its center of gravity can be combined with 

link 6 as they do not move with respect to each other, so this recursive method already 

includes the end-effector. 

 

The gravity vector seen by joint i corresponds to  ( )0 1

0i i

−
=g gH , (I.5) 

where 
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 1 1
1 2

a a a b
b a a b

+ −
+ +=H A A A , (I.6) 

if b a> . Then, the gravity force on link j seen by link i can be found as  ( ) 1

0

T0 , , ,1i i i i
j j j ji i j jm m fx fy fz

−
 = = =  f g H g . (I.7) 

On the other hand, we can also find the center of gravity of link j with respect to the 

coordinates of frame i, i
ju  if we know the center of gravity of link j with respect to the local 

coordinates, uj.  T
, , ,1i i i i i

j j jjj jcx cy cz = =  u H u  (I.8) 
where i

jH  is the identity if i=j. 

 

Once we have calculated all the combinations where i j≤ , we can calculate the torque 

applied at each joint:   ,link ,link 1 ,link 6i i i i i iτ τ τ τ+= + + + , (I.9) 
where ,link i jτ  is the contribution of the torque applied at joint i because of link j:  ,link 

i i
i j

i i
j j j jfy cx fx cyτ = − . (I.10) 

In our case, we took into account the gravity forces due to the masses of links 2, 3, 4 and the 

end-effector. We neglected the mass of link 5 and 6 as it is very small compared to the other 

links. The mass of link 1 is not necessary because we do not consider the compliance of joint 

1, as the robot base is horizontally mounted. 

 

The level-3 robot model that we use corresponds to a complete kinematic calibration of the 

robot, including the base frame, and the five parameters related to the stiffness (Albert 

Nubiola and Bonev, 2013) of joints 2, 3, 4, 5, and 6. The next two tables show a summary of 

all 31 parameters using the ABB IRB 120 robot as an example. 
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Table A I-1 Pose of the base frame with respect to the world frame with six error 
parameters 

Parameter x y z α β γ 

Value xw + δxw yw + δyw zw + δzw αw + αxw βw + δβw γw + δγw 

* The parameters α, β, and γ are the Euler angles, according to the XYZ convention. 

Table A I-2 Complete D-H M (Craig, 1986) robot model with 25 error parameters 

i αi [º] ai [mm] θi [º] di [mm] 
1 0 0 θ1 290 
2 −90 + δα2 δa2 θ2 – 90 + δθ2 + c2τ2 δd2 
3 δα3 270 + δa3 θ3 + δθ3 + c3τ3 δd3 
4 −90 + δα4 70 + δa4 θ4 + δθ4 + c4τ4 302 + δd4

5 90 + δα5 δa5 θ5 + δθ5 + c5τ5 δd5 
6 −90 + δα6 δa6 θ6 + 180 + δθ6 + c6τ6 72 + δd6 
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