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MÉTHODES ROBUSTES DE MOUVEMENT DE MAILLAGES HYBRIDES:
APPLICATION AUX PROBLÈMES DE FRONTIÈRES MOBILES

Jonathan LANDRY

RÉSUMÉ

L’objectif principal de ce mémoire est de développer un Algorithme de Mouvement de Mail-

lage (AMM) suffisament robuste qui sera capable d’adapter les maillages de la majorité des

problèmes de frontières mobiles. Ainsi, une nouvelle méthodologie est implémentée à partir

de la meilleure combinaison provenant d’algorithmes connus dans le but de mieux préserver la

qualité des maillages initiaux.

Dans la majorité des simulations, les AMMs standards sont capables de déplacer le maillage en

conservant une bonne qualité de maillage, toutefois quand le mouvement est complexe et/ou

qu’il y a une interaction multi-corps ils génèrent des maillages invalides. Alors, la nouvelle

approche est constituée de trois algorithmes: la fonction pondérée de la distance inverse (PDI)

pour produire le champ de déplacements, les algorithmes de lissages de la Méthode de Trans-

formation Géométrique d’Élément (MéTGÉ) pour améliorer la qualité du maillage résultant et

un nouvel algorithme basé sur la MéTGÉ qui est capable de réparer les maillages invalides.

Il a été prouvé qu’avec cette méthodologie des problèmes de frontières mobiles très difficiles

peuvent être résolus.

L’approche proposée a été démontrée efficace pour adapter les maillages de différentes situ-

ations aéroélastiques réalistes: une aile symétrique a subi une grande flexion et une grande

torsion induites au bout de l’aile; et les dispositifs hypersustentateurs de deux ailes (une rect-

angulaire et une avec une flèche) ont été déplacés vers différentes positions de vol.

Finalement, il a été prouvé qu’avec la méthode proposée, la majorité des maillages pour les

problèmes d’IFS peuvent être adaptés. Toutefois, pour les situations où les surfaces mobiles

sont très proches, des améliorations devront être appliquées ou une toute autre direction de

résolution devrait être adopté tel que la méthode Chimera.

Mots-clés: mouvement de maillage, éléments finis, frontières mobiles, PDI, MéTGÉ, lis-

sage, algorithmes





ROBUST MOVING-MESH ALGORITHMS FOR HYBRID STRETCHED MESHES:
APPLICATION TO MOVING BOUNDARIES PROBLEMS

Jonathan LANDRY

ABSTRACT

A robust Mesh-Mover Algorithm (MMA) approach is designed to adapt meshes of moving

boundaries problems. A new methodology is developed from the best combination of well-

known algorithms in order to preserve the quality of initial meshes.

In most situations, known MMAs distribute mesh deformation while preserving a good mesh

quality. However, invalid meshes are generated when the motion is complex and/or involves

multiple bodies. After studying few MMAs limitations, we propose the following approach:

use the Inverse Distance Weighting (IDW) function to produce the displacements field, then

the Geometric Element Transformation Method (GETMe) smoothing algorithms to improve

the resulting mesh quality and use an untangler to revert negative elements.

The proposed approach has been proven efficient to adapt meshes for various realistic aerody-

namic motions: a symmetric wing has suffered large tip bending and twisting and the high-lift

components of two wings (one rectangular and one swept) have moved to different flight stages.

Finally, the fluid flow has been solved on adapted meshes and their results are close to ex-

perimental ones. However, for situations where moving boundaries are close to contact more

improvements need to be made or other approaches should be considered such as the overset

grid method.

Keywords: moving mesh, finite element, moving boundaries, GETMe, smoothing, untan-

gler, algorithms
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INTRODUCTION

0.1. Preface

Computational methods are very often used in design and analysis phases of engineering

products. Numerical methods consist in finding a solution to Partial Differential Equations

(PDEs) which define a physical process. The Finite Element Method (FEM) is a popular nu-

merical method used for solving problems in engineering and science. The FEM solves the

PDEs of a physical domain divided in elements. This physical decomposition is called a mesh

and the mesh quality has a big effect on the numerical solution. A major field of interest for

numericians nowadays concerns moving boundary problems, particularly Fluid Structure In-

teraction (FSI) problems and in the studies of stability and control of moving aerodynamic

surfaces (such as ailerons).

Usually, in fluid mechanics the mesh is fixed (Eulerian description); however in structural

mechanics the mesh follows the material (Lagrangian description). To solve FSI problems, the

Arbitrary Lagrangian Eulerian (ALE) formulation is used to define the position of the mesh

nodes: the shared interfaces between the fluid and structural domains are moved in Lagrangian

manner and fluid nodes are moved progressively from Lagrangian to Eulerian as their distance

to the interfaces becomes greater.

The ALE is a combination of the Lagrangian and Eulerian descriptions, thus it has the ability to

track interfaces easily and the capability to handle large particle material motions (Donea et al.

(1982)). The mesh moves according to the ALE description, however this approach alone can

lead to a distorted mesh invalid for numerical analysis. Thus, many tools have been developed

to assist ALE methods in order to move the mesh and reduce its distortion. This work will

focus on the study of Mesh-Mover Algorithms (MMAs) which distribute the displacements

from moving or fixed boundaries to the whole domain.
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0.2. Objective

In the study of the aeroelastic behaviour of wings, the mesh is moved according to wing sur-

faces’ motions. The mesh has to maintain a good level of quality during its motion and avoid

generating highly distorted or tangled elements. Classical algorithms to move the mesh are

based on spring (Robinson et al. (1991)) or pseudo-structural (Tezduyar et al. (1992)) ana-

logies. However, those analogies do not guarantee a good mesh quality, especially for fine

meshes in the viscous boundary layers. In this work, algorithms are developed to enhance

the performance and robustness of mesh-movers for hybrid meshes composed of tetrahedron,

pyramids, triangular prisms and hexahedron.

The specific objectives of this thesis are to:

• Develop a code which can be easily improved and integrated with existing FEM codes.

It should be able to read mixed meshes generated from commercial software such as

Pointwise R©;

• Implement and improve MMAs which are the core of the code;

• Test the limits of each MMAs with simple geometry simulations;

• Use the MMAs to distribute displacements of static aeroelastic situations while keeping the

mesh valid;

• Validate that fluid solvers can produce valid results with deformed meshes.

0.3. Plan of the thesis

First, a review of current developed MMAs will be presented in Chapter 1, followed by detailed

descriptions of those chosen to be implemented, in Chapter 2. Then, the structure and method-

ology of the code used to solve the displacements will be explained, in Chapter 3. In Chapter 4,

the MMAs parameters’ influence on mesh-motion will be analysed, as well as the usability of

MMAs to distribute large distortions and the workability of MMAs for multi-body interaction
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problems. Finally in Chapter 5, various meshes surrounding aerodynamic geometries will be

moved according to the moving boundaries displacements:

• A symmetric NACA0012 wing will be bent and twisted similarly as in flight situation;

• High-lift components of two wings will move through all the positions encountered in full

flight: take-off, cruise then landing. The first wing is a section extrusion of the DLR-F6

wing and the second is the trapezoidal wing configuration which is composed of a swept

wing and its half fuselage. Those geometries are taken from the first and second American

Institute of Aeronautics and Astronautics (AIAA) High-Lift Prediction Workshops (HiLift-

PW) of Rumsey (2014);

• The flow field for the trap. wing deformed mesh and undeformed mesh will be computed

to assure that complex mesh deformations do not affect fluid flow results.





CHAPTER 1

LITERATURE REVIEW

MMAs have been used in a large number of different applications from character animation

(de Aguiar and Ukita (2013)), to electromagnetic simulation (Miwa et al. (2011)) and all kinds

of Computer Fluid Dynamics (CFD) problems. They all use similar algorithms which are

divided in two families:

• PDEs based methods;

• Interpolations from moving boundaries to internal domain nodes.

PDEs methods solve the system of equations of the element to obtain the mesh displacements,

thus these methods consume more computer resources than the interpolation schemes which

calculate algebraically the nodes displacements.

The literature review will cover:

• The presentation of major trends of both families in section 1.2 to 1.5;

• Two approaches for overlapping moving and computational meshes;

• Smoothing approaches which improve mesh quality.

This review will help in choosing which algorithms, or combinations, are sufficiently robust to

allow most mesh motion while preserving a good mesh quality.

1.1 Definitions

A robust mesh-mover algorithm is defined as an MMA which distributes moving boundaries

displacements in a mesh by generating no (or rarely) elements with negative volume.
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Then, a smooth MMA is defined as an algorithm which distributes displacements of moving

boundaries on a mesh evenly through all elements making the average of element’s deformation

small.

In terms of calculated quality values (see Sections 2.4 and 2.5) it means that a smooth MMA has

a high average quality and a robust MMA has high minimal quality which is always positive.

Finally, the performance of an MMA is defined as the combination of the robustness, smooth-

ness and computational time to adapt a mesh.

1.2 Partial differential equations based methods

The PDEs based MMAs are an adaptation of the linear elasticity and steady state heat diffusion

equations which are:

1. Steady State diffusion

∇∇∇2T + f = 0, (1.1)

where ∇∇∇2 is the second order spatial derivative operator called Laplacian, T is the temperature

field and f is a source term.

2. Linear elasticity

∇∇∇ ·σσσ +F = 0, (1.2)

with σσσ = C : εεε and εεε =
1

2
((∇∇∇u)+(∇∇∇u)T ),

where ∇∇∇ is the gradient operator, σσσ is the Cauchy stress tensor, F is the vector of external body

forces, C is the fourth order stiffness tensor, εεε is the strain vector and u is the displacement

vector.
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1.2.1 Laplacian review

From the author’s knowledge, the first PDE based MMA has been used in Soulaïmani (1987)

and Soulaïmani et al. (1991) where it had been applied to free surface flow problems. The

method used to update the mesh consists in solving a Poisson’s equation for the grid velocity

(w) which is distributed from the free surface:

π(w(x, t)) = ∇∇∇ · ([K]∇∇∇w(x, t)) = 0 in Ω, (1.3)

w(x, t) = wm on Γm,

w(x, t) = 0 on Γ f ,

where x is the position vector, [K] is the stiffness matrix, t is the time, wm is the velocity at the

free surface, Γm is the moving boundary and Γ f is the fixed boundary. This method was used

with a Navier-Stokes equations solver in an ALE description and with a finite element discret-

ization to solve free surface flow problems. The mesh moves solely vertically (w = (0,0,wz)),

the free surface movements represent waves which cannot break and compared to subsequent

approaches it solves the Laplacian of the mesh velocity instead of element displacements.

The Laplacian, or diffusion, based method (Equation 1.1) was first proposed as a mesh gener-

ation algorithm by Winslow (1963) where nodes and elements are inserted according to scalar

or vector fields (for example temperature, pressure or velocity). This basic method refines the

mesh where large gradients are encountered in the computed field, thus allowing better results.

Although, if far-field boundaries are not enclosing totally the computational domain there is a

risk of elements being generated outside of the domain. Afterwards, this approach has evolved

and has become an adaptive mesh refinement technique based on the advancing front as used

by Löhner (1988).

One of the first applications of the Equipotential technique (Winslow (1963) and Winslow

(1981)) to distribute mesh velocity from moving boundaries has been done by Benson (1989).

Then the method has been improved in Löhner and Yang (1996) by defining the diffusivity



8

proportional to the distance from moving boundaries. This method diminishes mesh distortion

as well as improves quality of elements close to moving boundaries. This approach has shown

good results and has been implemented in the open-source software OpenFOAM R©(Jasak and Rusche

(2009)).

Then, one of the last improvements, attempted by Helenbrook (2003), was to solve the fourth

order derivative PDE for the displacement field: ∇∇∇4u = 0. This modification allows less de-

formation in boundary layers and gave similar results than the linear spring method (Robinson

et al. (1991)), but with an increase in computational time.

An interesting version has been introduced in Masud and Hughes (1997), where the Laplacian

equation has been formulated in the following general form:

∇∇∇ · ([1+ τm]∇∇∇)u = 0 in Ω, (1.4)

u = g on Γm,

u = 0 on Γ f ,

where u is the mesh displacement field, τm is a non-dimensional function of mesh size which

prevents negative elements from being generated and g is the prescribed displacements. This

method is similar to the diffusion equation except for the scalar term [1+ τm] which is propor-

tional to the inverse of each element’s size.

In Masud and Hughes (1997), the method is applied to a missile launch from a rectangular

cavity of a submarine. The MMA is used to move the mesh until distortions are too large,

then re-meshing is done. This method is general, although not robust since it needs several

re-meshings to complete the tested simulation.
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1.2.2 Pseudo-Structural Method (PSM) review

The first to have come up with the idea of modelling a moving mesh in an ALE reference

frame as a pseudo material is Schreurs et al. (1986). This article introduces that physical mesh

and moving mesh should share connectivities (see Figure 1.1) and that the pseudo or fictitious

material behaviour is similar to an isotropic linearly elastic material.

The discretization by FEM of Equation 1.2 leads to solving a linear system:

[K]{U}= {F} or,

[∑
e

∫
Ωr
[Be]T [De][Be]det([Je])dξ dηdζ ]{U}= {F} , (1.5)

where the summation over the elements generates the stiffness matrix [K], the vector {U} is the

displacements nodal vector, {F} is the vector of external forces, [Be] is the first derivative of the

shape function in the real coordinate system, [De] is called the matrix of pseudo-material prop-

erties and det([Je]) is the determinant of the mapping between the physical (Ωe) and reference

(Ωr) elements. This determinant is related to the volume of the element e.

Figure 1.1 Real material and Pseudo material (Schreurs et al. (1986))

Schreurs et al. (1986) arrived at the following conclusions: the Pseudo Young’s modulus E

has no impact on mesh deformation since all elements have the same value and the Pseudo

Poisson’s ratio ν does influence the distortion of the mesh for values of : 0 ≤ ν < 0.5.
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The PSM has been used by Johnson and Tezduyar (1994), as well as others, for multiple ALE

problems such as:

• A viscous drop falling in a viscous fluid;

• A flow past an oscillating airfoil;

• A flow past two airfoils with one oscillating;

• A flow through a sluice gate.

It has been shown by Johnson and Tezduyar (1994) that using a mesh-update process instead of

a re-meshing algorithm gives results faster and easier. Multiple FSI and two-liquid interaction

simulations also have shown the generality of the method. Finally, the E of each element is

defined to be inversely proportional to its Jacobian determinant (or volume) which will increase

the stiffness of small elements.

In Stein et al. (2003) an exponent has been added to their previous modified E in order to in-

crease the possible degree of stiffening. The three basic movements of translation, rotation and

bending have been tested with different values of exponent. They concluded that the optimal

exponent is problem dependent, but values greater or equal to one give good results.

Finally, similar test cases have been assessed with a small modification in Stein et al. (2004).

They have increased the stiffening power of elements close to moving boundaries, since they

are more at risk of being largely distorted. An increase of around 90% in mesh quality has been

demonstrated for exponents equal to one for the domain and two close to moving boundaries.
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1.3 Spring analogies

The analogy of modelling element stiffness by springs has been introduced by Robinson et al.

(1991). This popular approach considers each element’s edge ′i j′ as a lineal spring with stiff-

ness ki j inversely proportional to its length Li j:

ki j =
1

(Li j)p (1.6)

Similar to the PSM, the material, or in this case springs, stiffness can be improved with the

help of an exponent p. This approach has been used on structured hexahedral meshes where

each edge is modelled as a spring and each face has a spring through its diagonal to protect

the hexahedron from shearing. To validate that new model, they compared aeroelastic flutter

experimental results to the spring deformed mesh coupled to an Euler flow and a modal solver.

Then, the method was evaluated to solve 2D compressible Navier-Stokes equations in Far-

hat and Lanteri (1994). The simulation concerns the flutter of a NACA0012 airfoil surrounded

by unstructured triangles in a transonic flow.

To increase the robustness of this method a torsional spring analogy has been studied in two

dimensions (Farhat et al. (1998)), where each vertex ′i′ of each triangle ′i jk′ has a torsional

stiffness:

Ci jk
i =

L2
i jL

2
ik

4A2
i jk

, (1.7)

where Li j and Lik are the length of each edge and Ai jk is the area of the triangle. Ci jk
i has

been added to the stiffness matrix of the lineal springs, to prevent vertices from crossing edges.

Simulations of the supersonic inviscid flow over a vibrating plate and of the turbulent transonic

aeroelastic analysis of a suspension bridge showed that the combined spring approaches yield

valid mesh while the lineal spring analogy failed to complete the simulation.
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The three dimensions version has been developed in Farhat et al. (1999) and Degand and Farhat

(2002). One example to highlight from this improvement is a series of 5-G pull-up manoeuvres

of the Langley fighter in transonic flow (Farhat et al. (2001)). This simulation shows the

efficiency and robustness of the torsional spring analogy to move complex 3D meshes.

1.4 Radial Basis Functions (RBF)

In all moving boundaries problems, mesh quality close to moving boundaries needs to be kept

unchanged which leads to distributing the nodal displacements relatively to the distance from

moving boundaries. Thus, the Radial Basis Function (RBF) method is proposed which inter-

polates displacements from moving boundaries to fluid nodes. It consists in approximating the

displacements of each fluid node by collecting each moving boundaries’ displacements and

scaling with a particular distance based function, named RBF.

The first application of RBFs was the interpolation of scattered data to generate a continuous

field. As a starting point, Broomhead and Lowe (1988) have summarized the results and ana-

lysis of previous researchers into one document. This article is considered as a reference for

RBF formulations. Let us define the approximate node displacements field s(x) :

s(x) =

⎧⎪⎪⎨
⎪⎪⎩

g j, if x = xb j , for j =1,2,...m

m
∑
j=1

λ jφ(
∥∥x−xb j

∥∥), otherwise
, (1.8)

where xb j are a set of known data points, m is the quantity of known values, g j are the known

displacement vectors, ‖...‖ is the Euclidean norm, φ(.) is the radial basis function and λ j are

coefficients which are found from the following system of linear equations:

[
Ai j

]−1{g j
}
=
{

λ j
}

i, j = 1,2, ...,m where, (1.9)

Ai j
Δ
= φ(

∥∥xbi −xb j

∥∥). (1.10)
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Buhmann (2000) presented an improvement to allow the problem to be uniquely solvable with

the addtion of a polynomial function P(x) of a degree lower than the RBF:

s(x) =
m

∑
j=1

λ jφ(
∥∥x−xb j

∥∥)+P(x) (1.11)

One of the first uses of an RBF interpolation for FSI has been depicted in Beckert and Wendland

(2001), where the basics of an RBF interpolation for FSI is shown. First, the polynomial should

be in the form:

P(x) =C0+C1x+C2y+C3z, (1.12)

where the coefficients (C0, C1, C2 and C3) are calculated in a similar manner to λ j coefficients.

Then, the authors studied different forms of RBFs that they designed. All those functions have

in common the fact that the Euclidean distance is scaled by a support radius. This radius defines

how far a boundary node has an impact. The RBF is applied to study the static aeroelastic

simulation of a bending wing in a transonic fluid flow solved by compressible Euler equations.

It has been shown that even with the hypothesis of inviscid flow, the results are close to the

experimental measurements.

de Boer et al. (2007) tested 14 different RBFs on a mesh under the deformation of a rotating,

translating block and compared the results to those of the semi-torsional spring formulation

by Zeng and Ethier (2005) which is a simplified version of Farhat et al. (1999). Minimal and

average quality of the mesh is evaluated to define which function gives better quality and it

is shown that the semi-torsional analogy generates worse minimum and average quality than

most of the RBFs. An airfoil flap configuration is validated as well as the coupling with a flow

solver for a wing. The authors concluded in recommending two RBFs which can be used in

most cases.
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Rendall and Allen (2008) developed an algorithm to reduce the number of moving nodes to

be used in the RBF interpolation. A modal analysis has been done on a wing to validate their

proposed upgrade to the RBF method. Finally, they have shown the results of a parallel version

for the simulation of a multi-bladed rotor under cyclic pitch motion(Rendall and Allen (2010))

and it has been stated that very good quality was kept through all the simulation.

1.5 Inverse Distance Weighting (IDW) function

The IDW function has been formulated by Shepard (1968) to interpolate surfaces from irregu-

larly distributed data collections. It defines that a continuous data field s(x) for a known data

point x(x,y,z) can be interpolated from known values s(xbi) of position xbi(xbi ,ybi ,zbi) by a

weighted average of the inverse distance:

s(x) =

m
∑

i=1
wi(x)s(xbi)

m
∑

i=1
wi(x)

. (1.13)

Let define the weighting function:

wi(x) = ‖x−xbi‖−a , (1.14)

where ‖..‖ is the Euclidean distance, m is the quantity of known values and a is an exponent that

should be greater to 1 and exponent a=2 generate better results for 2D interpolations (Shepard

(1968)). For large problems, the quantity of values in summation can be reduced to only those

close to x. Then for each vector xbix of similar direction the nearest of x will have a stronger

weight.
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A lot of work has been done in interpolation of scattered data since Shepard (1968) and is

summarized in Franke (1982). Multiple modified weighting functions are presented:

• Limit wi to have a value inside a sphere and zero elsewhere;

• Setting wi = exp(−β ∗‖x−xbi‖a), for β a user-defined parameter;

• Multiplying the numerator by an approximation of the field.

Significant analyses have been done and have shown that a combination of these three modific-

ations generates smoother solutions. Although, simulations done in these articles are solely for

two dimensions interpolation of a single variable. There were multiple applications of the IDW

method, for example in the calculation of crack propagation in a meshless FEM formulation

by Belytschko et al. (1996), but only few people have worked on the use of IDW to interpolate

displacements on a moving mesh.

The first use of the IDW method as an MMA is done by Witteveen and Bijl (2009) for aer-

oelastic simulation. First, a NACA0012 airfoil is rotated and translated to validate large de-

formations of the domain. Then, for the same mesh, a flutter simulation at a Mach number of

M∞ = 0.3 for an inviscid flow has been performed and compared to the RBF mesh deforma-

tion algorithm. Afterwards, an aeroelastic-flutter simulation is done with the AGARD 445.6

wing. The RBF and IDW methods give almost the same lift coefficient through time, however

IDW calculates faster for a lower average mesh quality. Although, no results have been shown

concerning minimal quality to give information on the robustness of the method. Two small

modifications have been done to reduce the computational time of the IDW method, but as a

drawback the deformed mesh has a lower quality.

Witteveen and Bijl (2012) have continued their previous work by making different mathemat-

ical analyses of the IDW interpolation and its weight function. Important lessons to remember

from this work are:
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• An increasing exponent a gives a better approximation of the displacements field;

• When a → ∞ the interpolated results are coming from the closest moving boundary points.

Luke et al. (2012) optimized the IDW function to make it usable for large three dimensional

problems with these modifications:

• The weighting function has been redefined into one part to scale displacements to a wanted

region and another part which increase the weight of nodes close to moving boundaries;

• To allow faster computation the displacements field is calculated from the values of groups

of moving boundary nodes;

• The summation is done by traversing a k-d tree, which is a space partitioning data structure,

of the groups of boundary nodes until an acceptable error;

• The whole calculation has been implemented to allow the workload to be shared by multiple

processors.

Multiple test cases have been presented:

• A rotating and translating rectangle to study performance under large deformations;

• A rotating rectangle in the shadow of a sphere surrounded by a mesh for viscous fluid

solver;

• A beam is bent to calculate the approximation errors generated by the k-d tree optimisation;

• Two simulations of the transonic flow around aeroelastic wings are done to validate coup-

ling with fluid and structural solvers and to compare the results with wind-tunnel data.

These simulations proved that the IDW scheme is better than the RBF method in computation

time and for keeping initial quality of elements close to moving boundaries. Also, the IDW

scheme distributes further its displacements than the RBF based MMA which explained the

lower average quality depicted in Witteveen and Bijl (2009).
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1.6 Moving Submesh Approach (MSA)

Lefrançois (2008) proposed a novel approach for mesh motion that should increase robustness

and lower computational cost. It consists of solving the motion of a coarse mesh using a

known MMA, in his work only the PSM approach was considered, then it interpolates the

displacement to the fine computational mesh.

The coarse meshes considered are only composed of triangles and the study is limited to two

dimensions. The basic concept of MSA is illustrated in Figure 1.2.

Figure 1.2 MSA basic representation (Lefrançois (2008))

The interpolation from a coarse mesh to a fine mesh needs two basic tools:

• Each fine mesh node are associated to the coarse element that contains it. To do so for all

nodes a loop on all elements is done until some vectorial products prove the node is inside

one of them;

• The interpolation process is done by a finite element approximation of the sub-triangle area

difference (Dhatt et al. (2005), p. 112).

Then, Lefrançois (2008) proposed a possibility to encapsulate moving boundaries within a box

which undergoes the same rigid-body motion as the moving boundaries. This method keeps

unchanged elements which are close to moving boundaries, although no information is given

about how to define that motion. Finally, through this work multiple basic proof-of-concept

simulations are done without comparisons to different MMA.
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He and Zhou (2012) used the MSA framework with the spring analogy to move the coarse

mesh. Once again the simulations are done in two dimensions, thus no improvement has been

done to how a MSA type algorithm is used.

The last proposed modification to the MSA is to use an RBF interpolation scheme to move the

coarse mesh (Liu et al. (2012)). The simulations are in three dimensions, thus the interpolation

equations are generalized to three dimensions, but for tetrahedron in the coarse mesh only.

They stated that : ”The scale and the distribution of background mesh are two crucial factors

for the efficiency and robustness of the RBFs-MSA...and largely relied on the experience of

the user.” Three simulations are done to evaluate the new algorithm:

• A box rotated of 60 degrees;

• A wing moves vertically behind a second fixed wing;

• A wing under oscillated bending.

Every fine mesh is computed with the RBF, RBF-MSA and semi-torsional spring analogy and

those results have taught us that:

• The semi-torsional spring analogy is less robust than RBFs and RBFs-MSA;

• The RBFs-MSA generate a similar or slightly better mesh than RBFs;

• The displacements field are calculated faster with RBFs-MSA than with RBFs or the semi-

torsional spring analogy.
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1.7 Chimera grid approach

To compute the solution to moving boundaries problems instead of adapting a mesh, a mobile

mesh overlapping (or overset) a fixed mesh can be used. The Chimera grid approach of Steger

et al. (1983) is a special type of overset grid. Overset grids were originally used to generate a

structured mesh in a domain having multiple bodies and/or complex geometries.

As the name states, it consists of generating multiple structured grids around different curves of

a body and/or different bodies and joining them together through different methods (patched or

overset). The joining possibilities for overset grids are shown in Figure 1.3a. (Steger and Bun-

ing (1985), Steger and Benek (1987)) and a resulting joined mesh is shown in Figure 1.3b.

(Reznick (1988)).

(a) Possible overset approaches (b) Overset grid of fighter aircraft

Figure 1.3 Overset grids examples

A patched overset grid consists of joining overlapping grids to generate a continuous structured

grid where the fluid flow solver will be applied. Patching overset grids for moving boundaries

problem is computationally expensive since new nodes and elements are created at each move-
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ment, making this method not efficient for mesh-movement. On the other hand, an overset grid

concept keeps both overlapping grids, solves the fluid flow on each grid and the solutions are

transferred between all overlapping grids. One method to transfer information between overset

grids is defined by the "Chimera Grid Embedding technique" (Steger et al. (1983)).

A Chimera grid consists of a stationary base grid containing the main geometry and multiple

minor unconstrained overlapping grids. To be able to interact with each other, holes are recog-

nized on the base grid where a minor grid overlaps it. A base grid node is considered inside a

hole when the vector made of this node and one of the nodes of the minor boundary under con-

sideration is directed outward the minor grid. The hole recognition computation is illustrated in

Figure 1.4 which is taken from Steger and Benek (1987). Those nodes of the base grid (called

fringe points) are now defined as off; it means that the flow is not solved at those positions and

the solution for those positions is obtained by solving the flow of each minor grid.

Afterwards, to be able to solve the flow of minor grids and allow the base grid to be influenced

by them an overlapping region is used to interpolate between grids (see Figure1.5a. from Kao

et al. (1993)). The overlap region solution from the minor grid is interpolated to the base grid

and the base grid solution at the outward overlap boundary is used as the far field condition for

the minor grid, as shown in Figure 1.5b. from Steger and Benek (1987). Obviously, the final

solution is obtained after multiple relaxed iterations of information transfer between overset

grids.

Further reading should be done concerning this subject although for this work we have con-

sidered that the work necessary to implement such a method, particularly the data structure

management, would be too large for an academic research. Also, the task of post-processing

overlapping grids to allow good visualisation of the flow without gaps is quite a job. In the

future, this method should be used when simple MMA method failed to update meshes, since

overset grid approaches seem to have no limitations. This may be why governmental organ-

isations such as NASA and DLR are using overset grid methods to solve all kinds of moving

boundaries problems.
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Figure 1.4 Hole generation in two dimensions: (a) Hole boundary defined by level curve

C of the minor grid, (b) Construction of outward normals to curve C, (c) Construction of

search ball or circle, to find the base grid nodes which are inside the hole, (d)

Construction of position vector R and dot product test

(a) Interaction zones between a chimera base grid and one over-

set grid

(b) Transfer of information between overset

grids

Figure 1.5 Chimera concept of information transfer
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1.8 Improving robustness by smoothing

As stated earlier, a basic approach to mesh motion consists of smoothing the displacements

from boundaries to the rest of the mesh. This method works well for small displacements, but

can also be used before or after the MMA computation to reduce mesh distortions and allow

the mesh to be kept valid longer or with a better quality.

The simplest way of smoothing a displacements field is by adjusting each node position x0 to

be in the middle of their neighbours xni (i = 1,2..m), for m the quantity of neighbours (Jones

(1974)) and qtN the quantity of nodes in the mesh:

x j
0 =

1

m

m

∑
i=1

(x j
ni
−x j

0) , f or j = 1..qtN (1.15)

However, this Laplacian smoothing operator does not guarantee that elements will have im-

proved quality since the calculation is done per node.

Various modifications to the Laplacian smoothing operator and alternatives have been pro-

posed, although we have decided to consider solely the most recent ones which are considered

more promising according to the analysis done by Wilson (2011). First, an objective function

(Bank and Smith (1997)) can be defined from elemental quality metrics (Knupp (2003)) and

by minimizing it a better quality is expected through the mesh. The objective function does

not work when elements are inverted, thus a modification to the objective function has been

proposed in Escobar et al. (2003).

From those quality metrics was defined a reference undistorted element and by moving nodes

of a real element in the direction of the reference one, the mesh can be improved globally

or locally. This approach has been presented for tetrahedron in Vartziotis et al. (2009), then

for hexahedrons in Vartziotis and Wipper (2011) and for mixed elements mesh (tetrahedron,

pyramids, prisms and hexahedrons) in Vartziotis and Wipper (2012). This method is called the

Geometric Element Transformation Method (GETMe).
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1.9 Conclusions

Following the previous review some choices are made to deeply study the use and development

of a mesh-mover algorithm. Our methodology begins by improving one method of each family:

one PDE based method and one interpolation based method.

Since there is no comprehensive comparison of PDEs methods we will assume that all of

them have equivalent robustness and we will choose to implement a PSM (Stein et al. (2004))

approach for its simplicity, even if spring analogies are more popular.

The interpolation method selected is the IDW since it performs better than the RBF, as it was

stated in Luke et al. (2012). Also, the proposed modifications from Franke (1982) will not be

implemented since the version of Luke et al. (2012) already produces great results.

The use of overlapping mesh capability combined to any MMA is an excellent improvement

as seen in Liu et al. (2012). Thus, the MSA methodology will be applied in this work even

if the Chimera grid technique seems to give better results. This decision is made because the

implementation of a Chimera state of the art method and its numerical data structure will take

much more time. Also, concerning the type of MSA-X combinations, we decide to implement

the MSA-IDW and MSA-PSM of Stein et al. (2004) which were never, from our knowledge,

studied before (MSA-spring and MSA-RBFs were studied in He and Zhou (2012) and Liu et al.

(2012)).

Following the conclusions of Wilson (2011), the best smoothing algorithm compromise is to

use the GETMe smoothing algorithm designed for mixed elements mesh. However, we have

decided to implement an untangler based on the GETMe method instead of one which op-

timises an objective function (Escobar et al. (2003)). As future work, the untangler from the

literature should be compared to the proposed novel GETMe untangler.





CHAPTER 2

TWO APPROACHES FOR MOVING-MESH ALGORITHMS

From the literature review, four methods (PSM, IDW, MSA and GETMe) have been selected

to be studied and optimised; they will be detailed in this chapter. Our contributions to the study

of MMA can be summarized in the following two global improvements:

• Combining the MSA to mesh-mover algorithms, which gives in total four algorithms to

study: PSM, IDW, MSA-PSM and MSA-IDW;

• Smoothing the mesh before mesh-movement and/or at each small movement of large bound-

ary motions with the use of quality metrics designed for moving boundaries problems.

In the subsequent sections, the tools which will achieve the global improvements are :

• The Pseudo-Structural Method (PSM) of Stein et al. (2004);

• The Inverse Distance Weighting method (IDW) of Luke et al. (2012);

• The Moving Submesh Approach (MSA) of Lefrançois (2008);

• The complete Geometric Transformation Method (GETMe) smoothing approach described

by Vartziotis and Wipper (2012);

• The definition of quality metrics to use for mesh-movement;

• The improvements to PSM and IDW based on quality;

• The Novel GETMe Untangler (NGU).
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2.1 Pseudo-Structural Method (PSM)

The nodes displacements are obtained by solving the equilibrium Partial Differential Equations

(PDEs) using the classical finite element formulation for a linear elastic isotropic material, with

a Pseudo Young’s modulus E and a Pseudo Poisson’s coefficient ν :

∑
e
(

1

V e )
p[K]e{U}e = ∑

e
{F}e, (2.1)

where [K]e =
∫

Ωe
[Be]T [De][Be]dxdydz,

with V e the element volume (obtained from the integral of the det([Je])) and p a stiffening

power. The stiffening power p is set to one for all elements except for those close to moving

boundaries, where the value is doubled as described in Stein et al. (2004). To define if an

element is close or not to a moving boundary we have decided to divide the fluid domain in

3 different sub-domains: close (volID=30), fluid (volID=31) and far field (volID = 39). This

division is done during the mesh generation, in our case, with Pointwise V17.2-R2. The close

sub-domain elements will be stiffened, our recommendation is to define this sub-domain as

being approximately the height of the boundary layer around each moving boundary.

We present two different isotropic pseudo-materials: the standard which allows shear and Pois-

son’s effect (Equation 2.2), and one which limits the element displacements to be axial only(

Equation 2.3).

[D] = [Dshear] =
E

(1+ν)(1−2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−ν ν ν 0 0 0

ν 1−ν ν 0 0 0

ν ν 1−ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.2)
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[D] = [Dno shear] =
E

(1+ν)(1−2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−ν ν ν 0 0 0

ν 1−ν ν 0 0 0

ν ν 1−ν 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.3)

2.2 Inverse Distance Weighting (IDW) function

The version of Luke et al. (2012) is the one used for this work and it consists of the following:

First, the moving boundaries nodal displacements field is defined as s(xbi) where (xbi) is the

position vector of the boundary node i. Then the fluid mesh nodal displacements field is found

by the weighted average of the moving boundaries displacements:

s(x) =

m
∑

i=1
wi(x)s(xbi)

m
∑

i=1
wi(x)

, (2.4)

where wi(x) is a two-exponent weighting function of the reciprocal distance:

wi(x) = Ai

[(
Lre f

‖x−xbi‖
)a

+

(
αLre f

‖x−xbi‖
)b

]
, (2.5)

where Ai is the average area of all moving boundary faces containing the node i, Lre f is the

distance between the mesh centroid and the farthest point of the domain, a is the exponent for

the domain, α defines the near body region and b is the exponent for the near body region.
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The computation of α reads to:

α =
5

Lre f

m
max
i=1

‖s(xbi)− smean‖ , (2.6)

where smean =
m

∑
i=1

ai · s(xbi)

and ai =
Ai

m
∑
j=1

A j

The weighting function is designed such that it preserves a rigid body motion of nodes close to

boundaries, as well as ensures a smooth deformation transition through the mesh. The variables

default value of the IDW function are shown in Table 2.1. Since, the IDW mesh-mover has been

kindly offered to us by professor E. Luke 1, it has been modified slightly to work in the object

oriented presented framework.

Table 2.1 IDW standard parameters

Parameters Default Value
Lre f Calculated

a 3

b 5

α Calculated, but αmin = 0.1

1Dr. E. Luke publications website: http://www.cse.msstate.edu/ luke/publications/index.html
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2.3 Moving Submesh Approach (MSA)

The procedure presented in Lefrançois (2008) has been generalized for three dimensions and

a rapid algorithm has been included to search through the coarse mesh with the help of a k-

dimensional tree (Bentley (1975)) which will be explained in Section 2.3.1.

The main steps of the MSA are described:

• A separate coarse mesh is generated composed mostly of tetrahedral elements;

• Each node x f ine of the fine mesh is then associated to the element that contains it in the

coarse mesh as shown in Figure 2.1;

• The coarse mesh displacement field is interpolated on the fine mesh.

Figure 2.1 MSA definition and fine node in coarse element

The interpolation functions Ni, for each i node of the coarse element, are the standard FEM lin-

ear interpolations expressed in terms of reference coordinates ( ξ ,η ,ζ ). When a fine mesh node

(x f ine) is located in an element belonging to the coarse mesh, the coordinates (ςςς = (ξ ,η ,ζ ) )

have to be computed first in order to use the interpolation functions. The general method con-

sists in solving R = x f ine −∑nnel
i=1 [Ni(ςςς) · coord] = 0 with an iterative method. As an example,

the simple Newton method is used in Algorithm 2.1 until the relative residual norm gets close

to zero with R0 the initial residual matrix.
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Algorithm 2.1 Calculate Interpolation Values

Calculate Interpolation Values
Input : A fine node (x f ine) and an element coordinates matrix (coord)

Output: Interpolation coefficients vi

1 ςςς = [0,0,0]

2 while ‖R‖
‖R0‖ > tolerance do

3 R = x f ine −∑nnel
i=1 [Ni(ςςς) · coord]

4 ΔΔΔ =−[J]−1 ·R
5 ςςς = ςςς +ΔΔΔ
6 end while
7 Set vi = Ni(ςςς)

In Algorithm 2.1, nnel is the number of nodes for the current coarse element, coord is the

matrix composed of the coarse element nodes coordinates and [J] is the Jacobian matrix of the

residual equation. This algorithm is applicable to any kind of element, but an exact analytical

solution can be found in the case of tetrahedral elements (Lefrançois (2008) and Liu et al.

(2012)). Then, the operation of projecting the fine mesh onto the coarse mesh essentially

provides the set of vi coefficients and is done only once. For each boundaries movement, the

displacement vectors of the fine mesh is: δδδ (x f ine) = ∑nnel
i=1 vi · δδδeli, where δδδeli is the nodal

displacements of the coarse mesh element.

2.3.1 Alternating Digital Tree (ADT)

In order to link a fine node to a coarse element a powerful search algorithm is used and de-

scribed in the following section. To construct an ADT (Bonet and Peraire (1991)) the coarse

mesh is distributed in a tree data structure where every node of the tree contains an element. To

populate those tree-nodes, the group of elements is divided recursively into smaller sub-groups,

according to an element variable, until all elements are contained by a node.

When a group is split, the element in the middle is called the splitting plane. This element is

stored in the current tree node and the rest of the group goes to the left, if their value is smaller,

or to the right, if their value is bigger or equal to the splitting plane.
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In our algorithm, the alternating splitting variables are the minimum coordinates of the bound-

ing boxes. A bounding box is defined for each element by two nodes: the minimum and the

maximum values from each coordinates.

An example of the ADT splitting process is shown for nine elements (A,B...H,I) represented

by their minimum node in Figure 2.2 and the relevant ADT is shown in Figure 2.3.

(a) minx. (b) miny.

(c) minz.

Figure 2.2 Three subsecant cut of the ADT

F

C

B

A

D

G

I

H

E minz

miny

minx

Figure 2.3 Alternating digital tree example
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Finally, the search in an ADT to find which element contains each fine mesh nodes is explained

in Algorithm 2.2. In Algorithm 2.2, a f ineNode is considered inside a treeNode.element if it

is inside one of the tetrahedron composing the element. The connectivity of each tetrahedral

per type of element is defined by Dompierre et al. (1999).

Algorithm 2.2 Recursive search in an ADT

Recursive search in an ADT
Input : A fine node ( f ineNode) and a tree node (treeNode)

Output: The element containing the fine node ( f ineNode.element)

1 i = current splitting plane

2 if treeNode.mini ≤ f ineNodei ≤ treeNode.maxi then
3 if f ineNode is inside the treeNode.element then
4 f ineNode.element = treeNode.element
5 break

6 end if
7 else
8 if treeNode.le f t.mini+1 ≤ f ineNodei ≤ treeNode.le f t.maxi+1 then
9 Recursive search in treeNode.le f t

10 else
11 Recursive search in treeNode.right
12 end if
13 end if

The tools for finding a coarse element and calculating interpolations functions can be also used

for different applications such as: to initialize a fine mesh fluid flow from a coarse mesh fluid

flow solution; or it can be used to define holes and to interpolate variables between overlapping

grids for an overset grid method.

2.4 Geometric element transformation method (GETMe)

The GETMe method of Vartziotis et al. (2009) is used to maintain the orthogonality of the

mesh especially close to boundary layers. Hence, it allows the deformed mesh to maintain

its initial quality. The GETMe algorithm is defined for mixed meshes composed of standard

FEM elements: tetrahedron, hexahedron, pyramids and prisms. In complex meshes there are



33

always layers of prisms or hexahedrons close to boundaries, then the rest of the domain is

composed of tetrahedron and pyramid elements allow the transition between quadrilateral faces

and triangular faces. Thus, since all type of elements are needed for complex FEM problems

the smoothing algorithm needs to be able to handle all of them.

2.4.1 GETMe definition

The method consists of making an element, composed of nk nodes, closer to its undistorted

standard element. The node numbering and the faces connectivity matrix F for each element’s

type are presented in Figure 2.4 and in Table 2.2, where dk are the dual element nodes and F is

the dual element faces connectivity matrix. A dual element is a geometry of reference enclosed

in an element and its faces are used to define the transformation.

Figure 2.4 Elements and dual elements connectivities from Vartziotis and Wipper (2012)

Each dual element node position is calculated as follows:

dk =
1

|Fk|
|Fk|
∑
i=1

nFk,i , k ∈ 1, ..., |F|, (2.7)

where |Fk| is the number of nodes in the face k and |F| is the number of element faces.



34

The geometric transformation consists of orienting all nodes nk of an element from a base point

bk in the direction of its dual element face to the new nodal positions n′
k:

n
′
k = bk +

σ√|nvk|
nvk, k ∈ {1, ..., |nk|} , (2.8)

where σ is a scaling factor (of order 3/2 as recommended by Vartziotis and Papadrakakis

(2013)), |nk| is the number of nodes of the element, nvk are the normals defined as:

nvk =

⎧⎪⎨
⎪⎩
(dFk,2

−dFk,1
)× (dFk,3

−dFk,1
) i f |Fk|= 3,

1
2(dFk,3

−dFk,1
)× (dFk,4

−dFk,2
) i f |Fk|= 4

(2.9)

and the base points are defined as:

bk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ck i f |nk| ∈ {4,8} or (|nk|= 5 and k = 5),

ak(τ);τ = 1
2 +σ i f |nk|= 5 and 1 ≤ k ≤ 4,

ak(τ);τ = 4
5(1−

√
2σ

4√39
) i f |nk|= 6,

(2.10)

for ck being the dual element faces centroids and ak the base points for triangular faces. Base

points are calculated as follows:

ck =
1

Fk

Fk

∑
i=1

dFk,i
and (2.11)

ak(τ) = (1− τ)dFk,1
+ τ

1

2
(dFk,2

+dFk,3
). (2.12)

The operation of directing the node of a real element in the direction of its dual element faces

normals is represented in Figure 2.5.
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Table 2.2 Connectivities of GETMe geometries

Geometries Tetrahedra Hexahedra Pyramid Prism

F

⎡
⎢⎢⎣

1 2 3

1 2 4

2 3 4

3 1 4

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 4

1 2 6 5

2 3 7 6

3 4 8 7

4 1 5 8

5 8 7 6

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 2 3 4

1 2 5

2 3 5

3 4 5

4 1 5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 2 3

1 2 5 4

2 3 6 5

3 1 4 6

4 6 5

⎤
⎥⎥⎥⎥⎦

F

⎡
⎢⎢⎣

1 2 4

1 3 2

1 4 3

2 3 4

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 5

1 3 2

1 4 3

1 5 4

6 5 2

6 2 3

6 3 4

6 4 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 2 5

1 3 2

1 4 3

1 5 4

2 3 4 5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 4

1 3 2

1 4 3

5 4 2

5 2 3

5 3 4

⎤
⎥⎥⎥⎥⎥⎥⎦

Figure 2.5 Reference elements and their normals used to transform distorted real

elements (Vartziotis and Wipper (2012))

2.4.2 GETMe quality definition

The quality of any element is defined by the average quality value of the tetrahedron composed

of each element node and its connected three edges:

q(nk) =
1

|Nt|
|Nt|
∑
k=1

3det(Sk)
2/3

tr(ST
k Sk)

, Sk = Diff(Ntk)W−1, (2.13)
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where Nt is the tetrahedron connectivity matrix, |Nt| is the number of tetrahedron of the ele-

ment, Diff(Ntk) is the difference 3x3 matrix defined as:

Diff(Ntk) =
[
(nNtk,2 −nNtk,1),(nNtk,3 −nNtk,1),(nNtk,4 −nNtk,1)

]
(2.14)

and W is an element type dependant target matrix. An element is valid if det(Sk) > 0 which

implies of positive volume and an equiangular element has a quality of q(nk) = 1. The tetra-

hedron Nt and reference W connectivity matrices per element type are defined in Table 2.3.

Table 2.3 Connectivities for quality calculation

Geometries Tetrahedra Hexahedra Pyramid Prism

Nt
[
1 2 3 4

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 5 2

2 1 6 3

3 2 7 4

4 3 8 1

5 8 6 1

6 5 7 2

7 6 8 3

8 7 5 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

1 2 4 5

2 3 1 5

3 4 2 5

4 1 3 5

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 4

2 3 1 5

3 1 2 6

4 6 5 1

5 4 6 2

6 5 4 3

⎤
⎥⎥⎥⎥⎥⎥⎦

W

⎡
⎢⎣

1 1
2

1
2

0
√

3
2

√
3

6

0 0
√

2
3

⎤
⎥⎦

⎡
⎣1 0 0

0 1 0

0 0 1

⎤
⎦

⎡
⎣1 0 1

2

0 1 1
2

0 0
√

2
2

⎤
⎦

⎡
⎣1 1

2 0

0
√

3
2 0

0 0 1

⎤
⎦

2.4.3 Smoothing algorithms

The application of the GETMe on a mesh is divided in a global smoothing approach, which

smooths all elements, and a local smoothing which smooths worst quality elements of the

mesh as explained in Vartziotis and Papadrakakis (2013). The simultaneous algorithm (global

smoothing) loop is defined in Algorithm 2.3; it stops when the average mesh quality difference

has reached the input tolerance.
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Algorithm 2.3 Global Smoothing

Global Smoothing
Input : A mesh and a tolerance (tol)
Output: A mesh with improved qavg

1 while qavg improvement is less than tol do
2 for j ∈ J do
3 Transformation according to Equation (2.8) to obtain n′

i∈I( j)
4 Scaling n′

i∈I( j) to get ni∈I( j),scaled with:

ni∈I( j),scaled = q+ψ j(n′
i∈I( j)−q′) (2.15)

5 Store the element contribution per node i ∈ I( j) in the matrix n′
i∈I, j

6 end for
7 New nodes n′

i∈I are obtained by the weighted average of all element contribution :

n′
i∈I =

∑ j∈J(i)w jn′
i, j

∑ j∈J(i)w j
, with w j =

√
∑k∈J( j) q(nl∈I(k))

|J( j)|q(nl∈I( j))
(2.16)

8 foreach Values of the relaxation vector γk do
9 Relaxation of unrelaxed nodes according to:

ni∈I,relaxed = (1− γk)ni∈I + γkn′
i∈I (2.17)

10 Reset each node ni∈I,relaxed to n′
i∈I if it produces a negative volume element

11 end foreach
12 Set the element nodes ni∈I to ni∈I,relaxed
13 Calculate quality of the new mesh with Equation (2.13)

14 end while

In Algorithm 2.3, q and q′ are respectively the centroids of ni and n′
i, J is the index set of all

elements, J(i) is the index set of elements associated to the node i, J( j) is the index set of

neighbouring elements of element j, |J( j)| is the number of neighbours of element j, I is the

index set of all nodes and I( j) or I(l) is the index set of nodes associated to the element j or l.

Then, ψ j is equal to the mean edge length of ni∈I( j) divided by the mean edge length of n′
i∈I( j)

and the vector of relaxation values is γk = [1,1/8,1/16,0].
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Also, Equation 2.15 scales the transformation to make it dependant to the element’s centroid

and the relaxation step (Equation 2.17) controls the transformation to be applied only if it

improves the mesh quality.

Global smoothing increases average quality, but may decrease the minimal quality of the

mesh. To correct this situation a similar process called the sequential GETMe smoothing,

or local smoothing, is used and defined in Algorithm 2.4 with the relaxation values γk =

[1/2,1/10,1/100,0].

Algorithm 2.4 Local Smoothing

Local Smoothing
Input : A mesh and a minimal quality (minMesh)

Output: A mesh with improved qmin

1 while qmin has not increased for 5 iterations do
2 for j ∈ J if q(ni∈I( j))≤ minMesh do
3 Transformation according to Equation (2.8) to obtain n′

i∈I( j)
4 Scaling n′

i∈I( j) with Equation (2.15) to get n′
i∈I( j),scaled

5 Store the element contribution per node i ∈ I( j) in the matrix n′
i∈I, j

6 end for
7 New nodes n′

i∈I are obtained by the weighted average defined in Equation (2.16)

8 foreach Values of the relaxation vector γk do
9 Relaxation of unrelaxed nodes according to Equation (2.17)

10 Reset each node ni∈I,relaxed to n′
i∈I if it produces a negative volume element

11 end foreach
12 Set the element nodes ni∈I to ni∈I,relaxed
13 Calculate quality of the new mesh with Equation (2.13)

14 end while
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2.5 Quality metrics for mesh-movement

Since, the goal of the smoothing algorithm is to keep the initial quality of the mesh we propose

quality metrics adapted to this goal. They are qchgwhich has been used by Luke et al. (2012),

among others, and qchgAbs which is an adaptation of the former.

Let us define these quality metrics:

qchg =
min(qorig,qde f )

max(qorig,qde f )
, (2.18)

qchgAbs =
qde f

qorig
, (2.19)

where qorig is the original element quality and qde f is the quality of the deformed element. The

metric qchg is not usable with smoothing algorithms since for a better qde f , qchg will decrease.

In the equations for the MMAs and the smoothing algorithms one of the three quality metrics

(q, qchg or qchgAbs) needs to be chosen. In our simulations we prefer to use qchgAbs because

the mesh should be kept with the same or higher quality as the original one and the smoothing

algorithms criteria are to increase mesh quality. This means that we assume the mesh at t = 0

is already of good quality, thus with qchgAbs as quality criteria the mesh should be kept with

good quality after deformation.

Moreover, the proposed quality metrics (qchg and qchgAbs) are not suitable for elements in

boundary layer regions which are purposely stretched in the parallel direction of the connected

boundary. Smoothing those elements with qchgAbs as criteria will result in more equiangular

and equilateral elements which is not desired.

Thus, the approach based on preserving initial quality with a Size-Shape metric of Knupp

(2012) will be used. In this article the mesh is optimized to generate better shaped elements

except for elements close to boundaries where stretched elements are kept unchanged.



40

Thus, the new equation of qchgAbs for stretched elements is:

qpre =
1

|nt|
|nt|
∑
k=1

3√
trace(S2k)

√
trace(S2−1

k )+(det(S2k)−1)2
, (2.20)

where S2k = D(ntk)W2(ntk)−1 and W2(ntk) is the initial difference matrix (D(ntk)).

We propose to use Equation 2.20 to calculate qchgAbs for all elements under a desired distance

from any boundary. The distance calculation is done with an ADT structure where each tree-

node contains a moving boundary node instead of an element.

For simple problem, the use of qpre can be replace by not applying the smoothing algorithms

to elements inside boundary layer regions and this preserving metric is strongly recommended

for simulations involving multiple bodies.

2.6 Improving MMAs with quality stiffener

MMAs presented in previous sections are designed to maintain a smooth displacements field

while keeping elements close to boundaries less deformed. For the IDW scheme, the criterion

is based on the distance to the solid wall and for the PSM the criteria is related to element

size. Although, it should be remembered that these deformed meshes will be eventually used

to solve a physical problem and it is well known that a mesh with highly distorted elements

can give bad results. Thus, we propose to protect elements from being largely distorted with

the implementation of a quality stiffener.

For the PSM the inverse of the quality is added to Equation 2.1:

∑
e
(

1

V e )
p(

1

qe )
pq[K]e{U}e = ∑

e
{F}e, (2.21)

where pq is the quality rigidity power factor. That modification allows the use of three different

methods of stiffening: the original approach (p = 1 and pq = 0), stiffening the mesh according
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to its quality (p = 0 and pq = 1), or the two factors can be combined to define the element

stiffness (p = 1 and pq = 1).

A similar modification is done to the IDW algorithm to allow less deformation for low quality

elements. Since, the current algorithm is interpolating nodes and the nodes do not possess a

quality value, the value is computed from the lowest value of the elements constructed by each

node. To stiffen nodes of distorted elements the IDW method’s weight function is modified to

use an exponent (c) for quality values smaller than one:

wi(x) = Ai · (q(x)min)

[(
Lre f

‖x−xbi‖
)a

+

(
αLre f

‖x−xbi‖
)b

]

+Ai · (1−q(x)min)

[(
Lre f

‖x−xbi‖
)c

+

(
αLre f

‖x−xbi‖
)c]

, (2.22)

where q(x)min is the quality of the current node and c the exponent that controls the impact of

quality on mesh-movement. In other words when q(x)min = 1 the original weighting function

is used and when q(x)min < 1 the weighting function is relaxed with exponent c. This option

should reduce the deformations of elements with decreasing quality. The modified expression

is only used when c > 0.

2.7 Novel GETMe Untangler (NGU)

For complex moving boundaries problems there is a risk of elements being inverted, thus mak-

ing the mesh unusable for physical problem solving. To improve the robustness of our method-

ology we propose an untangler based on the GETMe smoothing methods with small changes

in order to be able to revert to positive volume a collapsed element. Thus, the Algorithm 2.5

is developed similar to the local smoothing algorithm, but with a modified weight calculation

and with only one relaxation value.
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The proposed algorithm (Algorithm 2.5) should be seen as a tool to help in keeping a deformed

mesh valid but not as an MMA to be used alone. Thus, the more robust MMA configuration

should be used and the Novel GETMe Untangler (NGU) will be the "air-bags" which protect

the mesh from being invalid . Also, it is a good practice to use the smoothing algorithms after

an untangling operation, since elements are guaranteed to be of positive volume but they may

be of low quality.

Algorithm 2.5 Novel GETMe Untangler

Novel GETMe Untangler
Input : A mesh with negative elements

Output: A mesh without negative elements

1 while There is negative elements do
2 for j ∈ J if q(ni∈I( j))≤ 0.0 do
3 Transformation according to Equation (2.8) to obtain n′

i∈I( j)
4 Scaling n′

i∈I( j) with Equation (2.15) to get n′
i∈I( j),scaled

5 Store the element contribution per node i ∈ I( j) in the matrix n′
i∈I, j

6 end for
7 New nodes n′

i∈I are obtained by Equation (2.16), but with:

w j =

{
10.0, if q(ni∈I( j))≤ 0.0

1.00, otherwise
(2.23)

8 Set γk = [0.01]
9 Relaxation of unrelaxed nodes according to Equation (2.17)

10 Reset each node ni∈I,relaxed to n′
i∈I if it produces more negative volume element

11 Set the element nodes ni∈I to ni∈I,relaxed
12 Calculate quality of the new mesh with Equation (2.13)

13 end while
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2.8 Methodology summary

The summary of the discussed robust approach to mesh motion is presented in Algorithm 2.6.

Algorithm 2.6 Mesh-mover algorithms robust strategy (MMARS)

Mesh-mover algorithms robust strategy (MMARS)
Input : A mesh and prescribed boundary displacements g
Output: A deformed mesh

1 The boundaries are moved according to g
2 The displacements field is solved with: PSM, IDW, MSA-PSM or MSA-IDW

3 if There is negative elements then
4 The mesh is repaired with the NGU

5 end if
6 if Mesh quality is under desired value then
7 The mesh is smoothed with the GETMe algorithms

8 end if





CHAPTER 3

AN OBJECT-ORIENTED FEM METHODOLOGY

Appropriating a computer code design is mandatory to solve complex and/or large scale prob-

lems. Multiple methods for code design can vary from simple to sophisticated. The strategy

proposed is the most common for software design (but not for FEM solvers): the object-

oriented paradigm of programming. This paradigm is defined by Standardization (1999) as

being a programming language that supports objects, classes, and inheritance. This way of

thinking, while programming, provides the capacity to modulate through code generalisation

which makes easy the solving of any problems. Moreover as expressed by Booch (1986):

Perhaps the greatest strength of an object-oriented approach to development is

that it offers a mechanism that captures a model of the real world. This leads

to improved maintainability and understandability of systems whose complexity

exceeds the intellectual capacity of a single developer or a team of developers.

This paradigm allows developers to concentrate on the mathematical and physical abstractions

without the intellectual barrier created by computer languages. In the current section will

be described the code structure, programming strategies to solve problems and some detailed

implementations. This description of the code should help new developers or users of the

proposed code to be able to use, modify and understand it. The recommended steps of Booch

(1986) specific to code development will be followed to describe the code:

• Objects and attributes (Section 3.1);

• Functions needed by each object (Section 3.2);

• Data structure and visibility (Section 3.3);

• Interfaces (Section 3.4);

• Implementation (Section 3.5).
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3.1 Objects and attributes

The core of the design is composed of FEM entities, since we consider that, for any user,

knowledge of this field is required. FEM entities can be expressed in this fashion: a numerical

analysis consists in solving a domain; the domain is represented by a mesh of nodes; nodes are

connected to each other to create faces and volumes (elements). We have divided FEM entities,

called classes, in four natural groups: one dimension, two dimensions, three dimensions and

global. The abstract classes and their children are shown in Figure 3.1.

An abstract class consists of a type of object that is undefined to be used without clarification,

but its definition helps collecting similarities (functions, attributes, and interfaces) between real

classes. Each child’s class is connected to their parent class with an arrow (Figure 3.1), this

means they inherit functions and attributes from their connected parent class.

For example, a FEM analysis is not possible until we know if it is steady state or not and if

the physics under inquiry is linear or not, but they all need a mesh and boundary conditions in

order to compute solutions. Also, fluid nodes and structural nodes possess different species,

but both are basically defined with their coordinates and number.
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Figure 3.1 Classes of the code.
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The FEM objects are defined by their attributes which are shown in Table 3.2 in the following

manner:

Table 3.1 Example of presentation of attributes

(Name of the class):

(type of attribute) (name of attribute) (short description)

Usually child classes do not possess different type of attributes than their parents and to ease

the lecture of the code each abstract class defines an enum which is a list of integers identified

by a word. For this code, these enum are used to distinguish the type of children created from

abstract classes. Also, some attributes which are not standard C++ object are from the down-

loadable Eigen library (Guennebaud et al. (2010)), in particular this library is used for matrix

operation. Objects from the standard and Eigen library are used by calling their namespace,

for example: std::vector<double> and Eigen::Vector3d.

Table 3.2 Abstract classes attributes

Analysis:

enum analysisType (LINEARS = 0, LINEARUS, NLINEARS, NLINEARUS = 3)

This enum allows the selection of different type of solvers: linear/non-linear and

steady/unsteady. Each value is used to select the correct process to solve the PDEs system.

analysisType type

The identifier of the child class type.

Mesh* Mesh

This object gives information about connectivities, coordinates, gives access to related

objects physical properties and the functions related to the mesh.

Eigen::VectorXd matFGlobal

The right hand side of the PDEs to be solved which is also called the external nodal forces

vector.
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Table 3.2 Abstract classes attributes – (cont’d)

Eigen::SparseMatrix<double> matKGlobal:

The left hand side of the PDEs to be solved, also called the stiffness matrix which is

assembled from all elements’ stiffness matrix.

Eigen::BiCGStab<Eigen::SparseMatrix<double>, Eigen::IncompleteLUT<double»*

solver:

The object which possesses all the functions needed to compute the solution of the FEM

problem. The solver used here is the Bi-Conjugate Gradient Stabilized method to solve a

preconditioned ILUT matrix.

Node:

enum NODETYPE (MINMAX = -1, STRUCT = 0, THERM=10, ELECTMAGNET=20,

MOVMESH = 30, ENCAP = 40)

The possible type of node associated to the physical equations to be solved by the software.

The MINMAX is a type of node created for the ADT structure, the MOVMESH is the type

which adapt to moving boundaries displacements and ENCAP is a special MOVMESH

nodes inside the encapsulation zone.

NODETYPE type

This identifier specifies which children class this object is.

int index, index4solve

The first index is from the mesh file and is the same one used while exporting resulting

meshes. Then, index4solve is the index which regroups nodes with the same coordinates

and those which are not used in the current analysis are skipped from that numbering. This

renumbering process is useful to reduce the size of matrices to be solve.

Eigen::Vector3d* coord, originCoord, middleCoord

Those vectors of doubles contain the current coordinates, the coordinates at t = 0 and at

t = 0.5, where t = current iteration
last iteration .

std::map<std::string, double> ddl

This map stores the unknowns of the current iteration and identifies them by a name. All

types of nodes have different unknown, thus this map makes implementations versatile.
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Table 3.2 Abstract classes attributes – (cont’d)

std::vector<int> indexOfElements

There are the indices of all the elements which are composed or connected to the node.

After an element is smoothed during the local smoothing we validate that no negative

elements are generated through this list.

int volID

The mesh generator allows to give an identifier to each group of elements, the same index

can be transferred to nodes and the selection is done by prioritizing the lowest index for

volume interface nodes.

double minQuality

The minimal quality of connected elements. That value is used in the IDW mesh-mover

to improve stiffness of nodes surrounded by low quality elements.

BaseElement:

int gaussIntegPoint

The quantity of Gauss points for the numerical integration of elemental matrices.

std::vector<Eigen::MatrixXd> Bkez

The matrices of the elemental reference derivatives of the shape functions for each Gauss

points.

std::vector<std::vector<double» N

The vectors of the reference element shape functions for each Gauss points.

Eigen::VectorXd wFromGauss

The vector of weight for each Gauss points.

Material:

int index

The number identifying the material.

std::map<std::string, double> constant

The list of each constant name and value.

Eigen::Vector3d vecFvol
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Table 3.2 Abstract classes attributes – (cont’d)

The vector of volumetric forces values depending on the physical equations (ex: gravity).

std::map<std::string,std::string> unitForUI

The list of constants name and unit which are shown in the graphical user interface.

Eigen::SparseMatrix<double> matD

The material matrix assembled with the constants relative to each physical equation.

Element:

enum NODES_PER_ELEMENT(EleTetra = 4, ElePyr = 5, ElePrism = 6, EleHexa = 8)

The enum which allows to define the type of BaseElement according to the quantity of

nodes.

int meshIndex

The identifier of the mesh domain containing the current element, also called volID.

Node::NODETYPE type

The type of node inside the element which defines the type of Element child class to use.

Only one type is allowed per element.

std::vector<Node*> nodes

The vector of nodes which composes the element.

Material* mat

The material object which contains the constants and the material matrix used to construct

the elemental stiffness matrix.

BaseElement* elemBase

The object which contains shape functions and derivatives of the reference element.

int qtDDLelement

The quantity of unknowns of the elements which is a sum of the unknowns of all nodes.

It allows to define the size of the element matrices and vectors.

Node* minNode;Node* maxNode

The nodes created to define the bounding box of each element. They are used in the ADT

structure.
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Table 3.2 Abstract classes attributes – (cont’d)

double *quality, origQuality, q_chg, q_chgAbs

The values of quality metrics as defined in the previous chapter.

double stretchedTet_

The value which indicates if the element should be smooth according to its original shape

and size(t = 0) or to be equiangular (see Section 2.5).

BaseFace:

int gaussIntegPoint

The quantity of Gauss points for the numerical integration of face matrices

Face:

enum NODES_PER_FACES(FaceTri = 3, FaceQuad = 4)

The enum which allows to define the type of BaseFace according to the quantity of nodes.

int meshIndex

The identifier of the parent mesh domain containing the current face, also called volID.

Node::NODETYPE type

The type of node inside the face which defines the type of child class to use. Only one

type is allowed per face.

std::vector<Node*> nodes

The vector of nodes which composes the face.

Material* mat

The object material which contains the constants and the material matrix used to construct

the face stiffness matrix.

BaseFace* faceBase

The object which contains the shape functions and the methods to generate matrices de-

pending on the reference face.

int qtDDLface

The quantity of unknown of the face which is a sum of the unknowns of all nodes. It

allows to define the size of faces matrices and vectors.
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Table 3.2 Abstract classes attributes – (end)

double fSurf

The value of the normal force per area applied on the face, the signification of this force

depends on the physical equations (ex: pressure).

The classes Mesh and BoundCondition have been omitted from the previous table to distin-

guish abstract classes from normal classes. These two classes inherit or share properties and

functions from no other classes. Their attributes are shown in Table 3.3.

Table 3.3 Other classes attributes

Mesh(standard attributes):

struct type_star (fstream conec, noeud, cL, comm)

When the input mesh format is STAR-CD there is four files with different extension to

be read :(*.cel, *.vrt, *.bnd, and *.inp). Each contains different information: elements

connectivity, nodes coordinates, boundary faces connectivity and the names of each mesh

group (boundary and volume).

int numberThread

The amount of processors used for the OpenMP functions.

Node::NODETYPE type

The physical type of the mesh.

int index

The numerical identifier of the mesh.

std::map<int,int> qtElementPerZone

The list of the quantity of elements for each subdomain (volID) per index. This saved list

is needed to save the output meshes in Tecplot format.

std::map<int,std::string> blockNameAndIndex

The list of names for each sub-domain (volume ID) by their index.
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Table 3.3 Other classes attributes – (cont’d)

std::vector< Element* > elements

The vector of elements of the mesh.

std::map< int, Node* > nodes

The list of nodes sorted by the mesh generator indices read.

std::map<int, BaseElement*> baseElementPTR

The list of all BaseElement possible for the mesh sorted by the quantity of nodes. Since,

for each element the matrices of each BaseElement are the same, we compute them once

and link each real element to its respective BaseElement.

std::map<int, BoundCondition* > boundList

The list of boundary groups sorted by their read indices.

std::string path

The complete input file path to access the mesh file.

std::fstream logFile

The file where output messages are printed.

Mesh(attributes for smoothing):

enum scalingPreservProp(MEANEDGE = 0, VOLUME=1, MAXEDGE = 2, MINEDGE

= 3, NOSCALE=4 )

The possible types of element preserving quantity for the smoothing scaling step.

std::vector< Element* > negativeElement

The list of all negative elements generated.

scalingPreservProp scalingType

The selected smoothing preserving quantity.

BoundCondition:

enum typeBoundCondition(NONE = -1, DIRICHLET = 99, FSURF = 1, FNODE = 2,

CAUCHY = 3, SYMMETRY = 4,INTERFACE = 5)
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Table 3.3 Other classes attributes – (end)

Boundary condition types which are used for each solving processes, they are read from

the input mesh.

DIRICHLET represents imposing a value for the unknowns of the problem; FSURF rep-

resents the application of a force normal to surfaces and FNODE to nodes; CAUCHY

means applying a flux to surfaces; SYMMETRY means that the value of unknowns par-

allel to symmetry faces are zero; INTERFACE is the identifier for faces used in the IDW

method to represent a moving boundaries.

std::string name

The name of the boundary as it was read from the input mesh.

bool onOff

The Boolean which is true if a condition has been defined, if not the boundary is not

considered in the solving.

int type

The type of boundary condition.

std::vector<double> value

A list of values which have different meaning for each type of boundary condition.

std::map< int, Face*> boundFace

The list of faces under this group of boundary condition.

3.2 Functions needed from each object

Let us define what each class can do in terms of computation and delivering of information.

First of all, it is imperative to define and retrieve attributes of each class; it is done with func-

tions called getX() and setX(), where X is the attribute. The other less basic and primary

functions are shown in Table 3.4, for all important classes. Child classes’ functions are not

shown since they are inherited, even if their implementation may differ.
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Table 3.4 Major classes and their main functions

Analysis(Implemented in all child classes):

Analysis(int type, Mesh* mesh)

Constructor of the abstract class from a mesh and the type of child class.

void removeNotActiveNode()

Most meshes contain unnecessary nodes, thus a renumbering process is done. The renum-

bering consists in deleting duplicate nodes, deleting nodes not part of the physical domain

and attributing other nodes a new index called index4solve.

void assembleElements(Material* tempMat)

The assembly of all element stiffness matrix is done to populate the matKGlobal sparse

matrix.

void assembleFaces()

The assembly of Cauchy and surface boundary conditions are added to the global system

(matKGlobal and vecFGlobal).

void setBoundariesValues()

The imposition of nodal forces and unknowns are applied to the vector vecFGlobal.

void linkNodeMoving2Deformed(Mesh* meshWithDef)

For each moving mesh nodes a link to its similar node in the physical mesh is made.

void setDeformationForMeshSolve(Mesh* meshWithDef)

The contribution from the moving boundary to the moving mesh is imposed in the vector

vecFGlobal through the physical mesh.

void solveAmesh()

The function that solve the system [K]{U}= {F} for {U}, then export values from vector

{U} to each nodes.
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Table 3.4 Major classes and their main functions – (cont’d)

Analysis(Only for IDW classes):

void prepareIDW(double gridMotionLref, double alphaFactor,double alphaFloor,double

gridMotionAlpha)

This function computes the rotation, translation and area of each moving boundary sur-

face. Then, it computes Lre f and α according to the function inputs or from the domain

boundaries.

void solveIDWExact()

The displacements field is calculated from the inverse distance weighted average of all

boundary nodes.

void solveIDWApprox(double& qAvg, gridMotion::Symmetry sym = gridMotion::NONE)

The displacements field is computed from the inverse distance weighted average approx-

imation method proposed by Luke et al. (2012).

Analysis(Only for MSA classes):

void findCoarseZone4Fine()

Each fine mesh node is associated to a coarse mesh element that contains it. The search is

done with a k-d tree based on the ADT approach.

void calculateInterpolationFunction()

The weights of each coarse element node relative to each fine mesh node are computed

and saved for further use.

void addDeformationCoarse2Fine()

The displacements field from the coarse mesh is interpolated to the fine mesh.

Mesh:

Mesh(Node::NODETYPE type, int index)

A mesh is constructed from a type and index. Also in the constructor is initialized the

baseElementPT R vector which contains all possible BaseElement for the mesh.
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Table 3.4 Major classes and their main functions – (cont’d)

void readMesh(std::string inputfile)

This function reads the mesh given as an input file. After the use of this function all the

mesh attributes are initialized.

void printTecplot(std::string ouputfile, int currentIt, int totalIt, std::string title = "Result"

);

This function saves the solved mesh under the standard Tecplot format. It contains all

nodes coordinates, each node solved variables values, each element connectivity divided

by group as it was in the input file and each element quality metrics.

void setElementConnected2Nodes()

Each node vector indexO f Elements are populated. These vectors are used for the local

smoothing.

void smoothMeshGlobally(const double& tolerance,const double& minMesh,const int

maxIt, std::vector<double>& minQ, std::vector<double>& avgQ, int& finalIt, int

typeQuality )

This function smooths the mesh according to the method shown in Section 2.4. The

method smooths until the input tolerance quality is attained, or until the maximum in-

put iteration. The different types of quality are returned as minimal and average quality.

The amount of iteration done is returned under f inalIt. The type of quality to be improved

is the last input parameter.

void smoothMeshLocally(const double& tolerance,const double& minMesh, const int

maxIt, std::vector<double>& minQ, std::vector<double>& avgQ,int& finalIt, int

typeQuality )

The smoothing of the mesh worse quality elements, as presented in Section 2.4, is done

until the minimum input quality is attained, or until the maximum input iteration. The

input parameters are the same as the global smoothing.
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Table 3.4 Major classes and their main functions – (cont’d)

void meshUntanglerGETMe( const int maxIt, std::vector<double>& minQ,

std::vector<double>& avgQ, int typeQuality )

The vector of negative elements are smoothed, as presented in Section 2.7, until all ele-

ments are untangled, or until the maximum input iteration. The input parameters are the

same as the global smoothing.

void calculateQualityOfElements(std::vector<double>& minQ, std::vector<double>&

avgQ, int typeQuality)

The quality of each element is calculated as well as the average and minimal mesh values

according to the metrics defined in Section 2.4.

Node:

Node(NODETYPE type, int& index, Eigen::Vector3d& coord)

Each node is created from their type, index and respective coordinates.

void addMovement2node()

(Only for moving mesh nodes) Current coordinates are modified by adding the displace-

ments of each coordinate. This function is called when the displacements field is known.

double distanceBTW2node(Node* toSub)

The calculated Euclidean distance between the current node and the one given in parameter

is returned.

BaseElement:

BaseElement(int gauss)

The construction of each BaseElement object or derived object is done by giving the

number of Gauss points wanted for the numerical integration.

void setBkezANDn()

This function computes the values for each variables of the BaseElement (Bkez, N, and

wFromGauss.)
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Table 3.4 Major classes and their main functions – (cont’d)

Material:

Material(int index)

The construction of each Material object or derived object is done by giving the index of

the material.

void initialiseDefMat()

This function computes the matrix matD, which contains the material properties. Its use

is not defined for the IDW prop material, since there is no PDEs system to solve with the

IDW scheme.

Element:

Element(Node::NODETYPE type, int& meshIndex,int& qtNode, std::vector<Node*>&

nodes,BaseElement* elemBase)

An element is constructed by its type of node, its volID, the quantity of nodes, the vector

of nodes and the link to its BaseElement.

void getMatXElement(Eigen::SparseMatrix< double >& matKelement, Ei-

gen::VectorXd& matFelement)

Returns the computed elemental matrix and vector according to its physical type.

bool inBoundingSphere(Node* x)

This function returns true if the node x is inside the bounding box of the current ele-

ment. This function is called in the ADT search algorithm before calculating if the node

is exactly inside. This approximation is done according to the equation: minNode ≤ x ≤
maxNode and it helps to speed up the MSA algorithm search.

void calculateQuality()

This function calculates the quality metrics of the current element. This function is called

in Mesh :: calculateQualityO f Elements().

BaseFace:

BaseFace(int gauss)
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Table 3.4 Major classes and their main functions – (end)

The construction of each BaseFace object or derived object is done by giving the number

of Gauss points wanted for the numerical integration.

Eigen::SparseMatrix<double> getBKsiEta(const int currentGaussNode)

Returns and computes the matrix of interpolation derivatives Bke for the number of Gauss

node given in parameter.

double * getNnum(const int currentGaussNode)

Returns and computes the matrix of interpolations N for the number of Gauss node given

in parameter.

Face:

Face(Node::NODETYPE type, int& meshIndex, int& qtNode, std::vector<Node*>&

nodes)

A face is constructed by its type of node, its volID, a quantity of nodes and a vector of

nodes. Also, for each face a BaseFace is created in the constructor.

void getFeFace(Eigen::VectorXd& vectFeFace, std::vector<double>* valuesOfBound-

Cond)

Returns and computes the face vector according to its physical type and the input boundary

values.

BoundCondition:

BoundCondition(std::string name, bool onOff, int type)

Each boundary condition is constructed with their name and type.

Some functions were not depicted, since their usages are parts of other functions which make

them private. A private function cannot be used outside the class thus their definitions are not

presented in this work.
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3.3 Data structure and visibility

Each object functions presented previously can only be called by the current object or the

object’s owner, this concept is called visibility. In other words, a class can only access its

attributes and its attributes functions. For example, an Analysis object only sees its associated

Mesh and Material objects only have access to their attributes and functions. The visibility of

each major class is shown in Figure 3.2.

Figure 3.2 The visibility of each abstract class.

From this tree, the central classes are those of interest: Analysis, Mesh and Node. Where an

Analysis is the mathematical method to solve a simple or complex problem, a Mesh is the

grouping of all geometrical objects under analysis and a Node represents the data sought from

the analysis. Classes around this core are merely tools to help in working with those classes.

As stated before the main goal of this code is to be understandable by users with basic know-

ledge of the FEM. Thus, we believe that the visibility tree and the information given in previous
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sections make simple the understanding, usage and modification of the code content. Although,

more specific information will be provided in subsequent sections.

3.4 Interfaces

3.4.1 Interface between objects

Each class interacts with the other in a different manner, but the standard is to regroup attributes

and functions under three groups:

• Public: what is accessible by each class which sees the object;

• Protected: what is accessible by child classes;

• Private: what is accessible solely by the current class.

The programming strategy is based on the encapsulation paradigm of the object oriented pro-

gramming which says that all attributes are hidden, thus private, and that the public functions

are the interface to their attributes. However, since the inheritance is largely used in this work,

we have decided to move the attributes to the protected group to ease programming and still

respect the encapsulation rule.

3.4.2 User interface

To use such a code it is necessary to make it flexible for variable situations and options. Thus,

two possibilities to use the program have been designed: a text file input or a Graphical User

Interface (GUI). For the two proposed interfaces each process is divided in sections, or tabs

which are:

• Physics: Structural tab (0), Thermal tab (10), and Electro tab (20);

• Moving Mesh tab (30);
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• Message Passing Interface (MPI), or Multi-Processors Interface, tab (40);

• Options tab (50).

3.4.2.1 Graphical User Interface Usage

Unless the analysis concerns solely one physical behaviour, we should always start by filling

the Moving Mesh tab as seen in Figure 3.3. First, the coupling of physics is selected to allow the

creation of the analysis for each physical problem. Concerning the study of MMA, selecting the

structural coupling is sufficient because the mesh-movement is imposed through the structural

tab. Then the mesh file is set by browsing through the computer, this allows to define the

boundary conditions read from the mesh file. Finally, we select the MMA and fill its properties

section which will be stored in a Material family class.

The next step is to configure each coupled physic for the current simulation. As an example, in

Figure 3.4 is shown the structural tab configuration. Similarly to the moving-mesh tab, the type

of analysis is selected, the boundary conditions are imposed and the properties of the material

are set. Also, in this tab the moving boundary movements are defined per volID (box and

fluid in this example). The possible movements are rotations around x, y, z or a custom axis, a

translation, or specific movements defined in the code (for example the NACA0012 - Bending).

Additional options are defined as shown in Figure 3.5. The options to be set are the smoothing

parameters, the number of iterations and the PDEs solver properties. Then, when everything

is set, the relevant solve button in the bottom of the window should be pushed. After, each

iteration the deformed mesh file is created in the same folder as the input mesh and a file

containing calculation information is produced.
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Figure 3.3 GUI: Moving Mesh Tab example.

Figure 3.4 GUI: Structural Tab example.
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Figure 3.5 GUI: Options Tab example.

3.4.2.2 Cluster Interface

Most complex problems are solved on clusters of computers which allow faster computations

at the cost of more implementation development. In this optic, we have designed a text file

template that can be read by the proposed program and be used in the context of MPI solving.

The structure is similar to the GUI except that the parameters are read from a single text file.

In this text file, each tab is divided by identifiers start and stop and the options are called by

their names before the new assigned value. An example of this file is represented in Figure 3.6.

Each line that contains new information starts with identifier followed by the underscore (’_’)

character and when comments are written they begin with a double slash (’//’).



67

Figure 3.6 Cluster text input file example.
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3.5 Implementation

The last section of this chapter will cover details and comments on the implementation of

the code which will be useful for future developers. As well some implementations from the

proposed interface will be shown.

3.5.1 General information

In previous chapters and sections all the necessary equations, algorithms, variables and strategies

to understand the computer code was presented; however few additional details of our design

will be shown.

Firstly, objects which could be used by multiple entities are created in the pointer form. This

means that each object entity knows the address where each pointed attribute is stored in the

memory without possessing directly the attribute. This abstraction is represented by a star

(*) in programming language. The advantage of using pointers is the possibility of using

polymorphism which allows pointers of a parent class to represent any of its children class.

Thus, it is mandatory to use this method to generalize the code and facilitate its understanding.

3.5.2 Finite Element Method

All classes, used for solving PDEs, are implemented with an approach similar to FEM solvers.

To show our idea, in Algorithm 3.1 is solved the displacements field with the PSM, also called

LinPermMovMesh, and a linear solving strategy.

The Algorithm 3.1 is part of the interface class Principale under the function SolverLINEARS.

It consists of creating an object Analysis for linear steady problem. Then, the number of

processes used by the functions of this class is set. Afterwards, the nodes which are duplicated

or not necessary are removed.



69

Algorithm 3.1 PSM linear solver

PSM linear solver
Input : A mesh (∗mesh2Solve) and a material object (∗mat)
Output: An integer

1 Analysis∗ solver
2 solver = new LinPermMovMesh (mesh2solve)
3 solveur.setNumberT hread(numbero f thread f orsolving)
4 solveur.removeNotActiveNode()
5 solveur.assembleElements(mat)
6 solveur.assembleFaces()
7 solveur.setBoundariesValues()
8 solveur.solveAmesh()
9 return 0

Then, as done in all finite element algorithms, each element contributions, each flux per faces

and each imposed degree of freedom from boundaries are assembled into global system matrices.

Finally, the system is solved before returning the zero integer.

3.5.3 Eigen Library

To be able to solve systems of PDEs various objects and functions are needed to be designed

and they are from the widely used Eigen library of Guennebaud et al. (2010) version 3.2. The

principal objects used in our project are:

• MatrixXd: a matrix of variable dimensions for doubles.

• VectorXd: a vector of variable dimensions for doubles.

• SparseMatrix: a vector of the non-zero coefficients and a vector of their indices in the

matrix.

• BiCGStab: the object to solve systems with sparse non-symmetric matrices systems of

equation using the bi-conjugate gradient stabilized algorithm (Sleijpen and Fokkema (1993)).
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The popular GMRES algorithm (Saad and Schultz (1986)) is provided but not used because

it is not supported from the Eigen library developers. Finally, to understand better the Eigen

library it is recommended to read the documentation concerning each of the above objects.

3.5.4 Parallelisation

For large scale problems, repetitive operations cause the resolution to be slow. However, it is

recommended to distribute work load of repetitive task onto different computers, or processors,

to accelerate the generation of result. The paradigm which allows calculation loads to be

distributed and to share information between different processors is called the Message Passing

Interface (MPI).

Thus, the code is written to work in conjunction with the standard MPI library. A user who

wishes to modify this version of the code should at least have basic knowledge of this library

since the MPI version is totally parallelized. The particularity of this version is that the mesh is

divided on each processor, except for mesh boundaries which are possessed by all. Also, con-

cerning the MSA implementation each processors possess its own coarse mesh; this approach

is memory consuming and should be modified in a future version of the code.

3.5.5 Interface implementation

The first part of the interface, as shown in Algorithm 3.2, is the main file where the Principale

object is created as a GUI or cluster interface. This algorithm activates the MPI methods and it

creates the proper Principale object according to the quantity of arguments argc used to start

the application. When argc == 1, only the name of the program is sent, thus the GUI object is

created and the program is not ended until the exit of the GUI window. Although, if an input

file is sent (argc == 2) this file is read and its information is used to start the calculation.
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Algorithm 3.2 Main function of the code

Main function of the code
Input : An integer (argc) and a chain of character (argv[])

Output: An integer

1 MPI_Init(&argc,&argv)
2 proc_in f o.init()
3 QApplication app(argc,argv)the application is created
4 if argc = 1 then
5 Principale f enetrePrincipale
6 return app.exec()
7 end if
8 else
9 if argc = 2 then

10 Principale f enetrePrincipale(1)
11 f enetrePrincipale.readInput4Cluster(argv[1])
12 f enetrePrincipale.launchCalcul( f enetrePrincipale.getParam4Cluster().calcul)
13 end if
14 end if
15 MPI_Finalize()
16 return 0

The last implementation to present is the most complex: the function launchCalcul. This

function, for the GUI interface, is launched by pushing a button and for the cluster interface

by the main file (as seen in Algorithm 3.2). In Algorithm 3.3 is presented the launchCalcul

function which represents the whole proposed solving process, where solely the section related

to the mesh movement loop: the physical solvers which can be inside or outside the loop, the

necessary variable initializations and the various window printing or file recording steps are

not shown.

The function smoothingLoop() consists of smoothing globally, then locally for itSmooth itera-

tions. Each global smoothing step stops when the average quality change is less than the input

tolerance, usually around 10−5, and each local smoothing step stops when the wanted minimal

quality is recovered or after five iterations without improving the minimal quality.
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Moreover, after the untangling section, we should note the importance of recalculating the

interpolation functions to ensure good interpolations while using MSA type algorithms. Also,

the function solverMeshMove() is the direct use of the MMAs presented in Section 2, thus it

creates the object Analysis∗ moveSolver of the desired type.

Finally, all functions not covered in this section should be seen as black boxes to most users

since they have been validated for the various test cases presented in the following sections.

Algorithm 3.3 Mesh-movement resolution

Mesh-movement resolution
Input : An integer calculType which informs on the physical coupling

Output: No output

1 (Initialization section)

2 for iteration = 1 to lastIteration do
3 (Initialization section related to smoothing and untangling)

4 if iteration = 1 and smoothOnStart = true then
5 smoothingLoop(0) 0 for quality, 1 for qchg and 2 for qchgAbs
6 end if
7 SolverMeshMove(de f ormedMesh,materialMMA)
8 smoothA f terUntangle = false
9 if untanglerOn =true and qMin < 0 then

10 coarseMesh−> meshUntangler()
11 moveSolver−> calculateInterpolationFunction()
12 end if
13 if meshFine 
= 0 then
14 if untanglerOn and qMin < 0 then
15 meshFine−> meshUntangler()
16 moveSolver−> calculateInterpolationFunction()
17 end if
18 end if
19 if smoothAllIterations = true or (smoothI f Bad = true andqMin < qBad) then
20 if qMin < qMinRequired then
21 smoothingLoop(qualityType2smooth)
22 end if
23 end if
24 (The results and meshes are recorded.)

25 end for



CHAPTER 4

MESH-MOVERS ANALYSIS AND VALIDATION TESTS

Two simple test cases are used to validate and investigate limitations of the presented MMAs.

In the first, large rotation and translation motions are imposed to a fluid immersed solid block

to study the influence of MMAs parameters, to ensure that meshes under large displacements

are kept valid and to investigate the influence of coarse mesh elements size for MSA type

algorithms. In the second, the case of a cylinder approaching a ’Γ’ shape is used to explore the

limitations of multi-body interaction and to evaluate how boundary layers elements quality can

be preserved with a rigid zone called ’encapsulating zone’. Finally, the smoothing algorithms

and the Novel GETMe Untangler (NGU) are tested to validate and quantify their improvement

for MMAs.

4.1 Rotating and translating box

A block of 2.5×1.0 is rotated 60 degrees around the ’z’ axis and translated -10.0 units in both

x and y directions (t = 0.5), then it is moved back to its original position (t = 1). The whole

simulation, from t = 0 to t = 1, is divided in 20 steps. The elements directly on the moving

block are of 1.7× 10−2 height and elements are grown from this first layer with a ratio of

1.3 for 20 layers until the end of the 50× 50× 1 domain. The mesh is solely composed of

tetrahedron, thus boundary layers for this mesh are structured tetrahedron. The original mesh

is shown in Figure 4.1.

4.1.1 PSM parameters

There are two parameters to study concerning the standard PSM algorithms: the pseudo Pois-

son’s ratio ν and the rigidity power factor p. Modifying E results in multiplying the system

of equations with the same constant, thus it makes no change at all since all elements are

considered having the same E.
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Figure 4.1 Large motion problem: mesh at t=0

The PSM study starts by changing ν from 0 to 0.45 (with p = 1), but only for the material (mat-

rix [D]) which allows shear strains since the material without shear strains does not converge.

Materials with values of ν close to 0.5 are called incompressible and those materials with the

current formulation are unsolvable since there is a division by zero. To solve this situation a

penalty method could be used (Masud and Hughes (1997)), although it is not necessary since

meshes are kept sufficiently good with values up to 0.45. In Figures 4.2 and 4.3 are shown

fields of qchg and their respective close views for different ν at final position. Then, in Figure

4.4 is shown the evolution of quality.
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(a) Global view, ν = 0 (b) Close view, ν = 0

(c) Global view, ν = 0.125 (d) Close view, ν = 0.125

(e) Global view, ν = 0.25 (f) Close view, ν = 0.25

Figure 4.2 Large motion problem: qchg field for various ν at t = 0.5.
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(a) Global view, ν = 0.375 (b) Close view, ν = 0.375

(c) Global view, ν = 0.45 (d) Close view, ν = 0.45

Figure 4.3 Large motion problem: qchg field for various ν at t = 0.5 (cont’d).
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Figures 4.2 and 4.3 show that few elements have been highly deformed (qchg < 0.25) and most

of them have between the same or half their original quality (0.5 < qchg < 1.0). Especially, the

highly deformed elements are far from the moving boundaries, thus close to static boundaries.

This is caused by the facts that highly deformed elements are of larger volume and on domain

limits. This method with ν > 0 allows the displacements of moving boundaries to be trans-

ferred in all directions. We can notice, from Figure 4.4, that the average quality is similar for

the tested values of ν , but the minimum is higher for ν = 0.25. This better mesh is caused by

the fact that displacements are distributed equally in all directions with ν = 0.25.

Afterwards, the comparison of results for different values of the inverse volume stiffening

exponent p (p = {1,2,3}) are studied and results are shown in Figure 4.5 with ν = 0.25. Then,

in Figure 4.6 is drawn the evolution of qchg for different p (p = {1,2,3}) and the pseudo-

material which does not allow shear strains. Simulations with p = 0 are skipped, since the

solution diverges after few small movements.

The results show that an exponent p = 3 always generates a bad mesh that leads to inverted

elements(qchg < 0.0). The mesh minimal quality for p = 2 is improved for a material without

shear strain, but not for the other material proposed. Thus, the exponent p = 1 seems the

best compromise for a robust MMA. Exponent p controls the difference between stiffness

of elements, large values can generate jump of displacements between neighbour elements

which is undesirable, thus the exponent p must stay equal to one to give good quality meshes.

However, making a zone of the mesh stiffer can contribute in keeping a better mesh, especially

for elements close to moving boundaries as proposed by Stein et al. (2004). This option will

be evaluated in Section 4.2.1.

Our proposed modification to the standard linear isotropic material matrix [D] has been studied

and has been shown acceptable, but not better than the standard one(as seen in Figure 4.7). It

can be imagined that different pseudo-materials can be designed to distribute better displace-

ments, but we have decided to stop the pseudo-material investigation here, since the results are

satisfactory.
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Figure 4.4 Large motion problem: qchg evolution for different ν with p=1.

Figure 4.5 Large motion problem: qchg evolution for different p with ν = 0.25.
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Figure 4.6 Large motion problem: qchg evolution for different p and no shear strain

allowed.

Figure 4.7 Large motion problem: Pseudo-material comparison.
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4.1.2 PSM quality criteria

In Figure 4.8 is demonstrated the quality for different values of pq (see Section 2.6), the expo-

nent for the inverse quality multiplier, with the pseudo-material that allows shear, ν = 0.25 and

p = 1.

Figure 4.8 Large motion problem: qchg evolution for different pq values.

The use of a quality stiffener exponent alone is not sufficient to move meshes (the solved mesh

is invalid after one iteration), the volume dependent stiffener is always needed. Although, the

addition of an inverse quality multiplier definitely helps in keeping elements from becoming

inverted.

The proposed multiplier increases the minimal quality considerably with an increasing pq ex-

ponent, but there is a drawback: it resists deformations that would increase quality (as seen

when t > 0.5). This disadvantage is greater for a value of pq = 5 as it can be seen on Figure

4.8, where at final position(t=0.5) the minimum is considerably higher, but on the way back the

minimum does not increase as much as for other exponent values; the minimum with pq = 5,

at t=1, is even lower than with pq = 0.
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Recommended PSM settings:

To summarize this section, optimal meshes are produces for p=1, ν = 0.25 and a pseudo-

material that allows shear. Also, we recommend values of pq to be: 1 ≤ pq ≤ 3. This recom-

mendation increases robustness of the PSM method at the price of a small decrease in overall

quality.

4.1.3 IDW parameters

The previous mesh has been tested for the IDW scheme. After, few iterations negative volume

elements were generated. In order to correct this situation a larger domain of 500× 500 has

been used. This necessity of a larger domain for large displacements is caused by the fact

that moving boundaries displacements are distributed on nodes, but stopped at the domain

limits. If those limits are close to moving surfaces, some elements can become negative. Thus,

increasing the distance of distribution contributes in keeping a valid mesh for the complete

simulation.

In Figures 4.9 and 4.10, the influence of exponent a is shown for large displacements. Lower

values of a (a < 3) generate a displacements field concentrated around the moving boundaries

and for higher values (a > 2) the displacements seem to be distributed more equally through

the domain. In Figure 4.11, results of the minimal quality show that a value of a = 1 is not

suitable for mesh movement and when exponent a = 5 a badly deformed mesh is produced. As

for the other values, it is not possible to express a recommendation. However, in Figure 4.12 it

can be seen that exponent b = 5 produces the worst mesh whereas other values produce similar

results. This behaviour means that the exponent a influences more the overall mesh quality

than b, except for b = 5. Then, in Figure 4.13 it is presented that exponents equal to one or

five generate bad meshes and that the deformed mesh is more dependent on the exponent a. It

seems that exponent b, from those graphics, is not needed, but for complex cases it should help

elements close to boundary from being largely distorted.
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From those results, we recommend the exponents combinations:

• 3 < a < 4;

• 3 < b < 4.

It is possible to have a good mesh for a = 2 with b = 5 and a = 4 with b = 5. Also, we should

keep in mind that Luke et al. (2012) has recommended the use of a = 3 with b = 5 for most

cases, but exponents value may be modified to obtain optimal results for each specific case.

The values of exponents represent how smooth the displacements will be distributed from

moving surfaces to the domain. A lower exponent will smooth the displacements field, while a

higher one will generate more differences in displacements between neighbour nodes and keep

elements close to boundary less deformed.
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(a) Global view, a = 1 (b) Close view, a = 1

(c) Global view, a = 2 (d) Close view, a = 2

Figure 4.9 Large motion problem: qchg field for various exponent a with b = 5 at t = 0.5.
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(a) Global view, a = 3 (b) Close view, a = 3

(c) Global view, a = 4 (d) Close view, a = 4

(e) Global view, a = 5 (f) Close view, a = 5

Figure 4.10 Large motion problem: qchg field for various exponent a with b = 5 at t =

0.5 (cont’d).
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Figure 4.11 Large motion problem: qchg evolution for different exponent a with b = 5.

Figure 4.12 Large motion problem: qchg evolution for different exponent b with a = 3.
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Figure 4.13 Large motion problem: qchg evolution of equal exponents (a = b).

Also, varying Lre f , the length of influence of moving boundaries, has a great impact on mesh

quality after displacements. In Figure 4.14, values under the calculated value of Lre f = 353.61

always give better results, in particular for Lre f =
353.61

2 . Then for values of Lre f from two to

ten times higher, the resulting meshes are of distinguishable better quality as depicted in Figure

4.15. Changing the value of Lre f is done to bring displacements fields closer or farther from

moving boundaries. This study has shown us that it is better to modify the value of Lre f , but we

believe the perfect multiplier is problem dependent. However, we can define a recommended

range of Lre f improving multiplier:

• To push displacements farther multiply the original Lre f by 10 or;

• To bring displacements closer multiply the original Lre f by 0.5.
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Figure 4.14 Large motion problem: qchg evolution for lower Lre f with exponents a = 3

and b = 5.

Figure 4.15 Large motion problem: qchg evolution for higher Lre f with exponents a = 3

and b = 5.
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4.1.4 IDW quality criteria

Figure 4.16 shows the variation of quality depending on the exponent c (see Section 2.6). It is

clear that a value of exponent c between 1 and 3 creates a small improvement in the minimal

quality at the final position. It is caused by the fact that when elements get distorted, their

displacements are calculated by a smoother function for 1 < c < 3. Where values of c = {1,2}
smooths both exponents, a and b, and the value of c = 3 smooths only b. Finally, values of

exponent c that are greater than exponents a or b give bad results.

Even if we have presented a slight improvement of quality from the usage of exponent c, we

will not use it for further simulations. Simply, we do not believe this exponent improves enough

the mesh quality and we do not wish to have another parameter to control.

Figure 4.16 Large motion problem: qchg evolution for various exponent c with

exponents a = 3 and b = 5.
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Recommended IDW settings:

The exponents a and b value should be between 3 to 4, then exponent c should be equal to

zero since the use of two exponents is robust enough and Lre f should be the half or ten times

the original calculated value (which is the maximum distance between a node and the mesh

centroid). Also, the close body region factor α should be calculated as defined by Luke et al.

(2012) or be imposed to make α ·Lre f equal to the boundary layers total height.

4.1.5 MSA-PSM/MSA-IDW results and meshes refinement study

As presented in Section 2.3, the MSA consists of deforming a coarse mesh and interpolating

its displacements to the computational mesh. This method should allow less distortions in

the coarse mesh than in the fine mesh, thus after interpolation the fine mesh should be valid

longer. Also, solving the displacements field of a coarse mesh and interpolating it are less CPU

consuming than solving the fine mesh displacements field especially for PDE type MMAs.

Since, there is no definition of how coarse a mesh should be, a preliminary study will be done.

Three different coarse meshes (see Table 4.1) will be analysed for the case of the rotating

translating box.

Table 4.1 Large motion problem: MSA meshes statistics

Mesh First Layer Height Nodes Elements
Coarser 1.7×10−1 21 212 103 277

Coarse 1.7×10−2 38 808 206 269

Coarse Finer 1.7×10−4 74 319 414 742

Fine 1.7×10−6 109 969 624 658

In Figure 4.17 is shown the coarsest mesh and its resulting fine mesh at final position (t=0.5),

then in Figure 4.19 is shown the comparison of qmin and qavg. All the simulations were done

with the MSA-PSM method with ν = 0.25, p = 1 and pq = 2. Visually, the resulting fine

meshes from different coarse meshes are similar, thus they are not presented.
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The noticeable difference for our various coarse meshes is that after attaining the final position

(t = 0.5) the ’coarse’ mesh generates better minimal quality. Also, after t = 0.75 the standard

PSM has a better minimal quality than MSA-PSM. Similarly, in Figures 4.18 and 4.20 are

shown results for the MSA-IDW method with exponents a = b = 4 and Lre f = 353.61×10.

For all coarse meshes, the MSA-IDW and the standard IDW method generate similar quality

evolutions. Except for 0.25 < t < 0.75 the MSA-IDW, especially with the coarser mesh, gives

a small increase in minimal quality, but not enough to consider that the refinement of the coarse

mesh has an impact on the results. Also, from this simulation it is not shown the advantage of

using the MSA-IDW over the IDW.

(a) Global view, coarse(1.7×10−1) mesh (b) Close view, coarse(1.7×10−1) mesh

(c) Global view, fine mesh (d) Close view, fine mesh

Figure 4.17 Large motion problem: qchg field at t = 0.5 moved by MSA-PSM.
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(a) Global view, coarse(1.7×10−1) mesh (b) Close view, coarse(1.7×10−1) mesh

(c) Global view, fine mesh (d) Close view, fine mesh

Figure 4.18 Large motion problem: qchg field at t = 0.5 moved by MSA-IDW scheme.
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Figure 4.19 Large motion problem: qchg evolution moved by MSA-PSM for different

coarse meshes.

Figure 4.20 Large motion problem: qchg evolution moved by MSA-IDW for different

coarse meshes.
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4.1.6 MMAs comparison

To conclude this section, a simple comparison of the best MMAs is done in Figure 4.21 and it

is shown that for t > 0.7 the PSM based methods produce lower quality than IDW based ones.

Also, the MSA-IDW compared to IDW gives better minimal quality for the critical period of

the simulation: 0.25 < t < 0.75.

Figure 4.21 Large motion problem: MMAs comparison of qchg evolution.

Recommended MMAs for large motions:

For simple problem, the PSM distributes the displacements of moving boundaries while pre-

serving better the initial mesh quality, but if the motion is reverse or oscillatory the quality will

decrease. Thus, in such situation the IDW should be used. Both methods, can be combined

to the MSA in order to improved the deformed mesh quality and reduce the computation time

(only for MSA-PSM).
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4.2 Multi-body validation

The following simple simulation will help to understand how multiple bodies interact, in partic-

ular when they get closer. In Figure 4.22 is shown a schematic, at scale, of the imposed moving

boundaries displacements: a cylinder shape (diameter = 4.0 and lenght = 10.0) is getting closer

to a Γ shape through rotation of 76 degrees around the ’z’ axis.

Figure 4.22 Multi-body problem: Schematic moving boundaries motion.

For the subsequent simulations two meshes of dimensions 1250×1250×10 are used: a coarse

mesh of 25 809 nodes with 98831 elements and a fine mesh of 98 175 nodes with 507 719

elements. The coarse mesh should be generated without pyramid because their interpolation of

displacements are not accurate for distorted pyramids. The meshes are shown in Figure 4.23

for the section z= 5.0.
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(a) Coarse mesh (b) Fine mesh

Figure 4.23 Multi-body problem: meshes at t = 0 at z=5.0.

Moreover, both meshes are composed of prism layers extruded from the moving boundaries,

followed by structured tetrahedral layers and the balance of the domain is filled with unstruc-

tured tetrahedron. The interfaces between hexahedron and tetrahedron are generated without

the need of pyramidal element. In the Table 4.2 is detailed the information concerning the mesh

boundary layers. These particular meshes are generated to allow the IDW method to keep valid

Table 4.2 Multi-body problem: Meshes Statistics

Mesh Prism boundary Layers
1st Height Growth Quantity

Coarse 3×10−1 1.3 1

Fine 1×10−4 1.3 28

mesh longer, to reduce computation times and to allow a good smoothing.The parameters of

the MMAs for the simulation are defined in Table 4.3.
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Table 4.3 Multi-body problem: MMAs parameters

Algorithm Parameters Value
PSM w\o shear

E 1.0

ν 0.0

p 1.0

pq 2.0

IDW

a 3.5

b 3.5

c 0.0

Lre f 10.0

αmin 0.01

Γ shape’s three top walls (Ai) 0.5×Ai
Both

Iterations 20 to final position

Reverse Iterations 20 to go back to the original position

The PSM parameters are set according to the best combination shown in previous simulations.

However, shearing effects are removed because meshes generated are of better quality with

ν = 0.0. The IDW exponents a and b are set to three and zero to generate a smooth field. Since

the value of a = 3 is the minimum there is no need to smooth the exponent according to quality,

thus exponent c is set to zero. Finally, the Γ shape top wall (see Figure 4.22) faces area have

been divided by four to minimize their influence on nodes displacements.

These simulations will validate the requirement of using an encapsulation zone, smoothing

algorithms and a mesh untangler.

4.2.1 Encapsulation Zone

As said in Lefrançois (2008) and Stein et al. (2004) a zone with increased stiffness can be

generated close to moving boundaries. This zone is created in the meshing process as a distinct

fluid domain and possesses a specific identification number (volID). These volIDs represent

standard moving mesh blocks (31 < volID < 39) or encapsulation zones (volID = 30). For en-

capsulation zones, the exponents for the PSM are doubled and for the IDW method modifying
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nothing gives better result. In fact, the IDW distance functions already produce the effects of

stiffening close elements, but with a smoother distribution.

In Figure 4.24 is shown the impact of using or not an encapsulation zone for the coarse mesh

without smoothing. The zone is the layer of hexahedral elements extruded from moving bound-

aries. Using rigid layer should increase both algorithms minimum and average qchgAbs, but it

Figure 4.24 Multi-body problem: Impact of using an encapsulation zone for the qchgAbs
evolution.

only allows the IDW method to keep a valid mesh longer (qchgAbsmin > 0). From this prelim-

inary simulation, it is proven that the IDW algorithm is not robust for multi-body interaction

simulations, but it will be with the help of smoothing and untangling tools.

Recommendation on the use of encapsulation zone:

The improvement of using an encapsulation zone is not visible by comparing global quality

values, although it can be used to limit the smoothing algorithms impact on boundary layers.
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4.2.2 Smoothing Parameters and Mesh Requirements

As stated in Section 2.4, mesh quality can be increased by smoothing elements in order to bring

them closer to their reference shape. Several options are available to smooth a mesh and bad

parameters value can result in an infinite loop or no improvement at all. Thus, we recommend

the following parameters:

a. The quality metric to be increased by the smoothing algorithms is qchgAbs (as explained in

section 2.5);

b. Smooth when qmin < 0.25;

c. Smooth globally (Algorithm 2.3) until the improvement is less than the tolerance of 10−4;

d. Smooth locally (Algorithm 2.4) elements of qmin < 0.5 five times;

These parameters permit good averaging of distortion through the domain and makes future

meshes protected better against generation of negative elements. There are three additional

options which are going to be tested:

a. Smooth according to q before the first movement;

b. Smooth at each iteration according to qchgAbs;

c. Options a) and b).

Thirdly, to ensure a good smoothed mesh we recommend the mesh to be composed of surface

boundaries of face aspect ratios between one and fifty. These boundaries are fixed during

the smoothing process, thus trying to smooth elements connected to boundaries of bad aspect

ratio will result in bad quality elements. Also, in this simulation two domains are skipped in

the smoothing process: the far-field (volID = 39) and the encapsulation zones (volID = 30).

The choice of not smoothing these regions helps respecting the face aspect ratio requirement
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and in keeping the boundaries unchanged; thus this approach is used in all simulations under

smoothing.

In Figures 4.25 and 4.26 are shown the comparisons of those three options for each MMAs.

Smoothing meshes at t = 0 generates worse deformed meshes for the IDW method while al-

most generating no changes with the PSM. Then, smoothing when the quality is under 0.25

improves minimum quality considerably, but does not protect against generation of negative

elements. In fact, it even perturbed meshes moved with the PSM to make them invalid for

t > 0.5. For the IDW method it pushed further the moment when meshes become invalid.

Also, the combination of both options gives a more stable evolution for both MMAs than

solely smoothing when the quality is under 0.25.

Figure 4.25 Multi-body problem: Impact of smoothing on the qchgAbs evolution for the

PSM.
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Figure 4.26 Multi-body problem: Impact of smoothing on the qchgAbs evolution for the

IDW method.

In Figure 4.27 is shown a comparison of MMAs while using or not the smoothing process.

The smoothing options are those which gave better results for each MMA. Smoothing a mesh

while moving it with the PSM removes the stability of the algorithm which can easily result in

invalid meshes. Although, smoothing before the first movement can improve the original mesh

quality, as in the previous simulation qmin was raised from 0.00787278 to 0.164369.

The difficulty with the IDW algorithm for interacting bodies is that elements between bodies

are equally moved by each moving body which can generate easily distorted elements even if

the mesh is smoothed.

Recommendation on the use of smoothing:

Smoothing algorithms help elements at risk, those between bodies, from being largely distorted

and make the mesh valid longer. Although, it is not sufficient to make MMAs truly robust

which proves the need for an untangler algorithm.
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Figure 4.27 Multi-body problem:: Impact of smoothing on the qchgAbs evolution for

different MMAs.

4.2.3 Validation of the Novel GETMe Untangler (NGU) algorithm

The NGU presented in Section 2.7 should resolve the problem of having negative elements,

especially while using the IDW scheme. To assess its necessity, workability and capability in

conserving mesh quality, we compare, in Figure 4.28, quality evolutions without the NGU or

with it and with or without smoothing. It is clear that using the NGU allows the mesh to be

kept valid through all the proposed simulation. Also, the smoothing algorithms and untangler

are shown to be compatible tools. Thus, we are able to improve, or preserve, as wanted mesh

quality and to keep valid meshes through complex movements.

4.2.4 Remarks on boundary geometries and boundary layer

There is some concerns from specialists about the risk of mesh adaptations not respecting the

original geometries. Although, our algorithms are built in order to make them unalterable. Our

approach consists in always imposing rigid-body motion to each moving boundary node. In

other words, nodes displacements which are calculated or interpolated are those which are not

on moving boundaries.
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Figure 4.28 Multi-body problem: Impact of using the Novel untangler tool for mesh

movement.

As well, elements close to moving boundaries for complex phenomenon, such as turbulent

flows, are required to be of good quality. Thus, special care should be taken to generate and

move the mesh, although all MMAs used in this work are designed to preserve boundary layer

elements quality. Through our multiple simulations, we have learned that elements in boundary

layer regions are kept unchanged for most situations, but little distortions can be found for

multi-body test cases. This is not alarming since other elements in the mesh are more distorted,

thus they would affect more the veracity of a physical solver results. This means that the need

of re-meshing or mesh invalidity will not emerge from boundary layers elements.

4.2.5 MMAs comparison

Previously, to allow a better understanding of mesh smoothing, the loops were done before the

mesh displacements was solved. However, in a real multi-physics application, the mesh will

be smoothed after the displacements have been solved. Thus, before the mesh is used to solve

other physic equations, from now-on, it will be smoothed. A detail not to forget is that the

smoothing process is done after the untangling operation, since the smoothing algorithms are

defined only for valid meshes.
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The simulation of the fine mesh uses the following settings:

• There is no global smoothing;

• When the minimal quality is lower than 0.25, meshes are smoothed according to qchgAbs;

• When negative elements are generated, the NGU makes them positive;

• Elements’ distance to boundary smaller or equal to 1.0 use the qpre metric.

In Figure 4.29, is shown the evolution of quality for the fine meshes and in Figure 4.30 is shown

the deformed meshes at t = 0.5. The PSM and MSA-PSM results are not shown because they

failed at the first iterations, thus those methods are not recommended for mesh-movements

involving multiple bodies.

From figures 4.29 and 4.30 is shown that the MSA-IDW has a higher minimal quality until

t=0.7 and the average quality is higher with the IDW method around t=0.5. This can be ex-

plained by the fact that the coarse and fine meshes are generated analogous, except for the

size of the first boundary layers. Thus, generating a coarse mesh with elements following the

path of moving boundaries could improve the MSA-IDW performance. However, we will not

study that alternative since we wish to design MMAs to be mesh independent. Also, it can be

seen that the zone with the qpre metric shows values close to 1.0, since their shape is almost

unchanged.

For the multi-bodies fine mesh, the solver for the PSM based method was diverging. We believe

that the problem emanates from the facts that we were doing calculation on a single computer

and the BiCGStab solver is not adequate for large problems. Thus, we should use a solver that

can produce a solution for large problems and we should include the capability of decomposing

the domain to use parallel solvers.
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Figure 4.29 Multi-body problem: Fine mesh qchgAbs evolution per MMAs.

(a) Fine mesh moved by IDW method (b) Fine mesh moved by MSA-IDW method

Figure 4.30 Multi-body problem: qchgAbs field at t = 0.5.
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4.2.6 Recommendations

For simple one body moving-mesh problems the PSM or MSA-PSM generate better minimal

quality than other MMAs. The parameters of the PSM to use are p = 1, ν = 0.25 and pq =

1. However, the pseudo-material analogy should not be used for multi-body problems and

complex motions.

For difficult problems, it is recommended to use the IDW or MSA-IDW methods with a= [3,4],

b = [3,4], c = 0 and Lre f =
Lre f ,calculated

2 . Also, to improve robustness the smoothing GETMe

algorithms combined to the NGU are applied to the mesh to preserve mesh quality and validity.

To ensure good smoothing, the boundaries faces aspect ratio are required to be close to one

(1 <aspect ratio < 50), this criteria is also required for fluid flow solvers making the face

aspect ratio a criteria to respect for any simulation.

4.2.7 Conclusions

Finally, we should understand from the previous sections that various cases of moving bound-

aries can be handled with moving-mesh algorithms and proposed improvements. For some

strong movements the mesh can be repaired or improved to preserve good mesh quality. Al-

though, these methods have limits and do not allow all movements especially contact or close

to contact situations. The greatest advantage from our strategies to mesh movement is the gain

in calculation time and ease of implementations.

To make the current tool perfect it should be able to locally re-mesh when the MMAs are close

to generating an unusable mesh. Since, a lot of work has already been done on the subject it

should be quite straight-forward to combine to the proposed approach a re-meshing algorithm.





CHAPTER 5

REALISTIC MESH-MOVEMENT SIMULATIONS

The final objective of our research is to adapt meshes of moving aerodynamic surfaces. In this

section, aeroelastic geometries of meshes for viscous flow solvers will undergo large move-

ment. The prescribed movements are the twisting-bending of a wing and the movements of

wings lifting components to different flight stages.

5.1 NACA0012 bending, twisting and combined

5.1.1 Motions Definition

The airfoil used is the symmetric NACA0012 of chord length equal to one which is extruded

in the z direction four units to generate a wing. In flight, flexible wings are under pressure

produced twisting and bending which are both maximal at the tip and null at the root where the

wings are fixed to the fuselage. The bending and twisting displacements for this problem are

expressed as follows:

Bending: δy = e2.0×z/scaling (5.1)

Twisting: Rotation around z of δθ = 10◦ × z/span, (5.2)

where the span = 4.0 and scaling = 6000.0. The span variable is there to distribute the twist-

ing linearly from root (z = 0) to tip and the scaling variable to scale down the value of the

exponential to be of 0.5 unit at the tip. Three simulations will be done: bending, twisting and

the combined movement (bending + twisting). In Figure 5.1 is shown the boundary surfaces

three movements.
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(a) Bending, (b) Twisting, (c) Combined.

Figure 5.1 NACA0012 simulations: boundary surfaces movements.

5.1.2 Meshes Description and MMA Configuration

The mesh around the boundary surfaces is generated with 42 tetrahedral structured layers ex-

truded from the moving surfaces, of faces aspect ratio ≤ 12.49, where the first 28 layers are

only prism elements. The first layer is of 1.0×10−6 with a growth ratio of 1.3 and the domain

limits are defined by a cylinder of radius = 155.0. A cut of the mesh at z=2.0 is shown in

Figure 5.2. The mesh is composed of 2 036 382 elements (150 718 prisms, 7465 pyramids and

523 199 tetrahedron) and 859 096 points. Similarly, the coarse mesh is obtained from the same

boundaries with the first layer height from the wing of 1.0×10−3, the growth ratio is equal to

2.0 and there is 8 layers where the first one is composed only of prisms. The coarse mesh has

1 049 224 elements(39 880 prisms and 1 009 344 tetrahedron) and 201 850 nodes.

The parameters used for the large movements of the NACA0012 wing are defined according to

the recommended default values of Chapter 4, as seen in Table 5.1 and the preserving quality

metric is not necessary for this simulation since there is only one body.
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(a) Global mesh

(b) Close view of tip leading edge (c) Close view of tip trailing edge

Figure 5.2 NACA0012 simulations: original mesh views.
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Table 5.1 NACA0012 simulations: MMA parameters

Algorithm Parameters Value
IDW

a 4.0

b 4.0

c 0.0

Lre f calculated

αmin 0.1

Smoothing

Quality minimal until qmin ≥ 0.5, but start smoothing when qmin < 0.25

Type quality qchgAbs
Iterations 20 to final position

Reverse Iterations 20 to go back to the original position

5.1.3 Results

In Figures 5.3 and 5.4 are shown the evolution of qchgAbs for each movement and MMA. Since

the quality for this simulation is always higher than 0.25 the was not smoothed. For the single

motions, both methods produce similar quality evolution and the combined motion is better

solved with the IDW where the minimal quality around t = 0.5 is a little better.

Then, in Figures 5.5 and 5.6 are presented the deformed meshes for the NACA combined

motion at t = 0.5 for the tested MMAs. From these results, it is shown that even for complex

motions of a single body the proposed MMAs generate displacements fields of good quality.

In this particular simulation, most of the elements have preserved their original quality except

at the tip of the wing where elements are slightly distorted (qchgAbs ≥ 0.4 ). Elements close

to moving boundaries of the tip have their quality reduced down to 0.4 their original which

is considered acceptable especially since the boundary layers elements are mostly deformed

parallel to the boundaries.
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Figure 5.3 NACA0012 simulations: qchgAbs evolution for single motions.

Figure 5.4 NACA0012 simulations: qchgAbs evolution for combined motion.
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(a) Wing view

(b) Close view of tip leading edge (c) Close view of tip trailing edge

Figure 5.5 NACA0012 simulations: qchgAbs field with IDW for the combined motion at

t = 0.5.
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(a) Wing view

(b) Close view of tip leading edge (c) Close view of tip trailing edge

Figure 5.6 NACA0012 simulations: qchgAbs field with MSA-IDW for the combined

motion at t = 0.5.
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5.2 DLR-F11-HL profile extrusion from take-off to landing

The geometry is a wing section of the DLR-F11-HL which was used for the second AIAA

High-Lift Prediction Workshop (Rumsey (2014)). The wing chord length is one unit and the

span length is 0.5 unit. This simulation will show that the mesh validity is preserved after the

application of an MMA for complex multi-body problem in pseudo-two dimensions.

5.2.1 Motions Definition

The flap and slat have imposed movements while the wing is fixed; these movements represent

the stages of a full flight from take-off to landing (see Figure 5.7). The simulation starts at the

take-off position, after 50 iterations it is in the cruise position and after 40 more iterations the

wing body is ready for landing. A large number of iteration is used to apply the motion for high-

lift components motion in order to allow a smoother quality evolution, to reduce the generation

of negative elements and to increase the effect of smoothing algorithms on the deformed mesh.

(a) Take-off position (t=0.0) (b) Cruise position (t=0.5) (c) Landing position (t=0.9)

Figure 5.7 DLR-F11-HL simulation: Flight positions.

5.2.2 Mesh Description

From each moving boundary is extruded 34 layers of structured tetrahedron elements, where

the first layer height is of 1.27×10−5 and the growth rate is of 1.3. Moving boundary surfaces

have their faces aspect ratios between 1.3819 and 23.92 which is necessary to ensure small

impact from the smoothing algorithms on the surface mesh.
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The domain limit is a box of dimensions 10.0×10.0×0.5 and the complete mesh is composed

of 6 370 052 elements (3 277 643 hexahedron, 18 487 prisms, 577 775 pyramids and 2 496

147 tetrahedron)and 3 993 494 nodes. In Figure 5.8 is presented the undistorted mesh around

moving boundaries. The coarse mesh is composed of 18 layers of structured tetrahedron grow-

ing from the moving boundaries with a initial height of 1.27× 10−5 and a growth rate of 1.3

where the first 9 layers are only of prisms. Thus, the mesh is composed of 3 732 958 elements

(960 008 prisms and 2 772 950 tetrahedron) and 995 359 points.

5.2.3 Mesh-mover algorithms parameters setting

In Table 5.2 is presented the MMA parameters for the DLR-F11-HL simulation. The expo-

nents are set to the values which produce the smoothest displacements field and Lre f = 0.25 to

restrain the displacements field to be inside the quarter of the wing chord from each moving

boundary. Then, α is being equal to 0.02 to make sure all moving boundaries have the same

close boundary region definition which is equal to the boundary layers total height. Also, the

slat and flap surfaces weight are raised which increase their influence on the displacements

field.

Table 5.2 DLR-F11-HL simulation: MMA parameters

Algorithm Parameters Value
IDW

a 3.0

b 3.0

Lre f 0.25

α 0.001

Slat Surfaces weight Ai 2.0×Ai
Wing Surfaces weight Ai 1.5×Ai

Smoothing

Quality minimal smoothing when qmin < 0.25 until qmin ≥ 0.5
Type quality qchgAbs

Stretched element wall distance ≤ 1×10−4 [m]

Iterations 50 to final position

Reverse Iterations 40 to go back to the original position



116

(a) Wing view

(b) Slat view (c) Flap view

Figure 5.8 DLR-F11-HL simulation: initial mesh around moving boundaries at t = 0.
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5.2.4 Results

Smoothing algorithms and the proposed NGU are proven to be necessary to solve such complex

mesh motions. Without our proposed improvements to the IDW of Luke et al. (2012) such

problems will not be solvable.

In Figures 5.9 to 5.11 is presented the deformed mesh at various time instant (t = [0.5,0.75,0.90])

with the IDW method combined to the smoothing GETMe and NGU algorithms. The element

with the lowest qchgAbs, especially at t=0.90, are between the slat and the wing, but their distor-

tion is reduced as wanted by the GETMe smoothing algorithm. Elements around the flap do not

suffer large deformation since the flap is not getting closer to the wing. Thus, the wing trailing

edge and flap boundary layers elements’ quality are almost unchanged. It is quite different for

the wing leading edge boundary layers where the displacements are diffused really close to it,

but the first layers of elements around the surfaces have a good quality of qchgAbs > 0.75.

In Figure 5.12 is presented that from t=0.23 to t=0.65 the smoothing algorithm is not able to

maintain the requested minimum quality, it is around qchgAbs = 0.02 instead. Afterwards, up to

retaliation of the original position (t=0.75) the proposed approach respects the quality criteria.

Then, for the movement to landing position it is difficult to keep a good minimum; however

the minimal quality is always positive thus the flow field may be solved.

The solution from the MSA-IDW shows a similar quality evolution until t=0.30 where it de-

creases drastically, for then generate an unrecoverable mesh at t=0.50. Effectively, for such

complex problem the coarse mesh interpolation produces a displacements field less smooth

than using the IDW on the fine mesh. This difficulty may be corrected by using a finer coarse

mesh or with a different interpolation approach.
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(a) Wing view

(b) Slat view (c) Flap view

Figure 5.9 DLR-F11-HL simulation: qchgAbs field around moving boundaries at t = 0.5.
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(a) Wing view

(b) Slat view (c) Flap view

Figure 5.10 DLR-F11-HL simulation: qchgAbs field around moving boundaries at

t = 0.75.
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(a) Wing view

(b) Slat view (c) Flap view

Figure 5.11 DLR-F11-HL simulation: qchgAbs field around moving boundaries at

t = 0.90.
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Figure 5.12 DLR-F11-HL simulation: qchgAbs evolution with the proposed

improvements.

5.3 Wing-body motion from take-off to landing

In the two previous simulations, results of meshes under large three dimensional motions and

complex multi-body interactions have been presented. Our last simulation will be to investigate

an advanced moving boundaries problem: a multi-body interaction of a three dimensional

motion for a complex geometry with CFD solving.

5.3.1 Motions Definition

The trapezoidal wing (see Figure 5.13) geometry is defined by the HiLift-PW1 (Rumsey (2014))

and the motion of each body is: a rotation of -30 degrees of the flap around the wing leading

edge, the wing is fixed and the flap is rotated 20 degrees around its leading edge. A translation

in the z-axis of 12.7[mm] is added to the motion of all bodies to protect the mesh from pen-

etrating the fuselage surface. These manufactured motions represent the positioning of each

high-lift component to different flight stages and are demonstrated in Figure 5.14 at the wing

tip (z = 84.0).
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Figure 5.13 Wing-body simulation: Geometry.

(a) Take-off position (t=0.0) (b) Cruise position (t=0.5) (c) Landing position (t=1.0)

Figure 5.14 Wing-body simulation: Flight positions at tip (z=84.0).

5.3.2 Mesh Description

49 structured tetrahedral layers are extruded from each moving boundary to generate the fluid

field and most of them will be combined into prism elements at exportation. The first layer

height is of 5× 10−6(2× 10−4 [in]), the growth rate is of 1.2 and moving boundary surfaces

have faces aspect ratios between 1.00 and 37.89. Additionally, a block of hexahedron behind

the flap has been inserted to allow the wake flow to be resolved.

The domain limit is a box of dimensions 250×250×100 and the complete mesh is composed

of 40 593 682 elements (3 504 600 hexahedron, 29 511 057 prisms, 10 607 197 tetrahedron and

475 428 pyramids) and 20 420 367 nodes. The undistorted mesh around moving boundaries is

presented in Figures 5.15 and 5.16. The MSA-IDW is not tested since the current implement-

ation replicate the coarse mesh on each processors which uses more memory than the amount

available.
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(a) Wing-body view

(b) Slat view (c) Flap view

Figure 5.15 Wing-body simulation: mesh around moving boundaries at root (z=8.0) for

t = 0.
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(a) Wing-body view

(b) Slat view (c) Flap view

Figure 5.16 Wing-body simulation: mesh around moving boundaries at tip (z=84.0) for

t = 0.
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5.3.3 Mesh-mover algorithm parameters

In the Table 5.3 is presented the parameters configuration for the trapezoidal wing simulation.

The exponents which produce a better mesh quality are a = 4 and b = 5, Lre f = 0.5[m] in order

to reduce the shearing of elements between bodies and the other parameters are set to make the

mesh-movement computation robust and fast.

Table 5.3 Wing-body simulation: MMA parameters

Algorithm Parameters Value
IDW

a 4.0

b 5.0

Lre f 0.5[m]

α 0.001

Smoothing

Quality minimal smooth when qmin < 0.125 until qmin ≥ 0.25

Stretched element wall distance ≤ 0.00127 [m]

5.3.4 Results

In Figures 5.17 to 5.20 are presented the deformed mesh at cruise (t = 0.5) and landing (t=1.0)

positions for the root and tip of the wing. It is seen that boundary layers elements have their

quality unchanged and that between bodies is the zone of high sheared elements of poor quality

that could affect the fluid calculation especially between the slat and the wing which is due to

the proximity of the bodies. Also, the crucial zone is at the tip between bodies because the

bodies are closer and it is the zone with the lowest quality. Thus, the mesh-movement could

fail in this zone if the mesh is not generated with care. Then, in Figure 5.21 it is presented that

the mesh quality is kept over qchgAbs = 0.125 except from t=0.29 to t=0.7. This can be caused

by the fact that the smoothing algorithms are not able to smooth bad quality elements or the

quality metric is not defined well enough for this situation.
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However, the mesh returns at the asked minimum quality of qmin = 0.25 for t=1.0 which means

that this deformed mesh should performs almost as good as the initial one to solve the fluid

flow, but it is difficult to state if the deformed mesh of t=0.5 will produce good flow results.

To complete this section, the computation time for the simulation per major operations is

presented in Figure 5.22. The simulation has been performed on a cluster of computers by

80 processors in parallel. The first operation done is the initialisation which explains a higher

computational time for the first iteration than the second. Then, the mesh displacement is com-

puted in less than two minutes for almost ten million nodes and this operation computational

time is constant for each iteration. The mesh is smoothed few times outside of the critical

zone, t=0.29 to t=0.7, and depending on the quantity of loop it takes more or less time, but this

operation takes 18 minutes on average which means there can be optimisation to do. However,

this time is lower than generating, exporting and reading a new mesh.

The untangling operations similarly to the smoothing operation vary per iteration depending

on the quantity of negative elements and the ease of untangling them, but it takes always less

than 7 minutes to untangle the mesh which is fast enough. Finally, the untangling operation is

shown to be necessary from time t=0.28 until the end since all elements are required to be of

positive volume for the fluid flow solver.
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(a) Wing-body view

(b) Slat view (c) Flap view

Figure 5.17 Wing-body simulation: qchgAbs field around moving boundaries at root

(z=8.0) for t = 0.5.
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(a) Wing-body view

(b) Slat view (c) Flap view

Figure 5.18 Wing-body simulation: qchgAbs field around moving boundaries at tip

(z=84.0) for t = 0.5.
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(a) Wing-body view

(b) Slat view (c) Flap view

Figure 5.19 Wing-body simulation: qchgAbs field around moving boundaries at root

(z=8.0) for t = 1.0.
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(a) Wing-body view

(b) Slat view (c) Flap view

Figure 5.20 Wing-body simulation: qchgAbs field around moving boundaries at tip

(z=84.0) for t = 1.0.
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Figure 5.21 Wing-body simulation: qchgAbs evolution with the proposed improvements.

Figure 5.22 Wing-body simulation: Computation time per operations.
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5.3.5 Fluid flow solution

This last section will prove that our methodology is suitable for the needs of the industry which

is to solve fluid flows of wing-body. The flow characteristics are shown in Table 5.4 where MAC

is the mean aerodynamic chord which is equal to 39.54 [in] (approx. 1[m]). The ANSYS CFX

Table 5.4 Wing-body simulation: fluid flow characteristics

Parameters Value
M∞ 0.2

Angle of attack 13.0 [deg]

ReMAC 4.3×106

P∞ 101 325 [Pa]

ν∞ 1.5743×10−5[m2

s ]
T∞ 540 [R]

software will be used to resolve the flow around the wing-body. The turbulence model used

is the SST model, the resolution strategy for the advection and turbulence equations is high

resolution and the physical timescale for convergence is equal to MAC
U∞·10 = .0015[s]. The high

resolution scheme of CFX tries to increase the discretization to second order when possible

and if not it used the upwind discretization.

The simulations evaluated are the undeformed mesh (t = 0.0) flow, the flow of the deformed

mesh at cruise position (t = 0.5) and the deformed mesh flow of t = 1.0. The solution for

each simulation is observed after 1000 iterations and the convergence attained for all equations

is under (or close to) 10−4. In Figure 5.23 is shown the convergence evolution for the initial

position (t = 0.0) simulation and other simulations convergence evolution are similar thus they

are not shown. The shown convergence is for the RMS residuals of variable of interest: the

velocities (U,V,W) and the pressure (P). The flow is analysed by presenting various global

results at t = 0 and t = 0.5 in Figures 5.24 to 5.31. In these figures, the turbulence intensity

is defined as I =

√
2
3 ·kturb

UL
, where kturb is the turbulent kinetic energy and UL is the local mean

velocity and the vorticity is the curl of the velocity.
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Figure 5.23 Wing-body simulation: ANSYS CFX fluid flow convergence for t = 0.0.
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Figure 5.24 Wing-body simulation: Pressure field at z/span = 0.5 and t=0.0.

Figure 5.25 Wing-body simulation: Pressure field at z/span = 0.5 and t=0.5.
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Figure 5.26 Wing-body simulation: Vorticity iso-surface of 20[1/s] at z/span = 0.5 and

t=0.0.

Figure 5.27 Wing-body simulation: Vorticity iso-surface of 20[1/s] at z/span = 0.5 and

t=0.5.
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Figure 5.28 Wing-body simulation: Turbulence intensity field at z/span = 0.5 and t=0.0

(far view).

Figure 5.29 Wing-body simulation: Turbulence intensity field at z/span = 0.5 and t=0.5

(far view).
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Figure 5.30 Wing-body simulation: Turbulence intensity field at z/span = 0.5 and t=0.0.

Figure 5.31 Wing-body simulation: Turbulence intensity field at z/span = 0.5 and t=0.5.
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The previous figures are presented to give to others additional comparisons. Concerning pres-

sure, the bubbles of depression on top of the wing are bigger compared to the overpressure

under the lifting surfaces which explained the values of lift coefficient larger than one. From

the vorticity surfaces it is seen that the vorticity is mainly produced parallel to the flow except

at wing tip. Also the size of the vorticity region is more concentrated on the wing-body for

t=0.5. These surfaces are the zones where the mesh need to be refined in order to improve the

accuracy of the results. Then, the figures of turbulence show that the solution has not attained

the steady state since the turbulence is not solely concentrated close to the surfaces. This can be

explained by the fact that the problem to be solved is not steady, thus the solution will always

show some sign of turbulence generation. Also, it can be caused by the fact that the mesh is

considered coarse in the viscous layer (Rumsey (2014)).

In Figures 5.32 to 5.37 is presented the pressure coefficient (Cp) at different sections of interest.

The graphics of t = 0 are compared to wind tunnel data and for t > 0 the Cp behaviour is

compared to current numerical results of t = 0.

The numerical results are close to the experimental results, for the flap and the wing the values

are almost identical except for the tip sections (z/span = [0.7,0.9]) which is acceptable to

validate our mesh-movement approach. The pressure coefficient results for the slat section

show a large offset of the data but the shape of the results is similar to experimental values,

except at the tip where the depression of the extrado is not captured accurately.

As the flow field figures before, the pressure coefficient at t = 0.5 is similar to t = 0, except for

the magnitude of values. The shape is slightly different at the slat tip which can be corrected

by generating a better mesh in that zone, but this effect can be physical also. The mesh at t=1.0

has returned to its original position after deformation and it is proven validated without a doubt

that a deformed mesh produces good results for such a difficult flow since the values of Cp are

identical.
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To complete the study, the lift and drag coefficients (pressure and viscous) have been calculated

for all cases and compiled in Table 5.5. For t=0, the coefficients are really close to experimental

values especially the lift. For t=0.5, as expected the values of both coefficients decrease of

46.85% and 27.15% since the angle of attack is unchanged. We consider that those values

are realist, thus proving the workability of a deformed mesh with our method, but they should

be compared to an undeformed mesh. Finally, the coefficients for t=1.0 are a little less close

to experimental values than the original mesh. It means the smoothing algorithms have to be

improve to reduce this discrepancy.

Table 5.5 Wing-body simulation: Drag and Lift coefficients

Test CD Relative Error [%] CL Relative Error [%]
Experimental .333 0.0 2.0468 0.0

t=0.0 0.3057 -8.194 1.954 -4.552

t=0.5 0.1567 N/A 1.394 N/A

t=1.0 0.3045 -8.562 1.951 -4.68

Comment on mesh quality:

The quality results of the previous section have depicted multiple highly distorted elements

between bodies, for t=0.5 and t=1.0, and it was not clear if those would have affected the

fluid flow solver. However, we can state that the impact if there was on the flow calculation

is minimal relative to the variables of interest (Cp, CL and CD). As well, the solver before the

first iteration did a quality verification and according to it all meshes have less than 3% of low

aspect ratio elements. For CFX solver, this represent a good mesh quality, thus in order to

integrate better the proposed approach to mesh-motion the quality metric should be similar to

the one of the desired solver.
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(a) z/span = 0.17

(b) z/span = 0.50

Figure 5.32 Wing-body simulation: Pressure coefficient on slat surfaces for t = 1.0.
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(a) z/span = 0.70

(b) z/span = 0.95

Figure 5.33 Wing-body simulation: Pressure coefficient on slat surfaces for t = 1.0
(cont’d).
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(a) z/span = 0.17

(b) z/span = 0.50

Figure 5.34 Wing-body simulation: Pressure coefficient on wing surfaces for t = 1.0.
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(a) z/span = 0.95

(b) z/span = 0.70

Figure 5.35 Wing-body simulation: Pressure coefficient on wing surfaces for t = 1.0
(cont’d).
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(a) z/span = 0.17

(b) z/span = 0.50

Figure 5.36 Wing-body simulation: Pressure coefficient on flap surfaces for t = 1.0.
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(a) z/span = 0.70

(b) z/span = 0.95

Figure 5.37 Wing-body simulation: Pressure coefficient on flap surfaces for t = 1.0
(cont’d).





CONCLUSION

For the numerical analysis of moving boundaries problems Mesh-Mover Algorithms (MMAs)

are needed. MMAs allow fluid meshes to be adapted according to moving boundaries and keep

them valid for fluid flow solving. The first requirement for a deformed mesh to be valid for the

solvers is the positivity of each element volume. The second requirement is that the original

mesh quality be preserved in order to obtain accurate results from the fluid flow resolution.

The first objective of this work was to design a state of the art Finite Element Method (FEM)

module which can be used by any multi-physics program to solve challenging moving bound-

aries problems. The paradigm used was the well-known object-oriented method which repro-

duces in computer language a model of the reality. The design is centred on FEM objects:

analysis, mesh, boundary condition, element, material, face and node. Each object is defined

by its type such as fluid, structure or moving-mesh. Also, the attributes and functions of each

object are presented. Then, the graphical and text-based interfaces structure and implementa-

tions are described.

The second objective was the implementation of improved MMAs for hybrid meshes in aero-

dynamics analysis. Thus, we have contributed in this subject with:

• The addition of a quality criteria to the Pseudo-Material (PSM) method of Stein et al.

(2004);

• The generalization of the Multi-Submesh Approach (MSA) of Lefrançois (2008) for all

elements and an implementation of a fast search algorithm;

• The combination of the MSA to the IDW and PSM;

• The consolidation of quality metrics designed for mesh-movements;

• The improvement of deformed mesh quality by combining MMAs to the powerful mixed

mesh smoothing algorithms called the Geometric Element Transformation Method (GETMe)

of Vartziotis and Papadrakakis (2013);
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• The proposition of the Novel GETMe Untangler (NGU) which reverts negative volume

elements.

To validate and quantify each proposed improvement, two simple test cases have been studied.

After the study of each MMA parameter impact, the proposed improvements were studied. The

quality parameters added to the PSM and IDW approaches are found able to increase the mesh

quality, but with a lost in robustness thus those tools are not recommended for mesh-motion.

Then, the generalization of the MSA is validated for mixed elements meshes, it was found to be

less smooth than the IDW and that the current implementation should be improve to reduce its

memory consumption. Afterwards, in a multi-body simulation the use of smoothing algorithms

and of the NGU (since the mesh had to be repaired) was investigated. It was proven that both

methods (NGU and GETMe) help in keeping validity of the mesh and in improving the mesh

quality through mesh-motion. Thus, it is strongly recommended to use the NGU and GETMe

algorithms together for complex problems after each mesh-motion.

In the last chapter, realistic displacements were imposed from wings to their surrounding fluid

mesh (bending/twisting of a NACA0012 wing and high-lift components motions). These sim-

ulations have shown the following conclusions:

• PSM based methods with current implementations are not usable for large or complex

motions;

• The GETMe and NGU algorithms combination is shown to be robust and performs suffi-

ciently well to preserve mesh quality;

• The best methodology to solve mesh-motion is the IDW approach with the GETMe and

NGU algorithms;

• The developed method is shown able to deform the mesh under the motion of high-lift

components of rectangular and swept wings through flight stages;

• The distorted mesh flow field for a wing-body has been obtained and the results were sim-

ilar to an undistorted mesh.
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Future works :

From the proposed method future improvements and field of study are suggested:

• The proposed method should be integrated with a fluid flow solver to appreciate the work

done in this research and improve the solver capability;

• Local re-meshing capabilities should be added to the MMA module to be able to handle

more extreme moving boundaries problems and increase the mesh quality even further;

• Design a similar robust approach to refine meshes in order to improve a flow solution;

• An overset approach for mesh-motion treatment should be implemented and compared to

the current approach. Then, the overset approach could be improved to be able to simulate

multi-body close to contact problems by allowing secondary overset meshes to be deformed

with the IDW, GETMe and NGU algorithms;

• Investigations should be made to the MSA framework, such as improving the accuracy of

the search algorithm, increasing the degree of interpolation functions to quadratic or cubic

and using the method to initialize a fluid solution from a coarse mesh;

• The PSM implementation performance should be increase to allow this method to be used

for more difficult moving boundaries problem. To start, we would recommend to imple-

ment a GMRES solver, add the capability of domain decomposition and increase the capa-

city of boundary layers preservation with the use of quaternion to define moving boundaries

motion Samareh (2002).

General remark:

The numerician who wishes to use a mesh-mover algorithm should use one related to his needs.

If only few positions are needed for the numerical analysis, it is better to generate multiple

meshes than use an MMA. Then, if the motion involves contact between bodies an overset ap-

proach is more suitable for such problems. However, in most moving boundaries simulations,

robust MMAs have their place and should be used to save valuable time.
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