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INVESTIGATION OF UNCERTAINTIES IN ASSESSING CLIMATE CHANGE 
IMPACTS ON THE HYDROLOGY OF A CANADIAN RIVER WATERSHED 

 

Yan ZHAO 

 

ABSTRACT 

 
It is known that climate change will affect water resources. The impact of climate change on 
river regimes attracted the attention of hydropower companies over the recent years. 
Although general trends in future river flows can be reasonably well assessed using climate 
and hydrological models, their overall uncertainty is much more difficult to evaluate. An 
improved evaluation of uncertainty in the hydrological response of watersheds to climate 
change would help designing hydropower projects as well as adapting existing systems to 
better cope with the anticipated changes in flow regimes. 
 
The uncertainty in assessing the potential hydrological impacts of a changing climate is of 
high interest for the scientific community. A framework for evaluating the uncertainty of 
climate change impacts on watershed hydrology is developed in this thesis. The sources of 
uncertainty studied comprise the global climate model (GCM) structure, climate sensitivity, 
natural variability and, to a lesser extent, hydrological model structure. Climate sensitivity is 
the global mean climatological temperature change due to a doubling of atmospheric CO2 
concentration. Natural variability refers to the uncertainties resulting from the inherent 
randomness or unpredictability in the natural world. Climate projections under IPCC A2 
scenario for the 2080 horizon were downscaled to regional scale using the change factor 
method and developed into long time series with WeaGETS, a stochastic weather generator 
developed at the École de technologie supérieure. The predicted future climate scenarios 
were forced into four hydrological models to simulate future flows in the Manicouagan River 
Basin, located in the province of Quebec, Canada. The Monte Carlo sampling method was 
implemented as a probabilistic approach to trace out the magnitude of uncertainty in 
accordance with the weighting schemes attributed to the different sources of uncertainty. In 
particular, equal and unequal weights were attributed to the GCMs to see whether this would 
have a significant impact on the resulting flow return periods. This experiment was motivated 
by the fact that GCM structure is usually the most significant contribution to the overall 
uncertainty in projected flows. Experiments using equal and unequal weights on climate 
sensitivities were also performed.  
 
Modelling results indicate that the future hydrological cycle will intensify as precipitation 
and temperature will increase in the future for all GCMs projections. The spring peak flow 
will occur earlier by a few weeks for all GCMs investigated and will increase for a majority 
of them.  
 
The uncertainty related to GCM structure, climate sensitivity, natural variability and to 
hydrological model structure were assessed separately. Uncertainty due to the GCM structure 
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was found to be significant and to vary seasonally and monthly especially during the month 
of April. Variations in climate sensitivity and natural variability introduced moderate changes 
in the hydrological regime when compared with the uncertainty due to GCM structure. The 
choice of hydrological model will also result in a non-negligible uncertainty in climate 
change studies. 
 
At last, the magnitude of uncertainty under various weighting schemes attributed to GCMs 
and climate sensitivities was evaluated. Weight scheme experiments indicate that assigning 
equal or unequal weights to the GCM structure had a marginal to small effect on the return 
periods calculated for the hydrological variables studied, i.e. monthly discharge and spring 
runoff volume. However, for climate sensitivity, the weights assignment notably influenced 
the probability of occurrence of large hydrological events. The choice of the hydrological 
model also had a significant impact on return periods of large hydrological events. It should 
be given due attention in selecting hydrological models and assigning weights on climate 
sensitivities in uncertainty assessment of climate change impacts in designing water 
resources systems. 
 
 
Keywords: climate change, uncertainty, impact, hydrology, climate sensitivity, Monte Carlo 
method 
 



 

ÉTUDE DES INCERTITUDES ASSOCIÉES À L’ÉVALUATION DE L’IMPACT 
DES CHANGEMENTS CLIMATIQUES SUR L’HYDROLOGIE D’UN BASSIN 

VERSANT CANADIEN 
 

Yan ZHAO 
 

SUMMARY 

 
Il est connu que le changement climatique aura une incidence sur les ressources en eau. 
L'impact du changement climatique sur les régimes hydriques a attiré l'attention des 
entreprises hydroélectriques au cours des dernières années. Bien que les tendances générales 
dans les débits en rivière puissent être raisonnablement bien évaluées à l'aide des modèles 
climatiques et hydrologiques, leur incertitude globale est beaucoup plus difficile à quantifier. 
Une meilleure évaluation de l'incertitude de la réponse hydrologique des bassins versants aux 
changements climatiques permettrait la conception de projets hydroélectriques ainsi que 
l'adaptation des systèmes existants afin de mieux faire face aux changements prévus dans les 
régimes d'écoulement. 
 
L'incertitude dans l'évaluation des impacts hydrologiques potentiels du changement 
climatique est d‘un grand intérêt pour la communauté scientifique. Une méthodologie pour 
l'évaluation de l'incertitude des impacts du changement climatique sur l'hydrologie des 
bassins versants est développée dans cette thèse. Les sources d’incertitudes étudiées 
comprennent la structure des modèles de climat global (MCG), la sensibilité du climat, la 
variabilité naturelle du climat et, dans une moindre mesure, la structure du modèle 
hydrologique. La sensibilité du climat est le changement de la température climatologique 
moyenne mondiale en raison d'un doublement de la concentration de CO2 dans l'atmosphère. 
La variabilité naturelle réfère aux incertitudes résultant de l'aléa inhérent ou imprévisibilité 
dans le monde naturel. Les projections climatiques dans le scénario A2 du GIEC pour 
l'horizon 2080 ont été réduites à l'échelle régionale par une méthode du facteur de 
changement et développées en longues séries chronologiques avec le générateur 
météorologique WeaGETS conçu à l’École de technologie supérieure. Les scénarios 
climatiques futurs ont été forcés dans quatre modèles hydrologiques pour simuler les débits 
futurs sur le bassin de la rivière Manicouagan, situé dans la province de Québec, Canada. La 
méthode d'échantillonnage de Monte Carlo a été mise en œuvre comme approche 
probabiliste pour établir l'ampleur de l'incertitude en conformité avec les schémas de 
pondération attribués aux différentes sources d'incertitude. En particulier, des poids égaux et 
inégaux ont été attribués aux MCG pour voir si cela avait un impact significatif sur les 
périodes de retour des débits simulés. Cette expérience a été motivée par le fait que la 
structure des MCG est habituellement la plus importante contribution à l'incertitude globale 
des débits projetés. Des expériences utilisant des poids égaux et inégaux sur la sensibilité du 
climat ont également été réalisées. 
 
Les résultats de la modélisation indiquent que le cycle hydrologique futur s'intensifiera à 
mesure que les précipitations et la température vont augmenter dans l'avenir pour toutes les 
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projections des MCG. Le débit de pointe du printemps aura lieu plus tôt de quelques 
semaines pour tous les MCG analysés et va augmenter pour une majorité d'entre eux. 
 
L'incertitude liée à la structure des MCG, à la sensibilité du climat, à la variabilité naturelle  
et à la structure du modèle hydrologique ont été évalués séparément. L’incertitude due à la 
structure du MCG a été jugée importante et varie mensuellement, en particulier durant le 
mois d’avril. Les variations de la sensibilité du climat et de la variabilité naturelle 
introduisent des changements modérés dans le régime hydrologique, par rapport à 
l'incertitude due à la structure des MCG. Le choix du modèle hydrologique se traduit 
également par une incertitude non négligeable dans les études sur le changement climatique. 
 
Enfin, l'ampleur de l'incertitude pour différents systèmes de pondération attribués aux MCG 
et à la sensibilité du climat a été évaluée. Les résultats indiquent que l'attribution de 
pondérations égales ou inégales à la structure du MCG a un effet marginal à faible sur les 
périodes de retour calculées pour les variables hydrologiques étudiées, soient le débit 
mensuel et le volume de ruissellement printanier. Cependant, pour la sensibilité du climat, le 
schéma de pondération a notamment influencé la probabilité d'occurrence de grands 
événements hydrologiques.  Le choix du modèle hydrologique a également eu un impact 
significatif sur les périodes de retour de grands événements hydrologiques. Une attention 
particulière devra donc être accordée quant au choix des modèles hydrologiques et dans 
l'attribution de pondérations sur la sensibilité du climat, pour l'évaluation de l'incertitude des 
impacts du changement climatique sur les régimes hydriques. 
 
 
Mots-clés: changement climatique, incertitude, impact, hydrologie, sensibilité du climat, 
méthode de Monte Carlo 
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INTRODUCTION 

 

What is climate? Climate is generally defined as “average weather”, which is described as 

the mean and variability of temperature, precipitation and wind over a period of time that 

may range from months to millions of years (IPCC, 2007). The change of climate is 

commonly described by the statistics of change as average weather over time. The weather 

condition is mostly expressed by the state of air temperature, precipitation, wind and 

humidity, etc. (Wilby et al., 1998). Information on average weather is particularly important 

for the study of change in the climate system and for predicting future environmental 

conditions. 

 

It is recognized that the world is undergoing global climate change (IPCC, 2013). Over the 

last decades, the global average surface air temperature rose up sharply (Henson, 2008). The 

Intergovernmental Panel on Climate Change (IPCC, 2013) has reported in its Fifth 

Assessment Report (AR5) that, over the last 60 years (1951-2012), the linear warming trend 

of 0.12°C per decade was nearly twice that of the last 100 years. Indeed, over the 1880-2012 

period, global average surface temperature has increased by 0.85°C (IPCC, 2013). The 

temperature increase is greater in the winter season in northern high latitude regions (IPCC, 

2007). Meanwhile the global average sea level had risen up at an average rate of 3.1 mm/year 

between 1993 and 2003 and the mean annual snow cover area in the northern hemisphere 

shrank from 24.4 million km2 between 1967 and 1987 to 23.1 million km2 between 1988 and 

2006. In the last 100 years, precipitation increased significantly, mostly in the northern 

regions of the continental interior, but declined in some southern areas (IPCC, 2007). With 

global warming, winter seasons are becoming less harsh, icebergs are melting at an 

increasing rate, drinking water is getting more valuable and extreme events are more likely to 

happen (Gates et al., 1992). The IPCC summarized in its Fourth Assessment Report (AR4) in 

2007 that an unequivocal warming of the climate system is manifest, based on the 

observations made, on all continents, of many natural climate indicators over the last 

decades. These observations were confirmed in the AR5. Significant trends of higher winter 

flows, early spring flood and diminished summer flows have been observed in several 
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regions of Canada (Whitfield and Cannon, 2000; Hernández-Henríquez et al, 2010). This 

observational evidence has made people recognize the fact that the natural systems are being 

affected in many ways by climate change and this worldwide warming trend will influence 

the future of mankind significantly. 

 

Regional climate change, for example, changes in the frequency and amount of rainfall, 

could lead to distinct effects in river flows, especially at higher latitudes (Whitfield and 

Cannon, 2000, Ferrari, 2008). Changes in watershed hydrological regime could subsequently 

impact the normal operations and management of local water systems, as changes in river 

flows may alter the operation of reservoir systems and hydropower generation. Therefore, the 

assessment of regional hydrological impacts of a changing climate, especially with respect to 

extreme climatic events, is a cause for concern in the environmental and socio-economic 

sectors, including the hydropower industry. 

 

As a primary source of renewable energy, hydropower makes a significant contribution to the 

world energy production (WEC, 2010). Hydroelectricity is a necessary source of energy at a 

time when the world is faced with dwindling natural resources, since its production only 

requires access to a sustainable source of flowing water, as influenced by topography and 

climate. Canada has a century long history of adopting hydroelectric energy. Today Canada 

is the world’s third largest producer of hydroelectricity after China and Brazil, generating 

348.1 billion kWh in 2010. This accounts for 60% of the electricity it produces (Canadian 

Energy Overview, 2010). Most of the energy produced in Quebec is hydroelectricity. Owing 

to its abundant water resources, 94% of the province’s electricity is drawn from hydropower 

installations (Hydro-Quebec, 2010). Hydropower plays an important role in the modern 

economy, especially in this province. Global climate change impacts local and regional water 

resources and therefore has hydrological implications that are of concern for hydropower 

management. Credible analyses of future climate change impacts are required by water 

regulatory authorities, watershed planning agencies and governmental decision makers to 

establish long-term strategic plans for the regional management and rational use of water 

resources. The evaluation of such future uncertainty is becoming increasingly important for 
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assessing the hydrological impacts of a changing climate and analysing the risks for water 

resource systems. 

 

Given this context, this research work aims to provide a framework for assessing the 

uncertainties related to the hydrological impacts of climate change on a river basin in the 

province of Quebec (Canada). Such an assessment is essential to evaluate response strategies 

that would enable water systems to better cope with future climate and hydrological 

conditions. This study was conducted on the Manicouagan River Basin (MRB), where 

hydropower facilities are owned and operated by Hydro-Québec.  

 

This thesis is made up of six major sections: Research-related issues, Literature review, 

Methodology, Studied watershed and data, Results and discussion, and finally Conclusions 

and recommendations. 

 

Chapter 1 describes the research issues, including the incentives and objectives of this 

research. It also explains the background of the impact study of the effects of climate change 

on water resources, the usual strategies used to assess the hydrological impacts of a changing 

climate and the problem of evaluating sources of uncertainty during the modeling process. It 

examines arguments for or against assigning weights to different sources of uncertainty. 

Finally, it states the objectives and contributions of this research. 

 

Chapter 2 is devoted to the literature review. It presents the theoretical foundational work and 

approaches that have been published on how uncertainty is assessed for the purpose of 

evaluating the impact of climate change on river flow regimes. It describes the frameworks 

that have been developed to model various sources of water system uncertainty in the context 

of climate change. It highlights the advantages and limitations of the described approaches. 

Finally, it presents the techniques used to estimate specific sources of uncertainty in recent 

studies. 
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Chapter 3 describes the methodology followed in this research. It introduces the climate 

simulation tools used for producing future climate change projections and the downscaling 

method proposed to bring the global climate models projections at the watershed scale. Four 

hydrological models were used in this study to assess the effect of model structure on the 

overall uncertainty in future hydrological regimes. These models are then described. The 

Monte-Carlo sampling method used for uncertainty assessment is also described, along with 

the approaches used to assign weights to the climate model structure and climate sensitivity.  

 

Chapter 4 describes the watershed that is the subject of the study. First, the main 

characteristics of the Manicouagan River Basin are presented and the hydro-climatic context 

is summarized. This is followed by a description of the water resource system and the 

characteristics of sub-watersheds. Finally, the climatological and river flow data used in this 

research are briefly described. 

 

Chapter 5 presents the results of study, followed by a discussion of these results. Both results 

and the discussion are divided in two subsections: the quantification of major sources of 

uncertainty and the Monte Carlo experiments performed to quantify these sources of 

uncertainty in a probabilistic framework. Various sources of uncertainty related to climate 

change impacts on the hydrological regime of the Manicouagan River Basin are analyzed. 

The magnitude of this uncertainty is identified individually for each source. An integrated 

assessment of all sources of uncertainty is conducted by using Monte Carlo experiments in 

which different weighting schemes are implemented. The experiments highlight the 

influence, or lack of, that applying diverse weighting schemes can have on the probabilistic 

distribution of selected hydrological variables that characterize the watershed hydrological 

regime. 

 

Finally, the Conclusion summarises the major outcomes of this research and makes some 

recommendations for future research. 



 

CHAPITRE 1 
 
 

RESEARCH STATEMENT 

This chapter covers the scientific issues that are raised and outlines the objectives of the 

research project. First, the usual procedure of simulating the climate change impacts on water 

systems is presented. Secondly, the problems found in recent researches are exposed. A key 

issue in studying the hydrological impacts of climate change is the difficulty that the 

inclusion and quantification of various sources of uncertainty poses. Thirdly, the topic of 

applying weighting schemes to the sources of uncertainty is addressed. Finally, the project's 

objectives are described. 

 

1.1 Background 

In the early 19th century, the scientific investigation of climate change started with the 

discovery of natural changes in paleoclimate. Later in this century, human emissions of 

greenhouse gas were identified as a possible factor that could change the climate (IPCC, 

2013; Knutti and Hegerl, 2008; Prudhomme et al., 2003). Two centuries later, the trend 

toward global warming has become much more evident with increasing global mean 

temperatures, which have been especially noticeable in recent years (IPCC, 2007). Higher 

temperatures result in more snow melting, increased droughts and the shrinking of polar ice 

(Alekseev et al., 2009). It is clear that water is among the resources that will be most severely 

affected by climate change (Minville et al., 2008). Many studies have been conducted to 

assess the effects of climate change and its impacts on regional hydrology. These are 

described in recently published articles (e.g. Katz, 2002; Wilby, 2005; Ludwig et al., 2009; 

Prudhomme and Davies, 2009 a, b; Johnson and Weaver, 2009) and show that approaches 

used to measure the impact have improved and the theories of climate change have 

progressed. 
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The methodology employed to evaluate the hydrological impacts of climate change usually 

follows a top-down modelling scheme (Vicuna et al., 2007; Minville et al., 2008; Poulin et al., 

2011). Firstly, future greenhouse gas (GHG) emissions projections are produced. Then 

Global Climate (or General Circulation) Models (GCMs) are implemented to generate future 

climate projections at the global scale, according to predicted greenhouse gas emission 

scenarios. Because these climate models are too coarse for regional or local scale watersheds 

impact studies, downscaling methods must be applied to adjust the GCM projections (usually 

precipitations and temperatures) at the desired scale. The downscaling approaches fall into 

two categories: dynamic and statistical (Schmidli et al., 2007; Prudhomme and Davies, 2007; 

Fowler et al., 2007). Dynamic downscaling employs Regional Climate Models (RCMs) that 

are nested into the coarse GCMs to produce high resolution climate change simulations. A 

number of studies, such as the North American Regional Climate Change Assessment 

Program (NARCCAP), applied RCM projections to investigate uncertainties in regional scale 

climate projections. As the RCMs are resolved at a regional spatial resolution, typically a 

~0.5° latitude and longitude scale, using dynamic downscaling is computationally expensive 

(Solman and Nunez, 1999, Fowler et al., 2007). Owing to high computational costs, dynamic 

downscaling was not used in this study. Statistical downscaling establishes a statistical 

relationship between a GCM predictor and a local scale predictand. Their application implies 

that the statistical relationships are independent of climate change and that these relationships 

are assumed to be consistent in the future, which is yet to be proven (Baguis et al., 2008). 

Statistical downscaling approaches are more numerically efficient than dynamical 

approaches, but must rely on observations to be applicable. A simple statistical downscaling 

method, the change factor (CF), is applied in this study. The last step consists in converting 

the climate projection into streamflow. This is done by forcing climate change projections 

into hydrological models to estimate the watershed hydrological response. 

 

1.2 Research statement 

As explained above, the entire simulation process to assess the impacts of climate change on 

watershed hydrological regimes requires a suite of models, including climate and 
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hydrological models (Prudhomme et al., 2002). Quantifying the magnitude of uncertainty in 

this modeling process becomes difficult since the sources of uncertainties are numerous. 

 

Sources of uncertainty in climate change impact studies include: (1) GCM structure; (2) 

Greenhouse Gas Emissions Scenarios (GGES); (3) natural variability; (4) climate sensitivity; 

(5) downscaling methods; (6) hydrological model structure; (7) hydrological model 

parameters. Most studies focused on one or a few sources of uncertainties. For instance, 

Bergström et al. (2002) and Benke et al. (2008) studied the parameter uncertainty in 

hydrological models; Chiang et al. (2007) focused on the uncertainty of hydrological model’s 

structure; Kay and Davies (2008) and Blenkinsop and Fowler (2007) presented an 

investigation of uncertainty due to climate model structure; Salathé (2003), Khan et al. 

(2006) and Fowler et al. (2007) studied the uncertainty derived from downscaling methods; 

Murphy et al., (2004) described the uncertainty due to the variation of climate model 

parameters. Chen et al. (2011a) present what is probably one of the few studies that 

investigated all major sources of uncertainty in a hydrological impact study. However, the 

combined effect of various sources of uncertainties was only partly addressed. Although 

some studies (New and Hulme, 2000; Wilby and Harris, 2006; Prudhomme and Davies, 2009 

a, b; etc.) have proposed frameworks that embrace major sources of uncertainty, there is still 

a long way to go before an integrated method can be developed to evaluate all the sources of 

uncertainty in hydrological impact studies of climate change. 

 

When compared to other sources of uncertainty, according to several studies (e.g. 

Prudhomme et al., 2003; Wilby and Harris, 2006; Minville et al., 2008; Kay et al., 2009, 

Chen et al., 2011a), the uncertainty associated with GCM structure is the most significant. It 

is therefore studied in this thesis. Climate sensitivity describes how much the doubling of 

atmospheric CO2 concentration in air will impact the global mean surface temperature 

(Prudhomme et al., 2002) for a given GCM. This source of uncertainty is seldom explicitly 

considered, but it plays a significant role in long-term temperature projections (Rogelj et al., 

2012). It is investigated in this study. The uncertainty due to natural variability, stemming 

from the inherent randomness of long-term climatic data series, is also studied in this thesis, 
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as it is an essential element in producing future climate scenarios (Prudhomme and Davies, 

2009b). To simulate hydrologic processes based on the predicted climate, hydrological 

models are used. The uncertainty of hydrological model structure, which can be assessed by 

running independent individual hydrological models, has been investigated in recent studies 

(e.g. Chen et al., 2011a, Poulin et al., 2011, Vansteenkiste et al., 2014). The comparison of 

hydrological outputs using different hydrological models is also addressed in this study. 

Among the remaining sources of uncertainty, downscaling uncertainty is shown to be a 

critical factor in the climate change impact study presented by Chen et al. (2011b). However, 

as individual downscaling techniques have their own distinctive behavior in downscaling 

climate output compared to other downscaling methods, it is difficult to make a direct 

comparison of downscaling methods to identify the most appropriate method for a given 

situation (Chen et al., 2011a). Even simple downscaling methods seem to perform as well as 

more sophisticated methods in reproducing climate characteristics (Fowler et al., 2007). The 

investigation of downscaling methods is not among the objectives of this thesis. Lastly, the 

uncertainties related to GGES and hydrological model parameterization are described in 

Chen et al. (2011a) as being the least significant among the major sources of uncertainty. 

Owing to the lack of any firm evidence of their crucial impacts in the rainfall-runoff 

processes, these uncertainties are not examined in this study.  

 

Approaches to determine the magnitude of different sources of uncertainty in the 

hydrological impact of climate change have been developed in recent research (e.g. Murphy 

et al., 2004; Khan et al., 2006; Laurent and Cai, 2007; Christensen et al., 2010; Ghosh and 

Katkar, 2012). Some models or approaches may perform differently under certain conditions, 

such as a specific season or a given climate, or within certain study area (e.g. Arora and 

Boer, 2001; Fowler and Kilsby, 2007; Maurer, 2007). Furthermore, there is still a 

disagreement on how to assign weights to selected climate models depending on their 

performance, on combining the models to analyze the uncertainty of climate change impact, 

or even on the need to assign weights (e.g. Morgan and Henrion, 1990; Stainforth et al., 

2007; New and Hulme, 2000; Wilby and Harris, 2006). The following section explores this 

issue in more details. 
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1.3 Weight assignment 

Scientific arguments were proposed about whether climate and/or hydrological models that 

offer good performance in producing more accurate simulations of observations should be 

assigned stronger weights as compared to models that lack accuracy in re-establishing the 

observations of climate change impact assessments. Scholze, et al. (2006) considered that 

climate models are equally good based on their performance and assigned equal weights to 

each model. Stainforth et al. (2007) claimed that any attempt to assign weights is futile as all 

current climate models are far from being adequate. In their study, they argued, that relative 

to the real world, all models have effectively zero weight, which indicates that they are all 

equally good (or bad). Weigel et al. (2010) stressed the fact that so far there is no consensus 

on what is the best method of combining the output of several climate models, and that it is 

not clear that appropriate weights can be obtained from all existing data and methods. 

Furthermore, the IPCC (2007) refused to assign any explicit probability to climate projection 

and regarded all model applications as equally important. Above all, as Morgan and Henrion 

(1990. p. 68) argued: “Every model is definitely false. Although we may be able to say that 

one model is better than another, in the sense that it produces more accurate predictions, we 

cannot say it is more probable. Therefore, it is inappropriate to try to assign probabilities to 

models.”  

 

On the other hand, recent studies were conducted to explore the weighting schemes in 

assessment of uncertainty. New and Hulme (2000) demonstrated a methodology for 

quantifying various uncertainties through the use of Bayesian Monte-Carlo simulation to 

define posterior probability distributions for climate change. Butts et al. (2004) noticed large 

variations in climate model performance amongst the model structures used and suggested 

that the implementation of an ensemble of models, based on model performance, could 

improve the overall accuracy of the simulations. Murphy et al. (2004) attempted to assign 

weights to climate sensitivity in order to construct ensembles to sample structural 

uncertainties. Wilby and Harris (2006) presented a probabilistic framework for addressing 

the systematic weights on various sources of uncertainty, including GCMs, hydrological 
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model and model parameters, in climate change impact studies. Fowler and Ekström (2009) 

described the application of a regional multi-model ensemble by developing a model specific 

weighting scheme. Their results revealed that the overall effect of using the weighting 

scheme could tighten the regional distributions compared with an unweighted distribution. 

Christensen et al. (2010) applied performance indices to assign weights on a large ensemble 

of climate model simulations. Although results of their study indicated that the use of model 

weights did not show a compelling sensitivity, when compared to the use of equal weights, it 

did indicate that the use of a weighting scheme on other sources of uncertainty should be 

given more attention. These attempts at assigning weights to different sources of uncertainty, 

and in particular to climate models and climate sensitivity, is drawing attention on their use 

for the investigation of the magnitude of uncertainty in climate change impact studies. 

Different impacts on hydrological output can be discovered through the use of weighting 

schemes in the simulation process. 

 

1.4 Objectives 

There is a general consensus that future climate variability and change will pose increasing 

challenges to water resources managers. The objective of this research is to develop a 

framework based on a probabilistic approach to assess the magnitude of different sources of 

uncertainty in the hydrological response to future climate change of a watershed, the 

Manicouagan River Basin, in the province of Quebec, Canada. This watershed was selected 

as the study site because it is an important hydropower source for the province of Quebec. 

More specifically, this study will address the sources of uncertainty due to GCM structure, 

climate sensitivity, natural variability and hydrological model structure. These sources of 

uncertainty were included in the study because GCM structure is associated with significant 

uncertainty, climate sensitivity plays a critical role in the production of long-term 

temperature projections, and natural variability is an essential characteristic of the climate 

data series and hydrological models are required to simulate watershed hydrologic regimes. 

A secondary objective of the study is investigating the feasibility of quantifying uncertainty 

by applying various weighting schemes to selected sources of uncertainty. A Monte Carlo 
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simulation approach is used to investigate the relative contribution of various sources of 

uncertainty by sampling simulation results with probabilistic weights assigned to uncertainty 

components. This technique is conducive to the application of risk analysis to calculate, for 

example, the return periods of hydrologic events and how they are affected by the weights 

applied to the various sources of uncertainty.  

 

It is expected that this will improve the existing assessment methods for quantifying the 

effects of sources of uncertainty in climate change studies on watersheds hydrological 

response. A better quantification of the uncertainty in projected flows and other hydrological 

variables is essential to establishing efficient response strategies to limit adverse impacts or 

to capitalize on positive outcomes of climate change on water resources.  

 

This study is part of a larger project funded by Natural Sciences and Engineering Research 

Council of Canada, the Ouranos Consortium on Regional Climatology and Adaptation to 

Climate Change, Manitoba Hydro and Hydro-Québec, which aims to contribute to a better 

understanding of climate change impacts on river runoff in areas of interest to Hydro-Quebec 

and Manitoba Hydro.  

 

In this thesis, ten GCMs, five climate sensitivities and fifty series of natural variability were 

used to produce an array of climate change scenarios (i.e. 10×5×50=2500 climate scenarios). 

Four hydrological models were used to simulate future hydrological regimes of the 

Manicouagan River Basin, a northern watershed, based on these climate scenarios. Finally a 

probabilistic approach was used to conduct random samplings of the hydrological 

simulations produced by each individual hydrological model for the purpose of analyzing the 

uncertainty in selected hydrological variables. The main contribution of this study consists in 

the application of weighting schemes to evaluate various sources of uncertainty in the entire 

modeling process. In particular, the uncertainty due to climate sensitivity was explicitly 

investigated by assigning to it equal and unequal weights. No study to date has evaluated the 

major sources of uncertainty, from climate projections to hydrological modeling, by using 

weighting schemes. A few studies (e.g. Minville et al., 2008; Chen, 2011b) assessed various 
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sources of uncertainty on hydrological regimes, however they did not explore the effects of 

unequal weighting schemes on the hydrological response. In rare cases, studies estimated 

different sources of uncertainty through weighting experiments. However these were 

performed on a single hydrological variable such as, for example, low flows (e.g. Wilby and 

Harris, 2006). On the basis of existing researches, this thesis refines existing frameworks for 

evaluating the main sources of uncertainty in the simulated hydrological regimes of climate 

change studies. In particular, it makes innovative progress in evaluating the impacts due to 

GCM and climate sensitivity. The thesis also explores how assigning different weighting 

schemes to sources of uncertainty affects the return period of extreme hydrological events, 

which is a relevant aspect of the design of hydrological systems in the context of a changing 

climate. 

 



 

CHAPITRE 2 
 
 

LITERATURE REVIEW 

This chapter provides general information about uncertainty and the empirical techniques and 

frameworks that appear in the scientific literature and that are used to evaluate the 

uncertainty in climate change impact assessments of watersheds hydrological response. First, 

the definition of uncertainty is discussed, with regard to the current understanding of natural 

world. Next, the major sources of uncertainty in climate change study are classified and 

briefly stated. General techniques used in recent research to estimate various sources of 

uncertainty in climate change projections and in the hydrological modeling process are also 

described. Finally, the advantages and limitations of the various approaches used are 

highlighted. 

 

2.1 Definition of uncertainty 

What is “uncertainty”? Why it always exists. How it propagates and how to reduce it. 

 

Over the millennia, humans have struggled to increase their understanding and knowledge of 

the natural world. In doing so, they discovered ‘laws’ that helped them understand how 

things and events in the universe come into being. According to Dr. Sheldon Gottlieb 

(Gottlieb, 1997) “Science is an intellectual activity carried on by humans that is designed to 

discover information about the natural world in which humans live and to discover the ways 

in which this information can be organized into meaningful patterns. A primary aim of 

science is to collect facts (data). An ultimate purpose of science is to discern the order that 

exists between and amongst the various facts.” 

 

Although science can quantitatively describe phenomena or forecast events, in a way that is 

very close to ‘reality’, the processes that are studied are more often than not incompletely 

known through a lack of understanding or information. This means that our representation of 

‘reality’ is imperfect. Scientifically speaking, the gap between ‘reality’ and our description of 
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it is described as “uncertainty”. Uncertainty is often used to describe the state of being 

unsure, for example, in making some predictions of future events. Two published definitions 

of uncertainty are presented in this study: 

 

a) A parameter associated with the result of a measurement that characterises the 

dispersion of the values that could reasonably be attributed to the measurand (ISO, 

1993); 

b) The lack of certainty, a state of having limited knowledge where it is impossible to 

exactly describe an existing state or a future outcome (Hubbard, 2010). 

 

The first definition states the theoretical concept of uncertainty. The second is more relevant 

in explaining uncertainty in the context of climate change assessment studies. 

 

The common and practical way of solving a wide range of biological, environmental and 

engineering problems is to build models (e.g. hydrological, transport/transformation, and 

biological models) to simulate natural processes. Uncertainty occurs and propagates in these 

models because of a number of factors, such as the randomness (variability) inherent to 

natural processes, errors due to imperfect human knowledge in developing the models, 

imprecise calibration of the parameters used to ‘fit’ the models to observations (Isukapalli, 

1999), differences in temporal or spatial resolution between reality and simulation, and so on. 

The main sources of uncertainty in the modeling process are identified and classified in the 

next section. 

 

Uncertainty exists therefore throughout the modelling process because the natural 

phenomena that are being represented are complex and the scientific knowledge is always 

incomplete. People must confront uncertainty, which is inevitable, in order to make better use 

of it. 

 

Two general categories of uncertainty exist: random, or aleatory, and epistemic (Kiureghian 

and Ditlevsen, 2009). Aleatory uncertainty is used to describe the inherent variation 
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associated with the physical system or the environment under consideration (Oberkampf et 

al., 2004). Epistemic uncertainty, which is related to the human ability to understand and to 

describe nature, stems from a level of ignorance of the system or the environment. It is 

caused by a lack of knowledge or information in the modeling process. The common way to 

reduce epistemic uncertainty is to gather more data or to refine the models. Reducing 

aleatory uncertainty cannot be achieved as it is intrinsic to nature (Kiureghian and Ditlevsen, 

2009). 

 

2.2 Classification of uncertainty 

Sources of uncertainty can be broadly classified as natural uncertainty, model uncertainty, 

parameter uncertainty and behavioral uncertainty (Isukapalli, 1999). 

 

2.2.1 Natural uncertainty 

It is a recognized fact that unavoidable unpredictability or “randomness” contributes to the 

inherently stochastic characteristic of natural systems and which is generally defined as 

natural uncertainty. Synonyms to natural uncertainty are aleatory uncertainty, random 

variability, stochastic uncertainty, objective uncertainty, inherent variability and basic 

randomness (Merz et al., 2005). If one admits that natural randomness exists, then observable 

phenomena cannot be precisely measured. But trends can be discovered via mean values. For 

example, according to the weather forecast, there will be rain tomorrow, but the exact time it 

will rain and the exact amount of rainfall cannot be forecasted, even though the ‘perfect’ 

model is available. Due to air movement, cloud formation, etc., it is virtually impossible to 

predict all information about a rainfall as such processes are random by nature. Broadly 

speaking though, natural uncertainty can be characterized by using ensemble averages, but 

the stochasticity inherent to natural processes makes the accurate estimation of system 

properties impossible (Isukapalli, 1999). 
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2.2.2 Model uncertainty 

Mathematical models are commonly used to represent natural phenomena. However, the 

modeling process has inevitable consequences which are directly linked to the uncertainty in 

the choice of the model, known as “model uncertainty” (Cont, 2006). Model uncertainty is 

defined as the uncertainty of the model output and is related to the model’s inability to 

perfectly reproduce the dynamics of a natural system (Montanari, 2011). Model uncertainty 

may include mathematical errors, programming errors, statistical uncertainty (Farhangmehr 

and Tumer, 2009) and model structure uncertainty.  

 

There are two types of mathematical errors: approximation errors and numerical errors. 

Approximation errors are errors due to approximate relationships used in models. Numerical 

errors stem from the selection of the computational method or technique (Thunnissen, 2003), 

for example, finite difference methods to solve differential equations. Other examples of 

mathematical errors in model results stem from the spatial or temporal resolution of the 

models. Programming errors refer to errors produced by computers and application programs 

(Hatton, 1997), such as bugs in hardware/software, errors in programming codes, inaccurate 

applied algorithms in simulation, etc. Statistical uncertainty arises from the process of 

extrapolating results of a statistical model, for example to generate extreme estimates 

(Bedford and Cooke, 2001). Finally, uncertainty in model structure is often acknowledged to 

be one of the principal sources of uncertainty (New and Hulme, 2000; Wilby and Harris, 

2006; Christensen et al., 2010), arising from the incompleteness of a model and its inability 

to actually represent the difference between the real causal structure in the studied system 

and the perceived causal structure of the model. Therefore, choosing an inappropriate model 

in an ensemble of models to make simulations of interest may result in increased model 

uncertainty. 

 

2.2.3 Parameter uncertainty 

Parameter uncertainty has attracted researchers’ attention in recent literature (e.g., Wilby, 

2005; Gitau and Chaubey, 2010; Jung et al, 2012). Parameter uncertainty is caused by the 
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lack of an adequate high quality database or by the inefficiency of the optimization algorithm 

used to obtain parameter values (Montanari, 2011). Generally speaking, parameter 

uncertainty stems from a set of parameters that is selected to run the mathematical model. 

Hydrological models incorporate many parameters that require sound estimations in order to 

produce reasonable results (Benke et al., 2008). However, due to the wide-range of 

applications and various degrees of complexity of hydrological models, it is not easy to 

quantify parameter uncertainty (Bergström et al., 2002; Blenkinsop and Fowler, 2007).  

 

Hydrological model performance (and environmental models in general) is affected by 

parameter uncertainty (Wilby, 2005). In models, the true value of parameters is unknown 

because the data and the methods used to calibrate the models also have uncertainty. The 

usual way to quantify parameter uncertainty is to vary the parameter’s value and compare the 

model’s outputs (Benke et al., 2008). Probabilistic approaches, such as the Generalised 

Likelihood Uncertainty Estimation (GLUE) of Beven and Binley (1992) or the Markov 

Chain Monte Carlo (MCMC) of Hasting (1970), have been developed to address uncertainty, 

with respect to the specific aim of calibration and parameter estimation (Benke et al., 2008). 

However, it is not an easy task to identify a “true” set of parameters due to the 

parameterization equifinality, which is primarily caused by the dependence of the parameters 

(Beven, 2006). The concept of equifinality in hydrology suggests that different sets of 

parameters could result in same or similar predictions (Montanari, 2011). In other words, 

there is not a unique set of parameters for a hydrological modeling system, even with the 

same model structure, climate forcing and initial conditions (Tang and Zhuang, 2008). Thus, 

choosing an efficient optimization algorithm for estimating an “appropriate” set of 

parameters for the purpose of narrowing the range of parameter uncertainty becomes a 

crucial objective in the hydrologic community (Muttil and Jayawardena, 2008; Moradkhani 

and Sorooshian, 2009, Arsenault et al., 2013). 

 

As more and more hydrological models were developed and applied in various studies, 

efforts were made to look for an effective optimization algorithm to calibrate hydrological 

models. For example, Singh et al., (2012) compared three different optimization algorithms, 
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Shuffled Complex Evolution (SCE-UA) developed by Duan et al. (1992), parameter 

estimation (PEST) developed by Goegebeur and Pauwels (2007) and robust parameter 

estimation (ROPE) developed by Bardossy and Singh (2008), that were used in the 

calibration of the physically-based hydrological model WaSiM-ETH of the Rem catchment 

in Germany. The calibration of the hydrological model was based on critical events selected 

by the Identification of Critical Events (ICE) algorithm. Results showed that the SCE-UA 

and ROPE algorithms could be used for multivariable calibration. PEST was inferior when 

the relationships between the variables and the observations were highly nonlinear. 

 

2.2.4 Behavioral uncertainty 

Behavioral uncertainty is a subjective source of uncertainty, which is associated with the 

human behaviour of individuals in decision-making groups or organizations (Ullma, 2006). 

Behavioral uncertainty mostly depends on the deciders. The human factor plays an important 

role in making a right strategic policy. This type of uncertainty is derived from four main 

sources: human error, decision uncertainty, volitional uncertainty and dynamic uncertainty 

(Ullma, 2006, Stump et al., 2004). Human error uncertainty refers to uncertainty that stems 

from the decision-makers’ subjective knowledge. It is normally the result of the individuals’ 

viewpoint. Decision uncertainty refers to uncertainty in the choice of one or more appropriate 

decision from a series of possible options. This choice usually depends on the decision 

makers’ understanding and judgment. Volitional uncertainty pertains to the unpredictable 

decisions that people make on a topic. Nobody has the capability of making the perfect 

decision and controlling all possibilities. It is acknowledged that accidents exist as a reality. 

Finally, dynamic uncertainty refers to changes in the decision-making process that are caused 

by the organization or the individuals’ variables, or alterations in the initially determined 

decisions that are influenced by certain unexpected events. Furthermore, dynamic uncertainty 

is affected by the degree of confidence in the selected decision and in the subjective 

judgment (Ullma, 2006).  
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2.2.5 Summary 

The combination of the various sources of uncertainty can be very complex (De Rocquigny 

et al., 2008). Numerous classifications of existing uncertainties have already been produced 

in the literature (Prudhomme et al., 2003; Stainforth et al., 2007; Kay et al., 2009). However, 

a perfect and comprehensive classification scheme cannot be established. Different types of 

uncertainty often appear to overlap. For instance, uncertainty in downscaling methods can be 

classified as part of model uncertainty, which is associated with selected mathematical 

methods, but it also can be categorized as parameter uncertainty, as it depends on the data 

that needs to be downscaled (Khan et al., 2006).  

 

Due to difficulties in quantifying natural uncertainty, which is inherently stochastic, and 

behavioural uncertainty, which is influenced by subjective factors, scientists are often more 

concerned with model uncertainty and parametric/data uncertainty that can be assessed and 

controlled by comparing models or model ensembles and by model calibration and 

validation. In general, in climate change impact studies, research work on uncertainty has 

mainly focused on the following sources of uncertainty: GCM structure, GCM parameters, 

greenhouse gas emission scenarios, climate sensitivity, natural variability, downscaling 

methods, hydrological model structure, and hydrological model parameters (e.g., New and 

Hulme, 2000; Prudhomme et al., 2003; Wilby and Harris, 2006; Kay et al., 2009; Chen et al., 

2011a, b; Poulin et al., 2011). Recent research on uncertainty assessment in climate change 

impact on hydrology is described in the next section. 

 

2.3 Uncertainty assessment in climate change impacts on hydrological regimes 

As the global climate changes, it is becoming increasingly important to understand, quantify 

and reduce uncertainties in the assessments of climate change impacts, in a hydrologic 

perspective, to ensure the development of adaptive water resources management plans 

(Ghosh and Katkar, 2012). Climate change will have a significant direct impact on the 

strategic planning of hydroelectric industry, in terms of both hydroelectric production and 

demand (Ouranos, 2010). Figure 2.1, which is taken from the 2006-2010 strategic plan of 
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Hydro-Québec, presents the dominant risk, as assessed by the company in its projected net 

income for 2008. The net income would be principally influenced by watershed runoff 

conditions and could vary between +645 and -635 million dollars because of the inherent 

randomness of inflows into Hydro-Québec’s hydroelectric systems. Thus, the analysis of 

future hydrological regimes plays an important role in the strategic planning of hydroelectric 

production.  

 

 

Figure 2.1 Analysis of net earnings sensitivity to 
various risks for 2008 (in millions of dollars) 

Taken from Hydro-Québec (2006, p. 52) 
 

The efficient use of techniques and models to assess uncertainties has been encouraged by 

scientists. Such tools have improved the accuracy and simulation ability of models, and 

improved the precision of meteorological data (e.g. Jones et al., 2006; Kay and Davies, 

2008). Along with a wide range of simulated output from different climate models associated 

with unquantified uncertainties in the modeling process (Murphy, et al., 2004), credible 

computation results are more than ever required by decision-makers, such as watershed 

managers, in order to establish regional strategic plans that have less uncertainty. So far, 

most of the research has focussed on quantifying the uncertainty arising from one specific 

source in the hydrological response to climate change (e.g. Bergström et al., 2002; Kay and 
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Davies, 2008, Poulin et al., 2011) and few examples of combining sources of uncertainty 

have been reported (e.g. New and Hulme, 2000; Prudhomme et al., 2003; Wilby and Harris, 

2006; Kay et al., 2009; Chen et al., 2011a; Jung et al., 2012). 

 

2.3.1 Uncertainty in climate models 

Global Climate Models (GCMs), sometimes referred as General Circulation Models, are a 

class of computer-driven models which are used to simulate climate, forecast weather and 

project climate change. They attempt to represent physical processes in the atmosphere, 

ocean and cryosphere, as well as on land, and have been improved for the simulation of many 

aspects of climate (Prudhomme et al., 2003). Initially used for numerical weather predictions, 

they have been adapted for the physical characterization of atmosphere and ocean dynamics 

(Stute et al., 2001). The spatial resolution of GCMs is typically a few degrees of latitude and 

longitude, or about 200 to 500 km horizontal resolution. The atmosphere is discretized in 3D 

cells or grid boxes. The time steps for the atmospheric dynamics and radiation calculations 

may be minutes to hours (IPCC, 2007). Each grid-box at the land/ocean surface has 

appropriate fractions of land and ocean. Land topography is also taken into account in 

solving the climate models’ equations (Hansen et al., 1983). Figure 2.2 schematically 

represents the GCM’s general structure in an individual land/ocean-atmospheric column 

comprised of superimposed grid-boxes. Different climate models may apply different 

equations to represent the atmospheric/land/ocean processes (including subgrid modelling) 

and use different computational approaches, such as the computational grid and time step, 

numerical method, etc. (Edwards, 2010), and these differences will contribute to the GCMs 

structure uncertainty. 
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Figure 2.2 Schematic illustration of the 
GCM structure of an individual 
land/ocean-atmospheric column 

Taken from Hansen, J., et al. (1983, p. 611) 
 

Many climate models have been developed over the last four decades in an attempt to 

provide feasible and credible climate projections that vary from simple models, which are 

easy to apply and save computing time because fewer parameters are required (e.g. 

MAGICC/SCENGEN) (Wigley et al., 2000), to more comprehensive three-dimensional 

GCMs (e.g. TGCM, TIE GCM) (IPCC, 2007), which include more elaborate representations 

of energy, water and biochemical cycles. Although GCMs use fundamental physics’ based 

equations to represent the climate system, they differ in the way various processes, such as 

precipitation, are parameterized and in the spatial resolution used to represent atmospheric, 

earth and ocean, and energy and water exchanges and processes (Randall et al., 2007). 

 

Researchers (e.g. New and Hulme, 2000; Prudhomme et al., 2003; Wilby and Harris, 2006; 

Kay and Davies, 2008) have evaluated differences in current/projected climates due to GCM 

structure. Uncertainty in climate models is recognized as an important source of uncertainty 

in climate change impact studies (e.g. Wilby and Harris, 2006; Chen et al., 2011a). 
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Murphy et al. (2004) presented a systematic attempt that involved using multi-ensemble 

experiments with one GCM to determine the range of climate change responses that are 

consistent with modelling uncertainties. This is one of the few studies dealing with 

uncertainties due to GCM parameters. A 53-member ensemble of model versions was 

constructed by varying the set of GCM parameters. The investigation revealed that the 

structural choices made in building the GCMs, the choice of climate model parameters and 

the assumed distributions of parameter values can impact the result of the ensemble 

experiment. The ensemble with perturbed parameters can produce a wider range of regional 

changes than those shown by traditional methods that scale the output of an individual 

simulation. This study was based on the assumption that individual perturbations will 

combine linearly, something which is unlikely to be valid at the regional scale. They 

proposed more experiments of using multiple parameter perturbations for creating GCM 

ensembles to further investigate structural uncertainties. 

 

Many studies looked at the uncertainty stemming from the climate model structure. For 

instance, Blenkinsop and Fowler (2007) studied mean and extreme precipitation in the 

British Isles by using six RCMs, driven by four different GCMs, and quantified the range of 

uncertainty in current and future climates. They concluded that the choice of RCM and the 

driving GCM are an important factor that contributes to the overall uncertainty in both 

current and future climate projections. In particular, they found that the uncertainty in future 

climate projections stemming from the choice of GCM or RCM varies with the variable 

being investigated, e.g. precipitation, as well as the time of the year and the spatial resolution. 

In this study, the models failed to properly simulate persistent low precipitation, particularly 

during summers. This suggested a deficiency in the RCMs ability to simulate longer and 

more severe events, such as droughts. The authors also reported that running RCMs requires 

expensive computations, which made these models unusable for uncertainty assessment.  

 

Kay and Davies (2008) compared the performance of two potential evaporation (PE) 

formulae used on a set of climate model outputs (five GCMs and eight RCMs) to investigate 

the effects on the hydrological impact of climate change. One is a simple but more empirical, 
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temperature-based PE formula, and the other is the well-established and more physically 

based Penman-Monteith PE formula, which is data-intensive, needing temperature, humidity, 

radiation and wind speed data. The delta-change downscaling approach (Hay et al., 2000; 

Diaz-Nieto and Wilby, 2005) was used to downscale the GCM output to the watershed scale. 

The probability distribution model (PDM) (Moore, 2007) was used to calculate the current 

and future hydrological response (high and low flows) of three catchments situated in Britain 

by means of two different forms of PE. Results showed that the simple temperature-based 

method generally got a better fit than that using the Penman-Monteith formula for the 1961-

1990 period. In the case of the future 2071-2100 period (used in the A2 emission scenario 

(IPCC, 2007)), the two methods had different effects on the hydrological impact of climate 

change. For example, when using the Penman-Monteith formula, the impact on seasonal 

changes of low flows was found to be more significant, than with the simple temperature-

based method, in regions of South and East Britain. For high flows, the effects would differ 

because the simple temperature-based PE produced larger increase in winter and spring flows 

than the Penman-Monteith PE for the catchment in South Britain. This paper also found that 

the impact of uncertainty in hydrology due to PE formulae was negligible compared to GCM 

structure or RCM structure. Other studies dealing with climate model structure include 

Minville et al. (2008), Horton et al. (2006), Serrat-Capdevila et al. (2007).  

 

The studies above consider the GCMs to be equally ‘good’ at representing present and future 

climates. Other studies specifically addressed the issues of climate model structure possibly 

being given unequal weights in climate change assessment studies. Fordham et al. (2012) 

noted that different climate model structures do not perform equally well in their ability to 

hindcast the key dynamics of climatic system. Some efforts were made to evaluate the 

importance of individual climate model among ensembles, such as the studies of Wilby and 

Harris (2006) who introduced an ‘impact relevant climate prediction index’, based on 

precipitation minus potential evapotranspiration, to evaluate the impact of climate change on 

low flows. A maximum entropy method (MEM) was adopted by Laurent and Cai (2007) in 

an experiment to optimally use Atmosphere-Ocean Global Climate Models (AOGCMs) to 

assess climate change impact. They developed the MEM to assess the probability-weighted 
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multi-model ensemble average of a particular climate variable such as temperature or 

precipitation. Two other methods, the root mean squared error minimization method 

(RMSEMM) and the simple multi-model ensemble average method (SMEAM), were 

compared with MEM via a performance criteria calculated by error bounds on precipitation 

or on temperature. The entropy of a probability distribution, as introduced by Shannon 

(1948), was used to measure how close a given probability distribution is to the uniform 

distribution, i.e. the entropy reaches the maximum when the distribution is uniform. It was 

reported that MEM provided helpful results in analyzing the uncertainty and that this method 

performed better than the SMEAM and RMSEMM in combining AOGCMs to compute the 

climate projections. This research only focused on the average monthly precipitation and 

temperature. They also found that the regional variability due to model uncertainty in their 

study area was more significant for precipitation than for temperature. The implementation of 

MEM proved useful in combining a set of AOGCMs for climate change assessment. 

 

A European integrated project, the ENSEMBLES project (ENSEMBLES, 2009), identified 

six metrics to produce the RCM-specific weights, based on their ability to simulate the 

present climate. These six metrics were (1) large scale circulation based on a weather regime 

classification; (2) meso-scale signal based on seasonal temperature and precipitation analysis; 

(3) probability density distribution match of daily and monthly temperature and precipitation 

analysis; (4) extremes in terms of re-occurrence periods for temperature and precipitation; (5) 

trend analysis of temperature; (6) representation of the annual cycle in temperature and 

precipitation. This investigation assumed that a good performing model was expected to have 

relatively high weights in all metrics. Déqué and Somot (2010) used the probability density 

distribution of daily temperature and precipitation ENSEMBLE metrics to weight RCMs. 

Chistensen et al. (2010) also presented an aggregated model weight by compounding the 

ENSEMBLES six weights. Another study on quantifying RCMs, presented by Fowler and 

Ekström (2009), applied an averaged weight to each RCM combined with the UK-wide 

spatial-similarity weights and region-specific magnitude-discrepancy weights.  
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Tebaldi et al. (2004) proposed a Bayesian statistical model to derive probability distributions 

of precipitation change for a set of GCMs with the purpose of determining weights. They 

made another attempt in 2005 to evaluate the GCMs, based on the probability distribution of 

temperature change. Their Bayesian statistical method was inspired by an earlier study by 

Giorgi and Mearns (2002), who used the Reliability Ensemble Averaging (REA) method to 

estimate GCM weights or reliability factors, according to individual model performance, in 

other words, models having a small bias and offering good convergence (i.e. for which the 

response is close to a majority of the other models analyzed) would be rewarded. This was 

seen as an innovative step in the combination of ensemble projections (Tebaldi et al., 2005). 

Sperna-Weiland et al. (2012) investigated four weighting methods, including the original 

REA method, two extensions of the REA method and a performance-based GCM selection 

method that were compared with the equal weight method. They found that the original REA 

method and the extensions of this method produced smaller uncertainty ranges when 

compared to the equal weight method. The REA method has been used in many studies 

around the world, such as Huisman et al. (2009), Torres and Marengo (2013) and Sun et al. 

(2014). 

 

2.3.2 Uncertainty in climate sensitivity 

New and Hulme (2000) defined climate sensitivity as an increase in the equilibrium of the 

global-mean surface air temperature caused by a doubling of atmospheric CO2 concentration. 

Climate sensitivity has been reported to be in the range of 1.5-4.5°C of the equilibrium global 

temperature increase with a most likely value of about 3.0°C (Gates et al., 1992; IPCC, 2013). 

The uncertainty related to climate sensitivity is wide because atmosphere/land/ocean 

feedbacks are still not well understood. Through its effect on global-mean temperature, 

climate sensitivity plays a primary role as a determinant of overall climate change (Fordham 

et al., 2012) and remains a notable source of uncertainty in long term temperature projections 

(Rogelj et al., 2012). In a recent research, it was reported that the uncertainty in climate 

sensitivity could be reduced by a well-designed program for climate model evaluation and 
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improvement, and also by reducing the uncertainties related to other sources of radiative 

forcing such as aerosols. (Caldeira et al, 2003).  

 

Since climate sensitivity in GCMs is estimated according to climate model simulations which 

are inherently linked to model structure, uncertainty assessment in climate change studies has 

seldom addressed GCM structure and climate sensitivity separately (Brekke et al., 2008; Kay 

et al., 2009; Jung et al., 2012). Uncertainty due to climate sensitivity was investigated in the 

following studies. 

 

Schwartz (2008) studied the key reasons for the currently large uncertainty related to climate 

sensitivity and examined approaches to reduce it. He indicated that climate sensitivity is of 

fundamental importance for the development of mitigation scenarios but that its uncertainty 

is difficult to accurately quantify. In his paper, he concluded that the key limit in evaluating 

uncertainty in climate sensitivity is the small fractional changes in temperature and in 

radiative fluxes. Another restriction is the complexity of cloud processes and the difficulty of 

representing them in climate models. The treatment of clouds leads to model-to-model 

differences in climate sensitivity. Finally, the limited understanding of the processes that 

control the radiative influences of atmospheric aerosols also hinders the investigation of 

climate sensitivity.  

 

Caldeira et al. (2003) did a study on CO2-induced climate change to show how uncertainty in 

allowable carbon emissions caused uncertainty in climate sensitivity. By developing 

scenarios with stabilized atmospheric CO2 contents, they concluded that climate sensitivity 

uncertainty produced much greater uncertainty in allowable CO2 emissions than did carbon 

cycle uncertainty. Uncertainty in climate sensitivity is only one factor that affects uncertainty 

in allowable CO2 emissions. 

 

Knutti and Hegerl (2008) reviewed recent estimates of the equilibrium climate sensitivity and 

indicated that climate sensitivity is one of the largest sources of uncertainty in projections of 

climate change. As climate sensitivity is not a directly tunable quantity in climate models, the 
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sensitivity in models was investigated by perturbing parameters related mainly to 

atmospheric processes, such as clouds, precipitation, convection, radiation, land surface, etc. 

They concluded that climate models generally perform well when climate sensitivity is in the 

range 1.5-4.5°C with a most likely value of about 3.0°C. However an upper limit of climate 

sensitivity was difficult to determine because strong aerosol forcing or large ocean heat 

uptakes might hide an intense greenhouse warming. 

 

2.3.3 Uncertainty in emission scenarios 

The IPCC Special Report on Emission Scenarios (SRES) team developed four main 

greenhouse gases emission scenarios, A1, B1, A2 and B2, which predicted a range of 

conceivable change in population and economic activity over the 21st century. These became 

the basis for recent climatological studies (IPCC, 2007). Each emission scenario reflects 

independent assumptions about future possible demographic, technological and socio-

economic story lines. These scenarios were developed to evaluate the impacts of global 

atmospheric concentrations of CO2, CH4 and N2O due to human activities, such as in the 

historical experiment 20c3m conducted by the Coupled Model Intercomparison Project Phase 

5 (CMIP5) (Taylor, et al., 2012). CMIP5 is a project based on a set of coordinated climate 

model experiments performed by the WCRP’s Working Group on Coupled Modelling 

(http://www.wcrp-climate.org/index.php/wgcm-overview).  

 

Prudhomme et al. (2003) evaluated the output of GCMs by using the four SRES emission 

scenarios on five catchments in Great Britain. Their results showed little uncertainty among 

the four scenario groups. Kay et al. (2009) studied a range of emission scenarios derived 

from the four SRES storylines applied to two catchments in England and showed that 

uncertainty of emission scenario was very low for the larger and flatter catchment, but was 

more important for the smaller and steeper catchment. Chen et al. (2011a) also studied the 

uncertainty of two SRES emission scenarios, A2 and B1, compared with other sources of 

uncertainty. Results showed that the future discharges predicted by the A2 scenario were 

consistently greater than by those predicted by the B1 scenario and that the uncertainty due to 
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the emission scenarios is less than that of GCM structure, downscaling method and GCM 

initial conditions. 

 

2.3.4 Uncertainty in downscaling methods 

GCMs are used to represent various climate states and are not specifically designed for 

assessing hydrological responses to climate change. Although results vary considerably 

between models, GCM runoff predictions are over-simplified relative to the output of 

hydrological models. For example, GCMs lack lateral transfers of water within the land 

system between grid cells (Fowler et al., 2007). A hydrological model constitutes a better 

way of simulating watershed flow regimes. However, due to the mismatch between outputs 

generated from global climate models and the input to hydrological models, GCMs 

precipitation and temperature output need to be spatially downscaled and their inherent bias 

removed or diminished before these projections can be used into hydrological models. 

 

Downscaling is a hot issue in climate change impact studies (Prudhomme et al., 2003). The 

relative performance of different downscaling methods for hydrological impact assessment 

has been assessed in an increasing number of studies (e.g. Hay and Clark, 2003; Diaz-nieto 

and Wilby, 2005; Wilby and Harris, 2006; Prudhomme and Davies, 2009a, Chen et al., 2011a, 

b) and revealed that the choice of a downscaling method is critical owing to the distinct 

structure and algorithm (Chen et al., 2011b).  

 

Downscaling methodologies are classified as dynamic or statistical. The dynamic 

downscaling method (DDM) employs regional climate models (RCMs) that are applied to a 

limited area in which boundary conditions come from GCM output (Serrat-Capdevila et al, 

2007). DDM is capable of producing a finer resolution output which is typically resolved at 

the ～0.5º latitude and longitude scale by embedding high-resolution models within a GCM 

(Fowler et al., 2007). However, DDM is computationally expensive and is strongly 

dependent on GCM boundary forcing (Fowler et al., 2007). Statistical downscaling methods 

(SDM) apply statistical equations to establish empirical relationships between large scale 
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climate features (e.g. circulation patterns) and local scale climate variables (Wilby et al., 

1998). The simplest statistical method is the change factor method, also referred to as the 

delta change approach (Fowler et al., 2007). The other SDMs are classified into the following 

groups: regression models, weather typing schemes and weather generators (Fowler et al., 

2007). SDM directly incorporates observed information in the downscaling process. 

Compared to DDM, this method is computationally efficient (Fowler et al., 2007). However, 

the basic assumption of SDM is that the statistical relationships between large scale climate 

features and local scale climate variables are time invariant, i.e. they remain identical in a 

future climate as compared to the current climate (Ghosh and Katkar, 2012), a shortcoming 

not found in DDM. A number of research projects investigated the uncertainty related to 

different downscaling methods (e.g. Hay and Clark, 2003; Prudhomme and Davies, 2009a; 

Chen, et al., 2011a).  

 

Prudhomme and Davies (2009a) studied the uncertainty in downscaling techniques. The 

regional climate model HadRM3, from the Hadley Centre (http://www.metoffice.gov.uk/), 

and the Statistical Downscaling Model (SDSM) developed by Wilby et al. (2002) were used 

in assessing uncertainty in a climate change impact study. Results showed that HadRM3 

overestimated early spring flow, while SDSM underestimated early spring flows and late 

autumn flows. A similar modeling experiment is found in the study of Hay and Clark (2003) 

that used one statistically downscaled atmospheric model and the RegCM2 regional climate 

model (Giorgi et al., 1988). Because of the fundamental mathematical treatment of 

downscaled climate variables, these two downscaling techniques were assumed to perform 

equally well. Up till now, no acknowledged approach has been able to establish their relative 

performance because of their very different structure (Ghosh and Katkar, 2012).  

 

Chen, et al. (2011b) applied six downscaling techniques to downscale GCM output to the 

watershed scale in order to quantify the climate change impact on a Canadian river basin 

(Quebec province). These techniques included RCM data without any bias correction (BC) 

but with a specific hydrologic model calibration, RCM data with bias correction method, the 

change factor (CF) method, a stochastic weather generator (WG), the SDSM of Wilby et al. 
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(2002) and a discriminant analysis coupled with step-wise regression method (DASR). 

Overall, the methods produced hydrographs similar to those simulated by using observed 

precipitation and temperature data, with the RCM data with bias correction and the SDSM 

having the best fit to the observations. The analysis of climate change scenarios showed a 

large uncertainty during the snowmelt season that is related to downscaling techniques. The 

uncertainty envelope of the simulated hydrological variables due to the downscaling methods 

was slightly less than the uncertainty envelope associated to the combination of GCM 

structure and GGES. The main conclusion of this study was that the results of climate change 

impact studies that use only one downscaling method should be interpreted with caution. 

 

Khan, et al. (2006) compared the performance of three statistical downscaling methods by 

conducting an uncertainty analysis of the downscaled results of daily precipitation, daily 

maximum and minimum temperature. They investigated the following approaches: SDSM, 

the Long Ashton Research Station Weather Generator (LARS-WG) model (Semenov and 

Barrow, 1997, 2002) and an Artificial Neural Network (ANN) model (Coulibaly et al., 2005). 

Regarding the performance of these models, they concluded that SDSM was the best 

statistical downscaling method of the three studied and that it was capable of reproducing 

almost all statistical characteristics of the observed data with a 95% confidence level. LARS 

ranked second and ANN was last. This study also stated that the performance of these three 

downscaling models would remain the same under future climate forcing scenario because 

the uncertainty of the results would be mostly dominated by the uncertainty of GCMs. 

 

2.3.5 Uncertainty in natural variability 

Climate varies in a range of scales, from intra-annual, to decadal, to very long time scales. 

Long-term climatic data series enable researchers to study of natural variability. Natural 

variability is difficult to assess based on the short-term observations that are commonly used 

to predict future climate conditions. Natural variability is defined as the uncertainties 

stemming from the inherent randomness or unpredictability found in the natural world 

(Willows et al., 2003) and can usually be subdivided into low-frequency variability and high-
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frequency variability according to their timescales (IPCC, 2007). Only by using climatic data 

series that span long time periods one can properly assess the entire spectrum of frequency 

variability. Because observed climatic time series seldom exceeds a few hundred years, 

researchers must construct series that will enable them to define the magnitude and 

characteristics of natural variability and extremes.  

 

Several approaches have been developed to assess the magnitude of natural variability. For 

instance, Prudhomme and Davies (2009a) described a method involving block resampling to 

create multiple series from a limited period of observation. Observations were divided into 

seasonal blocks and classified into four sub-series (winter, spring, summer and autumn). The 

blocks were randomly and independently selected from each of the four seasonal sub-series, 

in the normal annual sequence (i.e. a spring block was selected after a winter block), to 

construct long-term series.  

 

Another approach is to use a stochastic weather generator (Chen et al., 2009; Chen et al., 

2012) to produce long climatic time series. For example, Minville et al. (2008) used a 

stochastic weather generator to produce daily time series of precipitation and temperature in 

order to evaluate the range of simulated hydrological regimes in a northern basin under 

current and future climates. However, both the block resampling and the stochastic weather 

generator approaches will underestimate long term climate variability because they are based 

on generating climatic information derived from a limited time series of observed climate.  

 

2.3.6 Uncertainty in hydrological modeling 

Hydrologic models result from an integration of mathematical descriptions of conceptualized 

hydrologic processes at the watershed scale and serve a specific purpose in water resources 

engineering and in understanding the dynamic interactions between climate and land-surface 

hydrology (Chiang, et al., 2007). Such models are based on mathematical and statistical 

concepts and are used to represent the hydrologic cycle and provide a wide range of 

structures, from lumped conceptual models to semi-distributed and distributed physics-based 



33 

models (Liu and Gupta, 2007). Over the last decades, watershed hydrologic models have 

played an increasing role in water resources planning, development and management (Singh 

and Woolhiser, 2002; Benke et al., 2008). The sources of uncertainty in hydrological models 

are mainly related to model structure and parameters (Liu and Gupta, 2007). The uncertainty 

of hydrological model structure stems from the inability of a hydrological model to 

accurately represent hydrological processes (Liu and Gupta, 2007). This uncertainty is 

related to components of a hydrological model, such as the equations used to describe the 

hydrological processes, the numerical methods used, etc. (Butts et al., 2004). The usual way 

to evaluate the uncertainty of hydrological model structure is to compare the performance of 

different hydrological models in representing watershed hydrological regimes. The parameter 

uncertainty in hydrological models refers to the uncertainty of the parameter estimates.  

Parameter uncertainty is caused by an over-parameterization of the model and/or results from 

the optimization algorithm used to estimate parameter values (Montanari, 2011). As it is less 

significant than other sources of uncertainty (Kay et al., 2009; Chen et al., 2011a), it is not 

examined in this study.  

 

Poulin et al. (2011) investigated the uncertainty related to the hydrological model structure 

and model parameters of a snow-dominated watershed in province of Quebec, Canada. One 

lumped conceptual model, HSAMI (Fortin, 2000), and one spatially-distributed physically-

based model, HYDROTEL (Fortin et al., 2001), were used in this study to illustrate the 

uncertainty of the model structure. Parameter uncertainty was estimated by performing 

multiple automatic calibrations. The results revealed that the uncertainty of the hydrological 

model structure is more significant than the uncertainty of model parameters. They 

concluded that the use of hydrological models with different levels of complexity should be 

included in studies of the global uncertainty associated to hydrological impact assessments.  

 

Butts, et al. (2004) developed a hydrological framework that can be used to explore different 

hydrological model structures within the same modeling tool in both the rainfall-runoff and 

channel routing components of hydrological models. Their framework enables the 

assessment of a variety of alternative distributed hydrological models (model structure), 
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including both conceptual and physically-based process descriptions, for the purpose of 

generating multi-model ensembles. An analysis was conducted with this framework to 

evaluate the performance of ten different model structures, for example, lumped vs 

Muskingum-Cunge vs fully dynamic routing, and determine the impact of varying model 

structure on the uncertainty of hydrological simulations for a particular basin in Oklahoma. 

The impact of uncertainty in the rainfall input data and uncertainty in the hydrological model 

parameters were also described. This study showed multi-model simulations to be a superior 

alternative to current single-model simulations and found that the model structure was the 

main source of hydrological modeling uncertainty. The challenge in this study was to devise 

a strategy for selecting appropriate model structures for particular applications. It was 

proposed that different sources of uncertainty should be systematically evaluated for not only 

hydrological simulation but also hydrological forecasting. 

 

The hydrological model’s sensitivity to climate change was explored by Jones, et al. (2006), 

who applied a large number of scenarios in various hydrological models to a variety of 

catchments. Sensitivity analyses were performed using three hydrological models, two 

lumped conceptual daily rainfall-runoff models and one simple top-down two parameter 

model, on 22 Australian catchments covering a range of climates, from cool temperate to 

tropical, and from moist to arid. The results showed that model sensitivity to climate change 

is influenced by model structure, potential errors in climate inputs and model parameters like 

soil moisture storage and physiographic properties, such as vegetation cover.  

 

Chiang, et al. (2007) developed a methodology for identifying the uncertainty in river-flow 

prediction through the quantification of the different sources of uncertainty in hydrologic 

models used for comparing model performance. Different sources of uncertainty, including 

system uncertainty, entire uncertainty and inherent uncertainty, were evaluated through the 

observation of the hydrological model’s behaviour under increasing input uncertainty levels, 

based on an index, called the Model Structure Indicating Index (MSII), that originated from 

the Nash-Sutcliffe efficiency. In this study, system uncertainty refers to the discrepancies 

between observed data and model outcome obtained with the best-fitted parameter set. Entire 
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uncertainty represents the discrepancies between observed data and model outcome by using 

parameter sets in the calibrated parameter space. Inherent uncertainty is the discrepancy 

between model outcome obtained with the best-fit parameter set and with parameter values 

within the parameter space. The results demonstrated that the index can be used to compare 

and rank hydrological models, and to help the selection of the best model for the intended 

application. 

 

Among the other hydrological studies that address the issue of hydrological model structure 

and parameter uncertainty are those of Liu and Gupta (2007) and Staudinger et al. (2011). 

 

2.3.7 Multi-source uncertainty assessment and risk analyses 

Risk analyses are required to evaluate systems performance under extreme operating 

conditions. In hydrological studies, one might be interested, for example, in evaluating the 

risk of flooding or the risk of failure of a dam. In climate change impact studies, these 

assessments are more complex to conduct because of the various uncertainties that plague the 

estimation of future flows. As many sources of uncertainty are present, this poses the 

problem of adequately combining these sources of uncertainty. A common approach to the 

combination of various sources of uncertainty is the Monte Carlo sampling method. This 

method requires establishing weighting schemes for each source of uncertainty, i.e. a 

probability distribution. For example, climate sensitivity is usually assigned a triangular 

probability distribution (New and Hulme, 2000, Prudhomme et al., 2003), while uncertainty 

due to a GHG emission scenario is usually assigned a uniform distribution, as each scenario 

is assumed to occur equally (Prudhomme et al., 2003; Kay et al., 2009). Approaches 

developed for assigning weights to GCM models were presented in section 2.3.1, while the 

method developed by Chiang et al. (2007), described in section 2.3.6, can be used to assign 

weights to hydrological models based on their performance. 

 

A number of studies investigated the combination of different sources of uncertainties and 

their cascading effects on the hydrological regime of watersheds. While some of them 
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assumed that each source of uncertainty had an equal weight in the overall hydrological 

response, other studies assumed unequal weight strategies. The next paragraphs present some 

of the more salient studies that deal with the uniform and unequal weighting strategies used 

to assess climate change impact in the water resources sector. 

 

2.3.7.1 Uniform weighting strategies 

The following studies evaluated multi-source uncertainties in climate change impact studies. 

They assessed independent sources of uncertainty throughout the modeling process with no 

attempt of giving unequal weights and then quantified the significant source among those 

studied.  

 

Kay et al. (2009) investigated six sources of uncertainty, involving future GHG emissions, 

GCM structure, downscaling techniques, hydrological model structure, hydrological model 

parameters and the internal variability of the climate system (with different GCM initial 

conditions) in the impact of climate change on flood frequency. The study was conducted on 

two catchments in England that had very different characteristics in terms of area, rainfall 

regime and topography. Five GCM structures, four SRES scenarios, two downscaling 

methods (delta change method and direct use of RCM data), two hydrological model 

structures, a number of different calibrated parameter sets for hydrological models and two 

ways of assessing the effect of climate variability were explored. The results showed that for 

both catchments, the GCM structure uncertainty was the largest source of uncertainty, while 

the hydrological model parameter uncertainty presented a very small effect. 

 

Chen, et al. (2011a) evaluated the global uncertainty of hydrological variables such as annual 

discharge, winter discharge, time to peak, etc., in a watershed located in Quebec, Canada, 

using an ensemble of six GCMs, two GGES, five GCM initial conditions, four downscaling 

techniques, three hydrological model structures and ten sets of hydrological model 

parameters. Based on the relative change of each hydrological variable, it was concluded that 

the GCMs were the most important source of uncertainty, followed by the downscaling 

methods. GCM initial conditions, GGES and hydrological model structure were ranked third, 
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fourth and fifth respectively. The least important source of uncertainty was found to be the 

hydrological model calibration parameters. This study outlined the overall uncertainty of a 

range of sources by using only equal-weighting schemes. However, the use of unequal-

weighting schemes was recommended for future research.  

 

Other studies in which equal weights were given to various sources of uncertainty in climate 

change impact studies include Minville et al. (2008), Prudhomme and Davies (2007), Déqué 

et al. (2007) and Jung et al. (2012), etc. These studies concluded that climate model structure 

carries the largest uncertainty when compared to other sources. 

 

2.3.7.2 Unequal-weight assigning strategies 

In the past decade, some researchers began to undertake unequal-weight experiments in order 

to assess multi-source uncertainties in hydrological studies. Each independent source of 

uncertainty was given a probability distribution that was either based on accredited 

knowledge (e.g. for climate sensitivity, see New and Hulmes, 2000) or on quantitative 

approaches (e.g. for GCM structure, see Wilby and Harris, 2006). 

 

New and Hulme (2000) described a methodology for quantifying uncertainties inherent to the 

production of future climate change information in climate impact assessments. Their study 

combined, by means of a Bayesian Monte-Carlo simulation, the following sources of 

uncertainty: GHG emissions scenarios, climate sensitivity and GCM structure using pre-

defined prior probability distributions. The simulation results produced by the seven different 

GCMs were given equal prior probabilities. The four emission scenarios used in their study 

were assumed to be all equally likely to occur. Four frequency distributions, among them a 

simple triangular probability distribution and a skewed distribution, were adopted for climate 

sensitivity. Different climate change signals in mean temperature and precipitation were 

compared in order to extract the probability distributions of outputs linked to the GCMs. This 

research mostly focused on the uncertainty in climate change scenarios, and assumed GCM 

performance to be equal and made no assumptions about uncertainty due to hydrological 

model structure. Its major conclusion was that the posterior probability distribution of the 
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simulated changes in temperature and precipitation of climatic simulations indicated that 

significant uncertainty arises from GCM structure and that the triangular prior distribution to 

climate sensitivity produced a more elongated posterior distribution of temperature and 

precipitation than the other distributions used in the study.  

 

Similarly to New and Hulme (2000), Prudhomme et al. (2003) explored a methodology for 

quantifying sources of uncertainty, including GCM structure, GGES and climate sensitivity, 

in the hydrological response of a set of five river catchments located in Great Britain. The 

uncertainty due to downscaling techniques was excluded. They adopted a Monte Carlo 

simulation approach to sample the sources of uncertainty according to prescribed weights. 

Equal weights were assigned to individual GCM and emission scenarios. Different weights 

were given to climate sensitivity values, based on an approach presented by New and Hulme 

(2000). Natural variability was included as a source of uncertainty by a bootstrapping 

method. The study demonstrated that uncertainty in GCM structure generally appears to be 

the largest single source of uncertainty. The uncertainty due to emission scenarios and 

climate sensitivity was less significant in the total uncertainty assessment. 

 

Wilby and Harris (2006) developed a probabilistic framework for combining information 

from an ensemble of 2 GGES, 4 GCMs, 2 downscaling methods and two sets of hydrologic 

model parameters, as well as a lumped conceptual hydrological model, to evaluate different 

components of uncertainty affecting the hydrological response of a river basin located in 

England. A Monte Carlo approach was applied to explore components of uncertainty. 

Emission scenarios, downscaling methods and hydrological model parameters were given 

equal probabilities. Weights were assigned to the GCMs according to their performance in 

simulating current effective rainfall by using an ‘impact relevant climate prediction index’ 

(precipitation minus potential evapotranspiration) adapted from a climate prediction index 

approach introduced by Murphy et al. (2004). This study highlighted that low-flows were 

most sensitive to uncertainty in GCM structure, and then to the uncertainty in downscaling 

method and lastly, to the effect of hydrologic model parameter and emission scenario 

uncertainties. Although it was one of the most comprehensive uncertainty analyses to date, 
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the study only explored uncertainty in future low flows in a watershed dominated by rainfall. 

The choice of the weighting scheme, which was based on effective rainfall, was dictated by 

the hydrological process analysed, i.e. low flows.  

 

Christensen, et al. (2010) suggested that model weighting brings certain effects to the 

generation of ensemble-based climate projections. They explored the applicability of 

combining 6 performance indices into a weighting scheme and applying them to a large 

ensemble of RCM simulations. The indices were (1) large-scale circulation based on a 

weather regime classification; (2) meso-scale signal based on seasonal mean temperature and 

precipitation; (3) probability density distributions of daily and monthly temperature and 

precipitation; (4) extremes in terms of re-occurrence periods for temperature and 

precipitation; (5) long-term trends in temperature; (6) annual cycle in temperature and 

precipitation. By combining these independent indices, relative weights for each model were 

generated. This use of model weights, which was sensitive to the aggregation procedure, 

resulted in different sensitivities to the selected metrics. For instance, different models would 

emerge as best performers if different weighting schemes were applied. The authors 

suggested that the uncertainty of using weighting schemes should be explored by considering 

multiple metrics and aggregation procedures, since the weighing itself was also regarded as a 

source of uncertainty. 

 

Other unequal-weight assigning studies that incorporate multiple sources of uncertainties in 

climate change assessment include those of Tebaldi et al. (2004, 2005), Knutti et al. (2010) 

and Sansom et al. (2013). 

 

The abovementioned studies all involved multi-sources uncertainty assessments, as well as 

weight-assigning experiments that reflect the scientific attempts made so far at applying 

various weighting schemes to the sources of uncertainty. These studies have acknowledged 

that the uncertainty due to GCM structure will be quite significant when compared to other 

sources of uncertainty (e.g. Prudhomme et al., 2003; Wilby and Harris, 2006; Minville et al., 

2008; Kay et al., 2009, Chen et al., 2011a). None of them presented a comprehensive 
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framework that could be used to evaluate all sources of uncertainty, starting from climate 

projection all the way to hydrological modeling using equal/unequal weighting schemes. This 

thesis is intended to be a step toward the achievement of such comprehensive uncertainty 

assessments. It aims to establish a framework for the quantification of the main sources of 

uncertainty, including GCM’s structure, climate sensitivity, natural variability and, to a lesser 

extent, hydrological model’s structure, that are associated to climate change impacts on 

hydrology. Finally, it also aims to assess the respective effect of these sources of uncertainty 

on GCM and climate sensitivity through the use of weighting schemes. 



 

CHAPITRE 3 
 
 

METHODOLOGY 

To evaluate hydrological uncertainties in climate change impact assessments, three main 

steps were carried out in this research. First, regional climate projections were established for 

a range of GCMs and climate sensitivities. Then, hydrological simulations were performed to 

evaluate the impact of climate change on the hydrological regime of the study watershed, the 

Manicouagan River Basin (MRB), which is described in Chapter 4. To that end, regional 

climate projections were statistically downscaled from coarse GCM scale to regional scale. 

Finally, Monte Carlo experiments were carried out to quantify various sources of uncertainty 

and to evaluate the effect of assigning different weights to the climate projections according 

to GCM structure and model sensitivity. The entire process therefore required a suite of 

models (climate and hydrological) and methods to generate the hydrological response to 

climate change. Among the possible sources of uncertainty which are found in simulated 

hydrological regimes, the following were considered: (1) GCM structure, (2) climate 

sensitivity, (3) natural variability and (4) hydrological model structure.  

 

This chapter describes the methodology that was employed in this study. Four hydrological 

models were used to evaluate the impact of different model structures on the overall 

hydrological response to climate change. A schematic flow chart of the methodology is 

presented in Figure 3.1. It is applicable to each hydrological model. Climate projections used 

to force the hydrological models were produced using ten GCMs and five climate 

sensitivities. Each climate projection covers a span of 33 years, which is commensurate with 

the length of the control period (1975-2007). A change factor (CF) approach was used as a 

downscaling tool to bring the GCM projections at the watershed scale, and a stochastic 

weather generator was applied to generate statistically similar precipitation and temperature 

time series that could be used to investigate uncertainty due to natural variability. The 

analysis was conducted with a future time horizon centered in 2080 (2065-2097). Finally, to 
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combine different uncertainty components of the hydrological response to climate change, a 

Monte Carlo approach was adopted. 

 

 

Figure 3.1 Flow chart of the methodology. The flow chart applies to each of the 
four hydrological models employed in this study 
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3.1 Research assumptions 

The research assumptions on which the proposed methodology is based are presented below:  

 

(1) The four main sources of uncertainty, which are mentioned above, were investigated in 

this study. Other sources of uncertainty, such as GHG emission scenarios, downscaling 

methods and hydrological model parameters, were not addressed, although recent 

research suggests that some may be important sources of uncertainty in hydrological 

impact studies (see, for example, Chen et al., 2011a). Emphasis here was more on 

combining sources of uncertainty with different weighting scenarios, rather than on 

covering all sources of uncertainty.  

 

(2) The MAGICC/SCENGEN software applied to produce the climate projections with 

specific climate sensitivity is a simple climate model which could make the emulation of 

GCMs over a wide range of scenarios (Meinshausen et al., 2011a). The IPCC AR4 

(2007) reported that MAGICC has a slight warm bias in global-mean temperature 

projections, but this is unfounded (Wigley et al., 2000). This is partly associated with 

forcing differences between the standard MAGICC forcing and those used in AR4 GCMs 

(Wigley et al., 2000). This forcing difference is not considered in this study. The 

estimations from MAGICC/SCENGEN were assumed to properly emulate the IPCC AR4 

values. 

 

(3) The stochastic weather generator used in this study to generate synthetic time series daily 

temperature and precipitation does not explicitly take into account low frequency climate 

variability. It therefore underestimates long term climate variability. Moreover, low 

frequency natural variability is further underestimated because the weather generator is 

calibrated with time series of rather short length (33 years) to fully capture the ‘true’ 

natural variability of the observed climate.  
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(4) The CF method used in this study, combined with the stochastic weather generator, 

produces time series of daily precipitation which neglects changes in the number of wet 

and dry days that are likely to occur in the future. Moreover, the methodology assumes 

that the probabilities of the occurrence of a wet day following a wet day, a dry day 

following a wet day, etc. as well as the bias, will remain unchanged in the future. Finally, 

the variability of precipitation remains unchanged in the future. 

 

(5) The range of climate sensitivity covers 2.0 to 4.0°C, in accordance with the generally 

accepted range in the research community (Rogejl et al., 2012).  

 

3.2 Climate projections 

The first step of the methodology consists in producing the climate projections that will be 

used as input for the hydrological models. The climate projections were developed in order to 

encompass a range of GCM structures and climate sensitivities. To that end, monthly 

temperature and precipitation output fields from 10 GCMs were first retrieved from the study 

area. The outputs from each GCM selected reflect a global-mean temperature condition, 

which is described as climate sensitivity. There have been efforts to investigate the 

uncertainties of hydrological regimes that are related to alternative GCM structures by using 

different individual GCM projections in the environmental models (Bradley, 2010). These 

investigations demonstrated that climate projections varied from model to model but failed to 

properly account for inter-GCM differences in climate sensitivity (Fordham et al., 2012). By 

averaging GCM predictions based on models with different sensitivities, the results obtained 

showed a tendency to bias the average response towards models with high sensitivity 

(Fordham et al., 2012). It is therefore important to assess the two sources of uncertainty 

(GCM structure and climate sensitivity) separately. In order to separate the GCM structure 

from the climate sensitivity as two distinct sources of uncertainty, a modeling approach was 

used to generate, starting with each original GCM temperature and precipitation fields, 

monthly time series of temperature and precipitation that correspond to different climate 

sensitivities. This was done using the MAGICC/SCENGEN climate model (Wigley et al., 
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2000, see Section 3.2.2 for a description of the model). In this work, only one GGES was 

utilised to produce the climate projections, i.e. SRES-A2. 

 

To spatially and temporally downscale future GCM projections to the watershed scale, as 

well as to account for natural variability as a source of uncertainty, a change factor approach 

and a stochastic weather generator were combined to generate a suite of future daily 

temperature and precipitation time series. These time series then became the climate 

projections that were inputted into the hydrological models.  

 

Each step of the climate projection process is now described. 

 

3.2.1 Global climate models 

As mentioned in Chapter 2 (section 2.3.1), the GCM structure is probably the most important 

source of uncertainty in the assessment of the hydrological impacts caused by climate 

change. In this study, the uncertainty of climate change impact due to GCM structure was 

investigated by using ten GCMs, namely: BCCR-BCM2.0, CGCM3.1, CNRM-CM3, 

CSIRO-MK3.0, GFDL-CM2.0, INM-CM3.0, IPSL-CM4, MIROC3.2 (medres), MPI-

ECHAM5 and NCAR-PCM1 (IPCC, 2007). General information related to these GCMs is 

presented in Table 4.2. These GCMs were selected, from all currently existing GCMs, 

because they display a wide spectrum of predicted precipitation and temperature changes 

(IPCC, 2007).  

 

3.2.2 Climate sensitivity 

Climate sensitivity, which is defined as the global mean climatological temperature change 

due to a doubling of CO2 content, is a primary determinant of overall climate change 

(Fordham et al., 2012). As a measure of the temperature response of the Earth to a change in 

radiative forcing (Loehle, 2014), climate sensitivity is neither a physical quantity that can be 

measured directly through observations nor a directly tunable quantity in GCMs, as it 

depends on many parameters that are primarily related to atmospheric processes (Knutti and 
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Hegerl, 2008; Knutti et al., 2010). Each GCM generates climate projections that are 

inherently linked to a given climate sensitivity, depending on the representation of the 

various feedback processes in the model, including, for example, clouds and water vapor. 

Some models (e.g. MPI) reflect higher sensitivities for higher forcing scenarios than for 

lower forcing scenarios (Meinschausen et al., 2011a). 

 

The estimate of the climate sensitivity of a model will come from the model’s outputs rather 

than be based on the model itself (Caldeira et al., 2003; Rogelj et al., 2012; Masters, 2013; 

Loehle, 2014). By perturbing parameters affecting clouds, precipitation, convection, radiation, 

land surface and other process used in producing GCMs projections, one can produce new 

climatic output and therefore obtain different climate sensitivities (Knutti and Hegerl, 2008). 

However, such simulations are usually not available, so that it is hardly possible to obtain, for 

a given GCM, a suite of climate projections that reflect a range of climate sensitivities. 

Therefore, uncertainty assessment in climate change studies has seldom tackled GCM 

structure and climate sensitivity separately (Brekke et al., 2008; Kay et al., 2009; Jung et al., 

2012). New and Hulme (2000) presented an uncertainty study in climate sensitivity using the 

MAGICC/SCENGEN model. This reduced-complexity carbon-cycle and climate model 

allows the production of climatological time series that reflect the effects of climate 

sensitivities in a simple manner.  

 

In this thesis, the MAGICC/SCENGEN (Model for the Assessment of Greenhouse-gas 

Induced Climate Change and the Global and Regional Climate Scenario Generator, v5.3 – 

Wigley et al., 2000) software is used to mimic GCMs climate projections with the prescribed 

climate sensitivities. This freely available software package for the Windows operating 

system has been (and continues to be) one of the essential tools used by the IPCC since 1990 

to generate projections of future global mean temperature and sea level rise (Meehl et al., 

2007; Meinshausen et al., 2011b). It is a climate model “emulator” that contains two 

modeling parts, MAGICC and SCENGEN (see Figure 3.2). MAGICC/SCENGEN enables 

users to generate multi-model ensemble of averaged forecasts of temperature, precipitation 

and mean sea level pressure for the full suite of GCMs used in the IPCC’s fourth Assessment 
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Report (AR4) and for more than 50 SRES scenarios, and this, for any given year up to 2100. 

MAGICC is a coupled gas-cycle (representing the process of a gaseous fluid undergoing a 

series of thermodynamic states), climate and ocean model that creates global climate 

projections related to empirical atmospheric composition changes. A range of gas-cycle 

models are interactively coupled with the global-mean temperature and sea level model in 

MAGICC to produce climate projections of atmospheric carbon dioxide concentrations, 

based on anthropogenic emissions scenarios and climate system feedbacks (Fordham et al., 

2012). Default values of the climate model parameters suggested by MAGICC were used in 

this study. A sensitivity analysis on the aerosol forcing parameter did not produce 

significantly different results. SCENGEN uses the global-mean climate information, in 

conjunction with a pattern scaling regionalization algorithm (Santer et al., 1990) and the 

Coupled Model Intercomparison Project 3 (CMIP3) archived GCM database (http://www-

pcmdi.llnl.gov/ipcc/about_ipcc.php), to produce spatially detailed climate outputs on future 

changes in temperature, precipitation and mean sea level pressure in 5° by 5° grid boxes. The 

projections are generated first by running MAGICC with specified GGES and climate 

sensitivities. The MAGICC output is then passed to the SCENGEN component to produce 

spatial patterns of change in terms of studied GCMs by means of the regionalization 

algorithm. The entire procedure is easy to operate and takes only a few minutes to run on a 

personal computer.  

 

A distinct feature of MAGICC/SCENGEN is that it can easily perform a factor separation 

analysis (i.e., to evaluate the effects of various choices of forcing assumptions, such as 

aerosols and carbon cycle climate feedbacks, or to separate the effects of climate or carbon 

cycle uncertainties from the forcing uncertainties) in order to produce individual GCM 

projections (Meinshausen et al., 2011a). By modifying a number of gas-cycle and climate 

model parameters (see Figure 3.3), MAGICC/SCENGEN users can produce climatological 

time series with specific forcing and climate sensitivities. 
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Figure 3.2 Schematic diagram of the structure and flow of the MAGICC/SCENGEN 
software. The user-defined parameters of the model are displayed in the elliptical shapes 

Taken from Fordham et al. (2012, p. 5) 
  

 



49 

 

Figure 3.3 Adjustable forcing controls and climate model 
parameters in the MAGICC model 

 

It was therefore possible, in this study, to generate climate model outputs, such as 

temperature and precipitation, that covered a range of GCM structures and climate 

sensitivities. 

 

To that end, a ‘change factor’ approach, described by equations (3.1) and (3.2), was 

employed to generate the climate projections for the prescribed climate sensitivities, based on 

‘original’ climate sensitivity values estimated from the original GCMs output (as described in 

Section 4.2.1.2). Subscript ∆T(n) refers to the original climate sensitivity of each GCM (see 

Table 4.2), and subscript ∆T(m) refers to the climate sensitivities selected for the analysis. 

Subscript m|s refers to the MAGICC/SCENGEN model. The equations are: 

 T୬ୣ୵,∆୘(୫) = T୥ୡ୫,∆୘(୬) + ൫Tഥ୫|ୱ,∆୘(୫) − Tഥ୫|ୱ,∆୘(୬)൯                         (3.1) 

 P୬ୣ୵,∆୘(୫) = P୥ୡ୫,∆୘(୬) × ୔ഥౣ|౩,∆౐(ౣ)୔ഥౣ|౩,∆౐(౤)                                     (3.2) 

 

where T୬ୣ୵,∆୘(୫)  and P୬ୣ୵,∆୘(୫)  are the GCM-derived monthly temperature and 

precipitation for climate sensitivity ∆T(m), T୥ୡ୫,∆୘(୬) and P୥ୡ୫,∆୘(୬) are the original GCM 
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monthly temperature and precipitation over the study area for climate sensitivity ∆T(n). Tഥ୫|ୱ,∆୘(୬) and Pഥ୫|ୱ,∆୘(୬) refer to the spatially-averaged monthly temperature and precipitation 

in the study area as produced by MAGICC/SCENGEN using the original GCM climate 

sensitivity 	∆T(n). The estimation of the original GCM climate sensitivity will be stated in 

section 4.2.1.2. Tഥ୫|ୱ,∆୘(୫)  and Pഥ୫|ୱ,∆୘(୫)  are similar to Tഥ୫|ୱ,∆୘(୬)  and Pഥ୫|ୱ,∆୘(୬)  but for 

climate sensitivity ∆T(m) . Change factors are described by (Tഥ୫|ୱ,∆୘(୫) − Tഥ୫|ୱ,∆୘(୬))  and ୔ഥౣ|౩,∆౐(ౣ)୔ഥౣ|౩,∆౐(౤) .  
 

3.3 Downscaling 

The downscaling technique employed here combines both temporal disaggregating and 

spatial downscaling. The former converts monthly values of temperature and precipitation 

into daily values. The latter brings the temperature and precipitation fields from the GCM to 

the watershed scale. In this study, the change factor (CF) method (Diaz-Nieto and Wilby, 

2005; Hay et al., 2000), which is also called the ‘perturbation method’ (Prudhomme et al., 

2002) or the “delta-change method” (Fowler et al., 2007), was used as the downscaling 

procedure. According to Fowler et al. (2007), the CF method is the simplest downscaling 

technique that can be used to translate large-scale GCM output to a finer resolution. A major 

advantage of using this downscaling method is the ease with which alternative emissions 

scenarios or scenarios based on alternative GCMs can be synthesized (Kay et al., 2009). The 

equations are: 

 Tୡ୭୰,ୢୟ୷ = T୭ୠୱ,ୢୟ୷ + ൫ തܶ௙௨௧,௠௢௡ − തܶ௣௥௘,௠௢௡൯                                 (3.3) 

 Pୡ୭୰,ୢୟ୷ = P୭ୠୱ,ୢୟ୷ × ௉ത೑ೠ೟,೘೚೙௉ത೛ೝ೐,೘೚೙                                           (3.4) 

 

Where Tcor,day and Pcor,day are the downscaled and bias corrected temperature and precipitation 

at the daily time step, തܶ௣௥௘,௠௢௡ and തܲ௣௥௘,௠௢௡ are the monthly mean simulated temperature and 

precipitation over the present period (1961-1990), as produced by the GCMs, തܶ௙௨௧,௠௢௡ and 
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തܲ௙௨௧,௠௢௡ are the monthly mean future temperature and precipitation produced by the GCMs 

with different climate sensitivities, obtained from equations 3.1 and 3.2. Tobs,day, and Pobs,day 

are the observed temperature and precipitation at the daily time step, which is based on data 

from the National Land and Water Information Service database (NLWIS) of Agriculture and 

Agri-Food Canada (AAFC, http://www.agr.gc.ca/eng/?id=1343071073307) and covers the 

Canadian territory on a 10km grid. Information on NLWIS is presented in Chapter 4. 

( തܶ௙௨௧,௠௢௡ - തܶ௣௥௘,௠௢௡ ) and 
௉ത೑ೠ೟,೘೚೙௉ത೛ೝ೐,೘೚೙  are respectively the change factors for temperature and 

precipitation for various GCMs and climate sensitivities. 

 

3.4 Natural variability 

In this study, natural variability was investigated by using the stochastic weather generator of 

the École de Technologie Supérieure (WeaGETS) (Caron et al., 2008; Chen et al., 2012) to 

generate long times series of daily temperature and precipitation. WeaGETS is a Matlab-

based software package which integrates several options of other weather generators that are 

used to produce daily meteorological series of unlimited length (Chen et al., 2012). 

WeaGETS enables users to perform impact studies on the rare occurrences of meteorological 

variables, which is not possible when using a block resampling approach. However, the 

original version of WeaGETS (Caron, 2008) used in this work underestimates interannual 

variability. More recently, WeaGETS was upgraded to explicitly account for interannual 

variability (Chen et al., 2012). The original version of WeaGETS was used in this study 

because the improved version was unavailable at the time the decision was made to use this 

method to investigate natural variability. This version was also used by Minville et al. (2008) 

to take into account natural variability in climate change impact studies. 

 

In this work, 50 climate projections (minimum and maximum air temperature, precipitation) 

were produced by using equations (3.3) and (3.4) to combine 10 GCMs and 5 climate 

sensitivities. Each projection, covering 33 years of future climate (2065-2097), was inputted 

into WeaGETS to generate 50 time series of 33-year duration that were statistically similar to 

the original projection. Although the weather generator underestimated interannual 
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variability, it successfully retained the original features of the input data with a high-

frequency natural variability (Chen et al., 2012). As a result, a total of 2500 time series (10 

GCMs × 5 climate sensitivity × 50 natural variability) of future daily precipitation and 

temperature were generated for input into each of the four hydrological models used in this 

study. Figure 3.4 graphically shows the combination of GCM structure, climate sensitivity 

and natural variability that resulted in the 2500 time series used in the hydrological models. 

 

 

Figure 3.4 Flowchart showing the combination of GCM structure, climate sensitivity 
and natural variability that was used to produce the precipitation and temperature time 

series inputted into the hydrological models 
 

Lastly, distinct time series were produced for each sub-watershed of the MRB (see Chapter 4 

for a description of the sub-watersheds). 

 

3.5 Hydrological modeling 

Previous studies (Chen et al., 2011a; Poulin et al., 2011) have shown that the uncertainty 

linked to hydrological model parameters was small when compared to the uncertainty of 

hydrological model structure. Therefore, only the uncertainty associated to model structure 

was considered in this study. 
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3.5.1 Hydrological models 

Four hydrological models were used, namely two lumped conceptual models (HSAMI and 

HMETS), one physically-based distributed model (HYDROTEL) and one semi-distributed 

conceptual model (HBV). These models are described below. The rationale for using four 

models displaying a range of model structures was that it would provide a clearer 

understanding of the importance of this particular factor in uncertainty assessment. Previous 

studies had generally considered a few number of hydrological models (e.g. Wilby and 

Harris, 2006; Kay et al., 2009; Poulin et al., 2011; Chen et al., 2011a). Table 3.1 outlines the 

general properties of the hydrological models used in this study. 

 

Table 3.1 Main properties of the hydrological models 
Taken from Bergström (1995, p. 446) Singh and Woolhiser (2002, p. 273) 

Ludwig et al. (2009, p. 66) and Poulin et al. (2011, p. 629) 

Model name HYDROTEL HBV HSAMI HMETS 

Model structure 
Physically-

based 
Conceptual Conceptual Conceptual 

Spatial discretization Distributed Semi-distributed Lumped Lumped 

Time step Daily/sub-daily Daily/hourly Daily Daily 

Input data Tmin, Tmax, P Tmean, P Tmin, Tmax, P Tmin, Tmax, P

Physiographic info Required Required No-required No-required 

Snowmelt routine Yes Yes Yes Yes 

Automatic parameter 
calibration routine 

Yes No Yes Yes 

 

3.5.1.1 HSAMI model 

The HSAMI is described by Fortin (2000) as being a lumped conceptual rainfall-runoff 

model that was developed and used by Hydro-Québec. This hydrological model is used to 

simulate the daily and hourly natural stream flows at a watershed outlet. It can also simulate 
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the major processes of the hydrological cycle such as snowmelt, evapotranspiration, frozen 

ground, vertical flow and horizontal runoff. The basin-averaged minimum required daily 

input data for HSAMI are maximum and minimum temperatures, and liquid and solid 

precipitations (water equivalent) (Chen et al., 2011a). HSAMI contains 23 parameters. Two 

are used for evapotranspiration, six for snowmelt, ten for vertical water movement, and five 

for horizontal water movement (Chen et al., 2010). An empirical equation using the observed 

daily maximum and minimum temperature is applied to compute potential 

evapotranspiration. HSAMI computes five variables of the snow accumulation and melt 

process, including ground snow, melt, net ground snow, total melt and number of days since 

last snow. Snowmelt is simulated with a degree-day model. Vertical flows are simulated 

using four interconnected linear reservoirs, which correspond to unsaturated and saturated 

soil zones. Runoff components are filtered through two unit hydrographs and one linear 

reservoir (Chen et al., 2011a). Soil freezing/thawing is also taken into account in this model. 

Figure 3.5 illustrates the flow chart of the model. 

 

3.5.1.2 HMETS model 

HMETS, which was developed at the École de Technologie Supérieure (Brissette, 2010), is 

categorized as a lumped conceptual rainfall-runoff model. It operates in the MATLAB 

environment. Input data for HMETS consists of daily and averaged minimum air 

temperature, maximum air temperature, liquid precipitation and solid precipitation (water 

equivalent) or total precipitation in the basin. Twenty parameters are found in HMETS, ten 

are used for snowmelt, one for evapotranspiration, four for computing infiltration and five for 

upper and lower soil reservoirs (Chen et al., 2010). The modeling routines of HMETS 

include snow accumulation, snowmelt, soil freezing, soil thawing and evapotranspiration. 

HMETS offers a simple degree-day model that allows for the melting and refreezing 

processes within the snowpack. A simple empirical approach is adopted for the infiltration 

process, using two different formulations depending on whether the ground is frozen or not. 

Model calibration is performed by using the Shuffled Complex Evolution algorithm (SCE-

UA) that was developed by Duan et al. (1992). The Nash-Sutcliffe criterion is selected to 

optimize model parameters. 
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Figure 3.5 Flow chart of the lumped conceptual 
HSAMI model 

Taken from Fortin (2000, p. 8) 
 

3.5.1.3 HYDROTEL model 

HYDROTEL, which is categorized by its authors as a spatially-distributed and physically-

based hydrological model, was developed at the Institut National de la Recherche 

Scientifique - Eau Terre Environnement (INRS-ETE) (Fortin et al., 2001). It takes advantage 

of available remote sensing (RS) data and geographic information system (GIS) data to 

provide a picture of the spatial variation of watershed characteristics, such as soil type, land 

use and topography. Vertical water budgets are computed separately in simulation units (or 

elementary subwatersheds) that are called “relatively homogeneous hydrological units” 
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(RHHUs). These RHHUs are delineated based on high resolution digital elevation models 

(DEM). Land use, soil type, and other characteristics in each RHHU are obtained from high 

resolution RS data and various databases (pedology, etc.) (Fortin et al., 2007). Infiltration and 

percolation are based on soil hydraulic conductivity and saturation of the subsurface layer 

(Ludwig et al., 2009). HYDROTEL can run at daily or sub-daily time steps. The main 

routines in HYDROTEL are snowpack accumulation and melt; potential evapotranspitation 

(PET); vertical water budget, in which the soil column is subdivided into three zones; surface 

runoff on RHHUs and channel flow in watercourses (Chen et al., 2011a). The snow 

accumulation and melt process in HYDROTEL is based on a hybrid degree-day/energy 

balance approach. The formulation of the potential evapotranspitation of HYDROTEL used 

in this study is same as that of HSAMI. 

 

HYDROTEL is used operationally by the Centre d’expertise hydrique du Québec (CEHQ) to 

do streamflow forecasting for several watersheds located in Southern Quebec (Canada). It 

has been also used for watersheds in Mexico, Côte d’Ivoire, France and Argentina (Fortin et 

al., 1995; Fortin et al., 2007). 

 

3.5.1.4 HBV model 

HBV is categorized by its authors as a semi-distributed conceptual model (Bergström, 1995). 

It was originally developed at the Swedish Meteorological and Hydrological Institute (SMHI) 

in the early 70’s to assist hydropower operations and it became the standard tool for spillway 

design flood studies of hydropower systems in Sweden (Bergström et al., 1992). HBV uses 

the sub-basin as the primary hydrological unit, as well as an area-elevation distribution curve 

and a classification of land use within each sub-basin for calculation of runoff (Bergström, 

1995). Operational or scientific applications of the HBV model have been reported in more 

than 30 countries around the world (Lindström et al., 1997). HBV requires daily values of 

mean temperature and total precipitation as meteorological data. The model includes 

subroutines for meteorological interpolation, snow accumulation and melt, vertical soil 

moisture movement, evapotranspiration, runoff response, and a simple routing procedure 

between sub-basins and through lakes (Lindström et al., 1997). HBV has 33 parameters, 
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including 17 parameters for precipitation, snow accumulation and melt processes, 7 for soil 

moisture, 5 for runoff response, 1 for routing, 2 for lake simulation and 1 for defining the 

time step. The snowmelt routine follows a simple degree-day approach, with a water holding 

capacity of snow which delays runoff. Soil moisture accounting is based on a modification of 

the linear reservoir theory, insofar as it assumes a statistical distribution of reservoir storage 

capacities in a basin. Moisture movement is conceptualized with one upper non-linear 

reservoir and one lower linear reservoir. The runoff generation process is modelled by a 

response function which transforms excess water from the soil moisture zone into runoff. 

HBV also take into account direct precipitation and evaporation on lakes, rivers and other 

wet areas. Figure 3.6 presents the schematic structure of the simulation done of one sub-basin 

with the HBV model. The left diagrams schematize the routines for snow (top), soil (middle) 

and runoff response (bottom) respectively. Version 6.0.1 of the model was used in this thesis. 

 

3.5.2 Model calibration and validation 

The optimal parameter sets in the hydrological models are selected by doing model 

calibration and validation. Parameter optimization is performed over a calibration period and 

model validation, over a different period. The commonly used criterion for model 

performance is the Nash-Sutcliffe coefficient, NS (Nash and Sutcliffe, 1970):  

 

                                                     NS = 1 − ∑ ሾ୕ౙ౥ౣ(୧)ି୕౨౛ౙ(୧)ሿమ౤౟సభ∑ ሾ୕౨౛ౙ(୧)ି୕౨౛ౙതതതതതതതሿమ౤౟సభ                                           (3.5) 

 

where Qcom and Qrec indicate the computed and recorded flows respectively. The NS value 

ranges from -∞ to 1. As NS approaches 1, model performance improves to perfectly match 

the entire recorded flows. When NS equals 0, model predictions are as good as the mean of 

the recorded flows. 
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Figure 3.6 Schematic structure of one subbasin in the HBV model 
Taken from Lindström et al. (1997, p. 280) 

 

Model calibration for HSAMI, HMETS and HYDROTEL was performed automatically 

using the Shuffled Complex Evolution-University of Arizona (SCE-UA) algorithm (Duan et 

al., 1992; Duan, 2003; Arsenault et al., 2013). HBV was calibrated manually. Calibration was 

done at the daily time step, based on observed streamflow data. Optimal parameter sets were 

based on maximising the Nash-Sutcliffe coefficient (Poulin, et al., 2011). Calibration results 

are presented in Chapter 5 (section 5.2.1). 
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3.6 Uncertainty assessment 

In the proposed modeling framework, the distribution of hydrological response for future 

climate conditions was estimated by using a Monte Carlo approach in which equal and 

unequal weighting schemes were applied to sources of uncertainty, including GCM structure 

and climate sensitivity. In Monte Carlo simulations, the pivotal step is providing the 

probability distribution functions, from which weights are computed that describe the relative 

importance of different modeling components. Uniform and a triangular distribution 

functions were applied to climate sensitivity, as justified in the next section. The Reliability 

Ensemble Averaging (REA) method (Giorgi and Mearns, 2002; Giorgi and Mearns, 2003) 

was used to evaluate GCMs weights. Both Monte Carlo and REA methods are described in 

the following paragraphs. 

 

3.6.1 Monte Carlo simulation 

To perform uncertainty assessments, probabilistic approaches were used to treat the 

independent sources of uncertainty as “random variables” used to analyze the range and 

distribution of uncertainty in the results. A Monte Carlo simulation was chosen for this task. 

Other studies using Monte Carlo simulations to assess uncertainty in climate change studies 

include Prudhomme et al., 2003; Tebaldi et al., 2005; Wilby and Harris, 2006 and Jung et al., 

2012.  

 

Monte Carlo simulations have been widely used in water resources and other types of 

analyses (e.g. New and Hulme, 2000; Prudhomme et al., 2003; Wilby and Harris, 2006; 

Déqué and Somot, 2010). The method involves doing random sampling of the distribution of 

inputs and successive model runs until a statistically significant distribution of outputs is 

obtained (Lee, 2002). When computational procedures are too complicated to be formulated 

mathematically, or when many sources of uncertainty are involved in the modeling 

framework (Ang and Tang, 1975), this method can be used to propagate the uncertainties 

through the probability distribution of model inputs. 
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In a Monte Carlo simulation, each input variable ௜ܺ of the system that is analyzed is given a 

probabilistic distribution. Values of input variables ௜ܺ are pooled from their corresponding 

distribution and used to calculate the corresponding system output. The process of selecting 

sets of ௜ܺ values and estimating the system output is repeated for a large number of times (for 

example, 10,000) (Modarres, 2006). Statistically significant features of the system output can 

then be estimated to produce the uncertainty characteristics of the output. This method is 

very simple and straightforward to apply.  

 

The main disadvantage of the Monte Carlo method is that the probability distribution 

associated with input variables must be defined before computation can be done (Lee, 2002). 

In addition, the Monte Carlo method is introduced to ensure coverage of the entire 

probability distribution of input variables by dividing the distribution into several segments 

of equal probability (Modarres, 2006).  

 

In a Monte Carlo simulation, each source of uncertainty in a model or modeling system is 

associated to a prescribed probability distribution function. The probability distribution for 

GCM structure that was adopted in this study is based on the Reliability Ensemble Averaging 

(REA) concept of Giorgi and Mearns (2002, 2003) and is explained in section 3.6.2.  

 

From the envelope of all possible climate sensitivity distributions and, in line with the AR4 

climate sensitivity synthesis assessment (Figure 3.7), the probability is that climate 

sensitivity ranges between 2.0 to 4.0°C. As the most likely value of climate sensitivity is 

3.0°C (Rogejl et al., 2012), a simple symmetrical triangular distribution for the climate 

sensitivity parameter was adopted in this study, according to New and Hulmes (2002). In this 

study, the distribution is ranging from 2.0 to 4.0°C, with a central value of 3.0°C being the 

most likely value. Note that the IPCC AR5 (IPCC 2013) suggests a range of climate 

sensitivity of 1.5 to 4.5°C. This range was not adopted here as the information was not 

available at the time this study was conducted. Figure 3.8 presents the triangular distribution 

that was employed for assigning different weights to climate sensitivity. A uniform 
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probability distribution was also considered in order to assess the sensitivity of the simulation 

results to this parameter.  

 

 

Figure 3.7 Probability density function (PDF) of climate sensitivity. The shaded 
grey area bounded by a thick black line on the background represents the 

envelope of all 10,000 randomly drawn climate sensitivity distributions (thin 
black lines) that are in line with the AR4 climate sensitivity statements. The grey 

vertical area indicates the most likely probability range around 3.0°C 
Taken from Rogelj et al. (2012, p. 250) 

 

 

Figure 3.8 The triangular probability distribution of climate sensitivity 
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Uncertainty due to natural variability was assigned a uniform probability distribution. Finally, 

each hydrological model used in this study was assumed equally good. In other words, a 

uniform distribution was assumed to account for the uncertainty due to hydrological model 

structure.   

 

As explained in section 3.4, 2500 time series of daily precipitation and temperature were 

generated to cover the uncertainty due to GCM structure, climate sensitivity and natural 

variability. These series were used as input into the HYDROTEL, HBV, HSAMI and 

HMETS models to produce a total of 4×2500 = 10,000 time series of future (2080 horizon) 

daily flows, from which relevant hydrological variables, in this study, annual runoff and 

spring peak flow, were retrieved and put into a database. The resulting database was then 

sampled by using the Monte Carlo approach according to the prescribed probability 

distributions of the sources of uncertainties. A probabilistic distribution of selected 

hydrological model output (e.g. annual runoff) was then obtained, from which climate 

change impacts on hydrological regime stemming from these sources of uncertainty were 

analyzed. Figure 3.9 graphically shows how the Monte-Carlo modeling process works in this 

study for establishing the equal-weight and unequal-weight experiments. 

 

 

Figure 3.9 Graphical representation of Monte Carlo method 
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3.6.2 REA method 

Attempts have been made to estimate climate model uncertainties on the basis of variables 

that can be retrieved easily. These include the ‘impact relevant climate prediction index’ 

presented by Wilby and Harris (2006), the maximum entropy method by Laurent and Cai 

(2007), the metrics used in the ENSEMBLES project (ENSEMBLES, 2009) and the 

Bayesian statistical method by Tebaldi et al. (2004). Such approaches have their own 

requirements, some of which are applicable to specific hydrological variables, such as low 

flows (Wilby and Harris, 2006), others are employed for RCMs (ENSEMBLES, 2009), still 

others need an estimation of prior probability distributions (Laurent and Cai, 2007; Tebaldi et 

al. 2004). In this study, the Reliability Ensemble Averaging (REA) method (Giorgi and 

Mearns, 2002) was chosen to estimate the relative importance of GCMs used in the 

uncertainty assessment. The REA method is an approach, based on individual model 

performance and model convergence criteria, that is used to assess climate model 

performance (Giorgi and Mearns, 2002; Giorgi and Mearns, 2003). To our knowledge, this is 

the first attempt to use the REA method to assign climate model weights in a GCM 

uncertainty assessment. For a given climate model ݅, the REA model reliability factor ܴ௜ , 
which can be viewed as an indicator for assigning weights to GCMs, is defined as: 

 ܴ௜ = ൣ൫ܴ஻,௜൯௠ × ൫ܴ஽,௜൯௡൧ሾଵ/(௠×௡)ሿ = ൜൤ ఢೡ௔௕௦(஻ೡ,೔)൨௠ × ൤ ఢೡ௔௕௦(஽ೡ,೔)൨௡ൠሾଵ/(௠×௡)ሿ
         (3.6) 

 

The REA is usually applied at the sub-continental or continental scale (Giorgi and Mearns, 

2002; Sperna Weiland, et al., 2012). Since this method was also implemented at the regional 

scale (Sperna Weiland et al., 2012) it is considered as a technique applicable to large 

watersheds, such as the MRB (see Chapter 4 for the description of the study site). ܴ஻,௜ 
describes the climate model performance in simulating an observed climatic variable, e.g. 

temperature and precipitation. ܴ஽,௜  is a factor that represents model convergence. The 

parameter ߳௩ is a measure of natural climate variability, which is computed as the difference 

between maximum and minimum value of 15-year moving averages of the series of observed 
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climatic data averaged in the study area. The subscript ݒ refers to the particular variable 

analysed. Bias ܤ௩,௜  is defined as the difference between GCM simulations and observed 

historical averages of climatic variable for the control period. Distance ܦ௩,௜ is a parameter 

that indicates how far a given climate model is from the remaining ensemble in simulating a 

particular climatic variable. A high value of ܦ௩,௜ is an indication that the climate model is an 

“outlier” in relation to the remaining models. The parameters ݉ and ݊ used to weigh each 

criterion were assumed to be equal to 1 as suggested by Giorgi and Mearns (2002). The 

computed value of ܴ௜ ranges from 0 to 1. A value close to 1 indicates that the model has a 

good performance in simulating a given climatic variable and is not an outlier as compared to 

the ensemble of analyzed models. Details of the computed procedure of the REA approach 

can be found in Giorgi and Mearns (2002).  

 

Once the reliability factor ܴ௜ for each climate model is calculated, the corresponding GCM 

weight ௜ܹ is computed as: 

 

௜ܹ = ோ೔∑ ோ೔೔ಿసభ                                                                 (3.7) 

 

Where ௜ܹ is the corresponding weight for model ݅ and ܰ is the total number of models used. 

 

Figure 3.10 illustrates the procedure of applying the REA method to calculate the reliability 

factor ܴ௜  and the corresponding GCM weights. In this figure, തܸ௢௕,௠௔௫  and തܸ௢௕,௠௜௡  are 

respectively the maximum and minimum values of a 15-year moving average climatic 

variable, derived from observed data over the selected reference time period. Monthly air 

temperature and precipitation are the variables selected in this study. തܸ௢௕,௥௘௙ and തܸ௜,௥௘௙ are the 

mean values of the variable for the reference time period derived from the observed data and 

GCM simulations respectively. ∆ పܸതതതത  is the mean change of the variable derived from the 

simulation of GCM(݅) between the future time period and the reference period, while the ∆ܸതതതത 
is the average of the ∆ܸ values over all GCMs.  
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Figure 3.10 REA method implementation scheme 
 

The procedure starts by computing തܸ௢௕,௠௔௫ and തܸ௢௕,௠௜௡. The difference between തܸ௢௕,௠௔௫ and തܸ௢௕,௠௜௡ is computed as ߳௩. The mean values for the reference period are then calculated from 

meteorological observations and from each GCM(݅) output as തܸ௢௕,௥௘௙ and തܸ௜,௥௘௙ respectively. 

The difference between തܸ௢௕,௥௘௙ and തܸ௜,௥௘௙ is then used to compute ܤ௩,௜, the bias between each 

GCM(݅) and the observations. ∆ పܸതതതത is calculated for each GCM(݅) as the variable between the 

future and the reference time period, from which ∆ܸതതതത	 is computed, indicating the average 

change for all GCMs. The difference between the individual change ∆ పܸതതതത and the average 

Observation

തܸ௢௕,௠௔௫ , തܸ௢௕,௠௜௡ 

GCM simulation (i=1~10) 

߳௩= തܸ௢௕,௠௔௫- തܸ௢௕,௠௜௡ 

15-year 
moving 
average 

Mean 
(1961-
1990)

തܸ௢௕,௥௘௙ 

=௩,௜ܤ തܸ௜,௥௘௙ − തܸ௢௕,௥௘௙ 

Mean 
(1961-
1990)

തܸ௜,௥௘௙ 

Mean 
(2061-
2090) 

∆ܸതതതത௜   ∆ܸതതതത mean 

௩,௜=∆ܸതതതത௜ܦ − ∆ܸതതതത 

ܴ௜=൜൤ ఢೡ௔௕௦(஻ೡ,೔)൨௠ × ൤ ఢೡ௔௕௦(஽ೡ,೔)൨௡ൠሾଵ/(௠×௡)ሿ

 ∆෪ܸ = 
∑ோ೔×∆௏തതതത೔∑ோ೔  

௜ܹ = 
ோ೔∑ோ೔ 

No 

Yes 

∆ܸതതതത − ∆෪ܸ < ݏ݌݁   ∆ܸതതതത = ∆෪ܸ  
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change is ܦ௩,௜, the distance between climate model i and the ensemble, which is calculated by 

using an iterative procedure. This is required because it is not known a priori what are the 

values of ܴ௜ and that the ܦ௩,௜ values are linked to ܴ௜. A first estimate of ܦ௩,௜ is produced from 

GCM outputs, assuming that all GCMs share the same ܴ௜ value (or have the same weight). 

The dashed arrow indicates this one-time calculation. A first estimate of the reliability factor ܴ௜ for each GCM is then produced by using equation (3.6) based on the computed ߳௩, ܤ௩,௜ 
and ܦ௩,௜ values. The estimated ܴ௜ factors are then used to calculate 	∆෪ܸ , which is an updated 

value of ∆ܸതതതത . The updated ∆ܸതതതത  is then used to recalculate ܴ௜  and the iterative procedure 

continues until 	∆෪ܸ 	converges to ∆ܸതതതത with a tolerance factor eps. Lastly, the relative weight of 

each GCM is obtained from the ܴ௜ values using equation (3.7). 

 

The above procedure was used to rank the GCMs according to temperature and to 

precipitation output. The corresponding weights are ்ܹ  and ௉ܹ  for temperature and 

precipitation, respectively. As hydrological processes can be affected by both precipitation 

and temperature, weights reflecting the integrated effect of both variables were also 

developed. To that end, empirical power functions were proposed to investigate the relative 

importance of each variable in the overall weight assessment. The equations are: 

 (ܹ଴.ହ௉,଴.ହ்) = ( ௉ܹ)଴.ହ × ( ்ܹ)଴.ହ                                            (3.8) 

 (ܹ଴.ଶହ௉,଴.଻ହ்) = ( ௉ܹ)଴.ଶହ × ( ்ܹ)଴.଻ହ                                         (3.9) 

 (ܹ଴.଻ହ௉,଴.ଶହ்) = ( ௉ܹ)଴.଻ହ × ( ்ܹ)଴.ଶହ                                       (3.10) 

 

Equation 3.8 assigns an equal importance to precipitation and temperature, while equation 

3.9 (3.10) gives more (less) importance to temperature and less (more) importance to 

precipitation in calculating the GCMs weights. 
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3.6.3 Frequency analysis 

Risk analyses in hydrologic engineering and in water resources management involves 

calculating the return periods of hydrological variables, such as spring peak flows, etc. In this 

study, various sources of uncertainty known or suspected to have an effect on predicted 

hydrological variables as a result of climate change were investigated through frequency 

analyses. More specifically, future climate return periods of selected hydrological variables 

of importance for the design and the management of hydroelectric systems were computed, 

taking into account the weighting schemes assigned to GCM models, climate sensitivity, 

natural variability and hydrological model structure. Moreover, the sensitivity of the return 

period to the choice of equal or unequal weights for GCM structure and climate sensitivity 

was evaluated. Two hydrological variables were examined: annual runoff volume and spring 

peak flood. 

 

The choice of a proper probability distribution is of paramount importance in order to 

calculate the return periods of hydrological variables. In this study, the hydrological variables 

sampled with the Monte Carlo sampling procedure were fitted with a number of statistical 

models and the best model was used to calculate the return periods. The following statistical 

models were examined (using Matlab statistical toolbox): Normal, Rayleigh, extreme value, 

and lognormal. For the two hydrological variables investigated, the normal distribution 

proved to be the best model according to a Kolmogorov-Smirnov statistical test (Chakravart 

et al., 1967) and was used to calculate the return periods. This allowed an evaluation of how 

the return periods of those hydrological variables evolved with climate change and an 

assessment of the sensitivity of the computed future return periods, based on the choice of the 

weighting scheme strategy. 





 

CHAPITRE 4 
 
 

STUDY WATERSHED AND DATA 

This work investigates the hydrological impact of climate change on a Canadian river basin, 

the Manicouagan River Basin. A description of this watershed is now presented, including its 

physiographic characteristics and hydrological regime. This chapter also provides a 

description of the meteorological and river flow data used in the study. 

 

4.1 General watershed description 

The site that is the subject of the study is the Manicouagan River Basin (MRB), which is 

centered at 51°23'N, 68°42'W. It is located in the Côte-Nord region in the province of 

Quebec, Canada. The Manicouagan River flows into the estuary of the Saint Lawrence River 

(Figure 4.1). The basin has a total drainage area of 44,500 km2, with an annual mean 

discharge of 1,002 m3/s at the outlet of the basin (Ministère du Développement durable, de 

l’Environnement et de la Lutte contre les changements climatiques: 

http://www.mddelcc.gouv.qc.ca/eau/bassinversant/bassins/manicouagan/). From upstream to 

downstream, the main sub-watersheds are: Petit lac, Manic 5, Toulnustouc, Manic 3, Manic 2 

and Manic 1 (see Figure 4.1 and Table 4.1). The altitude above the sea level in the MRB 

varies between 37 m in the south and 1,143 m in the north, having north-south variations in 

temperature and precipitation fields. Its hydrological regime is typical of that of northern 

river watersheds and is dominated by spring snowmelt runoff. The amount of average annual 

rainfall in MRB is about 1,015 mm, one-third of which is in the form of snow. The MRB is 

characterized by cold winters and warm short summers. The accumulation of snow and lake 

freeze-up in the MRB starts in October and last until May, and occasionally early June. The 

average monthly temperature varies between -20°C in January and 21°C in July (Baie-

Comeau station). Depending on which hydrological model was used, up to 29 sub-

watersheds (see Figure 4.1) were included in the hydrological modeling process. 
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Figure 4.1 Location map of the Manicouagan basin with its river network of hydroelectric 
generating stations and main sub-watersheds 

 

Table 4.1 Characteristics of the main sub-watersheds of the MRB 
Derived from Haguma (2013, p. 65) 

Main 
subwatersheds 

Area 
(km²) 

Center Latitude 
(°N) 

Center Longitude 
(°W) 

Average 
elevation (m) 

Elementary 
subwatersheds

Petit Lac 3400 52.2 67.7 597 3 

Manic 5 24700 52.0 68.9 544 14 

Toulnustouc 7300 51.0 67.6 504 5 

Manic 3 4500 50.5 68.5 421 3 

Manic 2 4400 50.0 68.2 392 3 

Manic 1 150 49.3 68.3 119 1 

Manicouagan 44500 51.4 68.4 546 29 

 

With its abundant water resources, the MRB is a significant hydropower source for the 

province of Quebec. A series of hydroelectric generating stations were built in the basin and 

are currently operated by Hydro-Québec, the provincial electrical utility. The Manicouagan 
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hydroelectric system has two major reservoirs, the Manicouagan and Toulnustouc reservoirs, 

as well as 7 power plants, for a total installed capacity of 5,810 MW (Haguma, 2013). Three 

of the hydroelectric generating stations are of the reservoir type and four are run-of-river 

stations. The Manicouagan reservoir, an annular lake often called the “eye of Quebec”, is 

located in the Manic 5 sub-watershed and is the largest water body of the Manicouagan 

hydroelectric complex, with a surface area of 1,942 km2 and an average depth of 73 m. The 

reservoir itself is the fifth largest in the world by volume, with an estimated capacity of 

135,000 hm3. It feeds two hydroelectric power plants with an installed capacity of 2,660 MW 

(Haguma, 2013). The presence of the Manicouagan reservoir has profoundly modified the 

natural hydrological regime of the river, as shown in Figure 4.2. Indeed, the power plants 

hold on 2,401 km2 of water surface which is added on the water area of many lakes dispersed 

throughout the MRB, playing the role of a buffer pool during floods. 

 
  

 

Figure 4.2 Average annual hydrograph of the Manicouagan River Basin 
at the McCormick station (Manic 1 power station) before (1947-1950) 

and after (1976-1979) building the Manicouagan Reservoir 
Taken from Patoine et al. (1999, p. 14) 
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The MRB is characterized by a typical Laurentian topography with rounded hills reaching 

1,500 m of elevation and with depressions occupied by lakes and rivers. The northern region 

of the MRB has steep slopes while the south region is covered with gentle slopes. According 

to Murtaugh (1976), the abundant molten rocks discovered in MRB, which are collectively 

known as “impactites”, can be grouped into four categories: shock metamorphosed country 

rocks, breccias, igneous rocks and contact metamorphosed rocks. The presence can be 

explained by the fact that this watershed was formed by a crater (Murtaugh, 1976). Adequate 

water resource and diversified terrain conditions result in 75% of the MRB area being 

covered by forest. The information on topography and land use in the MRB is presented in 

Figure 4.3. 

 

 

Figure 4.3 Topography and land use in the Manicouagan River Basin 
Taken from: Haguma (2013, p. 36) 
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4.2 Climatological, physiographic, and flow data 

The data used in this study are presented below, including the GCM output used to produce 

the climate projections and the meteorological, physiographic and hydrological data used to 

implement and run the hydrological models. 

 

4.2.1 Climatological data 

This study required meteorological observations describing the current climate, as well as the 

climate data provided by GCMs to describe future precipitation and temperature regimes. 

Daily precipitation and daily maximum and minimum temperatures were used. As the MRB 

has a vast drainage area of 44,500 km2 and is almost uninhabited, there are currently no 

weather stations in it. The available weather data observed from past weather stations are 

short-term and incomplete. The nearest weather station is located in Baie-Comeau. The 

meteorological data used in this study are gridded data with a resolution of 10 × 10 km from 

“fictive” weather stations. 

 

4.2.1.1 NLWIS data 

As there is currently no weather station in the MRB that has been in place for a long enough 

duration to provide valid observations, this study used as meteorological observations the 

gridded weather data provided by Agriculture and Agri-Food Canada (AAFC, 

http://www.agr.gc.ca/eng/?id=1343071073307), which was derived from the database of the 

National Land and Water Information Service (NLWIS). The database contains regional 

daily precipitation, maximum temperature and minimum temperature data for the recent past 

(1975-2007) on a 10 km grid (NLWIS). A total of 440 NLWIS grids cover the study basin. 

Daily precipitation and temperature (Tmax, Tmin) data from the database were attributed to 

each sub-watershed of the MRB (up to 29, see Figure 4.1). Based on the NLWIS dataset, data 

of the recent past, which cover a 33-year period extending from 1975 to 2007, were used as a 
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base line for the generation of future climate projections and in the implementation of the 

REA method.  

 

4.2.1.2 GCM data 

Monthly GCM precipitation, minimum and maximum temperature data covering the entire 

North America region, including the study site were provided by the Ouranos Consortium on 

Regional Climatology and Adaptation to Climate Change. These data were taken from the 

“Climate of the Twentieth Century Experiment” (20C3M) (Laurent and Cai, 2007). Table 4.2 

outlines the general information of the GCMs used in this study. Data from different runs (or 

members) of a GCM (e.g. CGCM 3.1) for a climate variable were averaged.  

 
Table 4.2 General information on the selected GCM, including the number of grid points 

covering the province of Québec and climate sensitivity value 

Acronym Agency Country
Resolution

(lat×lon) 

Grid 
points 

(lat×lon)
Run 

Estimated 
sensitivity

(°C) 

BCCR-BCM2.0 
Bjerknes Centre for Climate 

Research 
Norway 2.8°×2.8° 6×8 Run1 3.5 

CGCM 3.1 
Canadian Centre for Climate 
Canadian Centre for Climate 

Modelling and Analysis 
Canada 3.7°×3.7° 5×7 Run1-5 4.0 

CNRM-CM3 
Centre National de Recherches 
Météorologiques, Météo France 

France 2.8°×2.8° 6×8 Run1 3.5 

CSIRO-MK3.0 
Commonwealth Scientific and 

Industrial Research Organization 
Australia 1.9°×1.9° 10×12 Run1 3.5 

GFDL-CM2.0 
Geophysical Fluid Dynamics 

Laboratory 
USA 2.0°×2.5° 9×9 Run1 3.0 

INM-CM3.0 
Institute of Numerical 

Mathematics, Russian Academy 
of Science 

Russia 4°×5° 4×5 Run1 2.5 

IPSL-CM4 L’institut Pierre-Simon Laplace France 2.5°×3.75° 6×6 Run1 3.5 

MIROC3.2(medres) 
Center for Climate System 

Research 
Japan 2.8°×2.8° 6×8 Run1-3 4.0 

MPI-ECHAM5 
Max Planck Institute for 

Meteorology 
Germany 1.9°×1.9° 10×12 Run1-3 4.0 

NCAR-PCM1 
National Center for Atmospheric 

Research 
USA 2.8°×2.8° 6×8 Run1-4 2.0 

 

The value of climate sensitivity (last column) for each GCM was estimated, based on the 

temperature change between future and current climates retrieved from GCM output, which 

was then compared with changes produced by MAGICC/SCENGEN for a given climate 
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sensitivity. The region covering the province of Quebec was utilised for this comparison. The 

climate sensitivity parameter in MAGICC/SCENGEN was adjusted in order to minimize the 

difference between the original GCM output and that from MAGICC/SCENGEN. 

 

As the uncertainty associated to GHG SRES scenarios was found to be small, compared to 

other sources (e.g. Prudhomme et al., 2003; Chen et al., 2011a), it was decided to select only 

one scenario for this work. Here the SRES A2 scenario, representing a rather “strong” 

increase of expected CO2 concentration, was selected. The selected future horizon is centered 

around 2080 (2065-2097). This horizon corresponds to the time period for which global 

atmospheric CO2 concentration has doubled compared to the present (year 2000), assuming 

the GHG scenario A2 (see Figure 4.4).  

 

 

Figure 4.4 Atmospheric CO2 concentrations 
projected for 6 SRES illustrative scenarios 
Taken from IPCC Third Assessment Report-

WGI-summary for policymakers (2001, p. 14) 
 

Figure 4.5 illustrates the expected changes in temperature and precipitation, at the 2080 

horizon of the MRB, for the GCMs used in this study (solid marks in the figure). Other 
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GCMs are also shown in this figure, (hollowed marks) for comparison. The range of 

temperature and precipitation changes produced by the 10 selected GCMs were deemed 

adequate for the provision of a good coverage of the uncertainty due to GCM structure. One 

must keep in mind that each GCM displays its own climate sensitivity, therefore the changes 

observed in Figure 4.5 actually reflect combined uncertainties due to the GCM structure and 

climate sensitivity.  

 

 

Figure 4.5 Average variation in temperature and precipitation 
in the Manicouagan River Basin for the 2080 time horizon 

 

4.2.2 Physiographic data 

In addition to the meteorological data, the physiographic characteristics of the sub-

watersheds required to run the hydrological models, e.g. soil type, topographical information 

and vegetation, were retrieved from various databases. Geobase, which was developed by the 

Canadian Council on Geomatics, provides high-quality geospatial base information that 

covers the entire Canadian landmass. The Harmonized World Soil Database is a database 

with 30 arc-second resolution, which has over 16,000 different soil mapping units that 

combines existing regional and national updates of soil information worldwide. The 

Canadian Digital Elevation Data (CDED) produced by the Centre for Topographic 
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Information (CTI) consists of gridded data points of terrain elevation displayed at regularly 

spaced intervals and at spatial resolution scales of 30 meters (1:50,000) and 90 meters 

(1:250,000). The CDED is based on hypsographic and hydrographic elements of the National 

Topographic Data Base (NTDB) or of the Geospatial Data Base (GDB) 

(http://www.geobase.ca/geobase/en/data/cded/index.html). Based on this topographic and 

elevation information, the MRB was subdivided into 29 elementary sub-watersheds (see 

Figure 4.1) so that its hydrological regime could be modeled by using the HYDROTEL and 

the HBV models. 

 

4.2.3 Hydrological data 

The daily flow values of the six main sub-watersheds of the MRB required to calibrate the 

hydrological models were provided by Hydro-Québec.  

 

It is important to note that these flows are actually ‘naturalized’, in other words, they were 

reconstructed from observed reservoir water levels and controlled flows at the hydroelectric 

stations by using the following mass balance equation: 

 

OI
t
V −=

Δ
Δ

                                                          (4.1) 

 

Where ܸ  represents water volume in the reservoir, ܫ  is the inflow to the reservoir 

(unregulated) and ܱ is the outflow from the reservoir (regulated). The daily inflows obtained 

using the above equation were filtered to avoid unrealistic streamflow values (e.g. negative 

flows) resulting from the reconstruction process. To determine the variation of the water 

volume in the reservoir, Hydro-Québec applied the empirical relationship between daily 

water level and reservoir storage. Note that some factors, such as wind, which could lead to 

inaccurate measurements of water level, were not taken into account in the mass balance 

calculation performed in Hydro-Québec’s current work (J. Roy 2014, pers. comm., July 23). 
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Because Manic 1 sub-watershed is very small, compared with the others (see Table 4.1), it 

was decided not to consider it in the calibration effort. 



 

CHAPTER 5 
 
 

RESULTS AND DISCUSSION 

This chapter presents the results and an analysis of the impacts of climate change on the 

hydrological regime of the MRB. Its first three sections are devoted to the following subjects: 

climate projections, sources of uncertainty and their impacts in the watershed’s hydrological 

response and the Monte-Carlo analysis. Lastly, it concludes with a discussion about the 

uncertainty analysis and on the use of weighting schemes in climate change impact studies. 

 

5.1 Climate projections  

Future climate projections were produced as an ensemble of multiple climate models (10 

models) and climate sensitivities (between 2.0°C and 4.0°C) under the A2 scenario for the 

2080 time horizon (2065-2097). Scatter plots of seasonal (winter, spring, summer and 

autumn) and annual changes of precipitation (ratio) and mean temperature (difference) are 

presented in Figure 5.1.  

 

All GCMs produce annual increases in temperature and most also produce increases in 

precipitation in a future climate of the MRB. Figure 5.1 shows modest increases in seasonal 

and annual mean temperature, associated with increasing climate sensitivity. Very little 

change in annual and in seasonal precipitation is observed along with increasing climate 

sensitivity. Going from the smallest to the largest value of climate sensitivity, the markers 

which represent various GCMs become increasingly dispersed along the ΔT axis, while 

displaying a much smaller dispersion along the ΔP/P axis. In other words, the sensitivity of 

ΔP/P to changes in climate sensitivity is smaller than for ΔT. One exception is the CGCM 

model, which shows a notable increase of ΔP/P with climate sensitivity.  

 

 



 

 
 

Figure 5.1 Scatter plots of seasonal and annual changes of temperature and precipitation obtained for all ten GCMs and three 
climate sensitivities (2.0°C, 3.0°C, 4.0°C) with scenario A2 at the 2080 time horizon (2065-2097). CS represents climate sensitivity 

80 
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Generally, the range of precipitation change of the GCMs is largest in winter (DJF) and 

smallest in summer (JJA), and is almost not affected by climate sensitivity. For instance, in 

winter, the precipitation change varies from -1.4% (GFDL) to 23.9% (CGCM), when climate 

sensitivity is 2.0°C, while it varies from -1.4% (GFDL) to 28.9% (CGCM), when climate 

sensitivity is 4.0°C. In summer, the range of precipitation change varies from -8.0% (CSIRO) 

to 11.3% (MIROC), when climate sensitivity is 2.0°C, while it varies from -5.8% (CSIRO) to 

11.5% (MIROC), when climate sensitivity is 4.0°C. On the other hand, the range of 

temperature change is largest in spring (MAM), varying from 0.5°C (CNRM) to 4.7°C 

(GFDL), when climate sensitivity is 2.0°C, and from 2.1°C (CNRM) to 6.6°C (GFDL), when 

climate sensitivity is 4.0°C. The spread of temperature change is smallest in summer, varying 

from 1.5°C (BCCR) to 4.3°C (MIROC), when climate sensitivity is 2.0°C, and from 2.8°C 

(BCCR) to 6.3°C (MIROC), with a climate sensitivity of 4.0°C 

 

Table 5.1 and Table 5.2 respectively outline the precipitation change (∆P/P) and temperature 

change (∆T) for three climate sensitivities (2.0°C, 3.0°C, 4.0°C) and for each GCM at the 

2080 horizon. Comparing all seasonal simulated changes with climate sensitivity of 3.0°C 

(mid value), CSIRO shows the largest average precipitation decrease, i.e. -7.0% in summer 

(JJA), while CGCM shows the highest average precipitation increase with 26.8% in winter 

(DJF). CNRM generates the smallest mean temperature increase, with 1.4ºC in spring 

(MAM), while ISPL and GFDL produce the largest increase, 8.2 ºC and 7.9 ºC respectively, 

during the winter season (DJF). Considering mean annual changes, the smallest increases in 

precipitation are obtained with CSIRO and INM, while the smallest changes in temperature 

are produced by BCCR and CNRM. Largest annual mean changes in precipitation are 

obtained with CGCM, MIROC and MPI, while the largest changes in temperature are 

produced by IPSL, GFDL and MIROC. Therefore, it can be said that the BCCR, CNRM and 

CSIRO GCMs are considered as colder and dryer models, at least over the MRB, whereas 

CGCM, IPSL and MIROC are seen as warmer and wetter models.  
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In Table 5.1 and Table 5.2, the rankings (in parentheses) of climate sensitivity uncertainty (1, 

is the most sensitive and 10, the least sensitive) were established by computing the range of 

temperature or precipitation change for each GCM, i.e., the spread of the ∆T or ∆P/P values.  

 

Table 5.1 The seasonal and annual change (in square brackets) of precipitation 
(∆P/P) obtained for each GCM from three climate sensitivities (2.0°C, 3.0°C, 4.0°C) 

respectively with scenario A2, 2080 time horizon (2065-2097). The ranking of 
climate sensitivity uncertainty (1: high uncertainty; 10: low uncertainty) for each 

GCM is presented in parentheses, based on range 

GCM 
∆P/P (%) 

DJF MAM JJA SON Annual 

BCCR 
[9.7 9.7 9.8] 

(9) 
[2.7 2.7 2.8] 

(9) 
[0.9 0.9 1.0] 

(10) 
[0.4 0.5 0.5] 

(9) 
[3.4 3.5 3.5] 

(10) 

CGCM 
[23.9 26.8 28.9] 

(2) 
[18.2 21.2 23.5]

(2) 
[-2.0 -1.7 -1.3] 

(7) 
[6.2 9.8 12.4] 

(1) 
[11.6 14.0 15.9] 

(2) 

CNRM [2.7 4.7 6.2] 
(3) 

[10.4 12.1 13.7]
(4) 

[-4.0 -3.2 -2.4] 
(6) 

[-0.4 1.7 3.4] 
(2) 

[2.2 3.8 5.2] 
(4) 

CSIRO 
[7.5 10.5 15.7] 

(1) 
[-1.3 2.1 4.6] 

(1) 
[-8.0 -7.0 -5.8] 

(5) 
[-4.5 -3.0 -1.5] 

(3) 
[-1.6 0.6 3.2] 

(1) 

GFDL 
[-1.4 -1.4 -1.4] 

(10) 
[18.2 18.2 18.2]

(10) 
[-4.9 -3.4 -1.8] 

(2) 
[5.6 5.6 5.6] 

(10) 
[4.4 4.7 5.1] 

(7) 

INM [5.1 7.0 8.4] 
(4) 

[-3.5 -1.5 0.1] 
(3) 

[6.8 8.6 10.0] 
(1) 

[-3.9 -2.5 -1.0] 
(5) 

[1.1 2.9 4.4] 
(3) 

IPSL 
[21.0 21.3 21.5 

(7) 
[-3.9 -3.6 -3.3] 

(7) 
[-0.8 -0.4 -0.2] 

(8) 
[8.3 8.6 8.9] 

(7) 
[6.1 6.5 6.7] 

(8) 

MIROC 
[22.3 22.4 22.5] 

(8) 
[17.0 17.1 17.1]

(8) 
[11.3 11.4 11.5] 

(9) 
[2.3 2.4 2.5] 

(8) 
[13.2 13.3 13.4] 

(9) 

MPI [14.0 15.4 16.4] 
(6) 

[13.1 14.5 15.6]
(6) 

[3.7 5.2 6.4] 
(4) 

[18.3 19.6 20.6] 
(6) 

[12.3 13.7 14.8] 
(6) 

NCAR 
[13.7 15.0 16.2] 

(5) 
[10.0 11.5 12.7]

(5) 
[0.1 1.7 3.1] 

(3) 
[2.8 4.5 5.8] 

(4) 
[6.6 8.2 9.4] 

(5) 
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Table 5.2 The seasonal and annual change (in square brackets) of temperature (∆T) 
obtained for each GCM from three climate sensitivities (2.0°C, 3.0°C, 4.0°C) 
respectively with scenario A2, 2080 time horizon (2065-2097). The ranking of 

climate sensitivity uncertainty (1: high uncertainty; 10: low uncertainty) for each 
GCM is presented in parentheses, based on range 

GCM 
∆T (ºC) 

DJF MAM JJA SON Annual 

BCCR 
[4.5 5.3 5.8] 

(10) 
[1.1 1.8 2.4] 

(10) 
[1.5 2.2 2.8] 

(10) 
[1.7 2.4 3.0] 

(10) 
[2.2 2.9 3.5] 

(10) 

CGCM 
[5.0 6.0 6.8] 

(5) 
[2.4 3.4 4.2] 

(5) 
[2.1 3.2 4.0] 

(5) 
[2.5 3.5 4.3] 

(5) 
[3.0 4.0 4.8] 

(5) 

CNRM [4.4 5.3 6.0] 
(7) 

[0.5 1.4 2.1] 
(7) 

[1.9 2.8 3.5] 
(7) 

[2.1 2.9 3.6] 
(7) 

[2.2 3.1 3.8] 
(7) 

CSIRO [4.6 5.4 6.0] 
(8) 

[1.7 2.5 3.1] 
(8) 

[2.2 3.0 3.6] 
(8) 

[2.4 3.1 3.7] 
(9) 

[2.7 3.5 4.1] 
(8) 

GFDL [6.9 7.9 8.8] 
(2) 

[4.7 5.7 6.6] 
(2) 

[3.5 4.6 5.4] 
(4) 

[2.9 4.0 4.8] 
(3) 

[4.5 5.6 6.4] 
(3) 

INM [6.4 7.4 8.2] 
(6) 

[3.3 4.3 5.1] 
(6) 

[2.0 3.0 3.8] 
(6) 

[3.3 4.3 5.1] 
(6) 

[3.7 4.7 5.5] 
(6) 

IPSL [7.1 8.2 9.2] 
(1) 

[4.1 5.2 6.2] 
(1) 

[4.1 5.3 6.2] 
(1) 

[5.1 6.3 7.2] 
(1) 

[5.1 6.3 7.2] 
(1) 

MIROC [5.2 6.2 7.1] 
(3) 

[3.9 4.9 5.7] 
(4) 

[4.3 5.3 6.3] 
(2) 

[3.2 4.3 5.1] 
(2) 

[4.1 5.2 6.0] 
(2) 

MPI [4.6 5.3 5.9] 
(9) 

[3.3 4.0 4.6] 
(9) 

[2.2 2.9 3.5] 
(9) 

[2.4 3.2 3.8] 
(8) 

[3.1 3.9 4.5] 
(9) 

NCAR [5.3 6.3 7.1] 
(4) 

[3.1 4.2 5.0] 
(3) 

[2.3 3.4 4.2] 
(3) 

[2.9 3.9 4.7] 
(4) 

[3.4 4.4 5.3] 
(4) 

 

As mentioned above, the uncertainty of precipitation due to climate sensitivity is overall 

small, represented by small range of ∆P/P change. CSIRO displays the largest uncertainty in 

annual precipitation change (4.8%). In contrast, BCCR displays a small range of ∆P/P change 

(0.1%), thus showing the smallest uncertainty among the GCMs analysed. For each climate 

model, the uncertainty about temperature due to climate sensitivity shows little change 

between the four seasons, which present almost the same range of seasonal ∆T. IPSL 

produces the largest uncertainty (2.1°C), while MPI and BCCR generate less uncertainty in 
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annual temperature change (1.4°C and 1.3°C). Note that the CSIRO model, which ranks first 

for precipitation uncertainty and third from last for temperature uncertainty due to climate 

sensitivity, is also a cold and dry model (see Figure 5.1). The IPSL model, a warm and wet 

model, ranks first and third from last for temperature and precipitation uncertainty, 

respectively.  

 

It has been shown in Figure 5.1 that GCMs notably contribute to the dispersion on the scatter 

plots, which indicates that GCM structure is an important source of uncertainty. To 

investigate the relationship between GCM structure and climate sensitivity, the variation of 

annual average precipitation and temperature change, along with the increase of climate 

sensitivity for all ten GCMs, is presented in Figure 5.2. The ‘original’ climate sensitivity for 

each GCM is displayed by using a larger mark. In all selected GCM simulations, except INM 

and NCAR, the original climate sensitivity is greater than the central value of 3.0°C, which is 

the most likely value in the future (Rogejl et al., 2012). The slope of each line indicates the 

sensitivity of each GCM to the change in climate sensitivity. The steeper the line, the more 

sensitive the GCM is to an increase of climate sensitivity. For precipitation changes, BCCR, 

GFDL, IPSL and MIROC are relatively less sensitive to the increase of climate sensitivity as 

their lines are almost flat. In contrast, the line of CSIRO is the steepest, which indicates that 

CSIRO is the most sensitive model, and produces the smallest value of precipitation change 

compared to the other models. CGCM, IPSL and MIROC produce higher precipitation 

changes than the other models. On the other hand, all GCM structures show similar trends in 

temperature change, as they have almost identical slopes. The IPSL model is somewhat more 

sensitive, while the BCCR model displays a gentler slope and is therefore less sensitive to 

changes in climate sensitivity.  
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Figure 5.2 Annual average changes of precipitation (left) and temperature (right) 
obtained for individual GCMs with five climate sensitivities (2.0°C, 2.5°C, 3.0°C, 
3.5°C, 4.0°C) by using scenario A2 at the MRB’s 2080 time horizon (2065-2097) 

 

5.2 Uncertainty in projected flows 

Future flows in the MRB were generated with four hydrological models, i.e. HBV, HSAMI, 

HYDROTEL and HMETS, by using climate projections generated from the selected GCMs. 

The hydrological models were first calibrated and validated. The next section presents the 

calibration results, followed by an analysis of the uncertainty of GCM structure, climate 

sensitivity, natural variability and hydrological model structure associated to the simulated 

flows.  

 

5.2.1 Hydrological model calibration 

The optimal parameter sets for the hydrological models were selected through a model 

calibration and validation process. The Nash - Sutcliffe criterion was used to assess model 

performance. Results of the calibration and validation process for the four models are 

presented in Table 5.3. Daily precipitation and temperature values from the NLWIS data base 
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were used to compute the simulated flows. Both HSAMI and HMETS were automatically 

calibrated by using 20 years of naturalized daily flows (1975-1994) at the outlet of the MRB 

(See section 4.2.4). Validation was carried out by using a 13-years streamflow series (1995-

2007). HSAMI obtained a better score over HMETS for both model calibration and 

validation. HYDROTEL was automatically calibrated for the Petit Lac, Manic 5, 

Toulnustouc, Manic 3 and Manic 2 main sub-watersheds. Of the 26 parameters of the model, 

only 12 of the most sensitive ones were calibrated automatically using the SCE-UA 

algorithm (Duan et al., 1992; Duan, 2003), while the others were set to the recommended 

values taken from Turcotte et al. (2007). In HYDROTEL’s case, it is known as a 

computationally intensive model (for example, it took more than 100 hours, using an Intel 

Core i7 3.40-GHz processor, to calibrate it for a medium-sized watershed (5,000 km2) with a 

5-year flow data – Huot et al., 2014). The calibration and validation time periods for each 

sub-watershed were set to be no more than 11 years in HYDROTEL in order to reduce the 

computation time. As an automatic parameter calibration routine was not available in the 

HBV model, a manual calibration was performed with HBV for the Manic 5, Toulnustouc, 

Manic 3 and Manic 2 sub-watersheds. The different calibration and validation periods used 

here and shown in Table 5.3 were dictated by the availability of river flow data, the structure 

and complexity of the hydrological model (computational time) and the availability of an 

automatic calibration module in the hydrological models. Due to its relatively small size, the 

Petit lac sub-watershed was combined with the Manic 5 sub-watershed to simplify the 

manual calibration process of HBV. The time periods for both calibration and validation 

processes in HBV were set at 10 years on account of the manual operation. HBV generally 

showed a little better Nash-Sutcliffe score than HMETS, but a slightly inferior one compared 

to HSAMI. HYDROTEL presented the lowest Nash values among four hydrological models, 

with values ranging from 0.71 to 0.86 for calibration and 0.55 to 0.80 for validation.  
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Table 5.3 Nash-Sutcliffe coefficients obtained for four hydrological models by using flow 
time series at the daily time step 

Subbasins Petit Lac Manic 5 Toulnustouc Manic 3 Manic 2 

HYDR-
OTEL 

Calibration 
Period 1969~1975 1978~1988 1993~2003 1971~1977 1981~1987
Nash 0.75 0.86 0.81 0.71 0.82 

Validation 
Period 1988~1998 1970~1980 1981~1991 1971~1981

Nash 0.65 0.80 0.78 0.55 0.66 

HBV 

Calibration 
(1975~1984) Nash 0.88 0.81 0.88 0.90 

Validation 
(1988~1997) Nash 0.74 0.81 0.77 0.83 

HSAMI 

Calibration 
(1975~1994) Nash 0.91 

Validation 
(1995~2007) Nash 0.80 

HMETS 

Calibration 
(1975~1994) Nash 0.83 

Validation 
(1995~2007) Nash 0.72 

 

The average annual hydrographs produced by the four hydrological models that were 

analysed for both calibration and validation periods at the outlet of the MRB generally 

compared well against the average observed hydrograph, as shown in Figure 5.3. The 

standard deviations of the observed and the simulated annual discharge are presented in 

Figure 5.4. Both simulated and observed standard deviations show good agreement for the 

four analysed models. Keep in mind that HYDROTEL and HBV were calibrated and 

validated for distinct sub-watersheds, while HSAMI and HMETS, being global models, were 

calibrated using observed flows at the outlet of the MRB. Furthermore, the hydrological 

models had different calibration and validation periods (see Table 5.3). To facilitate the 

comparison, the average annual hydrograph and standard deviation of the flows simulated by 

HYDROTEL and HBV, and shown in Figures 5.3 and 5.4, cover the same periods of 

calibration and validation as HSAMI and HMETS, as indicated in Table 5.3. The flows 

simulated by HYDROTEL tend to be more variable than those of other models (Figure 5.4), 

and show increased autumn flows (SON), when compared to the observations (Figure 5.3). 
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Figure 5.3 Average annual hydrographs generated by four hydrological 
models at the outlet of MRB under recent past climate conditions: (a) 

calibration period; (b) validation period. The hydrograph of 
observation is plotted for comparison 

 

  

Figure 5.4 Standard deviation of annual discharge generated by four 
hydrological models at the outlet of MRB under recent past climate 

conditions: (a) calibration period; (b) validation period. The 
hydrograph of observation is plotted for comparison 
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5.2.2 Overall uncertainty 

The mean hydrographs of the future annual discharge at the outlet of the MRB that were 

simulated by HYDROTEL, HBV, HSAMI and HMETS are displayed in Figure 5.5. The 

envelopes include all 2500 runs produced by using 10 GCMs, 5 climate sensitivities and 50 

series of natural variability averaged over a 33-year time period centered on the 2080 horizon 

(2065-2097). The bold curve represents the mean annual hydrograph for the control period 

(1975-2007) simulated by the corresponding hydrological model. The percentage change (%) 

between the future period and control period is also plotted below the hydrograph. Figures 

5.5(a) to (d) indicate that most simulations show a distinct trend for an early spring flood and 

a generally increasing peak discharge in the future. The simulated hydrographs show that the 

time to peak will be advanced from late May to early May and sometimes, to late April. A 

significant change between the future and the control period appears in April for all 

hydrological models. An increase in the summer (JJA) and autumn (SON) flows is also 

noticed for all analysed hydrological models. HYDROTEL simulated future flows during the 

winter season (DJF) that are larger than during the control period, while no clear trends, 

above or below the flows in the control period, are discerned in the HBV, HSAMI and 

HMETS models. 

 

Similarly to HBV, HYDROTEL produces a larger range (larger envelope) of mean 

discharges in the summer and autumn season, as compared to the HSAMI and HMETS 

models. HYDROTEL also produces future spring peak discharges that are higher than those 

in the other three models. However, compared to the flows in the control period, the changes 

in future spring peak discharges produced by HYDROTEL are the least significant, which is 

mainly due to the relatively larger discharge in the month of April for the control period and 

the simulated future time to peak that occurs mostly in May. This is not the case with the 

other models, where simulated peak flows occur somewhat earlier in April and May. 

HMETS displays the smallest changes in discharges during the winter, summer and autumn 
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seasons, as compared to the flows in control period. Variability in the hydrological response 

is also small during these seasons.  

 

The average annual flows and relative percentage increases for the 2080 time horizon 

simulated by each GCM for different climate sensitivities are calculated and shown in Table 

5.4. The annual flows averaged over all GCMs and for all climate sensitivities are expected 

to increase by the time the 2080 time horizon is reached, ranging from 1.0% to 47.3% as 

compared to the current average flow. Significant increases of annual flows, which are 

simulated by HBV, HSAMI and HYDROTEL by using precipitation and temperature 

generated by the CGCM, GFDL and NCAR climate models, are obtained when compared to 

the other GCMs. This is particularly true with HYDROTEL, which shows increases 

exceeding 30% for all climate sensitivities. HMETS simulates more balanced increases for 

all GCMs for the 2080 time horizon, with the largest range varying from 8.1% (IPSL) to 23.1% 

(BCCR) when climate sensitivity is 4.0°C. It was also observed that, in general, simulated 

averaged flows tend to lessen when the climate sensitivity increases, with the notable 

exceptions of the CGCM and CSIRO models (for all hydrological models except HMETS), 

in which the sensitivity of ΔP/P with climate sensitivity is the largest (see Figure 5.2). 

 



 

 

Figure 5.5 Envelopes of annual hydrographs and the corresponding changes in percentage of daily discharge that are simulated in 
(a) HYDROTEL, (b) HBV, (c) HSAMI and (d) HMETS by using all selected GCMs, climate sensitivities and natural variability at 

the outlet of MRB for the 2080 horizon (2065-2097). The hydrograph for the control period (1975-2007), which is derived from 
the corresponding hydrological model’s simulation, is plotted for the purpose of comparison 
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Table 5.4 Average annual flows for 2080 time horizon (2065-2097) and relative increases 
(%) compared to average annual flows for control period over the MRB 

Hydrological 
model 

GCM 

Control 
period 

2080 time horizon (2065-2097) 
Climate Sensitivity 

2.0°C 3.0°C 4.0°C 
Flow 
(m3/s) 

Flow 
(m3/s)

Increase
(%) 

Flow 
(m3/s)

Increase
(%) 

Flow 
(m3/s) 

Increase
(%) 

HYDROTEL  

BCCR 

986 

1274 29.2 1252 27.0 1232 24.9 
CGCM 1322 34.0 1353 37.2 1378 39.7 
CNRM 1089 10.4 1085 10.0 1099 11.5 
CSIRO 1229 24.6 1253 27.1 1285 30.3 
GFDL 1415 43.5 1380 40.0 1348 36.7 
INM 1081 9.6 1075 9.0 1063 7.8 
IPSL 1219 23.6 1178 19.5 1146 16.2 

MIROC 1287 30.5 1259 27.7 1231 24.8 
MPI 1189 20.6 1197 21.4 1200 21.7 

NCAR 1452 47.3 1445 46.5 1443 46.3 

HBV  

BCCR 

906 

1136 25.4 1116 23.2 1099 21.3 
CGCM 1173 29.5 1204 32.9 1229 35.7 
CNRM 955 5.4 953 5.2 968 6.8 
CSIRO 1081 19.3 1103 21.7 1133 25.1 
GFDL 1241 37.0 1216 34.2 1193 31.7 
INM 951 5.0 949 4.7 943 4.1 
IPSL 1084 19.4 1056 16.6 1038 14.6 

MIROC 1133 25.1 1112 22.7 1093 20.6 
MPI 1049 15.8 1056 16.6 1062 17.2 

NCAR 1276 40.8 1275 40.7 1278 41.1 

HSAMI 

BCCR 

888 

1106 24.5 1078 21.4 1056 18.9 
CGCM 1141 28.5 1160 30.6 1173 32.1 
CNRM 943 6.2 932 4.9 940 5.9 
CSIRO 1055 18.8 1069 20.4 1091 22.9 
GFDL 1208 36.0 1169 31.6 1136 27.9 
INM 919 3.5 909 2.4 897 1.0 
IPSL 1035 16.6 993 11.8 967 8.9 

MIROC 1105 24.4 1074 20.9 1045 17.7 
MPI 1020 14.9 1020 14.9 1019 14.8 

NCAR 1246 40.3 1233 38.9 1226 38.1 

HMETS 

BCCR 

900 

1154 28.2 1128 25.3 1108 23.1 
CGCM 1122 24.7 1085 20.6 1056 17.3 
CNRM 1149 27.7 1119 24.3 1096 21.8 
CSIRO 1117 24.1 1090 21.1 1069 18.8 
GFDL 1055 17.2 1018 13.1 988 9.8 
INM 1086 20.7 1050 16.7 1022 13.6 
IPSL 1047 16.3 1005 11.7 973 8.1 

MIROC 1081 20.1 1043 15.9 1014 12.7 
MPI 1109 23.2 1082 20.2 1060 17.8 

NCAR 1102 22.4 1065 18.3 1036 15.1 
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5.2.3 GCM structure 

The uncertainty due to the GCM structure of changes in the future hydrological regime is 

investigated at the seasonal level. Figures 5.6 and 5.7 show box plots of the average seasonal 

change in percent of simulated discharges between the future (2065-2097) and the control 

periods (1975-2007) that are drawn from 250 simulations that combine five climate 

sensitivity values and 50 natural variability runs per individual GCM, as simulated by 

HYDROTEL, HBV, HSAMI and HMETS. Due to the significant increase of discharge in 

April in a future climate, a specific analysis of monthly change in April is also described and 

presented in Figure 5.8. The results in these figures show that seasonal changes in river flows 

vary between GCMs and also between hydrological models. The following paragraphs 

describe in more detail how the uncertainty in GCM structure is seasonally dependent. 

 

Winter season. In general, the warmer and wetter GCMs, such as IPSL and MIROC, tend 

generate more important increases in future discharge and more variability over the winter 

season than the colder and drier GCMs, like CNRM. However, the influence of the 

hydrological model is noteworthy, with distributed models such as HYDROTEL and HBV 

displaying an increased variability, as compared to lumped models such as HSAMI and 

HMETS. For example, there is an obvious increase in the winter flows with the IPSL model, 

compared to CNRM, as simulated by HYDROTEL and HBV. This is in contrast with the 

modest increases and smaller variability produced by HMETS. Table 5.5 presents the 

uncertainty due to GCM structure for each season when the hydrological models are 

investigated individually. The estimation of the uncertainty due to GCM structure is assumed 

here to be the largest range obtained in Figure 5.6 and 5.7, i.e., the maximum change in 

median flow minus the minimum change. When considering each hydrological model 

separately, the range in winter median flows varies from 5% with HMETS to 46% with 

HYDROTEL.  
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Figure 5.6 Box plots of percent of change in average seasonal discharge 
between the future (2065-2097) and reference (1975-2007) period 

simulated by four hydrological models at the outlet of MRB for five 
GCMs (BCCR, CGCM, CNRM, CSIRO, GFDL). All climate 

sensitivities and natural variability are used. On each box, the central 
line is the median, the top and bottom of the box are the 25th and 75th 

percentiles. The distance between the top and bottom is the interquartile 
range. The whiskers extending above and below each box indicate the 

5th and 95th percentiles respectively. Outliers are displayed as red + signs  
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Figure 5.7 Box plot of the percent change of average seasonal 
discharge between the future (2065-2097) and reference (1975-2007) 

period simulated by four hydrological models at the outlet of MRB for 
five GCMs (INM, IPSL, MIROC, MPI, NCAR). All climate 

sensitivities and natural variability are used. See Figure 5.6 for further 
explanations of the box plot  
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Spring season. All GCMs produce significant increases of river discharge (above 20%) 

during the spring season and for all hydrological models. In Figures 5.6 and 5.7, the largest 

increases are seen in the GFDL and NCAR models (up to 80%) and this, for all the 

hydrological models except HMETS, which displays a more uniform increase in spring 

discharge (about 40%), regardless of the GCM used as an input for the model. In Table 5.5, 

the uncertainty that is solely due to GCM structure, when each hydrological model is 

investigated separately, goes from 8% with HMETS (maximum change of 48% with CSIRO, 

minimum change of 39% with IPSL) to 50% with HYDROTEL (maximum change of 88% 

with GFDL, minimum change of 38% with IPSL). 

 

Summer season. Median changes to the summer flows tend to be mostly negative, i.e. a 

decrease in future flows, for a majority of GCMs investigated, regardless of the hydrological 

model used to simulate the flows. A few combinations of GCM and hydrological model 

resulted in increased future flows. A notable exception is the NCAR model, which shows 

increases from 10% to 20% for all hydrological models, except HMETS. Overall uncertainty 

when including both GCM and hydrological model structures is about 60% (increase of 24% 

with NCAR/HYDROTEL; decrease of 36% with INM/HBV). In Table 5.5, the uncertainty 

that is due solely to the GCM structure goes from 23% with HMETS to 48% with HBV.   

 

Autumn season. The autumn season is generally characterized by increased flows in the 

future. The increase is seen to vary significantly according to the GCM structure. For 

example, increases in future flows vary from 69% with the CGCM model to 22% with 

CNRM when driving the HBV hydrological model. Similarly, the increase in future flows is 

also sensitive to the choice of the hydrological model. For example, the increase is seen to 

vary from 20% to more than 60% with the CGCM model depending on hydrological model 

structure. Therefore, the uncertainty due to GCM structure appears to be of the same order of 

magnitude as the one due to the choice of the hydrological model, reaching about 50% in 

both cases. Uncertainty due to GCM structure varies from 16% with HMETS to 47% with 

HBV, as shown in Table 5.5. 
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Table 5.5 Uncertainty of GCM structure for all four seasons produced by each 
hydrological model. Max (%) is the maximum change in median flow, Min (%) is 

the minimum change and UC is uncertainty 

Models 

Winter (DJF) Spring(MAM) Summer(JJA) Autumn(SON) 

Max

(%) 

Min

(%) 

UC

(%) 

Max

(%) 

Min

(%) 

UC

(%) 

Max

(%) 

Min

(%) 

UC 

(%) 

Max

(%) 

Min

(%) 

UC 

(%) 

HYDROTEL 49 3 46 88 38 50 24 -22 46 45 6 39 

HBV 27 -10 37 72 30 42 12 -36 48 69 22 47 

HSAMI 29 -2 31 82 38 44 16 -26 42 36 0 36 

HMETS 16 11 5 47 39 8 7 -16 23 26 10 16 

 

Figure 5.8 is similar to Figures 5.6 and 5.7, but focuses more specifically on the month of 

April, where the changes in the hydrological regime are more pronounced because of an 

earlier snowmelt caused by increased air temperatures. The data used to produce Figure 5.8 

also combine 250 simulations covering a range of climate sensitivities and natural variability. 

Again, results are presented for individual GCMs and hydrological models.  

 

Overall, Figure 5.8 confirms that the uncertainty due to GCM structure on spring flow is an 

important contributor to the overall uncertainty. Taking the hydrological model individually, 

increases in future median flows range from 120% to 530% respectively for the BCCR and 

the GFDL climate models when HSAMI is used to compute future flows. HYDROTEL 

produced the smallest range of future flow changes, with increases in median flows of 80% 

and 330%, again respectively for the BCCR and GFDL models. This sensitivity to the choice 

of the hydrological model is related to the fact that although HYDROTEL produces larger 

increases in average annual flows as compared to the other models (see Table 5.4), the time 

to peak mostly occurs in May, not in April (see Figure 5.5), which is not the case with 

HSAMI. A similar behaviour is observed with HMETS. Consequently, both HYDROTEL 

and HMETS models display a smaller variability in their changes in April flows for all 



98 

GCMs considered. The uncertainty due to hydrological model structure is more fully 

addressed in Section 5.2.6. 

 

 

Figure 5.8 Percent change of average monthly discharge, in April only, between the 
future (2065-2097) and reference (1975-2007) periods simulated by four hydrological 

models at the outlet of MRB for ten individual GCMs. All climate sensitivities and 
natural variability are used. See Figure 5.6 for further explanations of the box plot 

 

5.2.4 Climate sensitivity 

The uncertainty due to climate sensitivity is presented in Figures 5.9(a) to 5.9(d) for 

HYDROTEL, HBV, HSAMI and HMETS, respectively. The dashed lines represent an 

average hydrograph at the outlet of the MRB that results from 500 simulations, using 10 

GCMs and 50 series of natural variability for the future (2065-2097) period. The percent 

change of average daily discharge between the future and reference (1975-2007) period is 

also presented separately for each hydrological model. For all hydrological models, as the 

value of climate sensitivity increases, the time to peak occurs earlier and the peak discharge 

is gradually lessened. The increase of average annual flows in Table 5.4 demonstrates this 

impact as well. The impact of climate sensitivity is mostly significant during the spring 

season, followed by the autumn season, while little influence is observed during the winter 

and summer seasons. Finally, the uncertainty associated to climate sensitivity appears to be 

moderate to small depending on the season, and regardless of the hydrological models used 

in this study. 



 

  

Figure 5.9 Annual mean hydrographs simulated by (a) HYDROTEL, (b) HBV, (c) HSAMI and (d) HMETS models and sorted by 
different values of climate sensitivity at the outlet of the MRB for the future period (2065-2097), as well as the percentage change 
of average daily discharge between the future (2065-2097) and reference (1975-2007) period. All GCMs and natural variability are 

included. Simulated hydrographs for the reference period are plotted for the purpose of comparison. CS is climate sensitivity 
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5.2.5 Natural variability 

Figure 5.10 shows the uncertainty in flows caused by natural variability, presented as the 

percent change of seasonal discharge between the future (2065-2097) and control (1975-

2007) time periods simulated by HYDROTEL, HBV, HSAMI and HMETS. The effect of 

natural variability appears here on a seasonal basis. Each box plot results from 50 series of 

natural variability. Each series combines all GCMs (10) and climate sensitivities (5), for a 

total of 10 × 5 × 33 years of daily simulated flows, from which the percent change in average 

seasonal flows were extracted.  

 

As expected, the percent change in seasonal flows is significant during the spring season for 

all investigated hydrological models, with median increases of around 50%. Other seasons 

display lower seasonal changes, either positive or negative, depending on the season being 

considered. For example, future winter changes vary from 25% with HYDROTEL to 5% 

using the HBV model. A decrease in summer flows is observed, this decrease being the 

strongest with HBV (20%) and the smallest with HMETS (5%). 

 

The impact of natural variability on seasonal flows is revealed through the spread of the box 

plots. Overall, natural variability produces notable uncertainty in all seasons and for all 

hydrological models investigated, with the exception of the HMETS model, which displays a 

very small uncertainty during the winter and spring seasons, and lower variability in the 

summer and autumn seasons compared with the other hydrological models.  

 

These observations indicate that uncertainty about the season runoff caused by the natural 

variability is not negligible and would be affected by the choice of the hydrological models 

used and, to a lesser extent, by the season. 
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Figure 5.10 Box plots of percent change of average seasonal discharge between the 
future (2065-2097) and control (1975-2007) period simulated by HYDROTEL, HBV, 
HSAMI and HMETS simulated with all 50 series of natural variability at the outlet of 

MRB. See Figure 5.6 for further explanations of the boxplot 
 

5.2.6 Hydrological model structure 

Sub-sections 5.2.3 to 5.2.5 have shown that the structure of the hydrological model impacts 

on the estimation of future flows and can be a source of uncertainty of a magnitude 

comparable to other sources of uncertainty, such as GCM structure and natural variability. In 

this section, the uncertainty due to hydrological model structure on the spring runoff volumes 

is further examined. The choice of that particular hydrological variable was motivated by the 

fact that spring runoff is one of the most important hydrological process for effective 

reservoir management. 

 

Probability density functions (PDF) of spring runoff depths (MAM) were computed using 

kernel density estimators and are shown in Figure 5.11 for individual GCMs over the 2065-

2097 time horizon. Results are presented separately for each hydrological model. A climate 
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sensitivity value of 3.0°C, which is recognised as the being the most probable climate 

sensitivity value (Rogejl et al., 2012), was used to generate the PDFs, this to better highlight 

the impact of hydrological model structure on future spring flow values. Each generated PDF 

incorporates the simulations resulting from 50 time series of natural variability. The PDF of 

the annual mean spring runoff depth is averaged for the four hydrological models for the 

control period (1975-2007) and is plotted as a dark bold curve. Distinct curves could have 

been shown for each hydrological model, but it was decided to retain a single average curve 

because all individual PDFs were very similar, the calibrated models producing very similar 

results for the control period, as evidenced in Figure 5.3. 

 

Compared to the current climate, the future spring runoff is increased, but the magnitude of 

the increase for each GCM varies according to the hydrological model used. For instance, the 

mean spring runoff and its variability in the future are largest with HYDROTEL, as 

compared with the other hydrological models for all GCMs. Moreover, the uncertainty of the 

mean spring runoff volume associated with the GCM structure, as evidenced by the spread of 

the PDF, depends on the hydrological model used and is largest with HYDROTEL and 

smallest with HMETS (see also Figures 5.6, 5.7 and 5.10). In fact, results indicate that the 

GCM structure has virtually no influence on the uncertainty of the mean spring runoff when 

HMETS is used, as evidenced by the PDF which is almost identical, no matter which GCM is 

used. Note that the spatially distributed HBV and lumped HSAMI models behave very 

similarly in simulating the spring runoff (mean and standard deviation) for all GCMs used. 

These results reveal that the uncertainty due to the hydrological model structure cannot be 

ignored. Different hydrological models may predict notable different hydrological regimes 

depending on the GCMs used to force the models. See, for example, the GFDL and NCAR 

models. 

 

It is also noted that the spring runoff PDFs appear generally less spread in the future climate 

for all combinations of GCMs and hydrological models, with perhaps the exception of 

HYDROTEL, where runoff variability in the future climate is more significant than with the 

other models. As an example, the coefficient of variation (CV), i.e. the ratio of the standard 
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deviation to the mean value, which is derived from the average discharge in spring season 

(MAM), simulated by HYDROTEL for the future period is 18.5%, while it is 16.1% with 

HBV, 15.8% with HSAMI and 12.3% with HMETS.  

 

Some GCMs such as CGCM, GFDL, MIROC and NCAR are characterized by a wider 

spread of their PDFs, i.e. they produce the largest extreme depths of spring runoff. Other 

GCMS, for example BCCR, CNRM and INM, produce tighter PDFs and therefore less 

extreme flood volumes. This is due to the warmer and wetter climate simulated by the former 

GCMs (e.g. GFDL and NCAR) that increase the probability to cause extreme events. Colder 

and dryer GCMs (e.g. BCCR, CNRM and INM) all produce future spring floods 

characterized by similar PDFs. Furthermore, these GCMs tend to simulate conditions that 

lead to extreme spring floods which are similar to today’s climate conditions. Overall, Figure 

5.11 reveals that future spring runoff volumes are comparatively affected by the choice of the 

GCM and of the hydrological model, which reinforces the need to run multiple hydrological 

models driven by multiple GCMs in order to better anticipate future hydrological regimes. 

 

Generally, results presented here have repeatedly shown that the HMETS model appears to 

behave differently from the other hydrological models in simulating future flows, although 

performance of this model in simulating current hydrological regimes is comparable to the 

other models used in this study. This is particularly apparent in Figures 5.6, 5.7, 5.10 and 

5.11 (and to a lesser extent in Figure 5.5), where the variability in winter and spring seasonal 

runoff produced by HMETS is much smaller than the variability produced by HYDROTEL, 

HBV and HSAMI models. Although no conclusions can be drawn as to the causes of this 

distinct behaviour, it nevertheless raises the question as to which strategy to adopt in 

choosing the hydrological models that will best account for hydrological model structure 

uncertainty in a climate change assessment study. 

 

Finally, the median increase in April discharge, presented in Figure 5.8, is larger with 

HSAMI than with the other models, in addition to the variability. The median value of the  



 

 

Figure 5.11 Probability density functions (PDF) of spring runoff depth simulated by HBV, HSAMI, HYDROTEL and HMETS for 
ten GCMs for the future (2065-2097) period at the outlet of the MRB. Each PDF curve corresponds to simulations using the 
central value (3.0°C) of climate sensitivity. The PDF produced with the simulated average runoff from the four hydrological 

models used for the control period (1975-2007) is plotted in dark solid curve for the purpose of comparison 
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chang in average monthly discharge varies from 120% with the BCCR model to 530% for 

the GFDL model, as simulated by HSAMI, with the largest range being 410%. The relative 

median value of change, simulated by HYDROTEL, varies from 80% for BCCR to 300% for 

GFDL, producing the smallest range at 220%. The overall median increase averaged over all 

GCMs is calculated as 305% for the HSAMI model, as compared with 241% for the HBV 

model, 175% for the HYDROTEL model, and 189% for the HMETS model, again 

highlighting the fact that the choice of the hydrological model introduces a notable 

uncertainty in the results.  

 

5.3 Monte Carlo simulation 

A Monte Carlo simulation was performed to sample hydrological variables using weights 

attributed to selected sources of uncertainty in order to analyze the distribution of uncertainty 

in the hydrological modeling results. An experiment in which equal and unequal weights 

were assigned to GCM structure and climate sensitivity was also conducted in this study.  

 

The REA method, which is described in section 3.6.2 and is used to assign weights to climate 

models, typically applies to one climate variable e.g. precipitation. The reliability factors, 

which are based on temperature (RT) and precipitation (RP) as calculated by the REA 

method, are presented in Table 5.6. The performance factor RB and the convergence factor 

RD used to calculate the reliability factors are also listed in this table. Keep in mind that the 

performance factor RB describes how well a given GCM is able to generate a current climatic 

variable, while the convergence factor RD describes how far a given model is from the 

remaining GCMs in simulating that variable. The reliability factor varies between 0 and 1. 

Higher values indicate that the GCM performs well in representing the current climatic 

variable and is not an outlier compared to the other GCMs considered in the analysis, while 

lower values indicate a poor performance in simulating the current climatic variable and/or 

that the GCM is an outlier compared to the other GCMsOverall, the calculated R factors are 

consistent for the corresponding GCM regardless of the climate variable analyzed, which, in 
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this case, are temperature and precipitation. In other words, a GCM that scored well for T 

also scored well for P. The performance factor RB appears dominant, regardless of its value, 

in the estimate of the reliability factor R when the convergence factor RD is high (close to 1), 

in other words, when the model is not an outlier. But when RD is low, then the GCM is seen 

as an outlier and it will obtain a small reliability factor R no matter how good or bad model 

performance (RB) is. The relative weights (W) of each GCM, derived from the R values (see 

eq. 3.7), are presented in Table 5.6. The R values were rescaled so that their corresponding 

W values sum up to one.  

 

Table 5.6 Reliability, performance and convergence factors R, RB and RD from the REA 
method used to generate relative weights W for each GCM, based on precipitation (P) and 

temperature (T) 

GCM 
Precipitation Temperature 

RB RD RP WP RB RD RT WT 
BCCR-BCM2.0 0.46 1.00 0.46 0.15 0.15 0.99 0.15 0.09 

CGCM 3.1 0.19 1.00 0.19 0.06 0.11 0.96 0.11 0.07 
CNRM-CM3 0.64 0.96 0.61 0.20 0.29 0.95 0.28 0.16 

CSIRO-MK3.0 0.20 0.20 0.04 0.01 0.11 0.19 0.02 0.01 
GFDL-CM2.0 0.17 0.21 0.04 0.01 0.12 0.96 0.12 0.07 
INM-CM3.0 0.75 1.00 0.75 0.25 0.52 1.00 0.52 0.30 
IPSL-CM4 0.20 0.30 0.06 0.02 0.14 0.22 0.03 0.02 

MIROC3.2(medres) 0.20 1.00 0.20 0.07 0.27 0.67 0.18 0.10 
MPI-ECHAM5 0.49 0.99 0.48 0.16 0.57 0.42 0.24 0.14 
NCAR-PCM1 0.22 1.00 0.22 0.07 0.12 0.86 0.10 0.06 

 

As river flow is influenced by temperature and precipitation, different combinations of these 

two variables were used in the REA approach to generate a suite of GCM weights in an 

attempt to rank the climate models based on their ability to properly simulate runoff at the 

watershed scale. The combinations proposed are as follows (see Table 5.7): (1) equal weights 

to all GCMs (which does not require application of the REA approach), labeled as Equal; (2) 

unequal weights based only on precipitation, labeled as WP; (3) unequal weights based only 

on temperature, labeled as WT; (4) unequal weights with precipitation and temperature 

ranked as equally important, labeled as W(0.5P, 0.5T); (5)-(6) unequal weights with precipitation 

and temperature, but with more importance given to temperature and precipitation, 

respectively, labeled as W(0.25P, 0.75T) and W(0.75P, 0.25T). Overall, the results of the REA 



107 

 

approach gave more weights to the CNRM, INM and MPI GCMs (see Table 5.7), for all 

considered precipitation and temperature combinations, whereas the CSIRO and IPSL GCMs 

obtained the smallest weights. Because the REA method provided similar weights using 

either precipitation or temperature as the reference variable, any combination of these two 

variables did not produce notably different weight schemes. These results are site specific 

and should not be generalized to other watersheds. 

 

Table 5.7 Various combinations of weights calculated for each GCM 

GCM Equal WP WT W(0.5P, 0.5T) W(0.25P, 0.75T) W(0.75P, 0.25T)
BCCR-BCM2.0 0.10 0.15 0.09 0.11 0.13 0.10 

CGCM 3.1 0.10 0.06 0.07 0.07 0.06 0.07 
CNRM-CM3 0.10 0.20 0.16 0.18 0.19 0.17 

CSIRO-MK3.0 0.10 0.01 0.01 0.01 0.01 0.01 
GFDL-CM2.0 0.10 0.01 0.07 0.03 0.02 0.04 
INM-CM3.0 0.10 0.25 0.30 0.28 0.27 0.29 
IPSL-CM4 0.10 0.02 0.02 0.02 0.02 0.02 

MIROC3.2(medres) 0.10 0.07 0.10 0.08 0.07 0.09 
MPI-ECHAM5 0.10 0.16 0.14 0.15 0.15 0.14 
NCAR-PCM1 0.10 0.07 0.06 0.06 0.07 0.06 

 

Weights attributed to climate sensitivities are described in Section 3.6.1, which were 

computed by assuming a simple symmetrical triangular distribution. Equal weights were 

assigned to account for natural climate variability. A separate Monte Carlo analysis was 

conducted for each hydrological model in order to assess the relative effect of hydrological 

model structure on selected simulated hydrological variables. The following two 

hydrological variables were scrutinized in the Monte Carlo experiment: annual mean 

discharge and spring peak discharge. The choice was based on the fact that these variables 

are of importance for the total annual hydropower production (annual mean discharge) and 

for the proper management of hydropower facilities (spring peak discharge), although the 

Monte Carlo method can also be applied to other variables that characterize the hydrological 

regime of the MRB. 
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The general procedure of applying the Monte-Carlo simulation consisted in pooling the 

values of the simulated hydrological variables stored in a database according to prescribed 

weights. As described in Section 3.4, a total of 2500 hydrological simulations, reflecting a 

combination of GCM structure (10), climate sensitivity (5) and natural variability (50), were 

performed for each hydrological model, from which the database, containing the simulated 

results of all hydrological projections, was generated. Each simulation covered a 33-year 

period (2065-2097).  

 

The results of the Monte Carlo experiments were interpreted as return periods of future 

hydrological events (annual runoff and spring peak runoff), these often being used for risk 

analysis (Ang and Tang, 1984). Prior to establishing the return periods, outputs of the Monte 

Carlo experiments were fitted with statistical distribution models (Normal, Rayleigh, extreme 

value and lognormal). The normal distribution provided the best fitting results with a 95% 

confidence level. This distribution was then used to compute return periods associated to 

given values of annual mean discharge and spring peak runoff. The assumption behind such 

analysis is that the variables pooled from the data base are statistically independent. The 

analysis was conducted for the 2065-2097 period. A comparison with current return periods 

(1975-2007) was performed, also by using normal distributions applied to simulated values 

of annual mean discharge and spring peak runoff.  

 

5.3.1 Annual mean discharge 

 

Tables 5.8 to 5.11 describe the return period (in years) of prescribed annual mean discharges 

values calculated from a Monte Carlo experiment, in which weights were assigned based on 

GCM structure (Table 5.7) and climate sensitivity (triangular distribution) for the distributed 

HYDROTEL and HBV models (Tables 5.8 and 5.9), and the lumped HSAMI and HMETS 

models (Tables 5.10 and 5.11) (400,000 samplings per hydrological model). Return periods 

were calculated for annual flow rates ranging from 1000 to 1200 m3/s. These values 

correspond approximately to the smallest and largest values simulated under current climate 

conditions (1975-2007). 
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All calculated return periods are smaller for the future climate, when either equal or unequal 

weights are applied to climate sensitivity and to GCMs, as compared to the current climate 

when the HYDROTEL (Table 5.8), HBV (Table 5.9) and HSAMI (Table 5.10) models are 

used to simulate river discharge. This result was expected given the higher average flows in 

the future, as depicted in Figure 5.5 and in Table 5.4. HMETS (Table 5.11) was the only 

model which produced return periods larger in the future than in the present, which occurred 

when unequal weights were used on climate sensitivity and when average flows exceeded 

1150 m3/s. Finally, experiments with different weights on climate sensitivity produced larger 

return periods for the future climate, as compared to those with uniform weights on climate 

sensitivity for all four hydrological models. 

 

Overall, HYDROTEL produced the smallest future return periods, between 1.0 and 1.7 years, 

for the range of considered mean discharges (see Table 5.8), followed by HBV, HSAMI and 

HMETS. HYDROTEL resulted in return periods to be univocally smaller in the future for the 

given exceedance flow values, especially at higher flows, as compared to the current climate, 

indicating that this model was more sensitive to changing climate than the other models. 

Therefore it appears that HYDROTEL model has a notable effect on simulating extreme flow 

values, which confirms the observations made above on simulating spring runoff (see Figure 

5.11). However, care must be exercised in generalizing these results as the analysis was 

performed by using only four hydrological models. 

 

Tables 5.8 to 5.11 also reveal that the return period for mean annual discharge is notably 

affected by whether a uniform or a triangular distribution for climate sensitivity is adopted. 

For equal weights on climate sensitivity, the average return periods of flows exceeding 1200 

m3/s for all GCM weight experiments are 1.50 years for HYDROTEL, 9.16 years for HBV, 

12.9 years for HSAMI and 25.4 years for HMETS. For unequal weights on climate 

sensitivity, the corresponding average return periods are 1.65 years, 16.5 years, 24.5 years 

and 40.7 years, respectively. On the other hand, using equal or unequal weights on the GCM 

structure has virtually no effect on the computed return periods. 
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Table 5.8 Return period (in years) of annual mean discharge simulated by the 
HYDROTEL model for different weighting schemes on GCM and climate sensitivity 

(CS is climate sensitivity, = is equal weight, ≠ is unequal weight) 

Q 
(m3/s) 

Control 
period 

Equal 
GCM 

Unequal GCM 
WT WP W(0.5P, 0.5T) W(0.25P, 0.75T) W(0.75P, 0.25T) 

=CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS 
>1000 2.05 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 
>1050 2.61 1.05 1.05 1.05 1.05 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 
>1100 3.50 1.11 1.12 1.11 1.13 1.11 1.14 1.11 1.13 1.11 1.13 1.11 1.13 
>1150 4.93 1.25 1.31 1.25 1.30 1.24 1.31 1.25 1.30 1.24 1.31 1.25 1.30 
>1200 7.35 1.50 1.66 1.51 1.65 1.49 1.66 1.50 1.65 1.50 1.66 1.51 1.65 

 

Table 5.9 Return period (in years) of annual mean discharge simulated by the 
HBV model for different weighting schemes on GCM and climate sensitivity 

(CS, = and ≠ are indicated in Table 5.8) 

Q 
(m3/s) 

Control 
period 

Equal 
GCM 

Unequal GCM 
WT WP W(0.5P, 0.5T) W(0.25P, 0.75T) W(0.75P, 0.25T) 

=CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS 
>1000 4.80 1.31 1.40 1.32 1.39 1.31 1.41 1.31 1.40 1.31 1.41 1.31 1.40 
>1050 9.43 1.71 1.97 1.72 1.95 1.70 1.98 1.71 1.97 1.70 1.98 1.71 1.96 
>1100 19.0 2.57 3.32 2.59 3.30 2.56 3.34 2.58 3.33 2.57 3.33 2.58 3.31 
>1150 50.1 4.29 6.38 4.33 6.36 4.31 6.39 4.32 6.41 4.31 6.38 4.33 6.39 
>1200 153 9.04 16.4 9.17 16.5 9.19 16.3 9.19 16.6 9.17 16.4 9.19 16.6 

 

Table 5.10 Return period (in years) of annual mean discharge simulated by the 
HSAMI model for different weighting schemes on GCM and climate sensitivity 

(CS, = and ≠ are indicated in Table 5.8) 

Q 
(m3/s) 

Control 
period 

Equal 
GCM 

Unequal GCM 
WT WP W(0.5P, 0.5T) W(0.25P, 0.75T) W(0.75P, 0.25T) 

=CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS 
>1000 4.11 1.36 1.43 1.37 1.42 1.35 1.44 1.36 1.43 1.35 1.43 1.36 1.43 
>1050 7.06 1.81 2.06 1.82 2.05 1.80 2.08 1.82 2.06 1.81 2.07 1.82 2.06 
>1100 12.3 2.83 3.65 2.85 3.63 2.82 3.67 2.84 3.64 2.83 3.66 2.85 3.66 
>1150 23.4 5.35 8.23 5.38 8.20 5.37 8.25 5.38 8.21 5.36 8.24 5.39 8.28 
>1200 48.8 12.8 24.5 12.8 24.5 13.0 24.4 12.9 24.5 12.9 24.5 12.9 24.8 
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Table 5.11 Return period (in years) of annual mean discharge simulated by the 
HMETS model for different weighting schemes on GCM and climate sensitivity 

(CS, = and ≠ are indicated in Table 5.8) 

Q 
(m3/s) 

Control 
period 

Equal 
GCM 

Unequal GCM 
WT WP W(0.5P, 0.5T) W(0.25P, 0.75T) W(0.75P, 0.25T) 

=CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS 
>1000 3.44 1.06 1.15 1.07 1.16 1.07 1.16 1.07 1.16 1.07 1.16 1.07 1.16 
>1050 4.92 1.49 1.53 1.56 1.61 1.50 1.64 1.54 1.68 1.52 1.66 1.55 1.60 
>1100 8.20 4.33 5.95 4.91 5.52 4.34 5.95 4.65 5.25 4.49 5.10 4.81 5.42 
>1150 13.4 11.1 18.5 11.2 18.4 11.1 18.6 11.6 18.3 11.3 18.1 11.2 18.6 
>1200 26.5 25.9 41.7 25.2 40.7 24.9 40.5 25.4 40.0 25.5 40.9 25.3 40.1 
 

5.3.2 Spring peak discharge 

Extreme events such as peak flow values are important hydrological variables for the design 

of water resources systems components, such as dams and spillways. Similar to Tables 5.8 to 

5.11, Tables 5.12 to 5.15 express the return period (in years) of selected spring peak 

discharge amounts retrieved from a 400,000-run Monte Carlo simulation. High peak flow 

values for the current spring period, varying from 6600m3/s to 7000m3/s with an interval of 

100m3/s, were used to estimate the corresponding return periods for the future climate. The 

standard normal distribution was applied to compute return periods for the future (2065-2097) 

and current climates (1975-2007).  

 

Overall, the remarks pertaining to the annual mean discharge also apply for the spring peak 

flow. For instance, return periods increase when unequal weights on climate sensitivity are 

employed, as compared to a uniform weighting scheme, for all combinations of GCM 

weighting strategies (including equal weights) and for all selected peak flow discharges. The 

difference in return periods, between equal and unequal weights for climate sensitivity, 

increases as peak flow increases. Significant differences are again observed in return periods 

depending on which hydrological model was used to simulate future flows. For example, the 

average return periods of all equal weighted experiments of climate sensitivity for a peak 

discharge event exceeding 7000 m3/s are 6.10 years for HYDROTEL (compared to 25.0 

years for the current climate), 32.9 years for HBV (current climate = 56.3years), 12.9 years 
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for HSAMI (current climate = 22.5 years) and 12.4 years for HMETS (current climate = 10.9 

years). For unequal weights on climate sensitivity, the corresponding average future return 

periods are 9.18 years, 72.9 years, 22.6 years and 14.3 years. However, no conclusions could 

be drawn regarding the magnitude of the future return periods in relation to the spatial 

structure of the hydrological models (distributed versus lumped) used to compute the peak 

flows.  

 

Finally, the selection of the GCM weighting strategy does not seem to be critical, as the 

return periods are not significantly affected by using equal or unequal weights, irrespective of 

the hydrological model selected for the analysis. For example, the return period for a peak 

flow event exceeding 6900 m3/s is 20.8 years with the HBV model (Table 5.13) when equal 

weights are used for both GCM structure and climate sensitivity, compared to an average of 

20.2 years when unequal weights are applied to the GCMs. 

 

Table 5.12 Return period (in years) of annual spring peak discharge simulated by the 
HYDROTEL model for different weighting schemes on GCM and climate sensitivity 

(CS, = and ≠ are indicated in Table 5.8) 

Qpeak 
(m3/s) 

Control 
period 

Equal 
GCM 

Unequal GCM 
WT WP W(0.5P, 0.5T) W(0.25P, 0.75T) W(0.75P, 0.25T) 

=CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS 
>6600 14.7 2.69 3.26 2.69 3.19 2.64 3.21 2.67 3.19 2.66 3.20 2.68 3.20 
>6700 16.3 3.34 4.30 3.32 4.17 3.27 4.21 3.30 4.18 3.29 4.19 3.31 4.18 
>6800 20.1 4.27 5.88 4.22 5.66 4.18 5.75 4.20 5.67 4.20 5.71 4.21 5.67 
>6900 22.4 5.11 7.41 5.04 7.09 5.01 7.24 5.02 7.11 5.02 7.17 5.03 7.10 
>7000 25.0 6.21 9.50 6.09 9.03 6.08 9.28 6.08 9.06 6.09 9.16 6.08 9.05 

 

Table 5.13 Return period (in years) of annual spring peak discharge simulated by 
the HBV model for different weighting schemes on GCM and climate sensitivity 

(CS, = and ≠ are indicated in Table 5.8) 

Qpeak 
(m3/s) 

Control 
period 

Equal 
GCM 

Unequal GCM 
WT WP W(0.5P, 0.5T) W(0.25P, 0.75T) W(0.75P, 0.25T) 

=CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS 
>6600 22.2 7.80 12.1 7.64 11.6 7.59 11.8 7.62 11.6 7.61 11.7 7.60 11.6 
>6700 29.1 11.5 19.8 11.2 18.7 11.2 19.3 11.2 18.8 11.2 18.9 11.2 18.7 
>6800 35.1 15.4 28.3 14.8 26.5 14.9 27.6 14.8 26.7 14.9 26.9 14.7 26.6 
>6900 46.5 20.8 41.5 20.0 38.5 21.2 40.3 20.0 38.9 20.1 39.3 19.9 38.7 
>7000 56.3 34.2 77.3 32.5 70.5 33.0 74.8 32.5 71.4 32.8 72.4 32.2 70.9 
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Table 5.14 Return period (in years) of annual spring peak discharge simulated by 
the HSAMI model for different weighting schemes on GCM and climate sensitivity 

(CS, = and ≠ are indicated in Table 5.8) 

Qpeak 
(m3/s) 

Control 
period 

Equal 
GCM 

Unequal GCM 
WT WP W(0.5P, 0.5T) W(0.25P, 0.75T) W(0.75P, 0.25T) 

=CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS 
>6600 12.1 4.96 6.90 4.86 6.58 4.92 6.81 4.88 6.64 4.89 6.69 4.90 6.61 
>6700 13.4 6.18 9.08 6.01 8.58 6.12 8.95 6.05 8.68 6.06 8.76 6.07 8.63 
>6800 16.3 7.83 12.2 7.56 11.4 7.77 12.0 7.64 11.6 7.67 11.7 7.66 11.5 
>6900 18.2 10.1 16.9 9.68 15.6 10.0 16.6 9.83 15.9 9.88 16.1 9.83 15.7 
>7000 22.5 13.3 23.8 12.6 21.8 13.2 23.4 12.9 22.2 12.9 22.6 12.8 22.0 

 

Table 5.15 Return period (in years) of annual spring peak discharge simulated by 
the HMETS model for different weighting schemes on GCM and climate sensitivity 

(CS, = and ≠ are indicated in Table 5.8) 

Qpeak 
(m3/s) 

Control 
period 

Equal 
GCM 

Unequal GCM 
WT WP W(0.5P, 0.5T) W(0.25P, 0.75T) W(0.75P, 0.25T) 

=CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS =CS ≠CS 
>6600 6.18 2.22 2.34 2.38 2.49 2.25 2.38 2.33 2.44 2.29 2.41 2.36 2.47 
>6700 7.20 3.02 3.24 3.27 3.48 3.07 3.30 3.19 3.41 3.13 3.36 3.24 3.46 
>6800 8.45 4.40 4.81 4.81 5.23 4.48 4.92 4.68 5.12 4.58 5.04 4.76 5.20 
>6900 9.19 6.92 7.74 7.62 8.49 7.05 7.94 7.40 8.29 7.23 8.16 7.54 8.44 
>7000 10.9 11.8 13.5 13.0 14.9 12.0 13.9 12.6 14.5 12.3 14.3 12.9 14.8 

 

5.4 Discussion 

The impacts of climate change on future hydrological regimes were assessed in the MRB 

watershed area for the 2065-2097 time period. Climate projections from 10 GCMs, reflecting 

a range of ΔT and of ΔP/P values, were downscaled using the change factor method 

described in section 3.3. An approach based on the MAGICC-SCENGEN climate model was 

developed to generate GCM projections for different climate sensitivities. A weather 

generator was used to account for natural climate variability. The resulting daily P and T 

scenarios were used for input into four hydrological models to produce future hydrological 

scenarios. These in turn were analysed for both overall uncertainty and specific sources of 

uncertainty. Finally, a Monte-Carlo simulation was executed in order to perform a frequency 

analysis of simulated hydrological variables under equal-weighted and unequal-weighted 

schemes strategies. The following paragraphs further examine the results obtained.  
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The future change in temperature and precipitation that was produced by all the studied 

GCMs was presented in Figure 5.1. It was found that precipitation and temperature over the 

MRB will increase in the future (2065-2097 horizon) for all GCMs projections. With an 

increase of climate sensitivity, temperature changes are increasing while precipitation 

changes are almost invariant. Based on the magnitude of increase in future temperature and 

precipitation, some GCMs can be classified as warmer and wetter models, such as CGCM, 

IPSL and MIROC, while others are seen as colder and dryer models like BCCR, CNRM and 

CSIRO. To evaluate the climate change due to GCM structure, Figure 5.2 displays the 

increase of precipitation and temperature which is accompanied by an increase in climate 

sensitivity. The ‘original’ climate sensitivity for each GCM computed for the study site is 

also shown in Figure 5.2. Average climate sensitivity of the 10 GCMs selected in this study 

is 3.4°C. Although the number of GCMs used in this study is limited (more GCMs could 

have been added), this result is coherent with Loehle (2014), who states that climate model 

projections generated by GCMs are very likely to reflect a high climate sensitivity, as the 

commonly accepted average climate sensitivity is 3.0°C (Rogejl et al., 2012). This raises the 

point that conducting climate change studies by incorporating a suite of GCM precipitation 

and temperature outputs that reflect high climate sensitivity may induce an overall bias on 

future hydrological regimes because the simulated flows are affected by these climate 

variables. Clearly, there is a need to select GCMs with care so that their average climate 

sensitivity corresponds to the average climate sensitivity accepted by the scientific 

community. An alternative approach could be to adjust precipitation and temperature output 

of the selected GCMs, using models such as MAGICC-SCENGEN, in order that their 

average climate sensitivity equals the commonly accepted average value. 

 

5.4.1 Uncertainty study 

Results presented in the preceding sections have shown that predicted flows in a future 

climate are affected by a number of sources of uncertainty such as GCM structure, 

hydrological model structure, natural variability and climate sensitivity.  
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For example, future average annual hydrographs (Figure 5.5) predict a higher discharge in 

the summer and autumn for all hydrological models, lower winter discharge using 

HYDROTEL and HBV, a general increase in winter flows with the HSAMI model, and an 

almost unvarying winter discharge with HMETS. Such contrasting behavior displayed by the 

models for the winter regime is a potential issue, given, for example, the current difficulties 

to predict the compounding effect of river ice on flooding by river hydraulic models which 

use flows predicted by hydrological models as input, especially during mid-winter thaw 

events. These results suggest the hydrological model structure to be a non-negligible source 

of uncertainty in assessing the magnitude of the impacts of climate change on the 

hydrological regime of a watershed. Similar findings were obtained by Coulibaly et al. 

(2009), Chen et al. (2011a) and Poulin et al. (2011). 

 

The contribution of each source of uncertainty investigated in this study (GCM structure, 

climate sensitivity and natural variability) to the overall uncertainty of the average annual 

future streamflow hydrograph was analysed by comparing the difference between the 

envelope areas of overall uncertainty to that of all sources of uncertainty, less the individual 

source of uncertainty under scrutiny. This was accomplished by reducing a given source of 

uncertainty to a single value and establishing the resulting uncertainty envelope area. For 

example, the contribution of climate sensitivity to the overall uncertainty of future 

hydrographs was estimated as being the difference between the envelope of overall 

uncertainty and the envelope produced by the combined contribution of GCM structure and 

natural variability with a prescribed, single value of climate sensitivity, here 3.0°C. The 

relative contribution of each source of uncertainty, defined as a percentage (%) of overall 

uncertainty, is presented in Table 5.16 for each hydrological model used in this study. 
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Table 5.16 Relative contributions (in percent) of each source of uncertainty (GCM 
structure, climate sensitivity and natural variability) to the overall uncertainty of 

future annual streamflow hydrographs.  

Contribution GCM structure Climate sensitivity Natural variability 

HYDROTEL 50.5% 20.5% 29.0% 

HBV 49.7% 20.5% 29.8% 

HSAMI 50.3% 20.5% 29.2% 

HMETS 48.3% 24.0% 27.7% 

 

As expected, GCM structure is the most significant source of uncertainty and accounts for 

approximately 50% of the overall uncertainty, irrespective of the hydrological model used in 

the study. The second most important source of uncertainty is natural variability, which 

generates a contribution ranging from 28 to 30% of the overall uncertainty. Climate 

sensitivity comes last, with a contribution ranging from 20 to 24% of overall uncertainty. 

Generally, it was found that the choice of the hydrological model has a marginal influence on 

the relative contributions of each source of uncertainty. Such a result was somewhat expected 

if one assumes that each hydrological model performs equally well in simulating future 

hydrological regimes. Note that the HMETS model produced slightly different relative 

contributions of GCM, climate sensitivity and natural variability to the overall uncertainty. 

The fact that the HMETS model behaved differently, i.e. produced uncertainty envelopes that 

were different from the envelopes produced by the other hydrological models (see for 

instance Figures 5.6, 5.7 and 5.10) explains perhaps the results presented in Table 5.16. 

Whether these differences are statistically significant, or are merely caused by ‘chance’, 

remains to be ascertained.  

 

The seasonal changes in percent of simulated discharges between the future period (2065-

2097) and the control period (1975-2007) for individual GCMs, displayed in Figures 5.6 to 

5.7, show that the changes in seasonal discharge vary according to GCM structure. 

Furthermore, these changes are different among the four hydrological models used in this 
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study. As an example, cold and dry GCMs (such as BCCR, CNRM and CSIRO) induce a 

significant reduction in winter flows with the HBV model, but produce an increase with 

HYDROTEL, HSAMI and HMETS. Furthermore, an increase in the winter and spring 

discharge is more notable with HYDROTEL than with the other models. HBV also produces 

more increase in the autumn discharge compared to the other hydrological models. The 

HMETS model, in particular, presents slight variations of change for all GCMs and seasons.  

 

This distinction in observed behaviour between hydrological models displaying different 

spatial structure and complexity (e.g. snow accumulation and melt module) may be attributed, 

at least partly, to the way each model handles the climatic input data (distributed or lumped). 

The explicit representation of the land cover of each sub-watershed by spatially-distributed 

models like HYDROTEL, as compared to the general geographic descriptions in lumped 

conceptual models like HMETS, may also explain part of the discrepancies observed. 

 

Results presented in this study therefore highlight the fact that choosing a single hydrological 

model in climate change studies may result in neglecting a non-negligible source uncertainty 

in climate change studies. With the selection of a single hydrological model, there is 

therefore the possibility of introducing a bias on resulting flows, with possible impacts on 

devising proper adaptation strategies. Also, the difference observed between the simulations 

from the four hydrological models with regard to the uncertainty of natural variability (see 

Figure 5.10), highlights differences which may be attributed to the models structure. In other 

words, explicitly considering the spatial heterogeneity of the watershed and of 

meteorological variables in a distributed hydrological model may be responsible for 

introducing a wider spread of changes in the simulated flows due to natural variability and 

this, for all seasonal flows. Therefore, selecting a single hydrological model may have 

implications for the design of hydraulic structures that are able to cope with climate change 

impacts. 
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In Figure 5.11, the PDFs of future spring runoff depths are shifted to the right for all GCMs. 

Also, the PDFs generally appear less spread in a future climate, compared to current climate 

for all hydrological models, except HYDROTEL. This is generally due to increasing spring 

temperatures and accumulated winter snow under the future climate conditions created by an 

increase in winter precipitation (see Figure 5.1) and will cause intense snowmelt and higher 

spring runoff. The coefficient of variation (CV) of average spring discharge (from March to 

May) for the future period was calculated for each PDF and average values produced by the 

hydrological model. The CV is a metric used to standardize the dispersion of PDFs and 

allows comparing distributions with different means. Average CV values obtained are 18.5%, 

16.1%, 15.8% and 12.3%, respectively for HYDROTEL, HBV, HSAMI and HMETS. 

Although no statistical tests were conducted, CV values are higher for the distributed 

hydrological models than for the lumped models. This highlights the fact that explicitly 

recognizing the distributed properties of climate input and watershed physiographic 

characteristics may be responsible for creating more variability in the spring runoff volumes. 

Finally, extreme spring runoff events are similar for four of ten GCMs (i.e. BCCR, CNRM, 

INM and MPI) when comparing the control and simulated PDF curves. This indicates that 

the cold and dry GCMs (except MPI which is cold and wet models) tend to simulate 

conditions that lead to extreme spring floods which are similar to today’s climate.  

 

Regarding the relative contributions of each source of uncertainty to the overall uncertainty 

presented in Table 5.16, as the climate sensitivity was produced using MAGICC/SCENGEN 

and the natural variability was conducted using WeaGETS, the values of estimated 

contributions would consequently be effected by the methods used. 

 

5.4.2 Analysis using a Monte-Carlo simulation 

The distribution of uncertainty of future runoff volumes and spring peak flows was analyzed 

by using Monte-Carlo simulations. Equal and unequal weights were attributed to sources of 

uncertainty in the numerical experiments. The REA method was used to generate the relative 

weights of GCMs, based on model performance and model convergence. Table 5.6 presents 
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the reliability factors produced by the REA method that was applied to GCM simulated the 

precipitation and temperature from which the GCM weights were computed. Three GCMs 

(INM, CNRM and MPI) obtained the highest weights, in comparison to the other GCMs, for 

both precipitation and temperature.  

 

As anticipated, return periods for given mean discharge values are expected to decrease in 

the future, for all the investigated hydrological models (see Tables 5.8 to 5.11). Furthermore, 

these tables indicate that applying unequal weights on climate sensitivity, instead of equal 

weights, will induce significant impact in the return period of future mean discharge, 

especially at higher flows. Overall, an increase in return periods is seen when unequal 

weights on climate sensitivity are applied, as compared to using equal weights. For the range 

of mean discharge values considered in the analysis, corresponding increases in return 

periods range between 0-11%, 7-81%, 5-91% and 8-61% respectively for HYDROTEL, 

HBV, HSAMI and HMETS, with unequal weights on climate sensitivity. HYDROTEL 

produced the smallest increase, but HBV produced increases of comparable magnitude to 

those of HSAMI and HMETS. Therefore, no conclusion could be drawn in regards to 

hydrological model structure. On the other hand, using equal or unequal weights on the GCM 

structure has virtually no effect on the return period. This seems at first glance counter 

intuitive, given that GCM structure is a major source of uncertainty for seasonal discharge 

(see Figure 5.6, 5.7, Table 5.16) and spring runoff volume (see Figure 5.11), while climate 

sensitivity’s influence is more modest (see Table 5.16). 

 

Note that, in Table 5.7, three GCMs, namely CNRM, INM and MPI, have by far the largest 

weights among the 10 analyzed GCMs. A closer look at the PDF distributions of annual 

runoff produced by the GCMs (see Figure 5.11) reveals that the PDFs of these three GCMs 

are very similar and also representative of the 10 GCMs, i.e. they sit in the ‘middle portion’ 

of the PDF range of all analyzed GCMs. Consequently, it may perhaps explain, in this 

respect, why using equal or unequal weights on GCM structure marginally affected the 

results. 



120 

The results obtained on climate sensitivity are perhaps best explained by the fact that 

‘warmer’ models produce more evapotranspiration and therefore potentially reduce the mean 

annual runoff, providing that the increase in evapotranspiration outweighs any increase in 

annual precipitation. Adopting a triangular PDF distribution for climate sensitivity puts less 

weight for the warmer (and also the colder) models, as compared with a uniform distribution, 

which brings a decrease in the frequency of extreme events. In this study, the unequal 

weighing scheme caused an overall decrease in the annual runoff, compared with an equal 

weighting scheme, and this resulted in a corresponding increase in the return periods. This 

behavior can be observed in all four hydrological models.  

 

Finally, Tables 5.8 to 5.15 again show a distinct increase of the return periods when unequal 

weights are applied to climate sensitivity. The return period is observed as being different 

depending on the hydrological model used for simulations, and this reflects on the different 

probability calculated for a specific stream flow. Among the four hydrological models, 

regardless of the simulated hydrological variables, HYDROTEL always produces the 

smallest future return period for both annual mean discharges or annual spring peak 

discharges and for all experiments, especially when it uses an unequal weighting scheme on 

climate sensitivity, which indicates that this hydrological model could generate more 

occurrence of high flow events in the future. This can also be observed in Figure 5.5 and 

Table 5.4.  

 

Based on the above analysis, the decision to select equal and unequal weighted schemes for 

climate sensitivities should be given due attention in the uncertainty assessment of climate 

change impacts studies. However, the impact of using equal or unequal weights on the GCM 

structure appears to be marginal. The choice of the hydrological model also seems to bear a 

significant effect on flow design values.  



 

CONCLUSION 

 

In recent scientific literature, a significant amount of attention has been given to the 

uncertainty of climate change impacts on hydrology with respect to GCM, GGES, 

downscaling method, and hydrological model (New and Hulme, 2000; Katz, 2002; 

Prudhomme, et al., 2003; Wilby, 2005; Wilby and Harris, 2006; Kay, et al., 2009; 

Prudhomme and Davies, 2009b; Christensen, et al., 2010; Chen, et al., 2011a; Nichols, et al., 

2011, Poulin, et al., 2011; Jung, et al., 2012). Until recently, most investigations focussed on 

the uncertainty of GCM and GGES. Other sources of uncertainty, such as climate sensitivity 

and natural variability, have not been given as much attention. There is also an ongoing 

scientific debate about whether climate models that perform ‘best’ should be assigned larger 

weights in uncertainty analyses. Reflecting this debate, some studies investigated approaches 

in which weighting schemes were used to combine various sources of uncertainty in climate 

change studies (New and Hulme, 2000; Wilby and Harris, 2006; Christensen et al., 2010), 

while others criticized such approaches (Stainforth et al., 2007; Weigel et al., 2010). 

 

In this study, a framework was developed to analyze the uncertainty of GCM structure, 

climate sensitivity, natural variability and, to a lesser extent, hydrological model structure for 

the purpose of investigating the impact of climate change on the hydrological response of the 

Manicouagan River Basin (MRB), a northern river basin in the province of Quebec, Canada. 

More specifically, future climate series with various climate sensitivities were generated 

from GCM output, using MAGICC/SCENGEN to vary the climate sensitivity values. These 

climate series were then downscaled at the watershed scale by using a change factor method. 

To assess the impact of natural variability, the climate projections were inputted into a 

stochastic weather generator, in this case WeaGETS, to generate statistically similar 

projections of the original time series. Finally, future flows were simulated by several 

hydrological models using these time series. Ten GCMs, five climate sensitivities, fifty series 

of natural variability and four hydrological models were used in the uncertainty assessment. 

Furthermore, the Monte Carlo method was used, as a probabilistic approach, to distribute the 

range of uncertainty by sampling the simulated hydrological outputs, based on various 
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weighting schemes being assigned to the GCM structure and climate sensitivity. Unequal 

weights for GCMs were obtained from the REA method by using temperature and 

precipitation as climate variables to rank the GCMs. Unequal weights for climate sensitivity 

were retrieved from a triangular probability distribution, proposed by New and Hulme 

(2000).  

 

Climate sensitivity is always considered an inherent factor in climate models. Thus, 

uncertainty due to climate sensitivity has not been widely investigated up to the present. 

Moreover, the effect of assigning different weights to the various sources of uncertainty is a 

question that has been up until now marginally addressed in climate change impact studies on 

watershed hydrological regimes. Such questions are important and they represent the main 

novelty of the present study.  

 

Overall, the combined use of all GCMs, climate sensitivities, natural variability and 

hydrological models produced a large spectrum of future hydrological response due to 

climate change (Figure 5.5). The spring peak flow will rise significantly and set in early 

because of an advanced snow melting trend. Spring runoff and average annual runoff will 

augment. An increase in the summer-autumn (June to November) flows is also expected. The 

projected hydrological response during the winter season (December to February) slightly 

increases with all hydrological models. The way each hydrological model considers 

heterogeneity in both climatic variables and watershed physiographic properties needs to be 

more fully analyzed.  

 

The uncertainty of GCM structure was shown to be significant throughout the modeling 

cascade process (Figures 5.6 and 5.7). The average discharges predicted by different GCM 

structures vary seasonally. Cold and dry climate models, such as BCCR and CNRM, present 

a decrease in winter discharge at the 2065-2097 time horizon, compared to the reference 

period (1975-2007). On the other hand, warm and wet climate models, like IPSL and 

MIROC, generally display a significant increase of their future discharge in winter. During 

the month of April when the spring peak flow occurs (Figure 5.8), a range of monthly 
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discharge changes was observed among the GCMs, with BCCR producing the smallest 

change and GFDL, the largest. Future spring runoff is also significantly influenced by GCM 

structure (Figure 5.11). In general, there will be an appreciable increase in the volume of 

spring runoff caused by an increase in winter snow accumulation, as higher winter 

precipitation is predicted. The peak flow will occur earlier by 3 weeks on average because of 

a temperature increase throughout the winter-spring season. The cold and dry climate 

models, e.g. BCCR, will generate smaller extreme spring runoff events than the warm and 

wet models, such as GFDL. In other words, the probability that the spring runoff volume 

exceeds a given threshold will be smaller, or the associated return period will be larger, for 

the cold and dry models, as compared with the warm and wet models. This study further 

confirms the findings of other researchers (Wilby and Harris, 2006; Prudhomme and Davies, 

2009a; Chen, et al., 2011a) that the GCM structure remains one of the most important 

sources of uncertainty in the climate change impacts on hydrological regimes.  

 

The variations in climate sensitivity introduced small (summer and winter seasons) to 

moderate (autumn season) to important (spring season) changes in the hydrological regime of 

the MRB, when compared with the uncertainty linked to GCM structure (Table 5.4 and 

Figure 5.9). A range of values from 2.0 to 4.0 Celsius of climate sensitivity was selected for 

this study. Increasing the climate sensitivity resulted in an earlier and lower spring peak 

runoff. The uncertainty due to climate sensitivity on the hydrological regime of the MRB is 

not significantly affected by the choice of the hydrological model. The contribution of 

climate sensitivity to the overall uncertainty of the future hydrological regime of the study 

watershed is notable, but ranked third, behind that of GCM structure and natural variability 

(Table 5.16).  

 

The effect of natural variability on the hydrological regime of the MRB, which was 

expressed by doing an analysis of percent changes in seasonal river flows, revealed that 

natural variability generated variable uncertainty with the season, with more uncertainty for 

the spring flows. This is explained by the fact that the natural variability in precipitation and 
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temperature creates variability in both the timing and the volume of the spring runoff. The 

uncertainty of the future hydrological regime of the MRB caused by natural variability 

ranked second, behind GCM structure (Table 5.16).  

 

Four hydrological models, i.e. HYDROTEL, HBV, HSAMI and HMETS, differing in their 

conceptual representation of a watershed, were used in this study as a first step in assessing 

the effect of hydrological model structure on the hydrological response of the MRB. 

HYDROTEL and HBV are spatially distributed models, while HSAMI and HMETS are 

classified as lumped conceptual models. It was shown in this study that the way the 

hydrological models represent the spatial heterogeneity of both climatic and physiographic 

data has a significant effect on the simulated future flows. For example, HYDROTEL and 

HBV generated higher discharge in future summer-autumn flows for all modeling runs, while 

the opposite was observed with HSAMI and HMETS. It was also noted that the variability of 

the hydrological response of HYDROTEL, represented by the envelope of all runs, is similar 

to that of HBV. This is in contrast with the lower variability found with the HSAMI and 

HMETS models, both lumped models and which use simplified algorithms for representing 

the main hydrological processes occurring in a watershed (e.g. degree-day approach for snow 

melt). Although it is not possible to separate the effect of the spatial structure from that of the 

algorithms used in the models, it is surmised that the explicit representation of the spatial 

variability in the temperature and precipitation fields in HYDROTEL and in HBV accounts 

for some of the observed variability. In fact, hydrological processes, such as snow 

accumulation, snow melt and evapotranspiration amongst others, are affected by temperature 

and precipitation fields, and their non-linear behavior and spatial distribution will translate 

into more variability in the overall hydrological response, given that the MRB displays strong 

north-south variations in its temperature and precipitation fields. Probability density 

functions (PDF) of spring runoff depth (Figure 5.11) reveal that this hydrological variable is 

affected by both GCM structure and hydrological model structure. The HYDROTEL model 

generated more variability in the annual range of percent change as compared to the other 

models. Again, a combination of the spatial structure of the models, along with the equations 

used to describe processes sensitive to meteorological variables, is probably responsible for 
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the observed differences. The variability of HMETS, compared to that of HSAMI, was found 

to be smaller (except in spring) (Figure 5.5) and it also showed less variations of change for 

each GCM (Figure 5.6 and 5.7). 

 

A Monte Carlo experiment was performed to assess whether assigning equal of different 

weights to GCM models and climate sensitivity would affect the probability of occurrence of 

hydrological events. To that end, two hydrological variables of the MRB were investigated: 

the mean annual discharge and the spring peak runoff. The REA approach was used to assign 

weights to each GCM, while a triangular probability density function was assumed to 

calculate weights for the given climate sensitivities. Results have shown that assigning equal 

or unequal weights to the GCM structure had a marginal effect on the return periods that 

were calculated for the preselected values of annual runoff and spring peak flow. However, 

assigning equal or unequal weights to climate sensitivity notably influenced the probability 

of the occurrence of both annual runoff and spring peak flow. This is commensurate with the 

fact that the uncertainty of the future hydrological regime of the MRB due to climate 

sensitivity, although smaller than to GCM structure, is still notable (see Table 5.16). In 

studying the spring peak discharge, the HBV model showed the greatest increase in return 

period while HYDROTEL presented the smallest return periods among four hydrological 

models used. Thus, care should be taken in selecting hydrological models and in assigning 

weighting schemes to climate sensitivities in order to assess the uncertainty associated with 

impact studies on the effects of climate change on future hydrological regimes. 

 

In summary, the framework developed in this study could be adopted in the analysis of the 

magnitude of uncertainty due to various sources. This framework is modulable and flexible.  

The structure of the database in which the results of the hydrological model simulations are 

stored makes it easy to insert/replace other sources of uncertainty, so that additional Monte 

Carlo analysis can be easily conducted. These sources of uncertainty include downscaling 

techniques, GGES, GCM initial conditions, etc. 





 

RECOMMENDATIONS 

 

All research work should be improved through analysis and self-reflection. This section 

outlines the limitations of this study and presents recommendations for further research. 

 

1) Sources of uncertainty 

This study focused on the uncertainty linked to GCM structure, climate sensitivity, natural 

variability and hydrological model structure. Other sources of uncertainty, for example, 

GGES, the downscaling method and hydrological model parameters were not addressed in 

this work. The downscaling method was revealed to be a noticeable source of uncertainty in 

the watershed’s hydrological response (Prudhomme and Davies, 2009a; Chen, et al., 2011a). 

The uncertainty of GGES and of GCM initial conditions were also found to have lesser 

impact, as compared to GCM structure and the downscaling method in producing climate 

projections (Chen, et al., 2011a). For the purpose of a more comprehensive investigation and 

to further develop the present framework, these latter sources of uncertainty should be taken 

into consideration.   

 

2) GCM structure 

A major issue in quantifying the uncertainty in GCM structure is related to the number of 

GCMs to be included in the analysis. Ten different GCMs were selected in this research and 

were individually assigned various weights in Monte Carlo simulations. As more and more 

GCMs output are becoming available, an approach must be developed so that the proposed 

framework is implementable with current computing capabilities. This may require, for 

example, aggregating GCMs in order to form ‘families’ of models that produce similar 

hydrological responses. The number of GCMs used for constructing an effective multi-

ensemble may also be efficiently reduced by removing those which will have small weights 

in Monte Carlo analyses. Some GCMs used in this study, e.g. CSIRO and IPSL, which were 

assigned small weights, had the slightest impacts on the generated hydrological projections. 

Murphy et al. (2004) and Laurent and Cai (2007) made similar attempts in their researches. 
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In future studies, a robust and scientifically sound methodology for the selection of GCMs 

should be developed.  

 

3) Downscaling method 

The change factor method technique employed in this work is a relatively straightforward 

and popular downscaling technique. Although it is very easy to apply and allows one to 

directly establish the scenarios in line, by adding the changes predicted by GCMs to the 

baseline climatology, it has some drawbacks. Its key disadvantage is in the supposition that 

the spatial pattern of the current climate remains unchanged in the future. As only this 

downscaling technique was used in this research, other approaches, such as statistical 

downscaling methods, should be employed in future studies to investigate their impact. A 

study by Chen et al, (2011a) confirmed that uncertainty due to the downscaling method can 

be an important contributor to the overall uncertainty of future hydrological regimes. The 

possibility of assigning different weights to the various downscaling techniques should also 

be investigated, as the few analyses conducted so far found all downscaling methods to be 

performing equally well. 

 

4) Natural variability 

A simple weather generator, WeaGETS, was implemented to generate long-term series, 

which were statistically similar to the input data, for the purpose of establishing the natural 

variability. The version of WeaGETS used here did not take into account interannual 

variability. Recently, WeaGETS was improved to correct the underestimation of interannual 

variability found in standard weather generators (Chen et al., 2012). Future studies should be 

performed with improved weather generators to assess how interannual climate variability 

could affect future hydrological regimes and associated uncertainty. Other developed 

approaches for assessing the magnitude of natural variability, such as block resampling and 

other types of weather generators, may also be employed. 
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5) Hydrological variables 

This work examined the impact of various sources of uncertainty on simulated annual mean 

discharge, monthly mean discharge, as well as spring runoff volume and peak flow. In future 

related studies, other variables of interest to water resources managers, such as seasonal 

flows, low flows, time to peak, etc., should also be investigated to provide a more 

comprehensive evaluation of future hydrological regimes.  

 

6) Weighting experiments 

Weighting experiments were done in this study to evaluate the impacts on the watershed 

response to the use of equal-weight and unequal-weight schemes on two sources of 

uncertainty, namely GCM structure and climate sensitivity. Other sources of uncertainty, 

such as the hydrological model structure, that are known to have a noticeable impact on the 

simulated hydrological variables, should be taken into consideration. For example, Chiang et 

al. (2007) introduced a methodology for assigning relative weights to hydrological models 

according to their performance in simulating the hydrological response under selected 

rainfall events. It is therefore recommended to explicitly incorporate hydrological model 

structure as a source of uncertainty in Monte-Carlo simulations by assigning weights to 

hydrological models based on their performance. 

 

7) Hydrological models 

Four hydrological models including two lumped conceptual models (HSAMI and HMETS), 

one physically-based distributed model (HYDROTEL) and one semi-distributed conceptual 

(HBV) were used in this work. Using models with these two different structures resulted in 

some notable distinctions in the resulting hydrological response. In particular, it was shown 

that distributed and semi-distributed models were more sensitive to changing climate than 

lumped conceptual models. It is difficult to draw general conclusions about the uncertainty 

related to hydrological model structure since only four hydrological models were used while 

the literature abounds with models displaying contrasting structures. Either other 

hydrological models should be involved in future investigations or an approach should be 
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devised to group models according to their similarities in simulating hydrological regimes 

and using representative models in the uncertainty study. 

 

Overall, even though this work has produced several innovations, avenues for future research 

are numerous. It is hoped that the contributions presented in this thesis will serve as a solid 

foundation to build upon. 
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