
 

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 
UNIVERSITÉ DU QUÉBEC 

 
 
 
 
 

MANUSCRIPT-BASED THESIS PRESENTED TO  
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 

 
 
 
 
 

IN PARTIAL FULFILLEMENT OF THE REQUIREMENTS FOR 
THE DEGREE OF DOCTOR OF PHILOSOPHY 

Ph. D. 

 
 
 
 
 

BY 
Hesam FARSAIE ALAIE 

 
 
 
 
 

DIAGNOSIS OF DISEASES IN NEWBORN INFANTS BY ANALYSIS OF  
CRY SIGNALS 

 
 
 
 
 

MONTREAL, JUNE 8th 2015  
 

© Copyright Hesam FARSAIE ALAIE, 2015 All rights reserved 
 
   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright  

Reproduction, saving or sharing of the content of this document, in whole or in part, is prohibited.  A reader 

who wishes to print this document or save it on any medium must first obtain the author’s permission. 

 

 

 
 
 
 



 

BOARD OF EXAMINERS (THESIS PH.D.) 
 

THIS THESIS HAS BEEN EVALUATED 
 

BY THE FOLLOWING BOARD OF EXAMINERS 
 
 
 
 
 
 
Prof. Chakib Tadj, Thesis Supervisor 
Department of Electrical Engineering at École de technologie supérieure 
 
 
Prof. Christian Gargour, Chair, Board of Examiners 
Department of Electrical Engineering at École de technologie supérieure 
 
 
Prof. Jérémie Voix, Member of the jury 
Department of Mechanical Engineering at École de technologie supérieure 
 
 
Prof. Patrick Kenny, External Evaluator 
Computer Research institute of Montréal 
 
 
 
 
 
 
 
 
 
 
 
 

THIS THESIS WAS PRENSENTED AND DEFENDED 
 

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC 
 

MAY 8th 2015 
 

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 





 

ACKNOWLEDGMENTS 

 

Thanks are in order for all the people who have helped me in realizing this doctorate thesis.  

 

My heartfelt gratitude is in order for my director at École de Technologie Supérieure, Dr. 

Chakib Tadj for his supervision and support. His invaluable support helped me to get into the 

doctorate program and overcome all the difficulties through the period of my PhD study. He 

let me find my own path whilst at the same time showing me which alternate paths I might be 

missing and giving me advice in courses, in thesis writing, in securing grants, in dealing 

language problems between English and French, in personal problem in my life. 

 

I also would like to thank the jury members who evaluated my thesis and for their 

constructive suggestions and helpful advice. 

 

Apart from academic people mentioned above, I would also like to thank all my colleagues in 

MMS laboratories for all the technical help and support during the period of my PhD study in 

Montréal.  

 

I would like to dedicate this thesis to my parents, Ahmad and Fatemeh, my brother Hossein 

and thanks them for all the support, they provided for me during this stage of my life. This 

was simply not possible without their encouragement and unconditional love. Thanks mom 

and dad for all your love. 

 

Finally, I acknowledge the financial support from Bill & Melinda Gates Foundation. 

 

 





 

DIAGNOSIS OF DISEASE IN NEWBORN INFANTS BY ANALYSIS OF  
CRY SIGNALS  

 
Hesam FARSAIE ALAIE 

 
SUMMARY 

 
Crying is the first sound the baby makes when he enters the world outside of his mother’s 
stomach, which is a very positive sign of a new healthy life. Well, we elders can talk but the 
newborn infant isn't old enough to do that yet. Cry is all a baby can do to express any 
discomfort it feels. When initially reading it, the first thing that comes to mind is why the cry 
is such an important aspect of health care for newborn infants? Although studying on infant’s 
cry was pioneered in the late 1960s, but it never crossed anybody's mind that sick infants 
might be identified from their cries. Statistical reports by World Health Organization state 
that the congenital anomalies or birth defects affect approximately 1 in 33 infants born every 
year and almost all of the world’s infant deaths happen in developing countries. Therefore, it 
is imperative to provide an inexpensive health care system, with no need of complex and 
advanced technology for poor mothers with newborn babies in low-income countries to 
survive more babies beyond the first months of life. In spite of the fact that there are a lot of 
maternal issues that can raise the risks of complications and anomalies in newborn infants, 
we are curious to examine the ability of solely the concealed information inside infant’s cry 
to clarify the infant’s physiological anatomy and psychological condition. The creative idea 
behind of such a non-invasive diagnostic system is based on the evidence extracted from past 
research studies for potential ability of infant’s cry to distinguish between healthy and sick 
infants.  This innovative idea can tackle key global health and development problems. 
 
The purpose of this study is to develop a newborn cry-based diagnostic system to classify 
healthy and sick infants with different pathological conditions. First, an informed choice of 
pathological states and collecting of the infant cry data base is necessary and still in progress 
to complete the infant cry data base. In many of today’s application domains, it is often 
unavoidable to have data with high dimensionality and small sample size. Both small sample 
size problem and dimensionality reduction methods have been studied extensively but the 
combination of imbalanced data and small sample size presents a new challenge to the 
community. In this situation, learning algorithm often fail to generalize inductive rules over 
the sample space when presented with this form of imbalance. In fact, the combination of 
small sample size and high dimensionality hinders learning because of difficulty involved in 
forming conjugations over the high degree of features with limited samples. In the next part, 
data preprocessing, including selection and extraction of pathologically-informed features 
suitably with the best possible precision and then quantifying them for each pathological 
condition without any human intervention is considered in the system. In order to obtain the 
full benefit of the information embedded in the cry signal, Mel Frequency Cepstrum 
Coefficient (MFCC) analysis will be done on both expiratory and inspiratory cry 
vocalizations separately in this study. To avoid the need of human effort in labeling the 
boundaries of the corresponding corpus, automatic labeling of cry signals is required for an 
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ideal cry-based diagnostic system. However, to alleviate the segmentation task in this study, 
it has been manually performed so far.  
 
Finite mixtures are a flexible and powerful probabilistic tool for modeling univariate and 
multivariate data among all available approaches to do modeling and classification tasks. In 
this regard, we come up with Gaussian Mixture Models (GMMs) that is a special case of 
Hidden Markov Models (HMMs) with one state, as a new representation of cry signals 
according to extracted feature streams. The next part of this thesis is dedicated to 
enhancement of learning of GMMs that are usually trained using the iterative Expectation 
Maximization (EM) algorithm. However, considering the risk of overfitting due to small 
training sample size in some pathological conditions, and the fact that the number of 
mixtures is fixed in the traditional EM-based re-estimation algorithm, a new learning method 
based on boosting algorithm is introduced to learn growing mixture models in an incremental 
and recursive manner.  
 
The idea of Universal Background Model (UBM) used in speaker recognition and 
verification systems is employed to represent general feature characteristics of infant cry 
signals. Then, a variant of boosted mixture learning (BML) method is employed in order to 
derive subclass models for each enrolled disease from the GMM-UBM by adaptation of 
GMM parameters. The crux of the design was to fuse two subsystems that are based on 
expiratory and inspiratory sounds in baby cry recordings into a single effective system. Such 
systems are expected to be more reliable due to the presence of multiple, (fairly) independent 
pieces of evidence. We present log-likelihood ratio score fusion to stop worrying on the 
feature compatibility and rigid fusion. 
 
Apart from all of the above-mentioned modeling and learning methods, our work is different 
from previous works in that while other systems usually deal with binary classification tasks 
between healthy and sick infant with only one specific disorder. Our cry-based diagnostic 
system has a hierarchical scheme that focuses into multi-pathology classification problem via 
combination of individual classifiers. Moreover, it is worthwhile mentioning that the chosen 
diseases have not been previously studied.  
 
Keywords: Gaussian mixture model; Universal background model; Mel-frequency Cepstral 
Coefficient; Likelihood ratio scores; Newborn infant cries; Expiratory sound; Inspiratory 
sound. 
 
 



 

LE DIAGNOSTIC DES PATHOLOGIES CHEZ LES NOUVEAU-NÉS PAR 
 L'ANALYSE DES SIGNAUX DE CRIS 

 
Hesam FARSAIE ALAIE 

 
RÉSUMÉ 

 
Le cri est le premier son qu’un bébé peut générer à la naissance, et qui est également un signe 
positif d’une nouvelle vie saine. Ainsi, le cri est tout ce qu’un nourrisson peut faire pour 
exprimer un quelconque malaise qu’il ressent. Nous pouvons alors nous demander : pourquoi 
un cri est-il un aspect important des soins de santé dispensés aux nouveau-nés ? Bien que les 
études sur les cris des nouveau-nés aient été initiées depuis la fin des années 1960, peu de 
travaux ont été réalisés en vue de l’identification automatique de pathologies à partir du cri. 
 
Les rapports statistiques de l’Organisation mondiale de la santé indiquent que les anomalies 
congénitales ou malformations à la naissance affectent environ 1 nouveau-né sur 33 chaque 
année, et tous les décès d’enfants dans le monde ont majoritairement lieu dans les pays en 
développement. Il est donc impératif de fournir, aux pauvres mères dans les pays à bas 
revenu, un système économique de soins de santé qui aide leurs nouveau-nés à survivre au-
delà des premiers mois de la vie, sans avoir à recourir à des technologies complexes et 
avancées. Malgré le fait qu’il y ait beaucoup de problèmes de santé maternelle qui peuvent 
augmenter les risques des complications et des anomalies chez les nouveau-nés, nous 
sommes avides de savoir à quel point l’information dissimulée dans le cri pourrait permettre 
l’identification de l’anatomie physiologique ainsi que de la condition psychologique chez un 
nouveau-né. L’idée créative d’un tel système non invasif de diagnostic est basée sur les 
données probantes ressorties des recherches antérieures qui à leur tour révèlent la possibilité 
de distinguer entre enfants malades et enfants sains à partir du cri. Cette idée innovatrice peut 
aborder les principaux enjeux en matière de santé et de développement. 
 
Le but de cette étude est de développer un système de diagnostic basé sur les cris afin de 
classifier les bébés sains et malades avec différents états pathologiques. D’abord, il est 
important de faire un choix précis des états pathologiques pour la phase de collection des cris 
des nouveau-nés. Cette opération est encore en cours pour compléter la base de données de 
cris. De plus, dans de nombreux domaines d’applications, il est souvent incontournable de 
disposer de données à très haute dimensionnalité et de taille d’échantillons réduite. Les 
problèmes de la taille des échantillons et de la réduction de la dimensionnalité ont fait l’objet 
des nombreuses recherches, mais l’association des données déséquilibrées et la taille réduite 
des échantillons réduite présente un nouveau défi pour la communauté. Dans cette situation, 
les algorithmes d’apprentissage échouent souvent à généraliser des règles inductives sur 
l’espace de l’échantillon et surtout lorsqu’ils sont employés avec cette forme de déséquilibre. 
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En effet, l’utilisation d’un échantillon, de taille réduite et de haute dimensionnalité, peut 
avoir un impact négatif sur l’apprentissage en raison de la difficulté dans la formation des 
relations par rapport au niveau déjà élevé des caractéristiques avec un nombre limité 
d’échantillons. Dans la partie qui suit, une étape de prétraitement des données, y compris la 
sélection et l’extraction des caractéristiques pathologiques appropriées avec la meilleure 
précision possible ainsi que leur quantification pour chaque pathologie, sans aucune 
intervention humaine, sera considérée pour l’élaboration de notre système. Afin d’exploiter 
l’information contenue dans le signal du cri, l’analyse des coefficients cepstraux sur l’échelle 
de Mels (MFCC) sera effectuée dans cette étude de façon séparée sur chacun des types de 
vocalisations expiratoire et inspiratoire du cri. En tenant compte de la nécessité d’éviter les 
efforts humains dans l’étiquetage des frontières dans le corpus utilisé, une étape de 
segmentation automatique des signaux de cris est requise pour un système de diagnostic 
idéal. Cependant, en vue d’alléger la tâche de segmentation dans cette étude, il était 
nécessaire jusqu’à présent de l’effectuer manuellement. 
 
Les mélanges finis sont des outils de modélisation probabilistes, flexibles et puissants parmi 
toutes les approches disponibles. Elles permettent la modélisation et la de classification de 
données univariables et multivariables. Nous avons ainsi choisi d’utiliser les modèles de 
mélanges gaussiennes (GMM), qui représentent un cas particulier des Modèles de Markov 
cachés (HMMs) avec un seul état, pour la représentation des signaux cris selon les vecteurs 
de caractéristiques extraites. La partie suivante de cette thèse est dédiée à l’amélioration de 
l’apprentissage des GMMs. Cette étape est généralement réalisée à l’aide d’un algorithme 
itératif EM, pour Expectation-Maximisation. Cependant, compte tenu, d’une part, du risque 
du sur-apprentissage (overfitting) en raison de la petite taille de des échantillons de certaines 
conditions pathologiques, et d’autre part, du fait que le nombre de mélanges est fixé dans 
l’algorithme de ré-estimation traditionnelle EM, une nouvelle méthode d’apprentissage 
fondée sur un algorithme de ‘boosting’ est introduite afin d’entrainer les modèles de 
mélanges croissantes d’une façon incrémentale et récursive. 
 
L’idée du modèle universel (UBM), largement employé dans les systèmes de reconnaissance 
du locuteur et de vérification, est utilisée pour représenter les caractéristiques principales des 
signaux de cris des nourrissons. Une variante de l’algorithme d’apprentissage appelée BML, 
pour Boosted Mixture Learning est employée, afin d’obtenir des modèles de chaque 
pathologie étudiée à partir d’un GMM-UBM par une adaptation des paramètres du GMM. 
L’essentiel dans la manipulation d’un système efficace de diagnostic est la fusion des deux 
sous-systèmes basés sur les vocalisations expiratoires et inspiratoires détectées dans les 
enregistrements des cris des bébés. De tels systèmes sont censés être plus fiables du fait de la 
présence de plusieurs éléments de preuve indépendants. En tenant compte de la compatibilité 
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des caractéristiques et de la rigidité de la fusion, nous illustrons le rapport de fusion du Log-
vraisemblance. 
 
Indépendamment de toutes les méthodes d’apprentissage et de modélisation susmentionnées, 
notre travail se différencie des travaux antérieurs par le fait que dans les autres systèmes, une 
tâche binaire de classification est utilisée et qui sert à distinguer entre bébés sains et bébés 
malades ayant seulement une pathologie spécifique. Alors que notre système de diagnostic 
est fondé sur un schéma hiérarchique qui se focalise sur le problème de classification 
multipathologies via la fusion de divers classificateurs individuels. Par ailleurs, il convient de 
souligner que les pathologies sélectionnées n’ont pas été étudiées auparavant.  
 
Mots clés: Modèles de mélanges gaussiennes ; Modèle universel (UBM) ; Coefficients 
Cepstraux; Rapport de vraisemblance ; cris des nouveau-nés ; Expiration ; Inspiration. 
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INTRODUCTION 

 

Context of Research Work 

 

Crying is the first and clear sign of life which is seen clearly shortly after the baby’s live 

birth. Reasons of infant’s cry are the same reason of speech in adult i.e. to let others know 

about their needs or problems. In other words, every baby is born with the ability to express 

their needs through sound. Therefore this multimodal signal carries a lot of information about 

the baby. For example, Mrs. Priscilla Dunstan1 has decoded five universal infant cry patterns 

as an easiest way to settle an inconsolable baby who can make a parent feel quite helpless 

and powerless. These patterns are sort of a baby language based on phonetic sounds, which 

are created as part of the automatic reflexes that all newborn babies make.  

 

Analysis of infant cry signals was pioneered in the late 1960s in Scandinavia. After some 

sound spectrographic cry analysis of infants with various diseases, in some cases it has been 

noticed that there are fixed cry attributes, which are rarely seen in cries of healthy infants. 

Instead, these attributes occur very often in cries of infants with diseases. Therefore it was 

found that concealed information contained in infant cry signal can reflect a diverse range of 

diseases and conditions that could affect an infant’s health. In early studies of infant cry, the 

acoustic structure of infant crying was analyzed and some of the important variables 

controlling the production of their cries were described. Afterwards, focus of attention was 

shifted into the sounds produced by the hungry, lonely, pain, hurt, or generally discomforted 

infants. Although there have been some books and products created through the years to 

unlock the secret language of babies, their potential for use in the early diagnosis and 

treatments in newborns remains largely in an open and undeveloped state.    

 

 

 

                                                 
 
1 http://www.dunstanbaby.com/ 



2 

Statement of research problem 

 

In recent years, there has been an increasing interest in cry analysis of sick newborn infants. 

Due to high rate of mortality rate (about 2.7 million infants) in 193 countries in 2010 

(Congenital anomalies, 2014), researchers have begun to take an interest in newborn infants 

with congenital anomalies or babies who are preterm or at risk with infected Central Nervous 

System (CNS). Moreover, the sudden death of an infant may occurs in some cases which is 

not predictable by medical history and remains unexplained after detailed death scene 

investigation, but some of them are actually result of accidents, abuse, and previously 

undiagnosed conditions, such as metabolic disorders.  

 

Recently, there has been a lot of interest in diagnosis tools that are affordable, easy-to-use 

and can rapidly diagnose disease at the point of care and thereby reduce death, disability in 

resource-poor communities. One of many bold ideas attracting investment from the Gates 

Foundation’s Grand Challenges Explorations initiative to address global health and 

development challenges is to provide special care and treatment that can prevent disability 

and death early in life in resource-poor communities. Since approximately 1 percent of the 

world’s infant deaths occur in developed countries based on the fact sheet2, the situation is 

worse for many developing countries. Consequently, identifying illness in newborns from 

their cries via a robust, inexpensive, and simple to use in point-of-care settings have the 

ability to greatly improve the quality and efficacy of healthcare available to newborns in 

developing countries, where the burden of disease is highest.  

 

It never crossed anybody's mind a few years ago that sick infants might be identified from 

their cries. However, based on current evidence for potential ability of infant’s cry to 

distinguish healthy infant from those with medical problems, there is a good chance to be 

                                                 
 
2 The World factbook (Fact sheet No 348-Updated May 2104)  
  Available in:  http://www.who.int/mediacentre/factsheets/fs348/en/ 
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successful in finding such a Newborn Cry-based Diagnosis System (NCDS). This innovative 

idea can tackle key global health and development problems.  

 

In this work, we focus on the means of the discriminative learning of GMM to suit the given 

cry samples consisting of healthy and sick newborn infants with different pathological 

conditions. A novel idea is used to adapt the parameters of the corresponding GMM-UBM to 

derive either healthy or pathology subclass models separately. It is the principal contribution 

that we offer in this research domain where lots of interests were expended for the 

classification of cries of infants in pathological conditions. 

 

Objective and methodology 

 

Our objective is to develop classification system to determine prognosis for newborn infants 

with congenital diseases. The system creates a GMM-based pattern for either the expiratory 

or inspiratory sounds of cry signals. It provides score level fusion of aforementioned models 

in order to offer improvement in diagnostic and prognostic accuracy. Indeed, our objective is 

to provide a cry-based classification system that is capable of modeling the acoustic 

differences between wide range of developmental and pathological conditions affecting both 

vulnerable preterm and full-term neonatal population. Once developed, the system is simple 

to use: a recorder of the voice connected to a computer takes samples of the cry of the infant. 

The result will be available after finishing data processing and cry classification process 

instantly. Figure 0.1 shows various test results which will be provided by the system. 

 

In order to attain this objective, the following approaches were conceived:  

 

1. The paradigm that is to be developed should be generic in concept in order that the 

proposed solution can be applied to any kind of infant disease with no or very little 

adjustments. 
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Figure 0.1 The desired system 

 

2. For the system to be robust, inexpensive and simple to use due to inspiration behind the 

startup idea of developing such a system, it must be able to work with cry signals 

recorded in hospital environment without any advanced methods such as enhancement 

and recognition technologies for the reverberation challenge.   

 

The following methodologies were used in the course of our research work and 

documentation: 

 

1. The cry signals are pre-processed to be prepared for short-term processing, and then, the 

feature extraction procedure is applied, including MFCCs (Davis et Mermelstein, 1980), 

delta and delta-delta coefficients (Gauvain et Chin-Hui, 1994). This feature extraction 

was done through the HTK (Hidden Markov Model Toolkit) software tool (Young et al., 

2006b), which is an established tool of speech recognition systems based on hidden 

Markov models. 

 

2. The concept of universal background model (UBM) (Reynolds, 2009) and background 

speaker models (Reynolds, 1995b) were used in order to represent the global infant’s cry 

characteristics and calculate the likelihood ratio score. The design of each subclass or 

health-condition-specific models via adapting the parameters of the UBM made with 

regards to the corresponding training cry signals separately. 
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3. The traditional EM-based re-estimation (Dempster, Laird et Rubin, 1977) and maximum 

a-posteriori (MAP) approach (Gauvain et Chin-Hui, 1994; Reynolds, Quatieri et Dunn, 

2000) were employed to train GMMs and adapt the GMM-UBM respectively as a 

reference system.   

 

4. The concept of Log-likelihood ratio (LLR) (Reynolds, Quatieri et Dunn, 2000) was used 

for a test sequence of feature vector. Both fast scoring method and score normalization 

for a sequence of feature vector (Reynolds, Quatieri et Dunn, 2000) were employed to 

reduce the computational complexity.  

 

5. Mathematical equations were formulated to allow the reader a better understanding of 

various concepts and idea within this thesis. 

 

Organization of the thesis 

 

The organization of this thesis is as follows:  

 

The first chapter is a review of the past research studies whose goal is to illustrate their 

contributions with regards to our work as well as to differentiate ours with them, therefore 

illustrating our contributions to the domain. The three chapters that follow are published 

works. 

The second chapter is an article that was published in the Journal of Modeling and 

Simulation in Engineering: 

 

• Farsaie Alaie, Hesam, et Chakib Tadj. 2012. « Cry-Based Classification of Healthy and 

Sick Infants Using Adapted Boosted Mixture Learning Method for Gaussian Mixture 

Models ». Modeling and Simulation in Engineering, vol. 2012, p. 10. 

 

In this article, we presented the major drawback of the conventional EM-based re-estimation 

algorithm in designing and training the parameters of GMMs. We presented our preliminary 
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solution as an adapted boosted mixture learning method to train mixture models in an 

incremental and recursive manner. We presented GMM as an effective probabilistic model 

for our cry-based classification system. We also demonstrated that the performance of the 

healthy infant classifier gradually improve when the frame duration for short-time processing 

decrease from 30 to 20 msec.   

 

The third chapter is an article that was published in the Journal of Engineering in 2013: 

 

• Farsaie Alaie, Hesam, et Chakib Tadj. 2013. « Splitting of Gaussian Models via Adapted 

BML Method Pertaining to Cry-Based Diagnostic System ». Engineering, vol. 5, p. 277-

283. 

 

In this article, we introduced a discriminative splitting idea for GMMs followed by learning 

via Adapted boosted mixture learning method. We also demonstrate that this method can stop 

splitting process to find the minimum number of Gaussian components by maximizing the 

objective function in each iteration and BIC. We employed this method to classify healthy 

and sick infants including both full-term and premature based on ML decision criterion.  

 

The fourth chapter is an article that was submitted in the Journal of Speech Communication 

in January 2015: 

 

• Farsaie Alaie, Hesam, Lina Abou-Abbas, Chakib Tadj. Jan 2015. « Cry-Based Infant 

Pathology Classification Using GMMs ». Journal of Speech Communication. 

 

In this article, we presented a hierarchical scheme that is a treelike combination of individual 

detection system to identify healthy and sick infants at risk with neurological and respiratory 

disorders. Each hypothesized health-condition class is derived from the corresponding UBM 

by adapted BML procedure. We also demonstrated that due to small number of hypothesized 

classes using the idea of background speaker models is practical in calculating the likelihood 

ratio score and has better accuracy compared to UBM. Although it was shown that the 
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expiration cry sounds have better performance in the classification tasks, the system also 

adapts a score level fusion of the expiratory and inspiratory sounds-based subsystems to 

make a more reliable decision.  

 

Finally, the last chapter is dedicated to conclusion of this thesis document as well as some 

further research recommendations. 

 

 





 

CHAPITRE 1 
 
 

REVIEW OF THE STATE OF THE ART 

In this chapter, we present the previous research studies that were related to ours. Many 

authors have contributed to the development of such this classification system for different 

types of diseases. A comparison between pattern recognition techniques helped us to better 

understand what kind of features and classifier could be the best choice for our purpose. 

Consequently, this chapter tries to emphasize the key role of both feature selection and 

classification approach in such a system. Whenever there is a need to diffuse confusion, we 

will define the terminologies used in this research to diminish ambiguity that may arise in the 

discussion.  

 

1.1 Fundamental concepts 

This section has a primary concept of cry analysis and gives you a good view of cry signals 

and their features. This information is not essential to follow the remainder of this thesis but 

it may help you better understand where they came from and its importance.  

 

1.1.1 Definitions and elucidation 

In adult human speech communication, we use and interpret some of features unconsciously 

and without really thinking. These so-called prosodic features go beyond phonemes and deal 

with auditory qualities of sound. They convey attitudes, and emotional states which make 

human speech sound human. The infant cry signals are all prosody. Thus, the infants express 

their feeling, and their needs through acoustic correlates of the prosodic features such as 

pitch, loudness, melody, and intonation. Lester et al in (Benson et Haith, 2009) defined three 

identifiable cry modes of vocal fold vibration: basic-cry or phonation, high-pitch cry or 

hyperphonation, noisy or turbulent cry or dysphonation. Most infants have a fundamental 

frequency or pitch  ଴݂ around 250-450 Hz. In phonation and hyperphonation modes only the 
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first two formants are usually measured and F1 occurs at approximately 1100 Hz and F2 at 

approximately 3300 Hz. 

 

Here are some terminologies and definitions of popular cry characteristics used in literature 

on cry analysis (Benson et Haith, 2009; Lederman, 2002; Verduzco-Mendoza et al., 2009; 

Wasz-Hockert, Michelsson et Lind, 1985). 

 

Prosody: It is the intonation and melody patterns of an utterance. 

 

Cry modes: It is a function of vibrational mode of vocal folds. Specific cry modes include: 

Phonation, Hyperphonation, Dysphonation and Inspiratory Phonation. 

 

Phonation: Category of cry sounds resulting from harmonic vibration (usually between 350 

and 750 vibrations per second) of the vocal chords during an expiratory utterance. 

 

Hyperphonation: Category of cry sounds caused by a change in vocal register resulting in a 

harmonic vibration (usually between 1000 and 2000 vibrations per second) of the vocal 

chords during an expiratory utterance. 

 

Dysphonation: Category of cry sounds caused by a change in vocal register resulting in an 

inharmonic or noisy. 

 

Inspiratory phonation: Category of cry sounds resulting from vibration of the vocal folds 

during an inspiratory utterance during an expiratory utterance. 

 

Cry mode change: The number of times the cry modes change within any given utterance. 

 

Fundamental frequency: Base frequency, during harmonic vibration (that includes the Cry 

Modes of Phonation and Hyperphonation) of vocal cord vibration Fundamental Frequency is 

usually heard as the pitch of the cry. 
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Formant frequencies (۴૚	۴૛	. . .  They are center frequencies of the theoretically infinite :(ۼ۴

number of resonances of the vocal tract system. The center frequency of the first resonance is 

defined as the first formant (Fଵ), and the second is defined as the second formant (Fଶ), etc. 

Only the first two or three formants are usually measured. 

 

Maximum pitch: It is the highest measurable point of the fundamental frequency (f଴). 

 

Minimum pitch: It is a frequency after a rapid increase in the f଴ contour. 

 

Pitch of Shift (shift): It is a frequency after a rapid increase in the f଴ contour. 

 

Break: It is defined like the time interval between the end of a phonation and the next 

inspiration. 

 

Cry latency: It is the time between the pain stimulus and the onset of the first expiratory 

utterance. 

 

Voicedness: Voicedness is defined as being the ratio of the amount of periodic sound versus 

the amount of noise. 

 

Stridor: When the voicedness suddenly drops within an area of high energy, one occurrence 

of stridor is marked. Tangibly, the following thresholds were selected: when the voicedness 

drops to less than 30% of its maximum while the energy level remains above -35dB, one 

occurrence of stridor is marked. 

 

Melody type: Fundamental frequency variations that is either falling, rising-falling, rising, 

falling rising, or fiat. 

Noise concentration: High-energy peak at 2000 to 2300 Hz, found both in voiced and 

voiceless signals. This attribute is clearly audible. 
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Bi-Phonation: It is an apparent double series of harmonics of two fundamental frequencies. 

Unlike double harmonic break, these two series seem to be independent of each other. 

 

Gliding: A very rapid up or down movement of f଴. 

 

Continuity: A measure of whether the cry was entirely voiced, partly voiced, or voiceless. 

 

Glottal stops: Short, expiratory bursts of sound created by a sudden opening and sustained 

closing of the vocal folds. 

 

Vibrato: It is at least four rapid up-and-down movements of f଴ within one expiratory 

utterance. 

 

Voice-UnVoiced: The cries are voiced or unvoiced (voiceless). In the voiced cry the sound 

wave is periodic and both fundamental and its harmonics are visible on the spectrogram. In 

the inaudible unvoiced cries the spectrogram shows a burr turbulence or aperiodic noise with 

a fundamental which is not visible, nor measurable. 

 

The following is a brief definition of some diseases and disorders that are common among 

newborn infants and used in related works and ours (Miller et O'Toole, 2003). 

 

Down's Syndrome (trisomy 21): Down syndrome (DS) is the most common cause of mental 

retardation and malformation in a newborn. It occurs because of the presence of an extra 

chromosome. 

 

Cri-du-chat: A hereditary congenital syndrome characterized by hypertelorism, 

microcephaly, severe mental deficiency, and a plaintive catlike cry, due to deletion of the 

short arm of chromosome 5. 
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Trisomy 13: A syndrome characterized by mental retardation and defects to the central 

nervous system and heart, caused by having three copies of chromosome 13. 

Trisomy 18: A congenital condition caused by the presence of an extra chromosome 18, 

characterized by severe mental retardation and multiple deformities. 

 

SIDS: It is a sudden and unexpected death of an apparently healthy infant, not explained by 

careful postmortem studies. It typically occurs between birth and age 9 months, with the 

highest incidence at 3 to 5 months. 

 

Sepsis: It is a potentially deadly medical condition that is characterized by a whole-

body inflammatory state (called asystemic inflammatory response syndrome or SIRS) and 

the presence of a known or suspected infection. In neonates, sepsis is difficult to diagnose 

clinically. It is found in infants during the first month of life. 

 

Bovine protein allergy: Cow's milk allergy is the most common food allergy in young 

children. Bovine protein allergy constitutes an important place in childhood food allergies. 

Soy protein-based and hydrolyzed protein formulas have some disadvantages. 

 

Pre term infants: Babies who are born before 37 weeks, and particularly those born before 

34 weeks, are at greater risk of suffering problems at birth. 

 

Thrombosis in the vena cava: Renal venous thrombosis occurring in the neonate causes 

haematuria, oliguria, acute renal failure, and hypertension. 

 

Hypoxia: It is a deficiency in the amount of oxygen reaching body tissues. 

 

Tetralogy of Fallot: It is a type of congenital land cyanotic heart defect. It causes low 

oxygen levels in blood. This leads to cyanosis (a bluish-purple color to the skin). 
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Coarctation of Aorta: It is a narrowing of part of the aorta (the major artery leading out of 

the heart). It is a type of birth defect. Aortic coarctation is more common in persons with 

certain genetic disorders, such as Turner syndrome. However, it can also be due to birth 

defects of the aortic valves. 

 

1.1.2 Types of cries in infants 

In relevant prior works, different kind of cry signals as a database is observed such as hunger 

cry, pain cry, and normal cry. Crying due to pass 3 to 3.5 hours after last feeding of infants 

has been referred as the hunger cry (Newman, 1985). Some studies have elicited pain cry 

based on use of a stimuli such as rubber band snap, heel stick with a blood lancet, skin pinch 

on the arm or ear, or removal of electrodes from infant’s body (Cacace et al., 1995). The 

pleasure cry is produced by an infant who has been fed and changed and who shows clear 

indications of being comfortable (Sagi, 1981). 

 

Crying rate varies from 50 to 70 utterances per minutes, and duration of the each cry unit 

ranges from 0.4 to 0.9 seconds. Figure 1.1 depicts a typical cry sequence which follows a 

rhythmic pattern that is noticed 30 minutes after birth. The normal cry starts with a cry 

coupled with a briefer silence, which is followed by a short high-pitched inspiratory whistle. 

Next, there is a brief silence followed by another cry. Hunger is a main stimulant of the basic 

cry. Greater variability in some cry parameters appears after the end of the second month. 

Crying may continue in this manner during a period of 40 seconds to more than 4 minutes 

(Newman, 1985). 

 

 

Figure 1.1 Rhythmic pattern of a typical infant cry 
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Crying following a painful experience is called “Pain Cry” and a typical example of such 

cry has a length of approximately 3 seconds. The pattern of such a cry is shown in Figure 

1.2. 

 

 

Figure 1.2 Pattern of Pain Cry 

 

Although among the first three cry signals after the pain stimulus there were no marked 

differences in cry characteristics (see Table 1.1), study on infants’ cries during the first six 

months had shown few changes in the cry characteristics (Wasz-Hockert, Michelsson et 

Lind, 1985). 

 

Table 1.1 Comparison of the first three cry signals after pain stimulus 

 Max/Min pitch Shift Duration Glottal roll 

1st Cry signal like the other 

ones 

more often longer and often 

interrupted 

more common

2nd Cry Signal like the other 

ones 

- shorter and often 

continuous 

- 

3th Cry Signal like the other 

ones 

- shorter and often 

continuous 

- 

 

Investigators studying cry characteristics have found diagnostic value in pain cry analysis. 

For example, compared to normal infants’ cry, pain cries of infants with Down’s syndrome 

are lower in pitch, longer, and flatter in melody contour (Wasz-Hockert et al., 1968). 
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1.2 Background 

This section briefly presents some birth prevalence rates of selected birth defects and causes 

of infant death. Moreover, some previous research studies that are related to ours are 

reviewed. 

1.2.1 Mortality rate and birth defects 

Statistics reports by World Health Organization (Congenital anomalies, 2014) and Center for 

Disease Control and prevention (Rynn, 2008) present that the congenital anomalies or birth 

defects affect about 1 in 33 born infants every year. In an article published by the New 

Brunswick Beacon (Silverthorne, 2014), it was reported that according to press released from 

the CDC and the Public Health Agency  of Canada, the risk of birth defects in Canadian 

babies is higher than American. Moreover, based on the Factbook published by Central 

Intelligence Agency (The World factbook, 2013-14), United States’ infant mortality rate is 

6.17 per 1,000 live birth which is higher than at Canada of 4.71 rate. In Table 1.2 the leading 

causes of infant death in the U.S. in 2010 are listed (Heron, 2013). 

 

Heart defect, neural tube defects and Down syndrome are especially prevalent among 

infants (Congenital anomalies, 2014). Down syndrome, also known as trisomy 21, is a 

genetic disorder which is fairly common chromosomal abnormality among infants (about 

1 in 800 (Lobo et Zhaurova, 2008)). This genetic disorder can often infect other parts of 

the body and bring on other diseases such as heart defects, leukemia and Alzheimer’s 

disease. There are a lot of maternal and environmental issues which can raise the risks of 

several complications and associated anomalies, such as gestational age, birth weight, 

consanguinity (relationship by blood), maternal age, multiple gestations, and maternal 

infection during pregnancy, socioeconomic factors and maternal nutritional status. For 

example, the risk of having a baby with DS (Lobo et Zhaurova, 2008) increases as she 

gets older (see Table 1.3). 
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Table 1.2 Deaths and percentage of total deaths for the 11 leading causes of 
infant death: United States, 2010 

 Adapted from Heron (2013) 

Cause of death Rank Deaths Percent of 

total deaths 

All causes … 24,586 100.0 

Congenital malformations, deformations 

and chromosomal abnormalities 

1 5,107 20.8 

Disorders related to short gestation and low 

birth weight, not elsewhere classified 

2 4,148 16.9 

Sudden infant death syndrome 3 2,063 8.4 

Newborn affected by maternal 

complications of pregnancy 

4 1,561 6.3 

Accidents (unintentional injuries) 5 1,110 4.5 

Newborn affected by complications of 

placenta, cord and membranes 

6 1,030 4.2 

Bacterial sepsis of newborn 7 583 2.4 

Respiratory distress of newborn 8 514 2.1 

Diseases of the circulatory system 9 507 2.1 

Neonatal hemorrhage 11 458 1.8 

Necrotizing enter colitis of newborn 10 472 1.9 

 

Table 1.3 Maternal age versus risk of DS  
Adapted from Lobo (2008) 

Age Risk 

Age < 35 0.05 % (or 1 in 2,000) 

Age 40 1 %      (or 1 in 100) 

Age 50 8.3 %   (or 1 in 12) 

 

Gestational age is the noteworthy predictor of infant’s health condition with the normal range 

of 37-41 weeks for babies which are fully developed (full-term). Any live birth before 
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completing of 37 weeks is called preterm birth (Cunningham FG et al., 2010). Although most 

women in their ninth month of pregnancy are exhausted due to shortness of breath, sleeping 

problems and other symptoms, these last weeks are to crucial to have completed fetal 

development. Some vital organs such as lungs, brain, and liver develop at the last weeks 

(Cunningham FG et al., 2010), so the premature birth, even only a few weeks early, increases 

the chance of birth defects or infant death in a way that in the U.S. in 2010 mortality rate for 

very early preterm (under 32 weeks) was 74 times worse than that of full-term infants (see 

Figure 1.3). 

 

 

Figure 1.3 Infant mortality by gestational age in the U.S. in 2010  
Adapted from T.J (2013) 

 

Birth-weight is another important predictor of infant’s health. Figure 1.4 indicates the 3rd, 5th, 

10th, 50th (median), 90th, 95th, and 97th percentile birth weights for both male and female 

infants. Newborns with birth-weights below the 10th and above the 90th percentiles are 

conventionally considered respectively as small-for-gestational-age (SGA) and large-for-

gestational-age (LGA). Infants with weights between these two thresholds are considered as 

appropriate-for-gestational-age (AGA). Filled areas with borders in Figure 1.4 depict full-
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term infants (38-42 weeks) with AGA weights. Although weight gain during pregnancy 

occurs incrementally, it is not the only factor related to infant's weight at the time of birth, for 

example SGA or low birth weight (LBW) can be due to prematurity or slow prenatal growth 

rate. In the U.S. in 2010, more than 80% of infants with less than 0.5 kg weren’t able to 

survive the first year of their life.   The mortality rate for infants with less than the weight of 

2.5 kg (50.98 per 1,000) was about 24 times larger than that of infants with birth weights of 

2.5 kg or more (2.13 per 1,000) (T.J. et F. MacDorman, 2013). 

 

(a) (b) 

Figure 1.4 Relation of weight and gestational age for (a) male and (b) female singletons 

 

As we mentioned it earlier, approximately 1 percent of the world’s infant deaths happen in 

developed countries and the situation is worse for many developing countries. Therefore, we 

believe that by providing inexpensive health care system, with no need of complex and 

advanced technology for poor mothers with newborn babies in low-income countries, more 

babies can be survived beyond the first months of life.  

 

Birth defects may have different causes such as genetic, maternal nutritional status, maternal 

age, infectious or environmental but it is hard to get an accurate diagnosis of their causes in 
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origin. However, for some known risk factors there are some primary prevention solutions 

such as adequate use of antenatal care and vaccination. Congenital anomalies can affect any 

part of the body such as brain, ears, and heart. However, it is easier to identify a baby with 

structural problems such as cleft lip, but on the other hand, symptoms of other defects might 

be invisible and hidden from sight. 

These official statistics can provide more information about the chance of infants born with 

specific congenital disease which is completely independent of the information inside infant 

cries. Moreover, there are other independent sources of information related to the 

physiological condition of newborn infants that can be useful like in a similar way in 

multimodal biometric systems. However, in this article we are curious to examine only the 

ability of information embedded in infant cries. 

 

1.2.2 Primary research 

Some of prior works have focused on analyzing different kinds of cries and trying to find 

differences between them. A preliminary report of infant cry analysis in 1963, researchers 

could distinguish 4 types of infant cry, namely the first birth cry, the hunger cry, the pain cry, 

and the pleasure cry from each other both auditorily and by using of sound spectrography 

(Wasz-Hockert et al., 1963). 

 

Another group of researchers were interested in auditory identification of cry types by 

training people who had had past experience with infant cries, such as midwives (Wasz-

Hockert, Michelsson et Lind, 1985). Additionally, in 1967 they found that cries of sick 

infants could be distinguished auditorily as basic cry types, namely birth, hunger, pain, and 

pleasure. Infants with asphyxia, brain damage, hyperbilirubinemia and, Down’s syndrome 

were used in the research work (Partanen et al., 1967). Table 1.4 compares the results for the 

hunger, birth, and pleasure cry. In these methods training phase plays a vital role in 

improving the ability to recognize the cries. 
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Table 1.4 Similarities between hunger, first birth, and pleasure cry 
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Hunger Cry 550 390 2% falling, rising / 

falling in 80% 

24% - 

First Birth Cry 550 450 18% - - Short 

(1.1 sec) 

Pleasure Cry 650 360 19% flat in 46% 26% - 

 

Many experiments on sick infants with various diseases have been done in order to make a 

general assessment of the effect on cry characteristics. Table 1.5 depicts some cry 

characteristics, such as pitch, melody type and the occurrence of biphonation and glide 

change in sick infants (Wasz-Hockert, Michelsson et Lind, 1985). 

 

Normal range of fundamental frequencies has been mentioned in papers between 400 and 

600 Hz for healthy infants’ cries (Lind et Wermke, 2002). In addition, three cry features, 

namely biphonation, glide, and shift, have been rarely found in the crying of healthy infants. 

In contrast, abnormal high mean value of fundamental frequencies (F0>600 Hz) has been 

reflected in crying of infant who suffer from CNS-disorders (Michelsson, 1971; Michelsson 

et Michelsson, 1999). 

 

The changes in cry characteristics in newborn infants with asphyxia were so apparent and the 

results indicate that cry analysis has diagnostic value as well as prognostic value when 

analyzing cries of infants with meningitis. As you can see in the Table 1.6 (Wasz-Hockert, 

Michelsson et Lind, 1985), it is observed that the pitch and some other cry characteristics 

change when the child is sick, especially the ones with central nervous system diseases. For 

example, the latency of normal infants is less than that of infants with diffuse brain damage. 

It means that healthy infants respond more quickly than others to stimuli. 
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Table 1.5 Comparison table between cry characteristics of several diseases 
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Table 1.6 Comparison table between cry characteristics of healthy and 
sick infants 

Cry 
characteristics Healthy Sick  

Brain 
damage Meningitis 

CNS 
disorders 

latency  1.2 s - 2.6 s - - 

Duration 2.6-5.2 s - - 1.7 s - 

Maximum 
Pitch  

570-680 
Hz , 650 greater - - - 

Minimum 
Pitch  

330-420 
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1.2.3 Early-infant medical researches 

Here, we will very briefly define some standard measure as specificity and sensitivity. These 

measures are computed from true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) as presented in Table 1.7. 

 

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ  = ܶܲ(ܶܲ + (1.1) (ܰܨ

ݕݐ݂݅ܿ݅݅ܿ݁݌ܵ  = ܶܰ(ܶܰ + (1.2) (ܲܨ

ݕܿܽݎݑܿܿܽ	݈݈ܽݎ݁ݒܱ  = ܶܲ + ܶܰ(ܶܲ + ܶܰ + ܲܨ + (1.3) (ܰܨ

and: 

 

• TP = true positive, the classifier classified as pathology when pathological samples 

were present; 

• TN  = true negative, the classifier classified as normal when normal samples were 

present; 

• FN  = false negative, the classifier classified as normal when pathological samples were 

present; 

• FP  = false positive, the classifier classified as pathological when normal samples were 

present. 

 

Table 1.7 Confusion matrix 

Actual classification 
Predicted classification 

Pathological Normal 

Pathological  TP FN 

Normal  FP TN 
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The medical research into infant cry signals is divided into three main areas: 

 

1. Severe pathology and medical problems such as Asphyxia which may be identified by 

existing techniques and tests (see Table 1.8, (Benson et Haith, 2009)); 

 

2. Diseases and medical problems such as SIDS that are currently undetectable until it is too 

late for treatment (see Table 1.9, (Benson et Haith, 2009)); 

 

3. Medical conditions which place the infants at risk for poor outcome but the prognosis is 

not clear such as prenatal exposure to illegal drugs or premature infants (see Table 1.9, 

(Benson et Haith, 2009)). 

 

Table 1.8 Cry features of infants with severe pathologies 

 

For diagnosis of medical syndromes or damage to the CNS, the most common changes in cry 

characteristics are higher ଴݂ and more variability in it. In case of one of these significant 

medical problems, there are often other clinical signs. Nonetheless there is no doubt that this 

Medical Condition Cry Characteristic 

Asphyxia 
↑F0, ↑ F0 instability, biphonation, ↑sub-harmonic break, ↓ 

duration  

Brain damage 
↑F0, ↑ F0 instability, biphonation , ↑ threshorld, ↓ duration, 

↑ latency, ↑ short utterances. 

Cri du chat ↑F0 

Down Syndrome  ↑F0, ↑ F0 instability , ↓ intensity (amplitude ) 

Hydrocéphalus ↑F0, ↑ F0 instability , ↓ latence 

Hypothyroïdism ↓F0 

Krabbe’s disease ↑F0 

Meningitis bacterial ↑F0, F0 instability, biphonation , ↓ duration 

Trisomie 13,18, 21 ↓F0 
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sort of help could be valuable for infants already diagnosed with CNS damages. For example, 

in some cases with severe asphyxia or bacterial meningitis infants had the poorest prognoses. 

For health problems that are not detectable by available medical examinations such as SIDS, 

it is worthwhile to look for some cry characteristics associated with medical problems. 

Limited previous works has shown that infants with vocal constriction (high ܨଵ) and poor 

control over the vocal tract (increased cry mode changes) are more likely to die of SIDS. 

Briefly Table 1.9depicts cry characteristics observed in infants who are at-risk (Benson et 

Haith, 2009). 

 

Some experiments have been carried out on infants of mothers who abused a variety of 

substances, namely alcohol, tobacco, and cocaine during pregnancy (Corwin, Lester et 

Golub, 1996). The cry characteristics of these infants also have been shown to be abnormal 

in comparison to healthy infants. 

 

172 healthy infants have been under studied according to their gender separately in 

(Michelsson et al., 2002) and no significant differences between cry characteristics such as 

melody type, and mean value of maximum/minimum of the fundamental frequency have 

been noted. The same result has been achieved for babies in different ages (1-7 days old) or 

the gestational age when they were born. On the contrary of former studies (Gilbert et Robb, 

1996; Prescott, 1975), no significant weekly changes were found in (Lind et Wermke, 2002) 

during the first three months of life. As you can see in Figure 1.5, there is no marked increase 

or decrease in ଴݂. 
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Table 1.9 Cry features of infants with undetectable disease with not clear prognosis 

Medical Condition Cry Characteristic 

Low birth weight 

 (<2500g) small for 

 gestation 

↑duration , ↓ ଴݂, ↑ ଴݂ variability (biphonation) 

Preterm infants 

↑F0, ↑ F0 variability, F1 variability, ↓amplitude associated with ↓ 

BSID(18 months), ↓duration, ↑F1, ↓amplitude with ↓ cognitive scores 

(McCarthy, 60 months), ↑short cry utterances with ↓ developmental 

outcome (30 months) 

Hyperbilirubinemia 
↑F0), ↓duration, ↓latency, ↑F0 variability, unstable glottic function 

(mode changes), ↑F1variability, ↑Phonation 

Lead exposure  Low % nasalization, ↓number of cries, ↑F0 

Prenatal opiate 

exposure 

↑hyperphonation, ↑short utterance, ↑F0, ↑duration of 1st cry utterance 

associated with withdrawal symptoms, increased likelihood of 

abnormal cries 

Prenatal cocaine 

exposure 

Direct effects (excitation) ↑duration, ↑F0, ↑F1, ↑F1 variability, 

indirect effect via growth retardation (depression) ↑latency, 

↓amplitude, ↑dysphonation, ↓cry utterances, ↑short cry utterances, 

↓hyperphonation, ↓F2, 2nd utterance 

Prenatal marijuana 

 exposure 

Shorter cries, ↑dysphonation, ↑F0, ↑F0 variability, ↓F1, ↑mode 

changes, ↑F2 

Prenatal alcohol 

exposure 
↑dysphonation, ↑F1, ↓threshold, ↑hyperphonation, ↓F1 

Prenatal tobacco 

exposure 
↑F0, ↑F2, ↑F2 variability 

Prenatal 

methamphetamine 

exposure 

↓threshold, ↑variability in F0, ↑variability in amplitude, ↑mode 

changes, ↑dysphonation, ↑short utterances, ↑variability in 

dysphonation 
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Figure 1.5 Median values, the 25th and 75th percentiles of the  
F0 as well as the extreme values across the 13 weeks of study 

 

1.2.4 Review of studies on machine learning and classification problems 

In recent years, several machine learning algorithms have demonstrated their ability to 

recognize cry patterns and make intelligent decision based on available training database. 

Therefore, the pattern recognition is an absolutely necessary phase to auto-classify infants’ 

cries. Generally, the diagnostic system can be shown by a general block diagram depicted in 

Figure 1.6. 

 

Infants’ cries 
(training set )
Infants’ cries 
(training set )

Digitalization
Feature selection 

and extraction

Training 
Classifier

Trained 
Classifier

Infant’s cry 
(testing set)
Infant’s cry 
(testing set)

Decision

 

Figure 1.6 Block diagram of auto diagnostic 
system by using pattern recognition 
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An Artificial Neural Network (ANN) is a learning algorithm that may be used to solve 

artificial intelligence problems without necessarily creating a model of system. Generally, 

neural network has two parts, namely nodes and links instead of neurons and their 

connections respectively. It is usually used to model complicated relation between input 

vectors and desired output vectors. In the learning phase with a training example, the weights 

of connections are iteratively adjusted in order to achieve the minimum possible error 

between the output and the desired output. 

 

In (Orozco et Garcia, 2003) neural network was used in order to classify the cries into 

healthy and deaf infants.  Moreover, linear prediction coefficients (LPC) were used as a 

feature vector to feed the neural network. The LP analysis on one second of cry signal is 

shown in Figure 1.7. Principle Component Analysis (PCA) was used due to eliminate the 

correlation between coefficients and reduce the size of input vectors from 320 parameters per 

second to 30 parameters per second. The prime objective of data reduction methods such as 

PCA is to eliminate redundant data and preserve the most relevant information. 

 

 

Figure 1.7 Linear prediction analysis on 1 second of cry signal 

 

Gradient descent algorithm is a popular method in optimization methods. Scaled Conjugate 

Gradient (SCG) algorithm from the class of Conjugate Gradient Methods was used to 

minimize the error function that depends on the weights in the network. This method for 

training phase was reported to get better result than back-propagation and cascade neural 

network (Orozco et Garcia, 2003). Table 1.10 indicates the confusion matrix of the 

classification results. 
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Table 1.10 Confusion matrix of Neural Network with SCG algorithm 

  Confusion Matrix  

Kind of crying Samples Normal Pathological Accuracy 

Normal 157 142 15  

Pathological 879 128 751  

Total 1036   86.20% 

 

Combinations of acoustical characteristics such as, melody, biphonation, pitch, and cepstral 

coefficients can be used as the input vectors in the neural networks or other learning 

methods. In (Cano Ortiz, Escobedo Beceiro et Ekkel, 2004a) the authors used such this idea 

to select a feature vector. Searching through the 25 primary features with a fast non-linear 

classification procedure was employed to find the winning combination of them with the best 

results. The authors used a special type of neural network called Radial Basis Function 

(RBF) network. Briefly, it usually has three layers namely an input layer, a hidden layer, and 

an output layer (see Figure 1.8).  

 

 

Figure 1.8 Structure of a basic RBF network 
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The mapping function ߮ ∶ 	ℝ௡ 	⟶ 	ℝ is constructed by linear combination of the basic 

functions.  

 ߮(ܺ) = ∑ ௜ݓ ߶(‖ܺ − ௜‖)ே௜ୀଵܥ   (1.4)

 

Where Wi are the weights of the linear output neuron, Ci is the center vector for neuron i, and ܰ is the number of neurons in the hidden layer. The basis function typically is taken to be 

Gaussian, and norm is taken to be the Euclidean distance 

 

 ߶(ܺ) = exp[−ߚ‖ܺ − ௜‖ଶ]  (1.5)ܥ

 

where the ߚ is a parameter which controls the smoothness of the total approximation ߮(ܺ). 
The winning combination of 10 cry features depicted in Table 1.11 had the accuracy rate of 

85% to distinguish between normal infants and infants who suffer from hypoxia (see Table 

1.12). 

 

Table 1.11 The winning combination with 10 features 

F1 minimum F1 mean F0 maximum  F0 mean First latency

Voicedness 

mean 

Voicedness 

variability 

Energy 

maximum  

Energy 

minimum  

Energy 

mean 

 

Table 1.12 Confusion matrix of RBF network 

 Confusion Matrix  

Actual Class Normal Hypoxia Accuracy 

Normal 79% 21%  

Hypoxia 12% 88%  

Total   85% 

 

The evolutionary strategies were applied in (Galaviz et García, 2005) to introduce a new 

method to find the feature set with the best possible classification results. The method was 
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examined using Mel Frequency Cepstral Coefficients (MFCC) and Linear Prediction 

Coefficients (LPC) and due to improvement in its learning phase it obtained better 

classification results in comparison with those achieved by PCA to reduce the features 

vector. The results of experiments on the introduced evolutionary-neural hybrid system 

depicted that the MFCC were the most successful features with 96.79% classification 

accuracy. However, there is a design flaw with this hybrid system, because there was no 

clean method to optimize the parameters. 

 

According to the primary results mentioned in Table 1.5 and Table 1.6, pitch and melody 

type offer a good ability to make a distinction between healthy and sick infant. These 

distinguishing characteristics with two more features namely stridor and voicedness have 

been used in introduced combined classifier in (Cano et al., 2006) which contained a 

threshold-based classifier and a supervised neural network classifier with scaled conjugate 

gradient learning algorithm. The two marks obtained from the output of each classification 

method, called FN1 and FN2, have been used to make a decision on two classes, normal 

infants or infants who suffer from CNS disorders. In brief, FN1 was computed with the 

following gradation: 

 

Table 1.13 Determination of FN1 

Parameters Stridor, Voicedness, Melody type, and Pitch 

Output of threshold-

based classifier 

Number of parameters that are out of the 

threshold boundary for normality 

                 FN1 = 0.25 1 

                 FN1= 0.5  2 

                 FN1= 0.75 3 

                 FN1= 1 4 

                 FN1= 0 0 

 

The input vectors of neural network were reduced from 500 MFCC to 50 MFCC by using of 

PCA. The output of this classifier, FN2, was assigned to 0 or 1 for normal infant and 
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pathological infant respectively. Finally, the mean of FN1 and FN2 makes the final decision 

based on the Table 1.14. The confusion matrix of the combined classifier is shown in Table 

1.15.  

 

Table 1.14 Determination of decision parameter 

Levels D =   (FN1+FN2)/2 

Normal D ≤ 0.5 

Moderately-pathologic 0.5 < D ≤ 0.75 

pathologic 0.75 < D 

 

Table 1.15 Confusion matrix of the ensemble method 

Classes Number of 

samples 

Confusion 

Matrix 

D index Accuracy 

  P N X ≤ 0.5   0.5 < X ≤ 0.75  0.75 <X % 

Normal 10 10 0 10 0 0 100 

Sick 10 2 8 2 7 1 80 

Total 20   12 7 1 90 

 

The idea of combining an ensemble of classifiers for reducing classification error rates has 

been employed in (Amaro-Camargo et Reyes-García, 2007). Feed-forward Neural Networks 

(FFNN) with Backpropagation, Sequential Minimal Optimization on SVM, J48, Naïve Bayes 

and Random Forest as classification methods were chosen to be combined under several 

approaches like Bagging (Bauer et Kohavi, 1999a), Boosting (Bauer et Kohavi, 1999a), 

Majority Vote, and Staking.  Original acoustical feature vectors which contained a total of 

304 MFCC for every one second cry signal were reduced by means of 5 statistical operations 

namely minimum, maximum, average, standard deviation, and variance. Using these 

statistical operations instead of PCA for either MFCC or LPC obtained better results for 
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neural network classifier (see Table 1.16). In addition, the more components it has, the more 

training time network requires. 

 

Table 1.16 Comparison accuracies of FFNN with PCA and statistic reduction 

 PCA reduction 50 principal 

components 

Statistic reduction 5 statistics 

characteristics 

FFNN 90.12% 91.86% 

 

Several experiments have been conducted on single classifiers and their ensembles with three 

separate sets of data named A, B and C. According to Table 1.17, it is apparent that 

ensembles achieved better results except for data set C which is used input vectors without 

reduction. 

 

Table 1.17 Comparison table between best results of classifiers and their ensembles 

Set A B C 

Classifier Neural N Neural N SMO 

 91.67% 91.86% 91.67% 

Ensemble Staking: NN, 

SMO, R. Forest 

Vote: Neural N, R. 

Forest 

Staking: SMO, J48 - Vote: 

SMO, R. Forest 

 91.83% 93.23% 91.66% 

 

Although time and memory are not the criteria for comparison among the different automatic 

classification of infants’ cry, taking a quick look at the size of input matrices for each case 

could be a good idea. Ensembles of classifiers usually require more processing time than a 

single classifier. Therefore, training and testing the ensembles with feature vectors without 

dimension reduction requires more memory space and time. 

 

Recently probabilistic neural network introduced by Specht in (Donald F, 1990) was used for 

classifying normal and infants with Asphyxia via wavelet packet transform based features 

(Hariharan, Yaacob et Awang, 2011). In contrast with Discrete Wavelet Transform (DWT), 
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both lower and higher frequency bands are decomposed into 2 sub-bands in wavelet packet 

transform. The decomposition coefficient of the i-th depth was computed and frequency 

ranges of subspaces in each level of decomposition can be calculated as below: 

 

 ቂ0, ௙ೞଶ೔శభቃ , ቂ ௙ೞଶ೔శభ , ଶ௙ೞଶ೔శభ , ቃ , … , ቂ (ଶ೔షభିଵ)௙ೞଶ೔శభ , ௙ೞଶ , ቃ  (1.6)

 

After 5 levels of decomposition, the sub-band energy and entropy were computed from 

wavelet packet coefficients by the following equations.  

 

௡ݕ݃ݎ݁݊ܧ  = ∑ หܥ௡,௞௉ หଶ ݊ = 1,2, … ,ܰ, ݇ = 0,1,… , 2ே − 1௡௜ୀଵ   (1.7)

௡ݕ݌݋ݎݐ݊ܧ  = ∑ หܥ௡,௞௉ หଶ݈݃݋หܥ௡,௞௉ หଶ, ݊ = 1,2, … ,ܰ, ݇ = 0,1, … ,2ܰ − 1௡௜ୀଵ   (1.8)

 

where P is the scale index, n is number of decomposition level. Several experiments have 

been done with different level of wavelet packet decomposition, and the results in Table 1.18 

depicted that the highest achievable classification accuracy of 99% was obtained at the fifth 

level of decomposition. 

 

1.3 Cry pattern classification 

This section discusses briefly the idea behind choosing the proposed machine learning 

methodology and other related issues from different point of views.  

 

Generally we can consider the solution of our classification problem in two different ways: 

Set up a multi-class classification problem or treat each classification problem independently 

like a one-class or binary classification. One is not necessarily better, there are trade-offs. 

First of all, many good classifiers like logistic regression can only handle binary 

classification problem. So if we want to use it for multi-class problems, we have to turn it 

into a set of binary classification problems.  
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Table 1.18 Obtained accuracy rate in each decomposition level for PNN classification 

Decomposition Level Sensitivity Specificity Overall 
Accuracy 

1 88.71 88.68 88.60 

2 98.33 98.10 98.20 

3 99.19 98.48 98.82 

4 99.63 99.34 99.49 

5 99.85 98.48 99.15 

A:   Results for energy feature 

Decomposition Level Sensitivity Specificity Overall 
Accuracy 

1 84.08 84.12 84.04 

2 97.89 98.24 98.05 

3 98.39 98.31 98.35 

4 98.91 99.12 99.01 

5 99.63 99.20 99.41 

B:   Results for entropy feature 

 

Secondly, multi-class classifiers tend to be more complex, and less well-understood from the 

theoretical standpoint. On the other hand, taking the outputs of bunch of binary classifiers 

and turning them into a single multi-class output is not straightforward, as there maybe ties, 

or the numbers that binary classifiers output might not be comparable. Sometimes the outputs 

of binary classifiers are confidence score, and these cannot be directly compared for example 

0.6 confidence from classifier “A” might not be more confidence than 0.5 from classifier 

“B”. 

 

Another problem happens if there are lots of classes, and we choose to train multiple one-

class or binary classifiers instead of one multi-class classifier. If we assume that there are K 

classes, it leads to K classifiers each comparing one class with all the others namely ‘target 

class’ and ‘outlier class’ respectively. Therefore, we a have large class imbalance in each 

training set. For example if classes evenly distributed over the training set, the outlier class 
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will have K-1 times as many samples as the target class. We should be well aware of class 

imbalance, since it would have an adverse impact on the performance of many classifiers.  

 

So finally, neither one is necessarily better. It is a better idea to try both practically and see 

which performance is better for our particular case. 

 

1.3.1 Brief description on various classifiers 

A brief description and comparison of the various classifiers that have been used in past 

studies like Artificial Neural Network (ANN), Support Vector Machine (SVM) are given 

below. 

 

1.3.1.1 ANN and SVM 

We have a fairly similar case in ANN in which two options are presented; separate networks 

for each binary classification or train one network with one output for each binary 

classification, but with a shared hidden layer. Using a shared hidden layer could be a clever 

idea to have all scores on a same scale and solve comparability of classifiers score. 

Nevertheless, having some networks is not always preferable over the one network with 

shared hidden layer. In the case with shared hidden layer and more output nodes, the network 

needs a larger hidden layer, as the learning function gets more complex. A larger hidden 

layer means we are more prone to overfitting, so we'll need more training data. However, as 

above, figuring out how to turn the output of k networks into a single k-class output is not an 

easy task. 

 

The development of ANN followed a heuristic path, with applications and extensive 

experimentation preceding theory. In contrast, the development of SVMs involved sound 

theory first, then implementation and experiments. A significant advantage of SVMs is that 

whilst neural networks can suffer from multiple local minima, the solution to an SVM is 

global and unique. Two more advantages of SVMs are simple geometric interpretation and 
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sparse solution. Moreover, unlike neural networks, the computational complexity of SVMs 

does not depend on the dimensionality of the input space. Neural networks use empirical risk 

minimization, whilst SVMs use structural risk minimization. The reason that SVMs often 

outperform neural networks in practice is that the SVMs are less prone to overfitting. The 

key features of SVMs are the use of kernels, the absence of local minima, the sparseness of 

the solution and the capacity control obtained by optimizing the margin. 

 

A common disadvantage of non-parametric techniques such as SVMs is the lack of 

transparency of results. SVMs cannot represent the score of all companies as a simple 

parametric function of the financial ratios, since its dimension may be very high. It is neither 

a linear combination of single financial ratios nor has it another simple functional form. The 

weights of the financial ratios are not constant. Thus the marginal contribution of each 

financial ratio to the score is variable. Using a Gaussian kernel each company has its own 

weights according to the difference between the value of their own financial ratios and those 

of the support vectors of the training data sample. An important practical question that is not 

entirely solved is the selection of the kernel function parameters. The most serious problem 

with SVMs is the high algorithmic complexity and extensive memory requirements of the 

required quadratic programming in large-scale tasks. Here are some disadvantages of SVM: 

 

1. Computationally demanding to train and run; 

 

2. Sensitive to noisy data; 

 

3. Prone to over fitting and thus bad generalization; 

 

4. Choice of kernel function and the parameters have to be set manually and can greatly 

impact the results. 
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Here are some advantages and disadvantages of Neural Network classifiers. 

 

Advantages: 

1. Powerful non-linear classifier; 

 

2. Elegant solutions built of continuous basis-functions; 

 

3. Handles noisy data well; 

 

4. Fast to run. 

 

Disadvantages:  

1. Computationally demanding to train; 

 

2. With difficulty when there is complex boundary. 

 

1.3.1.2 Decision tree 

The decision tree is a class discriminator that recursively partitions the training set until each 

partition consists entirely or dominantly of examples from one class. Each non-leaf node of 

the tree contains a split point that is a test on one or more attributes and determines how the 

data is partitioned. The decision trees are easy to understand and modify, and the model 

developed can be expressed as a set of decision rules. This algorithm scales well, even where 

there are varying numbers of training examples and considerable numbers of attributes in 

large databases.  The decision tree model contains rules to predict the target variable and it 

provides an easy-to-understand description of the underlying distribution of the data. It can 

be constructed relatively quickly, compared to other methods. Moreover it can process both 

numerical and categorical data. The process of pruning the initial tree consists of removing 

small, deep nodes of the tree resulting from 'noise' contained in the training data, thus 
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reducing the risk of overfitting, and resulting in a more accurate classification of unknown 

data. Some disadvantages of the decision tree classifier are mentioned in below: 

 

1. Categorical output attribute; 

 

2. Limited to one output attribute; 

 

3. Unstable algorithms; 

 

4. Complex trees created from numeric datasets; 

 

5. Over-sensitivity to the training set, irrelevant attributes and noise. 

 

1.3.1.3 Naïve Bayes 

A Naïve Bayes classifier is a simple probabilistic classifier based on applying Bayes' 

theorem with strong (naive) independence assumptions. In simple terms, the Naïve Bayes 

classifier assumes that the presence (or absence) of a particular feature of a class is unrelated 

to the presence (or absence) of any other feature, given the class variable. Depending on the 

precise nature of the probability model, naive Bayes classifiers can be trained very efficiently 

in a supervised learning setting. In many practical applications, parameter estimation for 

naive Bayes models uses the method of maximum likelihood. An advantage of the naive 

Bayes classifier is that it only requires a small amount of training data to estimate the 

parameters necessary for classification. Since variables are assumed to be independent, only 

the variances of the variables for each class need are determined not the entire covariance 

matrix. However, it is not capable of solving complex classification problems. 
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1.3.1.4 K-nearest neighbor 

K-Nearest Neighbor (K-NN) is very simple to understand and easy to implement. So it 

should be considered in seeking a solution to any classification problem. The process is 

transparent, it is easy to implement and debug. There are some noise reduction techniques 

that work only for k-NN that can be effective in improving the accuracy of the classifier.  

Most important disadvantages of KNN are as follows: 

 

1. Because all the work is done at run-time, K-NN can have poor run-time performance if 

the training set is large; 

 

2. K-NN is very sensitive to irrelevant or redundant features because all features contribute 

to the similarity and thus to the classification. This can be ameliorated by careful feature 

selection or feature weighting; 

 

3. On very difficult classification tasks, K-NN may be outperformed by more exotic 

techniques such as SVMs or Neural Networks. 

 

1.3.2 Why Gaussian Mixture Models? 

The classical uni-modal Gaussian model represents feature distributions by a position (mean 

vector) and an elliptic shape (covariance matrix) and a vector quantization (VQ) or nearest 

neighbor model represents a distribution by a discrete set of characteristic templates. The 

GMM acts as a hybrid between these two models by using a discrete set of Gaussian 

functions, each with their own mean and covariance matrix, to allow a better modeling 

capability.  Figure 1.9 compares the densities obtained using a uni-modal Gaussian model, 

the GMM and VQ model. Plot (a) shows the histogram of a single feature from a speaker 

recognition system (a single cepstral value from a 25 second utterance by a male speaker); 

plot (b) shows a uni-modal Gaussian model of this feature distribution; plot (c) shows the 
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GMM and its ten underlying component densities; and plot (d) shows a histogram of the data 

assigned to the VQ centroid locations of a 10 element codebook. The GMM not only 

provides a smooth overall distribution fit, its components also clearly detail the multi-modal 

nature of the density. 

 

 

Figure 1.9 Obtained densities for uni-modal Gaussian 
model, GMM, and VQ 
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Experimental results of the GMM have shown that its accuracy is higher than those obtained 

by the VQ approach, the Radial Basis Function network model (RBF), and also the learning 

Vector Quantization (LVQ) approach. Moreover, the training time of the GMM is less than 

that of Multilayer Perceptron (MLP) (Ma et Gao, 1998). The GMM trained with the EM 

learning algorithm has comparable flexibility with the multilayer perceptron in modeling 

non-stationary, multimodal machine signal characteristics, but has significantly fewer 

parameters to train (Heck et Chou, 1994).  

 

Moreover, the GMM has the capability to form smooth approximations to arbitrarily shaped 

densities and it has proved to be an effective probabilistic model for a lot of application such 

as biometric systems, most notably in speaker recognition systems and speaker identification 

(Reynolds et Rose, 1995) due to their capability of representing a large class of sample 

distributions. The GMM represents a statistical pattern recognition approach that enables 

optimal processing of data both for training the classifier (the EM algorithm) and for 

performing on-line classification. In addition, while the GMMs possess many discriminant 

surface-modeling capabilities of more complex nonparametric classifiers (e.g., multilayered 

perceptrons), the GMM is parametric, making it more robust to the effects of a limited 

amount of training data (Heck et Chou, 1994). 

 

1.3.2.1 Introduction to GMMs 

Gaussian Mixture Model as a parametric probability density function is chosen to model 

infants’ cry under available pathological states. A complete GMM for a D dimensional 

continuous value data vector called X can be represented by λ = ሼw୧, μ୧, Σ୧	ሽ i = 1,… ,M as a 

weighted sum of M Gaussian component densities as follow: 

 

 F୑(X|λ) = ∑ w୧f୧(X|μ୧, Σ୧)୑୧ୀଵ , ∑ w୧ = 1୑୧ୀଵ   (1.9)

 

where w୧, μ୧, Σ୧	are the mixture weights, mean vector and covariance matrix respectively. 

Since GMMs is used usually in unsupervised learning and clustering problem which the 
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number of mixtures and parameter vectors μ୧, Σ୧	are unknown, the choice of model 

configuration is almost determined by the amount of data available for estimating the GMM 

parameters in a particular application.  

 

The GMM can also be viewed as a single-state HMM with a Gaussian mixture observation 

density, or an ergodic Gaussian observation HMM with fixed, equal transition probabilities. 

Assuming independent feature vectors, the observation density of feature vectors drawn from 

these hidden acoustic classes is a Gaussian mixture. It is also important to note that in case of 

statistically dependent features, the effect of using a set of M full covariance matrix 

Gaussians can be equally obtained by using a larger set of diagonal covariance Gaussians, 

due largely to that the linear combination of diagonal covariance basis Gaussians is capable 

of modeling the correlations between feature vector elements. Therefore, there is significant 

difference between Supervised Learning GMM (SLGMM) (Ma et Gao, 1998) and 

unsupervised learning GMMs. 

 

1.3.2.2 Learning of GMMs 

Given training data and a GMM configuration, we wish to estimate the parameters of the 

GMM, λ, which in some sense best matches the distribution of the training feature vectors. 

The GMM parameters 	λ = ሼw୧, μ୧, Σ୧	ሽ are usually estimated from training data using the 

iterative Expectation-Maximization (EM) algorithm or Maximum a-Posteriori (MAP) 

estimation from a well-trained prior model. There are several techniques available for 

estimating the parameters of the GMM but by far the most popular and well-established 

method is maximum likelihood (ML) estimation. The aim of ML estimation is to find the 

model parameters which maximize the likelihood of the GMM given the training data. For a 

sequence of T training vectors X	 = (xଵ, . . . , x୘), the GMM likelihood, assuming 

independence between the vectors, can be written as, 

 

 P(X|λ) = ∏ P(x୲|λ)୘୲ୀଵ   (1.10)
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Unfortunately, this expression is a non-linear function of the parameters λ and direct 

maximization is not possible. However, ML parameter estimates can be obtained iteratively 

using a special case of the EM algorithm. The iterative procedure in the EM algorithm 

ensures that likelihood function doesn’t decrease per iteration. Consequently it yields locally 

optimal, maximum likelihood parameter estimates. The EM begins with an initial model 

called ߣ଴. Next, a new model ߣଵ is created after updating all parameters in such a way that ܲ(ܺ|ߣଵ) ≥  .This process is repeated until convergence .(଴ߣ|ܺ)ܲ

 

If all goes well, the algorithm converges to local maximum (Heck et Chou, 1994), but there 

are still some problems when increasing model complexity. Firstly, there is no guarantee that 

the newly added mixture from random splitting always increases the likelihood function prior 

to re-estimation. Secondly, convergence to the optimum point in EM-based re-estimation is 

not be guaranteed due to sensitivity to initial parameters of the randomly split Gaussians. So 

it is not the optimal manner of the model estimation (Jun, Yu et Hui, 2011). 

 

A new method based on combination of Genetic Algorithm and the EM algorithm introduced 

which has a better performance in the practical Brain Computer Interface (BCI) application, 

due to reduce the negative effect of noisy data or outliers available in database (Boyu et al., 

2010). 

 

In ASR system usually Gaussian mixtures HMMs are used as acoustic models in order to 

model basic speech units. To deal with data sparseness problem in model training, the 

mixing-up step is used to little by little increase the number of mixtures in each tied HMM 

state to achieve the optimum performance. In such this ASR system, like HTK, the mixing-

up process is conducted in two steps (Young et al., 2006b) First of all, all existing Gaussians 

or the most dominant Gaussian mixtures component in a HMM state is split up based on 

some random or heuristic strategies. Second, all of these split Gaussians are re-estimated 

based on the EM algorithm. Although it is a good strategy to learn models without getting 

trapped in any bad local optimum, there are still some aforementioned problems when 

increasing model complexity. 
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Recently another new method called Boosted Mixture Learning (BML) to learn Gaussian 

mixture HMM is introduced (Jun, Yu et Hui, 2011). The new method called Boosted Mixture 

Learning (BML) could be used as a successful candidate for training a GMM with some 

adaptation in our case, due in part to its ability to rectify and overcome the aforementioned 

problems in available techniques for estimating the GMM parameters. 

 

1.3.2.3 Boosting algorithm 

Generally, boosting method combines weak learners in a weighted majority voting scheme to 

improve the overall classification accuracy for almost any type of learning algorithm. The 

base classifiers, known also as weak learners, are trained using a weighted form of data set in 

which the weighting coefficients associated with each data point depends on the performance 

of the previous classifier. Therefore base classifiers are trained in sequence and the points 

that are misclassified by one of the base classifiers are given greater weight when used to 

train the next classifiers in the sequence. Using the updated training weights, a new classifier 

is trained to concentrate more on these hard examples. 

 

The main idea of boosting is that instead of always treating all data points as equal, 

component classifiers should specialize on certain examples. In particular, if an example is 

hard-to-classify and problematic for existing classifier, more components should focus on it. 

According to the boosting theory, upper bound on training error rate is analytically 

minimized. Moreover, some recent work has shown that boosting method can effectively 

increase the margin of all training samples that can be explained by a theoretical view related 

to functional gradient techniques (Jun, Yu et Hui, 2011). More recently, the traditional 

boosting method has been used to solve some problems of mixture models (Kim et Pavlovic, 

2007; Pavlovic, 2004).  
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1.4 Brief objectives, methodologies and contributions 

Our general objective is to design a non-invasive cry-based diagnostic tool using computer 

acoustical analysis of newborn cries to detect serious medical conditions such as heart 

defects and infections. The diagram demonstrating the proposed system is shown below (see 

Figure 1.10). It can interpret recorded cries to help neonatologists detect specific pathologies 

affecting newborns since cry production in newborns can be influenced by neurological and 

physiological states.  

 

Our research team in the Multimodal-Modelisation-Specification (MMS) laboratory, located 

at École de technologie supérieure (ÉTS), consists of three members. Their roles on the 

research problem are explained briefly in below. 

 

Mrs. Yasmina Kheddache, a PhD graduate from ÉTS, has worked on spectrographic analysis 

of newborn infant cry signals to model newborn infant cry signals by parameters that 

describe vocal cords and vocal tract. To achieve this objective, she proceeded to a qualitative 

characterization of the cries of sick and healthy infants. For this purpose she used predefined 

characteristics from literature that describe the behavior of cords and vocal tract during the 

cry. For extraction of selected features, she implemented the methods of effective measures 

to overcome the overestimation and underestimation of characteristics.   

 

Mrs. Lina Abou-Abbas, pursuing a PhD degree, is working on the automatic segmentation of 

newborn’s cry signals recorded in real conditions based on Hidden Markov Models using the 

HTK (Hidden Markov Model Toolkit). The purpose of signal segmentation is to differentiate 

the important acoustic parts of the cry recordings from the unimportant acoustic activities 

that compose the audio signals.  

 

In order to make a high accuracy decision in our diagnostic system, we should have had a 

good understanding of different methods to create a pattern for cry signals. During my PhD 
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program, I was part of MMS team where I created a model-based approach to detect the 

health conditions of the infants based on the features extracted from their cry signals. 

 

At this point, it would be good to clarify on the origin of the cry database corpus. First, cry 

signals are collected from hospitals by trained nurses during a specific period of time. Then 

upon receiving recorded signals in the laboratory, all team members are responsible for 

manual segmentation of recorded cry signals into different predefined labels.  

 

Combination of imbalanced data and small sample size hinders learning leading to 

convergence difficulties and presents new challenge to the domain. We proposed a solution 

to mitigate the multi-pathology imbalanced classification in which individual binary 

classifiers through hierarchical scheme are combined to narrow down the health condition of 

the infant. 

 

 

Figure 1.10 The general system diagram 

 

In non-static data like time series data, characteristics of the data may change gradually over 

time. Cry data are not a static and have a dynamical behavior. It means that any cry sample at 

any moment in time depends on crying pattern before and after that time. Consequently, 

using a classifier which is not capable of temporal processing is a pointless exercise. 
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Moreover length of time series data can changes over time, so using discriminative classifier 

like Support Vector Machine for non-static or time series data is very hard. In other hand, 

Hidden Markov Models are a class of stochastic process and can be used as a powerful 

generative classifier for modeling time series data. It also has a good performance in some 

application like ASR or handwritten word recognition. Gaussian Mixture Model (GMM) is a 

special case of Hidden Markov Models with one state that is chosen as a prototype in our 

health care application.  

 

Towards this end, we have proposed a finite Gaussian mixture learning algorithm which will 

concentrate more on the hard example in the growing process. It can bear a striking 

resemblance to log-likelihood value of GMM trained traditional EM algorithm and estimate 

the optimum number of mixture components as well as some benefits to support system in 

general such as adding a new component in an incremental and recursive manner and 

reducing sensitivity to initial parameters (see Figure 1.11).  

 

 

Figure 1.11 The growing process of finite mixture model 

 

Then, a variant of boosted mixture learning (BML) method is presented in order to derive a 

unique cry-pattern for each enrolled disease from the trained GMM-UBM by adaptation of 

GMM parameters. We will show how this boosting-based approach can enhance common 

maximum a-posterior (MAP) method of adaptation of the parameters of GMM. 
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Both expiratory and inspiratory vocalizations of infant cry signals are analyzed separately in 

this study. Fusion of two subsystems that are based on above-mentioned vocalizations, into a 

single effective system is being sought in order to make a reliable decision (see Figure 1.12). 

We present log-likelihood ratio score fusion to stop worrying on the feature compatibility 

and rigid fusion. The concept of Log-likelihood ratio (LLR) was used for a test sequence of 

feature vector. Both fast scoring method and score normalization for a sequence of feature 

vector were employed to reduce the computational complexity.  

 

 

Figure 1.12 Modeling and decision 

 

1.5 Summary 

In this chapter, initiation and motivation for the research project is explained. The 

background and previous research studies correlated to this research problem were presented.  

Scope and outlines of this study are also mentioned. Then, with our objectives on hand, we 

demonstrate different parts of our desire diagnosis system.  

 

In this thesis, we specify two main contributions – an algorithm for learning statistical 

Gaussian mixture models and another algorithm which enhance maximum a-Posterior 

(MAP) adaptation of the parameters of the GMM. In summary, here is what we have 

contributed to the domain: 
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1. A design and implementation of a non-invasive cry-based diagnostic tool using 

computer acoustical analysis of newborn cries to detect enrolled medical conditions such 

as heart defects and infections. It is implemented using MATLAB software; 

  

2. A boosted mixture learning algorithm for learning if statistical Gaussian mixture models 

- This pertains to finding optimal number of mixture component and Gaussian 

parameters; 

3.  A boosting-based adaptation algorithm to derive the hypothesized health-condition 

model by adapting the parameters of UBM; 

 

4. Separate analysis of both expiratory and inspiratory cry vocalizations and employing 

valuable information that comes from the fusion of the two independent subsystems in 

decision making process; 

 

5. Various experiments that demonstrate that our idea of proposed classification system is 

possible and feasible. Moreover, it can be extended to represent more disease and 

syndromes, providing enough corresponding infant cry data. 
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Résumé 

 

Nous utilisons de l'information présente dans le signal cri des nourrissons afin de déterminer 

l'état psychologique de l'enfant. Un mélange de gaussiennes (GMMs) est utilisé afin de 

distinguer entre les nourrissons nés à termes en bonne santés, les prématurés, et ceux qui ont 

des problèmes médicaux spécifiques. Des modèles de cri pour chaque état pathologique sont 

créés en utilisant la méthode adapted boosted mixture learning (BML) pour estimer les 

paramètres du modèle de mixture. Dans nos expériences, nous comparons la méthode 

proposée à un système de référence utilisant un algorithme EM, pour Expectation-

Maximisation, pour la classification multi-pathologique. Les résultats des tests ont démontré 

que la méthode BML adaptée pour l'apprentissage de GMM a une meilleure performance que 

celle utilisant l’algorithme EM. Le system de diagnostic proposé, extrait des coefficients de 

Fourier (MFCC) comme un vecteur de caractéristiques des modèles de cri des nouveau-nés. 

Dans l'expérience de classification binaire, le système identifie le cri comme appartenant à 

l'un des deux groupes, sains ou pathologique. Le classificateur binaire a réalisé un taux réel 

positif de 80,77% et un taux réel négatif de 86,96%, ce qui montre la capacité du système à 

identifier correctement les nourrissons en bonne santé et malades, respectivement. 
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2.1 Abstract 

We make use of information inside infant’s cry signal in order to identify the infant’s 

psychological condition. Gaussian mixture models (GMMs) are applied to distinguish 

between healthy full-term and premature infants, and those with specific medical problems 

available in our cry database. Cry pattern for each pathological condition is created by using 

adapted boosted mixture learning (BML) method to estimate mixture model parameters. In 

the first experiment, test results demonstrate that the introduced adapted BML method for 

learning of GMMs has a better performance than conventional EM-based reestimation 

algorithm as a reference system in multipathological classification task. This newborn cry-

based diagnostic system (NCDS) extracted Mel-frequency cepstral coefficients (MFCCs) as a 

feature vector for cry patterns of newborn infants. In binary classification experiment, the 

system discriminated a test infant’s cry signal into one of two groups, namely, healthy and 

pathological based on MFCCs. The binary classifier achieved a true positive rate of 80.77% 

and a true negative rate of 86.96% which show the ability of the system to correctly identify 

healthy and diseased infants, respectively. 

 

2.2 Introduction 

Crying is the first sound the baby makes when he enters the world outside of his mother’s 

womb, which is a very positive sign of a new healthy life. Infants cry for the same reason that 

adults talk i.e. to let others know about their needs or problems. Since crying is all a baby can 

do to express any discomfort, it seems that this multimodal signal carries a lot of information 

about him. In early studies of the infant cry analysis, the acoustic structure of infant crying 

was analyzed and some of the important variables controlling the production of their cries 

were described (Wasz-Hockert, Michelsson et Lind, 1985). After cry analysis on infants with 

various diseases, in some cases it has been noticed that there are fixed cry attributes, which 

are rarely seen in cries of healthy infants. Instead, these attributes occur frequently in cries of 

infants with diseases (Benson, 2009; Wasz-Hockert et al., 1968; Wasz-Hockert, Michelsson 

et Lind, 1985). Therefore the concealed information contained within a cry signal could 

clarify the infant’s present psychological condition. Acoustic analysis of the infants' cry 
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signal helps to measure these parameters quantitatively to perform a comparison between 

healthy and ill states. Since infants’ cry could be changed from normal to abnormal by 

diseases or deformities which have the ability to produce a ill effect on the central nervous 

system, the oral cavities, or respiratory organs, our goal is to develop a NCDS to classify 

infants with different kind of physiological conditions.  

 

Generally, sounds can be represented in multiple ways. In feature representation method, the 

features selection step relies heavily on good understanding of the problem. There are some 

literatures on defining and using different cry characteristics and frequency features which 

distinguish between a healthy infant’s cry and that of infants with asphyxia, brain damage, 

Hyperbilirubinemia, Down’s syndrome, and mothers who were drug-abused abused during 

pregnancy (Corwin, Lester et Golub, 1996; Wasz-Hockert, Michelsson et Lind, 1985). 

Human speech features characteristics such as linear prediction coefficients (LPCs), MFCCs, 

fundamental frequency and formants are studied in previous works (Amaro-Camargo et 

Reyes-García, 2007; Benson, 2009; Cano et al., 2006; Galaviz et García, 2005; Lind et 

Wermke, 2002; Orozco et Garcia, 2003). The work presented by Hariharan, et al, employed 

wavelet packet transform (WPT) to compute sub-band energy and entropy features from 

wavelet packet coefficients (Hariharan, Yaacob et Awang, 2011). The goal is given a set of 

exemplary patterns for ܥ different pathological infant’s cry classes, to construct a function 

such that when presented with a new feature from an infant’s cry belonging to class ݅ the 

function will recognize the correct index pathology class. In recent years, several machine 

learning algorithms such as artificial neural network (ANN), radial basis function (RBF), 

probabilistic neural network (PNN) have demonstrated their ability to recognize cry patterns 

and make intelligent decision based on available training database (Cano Ortiz, Escobedo 

Beceiro et Ekkel, 2004a; Hariharan, Yaacob et Awang, 2011; Orozco et Garcia, 2003). 

Furthermore, hybrid systems in which classification methods are combined under several 

approaches like bagging (Bauer et Kohavi, 1999a), boosting (Bauer et Kohavi, 1999a), 

majority voting, staking were examined in order to achieve better final results than the case 

where a single classifier is run (Amaro-Camargo et Reyes-García, 2007; Cano et al., 2006; 

Galaviz et García, 2005).  
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In this paper we make use of extracted MFCCs from an infant’s cry signal to diagnose 

pathological conditions and specific diseases which have not been previously studied such as 

“Coarctation of Aorta” and “Tetralogy of Fallot” by drawing support from collected cry 

database. As we mentioned earlier, there exists a large number of approaches to do the 

modeling and the classification tasks. We will focus on GMMs, which is the most successful 

classifiers in use for audio data when their temporal structure is not important (Divakaran, 

2009). This paper employs GMMs to introduce a classification technique in the field of 

statistical learning theory which uses adapted BML method to train mixture models for 

modeling of infants’ cry signals. The BML method (Jun, Yu et Hui, 2011) presents three key 

advantages: (1) Add new components into the direction that largely increases the objective 

function, (2) Decrease sensitivity to initial parameters and (3) Estimate the optimum number 

of components, unlike the conventional EM-based re-estimation algorithm. Partial and global 

updating methods were used in model parameters estimation processes in order to speed 

learning process up and converge to more robust and reliable estimation of a new mixture 

component. Another advantage of the adapted BML method was that it used Bayesian 

Information Criterion (BIC) (Schwarz, 1978) for model selection. It is partially based on the 

likelihood function but to avoid overfitting there is also a penalty term.  

 

This paper is organized as follows: In section 2.3 we give a brief review of GMM, its role in 

cry-pattern classifier, and advantages of adapted BML method. Section 2.4 explains the 

different parts of the NCDS and how it identified infants. In section 2.5, results of 

experiments in both multi-pathological and binary classification tasks are reported, and in 

section 2.6 a follow up analysis of the results and conclusion are presented to finalize the 

paper. 

2.3 GMMs for Cry-Pattern Classification 

GMMs are a special case of Hidden Markov Models (HMMs) which pay more attention to 

the temporal structure of a sound and have proven to be invaluable tools in areas such as 

speech recognition (Divakaran, 2009). Compared to the human speech which is modeled by 

Hidden Markov Models with finite states, cry signal has just a single state to be considered. 
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Moreover, GMM has the ability to form smooth approximations from arbitrarily shaped 

densities and it has proved to be an effective probabilistic model for applications such as 

biometric systems, most notably in speaker recognition systems and speaker identification 

(Reynolds et Rose, 1995) due to its capability of representing a large class of sample 

distributions. In a cry-based diagnosis system there is no chance to train the classifier with a 

specific individual compared to what happens in speaker dependent automatic speech 

recognition (ASR) systems. Therefore we should use our available cry database to create a 

more general model for each available pathological condition in order to fine tune the 

pathology detection of test infants. Like ASR systems in learning phase, there are two main 

parts(O’Shaughnessy, 2008): first, some cry features are selected and then patterns are 

created from these features. Second, the cry-pattern classifier works according to the just 

created cry-patterns to recognize physiological conditions on the newborn infants. The 

proposed cry-modeling method trained the GMM classifier from feature streams. It means 

that cry signals coming from either healthy or pathological classes were modeled by a 

separate pool of Gaussians using extracted feature vectors. Adapted BML was used to learn 

mixture models in an incremental and recursive manner in which unlike EM-based re-

estimation algorithm, the final model was less sensitive to initial parameters. It might, 

therefore, converge to a better optimal point. According to the boosting theory, upper bound 

on training error rate is analytically minimized and the margin of all training samples is 

increased. Moreover, in the preceding paper (Jun, Yu et Hui, 2011) the strong point of BML 

method shows that a new Gaussian component is estimated in each step according to the 

functional gradient of the objective function. Therefore each new component is always added 

to the direction that increases the objective function the most. In this paper adapted BML has 

been described for the log-likelihood function of the mixture model over training data as our 

objective function.  
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2.4 Newborn Cry-Based Diagnosis System (NCDS) 

2.4.1 Cry Database 

The number of labeled data used during training phase has a leading role in performance of 

the classifier. For example in case of having small number of cry samples for the pathologies 

of interest, the resulting trained classifier may be too specific to be generalized to unseen 

infant’s cry signal. Cry database collecting is still in progress and up to now, the following 

two kinds of newborn infants are considered in the database: 

 

1- Healthy newborn infants, both full-term and premature; 

 

2- Sick newborn infants, both full-term and premature, with specific selected pathologies. 

 

The imbalanced learning problem (He, 2011) is concerned with the performance of learning 

algorithms. In the presence of underrepresented data and skewed class distribution this 

problem arises, which is direct result of the nature of the data space present in the cry 

database. Table 2.1 shows the list of different pathologies and the number of available 

samples in each class. 

 

2.4.2 Pre-processing and feature extraction 

In data collection step we have used 2-channel recorder with 44.1 kHz sampling rate. The 

time domain representation of one cry signal in two channels is shown in Figure 2.1. In pre-

processing step it converted into one channel signal using mean value function. 
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Table 2.1 Cry database 

Infants State Pathologies Numbers 

 

 

Fullterm 

Healthy N/A 38 

Pathologies Bovine protein allergy 13 

Tetralogy of Fallot 5 

Thrombosis in the vena cava 13 

 

 

 

Premature 

Healthy N/A 25 

Pathologies Tetralogy of Fallot 9 

Cardio Complex 14 

X-chromosomal 

abnormalities 

9 

Coarctation of Aorta 10 

 

 

 

Figure 2.1 Time domain representation of a cry signal 
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In the acoustical analysis step, the resulting wave was cleared of any silence region or 

external unwanted sounds as for the nurse or pediatrician voices, then normalized and split 

into frames. Next, MFCCs were extracted. The vocal tract shape generally changes slowly 

with time and tends to be constant over short intervals. A reasonable approximation to 

guarantee reproducibility is to analyze the signal into a sequence of millisecond-time frames, 

where each frame is represented by a single feature vector describing the average spectrum 

for a short time interval (Holmes, 2001). In reading about application of frequency feature 

analysis of speech signals, it is common practice to pre-emphasis the signal prior to 

computing the parameters by applying the first order difference equation ݏᇱ(݊) = (݊)ݏ ݊)ݏ	ߙ− − 1) to the sample sequence [ݏ(݊), ݊ = 1,… ,ܰ] in each window of length ܰ. The z-

transform of the filter is  ܲ(ݖ) = 1 −  ଵ. Deller (John R. Deller, Proakis et Hansen, 1993)ିݖߙ

had earlier referred to the reasons behind employing a pre-emphasis filter which are twofold: 

First, it is due to cancel spectral effects of one of the glottal poles and the second reason is to 

prevent numerical instability. Gray (Gray et Markel, 1974) and Makhoul (Makhoul et 

Viswanathan, 1974) have worked with an optimal value of ߙ given by ߙ = ௥ೞ(ଵ;௠)௥ೞ(଴;௠) in the 

sense of MSE, where ݎ௦(ߟ;݉) is the usual short-term autocorrelation sequence for  the frame 

ending at ݉ with the parameter ߟ corresponding to the autocorrelation lag. One estimator is 

given by (John R. Deller, Proakis et Hansen, 1993): 

 

(݉;ߟ)௦ݎ  = ଵே	∑ ݉)ݓ(݊)ݏ − ݊)ஶ௡ୀିஶ ݊)ݏ − ݉)ݓ(|ߟ| − ݊ + (2.1)  (|ߟ|

 

where ݓ(݊) is a window of length ܰ. For voiced frames the optimal value is near unity, 

whereas for unvoiced frames it is small (ߙ ≈ 0). Therefore it should not performed on 

unvoiced speech and in voiced frames it is taken in the range 0.9 ≤ ߙ ≤ 1 which introduces 

a zero near ߱ = 0, and a 6 − ܾ݀ per octave shift on the spectrum. We use a common value 

for this factor which is 0.97 (Akande et Murphy, 2005; Flynn et Jones, 2008; Mporas et al., 

2011; Young et al., 2006c). In the next step, ܮ MFCCs per frame were extracted just for 

those voiced frames. The sequence of feature vectors describing the average spectrum for a 
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short time interval can be presented as a matrix which acts like a pattern in the classification 

phase. 

 

In all related practical applications, the short terms or frames should be utilized which 

implies that the signal characteristics are uniform in the region. Therefore the selected 

portion of the signal has to be short enough to be stationary. Temporal properties can be 

assumed fixed over time intervals on the order of 10-30 msec (Rabiner et Schafer, 1978). 

Prior to any frequency analysis, the Hamming windowing is necessary to reduce any 

discontinuities at the edges of the selected region. Generally a longer window will tend to 

produce a better spectral picture of the signal while the window is completely within a 

stationary region, whereas a shorter window will tend to resolve events in the signal better in 

time. This trade-off is sometimes called the spectral temporal resolution trade-off (John R. 

Deller, Proakis et Hansen, 1993). A common choice for the value of the window length (10-

30 msec) (Benzeghiba et al., 2007; Huang, Acero et Hon, 2001a; O’Shaughnessy, 2008; 

Rabiner et Schafer, 1978) is normally larger than the frame rate. For example, the typical 

values for the window length in HTK (Young et al., 2006c) is 25ms. MFCCs are obtained by 

applying the Discrete Cosine Transform (DCT) to the output of the Mel-filters. The 

difference from the real cepstrum is that a nonlinear frequency scale is used, which 

approximates the behavior of the auditory system (Rabiner et Schafer, 1978). A filterbank 

with ܭ filter is defined, where all these triangular filters compute the average spectrum 

around each center frequency with increasing bandwidth. An acoustic representation using 

MFCCs is often referred as a “mel cepstrum”. After performing fast Fourier Transform (FFT) 

on each windowed frame, MFCCs are calculated using the following DCT (Divakaran, 

2009): 

 

 ܿ௡ = ටଶ௄ ∑ ݃݋݈ ௜ܵ௄௜ୀଵ × cos ቀ݊ ቀ݅ − ଵଶቁ ߨ ⁄ܭ ቁ , ݊ = 1,2,…   ܮ
(2.2)

 

where K is the number of sub-bands, ܮ is the desired length of cepstrum and ௜ܵ , ݅ =1,2, 1)	ܭ… ≤ ݅ ≤  represents the filter bank energy after passing through  the triangular ,(ܭ
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band pass filters. We use a set of 20 triangular windows (ܭ = 20) which is utilized in a 

common approach to simulate critical-band filtering (Davis et Mermelstein, 1980; 

O'Shaughnessy, 2000b), whose energy outputs are designed ௜ܵ , ݅ = 1,2, … ,20. We will 

discuss the choice of the parameterܮ later. Figure 2.2 shows all the pre-processing steps from 

the cry recording step until the extraction of the MFCCs. 

 

 

Figure 2.2 Pre-processing steps 

 

2.4.3 Adapted BML method for GMMs 

The main idea of boosting method in machine learning is that instead of always treating all 

data points as equal, component classifiers should specialize on certain samples. In 

particular, if a sample is hard-to-classify and problematic for the existing classifier, more 

components should focus on it. Compared to other learning mixture models (Berlinet et 

Roland, 2007; Ng et McLachlan, 2004; Redner et Walker, 1984), BML method (Jun, Yu et 

Hui, 2011) has a great privilege to add new mixture components in such a way that has the 

greatest improvement in the predefined objective function, ࣝ(ܨ௞). Moreover, this method is 

less sensitive to initial parameters, resulting in better optimal point in the convergence 

process. The whole cry-pattern classification approach comprised a classification scheme 

using GMMs that classify patterns created by extracted real-valued frequency domain 

features. A GMM, ܨ௄(ܺ) with ܭ Gaussian components and given feature vector ܺcan be 

represented as:  
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(ܺ)௄ܨ  = ∑ ௞ߨ ௞݂(ܺ)௄௞ୀଵ   (2.3)

 

with the restriction that 0 ≤ ௞ߨ ≤ 1 for ݇ = 1,… ,   and ܭ

 

 ∑ ௞ߨ = 1௄௞ୀଵ   (2.4)

 

where ߨ௞and ௞݂(ܺ) are mixture proportions and distributions of the ݇௧௛ component 

respectively. The ݇௧௛ multivariate Gaussian component of a D-dimensional feature vector ܺ 

can be written in the following notation: 

 

 ௞݂(ܺ|ߔ௞) = ࣨ(ܺ; ,௞ߤ =(௞ߑ ௞|ଵଶߑ|஽ଶ(ߨ2)1 × ݔ݁ ݌ ቆ−12 (ܺ − ܺ)௞ିଵߑ௞)்௥ߤ −  ௞)ቇߤ

(2.5)

 

where ߔ௞ = ,	௞ߤ	]  The model commences with one mixture and  .ܣ ௥ represents the transpose of matrix்ܣ ௞] are the mean and covariance parameters for the ݇௧௛ component andߑ

learns gradually by adding a new mixture component on each step. According to the defined 

objective function ࣝ(. ), each adding component process should satisfy the inequality ࣝ(ܨ௞) >  All the re-estimation formulas to update Gaussian distribution parameters.(௞ିଵܨ)ܥ	

can be computed afterwards. Log-likelihood function of the mixture model over all training 

feature data has a vital role in aforementioned formulas. For example, the pre-defined 

objective function of the mixture model over all training feature can be computed using 

equation below: 

 

 ࣝ൫ܨ௝൯ = ∑ ݃݋݈ ௝(ܺ௧)்ೕ௧ୀଵܨ   (2.6)

 

where ௝ܶ is the number of training feature vectors ܺ in  ݆௧௛ pathology class. Iterative re-

estimation formulas for model parameters ߔ௞(௡ାଵ) = ,௞௡ାଵߤ] ݊) ௞௡ାଵ]at theߑ + 1)௧௛ iteration 

can be evaluated as follows:  
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௡(ܺ௧)ݓ = ௙ೖቀ௑೟ቚఃೖ(೙)ቁிೖషభ(௑೟|అೖషభ)  (2.7)

 

 
௞௡ାଵߤ = ∑ ௪೙(௑೟).௑೟೅ೕ೟సభ∑ ௪೙(௑೟)೅೟సభ = ∑ ௞(௡)ቁ.்ೕ௧ୀଵߔ௧ቀߛ ܺ௧  (2.8)

௞௡ାଵߑ  = ଵ∑ ௪೙(௑೟)೅ೕ೟సభ × ∑ ௡(ܺ௧)(ܺ௧ݓ − ௞௡ାଵ)(ܺ௧ߤ − ௞௡ାଵ)்௥்ೕ௧ୀଵߤ   (2.9)

 

where ߔ௞(௡) = ,௞௡ߤ]  ] denotes the mean vector and covariance matrix for ݇௧௛ Gaussian	௞௡ߑ

component at the ݊௧௛iteration, and ߖ௞ =  ௡(ܺ௧) represents a weightݓ Note how .[	௞ିଵߖ,௞ߔ]

assigned to feature vector ܺ௧ after ݊௧௛ iteration. As you can see according to this weighting 

function it is clear to understand that feature vector with lower probability by current model 

are given larger weights than those with more probability. Therefore, the new Gaussian 

component ௞݂ focuses on those features which are poorly modeled by the current model ܨ௞ିଵ, in much the same way as other boosting algorithms (Freund et Schapire, 1997; 

Friedman, 2001). 

 

2.4.4 Initialization of sample weights 

There is a problem with the initialization values of weights based on boosting theory which 

can be computed by using equation below:  

 

଴(ܺ௧)ݓ  = 1 ⁄(௞ିଵߖ|௧ܺ)௞ିଵܨ   (2.10)

 

where ߖ௞ିଵ = ,௞ିଵߔ]  ௞ିଵ is large in a way that it could beܨ ]. The dynamic range of	௞ିଶߖ

dominated by only a few number of samples with low probability or outliers. We use the so-

called ‘Weight decay’ method (Rosset, 2005) to overcompensate for the low probability by 

smoothing sample weights based on power scaling. 

 

଴(ܺ௧)ݓ  = (1 ⁄((௞ିଵߖ|௧ܺ)௞ିଵܨ ௣ , 0 < ݌ < 1   (2.11)
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where ݌ is a decay parameter or an exponential scaling factor. In the second method the idea 

of sampling boosting in (Freund et Schapire, 1997) is applied to form a subset of training 

feature vectors according to the mean and variance values of the decayed weights. 

Afterwards, vectors contained in the just created subset are utilized with equal weights to 

estimate the new component parameters. Assume Μഥ  and ߪଶ denote the mean and variance of 

weights calculated in Equation (10) as defined below: 

 

ഥߊ  = ݉݁ܽ݊ ݃݋݈] ଴(ܺ௧)]  (2.12)ݓ

ଶߪ  = ݁ܿ݊ܽ݅ݎܽݒ ݃݋݈] ଴(ܺ௧)]  (2.13)ݓ

 

Then, the aforementioned subset with large weights is selected as described below: 

 

 ܺ௦௨௕ = ሼܺ௧|݈݃݋ [଴(ܺ௧)ݓ] > ഥߊ + ሽ  (2.14)ߪߚ

 

where ߚ is a linear scaling factor to control the size of subset ܺ௦௨௕. 

 

2.4.5 Process of adding a new component 

In the adding process the part of training vectors in which ௞݂(ܺ) had a higher value than the 

reminder of the mixture model, denoted by ܨ௞ − [ ௞݂], was selected. Then this subset of data ܺ௦௨௕ should be modeled by a small GMM consisting in two Gaussian components called ௞݂∗ 
and ௄݂ାଵ.The initial component came from the EM-based re-estimation, and then the second 

component and its weight were estimated based on BML method and line search 

respectively. We considered the estimated component –the second one– as an initial 

component and ran BML method again. This process continues repeatedly, until it reached 

the optimal maximum log-likelihood estimate of parameters over ܺ௦௨௕. This procedure for 

finding the best two new components ௄݂ାଵ and ௞݂∗ continued for ݇ = 1,… ,  Amongst all .ܭ

the created ܭ mixture models, denoted by ܨ௄ାଵ, the one that gave the highest value of the 

objective function (same as log-likelihood value) was selected and added to the mixture by 

adjusting its weight. 
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2.4.6 Partial and global updating 

During previous step, instead of finding the new mixture weight from the line search below: 

 

∗௞ߨ  = గೖ∈[଴,ଵ]ݔܽ݉݃ݎܽ ࣝ൫(1 − ௞ିଵܨ(௞ߨ + ௞ߨ ௞݂∗൯  (2.15)

 

There is an alternative method called partial updating in which each new component and its 

weight are estimated at the same time, which is preferable since it may result in more robust 

and reliable estimation.  

 

 ሼ ௞݂∗, ௞∗ሽߨ = గೖ,,௙ೖݔܽ݉݃ݎܽ ࣝ ( (1 − ௞ߨ ௞ିଵܨ( + ௞ߨ ௞݂ )  (2.16)

 

All the equations for updating weight assigned to feature vector ܺ௧, mixture weight value, 

mean and covariance matrix are estimated as follows (Jun, Yu et Hui, 2011): 

 

 

௡(ܺ௧)ݓ  = 	 ௞݂ ቀܺ௧ቚߔ௞(௡)ቁߨ௞௡ ௞݂ ቀܺ௧ቚߔ௞(௡)ቁ + (1 −   (௞ିଵߖ|௧ܺ)௞ିଵܨ(௞௡ߨ

(2.17) 

 

 
௞(௡)ቁߔ௧ቀߛ = ∑௡(ܺ௧)ݓ ௡(ܺ௧)்ೕ௧ୀଵݓ  

 

(2.18) 

௞௡ାଵߨ  = 1ܶ෍ߨ௞௡	ݓ௡(ܺ௧)	்ೕ
௧ୀଵ  

 

(2.19) 

௞௡ାଵߤ  =෍ߛ௧ቀߔ௞(௡)ቁ.்ೕ
௧ୀଵ ܺ௧  

(2.20) 

௞௡ାଵߑ  =෍ߛ௧ቀߔ௞(௡)ቁ. (ܺ௧ − ௞௡ାଵ)்ೕߤ
௧ୀଵ × (ܺ௧ −  ௞௡ାଵ)்௥ߤ

 

(2.21) 
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Moreover, in order to speed converging process up and finding the minimum number of 

Gaussian component in the final mixture, current mixture model ܨ௞ should be updated 

globally over training data samples before adding the next component. For example in the 

GMM with ݇ components, denoted by ܨ௞, the ݇௧௛ component can be re-estimated for ݇ = 1,… ,  when the reminder of the mixture mode is assumed to be fixed. This procedure ܭ

continues iteratively until the objective function value reaches a local maximum. It means 

that after obtaining a mixture model ܨ௄, we could update each component ௞݂ and its weight 

over all training feature vectors by using the same updating equations. 

 

2.4.7 Criterion for model selection 

The process of adding new mixture component to previous mixture model continued 

incrementally and recursively until the optimal number of mixtures is met. The set of 

Gaussian components selected should represent the space covered by the feature vectors. For 

this purpose the selected strategy to stop the adding process is a criterion-based called 

Bayesian Information Criterion (BIC). It can be represented as the following (Schwarz, 

1978):  

 

(݇)ܥܫܤ  = −2 × (௞ܨ)ࣝ + ௞ܯ ൫݃݋݈ ௝ܶ൯  (2.22)

 

where ࣝ(ܨ௞) is the log-likelihood function of the mixture model over all training data, ܯ௞ is 

the number of parameters used in model ܨ௞, and ௝ܶ denotes total number of training data for 

the ݆௧௛ pathology class. The second term in BIC equation is a penalty term for the number of 

parameters in the model. BIC is closely related to Akaike Information Criterion (AIC) 

(Akaike, 1974; Bengtsson et Cavanaugh, 2006) but the penalty term is larger in BIC than in 

AIC. Figure 2.3 shows brief review of all mentioned processes to train a GMM for each 

available pathological condition in order. 
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Figure 2.3 Block diagram of learning GMM using  
adapted BML technique 

 

2.4.8 Decision rule 

The likelihood of a feature vector ܺ given a Gaussian model ℒ is defined as: 

 

 ℒ(ܺ) = ∑ ,௞ߤ|ܺ)௞ࣨߨ ௞)௄௞ୀଵߑ   (2.23)

 

where ߤ௞ and ߑ௞are mean and covariance parameters for a set of ܭ Gaussians, and ߨ௞ is a 

normalizing factor that also weights them appropriately and constrained such that 0 ≤ ௞ߨ ≤1 and ∑ ௞ߨ = 1௄௞ୀଵ . Each of the trained mixture models ℒ௝ approximates the distribution of 

the features of one class only. There is significant structural difference between cry signals of 

infants with different pathologies. Therefore we can assume that the distributions of the 

features of each cry signal are different. As a result, when classifying a feature vector ௜ܺ 
belonging to pathology class ݅ we will expect ℒ௜( ௜ܺ) > 	ℒ௝( ௜ܺ), ∀݆ ≠ ݅. One of the common 

decision rules is to select the hypothesis that has the highest likelihood value called the 

Maximum Likelihood (ML) decision criterion.  

 

ݏݏ݈ܽܥ	ݕ݃݋݈݋ℎݐܽܲ  # = ௝ݔܽ݉ [ℒ௝(ܺ)]  (2.24)

 

Likelihood values of under-test infant’s cry signal were computed according to generated 

Gaussian mixture model for each ݏݏ݈ܽܥ௝, ݆ = 1,… ,  then by use of the ML rule the decision ,ܥ
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was made. Figure 2.4 shows how mixture models trained on the MFCCs are associated with 

different pathological conditions. ܰܨܪ	and	ܰܲܪ are the total number of Gaussian 

components which can describe models of healthy full-term and premature infants 

respectively. Similarly, ܰܵܨ௜ and ܰܵ ௜ܲ are the numbers of Gaussian components for full-

term and premature infants with pathology ݅	respectively. 

 

 

Figure 2.4 Mapping of estimated GMMs to 
pathological conditions 

 

2.5 Experiments 

For implementation the cry database was split into two disjoint subsets for training and 

testing. Almost 63% of total cry signals were utilized for the training phase and the rest for 

testing phase. After creating GMMs for each available pathological condition in the cry 

database using adapted BML method, we can assess what accuracy rate it may have. The 

MFCC order has also been studied experimentally for speech recognition. A total number of 

12 MFCCs are common in speech processing (John R. Deller, Proakis et Hansen, 1993; 

Young et al., 2006c) and they are computed directly from the data. It is that same number 

NSPi

NSFi
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which is used in (Nwe, Foo et De Silva, 2003) to recognize speech emotion via HMMs. The 

energy within a frame is also an important feature that can be easily obtained. For better 

performance, the 0௧௛cepstral coefficient [ܿ଴] is appended to the feature vector as the 13rd 

feature. The initial coefficient represents the average energy (weighting with a zero-

frequency cosine) same as role of the log energy [ܧ = ∑݃݋݈ ܵ௡ଶே௡ୀଵ ]	a (Huang, Acero et Hon, 

2001b; O'Shaughnessy, 2000a). Therefore, used feature vectors are composed of first 13 

MFCCs [ܿ௡, ݊ = 0,1,2,… , ܮ = 12]. As we defined earlier, ܮ is the desired length of cepstrum 

and it is a fixed parameter. The higher-order MFCC does not further reduce the relative error 

rate with a typical speech recognition system in comparison with the 13th-order MFCC, 

which indicates that the first 13 coefficients already contain most salient information needed 

for speech recognition (Huang, Acero et Hon, 2001a). We made full use of both initialization 

methods with decay parameter ݌ = 0.05 and linear scaling factor ߚ = −0.5 values for the 

parameters to overcome overfitting and the small covariance matrix which was created after 

several iterations. It is those same  parameter values which are set and designed for BML 

algorithm in large-vocabulary continuous speech recognition tasks in (Jun, Yu et Hui, 2011). 

After that only samples in subset with equal sample weights were used to estimate the mean 

and covariance matrix of Gaussian components. The presented method had a vital role to 

achieve good performance and avoid the overfitting problem in the learning step.  

 

In the first experiment, the NCDS was tested on several multi-pathology classification tasks. 

It consisted of all aforementioned conditions in the cry database. It could be difficult to 

evaluate the effectiveness of the created GMMs for modeling and adapted BML method for 

learning the mixture model by extracting a single feature from a small cry database. 

Nevertheless our results show that it had a better accuracy rate compared with conventional 

EM-based method for GMMs as our reference system. It is worth mentioning that the GMMs 

created by the EM-based re-estimation method for each class were trained by setting the 

number of components equal to that of mixture model learned by adapted BML method. 

Here, we address the question of the classification performance with respect to the frame 

length by evaluating the system with different frame durations but same overlap percentages 

(30%) between two consecutive windows. In order to extract MFCCs, frames with different 
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durations are used while 30% overlap was introduced between two consecutive windows. 

Table 2.2 shows the obtained accuracy rate for all 9 different groups of infants in the order 

they are shown in Table 2.1 for frame durations 20msec, 25msec and 30msec. It can be seen 

that both methods delivered great performances for most pathology classes, but the presented 

method had better final outcomes. For the premature infants with “Coarctation of Aorta” it 

seemed that the learned pattern was not well-defined enough to be capable of accurately 

classify them. We believe this was due to either small number of training samples (6 and 4 

samples of infants’ cry for training and testing respectively) or used pathologically-non-

informed features for this disease.  

 

Table 2.2 Obtained accuracy rate for multi-pathology classification (%) 

Frame duration 20msec 25msec 30msec 

Method EM-Based ABML EM-Based ABML EM-Based ABML 

1 100 100 100 100 100 100 

2 100 100 100 100 100 100 

3 100 100 0 50 0 50 

4 75 100 75 100 75 50 

5 100 88.9 100 100 100 100 

6 100 100 100 100 100 100 

7 80 60 40 60 20 40 

8 100 100 100 100 100 100 

9 0 0 0 0 0 0 

 

To better understand the effect of frame duration on the performance, the mean values of 

classification accuracy rates are computed from frequency distribution over 9 pathology 

classes and it is given by (Zill, wright et Cullen, 2011) 

 

݊ܽ݁ܯ  = ∑ ௙೔௠೔వ೔సభ∑ ௙೔వ೔సభ   (2.25)
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Where ௜݂ and ݉௜ show the frequency and obtained accuracy rate for ݅௧௛ pathology class. The 

results in Figure 2.5 show that, the performance of both EM-Based and Adaptive BML 

methods degrade when the frame duration increase. Therefore, the system performance is the 

best when using 20msec frame length to extract MFCCs. In addition, Figure 2.5 says that the 

presented adaptive BML method, on the average, works better than the EM-Based method 

when frame duration varies.  

 

 

Figure 2.5 Mean classification accuracy rates 

 

The coefficient of variation (CV) is particularly useful for representing the reliability of 

performance tests which is the coefficient of dispersion based on standard deviation. It gives 

the standard deviation as a percentage of the mean values as follows (Zill, wright et Cullen, 

2011): 
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݊݋݅ݐܽ݅ݒ݁ܦ݀ݎܽ݀݊ܽݐܵ  = ඨ∑௙೔௠೔మ ି (∑೑೔೘೔)మ∑೑∑௙೔ିଵ   (2.26)

ܸܥ  = ௌ௧௔௡ௗ௔௥ௗ஽௘௩௜௔௧௜௢௡ெ௘௔௡ × 100%  (2.27)

 

In Figure 2.6 we present this coefficient of dispersion for both techniques with different 

frame durations. The larger the CV, the more the performance varies. Since the coefficient of 

variation is less for shorter segments, theirs performances are therefore more consistent. The 

CV values for adaptive BML method are much less than those of EM-Based method for 

frame length 25-30 msec, although they are so close to each other for frame length 20 msec. 

 

 

Figure 2.6 Coefficient of variation 

 

The large cry signal database is required to make well-defined mixture model to keep the 

number of components as small as possible. As we said earlier, in large cry signal samples, 

small number of outliers is to be expected. The numbers of components that minimize BIC in 

the each mixture models are shown in Figure 2.7.  
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The second experiment was designed to test the diagnostic system for Binary classification 

task in which all cry data in database were organized into two separate groups namely 

healthy and pathological. Note that, here the frame length of 30 msec with 30% overlap has 

been used. In this experiment for each defined infant’s class, a GMM which fitted extracted 

data from cry signals is trained by utilizing adapted BML technique. The number of 

components in the mixture models for healthy and pathological classes was estimated 9 and 

12 respectively. These numbers of components were employed in learning steps of mixture 

models by conventional EM-Based method just like in the previous experiment. Table 2.3 

displays two confusion matrices that allow visualization of the performance of each method 

in the binary classification problem. These two matrices, for (a) the proposed method and (b) 

conventional EM-Based method, are provided for comparison which makes it easy to see if 

the system is confusing two predefined classes by containing the number of healthy and 

pathological infants that were correctly classified or mistakenly classified. 

 

 

Figure 2.7 Number of components 
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Table 2.3 Confusion Matrix for defined 
Binary classification task 

 Predicted Classes 

Actual Classes Pathological Healthy 

Pathological 21 5 

Healthy 3 20 

(a) Proposed ABML-GMM method 

 Predicted Classes 

Actual Classes Pathological Healthy 

Pathological 26 0 

Healthy 6 17 

(b) Conventional EM-GMM method 

 

True positive (TP) and True negative (TN) rates are defined for a two by two confusion 

matrix, as calculated using the following equations (Kohavi et Provost, 1998): 

 

 ܶܲ = ݀ܿ + ݀ 
(2.28)

 ܶܰ = ܽܽ + ܾ (2.29)

 

where “a” and “d” are the numbers of correct predictions that an instance is negative or 

positive respectively. The other parameters, “b” and “c” are defined in a similar way by 

counting the number of incorrect predictions that an instance is positive or negative 

accordingly. In the pathology diagnostics system, true positive rate or test sensitivity shows 

the ability of the system to correctly detect infants with disease, whereas true negative rate or 

test specificity demonstrate the ability of the system to correctly identify those without 

disease. Both these statistical measures of the two methods are summarized in Table 2.4. 
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Table 2.4 Obtained two statistical measures for 
Binary-classification problem 

 EM-GMM ABML-GMM 

Test Sensitivity 100 % 80.77 % 

Test Specificity 73.91 % 86.96 % 

 

The ramification of false positive (Type I error) and false negative (Type II error) in some 

cases especially medical examinations are not the same (He, 2011). One can be more costly 

and irrecoverable than the reverse situation. Preferably, the classifier should be able to 

provide a balanced degree of predictive accuracy (ideally 100%) for both the minority and 

majority classes in our imbalanced data which is direct result of the nature of the cry 

database. 

 

2.6 Conclusion 

A newborn cry-based diagnostic system (NCDS) based on extracting Mel frequency cepstral 

coefficients (MFCCs) from infant’s cry signal is presented in this paper. For all cry samples 

which belong to the healthy infant class or pathological infant classes with different 

physiology conditions, a mixture model with separate Gaussian pool was estimated as a cry-

pattern. Adapted boosted mixture learning (BML) method was introduced to train mixture 

models. Some advanced techniques of signal processing, and machine learning were 

employed in different part of the learning process such as adding new component, weighting 

function for samples, model selection, and global re-estimation of parameters. In multi-

pathological classification tasks, results show that, on the average, presented method 

achieved a higher classification accuracy rate to identify infants’ diseases than EM-based re-

estimation algorithm for Gaussian mixture models (GMMs). The performance and reliability 

of adaptive BML-GMMs is the best when using 20msec as a frame duration and gradually 

degrade when the length increase further. The results demonstrate that the adaptive BML 

method can provide better classification accuracy rate than EM-Based method with higher 
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system reliability. For binary classification problem, with 30msec frame duration (the worst-

case scenario), adapted BML can identify full-term and pre-mature healthy infants better than 

EM-Based, but on the other hand it deliver a little lower performance than EM-Based method 

for sick infants. However, adapted BML provides better balanced degree of predictive 

accuracy for both the minority and majority classes (test sensitivity 80.77% and test 

specificity 86.96%). 
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Résumé 

 

Dans cet article, nous utilisons la méthode boosting afin d'introduire un nouvel algorithme 

d'apprentissage pour GMM (Gaussian Mixture Models), appelé adapted Boosted Mixture 

Learning (BML). La méthode possède la capacité de corriger les problèmes existants dans 

d'autres techniques classiques pour estimer les paramètres GMM, due en partie à une 

nouvelle stratégie de mélange pour augmenter le nombre de gaussiennes. L'idée de la 

séparation discriminatoire est employée pour des densités de mélange de gaussiennes. Celle-

ci est suivie par une étape d’apprentissage selon la méthode proposée. Ensuite, le 

classificateur de GMM est appliqué afin de différencier entre les nourrissons en bonne santé 

et ceux qui présentent une des pathologies étudiées. Chacun des deux groupes comprend à la 

fois des bébés prématurés et à terme. Chaque état pathologique est représenté par un modèle 

créé en utilisant la méthode adaptée BML et des vecteurs de 13 coefficients MFCC. Les 

résultats des tests démontrent que la méthode proposée  pour entrainer les GGM a une 

meilleure performance que le système de référence utilisant un algorithme EM, (Expectation-

Maximisation) pour la classification multi-pathologique. 
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3.1 Abstract 

In this paper we make use of the boosting method to introduce a new learning algorithm for 

Gaussian Mixture Models (GMMs) called adapted Boosted Mixture Learning (BML). The 

method possesses the ability to rectify the existing problems in other conventional techniques 

for estimating the GMM parameters, due in part to a new mixing-up strategy to increase the 

number of Gaussian components. The discriminative splitting idea is employed for Gaussian 

mixture densities followed by learning via introduced method. Then, the GMM classifier was 

applied to distinguish between healthy infants and those that present a selected set of medical 

conditions. Each group includes both full-term and premature infants. Cry-pattern for each 

pathological condition is created by using the adapted BML method and 13-dimensional 

Mel-Frequency Cepstral Coefficients (MFCCs) feature vector. The test results demonstrate 

that the introduced method for training GMMs has a better performance than the traditional 

method based upon random splitting and EM-based re-estimation as a reference system in 

multi-pathological classification task. 

 

Keywords: Adapted Boosted Mixture Learning; Gaussian Mixture Model; Splitting of 

Gaussians; Expected-Maximization Algorithm, Cry Signals. 

 

3.2 Introduction 

Gaussian Mixture Model (GMM) has the capability to form smooth approximations to 

arbitrarily shaped densities and it has proved to be an effective probabilistic model for 

biometric systems, most notably in speaker recognition systems and speaker identification 

(Reynolds et Rose, 1995). The GMMs are estimated from available training data using a 

special case of the Expectation-Maximization (EM) algorithm based on the maximum-

likelihood (ML) (Dempster, Laird et Rubin, 1977).A finite amount of sample data produces 

detrimental effects that commit statistical errors in training of the GMMs. Nevertheless, this 

iterative algorithm comes with a guarantee that there will be no decreasing in likelihood 
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function after each iteration and therefore converges to locally optimal parameters (Heck et 

Chou, 1994). Performance degradation due to parameter estimation errors is a function of the 

number of free parameters in the classifier (Heck et Chou, 1994), so there are still some 

problems when increasing model complexity. For example, in Automatic Speech 

Recognition (ASR) systems using HTK with the method based on random splitting and EM-

based re-estimation (Jun, Yu et Hui, 2011): First, there is no guarantee that the newly added 

mixture from random splitting always increases the likelihood function prior to re-estimation. 

Second, convergence to the optimum point in EM-based re-estimation is not guaranteed due 

to the sensitivity to initial parameters of the randomly split Gaussians. More recently, the 

traditional boosting method has been used to solve some problems of mixture models (Kim et 

Pavlovic, 2007; Pavlovic, 2004). Another new method called Boosted Mixture Learning 

(BML) to learn Gaussian mixture Hidden Markov Model (HMM) is introduced to overcome 

the aforementioned problems in other available conventional techniques for estimating the 

GMM parameters (Jun, Yu et Hui, 2011). In (Boyu et al., 2010) the discriminative splitting 

idea has been used for log-linear mixture densities in a speech recognition task. For this 

purpose, the parameters of Gaussian model have been transformed into their equivalents in 

log-linear model as presented in (Heigold et al., 2011; Heigold et al., 2008), and then trained 

in a Maximum Mutual Information (MMI) framework. 

 

GMMs represent a statistical pattern recognition approach that enables optimal processing of 

data both for training (EM algorithm) the classifier and performing on-line classification. 

Cry-based diagnostic system for newborn infants can be valuable in medical problems which 

are currently undetectable until it is too late for treatment. Recently several classifiers such as 

General Regression Neural Network (GRNN), Multi-Layer Perceptron (MLP), Time Delay 

Neural Network (TDNN), Probabilistic Neural Network (PNN), Radial Basis Function (RBF) 

and hybrid systems under several approaches such as bagging and boosting (Bauer et Kohavi, 

1999b) were examined for discriminating between normal and sick infant’s cry signals 

(Amaro-Camargo et Reyes-García, 2007; Cano et al., 2006; Galaviz et García, 2005; 

Hariharan, Sindhu et Yaacob, 2012; Hariharan, Yaacob et Awang, 2011; Orozco et Garcia, 

2003; Ortiz, Beceiro et Ekkel, 2004). In our previous work (Farsaie Alaie et Tadj, 2012), we 
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made use of cry signals to distinguish between healthy and sick infants both full-term and 

premature. Most of the previous studies (Amaro-Camargo et Reyes-García, 2007; Cano et al., 

2006; Galaviz et García, 2005; Hariharan, Sindhu et Yaacob, 2012; Hariharan, Yaacob et 

Awang, 2011; Orozco et Garcia, 2003; Ortiz, Beceiro et Ekkel, 2004; Wasz-Hockert, 

Michelsson et Lind, 1985) concentrate on health status of infants via a binary classification 

task, but this paper focuses on identifying several different pathological conditions. In this 

article a method for splitting of Gaussian mixture densities is presented based on the boosting 

algorithm to maximize the frame-level ML objective function. The performed experiments 

on the diagnosis of infants’ diseases show that it has fairly superior performance to the 

conventional method based on random splitting and EM-based re-estimation.  

 

This paper is organized as follows: In section 3.3 we give a brief review of GMM. Section 

3.4 explains the different parts of introduced learning algorithm. In section 3.5, preprocessing 

steps and experiments are reported, and in section 3.6 a follow-up analysis of the results and 

a conclusion are presented at the end to finalize this paper. 

 

3.3 Gaussian mixture model 

A complete GMM for a ܦ dimensional continuous value data vector called ܺ can be 

represented by the weighted sum of ܯ Gaussian component densities ߣ = [ܿ௞, ,௞ߤ Σ௞] ݇ = 1,…   :as follows ܯ,

 

(ߣ|ܺ)ெܨ  = ∑ ܿ௞ ௞ࣨ(ܺ; ,௞ߤ Σ௞)ெ௞ୀଵ , ∑ ܿ௞ெ௞ୀଵ = 1  (3.1)

 

where each mixture component ௞ࣨ is a ܦ −	dimensional multivariate Gaussian distribution 

and ܿ௞, ,௞ߤ Σ௞ are the mixture weights, mean vector and covariance matrix respectively. Since 

GMMs are used usually in unsupervised learning and clustering problems with unknown 

number of mixtures and their parameters, the choice of model configuration is almost 

determined by the amount of data available for estimating the GMM parameters in a 

particular application. GMM, as a parametric probability density function with the following 
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adapted learning method could be a successful candidate for cry-based physical or 

psychological status identification system. 

 

3.4 Adapted boosted mixture model 

Generally, boosting method combines weak learners or base classifiers in a weighted 

majority voting scheme to improve the overall classification accuracy for almost any type of 

learning algorithm (Bishop, 2006; Duda, Hart et Stork, 2001). The main idea of boosting is 

that instead of always treating all data points as equal, component classifiers should 

specialize on certain examples. Moreover, some recent work has shown that the boosting 

method can effectively increase the margin of all training samples, which can be explained 

by a theoretical view related to functional gradient techniques (Jun, Yu et Hui, 2011). We 

should note that the boosting algorithm does not always improve the accuracy of a learning 

algorithm nor does it always increase the margin. 

 

In the presented method a new component ௞ࣨ and its weight ܿ௞ can be trained based 

discriminatively based on a predefined objective function, denoted as ࣝ, in an optimal way. 

Then, they will be added to the previous mixture model ܨ௞ିଵ which has ݇ − 1 mixture 

components to grow into a new mixture model ܨ௞. 

 

(ܺ)௞ܨ  = (1 − ܿ௞)ܨ௞ିଵ(ܺ) + ܿ௞ ௞ࣨ(ܺ)  (3.2)

 

Objective function is defined as the log likelihood function of the mixture model kF , based 

on all training data [ ଵܺ, ܺଶ, … , ்ܺ]. 
 

(௞ܨ)ࣝ  = ∑ log ௞(ܺ௧)௧்ୀଵܨ   (3.3)

 

where ܿ௞ is a weight to combine the new mixture component with the current model. When a 

new mixture component ௞ࣨ is added, it will increase the ML objective function with respect 

to ܨ until the criterion which will be explained later is met. 
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 ࣝ((1 − ௞ܨ(ߝ + ߝ ௞ࣨ) > (3.4)  (௞ିଵܨ)ࣝ

 

where ߝ is a small deviation constant. Thus, the new mixture component ௞ࣨ should be 

estimated in order to increase the ML objective function the most. By employing Teylor’s 

series and predefined inner product of mixture models P and Q over training samples, 

 

 〈ܲ, ܳ〉 = ଵ் ∑ ܲ(ܺ௧)ܳ(ܺ௧)௧்ୀଵ   (3.5)

 

the optimal new component can be obtained by: 

 

 ௞ࣨ∗ = argmaxࣨೖ〈∇ࣝ(ܨ௞ିଵ), ( ௞ࣨ − 〈(௞ିଵܨ = argmaxࣨೖ ∑ ࣨೖ(௑೟)ிೖషభ(௑೟)௧்ୀଵ   (3.6)

 

The new mixture component is generated along the direction of functional gradient where the 

objective function grows the most. There is no closed-form of the optimization problem for 

GMMs, but it can be solved by optimizing a lower bound on the boosting learning formula 

with the EM algorithm (Jun, Yu et Hui, 2011). After estimating ௞ࣨ∗, the mixture weight ܿ௞∗ 
can be obtained by using the following line search: 

 

 ܿ௞∗ = argmax௖ೖ∈[଴,ଵ] ࣝ((1 − ܿ௞)ܨ௞ିଵ + ܿ௞ ௞ࣨ∗)  (3.7)

 

3.4.1 Process of adding a new component 

In this method, a single Gaussian model initialized by ML training is estimated to fit the data 

at first, and then in each step it is split into two Gaussians followed by learning via 

introduced method. In the splitting or adding process the part of training vectors in which ௞ࣨ(ܺ) has a higher value than the reminder of the mixture model, denoted by ܨ௞ − [ ௞ࣨ] is 

selected. Then this subset of data indicated by ܺ௦௨௕ should be modeled by a small GMM 

consisting in two Gaussian components called ௞ࣨ∗ and ௞ࣨାଵ. The initial component came 
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from the EM-based re-estimation, and then the second component and its weight were 

estimated based upon adapted BML method. We considered the estimated component – the 

second one – as an initial component and run the algorithm again. This process continues 

repeatedly, until it reached the optimal maximum log-likelihood estimate of parameters over ܺ௦௨௕. This procedure for finding the best two new components ௞ࣨାଵ and ௞ࣨ∗ continued for ݇ = 1,… ,  ௞ାଵ, the one that gaveܨ mixture models, denoted by ܭ Amongst all the created .ܭ

the highest value of the objective function was selected and added to the mixture by adjusting 

its weight. This iterative density splitting process in ML framework is repeated as long as the 

added component causes an increase in the predefined objective function. 

 

3.4.2 Partial and global updating 

During previous step, instead of finding the new mixture weight from the line search, there is 

an alternative method called partial updating in which each new component and its weight 

are estimated at the same time, which is preferable since it may result in more robust and 

reliable estimation.  

 

 ሼ ௞ࣨ∗, ܿ௞∗ሽ = ೖ,,௖ೖࣨݔܽ݉݃ݎܽ ࣝ ( (1 − ܿ௞ ௞ିଵܨ( + ܿ௞ ௞ࣨ	)  (3.8)

                        

The iterative re-estimation formula for model parameters ߔ௞(௡ାଵ) = ,௞௡ାଵߤ] ݊) ௞௡ାଵ] at theߑ + 1)௧௛ iteration can be evaluated as follows (Jun, Yu et Hui, 2011): 

 

௡(ܺ௧)ݓ  = 	 ௞ࣨ ቀܺ௧ቚߔ௞(௡)ቁܿ௞௡ ௞ࣨ ቀܺ௧ቚߔ௞(௡)ቁ + (1 − ܿ௞௡)ܨ௞ିଵ(ܺ௧|ߖ௞ିଵ) (3.9)

௞(௡)ቁߔ௧ቀߛ  = ∑௡(ܺ௧)ݓ ௡(ܺ௧)௧்ୀଵݓ  
(3.10)

 ܿ௞௡ାଵ = 1ܶ෍ܿ௞௡	ݓ௡(ܺ௧)்
௧ୀଵ  

(3.11)
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௞௡ାଵߤ  =෍ߛ௧ቀߔ௞(௡)ቁ.்
௧ୀଵ ܺ௧ (3.12)

௞௡ାଵߑ  =෍ߛ௧ቀߔ௞(௡)ቁ. (ܺ௧ − ்(௞௡ାଵߤ
௧ୀଵ × (ܺ௧ −  ௞௡ାଵ)்௥ߤ

(3.13)

 

where ݓ௡(ܺ௧) denotes the weight assigned to sample ܺ௧ at the ݊௧௛ iteration, similar to 

sample weights used in the traditional boosting algorithms and ߖ௞ =  ,Moreover .[௞ିଵߖ,௞ߔ]

in order to speed up converging process and finding the minimum number of Gaussian 

component in the final mixture, the current mixture model ܨ௄ should be updated globally 

over training data samples before adding the next component. For example in the GMM with ܭ components, denoted by ܨ௄, the ݇௧௛ component can be re-estimated for ݇ = 1,… ,  when ܭ

the reminder of the mixture mode is assumed to be fixed. It means that after obtaining a 

mixture model ܨ௄, we could update each component ௞ࣨ and its weight over all training 

feature vectors by using the same updating equations. The parameters updating phase, 

subsequent to splitting the selected density in half, brings about an increase in the objective 

function through the localized training of each component separately.  

 

3.4.3 Initialization of sample weights 

A problem may arise when the initial values of the weights are chosen by boosting theory as 

follow:  

 

଴(ܺ௧)ݓ  = 1 ⁄(௞ିଵߖ|௧ܺ)௞ିଵܨ   (3.14)

 

The dynamic range of ܨ௞ିଵ is large in a way that it could be dominated by only a few number 

of outliers or samples with low probabilities. We use the so-called ‘Weight decay’ method 

(Rosset, 2005) to overcompensate for the low probability by smoothing sample weights 

based on power scaling. 
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଴(ܺ௧)ݓ  = (1 ⁄(௞ିଵߖ|௧ܺ)௞ିଵܨ )௣, 0 < ݌ < 1  (3.15)

 

where ݌ is a decay parameter or an exponential scaling factor. In the second method the idea 

of sampling boosting in (Freund et Schapire, 1997) is applied to form a subset of training 

feature vectors according to the mean and variance values of the decayed weights. 

Afterwards, vectors contained in the previously created subset are utilized with equal weights 

to estimate the new component parameters. Assume ܯഥ  and ߪଶ denote the mean and variance 

of weights calculated in equation (3-15) as defined below. 

 

ഥܯ  = (3.16)  [଴(ܺ௧)ݓ݃݋݈]݊ܽ݁݉

ଶߪ  = (3.17)  [଴(ܺ௧)ݓ݃݋݈]݁ܿ݊ܽ݅ݎܽݒ

 

Then, the aforementioned subset with large weights is selected as described below: 

 

 ܺ௦௨௕ = ሼܺ௧| ଴(ܺ௧)ݓ݃݋݈ > ഥܯ + ሽ  (3.18)ߪߚ

 

where ߚ is a linear scaling factor to control the size of subset ܺ௦௨௕. In the experiments, we set  ݌ = 0.05 and ߚ = −0.5 to overcome overfitting and these same parameter values which 

utilized for BML algorithm in (Jun, Yu et Hui, 2011). 

 

3.4.4 Criterion for model selection 

The process of adding new mixture component to the previous mixture model is continued 

incrementally and recursively until the optimal number of mixtures is met. The set of 

Gaussian components selected should represent the space covered by the feature vectors. For 

this purpose, the selected strategy to stop the adding process is a criterion-based called 

Bayesian Information Criterion (BIC). It can be represented as the following (Schwarz, 

1978):  

 

(݇)ܥܫܤ  = −2 × ࣝ ( (௞ܨ ௞ܯ+ ݃݋݈ ܶ  (3.19)
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where ࣝ	(ܨ௞) is the log-likelihood function of the mixture model over all training data, ܯ௞ is 

the number of parameters used in model ܨ௞, and ܶ denotes total number of training data. 

Figure 3.1 shows a brief review of all mentioned processes to train a GMM for each available 

pathological condition in order. A simple procedure to evaluate the presented learning 

method is to monitor the progress of the method during learning phase with a created training 

dataset, whose samples have been drawn from a known mixture of multivariate Gaussian 

distributions. Given training data with 600 two-dimensional samples, we wish to estimate the 

parameters of the GMM, ߣ = [ܿ௞, ,௞ߤ Σ௞], which in some sense best matches the distribution 

of the training feature vectors. 

 

 

Figure 3.1 Block diagram of adapted BML technique 

 

Figure 3.2 shows the final trained GMM and the whole discriminative splitting process after 

each substitution step. We compare the log-likelihood score between our method and the 

mentioned traditional method at the end of the discriminative training of this model. The 

negative log-likelihood score of the estimated GMM bears a close resemblance to that of the 

trained model with the traditional method consisting of the correct number of Gaussian 

components on the same data, whose values are 2.7682 × 10ଷand 2.7684 × 10ଷ 

respectively. 
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                         (a)                                              (b)                                              (c)  

Figure 3.2 Estimated contour (a) of the first Gaussian component, (b) after splitting 
GMM into 2 components, (c) of final GMM 

 

3.5 Experiments 

3.5.1 Preprocessing and feature extraction 

It would be worthwhile to find a clear correlation between infants’ medical statuses and 

extracted cry characteristics. This concept could prove useful in the early infant diagnosis 

system. Several different cry characteristics and features were described in (Corwin, Lester et 

Golub, 1996; Wasz-Hockert, Michelsson et Lind, 1985) and have been shown to work well 

in practice for distinguishing between a healthy infant’s cry and that of infants with asphyxia, 

brain damage, hyperbilirubinemia, Down’s syndrome, and mothers who abused drug during 

their pregnancies. Therefore, selecting the most informative features to distinguish between 

healthy baby class and pathological infant classes with different pathology conditions has a 

significant role in pathological classification tasks. Table 3.1 shows the list of available 

different pathological conditions and the number of samples in each class; totaling 63 cry 

signals for each healthy and sick infants classes including both full-term and premature per 

class. 

 

In a similar way to typical speech recognition systems, the pre-processing and the feature 

extraction phases are modeled in such a way that irrelevant information to phonetic content 

of the cries should be eliminated as far as possible i.e. nurses talking and environmental 
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noises. On the other hand, the Mel- Frequency Cepstral Coefficients (MFCCs) are selected to 

be extracted from the cries which contain the vocal tract information (Plumpe, Quatieri et 

Reynolds, 1999). This type of excitation source characteristics is one of the popular schemes 

in speaker recognition and identification systems (Longbiao et al., 2010; Murty et 

Yegnanarayana, 2006; Nengheng, Tan et Ching, 2007; Plumpe, Quatieri et Reynolds, 1999). 

It is common practice to pre-emphasis the signal prior to computing the speech parameters by 

applying the filter ܲ(ݖ) = 1 −  ଵ (Rabiner et Schafer, 1978; Young et al., 2006a). Inିݖ0.97

all related practical applications, the short terms or frames should be utilized, which implies 

that the signal characteristics are uniform in the region. Prior to any frequency analysis, the 

Hamming windowing is necessary to reduce any discontinuities at the edges of the selected 

region. A common choice for the value of the window length is 10-30 msec (Benzeghiba et 

al., 2007; Huang, Acero et Hon, 2001a; Rabiner et Schafer, 1978). 

 

Table 3.1 Cry database 

Infants State Pathologies Number 

 

Fullterm 

Healthy N/A 38 

 

Sick 

Bovine protein allergy 13 

Tetralogy of Fallot 5 

Thrombosis in the vena cava 13 

 

Premature 

Healthy N/A 25 

 

Sick 

Tetralogy of Fallot 9 

Cardio complex 14 

X chromosomal abnormalities 9 

 

3.5.2 Multi-pathology classification 

In training phase of algorithm, in order to estimate the parameters of GMMs for pathology 

classes, almost 63% of total cry signals were employed and the reminder for system 

evaluation. The GMM classifier is employed to identify infants’ pathological conditions. The 
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Maximum Likelihood (ML) decision criterion is applied to assist in choosing between 

hypotheses.   

 

ݕ݃݋݈݋ℎݐܽܲ  ݏݏ݈ܽܥ # = argmax௝ ℒ௝(ܺ)  (3.20)

 

where ℒ௝(ܺ) shows the likelihood of a feature vector ܺ given a Gaussian model ߣ௜ for ݅௧௛ 

pathology class. This multi-pathology classification was done by using predefined feature 

vectors extracted from different frame durations (10, 20, 25, 30 msec) with the same overlap 

percentage (30%) between two consecutive windows to assess what improvements it may 

have.  

 

Nevertheless, our results show that, on the average, it had a better accuracy rate compared 

with the traditional method based on random splitting and EM-based re-estimation for 

GMMs as our reference system. It is worth mentioning that the GMMs created by the 

traditional method for each class were trained by setting the number of components equal to 

that of mixture model learned by adapted BML method. The coefficient of variation (CV) is 

used to represent the reliability of performance tests. It gives the standard deviation as a 

percentage of the mean values which is computed from frequency distribution over all 

pathology classes as follows (Zill, wright et Cullen, 2011):  

 

ܸܥ  = ௌ௧௔௡ௗ௔௥ௗ ஽௘௩௜௔௧௜௢௡ெ௘௔௡ × 100%  (3.21)

 

Due to space limitation, Table 3.2 shows only the results for two frame length (10 msec and 

20 msec) as the most reliable results. Note that the states correspond to the order given in 

Table 3.1. It can be seen that both methods delivered great performances for most pathology 

classes, but based on the frequency distribution of the cry samples. The presented method for 

20 msec frame size had better final accuracy rate. Moreover, the larger the CV, the more the 

performance varies.  
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Table 3.2 Obtained accuracy rate (%) for multi-pathology 
classification task 

 20 msec 10 msec 

State EM-Based ABML EM-Based ABML 

1 100 100 100 100 

2 100 100 80 80 

3 100 100 100 100 

4 75 100 75 75 

5 100 88.9 100 100 

6 100 100 100 100 

7 80 60 80 80 

8 100 100 100 100 

Mean 94.16 94.58 92.08 92.08 

CV 10.9 12 11.8 11.8 

 

3.6 Conclusion 

An adapted mixture learning method for GMMs based on boosting algorithm is introduced in 

this paper. Advanced techniques of signal processing, and machine learning were employed 

in different parts of the learning process such as adding a new component per step, weighting 

function for samples, model selection, and global re-estimation of parameters. The focus of 

this paper has been on the application of discriminative training via introduced GMM-ABML 

as it pertains to the pathology detection through infants’ cry signals. For each pathology class 

in our cry database, the adapted BML method trained a mixture model with a separate 

Gaussian pool as a cry-pattern. The results show that, on the average, it delivers a higher 

classification accuracy rate (94.58%) than the traditional method based on random splitting 

and EM-based re-estimation. It might be early to reach strong conclusions since there are not 

enough cases of the pathological classes, but the results have the potential to serves as a 

mixture learning method for further research. We are currently trying to use alternative 
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discriminative criteria like MMI rather than ML and collecting more sample cries for further 

tests.  
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Résumé 

 

Les études traditionnelles sur le cri des nourrissons se concentrent plutôt sur la classification 

basée sur des signaux non-pathologiques. Dans cet article, nous proposons un système non 

invasif, pouvant être intégré dans un système de soins de santé. Le système effectue l'analyse 

acoustique des signaux de cris bruités des nourrissons pour en extraire et mesurer 

quantitativement certaines caractéristiques et les classer comme étant en bonne santé ou 

pathologiques. Les coefficients MFCC, statiques et dynamiques sont extraits pour les deux 

vocalisations du cri : expiratoire et inspiratoire. Cette procédure a pour but de produire un 

vecteur caractéristique le plus discriminant et informatif. Ensuite, nous créons un modèle de 

cri unique selon le type de vocalisation et l'état pathologique. Ceci est réalisé en introduisant 

une nouvelle idée utilisant le méthode BML (Boosted Mixture Learning) pour obtenir des 

modèles de cris sains et pathologiques à partir d’un modèle universel GMM-UBM. Le 

système de diagnostic basé sur le cri du nouveau-né (NCDS) que nous proposons, fonctionne 

selon un système hiérarchique correspondant à une combinaison arborescente de 

classificateurs individuels. En plus, une fusion au niveau du score des sous-systèmes 

expiratoire et inspiratoire est réalisée rendant la prise de décision plus fiable. Les résultats 

expérimentaux indiquent que la méthode adaptée BML a des taux d'erreur inférieurs à ceux 

de l'approche bayésienne ou l'estimateur du maximum a posteriori (MAP). 
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Highlights 
 
• We characterize the distributions of the acoustic features of infant cry signals with 

GMMs as a universal background model; 

• An adapted BML method is presented to derive either healthy or pathology subclass 

models from the GMM-UBM; 

• A score level fusion of obtained log-likelihood ratio scores from both expiratory and 

inspiratory sounds is performed; 

• The proposed cry-based diagnostic system is used to classify healthy and sick infants; 

• Subjective results indicated that the proposed method can perform better than Bayesian 

adaptation. 

 

4.1 Abstract 

Traditional studies of infant cry signals focus more on non-pathology-based classification of 

infants. In this article, we introduce a non-invasive health care system that performs acoustic 

analysis of unclean noisy infants’ cry signals to extract and measure certain cry 

characteristics quantitatively and classify healthy and sick newborn infants according to only 

their cries. In the conduct of this newborn cry-based diagnostic system, the dynamic Mel-

Frequency Cepstral Coefficients (MFCC) features along with static MFCCs are selected and 

extracted for both expiratory and inspiratory cry vocalizations to produce the most 

discriminative and informative feature vector.  Next, we create a unique cry pattern for each 

cry vocalization type and pathological condition by introducing a novel idea using the 

Boosted Mixture Learning (BML) method to derive either healthy or pathology subclass 

models separately from the Gaussian Mixture Model-Universal Background Model (GMM-

UBM). Our newborn cry-based diagnostic system (NCDS) has a hierarchical scheme that is a 

treelike combination of individual classifiers. Moreover, a score-level fusion of the proposed 

expiratory and inspiratory cry-based subsystems is performed to make a reliable decision. 

The experimental results indicate that the adapted BML method has lower error rates than the 

Bayesian approach or the maximum a posteriori probability (MAP) adaptation approach 

when considered as a reference method.   
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Keywords: Gaussian mixture model; Universal background model; Mel-frequency Cepstral 

Coefficient; Likelihood ratio scores; Newborn infant cries; Expiratory sound; Inspiratory 

sound. 

 

4.2 Introduction 

Crying is the first clear sign of life that is observed shortly after a baby’s live birth. Although 

there have been some books and products that were created through the years to unlock the 

secret language of babies, their potential for use in the early diagnosis and treatment of 

newborns remains largely in an open and undeveloped state. The results of these 

studies highlight the existence of some cry attributes in sick infants that are rarely observed 

in the cries of healthy infants (Benson et Haith, 2009; Wasz-Hockert et al., 1968; Wasz-

Hockert, Michelsson et Lind, 1985). Instead, these attributes occur frequently in the cries of 

sick infants who suffer from different medical diseases and conditions. Therefore, infant cry 

characteristics reflect the integrity of the central nervous system.  

 

4.2.1 Early studies and birth defects 

Many early researchers defined several cry characteristics and presented their common 

values, such as the fundamental frequency, formants, cry  modes, cry latency, phonation, 

hyperphonation, and dysphonation (LaGasse, Neal et Lester, 2005; Lederman, 2002; 

Newman, 1985; Wasz-Hockert, Michelsson et Lind, 1985). Gradually, detailed acoustic 

analysis, which measures and compares the acoustical characteristics of newborn infant cry 

signals, shows hidden diagnostic potential of cry signals for the basic cry types and the cries 

of infants in pathological conditions such as with brain damage, central nervous system 

diseases and Down’s syndrome (Michelsson, 1971; Michelsson et Michelsson, 1999; 

Partanen et al., 1967; Wasz-Hockert et al., 1968; Wasz-Hockert, Michelsson et Lind, 1985). 

It appears that some of the symptoms are not always recognized or even do not appear for 

months or years; thus, it might be too late for treatment after clinical symptoms start, 
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especially in countries that do not have well-established health services. As Figure 4.1 shows, 

congenital anomalies and preterm births were the dominant causes of approximately 2.7 

million  infants deaths in 193 countries in 2010 (Congenital anomalies, 2014). Statistical 

reports by the World Health Organization (WHO) (Congenital anomalies, 2014)  and Center 

for Disease Control and prevention (CDC)  (Update on overall prevalence of major birth 

defects—atlanta, georgia, 1978-2005, 2008) state that congenital anomalies or birth defects 

affect approximately 1 in 33 infants born every year. Moreover, in spite of the fact that the 

U.S. and Canada are highly developed countries, the results of an investigation of early infant 

mortality rates in 176 countries indicate that the U.S. and Canada had the 1st and 2nd worst 

rates in the developed world, respectively, by 2.6 and 2.4 first-day deaths per 1,000 births 

(SaveTheChildren, 2013). It is worthwhile mentioning that approximately 1 percent of the 

world’s infant deaths occur in developed countries, and the situation is worse for many 

developing countries. However, it is easier to identify a baby who has structural problems 

such as cleft lip; on the other hand, symptoms of some defects might be invisible and hidden 

from sight. Therefore, we believe that by providing an inexpensive health care system that 

does not have complex and advanced technology for poor mothers with newborn babies in 

low-income countries, more babies can survive beyond the first months of life.  

 

 

Figure 4.1 Leading causes of infant deaths in 193 countries in 2010 
 Adapted from Congenital anomalies (2014)  
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There are a substantial number of maternal and environmental issues that can raise the risks 

of several complications and associated anomalies, such as the gestational age, birth weight, 

consanguinity, maternal age, multiple gestations, and maternal infection during pregnancy, 

socioeconomic factors and maternal nutritional status. For example, the gestational age is a 

noteworthy predictor of infant health conditions within the normal range of 37-41 weeks for 

babies who are fully developed (full term). Premature birth, even only a few weeks early, 

increases the chance of birth defects or infant death in such a way that in the U.S., the 2010 

mortality rate for very early preterm (under 32 weeks) births was 74 times worse than that of 

full-term infants (T.J. et F. MacDorman, 2013).  

 

These official statistics can provide more information about the chance that an infant is born 

with a specific congenital disease, which is completely independent of the information in the 

infant cries. Moreover, there are other independent sources of information that are related to 

the physiological condition of the newborn infants that can be useful in a similar way in 

multimodal biometric systems, which use multiple independent sources of information and 

indeed provide a reliable system. However, in this article, we are curious about examining 

only the ability of information that is embedded in infant cries to differentiate between 

several pathologies in spite of the other sources.   

 

This approach encouraged us to be ambitious and develop a newborn cry-based diagnostic 

system for the care of birth defects after birth by identifying some possible physiological 

disorders and birth defects. This early intervention can definitely save the lives of many 

infants and protect them from some physical, intellectual, visual or auditory impairment 

before severe disabilities might be caused.  
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4.2.2 Related studies 

The leading role in the classification of the infant cry is how to scientifically discriminate 

between different neonatal health statuses, only on the basis of their cry signals besides the 

health examination of infants and other predictors of child health. In recent years, several 

machine learning and classification algorithms, such as artificial neural networks (Cano et 

al., 2006; Hariharan, Yaacob et Awang, 2011; Orozco et Garcia, 2003), radial basis function 

(RBF) networks (Cano Ortiz, Escobedo Beceiro et Ekkel, 2004b), support vector machines 

(SVMs) (Amaro-Camargo et Reyes-García, 2007), Naïve Bayes (Amaro-Camargo et Reyes-

García, 2007), Genetic Selection of a Fuzzy Model (GSFM) (Rosales-Pérez et al., 2012) have 

demonstrated the ability to recognize cry patterns and make intelligent decisions based on the 

available training databases. It is worthwhile mentioning that it is sometimes not easy to 

collect a large number of samples to represent a general cry pattern. The failure to achieve 

the lowest possible error rate is the main drawback of having no acceptable cry database. For 

this reason, learning from a small, incomplete set of samples is of practical interest. 

 

Finite mixture models is a flexible and powerful probabilistic tool for modeling univariate 

and multivariate data to perform modeling and classification tasks (McLachlan et Peel, 

2004). In this article, we employ the Gaussian mixture model (GMM), which is a powerful 

model for representing almost any distribution. The Gaussian mixture model is 

computationally inexpensive and is based on a well-understood statistical model that can be 

viewed as a hybrid between a parametric and nonparametric density model. Moreover, there 

are many advantages that are claimed when using GMM as the likelihood function 

(Reynolds, Quatieri et Dunn, 2000). The expectation-maximization (EM) algorithm is a 

common method for maximum likelihood learning of finite GMMs; this approach has some 

advantages over other learning methods, such as a gradient-based approach (Xu et Jordan, 

1996). In our previous studies (Farsaie Alaie et Tadj, 2012; 2013), we have introduced a 

working prototype to train a GMM in an incremental and recursive manner; this method is 

called the adapted boosted mixture learning Method (BML). The proposed method trains 

finite mixture models by a pool of Gaussian components using an extracted Mel-frequency 
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Cepstral Coefficients (MFCCs) feature stream, which includes both static and dynamic 

features. Partial and global updating methods are used in model parameter estimation 

processes to speed up the learning process and converge to a more robust and reliable 

estimation of a new mixture component. The selected strategy to stop the adding process is a 

criterion-based approach called Bayesian Information Criterion (BIC). We have shown that 

the proposed method has better performance than the traditional EM-based re-estimation 

algorithm as a reference system for the classification of the infant cry. In a binary 

classification task, the system discriminated a test infant’s cry signal into one of two groups, 

namely, healthy and sick groups, based on MFCCs. 

 

In this paper, we describe the development and evaluation of a Gaussian Mixture Model-

Universal Background Model (GMM-UBM) system that is applied to an infant cry expiration 

and inspiration corpora for the enrolled health conditions. This newborn cry-based diagnostic 

system can be referred to as the GMM-UBM health-condition detection system. The 

remainder of this paper is organized as follows: In section 2, we present our cry database 

(CDB). Next, in section 3, the feature extraction procedure is explained. Section 4 presents 

our classification approach, and section 5 describes experiments and the results of each 

health-condition detector using our cry database. Finally, conclusions and future directions 

are presented in section 4.7. 

 

4.3 Recording procedure and cry data base 

The recordings were made in the neonatology departments of several hospitals in Canada and 

Lebanon. We performed the recording process by converting the analog cry signal to an 

uncompressed digital audio format that is suitable for storing an original recording in a wav 

file. Each infant’s cry was recorded by an Olympus hand-held digital 2-channel recorder at a 

sampling frequency of 44.1 kHz and a sample resolution of 16 bits, placed 10-30 cm away 

from the infant’s mouth. A neonatal intensive-care unit (NICU) is a special system of care for 

newborn infants who are sick or premature or generally need more medical attention due to 
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suffering from some congenital abnormalities. Occasionally, the cry recording process was 

performed with background noise or even with a constant noise from the care unit and from 

medical equipment that is connected to the infants who are in the NICU due to their 

prematurity or defects. Although the NICU should be a quiet environment for sleeping 

babies, in reality there is a large amount of unwanted noise from infusion pumps, monitors, 

ventilators, telephones and doors. Because we want to develop a system that does not need 

complex and advanced technology and, thus, can be used by poor mothers with newborn 

babies in low-income countries, soundproof rooms or units were not used to record the cry 

signal to obtain the best signal-to-noise ratio that could otherwise be achieved. Each recorded 

infant’s cry signal, even a healthy infant who is not completely clean, is manually segmented 

into 13 units or classes, which are defined and labeled in Table 4.1.  

 

Table 4.1 Different units available in the CDB 

Labels Definitions 

EXP Voiced expiration segment during a period of cry 

EXPN Unvoiced expiration segment during a period of cry 

INS Unvoiced inspiration segment during a period of cry 

INSV Voiced inspiration segment during a period of cry 

EXP2 Voiced expiration segment during a period of pseudo cry 

INS2 Voiced inspiration segment during a period of pseudo cry 

PSEUDOCRY     Any sound generated by the baby and it is not a cry 

Speech Sound of the nurse or parents talking around 

Background 

Kind of noise so low, it is characterized by a very low power-silence 

affected with little noise. 

Noisy Cry  Any sound heard with the cry e.g. machine's bip, water, diaper etc…. 

Noisy pseudo cry Any sound heard with the pseudo cry 

Noise 

 

Like the sound caused by the mic moved by someone, the diaper, a 

door sound, speech + background, speech + bip. 

BIP  sound of the medical instruments next the baby 
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The case subjects for this study were infants selected from 1 to 53 days old, comprising 

healthy and sick full-term babies. For each infant, there are three recording files, with the 

average duration of 90 seconds for each continuous file. Useful information such as the date 

of birth were recorded along with the following pertinent information: weight, gender, 

maturity, race, ethnicity, gestational age, known and detected diseases, APGAR result, date 

and time of each cry recording and the reason for the crying (such as pain, hunger, diaper 

change, birth cry, medical exam).   

 

We divided the available health conditions in our CDB into different categories listed in 

Table 4.2. The reason for the cry is not considered in the selected samples, in contrast to 

previous studies that used only the pain cry (Partanen et al., 1967).  

 

Table 4.2 List of health-conditions 

Categories Describtion 

Healthy infants Fullterm infants without any major disorder or sickness 

Heart problems Fullterm infants suffering from Tetralogy of Fallot, thrombus, 

complex cardio or congenital heart diseases. 

Neurological  Fullterm infants suffering from Sepsis or Meningitis. 

Respiratory distress Fullterm infants suffering from Respiratory distress or 

Asphyxia diseases. 

Blood abnormalities Fullterm infants suffering from Hyperbilirubinemia or 

Hypoglycemia diseases. 

Other Fullterm infants suffering from other abnormalities or physical 

problems which are not in priority order for our system.  

 

4.4 Feature extraction 

Usually, in human speech signals, there are low-level and high-level cues that can be used to 

recognize different speakers; these cues are related to the acoustic and semantic or linguistic 
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aspects of speech. The human auditory system uses different levels of information, in 

contrast to automatic systems, which depend still on low-level acoustic information.  

 

The major challenges of having a higher level of information derived from a cry signal are to 

find and extract some features in such a way that they convey distinctive information from 

the cry signal; this approach has been under study in recent years (Kheddache, 2014). In this 

article, MFCCs are selected to be extracted as features that represent the cry signals because 

they have good performance among various types of speech applications (Deller, Proakis et 

Hansen, 1993; Quatieri, 2002). Note that the same basic model of speech production (Deller, 

Proakis et Hansen, 1993) in adults is used to find these measurements. Thus far, it has been 

shown that they are also effective in classifying healthy and sick infants based on our 

primary results (Farsaie Alaie et Tadj, 2012). Moreover, we incorporate context information 

by adding dynamic features in the second step, but they are not necessarily the most 

informative features for the intended pathology classification task.  

 

4.4.1 Preprocessing stages 

To increase the accuracy and reliability of the MFCC feature extraction process, cry signals 

are pre-processed in 3 simple steps: 

 

1. Convert stereo channel to mono channel 

In the data collection step, because we have used a 2-channel recorder, we must average the 

channels first and then convert the signal into a single-channel signal using a mean value 

function.  

 

2. Pre-emphasization 

Similar to in a speech recognition system, we used a first-order high-pass FIR filter to pre-

emphasize the signal due to the high dynamic range of the digitized cry waveform, such as in 
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a speech waveform. The main reason for using this filter is to compensate the spectral effect 

of the glottal source by introducing a zero near ݖ = 1 (Deller, Proakis et Hansen, 1993). 

Therefore, the filter ( ) 1P z 1 0.97z−= − (Rabiner et Schafer, 1978; Young et al., 2006a) should be 

applied prior to deriving the features or characteristics that correspond to the vocal tract only. 

 

3. EXP/INSV detection 

Although a cry is defined as the expiratory phase of respiration with sound or phonation by 

the larynx, which contains the vocal cords or folds and the glottis (LaGasse, Neal et Lester, 

2005), here the input that is given to our cry-based diagnostic system (cry pathology 

classifier) represents a processed version of one or more voiced expiration (EXP) or 

inspiration (INSV) segments of cry utterances called feature vectors. Therefore, after 

segmentation and labeling, only the EXP and INSV segments of the cry signals are selected 

for the feature extraction procedures. The system has been built manually by trained experts 

so far, but we are working on automatic segmentation of recorded cry signals that can act 

instead of voice activation detection (VAD) in speech recognition systems.  

 

4.4.2 Static and dynamic MFCCs 

Briefly, the cry signals are pre-processed to be prepared for short-term processing, and then, 

the feature extraction procedure is applied, including MFCCs, delta and delta-delta 

coefficients. Generally, all of the conventional analysis techniques used in the signal 

processing application work with short-term frames of signals with non-stationary dynamics, 

such as human speech. Therefore, even in our case in point, it is our duty to select a 

reasonable portion of the cry signal in such a way that it does not change statistically. Frames 

are commonly 10-30 msec in duration, to be statistically stationary with a good tradeoff 

between the frequency and time resolutions in applications that use speech signals. In this 

article, feature extraction was performed by using two different frame durations, 10 and 30, 

with the same overlap percentage (30%) between two consecutive windows, to find a good 

tradeoff between the frequency and time resolution of the cry signals and to assess what 
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improvements it might have. After framing and prior to any frequency analysis, the hamming 

windowing has been applied to split the frames to reduce any discontinuities at the edges of 

the selected region. In human speech signals, there is not much information above 6.8 kHz. 

The cumulative power spectrum is used here to detect the upper cutoff frequency of the 

efficient frequency band of the cry signal, where the power almost stops to increase. The 

results of our experiments depicted in Figure 4.2 demonstrate that the cry signals of full-term 

healthy and sick infants have almost 94% and 98% of their energies below 4 kHz and 6.8 

kHz respectively. The results depicted in Figure 4.2 also indicate that the energies of the 

inspiration segments for sick infants tend to accumulate at a slower rate than the energies of 

the expiration segments, especially in cases of RDS disorders. Thus far, information up to a 4 

kHz bandwidth has been used, but we plan to conduct pioneering research on the 

aforementioned upper frequency band. 

 

a)  b)  

c)  d)  

Figure 4.2 Cumulative power spectrum of (a-c) EXP units, (b-d) INSV units 
for each health condition 
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In brief, the feature extraction phase for both the INSV and EXP segments can be performed 

in two stages:  

 

1. Reduce the dimensionality by Cepstral analysis and extract the first 12 MFCCs computed 

from 24 filter banks plus the energy feature.  

 

MFCCs are introduced by Mermelstein in (Davis et Mermelstein, 1980) as the DCT of the 

log-energy output of the triangular band pass filters. To extract the MFCCs, first the fast 

Fourier Transform (FFT) is performed to obtain the magnitude frequency of each windowed 

frame, and then, the MFCCs are calculated by converting the log Mel spectrum back to the 

time domain using the discrete cosine transform (DCT): 

 

௜ܥ  = ∑ ܵ௞cos[݅(݇ − భమ)ഏ಼]௄௞ୀଵ , ݅ = 1,2, … (4.1)  ܯ,

 

where K is number of subbands (filter banks) (which is 24 for our selected bandwidth 

(Reynolds, 1995a)), ܯ is the desired length of the cepstrum, and ܵ௞ represents the log-energy 

output of the ݇th triangular band pass filter. Figure 4.3 indicates all of the 3 pre-processing 

steps followed by the aforementioned MFCC extraction procedure in stages.  

 

 

Figure 4.3 Pre-processing and MFCC feature extraction steps 

 

2. Add dynamic features by taking the first and second derivatives of the obtained 13-static 

features, called the delta and delta-delta (acceleration) coefficients.  
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The first time derivation of the basic static parameters (referred to as delta coefficients) can 

be calculated over a limited window, as follows (Young et al., 2006a):  

 

௡ܦ  = ∑ ఏ(஼೙శഇି஼೙షഇ)౸ഇసభଶ∑ ఏమ౸ഇసభ   (4.2)

 

where ܦ is a delta coefficient at the discrete time ݊, and ܥ௜ shows the static parameters. 

Because the equation depends on both the past and future static parameters ܥ௡±ఏ, to avoid 

having a problem with the regression window at the beginning and end of the static 

parameters, usually replication of the first and last parameters is required. The same formula 

is applied to the calculated delta coefficients to compute the second derivation of the static 

parameters (referred to as the acceleration coefficients). After appending the delta and 

acceleration coefficients to the static MFCC parameters, the set of 39-length feature vectors 

extracted from each single windowed frame cry is denoted ݔ௧, where ݐ shows the sequence 

index. Therefore, a cry signal can be displayed by the sequence of feature vectors ݔ௧ running 

up to the end of the signal, with ܶ feature vectors ܺ = ,ଵݔ) … , ,௧ݔ . . . ,   .(்ݔ
 

4.5 Statistical modeling and descriptions 

There is a minor difference between detection and identification systems in a decision 

process, while both use the same base of information. It has been shown that identification 

occurs inside of a detection task in some sense anyway, and their performances change 

together in the same way (Thomas, 1985). We are seeking to introduce a cry-based 

identification system to classify the presented infant as having one of the specified health 

conditions, but in this paper, detection is measured by the ability of our classifier to 

distinguish between an infant with the specified health condition and an infant with the other 

conditions listed in Table 4.2 as preliminary stages. 
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4.5.1 Likelihood ratio detector 

In an ideal case and with well-defined models for all newborn infant pathologies and health 

conditions, the defined classification problem is similar to the canonical language recognition 

problem (Brummer, 2010) with the closed-set of specified languages. Similar to speaker 

identification systems that are intended for a 1:N match, the voice is compared against N 

speaker models (ߣଵ, ,ଶߣ … ,  .௜ represents the parameters of the ݅௧௛ speaker modelߣ ே), whereߣ

This system can be presented by a maximum likelihood classifier whose objective is to select 

the speaker model that has the maximum a posteriori probability (MAP) for the observation 

vector sequence ܺ = ,ଵݔ) … , ,௧ݔ . . . , -The decision can be presented by the minimum .(்ݔ

error Bayes’ rule, as follows: 

 

 Matched	Speaker Index = argmaxଵஸ௜ஸே (ܺ|௜ߣ)ݎܲ = argmaxଵஸ௜ஸே ௣(௑|ఒ೔)௉௥(ఒ೔)௣(௑)   (4.3)

 

You can also make an assumption on the prior probability of each speaker to simplify the 

approach. This assumption is called the assumption of equal prior probabilities of speakers, 

which results in making the decision formula as follows: 

 

 Matched	Speaker	Index = argmaxଵஸ୧ஸ୒ p(X|λ୧) = argmaxଵஸ୧ஸ୒∑ log p(x୲|λ୧)୘୲ୀଵ  (4.4)

 

In verification systems, the task is a 1:1 match, which is in marked contrast to the 

identification system. For example, in speaker verification systems, the objective is to 

determine if the observed input ܺ is from the hypothesized speaker (hypothesis ܪ଴) or not 

(hypothesis ܪଵ). The likelihood ratio detector has been accepted as a general approach in the 

speaker verification system (Reynolds, Quatieri et Dunn, 2000). Assume that ܪ଴ and ܪଵ 

hypotheses are represented by models ߣு௬௣ and ߣு௬௣തതതതതത, respectively; it calculates the ratio of 

the posterior probabilities of the two hypotheses: 
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(4.5) (ܺ|ு௬௣തതതതതതߣ)ݎܲ(ܺ|ு௬௣ߣ)ݎܲ 

 

Bayes’ rule provides a shortcut for calculating the likelihood ratio in the log domain by 

ignoring constants that result in the log-likelihood ratios of ܪ଴ and ܪଵ, as follows: 

 

(ܺ)߉  = log (ு௬௣ߣหܺ)݌ − log ݐ݌ு௬௣തതതതതത൯ܽܿܿ݁ߣ൫ܺห݌ ݐ݆ܿ݁݁ݎ⋚଴ܪ ଴ܪ θ (4.6)

 

where ߠ is a threshold that adjusts the trade-off between two types of error, false acceptance 

and false rejection. Although the claimed speaker has a well-defined model in such a system, 

the corresponding alternative models are ill-defined. This issue poses a challenge to create ߣு௬௣തതതതതത in such a way that presents the entire space of possible alternatives to the hypothesized 

speaker. In general, two main approaches have been described in (Reynolds, Quatieri et 

Dunn, 2000) to model ߣு௬௣തതതതതത. Because we used both techniques in our cry-based diagnostic 

pathology system, we describe both of them briefly below.  

 

1. Background Speaker Models 

 

In this approach, the set of speaker models excluding the hypothesized speaker have been 

selected and combined to model the alternative hypothesis. There has been a large amount of 

research into background speakers (Higgins, Bahler et Porter, 1991; Matsui et Furui, 1994; 

Reynolds, 1995b; Rosenberg et al., 1992). Given ܤ equally likely background speakers, 

which are represented by (ߣଵ, ,ଶߣ … ,  ஻), the log-likelihoods of the hypothesized speaker andߣ

alternative hypothesis (background speakers) are computed as (Reynolds, 1995b) 

 

 log (ு௬௣ߣหܺ)݌ = ଵ் ∑ log p(x୲หλୌ୷୮)୘୲ୀଵ   (4.7)
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The 1/ܶ factor is used to normalize the duration effect in the log-likelihood. Note that by 

ignoring the 1/ܶ factor, the likelihood of the background speakers can be observed as the 

joint probability density of the observation ܺ arising from one of the ܤ background speakers: 

 

 log (ு௬௣ߣหܺ)݌ = log(ଵ୆∑ p(X|λୠ)୆ୠୀଵ )  (4.8)

 

where ݌(ܺ|ߣ௕) is computed as in Equation 4.7. The main drawback of this approach is 

preparing a background speaker set for each hypothesized speaker, which can be a problem 

for applications that have a large number of hypotheses.  

 

2. Speaker-Independent Model 

 

This technique (Matsui et Furui, 1995; Reynolds, 1997) attempts to pool training samples 

from a large number of speakers, to represent the population of speakers by a single speaker-

independent model; this model is currently known as a universal background model (UBM). 

A Universal Background Model (UBM) is a world model that is used mostly in biometric 

verification systems to represent general feature characteristics (Reynolds, 2009). 

Specifically, the universal-background model-based GMM or GMM-UBM has a large 

amount of success in statistical modeling techniques for speaker recognition and language 

recognition systems (Reynolds, Quatieri et Dunn, 2000), and in contrast to previous 

approaches, a trained UBM can be used for all hypothesized speakers in the task.  

  

4.5.2 Gaussian mixture models 

The GMM modeling technique is simple but effective due to its remarkable ability to form 

smooth approximations from any arbitrarily shaped data distribution. It has been a success as 

a statistical model in different applications and systems, most notably in speaker recognition 

and speaker identification systems (Reynolds et Rose, 1995) due to its ability to model the 
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underlying data classes or distributions of acoustic observations from a speaker. The 

likelihood function of a GMM used for a D-dimensional feature vector, x, is a weighted sum 

of ܭ unimodal Gaussian components,  ௜݂(ݔ), each parameterized by a mean ܦ × 1 mean 

vector (ߤ௜) and a ܦ ×  as given by the equation ,(௜ߑ) covariance matrix ܦ

 

(௄ߣ|ݔ)ܨ  = ∑ ܿ௜ ௜݂(ݔ)௄௜ୀଵ = ∑ ܿ௜ࣨ(ߔ|ݔ௜)௄௜ୀଵ = ∑ ܿ௜ࣨ(ߤ|ݔ௜, ௜)௄௜ୀଵߑ   (4.9)

 

where ߣ௄ represents the GMM parameters and consists of ܭ components with the restriction 

that the mixture weights must satisfy the following two constraints:  ܿ௜ ≥ 0 for ݅ = 1,… ,  ܭ

and ∑ ܿ௜ = 1௄௜ୀଵ . The ݅௧௛ component can be written in the following notation: 

 

 ௜݂(ݔ) = (௜ߔ|ݔ)ࣨ = ,௜ߤ|ݔ)ࣨ   (௜ߑ
                                        = ଵ(ଶగ)ವమ|ఀ೔|భమ × ݌ݔ݁ ൬− ଵଶ ݔ) − ݔ)௜ିଵߑ௜)்௥ߤ −   ௜)൰ߤ

(4.10)

 

where ߔ௜ = ,௜ߤ)  ௥ represents the்ܣ ௜) are the parameters for the ݅௧௛ Gaussian density, andߑ

transpose of matrix A. Collectively, a GMM can be denoted by its parameters as ߣ௄ =(ܿ௜, ,௜ߔ ݅ = 1, . . ,  .(ܭ
 

4.5.3 System description 

The proposed diagnostic system is built around the likelihood ratio test for detection by using 

GMMs for likelihood functions and GMM-UBM models to derive speaker models from the 

related world models. In the related literature, the common method to derive speaker models 

is called Bayesian learning or the MAP estimation method (Duda et Hart, 1973; Gauvain et 

Chin-Hui, 1994; Reynolds, Quatieri et Dunn, 2000). In our NCDS, the UBM is a health-

independent GMM that is trained with cry samples from the available training CDB that 

contains full-term healthy and sick infants with specific diseases, to represent the general cry 

feature characteristics. Then, we employed the adapted BML method to adapt the UBM to a 
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target or specific class. We will show that this approach improves the performance of our 

classifier in comparison to our reference system, which uses Bayesian adaptation. 

 

The first part of our system acts as a verification system for healthy infants, while 

distinguishing between healthy infants and sick infants. The goal here is to determine 

whether the infant is healthy or not; in the case of unhealthy, the second part should act as an 

identification system because the cry signals of the sick infants are assumed to be from the 

predefined set of known sicknesses. The winner sickness best matches the test infant’s cry 

signal model in a known group of diseases. This sickness identification system involves only 

the aforementioned enrolled sicknesses and not all of the newborn illnesses. In the closed-set 

case, ( ଵܰ, ଶܰ, … , ௅ܰ) represents L different infant sicknesses, which have well-defined 

statistical models. In the second scenario, which is called the open-set, the same ( ଵܰ, ଶܰ, … , ௅ܰିଵ) are specified sicknesses, and ௅ܰ denotes any of the unseen out-of-set 

sicknesses. Therefore, we created a class called “others” or “none-of-the-above” in the target 

set of diseases. The state-of-the-art infant’s cry-based health care system has a hierarchical 

scheme that is composed of two subsystems that are both based on an acoustic approach. 

Individual scores for expiration-based and inspiration-based experts are fused together to 

exploit the complementary information that can be represented by our health care system 

defined over the features extracted from two different types of corpora.   

 

The crux of the design is how we fuse subsystems into a single effective system. Our cry-

based multi-class recognition system has a hierarchical scheme that is a treelike combination 

of individual classifiers in serial and parallel modes. We used the ability of the serial mode to 

narrow down the health condition of the infants to one of two possibilities, such as the 

biometric identification system introduced in (Hong et Jain, 1998). This approach means that 

in the first step, the two-class pattern recognizer should make the decision as to which 

proposition should be eliminated, healthy or sick infants. For healthy infants, the decision 

process should be stopped at this stage before using all of the remaining classifiers that can 

reduce the overall recognition time. Then, in the case of sick infants, two individual pattern 
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recognizers in a parallel mode of operation should arrive at a final decision on the 

pathological condition of the test infant. In case the accuracy of the final decision on the most 

likely disease was called into doubt, there is another class called others that corresponds to 

infants that do not have the considered diseases or those for which we need more recorded 

cry signals for more examination. 

 

The proposed detection system works in two phases, which are called training and runtime 

test. In the first phase, labeled cry corpora are analyzed and used to train the corresponding 

model. Each model should represent some health-dependent characteristics of the training 

data. In the test phase, the presented cry sample goes through the same process as in the 

training phase (the preprocessing and feature extraction steps), and then, for both the 

expiration and inspiration corpora of the sample, the log-likelihood ratio to the hypothesized 

model is calculated. In the decision stage of the system, we use different methods (SVM, 

PNN, and MLP) to fuse these scores to improve the performance of the classifier.  

 

4.5.4 Applying the GMM-UBM 

In this article, we defined and trained two GMM-UBMs for each corpora (EXP and INSV), 

based on the health conditions; the first one is a single health-independent background model 

trained to represent the distribution of the extracted cry features, regardless of what condition 

the infant might have (healthy or sick), and the second one is a pathology-independent 

background model that attempts to model cry features from all of the sicknesses that are 

available in our CDB. Because we focus our attention on full-term healthy and sick newborn 

infants that have specific diseases, we train the UBM to be used for the classification of 

healthy and sick infants using only corresponding data that are reflective of the expected 

alternative cry to be encountered during recognition. For example, in this case, it is known a 

priori that the cry signal belongs to a full-term infant, and thus, the full-term test infant will 

only be classified against full-term infant cries. This approach applies to both the gestational 

age of the infants and the types of diseases that are considered in our case.  
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For both the EXP and INSV models, the cry signals from subpopulations (healthy and sick 

infants with selected diseases) are pooled prior to training the UBM. We exploit a portion of 

each subpopulation within the available data in such a way that we create a balanced training 

database over the subclasses for each of the predefined UBMs (see Figure 4.4). This 

approach can help us to avoid obtaining the biased UBM toward the dominant subpopulation 

which is healthy infants in our CDB.  

 

 

Figure 4.4 Balanced data pooling approaches for two defined GMM-UBM 

 

Table 4.3 provides an overview of the number of recorded cry signals from newborns and the 

overall data duration within the original and balanced CDB. Note that unused training cry 

signals available in the CDB within the healthy and sick classes were employed to derive the 

hypothesized model by adaptation of the infant cry model. Similar to in speaker verification, 

there is no objective measure to determine the correct number of infants or the duration of the 

cry signal to train a UBM. It is worthwhile recalling that the procedure for the data collection 

is still in progress; thus, we used all of the data that was available at the time for training each 

model and, then, the incoming data for the test and evaluation process. 

 

Prior this work, we introduced the Adapted BML (Farsaie Alaie et Tadj, 2012) method to 

estimate mixture model parameters; this approach has better performance than the 

conventional EM-based re-estimation algorithm as a reference system for the GMM training 

step. The Adapted BML has several advantages over the mentioned reference system, but the 
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distinct advantage is that it estimates the optimum number of components by iteratively 

adding new components in the direction that largely increases the predefined objective 

function. There is no guarantee that increasing the number of components in a GMM trained 

by HTK provides better system accuracy (Dobrovic et al., 2012), although the EM algorithm 

(Dempster, Laird et Rubin, 1977) iteratively re-estimates the GMM parameters to 

monotonically increase the likelihood of the model for the vector of observations, in contrast 

to the adapted-BML, in which each new added component brings improvement in the 

predefined objective function. Despite this option, in the preliminary stages of our cry-based 

diagnostic system, the building or training phase of the defined GMM-UBMs has been 

performed based on the HTK (Hidden Markov Model Toolkit) software tool, which is an 

established tool of speech recognition systems based on hidden Markov models (Young et 

al., 2006a). In the training procedure, we substitute diagonal covariance matrices for the full 

covariance matrices due to its computational efficiency because a diagonal covariance GMM 

with order ܭ > 1 can model distributions of feature vectors with correlated elements. Then, 

in the next step, we used the adapted version of the parameter updating procedure described 

in (Farsaie Alaie et Tadj, 2012) to adapt UBM to create specific health condition models. 

 

4.5.5 BML adaptation of sub-models or health-dependent-infant cry model 

As mentioned earlier, there is a common technique called Bayesian adaptation (Duda et Hart, 

1973; Gauvain et Chin-Hui, 1994) for deriving the hypothesized speaker model from GMM-

UBM. Here, we introduce a new way of updating the GMM-UBM parameters based on the 

infant cry signals from related subclasses. In fact, a part of this adaptation technique was 

introduced earlier in (Farsaie Alaie et Tadj, 2012; Jun, Yu et Hui, 2011) as partial and global 

updating in Boosted mixture learning (BML) of GMM and HMM-based acoustic models. 

Specifically, we use the concept of boosting to refine the UBM parameters using the training 

cry signals of a specific health condition.  
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Table 4.3 Number and duration of the recorded cry signals that were available 
in the training CDB at the time 

Class Number of 
Infants 

Number of Cry Signals in 
Training CDB 

Overall length of 
training CDB 

   INSV EXP 

Healthy 
Infants 

58 142  12’4’’ 92’3’’ 

Sick Infants 25 66 3’53’’ 41’25’’ 

Heart  4 12  34’’ 5’4’’ 

Neurological  5 11  51’’ 8’2’’ 

Respiratory  10 27  1’08’’ 17’ 

Blood  3 9  36’’ 5’06’’ 

Others 3 7  43’’ 4’5’’ 

(a) Training cry database (CDB) 

Class Number of 
Infants 

Number of Cry Signals in 
balanced Training CDB 

Overall Length of 
balanced CDB 

   INSV EXP 

Healthy 
Infants 

39 53 2’40’’ 25’25’’ 

Sick Infants 22 54 3’03’’ 26’06’’ 

Heart  4 12 34’’ 5’40’’ 

Neurological  5 9 34’’ 5’30’’ 

Respiratory  7 17 35’’ 4’49’’ 

Blood  3 9 36’’ 5’06’’ 

Others 3 7 43’’ 4’50’’ 

(b) Training balanced cry database 

 

As mentioned earlier, we created the UBMs with a known number of mixtures, ܭ, with the 

model parameters  ߣ௄ = (ܿ௜, ,௜ߔ ݅ = 1, . . ,  using the HTK software tool. To adapt the ,(ܭ

UBM, the statistics and sample weights, ܹ(ݔ௧), of each subclass training data are calculated 

for each mixture, ௞݂, in the UBM. Then, they are used to refine the corresponding mixture 

parameters,	ߔ௞, and mixture weights,	ܿ௞, iteratively, while ܨ௄ିଵ are assumed to be constant. 
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By applying the EM algorithm to optimize the log-likelihood of the model for the vector of 

observations only with respect to the mixture component ௞݂, the iterative formula can be 

derived to adapt the model parameters. The adapted parameters,	ߣመ௄ = (ܿ̂௜, ,෡௜ߔ ݅ = 1, . . ,  ,(ܭ
can be estimated in the (݊ + 1)௧௛ equation as follows:  
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in which the UBM parameters are used as an initial point. The adaptation procedure is 

performed in such a way that mixtures with a high count of subclass training data concentrate 

more on these examples, and vice versa. In other words, due to the existence of ௞݂ in the 

numerator and ܨ௄ିଵ in the denominator of the weight samples equation, the observations that 

have lower probabilities by the ܨ௄ିଵ model are given larger weights than those that have 

higher probabilities.  It is worthwhile mentioning that the first part of the denominator can 

reduce the probability of the case in which ௞݂ is dominated by a few samples. Moreover, 

sample weights in the updating mixture weights formula act as a tuning parameter, which 

helps to rectify the mixture weights iteratively by determining the ability of each mixture 

component to model the subclass training samples.  

 

In comparison to the clear coupling method presented in Bayesian adaptation (Gauvain et 

Chin-Hui, 1994; Reynolds, Quatieri et Dunn, 2000), the BML adaptation can be observed as 

an indirect or hidden coupling between both the mixture weights and the parameters of the 
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adapted model and UBM. Note that in the Bayesian method, there are relevant factor and 

adaptation coefficients (Reynolds, Quatieri et Dunn, 2000) that control the balance between 

the old and new estimates.   

 

4.6 Evaluations and experiments 

4.6.1 Defining GMM-UBM and adaptation methods 

Specifically, we created two health-independent UBMs by training 875 and 92 mixture 

GMMs with pooled healthy and sick data, from the balanced database (see Table 4.3) for the 

EXP and INSV models, called ߣுூି௎஻ெିா௑௉ and ߣுூି௎஻ெିூேௌ௏, respectively. Then, two 

pathology-independent UBMs that included 443 and 51 mixture GMMs were trained by only 

sick data for the EXP and INSV models, calle ߣ௉ூି௎஻ெିா௑௉ and ߣ௉ூି௎஻ெିூேௌ௏, respectively. 

We selected the number of mixtures based on the created UBM in the 1999 NIST SRE, 

which is a combination of 1024 mixture GMMs from using one hour of speech per gender 

(Reynolds, Quatieri et Dunn, 2000). Healthy and sick or pathology models are derived from ߣுூି௎஻ெ  health-independent UBMs. Then, for each sickness that was available in CDB, the 

pathology-dependent model is trained from ߣ௉ூି௎஻ெ, where the remaining utterances or 

unused CDBs in training the GMM-UBMs have been exploited to adapt a corresponding 

dependent model via a different adaptation procedure, as follows: 

 

1. MAP or Bayesian adaptation that adapts only the mean vectors – This approach has the 

best performance among all of the combinations of parameter adaptations for a speaker 

verification system (Reynolds, Quatieri et Dunn, 2000). Moreover, it was mentioned that 

adapting the weights by MAP for known reasons degrades the overall performance. 

 

2. BML adaptation method for refining the mean and variance vectors.  
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3. Coupling old and BML adaptation estimates over the mean and variance vectors – We 

compute new statistics for the parameters based on the BML model estimates, and we use 

a single adaptation coefficient for both the mean and variance parameters ߙ௜ = ௡೔௡೔ା௥ with 

the relevant factor ݎ = 16 to control the balance, which is the same as in Bayesian 

adaptation.  

 

4. BML adaptation method for refining only the mean vectors.  

 

It is obvious that while adapting ߣ௉ூି௎஻ெ UBM to derive the GMM models for two 

pathological conditions namely heart and blood disease, we utilized the same training data as 

was used in HTK for training ߣ௉ூି௎஻ெ UBM, while for other diseases we used unseen data 

that remained in our CDB.   

 

4.6.2 Log-likelihood score computation 

We applied the idea of the HNORM score normalization method described in (Reynolds, 

1997) for the EXP and INSV cry units separately. In each health-condition detector, we used 

only non-hypothesized or non-target cry samples (imposter) to estimate the normalization 

parameters. Therefore, the non-target log-likelihood ratio score distributions have been 

rescaled to have a mean of zero and a standard deviation of one. Due to different lengths of 

extracted EXP/INSV segments from each recorded cry signal, more evidence might be 

needed to make a reliable decision for each test file, especially for the INSV cry type, which 

has a shorter duration than the EXP type. Therefore, each corpus was split into small cry 

units of approximately 3 seconds duration to investigate the effect of the EXP/INSV duration 

length in each recorded file. The results indicate that independent of the frame length, type of 

cry units (EXP/INSV), adaptation method and task of the detector, recorded files that have 

more 3 sec-length EXP/INSV cry units have more separable LLR scores (see Figure 4.5). In 

other words, the more information that is available (EXP/INSV length inside each file), the 
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more likely that the information leads to more a reliable decision and less uncertainty about 

the detected pathological condition. 

 

Earlier, we defined an approximately 3-second duration of an EXP/INSV segment as an 

EXP/INSV cry. In general, cry signals include more expiration cry segments than INSV cry 

segments, but the situation became worse because finding pure INSV segments was not 

likely in our noisy CDB. It is worthwhile mentioning that all of the test data (depicted in 

Table 4.4), except only one test sample, contains at least 1 EXP cry unit, in contrast to INSV 

cry units, for which Table 4.5 depicts a large reduction in the amount of test data from using 

a cry unit restriction.  

 

 

 

(a) (b) 

Figure 4.5 Mean of the LLR scores over INSV cry units inside the (a) healthy and 
(b) sick infants for the healthy infant verification system 
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Table 4.4 Number of infants and recorded cry signals available 
in the testing CDB at the time 

Class Number of Infants Number of Cry Signals in Testing CDB 
Healthy 
Infants 

42 (4 male) 89 (11 male) 

Sick Infants 40 101 
Heart  2 (2 male) 3 (3 male) 
Neurological  11 (6 male) 30 (18 male) 
Respiratory  18 (12 male) 49 (35 male) 
Blood  4 (4 male) 9 (9 male) 
Others 4 (2 male) 10 (4 male) 

 

Table 4.5 Number of cry samples that contain EXP/INSV-labeled segments 
and 3-sec cry units in our test CDB 

Number of cry samples in the test cry database 
Class 

T
ot

al
 # Samples with  

INSV-labeled segments 
# Samples with  

at least 1 INSV unit 

Healthy 
Infants 

89 86 66 

Sick Infants 101 93 62 
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a/b: a from b  1/3 29/30 45/49 9/9 9/10 1/3 22/30 24/49 7/9 8/10 

(a) Inspiratory cry segments 

Number of cry samples in the test cry database 

Class 

T
ot

al
 # Samples with  

EXP-labeled segments 
# Samples with  

at least 1 EXP unit 

Healthy 

Infants 

89 88 88 

Sick Infants 101 101 101 
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a/b: a from b  3/3 30/30 49/49 9/9 10/10 3/3 30/30 49/49 9/9 10/10

(b) Expiratory cry segments 
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4.6.3 Health-condition detection system 

In this section, we present the results of both healthy and sick (with specific diseases) infant 

detection.  

 

4.6.3.1 Healthy infant detector 

We present only the results of our healthy infant detector for a test database using both test 

EXP and INSV cry units with two different frame lengths (10 msec and 30 msec). Moreover, 

to describe the entire space of possible alternatives for the healthy class, two explained 

approaches, called background speaker modes (ߣு௬௣ = ,ଵߣ) ,ଶߣ … ,  ,஻)) and UBM (λ୙୆୑)ߣ
have been used to compute the LLR scores. Because some of the test data do not have 3-sec 

INSV cry units, to evaluate the detector based on the INSV models, we performed our 

experiments on two sets of test data (see Table 4.5): 1) containing INSV-labeled segments 

with any length and 2) containing at least one 3-sec INSV unit. On the other hand, almost all 

of the data from the test database contains pure EXP-labeled segments except for one sample, 

and thus, there are 88 healthy and 101 sick samples with EXP cry units for the evaluation 

procedure. Here, we only present the results of data that contains 3-sec EXP/INSV cry units, 

which are more satisfactory, as expected. The miss (false negative) and false alarm (false 

positive) rates are, respectively, plotted on the x- and y-axis, which are scaled non-linearly 

(normal deviate scale) as detection error tradeoff (DET) curves (Martin et al., 1997). The 

DET plots that are depicted in Figure 4.6 and Figure 4.7 distinguish more clearly the 

performance of the systems that have different adaptation methods, frame lengths, cry unit 

types and representatives for the alternative health conditions.  

 



124 

(a) (b) 

 

(c) (d) 

Figure 4.6 DET curves for two alternative hypothesized models λ୔୍ି୙୆୑ (a-c) and λୌ୷୮ 

(b-d) and for INSV (a-b) and EXP (c-d) cry units with a 10 ms frame length in the healthy 
infant verification system 
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(a) (b) 

(c) (d) 

Figure 4.7 DET curves for two alternative hypothesized models λ୔୍ି୙୆୑ (a-c) and λୌ୷୮ 

(b-d) and for INSV (a-b) and EXP (c-d) cry units with the 30 msec frame length in the 
healthy infant verification system 
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All of the points on the DET curves have different ܴܣܨ(%) and ܴܲܨ(%), and in practice, 

the operating point (OP) should be selected based on the task of the system in which all of 

the application criteria are met. For example, in biometric security systems, the point must 

have a low FAR. Because finding the best suitable OP in such a diagnostic system is not our 

concern in this paper, the equal error rate (EER) points are plotted by individual circle-

shaped points on curves where (ݐ)ܴܣܨ = ,(ݐ)ܴܲܨ ݐ ∈ S, and S is the set of thresholds for 

calculating the OP distribution. Note that an exact EER point might not exist. Moreover, the 

optimal ROC operating points described in (Metz, 1978) are shown by the square-shaped 

points on the curves. The decision threshold is selected in a way that minimizes the average 

cost at this point. The slope of the ROC at this point is given by  

 

 S = C୊୔ − C୘୒C୊୒ − C୘୔ × P(+D)P(−D) (4.16)

 

where  C୊୔, C୘୒, C୊୒, C୘୔ are the costs, and ܲ(∓ܦ) is equal to the probability that a case 

from the database is an ∓ case. 

 

Here, our predefined costs for computing ܵ are as follows: 

 

ி௉ܥ  = ிேܥ = 0.5, ே்ܥ = ௉்ܥ = 0  (4.17)

 

The overall accuracy and error rates depend on the chosen operating point, which is not clear 

here. Therefore, to compare the systems fairly and independently of the cutpoint, the Area 

under the ROC curve (AUC) is used as a measure of the performance of the detector, while 

an ideal classifier has an AUC equal to 1. The value of EER (%) and AUC for the systems 

plotted in Figure 4.6 and Figure 4.7 are listed in Table 4.6. It is apparent that the experiments 

on the shorter frame length have better results in most of the cases and the EXP cry units 

have a more distinctive ability than the INSV cry units in classifying healthy and sick infants 

independent of the frame length, as we anticipated. Moreover, because in general each cry 

signal contains more EXP cry units than INSV cry units, the average LLR score computed 
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over EXP cry units is more reliable than the INSV units due to having a larger number of 

available EXP units in the samples. To show the impact of the number of cry units on the 

system performance, especially for the INSV type (the same as in Figure 4.5 except for the 

values), we apply a criterion to choose only test files that have at least 3 cry units to perform 

the classification. 

 

Almost all of the cry test samples with EXP-labeled segments have more than 3 units except 

for one healthy and two sick samples; therefore, the achieved results for the expiratory cry 

units are the same as the results in Table 4.6 again. However, this condition has a larger 

effect on the inspiratory segments of the recorded infants’ cry signals and reduces the number 

of test files that contain INSV segments that have any duration (86 healthy and 93 sick to 32 

healthy and 23 sick) cry samples. Independent of the frame length, adaptation method and 

background model, the results given in Table 4.7confirm that there are more INSV cry units 

inside a test file, with a higher chance at the end of the evaluation to diagnose it correctly.  

 

Among the four adaptation methods defined earlier, our reference system with the Bayesian 

or MAP adaptation method (method 1) has the lowest AUC, and the other specific methods, 

both 2-3, which use the BML adaptation estimates, have lower error-detection rates with a 

higher AUC. The system with the highest AUC for both the EXP and INSV cry units is the 

system that uses the ߣு௬௣ background model and the 2nd method of adaptation. Therefore, the 

minimum achieved equal error rates are 14.85% and 25.8% for the EXP and INSV cry units, 

respectively.  
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Table 4.6 Comparison of the different healthy infant detector systems based on the 
Equal error rate and Area under the curve for all of the test samples 

INSV 10 msec 30 msec 

 EER (%) AUC EER (%) AUC 

ۻ۰܃۶۷ିૃ ܘܡ۶ૃ ۻ۰܃۶۷ିૃ  ۻ۰܃۶۷ିૃ ܘܡ۶ૃ  ܘܡ۶ૃ ۻ۰܃۶۷ିૃ ܘܡ۶ૃ

'method1' 29.03 27.41 0.77 0.806 41.81 38.18 0.62 0.68 

'method2' 27.41 25.80 0.815 0.8350 36.36 30.90 0.69 0.77 

'method3' 27.41 25.80 0.811 0.8355 38.18 29.09 0.68 0.81 

'method4' 29.03 29.03 0.78 0.80 40 34.54 0.64 0.71 

 

EXP 10 msec 30 msec 

 EER (%) AUC EER (%) AUC 

ۻ۰܃۶۷ିૃ ܘܡ۶ૃ ۻ۰܃۶۷ିૃ  ۻ۰܃۶۷ିૃ ܘܡ۶ૃ  ܘܡ۶ૃ ۻ۰܃۶۷ିૃ ܘܡ۶ૃ

'method1' 27.72 15.8415 0.81 0.932 20.79 32.67 0.87 0.76 

'method2' 23.76 14.8514 0.84 0.951 19.80 27.72 0.89 0.825 

'method3' 24.75 15.8415 0.826 0.951 22.77 24.75 0.86 0.824 

'method4' 25.74 15.8415 0.827 0.932 18.81 30.69 0.89 0.77 

 

Table 4.7 Comparison of the different healthy infant detector systems based on the 
EER and AUC for the test samples that have more than 3 INSV units (32 and 23 cry 

samples of healthy and sick infants respectively) 

INSV 10 msec 30 msec 

 EER (%) AUC EER (%) AUC 

ۻ۰܃۶۷ିૃ ܘܡ۶ૃ ۻ۰܃۶۷ିૃ  ۻ۰܃۶۷ିૃ ܘܡ۶ૃ  ܘܡ۶ૃ ۻ۰܃۶۷ିૃ ܘܡ۶ૃ

'method1' 13.043 26.08 0.933 0.872 25 25 0.75 0.81 

'method2' 13.043 17.39 0.944 0.888 30 25 0.79 0.82 

'method3' 13.043 21.73 0.941 0.887 35 25 0.77 0.85 

'method4' 13.043 26.08 0.938 0.877 25 20 0.78 0.82 
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4.6.3.2 Sick infant detector with a specific disease 

A lack of data, especially in the training data for a specific illness, causes difficulty in 

training and adapting well-defined models, such as the INSV model type for infants who 

have blood disorders. Even at the evaluation time, there are not a sufficient number of test 

samples in all of the diseases (see Table 4.5). Thus far, we have only used our detector for 

sick infants who suffer from neurological and respiratory disorders.  In the interest of brevity, 

only the results for a shorter frame length and background speaker models ߣு௬௣ will be 

discussed.  

 

Recording sick infants’ cries that are available in the training CDB have been taken from a 

limited number of distinct infants, which are not the same as for the infants used in the test 

CDB. In total, 10 and 5 infants are used to train the respiratory and neurological disease 

models, respectively. In comparison to previous results in the healthy infant detector system, 

very low training errors plus test results for the unseen data depicted in Table 4.8 might be a 

sign of memorizing training data rather than learning.   

 

This finding is due to an apparent lack of enough distinct infants in each corresponding class, 

especially for neurological disease. It is important to understand that the data collection 

process, training and adapting procedures are time-consuming, but that also, in spite of them, 

further corresponding full-term sick infants (as with healthy infants) result in better 

generalization by training well-defined models. Even using cross-validation, which is a 

method for preventing overfitting, is not a quick-fix solution. Therefore, collecting new data 

to increase the size of the training CDB to rebuild a pathology-independent background 

model and sickness models is a practical solution to improving the performance.  

 

It has been shown in Table 4.8 that the methods that use BML adaptation, the 2nd, 3rd and 4th 

methods, have the highest AUC than our reference system with Bayesian adaptation. 
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Moreover, the respiratory sickness model has a better ability to verify sick infants due to 

having more distinct infants in its training phase. The ability of each cry type can be different 

based on the type of disease. Therefore, it is better to use both at the same time to make a 

final decision, to have more reliable detection.  

 

Table 4.8 Results of the sick infant detector systems for 
Respiratory and Neurological disorders 

Respiratory diseases 

 INSV-ૃ۶ܘܡ EXP-ૃ۶ܘܡ 

10 msec EER (%) AUC EER (%) AUC 

'method1' 28.94 0.80 34.61 0.75 

'method2' 23.68 0.82 32.69 0.74 

'method3' 26.31 0.81 36.53 0.73 

'method4' 21.05 0.84 30.76 0.77 

Neurological disorders 

10 msec EER (%) AUC EER (%) AUC 

'method1' 40 0.607 33.80 0.727 

'method2' 47.5 0.587 28.16 0.777 

'method3' 47.5 0.572 29.57 0.770 

'method4' 42.5 0.631 30.98 0.746 
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4.6.4 Fusion, calibration and decision 

A more sophisticated system can be developed by integrating the evidence presented by 

multiple sources of information, similar to in multimodal biometric systems. Such a 

multimodal system is expected to be more reliable in contrast to a unimodal system, which 

relies on the evidence of a single source. Here, fusion of the proposed two subsystems 

(expiratory and inspiratory cry unit-based GMM) is performed to improve the overall 

performance. Generally speaking, the strategy of fusion can be categorized into three levels, 

which are called the data or feature level, matching score level, and decision level (Blum et 

Liu, 2005). Although the feature set is richer in discriminative information than the matching 

score or the output decision of a classifier, fusion at the match score level is usually preferred 

because it is relatively easy to obtain and there is no need to worry about the feature 

compatibility at the score level or rigid fusion at the decision level (Ross et Jain, 2004).  

There are two different strategies for combining scores that are generated by multiple 

classifiers. In the first method, the final decision is made by a single scalar score that is a 

combination of individual scores (Ben-Yacoub, Abdeljaoued et Mayoraz, 1999; Dieckmann, 

Plankensteiner et Wagner, 1997). There are several techniques for addressing the 

combination problem; these techniques can be applied in different applications (Li, Han et 

Narayanan, 2013; Snelick et al., 2005). In the second approach, individual scores construct a 

feature vector to verify or classify two classes (Vatsa, Singh et Noore, 2007; Verlinde et 

Cholet, 1999). We took this approach to fuse the model scores that were obtained from the 

expiratory and inspiratory cry units of the test samples.  

 

As in multi-modal identity verification systems, we want to combine the output match scores 

of two experts using the same features and arising from a specific measure, such as MFCCs 

(static and dynamic) but also driven from different cry types. The normalized log-likelihood 

ratio scores obtained from two EXP and INSV cry unit-based subsystems are concatenated to 

construct a two-dimensional feature space. Then, we used three classification models, namely 

the multilayer perceptron (MLP) using the back-propagation algorithm, probabilistic neural 
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networks (PNN) and a support vector machine (SVM) (see Table 4.9). These classifiers were 

evaluated using test datasets (see Table 4.4) that included cry signals that contained clean 

EXP and INSV labeled segments.  

 

Table 4.9 Training parameters used in SVM, PNN and MLP 

PNN Number of neurons in layer 1 : 161 

First layer Transfer function : Radial basis transfer function 

Spread value: 0.1 

Number of neurons in layer 2 : 2 

Second layer Transfer function  : Competitive transfer function 

Performance function : mse 

Learning algorithm : Scaled conjugate gradient 

MLP Number of hidden layers : 1 

Hidden layer neurons : 10 

Hidden  activation function : Hyperbolic tangent sigmoid 

Output layer neurons : 2 

Output activation function :  Softmax (normalized exponential) 

Max number of iteration : 1000 

Performance function  : Crossentropy 

Learning algorithm : Scaled conjugate gradient 

SVM Number of iterations : 15000  

Kernel functions :  

1- linear  

2- Quadratic 

3- Polynomial (order 3)  

4- Gaussian RBF Kernel  

5- Multilayer perceptron Kernel with SMO method to find the 

separating hyperplane 
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4.6.5 Results and discussion 

To compare the generalizability of these three different algorithms and to find out the best 

algorithm for the available data, stratified K-fold cross-validation is used in which each fold 

has a roughly equal size and contains the same percentage of samples of each target class as 

in the whole dataset. Although 10-fold cross-validation is more common, in practice, usually 

the choice of the number of folds depends on the size of the dataset. Although there are 

different variants of cross-validated estimates (Refaeilzadeh, Tang et Liu, 2009), stratified 

10-fold cross-validation is recommended by Kohavi (Kohavi, 1995) as the best model. 

 

To obtain reliable performance estimation, multiple rounds of cross-validation are performed 

to test new and different random splits that result in smaller variance in the results and reduce 

the variability. Then, the validation results with three different values of ܭ, depicted in Table 

4.10, are averaged over the corresponding number of rounds.  

 

Table 4.10 Number of folds and rounds 

Value of K 3 5 10 

Number of Iterations 400 200 100 

 

The performances of the classifiers that use different adaptation methods are compared based 

on some widely used statistical measures, namely, the false positive rate, false negative rate, 

accuracy, sensitivity and specificity. These statistical measures can be calculated from the 

classifier’s results, as described in (Fawcett, 2006). The error of the classifier follows a 

binomial distribution with the following mean and standard deviation: 

 

௘௥௥௢௥ߤ  = ,௖௩݌ ௘௥௥௢௥ߪ = ට௣೎ೡ(ଵି௣೎ೡ)௡   
(4.18)
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where ݌௖௩ is the mean of ܭ errors, and n is the number of samples. We can approximate the 100(1 −  confidence interval for the error by the Wald confidence interval (Agresti et %(ߙ

Coull, 1998), as follows: 

 

௖௩݌  ∓ ఈݖ ଶ⁄ ௘௥௥௢௥  (4.19)ߪ

 

where ݖఉ is the 1 − β quantile of the standard normal distribution. In Table 4.5, the test 

dataset consists of 86 and 93 cry samples of healthy and sick infants whose recorded cry 

signals contain both EXP and INSV segments, which are used to detect healthy infants by 

fusing likelihood ratio scores obtained from expiratory and inspiratory cry units. In the first 

experiment, the dataset is tested by the aforementioned classifiers (listed in Table 4.9), which 

have different adaptation techniques that are used to train the subclass models, as described 

in previous sections. Figure 4.8 indicates both types of errors, the false positive rate (FPR or 

type I error) and the false negative rate (FNR or type II error), with an 80% confidence 

interval after applying stratified K-fold cross-validation for each classifier. Due to space 

limitations, we only plot the test errors over new observations (that were not used in the 

training phase of the K-fold cross-validation) and not training errors over the observations 

used in its training. For each method of adaptation (from methods 1-4), there is not much 

difference in the errors between the K-fold cross-validations with different values of folds. 

The Bayesian adaptation method (1st method), which is our reference method, has obviously 

higher errors than the other methods, especially the 2nd and 3rd methods. To obtain a better 

comparison between the performances of the adaptation methods, Table 4.11 depicts the 

average accuracy, sensitivity and specificity rates over all of the used classifiers for each 

adaptation method. Here, the accuracy rate indicates the proportion of true classified infants 

(both healthy and sick) among the total number of infants in the test dataset. The sensitivity 

measures the portion of healthy infants that are correctly identified, while the specificity 

measures the proportion of sick infants that are correctly verified. As is clear, the BML 

adaptation method for refining both the mean and variance vectors (2nd method) and the 

coupled BML adaptation estimations with old estimations (3rd method) are superior to the 
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others, and even the BML adaptation for refining only the mean vectors (4th  method)  

performs better than the Bayesian adaptation method (1st method).  

 

 
(a) Multilayer Perceptron Neural Network  

 
(b) Probabilistic Neural Network 

 
(c) SVM with Linear Kernel Fucntion 

 

Figure continued on next page 

 

 

1st Method 2nd Method 3rd Method 4th Method
0

5

10

15

20

25

MLP - 80% Confidence Interval for Estimated Error Using N Repeated K-Fold CV

E
st

im
at

ed
 E

rr
or

 (
%

)

 

 

(FNR) N=100, K=10
(FPR) N=100, K=10

(FNR) N=200, K=5

(FPR) N=200, K=5

(FNR) N=400, K=3
(FPR) N=400, K=3

1st Method 2nd Method 3rd Method 4th Method
0

5

10

15

20

25

30

PNN - 80% Confidence Interval for Estimated Error Using N Repeated K-Fold CV

E
st

im
at

ed
 E

rr
or

 (
%

)

 

 

(FNR) N=100, K=10
(FPR) N=100, K=10

(FNR) N=200, K=5

(FPR) N=200, K=5

(FNR) N=400, K=3
(FPR) N=400, K=3

1st Method 2nd Method 3rd Method 4th Method
0

5

10

15

20

25

30

SVM with Linear Kernel Function - 80% Confidence Interval for Estimated Error Using N Repeated K-Fold CV

E
st

im
at

ed
 E

rr
or

 (
%

)

 

 

(FNR) N=100, K=10
(FPR) N=100, K=10

(FNR) N=200, K=5

(FPR) N=200, K=5

(FNR) N=400, K=3
(FPR) N=400, K=3



136 

 
(d) SVM with Quadratic Kernel Fucntion 

 
(e) SVM with Polynomial Kernel Function order 3 

 
(f) SVM with Gaussian radial Basis Function Kernel 

 
(g) SVM with Multilayer Perceptron Kernel Function 

Figure 4.8 Type I and type II errors of the tested different healthy infant detector 
systems for each of the adaptation methods 
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Table 4.11 Average accuracy, sensitivity and specificity over the used 
classifiers in the healthy infant detection task 

 Method 1 Method 2 Method 3 Method 4 

Average Accuracy 85.21 89.13 89.76 85.98 

Average Sensitivity 88.07 89.85 90.73 88.64 

Average Specificity 82.53 88.37 88.41 82.74 

 

Classifiers provide different false negative and false positive rates, but as we expected from 

the fusion approach, even in the worst case of each classifier using the 2nd and 3rd adaptation 

methods, we obtained a smaller error rate than the lowest equal error rate of the model using 

EXP and INSV units separately, which are 14.85% and 25.8%, respectively. The type I 

error and type II error were decreased by using fusion, which reached 8.84% for the false 

negative rate and 11.49% for the false positive rate using SVM-MLP with the 3rd adaptation 

method. The system with a smaller false positive leads to more false negatives, and vice 

versa. In biometric systems, the system with an approximately equal false rejection rate and 

false acceptance rate is called a tuned system (Tipton et Krause, 2007), and the goal is to tune 

this system to obtain an equal error rate that is as low as possible. Among all of the used 

classifiers, based on the error rates and accuracy rates depicted in Figure 4.9 to Figure 4.10, 

MLP and SVM with the MLP kernel function perform better than the others by providing 

almost the same type I and II errors (close to the EER point).  

 

 

Figure 4.9 Type I and type II errors for the SVM with different kernel functions in 
the healthy infant detection task 
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Figure 4.10 Comparison of the accuracy rates of all of the classifiers in the 
healthy infant detection task 

 

Table 4.12 to Table 4.14 indicate in detail the accuracy rate, sensitivity and specificity of the 

classifiers respectively as statistical measures of the performance of the classification test. 
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MLP 85.03 89.95 91.68 84.99 

PNN 82.11 88.79 89.93 83.82 

SVM-Linear 83.12 87.67 89.33 84.82 

SVM-Quadratic 86.11 88.98 88.98 87.25 

SVM-Polynomial 86.99 89.82 89.27 87.08 

SVM-Gaussian 

RBF 

86.59 88.78 88.75 84.33 

SVM-MLP 86.57 89.85 90.41 86.60 

Average Accuracy 85.21 89.13 89.76 85.98 
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Table 4.13 Sensitivity rates for the used classifiers in the healthy infant 
detection task 

Classifier Method 1 Method 2 Method 3 Method 4 

MLP 84.86 90.83 93.05 91.11 

PNN 82.77 87.08 89.44 83.88 

SVM-Linear 89.58 89.44 91.80 90.55 

SVM-Quadratic 93.19 90.97 92.08 93.19 

SVM-Polynomial 85.69 90.27 90.27 88.19 

SVM-Gaussian 

RBF 

88.47 89.72 90.83 86.25 

SVM-MLP 91.94 90.69 90.69 87.36 

Average Sensitivity 88.07 89.85 90.73 88.64 

 

Table 4.14 Specificity rates for the used classifiers in the healthy infant 
detection task 

Classifier Method 1 Method 2 Method 3 Method 4

MLP 85 89 90.22 79.77 

PNN 81.66 90.22 90.22 83.77 

SVM-Linear 77.11 85.88 87 79.33 

SVM-Quadratic 79.55 87.11 86.11 81.66 

SVM-Polynomial 88 89.22 88.11 85.88 

SVM-Gaussian RBF 84.88 88.11 87 82.77 

SVM-MLP 81.55 89.11 90.22 86 

Average Specificity 82.53 88.37 88.41 82.74 

 

Earlier, we showed that using test samples with more INSV cry units can reduce the equal 

error rate down to 13% (see Table 4.6). Likewise, in the next experiment, we used only the 

cry samples that had more than 3 cry units of clean EXP and INSV-labeled segments (32 

healthy and 23 sick samples). Due to having a small resulting test dataset, 3-fold cross-



140 

validation is applied to evaluate the performance of the classifiers. We imposed this 

condition on existing samples in the test folds once and then on existing samples in both the 

training and test folds separately. The error reduction is clear by comparing the obtained 

results depicted in Figure 4.11a with individual results for each classifier on the entire set of 

test data depicted in Figure 4.8. For example, in the PNN classifier using the 3rd adaptation 

method, the type I error and type II error are decreased to 6.8% and 8.8%, respectively. In the 

second experiment by applying the aforementioned condition on the existing samples, we 

have a training problem due to a lack of data that resulted in a high type I error (see Figure 

4.11b ). 

 

 

(a) Trained over training folds with no condition over samples 

 

(b) Trained over training folds containing samples with more than 
3 EXP/INSV-labeled segments cry units 

Figure 4.11 Type I and type II errors of the classifiers used in the healthy infant detection 
task using 400 repeated 3-fold CVs for the test samples that contain more than 3 EXP and 

INSV-labeled cry units 

 

After the first step of our cry-based diagnostic system, if the test infant is identified as a sick 

infant who suffers from one of our available diseases in the CDB, we should test it again with 

a predefined sick infant detector system to identify the most probable sickness.  It is 

worthwhile mentioning that because of having a small number of infants and cry samples in 
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our CDB at this time, the GMMs were adapted from the corresponding pathology-

independent UBM for only infants who suffer from neurological problems and respiratory 

disorders. Likewise, the classifiers listed in Table 4.9 were used to fuse the likelihood ratio 

scores that were obtained from the expiratory and inspiratory cry units. For this purpose, all 

of the cry samples that were recorded from sick infants that have both expiratory and 

inspiratory segments, as depicted in Table 4.5, were used to test these two sick infant detector 

systems. The stratified K-fold cross-validation estimates the prediction error in each task to 

make an assessment of different adaptation methods.  

 

In the test dataset, we have 29 and 45 cry samples recorded from sick infants who suffer from 

neurological and respiratory disorders, respectively. For the first task, we had an imbalanced 

dataset (29 target and 64 non-target cry samples), and there are a few ways to address this 

problem; these approaches can be divided into data and algorithmic levels (Han, Wang et 

Mao, 2005). Because the dataset was small, the idea of under-sampling or data reduction 

techniques that remove only a majority of class samples is not an ideal solution. Another 

approach is to apply a higher misclassification cost to the minority class. This approach can 

balance out our imbalanced dataset, but here we assumed equal costs for the two types of 

error. Consequently, we simply increased the size of our minority class (target class) by 

duplicating the data. Although it was reported in (Kolcz, Chowdhury et Alspector, 2003) that 

usually duplicating samples in a dataset has a detrimental effect on the model and accuracy 

rate, many re-sampling methods (Han, Wang et Mao, 2005) have been proposed in data 

mining algorithms as a solution to imbalanced data sets. Here, simple random over-sampling 

has been performed to balance the data set through duplicating some random samples of the 

minority class. It was observed that smaller error rates resulted for the created balanced data 

set. Figure 4.12 indicates the type I and type II errors of the classifiers in the sick infant 

(those affected by neurological problems) detection task for the balanced data set. For the 

sake of brevity, we have illustrated only the error rates of the classifier using 100 repeated 

10-fold cross-validation in these two sick infant detection tasks.  As depicted in Figure 4.13, 

almost all of the classifiers in this task that were adapted by either the 2nd or 3rd methods have 

higher accuracy rates, except for PNN, which has low false negative and false positive error 
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rates (specifically, 26.4% and 24.6%, respectively) by the 4th adaptation method, in contrast 

to other adaptation methods.  

 

 
(a) SVM with different kernel functions  

 
(b) MLP, PNN and SVM with quadratic kernel function 

Figure 4.12 Type I and type II errors for the different classifiers in the sick infant (affected 
by neurological problems) detection task 

 

 

Figure 4.13 Comparison of the accuracy rates of all of the classifiers in the 
sick infant (affected by neurological problems) detection task 
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According to Table 4.15, it appears that the 3rd method is more focused on specificity, while 

the 4th method is more focused on sensitivity. In this case, the sensitivity and specificity 

contribute to the overall accuracy by having different weights, which is not ideal due to the 

equal cost assumption. Moreover, Table 4.15 indicates that the 2nd method has almost equal 

and the highest proportions of either actual healthy or sick infants that are correctly 

identified, among the adaptation methods.  

 

Table 4.15 Average accuracy, sensitivity and specificity over the used classifiers 
in the sick infant (affected by neurological problems) detection task 

Neurological Method 1 Method 2 Method 3 Method 4 

Average Accuracy 58.26 64.57 63.15 60.67 

Average Sensitivity 57.85 63.3 54.76 67.85 

Average Specificity 58.29 65.06 66.25 57.03 

 

Because the respiratory disorders class has more infants and also more cry samples than the 

neurological problems class, on average, the sick infant (affected by respiratory disorders) 

detection task performed slightly better, with a smaller generalization error than that for 

neurological disorders. The type I and type II errors of the classifiers are depicted in Figure 

4.14. It appears that adapting only the mean vectors by the BML method (the 4th method) 

has smaller error rates for all of the classifiers and the PNN classifier has more balanced error 

rates than the others (30.5% false negative, 25.4% false positive error rates). 

  

The statistical measures of the performance of the test are summarized in Table 4.16, which 

indicates that the 4th adaptation method is more accurate than the others (see Figure 4.15), 

while it is more focused on specificity (the same as the first method), in contrast to the other 

two methods, which are more focused on sensitivity. 
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(a) SVM with different kernel functions 

 

(b) MLP, PNN and SVM with MLP kernel function 

Figure 4.14 Type I and type II errors for the different classifiers in the sick infant (affected 
by respiratory disorders) detection task 

 

Table 4.16 Average accuracy, sensitivity and specificity over the used 
classifiers in the sick infant (affected by respiratory disorders) detection task 

RDS Method 1 Method 2 Method 3 Method 4 

Average Accuracy 65.22 67.68 68.18 69.59 

Average Sensitivity 68 61.85 61.71 74 

Average Specificity 62.85 73.50 74.50 65.71 
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Figure 4.15 Comparison of the accuracy rates of all of the classifiers in the 
sick infant (affected by respiratory disorders) detection task 

 

4.7 Conclusion and further discussion 

In this paper, we used the potential of newborn infant cry signals, which indicate the integrity 

of the central nervous system, to introduce a cry-based diagnostic system. The principal aim 

of the proposed system is to broaden the diagnostic system to address the most life-

threatening illnesses and defects that occur in newborn infants. We believe that by 

developing this system we will create new possibilities for infants who suffer from birth 

defects or undetectable diseases, to obtain the treatment faster and protect them from health 

threats. In contrast to previous studies on infant cry signals, which usually address binary 

classification tasks, a hierarchical scheme that consists of subsystems is proposed to narrow 

down the health condition of an infant to one of the possibilities that is considered in our 

experiments; most of these possibilities have not been previously studied. It is worthwhile 

mentioning that due to the motivation for developing such a system in low-income countries 

without complex and advanced technology, there is no constraint placed on the recording 

steps of the cry signals. The fact that our cry data set is not clean and noise-free could harm 

the analysis process and reduce the NCDS system performance. After the analysis of 

infant cry vocalizations and the segmentation of sounds in baby cry audio recordings, the 

dynamic MFCC features along with static MFCC features are selected and extracted for both 

the expiratory and inspiratory cry unit types to make a discriminative feature vector. 
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Here, in our infant health-condition verification/detection system, the UBM is an infant-

independent GMM that is trained with cry samples from our cry dataset based on the HTK 

(Hidden Markov Model Toolkit) software tool to represent the general acoustic 

characteristics of crying. Then, for healthy or sick infants with an enrolled disease, a unique 

cry-pattern has been trained by the adaptation procedure. In our previous papers (Farsaie 

Alaie et Tadj, 2012; 2013), we showed that the BML method, compared to other learning 

mixture models, has the great advantage of adding new mixture components in such a way 

that the greatest improvement is obtained in the predefined objective function. We used this 

idea to present a novel adapted BML process to derive subclass models from the GMM-

UBM. The Bayesian adaptation method is assumed here to be our reference system for the 

adaptation procedure. The paper compares the obtained results for Bayesian and three 

different variants of adapted BML methods on each classification task.  

 

Both expiratory and inspiratory cry unit types have their own ability to classify test infants 

for each task, and therefore, a score level fusion of the proposed two subsystems is 

performed to make a more reliable decision. In brief, the system for each model has two main 

sequential steps, which are called encoding and making a decision. In the encoding stage, we 

show how a cry signal represents itself in both the expiration and inspiration cry units within 

the GMM models by a set of extracted MFCC feature vectors and how to create log-

likelihood ratio scores. At the score level, the detection decision on each test infant’s cry is 

based on whether the set of feature vectors observed on the presented cry signal is more 

likely to have been produced by the hypothesized health-condition class or by the other 

available alternative classes. In the next step, the fusion of the obtained individual scores is 

performed to construct a new feature vector.  The efficiency of the various classifiers, such as 

SVM, MLP, and PNN, has been evaluated to compare the adaptation methods in each task.  

 

Two health-independent and pathology-independent GMMs were trained by pooling the 

corresponding training data in a balanced version of CDB together (39 healthy, 22 sick), and 

we used the remainder of the unseen infant recordings in CDB for adapting the subclass 
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models. Then, testing was performed on all of the unseen 42 healthy and 40 sick infants, to 

evaluate the accuracy of each model. The results indicated that independent of the type of the 

cry units (EXP/INSV), adaptation method and task of the detector, the experiments on a 

shorter frame length (10 msec) have lower equal error rates (EER) than the 30 msec frame 

length in most of the cases. Moreover, based on the obtained results, the Bayesian or MAP 

adaptation method (1st method) not only has a higher EER but also has a lower AUC than the 

other three variants of the adapted BML method. In the first task, which was designed to 

detect healthy infants from sick infants who suffer from specific diseases according to the 

optimal likelihood ratio test, 14.85% and 25.8% equal error rates were achieved for the EXP 

and INSV cry units, respectively. This finding indicates that there is a higher ability for 

expiratory sounds to distinguish healthy and sick full-term infants in contrast to a sick infant 

detector for respiratory disorders, while the trained model based on inspiratory sounds has a 

lower error rate than those based on expiratory sounds.  

 

Although the presence of noise in the database has caused a loss of some portion of the INSV 

and EXP sounds in the baby cry audio recordings, the fact that the duration of the expiratory 

sounds is usually larger than the inspiratory sounds in newborn infant cries makes the 

average LLR score computed over expiratory cry units a more reliable estimate of 

the true value than the inspiratory cry units. We have shown that the length of the expiratory 

or inspiratory sounds that are available in a test file has a direct effect on the classification 

performance. In other words, the more information that is available (the EXP/INSV length 

inside each file), the more likely it is to have a more reliable decision and less uncertainty 

about the detected pathological condition. Those infants whose sample cries do not contain 

sufficient evidence should be asked to provide more samples. We concluded from the results 

on the healthy infant and sick infant (with neurological and respiratory disorders) that the 

ability of each cry type can vary by the type of disease or the general health condition.  

 

Afterward, the obtained scores for each cry sample were used to construct a feature vector to 

combine expiratory and inspiratory cry-based individual scores. Several classifiers have been 
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employed to evaluate the performance of the methods of adapting healthy and pathological 

subclasses after the score level fusion. The error rates dropped from EER୉ଡ଼୔ = 14.85%	and	EER୍୒ୗ୚ = 25.8%	 in the healthy infant detector systems to an 

8.84% false negative rate and 11.49% false positive rate using SVM-MLP with a variant of 

the BML adaptation method. Likewise, the error rates in sick infant (with neurological and 

respiratory disorders) detector systems were decreased by using score level fusion, and they 

even reached a 26.4% false negative and 24.6% false positive error rate and a 30.5% false 

negative and 25.4% false positive error rate using the PNN classifier with a variant of the 

BML adaptation method (4th method) on each task, respectively. Overall, the 2nd and 3rd 

adaptation methods, which use both the mean and variance vectors of the BML adaptation 

estimates, have almost the highest accuracy, sensitivity and specificity among the adaptation 

methods. The poor performance of the disease models (especially for infants with 

neurological disorders)  in comparison to healthy or sick infant models is largely due to 

having a limited number of infants and also a lack of corresponding cry recordings. 

Consequently, the trained GMMs with corresponding cry samples were not defined as well as 

the healthy or sick models were when representing the general cry characteristics of the 

enrolled diseases.  
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CONCLUSION 

 

This thesis is conceived as a research work of MMS laboratory of Université du Québec, 

École de technologie supérieure under the direct supervision of Dr. Chakib Tadj. 

 

The ambitious goal – the non-invasive newborn cry-based diagnostic system – is design of an 

additional tool or health care system that can be trained to work as an indispensable assistant 

to help the pediatricians who have misgivings arrive at a decision. The system would be able 

to classify healthy and sick infants who suffer from different enrolled diseases or 

pathological conditions. If you break down this goal into smaller steps, in this thesis we 

reached a significant milestone one the way to the newborn cry-based diagnostic system. 

 

Most of the previous works on assessment of infant cry provide a binary classification of 

healthy infants from sick infants who suffer from a known (specific) disease such as deaf 

babies. Nonetheless, in this work the focus of attention in the domain is shifted into the open-

set multi-pathology recognition scenario. In other words, there is a class called “others” or 

“none-of-the-above” in the target set dedicated solely to the test sick infants who suffer from 

unseen out-of-set sicknesses that are not enrolled in the system yet. Therefore, an informed 

choice of pathological states and collecting of the infant cry data base were necessary and 

unavoidable which have been done in the neonatology departments of several hospitals in 

Canada and Lebanon. It is worth mentioning that due to the inspiration behind this research 

work, there was no constraint placed on the recording procedure of infant cry signals. 

 

Our work employed Gaussian Mixture Models (GMMs) as a flexible and powerful 

probabilistic tool for modeling multivariate stochastic feature vectors extracted from infant 

cry signals. Our basic goal in learning GMM is to estimate the unknown parameters of 

Gaussian mixture distributions that the extracted cry features are hypothetically come from. 

Adapted BML method was introduced in this work to learn growing GMM in an incremental 

and recursive manner. We have shown that not only the value of the log-likelihood for GMM 

trained with adapted BML method bears a close resemblance to that of GMM trained with 
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the traditional EM algorithm, but using this method has some benefits such as adding a new 

component to the direction that increase the predefined objective function the most, reducing 

sensitivity to initial parameters and estimating the optimum number of components based on 

incremental manner. 

 

In data preprocessing, including selection and extraction of pathologically-informed features, 

different frame lengths (10-30 mec) with the same overlap percentage between two 

consecutive windows were considered for short-term processing of infant cry signals. The 

well-known acoustic features of speech, the dynamic MFCC features along with static 

MFCC features, have been extracted from both manually segmented expiratory and 

inspiratory infant cry vocalizations separately in this study. The results indicated that 

independent of the type of the cry units, adaptation method and classification task, the 

experiments on a shorter frame length have lower error rates in most of the cases. 

 

We also brought the Gaussian Mixture Model - Universal Background Model (UBM) 

framework which is widely used in speaker recognition and verification domains, into 

newborn cry-based pathology recognition. Two health-independent and pathology-

independent GMM-UBMs with a large number of mixture components were trained from a 

large amount of cry uttered by lots of full-term healthy and sick infants to represent the 

general cry feature characteristics for each population. Due to limitation of training infant cry 

data from an enrolled pathological condition, a target pathology model is derived from 

adapting the parameters of UBM using the infants’ enrollment cries. A variant of boosted 

mixture learning (BML) method is employed in order to derive a unique cry-pattern for each 

enrolled disease from the GMM-UBM by adaptation of GMM parameters. We have shown 

how this boosting-based approach can also enhance maximum a-posterior (MAP) or 

Bayesian adaptation of the parameters of GMM-UBM. Note that the traditional EM 

algorithm and MAP adaptation method are assumed to be our reference systems in the GMM 

training process and adaptation of GMM in this work.  
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In our investigation into short-time power spectrum of cry signals, we found that more than 

94% of the energy in typical healthy and sick infant cry signals is stored within less than 4 

kHz of bandwidth. However, the results indicates that the energies of the inspiration cry 

vocalizations for sick infants tend to accumulate at a slower rate than the energies of the 

expiration segments, especially in cases of RDS disorders. Moreover, since in typical infant 

cry signals inspiration is much shorter than expiration and therefore the average likelihood 

ratio over expiration cry units is more reliable than inspiration cry units. As a result of above-

mentioned differences in the types of cry sounds, expiration–based models have more 

distinctive abilities than inspiration-based models in classifying healthy and sick infants 

independent of the frame length. 

 

The detection decision on each test infant’s cry is based on whether the set of feature vectors 

observed on the presented cry signal is more likely to have been produced by the 

hypothesized health-condition class or by the other available alternative classes. In the next 

step, individual scores for both types of cry sounds construct a new feature vector in order to 

make a score level fusion. The results of experiments confirm that this approach is able to 

provide valuable information that comes from the fusion of the proposed two independent 

subsystems to a more reliable decision making process. 

 

In fact, we have achieved what we have aimed for in our objective and accordingly have 

contributed in advancement of the algorithm for learning statistical Gaussian mixture models. 

Moreover, Maximum a-Posterior (MAP) adaptation of the parameters of the GMM-UBM is 

enhanced with the implementation of ideas used for boosted mixture learning method. In 

brief, the proposed diagnostic system depicted in Figure 4.16 is built around the likelihood 

ratio test by using GMMs for likelihood functions and GMM-UBM models to derive 

subclass models from the related UBM via the adapted-BML method instead of common 

Bayesian adaptation.  
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Figure 4.16 Introduced system overview 

 

Our work differ from previous works in the domain in the sense that while others usually 

deal with binary classification tasks between healthy and sick infant with only one specific 

disorder. In effect, the cry-based diagnostic system that we have designed along with all of 

its techniques has a hierarchical scheme that focus into multi-pathology classification 

problem via combination of individual classifiers. In addition, as it is clear this approach 

totally is compatible to be extended for more diseases and syndromes, providing enough 

corresponding infant cry data. Moreover, it is worthwhile mentioning that the chosen 

diseases have not been previously studied. 

 

Today, we are in the early stage of understanding how the cry features can distinguish 

between newborn infants with different pathologies. Although we have delivered 

the first major milestone in our final goal, but there are still a lot of work to do. However, this 

work was also the juncture at which the extracted (static and dynamic) MFCCs and adapted 
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boosted mixture learning method gathered around the Gaussian mixture models to help us to 

gradually get closer to our goal. Despite the main limitation of the current work stated in 

content which is small cry database corpus, in the 2nd and 3rd chapters we showed the ability 

of GMMs to create cry patterns for healthy and sick infants by using static MFCCs. 

Afterward, in the 4th chapter, some experiments that investigate the ability of both expiratory 

and inspiratory cry vocalizations separately were described. Moreover, due to lack of cry 

corpus for sick infants especially with some specific diseases, we tried to categorize diseases 

based on the grouping of symptoms and organs affected. Consequently, in each of five new 

categories we had more data to train Gaussian models. Procedure of collecting infant cry data 

base is still in progress but so far it is not enough to create a universal background model for 

infant cry signals due to small number of infants in each category. Consequently, 

we still have a long way to go and more research must be done to ensure that the system is 

practical and reliable.  





 

RECOMENDATIONS 

 

Some directions for future research related to current study are proposed in the following:  

Humans use several levels of information to recognize the reason behind the babies’ cry, but 

automatic systems are still dependent on the low-level acoustic information. The challenges 

in this area are to find, reliably extract, and effectively use these higher levels of information 

from the cry signal. It is likely that these higher levels of information will not provide good 

performance on their own and may need to be fused with more acoustic-based systems. 

Techniques to fuse and apply high-level information with low-level acoustic features need to 

be developed in a way that makes the feature classes work synergistically. 

 

Same as multi-modal identity verification systems, combination of the output score of 

different experts using different and independent cry feature characteristics such as MFCCs, 

MFDWC, fundamental frequency and formants can represent a remarkable achievement in 

the domain. We recommend testing the performance of the diagnostic system using a fuzzy 

classifier to classify and identify different pathological cries. This classifier uses fuzzy logic 

to model and classify the different cries. Fuzzy logic rule can be defined for each kind of 

pathology to describe the relationship between the features and pathological condition. The 

time-domain and frequency-domain pathological cries characterization presented in this work 

such as (hyper-phonic and dysphonic segments, the irregularity of fundamental frequency) 

might enhance the performance of the diagnostic system. We also recommend the merger of 

the two classifiers (GMM classifier and fuzzy).   

 

In human speech signals there is not much information above 6.8 kHz. It has been shown in 

this work that cry signals of full-term healthy and sick infants have more than 94% of their 

energies below 4 kHz. So far, information up to 4 kHz bandwidth of recorded infant cry 

signals has been used and therefore, the idea of band splitting and sub-band features on the 

upper frequency band might be worthwhile to try in order to make sure that there is no loss of 

information. 
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As we discussed it earlier, classification systems that integrate information at an early stage 

of processing are believed to be more effective than those systems which perform integration 

at a later stage. Considering this fact that the feature set contains richer information about the 

input data than matching score or the output decision of a matcher, any effort toward fusion 

at this level will be beneficial. However, fusion at this level is difficult to achieve in practice 

because different feature sets might not be compatible. In case of using different compatible 

characteristic features, multiple data streams could be used with tied-mixture systems as an 

alternative approach. 

 

There are other related research works in the domain where advancement is being sought. 

Among them would be: (a) Cross-entropy (CE) method - Inspired by the intuitive idea behind 

BML method that new component should focus more on difficult-to-classify samples in 

which they are prone to make mistakes by current model, the cross-entropy objective 

function seems to have great potential especially by adding a weighting term to the cross-

entropy objective function to boost the difficult samples. (b) Cost function - In order to make 

minimum-expected cost decision we need meaningful cost values for either false acceptance 

(FA) or false rejection (FR or miss) errors. In fact, costs result from combining several 

factors measured in different units: money, time or quality of life. However, a new definition 

of cost function is being sought in order to keep the efficiency of the classifier and at the 

same time reduce the risk of medical mistakes by individualized training program based on 

maternal issues such as birth weight and gestational age. (c)  Wavelet Transform-based 

Cepstral Coefficients (WTCC) and Gammatone Frequency Cepstral Coefficients (GFCC) – It 

would be worthwhile to substitute WTCC for DFT analysis with poor joint time-frequency 

resolution which doesn’t match perceptual hearing attributes. Moreover, the novel multi-

resolution time frequency feature called, GFCC, which are introduced based on an auditory 

periphery model by a Cepstral analysis are definitely worth investigating. 
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