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PHOTOCONDUCTIVE SWITCH 

 

Charles TRUDEAU 

 

ABSTRACT 

 

Graphene, a material made up from a single atomic layer of honeycomb structured sp2 
bonded carbon atoms, has been gaining interest in the last decade for its integration in 
optoelectronic devices in a wide range of fields. Many methods of graphene growth and 
deposition have been developed over the years. These methods range from high cost and high 
quality of deposited graphene  to low cost and low quality of deposited graphene, depending 
on the applications wanted. An overview and comparison of these methods is presented in 
this work.  More focus is placed on one such deposition method; the electrostatic deposition 
of graphene. This work aims to show the possibility to deposit micro graphene sheet arrays 
directly for the use in optoelectronic device active layers, such as bolometers and 
photoconductive switches. Improvements to the current technologies involving deposition of 
graphene using electrostatic forces have been investigated, more precisely, improvements to 
the control of the shape, size and position of the deposited graphene. These improvements are 
realised primarily via surface etching of the graphitic material used for deposition by pulsed 
UV Laser radiation. Etching of the graphitic material is performed to limit and therefore  
control the size of the deposited graphene. Patterning of the deposition substrate is also 
explored as a method of modifying local electric field strengths, moreover  the possibility of 
direct deposition of graphene onto pattern SiO2 substrate to create suspended membranes is 
explored. However, deposition of graphene onto un-patterned SiO2 substrate are the main 
deposition results presented in this work. The optoelectronic properties of the deposited 
graphene were studied. More precisely, the deposited graphene is shown to have a direct 
electrical response to incident light of multiple wavelengths, thus making it suitable for 
photoconductive switch devices. The calorimetric properties of the deposited graphene were 
also studied, these results, however, were less conclusive, casting doubt on the effectiveness 
of graphene as a bolometer active layer.  Improvements to the homogeneity of the cleaving 
process used in the electrostatic deposition of graphene  were performed and are shown to 
lead to large scale graphene depositions, previously only thought to be achievable with more 
costly methods of graphene growth.  A simple and accurate method of characterising the 
number of graphene layers present in the deposition is developed using the center of a single 
fitted gaussian curve on the 2D graphene Raman peak.   
 
 
 
 
Keywords: Bolometer, Electrostatic Deposition, Graphene, Optoelectronics, 
Photoconductive switch, Raman Spectroscopy  





 

 DÉPÔT ÉLECTROSTATIQUE DE GRAPHÈNE POUR L'INTÉGRATION DANS 

DES INTERRUPTEURS PHOTOCONDUCTEURS   

 

Charles TRUDEAU 

 

RÉSUMÉ 

 

Le graphène, un matériau constitué d'une seule couche atomique de carbone sp2 structurée en 
nid d'abeilles, attire beaucoup d'intérêt dans la dernière décennie pour son intégration dans 
des dispositifs optoélectroniques dans un large éventail de domaines. De nombreuses 
méthodes de croissance et dépôt de graphène ont été développés au fil des ans. Ces méthodes 
vont de coût élevé et de haute qualité du graphène déposé à des méthodes à faible coût et 
faible qualité du graphène déposé, selon les applications voulues. Une vue d'ensemble et une 
comparaison de ces méthodes est présentée dans ce travail. Un accent est mis sur un tel 
procédé de dépôt: le dépôt électrostatique de graphène. Ce travail vise à montrer la possibilité 
de déposer des matrices de feuille de graphène directement pour l'utilisation comme couches 
actives pour des dispositifs optoélectroniques tels que les interrupteurs photoconducteurs et 
les bolomètres. Des améliorations aux technologies actuelles impliquant le dépôt de graphène 
par force électrostatique sont présentées, plus précisément, sur le contrôle de la forme, la 
taille et la position de la déposition. Ces améliorations sur le contrôle du graphène déposé 
sont réalisées principalement par une gravure de la surface du matériau graphitique utilisé 
pour le dépôt par laser pulsé de rayonnement UV. La gravure du matériau graphitique est 
effectuée pour limiter et donc contrôler la taille du graphène déposé. Une gravure du substrat 
de déposition est également explorée comme un procédé de modification des intensités du 
champ électrique locale, outre la possibilité de dépôt direct du graphène sur un substrat de 
SiO2 engravé pour créer des membranes en suspension est exploré. Cependant, le dépôt de 
graphène sur un substrat de SiO2 non-modifié sont les principaux résultats de dépôt 
présentées dans ce travaille. Les propriétés optoélectroniques du graphène déposé ont été 
étudiés. Plus précisément,  le graphène  déposé a une réponse électrique directe à la lumière 
incidente de plusieurs longueurs d'onde, ce qui le rend convenable a l'utilisation pour des 
couches actives  d'interrupteur photoconducteur. Les propriétés colorimétriques du graphène 
déposé ont également été étudiés, ces résultats, cependant, étaient moins concluants, jetant un 
doute sur l'efficacité du graphène comme couche active de bolomètres.   Les améliorations 
apportées à l'homogénéité du processus de clivage utilisé dans le dépôt électrostatique du 
graphène  peuvent conduire  à des dépôts à grande échelle. Auparavant, les dépôts a grande 
échelle étaient uniquement réalisables avec des méthodes plus coûteuses de croissance de 
graphène. Un procédé simple et précis de la caractérisation du nombre de couches de 
graphène présents dans les dépôts a été mis au point. Cette méthode est réalisée à partir du 
centre d'une régression gaussienne  sur la pic Raman 2D du graphène. 
 
Mots-Clés: Bolomètre, Dépôt Électrostatique, Graphène, Interrupteur Photoconducteur, 
Optoélectronique, Spectroscopie Raman 
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INTRODUCTION 

 

 

Graphene, a material made up from a single atomic layer of honeycomb structured sp2 

bonded carbon atoms, has been gaining interest in the last decade since it was first separated 

from bulk graphite in 2004 (Hancock, 2011). The main interest from this material comes 

from its peculiar electronic properties as a zero bandgap semiconductor with a linear energy 

dispersion at the touching point of the conduction and valence bands. No other known 

materials exhibit such behaviours. Due to this unique dispersion relation, charge carriers 

within the graphene structure can be modelled as massless Dirac fermions (Hancock, 2011) 

(Bunch, 2008) (Sidorov et. al., 2007)  compared with massive carriers found in materials 

which follow parabolic energy dispersions. This massless carrier model gives rise to unique 

transport properties found in no other material. This is why Andre Geim and Konstantin 

Noveselov received the 2010 Nobel Prize in Physics for the discovery and the 

"groundbreaking experiments regarding the two-dimensional material graphene"(Novoselov, 

K.S. et. al.,2004). 

 

Graphene has been used and studied extensively in the last decade since it was first separated 

from bulk graphite by repeated cleaving of a graphite surface with household scotch tape 

(Geim, A.K., 2012). Since then, many research and development groups have been exploring 

the physical, optical and electric properties of single and few-layered graphene (Gilgueng et. 

al. 2009) (Gunasekaran & Kim, 2009) ( Beidaghi et. al. 2012). Some important phenomena 

observed by these groups, to name a few: the anomalous quantum Hall and Berry's phase 

effect (Fal'Ko, Vladimir I., 2008) high field degeneracy splitting (Zhang, Y. et. al., 2006), 

quantum confinement (Allen, M.T. et. al., 2012) and massless carrier transport properties 

(Chernozatonskii et. al., 2014) (Kliros, 2010). Many groups have also specialised in the 

production of graphene-like materials such as single-layered graphene, few-layered graphene 

and single- and multi-walled carbon-nanotubes (Guldi et. al. 2005) (Palser, 1999) (Kykamis 

et. al., 2005). As a result, there is now a multitude of methods of creating these materials. 

Some of these methods include the direct construction of graphene from gases (Pollard, 
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2011) and some deal with separating graphene from bulk graphitic materials (Sidorov, 2009), 

however all these methods have as an end goal to "deposit" graphene onto a substrate, these 

methods are therefore described as "graphene deposition methods". Many groups have also 

started to integrate graphene materials into functional devices such as photovoltaic devices 

(Kykamis et. al. 2002) (Camacho et. al., 2007) (Sgobba & Guldi, 2007), opto-electronic 

devices (Jianjun et. al., 2006), high frequency resonators (Van der Zande et. al., 2010), field 

effect transistors (Dharmendar et. al., 2011), etc.  

 

 

In this work , single and few-layered graphene is shown to be able to be separated from bulk 

graphitic material and  deposited via electrostatic forces. The size and position of the 

deposited graphene sheets is shown to be controllable to a certain degree and that these 

deposited sheets can be introduced as the active layer in optoelectronic devices. These 

graphene-based devices are shown to be sensitive to light sources and induce a measurable 

change in resistance. In chapter 1, a review of graphene properties and the theory behind 

these properties is put forward and explained. Also, an introduction to current optoelectronic 

device technologies, a theoretical review of these technologies and how graphene properties 

relate to these devices is included in this chapter. Chapter 2 deals with the many existing 

graphene deposition and characterisation methods, the reasoning behind the deposition 

method choice of this work and how it relates to optoelectronic device fabrication. Chapter 3 

includes a detailed look at the experimental methodology of the electrostatic deposition of 

graphene onto patterned and un-patterned SiO2 substrates that is used in this work. This 

chapter also includes the results of the deposition experiments. Chapter 4 takes the deposition 

results found in the previous chapter and gives analytic details on the characterisation process 

of the resulting deposited graphene. The characterisation of the number of gaphene layer 

deposited and of the optoelectronic properties of the deposited graphene is performed in this 

chapter.  

               



 

CHAPTER 1 
 
 

GRAPHENE FOR OPTOELECTRONIC DEVICES 

1.1 Graphene, wonder material? 

Recent advances in the field of graphene deposition have led way to more advances in our 

understanding of the properties of this novel material. This crystalline zero bandgap 

semiconductor with linear energy dispersion offers many peculiar electrical properties such 

as massless charge carriers that are unique to graphene. These unique properties have 

prompted researchers in fields such as material science to consider graphene as a wonder 

material with almost unlimited applications. In this work, one such application: the use of 

graphene as the active layer in photoconductive switches and bolometer devices will be 

explored. The optoelectronic  properties of these devices will be put to the test to help answer 

if graphene is really a wonder material. A theoretical review  of the phonon and energy 

dispersion properties, the electrical properties and the optical properties of graphene follows 

in this chapter.    

   

1.1.1 Electrical Properties and energy dispersion relations 

The peculiar electronic properties of graphene originate from its unique energy dispersion. In 

this part of the chapter, the energy dispersion of monolayered graphene and that of bi-layered 

graphene is studied and its effect on the electrical properties and phonon relations are 

explained. Figure 1.1 shows the 2 dimensional energy dispersion relations of graphene, a 

zero-bandgap semiconductor compared to a typical semiconductor (Hatsugai, 2010). In this 

figure, the linear energy dispersion relation of graphene near the Dirac point is easily 

identifiable compared to the parabolic nature of the energy dispersion in typical 

semiconductors. The touching of the valance and conduction bands of graphene,which gives 

rise to the "zero-bandgap" designation, is also clearly visible.  
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Figure 1.1 Energy dispersion of a) typical two-dimensional semiconductor and b) of zero-
bandgap graphene semiconductor  

Taken from Hatasugai (2010) 
 
The intrinsic properties of the energy dispersion relations of monolayered graphene have 

been shown to produce some unusual electrical properties. One such property, that has 

gained major interest in the recent years, is the linear energy dispersion relation of graphene. 

Such an energy dispersion relation gives rise to theoretically massless charged carriers and 

thus theoretically infinite carrier mobilities. From Newton's second law (assuming that 

acceleration is the rate of change in group velocity) and crystal momentum relations,  the  

mass of charged carriers can be calculated, this is shown in equations 1.1 to 1.5. Equation 1.1 

is Newton's second law, where F is the force vector, m∗ is the effective mass of the charged 

carrier and a is the acceleration of said carriers. In equation 1.2, the acceleration is assumed 

to be equal to the rate of change in group velocity ࢜ࢍ which is changed into reciprocal space, 

where ∇୩ is the del operator in reciprocal space and 	߱(࢑) is the angular frequency. In 

equation 1.3, Newton's second law is applied to a crystal, where ࢒ࢇ࢚࢙࢟࢘ࢉ࢖ is the crystal 

momentum. Equation 1.4 combines equations 1.2 and 1.3 to give an expression of the 

acceleration in terms of  E(k): the energy dispersion relation, ħ: the reduced Plank constant 
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and F: the force vector. Equation 1.5 combines equations 1.1 and 1.4 to give an expression 

for the effective mass in terms of   
பమ୉(୩)ப୩మ  ; the curvature of the energy dispersion relation.  

ࡲ  = ࢇ∗݉ (1.1)

ࢇ  = ݐ݀ࢍ࢜݀ = ݀(∇௞߱(࢑))݀ݐ = ∇௞ ൭݀ݐ࢑݀ ∇௞߱(࢑)൱ 
(1.2)

ࡲ  = ݐ݀࢒ࢇ࢚࢙࢟࢘ࢉ࢖݀ = ħ݀ݐ࢑݀  
(1.3)

ࢇ  = ∇௞ ቆܨħ ∇௞߱(࢑)ቇ = ቆ1ħ ߲ଶ߱(࢑)߲݇ଶ ቇࡲ = ቆ 1ħଶ ߲ଶ(࢑)ܧ߲݇ଶ ቇࡲ	(1.4) 

 ݉∗ = ħଶ ቈ߲ଶ(࢑)ܧ߲݇ଶ ቉ିଵ 

 

(1.5)

 

The curvature of a linear energy dispersion relation at the Dirac point is infinite and thus lead 

to an effective mass for the charged carriers of zero.   

 

In practice, charge carrier mobilities in graphene have been measured to reach up to 

15000cm2/Vs (Geim & Novoselov, 2007), this deviation from the theoretical value has been 

explained to be due to defects introduced in the non-perfect graphene formation process 

(Geim & Novoselov, 2007) and depends on the channel width and length of the device used 

for measurement.  

 

Another interesting property of the energy dispersion relation in graphene is the double 

resonance process in monolayered and bilayered graphene. (Mallard et. al., 2009) This 

double resonance process helps to explain the 2D graphene Raman peak and the splitting of 

this peak with increased number of layers. The 2D Raman peak (~2700cm-1) found in 

graphene is due to two phonons with opposite momentum in the highest optical branch near 

the K point. The double resonance process links the phonon wave vectors to the electronic 
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band structure. This process for monolayered graphene is illustrated in figure 1.2. The  

Raman scattering process involving four virtual transitions: laser excitation of an electron-

hole pair (vertical transition in figure 1.2), electron-phonon scattering with exchanged 

momentum q (horizontal transition in figure 1.2), electron-phonon scattering with negative 

exchanged momentum -q (horizontal transition in figure 1.2) and electron-hole 

recombination (vertical transition in figure 1.2). When the energy is conserved in these 

transitions, the double resonance conditions are met. The resulting 2D graphene Raman peak 

frequency is twice the  frequency of the scattering phonon.  

 

 

Figure 1.2 Monolayer graphene  double resonance phonon relations 
 

 
For bilayered graphene, the interactions of the graphene planes causes the π and π* bands to 

divide into four bands with a different splitting for electrons and holes (Zhenhua et. al., 2009) 

(Ferrari et. al., 2006), this is illustrated in figure 1.3.  The 4 main resulting processes involve 

phonons with momenta q1B, q1A, q2A, and q2B, as shown in figure 1.3. There exists some 

other processes such as the four corresponding processes for the holes, and those associated 

to the 2 less intense optical transitions (not shown), these  are associated to momenta almost 

identical to q1B, q1A, q2A, q2B and almost identical Raman shifts (Ferrari et. al., 2006). The 

main processes produce four different  2D  sub-peaks in the Raman spectrum of bilayer 
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graphene. Similarly, further splitting of the 2D Raman peak occur with increased number of 

graphene layers (Ferrari et. al., 2006) (Mallard et. al., 2009). The Raman spectrum 

fingerprints for single-layer, bilayer, and few-layer graphene reveal changes in the electronic 

structure and electron-phonon interactions. This splitting in the 2D Raman peak of graphene 

allows for fast, unambiguous and nondestructive identification of graphene layers which will 

be explored in more detail further in this work. 

 

 

Figure 1.3 Bi-layered graphene double resonance phonon relations 

 

Other non resonant phonon relation processes within the graphene lattice give rise to other 

Raman peaks (Mallard et. al., 2009), these are summarised in figure 1.4  and shown along 
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with the main graphene Raman spectrum features. The other main Raman features found for 

graphene are the D peak and the G peak found at ~1350 cm-1 and ~1590 cm-1 respectively. 

The G peak is associated with the doubly degenerate iTO and LO phonon mode and the D 

peak  is associated with a second-order process involving an iTO phonon and a defect within 

the graphene lattice.    

 

 

Figure 1.4 Main graphene Raman spectrum features and associated phonon relation processes 
Adapted from Mallard et. al. (2009) 

 

 

1.1.2 Optical Properties 

Optical properties of graphene-based materials offer the potential for multiple diverse 

applications in optoelectronics. For example, induced graphene bandgap photoluminescence 

has been explored as an alternative to fluorescent quantum dots (Bonaccorso et.al., 2010), or 

the optical limiting found in graphene-based materials has been used in passive manipulation 

of optical beams and as high intensity laser pulse protection (Liu et. al., 2009).  Following is 

a review of  the absorption, emission and non-linear optical properties of graphene.  

   

Graphene sheets exhibit very low optical absorption over a broad spectral range from the 

ultraviolet to the near-infrared. The optical transparency of graphene is very high, over 90% 
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from 300nm to 2500nm wavelength (Bonaccorso et.al., 2010).  Similarly to other carbon-

based materials, the π-plasmon absorption is the main factor in photon harvesting by 

graphene (Eberlein, et. al., 2008). Figures 1.5 and 1.6 show the wavelength dependent 

transmittance of single-layered graphene and the total visible transmittance of different 

number of graphene layers respectively. As can be seen from these figures a  ~2.3% to 4% of 

light absorbance per graphene layer is measured for a wide range of wavelengths. A small 

increase in absorbance to ~10% is seen at in the ultraviolet range of the spectrum at ~275nm.   

 

 

Figure 1.5 Transmittance for different transparent conductors: GTCFs39, 
single-walled carbon nanotubes (SWNTs), ITO, ZnO/Ag/ZnO and 

TiO2/Ag/TiO2 
Taken from Bonaccorso et. al. (2010) 
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Figure 1.6 Transmittance for an increasing 
number of graphene layers 

Taken from Bonaccorso et. al. (2010) 
 
 

Zero bangap pristine graphene offers no emission or luminescence mechanism apart from 

thermal blackbody radiation, only by introducing a bandgap can this be done. Chemical and 

physical treatments to pristine graphene can be employed to artificially introduce a bandgap 

in graphene by reducing the connectivity of the  π-electron network (Bonaccorso et. al., 

2010). Since the photoluminescence of such an altered connectivity of the π-electron network 

depends greatly upon the treatment applied (Bonaccorso et. al., 2010) and that no such 

treatment is performed in this work, the emission properties of altered graphene are not 

studied further. 

 

The non-linear optical properties of graphene and graphene-based materials are by far the 

most interesting. One of these effects is the optical-limiting effect previously reported in 

graphene (Liu et. al., 2009). Optical limiter exhibit linear transmittance at low light 

intensities and reduced transmittance at high intensities. Broadband (450-1064 nm) optical-

limiting properties have been observed in graphene sheets prepared from substoichiometric 

graphene-oxides (Dai et. al., 2015). However, this optical limiting has been related to the 

environment surrounding the graphene sheets rather than being an intrinsic property of the 
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absorbing domains in the sheets (Dai et. al., 2015). Figure 1.7  shows the optical-limiting 

effects of graphene-based materials (Liu et. al., 2009). 

 

 

Figure 1.7 Non-linear optical properties of graphene and other carbon based materials 
Taken from Liu et. al. (2009)  
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1.2 Bolometers 

Bolometers (sometimes called calorimeters) are devices which are able to measure the power 

of incident electromagnetic radiation via heating effects of a temperature-dependent 

conducting active layer. The word bolometer comes from the Greek words "bolometron" 

which translates roughly  to "measurer of thrown things". Applications of bolometers are 

seen in a wide variety of fields spanning from dark matter detection in astronomy and 

particle physics (Gildemeister, 2000) to thermal imaging used in military grade night vision 

(Wood, 1993) and medical devices (Gorecki et. al., 2004). Bolometers can be used to 

measure incident radiation of most frequencies, however they are mostly used in infrared to 

terahertz radiation due to their high comparative sensitivity at these wavelengths (Richards, 

1994). Outside of this range of frequencies there exists other devices which use different 

methods of detections that are more sensitive. In this part of the chapter, a review of the 

theory behind the method of light detection used in bolometers, the current bolometer 

technologies available and the proposed design of graphene based micro-bolometer devices 

is presented. 

       

1.2.1 A Theoretical Review Of Bolometers 

The following is a review of the principles of operation behind bolometer devices. Typically 

bolometer devices consist of an absorptive active layer connected to a thermal reservoir 

(Richards, 1994). Incident radiation comes into contact with the active layer of the bolometer 

which is then heated to temperatures above that of the thermal reservoir. This temperature 

change induces a change in resistivity in the temperature-dependent conducting active layer 

which can then be measured directly. Figure 1.8 shows a conceptual schematic of a 

bolometer device. 
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Figure 1.8 Conceptual schematic of a bolometer device. Active layer absorbs incident 
power P  and heats up, ΔTemp = P/G. The active layer is connected to a thermal 

reservoir through a thermal conductance G  

 

With the known temperature-dependent resistivity of the active bolometer layer, the thermal 

conductance and thermal impedance between the active layer and the thermal reservoir, the 

electrical responsivity of the device can be calculated with equation 1.6 

     

 ܵ௥ = ܫ ܴ݀݀ܶ ݀ܶ݀ܲ = (ܶ)ߙ ܩܸ − (ܶ)ߙ ଵܲ ൤ ܸܹ ൨ 
 

(1.6)



14 

Where S୰ = electrical responsivity, I = bias current, 
ୢୖୢ୘ = change in resistance with 

temperature, 
ୢ୘ୢ୔ = thermal impedance, α(T) = temperature coefficient of resistance, G = 

thermal conductance, Pଵ = constant power of light source, V = bias voltage. 

 

The response time or sampling frequency is an important property of any light sensitive 

devices, this is still true of bolometers. The response time of bolometer is based on the 

intrinsic thermal time constant which is equal to the ratio of the heat capacity of the active 

layer to the thermal conductance between it and the thermal reservoir. This is shown in 

equation 1.7. 

 ߬ = ܩܥ ሾିݏଵሿ 
 

(1.7)

 

Where  ߬ = intrinsic thermal time constant, C = heat capacity of active layer and G is the 

thermal conductance between the active layer and the thermal reservoir. 

 

1.2.2 Current Bolometer Technologies  

The first bolometer designs consisted generally of a metallic active layer operated at room 

temperature. These designs have evolved over time, the metallic active layer is now mainly 

replaced with semiconductors or superconductor absorptive materials and many devices are 

operated at cryogenic temperatures to improve their sensitivity and response time (Coron, 

1976). The active layers of most current bolometer technologies are more often than not 

suspended membranes, a thermal reservoir is thus created from the spaces surrounding the 

suspended membranes (Yoneoka et. al., 2011). 

 

Most of the current bolometer technologies use germanium-based materials, such as doped 

crystalline germanium and diamond-germanium composites, as their active layer (Draine et. 

al., 1976). Germanium-based materials generally offer good absorbance in the infrared part 
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of the spectrum, relatively high heat capacities and low thermal conductivity between it and 

the thermal reservoir. (Low, 1961) (Draine et. al., 1976)  

 

Recently, graphene is starting to gain interest as an active layer material in bolometers due to 

its particular electronic and transport properties (Hancock, 2011). Figure 1.9 shows the 

typical structure of a suspended microbolometer, this particular microbolometer's active layer 

is made up of two thin metal layers; an absorber and a thermistor. 

  

 

Figure 1.9 Microbolometer, suspended membrane made 
from two thin metal layers (absorber and thermistor)  

Taken from Yoneoka et. al. (2011) 
 

1.3 Photoconductive Switches 

Photoconductive switches are electrical switches which are based on the photoconductivity 

of an active  material. This active material's electrical conductance increases as a function of 

incident light, much like a bolometer but without relying on heating effects. Generally 

photoconductive switches  use semiconductors for the active layer, where light of energy 

greater than the semiconductor's bandgap is absorbed  and generates free charge carriers. 

Since graphene is a zero bandgap semiconductor, it follows that there is no lower limit on the 
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photon energy capable of creating free charged carriers. Thus photoconductive switches that 

use graphene as an active layer should be sensitive to the whole electromagnetic spectrum.  

 

1.3.1 A Theoretical Review Of Photoconductive Switches 

As stated before, photoconductive switches rely on the photoconductivity properties of a 

semiconductor material. Photoconductivity is an opto-electronic phenomenon in which a 

material becomes more electrically conductive as a result of electromagnetic radiation 

absorption. When electromagnetic radiation of energy greater than the bandgap of said 

semiconductor is absorbed, the energy is enough to excite valence electrons to the conduction 

band thus increasing the number of free charge carriers and the overall electrical conductance 

of said semiconductor. If a voltage bias and a load resistor are added in series with a 

photoconductive material, a drop in voltage across the  load resistor can be measured as an 

increase in current through the circuit is generated from the increase in electrical conductivity 

of the photoconductive material. A sketch of this basic photoconductive switch is presented 

in figure 1.10. 

 

 

Figure 1.10 Sketch of photoconductive switch circuit design 
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When photoconductive materials are subject to cycles of light illumination, the current 

passing through them can be measured directly, the "switching" behaviour becomes apparent. 

A sketch of a typical response to cycles of light illumination is shown in figure 1.11. From 

the incident light cycling response, the sampling frequency can be calculated from the 

measured response and relaxation time. This relation is shown in equation 1.8, where τ is the 

sampling frequency in hertz, ∆ݐଵ is the response time in seconds and ∆ݐଶ is the relaxation 

time also in seconds. 

 

 

Figure 1.11 Sketch of typical photoconductive response to incident light cycling 

 

 ߬ = ଵݐ∆1 + ଶݐ∆ ሾℎݖሿ 
 

(1.8)

 

1.3.2 Current Photoconductive Switch Technologies  

There exists different designs of photoconductive switches for different applications, all of 

these designs are generally of the metal-semiconductor-metal type. High voltage  

photoconductive switches are generally large devices, up to centimetres in length, with 
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electrical contacts on the end faces. For low power and high sampling frequencies, the 

devices are created with a small gap, a few microns in size, in a microstrip. For the highest 

sampling frequencies, sliding contact devices are created, where a point between the two 

parallel strips of a coplanar stripline is illuminated. These devices span a large range of 

applications, from generation of electrical terahertz pulses (Krokel et. al., 1989) (Smith et. 

al., 1989)  to high-speed photodetectors in optical fiber communications (Kotaki et. al., 1987) 

and ultra-fast analog-to-digital converters (Miller, 2001). Figure 1.12 shows a schematic 

diagram and the operation concept of photoconductive terahertz emitters conceived by C.W. 

Berry and his team in 2013. 

 

 

Figure 1.12 Schematic diagram and operation concept of photoconductive 
terahertz emitters  

Taken from Berry et. al. (2013) 
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1.4 Graphene Optoelectronic Device Design 

The aim of this work is to demonstrate  an optoelectronic device such as a bolometer or a 

photoconductive switch using directly deposited graphene sheets as the active layer. The 

design behind such a device is similar to current technologies, which includes a suspended 

membrane as the active layer a thermal reservoir and contacts. By patterning "hole" features 

into the deposition substrate, it is possible to create  thermal reservoirs which can then be 

covered by a deposited graphene sheet thus creating a suspended active layer membrane.  

Contacts can then be added and connected in a circuit with the other micro-devices in an 

array. Figure 1.13 illustrates the simple single photoconductive switch design, the choice of a 

base Si/SiO2 substrate comes from the availability and cost of such material but could be 

replaced by another material.  This design is somewhat rudimentary, however it offers a basic 

stepping stone to further works on graphene-based bolometers and/or photoconductive 

switch. Figure 1.14 shows the design of the micro-devices acting as pixels as part of the 

whole array. 
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Figure 1.13 Graphene bolometer/photoconductive switch design, showing active 
layer graphene sheet, thermal reservoir and contacts 

 

 

Figure 1.14 Graphene microbolometer/micro-photoconductive  
switch array design



 

CHAPTER 2 
 
 

LITERATURE REVIEW OF GRAPHENE DEPOSITION AND 
CHARACTERISATION METHODS  

2.1 Literature Review: Graphene Deposition 

Different methods of graphene deposition have been developed over time by researchers. 

These different methods of deposition each offer their advantages and drawbacks, some 

methods allow for deposition on any substrate while others only permit deposition  on 

electrical insulators or metallic surfaces. Another parameter that depends on the method of 

deposition chosen is  the amount of time needed for the deposition of graphene, this vary 

hugely from minutes to days. The cost of materials and apparatus needed for the deposition is 

another factor in choosing which method of deposition is ideal for certain projects. These 

methods also differ  with regards to the size of the deposition area of graphene and the 

precision at which it can be deposited. It is important to note that the precision at which 

graphene can be deposited refers to both the spatial precision of deposition and also the 

precision of the number of graphene layer deposited. In the first parts of this chapter, the 

three most popular methods of graphene deposition will be analysed in detail, their 

advantages and drawbacks will be evaluated, and possible improvements of the methods will 

be discussed. 

 

2.1.1 Chemical Vapour Deposition 

Chemical vapour deposition or CVD has become one of if not the most popular deposition 

method for graphene (Hancock, 2011) (Pollard, 2011). Although it is called a deposition 

method, in CVD the graphene is more grown then deposited. This method of deposition is 

perhaps the most precise method of deposition, although the most strenuous method as it 

takes the longest time and is possibly the most expensive method to deposit  graphene on a 

chosen substrate.  
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In this subsection, the CVD method of graphene deposition will be analysed in detail, a 

complete methodology of this deposition method will be explained, and conclusions will be 

drawn in relation to the project presented in this work. 

 

2.1.1.1 General Theory of CVD 

In the CVD process, carbon atoms are made to adhere to the surface of a metal substrate in a 

controlled environment (Pollard, 2011) (Obraztsov, 2009). Other carbon atoms then follow 

but are pushed to the sides of first atoms thus creating a one atom thick layer of carbon, this 

carbon layer is then crystallised into graphene by reducing the temperature of the controlled 

environment (Pollard, 2011)(Obraztsov, 2009). As the graphene grows from nucleation 

points in the lattice, eventually they will come into contact with the graphene grown from 

neighbouring nucleation points and thus will create boundaries between each region as their 

lattice orientation will inevitably differ (Pollard, 2011)(Yu, et. al., 2011). The growth of the 

graphene lattices will come to a stop when each region grown from nucleation points will be 

surrounded by the boundaries at which point they are called domains (Pollard, 2011)(Yu, et. 

al., 2011). The domain boundaries can be represented as defects in the complete graphene 

layer as the bond between the carbon atoms at such a boundary does not follow the Bravais 

lattice structure present in the bulk of the domains (Pollard, 2011)(Yu, et. al., 2011). 

 

These defects are of great importance on the quality of the final graphene layer since they act 

as barriers for charge transport (Yu, et. al., 2011) and thus negatively affect the electrical 

properties of the graphene which have been discussed sub-chapter 1.1.1 of this work. 

Therefore, it is important to try and minimize the number of boundaries and to maximize the 

size of the domains.         
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2.1.1.2 Methodology 

For CVD, a metal substrate such as copper is chosen as the deposition medium. Annealing 

the metal substrate is an important first step to increase the domain size of the deposited 

graphene. This is done by heating the metal in a furnace to around 1000°C under low vacuum 

(Pollard, 2011) (Obraztsov, 2009). For the deposition of the carbon atoms on the metal 

substrate, methane and hydrogen gases are flowed through the furnace while it is kept at the 

annealing temperature (Pollard, 2011) (Obraztsov, 2009). The hydrogen molecules catalyses 

a chemical reaction between the surface of the metal substrate and the methane molecules, 

resulting in the deposition of the carbon atom from the methane onto the surface of the 

substrate (Pollard, 2011). Due to this reaction with the surface of the substrate, the carbon 

atoms are deposited as a one atom thick layer on the surface (Pollard, 2011) (Yu, et. al., 

2011). The diagram in figure 2.1 illustrates the deposition of carbon atoms onto a copper 

substrate. The furnace is then cooled rapidly to crystallise the carbon atoms into a contiguous 

graphene layer (Pollard, 2011) (Obraztsov, 2009). This rapid cooling also decreases the 

density of nucleation points and thus minimizes the defects due to domain boundaries 

(Pollard, 2011) (Yu, et. al., 2011). If the furnace is cooled too slowly, the layer of carbon can 

also aggregate into graphite (Pollard, 2011).  
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Figure 2.1 Diagram showing CVD growth of graphene on copper substrate 

 

During the CVD process impurities can be introduced at many levels and can find their way 

into the final graphene layer. This introduction of impurities, be it from the substrate or the 

gases used in this method must be minimised or eliminated completely (Pollard, 2011) (Yu, 

et. al., 2011). Fortunately with experience, these impurities can be sufficiently minimised to 

create a graphene layer with a similar amount of impurities as exfoliated graphene flakes 

(Pollard, 2011).  The difference between the thermal expansion between the graphene and the 

metal substrate can cause the graphene to wrinkle as it cools and crystallises (Kazi, et al., 

2014). This effect can be minimised if proper annealing of the metal substrate is done (Kazi, 

et. al., 2014). Technically, this process of deposition can be used to create graphene sheets 

covering any sized substrate, however there are some limiting factors. One such factor is the 

size of furnaces available since the whole process needs to take place inside a furnace with a 

controlled environment (Pollard, 2011). Another limiting factor is the purity of the metal 

substrate used for the deposition since the metal needs to be perfectly smooth and devoid of 

defects to be able to create a single graphene sheet covering its entirety, these metal 

substrates can reach extremely high costs as their size increase.  

(http://www.sigmaaldrich.com//materials-science/material-science-

products.html?TablePage=108832768, visited August 2015) 
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2.1.1.3 Set-up and Materials 

A simplified set-up of the apparatus needed to perform CVD  is shown in figure 2.2. It 

includes a furnace and a quartz tube to provide the annealing for the metal substrate and the 

high temperatures needed for the process, a methane and a hydrogen gas line intake to the 

quartz tube to provide the gases needed for the deposition, an exhaust line to create the gas 

flow, a line to a vacuum pump to create the low vacuums needed for the metal substrate 

annealing and a crucible to hold the metal substrate inside the quartz tube and the furnace.  

 

 

Figure 2.2 Diagram of furnace set-up for CVD 

 

The flow rate of methane and hydrogen gas used in this method have an effect on the 

dynamics of the carbon deposition.  An increase in methane provides more carbon atoms to 

be deposited and increases the number of nucleation points while an increase in hydrogen 

promotes the reaction between the methane and the surface of the metal substrate (Pollard, 

2011).   
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Copper is only one of many metals that can be used as a deposition substrate, most transition 

metals can be used for such depositions. Other popular metals used in graphene CVD are 

cobalt and nickel (Pollard, 2011) (Kazi, et. al., 2014).  Impurities and roughness of the 

substrate surface causes increases in the number of nucleation points and thus increases the 

defects due to graphene domain boundaries ( Yu, et. al., 2011).        

 

2.1.1.4 Transfer Process 

Once the graphene is deposited on the metal substrate it can then be transferred to any other 

desired substrate, this transfer process can  be used to create suspended devices. Starting with 

the metal substrate covered on both sides with deposited graphene, one side is spin coated 

with an Anisole-PMMA  solution to create a protective layer. The graphene is then etched off 

the other side of the metal substrate generally using oxygen plasma. The metal substrate and 

deposited graphene are then placed, PMMA face up, on the surface of an etchant solution 

(depending on the metal substrate choice) such as Ferric-Chloride for copper. Once the metal 

substrate is etched completely, the membrane is then removed from the etchant solution and 

scooped into DI water multiple times to clean it. With the desired final substrate, the 

membrane is  scooped out of the DI water, the device is then left to dry. The Anisol-PMMA 

thin film is then removed by soaking the dried device into Dichloromethane until the thin 

film is completely removed. The device is then rinsed with acetone and IPA to clean it once 

more. If suspended devices are desired, care must be taken during the drying processes, 

critical point drying must be performed to get the device out of any liquid. Critical point 

drying must be performed to avoid any damage and movement that would occur to the 

suspended graphene from removing it from a liquid solution (Pollard, 2011) (van der Zande 

et. al., 2010). This typical transfer process from a copper foil substrate to a final desired 

substrate is summarized in Table 1 with illustrated steps in Figure 2.3. 
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Table 2.1 Transfer process of deposited graphene from a copper foil substrate to 
final desired final substrate 

Steps Information 

1 Copper with graphene deposited on both sides 

2 Anisole-PMMA spin coated on one side to form protective layer 

3 Etch graphene off PMMA-free side 

4 Place copper-graphene-PMMA sample onto copper etchant solution 

5 Let copper etch away completely 

6 Scoop membrane and rinse in DI water 

7 Scoop membrane out of DI water with desired final substrate 

8 Let desired substrate and membrane dry 

9 Remove PMMA with Dichloromethane solution 

10 Rinse and clean with Acetone and IPA 

Extra Critical point drying for suspended devices 

 

 

 

Figure 2.3 Schematic showing the steps in the transfer process of CVD graphene from a 
copper substrate to the desired substrate 
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2.1.1.5 Typical Results from CVD       

As described above, the CVD of graphene along with the transfer process makes the creation 

of suspended graphene devices possible. In the following part of the chapter typical devices 

that can be created with this method will be examined along with their quality. 

 

Figure 2.4 Suspended graphene resonators  
Taken from van der Zande, et. al. (2010) 

 

Figure 2.4 shows typical  SEM images of suspended graphene ribbons over etched trenches, 

these were made by CVD of graphene onto copper and then transferred using critical point 

drying onto a pre-patterned silicon oxide substrate (van der Zande, et. al., 2010) . From 

Figure 2.4a) it can be seen that the graphene ribbons suspended over the 2um trenches show 

some deformation such as ripples (~10nm in amplitude) and some buckling of the ribbon 

(~100nm in amplitude) due to tension, shear and/or compression. The amount of 

deformations in this device varies between neighbouring suspended ribbons which signify 

that the tension, shear and compression in the graphene is somewhat variable. This variation 

is likely due to transfer process and/or the variable conditions of the CVD graphene prior to 
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the transfer. Moreover, for the longer suspended graphene ribbons, shown in Figure 2.4b), 

some large tears can be seen to occur in a few of the ribbons at mechanically weak grain 

boundaries inside the crystal matrix. Similar ripples and buckling to the short suspended 

graphene ribbons was also reported for the larger ribbons. 

 

 

Figure 2.5 Optical microscope image of graphene on 
copper foil  

Taken from Pollard (2011) 
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Figure 2.6 SEM image of graphene domains on copper  
Taken from Pollard (2011) 

 

Figure 2.5 shows an optical image of CVD graphene on a copper substrate (Pollard, 2011). It 

can be observed that the graphene is almost invisible, this is due to the graphene only 

absorbing ~2-4% of light per layer (Bonaccorso, et. al., 2010) and hence can barely be seen 

with the naked eye.  Figure 2.6 shows an SEM image of the same CVD graphene on copper 

with a x10000 magnification to show the graphene domain boundaries (Pollar, 2011). The 

expected size of the graphene domains in CVD can vary extremely depending on many 

factors summarized in the sections above, these can range from less than a micron to a few 

hundred microns (Yu, et. al., 2011).  
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Figure 2.7 Microscope image of SiO2 wafer after graphene transfer  
Taken from Pollard (2011) 

 

Figure 2.7 shows a large CVD graphene membrane transferred onto a silicon oxide wafer 

(Pollard, 2011). Some complications occur when transferring such a large graphene 

membrane, as can be seen from the figure, the graphene membrane crumpled on itself in 

some places. This most likely occurred while removing the PMMA from the graphene 

membrane in dichloromethane.  

 

2.1.2 Micro-Mechanical Deposition 

Another method for creating graphene sheets and depositing them is the micro-mechanical 

deposition method (Jayasena, et. al., 2013) (Chun-hu, et. al., 2012). This method makes use 

of mechanical forces to separate graphene from a block of bulk HOPG, the sheets can then be 

manipulated using an AFM tip. Micro-mechanical deposition of graphene is not a popular 

method of deposition but still offers some advantages over other methods. The 

reproducibility of the quality, shape and size of the deposited graphene is one of the main 
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advantages (Chun-hu, et. al., 2012). However the manipulation of graphene once it has been 

deposited can be rather difficult and time consuming (Jayasena, et. al., 2013).     

 

2.1.2.1 Micro-Mechanical Deposition Theory 

The theory behind micro-mechanical deposition is straightforward, using mechanical forces 

to brake off single layers of  graphene from an HOPG block (Jayasena, et. al., 2013) (Chun-

hu et. al., 2012) (Xuekun et. al., 1999). One of these methods involves shaving off graphene 

sheets from the top of an HOPG block (Jayasena, et. al., 2013), as shown in figure 2.8. 

Another method involves using vibration forces between the HOPG block and the deposition 

substrate to remove the top layers of graphene from the HOPG block (Xuekun et. al., 1999), 

as shown in figure 2.9. The deposited graphene sheets can later be moved with care using an 

AFM tip (Xuekun et. al., 1999). 

 

 

Figure 2.8 Graphene shaving from HOPG block. 
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Figure 2.9 Depositing graphene using vibrations. 

 

 

2.1.2.2 Methodology 

This chapter will focus on micro-mechanical deposition of graphene from a patterned HOPG 

substrate. The first step is to pattern the HOPG substrate, this can be done using oxygen 

plasma (Pollar, 2011) (Xuekun, et. al., 1999). The HOPG is first cleaved using a razor blade 

to create ~1.5mm thick pieces of HOPG, a thin film of SiO2 is then deposited using plasma 

enhanced chemical deposition (Xuekun, et. al., 1999). The SiO2 layer is then patterned to 

create a negative mask for the patterning of the HOPG (Xuekun, et. al., 1999). Oxygen 

plasma is then used to etch the HOPG to create island on the surface of the cleaved pieces 

(Xuekun, et. al., 1999). The thin film of SiO2 is then removed with dilute HF (Xuekun, et. 

al., 1999). From here the islands can be manipulated directly with an AFM tip or deposited 

using mechanical vibrations onto the preferred substrate (Xuekun, et. al., 1999) (Chun-un, et. 

al., 2012), as shown in figure 2.9. Again, using an AFM tip the deposited graphene can then 

be manipulated to fabricate devices or structures (Xuekun, et. al., 1999). 
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2.1.2.3 Typical Results of Mirco-Mechanical Deposition 

For the aforementioned method, the size and shape of the deposited graphene is very 

constant, whereas the number of graphene layers deposited varies depending on the amount 

of vibration force that was applied during the deposition (Xuekun, et. al., 1999) . As shown 

in figure 2.10, the size and size of each etched HOPG island is constant and forms a uniform 

array. 

 

Figure 2.10 SEM image of the etched array of 
HOPG island 

Taken from Xuekun, et. al. (1999) 
 

The height of such islands can be controlled by controlling the parameters of the oxygen 

plasma etching (Xuekun, et. al., 1999). Figure 2.11 shows two different heights of HOPG 

island (b = 200nm & c = 9μm). The 200nm islands were found to be a good height for 

manipulation with an AFM tip (Xuekun, et. al., 1999). As can be seen from this image, the 

thicker islands have a larger base then tip size, this is due to  the oxygen plasma etching 

(Xuekun, et. al., 1999). 
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Figure 2.11 SEM image of HOPG islands of b) 200nm &  
c) 9μm in height  

Taken from Xuekun, et. al. (1999) 
 

Figure 2.12 shows the results of the deposition process for 6 μm thick island (Xuekun, et. al., 

1999). The size of each graphene sheet is rather constant, however some of the deposited 

graphene stayed in stacks (Figure 2.12a) while others were found to be fanned out into 

thinner sheets (Figure 2.12b) (Xuekun, et. al., 1999). Very thin layers of graphene up to 

single layers, where observed to be deposited in the fanned out depositions compared to the 

stacked depositions (Xuekun, et. al., 1999). The thinnest sheets of graphene deposited using 

this method were found in the more fanned out deposition which were observed to occur with 

increased "rubbing"  between the HOPG and the SiO2 (Xuekun, et. al., 1999).    

 

 

Figure 2.12 SEM image of deposited graphene sheets  
Taken from Xuekun, et. al. (1999) 
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Figure 2.13 AFM tapping mode image of deposited 
graphene sheet  

Taken from Xuekun, et. al. (1999) 
 

Figure 2.13 shows the height profile of one such deposited graphene sheet using AFM 

tapping mode. The graphene sheet deposited in this image is rather thick (up to ~100nm) thus 

is in the order of 100 atomic layers, with some of the layers folding back on themselves 

(Xuekun, et. al., 1999).  

 

2.1.3 Electrostatic Deposition 

The electrostatic deposition of graphene, much like the micro-mechanical deposition method, 

is another method of removing graphene from a bulk graphitic material to a desired substrate 

(Sidorov, et. al., 2007) (Sidorov, 2009). This method of deposition makes use of electrical 

charges and fields to separate the gaphene and deposit it directly on the wanted substrate 

(Sidorov, 2009).  This technique is not as popular as other techniques of graphene deposition 

since the size and quality of the deposited graphene is not as easily controllable as the other 

methods, especially the CVD method with better spatial selectivity (Sidorov, 2009) (Pollard 

2011). Although this method has some drawbacks it is not without advantages, the 

electrostatic deposition of graphene offers what is probably the cheapest and fastest way to 
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deposit graphene (Sidorov, 2009) (Geim, 2012). As an emerging technique, it also offers 

room for improving the technique to minimize any of the drawbacks associated with this 

method of deposition. 

  

2.1.3.1 Electrostatic Deposition Theory 

Electrostatic deposition of graphene uses electrical charges and fields to separate already 

loosened graphene from a bulk graphitic material such as HOPG (Sidorov, 2009). By 

applying a large electrical potential between two electrodes supporting a bulk graphitic 

material and an insulating deposition substrate, a large electrical field can be generated. The 

loose graphene sheets on the surface of the bulk graphitic material opposing the electrode 

becomes charged due to the applied electrical potential (Sidorov, et. al., 2007) (Sidorov, 

2009). By bringing the bulk graphitic material with the charged loose graphene sheets into 

contact with the insulating deposition substrate, the charged loose graphene sheets separate 

from the bulk graphitic material due to the increased electrical field applying a force greater 

than the force of adhesion between the bulk graphitic material and the loose graphene sheets 

(Sidorov, 2009). A sketch of the interaction between the loosened graphene sheets and the 

deposition substrate is illustrated in figure 2.14. The separated charged graphene sheets are 

attracted to the grounded electrode and then adhere to the insulating deposition substrate, and 

thus are deposited. This process is shown in figure 2.15. 
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Figure 2.14 Sketch of the interactions between the loosened graphene sheets and 
the deposition substrate 
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Figure 2.15 Electrostatic deposition of graphene from a bulk 
graphitic material to an insulating deposition substrate 

 

Some of the limiting factors of this method can be seen straight away, one such limiting 

factor is the fact that the deposition substrate needs to be insulated from the grounded 

electrode otherwise the electrical field will vanish when the bulk graphitic material is brought 

into contact with the  deposition substrate (Sidorov, 2009). If the wanted deposition substrate 
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is not an insulator, then an insulating material layer must be placed between the deposition 

substrate and the grounded electrode. This problem can also be counteracted by performing a 

first deposition onto an insulating material and then transferring the graphene onto the 

wanted final substrate much like for the CVD of graphene (Sidorov, 2009) (Pollard, 2011). 

 

Another problem that occurs is with the amount of loose graphene present on the surface of 

the bulk graphitic material. The manipulation of such a material will inevitably create some 

loose graphene sheets on the surface. However upon the first deposition, these loose sheets 

will be deposited and only bulk graphitic material will be left. Therefore a method of 

loosening graphene sheets from the bulk material is needed. Thankfully such methods exists, 

any cleaving of the bulk graphitic material will create loose graphene sheets on the cleaved 

surfaces. For example,  cleaving of a bulk graphitic material can be done with a razor blade 

or even with scotch tape (Sidorov, 2009) (Jayasena, et. al., 2013). 

 

Another problem that can occur during the electrostatic deposition of graphene is electrical 

shorting between the bulk graphitic material and the grounded electrode. The electrical field 

due to the large electrical potential can be strong enough to ionise the surrounding air and 

thus create a path for the charge to follow. By performing the deposition inside of a nitrogen 

atmosphere, any shorting or arcing of the electrical current can be avoided (Sidorov, 2009). 

 

Since the loosening process of the top graphene layer is somewhat unsystematic, the 

remaining adhesion forces between the loose graphene sheets and the bulk graphitic material 

can vary extremely (Sidorov, 2009) (Xuekun, et. al., 1999) (Jayasena, et. al., 2013). 

Therefore, a theoretical calculation of the electrical potential needed to deposit such sheets 

would be futile and an experimental approach is needed.      

 

2.1.3.2 Methodology and materials  

The electrostatic deposition of graphene can done from any bulk graphitic material, there are 

many such materials that can be used. Kish graphite and single crystal natural graphite are 
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materials that can be used for this deposition method (Sidorov, et. al., 2007) (Sidorov, 2009) 

(Geim, 2012). However, one bulk graphitic material stands out above the rest, highly 

oriented pyrolytic graphite or HOPG (Sidorov, 2009). HOPG is formed of compacted 

graphene layers with a common stacking axis but with a varying in-plane orientations 

(http://www.2spi.com/catalog/new/hopgsub.php, visited 5th June 2013). The common 

stacking axis of HOPG makes it the perfect material for electrostatic deposition, since it 

stabilises the loosening process of the top graphene layers and makes the deposition of a 

wanted number of layers more feasible and less of a random process (Sidorov, 2009). 

 

One side of the HOPG is cleaved to loosen the top graphene layers from the bulk, the 

"scotch-tape" method is preferred for its simplicity and repeatability (Sidorov, 2009). This 

method consists of applying a piece of household adhesive tape to one side of the HOPG. 

Any air pockets between the tape and the HOPG are removed by flattening the tape with 

plastic tweezers, creating a more uniform adhesion between the two. The tape is then peeled 

from one side effectively cleaving the HOPG by removing top graphene layers (Sidorov, 

2009). Even with the precautions taken, the cleaved graphene layers are removed 

inhomogeneously causing some of the remaining graphene on the HOPG to dislocate both 

vertically and laterally, thus creating the loose graphene sheets which are needed for the 

electrostatic deposition to work (Sidorov, 2009). Such cleaving needs to be done 

systematically before the deposition process. 

 

The other side of the HOPG is then attached to a small copper electrode, silver epoxy or 

another conducting adhesive is used. This electrode is connected to the positive terminal of a 

high voltage source. The second electrode which is connected to the ground terminal of the 

high voltage source and will host the deposition substrate. Therefore, it needs to be large 

enough to stage such a substrate,  a copper plate of dimensions larger than the deposition 

substrate is needed. An insulating layer is also needed to create a charge barrier between the 

grounded electrode and the deposition substrate (Sidorov, 2009). Mica sheets can be used as 

this insulating layer which also reduces the possibility of voltage breakdown between the two 

electrodes. The deposition substrate is then placed on top of the mica sheet. 
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The bulk graphitic material is then brought into contact with the deposition substrate for a 

couple of seconds while the electrical potential is applied. The loose graphene sheets on the 

surface are separated from the bulk graphitic material and deposited onto the deposition 

substrate (Sidorov, 2009). The electrical potential needed to deposit a wanted number of 

graphene layers vary depending on the deposition substrate, the size of the electrodes and the 

thickness of the insulating mica sheets (Sidorov, 2009). A potential of 1-10 kV is generally 

needed to deposit up to ~10 layers of graphene, with lower potentials depositing less layers 

(Sidorov, 2009). Potentials as low as 50V have been reported for single layered graphene on 

very thin substrates (~250nm) (Sidorov, 2009).          

 

2.1.3.3 Typical Results from Electrostatic Deposition 

Since electrostatic deposition of graphene relies heavily on the inhomogeneous loosening of 

top graphene layers from bulk graphitic material, it is expected that the resulting deposited 

graphene will also be inhomogeneous in size, number of layers deposited and in quality. 

Figures 2.16  and 2.17 show typical electrostatically deposited graphene with a deposition 

voltage of 5kV on SiO2 substrate (Sidorov, et. al., 2007).   
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Figure 2.16 Optical (a), SEM (b) and AFM (c) images of a graphene sheet produced by 
electrostatic transfer. A SEM image of the region depicted by the dashed box in (a) is shown 
in (b). The dashed box in (b) corresponds to the AFM image and the line scan shown in (c)  

Adapted from Sidorov et. al. (2007) 
 

 

Figure 2.17 Scanning tunnelling microscope images 
of (a) single (i) and double (ii) folded graphene  

Adapted from Sidorov, et. al. (2007) 
 

Figure 2.17 shows an optical, SEM and AFM images of the deposited graphene. It can be 

observed from these images that the deposited graphene varies in the number of layers, 

where some regions are single layered, others double and even triple layered graphene 

(Sidorov, et. al., 2007).  Figure 2.18 shows a scanning tunnelling microscope image. This 

image also shows the variation in the number of graphene layers deposited (Sidorov, et. al., 
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2007). It can also be observed in these two figures that the shape of the deposited graphene is 

rather irregular. The height profile in Figure 2.17c) shows some irregularities in the thickness 

of the graphene sheets, this can be linked to small tears or breaks within the graphene lattice 

due to the inhomogeneous cleaving process (Sidorov, et. al., 2007). 

 

2.1.4 Comparison of the different  methods of deposition 

In this chapter, three different methods of graphene deposition have been summarised, each 

with its own advantages and shortcomings. These points will be put into context and made 

evident in this section.  

 

Chemical vapour deposition is by far the best method of deposition if the quality of the final 

deposited graphene is the only criteria looked at. This method offers precise control of the 

number of layers of graphene deposited with a good control of the size of the graphene 

domains and thus the quality of the graphene. In CVD, the size of the final graphene sheets is  

controllable via oxygen plasma etching and the fabrication of devices and suspended devices 

is possible via a transfer process. This means that for now, CVD offers the best possible 

graphene for the fabrication of devices. The drawbacks of CVD are not in terms of the final 

graphene product but in terms of the time and equipment needed to perform these deposition. 

CVD is the most time consuming of the three methods of deposition, even more so if the 

transfer process is needed to fabricate devices. This means that CVD is a great method for 

laboratory experiments but is not suitable for large scale industrial device fabrication.  

 

Micro-mechanical deposition on the other hand, offers a mid quality but somewhat 

homogeneous final deposited graphene. The size of the deposited graphene can also be  

controlled with etching of the HOPG before deposition. The major drawback with this 

method is the lack of control of the number of layers of graphene deposited. The fabrication 

of devices also requires the manipulation of the graphene after being deposited, this is 

another time consuming step that needs high precision and training. Therefore this method is 

also unsuitable for large scale industrial device fabrication. The vibration forces involved in 
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this deposition method make it unsuitable for direct deposition for most device fabrication as 

it would  possibly cause damage to the final devices. 

 

The short deposition time and the simplicity of the equipment needed for electrostatic 

deposition are the primary advantages of this method. However, the shape, size and number 

of layers deposited is not easily controlled currently with this method when compared to 

other methods. This means that device fabrication with deposited graphene via electrostatic 

forces is not yet up to par with other methods of deposition. Electrostatic deposition is one of 

the least studied methods of deposition for graphene presently and therefore could offer room 

for improvement to make it suitable for large scale industrial device fabrication.        

 

2.2 Literature Review: Graphene Characterisation 

The characterisation of graphene optoelectronic properties and graphene layer morphology 

are important to evaluate the quality of deposited graphene sheets for their use in any device 

architecture. Graphene layer characterisation methods have been developed since the first 

single layered graphene sheets were produced. In this chapter, four methods of graphene 

layer characterisation will be analyzed, these methods include; AFM thickness 

measurements, SEM characterisation, optical layer counting and Raman spectroscopy.  

Generally two or more of these methods are used simultaneously to give a more accurate 

characterisation of the number of layers. (Sidorov, 2009) (Hidefumi et. al., 2010) In this 

work, it is proposed to improve on one of these methods to develop a quick and accurate 

characterisation method for the number of graphene layers present in the deposited sheets. 

The optoelectronic, mainly the calorimetric properties of the deposited graphene  will also be 

evaluated. These properties are important to evaluate the response of optoelectronic devices 

based on the deposited graphene. 
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2.2.1 Methods of Layer Characterisation 

There are four main methods of graphene layer characterisation currently used in the world 

of graphene deposition. The first is the AFM (atomic force microscopy) measurements, to 

directly probe the thickness of the deposited graphene with atomic-level resolution. This 

method is time consuming and requires expensive instrumentation (Sidorov et. al., 2007). 

Another method is the SEM (scanning electron microscopy) image brightness measurements 

which differentiate the number of layers via charge accumulation on the surface of different 

number of graphene layers. This method is a very indirect and can be difficult to performed 

with an insulating deposition substrate such as SiO2 (Hidefumi et. al., 2010). Then there is 

optical characterisation, this is a very basic qualitative method of characterisation, it relies on 

counting the graphene layers with an optical microscope. This method uses the light 

absorption of graphene and relies on brightness differences similarly to the SEM 

characterisation method (Bonaccorso et. al., 2010). Finally there are Raman spectroscopy 

methods of layer characterisation. These methods rely on the direct probing of phonon 

energies within the graphene layers. One of these methods uses the graphene D/G peak 

intensity ratios which gives a relative estimate of the ratio between sp2 and sp3 carbon atoms 

which varies for different number of graphene layers. Another method uses the evolution of 

the 2D graphene peak, this method probes the double resonance phonon processes found for 

different number of graphene layers. Raman spectroscopy methods of layer identification can 

be very accurate but require pristine graphene and lose accuracy with defects within the 

graphene lattice (Sidorov, 2009)  

     

2.2.1.1 AFM Thickness Measurements 

AFM thickness measurements is a straight forward method of layer characterisation. The 

thickness of the deposited graphene is directly measured with an AFM. The measured step 

height between the graphene and deposition substrate can differ from the actual step height 

due to differences in Van der Walls force interaction of the AFM tip with the graphene and 

the deposition substrate. It should also be noted that the thickness of graphene layers can 
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change over time due to a relaxation of the sp3 bonds within the graphene and/or the 

introduction of moisture between the deposition substrate and the graphene (Sidorov et. al., 

2007). This effect can be seen in figure 2.18, this figure shows the height differences of 

deposited graphene measured 45 days apart. It can be seen from this figure that the height of 

the graphene for the dashed lines 1 and 3 do not vary much after 45 days, however, the height 

of the graphene for the dashed lines 2 and 4 almost doubles.  

 

 

Figure 2.18 Height differences of the graphene (a) 1 day after 
deposition and (b) 45 days later after leaving it in a laboratory 
environment. The AFM height profiles (1)–(4) correspond to 
dashed lines (1)–(4), respectively, in (a) and (b). In either (a) 

or (b) the nearly square sheet on the left is 5 monolayers thick, 
while the large sheet on the right is 7 layers thick  

Adapted from Sidorov et. al. (2007) 

 

The thickness of one graphene layer is evaluate at ~0.35nm which can relax to ~0.8nm with 

time (Sidorov et. al., 2007). This relaxation in the thickness of the graphene layers makes this 

method not reliable as a stand-alone graphene layer characterisation method.     
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2.2.1.2 SEM and Optical Characterisation 

SEM characterisation of graphene layers is a very popular method of characterisation as it 

offers another straightforward characterisation method with  better accuracy than that of the 

AFM thickness method (Sidorov et. al., 2007) (Hidefumi et. al., 2010), although it is a rather 

qualitative method of characterisation. SEM measurements result in contrast images in which 

the number of graphene layers can easily be identified. The contrast variations in the image 

are due to the conductivity differences and charge accumulation between the graphene and 

the  deposition substrate (McMullan, 1995). 

 

Optical characterisation using visible light (390 to 700nm) can be done in either transmission 

or reflection modes depending on the deposition substrate used (transparent substrate needed 

for transmission mode). The visible light absorbance for each layer of graphene is known to 

be ~2-4% (Bonaccorso et. al., 2010), this will result in contrasts images in which the number 

of graphene layers can be identified by the difference in light absorption. Figure 2.19 shows a 

comparison of the optical and SEM images showing the contrast differences for different 

number of graphene layers on different deposition substrate.   

 

Figure 2.19 Comparison of optical and SEM methods for determining the number of 
graphene layers on various substrates, (a) SiO2/Si, (b) mica, and (c) sapphire  

Taken from Hidefumi et. al. (2010) 
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As can be seen from this figure, identification of single layered graphene via optical 

characterisation is difficult since the contrast between a single layer of graphene and the 

deposition substrate is small. This difference in contrast is more visible with the SEM 

images, clearly showing the difference between the deposition substrate and any deposited 

graphene (Hidefumi et. al., 2010). This optical characterisation method is only accurate until 

~7 layers of graphene where it becomes more opaque. Whereas the SEM characterisation 

method is accurate for a much greater range of graphene layers.    

  

2.2.1.3 Raman Spectroscopy 

There exists a couple of graphene layer characterisation methods that use Raman 

spectroscopy. Raman spectroscopy uses a coherent light source to probe vibrational  modes 

within the substrate.  These methods include 2D  graphene Raman peak evolution and D/G 

graphene Raman peak ratio mapping (Ferrari et. al., 2006). These two methods offer different 

accuracies of graphene layer characterisation. The D/G Raman peak ratio mapping method is 

quite accurate for pristine graphene, however defects within the graphene lattice are known 

to affect the intensity of the D peak and hence the D/G peak intensity ratio (Ferrari et. al., 

2006) (Graf et. al., 2007). Figure 2.20d)  illustrates how the D/G ratio can be used to 

characterise the number of graphene layers, the integrated intensities of the D and G peaks 

are plotted with a dashed and solid line respectively. It can also be observed that this ratio 

changes abruptly at the edges of the layers of graphene.   
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Figure 2.20 a)SFM micrograph, b)FWHM of the D’ line, c)Raman 
mapping of the integrated intensity of the D line, d)integrated intensity of 
the G peak (solid line) and integrated intensity of the D line (dashed line), 
e) D peak for the edges (dashed for 2 to 1 layer, and solid for 1 to 0 layers) 

Adapted from Graf et. al. (2007) 

 

The peak evolution method seem to be more accurate for a broader range of variations in  

graphene lattice quality.  The 2D graphene Raman peak is known to split into multiple peaks 

for increasing number of graphene layers (Malard et. al., 2009). Figure 2.21 shows this 

splitting of the 2D peak with the resulting Raman spectra from one layer to 4 layers of 

graphene and for HOPG. It can be observed that the relative center of this peak shifts towards 

higher wavenumbers with increasing number of layers. It can also be noted that the width of 

the resulting peak increases with the number of layers. The 2D peak is also know to split in 
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single layered graphene when treated at high temperatures ( > 2200°C) (Mallard et. al.,2009), 

since such heat treatments are not performed in this work, this effect will not be further taken 

into account.   

 

 

Figure 2.21 2D graphene Raman peak evolution 
 Taken from Malard et. al. (2009) 

 

This characterisation method is effectively two methods, since both the center and the width 

of the resulting 2D graphene Raman peak can be used to characterise the number of graphene 

layers. This method will be used as the primary method of layer identification for this work 
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since it offers a good accuracy that does not depend on graphene lattice integrity (Mallard et. 

al., 2009).    

 

2.2.2 Optoelectronic Properties Characterisation 

The optoelectronic properties of deposited graphene is of interest if it is to be used as the 

active layer in optoelectronic devices. As seen in the first chapter, the calorimetric properties 

of  the active layer of a bolometer are proportional to the bolometer response. Another 

property that is investigated is the direct electrical response of the deposited graphene with an 

incident light source, which is of importance for both bolometers and photoconductive 

switches. 

 

 

Figure 2.22  I-V curves of Graphene sample recorded by the iterative laser 
switching on and off  

Taken from Gilgueng et. al. (2009) 
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Figure 2.23  I–V curves of Graphene Sample with and without 

532nm illuminations  
Adapted from Zhang et. al. (2013) 

 

Figures 2.22 & 2.23 show typical direct electrical response of graphene with an incident light 

source of 120mW (IR) (Gilgueng et. al., 2009)  and 5.57nW (visible light) (Zhang et. al., 

2013) respectively. The resistivity of the graphene decreases as the incident light source is 

switched on, demonstrating that graphene can be used as a photoconductive material for 

optoelectronic devices.   

 

Figure 2.24 shows the two point resistance measurements taken at room temperature and at 

100mK for multiple graphite samples, it can be observed that there is a wide range of 

resistance change between room and low temperature measurements and that the general 

trend is an increase in resistance at lower temperatures. It can also be noted that the samples 

with high room temperature resistances (> 10kΩ) increased in resistance to a much greater 

degree (Bunch, 2000). 
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Figure 2.24 A scatter plot of the ratio of the low (T ~ 100 mK) to room temperature 
2-point resistance versus the room temperature 2-point resistance for all the devices 

for which there is low temperature data. (inset) Schematic of the device layout  
Taken from Bunch (2000)



 

CHAPTER 3 
 

GRAPHENE PHOTOCONDUCTIVE SWITCH  FABRICATION USING 
ELECTROSTATIC DEPOSITION 

 

3.1 Methodology 

In this chapter, the electrostatic deposition of graphene will be explored in detail. This 

process will differ from the electrostatic deposition method as explained in the previous 

chapter. Improvements to the process have been introduced to better control the number of 

graphene layer deposited and to improve the control of the size and shape of the deposited 

graphene sheets.  

 

This approach combines the HOPG island etching process found in micro-mechanical 

deposition of graphene with the electrostatic deposition method and includes improvements 

to the cleaving process to achieve more homogeneous results  in terms of loosening the top 

graphene layer while also creating an upper boundary for the size of the depositions. By 

making the size of the etched HOPG islands smaller than the average deposition size 

normally reported for electrostatic deposition, the size of the deposited graphene sheets will 

be homogenized to this upper boundary. The HOPG islands also create smaller areas for the 

cleaving process, it is thought that a smaller cleaving surface will result in more 

homogenously loosened graphene layer since the chances of defects resulting in 

inhomogeneous cleaving within each surface is lower. 

  

Deposition substrate etching  has also been incorporated in this process. By etching features 

onto the deposition substrate, the strength of the electrical field during the deposition process 

can be changed locally. This can be used as another method of controlling the position of the 

graphene deposition. Etching features such as trenches or holes onto the deposition substrate 

can also be used to create suspended graphene devices.  



56 

3.1.1 Set-up and Materials 

A set-up similar to the one explained in the previous chapter was used. HOPG grade SPI-1 

and HOPG grade SPI-3 which exhibits mosaic angles of 0.4°±0.1° and 3.5°±1.5° with typical 

lateral grain size of 3nm and 30nm respectively were used as the bulk graphitic material, 

these HOPG samples were bought from SPI Supplies®. The HOPG sample was glued to the 

top electrode using silver epoxy. The top electrode is made of a 99% 0.5" copper rod, cut and 

polished to 3 cm in height. The top electrode was threaded to accommodate a 0.25" x 1" 

ThorLab cap screw which was connected to the positive terminal of the high voltage power 

supply. The top electrode with the cap screw was placed inside a custom made PVC holder 

and held by a x-y-z micro precision stage. The x-y-z micro precision stage was used to bring 

the HOPG into contact with the deposition substrate and to move the HOPG laterally to 

control the deposition location on the substrate. A piece of rigid foam of 2mm in height was 

attached to the bottom of the PVC holder to homogenize horizontal forces present on the 

HOPG during the contact with the deposition substrate. Figure 3.1 shows the set-up for the 

top electrode that was used for this project.  
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Figure 3.1 Image of the top electrode set-up for 
electrostatic deposition of graphene 

 

 The bottom electrode is made of a 4" diameter 99% copper puck of 3cm in height, it was 

also threaded to accommodate a 0.25" x 0.5" ThorLab cap screw which was connected to the 

ground terminal of the high voltage power supply. Three layers of 0.25mm mica sheets 

where glued to the top of the bottom electrode with Loctite® UV cured PVC bonding 

adhesive to create an insulating layer between the bottom electrode and the deposition 

substrate. The bottom electrode was attached to a levelling stage to ensure that the HOPG 

and the deposition substrate came into complete contact. Figure 3.2 shows the set-up used for 

the bottom electrode in this project. A Stanford Research Systems model PS375 +20kV 10W, 

was used as the high voltage power supply which was connected to the top and bottom 

electrodes with a high voltage cable. Figure 3.3 shows the complete set-up for electrostatic 

deposition of graphene that was used in this project, the high voltage power supply is shown 

in figure 3.4. The set-up was placed in a Labconco® Precise® Controlled Atmosphere glove 

box purged with nitrogen to stop arcing between the two electrodes. The glove box is shown 

in figure 3.5.  
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Figure 3.2 Image of bottom copper electrode set-up for 
electrostatic deposition of graphene 

 

 

Figure 3.3 Electrostatic deposition set-up 
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Figure 3.4 Face view of the Stanford Research System Model PS375 +20kV 10W 
used as the high voltage power supply for the electrostatic deposition of graphene 

 

 

Figure 3.5 Labconco® Precise® Controlled Atmosphere Glove Box 
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3.1.2 Electrostatic Deposition with HOPG  

3.1.2.1 Etching HOPG 

The pristine HOPG samples can be etched to create an array of  islands that set an upper 

boundary on the feature size of the deposited graphene sheets. A Samurai UV laser marking 

system from DPSS laser inc. was used to etch the pattern on the HOPG. Operating at 355nm 

with a spot size of ~25 μm, this marking system was found to be ideal for the precise etching 

of HOPG. The etching pattern was first drawn using WinLase® Professional. It was found 

that the electrostatic deposition of graphene sheets occurred more readily for smaller 

graphene sheet area. Therefore, a pattern of the smallest island was created. The smallest 

feasible sub-squares using the Samurai UV laser marking system where found to be in the 

order of 20x20 μm. Below this threshold, the islands where more pyramidal in shape,  

became more  fragile and broke easily during the cleaving process.  

 

The etching depth is another important parameter. The etching depth should be of the same 

order or smaller than the side length of a islands. If the etching depth is large compared to the 

side-length of the islands (~20 times), the pattern becomes very fragile and the islands are 

prone to damage. If the etching depth is small in general (<10 μm), then the repeated 

cleaving process before each deposition can remove whole island features. The etching depth 

of the Samurai UV laser marking system on the HOPG can be controlled using the number of 

passes the laser makes in a certain area. Figure 3.6 shows experimental data of the etching 

depth of the Samurai UV laser marking system in single line mode. The etching depth was 

measured using an Olympus LEXT confocal optical microscope.  
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Figure 3.6 HOPG etching depth of Samurai DPSS UV Laser Marking System 

 

Diminishing returns on the etching depth are seen as  the number of passes is increased. This 

is due to two phenomena, first as the laser etches deeper it starts to un-focus as the distance 

increases slightly. Then, graphite powder and dusts falls in the trenches etched thus making 

the following passes less effective as the laser etches the HOPG. An etching depth of 50-100 

μm depending on the island side-length was used for all following etchings. This depth was 

found to be shallow enough to leave the islands  strong enough to manipulate and clean the 

HOPG and for electrostatic deposition. An etching depth of 50-100 μm was also found to be 

deep enough to enable repeated HOPG cleavage and thus multiple (>20) depositions between 

etching processes.  

 

It was observed that the etching process leaves graphite dust inside the etched trenches. The 

HOPG must be cleaned of all residual dust before deposition otherwise the dust will be 

deposited alongside the graphene sheets. A gentle nitrogen flow over the etched HOPG 

sample is used to remove the excess dust without damaging the etched islands. Sonicating  

the HOPG in any solution to remove the excess graphite dust was found to result in damage 
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to the island features. For larger island features (>400x400 μm) it was found that sonicating 

the HOPG in distilled water  can be used to remove the graphite dust with minimal damage 

to the island features. 

 

3.1.2.2 SiO2 Substrate with Heat Sink Features 

The deposition substrate can also be etched to create features such as trenches or holes for 

suspended graphene devices. These features will change the homogeneity of the strength of 

the electrical field around them, this can be used to control the position of the deposition of 

the graphene sheets (Sidorov, 2009).  These features were etched using the same Samurai UV 

laser marking system from DPSS laser inc. The smallest etching features possible for the 

trenches and holes are of the order of the laser spot size (~25μm). Similarly to the HOPG 

etching process, the etching depth can be controlled with the number of passes. The etching 

depth was also found to vary extremely with the size of the etched features, with smaller 

features equating to shallower etched features for the same number of passes. This has been 

attributed to substrate dust accumulating within the smaller features. It was found that the 

etching depth saturated at around the size of the feature. Figure 3.7 shows experimental data 

for the etching depth versus the number of passes for holes of 50μm in diameter in a SiO2 

substrate. 
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Figure 3.7 SiO2 Etching depth of Samurai DPSS UV  
Marking System for 50μm features 

 

An example of 200μm trenches and 50μm holes etched (red arrow) on an SiO2 substrate are 

shown in figure 3.8 and 3.9 respectively. 

 

 

Figure 3.8 3D optical image of 200μm trenches in SiO2 substrate etched with a 
Samurai DPSS UV Marking System. All axis values are in μm 
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Figure 3.9 Top view of 50μm holes (red arrow) and artefacts (dashed orange arrow) etched in 
SiO2 substrate with Samurai DPSS UV Marking System 

 

In figure 3.9 it can be observed that some unintended features were also etched onto the 

substrate (orange dashed arrow). The series of dots between each hole are due to the laser 

staying active while moving between each feature. These dots are the same size as the laser 

spot size (~25μm) and  their depth is <1μm. The effect of these dots on the strength of the 

electrical field during deposition will be minimal compared to the intended etched features 

due to their shallow depth and therefore should have minimal effect to the deposition 

process. 
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3.1.2.3 Optimising Deposition Parameters  

Due to the inhomogeneous process of scotch-tape cleaving of the graphene, repeatability and 

control over the quality of the deposited graphene  is a main drawbacks of electrostatic 

deposition of graphene (Sidorov, 2009). The scotch-tape cleaving method will be analysed in 

greater detail in the next part of this chapter. Other parameters important for deposition must 

then be controlled and optimised to allow for the best possible control over the quality of the 

deposited graphene. The most important parameters to control for are: the deposition voltage, 

the size of the etched graphene islands and the ambient atmosphere (Sidorov, 2009). 

 

The size of the etched graphene islands was found to affect the deposition voltage needed to 

controllably deposit a full graphene island with the desired number of  layers, with a larger 

island needing a higher deposition voltage. At larger etched island sizes, it becomes 

impossible to deposit fully-shaped graphene layers as shown for electrostatic deposition 

without the HOPG etching procedure. Figure 3.10 shows an optical overview of the 

electrostatic deposition results for 700μm x 700μm etched graphene islands at a deposition 

voltage of 8kV and in a nitrogen atmosphere. It can clearly be seen that the electrostatic 

deposition using these parameters is completely inhomogeneous. Smaller deposited graphene 

sheets are also wanted as they are created to act as the active layer in photoconductive 

switches and/or microbolometers. The graphene islands were etched as small as possible with 

the Samurai UV laser marking system used  (20μmx20μm). The upper size limit for the 

etched graphene island was found to be 90μm x90μm to allow for full deposition of graphene 

layers. 
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Figure 3.10 Optical image of electrostatic deposition 
of 700μm x700μm graphene islands on SiO2 

substrate at 8kV in nitrogen atmosphere 

 

A controlled atmosphere is needed for the electrostatic deposition of graphene (Sidorov, 

2009). It is possible to deposit graphene electrostatically in ambient air, however, humidity 

levels in the air can fluctuate and can cause electrical shorting between the graphene and the 

deposition substrate to occur spontaneously at varying applied deposition voltages (Sidorov, 

2009). Therefore, a dry nitrogen atmosphere is needed to prevent any electrical shorting 

between the graphene and the deposition substrate. As explained previously in this chapter, 

this was achieved by placing the electrostatic deposition set-up inside a Labconco® Precise® 

Controlled Atmosphere glove box, constantly purged with dry nitrogen. This allowed for a 

much better control over the deposition voltage. 

 

With the controlled dry nitrogen atmosphere and the size of the etched graphene island set at 

20μm x20μm, the deposition voltage can then be optimised. Other parameters will also affect 

the deposition voltage needed for a deposition of a wanted number of graphene layers, these 

parameters include everything that will have an effect on the electrical field created (Sidorov, 

2009). The thickness of the oxide layer and of  the insulating mica sheets  will have an effect 
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on the global electrical field strength (Sidorov, 2009), whereas, any pattern etched on the 

deposition substrate will have an effect on the local electrical field strength (Sidorov, 2009). 

Calibrating the voltage necessary to deposit a wanted number of graphene layers will 

therefore be unique to every set-up. Although the applied voltages reported in this work give 

similar numbers of deposited graphene layers to the ones reported in other works (Sidorov, 

2009), it is advisable to take these numbers with some reservation as they can be very 

sensitive to the setup and the environment. Table 2 shows the number of layers deposited for 

20μm x 20μm etched graphene islands onto SiO2 substrate in  a nitrogen atmosphere for 

different applied voltages. The most homogeneous deposition occurred at a deposition 

voltage of 2.5 to 3.5 kV, full 20μm x 20μm  graphene sheets were deposited with mostly 4 

full layers and a few sheets with 3 full layers and a partial fourth graphene layer. Below 

2.5kV, the ability to deposit full 20μm x 20μm graphene sheets is lost. Most deposition 

below 2.5kV result in partial graphene sheets of 1 to 3 layers. Above 3.5 kV, full 20μm x 

20μm graphene sheets are deposited readily with an increased number of full layers. For this 

work, the most homogenous graphene deposition with the least number of layers is wanted, 

therefore the full 20μm x 20μm graphene sheets of 4 layers that are deposited from 2.5 to 3.5 

kV are utilised to continue this work.  
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Table 3.1. Deposition voltages with resulting number of 
deposited graphene layers for 20μm x 20μm etched 
islands onto SiO2 substrate in nitrogen atmosphere 

 

    

3.1.2.4 HOPG Cleaving between deposition 

Another step in the process of electrostatic deposition of graphene that is important in the 

homogeneity of the deposited graphene is the cleaving process of the HOPG before each new 

depositions. This inhomogeneity explains the range in the number of layers deposited for any 

given voltage seen previously (Sidorov, 2009).  This step loosens the graphene sheets so that 

they can be removed from the bulk HOPG block and deposited onto the wanted substrate via 

electrostatic forces. In of itself, this process is inhomogeneous but steps can be taken to 

reduce this inhomogeneity. The cleaving method used in this work is known in layman's 

terms as the scotch-tape cleaving method. This method originates from the Nobel prize 

winning works of  Andre Geim and Konstantin Novoselov where they were able to create 

single layered graphene by repeatedly cleaving graphite with household scotch tape. Many 

different adhesives were tested for this step but 3M brand single sided scotch-tape performed 
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the best in terms of a homogeneous cleave and least amount of material removed from the 

bulk HOPG. 

 

To make this process as homogeneous as possible, care must be taken to apply a constant 

pressure over the surface of the HOPG when applying the tape and to remove the tape with a 

constant force. To do this, the tape was first applied lightly to the etched side of the HOPG. 

Then using the tip of the thick rubber glove attached to the Labconco® Precise® Controlled 

Atmosphere Glove Box, a small constant pressure is applied to flatten the tape and remove 

any bubbles between the tape and etched HOPG. Once the tape is flatten and devoid of 

bubbles, it is removed slowly at a constant speed  starting at one corner and pealing 

diagonally to the opposite corner. Different works report different methods of applying and 

removing the tape; some report that a fast and sharp removal of the tape or that flattening the 

tape with the back of plastic  tweezers for bubble removal works best. How effective each 

method is at creating homogeneous cleaves will highly depend on the dexterity and 

preference of the researcher. 

 

Each cleave of the patterned HOPG surface removes some of the material until the patterned 

islands are removed completely and a flat HOPG surface is re-created. It was observed that 

upon a subsequent deposition, once the patterned island are removed from bulk HOPG via 

cleaving, that large scale single layer graphene sheets ( > 120μm x120μm ) can be deposited. 

It is thought that this is due to an anchoring effect of the patterned island on the bulk HOPG 

when they are removed via cleaving. This anchoring effect is thought to loosen the 

underlying graphene sheet periodically at each removed patterned island to create a very 

homogeneously loosened up graphene sheet which can then be deposited electrostatically. 

Figure 3.11 illustrate this  considered phenomena.  
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Figure 3.11 Homogeneous periodic loosening of underlying graphene sheet via anchoring 
effect of HOPG island cleaving 

 

The large area single layer graphene deposition results of this particular effect will be 

analysed further in this chapter. It is important to note that this effect is not yet fully 

understood and that it did not constantly lead to large scale single layer graphene deposition.  

    

3.2 Results of Electrostatic Deposition of Graphene  

The deposition results  for this work are divided into four different sections. The first section 

shows the preliminary results from the deposition with flat HOPG and deposition substrate. 

The second section shows the results from the deposition using flat HOPG and a patterned 

substrate, highlighting the effects of altering the local electrical field strength. The main 

results for this work are found in the third section, showing the results from deposition using 

a patterned HOPG onto a flat substrate. The last sections finally shows the results of 

deposition after the  removal of the patterned HOPG island via scotch-tape cleaving.    
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3.2.1 Preliminary deposition 

Preliminary electrostatic deposition using  lower quality HOPG without island pre-patterning  

and also un-patterned SiO2 deposition substrate was performed to acquire a baseline for the 

deposition voltage needed for further depositions and to acquire the know-how to perform 

this type of graphene deposition. The preliminary deposition results in conjuncture with the 

subsequent results from the deposition onto a patterned SiO2 deposition substrate were used 

in developing a fast identification method to identify the number of layers of graphene 

present. This identification method will be looked at in detail in the next chapter, it uses the 

2D graphene Raman peak center position to identify the number of graphene layers. The 

corresponding number of graphene layers have been added to all the Raman image scale bars 

for the ease of the reader.      

 

The resulting graphene deposition is found to be inhomogeneous in terms of the number of 

graphene sheets deposited for any given deposition voltage and in terms of the shape of the 

graphene sheets. Similarly to the deposition voltages shown in the "Optimising Deposition 

Parameters" sub-chapter; below a 1.0kV deposition voltage, no deposition occurred; between 

1.0kV and 4.0kV, 4 layers or less of graphene where deposited, and above 4.0kV, up to 

graphite material was deposited (5 or more layers). Figure 3.12 shows typical results of such 

electrostatic deposition at a deposition voltage of 3.0kV, the image on the right is a Raman 

image mapping the 2D peak center position. In this figure, a mostly 2 layered graphene sheet 

can be seen with sporadic single layer deposition surrounding it.  
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Figure 3.12 Optical and Raman image of typical electrostatic deposition at 3.0kV with un-
patterned HOPG onto un-patterned SiO2 substrate 

 

Figure 3.13 shows typical results for a preliminary deposition at 5.0kV, showing deposition 

up to 5 or more layers. This figure shows a larger range of number of layers deposited; from 

single layer deposition all the way up to graphite material deposition. 

 

 

Figure 3.13 Optical and Raman image of typical electrostatic deposition at 5.0kV with un-
patterned HOPG onto un-patterned SiO2 substrate 
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3.2.2 Deposition on pre-patterned substrate  

Deposition of an un-patterned HOPG onto a pre-patterned SiO2  substrate was performed to 

examine the effects of changes in the local field strength. The patterning procedure for the 

SiO2 substrate is explained in an earlier chapter of this work. However the resulting change 

in electrical field is not explained in detail. Simply put, by patterning the SiO2 surface, the 

local permittivity of the SiO2 (ߝ௥ =3.9) is replaced by the permittivity of air (ߝ௥ = 1.0) which 

increases the resulting electrical field at those locations since the electrical field strength is 

inversely proportional to the relative permittivity of the material. 

 

Figure 3.14  to 3.16 show the effect of the localised electrical field strength increase, it can be 

seen that deposition occurs more readily at the etched features in the SiO2 deposition 

substrate. Deposition onto the etched features happened more readily at deposition voltages 

as low as 0.5kV. However, for full coverage of these patterned features the minimum voltage 

required was found to be 1.0kV. 

 

 

Figure 3.14 SEM image of electrostatic deposition at 5kV with un-
patterned HOPG onto pre-patterned SiO2 substrate 
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Figure 3.15 Optical and Raman image of typical electrostatic deposition at 1.0kV with un-
patterned HOPG onto patterned SiO2 substrate 

 

 

Figure 3.16 Optical and Raman image of typical electrostatic deposition at 3.0kV with un-
patterned HOPG onto patterned SiO2 substrate 

 

As can be seen from figures 3.15 and 3.16, increasing the deposition voltage also increases 

the density of etched features covered.  

 

3.2.3  Micro Sheet Deposition 

In this part of the chapter, the results for the electrostatic deposition of the patterned HOPG 

onto SiO2 substrate will be analysed.  Figures 3.17 to 3.21  show typical results for different 

deposition voltages.  
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Below 2.5kV deposition voltage, most deposited graphene consisted of  partial sub-square 

deposition of one (1) to three (3) layers of graphene. Figure 3.17  shows an optical image and 

the corresponding Raman image mapping the 2D peak center position for electrostatic  

deposition at 1.8kV. At deposition voltages lower than 1.8kV similar results are obtained 

however the density of deposition becomes lower with decreasing deposition voltages. 

 

 

Figure 3.17 Optical and Raman image of typical electrostatic  
deposition at 1.8kV with patterned HOPG 

 

 

Figure 3.18 Optical and Raman image of typical electrostatic  
deposition at 2.5kV with patterned HOPG 

 

Starting from 2.5kV, complete sub-square deposition  takes place and the number of layers 

deposited becomes more constant. Three layer graphene deposition is more prevalent at the 

lower end of this range of deposition voltages and 4 layer graphene deposition happens more 
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readily at the upper end of this range. Figure 3.18 shows an optical and the corresponding 

Raman image mapping the 2D peak center position for a deposition voltage of 2.5kV.  

Around a deposition voltage of 3kV, the deposition density of complete sub-squares is high 

enough  for it to be considered a deposition of a matrix of graphene sub-squares. This 

deposited matrix of sub-squares is shown in figure 3.19 1), in this figure it can also be 

noticed that there is some evidence of micro-mechanical deposition. The overlap of  

graphene sheet sub-squares seen in figure 3.19 2A) is similar to results of graphene 

deposition obtained from previous micro-mechanical deposition works (Xuekun, et. al., 

1999). Even when there is an overlap of deposited graphene sheets due to micro-mechanical 

deposition effects, the individual graphene sheets are of constant number of layers.  

 

For deposition voltages above 3.5kV, the resulting deposited graphene sheets are mostly four 

to five layers and above 4.5kV deposition most deposited graphene sheets consisted of five 

or more layers. Figures 3.20 and 3.21 show optical and Raman images mapping the 2D peak 

center position of electrostatic deposition performed at 4.0kV and 5.0kV, respectively. 
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Figure 3.19 1): Optical image of deposited arrays of micro graphene sheets. 
2A) & 3A): optical image of single micro graphene sheets. 2B) & 3B):  

Raman image mapping 2D peak center position. Electrostatic deposition  
at 3.0kV with patterned HOPG 
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Figure 3.20 Optical and Raman image of typical electrostatic  
deposition at 4.0kV with patterned HOPG 

 

 

Figure 3.21 Optical and Raman image of typical electrostatic  
deposition at 5.0kV with patterned HOPG 

 

3.2.4 Large Area Deposition 

The large scale graphene depositions were performed at a deposition voltage of 3kV after the 

removal of the etched HOPG island pattern via scotch-tape cleaving. As can be seen from 

figure 3.22, the deposited graphene is mostly single and double layered with some sporadic 

multi-layer deposition. In the optical images, single layered graphene cannot be seen due to 

its  low light absorption (~2-4%) (Bonaccorso et. al., 2010), double layered graphene can 

barely be seen optically in figure 3.22B as shaded areas and  multi-layered graphene can 

easily be differentiated from the SiO2 deposition substrate. The Raman images show the 
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spatially resolved 2D peak center position and the single graphene layer becomes clearly 

visible.    

   

 

Figure 3.22 A) & B) Optical images of large scale single layer graphene 
deposition. C) Raman image of same deposition showing spatially 

resolved 2D peak center position 

 

These are very interesting results in view of the fact that single layered electrostatically 

deposited graphene of this scale has never before been reported. However, the process to 

obtain these results still needs to be refined and understood more fully to make it more 

reproducible and consistent.   

 





 

CHAPTER 4 
 
 

 GRAPHENE CHARACTERISATION  

 
4.1 Methodology 

In this chapter the method of characterisation of the number of layers and of the 

optoelectronic properties of the deposited graphene, that is used for this work, will be 

detailed.  For the characterisation of the number of deposited graphene layers, SEM imaging 

is used with Raman spectroscopy. SEM imaging is used to support and calibrate the Raman 

2D peak evolution characterisation method.  In the case of the optoelectronic properties of 

the deposited graphene, calorimetric measurements and direct electrical response from an 

incident coherent light source is  investigated. 

 

4.1.1 Characterisation of the Number of Graphene Layers Deposited 

As stated before, SEM imaging is an accurate method of  characterisation for the number of 

graphene layers. This method can be time consuming and has some limitations such as the 

size of the sample which can be imaged and the makeup of the deposition substrate. To 

create a fast and accurate method of characterisation for the number of graphene layers, SEM 

images are taken in tandem with Raman scans. These can then be used together to improve 

the accuracy of the 2D Raman peak evolution technique and calibrate it for the equipment 

used in this work. 

 

SEM imaging was done at l'Ecole Polytechnique de Montreal with a JEOL JSM7600F 

scanning electron microscope equipped with a field emission gun operated at  an acceleration 

voltage of 5kV. Images 4.1 shows a resulting image from deposited graphene with an un-

patterned HOPG onto a patterned SiO2 substrate, depositions with a wide range of deposited 

graphene layers were chosen for this calibration. The same deposition samples were then 
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scanned with a 300R Alpha  Raman microscope system (shown in figure 4.3) from Witec 

with a 532nm excitation laser source. 

 

 

Figure 4.1 SEM image from deposited  
graphene onto patterned SiO2 

 

 

Figure 4.2 300R Alpha Raman microscope system from 
Witec with 532nm excitation laser source 
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Figure 4.3 shows the resulting Raman image mapping the 2D Raman peak center along with 

the optical image for one of the deposited samples. 

 

 

Figure 4.3 Optical and Raman image showing spatially resolved 2D Raman peak center 
position of deposited graphene from un-patterned HOPG onto patterned SiO2 substrate 

 

With the help of both the Raman and the SEM images an average spectrum can be 

accumulated over areas for each of the number of graphene layers. Figure 4.4 shows these 

average spectra around the 2D Raman peak taken from one of the deposition samples, the 

intensities of the spectra have been shifted for easier viewing. A dashed line at 2700cm-1 has 

been added for easy identification of the shift towards higher wavenumbers with increased 

number of graphene layers. 
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Figure 4.4 Evolution of 2D Raman peak with increasing  
number of graphene layers. Intensities in arbitrary units  
and shifted for easy viewing. Dashed line at 2700cm-1 

 

Above 5 layers of graphene, the 2D Raman peak stops evolving and stays constant, therefore  

this method of layer characterisation is only accurate up to 5 layers. Although the 2D peak 

splits and moves away from a Gaussian peak, gaussian curves can be fitted onto the 2D 
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Raman peak spectra. The center and full width at half maximum were extracted from the 

fitted curves and shown in Table 3. The ranges in table 3 are due to varying peak centers and 

widths from different samples, this can be attributed to a number of reasons such as 

relaxation of layer thicknesses with time. Since these ranges do not overlap it can be 

concluded that this method of characterisation is accurate, even without taking into account 

the error on the gaussian curve fitted due to the peak shape evolution. An effect of this error 

is the decreasing FWHM with the increasing number of layers, the actual width of the 2D 

peak seems to be increasing with the number of layers. However the split in the 2D peak 

changes the shape of the peak and the fitted Gaussian calculates the FWHM to be lower due 

to the right part of the peak (after the 2700cm-1 dashed line seen in figure 4.4) that is 

narrower and more intense than the left part of the 2D peak. This peak shape evolution also 

effects the fitted Gaussian center since the 2D peak is more weighted to the right for 

increased number of graphene layers.  

Table 4.1. 2D Raman peak evolution for increasing number of graphene 
layers. Showing 2D peak center position and full width at half maximum 

 

 

The values in table 3 can be used as an accurate characterisation of the number of graphene 

layer deposited by direct inspection of the 2D graphene Raman peak center position and 

FWHM. 
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4.1.2 Optoelectronic Measurements of Graphene 

The optoelectronic properties of the deposited graphene samples where studied. First the 

calorimetric or the temperature-dependent resistivity measurements of the deposited 

graphene is studied. The samples where set in a continuous flow liquid nitrogen cryostat and 

connected via micropositioners to a  Keithley 2400 source measure unit, the 2-point 

resistance was measured from the I-V curves collected with a custom LabView VI. Figure 

4.5 shows the continuous flow liquid nitrogen set-up with a connected measured sample. 

Cryogenic  temperatures down to -200 °C where reached with this set-up. In total 10 

deposited graphene samples were tested, their 2-point resistances at room temperature (20°C) 

is plotted in figure 4.6. It can be seen from this figure that 80% (8/10) of the sample tested 

have  2-point room temperature resistances between 1 and 5 kΩ. Whereas the remaining 2 

samples (sample 2 & 9) have much greater 2-point room temperature resistances (>15kΩ), 

possibly due to tears and defects present in these samples. 

 

 

Figure 4.5 Liquid Nitrogen constant flow Cryostat set-up with contacts on graphene sample 

 



87 

 

Figure 4.6 Room temperature resistance of electrostatically  
deposited graphene sheets 

 

Similar 2-point resistances were measured at intervals of 20 °C from 20°C to -200°C to 

evaluate the temperature-dependence of these resistances. Figure 4.7 shows the measured 

temperature-dependent 2-point resistances of the 10 deposited graphene samples. As can be 

seen from this figure, a general negative relationship can be seen between the 2-point 

resistance and the temperature of the deposited graphene samples. These results generally 

agree with 2-point resistance of graphite samples (Bunch, 2000), however a specific 

temperature-dependent resistance relationship could not be developed due to the large 

variation in measurements. The ratio between the room temperature 2-point resistance and 

the -200°C 2-point resistance is also plotted in figure 4.8. With the help of figures 4.6 to 4.8 

the deposited graphene samples can be separated into 4 different quality categories, these 

categories are summarized in table 4. 
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Figure 4.7 2-point temperature-dependent resistances of 
 electrostatically deposited graphene sheets 
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Figure 4.8 A scatter plot of the ratio of the low (T ~  -200°C) to room 
temperature 2-point resistance versus the room temperature 2-point 
resistance for all the devices for which there is low temperature data 

 

Table 4.2. Electrostatically deposited graphene sheets separated into quality categories 
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and 0.7mW power. These light sources were set-up outside the cryostat with their aligned 

beams passing through the protective anti-reflective top glass cover of the cryostat and 

hitting the deposited graphene devices at normal incidence. The I-V curves of the graphene 

devices were once again taken with  a Keithley 2400 source measure unit and a custom 

Labview VI. For each source, the first measurement was taken in the dark, then the light 

source was switched on for 1 minute and again measurements were taken, the light source 

was  switched off for 10 minutes to let the device cool, these measurements were repeated a 

second time. Figures 4.9 & 4.10 shows the I-V curves resulting from the direct response 

measurements for the 594nm and 1540nm light sources respectively.   

 

 

Figure 4.9 I-V curves of electrostatically deposited graphene sheets as photo-conductive 
switch excited with a Melles Griot 594nm 10mW laser. 10 minutes between readings 
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Figure 4.10 I-V curves of electrostatically deposited graphene sheets as photo-conductive 
switch excited with a Santec tunable semiconductor TSL-200 laser set at 1540nm 0.7mW. 10 

minutes between readings 

 

The results shown in figures 4.9 & 4.10 are very interesting, they show an inverse 
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and to results from other works (Gilgueng et. al., 2009) ( Zhang et. al., 2013). These results 

prompt questions concerning interactions between the SiO2 substrate of deposition with the 

deposited graphene. Do these interactions affect the absorption and heating effects of the 

device, do they introduce a new temperature dependence in the two point resistance of the 

devices? Further investigation in the subject must be done to answer these questions. These 

results still show a direct change in resistance with incident light power and thus, the devices 

in their current state, can be used as rudimentary photoconductive switch devices and 

potentially bolometers.   

-0,0002

-0,0001

0,0000

0,0001

0,0002

-1 -0,5 0 0,5 1

Cu
rr

en
t [

A]

Voltage [V]

Laser OFF 1

Laser ON 1

Laser OFF 2

Laser ON 2



 

CONCLUSION 

 

In conclusion, this work showed that graphene is indeed a unique material with peculiar 

properties that can be integrated into a multitude of devices. The "wonder material" 

reputation that is evoked when talking about graphene is well deserved. It was shown that 

graphene can be directly deposited onto insulating substrates via electrostatic forces and that 

these depositions can be controlled in terms of number of layers and in the deposition size 

and position. Some promising results showing large scale deposition of single layered 

graphene have been presented and offers new advantages to the electrostatic method of 

graphene deposition. It was also shown that these graphene sheets can be directly deposited 

onto a patterned substrate to form the active layer in photo-conductive switch devices. These 

devices have been shown to be sensitive to light sources in the visible and in the infrared 

spectrum. A small array of these photo-conductive switches were able to be deposited at 

once, however inhomogeneities in the cleaving process between depositions make this an 

inconsistent occurrence. A fast identification method using the evolution of the 2D graphene 

Raman peak was developed to count the number of graphene layers deposited. This 

identification method was calibrated and tested against SEM imaging and optical imaging 

techniques of layer counting.    
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