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DE SURFACE DE CFRP HAUTE PERFORMANCE POUR 

L'INDUSTRIE AÉRONAUTIQUE 
 

Seyedbehzad GHAFARIZADEH 
 

RÉSUMÉ 

 
Les matériaux composites à fibres de carbone (CFRP) sont largement utilisés dans les 

structures d'avions en raison de leur faible poids, leur résistance spécifique élevée, leur bonne 
résistance en fatigue et corrosion ainsi que pour leur flexibilité pour la conception de pièces. 
Bien que les composantes CFRP soient généralement produites à la forme quasi-finale, 
l'usinage est souvent nécessaire et pourrait s’avérer plus économique pour éliminer certaines 
matières excédentaires et amener les pièces à leur taille et forme finales. Cependant, leur 
usinage est toujours un défi en raison de leur inhérente hétérogénéité et anisotropie, à la 
source de plusieurs types de dommages, tels que le délaminage, le déchaussement et la 
fragmentation des fibres. Afin d'améliorer la qualité des pièces produites, une meilleure 
compréhension de la coupe pendant le processus d’’usinage est nécessaire. Le fraisage de 
surface est parmi les procédés de parachèvement des composites les moins étudiés pour la 
finition des pièces. Ainsi, le but de cette étude est de combiner des méthodes numériques et 
expérimentales afin de réduire les problèmes causés par l’usinage de surfaces de matériaux 
CFRP et d'acquérir une meilleure compréhension du processus de coupe associé à ce 
procédé.  

Tout d'abord, l’effet des conditions de coupe, telles que la vitesse de coupe, la vitesse 
d'avance, de même que l'angle d’inclinaison de l’outil, sur les forces et la qualité des surfaces 
usinées a été étudié. Les résultats expérimentaux ont montré que la meilleure qualité de 
surface a été produite en utilisant une vitesse d’avance faible, une vitesse de coupe modérée, 
et un angle d’inclinaison nul de l’axe de l’outil relativement à la surface usinée. Dans la 
deuxième partie, l’effet des conditions de coupe et de l'orientation des fibres sur la 
température et les forces engendrées ont été étudiées. Il a été observé que la température de 
coupe augmentait de manière linéaire avec la vitesse de coupe. Les forces de coupe et 
températures, maximales et minimales, ont été atteintes pour les orientations des fibres de 90 
et de 0 degrés, respectivement. 

Finalement, un modèle par éléments finis est proposé afin de prédire les forces de coupe, 
les mécanismes de formation des copeaux et les dommages d'usinage induits dans un 
matériau CFRP unidirectionnel. Les résultats de la modélisation ont été validés par des 
données expérimentales, comprenant entre autres les forces de coupe et des images prises au 
microscope électronique à balayage (SEM). La comparaison du modèle avec les résultats 
expérimentaux indique que le modèle proposé est capable de raisonnablement prédire les 
forces de coupe et les dommages issus de l’usinage. Le modèle développé montre que les 
dommages d'usinage, la formation des copeaux, et le profil des forces de coupe dépendent 
fortement de l'orientation des fibres dans le processus de fraisage de surfaces de CFRP. 
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EXPERIMENTAL INVESTIGATION AND MODELING OF 
SURFACE MACHINING OF HIGH PERFORMANCE CFRP FOR 

THE AEROSPACE INDUSTRY  
 

Seyedbehzad GHAFARIZADEH  

 

ABSTRACT 

 
Carbon fiber reinforced plastics (CFRP) have been widely used in many aircraft 

structures due to their light weight, high specific strength, good resistance to 
fatigue/corrosion and flexibility in design. Although CFRP components are produced to near-
net shape, machining is often needed to remove excess materials and bring the parts to the 
final size and shape. However, their machining still is a big challenge due to their inherent 
anisotropy and inhomogeneity, which are the source of several types of damage, such as 
delamination, fibers pullout, and fiber-fragmentation. In order to improve machining quality 
and decrease the damages, a better understanding of their machining is required. Surface 
milling is one of the most practical processes for finishing operations but very few studies 
have been dedicated to its use for composite components. Thus, the purpose of this study is 
to use numerical and experimental methods to minimize the machining problems of CFRP 
materials and to gain a better understanding of CFRP surface milling process. 

First, the effects of different cutting conditions such as cutting speed, feed rate, and lead 
angle on cutting forces and surface quality were studied and the optimum cutting condition 
was determined. The experimental results showed that the best surface quality was achieved 
by using lower cutting feed rate, moderate cutting speeds, and zero degree tool lead angle. In 
the second part, the effects of cutting conditions and fiber orientation on cutting temperature 
were investigated. It was found that the cutting temperature increases linearly with the 
cutting speed. The maximum and minimum cutting forces and temperatures were achieved 
for fiber orientations of 90 and 0 degrees, respectively. 

Then, a finite element model was developed to predict cutting forces, chip formation 
mechanism and machining damages obtained during milling of unidirectional CFRP. The 
modeling results were validated by experimental data, including cutting forces and SEM 
images. A comparison of modeling and experimental results indicated that the proposed 
model is able to successfully predict the cutting forces and machining damages. The 
developed model showed that the machining damages, the chip formation, and the cutting 
force profile strongly depend on fiber orientation in CFRP milling process.  

Keywords: Surface machining, carbon fiber reinforced plastics (CFRP), cutting 
temperature, cutting forces, surface roughness, finite element method, machining damage 
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INTRODUCTION 

 

 Carbon fiber reinforced plastics (CFRPs) are an important class of composite materials 

that are widely used in many industrial sectors such as aerospace, construction, and 

transportation. CFRPs are increasingly used for different aircraft parts, such as wing boxes, 

fuselage, ailerons, wings, spoilers, vertical stabilizers, cowlings, traps and struts (Daniel et 

Ishai, 2006; Girot et al., 2009). This group of composite materials have various advantages 

such as high strength and stiffness properties, long fatigue lifespan, low density, and high 

corrosion/wear resistance. Because carbon fibers have a negative coefficient of thermal 

expansion along their axis, CFRPs have very low in-plane expansions over a wide range of 

temperatures, and this is very important for aerospace structures (Sheikh-Ahmad, 2008). The 

first composite aircraft component was made in 1968 and since then, tendency for using 

composite materials in aerospace industry was unceasingly increased since late of 1970s 

(Daniel et Ishai, 2006). Currently, 52% of the weight of Airbus A350, 50% of the weight of 

the Boeing 787, and 46% of the weight of the Bombardier CSeries are made of composite 

materials such as CFRPs. As shown in (Figure 1-1), advanced composite materials (46% of 

the weight) including CFRPs are utilized in wings, torque box and wing skins in Bombardier 

CSeries (Marsh, 2011). 

 

Figure 1-1 The application of composite materials in different parts of the 
Bombardier CSeries (Kafyeke, 2010)  
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 CFRP parts are usually produced in near net-shape but machining operations are often 

required to remove excess of materials, to bring the parts to their final size and shape, and to 

produce high quality surfaces. The machining of CFRP has many challenges due to their 

heterogeneous and anisotropic nature causing some damages such as delamination, fiber pull 

out, fiber-fragmentation, burring, and fuzzing. These damages decrease the properties and 

performances of manufactured components and could cause catastrophic incidents and 

significant costs in aerospace industries. Therefore, the prediction, evaluation and study of 

those damages are vital to prevent such disasters. Although there are many researches that 

have been carried out on drilling and trimming of CFRP materials, there are few researches 

regarding surface machining of these materials. Hence, a comprehensive study of the surface 

machining of CFRP process is necessary.  

 Making use of the developments in computer related technologies, many researchers 

have attempted to use different modeling methods to study the milling process of CFRPs. 

Previous researches have focused their efforts on the use of artificial neural networks (Kalla, 

Sheikh-Ahmad et Twomey, 2010) and empirical methods (Karpat, Bahtiyar et Değer, 2012; 

Zaghbani et al., 2012a). However, these models are not able to predict the mechanism of chip 

formation and the underlying machining damages. The numerical modeling of CRFP milling 

process taking into account the chip formation is thus required to understand the machining 

quality and cutting mechanisms.  

 In this research, the effects of different cutting conditions including the feed rate, cutting 

speed, tool lead angle, and fiber orientation on surface quality, cutting force and cutting 

temperature have been studied. In addition, a finite element model has been developed to 

study the cutting forces, chip formation and machining damages during CFRP milling. This 

research manuscript is divided into 7 chapters. In the first chapter, challenges description, 

objectives and the original contributions of this study are described. The second chapter gives 

a brief description of basic knowledge about CFRP materials. It also presents a short 

overview of milling process for composites and the previous experimental and modeling 

researches made on the milling of CFRP materials.  
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 The third chapter is the first published journal paper. This paper presents an 

experimental research to study the optimum cutting conditions for multiaxis ball-end milling 

of multidirectional CFRP materials. It investigates the effects of different cutting conditions 

such as feed rate, cutting speed and tool lead angle on surface roughness and cutting forces. 

The findings of this chapter regarding the optimized cutting conditions (cutting speed, feed 

rate and lead angle) have been used in the next chapters.  

 The fourth chapter presents the second published journal paper. This chapter focuses on 

thermal aspects of CFRP milling. Milling experiments have been carried out on a 

unidirectional carbon fiber reinforced plastic to investigate the effects of fibers orientation 

and cutting speed on the cutting temperature, cutting force and surface damages. The ball-

end milling tests were performed under the optimum cutting conditions found in the third 

chapter (moderate cutting speeds, low feed rate and zero degree lead angle).  

 Chapter five presents the third journal paper regarding the simulation of the CFRP 

milling process. According to the findings of chapters 3 and 4 for the ball-end milling, the 

best surface quality was achieved with a 0° tool lead angle. Based on this result, a new flat-

end mill was selected and more experiments were carried out in 0° tool lead angle. Then, a 

combined micro-macro mechanical model has been developed to study the cutting forces, 

chip formation and machining damages during CFRP flat-end milling. The proposed model 

took the advantages of both macro (modeling the composite as an equivalent homogeneous 

material) and micro scales (use of adaptive meshing and related friction coefficient to fibers 

orientation) approaches to predict the cutting forces with good agreement to the experiments.  

Finally, the last two chapters present the conclusions and recommendations that resulted 

from this study. 
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CHAPTER 1 
 
 

CHALLENGE DESCRIPTION, OBJECTIVES AND ORIGINAL CONTRIBUTIONS 

1.1 Challenge description 

Applications of CFRP in aerospace industry is rapidly increasing due to their special 

properties such as high strength, high stiffness, long fatigue life, low density, good corrosion 

resistance and wear resistance. In spite of having these advantages, CFRP machining is still a 

big challenge due to their inhomogeneous and anisotropic nature that result in machining 

problems such as delamination, fibers pullout, fiber-fragmentation, burring, and fuzzing. 

Occurrence of these defects even in a small extent may cause catastrophic incidents in 

aerospace applications where parts are undergoing cyclic and dynamic loadings. 

Furthermore, tool wear is one of the major problems in CFRP machining due to extremely 

abrasive characteristics. Poor cutting conditions can accelerate tool wear rate and as a result 

increase the machining costs. To achieve the high quality of machined surfaces, it is 

necessary to understand the cutting mechanism and investigate the effects of different 

machining parameters. 

In addition to aforementioned challenges during machining, the experimental study of 

composite machining is time consuming and is an expensive process with some dangers to 

human health due to the production of carbon chips and dusts during the operation. 

Moreover, the interpretation of the experimental results of milling is difficult due to 

complexity of the process. Therefore, the finite element modeling of CFRP machining could 

be a good alternative method to study and investigate the machining process of CFRP 

composites including chip formation, cutting forces, and surface machining damages. 

Recently, with the improvement in computer technology and equipment, many researchers 

have focused on modeling of CFRP machining. But in spite of existing many proposed 

models for simulating CFRP orthogonal cutting, there is no numerical models for simulating 

the CFRP surface machining process such as milling process. 
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1.2 Research objectives 

In order to promote the use of composite materials in aerospace industries, it is critical to 

overcome their machining limitations. Therefore, the main purpose of this research is to 

improve machining quality of CFRP materials and to provide a better understanding of their 

milling process. Cutting forces are among the important machining factors that influence the 

process stability, machining quality, cutting temperature, and tool conditions.  

Hence, the objectives of this research are to investigate the effects of machining 

conditions such as cutting speeds, feed rate, and tool lead angle on cutting forces and surface 

quality, and to optimize the cutting conditions for surface milling of CFRP. Since cutting 

temperature is an influent factor on machining quality and tool wear, the other purpose of this 

work is to focus on the thermal aspects of CFRP milling process. Therefore, the effects of 

cutting parameters such as the cutting speed and fiber orientation on the cutting temperature 

and surface damage were studied. Another objective of this work is to develop a finite 

element model to analyse the CFRP milling process and predict the cutting forces, chip 

formation and machining damages. 

1.3 Original contributions  

The CFRP surface milling process is investigated in this research work using the 

experimental and modeling methods. The original contributions of this work can be 

summarized in the following main points: 

• The effects of tool lead angle (the angle between the tool axis and the surface normal) on 

cutting force, surface roughness, and machining damages was studied during the surface 

milling of CFRP materials.  

• The effects of the cutting conditions such as cutting speed and fiber orientation on the 

cutting temperature were investigated during the CFRP ball end milling process. Based on 

the experimental results, the influences of the cutting temperature on cutting force and 

machining quality were studied to provide a better knowledge of thermal aspect of CFRP 

milling and improve the machining quality.  
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• The first finite element model was developed to study flat-end milling of CFRP material. 

The composite material was modeled as an equivalent homogeneous material and the 

friction coefficient between the tool and workpiece was assumed dependent to fibers 

orientation. The model was able to predict cutting forces, chip formation mechanism and 

machining damages in good agreement with the experiments. The presented finite element 

mode was applied to study the effect of fiber orientation and machining direction on the 

cutting forces.  
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CHAPTER 2 
 
 

LITERATURE REVIEW  

2.1 Carbon fiber reinforced plastics 

Carbon fiber reinforced plastics (CFRPs) are used widely in aerospace industries, due to 

their advantages such as high tensile and compressive strength, and high fatigue and 

corrosion resistances. However, CFRPs are expensive and difficult to machine compared to 

metals (Daniel et Ishai, 2006; Gudimani, 2011; Teti, 2002). As shown in Figure 2-1, the 

carbon fiber in CFRPs can be unidirectional (unidirectional lamina or ply) or woven. To 

obtain quasi-isotropic properties, the individual lamina can be stacked with various 

orientations with respect to laminate global coordinate system (Daniel et Ishai, 2006).  

 
 

Figure 2-1 a) Unidirectional lamina, b) woven fibers c) laminate (Campbell, 2010; 
Daniel et Ishai, 2006)  

 

2.2 Surface milling of CFRP 

Milling processes are usually required to remove the excess of material and bring the 

parts to their final size and shape. In the milling operation, cutting is performed by a rotating 

multi-teeth cutter and often more than one cutting edge are cutting at the same time. Thus, 

the milling process is complex due to the variation of fiber orientation, chip size and cutting 

forces with tool rotation. The different aspects of CFRP surface milling process, including 
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milling geometry, chip formation, cutting forces and the quality of machined surfaces, are 

studied in section 2.2. 

2.2.1 Milling Geometry  

Figure 2-2 shows the face (end) milling process and the cutting geometry in end milling. 

Different parameters of milling are shown in this picture. The spindle speed shown by letter 

N in the Figure 2-2b is the number of revolutions of the milling tool per minute. 

 
 

Figure 2-2 a) face milling, b) milling geometry (Sheikh-Ahmad, 2008) 
 

Cutting speed (νC) is an important parameter indicating the speed at which the cutting 

edge machines the workpiece and is defined by the following equation:  

஼ݒ = ߨ × ܦ × ܰ1000 (݉ ݉݅݊⁄ )  (1-1) 

Where D and N represent the tool diameter and spindle speed, respectively. Feed speed 

(νf) is the feed of the tool against the workpiece, in units of distance per time and feed per 

revolution (f) is a value used to determine finishing capacity. These two parameters are 

related by the following equation: 

݂ = 	௙ܰݒ  (2-1) (ݒ݁ݎ/݉݉)	
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Milling tools are multi-edge cutters, and the feed per tooth (af9), as a value for ensuring 

that each edge machines under satisfactory condition, is defined with the following equation: 

ܽ௙ = ௙ܰݒ × ݖ  (1-3) (ℎݐ݋݋ݐ/݉݉)

Where, z is number of edges of the tool. 

2.2.2 Chip formation mechanism  

The chip formation mechanism in CFRP milling is controlled by the fibers orientation. 

The fibers orientation varies continuously with tool rotation during milling process. Thus, 

different cutting mechanisms are responsible for chip formation process during mill rotation.  

Figure 2-3 shows four types of chip formation mechanisms for different fiber 

orientations with respect to the cutting direction (Sheikh-Ahmad, 2008). 

 
 

Figure 2-3 Cutting mechanisms in different fiber orientations (Sheikh-Ahmad, 2008) 
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For fibers oriented at 0° (Figure 2-3a), a crack initiates at the contact point of the 

workpiece and tool; and it propagates along the fiber-matrix interface. When the tool 

advances into the workpiece, the peeled layers bend and compress in the opposite direction to 

fibers. The fiber-matrix debonding continues until the bending stress in the fibers increases 

up to failure stress, and fiber failure occurs ahead of the cutting tool. The chip formation 

mode in 0° fibers orientation is of delamination type.  

The second type of chip formation is fiber cutting (with continuous chip), that occurs for 

fiber orientations between 0° and 90° (Figure 2-3b). The chip formation mechanism consists 

of fracture from compression-induced shear perpendicular to fiber axis followed by shear 

fracture along the fiber–matrix interface occurring with the cutting edge movement. The 

cracks generated in the fibers above and below the cutting plane during the compression 

stage of the chip formation remain after machining and cause low quality machined surfaces.  

For fibers at 90° (Figure2-3 c), fibers crush and fail at the contact point of the tool and 

the workpiece and each fiber is cut separately. The chip formation mechanism in this case is 

called fiber cutting type (with discontinuous chip).  

For large fiber orientation angles (105–150°) where the tool enters the workpiece and 

catches on a peeled fiber, the fiber-matrix interfacial failure occurs below the cutting plane 

(Figure 2-3d). Fiber failure below the cutting plane occurs when the bending stresses that 

develop in the fibers below the surface of the cut are large enough for fracture. In this type of 

chip formation (type V- macrofracture) discontinuous chips are formed. A poor surface 

quality results from this orientation because of extensive fiber pull-out and delamination 

cracking (Sheikh-Ahmad, 2008; Teti, 2002) 

2.2.3 Cutting forces in CFRP machining 

Cutting forces are one of the important factors influencing the process stability, part 

quality, cutting temperature, and the tool conditions. A number of studies have been carried 

out about cutting forces and the effect of parameters such as fiber orientation, cutting speed 

and tool geometry on them. These studies show large fluctuations in the cutting forces during 
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machining of fiber reinforced polymers. Cutting and thrust forces are strongly dependent on 

fiber orientation, while the operating conditions and the tool geometry will also have 

influence on them. Figure 2-4 shows typical cutting force evolutions during trimming (edge 

milling) of CFRP and GFRP (Glass fiber reinforced plastic) with different cutting conditions 

(Sheikh-Ahmad, 2008).  

 
 

Figure 2-4 Variation of cutting and thrust forces per unit width with fiber orientation, 
1-Carbon F593/epoxy, 2- Carbon (Torayca T300), 3-Graphite IM6/epoxy, 4-Carbon 

T300/epoxy (Sheikh-Ahmad, 2008) 

 
As can be seen in Figure 2-4, generally the cutting force remains almost constant up to 

fiber orientations of approximately 60°, then it rapidly increases with fiber orientations up to 

90°. Then the cutting force decreases with more increase in  fiber orientation with a 

significant decrease occurring between 100° and 165° (Sheikh-Ahmad, 2008). The results of 

other studies on orthogonal cutting of FRP materials   also showed that cutting and trust 

forces are highly dependent on fiber orientation (Dandekar et Shin, 2008; Gao et al., 2015; 

Ramulu, 1997; Rao, Mahajan et Bhatnagar, 2008; Rao, Mahajan et Bhatnagar, 2007b; 

Santiuste et al., 2014; Santiuste, Soldani et Miguélez, 2010; Wang, Ramulu et Arola, 1995; 

Zenia et al., 2015).  
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Fiber orientation is the most important factor influencing the cutting forces, but tool 

geometry, tool rake (the angle between the cutting face of the tool and a line perpendicular to 

the work piece), clearance angle (the angle between the flank face of the tool and the 

workpiece) and cutting parameters such as depth of cut and material removal rate also have 

effects on cutting forces. Cutting and thrust forces are decreased by increasing the rake angle; 

however the effect of rake angle is not as significant as fiber orientation and depth of cut 

(Wang et Zhang, 2003). Generally, cutting and thrust forces are decreased by increasing the 

clearance angle (Calzada et al., 2012). 

Chatelain et al. investigated the effects of tool geometry on cutting forces in trimming of 

CFRP. The results of their studies showed that tool geometry (number of flute, helix and rake 

angle) has a significant effect on cutting forces (Chatelain et Zaghbani, 2011). In another 

study, Zaghbani et al. (Zaghbani et al., 2012b) showed that the force amplitude is dictated by 

the tool geometry, the type of machining operation, and material properties (the fiber 

orientation) in milling of CFRP. They also concluded that the cutting force profile does not 

significantly depend on fibers orientation. Karpat et al. (Karpat, Bahtiyar et Değer, 2012) 

presented a mechanistic cutting force model for milling CFRPs. In contrast to the finding of 

Zaghbani et al., they showed that fiber orientation significantly affects the cutting force 

profile and amplitude.  

Cutting parameters such as cutting speed, depth of cut, and feed rate are other factors 

influencing the cutting forces. Generally, cutting forces are increased by the material removal 

rate. Therefore, thrust and cutting forces rise with increasing the feed rate and depth of cut 

during machining of CFRP (Rusinek, 2010). Experimental studies showed that the variation 

of cutting forces is not uniform over the variation of cutting speeds. As shown in Figure 2-5, 

moderate cutting speeds (between 200-300 m/min) were more suited for the machining of 

CFRPs. 

2.2.4 Machining Induced Damage and Surface Integrity 

Several aspects including subsurface damage and surface roughness are considered to 

characterize the results of surface machining process such as milling and trimming. The 
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surface profile is typically described by its lay (the main direction of the surface texture), 

waviness, and roughness. The conceptual opposite from smoothness of a technical surface is 

designated as roughness. Waviness is the characteristic form of topographical variations that 

are measurable on the part profile in an actual or imaginary cross section (Figure 2-6a). 

 
 

Figure 2-5 Variation of the cutting force with different 
cutting speeds and feed rates in machining CFRP with 

PCD tool(Sheikh-Ahmad, 2008) 
 

Lay is the macroscopic contour of the surface and describes the direction of the 

predominant surface pattern. The surface waviness, profile and surface roughness parameters 

(arithmetic mean value Ra, maximum peak to valley height Rt, maximum peak to mean height 

Rp, mean to valley height Rv, and ten point average height Rz) are shown in Figure 2-6b 

(Farago et Curtis, 1994). 

 
 

Figure 2-6 Surface characters, lay, waviness, and roughness 
(Sheikh-Ahmad, 2008) 
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The roughness of a machined surface is affected by machining parameters (feed rate, 

cutting speed, and depth of cut), tool geometry, tool wear, and fiber orientation. Generally, 

the value of Ra and Rz increases by increasing the feed rate and decreases by increasing the 

cutting speed. However, the effect of cutting speed is not as significant as feed rate 

(Chatelain, Zaghbani et Monier, 2011; Chatelain, Zaghbani et Monier, 2012; Davim et Reis, 

2005; Davim, Reis et António, 2004). Wang and Zhang found that a smaller depth of cut 

generates less sub surface damages (Wang et Zhang, 2003).  

El-Hofy et al. (El-Hofy et al., 2011) investigated the effects of different slotting 

parameters such as tool materials (WC & PCD) and cutting environment (chilled air and dry) 

on the surface roughness and integrity using 3D roughness parameters (Sa and St). According 

to their results, the combination of low cutting speed and high feed rate was recommended 

for an improved surface roughness. By using analysis of variance (ANOVA), they showed 

that tool material was not a statistically significant factor; with a relatively low PCR of 

5.44%. They also studied the effects of fiber orientation on surface roughness. The fibers 

fractured by buckling were removed cleanly, with the least surface damage, for a fiber 

orientation of 0°. Wavy surfaces were observed for plies oriented at 45° while those at 90° 

and 135° suffered matrix cracking and fiber pull out due to the high cutting forces and 

softening of the resin (Figure 2-7). 

 
 

Figure 2-7 Damage at different fiber orientations; (a-b) 45°; (c-d) 0°; (e-f) 90°; (g-h) 
135° (El-Hofy et al., 2011) 
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Sheikh-Ahmad et al. (Sheikh-Ahmad, Urban et Cheraghi, 2012) carried out an 

experimental study to determine the effects of cutting conditions on machining quality during 

edge trimming of CFRP. They demonstrated that the surface roughness and average 

delamination depth increase with an increase in feed rate and decrease with an increase in 

spindle speed. Feed rate had the highest influence on the surface roughness and delamination 

followed by cutting distance and cutting speed.  

Machined CFRPs have roughness and subsurface damages that are influenced by fiber 

orientation. Ramulu (Ramulu, 1997) studied the effect of fibers orientation on surface quality 

and concluded, by measuring the average surface roughness in both longitudinal and 

transverse directions, that for fiber orientations between 15 to 60° good surface qualities can 

be obtained. He deduced that for an orientation of 135°, extensive fiber pull-out and 

delamination cracking occurred. Therefore, poor surface quality was obtained for this 

orientation. A recent study that has been carried out by Chatelain et al. (Chatelain, Zaghbani 

et Monier, 2012) confirmed the results of Ramulu’s work. They showed that all roughness 

parameters (Ra, Rp, Rq, Rv, and Rz) were worse at 135° than for other orientations. The best 

surface quality was obtained for fibers at 45°.  

The cutting of CFRPs is difficult due to diverse fiber and matrix properties, 

inhomogeneous nature of the material, and the presence of a high volume fraction of hard 

abrasive fibers in the matrix. They are especially vulnerable to the generation of damages 

such as delamination, fiber pull-out and matrix thermal degradation during machining. 

Davim et al. (Davim et Reis, 2005) investigated the influence of cutting parameters (cutting 

velocity and feed rate) and tool geometry on delamination. They showed that delamination 

increases with increasing feed rate and cutting speed. They also found that a two flute end 

mill presents less delamination compared to a six flute end mill. 

2.2.5 Cutting temperature in CFRP milling  

The cutting temperature is an important factor in the machining of composite materials 

that influences the quality of the machined surface and tool wear. However, only a few 

papers have covered the effect of cutting temperature in the surface milling of CFRP.  
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Yashiro et al. (Yashiro, Ogawa et Sasahara, 2013) studied the cutting temperature in 

CFRP milling.  They found that the tool-workpiece contact point temperature increased up to 

180 °C (the glass transition temperature) when the cutting speed reached 25 m/min, and up to 

300 °C for a cutting speed of 50 m/min. The cutting temperature tends to stabilize and remain 

constant when the cutting speed was increased further.  

In a recent research, Liu et al. (Liu et al., 2014) developed a mathematical model to 

predict the spatial and temporal distribution of the temperature in helical milling of CFRP. 

They concluded that the workpiece temperature increases with the spindle speed and axial 

depth of cut. The axial cutting depth had more influence than spindle speed on temperature 

variation of the workpiece, while the influence of tangential feed per tooth was less than the 

other factors. 

2.3 Finite element modeling of CFRP machining  

Recently, many researchers have focused on investigation of CFRP machining using 

modeling to decrease the experiments, which are time consuming and expensive. But in the 

literature, very few works attempt to model the cutting forces in surface milling of fiber 

reinforced composites. Generally, the modeling methods of FRP machining can be classified 

in two general approaches: (I) theoretical and empirical models and (II) numerical models. 

Theoretical and empirical models were used to study the FRP milling process (Karpat, 

Bahtiyar et Değer, 2012; Zaghbani et al., 2012a), but using these models is very complicated 

because of the highly nonlinear and inhomogeneous nature of composite materials. Another 

problem is the lack of cutting force coefficients that are necessary for these modeling 

techniques, especially for modelling oblique cutting for different tool/workpiece 

combinations (Calzada, 2010; Kalla, Sheikh-Ahmad et Twomey, 2010). In addition, these 

models are not able to predict machining damages and cutting mechanism.  

More recently, with the improvement in computer technology, many researchers have 

focused on studying composite machining by numerical methods such as finite element 

modeling. Finite element models are able to predict the cutting forces, chip formation 

mechanisms, and material damage in the machining of a complex multi-phase and 
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anisotropic material (Calzada, 2010). In spite of existing many models for simulating CFRP 

orthogonal cutting, there is no finite element model for simulating the complicated surface 

machining process of CFRP such as the surface milling process. 

2.3.1 Finite element formulations 

For machining simulations using finite element modeling, three formulations have been 

used: Eulerian, Lagrangian, and Arbitrary lagrangian eulerian (ALE) (Figure 2-8).  

 
 

Figure 2-8 One dimensional example of Eulerian, 
Lagrangian and arbitrary lagrangian eulerian (ALE) mesh 

(Stein, de Borst et Hughes, 2004) 

 



20 

In the Eulerian method, the mesh is spatially fixed in order to eliminate excessive 

element distortion, but material can flow through a meshed control volume. In this method, 

cutting is simulated in the steady state and therefore there is no need for chip separation 

criteria. The disadvantage of this method is that the initial shape of the chip and the contact 

conditions must be known. 

In Lagrangian method, the mesh is attached to the workpiece and the elements can 

deform similarly to actual machining. Knowing the chip geometry is not necessary using this 

formulation. Lagrangian mesh always contains the same material particles. From a 

computational viewpoint, it is one of significant advantages of this method, especially in 

problems involving materials with history-dependent behaviors. The disadvantages of this 

method are the excessive element distortion that reduces the accuracy in large material 

deformation and the need for frequent remeshing.  

In order to have the advantages of both Eulerian and Lagrangian approaches, the 

arbitrary lagrangian eulerian (ALE) method was developed. In this method, the finite element 

mesh is neither fixed nor attached to the workpiece material (Stein, de Borst et Hughes, 

2004). 

2.3.2 Definition of CFRP material in finite element method (FEM) 

The numerical modeling of fiber reinforced composites can be classified in two general 

approaches: (I) micromechanical approach where the composite is modeled as multi-phase 

material and (II) macro mechanical approach where the composite is modeled as an 

equivalent homogeneous material (EHM).  

The micromechanical approach was used successfully to predict cutting forces and local 

defects in orthogonal cutting of FRP (such as debonding) (Calzada et al., 2012; Dandekar et 

Shin, 2008; Nayak, Bhatnagar et Mahajan, 2005; Rao, Mahajan et Bhatnagar, 2007a; Rao, 

Mahajan et Bhatnagar, 2007b). Despite the advantages of the micromechanical approach, 

such as good accuracy of predicted cutting force and damages, it has some limitations. The 

micro modeling is more complex than macro modeling and needs very high calculation time 
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and precise details of fibers, fiber-matrix arrangements and their interfacial and physical 

properties (Dandekar et Shin, 2012). Because of these limitations, the macro mechanical 

modeling is preferable for modeling complex processes such as milling.  

The first macro-mechanical FEM analysis of fiber-reinforced composites was developed 

by Arola and Ramulu (Arola et Ramulu, 1997) in 1995. The predicted values of principal 

cutting force agreed well with the experimental values but the predicted thrust force was 

much lower than experiments. The results of other studies also confirm the shortcoming of 

macromechanical modeling to predict the thrust forces (Arola, Sultan et Ramulu, 2002; Lasri, 

Nouari et El Mansori, 2009; Nayak, Bhatnagar et Mahajan, 2005; Santiuste, Soldani et 

Miguélez, 2010). Mkaddem et al. (Mkaddem et El Mansori, 2009; Mkaddem, Demirci et 

Mansori, 2008) developed a micro-macro model to get the advantages of both approaches. 

The composite was modeled as a homogeneous material with anisotropic effective friction 

coefficients. The model incorporates the adaptive mesh technique and density effect to 

analyse composite machining. It successfully predicted the sub-surface damages, cutting and 

thrust forces with lower mean errors (6% for cutting forces and 26% for thrust forces) than 

another macromechanical model presented by Nayak et al. (17% for cutting forces 44% for 

thrust forces) (Nayak, Bhatnagar et Mahajan, 2005).  

2.3.3 Friction at the tool/workpiece interface 

Friction is another important parameter in machining simulation. An accurate modeling 

of the coefficient of friction allows for accurate prediction of cutting forces and temperature 

distributions. Mahdi and Zhang (Mahdi et Zhang, 2001a) assumed that tool-workpiece 

friction is negligible but in most researches, a Coulomb friction law has been used to describe 

the contact between tool and workpiece. 

In some researches, the coefficient of friction was assumed constant and equal to 0.3 

(Arola et Ramulu, 1997; Rao, Mahajan et Bhatnagar, 2008; Rao, Mahajan et Bhatnagar, 

2007b; Rentsch, Pecat et Brinksmeier, 2011), 0.4 (Arola, Sultan et Ramulu, 2002), or 0.5 

(Lasri, Nouari et El Mansori, 2009; Santiuste, Soldani et Miguélez, 2010). Nayak and 

Bhatnagar (Nayak, Bhatnagar et Mahajan, 2005) and Mkaddem (Mkaddem et El Mansori, 
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2009; Mkaddem, Demirci et Mansori, 2008) used various friction coefficients for different 

fibre orientations to improve the predicted cutting forces in orthogonal cutting of FRP 

materials.  

2.3.4 Failure criteria and chip formation 

In the Lagrangian or ALE analysis, it is necessary to define a chip separation criterion 

(Dandekar et Shin, 2012). Different mechanisms may cause failure in machining of CFRP 

materials including fiber buckling (compression), fiber breakage (tensile), matrix cracking, 

matrix crushing and delamination, or a combination of these factors (Figure 2-9). Under 

longitudinal compression, the flexural stresses in fiber due to buckling lead to the formation 

of kink zones that can create fracture planes in the carbon fibers (Figure 2-9a). Buckling does 

not necessarily lead to immediate failure because the surrounding matrix supports the fibers. 

Under longitudinal tension, the fibers with lower ultimate strain than matrix will fail first. 

When a fiber breaks in tensile stress, the matrix transmits the load across the gap created by 

the breakage from the broken to the adjacent fibers. The broken fibers increase gradually in 

density with increasing load. Stress concentrations thus created by the broken fibers produces 

failure of adjacent fibers up to the point where catastrophic failure occurs in the composite 

(Figure 2-9b). (Daniel et Ishai, 2006)  

 
 

Figure 2-9 Failure modes in machining of CFRP (Kollár et 
Springer, 2003) 
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Matrix cracking (Figure 2-9c) frequently occurs in composite laminates and is usually 

accompanied by other damages, thus it generally does not result in ultimate failure of a 

laminate. Delamination reduces the bending stiffness and strength as well as the load 

carrying capability of the laminate under compression. The size of the delamination may 

increase to a critical point under repeated loading and cause laminate failure (Kollár et 

Springer, 2003).  

There are several theories describing the failure of composite materials such as: (a) 

maximum stress theory, (b) maximum strain theory, (c) Energy-based interaction theory 

(Tsai-Hill), (d) Tsai-Wu failure theory, (e) Hoffman failure theory, and (f) Hashin failure 

theory. According to maximum stress theory, failure occurs when at least one stress 

component along one of the principal material axis exceeds the corresponding strength in that 

direction. Lasri et al. (Lasri, Nouari et El Mansori, 2009) used this failure criteria for 

modeling orthogonal cutting of GFRP in 45º fiber orientation. They found that using 

maximum stress failure criteria, fiber-matrix debonding was the first damage initiated ahead 

of cutting tool tip and developed during chip formation process. Matrix failure initiated later 

and gradually developed in the vicinity of the cutting tool edge. Fiber fracture was the last 

failure mode occurring during chip formation. 

Because failure of composite materials cannot be predicted by the Von Mises yield 

criterion (this criterion is applicable only for isotropic material), Hill modified the von Mises 

criterion for ductile and anisotropic materials (Daniel et Ishai, 2006). Tsai-Hill or maximum 

work criteria is a failure criteria based on Hill criterion that has been used widely in several 

studies for modeling of CFRP machining (Arola et Ramulu, 1997; Mahdi et Zhang, 2001b; 

Mkaddem et El Mansori, 2009; Mkaddem, Demirci et Mansori, 2008; Nayak, Bhatnagar et 

Mahajan, 2005; Rao, Mahajan et Bhatnagar, 2008). Rao et al. (Rao, Mahajan et Bhatnagar, 

2008) used this criterion in a three-dimensional modeling of CFRP orthogonal cutting. Their 

model successfully predicted the cutting forces and chip formation when compared to 

experiments. The main disadvantage of Tsai-Hill failure theory is that it does not distinguish 

between tensile and compressive strengths. Tsai-Wu criterion is a modification of Tsai-Hill 

criterion to overcome this shortcoming. Mkaddem et al. (Mkaddem, Demirci et Mansori, 
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2008) developed a micro-macro mechanical model using Tsai-Hill criterion to investigate 

orthogonal machining of composite materials.  

Figure 2-10 shows the predicted cutting and thrust forces of their combined micro–

macro model. They concluded that the chip size, chip geometry and the cutting forces are 

significantly dependent on the fiber orientation.  

 
 

Figure 2-10 Measured and predicted values of a) cutting force Fc ,and b) thrust force Ft 
(depth of cut= 0.2mm) (Mkaddem, Demirci et Mansori, 2008) 

 
Hoffman also modified Hill’s equation by adding linear terms to eliminate the Hill’s 

theory limitation on tensile and compressive strengths (Schellekens et De Borst, 1990). 

Hashin proposed failure criteria for unidirectional composite materials that include four 

different failure modes for fiber tensile failure, fiber compressive failure, matrix cracking, 

and matrix crushing. The Hashin’s failure criterion has been extensively used to study FRP 

orthogonal cutting.  

Lasri et al. (Lasri, Nouari et El Mansori, 2009) investigated the orthogonal cutting of 

glass fiber reinforced plastics (GFRP)  using Hashin, Maximum stress, and Hoffman failure 

criteria. They found that the principal cutting forces simulated with Hashin criterion were 

closer to the experimental results than other criteria  (Figure 2-11a) However, the predicted 

thrust forces for all failure criteria were much less than experiments (Figure 2-11b). They 

also observed that chip formation is highly dependent on fiber orientation. For all failure 
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criteria, damage started near the cutting tool edge and propagated parallel and perpendicular 

to the direction of fibers inside the workpiece. 

 
 

Figure 2-11 Comparison between experimental and predicted values of cutting force 
using Hashin, Maximum stress, and Hoffman failure criteria, (a) Principal cutting force, 

(b) Thrust cutting force (Lasri, Nouari et El Mansori, 2009) 
 

2.4 Summary  

This section presented a review of previous researches on CFRP machining. The effects 

of different cutting conditions on machining quality and cutting forces were explained. 

Though numerous studies have been carried out on the machining of CFRP materials, less 

attention has been given to the tool lead angle in surface milling of CFRPs. Next chapter 

presents an experimental study on the effect of tool angle and other cutting conditions (such 

as cutting speed and feed rate) on the cutting forces and machining quality.  

The thermal aspect of CFRP milling was discussed in few researches as reported in this 

literature review. More research is required to determine the effects of different parameters, 

especially fiber orientation, on the cutting temperature in CFRP surface milling operation. An 

experimental investigation on cutting temperature in ball-end milling of unidirectional CFRP 

is carried out in chapter 4, where the effects of cutting conditions (cutting speed and feed 

rate) and fiber orientation on cutting temperature, cutting forces and machining quality are 

demonstrated. 
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The importance of milling modeling was highlighted and different approaches in 

machining modeling were briefly introduced. The literature review showed that few studies 

focused on modeling of fiber reinforced plastics milling. The available models for CFRP 

milling were limited to empirical, semi-analytical, and neural networks based models and no 

study was found on finite element modeling of CFRP milling process. Since these force 

models are unable to predict the chip formation and machining damages, an appropriate 

numerical model is essential in order to study the complicated milling process. A modeling 

study of CFRP milling is presented in chapter 5 where a combined micro-macro mechanical 

model is used to provide a better understanding of CFRP surface milling and explain the chip 

formation mechanism and machining damages in this operation.  
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3.1 Abstract  

Machining is one of the most practical processes for finishing operations of composite 

components, allowing high quality surface and controlled tolerances. The high precision 

surface milling of Carbon Fiber Reinforced Plastics (CFRP) is particularly applicable in the 

assembly of complex components requiring accurate mating surfaces, as well as for surface 

repair or mold finishing. CFRP Surface milling is a challenging operation because of the 

heterogeneity and anisotropy of these materials, which are the source of several types of 

damage, such as delamination, fibers pullout, and fiber-fragmentation. In order to minimize 

the machining problems of CFRP milling and improve the surface quality, this research 

focuses on the effect of multi axis machining parameters, such as the feed rate, cutting speed, 

and lead angle, on cutting forces and surface roughness. The results show that the surface 

roughness and cutting forces increase with the feed rate, while their variations are not 

uniform when changing the cutting speed. Generally, a lower surface roughness was 

achieved by using lower cutting feed rate (0.063 mm/rev) and higher cutting speeds (250-500 

m/min). It was also found that the cutting forces and surface roughness vary significantly and 

non-linearly with the lead angle of the cutting tool with respect to the surface.  

Keywords: Carbon fiber reinforced plastic, surface machining, milling, surface quality 
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3.2 Introduction 

In recent years, the use of Carbon Fiber Reinforced Plastics (CFRP) has increased 

considerably, especially in aerospace industries. Nowadays, many aircraft parts are made of 

this composite material. For example, about 50% of the weight of the Boeing 787 aircraft is 

made from composite materials such as carbon/epoxy and graphite/ titanium (Daniel et Ishai, 

2006). CFRP composites are widely used for different parts of aircrafts such as wing boxes, 

fuselages, ailerons, wings, spoilers, vertical stabilizers, traps and struts (Gay et Hoa, 2007). 

CFRP materials present many advantages compared to other materials, including higher 

strength and stiffness, longer fatigue life, low density and better corrosion and wear 

resistance. Because of a negative coefficient of thermal expansion along the axis of carbon 

fibers, carbon reinforced composites can be patterned to minimize the thermal expansion 

over a wide range of temperatures. This is very important for aerospace structures (Sheikh-

Ahmad, 2008).  

CFRP components are usually produced to near net-shape, but machining is often 

required to remove excess material and produce high quality surfaces with controlled 

tolerances. In particular, drilling and trimming are extensively used to remove excessive 

material, produce cutouts, or holes that are required for the product function or to assemble 

components. The high precision surface milling of Carbon Fiber Reinforced Plastics is 

particularly useful for the assembly of complex components requiring accurate mating 

surfaces, as well as for surface repair and mold finishing. CFRP surface milling is a 

challenging operation because of the heterogeneous and anisotropic nature of these 

composites, which can cause some damages such as delamination, fibers pullout, fiber-

fragmentation, burring, fuzzing, or thermally affected matrix which in turn may affect the 

surface finish and properties of the material (Ferreira, Coppini et Miranda, 1999; Wang et 

Zhang, 2003). In addition, these composites are extremely abrasive; consequently tool wear 

is one of the major problems encountered in CFRP machining. Poor cutting conditions 

produce increased specific cutting energies and higher tool temperatures, resulting in higher 

tool wear rates (Boothroyd et Knight, 2006). Choosing the appropriate conditions, such as 
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feed rate, cutting speed, and lead angle, in the case of multi axis machining is thus very 

important.  

In recent years, many studies have been carried out to provide a better understanding 

regarding the effects of cutting conditions in CFRP machining on the quality of machined 

surfaces. Devim and Reis (Davim et Reis, 2005) investigated the effects of milling 

parameters on surface roughness and machining damage. They concluded that surface 

roughness (Ra) increases with the feed rate and decreases with the cutting speed. It was also 

found that the feed rate presents the highest statistical and physical influence on surface 

roughness and on delamination factor, respectively. In another study, El-Hofy et al. (El-Hofy 

et al., 2011) investigated the effects of different slotting parameters, such as tool materials 

(WC & PCD) and the cutting environment (chilled air& dry) on the surface roughness and 

integrity, using 3D roughness parameters (arithmetical mean height Sa and maximum peak to 

valley height St). According to the results of their research, the combination of low cutting 

speeds and high feed rates was recommended in view of improving surface roughness, with 

the feed rate being a significant factor. The effect of the feed rate on the surface roughness 

was also found to be significant from a study that was carried out by Chatelain et al. 

(Chatelain, Zaghbani et Monier, 2012). Sheikh-Ahmad et al. (Sheikh-Ahmad, Urban et 

Cheraghi, 2012) carried out an experimental study aimed to determine the effects of cutting 

conditions on machining quality during the edge trimming of CFRP. They demonstrated that 

the surface roughness and average delamination depth increase with an increase in the feed 

rate and decreases with an increase in the spindle speed.  

Cutting forces are among the important factors in machining. They influence the process 

stability, part quality, cutting temperature, and tool wearing condition (Zaghbani et al., 

2012a). Colligan and Ramulu (Colligan et Ramulu, 1999) studied the edge trimming of 

graphite/epoxy with diamond abrasive cutters and demonstrated that cutting forces increase 

with the material removal rate (where, V is cutting speed, f is feed rate and d is depth of cut).  

Sreejith et al.’s (Sreejith et al., 2000) experiments examining the face turning of FRP 

showed that variations of cutting forces/specific cutting pressure is not uniform over the 

cutting speed, and the moderate cutting speeds (200-300 m/min) are more suited for the 
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machining of CFRP. Zhang (Zhang, 2009) investigated the machining of long fiber 

reinforced polymer matrix composites and found that cutting forces became greater when the 

depth of cut increases. Rusinek (Rusinek, 2010) studied the milling process of CFRP and 

concluded that the cutting force rises with an increase in the feed rate. Wang et al. (Wang et 

al., 2011) studied CFRP milling using a PCD tool, and showed that good surface quality and 

low delamination could be achieved in high speed milling of CFRP by using PCD tool. They 

found that cutting forces are an important factor for controlling surface roughness; they also 

observed that the surface roughness tends to increase with the cutting forces up to 250 N, 

followed by a decrease when the cutting forces continue to rise from 250N to 400 N. 

 
 

Figure 3-1 CFRP milling, a) experimental setup, b) tool lead angle  
 

The lead angle is the rotation of the tool axis about the cross-feed axis (Ozturk, Tunc et 

Budak, 2009) (Figure 3-1). This angle has a significant effect on process mechanics and 

dynamics, which have not been studied in CFRP milling until now. The study of the effect of 

the lead angle on metal milling has shown that the cutting geometry, mechanics, and 

dynamics vary drastically and non-linearly with the lead angle (Ozturk, Tunc et Budak, 

2009). Despite of all the researches that have been carried out to provide a better 

understanding of the machining of fiber reinforced polymers, there are still many challenges 

with CFRP machining.  



31 

This work presents some experiments that have been carried out on CFRP to study the 

optimum condition for the multi-axis milling of these materials and investigates the effects of 

different parameters such as the cutting speed, the feed rate, and the lead angle on the 

resulting cutting forces, surface quality, and machining damages. 

3.3 Materials and methods  

A set of experiments was carried out to provide a better understanding of the effects of 

machining parameters on surface quality and cutting forces. A high performance carbon fiber 

epoxy prepreg having a 64% fiber volume content was used to produce stacks of 24 plies that 

were autoclave-cured to obtain composite plates with a final average thickness of 

approximately 3.5 mm. Quasi-isotopic laminates are an important class of composites, and 

those that are most familiar to aerospace industries. With such laminates, the elastic 

properties are independent of orientation and stiffness, compliance and all engineering 

constants are almost identical in all directions (Daniel et Ishai, 2006; Soden, Hinton et 

Kaddour, 1998). The symmetric stacking sequence [90/-45/45/0/(±45)2/0/-45/45/90]s of the 

plies was such as to provide a laminate with in-plane quasi-isotropic properties (Figure 3-2).  

 
 

Figure 3-2 The layup of multidirectional CFRP 
 

This layup is balanced and symmetric, and as a result, extension/bending coupling (Bij) 

and shear coupling stiffnesses (Ais) are zero, and because of the fine ply distribution, the 
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torsion coupling (Dis) is relatively low (i, j= x, y, s; the subscript s denotes shear stress in the 

x-y plane, and subscripts the x and y denote normal strains in the x- and y- directions, 

respectively). Because of these characteristics, warpage and unexpected distortion are 

avoided and interlaminar stresses reduced (Daniel et Ishai, 2006). 

The experiments were carried out using a Huron K2X8 five-axis CNC machine with a 

maximum spindle speed of 24,000 rpm under different cutting speeds, feed rates and lead 

angles under dry cutting condition, while keeping the axial depth of cut and radial depth of 

cut (or width of cut: distance between milling passes) constant and equal to 1.4 and 0.71 mm, 

respectively. 

Table 3-1 Description of tool geometries 
 

Tool material Number 
of flouts 

Shank 
diameter 

Flute 
Length 

Overall 
length 

Helix 
angle 

Rake 
angle 

Overall 
length 

PCD brazed inserts 2 3/8" 1/2" 4" 0 
 

24° 4" 

 

The cutting mode was up-milling with a 3/8 inch diameter ball end mill (LMT. 

ONSRUD, Waukegan, USA) having two flutes with polycrystalline diamond (PCD) brazed 

inserts (Figure 3-3). Table 3-1details the tool geometry. Different cutting conditions were 

studied including: the cutting speed (100 to 500 m/min), the feed rate (0.063 to 0.254 

mm/rev) and the lead angle (-10 to +10º), as can be seen in Table 3-2. In this table, the 

cutting speed levels are calculated from the tool shank diameter. Each experimental run was 

repeated three times, with the same conditions, to evaluate the repeatability of the 

experiments.  

 
 

Figure 3-3 Two-flute polycrystalline diamond (PCD) ball end mills 
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A Kistler 9255B(#3) three-axis dynamometer table (Kistler Group, Winterthur, 

Switzerland), connected to charge amplifiers, type Kistler 5010, was used for measuring the 

cutting forces during machining. The experimental setup is shown in Figure 3-1. 

Commercially available dynamometers typically specify a bandwidth below the first 

natural frequency of the dynamometer structure (Burton et al., 2004). The Kistler 9255B 

dynamometer table has a nominal natural frequency (fn) equal to 2 kHz in x- and y- 

directions and 3.3 kHz in the z- direction (Kistler-Group, 2009). 

Table 3-2 Cutting parameters 
 

Cutting speed (m/min) Spindle speed (RPM) Feed rate (mm/rev) Lead angle (º) 
100 
175 
250 
375 
500 

3341 
5848 
8354 

12531 
16709 

0.063 
0.158 
0.254 

-10 
-5 
0 
5 

10 
 

Any machining operations reaching this range may lead to cutting force signals which 

are distorted because of the influence of the dynamic behavior of the dynamometer. Thus, the 

determination of the passing bandwidth is a very important step for an accurate force 

measurement during milling with high cutting speed. Zaghbani et al. (Zaghbani et al., 2012a) 

studied the dynamometer behavior of the Kistler 9255B (3#) dynamometer table with the 

same setup and calibration method as the ones used in the present study. They showed that 

the cutting force measurement setup has a passing bandwidth less than 1 kHz in the z- 

direction and 2 kHz in x- and y- directions. In the case of the z- direction (lower passing 

bandwidth) , the highest tooth passing frequency should therefore not be higher than 1 kHz, 

which corresponds to a spindle speed of 450 Hz for a two-tooth cutter (27000 r/min). In this 

study, all spindle speeds were lower than 27000 RPM (800 m/min for a tool with 3/8 inch 

diameter), according to Table 3-2. The roughness of the machined surfaces was measured 

using a Mitutoyo SJ400 contact profilometer (Mitutoyo Corporation, Tokyo, 

 Japan) (Figure  3-4). 
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Figure 3-4 Measuring of surface roughness 

 
Three readings were taken for each surface over an evaluation length of 12.5 mm, at 

regular intervals in a transverse direction to the cutting (feed direction), and their average was 

calculated. The measured values of Ra (arithmetic average height) and Rt (total height of the 

roughness profile) in different cutting conditions were compared in order to investigate the 

effect of cutting conditions on the surface quality.  

Table 3-3 indicates the average of measured resultant cutting forces and surface 

roughness for three times repetition of each condition. The surfaces were also examined 

using a Keyence VHC-500F type digital microscope (Keyence Corporation, Osaka, Japan), 

as well as Hitachi S-3600N electronic microscope (Hitachi Science Systems Ltd, Tokyo, 

Japan) [scanning electron microscopy (SEM)]. 

3.4 Results  

3.4.1 Effects of feed rate and cutting speed on surface roughness 

Surface morphology and integrity depend on the machining process and workpiece 

characteristics such as the cutting speed, the feed rate, the fiber type and volume content, the 

fiber orientation and the matrix type (Sheikh-Ahmad, 2008). 

Figure  3-5 and Figure 3-6  show the effects of the feed rate and cutting speed on the 

average surface roughness (Ra) and total roughness (Rt), respectively. When comparing both 
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figures, it is obvious that the variations of Rt and Ra with the cutting speed follow the same 

trends. All the roughness results will therefore be discussed for Ra values alone. As can be 

seen, Ra increases with an increase in the feed rate. 

Table 3-3 Values of resultant cutting force (Fc) and surface roughness (Ra) as a function of 
the cutting parameters (average of three times repetition) 

 
Test No.  Cutting speed 

(m/min)  
Feed rate 
(mm/rev)  

Lead 
angle (º) 

Fc (N)  Ra (µm) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
35 
35 

100 
175 
250 
375 
500 
100 
175 
250 
375 
500 
100 
175 
250 
375 
500 
100 
175 
250 
375 
500 
100 
175 
250 
375 
500 
100 
175 
250 
375 
500 
100 
175 
250 
375 
500 

0.063 
0.063 
0.063 
0.063 
0.063 
0.158 
0.158 
0.158 
0.158 
0.158 
0.254 
0.254 
0.254 
0.254 
0.254 
0.063 
0.063 
0.063 
0.063 
0.063 
0.063 
0.063 
0.063 
0.063 
0.063 
0.063 
0.063 
0.063 
0.063 
0.063 
0.063 
0.063 
0.063 
0.063 
0.063 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-10 
-10 
-10 
-10 
-10 
-5 
-5 
-5 
-5 
-5 
5 
5 
5 
5 
5 

10 
10 
10 
10 
10 

60.30 
62.66 
81.52 
97.79 
94.05 
83.02 
69.80 
90.05 
120.42 
116.69 
80.90 
84.04 
123.44 
145.63 
138.17 
65.94 
70.76 
62.51 
75.37 
80.00 
75.86 
81.25 
68.16 
95.48 
82.39 
83.57 
93.86 
96.32 
131.73 
90.37 
74.83 
72.57 
79.06 
96.09 
90.26 

2.69 
2.30 
1.89 
1.75 
1.87 
4.70 
3.44 
2.73 
2.82 
2.74 
4.76 
4.19 
4.53 
5.38 
5.01 
2.50 
2.68 
2.22 
2.21 
2.56 
3.31 
3.59 
3.04 
2.24 
2.28 
1.85 
1.86 
2.07 
1.96 
2.02 
2.25 
2.17 
2.22 
2.40 
2.25 
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The dependence of the surface roughness on the cutting speed is more complex. 

However, it could generally be concluded that for lower cutting speeds (100 and 175 m/min), 

the surface roughness decreases by increasing the cutting speed. 

 
 

Figure 3-5 Effects of feed rate and cutting 
speed on the Ra, 0º lead angle 

 

 
 

Figure 3-6 Effect of feed rate and cutting 
speed on the Rt, 0º lead angle 
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Figure 3-7 Effects of feed rate and cutting 
speed on the cutting force, 0º lead angle 

 
Increasing the cutting speed to more than 250 m/min does not have a significant effect 

on the surface roughness for lower feed rates (0.063 and 0.158 mm/rev). The minimum 

surface roughness values were achieved with a low feed rate (0.063 mm/rev) and higher 

cutting speed (250-500 m/min). For a higher feed rate (0.254 mm/rev), the roughness 

diagram has a minimum point at 175 m/min and a maximum point (point 2) at 375 m/min 

cutting speed. Increasing the feed rate and cutting speed increases the cutting temperature 

(Sreejith et al., 2000), which can lead to softening and burning of the matrix material 

(Hamedanianpour et Chatelain, 2013). Therefore, decreasing the surface roughness for higher 

feed rates (0.158 and 0.254 mm/rev) at a 500 m/min cutting speed might be explained by 

adhering of the uncut fibers to the softened matrix under high cutting temperatures. 

3.4.2 Effects of feed rate and cutting speed on cutting force 

According to the literature, cutting forces generally increase with an increase in the feed 

rate, but the dependence of cutting forces on the cutting speed is not uniform for different 

types of fiber reinforced plastics (Sheikh-Ahmad, 2008). Figure 3-7 illustrates the effect of the 

feed rate and cutting speed on the resultant cutting force in our experiments. It can be seen 

that the cutting force increases with an increase in the feed rate, and there is a greater 

influence on the cutting force for higher cutting speeds.  
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Figure 3-8 Effect of cutting speed on the quality of machined surface, lead angle 
0º, a) Cutting speed 250 m/min, feed rate 0.063 mm/rev, b) Cutting speed: 375 

m/min, feed rate=0.254 mm/rev 
 

The variation of cutting forces is not uniform over the cutting speed and can be studied in 

three cutting speed ranges, including I. low cutting speeds (100-175 m/min), II. moderate 

cutting speeds (175-375 m/min), and III. high cutting speeds (375-500 m/min). In range I, the 

effect of cutting speed on resultant cutting force is not significant, but in range II, the cutting 

force rises with the cutting speed.  In the third range, the cutting force diminishes when the 

cutting speed increases. The non-uniform variation of the cutting force to cutting speed is 

consistent with other studies (Hamedanianpour et Chatelain, 2013; Sheikh-Ahmad, 2008; 

Zhang, 2009). The rate of variation of the cutting forces with the cutting speed is related to 

cutting temperatures. At low cutting speeds, the cutting temperatures are not high enough to 

soften the polymer matrix, and dry friction predominates. The softening/degrading of the 

matrix in the cutting zone occurs at a critical speed and causes a reduction in cutting forces 

(Sheikh-Ahmad, 2008). Figure 3-7 shows that this critical speed is probably reached in range 

III, where the cutting forces become almost independent of the cutting speed.  

Among the conditions resulting in lower roughness (feed rate 0.063 mm/rev and cutting 

speeds 250-500 m/min), point 1 in Figure 3-5 and Figure 3-7 has the lowest cutting force, 

which produces greater process stability and part quality. Therefore, this condition is 

recommended for the surface machining of CFRP with this cutting tool. A comparison of the 

surface quality in point 1 with that in point 2 (the point with the highest surface roughness 

and cutting force) in Figure 3-8 shows that much damage occurs using a high feed rate.  
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3.4.3 Effects of lead angle on surface roughness and cutting force 

The study of the effect of the lead angle on the surface roughness showed that it varies 

non-linearly with the lead angle and that variation depends on the cutting speed. Figure 3-9 

shows the effect of the lead angle on the surface roughness for different cutting speeds and a 

feed rate of 0.0635 mm/rev.  

 
 

Figure 3-9 Effect of lead angle on the 
roughness Ra for different cutting speeds 

(feed=0.0635 mm/rev) 
 

The minimum Ra is achieved for a lead angle of 5° for low cutting speeds (100 and 175 

m/min) and 0° for higher cutting speeds (250-500 m/min). The diagram in Figure 3-9 

illustrates that the variability in roughness curves is higher for negative lead angles. It is 

shown that the roughness curves for lower cutting speeds (100, 175 and 250 m/min) have 

high amplitudes as compared to those for higher cutting speeds (375 and 500 m/min). In 

other words, the sensitivity of roughness to the lead angle is higher for the low cutting 

speeds. Figure 3-10 shows the effect of the lead angle on the resultant cutting forces for 

different cutting speeds and a feed rate of 0.063 mm/rev. As can be seen, the variation of the 

cutting force with the lead angle is not uniform for all cutting speeds. However, the minimum 

cutting forces were achieved at the lead angle 0º for low cutting speeds (100, and 175 m/min) 

and -10º for higher cutting speeds (250, 375 and 500 m/min). 
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Figure 3-10 Effect of lead angle on the 
cutting force, (feed= 0.063 mm/rev) 

Figure 3-11 shows the SEM images of a machined surface with different lead angles. As 

can be seen, the best quality surface was achieved with a lead angle equal to 0 and -10 degree 

where the roughness and cutting force are respectively at minimum values. More damage, 

such as fiber breakage, fiber de-cohesion and matrix damage is observed in the case of 5º 

lead angle while the roughness and cutting force have maximum values. 

3.5 Conclusions 

In this paper, surface milling experiments were carried out on carbon fiber reinforced 

laminates in order to study the effects of cutting parameters on the cutting force and surface 

quality, and to find the optimum conditions for this operation type using a PCD two-flute ball 

nose end mill. Based on the presented results, the following conclusions are drawn:  

•  The surface roughness increases with an increase in the feed rate for all cutting speeds. 

•  At lower cutting speeds (100 and 175 m/min), the surface roughness decreases with an 

increase in the cutting speed, while increasing the cutting speed to more than 250 m/min 

has no significant effect on the surface roughness for lower feed rates (0.063 and 0.158 

mm/rev). 
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Figure 3-11 SEM images of machined surface with different lead angles (cutting 
speed 250 m/min, feed rate 0.063 mm/rev) 

 
• The cutting force increases with the feed rate, but the variation of cutting forces showed 

no consistent trend over the cutting speed range evaluated. However, the effect of the 

cutting speed on cutting force is more significant for moderate cutting speed values (175-

375 m/min), while improving the cutting force. 

• The variation of the cutting force and surface roughness with the lead angle is non-linear 

and the minimum values are found at the 250 m/min speed and 0.0635 mm/rev feed rate, 

for lead angles equal to 0º and -10º, respectively. This latter value is unexpected since it is 

quite an unusual lead angle in multi-axis machining. 

• Instability in the roughness diagram increases when using a negative lead angle. On the 

other hand, using a positive lead angle produces higher cutting forces. 
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4.1 Abstract  

The surface machining of Carbon Fiber Reinforced Plastics (CFRP) materials is a 

challenging process, given the heterogeneity and anisotropic nature of composites, which, 

combined with the abrasiveness of the fibers, can produce some surface damage and 

extensive tool wear. The cutting temperature is one of the most important factors associated 

with the tool wear rate and machinability of these materials, which are also affected by the 

mechanical and thermal properties of the workpiece material and the cutting conditions. In 

this work, the cutting temperature, cutting forces and composite surface roughness were 

measured under different cutting conditions for the end milling of unidirectional CFRP. 

Cutting speeds ranging from 200 to 350 m/min, a feed rate of 0.063 mm/rev, fiber 

orientations of 0, 45, 90 and 135 degrees, and a 0.5 mm depth of cut were considered. The 

results show that the cutting speed and fiber orientation have a significant influence on the 

cutting temperature and cutting forces. The maximum and minimum cutting forces and 

temperatures were achieved for fiber orientations of 90 and 0 degrees, respectively. 

Keywords: Surface machining, carbon fiber reinforced plastics, cutting temperature, 

cutting forces, surface roughness 
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4.2 Introduction 

Carbon Fiber Reinforced Plastics (CFRP) constitute an important class of composite 

materials in the aerospace industry due to their superior properties, such as high strength and 

stiffness, a long fatigue life, a low density and high corrosion and wear resistances. Because 

of their low (close to zero) linear thermal expansion coefficient, CFRP materials have a high 

degree of dimensional stability in a wide range of temperatures (Gay et Hoa, 2007; Shalin, 

2012). Combined to their excellent mechanical properties, these composites are largely used 

for structural parts of airplanes. For example, 52% of the weight of Airbus A350, 50% of the 

Boeing 787, and 46% of the Bombardier CSeries consist of composite materials such as 

CFRP. They are increasingly used for different aircraft parts, such as wing boxes, fuselages, 

ailerons, wings, spoilers, vertical stabilizers, cowlings, traps and struts (Daniel et Ishai, 2006; 

Girot et al., 2009). About 80% of CSeries wing is in composite materials, specifically the 

torque box and wing skins that are made of CFRP (Marsh, 2011).  

Even though CFRP components are usually produced to near net-shape, for several 

manufacturing processes, part machining, trimming, milling, and drilling are often required 

to remove excess materials and ensure the components meet the dimensional requirements. 

This is required not only for assembly, but also to produce high quality part surfaces with 

controlled tolerances (Sheikh-Ahmad, 2008). Despite the unique physical and mechanical 

properties of CFRP, their machining is difficult because the fibers are brittle, they are 

heterogeneous and their behavior is anisotropic at the ply scale (Isbilir et Ghassemieh, 2012). 

Damages such as fiber pullout, fiber fragmentation, matrix softening/melting, stress 

concentrations, micro cracking, burring, fuzzing, and delamination are mainly observed after 

machining (Ferreira, Coppini et Miranda, 1999; Ghafarizadeh, Chatelain et Lebrun, 2014; 

Isbilir et Ghassemieh, 2012; Wang et Zhang, 2003).  

A number of researchers have studied the machining of CFRP materials in order to 

provide a better understanding of the effects of different cutting parameters on the cutting 

force, machining quality and cutting temperature. Devim and Reis (Davim et Reis, 2005) 

studied the effects of milling parameters on surface roughness and machining damages. Their 

results showed that surface roughness increases with the feed rate and decreases with the 
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cutting speed. Lopez De Lacalle et al. (De Lacalle et al., 2009) investigated the cutting forces 

during CFRP milling and concluded that the specific cutting force for CFRP milling is much 

lower than that of steel or aluminum alloys. They suggested that high cutting force and the 

abrasive nature of the reinforcement causes high tool wear rate. El-Hofy et al. (El-Hofy et al., 

2011) also found that the fiber orientation, feed rate, and cutting speed have significant 

effects on machined surface roughness and integrity. According to their results, while high 

cutting speeds and low feed rates are recommended for CFRP edge trimming, a combination 

of low cutting speeds and high feed rates was recommended for reducing surface roughness 

during CFRP slot milling, with the feed rate being a significant factor. Wavy surfaces were 

observed for plies oriented at 45°, while those at 90° and 135° suffered from matrix cracking 

and fiber pull-out due to high cutting forces and matrix softening. The best surface was 

achieved where the fibers were parallel to the cutting direction (0°). In another research, 

Sheikh-Ahmad et al. (Sheikh-Ahmad, Urban et Cheraghi, 2012) studied the effects of cutting 

conditions on machining quality during the edge trimming of a multidirectional CFRP 

laminate. They concluded that the best surface quality in terms of surface roughness (in a 

direction parallel to machined edge) and delamination depth is obtained using small feed 

rates and high cutting speeds. Through experimentations, Rusinek (Rusinek, 2010) described 

the relations between the cutting forces and cutting process parameters in the milling of a 

carbon fiber reinforced plastics (CFRP) using epoxy as matrix. He showed that the cutting 

force rises with an increase of the feed rate for the milling of CFRP. Ghafarizadeh et al. 

(Ghafarizadeh, Chatelain et Lebrun, 2014) studied the effects of different cutting conditions 

on surface quality and cutting forces in CFRP milling. The best surface quality in terms of 

surface roughness and damage was achieved using moderate cutting speeds (250-375 

m/min), lower feed rates (0.063 and 0.158 mm/rev) and a 0° lead angle.  

The cutting temperature is an important factor in the machining of composite materials. 

It influences the quality of the machined surface and tool wear. Cutting temperatures are 

influenced by the cutting speed, the depth of cut, the tool and workpiece materials, the feed 

rate, and the fibers orientation (Sheikh-Ahmad, 2008). Experimental investigations on 

drilling of CFRP composite laminates carried out by Chen (Chen, 1997) showed that the 

flank surface temperature of a drill increases with increasing cutting speed and decreasing 
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feed rate. Yashiro et al. (Yashiro, Ogawa et Sasahara, 2013) measured the cutting 

temperature during machining of a CFRP composite laminate and the temperature 

distribution through the laminate thickness during machining. They used three measurement 

methods: one using an infrared camera, a second one using a tool-workpiece thermocouple, 

and a third one using embedded thermocouples between the layers of the composite. Their 

observations showed that the temperature at the tool-workpiece contact point reached 180 °C 

(the glass transition temperature) at 25 m/min of cutting speed, and then increased to 300 °C 

at 50 m/min. The cutting temperature tends to stabilize and remain constant when the cutting 

speed was increased further. The cutting temperature in the workpiece material was relatively 

low (104 °C) compared to the tool-workpiece contact point, even at high cutting speeds (300 

m/min). In a recent research, Liu et al. (Liu et al., 2014) investigated the workpiece 

temperature variation in helical milling of CFRP. They concluded that the workpiece 

temperature increases with increasing spindle speed and axial cutting depth. They also 

showed that the axial cutting depth has more influence on the temperature variation of the 

workpiece than spindle speed, while the influence of the tangential feed per tooth is less than 

the other factors.  

Notwithstanding all the research that has been carried out on some machining process 

such as trimming and drilling of fiber reinforced polymers, few papers have covered the 

effect of cutting temperature in the surface milling of CFRP. In contrast to other machining 

processes such as trimming and drilling, the machined plane is parallel to the stack of plies. 

This work presents the results of experiments carried out on a CFRP laminate to study the 

effects of different parameters, especially the cutting speed and fiber orientation, on the 

resulting cutting forces, cutting temperature, surface quality, and machining damages. The 

objective is to provide a better understanding of the relationship between these parameters 

and the surface quality. Based on SEM observations, this study also explains the effects of 

cutting forces on the surface integrity and machining damages during surface milling of 

CFRP materials. 
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4.3 Methodology 

A high performance carbon fiber epoxy unidirectional prepreg (P2053F-10) with fiber 

volume content (Vf) of 60% was used to obtain unidirectional fiber composite plates having a 

final average thickness of approximately 6.3 mm. The prepreg has a surface density of 100 

g/m2 and the fiber weight content (Wf) of 70%. The plates were cured in autoclave following 

the cure cycle recommended by the supplier. Table 4-1 shows the mechanical properties 

obtained from the supplier for the unidirectional laminate and the physical properties of the 

carbon fiber used in the composite for the surface milling experiments.  

Table 4-1 Mechanical and physical properties of CFRP (reported by supplier) 
 

CFRP unidirectional laminate (TC-09-U)  Carbon Fiber T800HB-12000 (C 96 %) 
 Fiber 

direction  
Transverse 
direction  

 Tensile strength (MPa) 5490 

Tensile strength (MPa) 1388.0 48.2  Tensile modulus (GPa) 294 
Tensile modulus (GPa) 122.6 7.010  Elongation (%) 1.9 
Compressive strength 
(MPa) 

551.69   Density (g/cm3) 1.81 

Compressive modulus 
(GPa) 

60.9   Specific Heat (Cal/g⋅˚C) 0.18 

Apparent interlaminar 
shear 
strength (N/mm²) 

45.9   coefficient of thermal expansion 
(α⋅10-6/˚C) 

-0.56 

Specific gravity (g/cm3) 1.552   Thermal Conductivity 
(Cal/cm⋅s⋅˚C) 

0.0839 

 

The experiments were carried out on a Huron K2X10 three-axis CNC machine with a 

maximum spindle speed of 28,000 rev/min. In the previous research of Ghafarizadeh et al. 

(Ghafarizadeh, Chatelain et Lebrun, 2014), the effects of different lead angle on the cutting 

forces, surface quality and damages were studied using ball end mill and its results showed 

that the best surface quality was achieved with a lead angle equal to 0 degree.  

As a continuation of our previous work, machining experiments were carried out in 0 

degree lead angle and with a ball end mill. The up-milling cutting mode was used, along with 

a 10 mm diameter solid carbide ball end mill with CVD (chemical vapor deposition) 

diamond coating, made of two flutes with a 30 degree helix angle. 
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Figure 4-1 CFRP milling setup 
 

Figure 4-1 shows the CFRP milling setup. Two K-type thermocouples (made from 

nickel-chromium wires each of 0.076 mm diameter (0.003 inch), as in BS1041 code for 

temperature measurement, were used for measuring the temperature during machining. The 

thermocouples were installed on both edges of the tool, at 0.7 mm from the tool tip. For all 

experiments, the axial depth of cut was maintained constant at 0.5 mm, so the thermocouples 

were located at a distance of 0.2 mm from the cutting area. For this axial depth of cut (0.5 

mm), the tool radial engagement into the workpiece was maintained to 2.534mm (shown in 

Figure 4-2).  

The tips of the thermocouples were mounted on the edges of the tool using a high 

thermal conductivity paste (1.59 W/m-K) as shown in Figure 4-3. The temperature data were 

transmitted from the tool to the stationary receiver (M320 transmitters and receivers provided 

by the Michigan Scientific Corporation) via a radio frequency (RF) signal. After detection by 

the receiving antennas, the signals were converted to analog signals corresponding to the 

temperature. A low pass filter in the receiver provided a bandwidth of 1000 or 100 Hz. 
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Figure 4-2 The schematic of the milling process geometry 
   

 
 

Figure 4-3 Cutting tool 
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Figure 4-4 Measuring of cutting temperature and cutting force 

  
Figure 4-4 shows the cutting forces and temperature measurement system used during 

machining. Previous research showed the effects of different cutting conditions, such as the 

cutting speed, the feed rate, and the lead angle, on the cutting forces and surface quality 

(Ghafarizadeh, Chatelain et Lebrun, 2014). A better surface quality was achieved using a 

moderate cutting speed and a lower feed rate when milling CFRP. 

In the present work, the cutting speeds were therefore selected between 200-375 m/min 

(moderate cutting speeds), while the feed rate was kept constant at 0.063 mm/rev (lowest 

feed rate). The milling experiments are carried out with four different fiber orientations (the 

angle between carbon fibers and feed direction) of 0, 45, 90 and 135 degrees as described in 

Figure 4-5.  

 
 

Figure 4-5 Fiber orientation angle in milling experiments 
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Table 4-2 Cutting conditions 
 

Cutting 
speed 
(m/min) 

Spindle speed 
(RPM) 

Maximum effective  
cutting speeds 
(m/min)* 

Fiber 
orientation (°) 

Feed rate 
(mm/rev) 

Cutting 
condition 

200 
250 
300 
375 

6366 
7958 
9549 
11937 

87.1 
108.9 
130.7 
163.4 

0 
45 
90 
135 

0.063 
 

Dry 

* The effective cutting speed in the maximum diameter of tool engaged into the workpiece (4.359 mm) 
 

Table 4-2 details the cutting conditions used for the experiments. In this table, the cutting 

speed levels are calculated from the tool shank diameter. The effective cutting speed varies 

with tool diameter from zero in the tool tip to its maximum amount in the maximum diameter 

of tool engaged into the workpiece (point 1 in the Figure 4-2). The maximum effective 

cutting speeds are given in Table 4.2. A Kistler 9255B(#3) three-axis dynamometer table, 

connected to a Kistler type 5010 charge amplifier, was used for measuring the cutting forces 

during machining (Figure 4-4) The roughness of the machined surfaces was measured using 

a Mitutoyo SJ400 contact profilometer. Three readings were taken at regular intervals for 

each surface; each reading having 0.8 mm in length perpendicular to the feed direction, and 

an average value was calculated from the three readings (Figure 4-6). The measured values of 

Ra (arithmetic average height) under different cutting conditions were compared in order to 

investigate the effect of cutting conditions on the surface quality. The surfaces were also 

examined using a Keyence VHC-500F type digital microscope, Olympus LEXT OLS4000 

3D confocal laser microscope, as well as Hitachi S-3600N electronic microscope (scanning 

electron microscopy - SEM). 

4.4 Results and discussion   

4.4.1 Effects of cutting speed on the cutting force and cutting temperature 

CFRP composites are sensitive to moisture and using cooling lubricants in the machining 

of composites can cause some problems, such as swelling of the polymer and a chemical 

reaction of the polymer and coolant. CFRP are thus often machined in dry conditions, 

without coolants (Turner, Scaife et El-Dessouky, 2015). 
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Figure 4-6 Measuring of surface roughness using contact 
profilometer 

 
Dry machining produces an increase in temperature and generates thermal damage of 

machined surfaces (Weiert et Kempann, 2004). The cutting temperature is also a major factor 

that directly affects tool life (Li, Wang et Chu, 2013). Figure 4-7 shows the effect of the 

cutting speed on the maximum cutting temperature at different fiber orientations. As can be 

seen, the cutting temperature increases linearly with the cutting speed for all fiber 

orientations. The measured milling temperature in this research is lower than the cutting 

temperatures reported in other machining processes, such as drilling (Li, Wang et Chu, 2013; 

Weiert et Kempann, 2004; Yashiro, Ogawa et Sasahara, 2013), because of a lower axial 

depth of cut and a more efficient heat transfer in milling as compared to drilling. Because the 

temperatures were measured at 0.2 mm from the cutting edge; it could be argued that the 

temperature is higher at the cutting edge. However, because of the extremely high thermal 

conductivity of the CVD diamond coated film (1300<κ<2000 (Miranzo et al., 2002)), the 

measured temperature may be assumed representative of the cutting temperature at the 

cutting edge. Because of the brittle nature of CFRP, plastic deformation does not represent an 

important portion of the heat generated during machining compared to friction. Therefore, 

the main source of heat generation is the frictional work at the tool rake face and at the 

clearance face (Yashiro, Ogawa et Sasahara, 2013). 
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Figure 4-7 Effect of cutting speed on the maximum 
cutting temperature for different fiber orientations 

 
When the surfaces slide one over the other under load, the energy dissipated per unit 

time is the product of the friction force (F) and sliding speed (V), and this energy is 

converted into heat according to equation (4-1) (Shaw, 2005);  ܷ = ܨ × ܸ = ߤ × ܲ × ܸ (4-1) 

Where P is the applied load and µ the friction coefficient. Increasing the cutting speed 

raises the sliding speed of the tool on the workpiece surface, thus increasing heat generation 

according to the above equation. Because the temperature measured is lower than the glass 

transition temperature (Tg) of epoxy matrix (Figure 4-7) ; thus, and as mentioned by Yashiro 

et al. (Yashiro, Ogawa et Sasahara, 2013), heat energy generated is not consumed for phase 

transition, and the temperature increases at an approximately constant rate when increasing 

the cutting speed. The dependence between the cutting temperature (θc) and the cutting speed 

can also be expressed by: ߠ௖ ∝ ܸ௕ (4-2) 

Where b depends on the material (Sreejith et al., 2000). As can be seen in Figure 4-7, the 

cutting temperature increases linearly with the cutting speed over the 200-375 m/min cutting 

speed range; therefore, b in equation (4-2) is equal to 1.  
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The lines slope in Figure 4-7 indicate the rate of increase in temperature with the cutting 

speed. This rate is not constant for different fiber orientations, and this might be explained by 

the variation of friction coefficients (equation (4-1)) for different fiber orientations. The 

friction coefficient (µ) is not a constant parameter, and varies from 0.09 to 0.9 (for CFRP 

material), depending of machining parameters such as sliding speed, temperature, normal 

applied load, workpiece and tool materials, and fiber orientation. Generally, the friction 

coefficient increases with increasing fibers angle, temperature, and applied load, and 

decreases when increasing the sliding speed (Chardon et al., 2015; Cheng et al., 2009; 

Kukureka et al., 1999; Muhammad Nuruzzaman, Asaduzzaman Chowdhury et Lutfar 

Rahaman, 2011; Nak-Ho et Suh, 1979; Suresha et al., 2006). 

 
 

Figure 4-8 Effect of cutting speed on the 
maximum resultant cutting force for different 

fiber orientations 
 

The cutting forces constitute one of the important factors in machining. They influence 

the process stability, part quality, cutting temperature, and tool wearing condition (Zaghbani 

et al., 2012a). Figure 4-8 illustrates the effect of the cutting speed on the maximum resultant 

cutting force for different fiber orientations. The trend is the same for all fiber orientations, 

similar to the results reported in previous milling experiments on a quasi-isotopic 

multidirectional CFRP laminate (Ghafarizadeh, Chatelain et Lebrun, 2014). As shown in 

Figure 4-8, the cutting force increases with the cutting speed for speeds ranging from 200 to 
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300 m/min, and then decreases above 300 m/min. Because the cutting temperature increases 

with an increase in the cutting speed (Figure 4-7), this can influence the cutting force 

considering the influence of temperature on the mechanical properties of polymers.  

Generally, the mechanical properties of CFRP materials are function of the mechanical 

properties of the matrix and carbon fibers and decrease when the temperature increases. The 

strength of a CFRP composite made of epoxy decreases much more rapidly at higher 

temperatures (over 100° C) (Shalin, 2012). Therefore, decreases in the cutting force at higher 

cutting speeds might be explained by the softening of the material as cutting speed increases. 

4.4.2 Effects of fibers orientation on the cutting temperature and cutting force 

The cutting force and temperature are strongly influenced by the reinforcement volume 

fraction, reinforcement geometry, and orientation (Sheikh-Ahmad, 2008). Figure 4-9 

illustrates the effect of fiber orientation on the resultant cutting force. As shown, the 

maximum and minimum cutting forces are achieved for the 90 and 0 degree fiber 

orientations, respectively. 

 
 

Figure 4-9 Effect of fiber orientation on the 
maximum resultant cutting force for different 

cutting speeds 
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Figure 4-10 Effect of fiber orientation on the 
maximum cutting temperature at different 

cutting speeds 

 
This is consistent with the results of Figure 4-7 and Figure 4-8 for the temperature and 

cutting force. Figure 4-10 shows the effect of fiber orientation on the cutting temperature at 

different cutting speeds. As can be seen, the fiber orientation has a significant effect on the 

cutting temperature. This temperature increases with the fiber orientation from 0 to 90 

degrees, and then decreases with a further increase to 135 degrees. A comparison of Figure 

4-9 and Figure 4-10 demonstrates that both diagrams follow the same trends. The maximum 

temperature was measured when milling with a 90 degree fiber orientation (Figure 4-10), 

orientation for which the maximum force was observed (Figure 4-9). The maximum 

temperature and milling force are almost the same when comparing the results at 45° and 

135° fiber orientations.  

4.4.3 Effects of fibers orientation and cutting speed on surface quality 

Surface morphology and integrity depend on the machining process and workpiece 

characteristics, such as the cutting speed, the feed rate, the fiber type and volume content, the 

fiber orientation and the matrix type (Sheikh-Ahmad, 2008).  
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Figure 4-11 Effects of fiber orientation and cutting 
speed on surface roughness (standard deviations (σ) of 

0.06 to 0.33 µm) 

 
 

Figure 4-11 shows the effects of the fiber orientation and cutting speed on surface 

roughness. The machined surface roughness (Ra) was measured between 2.17 and 3.35 µm 

with corresponding standard deviations (σ) of 0.06 to 0.33 µm. The minimum surface 

roughness is achieved for 45° and 90° fiber orientations and a cutting speed of 250 m/min, 

and the maximum surface roughness for a fiber orientation of 135° and a cutting speed of 300 

m/min.  

As illustrated in Figure 4-7 and Figure 4-8, the resultant cutting force and cutting 

temperature for the fiber orientations of 45° and 135° are close to each other but the 

measured surface roughness for these orientations was completely different.  

Figure 4-12 illustrates the SEM photographs of machined surface as function of fibers 

orientation and cutting speed. It can be noticed their significant effects on machining 

damages and surface quality. As can be seen, more surface damages (including fiber fracture, 

fiber pullout, and fiber-matrix debonding) are observed at higher cutting speeds. The best 

surfaces were produced for 0 and 90 degree fiber orientations at lower cutting speeds (Figure 

4-12 (a), (c) and (e)).  
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Figure 4-12 Surface damages at different cutting speeds and Fiber orientation 
angle: Fiber fracture (F.F), fiber pullout (F.P), fiber/Matrix de-cohesion (F.D), 

loss of fibers (L.F) 
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A comparison of the surface roughness diagram (Figure 4-11)  and SEM images of 

Figure 4-12 demonstrates that the surface roughness alone may not be a sufficient indicator 

to evaluate the quality of the machined surfaces of CFRP materials. For example, for a 

cutting speed of 250 m/min, the measured surface roughness at 45° (point 2 in Figure 4-11) 

was lower than that at 0° (point 1 in Figure 4-11) but the observed surface quality seems 

better at 0° (compare Figure 4-12 (e) and (f)). In contrast to other machining processes such 

as trimming and drilling, the machined plane in surface milling is parallel to the stack of 

plies. As can be seen in SEM images of the machined surface (Figure 4-12), less major 

machining damages such as delamination and fiber pull out was observed in surface milling 

compared to the other machining process such as slotting (El-Hofy et al., 2011), trimming 

(Sheikh-Ahmad, Urban et Cheraghi, 2012) and drilling (Merino-Pérez et al., 2015).  

Figure 4-13 presents the cutting forces in the x, y and z directions during 0.022 second of 

milling as function of fibers orientation and cutting speed, in the steady state period. During 

this period, the tool makes 2.3, 2.9, 3.5, and 4.3 revolutions for 200, 250, 300 and 375 m/min 

cutting speeds respectively. The forces profile for each passing tooth of the tool and forces 

magnitude in different directions can be clearly identified. Each peak of the force profile 

presents the passage of a tooth. The horizontal and vertical axes (on the top and left side of 

the figure) represent the fiber orientation and cutting speeds, respectively. A comparison of 

the Figure 4-13 a-p demonstrates that the cutting force profiles vary with the cutting speed 

and fiber orientation angle. From the results presented in Figure 4-12 and Figure 4-13, it is 

noticed that lower cutting forces produce a better surface integrity. Figure 4-13 (f), (j), and 

(k) show higher cutting forces fluctuations (marked by double-headed arrows in Figure 4-13) 

compared to other cutting conditions. The high fluctuations observed under these conditions 

(especially in the z direction) are most probably due to a dynamic instability. The peak-to-

peak amplitude can be used to evaluate the force fluctuation. The highest peak-to-peak 

amplitude in the z direction was recorded for fibers at 45° with a cutting speed of 250 m/min 

(Figure 4-13 (f)). This axial cutting force is two times higher than that of clean cut conditions 

(Figure 4-12 (a) and (e)).  As shown in Figure 4-12 (f), for these conditions, the cutting 

process occurred in several layers and a poor surface quality was produced. 
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Figure 4-13 Cutting forces for different cutting speeds and fiber orientations 
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Figure 4-14 Cutting forces in time domain a) Fiber orientation angle 0° 
and cutting speed 200 m/min), b) fiber orientation angle 45° and cutting 

speed 250 m/min 

 

 
 

Figure 4-15 3D topography of surfaces machined with confocal laser microscope a) 
cutting speed 200 m/min and fiber orientation 0°, b) cutting speed 300 m/min and 

fiber orientation 45°, c) cutting speed 375 m/min and fiber orientation 45°, d) 
cutting speed 375 m/min and fiber orientation 90° 
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A stable cut is also characterized by a clean cutting force spectrum. Figure 4-14 shows 

the cutting forces in the time domain for a clean cutting condition (Figure 4-14(a): fiber 

orientation of 0° and cutting speed of 200 m/min) and an unstable cutting condition (Figure 

4-14 (b)) corresponding to the conditions of Figure 4-12 (f). The inharmonic cutting forces 

spectra in Figure 4-14 (b) confirms the process instability for this cutting condition, in 

contrast to the harmonic cutting forces spectra for a clean cut (Figure 4-14 (a)). 3D images of 

the machined surfaces by laser confocal microscope better show the surface topography in 

different conditions and confirm the observations made from the micrographs in Figure 4-12. 

For example, Figure 4-15 illustrates the surface topography for the clean cutting (a: cutting 

speed 200 m/min and fiber orientation 0°), the dynamic unstable cutting (b: cutting speed 300 

m/min and fiber orientation 45°) and the damaged surfaces obtained for a high cutting speed 

(c and d: cutting speed 375 m/min). Also, many damages such as fiber fracture, fiber pullout, 

and fiber/matrix debonding are observed in Figure 4-15 (c) and (d) for a high cutting speed. 

4.5 Conclusion  

In this paper, surface milling experiments were carried out on unidirectional carbon fiber 

reinforced laminates in order to study the effects of cutting parameters, such as the fiber 

orientation and cutting speed, on the cutting force, the cutting temperature, and surface 

quality. Based on the presented results, the following conclusions are drawn:  

• The cutting temperature increases linearly with the cutting speed for cutting speeds 

ranging from 200 to 375 m/min. 

• The maximum resultant cutting force is influenced by the cutting speed. The cutting 

force increases as the cutting speed increases from 200 to 300 m/min, and then 

decreases, with a further increase in cutting speed above 300 m/min. 

• The fiber orientation has significant effects on the cutting force and cutting temperature. 

Maximum and minimum cutting forces and cutting temperatures values are achieved at 

fiber orientations of 90 and 0 degrees, respectively.  
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• The minimum and maximum surface roughness values are achieved for 45° and 135° 

fiber orientations, respectively. 

• Based on SEM images, the best surface integrity produced using 0 and 90 degree fiber 

orientation angle and lower cutting speeds (200 and 250 m/min).  
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5.1 Abstract 

Despite increased applications of carbon fiber reinforced plastic (CFRP) materials in 

many industries, such as aerospace, their machining is still a challenge due to their 

heterogeneity and anisotropic nature. In this research, a finite element model is used to 

investigate the cutting forces, chip formation mechanism and machining damage present 

during the flat end milling of unidirectional CFRP. The material is modeled as an equivalent 

orthotropic homogeneous material, and Hashin theory is used to characterize failure in plane 

stress conditions. The friction coefficient between the tool and the composite material was 

assumed dependent on the carbon fiber orientation. A comparison of modeling and 

experimental results indicates that the model successfully predicts the cutting forces. The 

numerical model predictions of machining damage around the cutting area due to fiber 

compression damage and matrix cracking and the relation between damage extension and 

fiber orientation are confirmed through a comparison with SEM images of machined edges 

and surfaces.  

Keywords: Carbon fiber reinforced plastics, milling, finite element method, machining 

damage, cutting forces 
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5.2 Introduction 

Carbon fiber reinforced plastics offer high strength and stiffness-to-weight ratio, long 

fatigue life, low density and high corrosion and wear resistances, which make them an 

important class of composite materials in the many industries such as	aerospace, construction, 

and transportation industries, as well as medical and military applications (Daniel et Ishai, 

2006; Sheikh-Ahmad, 2008). CFRP components are usually produced to near net-shape, but 

some machining processes such as milling, drilling and trimming are often required to 

remove excess materials and bring the parts to the final size and shape (Davim, 2015). 

Machining CFRP materials is a challenging process, due to their heterogeneity and 

anisotropic nature, and can generate some damages such as fiber pullout, fiber fragmentation, 

matrix softening/melting, stress concentrations, matrix cracking, burring, and delamination.  

Experimental research of composite machining is not only time consuming and 

expensive, but also the carbon chips that are produced during machining of CFRP are 

dangerous for human health. In addition, interpretation of the experimental results is difficult 

due to complexity of the process and anisotropy of the composites (Soldani et al., 2011). 

Therefore, in recent years and with the improvement of computer technology, many 

researchers have focused on numerical modeling to study CFRP machining. The numerical 

modeling of fiber reinforced composites can be classified in two general approaches: (I) 

micromechanical approach where the composite is modeled as multi-phase material and (II) 

macro mechanical approach where the composite is modeled as an equivalent homogeneous 

material (EHM) (Dandekar et Shin, 2012). The micromechanical approach was used 

successfully to predict local defects (such as debonding) and cutting forces (Calzada et al., 

2012; Dandekar et Shin, 2008; Nayak, Bhatnagar et Mahajan, 2005; Rao, Mahajan et 

Bhatnagar, 2007a; Rao, Mahajan et Bhatnagar, 2007b). Nayak et al. (Nayak, Bhatnagar et 

Mahajan, 2005) presented two micro and macromechanical models and compared the 

predicted forces of both models with experimental results. They concluded that both models 

are able to predict the principal cutting force with good accuracy but the micromechanical 

models offer better estimations of thrust forces. They also indicated that the sub-surface 

damages and cutting forces increase with fibers angle.  
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Despite the advantages of the micromechanical approach, it has some limitations. The 

micro modeling is more complex than macro modeling and needs very high calculation time 

and precise details of fibers, fiber-matrix arrangements and their interfacial and physical 

properties (Dandekar et Shin, 2012). Therefore, many researchers have applied 

macromechanical approaches to model fiber reinforced composite orthogonal cutting (Arola, 

Sultan et Ramulu, 2002; Lasri, Nouari et El Mansori, 2009; Mahdi et Zhang, 2001b; Rentsch, 

Pecat et Brinksmeier, 2011; Santiuste, Soldani et Miguélez, 2010; Soldani et al., 2011). Lasri 

et al. (Lasri, Nouari et El Mansori, 2009) investigated the cutting of glass fiber reinforced 

plastics (GFRP) using Hashin, Maximum stress, and Hoffman failure criteria. The simulated 

principal cutting forces with Hashin criterion were closer to the experimental measurements, 

but the predicted thrust forces for all failure criteria were much less than experiments. 

Santiuste (Santiuste, Soldani et Miguélez, 2010) and Soldani (Soldani et al., 2011) confirmed 

the shortcoming of macromechanical modeling in predicting the thrust forces in orthogonal 

cutting of fiber reinforced plastics. Mkaddem et al. (Mkaddem et El Mansori, 2009; 

Mkaddem, Demirci et Mansori, 2008) developed a micro-macro model to combine the 

advantages of both approaches. They considered the composite material as a homogeneous 

material but the friction coefficient between the tool and the workpiece was assumed 

dependent to fiber orientation. Their model successfully predicted the sub-surface damages, 

cutting and thrust forces with lower mean error (6% for cutting forces and 26% for thrust 

forces) than another macromechanical model presented by Nayak et al. (17% for cutting 

forces 44% for thrust forces) (Nayak, Bhatnagar et Mahajan, 2005). Their modeling result 

demonstrated that the cutting forces increase with an increase of fibers angle, while the thrust 

force increases with fibers angle up to 45° and decreases to its minimum at 90°.  

To the authors’ knowledge, in spite the existence of many models proposed for 

simulating the orthogonal cutting of CFRP, there is no numerical model simulating the 

machining of CFRP, such as the surface milling process. Therefore, this work is an attempt to 

present the first numerical model for CFRP milling. In this research, a combined micro-

macro mechanical model has been developed to study the cutting forces, chip formation and 

machining damages during CFRP milling. In our approach, the composite material was 

modeled as an equivalent homogeneous material (like the macroscale approach). An adaptive 



72 

meshing approach was employed in the cutting zone and the friction coefficient between the 

tool and workpiece was assumed dependent to fibers orientation (like the microscale 

approach). For validation purposes, experimental milling tests have been performed and 

compared to the modeling results.  

5.3 Experimental procedure 

5.3.1  Composite Materials  

A high performance carbon fiber epoxy unidirectional prepreg (P2053F-10) from Toray 

Inc. with a surface density of 100 g/m2 and fiber volume content (Vf) of 60% was used to 

produce unidirectional fiber composite plates with a final average thickness of approximately 

6.3 mm. The plates were then post-cured in autoclave following the cure cycle recommended 

by the supplier. The mechanical and physical properties of the material were needed for the 

modeling. Therefore, compression, shear and tensile tests (according to ASTM D6641 

(ASTM, 2009),  ASTM D5379 (ASTM, 2012) and ASTM D3039 (ASTM, 2014), 

respectively) were carried out in both the fiber and transverse directions of the unidirectional 

composite, and the specific gravity, also required as a physical property, was measured based 

on ASTM D-792 (ASTM, 2008). The material properties used in the model are summarized 

in Table 5-1. 

Table 5-1 Mechanical and physical properties of CFRP unidirectional laminate (TC-09-U) 
 

Mechanical properties CFRP Method/ 

Reference 

Mechanical properties CFRP Method/ 

Reference 

Longitudinal modulus, E1 122.6 
GPa 

ASTM 
D3039 

Longitudinal shear strength, SL 76.7 
MPa 

ASTM 
D5379 

Transverse modulus, E2  7.01 
GPa 

ASTM 
D3039 

Transverse shear strength, ST 45.9 
MPa 

ASTM 
D5379 

In-Plane shear modulus, G12 12.6 
GPa 

ASTM 
D5379 

Fracture energy- fiber tension 91.6 
KJ/m2 

[20] 

Major  Poisson’s ratio  ν12 0.27  Fracture energy-fiber compression 79.9 
KJ/m2 

[20] 

Longitudinal tensile strength, XT 1388.0 
Mpa 

ASTM 
D3039 

Fracture energy-matrix cracking 0.22 
KJ/m2 

[20] 

Longitudinal compressive strength, 
XC  

551.6 
Mpa 

ASTM 
D6641 

Fracture energy-matrix crushing 1.1 
KJ/m2 

[20] 

Transverse tensile strength, YT 48.2 
Mpa 

ASTM 
D3039 

Specific gravity 1.552 
g/cm3 

ASTM D 
792 

Transverse compressive strength, YC 124.5 
Mpa 

ASTM 
D6641 
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Figure 5-1 Milling experiments set-up 

 

 
 

Figure 5-2 Cutting tool geometry 



74 

5.3.2 Milling process 

 The experiments were carried out on a Huron K2X10 three-axis CNC machine with a 

maximum spindle speed of 28,000 rev/min (Figure 5-1). A 3/8" Polycrystalline Diamond 

(PCD) flat end mill (Figure 5-2) was used for milling tests. Figure 5-2 (b) shows the tool 

geometry, including the rake and relief angles that were measured using a Keyence VHC-

500F type digital microscope. The average tool edge radius of 5 µm was measured by an 

Olympus LEXT OLS4000 3D confocal laser microscope (Figure 5-2 (d)). 

According to the results of the authors’ previous research works (Ghafarizadeh, 

Chatelain et Lebrun, 2014; Ghafarizadeh, Lebrun et Chatelain, 2015), a better surface quality 

can be achieved using a moderate cutting speed and a lower feed rate when surface milling 

CFRP. Therefore, in the present work, a moderate cutting speed of 250 m/min was used, 

while the feed rate was kept constant at 0.063 mm/rev (lowest feed rate). The axial depth of 

cut was maintained constant at 0.5 mm for all milling tests. The milling experiments were 

carried out with four different machining directions (defined in Figure 5-3(b) by the angle 

between carbon fibers and the feed direction) of 0, 45, 90 and 135 degrees. A Kistler 

9255B(#3) three-axis dynamometer table, connected to a Kistler type 5010 charge amplifier, 

was used for measuring the cutting forces during machining (Figure 5-1). The roughness of 

the machined surfaces was measured using a Mitutoyo SJ400 contact profilometer. The 

surfaces and edges of the machined slots were also examined using a Hitachi S-3600N 

electronic microscope (scanning electron microscopy - SEM).  

5.4 Numerical modeling 

5.4.1 Geometry, contact, meshing and analysis 

CFRP Milling is a three-dimensional process and involves geometrically complex 

operations. Thus, its modeling is very complex and requires huge computation time. A 

simplified two-dimensional orthogonal cutting model can describe the milling process quite 

well with lower computation time than 3D modeling. During milling with a flat end mill, 

most of the cutting is performed by the periphery of the cutter (Figure 5-3 (a)).  
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Figure 5-3 Numerical modeling set-up 

 
As can be seen in Figure 5-3b, the flat end milling process can then be approximated as 

the sum of a deck of 2D deformation-process sections. To reduce the computation time, a 

simplified geometry of one cutting flute was modeled for a small portion (Figure 5-3(c)) of 

the tool rotation and for different tool rotation angles: 30, 45, 60, 90, 120, 135, and 150°. In 

the actual milling process, the cutting edge tip travels on a trochoidal path as the resultant of 

the feed rate and spindle rotation. However, this path can be assumed circular for small chip 

thickness values (Özel et Altan, 2000). The conventional uncut chip thickness (hn(θ)) was 

calculated for different tool rotation angles (θ) by the following equation, based on the 

assumption of a circular tool path: ℎ௡ (ߠ) = ௭݂ sin  (5-1) ߠ

Where fz represents the feed per tooth (fz = f/Z, Z: Number of teeth) (Li et al., 2007).  
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The displacement of the workpiece bottom in the cutting and perpendicular directions, 

and the displacement of the workpiece extremities in the machining direction were restrained 

(Figure 5-3 (c)). The unidirectional CFRP was modeled as a homogeneous orthotropic 

material. A plane strain model is not appropriate for composite materials due to the out-of-

plane material displacement observed during the cutting process (Lasri, Nouari et El 

Mansori, 2009). A plane stress model was therefore considered, using continuum solid 

elements CPS4R available in the commercial finite element code ABAQUS/Explicit version 

6.12, allowing linear interpolation, reduced integration and automatic hourglass control. The 

milling tool was assumed to be a rigid body in order to save computational time (the elastic 

modulus of Polycrystalline Diamond material is 6 times greater than the elastic modulus of 

CFRP in the fiber direction (Ramulu et al., 1991)). In many research works, the orthogonal 

cutting process is modeled based on quasi-static analysis, focusing on the initial instant of 

cutting process (Arola et Ramulu, 1997; Arola, Sultan et Ramulu, 2002; Lasri, Nouari et El 

Mansori, 2009; Nayak, Bhatnagar et Mahajan, 2005; Ramesh et al., 1998; Rao, Mahajan et 

Bhatnagar, 2007b; Soldani et al., 2011).  The low strain rate dependence of CFRP materials 

due to their brittle nature supports this assumption (Lasri, Nouari et El Mansori, 2009).  

Thus, a quasi-static analysis was employed in the present study.  

A reference point controlled the movement of the cutting tool (Figure 5-3(d)). The tool 

was modeled with the geometry described in the previous section, with a rake angle of 8°, a 

clearance angle of 12° and an edge radius of 5 µm. Wang and Zhang (Wang et Zhang, 2003) 

found that there is a difference between the real and nominal depths of cut due to the 

bouncing back phenomenon. This phenomenon occurs when a certain part of the material 

below the tool is pushed down without cutting, partially producing an elastic spring-back 

after the tool passes through. Thus, in this model, the workpiece was configured with a round 

corner ahead of the cutting tool in order to take the bouncing back effect during cutting into 

account. As can be seen in Figure 5-3(c), the mesh of the workpiece was refined in the 

cutting zone surrounding the tool edge tip (mesh size of 10 µm, approximately equal to the 

fiber diameter). This mesh size was selected for having a good balance between accuracy and 

computation time. Arbitrary Lagrangian-Eulerian (ALE) adaptive meshing is a general 

formulation that combines the features of pure Lagrangian and pure Eulerian analysis. This 
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technique allows the mesh to move independently of the underlying material. Thus, it can 

control the element distortion and maintain a high-quality mesh, even in a process where 

large material deformations are involved, by allowing the mesh to move independently of the 

underlying material (Hibbitt, Karlsson et Sorensen, 2012). The ALE method was used in this 

research to reduce mesh distortion.  

5.4.2 Contact modeling  

The interaction between the work material and tool was modeled by using surface-node 

surface contact available in ABAQUS/Explicit. The tool was defined as the master object, 

and the workpiece as the slave object. Friction is an important phenomenon that affects the 

accuracy of predicted cutting forces in machining simulation. In the present model, the 

friction between the cutting tool and the workpiece was described by Coulomb’s friction law 

(Equation 5-2), where the frictional stress (τn) on the tool is proportional to the normal stress 

(σn) with a constant friction coefficient (μ), such that: ߬௡ = μߪ௡ (5-2) 

 Many researchers assume a constant coefficient of friction for all fiber orientations, 

such as 0.3 (Rao, Mahajan et Bhatnagar, 2007a; Rao, Mahajan et Bhatnagar, 2007b; 

Rentsch, Pecat et Brinksmeier, 2011), 0.4 (Arola, Sultan et Ramulu, 2002), or 0.5 (Lasri, 

Nouari et El Mansori, 2009; Santiuste, Soldani et Miguélez, 2010). Nayak and Bhatnagar 

(Nayak, Bhatnagar et Mahajan, 2005) showed that the friction coefficient increased by 

increasing the fibers angle using pin-on-disk tests (Figure  5-4). To enhance cutting force 

predictions, variable coefficients of friction (between 0.3 and 0.9) were determined for 

different fiber orientations according to Nayak et al.’s research (Nayak, Bhatnagar et 

Mahajan, 2005). 

5.4.3 Failure criteria 

Lasri et al. (Lasri, Nouari et El Mansori, 2009) compared the Hashin, Maximum stress 

and Hoffman failure criteria for the orthogonal cutting of FRP and concluded that cutting 

forces predicted using the Hashin failure criterion are closer to experimental results. 
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Figure 5-4 Variation of coefficient of friction with 
respect to fiber orientation (Mkaddem et El Mansori, 

2009; Nayak, Bhatnagar et Mahajan, 2005) 
  

Thus, Hashin theory was used to predict damage and failure modes in this research. This 

failure criterion presents four failure modes, including fiber tensile failure, fiber compressive 

failure, matrix cracking, and matrix crushing modes, according to the following equations 

(Hashin, 1980; Hashin et Rotem, 1973): 

Tensile fiber failure for σ11 ≥ 0 ቀߪଵଵ்ܺቁଶ + ߙ ቀ߬ଵଶܵ௅ ቁଶ ≤ 1 

 

(5-3) 

Fiber compression (σ11 < 0) ቀߪଵଵܺ஼ ቁଶ ≤ 1 

 

(5-4) 

Matrix cracking (σ22 > 0) ቀߪଶଶ்ܻ ቁଶ + ቀ߬ଵଶܵ௅ ቁଶ ≤ 1 

 

(5-5) 

Matrix crushing (σ22 > 0) ቀߪଶଶ2்ܵቁଶ + ൥ቆ ܻ஼2்ܵቇଶ − 1൩ ଶଶܻ஼ߪ + ቀ߬ଵଶܵ௅ ቁଶ ≤ 1 

 

(5-6) 
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Where σ11, σ22, and σ12 are the normal stresses in the fiber and transverse directions and 

the in-plane shear stress, respectively. All other variables (XT, XC, YT, YC, SL, and ST) are 

listed in Table 5-1. The onset of damage was predicted using Hashin’s failure criterion and 

material degradation was modeled by reducing the material stiffness to zero. Reducing the 

stiffness to zero occurs gradually in the modeling process by controlling damage variables, 

varying between 0 for the undamaged state, to 1, for the fully damaged state. The evolution 

law of the damage variable is based on the fracture energy dissipated during the damage 

process (Lapczyk et Hurtado, 2007). The fracture energies used in the model for the different 

failure modes are presented in Table 5-1. 

5.5 Results and discussion   

5.5.1 Chip formation  

In the model, the tool moves towards the workpiece until a complete chip is formed after 

reaching material failure on the free surface ahead of the cutting tool. Figure 5-5 shows the 

chip formation process for different tool rotation angles in CFRP milling with a machining 

direction of 0°. The horizontal and vertical axes (on the top and left sides of the figure) 

represent the failure modes and tool rotation angle, respectively. At low tool rotation angles 

(30, 45, and 60°), the fiber compressive failure and matrix crushing progressed in the fiber 

direction until completion of the chip formation. For higher tool rotation angles (90° and 

more), while the cutting tool progresses in the workpiece, a stressed zone is formed ahead of 

the tool edge, and matrix crushing damage is extended in the fiber direction until chip 

formation. The matrix cracking damage mode is illustrated in the last column of Figure 5-5. 

It can be seen that matrix cracking failure affected a relatively large zone of uncut material 

below the tool for all tool rotation angles. The second column of Figure 5-5 shows the fiber 

tensile failure mode for all tool rotation angles.  The effect of this failure mode was almost 

negligible on the limited area ahead of the tool tip. Comparing the fiber compression damage 

mode of all tool rotation angles in Figure 5-5 (the first column) demonstrates that 

compression failure occurs in the direction of fibers. For 45° and 60° tool rotations, a large 

zone of uncut material is affected by this failure mode.  
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Figure 5-5 Chip formation mechanism in milling of CFRP with a 0° feed rate 
orientation, step time: 1.00E-4 
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The materials’ behavior under load can generally be classified as ductile or brittle, based 

on their ability to undergo plastic deformation before fracture (Dieter et Bacon, 1986). 

Santiuste et al. (Santiuste, Soldani et Miguélez, 2010) found, from finite element analysis 

results, that glass fiber reinforced plastics behave like ductile materials by showing a 

progressive damage process, while CFRPs are brittle materials showing little or no 

progression of damage. These results are supported by the actual modeling results 

demonstrating that CFRPs undergo catastrophic failure with a negligible plastic deformation. 

The elements did not suffer significant deformation, and they broke when tool entered 1µm 

into the workpiece in step time 1.00E-4 s.  

5.5.2 Cutting forces 

Cutting forces in the x and y directions are calculated in the model from the reaction 

exerted by the workpiece material on the reference point of the tool (Figure 5-3(d)). The 

cutting forces obtained from the 0° and 90° milling directions are shown in Figures 5-6 and 

5-7, respectively. These figures show a relatively good agreement between the 

experimental and predicted values of the cutting forces. The left images (Figure 5-6 (a) and 

Figure 5-7 (a)) show the cutting forces in the time domain for seven complete rotations of 

the tool (the two-flutes tool generating 14 peaks in the graph), and the right images (Figure 

5-6 (b) and Figure 5-7 (b)) show the cutting forces of one tooth for a 180° rotation of the 

tool. So each peak of the force profile in Figure 5-6 (a) and Figure 5-7 (a) represents the 

passage of one tooth.  

It is clearly shown that the force profiles for the two teeth of the tool are not completely 

similar. The small difference can be explained by the tool run-out during the milling process. 

Tool run-out affects the cutting force profile of conventional end-milling operations by 

affecting the feed per tooth of each tooth (Li et al., 2007). By comparing the cutting forces in 

Figure 5-6 (b) and Figure 5-7 (b), it can be observed that the cutting forces do not have 

similar profiles and amplitudes for different machining directions. It thus seems that fiber 

orientation has a significant effect on the cutting force profiles during machining of 

unidirectional CFRP. This can be explained by the anisotropic character of unidirectional 

fiber reinforced plastic materials.  



82 

 
 

Figure 5-6 Comparison between experimental and simulated values of the cutting 
forces for a 0° machining direction, a 250 m/min cutting speed, a 0.063 mm/rev feed 

rate and a 0.5 mm depth of cut 
 

 
 

Figure 5-7 Comparison between experimental and simulated values of the cutting 
forces with 90° machining direction, 250 m/min cutting speed, 0.063 mm/rev feed 

rate, 0.5 mm depth of cut 

 
5.5.3 Surface integrity  

Figure 5-8 shows the CFRP machined surface for different machining directions of 0, 

90, 45, and 135 degrees. The best surface quality in terms of surface roughness (Ra - 

arithmetic average height) and lowest damage was achieved in the 0° machining direction. 

As shown in Figure 5-8 (d), many uncut fibers are observed in milling at 135°, fibers that 

protrude from the machined edges, resulting in a poor edge quality. 
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Figure 5-8 CFRP machined surface for different machining directions of 0 (a), 90 
(b), 45 (c) and 135 (d) degrees, 250 m/min cutting speed, 0.063 mm/rev feed rate, 

0.5 mm depth of cut 
 

 

 
 

Figure 5-9 Machining damage at different tool rotation angles: fiber pullout (FP), 
fiber/matrix de-cohesion (F.D), Matrix Cracking (MC), magnification x300 
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Figure 5-9 illustrates the SEM photographs of the machined surface and edges for 

different tool rotation angles and for the 0° machining direction in same magnification 

(300x). As can be seen, the larger damaged zones on the machined edges are observed at tool 

rotation angles of 45° and 60° (Figure 5-9(b) and (c)), compared to other tool rotation angles 

(Figure 5-9 (a) and (d-e). 

This is in agreement with Figure 5-5, where the modeling results show that the 

compressive damage failure mode affects a large zone of uncut materials for tool rotation 

angles of 45° and 60°. As described in the modeling results, matrix cracking failure affects a 

relatively large zone around the cutting area. This modeling prediction is confirmed by the 

presence of deep matrix cracking damage in SEM images. A SEM image of the machined 

surface is shown in Figure 5-9 (h). As can be seen, a good surface quality was produced with 

the cutting condition used in this research (250 m/min cutting speed, 0.063 mm/rev feed rate, 

0.5 mm depth of cut). 

5.6 Conclusion  

In this work, the surface milling of unidirectional carbon fiber reinforced laminates was 

studied by comparing finite element analysis results with experimental results. The chip 

formation mechanism, machining damage and cutting forces were investigated with the 

proposed finite element model. Based on the results, the following conclusions are drawn: 

• A 2D finite element model based on orthogonal cutting can successfully predict the 

cutting forces in a complex flat end milling process.  

• The cutting forces do not have similar profiles for different machining directions (angle 

between the carbon fibers and feed direction), meaning that the cutting force profile 

depends on the fiber orientation.  

• The extension of machining damage strongly depends on the fiber orientation. During 

milling in a 0° machining direction, for all tool rotation angles, the compressive damage 

in uncut materials extends in the direction of fibers. For 45 and 60° tool rotations, this 

failure mode affects a large zone of uncut materials, as was confirmed by micrographic 
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images. The matrix cracking failure also affected a relatively large zone of uncut 

material below the tool for all tool rotation angles. 

• The numerical predictions of machining damage around the cutting area, due to fiber 

compressive damage and matrix cracking, are confirmed by SEM images of the edges 

and surface of the machined zone. 
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CONCLUSIONS  

 

In this work, the surface milling of carbon fiber reinforced plastic was studied by 

experimental and finite element modeling methods. In the experimental parts of this research, 

the milling experiments were carried out on unidirectional and multidirectional CFRP 

laminates in order to study the effects of cutting parameters, such as the fiber orientation, 

feed rate, cutting speed, and lead angle on the cutting force, cutting temperature, and surface 

quality. In the modeling part, the finite element analysis was used to study the cutting force, 

machining damage and chip formation for the CFRP milling operation. The major findings 

and contributions of this research are summarized below. 

• Machining conditions has significant influence on the resultant surface roughness and 

damages/surface integrity in CFRP milling process. Generally, a better surface quality (in 

terms of lower surface roughness and surface damages) was achieved using lower feed 

rate (0.063), moderate cutting speed (250 m/min) and 0 degree tool lead angle. This better 

machining quality was obtained by smaller uncut chip thickness (in lower feed rate) and 

higher dynamic stability (lower forces in moderate cutting speed and 0 degree lead angle). 

• The resultant cutting force in milling of unidirectional and multidirectional CFRP 

increases with the feed rate. The cutting forces do not vary linearly with the cutting speed. 

The effect of the cutting speed on cutting force is more significant for moderate cutting 

speed values. 

• The cutting speed has a significant effect on the cutting force and cutting temperature. The 

cutting temperature increases linearly with the cutting speed for the studied cutting speeds 

range (200 to 375 m/min). 

• The variation of cutting forces and cutting temperature over the fiber orientation follow 

the same trend. Maximum and minimum cutting forces and cutting temperatures values 

are achieved at fiber orientations of 90 and 0 degrees, respectively.  
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• The study of surface damages with SEM images showed that the best surface integrity are 

produced for the 0 and 90 degree fiber orientation angles and moderate cutting speeds 

(200 and 250 m/min).  

• The developed numerical model provided a better understanding of the CFRP milling 

process.  The model was validated by comparing its results with experimentally measured 

forces and SEM images of the machined surface. It was able to predict the cutting forces 

and machining damages, in good agreement with experiments.  

• For all tool rotation angles during the milling process, the chip formation initiates ahead of 

the tool tip. At low tool rotation angles (30-60°), the fiber compressive failure and matrix 

crushing progressed in the fiber direction until completion of the chip formation. While in 

higher tool rotation angles (90° and more), the chip was formed by matrix crushing mode. 

• The modeling results confirmed the brittle behaviour of CFRP materials. CFRPs undergo 

catastrophic failure with a negligible plastic deformation.  

• The extension of machining damage strongly depends on the tool rotation angle (and as a 

result the fiber orientation). During milling in a 0° machining direction, for all tool 

rotation angles, the compressive damage in uncut materials extends in the direction of 

fibers. For 45° and 60° tool rotations, this failure mode affects a large zone of uncut 

materials. The matrix cracking failure also affected a relatively large zone of uncut 

material below the tool for all tool rotation angles. 

• The machining direction (angle between the carbon fibers and feed direction) considerably 

influences the values and profile shape of cutting forces.  

 

 



 

RECOMMENDATIONS  

 

Some directions for future research related to this study are proposed below. 

1- The Finite element modeling is a good alternative method to investigate the effect of 

cutting conditions effects. Further modeling studies are required focusing on effects 

of cutting condition and tool geometry (rake, clearance and nose radius diameter) in 

CFRP milling process.  

2- The proposed model in this research simulated the milling process with two flutes 

mill that has one tooth in contact with the workpiece. The model can be modified for 

the use of tools with more than two flutes by considering the trochoidal tool path 

and measuring the effective radial depth of cut for each edge. The cutting in each 

tooth can be modeled separately and the resultant cutting force for the tool can be 

calculated by adding the modeled force vectors for each tooth.   

3- As shown in the experimental results, the tool run-out affects the cutting force 

profile. The effect of run-out hasn’t been considered in the model.  The accuracy of 

the model in predicting the cutting forces and damages can be improved by 

considering the effect of the tool run-out on chip thickness. 

4- Cutting temperature is an important factor in CFRP machining that affects the 

cutting forces through softening of the polymer matrix. The cutting temperature in 

CFRP was studied in this research. However, the material mechanical properties for 

the modeling process were measured at room temperature. More mechanical testing 

may be needed to find the material properties at higher temperatures. The effect of 

cutting temperature on cutting force can be included by adding the effect of 

temperature on composite’s mechanical properties in the proposed model  

5- In the proposed model, the cutting mechanism was modeled based on quasi-static 

analysis. Thus, this model is not able to study the effect of cutting speed on cutting 

force. The experimental results showed that the cutting temperature increases 
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linearly with cutting speed (section 4.4.1). Thus, the model can be modified to study 

the effect of the cutting speed by considering the effect of cutting temperature (as it 

is mentioned in recommendation 4). 
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