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BAYESIAN UPDATING OF HYDROELECTRIC TURBINE FATIGUE 

RELIABILITY 

 

Nila.A.Nobari  

 

ABSTRACT 

In fatigue design, uncertainties that exist in material, environment, and loading could arise 
due to manufacturing processes and changing with environment condition.  Therefore 
because of the lack of information and cost of inspection, updating the fatigue model 
variables to decrease the uncertainties is necessary.  In this study, Paris model is used to 
model the crack growth rate for hydroelectric turbine runner.  We applied the Bayesian 
method to construct the posterior distribution.  After constructing the posterior distribution, 
we update it by Bayesian updating approach.  This method is one of the useful methods to 
decrease the uncertainty of variables at each loading cycle to construct precise prior 
distribution.  The results of updating applied to Kitagawa-Takahashi limit state diagram.  
After modeling the proper limit state, we apply First Order Reliability Method (FORM) and 
Monte-Carlo Simulation (MCS) method to calculate the reliability index.  In This study all of 
the procedures that mentioned are described, also we could see the results of effects of prior 
knowledge and select the distribution to analysis of reliability index.  This study follows the 
(Gagnon, Tahan et al. 2013) research with aim of updating the fatigue reliability amount on 
hydroelectric turbine runner by Bayesian method. 
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MISE À JOUR BAYÉSIENNE DU MODÈLE DE FIABILITÉ EN FATIGUE DES 
ROUES HYDROÉLECTRIQUES 

 

Nila.A.NOBARI 
 

 
RÉSUMÉ 

Dans une démarche de conception pour la fatigue, les incertitudes qui existent dans le 
matériel, l'environnement et le chargement pourraient survenir lors du processus de 
fabrication et de l’exploitation ce qui a pour effet une incertitude sur la vie résiduelle en 
fatigue. Par conséquent, en raison du manque d'informations et de coût de l'inspection, la 
mise à jour des variables d’un modèle de la fatigue est justifiée et nécessaire pour diminuer 
les incertitudes. Dans ce projet, le modèle de Paris est utilisé pour modéliser le taux de 
croissance de la fissure pour la roue d’une turbine hydroélectrique. Nous avons appliqué la 
méthode bayésienne pour construire la distribution postérieure. Après la construction de la 
distribution postérieure, nous mettons à jour le modèle. Cette méthode est utile pour diminuer 
l’influence de l'incertitude des variables à chaque cycle de chargement, ce qui permet de 
construire une distribution plus précise pour modéliser le comportement aléatoire des 
variables entrants dans le modèle de fatigue. Les résultats de la mise à jour sont appliqués à 
modèle d’état limite basé sur le diagramme de Kitagawa-Takahashi. Après modélisation de 
l'état limite approprié, nous appliquons les méthodes FORM (First Order Reliability Method) 
et Monte-Carlo pour calculer l'indice de fiabilité. Dans cette étude, toutes les procédures 
mentionnées sont décrites, aussi nous avons pu voir les résultats sur les effets des 
connaissances préalables sur l'indice de fiabilité. Cette étude suit la recherche démarrée par 
Gagnon et al. (2013) avec pour but d'actualiser l’estimation de la fiabilité par la méthode 
bayésienne. 
 

 

Mots-clés : Méthodes bayésiennes, fiabilité, fatigue, roues hydroélectriques. 
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INTRODUCTION 

 

The industrial problem 

In 2014, the production division of Hydro-Québec owned a fleet of 60 hydropower plants, 

including 347 generating units.  This represented a net asset value of 26.6 billion dollars in 

December 2013 and an annual investment for maintenance and care operations around $400 

million dollars (average from 2009-2014).  With an approximate value of 7.4 billion dollars, 

the generator-turbine units represent 28% of these assets.  The hydroelectric turbine’s modes 

of operation, age, start and stop and numbering the maintenance have a profound effect on a 

turbine’s lifespan.  In this context, the maintenance of hydroelectric facilities is a significant 

challenge to producers because they need to produce more electricity without decrease in 

availability and productivity.  The consequence of over-used facilities will increase the risk 

of failure. 

One of the factors that limit the life of hydroelectric turbines is material fatigue which causes 

cracking that decreases system reliability.  Some methods based on visual inspection or Non-

Destructive Testing (NDT) techniques such as ultrasound can detect and monitor cracks, but 

these are not more useful because of their high costs (Haapalainen and Leskela 2012), 

(Goranson 1997).  

With cyclic load, material fatigue is characterized by the presence of defects and their 

propagation to form with each passing cycle crack in the structure.  Therefore, an accurate 

prediction of fatigue life is an important part of the maintenance scheduling.  An efficient 

maintenance policy should also include an inspection schedule, planning repair and a 

replacement policy.  Therefore, several studies are interested in understanding the process of 

crack growth rate (Kumar and Prashant 2009), (Acar, Solanki et al. 2010), (Thibault, Bocher 

et al. 2011).  Their studies demonstrate that the frequency and quality of inspection, material 

properties, blade shape and loading strongly impact the cracking process and reliability.  

Consequently, several models and approaches have been  proposed to estimate crack growth 

rates and fatigue reliability (Castillo, Fernández-Canteli et al. 2008), (Gagnon, Tahan et al. 

2013), (Kumar and Prashant 2009).   
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Generally, deterministic models are used to estimate fatigue reliability.  However, when 

using these types of models uncertainty cannot be considered.  According to the case study 

related to turbine blades, uncertainty is the main subject that is considered in the reliability 

analyses of this study.  Many sources of uncertainties which exist in the parameters can affect 

the fatigue process and their influence on the propagation of blade cracks in the turbine (Huth 

2005) , (Pattabhiraman, Levesque et al. 2010).  Thus without considering model uncertainty, 

errors in estimating crack size, crack growth rate and fatigue reliability are generated.  

Therefore we need to study models using a probabilistic approach.  In this way uncertainties 

can be characterized and/or estimated.  With additional information and data from 

observations, the uncertainty range can be reduced.  This work showcases new sources of 

information which can be exploited to update model variables used a prior to update 

uncertainties behaviors.   

To illustrate the problem, the case study on the blades of Francis runners from the 

hydroelectric plants of Hydro-Quebec are used to estimate fatigue reliability.  Hydro- Québec 

and Andritz Hydro (a hydroelectric turbine manufacturer) have collaborated on the issues of 

identifying variables, parameters and models to account for uncertainties related to fatigue 

and blade cracking. 

More recently (Gagnon, Tahan et al. 2013) proposed a probabilistic fatigue model for life 

prediction.  But in this study, we considered a few settings as appropriate and not all factors 

affecting the cracking process.  In their model, reliability is distinct when the crack does not 

pass a threshold above which a high cycle fatigue contributes rapidly to crack propagation.  If 

the crack length exceeds a given critical length, the structure needs to be repaired.  This 

defect propagation to form cracks occurs even for stress levels much lower than typical 

allowable design stresses.   

In this study, we want to study cracks that tend to initiate and propagate near the welded joint 

between the blade and the rest of the structure as shown Figure 0.1.  Typically, the critical 

zone is near the outflow edge of the blade.  In this particular case, the critical zone studied is 

inside a stress relief cut-out region.  
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Figure 0.1: Schematic of Francis runner 
diagram (Gagnon, Tahan et al. 2013) 

 

Objectives 

This research aims to update fatigue model behaviour of variables and parameters that 

predict the results of a reliability index with a Bayesian inference method.  The accuracy of a 

reliability index depends on data quality that is gathered through inspection, expert opinion 

and laboratory testing.  Most of the data from the history and expert opinion contains a lot of 

uncertainties.  These uncertainties affect the reliability analysis.  We want the Bayesian 

method to decrease the uncertainties that exist in parameters and variables by using new 

information from field (e.g. inspection, measurements,..).  Using a Bayesian method means 

that  uncertainties are updated when new information becomes available (Box and Tiao 

2011).  By updating the probabilistic model parameters and variables in prior distributions, 

uncertainties related to fatigue life can decrease and the predicted reliability more precise.  

Therefore, as a first step, we need to recognize important variables that describe fatigue 

reliability models and construct the limit state.  The fatigue reliability model proposed in this 

study is based on the classical limit state ( )g x  that (Gagnon, Tahan et al. 2013) used to 

determine fatigue reliability models.  This limit state is named as a Kitagawa –Takahashi 

diagram.  Figure 0.2 shows the Kitagawa –Takahashi limit state.   
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Figure 0.2: Probabilistic model that introduces 
the Kitagawa-Takahashi limit state (Gagnon, 

Tahan et al. 2013) 
 

We propose a methodology to integrate new information about the state of variables with 

prior knowledge to obtain the posterior distribution of the unknown variable parameters: 

crack size of the defect a and high cycle fatigue stress range σΔ .  Then we want to develop 

one approach to assess the fatigue reliability of hydroelectric turbine blades with structural 

reliability methods and update them with Bayesian methods to minimize inspection costs. 

Therefore, for better maintenance planning, we need to increase the accuracy of predictions 

for crack size and loads on the hydroelectric runners.  To achieve this goal, the Bayesian 

method is a useful method and we propose three steps: 

 Develop a probabilistic fatigue model based on uncertainty techniques followed 

(Gagnon et al. 2013). 

 Construct a prior and likelihood distribution related to parameters and variables of 

fatigue model by Bayesian inference method and updating them with new data. 

 Develop the methodology for model validation. 
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Thesis structure 

The content of this thesis consists of 3 chapters that cover the updating parameters of fatigue 

models by using the Bayesian inference method and calculating the new reliability index for 

hydroelectric turbine blades.  Following the introduction we will delve into previous research 

in CHAPTER 1.  CHAPTER 2 relates to updating variables and parameters of fatigue 

models.  In CHAPTER 2, analytical modeling for crack size, loading variables and updates 

using the Bayesian method are highlighted.  In CHAPTER 3 a fatigue reliability model 

adapted to hydroelectric turbine blades is provided and improved by the Bayesian theory.  

The limit state which allows the calculation of the hydroelectric turbine reliability is defined 

therein.  Some recommendations for this study are included.  Finally, in the conclusion, we 

compare results following updates.  We want to answer the following questions in the 

Abstract:  

1. How can we update our prior knowledge in light of new information gathered to obtain a 

posterior? (CHAPTER 2) 

2. Can we estimate and decrease the uncertainty about variables and parameters that exist in 

fatigue models? (CHAPTER 2) 

3. How can we, given this new information, assess the validity of the reliability model used? 

(CHAPTER 3) 

These are legitimate questions that form the basis of the current study.  We believe that by 

using Bayesian statistics, these fundamental problems may be addressed. 

 





 

CHAPTER 1 
 
 

STATE OF ART  

 

1.1 Fatigue propagation 

Operating hydroelectric turbines causes fatigue and increases the risk of failure (Hadavinia, 

Kinloch et al. 2003).  This process depends on the size of the initial crack, loading, material 

properties, aging and modes of operation (Liu, Luo et al. 2014), (Pirondi and Moroni 2010).  

Material properties need to be considered in all analysis of fatigue.  In many cases, the total 

cost associated with material fracture and failure can be high (Rau Jr and Besuner 1980).  

Most of the researchers consider constant material properties (Castillo, Fernández-Canteli et 

al. 2008), (Trudel, Sabourin et al. 2014).  Therefore, the uncertainties that exist in material 

property is often overlooked in many analyses.  

The prediction of crack due to fatigue is based on two main methods: The first method (safe 

life) is the S-N curve damage method.  Using of this method might be safe when the safe 

margin is selected as large (Kruzic and Ritchie 2006).  The number of fatigue cycles could be 

determined with this method.  This method is very straightforward, but to obtain safe 

reliability, we need to consider a large safety margin.  Therefore, a lot of uncertainties are 

missed (Castillo and Fernández-Canteli 2009).  The second method is based on crack 

propagation.  This method which uses Linear Elastic Fracture Mechanics (LEFM) can predict 

fatigue and crack growth rates (Gagnon, Tahan et al. 2013). 

After finding a suitable fatigue model, the fatigue reliability can be estimated.  During the 

last decade, an increasing number of studies have been published using material and structure 

fatigue reliability.  The basis of fatigue reliability calculation was in the late 60s and early 

70s.  At that time, the lack of data and capacity to perform numerical calculations affected 

the probabilistic fatigue results (Tong 2001) , (Manuel, Veers et al. 2001).  There are very 

few recent studies in the literature on the issue of the fatigue reliability of hydroelectric 
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turbines.  The following authors, (Gagnon, Tahan et al. 2013); (Karandikar, Kim et al. 2012), 

(Chan, Enright et al. 2014); (Dong, Gao et al. 2008) study fatigue and crack growth rates 

based on the LEFM method.  Their work shows that fatigue reliability is used for a wide 

range of applications of areas similar to hydroelectric turbines, aerospace panels, offshore 

turbines, etc.  In the abstract, some factors influence the process of crack formations.  The 

factors are initial crack size, loading, material properties, aging and operating systems. 

 

1.2.1 Initial crack size 

Initial crack size that occurs in the material of the structure needs to be investigated.  

Industrial crack size can be estimated with periodic inspection.  Some analyses are focused 

on finding a way to estimate the initial crack size (Anderson 2005).  For example, the 

location and shape of initial cracks have an effect on the speed of crack propagation (Trudel, 

Sabourin et al. 2014).  Therefore, we need to investigate the following questions before a 

crack is analyzed: 

1. What is the shape of the initial crack?  

2. What is the size of the initial crack?  

3. How can we model the crack propagation? 

4. What direction do we need to find for crack propagating (planar, non-planar)? 

 

1.2.2 Loading  

Cyclic loadings and numbers of stress cycles are the main reasons for fatigue.  The crack 

growth rate d Nda  is defined as crack extension per cycle.  This amount corresponds to the 

speed of propagation of a crack length [ ]a mm  with a pass the number of cycles N .  The 

fatigue crack growth rate could be explained with the nonlinear functional relationship that is 

given by equation (1.1). 
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 ( )
d

K
N

d fa = Δ  (1.1) 

In this equation, K M P a m Δ    is the stress intensity factor.  The stress intensity factor can 

predict stress intensity when the structure is under load or has the residual stress near the 

edge of the crack.  A typical plot of log d

Nd

a versus log KΔ  could help analyzer to estimate 

fatigue.  Figure 1.1 shows plot of log d

Nd

a versus log KΔ .  

 

 

Figure 1.1: Fatigue crack growth rate curve for 
metals (Ambriz, 2014) 

 

As seen in Figure 1.1, basically the propagation of crack can be divided into three regions:  

Region I, The propagating of crack is extremely slow.  We have the threshold stress intensity 

value thK  at this region.  Below this amount there is no fatigue crack growth rate, or the rate 

of crack growth is too small to measure.  In this project, blades work under Low Cycle 

Fatigue (LCF) and High Cycle Fatigue (HCF) loads.  Existing micro cracks could be 

motivated by loading types (Huth 2005), HCF affects more to propagate of the crack rather 

than LCF (Trudel, Sabourin et al. 2014) , (Gagnon, Tahan et al. 2013).  Therefore, under 
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these conditions the crack reached becomes a critical size very soon.  This can lead to a large 

crack in a very short time, compared to the life provided in the design (Gagnon, Tahan et al. 

2013).  It is therefore necessary to study the crack propagating in this project at the threshold 

point in Region I.  

Region II, We can see the linear slope that could fit to the data.  Most studies relate to this 

region.  One of the popular models that fit in this region is the Paris model (Raju and O'Brien 

2008).  The Paris model was used by many researchers.  The Paris model for fatigue relation 

is given in equation (1.2) for thK KΔ ≥ . 

 

 
d

C
d

. K
N

ma = Δ  (1.2) 

The equation (1.2) shows that the curve of crack growth rate in region II is a function of 

material parameters C  and m , and stress intensity factors KΔ .  We find material property 

amounts from (BS 7910, 2000) that sets guidelines for these parameters. 

Region III, The rate of growing crack is very high and little fatigue life is involved.  Region 

III is characterized by rapid, unstable crack growth. 

To sum up, all these factors contribute to the turbine’s fatigue and accelerate their damage 

which makes the estimation of their actual life expectancy difficult. 

 

1.2 Reliability assessment 

The main objective of reliability assessment is to support decision making, because each 

action under, or over, the threshold point could affect estimating the reliability and cost of the 

system.  But these decisions are always accompanied by uncertainty (Heyman, Alaszewski et 

al. 2013) (Liu, Luo et al. 2014) and whether the estimation of the parameters needs to absorb 

more costs.  In an attempt to find system reliability, the use of reliability structural methods 

led to move precise information on the structure’s performance (turbine blades) (Ditlevsen 

and Madsen 1996).  A structural reliability method requires the definition of a model of 

reliability (taking into account the parameters on which the system is operated) and a 

threshold of acceptability of the estimated reliability. More generally, this structure could 
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also include a formulation of the criteria for failure modes that identified failures (Ronold, 

Wedel-Heinen et al. 1999), (Moriarty, Holley et al. 2004) (Ditlevsen and Madsen 1996).  

What makes the task of analysis difficult is judgment which takes into account parameters 

that affect the results (Liu, Luo et al. 2014) (Toft and Sørensen 2011).  For this reason, the 

Bayesian method is a good technique to account for parameters and consider the related 

uncertainties.   





 

CHAPTER 2 
 
 

UPDATING PARAMETERS WITH BAYESIAN THEORY 

 

2.1 Introduction  

The purpose of CHAPTER 2 is to present a Bayesian technique to update the data and 

information necessary to reduce uncertainty related to fatigue life reliability.  The aviation 

industry, particularly in the military field, is at the forefront of scientific developments in the 

field of reliability fatigue (Kappas 2002).  However, the main difficulties in calculating 

reliability is model choice and methodology calculation (Cross, Makeev et al. 2006).  The 

classic probability methods used with available information may determine reliability.  This 

method, without updating the information, yields results.  Therefore, the uncertainty 

associated with the initial parameters is very large, because the information initially available 

is limited.  But in the new probability methods, one possible solution is to use observations to 

update priori estimated values (Wang 2008).  This approach is named the Bayesian method.  

The Bayesian approach can use the information when it becomes available to combine with 

initial hypotheses and prior information to validate the model.  The Bayesian theory is a 

method for the quantification of uncertainties issues.  This method consists of evaluating 

Probability Density Function (PDF) for variables and model parameters. (Coppe, Haftka et 

al. 2010) used Bayesian inference to reduce the uncertainty of the parameters of a Paris 

model in fatigue issues.  (Guerin and Hambli 2009) proposed that the Bayesian method is a 

possible way to reduce the scatter of fatigue distribution.   

In this project, periodic inspections are the main source for gathering information to assist in 

the update of model variables for turbine blades.  In CHAPTER 2, the Bayesian update 

method is used when additional test data are available to decrease the uncertainty of 

variables.  This leads to the improvement of design optimization and system performance. 

The methodology that we used for updating a fatigue model with a Bayesian method is given 

in Figure 2.1.   
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Figure 2.1: Methodology that introduces Bayesian updating method to 
decrease the uncertainty of parameters and variables. 

 
 

Figure 2.1 shows that the Bayesian theory helps to update prior knowledge in order to obtain 

a suitable prediction of fatigue life.  We use MCS draw samples from the given distribution. 

With the use of Bayesian theory, the uncertainties characterized are reduced.  The results of 

updated posterior distribution will be used in the reliability analysis found in CHAPTER 3.  

We will then compare results in terms of reliability.  

 

2.2 Data uncertainty   

Uncertainties come from human errors, model errors, testing methods and measurements.  

Although the data are supposed to give us a picture of reality, in truth, because of the 

existence of uncertainty, accurately calculating the degree of truth for a given variable cannot 

be done (Vorobyev).   

According to the difference sources of uncertainties in this project, we first identify a set of 

variables and related parameters to be used in this project.  Therefore, with the use of the 

Bayesian method, which is a type of probabilistic method, the uncertainties associated with 

fatigue could decrease in this project.   
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2.3 Hypothesis  

It is important to be familiar with hypothesis for more convenience.  In general, two types of 

material defects are investigated for big structures such as the hydroelectric Francis runner: 

surface cracks and near surface cracks (Gagnon, Tahan et al. 2013).  To decrease the number 

of parameters related to crack geometry, we study the circular cracks located on the surface 

in this project.  Therefore, we have just one parameter that shows the size of a crack that was 

able to grow on a two – dimensional diagram.  Figure 2.2 shows the surface, and the near the 

surface, crack.  We also consider that the crack grows only in one direction where the KΔ is 

the maximum amount. 

 

 

Figure 2.2: Surface crack and near the surface 
crack (Gagnon, Tahan et al. 2013) 

 

Because of a lack of information about the variables, we only study the stress range and 

crack size that are more effective on the fatigue problem and consider other variables that 

affect the crack growth rate as constant and deterministic.  For example, the stress intensity 

factor ( thKΔ ) is first assumed to be constant and well known.  This variable is related to 

geometry and crack location.  The value of ( thKΔ ) and stress intensity correction factor are 

taken from the British standard BS7910 (BS 2000).  From this standard, the amount of thKΔ

is close to 2 [MPa m1/2].   
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About the fatigue variables (crack size and stress range), we have prior knowledge that 

shows these variables follow the normal distribution (Pattabhiraman and Kim 2009).  We 

want to update the variables when we add the data to our prior knowledge with the Bayesian 

method.  Therefore if we add more data, the values of updated distributions could be precise 

and reduced.  As our prior knowledge about the data follow Normal distribution 

(Pattabhiraman, 2009), therefore choosing 95% confidence interval for our prior distribution 

is more confident about the upper and lower bounds of distribution.  This confidence interval 

could be a proper measure in our analytical prediction value.  Although when we do not have 

any idea about the distribution, we could consider the variables following the uniform 

distribution (An, Choi et al. 2011).  Table 2.1 shows the amount of fatigue problems for the 

hydroelectric Francis runner. 

 

Table 2.1: Amount of parameters 

 Location Upper/Lower band Distribution 
a [mm] μ =1.5, σ =0.5 [0.2, 2.48] Normal 

σΔ  [MPa] μ =28, σ =3 [22.12, 33.88] Normal 

thKΔ  [MPa m1/2] 2   

 

2.4 Bayesian update for fatigue variables  

The essential work for using Bayesian statistical analysis is obtaining and estimating the 

posterior distribution for variables and model parameters.  The posterior is an average 

distribution before variables are observed (prior distribution) (Pattabhiraman, 2009).  We 

then make note of the variables and analyze the information that we observed (likelihood 

distribution).  In this project we have analytical results (prior) and test variability (likelihood) 

that will be used to update posterior distribution to predict fatigue failure and reduce 

uncertainty in fatigue issues.  This method is good way to decrease uncertainty and provide a 

conservative distribution that covers the error of prior distribution and the variability of 

likelihood distribution.  The relation between the likelihood and prior distribution is shows in 

equation (2.1) (Pattabhiraman, 2009).  
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( ) ( ) ( )p test|analitic   p (analytic)

p analytic|test p test|analitic   p(analytic)
p(test)

×
= ∝ ×

(2.1)

In this equation ( )p analytic|test  is a posterior distribution and ( )p test|analitic  is called the 

likelihood that introduces the probability of data that achieved from the test given the value 

of analytic results.  The prior distribution is shown by p (analytic) .  The expert opinions 

are affected in prior distributions.  According to the raw data that is used for Bayesian 

updates, therefore the normalizing of data and all distributions is necessary.  Therefore, the 

dominator of equation (2.1) is brought in to ensure that the posterior PDF integrates to 1.  For 

updating variables (crack size and stress range) we used equation (2.2) (Pattabhiraman, 

2009).   

 
( ) ( )

( )
1,test

1,test

0

p X  . p (X)
p X

p X  . p (X) X

ini

ini

i

d
+∞=


 

(2.2) 

X in equation (2.2) replaces defect size and stress range.  This equation shows that p (X)ini  

is the initial distribution of variables.  With iterating i times, we could achieve a proper prior 

distribution and it is very close to a posterior distribution that could be fit with the data.  For 

using the Bayesian theory, we follow these steps to obtain precise results:  

1) Decide on a prior distribution, with considering the uncertainty in unknown model 

parameters before the data observed.  

2) Observe the new data and create the likelihood distribution based on the data.  

3) Calculate the posterior distribution with a multiplication of prior distribution and 

likelihood distribution with simulation.  

4) Update the posterior distribution. 
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2.5 Results of updating variables with Bayesian theory  

In this section, the posterior distribution with analytical results (prior distribution) and test 

data (likelihood distribution) according to Table 2.2 is constructed.  

 

Table 2.2: Parameter specification for crack 
size and stress range 

Distribution a [mm] σΔ  [MPa] 

Prior (analytical result) Normal ( μ =1.5, σ =0.5) Normal ( μ =28, σ =3) 

Likelihood ( test data) Gumbel ( μ =1.80, σ =0.65) Gumbel ( μ =30.4, σ =5) 
 

We choose a proper a prior probability distribution that fits to variables of fatigue models.  

This is the first step.  With historical data, the variables (defect size and stress range) follow 

normal distribution.  For estimating the value of the unobservable parameter, we use a 

confidence interval of 95% that could cover variables.  Figure 2.3 show the normal 

distribution for variables with a 95% confidence interval. 

 

Figure 2.3: Prior distribution with 95% confidence interval 
 

 

Figure 2.3 shows that the mean of the crack size changes between 0.52 and 2.48 and mean of 

stress range varies between 22.12 and 33.88.   

The second step is choosing the likelihood distribution for variables that may be often more 

problematic rather than to choose prior distribution (Pattabhiraman and Kim 2009).  
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Therefore, in standard Bayesian methods likelihood distributions could be determined 

precisely by knowing the sample data.  Once the data has been observed, the likelihood 

function is constructed.  Sometimes in special cases, the prior and likelihood could merge 

together suitably (analytically) so that there is no need to compute the normalization factor 

that exists in a denominator Bayesian method.  Some conjugate pairs for prior and likelihood 

distributions are given in Table 2.3.  In choosing these conjugate pairs, applying Bayesian 

method could be simplified.  In this project we use the industry data and then construct the 

likelihood distribution.  The results demonstrate a crack size and stress range following the 

Gumbel distribution with specific parameters that is shown in Figure 2.4. 

 

Table 2.3: Conjugate pairs for prior and 
likelihood distribution 

Likelihood 
Distribution 

Prior 
Distribution 

Posterior 
Distribution 

Normal Normal Normal 

Exponential Gamma Gamma 

Normal Gamma Gamma 

Exponential 
Inverse 
gamma 

Inverse  
gamma 

 
 

Figure 2.4: Likelihood distribution 
 

According to Figure 2.4, it looks much like a normal distribution.  We plot the normal 
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1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Crack size(mm)

Li
ke

lih
oo

d 
di

st
rib

ut
io

n

 

 

Gumbel distribution(μ=1.80,σ=0.65)

25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Stress range(MPa)

Li
ke

lih
oo

d 
di

st
rib

ut
io

n

 

 

Gumbel distribution(μ=30.4,σ=5)



20 

 

seen in Figure 2.5.  We do this work when we want to obtain the suitable distribution 

between Normal and Gumbel to cover most values.  Also, Figure 2.5 shows the product 

distribution that is an average of them. 

 

 

 

Figure 2.5: Likelihood distribution and product 
distribution 

 

Figure 2.5 shows the product distribution that it used for updating variables.  Figure 2.6 also 

shows the prior and likelihood distribution with each other. 
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Figure 2.6: Prior and likelihood distribution 
 

Having the prior and likelihood distribution, we could estimate the posterior distribution.  We 

also update posterior distribution with a confidence interval of 95% to not miss the data.  

Figure 2.7 and Figure 2.8 show variables updated with the Bayesian method.   
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Figure 2.7: Bayesian update for crack size 
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Figure 2.8: Bayesian update for stress range 
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Table 2.4:  Mean value and standard deviation 
for updated distribution 

Distribution a [mm] σΔ  [MPa] 

Prior (analytical result) Normal ( μ =1.5, σ =0.5) Normal ( μ =28, σ =3) 

Likelihood ( test data) Gumbel ( μ =1.80, σ =0.65) Gumbel ( μ =30.4, σ =5) 

Posterior  μ =1.6, σ =0.5 μ =29.1, σ =0.75 

 

Note that the amount of standard deviations for updated posterior distributions is decreased 

by 33% for crack size and 83% for stress range.  Therefore updating the likelihood 

distribution with three test data sets reduces the uncertainty of fatigue variables.  

 

2.6 Results of updating parameters with Bayesian theory  

In the previous section, the variables of fatigue problems were updated with the Bayesian 

method.  However, in predicting fatigue life, updating variable parameters is also 

recommended (Pattabhiraman, 2009).  In this section, we want to update the parameters 

mean value and standard deviation ( μ ,σ ) of variables using the Bayesian method to 

decrease the additional uncertainties that exist in fatigue issues.  As mentioned earlier, 

choosing a proper probability distribution as a prior for parameters is the first step in the 

Bayesian method.  From the results shown in Table 2.4, we are interested in choosing a 

probability distribution function for the data with this amount of posterior distribution.   

As we know, the parameter amounts affect to the skew and median of distribution, therefore 

it is important to obtain precise amount parameters because to construct limit states, we need 

to use these parameters amounts.  Therefore, with accurate limit states we can estimate a 

proper reliability index.  So we should model these parameters and study them to decrease 

the uncertainties that exist in parameters by using new information. 

For this study, we consider that μ  follows noninformative (uniform distribution) with 

domain [ ],b c  (equation (2.3)).  This kind of distribution is very common to use when you do 

not have an idea of the parameters (An, Choi et al. 2011).  
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( )

0

1

0

b

p b c
b c

c

μ

μμ

μ

<
= ≤ ≤ −

>

 (2.3)

To decrease the uncertainty ofσ , we notice that it follows the normal distribution.  The 

equation (2.3) shows the normal probability distribution.  The second step is constructing the 

likelihood distribution from the data that was given in Table 2.4.  Figure 2.9 to Figure 2.12 

are a prior and likelihood probability distribution of a variation of parameters for stress range 

and crack size.  The third step is the derivation of posterior distribution using Bayesian 

theory.  Figure 2.14 and Figure 2.14 show the 3D of the posterior distribution for stress 

ranges and crack size.  The result of posterior distribution is shown in Table 2.5.   
 

Table 2.5: Amount of parameters related to 
σΔ and a  with prior and likelihood distribution 

 Prior Likelihood Posterior 

σΔ  
μ  is uniform with domain [10 - 60]. 

( )~ 1,1.5Nσ  
Gumbel ( μ =29.1,σ =0.75) 

μ =28.41 

σ =0.495 

a  
μ  is uniform with domain [0.1 , 3.1]. 

( )~ 0.55,0.2Nσ   
Gumbel( μ =1.6,σ =0.5) 

 
μ =1.577 

σ =0.435 
 

 

  

Figure 2.9 : Prior probability distribution for 
stress range 
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Figure 2.10: Likelihood probability distribution 
for stress range 

 

Figure 2.11: Prior probability distribution for 
crack size 
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Figure 2.12: Likelihood distribution for crack size 

 

 

Figure 2.13: 3D of the Posterior distribution for 
stress range 

0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Expected value[mm]

lik
el

ih
oo

d 
of

 c
ra

ck

0 0.5 1 1.5 2 2.5 3 3.5
0

0.05

0.1

0.15

0.2

0.25

Standard deviation

lik
el

ih
oo

d 
di

st
rib

ut
io

n 
of

 c
ra

ck

10
20

30
40

50
60

2
3

4
5

6
7

8
0

0.005

0.01

0.015

0.02

0.025

Expected value

Standard deviation

P
os

te
rio

r o
f s

tre
ss

 ra
ng

e



28 

 

 

 

Figure 2.14: 3D of the Posterior distribution for 
crack size  

 

2.7 Conclusion:  

We used an update of the Bayesian method to estimate the amount of variables in section 2.5.   

The results show that the Bayesian method is a good way to reduce uncertainty in fatigue 

issues.  We see that the standard deviation for crack size and stress range is reduced by more 

than 30% and 80%.  If more data are gathered, the values of posterior distribution could be 

updated; therefore the credible interval could be decreased.  For this reason, in section 2.6, 

we update the parameters of variables.  We thus achieve a conservative estimate of the 

variables.  So with Bayesian theory we did a proper distribution with minimum uncertainties 

in parameters.  In CHAPTER 3, we use the results of CHAPTER 2 to estimate the fatigue 

reliability index. 
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CHAPTER 3 
 
 

UPDATING FATIGUE RELIABILITY MODELS WITH THE BAYESIAN METHOD 

 

3.1 Introduction of the structural reliability method 

Reliability is defined as the ability (probability) of the system to do its tasks adequately under 

determined condition for a definite and specific time (Ebeling 2004).  In general, the amount 

of reliability is defined according to the type of industry and its mission to pursue an index.  

Probabilistic methods is the major approach to estimate the system’s reliability (Cullen and 

Frey 1999).  In a non-probabilistic approach, the determination of reliability can be based on 

the historical analysis of the frequency of events supported by expert opinion.  In the 

probabilistic method, the reliability is estimated according to statistical-probabilistic 

methods.  One of the useful methods to find reliability is the reliability index used in the 

structural reliability theory.  (Madsen, Krenk et al. 2006) present a formulation of the 

reliability index β  based on the expected value (mean) and standard deviation of each 

variable analyzed with the subject of a structural reliability method.  First Order Reliability 

Method (FORM), Second Order Reliability Method (SORM) and Monte Carlo Simulation 

(MCS) are all methods to estimate the reliability index in this theory.  The context of this 

theory, and related formulations, offers a proper framework to quantify uncertainties 

(Madsen, Krenk et al. 2006).  

In this project, the reliability index, noted as β , is defined when the length of crack does not 

pass a threshold amount of HCF.  The Kitagawa-Takahashi limit state is chosen at a 

threshold amount of loading HCF to estimate fatigue reliability.  In CHAPTER 3, the 

numerical value of the reliability index is estimated by MCS and will be compared with 

FORM to find the accuracy approximation of reliability index for prior and updated 

distribution that is proposed in CHAPTER 2.  Therefore for estimating the reliability index 

with structural reliability method, we need to do following process, described below.    
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3.2 Step 1: Identify the significant failure modes of hydroelectric turbine blades 

As mentioned earlier, operating mode, maintenance strategy, quality of repairs, initial size of 

the crack by the manufacturer, location and shape of crack, along with stress loading are all 

parameters that influence the reliability index of fatigue (Raju and O'Brien 2008), (Gagnon, 

Tahan et al. 2013).  CHAPTER 2 identifies the main variables in our model (e.g. crack size 

and stress range) which lead to the cracking of the hydroelectric turbine’s blades that cause 

the degradation of the system’s reliability.  Therefore the fatigue reliability in hydroelectric 

turbines depends on the probabilistic model of a crack length that does not increase after 

passing a number of cycles under specific loading. 

 

3.3 Step 2: Define probability of failure for turbine blades 

Roughly, we could separate variables which affect the system in two groups 

(VĂCĂREANU, 2007 ).  One of them shows the resistance (strength) of system R versus of 

loading (stress) S that disturbs the system.  Failure will happen when R is less than load S.  

Each of these variables follows a specific probability density function ( ()Sf  and ()Rf ), it is 

important to study the joint distribution of each to find the probability of failure.  In this 

specific case, R and S are said in the same units (e.g. MPa).  Figure 3.1 shows an example for 

distributions of resistance and load variables when their joint distribution may lead to the 

failure of the system. 

 

 
 
 

Figure 3.1: Basic failure problem 
(VĂCĂREANU, ALDEA et al. 2007) 
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The gray area in Figure 3.1 shows that some probability for loads in this area surpass 

resistance behavior.  Therefore the probability of failure FP r  in this area needs to be 

estimated.  With a structural reliability method, the probability failure FP r  could be obtained 

easily, with new variables.  This relation can be stated in equation (3.1) (Melchers 1999).  

 F

0
Pr( 0) (P ) ( )r z

z

Z μ β
σ
−≤ = Φ= Φ = −  (3.1) 

In this equation Φ  is the standard normal cumulative distribution function, and β  is defined 

as the reliability index.  All of the variables exist in a normal distribution form.  As we see in 

equation (3.1) when the standard deviation zσ  is increased, the probability of failure will 

increase.  But in most cases, this simple equation is not appropriate to solve the problem.  

More general formulation is required.  With the theory of the structural reliability method 

this problem is solved whether it defines the equation that is a safe boundary and in unsafe 

mode.  This equation is named a limit state and shows with g ( )X .  The X  is the vector of 

all relevant basic variables.  In general, the limit state equation is derived from the physics of 

the problem.  A failure in the structural reliability method is functional of the limit state when 

the limit state is less than zero ( g( ) 0≤X ).  The probability of failure is evaluated as equation 

(3.2) and could be written as equation (3.3). 

 { }F Pr g )Pr ( 0= ≤X  (3.2) 

 F g( ) 0
(r )P f d

≤
=  X

X x  (3.3) 

When the limit state is less than zero it shows the unsafe state.  Various methods for solutions 

of the integral in equation (3.3) have been proposed.  Some limit states are linear and an 

analytical solution is easy to obtain.  If limit state functions are nonlinear, we can obtain an 

approximate solution by linearizing the function using a Taylor series development.  FORM, 

SORM and MCS are frequently used to calculate a reliability index when we have a 

nonlinear limit state.  In all these methods the equation of limit state is equal to zero (

g( ) 0=X ) and the reliability index ( β ) is definite as the shortest distance from the origin of 

standards and normalized variables to the limit state in the same iso-probabilistic space.  This 

definition, which is introduced by (Hasofer and Lind 1974) is seen in Figure 3.2.  
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Figure 3.2: Reliability index on nonlinear limit 
state (Hasofer and Lind 1974) 

 

Figure 3.2 shows the desire point to have a reliability index on the nonlinear limit state.  It 

could be estimated with an iteration relation.  

 

3.4 Step 3: Construct Kitagawa-Takahashi limit state for fatigue reliability 

It must be considered in fatigue failure; the Kitagawa-Takahashi limit state is more used 

(Kruzic and Ritchie 2006).  For constructing the Kitagawa-Takahashi limit, data from S-N 

approach and LEFM approach are used.  (Gagnon, Tahan et al. 2013) used the Kitagawa-

Takahashi limit state for the HCF onset to estimate the fatigue reliability for turbine blades.  

As mentioned in CHAPTER 1, no propagation occurs in Region I below a threshold stress 

intensity factor.  Equation (3.4) is used to determine the stress range at HCF with the LEFM 

method.  This equation shows the relation between the HCF stress range at threshold point 

thσΔ  and stress intensity factor at threshold point thKΔ . 
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th
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K
σ

πa aγ
ΔΔ =  (3.4) 

With equation (3.4) and data from the S-N curve, the Kitagawa-Takahashi limit state could 

be evaluated in 2D space by equation (3.5).   

 ( )
( )
thK

a, σ σ
πa a

g
γ

ΔΔ = Δ −  (3.5) 

In this equation, g () is the limit state and function of variables (defect size a  [mm] and 

stress range σΔ  [MPa]).  Later (El Haddad, Topper et al. 1979) proposed some corrections 

to the limit state.  Figure 3.3 shows a schematic of the Kitagawa –Takahashi limit state with 

an El Haddad correction. 

 

 

Figure 3.3: Schematic of Kitagawa -Takahashi 
limit state with El Haddad correction (Gagnon, 

Tahan et al. 2013) 
 

Figure 3.3 shows the Kitagawa-Takahashi limit state with Log-Log scales.  One line is the 

fatigue limit and represents the limit of the material’s resistance and is determined with an S-

N approach.  In this study, it corresponds to 107 cycles when the crack is in the surface and 

has a circle shape.  The second line is represented by the stress range at a threshold point that 

is obtained by the LEFM approach (equation (3.4)). 
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3.4.1 Estimated reliability index for the standard normal variables 

The standard normal distribution is used to estimate the reliability index β .  It is easy to 

analyze and at this form the variable does not have dimensional consistency.  The relation 

(3.6) shows a standard normal form (Z) for variables.  As we mentioned in this project the 

stress range and crack defect are the main variables.  

 
X

X

X

XZ
σ

i i

i

i

μ−
=  (3.6) 

Equation (3.6) reduced all of the normal variables to the standard form.  According to the real 

problem, the variables follow non-normal distribution; we need to transfer the variables from 

the non-normal space to a standard normal space (iso-probabilistic space).  One of the 

transformation techniques that could be used is a Rosenblatt transformation.  In this project 

we use a Rosenblatt transformation to reduced variables in a standard normal space. 

 

3.4.2 Rosenblatt transformation 

When the variables are non-normal, the Rosenblatt transformation is applicable and shows up 

in equation (3.7). 

 ( )1
X( X )Z F−Φ=  (3.7)

Where ( )X XF  is the cumulative distribution (CDF) of X , Φ  is the standard normal 

cumulative distribution.  For generating the new expected value and the standard deviation 

that relates to equation (3.7), we need to define the relation that is described in (3.8) to (3.9).  
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σ
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X

1 X
( ) (X )

i

i i
i

i i

fμϕ
σ σ

− =  (3.9)

Where X (X )
i if  is the probability density function (PDF) for ,μ σ .  The new ,μ σ  could be 

obtained by (3.10) to (3.11) are:  
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3.4.3 Estimating reliability index with FORM 

As mentioned, the reliability index represents the shortest distance from the origin to the 

point in a limit state when all of the variables are in the standard normal form.  When the 

limit state is nonlinear, we can obtain an approximate answer by linearizing the function 

using a Taylor series.  Equation (3.12) is used to linearize the limit state.  

 ( ) ( )* * * *
1 2 1 1    

1

, , , , ,.., ( )
n

n n i i evaluated at design point
i i

gg X X X g x x x X x
X=

∂… ≈ + −
∂  (3.12) 

The design point *
ix  is a point on the limit state when the limit state is equal to zero.  Since 

this design point is generally not known, an iterative technique must be used to solve the 

equation.  Equations (3.13a) to (3.13c) show the iteration that is needed to find the reliability 

index.  Calculating this equation needs additional time in order to find the location of a 

design point.  For calculating the design point, we need reduced variables.  Therefore all of 

the variables need to be transferred to a standard normal variable. 
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1 2Z , Z ,..., Z 0ng = ;  
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The probability failure is estimated directly from the reliability index and is given by 

equation (3.14). 

 F

0
Pr ( <0)= ( ) (- )X

X

X μ β
σ
−Φ = Φ  (3.14) 

 

3.5 Estimate reliability index for prior distribution 

As mentioned before, in order to estimate the reliability index, the first step is constructing 

the limit state with variables that affect the failure.  With the use of information in Table 3.1, 

the Kitagawa-Takahashi limit state constructed. 

 

Table 3.1: Detailed results for a [mm] (Normal 
( μ =1.5, σ =0.5)) and σΔ [MPa] (Normal ( μ

=28 σ =3)) 

Description for Prior distribution Values 

Physical space design point (mm, MPa) (1.5, 28) 

Standard space design point (1.79, 1.88)

MCS reliability index (105 simulations) 2.60 

FORM reliability index 1.88 

MCS probability failure  0.004 

FORM probability failure 0.029 
 

After constructing the limit state, we could estimate the reliability index when the variables 

are reduced to the normal standard space.  The prior distribution in this study follows normal; 

therefore we do not need to use transformation technique.  After updating the results 

(updated to posterior distribution) we will use a Rosenblatt transformation to transfer 

variables to a 2D standard normal space.  Figure 3.4 shows the limit state and β  when all of 

the variables are in standard form.  The value of reliability index is calculated by MCS 

method and FORM. 
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.  

Figure 3.4: Reliability index amount 
 

Figure 3.4 shows the result of reliability index for the crack that obtained by MCS after 105 

simulations.  We generate 105 data because the amount of reliability is between 2 and 4.  In 

general for large amount of reliability index we need to simulate more than 106 data.  This 

amount has abilities to cover distribution that need to investigate.  According to in this 

project, reliability index is close to 3, selecting the number of 105 simulations is reasonable.  

Figure 3.5 shows the reliability index vs crack size and Figure 3.6 displays probability failure 

versus crack size when we use FORM and MCS method.  

 

Figure 3.5: Reliability index vs of crack size 
with MCS and FORM 
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Figure 3.6: Probability of failure vs crack size 
with MCS and FORM 

 

Figure 3.5 and Figure 3.6 show the large difference between MCS and FORM.  However, in 

both cases, the results follow the same trend, but the amounts are different from each other.  

One of the reasons is because of existing of large standard deviation of variables specially 

related to stress range.  As we see the equation in (3.13), the impact of the standard deviation 

in the FORM method is very high.   But after updating variables and decreasing uncertainties 

we will see the curves of FORM and MCS converge to each other.  Although we need to 

consider that the results for FORM are obtained with only 16 iterations as compared to MCS 

those 105 simulations which draws from the distribution.   

 

3.6  Estimate reliability index for posterior distribution 

After estimating the reliability index for prior distribution, we need to update the results to 

use posterior distribution to achieve precise fatigue reliability.  As mentioned in CHAPTER 

2, the product of prior and likelihood is posterior distribution.  The amount of parameters for 

posterior distribution are taken from Table 2.4 to construct the limit state.  Afterwards, the 

use of Rosenblatt transformation and the variables transfer to the 2D standard normal space 

to estimate the reliability index.  Figure 3.7 shows the reliability index point that is obtained 
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by MCS for posterior distribution and is equal to 2.62.  The amount of the reliability index 

that is estimated by FORM is 2.11.    

 

 

Figure 3.7: Reliability index for posterior 
distribution with MCS 

 

3.6.1 Updating the posterior distribution to find the precise fatigue reliability 

In this section, we want to update the results of previous reliability index to achieve a precise 

estimation.  We have two test data that could replace the likelihood distribution and we 

update the posterior distribution with adding data.  In order to update the posterior 

distribution, we use the latest posterior distribution as a prior and add test data that are 

replaced to the likelihood distribution.  The amount of test data is shown in Table 3.2.  Figure 

3.8 and Figure 3.9 show the updated posterior distribution for two test data for crack size a 

[mm] and stress range σΔ  [MPa].  Table 3.3 shows the amount of parameter specifications 

with added data and updates.  

 

Table 3.2: Test data (Likelihood distribution) 

Likelihood  a [mm] σΔ  [MPa] 

Test Data 1 Gumbel ( μ =1.80, σ =0.65) Gumbel ( μ =30.4, σ =5) 

Test Data 2 Gumbel ( μ =1.74, σ =0.4) Gumbel ( μ =29.7, σ =3.3) 

Test Data 3 Gumbel ( μ =1.67, σ =0.33) Gumbel ( μ =30.4, σ =5) 
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Figure 3.8: Two updated posterior distribution 
for crack size 
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Figure 3.9: Two updated posterior distribution 
for stress range 

 

Table 3.3: Amount of prior, likelihood and 
updated posterior distribution 

No Distribution Prior (analytical result) Likelihood ( test data) Posterior  

1 a  [mm] 

Normal ( μ =1.5, σ =0.5) Gumbel ( μ =1.80, σ =0.65) μ =1.577, σ =0.435 

μ =1.577, σ =0.435 Gumbel ( μ =1.74, σ =0.4) 
1th-Update 

μ =1.624, σ =0.396 

μ =1.624, σ =0.396 Gumbel ( μ =1.67, σ =0.33) 
2th-Update 

μ =1.636, σ =0.282 

 

2 σΔ  [MPa] 

Normal ( μ =28, σ =3) Gumbel ( μ =30.4, σ =5) μ =28.41, σ =0.49 

μ =28.41, σ =0.49 Gumbel ( μ =29.7, σ =3.3) 
1th-Update 

μ =28.42, σ =0.133 

μ =28.42, σ =0.133 Gumbel ( μ =30.4, σ =5) 
2th-Update 

μ =28.5, σ =0.03 

 

With the updated posterior distribution results shown in Table 3.3 the reliability index and 

probability failure could estimate.  Table 3.4 shows the reliability index amount and 

probability failure for posterior distribution and two updated distributions with MCS and 

FORM.  Figure 3.10 shows the probability of failure for the 2th updated posterior distribution. 
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Table 3.4: Reliability index and probability 
failure for updated distribution 

No Distribution β  

MCS 

β  

FORM 

FPr  

MCS 

FPr  

FORM 

1 Prior 2.60 1.88 0.004 0.029 

2 Posterior 2.62 2.11 0.004 0.017 

3 1th-Update 2.06 2.08 0.019 0.018 

4 2th-Update 1.75 1.99 0.039 0.023 

 

 

Figure 3.10: Evolution of the probability of 
failure vs crack size 

 

Figure 3.10 shows that probability failure increases when the crack size grows.  Also, we see 

that the difference of FORM and MCS is near to zero after the 2th updater of posterior 

distribution which causes a decrease in the uncertainty of parameters.  We can see and 

compare the probability of failure for the prior and posterior distribution with FORM and 

MCS methods as shown in Figure 3.11 and Figure 3.12. 
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Figure 3.11: Probability of failure for prior and 
2th updated posterior distribution with FORM 

method 

 

 

Figure 3.12: Probability of failure for prior and 
2th updated posterior distribution with MCS 

method 
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As we see in Figure 3.11 and Figure 3.12, the amount of probability failure for posterior 

distribution is less than the prior distribution.  Therefore, the failure occurs sooner than we 

expected. .  

 

3.7 Select target reliability index 

The target reliability index levels related to consequence failures are mainly planned for 

structures to compare the results with this target.  The amount of this target is explained in 

some standards.  Table 3.5 shows some target reliability levels that is suggested by 

international codes for design and assessment.  It varies with the consequences of failure and 

the reference periods. 

 

Table 3.5: Target reliability index 

Codes Consequences of reliability index

EN 1990 

IS0 9324 

JCSS 

Small

Low 

Some 

Minor

Normal 

Moderate 

Moderate

High 

Great 

Large

EN 1990-- 50 years 

IS0 9324--life time 

JCSS--50 years 

- 

1.3 

- 

3.3 

2.3 

2.5 

3.8 

3.1 

3.2 

4.2 

3.8 

3.5 

EN 1990--1 year 

IS0 9324--1 year 

JCSS--1 year 

- 

2.9 

- 

4.2 

3.5 

3.7 

4.7 

4.1 

4.2 

5.2 

4.7 

4.4 

 

3.8 Conclusion  

According to the previous review, it appears that for non-linear systems, methods of FORM 

or Monte Carlo are appropriate for the estimation of the reliability index.  For time-

dependent systems, Monte Carlo simulations are effective (Guo, Watson et al. 2009).  
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The value of the reliability index must be accompanied by a probability of failure based on 

the updated prediction of crack growth rates.  For calculating the reliability index, a 

Rosenblatt transformation technique is used to obtain a representation in iso-probabilistic 

space.  After constructing the limit state with variables in standard form, we first estimate the 

reliability index for prior distribution with FORM and MCS methods.  The accuracy of the 

FORM is compared with the MCS that was shown in Figure 3.10.  We understand that when 

the uncertainties are large, the differences of MCS and FORM are considerable.  After 

updating the distribution with Bayesian methodology, results show that the standard 

deviation of a stress range is changed (better estimation) and the differences of reliability 

index with FORM and MCS are smaller than before.  As shown, the reliability index is very 

dependent on the type of distribution of variables and the amount of parameters.  Therefore, 

determining the precise distribution affects estimating the reliability index.  With an updated 

reliability index and a probability of failure, we could better-placed to predict turbine failure.  

Figure 3.13 shows the methodology that we used in CHAPTER 3 for estimating the 

reliability index. 
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Figure 3.13: Methodology to update reliability index 



 

CONCLUSION 

 

In this thesis, we have described the concept of a fatigue reliability model and updated the 

variables of models for hydroelectric turbines to obtain a precise reliability index.  We 

answered the following three questions:  

• CHAPTER 2: How can we update our prior knowledge in light of new information 

gathered to obtain a posterior? 

• CHAPTER 2: Can we estimate and decrease the uncertainty about the variables and 

parameters that exist in fatigue models?  

• CHAPTER 3: How can we, given this new information, assess the validity of the 

reliability model used?  

In CHAPTER 2, a Bayesian update is used to reduce the uncertainties that exist in variables 

that are related to a Paris formula.  The distribution of variables is estimated by considering 

an initial uncertainty with normal distribution and a 95% confidence interval.  In order to 

decrease the confidence interval band, we updated the initial distribution three times by using 

the data as likelihood distribution.  Therefore, we found that the Bayesian method could 

reduce the uncertainty of variables when reducing the scatter data and standard deviation by 

almost 40%.  Moreover, a Bayesian update has been applied to update the parameters of 

variables to find the precise amount of variables.  The final results of posterior distribution 

after updating the variables and parameters are used to determine the fatigue reliability index.  

Therefore, the proposed method could account for uncertainties, as well as the presence of 

confidence intervals or error bands. 

In CHAPTER 3 most of the issues that contribute to the phenomenon of cracking and 

hydraulic turbine fatigue are studied.  In this study using the Bayesian method, due to 

existing complexity and more computational programming, certain consumed variables are 

constant and just examine two variables: crack size and stress range.  The Kitagawa-

Takahashi limit state is a suitable limit state for estimating the reliability of fatigue that 

constructs with two S-N curves and a LEFM method.  The limit state is a boundary to 

determine the component’s safe and failure mode.  Because of a scarcity of information 

about variables, variable uncertainty is increased.  Therefore, we have an interval limit state. 
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We demonstrated that that the Bayesian method is a suitable candidate for fatigue reliability 

modeling of turbine runners where prior information is scarce and highly subjective.  With 

the Bayesian method and updating approach, we may be able to decrease the uncertainty of 

limit state.  

After constructing the limit state, a transformation technique that transfers the variables to 2D 

standard forms is used.  In this study, the Rosenblatt transformation is performed.  The 

reliability index using the FORM and MCS method is estimated in this study.  The accuracy 

of the FORM method is compared with the MCS.  As demonstrated, the reliability index is 

very dependent on the type of distribution of variables, amount of parameters, and limit state 

function.  We have shown that when the amount of parameters changed is very smooth, the 

result of reliability index is changed significantly.  Therefore, each individual source of 

uncertainty needs to be identified and characterized to allow for a precise reliability index 

and decrease the risk of structural component failure.    

 



 

RECOMENDATIONS 

 

The following recommendations are offered as possible ways to improve this study.  

• We choose normal distribution as our prior distribution, given that the precision of 

posterior distribution is very close to prior distribution and since it is recommended to 

choose several applicant distributions to find the best model to fit the data. 

 

• We consider that thKΔ is constant, but in reality this amount follows a specific 

distribution.  It is therefore advised to find its precise distribution and updated it using 

by Bayesian method.  Afterwards we could construct the limit state with three 

updated distributions that are highly significant in order to obtain a precise reliability 

index. 

 

• It is recommended to perform a sensitivity analysis to find out how the output of a 

model changes with input variations.  By doing so we could understand which 

parameters have more weight to estimate the reliability index.  As we observed in 

CHAPTER 3, a little change in the amount of parameters could affect failure 

probability and the reliability index. 





 

APPENDIX I 
 
 

MATLAB CODE 

GUMBEL DISTRIBUTION 

% crack length 
  
x = -5:.01:5; 
plot(x,evpdf(x,1.81,0.65),'-', ... 
     x,evpdf(x,1.66,0.33),':', ... 
     x,evpdf(x,1.75,0.55),'-.'); 
legend({'mu = 1.81, sigma = 0.65', ... 
        'mu = 1.66, sigma = 0.33', ... 
        'mu = 1.74, sigma = 0.49'}, ... 
       'Location','NW') 
xlabel('crack size') 
ylabel('f(crack size|mean value,s.deviation)') 
  
% %  
  
% stress range  
  
x = 10:.01:40;    
plot(x,evpdf(x,30.4,5),'-', ... 
     x,evpdf(x,29.7,3.3),':', ... 
     x,evpdf(x,26.6,1.3),'-.'); 
legend({'mu = 30.4, sigma = 5', ... 
        'mu = 29.7, sigma = 3.3', ... 
        'mu = 26.6, sigma = 1.3'}, ... 
       'Location','NW') 
xlabel('Stress range') 
ylabel('f(Stress range|mean value,s.deviation)') 
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UPDATING VARIABLES BY BAYESIAN METHOD 

 % STRESS UPDATED  
  
clear all 
clc 
  
% Likelihood Distribution 
  
stress=[1:0.5:50]; 
mu=30.4; 
sigma=5; 
  
% the test shows the result follow the gumbel distributin 
  
gumbel_stress = evpdf(stress,mu,sigma); 
normal_stress = normpdf(stress,mu,sigma); 
product_stress=gumbel_stress.*normal_stress; 
  
% Normalizing  
  
int_stress(1)=2*10^(-5); 
for i=1:98 
int_stress(i+1)=product_stress(i+1)*0.5+int_stress(i); 
end 
int_infinit=0.065; 
product_stress_normalized=product_stress/int_infinit; 
  
figure(1) 
plot(stress, int_stress,'*') 
   
figure(11) 
plot(stress, gumbel_stress) 
legend({'Gumbel distribution(\mu=30.4,\sigma=5)'})    
set(legend,'FontSize',12)      
set(gcf, 'Color', [1,1,1]); 
 xlabel('Stress range(MPa)','fontsize',14') 
ylabel('Likelihood distribution','fontsize',14') 
axis([25 50 0 0.08]) 
  
figure(22) 
plot(stress, gumbel_stress,'g'); 
hold on 
plot(stress, normal_stress,'r') 
plot(stress,product_stress_normalized) 
% plot(stress, int_stress,'*') 
legend({'Gumbel distribution', ... 
        'Normal distribution', 'Product distribution'}) 
set(legend,'FontSize',12)    
set(gcf, 'Color', [1,1,1]);   
Xlabel('Stress range(MPa)','fontsize',14') 
ylabel('Probability distribution','fontsize',14') 
axis([17 50 0 0.1]) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Construct prior distribution 
% Tests: (confidence interval 95)% 
  
mu_t1=22.12; 
mu_t2=28; 
mu_t3=33.88; 
normal_stress_test1 = normpdf(stress,mu_t1,sigma); 
normal_stress_test2 = normpdf(stress,mu_t2,sigma); 
normal_stress_test3 = normpdf(stress,mu_t3,sigma); 
  
  
% Test 1 
  
figure(33) 
plot(stress,product_stress_normalized); 
hold on 
plot(stress, normal_stress_test1,'r') 
legend({'product distribution', ... 
        'prior distribution(test 1),\mu=22.12,\sigma=3'}) 
set(gcf, 'Color', [1,1,1]);   
   
xlabel('Stress range','fontsize',14') 
ylabel('Probability distribution','fontsize',14') 
  
title('Initial distribution','fontsize',14') 
axis([17 50 0 0.1]) 
   
% UPDATE 
update_1=product_stress_normalized.*normal_stress_test1; 
  
int_update_1(1)=2*10^(-5); 
for i=1:98 
int_update_1(i+1)=update_1(i+1)*0.5+int_update_1(i); 
end 
figure(44) 
% plot(stress, int_update_1,'*') 
hold on 
int_update_1=0.03; 
update_1_normalized=update_1/int_update_1; 
plot(stress,update_1_normalized,'--') 
plot(stress, normal_stress_test2,'r') 
 legend({'Initial distribution', ... 
        'prior distribution(test 1),\mu=28,\sigma=3'}) 
set(gcf, 'Color', [1,1,1]);   
  
xlabel('Stress range','fontsize',14') 
ylabel('Probability distribution','fontsize',14') 
 title('Updated with first test','fontsize',14') 
axis([17 50 0 0.12]) 
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 % Test2 
 update_2=update_1_normalized.*normal_stress_test2; 
  
int_update_2(1)=2*10^(-5); 
for i=1:98 
int_update_2(i+1)=update_2(i+1)*0.5+int_update_2(i); 
end 
  
figure(55) 
% plot(stress, int_update_2,'*') 
hold on 
int_update_2=0.068; 
update_2_normalized=update_2./int_update_2; 
plot(stress,update_2_normalized,'--') 
plot(stress, normal_stress_tes t3,'r') 
  
legend({'Updated', ... 
        'prior distribution(test 2),\mu=33.88,\sigma=3'}) 
   
set(gcf, 'Color', [1,1,1]);   
     
xlabel('Stress range','fontsize',14') 
ylabel('Probability distribution','fontsize',14') 
 title('Updated with second test','fontsize',14') 
axis([17 50 0 0.12]) 
  
 %%%%%%%%%%%%%%%%%%%%%%%%%%% 
 % Test3 
 update_3=update_2_normalized.*normal_stress_test3; 
  
int_update_3(1)=2*10^(-5); 
for i=1:98 
int_update_3(i+1)=update_3(i+1)*0.5+int_update_3(i); 
end 
figure(66) 
% plot(stress, int_update_3,'*') 
hold on 
int_update_3=0.03; 
update_3_normalized=update_3./int_update_3; 
plot(stress,update_3_normalized,'--') 
plot(stress, normal_stress_test3,'r') 
 legend({'Updated', ... 
        'prior distribution(test 3),\mu=33.99,\sigma=5'}) 
set(gcf, 'Color', [1,1,1]);   
  
     
xlabel('Stress range','fontsize',14') 
ylabel('Probability distribution','fontsize',14') 
title('Updated with third test','fontsize',14') 
axis([17 50 0 0.2]) 
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figure (77) 
plot(stress,update_3_normalized,'--') 
legend({'Final (Posterior distribution)'}) 
set(gcf, 'Color', [1,1,1]);      
xlabel('stress','fontsize',14') 
ylabel('Posterior distribution','fontsize',14') 
axis([17 50 0 0.2]) 
 
  
 % Mean Value  
 
n=0; 
d=0; 
for i=1:99 
    n=(update_3_normalized(i)*stress(i))+n; 
    d=update_3_normalized(i)+d; 
end 
mean=n/d 
 
 
 % Standard Deviation 
sq=0; 
for i=1:99 
    sq=(update_3_normalized(i)*(stress(i)-mean))^2+sq; 
end 
std=sq^0.5 
update_3_normalized_stress=update_3_normalized; 
 
% ******************************************* 
% *********** 
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CRACK UPDATED 
 
clear all 
clc 
  
% Likelihood Distribution 
step=.05 
crack=[-0.9:step:4]; 
mu=1.81; 
sigma=0.65; 
  
% the test shows the result follow the gumbel distributin 
  
gumbel_crack = evpdf(crack,mu,sigma); 
normal_crack = normpdf(crack,mu,sigma); 
product_crack=gumbel_crack.*normal_crack; 
  
  
% Normalizing  
int_crack(1)=0.003; 
for i=1:98 
int_crack(i+1)=product_crack(i+1)*step+int_crack(i); 
end 
int_infinit=0.4; 
product_crack_normalized=product_crack/int_infinit; 
  
figure(1) 
plot(crack, gumbel_crack) 
legend({'Gumbel distribution(\mu=1.81,\sigma=0.65)'})    
set(legend,'FontSize',12)      
set(gcf, 'Color', [1,1,1]); 
  
xlabel('Crack size(mm)','fontsize',14') 
ylabel('Likelihood distribution','fontsize',14') 
axis([0.5 4 0 1]) 
  
% ********************* 
figure(2) 
plot(crack, gumbel_crack,'g'); 
hold on 
plot(crack, normal_crack,'r') 
plot(crack,product_crack_normalized) 
plot(crack, int_crack,'*') 
legend({'Gumbel distribution', ... 
        'Normal distribution', 'Product distribution'}) 
set(legend,'FontSize',12)    
set(gcf, 'Color', [1,1,1]); 
       
xlabel('Crack size(mm)','fontsize',14') 
ylabel('Probability distribution','fontsize',14') 
axis([0.5 4 0 1]) 
% ***************************** 
% ***************************** 
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% prior distributiin 
% Tests: (confidence interval 95% 
mu_t1=0.52; 
mu_t2=1.5; 
mu_t3=2.48; 
sigma_t=0.5 
normal_crack_test1 = normpdf(crack,mu_t1,sigma_t); 
normal_crack_test2 = normpdf(crack,mu_t2,sigma_t); 
normal_crack_test3 = normpdf(crack,mu_t3,sigma_t); 
  
% Test 1 
 figure(3) 
plot(crack,product_crack_normalized); 
hold on 
plot(crack, normal_crack_test1,'r') 
 legend({'product distribution', ... 
        'prior distribution(test 1),\mu=0.52,\sigma=0.5'}) 
set(legend,'FontSize',12)    
set(gcf, 'Color', [1,1,1]);   
 xlabel('Crack size','fontsize',14') 
ylabel('Probability distribution','fontsize',14') 
 title('Initial distribution','fontsize',14') 
axis([0.1 4 0 1]) 
  
% UPDATE 
 update_1=product_crack_normalized.*normal_crack_test1; 
 int_update_1(1)=2*10^(-5); 
for i=1:98 
int_update_1(i+1)=update_1(i+1)*step+int_update_1(i); 
end 
  
figure(4) 
plot(crack, int_update_1,'*') 
hold on 
int_update_1=0.15; 
update_1_normalized=update_1/int_update_1; 
plot(crack,update_1_normalized,'--') 
plot(crack, normal_crack_test2,'r') 
 legend({'Initial distribution', ... 
        'prior distribution(test 1),\mu=0.52,\sigma=0.5'}) 
set(legend,'FontSize',12)    
set(gcf, 'Color', [1,1,1]); 
xlabel('Crack size','fontsize',14') 
ylabel('Probability distribution','fontsize',14') 
 title('Updated with first test','fontsize',14') 
 axis([0.5 4 0 1]) 
  
 % Test2 
 update_2=update_1_normalized.*normal_crack_test2; 
 int_update_2(1)=2*10^(-5); 
for i=1:98 
int_update_2(i+1)=update_2(i+1)*step+int_update_2(i); 
end 
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figure(5) 
plot(crack, int_update_2,'*') 
hold on 
int_update_2=0.65; 
update_2_normalized=update_2./int_update_2; 
plot(crack,update_2_normalized,'--' ) 
plot(crack, normal_crack_test3,'r') 
 legend({'Updated', ... 
        'prior distribution(test 2),\mu=1.5,\sigma=0.5'}) 
set(legend,'FontSize',12) 
set(gcf, 'Color', [1,1,1]); 
 xlabel('Crack size','fontsize',14') 
ylabel('Probability distribution','fontsize',14') 
 title('Updated with second test','fontsize',14') 
axis([0.5 4 0 1]) 
  
% ***************************** 
% Test3 
update_3=update_2_normalized.*normal_crack_test3; 
int_update_3(1)=2*10^(-5); 
for i=1:98 
int_update_3(i+1)=update_3(i+1)*step+int_update_3(i); 
end 
 
figure(6) 
plot(crack, int_update_3,'*') 
hold on 
int_update_3=0.1; 
update_3_normalized=update_3./int_update_3; 
plot(crack,update_3_normalized,'--') 
plot(crack, normal_crack_test3,'r') 
legend({'Updated', ... 
        'prior distribution(test 3),\mu=2.48,\sigma=0.5'}) 
set(legend,'FontSize',12)   
set(gcf, 'Color', [1,1,1]); 
 xlabel('Crack size','fontsize',14') 
ylabel('Probability distribution','fontsize',14') 
 
title('Updated with third test','fontsize',14') 
axis([0.5 4 0 1]) 
  
figure (7) 
plot(crack,update_3_normalized,'--') 
legend({'Final'}) 
set(legend,'FontSize',12)    
set(gcf, 'Color', [1,1,1]); 
xlabel('Crack size','fontsize',14') 
ylabel('Probability distribution','fontsize',14') 
axis([0.5 4 0 1]) 
  
% ***************************** 
% ***************************** 
% ***************************** 
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% MEAN value and STANDARD DEVIATION  
n=0; 
d=0; 
for i=1:99 
    n=(update_3_normalized(i)*crack(i))+n; 
    d=update_3_normalized(i)+d; 
end 
mean=n/d 
  
sq=0; 
for i=1:99 
    sq=(update_3_normalized(i)*(crack(i)-mean))^2+sq; 
end 
std=sq^0.5 
update_3_normalized_crack=update_3_normalized; 
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UPDATING PARAMETERS BY BAYESIAN METHOD 

clear 
  
% % CODE IS AVAILBLE FOR CRACK SIZE  
% this a code for calculating posterior distribution and updating of 
% parameters 
% the prior is uniform  
% the likelihood is gumbel distribution  
   
mu=1.75; 
sigma=0.55; 
  
beta_mean=(sigma/1.2)^0.5; 
alpha_mean=mu-0.57772*beta_mean; 
  
x=[0:0.1:3]; 
mu_stress=[0.1:0.1:3.1]; 
standard_deviation=[0.1:0.1:3.1]; 
sigbet=0.2; 
mubet=sigma; 
mu_stress_interval=30; 
   
for k=1:length(standard_deviation) 
    for j=1:length (mu_stress) 
        for i=1:length(x) 
             
                        likelihood(k,j,i)=1/standard_deviation(k)*exp(-
(x(i)-mu_stress(j))/standard_deviation(k))*exp(-exp(-(x(i)-
mu_stress(j))/standard_deviation(k))); 
                         
                         
                         
%             perior 
            pbeta(k)=1/(sigbet*(2*pi)^0.5)*exp(-(standard_deviation(k)-
mubet)^2/2/sigbet^2); 
            palpha(j)=1/mu_stress_interval; 
             
%             Posterior 
            post(k,j,i)=pbeta(k)*palpha(j)*likelihood(k,j,i); 
            
         
        end 
    end 
end 
  
  
plot(mu_stress,likelihood(:,1,1),'-', ... 
     mu_stress,pbeta(:),':',... 
       mu_stress,post(:,1,1),'-.'); 
  
legend({'likelihood', ... 
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        'prior', ... 
        'posterior'}, ... 
       'Location','NE') 
    
xlabel('a[mm]') 
ylabel('Posterior of crack lenght') 
  
   
figure(2) 
plot(mu_stress,likelihood(:,1,1),'-', ... 
     mu_stress,pbeta(:),':',... 
       mu_stress,post(:,1,1),'-.'); 
  
legend({'likelihood', ... 
        'prior', ... 
        'posterior'}, ... 
       'Location','NE') 
    
xlabel('a[mm]') 
ylabel('Probability distribution of crack lenght') 
  
figure(3) 
plot(mu_stress,likelihood(10,:,5)) 
xlabel('Expected value[mm]') 
ylabel('likelihood of crack') 
  
  
figure(4) 
plot(standard_deviation,likelihood(:,8,1)) 
xlabel('Standard deviation') 
ylabel('likelihood distribution of crack') 
  
  
figure(5) 
plot(standard_deviation,pbeta(:)) 
xlabel('Standard deviation') 
ylabel('Prior of crack') 
  
figure(6) 
plot(mu_stress,palpha(:)) 
xlabel('Expected value[mm]') 
ylabel('Prior of crack') 
  
figure(7) 
surf(mu_stress,standard_deviation,post(:,:,20)) 
xlabel('Expected value of crack') 
ylabel('Standard deviation of crack') 
zlabel('Posterior of crack') 
clear 
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% % CODE IS AVAILBLE FOR STRESS RANGE  
% this a code for calculating posterior distribution 
% the prior is uniform  
% the likelihood is gumbel distribution  
 
 mu=30.4; 
sigma=5; 
x=[25:1:50]; 
mu_stress=[10:1.66:60]; 
standard_deviation=[2:0.2:8]; 
sigbet=1.5; 
mubet=sigma; 
mu_stress_interval=30; 
  
for k=1:length(standard_deviation) 
    for j=1:length (mu_stress) 
        for i=1:length(x) 
             
                        likelihood(k,j,i)=1/standard_deviation(k)*exp(-
(x(i)-mu_stress(j))/standard_deviation(k))*exp(-exp(-(x(i)-
mu_stress(j))/standard_deviation(k))); 
                                          
                         
%             perior 
            pbeta(k)=1/(sigbet*(2*pi)^0.5)*exp(-(standard_deviation(k)-
mubet)^2/2/sigbet^2); 
            palpha(j)=1/mu_stress_interval; 
             
%             Posterior 
            post(k,j,i)=pbeta(k)*likelihood(k,j,i); 
            
         
        end 
    end 
end 
  
 figure(1) 
  
plot(mu_stress,likelihood(:,1,1),'-', ... 
     mu_stress,pbeta(:),':',... 
       mu_stress,post(:,1,1),'-.'); 
  
legend({'likelihood', ... 
        'prior', ... 
        'posterior'}, ... 
       'Location','NE') 
    
xlabel('Stress range') 
ylabel('Posterior of stress 
range','fontsize',16,'fontweight','b','color','b') 
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figure(2) 
plot(mu_stress,likelihood(10,:,5)) 
plot(mu_stress,palpha(:)) 
plot(mu_stress,post(:,3,20)) 
  
xlabel('\Delta\sigma[Mpa]') 
ylabel('Prior of \Delta\sigma','fontsize',14) 
  
  
figure(3) 
plot(mu_stress,likelihood(10,:,5)) 
xlabel('\mu') 
ylabel('L(\Delta\sigma|\mu)','fontsize',14) 
  
  
figure(4) 
plot(standard_deviation,likelihood(:,8,1)) 
xlabel('\sigma') 
ylabel('L(\Delta\sigma|\sigma)','fontsize',14) 
  
figure(5) 
plot(standard_deviation,pbeta(:)) 
xlabel('\sigma') 
ylabel('Prior of \Delta\sigma','fontsize',14) 
  
figure(6) 
plot(mu_stress,palpha(:)) 
xlabel('\mu') 
ylabel('Prior of \Delta\sigma','fontsize',14) 
  
figure(7) 
surf(mu_stress,standard_deviation,post(:,:,20)) 
xlabel('\mu') 
ylabel('\sigma') 
zlabel('Posterior(\mu,\sigma|\Delta\sigma)','fontsize',14)  
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RELIABILITY INDEX WITH FORM METHOD 
clear all 
  
mu_s=28.42; 
sigma_s=0.7; 
mu_c=1.624; 
sigma_c=0.396; 
  
stress_g_original=[1:0.5:50]; 
step=.05 
crack=[-0.9:step:4]; 
crack_g_original=sort(crack); 
  
  
% ROSENBLATH TRANSFORMATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
a=pi/(6^0.5*sigma_s); 
b=mu_s-0.5772/a; 
x=stress_g_original; 
CDF_gum_s = evcdf(x,mu_s,sigma_s) 
a=pi/(6^0.5*sigma_c); 
b=mu_c-0.5772/a; 
x=crack_g_original; 
CDF_gum_c = evcdf(x,mu_c,sigma_c) 
figure(1001) 
plot(crack_g_original,CDF_gum_c) 
xlabel('Crack') 
ylabel ('CDF of Posterior function'); 
  
%phie-1 CDF_gum_s 
 z_stress = norminv(CDF_gum_s,0,1); 
  
j=1; 
for i=1:length(z_stress) 
    if z_stress(i)<8 & z_stress(i)>-8 
        z_stress_corect(j)= z_stress(i); 
        j=j+1; 
    end 
end 
  
 %phie-1 CDF_gum_c 
z_crack = norminv(CDF_gum_c,0,1); 
  
j=1; 
for i=1:length(z_crack) 
    if z_crack(i)<6 & z_crack(i)>-6 
        z_crack_corect(j)= z_crack(i); 
        j=j+1; 
    end 
end 
 %normal distribution pdf 
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norm_stress = normpdf(z_stress_corect,0,1); 
norm_crack = normpdf(z_crack_corect,0,1); 
  
  
%Gumbel distribution pdf 
stress_g = stress_g_original; 
crack_g = crack_g_original; 
  
pdf_gum_s = evpdf(stress_g,mu_s,sigma_s); 
pdf_gum_c = evpdf(crack_g,mu_c,sigma_c); 
  
  
%finding new sigma and mu 
  
  
for i=1:length(norm_stress) 
    sigma_stress_nor(i)=norm_stress(i)/pdf_gum_s(i); 
    mu_stress_nor(i)=stress_g(i)-sigma_stress_nor(i)*z_stress_corect(i) 
end 
  
for i=1:length(norm_crack) 
    sigma_crack_nor(i)=norm_crack(i)/pdf_gum_c(i); 
    mu_crack_nor(i)=crack_g(i)-sigma_crack_nor(i)*z_crack_corect(i); 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% finding beta and alphas 
b(1)=6;  %initial value for beta 
a1(1)=50;     %initial value for alpha 1 
a2(1)=1;    %initial value for alpha 2 
  
j=1; 
for i=1:length(mu_crack_nor) 
    if abs(mu_crack_nor(i))<2*mu_c 
    MU_crack_nor(j)=mu_crack_nor(i); 
    SIGMA_crack_nor(j)=sigma_crack_nor(i); 
    j=j+1; 
    end 
     
end 
  
j=1; 
for i=1:length(mu_stress_nor) 
    if abs(mu_stress_nor(i))<2*mu_s 
    MU_stress_nor(j)=mu_stress_nor(i); 
    SIGMA_stress_nor(j)=sigma_stress_nor(i); 
    j=j+1; 
    end 
     
end 
  
mu_crack= mean(MU_crack_nor); 
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sigma_crack=mean(SIGMA_crack_nor); 
  
  
mu_sigma= mean(MU_stress_nor); 
sigma_sigma=mean(SIGMA_stress_nor); 
  
 % Finding the limit state 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% countour stress range and crack size  
x_norm=sort(z_stress_corect); 
xx_norm=sort(z_crack_corect); 
  
 %for g=0, we have the following: 
Kth=2; 
Ya=1; 
i=1; 
q=75;  
s1=sigma_crack; 
m1=mu_crack; 
s2=sigma_sigma; 
m2=mu_sigma; 
% mu_sigma=0; 
m2=mu_sigma; 
  
for j=1:length(xx_norm) 
    if xx_norm(j)>-m1 
        norm_crack_Calculated(i)=xx_norm(j); 
        norm_stress_reduced_value(i)= (q/(xx_norm(j)*s1+m1)^(0.5)-m2)/s2; 
%         norm_stress_reduced_value(i)=Kth/(pi*xx_norm(j))^0.5/Ya; 
         
         
        i=i+1; 
    end 
     
end 
mu_cr=mu_crack; 
sigma_cr=sigma_crack; 
mu_s=mu_sigma; 
sigma_s=sigma_sigma; 
  
mu_exp_stress=45; 
  
stress_Experimental=mu_exp_stress*ones(length(norm_crack_Calculated),1); 
crack_Calculated=sigma_cr*norm_crack_Calculated+mu_cr; 
stress_reduced_value=sigma_s*norm_stress_reduced_value+mu_s; 
 
 
 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% axes transfer 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
% Tr_x=(b(length(a2))*a2(length(a2))); 
% Tr_y=(b(length(a2))*a1(length(a1))); 
  
Tr_x=0; 
Tr_y=0; 
  
crack_Tr=norm_crack_Calculated-Tr_x; 
stress_Tr=norm_stress_reduced_value-Tr_y; 
stress_exp_Tr=(stress_Experimental-mu_sigma)/sigma_sigma-Tr_y; 
length_size=min(length(crack_Tr),length(stress_Tr)) 
for i=1:length_size 
    crack_Tr_plot(i)=crack_Tr(i); 
    stress_Tr_plot(i)=stress_Tr(i); 
end 
  
figure(1) 
plot(crack_Calculated,stress_reduced_value,'b') 
hold on 
plot(crack_Calculated,stress_Experimental,'r') 
hold on 
plot(mu_c,mu_s,'*') 
hold on 
xlabel({'Defect size , a[mm]',... 
'Normal (loc=1.5, scale=0.5)'},'fontsize',14') 
ylabel({'Stress range , \Delta\sigma [MPa]',... 
'Normal (loc=28, scale=3)'},'fontsize',14') 
set(gcf, 'Color', [1,1,1]); 
axis([1.1 5 0.1 50]) 
  
figure(2) 
plot(crack_Tr_plot,stress_Tr_plot,'b') 
hold on 
plot(crack_Tr,stress_exp_Tr,'r') 
% legend({'Threshold stress', ... 
%  'endurance stress'})   
% set(legend,'FontSize',12)    
  
set(gcf, 'Color', [1,1,1]); 
xlabel('Defect size  , a[mm]','fontsize',14') 
ylabel('Stress range , \Delta\sigma  [MPa]','fontsize',14') 
set(gcf, 'Color', [1,1,1]); 
axis([0 4 0.1 4]) 
text(0.869,1.21,'  \beta (1.577)= 2.62') 
text(0.869,1.6,'  MCS') 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% finding minimum beta 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
BETA=1000; 
  
for i=1:length(crack_Tr_plot) 
    beta(i)=((crack_Tr(i))^2+(stress_Tr(i))^2)^0.5 
  
    if beta(i)< BETA 
        BETA=beta(i); 
        indx=i; 
    end 
         
     
end 
% betamin=min(beta) 
  
  
if stress_Tr(indx)> stress_exp_Tr(1) 
    BETA=stress_exp_Tr(1); 
    figure(2) 
    plot(crack_Tr_plot(1),BETA,'*') 
else 
    figure(2) 
    plot(crack_Tr_plot(indx),stress_Tr_plot(indx),'*') 
end 
  
hold on 
  
crack_real = sigma_cr*crack_Tr_plot(indx)+mu_cr; 
stress_real = sigma_s*stress_Tr_plot(indx)+mu_s; 
  
mu_fixed_stress = mu_exp_stress; 
stress_fixed=mu_fixed_stress*ones(length(norm_crack_Calculated),1); 
stress_fixed_Tr=(stress_fixed-mu_s)/sigma_s-Tr_y; 
  
  
BETA_fixed=[2.6 1.96 1.62 1.21 0.93 0.97 1.01]; 
BETA_fixed_form=[1.88 1.64 1.44 1.13 0.88 0.93 0.96 ] 
  
crack_Tr_plot=[ 1.5  2 2.3 2.7  3 3.5 4] 
  
 prob_beta=normcdf(-BETA_fixed); 
prob_beta_form=normcdf(-BETA_fixed_form); 
 
 figure(3) 
plot(crack_Tr_plot,prob_beta,'b') 
xlabel({'Defect size  , a[mm]',... 
'Gumbel (loc=1.5, scale=0.5)'},'fontsize',14')  
ylabel('Probability failure','fontsize',14') 
set(gcf, 'Color', [1,1,1]); 
axis([1.5 3 0.01 0.4]) 
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figure(33) 
plot(crack_Tr_plot,prob_beta,'b') 
hold on 
plot(crack_Tr_plot,prob_beta_form,'r') 
 xlabel({'Defect size  , a[mm]',... 
'Normal (loc=a, scale=0.5)'},'fontsize',14')  
ylabel('Probability failure','fontsize',14') 
set(gcf, 'Color', [1,1,1]); 
axis([1.5 3 0.0 0.4]) 
text(2.5,0.05,'MC') 
text(2.1,0.08,' FORM') 
  
  
% finding beta and alphas 
 const=m1^0.5; 
 fix=3*q/2/m1; 
mul=q/2/m1^1.5; 
z1(1)=1; 
z2(1)=-1; 
  
% linear limit state 
mean_value=-1.5*q*m1^-.5+m2+q/2*m1^-1.5*m1; 
standard_linear=(s2^2+(q/2*m1^-1.5*s1)^2)^0.5; 
beta_mean=-mean_value/standard_linear; 
   
figure(4) 
 plot(crack_Tr_plot,BETA_fixed,'b') 
hold on 
plot(mu_c,BETA,'*') 
hold on 
plot(crack_Tr_plot,BETA_fixed_form,'r') 
hold on 
plot(mu_c,beta_mean,'o') 
 set(gcf, 'Color', [1,1,1]); 
xlabel({'Defect size  , a[mm]',... 
'Normal (loc=1.5, scale=0.5)'},'fontsize',14')  
ylabel('Reliability index','fontsize',14') 
set(gcf, 'Color', [1,1,1]); 
 text(1.7,2.8,'  \beta (1.5)= 2.60') 
text(1.7,1.6,'  \beta (1.5)=1.88') 
text(1.7,2.9,'  MCS') 
text(1.7,1.3,'FORM') 
axis([1.2 3 0.1 3]) 
 BETA_fixed = -norminv(prob_beta); 
prob_mcs=normcdf(-BETA); 
prob_form=normcdf(-beta_mean); 
    
BETA 
indx 
 beta_mean 
 prob_mcs 
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RELIABILITY INDEX WITH MCS  
 
clear all 
 c0  =   2.51517; 
 c1  =   0.802853; 
 c2  =   0.01038; 
 d1  =   1.432788; 
 d2  =   0.189269; 
 d3  =   0.001308; 
  
  %U1 
  
mu1     =   1; 
u1  =   exp(-rand(1,10)*5); 
x1  =   -1/mu1*(log(u1/mu1)); 
    
%U2 
  
sigma2  =   10; 
mu2     =   50; 
u2_general  =   normrnd(0,1,[1 50]); 
  
u2  =  abs( u2_general/norm(u2_general)); 
    
for i=1:length(u2) 
    if u2(i)<0.5 
         
        t2  =   sqrt(-log(u2(i).^2)); 
         
        z2  =   -t2+(c0+c1*t2+c2*t2.^2)/(1+d1*t2+d2*t2.^2+d3*t2.^3); 
         
    else 
         
        u2_star     =   1-u2(i); 
         
        t2  =   sqrt(-log(u2_star.^2)); 
         
        z2  =   -(-t2+(c0+c1*t2+c2*t2.^2)/(1+d1*t2+d2*t2.^2+d3*t2.^3)); 
         
    end 
    x2 (i)  =   mu2+z2*sigma2; 
end 
  
%U3 
 sigma3  =   10; 
 mu3     =   60; 
 u3_general  =   normrnd(0,1,[1 50]); 
 u3  =   abs(u3_general/norm(u3_general)); 
  
 for i=1:length(u3) 
    if u3 (i)<0.5 
         



71 

        t3  =   sqrt(-log(u3(i).^2)); 
         
        z3  =   -t3+(c0+c1*t3+c2*t3.^2)/(1+d1*t3+d2*t3.^2+d3*t3.^3); 
         
    else 
         
        u3_star     =   1-u3(i); 
         
        t3  =   sqrt(-log(u3_star.^2)); 
         
        z3  =   -(-t3+(c0+c1*t3+c2*t3.^2)/(1+d1*t3+d2*t3.^2+d3*t3.^3)); 
         
    end 
     
    x3(i)  =   mu3+z3*sigma3; 
     
end 
  
% U4 
 sigma4  =   0.01; 
 mu4     =   14.4; 
 u4_general  =   normrnd(0,1,[1 50]); 
 u4  =   abs(u4_general/norm(u4_general)); 
   
for i=1:length(u4) 
    if u4(i)<0.5 
         
        t4  =   sqrt(-log(u4(i).^2)); 
         
        z4  =   -t4+(c0+c1*t4+c2*t4.^2)/(1+d1*t4+d2*t4.^2+d3*t4.^3); 
         
    else 
         
        u4_star     =   1-u4(i); 
         
        t4  =   sqrt(-log(u4_star.^2)); 
         
        z4  =   -(-t4+(c0+c1*t4+c2*t4.^2)/(1+d1*t4+d2*t4.^2+d3*t4.^3)); 
         
    end 
        x4 (i) =   mu4+z4*sigma4; 
end 
    
% U5 
  
sigma5  =   0.3; 
 mu5     =   -29.9; 
  
u5_general  =   normrnd(0,1,[1 50]); 
u5  = abs( u5_general/norm(u5_general)); 
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for i=1:length(u5) 
    if u5(i)<0.5 
         
        t5  =   sqrt(-log(u5(i).^2)); 
         
        z5  =   -t5+(c0+c1*t5+c2*t5.^2)/(1+d1*t5+d2*t5.^2+d3*t5.^3); 
         
    else 
         
        u5_star     =   1-u5(i); 
         
        t5  =   sqrt(-log(u5_star.^2)); 
         
        z5  =   -(-t5+(c0+c1*t5+c2*t5.^2)/(1+d1*t5+d2*t5.^2+d3*t5.^3)); 
         
    end 
     
    x5(i)  =   mu5+z5*sigma5; 
end 
  
 muA     =   8; 
  
u_A_rep  =   exp(-rand(1,50)*5); 
  
A_rep  =   -1/muA*(log(u_A_rep/muA)); 
 
   
% all xi should be in the interval of interest. 
 % varies from 0 to 1 
  
count_principal     =   0; 
  
count_failure       =   0; 
  
ss  =   0; 
  
 for N=0:0.1:.9 
  
    for i=1:length(u1) 
        for j=1:length(u2) 
                        
            j 
             
            for k=1:length(u3) 
                 
                 
                for l=1:length(u4) 
                     
                    for m=1:length(u5) 
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                        if x1(i)>0 & x1(i)<8 & x2(j)<100 & x2(j)>10 & 
x3(k)<100 & x3(k)>10 & x4(l)<16 & x4(l)>13 & x5(m)<-25 & x5(m)>-35 
                             
                             
                             
                            Mn  =   u2(j)-((1-
1/2*u4(l))*u5(m)*(sqrt(pi)*u3(k)).^u4(l)*N+u1(i).^(1-.5*u4(l))).^((1-
.5*u4(l)).^-1); 
                                            
                                                  
                                                        
                            for o=1:length(u_A_rep) 
                                count_principal     =   count_principal+1; 
                                 
                                u_X_rep=u2(j)-Mn; 
                                 
                                H_rep   =   u_A_rep(o)-u_X_rep; 
                                 
                                 
                                ss=ss+1; 
                                                                 
                                if H_rep<0 
    
                                     
                                    if Mn   <   0 
                                         
                                        count_failure=count_failure+1; 
                                         
                                    end 
                                     
                                end 
                                 
                            end 
                             
                        end 
                         
                    end 
                     
                end 
                 
            end 
             
        end 
                       
        CP(round(N*10+1))   =   count_principal; 
         
        CF(round(N*10+1))   =   count_failure; 
         
        P(round(N*10+1))    =   count_failure/count_principal; 
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        count_principal     =   0; 
         
        count_failure       =   0; 
         
        p_crack(i,round(N*10+1))    =   P(round(N*10+1)); 
    end 
         
end 
  beta= [ 4.5   4.1   3.4   3   2.8  2.6  2.4  2.2  2.1  2   ] 
 
  N_rep=2*10^5; 
  
N_original=[0:0.1:.9]*(10^7-10^5)+10^5+N_rep; 
   figure(1) 
 semilogx(N_original,beta) 
 xlabel('N') 
 ylabel ('\beta') 
  x1  =  8*u1; 
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