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DÉVELOPPEMENT D’ALGORITHMES POUR PROTECTEURS
AUDITIFS INTELLIGENTS

Narimene LEZZOUM

RÉSUMÉ

Dans les milieux industriels, le port de protecteurs auditifs est nécessaire pour protéger l’audition

contre les bruits à niveaux élevés et prévenir la perte auditive. Évidemment, les protecteurs au-

ditifs bloquent également d’autres types de signaux, même si ces derniers ne sont pas désagréables

ou gênants pour la personne, mais plutôt utiles et commodes. De ce fait, si des personnes veu-

lent communiquer entre elles et échanger des informations, elles doivent retirer les protecteurs,

chose qui n’est pas très pratique, voire dangereux.

Afin de pallier aux problèmes rencontrés avec les protecteurs auditifs traditionnels passifs, le

travail de cette thèse présente les étapes et le processus suivis pour le développement d’un

nouveau type de protecteur auditif qui permet la protection contre les bruits extérieurs ainsi

que la communication orale entre les usagers. Ce nouveau protecteur auditif est appelé le

“protecteur auditif intelligent”.

Le protecteur auditif intelligent est un protecteur auditif traditionnel dans lequel un processeur

numérique du signal miniature est embarqué afin de traiter les signaux, en plus d’un micro-

phone externe miniature pour capter les signaux et un haut-parleur interne miniature pour

transmettre les signaux traités à l’oreille protégée.

Afin de permettre aux porteurs de protecteurs auditifs intelligents de communiquer sans en-

lever leurs protecteurs, des algorithmes de traitement du signal doivent être développés. Par

conséquent, l’objectif de cette thèse consiste à développer un algorithme de détection d’activité

vocale robuste dans les environnements à faible rapport signal/bruit ainsi qu’un algorithme de

réduction du bruit afin d’améliorer la qualité et l’intelligibilité de la parole.

La méthodologie suivie pour le développement du protecteur auditif intelligent est divisée en

trois étapes: en premier lieu, les algorithmes de détection de la parole et de réduction du bruit

doivent être développés, en second lieu, ces algorithmes doivent être évalués et validés dans

le logiciel, et en troisième lieu , ils doivent être implémentés dans le processeur numérique du

signal pour valider leur faisabilité pour l’application visée.

Lors du processus de développement des deux algorithmes, des contraintes devaient être prises

en compte et respectées. Ces contraintes sont dues au fait que le processeur numérique du

signal embarqué dans le protecteur auditif soit limité en termes de ressources matérielles (mé-

moires, nombre d’opérations par seconde), et que le temps de traitement des algorithmes ne doit

pas dépasser un certain seuil pour ne pas générer un délai entre la voie active et la voie passive

du protecteur ou bien un délai entre le mouvement des lèvres et de la perception de la parole.
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D’un point de vue scientifique, la thèse permet premièrement de déterminer les seuils que le

processeur numérique du signal ne doit pas dépasser afin de ne pas générer un délai percep-

tible entre la voie active et la voie passive du protecteur. Ces seuils ont été obtenus par une

étude subjective, où il a été trouvé que ce délai dépend de différents paramètres: (a) du degré

d’atténuation du protecteur auditif, (b) de la durée du signal, (c) du niveau de bruit, et (d) du

type de bruit dans lequel le signal est noyé. Cette étude a montré que lorsque le protecteur

auditif offre une forte atténuation, 20% des participants commencent à percevoir un délai après

8 ms pour un signal de cloche (transitoire), 16 ms pour un signal de parole sans bruit, 22 ms

pour un signal de parole noyé dans un bruit de type “babillage”. Cependant, pour un protecteur

auditif offrant une forte atténuation, il a été trouvé que le délai entre les deux voies est de

18 ms pour le signal de cloche, 26 ms pour le signal de parole sans bruit, et aucun délai lorsque

la parole est noyée dans un bruit de type “babillage”, montrant qu’une meilleure atténuation

permettrait un temps plus grand pour le traitement numérique des signaux.

Deuxièmement, ce travail présente un nouvel algorithme de détection d’activité vocale dans

lequel une caractéristique à faible complexité déterminant la présence de la parole a été ex-

traite. Cette caractéristique a été calculée comme étant le rapport entre l’énergie du signal dans

la bande fréquentielle qui contient le premier formant afin de caractériser le signal de parole,

et les basses ou hautes fréquences pour caractériser les signaux de bruit. L’évaluation de cet

algorithme et sa comparaison à un autre algorithme de référence a montré sa capacité de sélec-

tivité avec un taux de faux positifs moyenné sur trois rapports signal/bruit (10, 5, et 0 dB) de

4.2% et un taux de vrais positifs de 91.4% comparé à 29.9% de faux positifs et 79.0% de vrais

positifs pour l’algorithme de référence.

Troisièmement, ce travail montre que l’extraction de l’enveloppe du signal afin de générer un

gain non-linéaire et adaptatif permet de réduire le bruit, améliorer la qualité du signal de parole

et génère le moins de son musical comparé à trois autres algorithmes de référence.

Le développement des algorithmes de détection de parole et réduction du bruit, leurs évalua-

tions objectives et subjectives dans différents types de bruits, ainsi que leurs implémentations

dans des processeurs numériques du signal ont permis de valider leur efficacité ainsi que leur

faible complexité pour l’application de protection auditive intelligente.

Mots clés: Protecteur auditif intelligent, détection d’activité vocale, réduction du bruit,

amélioration de la qualité de la parole, processeur numérique du signal.



DEVELOPMENT OF ALGORITHMS FOR SMART HEARING
PROTECTION DEVICES

Narimene LEZZOUM

ABSTRACT

In industrial environments, wearing hearing protection devices is required to protect the wear-

ers from high noise levels and prevent hearing loss. In addition to their protection against

excessive noise, hearing protectors block other types of signals, even if they are useful and

convenient. Therefore, if people want to communicate and exchange information, they must

remove their hearing protectors, which is not convenient, or even dangerous.

To overcome the problems encountered with the traditional passive hearing protection devices,

this thesis outlines the steps and the process followed for the development of signal process-

ing algorithms for a hearing protector that allows protection against external noise and oral

communication between wearers. This hearing protector is called the “smart hearing protec-

tion device”.

The smart hearing protection device is a traditional hearing protector in which a miniature

digital signal processor is embedded in order to process the incoming signals, in addition to

a miniature microphone to pickup external signals and a miniature internal loudspeaker to

transmit the processed signals to the protected ear.

To enable oral communication without removing the smart hearing protectors, signal process-

ing algorithms must be developed. Therefore, the objective of this thesis consists of developing

a noise-robust voice activity detection algorithm and a noise reduction algorithm to improve

the quality and intelligibility of the speech signal.

The methodology followed for the development of the algorithms is divided into three steps:

first, the speech detection and noise reduction algorithms must be developed, second, these

algorithms need to be evaluated and validated in software, and third, they must be implemented

in the digital signal processor to validate their feasibility for the intended application.

During the development of the two algorithms, the following constraints must be taken into

account: the hardware resources of the digital signal processor embedded in the hearing pro-

tector (memory, number of operations per second), and the real-time constraint since the al-

gorithm processing time should not exceed a certain threshold not to generate a perceptible

delay between the active and passive paths of the hearing protector or a delay between the lips

movement and the speech perception.

From a scientific perspective, the thesis determines the thresholds that the digital signal pro-

cessor should not exceed to not generate a perceptible delay between the active and passive

paths of the hearing protector. These thresholds were obtained from a subjective study, where
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it was found that this delay depends on different parameters: (a) the degree of attenuation of the

hearing protector, (b) the duration of the signal, (c) the level of the background noise, and (d)

the type of the background noise. This study showed that when the fit of the hearing protector

is shallow, 20 % of participants begin to perceive a delay after 8 ms for a bell sound (transient),

16 ms for a clean speech signal and 22 ms for a speech signal corrupted by babble noise. On

the other hand, when having a deep hearing protection fit, it was found that the delay between

the two paths is 18 ms for the bell signal, 26 ms for the speech signal without noise and no

delay when speech is corrupted by babble noise, showing that a better attenuation allows more

time for digital signal processing.

Second, this work presents a new voice activity detection algorithm in which a low complexity

speech characteristic has been extracted. This characteristic was calculated as the ratio between

the signal’s energy in the frequency region that contains the first formant to characterize the

speech signal, and the low or high frequencies to characterize the noise signals. The evaluation

of this algorithm and its comparison to another benchmark algorithm has demonstrated its

selectivity with a false positive rate averaged over three signal to noise ratios (SNR) (10, 5 and

0 dB) of 4.2 % and a true positive rate of 91.4 % compared to 29.9 % false positives and 79.0 %

of true positives for the benchmark algorithm.

Third, this work shows that the extraction of the temporal envelope of a signal to generate

a nonlinear and adaptive gain function enables the reduction of the background noise, the

improvement of the quality of the speech signal and the generation of the least musical noise

compared to three other benchmark algorithms.

The development of speech detection and noise reduction algorithms, their objective and sub-

jective evaluations in different noise environments, and their implementations in digital signal

processors enabled the validation of their efficiency and low complexity for the the smart hear-

ing protection application.

Keywords: smart hearing protection device, voice activity detection, noise reduction, speech

quality improvement, digital signal processor.
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INTRODUCTION

The studies contained in this doctoral thesis were conducted between June 2011 and De-

cember 2015 under the “Chaire de Recherche Industrielle en Technologies Intra-Auriculaires

Sonomax-ETS (CRITIAS)” (Sonomax-ETS Industrial Research Chair in In-Ear Technologies).

The main objective of this thesis was to enable face-to-face communication for wearers of elec-

tronic hearing protection devices. To achieve this objective, the development of low complex-

ity speech-based algorithms that could be implemented into a digital hearing protection device

(HPD) is required.

This chapter is organized as follows: Section one defines the problem. Section two and three

describe the sub-objectives and scope of the thesis. Section five introduces the challenges and

opportunities and Section six presents the thesis contributions.

0.1 Problem definition and context

Since the 17th century, the industrial revolution has led to a tremendous surge of invention of

machines, motors and devices that can be used in different areas such as textile manufacturing,

metallurgy, agriculture, transportations and leisure. While these machines, motors and devices

mainly improved the standard quality of life, they contributed to the rise of some important

drawbacks. One of the most important drawbacks, which is affecting human health and is

considered as a dangerous environmental pollutant is noise.

According to the National Institute on Deafness and Other Communication Disorders (NIDCD,

2015), approximately 15 % of North Americans between the ages of 20 and 69 suffer from

hearing loss due to noise exposure either at work or during leisure activities. Furthermore, the

National Institute of Occupational Safety and Health (NIOSH, 1998) reported that occupational

hearing loss is the most common work injury in North America with more than 22 million

workers exposed daily to noise levels exceeding a 85 dBA time-weighted average (TWA) for an

8-hour work day, which corresponds to the limit of noise exposure in workplaces recommended

by the Occupational Safety and Health Administration (OSHA, 1983).
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Hearing loss originating from noise exposure is known as Noise Induced Hearing Loss (NIHL),

and represents the second form of sensorineural hearing loss (SNHL) after presbyacusis (age-

related hearing loss (ARHL)) (Bao et al., 2013). Hearing loss is permanent, and the wearing of

hearing aids currently represents the only solution for hearing-impaired people to improve the

intelligibility of speech in noise, with somehow limited success since the speech intelligibility

is not completely improved.

Although NIHL is currently an incurable hearing deficiency, it is 100% preventable. The best

ways to prevent NIHL is to limit noise exposure either by controlling the noise at the source,

controlling the transmission paths of the noise by adding an enclosure or isolating screens

between the machine and worker, or limiting the duration of noise exposure administratively.

While these solutions can be challenging and expensive, the wear of HPD represents the best

and less expensive solution to protect the ear from hazardous noise levels.

Unfortunately, while offering protection from noise, traditional HPDs isolate the wearers from

their environment and limit their communication abilities. Indeed, traditional HPDs block not

only unwanted sounds such as background noise, they also block wanted sounds such as speech

and warning signals. For instance, if an alarm is triggered, the HPD wearers may not perceive

it, or if HPD wearers want to communicate orally, they have to remove their HPDs, which may

be inconvenient in a work situation and downright dangerous since the repetitive removal of

HPDs in high noise level environments may limit the cumulative overall efficiency of the HPD.

To facilitate oral communication for HPD wearers and keep them protected from the back-

ground noise, the present thesis relies on an electronic HPD that detects speech signals and

transmits them to the protected ear, while continuing to block the external noise when no

speech signal is present.

The envisioned digital HPD is an active (electronic) HPD with an embedded miniature digital

signal processor (DSP) to process the incoming signals in addition to an external miniature

microphone and an internal miniature loudspeaker to pick-up and transmit the signals to the

protected ear. Figure 0.1 illustrates the hardware components embedded in this digital HPD.
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Figure 0.1 The hardware components embedded in the

envisioned digital hearing protection device.

This hearing device was referred as the Smart HPD (S-HPD) in (Voix and Laville, 2005), and

the steps followed for the development of its software components will be described in this

thesis. Figure 0.2 illustrates its operating principle.

Contrary to other technologies that use wireless communication between the devices to trans-

mit the signals via radio frequencies (Kvaloy et al., 2007), the S-HPD does not use such a

connection between devices, and is aimed to work as a face-to-face communication device.

0.2 Thesis objectives

The main goal of the S-HPD is to enable face-to-face communication among HPD wearers

while keeping them protected from background noise. To do so, two speech-based algorithms

are required, one for speech detection in noise and the other to reduce background noise without

deteriorating speech. Thus, the two sub-objectives of this thesis involve:

• Speech Detection: To enable oral communication between S-HPD wearers, a speech de-

tection algorithm also known as voice activity detection (VAD) has to be developed. Since

the S-HPD is intended to work in industrial environments, the VAD has to be robust for

low signal to noise ratio (SNR) environments.
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Blocked noise

(a)

(b)

Figure 0.2 The operating principle of the smart hearing

protection device: (a) block noise, (b) let enhanced speech and

warning signals through.

• Noise Reduction: Once the speech signal is detected, the background noise needs to be

reduced to enhance the speech’s quality and intelligibility. For this purpose, a real-time and

low-complexity noise reduction algorithm has to be developed.
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Figure 0.3 illustrates the operating principle of the algorithms.

Figure 0.3 The operating principle of the algorithms.

Although warning signal detection is also needed to keep the HPD wearer aware if an alarm is

triggered, the current thesis mainly focuses on speech communication in noise. In (Carbonneau

et al., 2013), a warning signal detection algorithm has been developed.

0.3 Scope of the thesis

The development the S-HPD is part of a larger project nicknamed “bionic ear”, which rep-

resents the next generation of in-ear protection and communication devices. The bionic ear

will integrate smart hearing protection, hearing aid, and wireless communication. This multi-

functional device is currently under development within CRITIAS.
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The S-HPD is a combination of three different technological areas. Figure 0.4 illustrates a

scheme that situates the S-HPD technology among the existing technologies. First, algo-

rithms development for the S-HPD application requires principles from hearing protection

technologies (attenuation, HPD transfer function, sound transmission paths, etc.). Second,

since the first objective of the S-HPD will be the discrimination between speech and noise sig-

nals, principles used in telecommunication technologies such as voice activity detection are

required. Third, when a speech signal is detected, it must be enhanced before it is transmitted

to the protected ear to reduce the background noise and improve its quality and intelligibility.

For this, concepts from hearing aid technologies are also required to develop a low complexity

speech enhancement algorithm that can be implemented in the low power DSP.

0.4 Challenges and opportunities

0.4.1 Challenges

Developing a S-HPD that permits the detection and enhancement of speech signals in noisy

environments is a challenging task. The three main challenges facing the development of the

S-HPD algorithms are:

• Real-time processing: the S-HPD must process the incoming signals in real-time and

transmit useful signals to the ear if present while protecting the wearers when only back-

ground noise is present. Above the real time processing, the developed algorithms must be

able to process the incoming signals within time constraints so as not to create a perceptible

difference between the passive and digital paths of the HPD, nor produce lip sync errors.

• Low SNR robustness: the S-HPD could be used in transportation (air-plane, train, etc.),

in industrial environments, thus, in noisy environments where the SNR can be very low.

Thus, the development of noise robust algorithms is needed. The VAD algorithm has to

detect speech in low SNRs, while the speech enhancement algorithm needs to reduce the

background noise with as little impact on the speech signal as possible. Another challenge
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Figure 0.4 The combination of three technologies involved in

the development of signal processing algorithms for the smart

hearing protection application.

related to the robustness of the algorithms in low SNRs is the presence of only one channel

(one external microphone) in the S-HPD, which does not provide spatial information such

as the Direction Of Arrival (DOA) of the sound, and renders speech detection and noise

reduction arduous.

• Hardware constraints: since a miniature DSP will be embedded in the traditional HPD

to process the incoming signals, the algorithms have to take into consideration the DSP

capabilities such as its memory capacity and the number of instructions per second.
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These challenges are highly interdependent: for instance, while the literature presents different

VAD algorithms (see chapter 1), these are either dedicated for high SNR environments and are

of low complexity, or are dedicated for low SNR environments and are not suitable for low

power DSPs or real-time applications. Likewise, various noise reduction algorithms for speech

enhancement have been proposed in the literature, however, they either need knowledge of the

background noise, or use long time frames to reduce the noise depending on some long-term

features, which is not as suitable for the S-HPD real-time processing.

0.4.2 Opportunities

Although the development of algorithms for the S-HPD faces several challenges, today’s emerg-

ing technologies are making it possible to overcome these challenges. With the rapid advance-

ments in micro and nano-technology, miniature DSPs have become as powerful as small com-

puters, performing millions of instructions per second (MIPS) and offering different functional-

ities that are optimized for real-time signal processing, such as the filterbank analysis/synthesis

techniques that enable an incoming signal to be divided into different frequency bands without

requiring a Fourier transform (Semiconductor, 2012).

0.5 Methodology

Three main steps are planned for the development of the S-HPD: first, the speech detection

and noise reduction algorithms need to be developed, second, these algorithms need to be

evaluated and validated in the software, and third they need to be implemented in the hardware

and evaluated.

0.5.1 Algorithm development

The first step in the S-HPD algorithms development plan consists in developing the VAD and

noise reduction algorithms. This first step will be done in MatlabTM (Mathworks, MA) using
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frame-based processing, that is, the incoming signals will be cut into frames upon which the

processing will be performed.

Thus, the extraction of speech characteristics, the determination of decision rules that enable

the discrimination between speech and noise segments and the reduction of noise with as little

impact on the speech signal as possible are required.

0.5.2 Algorithm evaluation and validation

The evaluation of the VAD will be done using objective metrics such as the true positive rate

(TPR) which corresponds to the number of speech frames detected as speech, the false positive

rate (FPR), which corresponds to the number of noise frames detected as speech, the false neg-

ative rate (FNR) which corresponds to the number of speech frames detected as noise and the

true negative rate (TNR) which corresponds to the number of noise frames detected as noise.

In this step, the developed VAD algorithm will also be compared to another benchmark VAD.

The noise reduction algorithm will be evaluated in terms of speech intelligibility and speech

quality using objective and subjective metrics. The subjective evaluation is very important

for noise reduction algorithms since it reflects the human perception of the enhanced speech

compared both to the noisy speech and to the performance of other noise reduction algorithms.

In this step, the subjective evaluation will be conducted using speech databases to which noise

is artificially added with different SNRs.

0.5.3 Algorithm hardware implementation and system evaluation

Once the algorithms have been objectively and subjectively evaluated, they will be optimized

and implemented within the selected hardware. In the optimization step, the different parame-

ters used by the algorithms have to be optimized such as the frame length to avoid producing

a perceptible delay between the passive and active paths of the S-HPD and the number of
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instructions per second that the algorithms should not exceed to be implemented in the tar-

geted hardware.

Thereafter, another real-time evaluation of the hardware-embedded algorithms needs to be per-

formed to validate the S-HPD system. In this step, speech and noise signals played from

loudspeakers in an audiometric booth and captured through the S-HPD microphone will be

used to mimic a more realistic environment.

0.6 Contributions

The contributions of the current thesis can be divided in two parts: the scientific and techno-

logical contributions.

0.6.1 Scientific contributions

The scientific contributions consist of three journal articles in which the student is first au-

thor: one published and two submitted, all in international peer-reviewed journals. Two con-

ference proceedings in which the student is first author were also presented in international

peer-reviewed conferences. Finally, a peer-reviewed article, in which the student is second

author, has also been published.

The three journal articles and two conference proceedings in which the student is first author

are listed below:

• Journal article 1 entitled “Echo Threshold between Passive and Electro-Acoustic Transmis-

sion Paths in Digital Hearing Protection Devices” submitted to the International Journal of

Industrial Ergonomics in March 2015. This journal article corresponds to chapter 2 and

determines the time processing limits for the VAD and noise reduction algorithms to not

generate an echo.
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• Journal article 2 entitled “Voice Activity Detection System for Smart Earphones” published

in the IEEE Transactions on Consumer Electronics in November 2014, Volume 60, Issue 4.

This journal article corresponds to chapter 3 and presents the proposed VAD algorithm.

• Journal article 3 entitled “Noise reduction of speech signal using time-varying and multi-

band adaptive gain control” accepted for publication in « Applied Acoustics» Elsevier Jour-

nal in March 2016. This journal article corresponds to chapter 4 and presents the proposed

noise reduction algorithm.

• Conference proceeding article 1: “A Low-Complexity Voice Activity Detector for Smart

Hearing Protection of Hyperacusic Persons” presented at the « Interspeech» conference

which is the annual conference held by the International Speech Communication Associa-

tion (ISCA), in 2013, Lyon, France. This article presents an early version of the proposed

VAD algorithm using the inter-quartile range statistic feature compared to chapter 3, where

a simpler energy-based feature is used for an efficient implementation in a low-power DSP.

• Conference proceeding article 2: “A Demonstration of a Single Channel Blind Noise Re-

duction Algorithm with Live Recordings” presented at the International Conference in

Acoustics, Speech and Signal Processing (ICASSP) in 2014 in the show and tell session,

Florence, Italy. This article presents an early version of the noise reduction algorithm,

compared to chapter 4 where objective and subjective evaluations of the proposed algo-

rithm are performed.

In addition to these contributions, during the four years of the thesis, the project and student

received different awards and distinctions:

• Third place at the joint ACFAS (Association canadienne-française pour l’avancement des

sciences) and RESMIQ (Regroupement Stratégique en Micro-systèmes du Québec) Con-

ference in the poster and oral presentation competition 2014, Montréal, Qc, Canada.

• Best student reviewer at the ÉTS article reviewing competition (March 2014), Montréal,

Qc, Canada.
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• Second place for the best student poster competition, ÉREST ( Équipe de recherche en

santé et sécurité du travail) ÉTS, Montréal, Qc, Canada (2013 and 2014).

• First place in the ÉTS competition “Your Thesis in 180 Seconds”, and finalist in the Cana-

dian competition (2012).

In addition, an important hands-on experience has been acquired in an internship that has been

completed by the student from January to August 2015 in the audio hardware department at

Apple Inc in Cupertino, California.

0.6.2 Technological contributions

From a technological point of view, the scientific contributions lead to the development of the

first S-HPD that transmits noise-reduced speech to the ear while keeping the wearer protected

from background noise. This S-HPD can be used in industries, in the military, and other

environments and for other cases where a hearing device is used such as hearing protections,

earphones and headphones.

0.7 Outline of the thesis

This thesis is divided into five chapters and three appendices. The first chapter corresponds to a

literature review, the second, third and fourth chapters correspond to three journal articles that

describe the work that has been done, and chapter five concludes and synthesizes the work.

a. Chapter 1 consists of a literature review for the development of the S-HPD. This literature

review gathers principles from three technologies that will be used for the S-HPD devel-

opment: hearing protection technologies (from passive HPDs to current active HPDs),

since the S-HPD is a traditional HPD in which a DSP and transducers are embedded.

Then a literature review on speech-based technologies used in telecommunications espe-

cially for speech detection in noise will be presented since the S-HPD will be mainly used
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to detect speech in a noisy environment and transmit it to the protected ear. Thereafter,

a literature review on hearing aid technologies will be approached, knowing that hearing

aids embed a miniature DSP and help to enhance the quality and intelligibility of speech

for the hearing impaired.

b. Chapter 2 consists of the first journal article which presents a study conducted to deter-

mine the maximum delay that the S-HPD should not exceed so as not to create a percep-

tible difference between the passive and digital paths of the HPD. This study establishes

the time processing limits for the VAD and noise reduction algorithms.

c. Chapter 3 consists of the second journal article which presents the developed real-time

VAD algorithm, its evaluation and hardware implementation within a miniature DSP. Al-

though the current thesis is mainly focused on the hearing protection of workers, this

article shows that the idea of embedding a miniature DSP and an external microphone in

addition to the loudspeaker can also be done in traditional earphones/headphones to allow

wearers to hear external speech signals such as public announcements or oral communi-

cation while listening to music, without removing their listening devices.

d. Chapter 4 consists of the third journal article which presents the developed noise reduc-

tion algorithm and includes the description of the algorithm, its objective and subjective

evaluation and its hardware implementation.

e. Chapter 5 synthesizes the work, shows the achieved objectives, and presents the recom-

mendations and future work for the S-HPD.

Three appendices are included in this thesis:

• Appendix I contains an article that was presented at INTERSPEECH 2013 (the annual

conference held by the International Speech Communication Association (ISCA)). This

article is entitled “A Low-complexity voice activity detector for smart hearing protection

of hyperacusic persons” and presents an early version of the proposed VAD algorithm, in

which the inter-quartile statistic feature is used.



14

• Appendix II provides an article that was presented in the International Conference in Acous-

tics Speech and Signal Processing (ICASSP) 2014 (Show and Tell session) entitled “A

Demonstration of a Single Channel Blind Noise Reduction Algorithm with Live Record-

ings”. This article shows an early version of the noise reduction algorithm using objective

evaluation and real-time demonstration.

• Appendix III introduces an article that was presented in the International Congress on

Sound and Vibration 2015 (ICSV) entitled “Evaluation of a digital earplug featuring a

multi-band adaptive gain control noise reduction algorithm for enhanced audibility in noisy

environments”. This article presents the intelligibility evaluation of the noise reduction al-

gorithm (it complements the article presented in chapter 4, which includes only the subjec-

tive and objective quality evaluation).



CHAPTER 1

SMART HEARING PROTECTION DEVICES: A LITERATURE REVIEW

1.1 Introduction

The first alternatives to prevent NIHL in workplaces lie in the limitation of noise exposure

either by controlling the noise at the source, (when designing the machines, which requires

acoustic design engineers in the product design stage), by controlling the noise transmission

paths by adding isolating screens between the machine and worker, or by limiting the duration

of noise exposure administratively. However, these first alternatives are costly since the design

will vary from one machine to another, besides the fact that noise control at the source needs

some yet undeveloped or un-used technology, or as in some cases, such as for professional

musicians, the solution is still not optimal (Voix and Laville, 2005).

The other most common alternative to prevent NIHL, is to have exposed workers wear Hearing

Protection Devices (HPDs) (Voix and Laville, 2005), (Berger and Voix, 2015).

The wearing of HPDs was first regulated by the United States Air Force in 1948, due to the fact

that numerous soldiers from World War II returned home with hearing loss (Berger, 2000). In

the late 1940s and early 1950s, hearing conservation programs were introduced in the industry

such as in aviation and metal industries. In 1970, the Occupational Safety and Health Act was

enacted, and in 1971, the noise standard was promulgated by OSHA. About ten years later,

OSHA produced the hearing conservation amendment (OSHA, 1981), (OSHA, 1983) which

details the rules of noise exposure and hearing conservation, such as the limit of noise exposure,

which is of 85 dBA for an 8 hour work day.

While hearing protection devices protect the wearers from external noise, they hinder oral

communication (Abel, 2008), (Burrell and Abel, 2009). For example, in a factory, if a worker

wearing a pair of HPDs wants to communicate with his co-workers, he needs to remove the

HPD, which is not convenient. Furthermore, this may expose the worker to high noise levels



16

and induce hearing loss. Moreover, workers may dismiss the use of hearing protectors tem-

porarily or permanently if these compromise their safety and ability to communicate, all of

which may induce hearing loss (Berger, 2010), (Hong et al., 2008) .

In addition to the fact that they hinder oral communication, HPDs may also prevent wearers

from hearing useful sounds such as sirens and warning signals, which may lead to accidents

(Hong et al., 2008), (Abel, 2008), (Carbonneau et al., 2013), (Brammer et al., 2015).

Studies conducted with workers exposed to high levels of noise such as industry workers,

firefighters, and soldiers (Voix and Laville, 2005) (Hong et al., 2008) (Abel, 2008) showed

the need for more technologically advanced hearing protection that would allow wearers to

exchange verbal face-to-face communication, hear if someone is calling in addition to keeping

the wearer aware if a warning signal is triggered, while otherwise being protected from the

hazardous noise.

For this purpose, the authors propose the development of a smart HPD (S-HPD) that enables

protection against harmful noise and communication in high levels of noise. The S-HPD in-

cludes a miniature external microphone, a miniature internal loudspeaker and a miniature dig-

ital signal processor (DSP). In the DSP, real-time signal processing algorithms will be imple-

mented. These algorithms consist of:

• Speech detection: speech detection allows S-HPD wearers to exchange oral communication

without removing their devices.

• Speech enhancement: noise reduction for speech quality and intelligibility enhancement is

very important to the S-HPD to improves speech quality and reduce the listening effort.

The current chapter presents a literature review of the three technological areas illustrated in

Figure 0.4 upon which the development of the S-HPD will be based on. Section 1.2 “Hearing

protection technologies” presents a literature review of traditional HPDs (passive and active)

in addition to the existing advanced HPDs. Section 1.3 “Speech in telecommunication tech-
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nologies” reviews speech-based technologies used in the field of telecommunications, while

Section 1.4 “Hearing aid technologies” presents an overview of hearing aid technologies.

In addition, this chapter presents in section 1.5 a short literature review on the different as-

sessment protocols that can be used to evaluate and validate the developed algorithms and

subsequently the S-HPD.

1.2 Hearing protection technologies

This Section presents, in chronological order, the development of hearing protection technol-

ogy. It starts by presenting passive HPDs that reduce the background noise by means of a

material barrier, then active HPDs that embed basic electronic circuits (frequency limiter, etc.),

and finally the recent HPDs that perform more advanced signal processing techniques.

In (Berger and Voix, 2015), a complete overview and comparison between the different types

of HPD can be found.

HPDs come in various forms. There are earplugs, which must be placed within or against the

entrance of the ear canal (insert, semi-insert) and are currently available in different sizes since

ear canals can be different from one user to another, and are made with different materials from

one manufacturer to another. In the last decade, custom-molded earplugs, which are made to

adapt to the ear-canal by means of the material used, have increased in popularity in North

America and Europe (Voix and Laville, 2009). Different techniques and materials can be used

to generate this kind of earplug, such as in (Voix and Laville, 2009), where a soft medical-grade

silicon rubber is injected between a rigid core and an expendable envelope.

HPDs can also come in the form of earmuffs, which fit around the ear, or in the form of helmets

that encase the entire head.

Irrespective of the form, HPDs can be grouped into two categories depending on their operating

mode: passive HPDs and active HPDs (Casali, 2010).
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1.2.1 Passive HPDs

Passive HPDs reduce the background noise mechanically based on their shape and material

composition. The amount of attenuation procured by passive HPDs (in the form of earplugs

or earmuffs) depends on the material used and the shape (or length for earplugs) of the HPD.

Some HPDs are designed for uniform attenuation over the frequency range, while others have

a level-dependent attenuation.

Passive HPDs with uniform attenuation are designed to reduce the external signals by about

10 dB from 125 to 8000 Hz uniformly (Berger and Voix, 2015). The advantage of uniform

HPDs is their identical attenuation across all the frequency components contrary to other HPDs

which attenuate the high frequencies more than the low frequencies and which may cause a

coloration of the passively transmitted sounds (Berger and Voix, 2015).

Passive HPDs with level dependent attenuation reduce highly transient noises when their level

exceeds a certain threshold. This kind of HPD is more likely used in the military. It uses a non-

linear component, such as a valve, diaphragm, or sharp-edged orifice in an earplug. It may also

change the amount of attenuation by opening into a duct within an earmuff cup, which takes ad-

vantage of the fact that low-level sound waves predominantly exhibit laminar airflow and pass

relatively unimpeded through the aperture, whereas high-level waves involve turbulent flow

and are attenuated to a greater extent with increased acoustic resistance ((Allen and Berger,

1990); (Berger and Hamery, 2008), (Berger and Voix, 2015)).

1.2.2 Active HPDs

Active HPDs are also known as electronic HPDs and are equipped with a powered digital or

analog circuit to process the external sounds before their transmission/obstruction to the pro-

tected ear. (Casali, 2010) divided active HPDs into four types, three of which will be described

here after: Active Noise Reduction (ANR) devices, Electronically-Modulated Sound Trans-

mission Devices and Electronic Tactical Communications and Protection Systems (TCAPS).

The fourth type includes HPDs with dosimetry measurements.
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The main and most popular task that current Active HPDs offer is Active Noise Reduction

(ANR) (also known as Active Noise Control or Noise Cancellation), which can be done using

analog or digital circuits and consists of cancelling the external sound wave by adding to it

the same sound wave but phase inversed. ANR technology is currently becoming an impor-

tant functionality not only in hearing protection, but also in communication systems such as

headphones and wireless communication devices (Brimhall et al., 2002).

The Electronically-Modulated Sound Transmission Devices incorporate a limiting/amplifier,

in addition to an external microphone to pick-up the sound, and an internal loudspeaker to

transmit the limited-amplified signals to the protected ear. These active HPDs can be used to

boost certain frequency ranges in the incoming signal before it is transmitted to the wearer,

such as the critical frequency range of speech or other useful signals.

The TCAPS which are also part of active HPDs since they incorporate transducers and an

electronic circuit, are mainly used in the military domain. They feature either passive or active

hearing protection in addition to radio communication. In this type of HPD, voice pick-up

is performed using a microphone located either in front of the wearer’s mouth, on a throat-

mounted fixture, in the ear canal, or within a bone-conduction pick-up held against the skull.

A complete study on passive and active HPDs can be found in (Casali, 2010).

1.2.3 Advanced electronic HPDs

Recently, advanced hearing protection devices have been developed. They are currently be-

ing manufactured. Among these advanced devices are smart earplugs from Sensear Pty Ltd

(Belmont, Australia) that perform noise reduction to enhance the quality of speech and im-

prove its intelligibility. However, these smart earplugs do not block the external signal if no

speech is present, but only reduce it to keep the wearer aware of the external environment. The

continuous transmission of processed signal to the ear is annoying the wearer and may yield

to an excess in noise exposure since the wearer can increase and reduce the volume of the

processed sound.
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Other advanced HPDs have been developed such as the Nacre QUIETPRO Intelligent Hearing

System (Trondheim, Norway) which plays the role of: an amplifier when the external sound

is low to transmit to the ear, the role of a level limiter when the level increases, and noise

canceller (ANR) when the level of the external noise exceeds a certain threshold. However,

since these HPDs act like an active noise canceller in high levels of noise, they cannot detect

useful signals such as speech or warning signals, which may hinder safety and face-to-face

oral communication.

1.2.4 Summary

Passive HPDs attenuate the external sounds by means of a material barrier, active HPDs can-

cel the external sounds electronically or amplify a certain frequency range of the sound and

advanced HPDs enhance the speech and transmit the reduced noise when no speech is present.

The S-HPD will enable protection when no speech signal is detected by acting as a passive

HPD, and face-to-face oral communication when speech is present, and this, by transmitting

the enhanced speech signal to the ear within a certain limited level so as not to cause hearing

loss due to the transmission of high levels of sound.

1.3 Speech in telecommunication technologies

For the purposes of the current thesis, telecommunication technologies involving speech, and

more particularly speech detection in noise, are investigated since the techniques used in

telecommunication are embedded in DSP and work in real-time such as in mobile telephony.

Speech represents the first tool that humans use to communicate with each other. In the last

decade, speech has also been used by humans to communicate with machines that are provided

with speech technology such as automatic speech recognition (ASR) (O’Shaughnessy, 2000).

The following subsections present an overview of speech characteristics, speech analysis, and

a literature review of speech detection techniques.
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1.3.1 Basics of speech production

A speech signal is produced by a speaker in the form of a wave that propagates through the

air to reach the ear of the listener. The characteristics of the speech signal vary depending on

the movement of the articulators which are located in the vocal tract (O’Shaughnessy, 2000).

Among these articulators we have: the lips, the tongue, the teeth, the palate, the jaw, etc.

The speech production process can be seen as a filtering operation in which a sound source ex-

cites the filter. In the human speech production system, this filter corresponds to the vocal tracts

and helps to attenuate and amplify certain frequencies (modulate the sound). The sound source

or (exciter) can be periodic and generate a voiced speech signal, or aperiodic and generate an

unvoiced speech signal. Voiced speech is generated in the larynx where the air is interrupted

by the vibrations of the vocal cords, which open and close periodically, whereas for unvoiced

speech, the air is not interrupted by the vibration of the vocal cords, but passes through the

vocal tract directly. Unvoiced speech is a random signal similar to a noise signal modulated by

the vocal tracts.

Speech sounds are divided into two types: (a) the vowels, which are voiced sounds and have

high energy, and (b) the consonants which can be voiced or unvoiced, and have lower energy

compared to vowels. The consonants are divided into three types: fricatives, stops and nasals.

The voiced sounds have a spectrum that consists of a fundamental frequency that is perceived

as the pitch, in addition to the harmonics that are multiples of the fundamental frequency.

As illustrated in Figure 1.1, in the spectrum of a voiced speech there are peaks (maxima), which

are called formants and are different from one speech sound to another (O’Shaughnessy, 2008).

Formants therefore characterize the spectrum of the speech signal by their high energy.

1.3.2 Speech analysis

Speech analysis is the determination and extraction of relevant speech information. Thus

speech analysis enables the characterization of speech signals and their comparison to other



22

Figure 1.1 Spectral representation of the vowel /a/ showing

the formants.

signals. The analysis of speech signals may take place in the time domain, in the frequency

domain, or in the time and frequency domains simultaneously, depending on the needs, ap-

plications and resources. In most speech-based applications, the signal must first be cut into

successive analysis segments or frames, in order to extract the short time information that it

carries. Depending on the application, speech processing can also be done in a sample-based

approach, which means, instead of dividing the signal into different frames, the digital signal

can be processed sample by sample so that each processed sample can be sent to the output.

For example, frame-based processing is used when the Fourier transform is needed to charac-

terize the signal, and the sample-based approach is used in applications that require a simple

time domain filter.

Speech analysis can be done using different features, the following sections introduce some

features used in speech detection. Other features such as the Teager Energy Operator (TEO)
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(Jabloun and Çetin, 1999), the entropy (Shen et al., 1998), MFCC (Mel Frequency Cepstral

Coefficients) (Davis and Mermelstein, 1980), and LPC (Linear Prediction Coefficients) (Atal,

1974) are not addressed.

1.3.2.1 Time domain speech analysis

The speech signal is a dynamic signal that varies over time. Its analysis in the time domain

is simple and low cost. There are several temporal speech characteristics currently used in

various applications. Among these characteristics we can mention:

• Energy: The energy of the signal is calculated by the following equation:

E =
k

∑
i=1

x(i)2 (1.1)

The calculation of the energy has been widely used in speech-based applications, such as

speech recognition, where the energy is calculated in several speech frames to recognize

syllables, or discrimination between a voiced and unvoiced sound, or simply to determine

the end of the speech signal when produced in silence.

• Zero Crossing Rate: The zero crossing rate (ZCR) is calculated when the signal changes

its algebraic sign. ZCR is one of the basic methods for calculating the fundamental fre-

quency F0 of the signal (as shown by equation 1.2), which means that this characteristic

can provide frequency information without passing by the frequency domain (Fourier trans-

form).

F0 =
ZCR×Fs

2
(1.2)

This characteristic can also be used to discriminate between voiced and unvoiced speech:

a high ZCR corresponds to an unvoiced sound, and a low ZCR corresponds to a voiced
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sound. Likewise, the ZCR has been widely used in voice activity detection algorithms by

assuming that the ZCR of a noise signal is above a certain threshold, while the ZCR of

speech is below that threshold.

• Autocorrelation: The short-term autocorrelation is computed as follows:

Rxx(k) =
k

∑
i=1

x(i)x(i− k) (1.3)

The maximum value of the Autocorrelation represents the energy of the signal and is lo-

cated at k = 0. Thus Rxx(0) represents the energy of the signal. If the signal is periodic

with a period P, the maximum of Rxx will be located at k = 0, P, 2P, etc. This analysis

method allows us to determine if a signal is periodic (voiced) and to calculate its period

(fundamental frequency).

1.3.2.2 Frequency domain speech analysis

Even though the analysis of speech in the time domain is very simple and has a low complexity,

the analysis in the frequency domain is used more often since it gives access to the different

frequency components of the speech signal. Some of the frequency domain analysis methods

are listed below:

• The Discrete Fourier Transform: The discrete Fourier transform (DFT) is used to rep-

resent the amplitude and the phase of a signal in the frequency domain. Therefore, the

DFT informs on the frequency characteristics of the signal: the fundamental frequency, the

harmonics, the formants, and other more speech-specific characteristics such as the MFCC

(Mel Frequency Cepstral Coefficients) which are extracted from the spectrum.

• Analysis using filterbanks: An analysis with a filterbank is used in digital speech process-

ing to divide the signal into different frequency bands using several filters to analyse each

frequency band separately. This analysis method is simple and can be used to extract the
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frequency components of the signal without performing the DFT. Currently, filterbanks are

optimized and implemented within miniature DSPs to perform real time frequency analysis

without going through the DFT (ON Semiconductors, 2009).

The filterbank characteristics (bandwidth, cut-off frequencies, order, etc.) can be differ-

ent from one application to another. In speech coding and transmission applications, for

example, the octave and third octave bands have been widely used in addition to other

well-defined critical bands (E. Zwicker, 1961). In hearing aid applications, the Bark scale,

which contains 24 frequency bands is then used.

Nowadays, different types of frequency bands have been developed to mimic the auditory

system such as the the Gammatone filterbank (Aertsen and Johannesma, 1981) and the

equivalent rectangular bandwidth (ERB) (Glasberg and Moore, 1990).

1.3.2.3 Time-Frequency speech analysis

Speech analysis can also be performed jointly in the temporal and spectral domains using

Time-Frequency Representation (TFR). Among the TFR techniques, the Wavelet Transform

(WT), which correspond to a windowing technique with variable-sized frames: It uses long

time frames when low-frequency information is needed, and short time frames when high-

frequency information is needed.

The WT has been used in different applications such as speech enhancement, speech recog-

nition and speech detection. For example, in speech enhancement, wavelet shrinkage is used

to denoise the signal based on the thresholding of the wavelet coefficients: the wavelet co-

efficients lower than a certain threshold are set to zero with the assumption that the speech

coefficients dominate the noise coefficients. Although the use of wavelet for speech detection

and enhancement has been widely used (Bahoura and Rouat, 2001) (Stegmann and Schroder,

1997) and (Chen et al., 2010), this technique is not suitable for the targeted application due to

the limited resources available in the DSP.
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1.3.3 Speech in noise

Although speech technology has seen important advancements, it still represents a challeng-

ing task when occurring in a noisy environment. The higher the noise level is, the lower

the SNR and the harder it is for communication and speech intelligibility, for humans and

machines alike.

To increase the intelligibility of their speech in high levels of noise, speakers tend to increase

the SNR by augmenting their vocal effort (Pickett, 1958). However, there is a limit at which

the intelligibility of speech starts to reduce when the level of speech increases to shouting

(Stedmon, 1997).

Since the human hearing mechanism is more effective with low and moderate levels of sound,

it has been found that passive HPDs help the understanding of speech in noise when the level

of noise is at 85 dBA or greater. This phenomenon is due to the fact that in such environments,

distortions are introduced in the cochlea which reduce the clarity of speech (Berger, 2010).

Thus the wearer of the HPD will reduce the level of the passively transmitted signal and thus

better understand the speech utterance. This phenomenon has been assimilated to the phe-

nomenon experienced when wearing sunglasses in intense sunlight (Berger, 2010). However,

when the level of the environmental sound becomes lower than 85 dBA, speech understanding

begins to decrease.

Consequently, speech understanding depends on the level of the background noise in addition

to the HPD’s attenuation. For this purpose, the development of an algorithm that detects speech

in noisy environments to transmit it to the HPD wearer is more suitable for workers and people

exposed to high noise levels.

1.3.4 Voice activity detection

Nowadays, almost all the existing speech-based applications rely on speech detection algo-

rithms to discriminate between speech and non-speech segments. In the literature, speech de-
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tection is known as Voice Activity Detection (VAD). The first VAD algorithm with widespread

usage was developed for mobile telephony in 1989 (Freeman et al., 1989) for the pan-European

digital cellular mobile telephone service (Global System for Mobile: GSM). The principle be-

hind the need for VAD within a mobile telephony application was to detect non-speech seg-

ments which could then be encoded with lower bit rates, relative to speech segments, thus

lowering the overall transmission rate. Since then, more advanced VAD algorithms have been

proposed, such as the one used in the International Telecommunications Union (ITU-T) Rec-

ommendation G.729b in 1996 (ITU T, 1996) and the one used in the adaptive multi-rate (AMR)

codec from the European Telecommunication Standard Institute (ETSI) (ETSI, 1999). The lat-

ter VAD system is based on a combination of different speech features and exemplifies one of

the major shifts from the earlier generation energy- or periodicity-based solutions.

After becoming mainstream within mobile telephony, the use of VADs expanded to other

speech-based applications, such as speech recognition for human/machine interaction appli-

cations (Chuangsuwanich and Glass, 2011) and personal digital assistants in mobile environ-

ments (Lee and Yook, 2009). Within these more recent applications, VAD is performed to

reduce false alarm rates due to the use of noise segments in the recognition process. In addi-

tion, in hearing aids and cochlear implants (Chung, 2004) (Bentler and Chiou, 2006) (Cornelis

et al., 2011), speech detection is also performed before noise reduction, an important step

needed to assure intelligible speech is transmitted to the user.

Over the years, different methods have been used for voice activity detection. Earlier genera-

tions of VAD algorithms were based on the estimation of an inverse filter using the speech sig-

nal’s first frames (Freeman et al., 1989) or on the extraction of a periodicity measure (Tucker,

1992). Later, more advanced VAD algorithms were based on the combination of different

speech features such as zero-crossing rate, energy, and pitch (ITU T, 1996) (ETSI, 1999).

This notwithstanding, these VADs are known for their inefficiency in low signal to noise ratios

(SNRs) (Beritelli et al., 2002) where they tend to detect speech as well as noise. To overcome

this problem, statistical VADs have been developed, such as Sohn’s VAD (Sohn et al., 1999),

which relies on the estimation of the a posteriori and a priori SNR using the signal’s first few
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frames, which are assumed to contain only noise. Afterwards, other statistical methods have

been proposed such as Davis et al.’s VAD (Davis et al., 2006). To increase their robustness

against low SNRs and non-stationary noise environments, some VAD algorithms use a noise

reduction algorithm at their front end. For example in (Lei et al., 2009), the Wiener filter is

used before the VAD.

Recently, pattern recognition tools, such as hidden Markov models, support vector machines

and neural networks, have also been applied for voice activity detection (Liu et al., 2010),

(Wu and Zhang, 2011), (Saon et al., 2013), and (Segbroeck et al., 2013), in order to increase

the efficiency of VADs in pre-known environments. Furthermore, modulation characteristics

such as modulation frequency and modulation depth are commonly used nowadays to distin-

guish between speech and noise knowing that the speech signal is characterized by modulation

frequency content between 4 and 16 Hz (Drullman et al., 1994b), (Evangelopoulos and Mara-

gos, 2006).

Despite the progress that this field has seen, detection of speech in low SNRs and non-stationary

noise environments is still a challenging and rather unsolved task. This task becomes even more

complex once VADs become embedded in applications with limited hardware resources, such

as in the S-HPD.

1.3.5 Summary

This review showed the basics of speech production and analysis. It also highlighted the pros

and cons of the existent speech detection techniques, and showed that speech detection in

noise is a very challenging task especially when the information on the background noise is

not known, when the SNR is low, and when the VAD algorithm needs to be implemented in a

low power DSP.
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1.4 Hearing aid technologies

In this Section, hearing aid technologies are presented, from the analog hearing aids that en-

able the amplification of the external signals to the current digital hearing aids that perform

advanced noise reduction to enhance the quality and intelligibility of speech and increase the

listening comfort for the hearing impaired.

1.4.1 Hearing aid principles

As a consequence of excessive noise exposure, NIHL is an irreversible disease. While the

intelligibility of speech signals in a noisy environment is already a difficult task for normal

hearing people, it is much more difficult for the hearing impaired. In noisy environments, the

speech signal must be 30 dB higher than the speech signal for persons with hearing loss than for

a person with normal hearing for them to perceive it in the same way (Baer and Moore, 1994).

Currently, the only solution for hearing impaired people is to wear hearing aids. Primarily,

hearing aids have been developed to amplify the incoming signals, and more recently, they have

been developed to increase speech understanding and listening comfort in noisy environments

where speech tends to be masked by noise.

In the last 20 years, developments in hearing aid technology have been growing and evolving

with the progress in circuits technology. Likewise to Moore’s law which stipulates that the

number of transistors in an integrated circuit will double each 18 months, meaning that the

speed of computers doubles approximately each one year and a half, advancements in hearing

aids is also following the same path since the functionalities of a hearing aid depend first and

foremost on the capabilities of the integrated circuit that it embeds.

1.4.1.1 Analog hearing aids

In the early 1900, electrical hearing aids embedding an analog circuit were developed. In these

first generation hearing aids, an external microphone was used to pick-up the audio signal, then
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send it to the analog filter to modify the frequency components of the signal to reduce the effect

of background noise, by for example, using a low-pass filter to reduce the low frequency com-

ponents assimilated to background noise, then send the filtered signal to the ear. Later, analog

hearing aids performed adaptive filtering, adaptive compression and other frequency dependent

compression techniques (Bentler and Chiou, 2006). Thereafter, analog programmable hearing

aids were developed. These hearing aids contained a digital control circuit in which some

parameters are programmed in order to set the amplification or compression variables.

1.4.1.2 Digital hearing aids

With the growth of technology, digital hearing aids came to be. These circuits enable the

sampling, quantization, and digital conversion of the incoming signals before processing them.

Thus, processing occurs in the digital domain using digital filters and algorithms, then the

processed signals are converted to the analog domain using a digital to analog converter and

transmitted to the ear.

Currently, digital hearing aids perform advanced signal processing techniques for the follow-

ing purpose: improve speech quality and increase speech intelligibility and listening comfort.

These signal processing techniques include noise reduction and adaptive dynamic range com-

pression (Blamey, 2005).

Since the main objective of the current thesis is the development of signal processing algo-

rithms for the S-HPD to be used by normal hearing people, the following Section will only

review noise reduction methods used in hearing aids.

1.4.2 Noise reduction in hearing aids

Noise reduction is performed to reduce the background noise, increase listening comfort, and

thus, increase speech understanding for the hearing impaired (Kuk et al., 2002), (Mueller et al.,

2006) (Bentler et al., 2008). When speech is corrupted by noise, the frequency components of
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noise may overlap the frequency components of speech which leads to frequency masking of

speech by noise.

In order to perform noise reduction, all hearing aids manufacturers follow the same steps:

• Signal detection,

• Signal analysis,

• Decision and noise reduction.

The detection stage is generally composed of several sub-blocks. The first block consists of

dividing the signal into different frequency bands. Frequency-band processing is currently used

by all hearing aid manufacturers to analyse each frequency band independently and extract

the relevant characteristics for speech. These characteristics are subsequently compared to

reference characteristics to make a decision.

In addition to the use of the same steps to perform noise reduction, almost all hearing aid man-

ufacturers use modulation characteristics to detect speech and reduce the background noise.

Figure 1.2 shows an example of the envelope of a speech signal.

This noise reduction technique is known as modulation-based digital noise reduction (MB-

DNR) (Lamm et al., 2011). The differences between various brands of hearing aids lie in the

parameters used for speech detection such as the number of frequency bands in addition to the

decision rules used to determine the presence/absence of speech.

When someone speaks, the vocal tracts are in movement. This movement determines the am-

plitude of modulation of the temporal envelope of the speech signal. The modulation rate for

sentences is approximately between 4 and 16 Hz (Drullman et al., 1994b), (Drullman et al.,

1994a), which corresponds to the syllable rate. Thus, speech can be discriminated from noise

by its modulation frequency since environmental noise is often unmodulated, or has a modula-

tion rate not within the range of 4 to 16 Hz.
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Figure 1.2 Speech signal and its temporal envelope.

In addition to the modulation frequency, another modulation characteristic is used to determine

the presence/absence of speech and it can be used to estimate the SNR in each frequency

band. This feature is called the modulation depth and is calculated in dB. The modulation

depth is the difference between the maximum and the minimum of the temporal envelope

of the signal (Sandlin, 2002). High modulation depth indicates that speech is produced in a

quiet environment while low modulation depth indicates that speech is produced in a noisy

environment. The modulation depth is used to estimate the SNR in the signal and thereafter set

a gain for noise reduction. The amount of reduction gain is often inversely proportional to the

estimated SNR in each frequency band.

Some manufacturers use only the modulation depth to determine the presence of speech and

estimate the SNR, while others rely on several characteristics including: the sound pres-
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sure level of the input signal, the sound pressure level of the noise, the modulation rate, etc.

(Mueller and Ricketts, 2005).

The decision rules and reduction gain are different from one manufacturer to another, yet, they

all tend to not reduce the noise when the speech signal is detected, in order to preserve the

quality of speech without degrading it.

Once the reduction gain is determined, noise reduction goes into effect depending on the time

constants which permit to reduce the noise without affecting the useful signals. These time

constants are:

• The attack time, which represents the time between the detection of the presence of noise

and the start of its reduction.

• The speed of gain reduction, which represents the time that the technique takes to reduce

the maximum gain.

• The release time, which represents the time the noise reduction algorithm detects the ab-

sence of noise and the time that the gain starts to recover.

• The speed of gain recovery, which represents the time between the start of the gain recovery

and the end of gain reduction.

After reducing the noise in each frequency band, a reconstruction of the signal is performed by

summing all the bands. This reconstructed signal is the one transmitted to the ear.

Levitt (2001), Chung (2004) and Bentler and Chiou (2006) presented wide literature reviews

of hearing aid technologies from those using a single microphone to the most advanced us-

ing multiple microphones to take into consideration the spatial information to determine the

location of the source by calculating some parameters such as the Direction Of Arrival (DOA).
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As the use of MB-DNR methods in hearing aids was successful and very promising, in 2009

Chung et al. (Chung et al., 2009) proposed its evaluation for hearing protection in order to

assess if this technology can be implemented in active HPDs.

The results obtained by Chung et al. (Chung et al., 2009) showed that the noise reduction

using the MB-DNR method seems promising in the field of hearing protection. However, the

noise reduction was very low in four types of industrial noises, which is due to the fact that

the MB-DNR method was developed and dedicated to a hearing aid application where the

gain reduction was small, contrary to a hearing protection application, which requires a higher

reduction in gain.

1.4.3 Summary

This Section presented an overview of noise reduction techniques currently used in hearing

aids as their hardware resources are very similar in size to the hardware resources available for

the S-HPD. It showed that the MB-DNR method is promising for hearing protection and the

use of modulation characteristics for noise reduction can be considered for the present work.

1.5 Methodology for the evaluation and validation of speech based systems

The evaluation of speech-based systems needs to be performed in two steps. In the first step the

developed algorithms must be evaluated objectively in a simulation (software) and subjectively

using clean speech databases mixed artificially with noise in different SNRs. The second step

consists in evaluating in real-time the algorithms implemented in the hardware.

Since the first objective of the S-HPD is the transmission of enhanced speech signals to the

ear, the following subsections describe some techniques for the evaluation of VAD and noise

reduction algorithms.
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1.5.1 Algorithm evaluation

1.5.1.1 Evaluation of voice activity detection algorithm

A VAD algorithm is said to be efficient if it is able to detect only speech segments in a given

environment. For the assessment of the developed VAD algorithm, three objective evaluation

metrics can be used: the True Positive Rate (TPR) which is the rate of speech segments detected

as speech, the False positive Rate (FPR) which is the rate of noise segments detected as speech,

and the F1 score.

In the literature, TPR and FPR are usually calculated using noisy speech signals to discriminate

between speech and noise signals. However, for the S-HPD application, TPR must be calcu-

lated using noisy speech signals, whereas FPR must be calculated using only noise signals to

see how accurate the algorithm is when no speech signal is present.

The F1 score measures the accuracy of the algorithm in terms of precision and recall:

F1 = 2× precision× recall

precision+ recall
(1.4)

with

precision =
TPR

TPR+FPR
(1.5)

recall =
TPR

TPR+FNR
(1.6)

The choice of this metric is based on its combination of TPR, FPR and False Negative Rate

(FNR). (C. J. van Rijsbergen, 1979).

The Receiver Operating Characteristic (ROC) curve is widely used for VAD algorithms assess-

ment. It shows how the sensitivity and specificity of an algorithm changes when one parameter

varies such as a decision threchold). Thus, it enables the determination of the optimal param-
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eter. In the current work, the ROC curve will not be used since more than one parameter may

be included in the decision (Metz, 1978).

The robustness of the proposed VAD algorithm will be compared to Sohn et al’s VAD. The

choice of this algorithm as a benchmark is based on: one, its wide use by the community for

comparison, two, its hangover scheme which is calculated using hidden markov model (HMM)

to maintain the detection of low energy speech frames, and three its wide use as front-end to in

most of the speech enhancement techniques in which the noise parameters are estimated during

speech-free frames (Hu and Loizou, 2007a).

1.5.1.2 Evaluation of noise reduction algorithm

Assessing the robustness of a noise reduction/speech enhancement algorithm has to be done

with different tests that consist of evaluating the enhanced signal in terms of speech quality

and speech intelligibility. These tests can be done first using objective metrics, then a subjec-

tive protocol has to be determined and tests will be conducted in an audiometric booth with

human participants.

The first and low cost evaluation procedure can be done using objective metrics. For example,

Perceptual Evaluation of Speech Quality (PESQ) (ITU-T P.862, 2001), Perceptual Objective

Listening Quality Analysis (POLQA) (ITU-T P.862, 2011), Log Likelihood ratio (LLR), Cep-

stral Distance, segmental SNR, Speech Intelligibility Index, etc. (Hu and Loizou, 2008), (Ma

et al., 2009), can be used to evaluate speech quality or intelligibility.

Speech quality is defined as the overall impression of the listener on how "good" the quality of

the speech is while speech intelligibility is defined as the accuracy with which the listener can

understand what is being said (Kondo, 2012). Speech quality and intelligibility may diminish

as the speech gets distorted or corrupted (masked) by noise. In some cases, speech perceived as

being of "good" quality also has high intelligibility, while in other cases the quality of a speech

signal can be rated as "bad" because of the presence of noise (low SNR) or other distortions,

but can still have a high intelligibility.
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From the first speech intelligibility evaluation performed in 1978 using the spectral subtraction

by (Lim, 1978), to the recent speech intelligibility evaluation of eight existing noise reduction

algorithms performed by (Hu and Loizou, 2007b), no improvement in speech intelligibility

has been found compared to the unprocessed signals, even if the speech quality was improved.

Thus, speech quality and intelligibility are two different and uncorrelated aspects of speech and

need to be assessed separately.

The robustness of the proposed noise reduction algorithm will be compared to three algorithms,

namely: the Wiener filter based on an a priori SNR estimation (Scalart and Fiho, 1996), the

spectral subtraction (Boll, 1979), and band-pass modulation filtering (Falk et al., 2007). The

Wiener filter and spectral subtraction codes were taken from (Loizou, 2007) (wiener-as and

SpecSub), while the code of the modulation filtering was obtained directly from the authors of

(Falk et al., 2007). In the spectral subtraction, the noise spectrum was estimated and updated

from non-speech frames detected using a simple VAD based on segmental SNR, while in the

Wiener filter, non-speech frames were detected using a priori SNR estimation. The Wiener

filter and spectral subtraction were chosen because of their wide use as benchmark algorithms

(e.g. (Ming et al., 2011), (Chen and Loizou, 2010), (Paliwal et al., 2010))

Other recent algorithms (e.g. (Westerlund et al., 2004), (Parikh et al., 2009), (Shahid et al.,

2011)) were not selected as benchmarks because, unlike the selected benchmarks, the code was

not available to the authors. Implementation intricacies such as non-optimal parameter settings

could have potentially led to biased comparisons.

• Subjective speech quality evaluation: Different subjective speech evaluation tests can

be used to assess the quality of the enhanced speech (Grancharov and Kleijn, 2008) and

(ITU-T, 2003a). For example, the evaluation of the enhanced signal can be compared to the

noisy signal and other benchmark algorithms using a rating scale (From 1 to 5) for different

categories: speech quality (SIG), background noise intrusiveness (BAK) and overall quality

(OVRL). Another subjective test can also be done to evaluate the quality of a speech signal

in terms of musical noise. This test is very important when evaluating speech enhancement
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algorithms since most noise reduction algorithms perform in the spectral domain such as

the spectral subtraction algorithm and tend to generate spurious peaks in the processed

spectrum which sounds like musical noise (Cappé, 1994), (Esch and Vary, 2009), (Inoue

et al., 2011), (Leitner and Pernkopf, 2012).

• Subjective speech intelligibility evaluation: Speech intelligibility is defined as the amount

of speech understood by the listener. Thus, speech intelligibility evaluation is done by cal-

culating the number of words recognized and successfully repeated by the listener com-

pared to the total number of key words produced by the speaker. For example, in the

sentence “The birch canoe slid on the smooth planks”, five words (in bold) are consid-

ered as key words. Thus, the intelligibility is calculated as the rate of recognized key words

divided by the total number of key words.

Recently, a new evaluation technique and environment have been developed to evaluate

the speech intelligibility of the enhanced speech while taking into consideration the Speech

Reception Threshold (SRT) (Ellaham et al., 2014). In this work, a toolbox method using the

Matlab Speech Testing Environment (MSTE) was designed to assess the SRT using various

testing methods, either using a fixed speech level presented at typical levels of 45-55 dB

HL (Hearing Loss) and adapting the level of the masking noise ("adaptive masking level"),

or using a fixed masking noise level and adapting the speech level ("adaptive speech level")

or even using fixed speech and masking noise levels while adapting other metrics, such

as the distortion threshold ("adaptive distortion threshold"). This evaluation toolbox also

calculates the number of words correctly recognized by the listeners and finds the SNR at

which each listener identifies correctly 50 % of the words from the Hearing In Noise Test

(HINT) database (Nilson et al., 1994), which contains 25 phonetically balanced lists of

sentences, with 10 sentences per list. The HINT sentences were first designed in American

English then adapted to Canadian French (Lamothe et al., 2002).
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1.5.2 System evaluation and validation

After evaluating, validating and implementing the algorithms in a the DSP, the evaluation of

the complete system can be performed.

In the system’s evaluation the same speech intelligibility and quality tests can be performed

using real world signals or signals played through loudspeakers. This evaluation step also

provides an opportunity to tune some parameters to maximize the system’s efficiency.

1.6 Literature review synthesis

This chapter presented literature reviews of three different technological areas, from which the

development of the S-HPD algorithms will draw its inspiration and build upon. It first pre-

sented the previous and current types of HPDs and showed the need for a new active HPD

that enables face-to-face communication and hearing protection. To enable face-to-face com-

munication, a speech detection technique must be developed. Thus, this chapter presented a

literature review of different speech detection algorithms and highlighted the ones used in the

telecommunication area such as in mobile telephony, since the algorithm that will be devel-

oped will also be targeted for a real-time and embedded application. Furthermore, this chapter

presented an overview of the noise reduction techniques used in manufactured hearing aids,

and showed that the use of the modulation characteristics for noise reduction is promising

for hearing protection.

Moreover, this chapter showed that the advances reached in digital signal processing and inte-

grated circuits will permit the development of a S-HPD able to detect and transmit enhanced

speech while protecting the wearer’s hearing.
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2.1 Abstract

Electronic hearing protection devices are increasingly used in noisy environments. These de-

vices feature a miniaturized external microphone and internal loudspeaker in addition to an

analog or digital electronic circuit. They can transmit useful audio signals such as speech and

warning signals to the protected ear and can reduce the sound pressure level using dynamic

range compression. In the case of a digital electronic circuit, the transmission of audio signals

may be noticeably delayed because of the latency introduced by the digital signal processor

and by the analog-to-digital and digital-to-analog converters. These delayed audio signals will

hence interfere with the audio signals perceived naturally through the passive acoustical path

of the device. The proposed study presents an original procedure to evaluate, for two repre-

sentative passive earplugs, the shortest delay at which human listeners start to perceive two

sounds composed of the signal transmitted through the electro-acoustic circuit and the pas-

sively transmitted signal. This shortest delay is called the echo threshold and represents the

delay between the time of perception of one f used sound from two separate sounds. In this

study, a transient signal, a clean speech signal, a speech signal corrupted by factory noise, and

a speech signal corrupted by babble noise are used to determine the echo thresholds of the two

earplugs. Twenty untrained listeners participated in this study, and were asked to determine the

echo thresholds using a test software in which attenuated signals are delayed from the original
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signals in real-time. The findings show that when using hearing devices, the echo threshold

depends on four parameters: (a) the attenuation function of the device, (b) the duration of the

signal, (c) the level of the background noise and (d) the type of background noise. Defined

here as the shortest time delay at which at least 20% of the participants noticed an echo, the

echo threshold was found to be 8 ms for a bell signal, 16 ms for clean speech and 22 ms for

speech corrupted by babble noise when using a shallow earplug fit. When using a deep fit, the

echo threshold was found to be 18 ms for a bell signal and 26 ms for clean speech and 68 ms

for speech in factory. No echo threshold could be clearly determined for the speech signal in

babble noise with a deep earplug fit.

2.2 Introduction

Occupational hearing loss is the most common work injury in North America with approxi-

mately 22 million workers exposed daily to hazardous noise (NIOSH, 1998). To prevent hear-

ing loss, wearing Hearing Protection Devices (HPD) becomes a necessity in industrial work-

places. In fact, wearing HPDs is also required nowadays for professional musicians since they

too are exposed to loud sounds and thus vulnerable to hearing loss (Macdonald et al., 2008).

HPDs come in various forms. There are earplugs, which must be placed within or against

the entrance of the ear canal, and earmuffs, which either fit around the ear, or in the form of

helmets, encasing the entire head (Berger et al., 2003b). HPDs can be grouped in two types of

operating mode: passive HPDs and active (or electronic) HPDs (Casali, 2010).

Passive HPDs are the traditional HPDs. They reduce the background noise mechanically based

on their shape and material composition, while electronic HPDs are equipped with an external

microphone to capture the signals, an internal loudspeaker to playback the signals under the

protected ear and an analog circuit or a Digital Signal Processor (DSP) in order to process

the incoming signals in real-time (Casali, 2010). Electronic HPDs are increasingly used by

workers, musicians, and the military for their high flexibility and multiple functionalities such

as active noise control (Brimhall et al., 2002) or adaptive gain control (Hotvet, 1996).
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Recently, some advanced functionalities have been developed for electronic HPDs as listed in

(Voix, 2014), such as background noise reduction (Chung, 2007) and (Chung et al., 2009),

warning signals detection (Carbonneau et al., 2013), and voice activity detection (Lezzoum

et al., 2014a) for the development of a smart HPD (S-HPD) or smart earphones to guarantee

protection and to discriminate between speech and noise, allowing the transmission of en-

hanced speech signals to the ear.

Electronic HPDs process the incoming signals in real-time for retransmission to the ear. Real-

time processing is defined as the continuous generation of an output signal within time con-

straints (Kuo et al., 2014). These time constraints depend on the targeted application for which

the processing is dedicated. For example, in Voice over IP (VOIP) communications, the time

that elapses between the moment the talker utters the words and the moment the listener hears

them is referred as the mouth to ear delay (Janssen et al., 2002), and represents the maximum

delay between the input and the output signals. As mentioned in the ITU-T recommenda-

tion (ITU-T, 2003b), mouth to ear delays of less than 150 ms for the transmission of speech

or non-speech signals will experience essentially transparent interactivity. However, in other

applications where visual information is also available in addition to the audio, such as tele-

conferencing, the audio signal should never be delayed by more than 45 ms from the video

signal, while the video signal should never be delayed by more than 15 ms from the audio sig-

nal as demonstrated in (Cooper, 2003) and (Younkin and Corriveau, 2008) to avoid introducing

lip-sync errors.

Digital HPDs may introduce a delay between the signals transmitted through the passive path

of the HPD and the signals processed and transmitted through the internal loudspeaker. The

passively transmitted signals reach the protected ear through the bone conduction and HPD

material. When the processing delay increases, the processed signal will be heard as an echo

of the passively transmitted signal, thus two signals will be heard. The delay at which the

perception of one f used sound becomes two separate sounds is called the echo threshold

(Litovsky et al., 1999), or the delay of the Just Noticeable Di f f erence (JND) (Quené, 2007),

which are widely used psycho acoustic metrics. In (Haas, 1972), the influence of a single echo
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on the audibility of clean speech has been studied depending on different parameters such as

the intensity, the timbre, the angle of incidence and the room reverberation, concluding that

when the echo sound is at the same intensity as the original sound, the critical delay (the delay

where 10-20% of participants felt disturbed) is about 68 ms, while when the echo sound is

attenuated by 3 dB, the critical delay rises to 108 ms, and when the echo sound is attenuated

by 10 dB, no echo is felt. Furthermore, (Haas, 1972) showed that the attenuation of the high

frequencies of the echo increases the tolerable delay.

The echo threshold can also be determined when a sound from one direction is followed by

the same sound coming from another direction (Yang and Grantham, 1997). This phenomenon

is known as the precedence e f f ect. The precedence effect has been widely studied in the

last decades and the influence of an echo on the audibility of clicks (transient signals) com-

ing from different spatial locations has also been studied such as in (Freyman et al., 1991),

(Yang and Grantham, 1997), and (Saberi and Antonio, 2003). These studies showed that when

the click sound echo has equal intensity as the original click sound, the echo threshold is around

5 to 10 ms.

Studies and experiments reported to date on the determination of the echo thresholds have

been conducted with clean speech (Haas, 1972), or with transient signals (Yang and Grantham,

1997), (Litovsky et al., 1999), (Saberi and Antonio, 2003). However, non-ideal real-world

conditions such as noisy speech signals have not been investigated yet. For transient signals, the

echo threshold was only determined with equal intensities. In addition, the motivation of almost

all the previous studies was to understand how the auditory system processes and perceives

the same signal coming from different directions such as reverberant spaces. However, the

determination of the echo threshold for applications such as electronic HPDs, including the

effect of their specific frequency response and resonances, has not been addressed yet, despite

the fact that these electronic devices inevitably generate a processing delay.

The current study investigates the influence of frequency-dependent attenuation functions ob-

tained from two representative fits of a custom earplug to evaluate the echo threshold depen-
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dence on the attenuation function. Furthermore, this study tends to mimic real-world environ-

ments using clean speech signals and speech corrupted by two types of noise environments:

factory and babble noise. In addition, a bell ringing sound is used as a transient signal.

This study was conducted on 20 human participants. Each participant was asked to determine

the echo threshold between the passively and digitally transmitted signals using a real-time test

software where the delay between the two signals could be user-controlled.

The present article is organized as follows: Section 2.3 models the sound transmission paths

in digital HPDs. Section 2.4 describes the materials and methods used for the attenuation

functions calculation, stimuli generation, and subjective test protocol. Section 2.5 presents the

analysis of the stimuli signals using the spectrograms and the results from the subjective test

and Section 2.6 discusses the findings and concludes this work.

2.3 Digital hearing protection device

2.3.1 Sound transmission paths

The digital HPD is a traditional passive HPD in which electro-acoustic hardware is embedded

(Fig. 2.1). To capture signals, a miniature external microphone is connected to the audio input

of an ultra-low power DSP. The DSP output is connected to a miniature loudspeaker to transmit

the desired signals to the ear.

In addition to the digital path, the external sound is also transmitted through the HPD’s ma-

terial and, to a lesser extent, through bone conduction. Figure 2.2 illustrates the three sound

transmission paths for a digital HPD.

The transmission through the HPD material highly depends on the fit of the earplug. As an

example, Figure 2.3 shows the attenuation function of a shallow and deeply fitted HPDs, where

differences of up to 20 dB can be observed.
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Figure 2.1 The hardware resources embedded in the digital

hearing protection device.
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Figure 2.2 Sound transmission pathways through a digital HPD:

(1) bone conduction path, (2) passive transmission through the

earplug material, and (3) digital transmission through the active

path of the earplug. This figure has been adapted from

(Voix and Laville, 2009).

The signal path through the human skull (bone conduction) is highly attenuated (from 45 to

55 dB) making it a negligible secondary path (Berger et al., 2003a). Therefore, in the rest of

this paper, bone conduction is ignored and passively transmitted signals denote only the signals

transmitted by means of HPD material.
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Figure 2.3 Attenuation functions of two custom-molded

earplugs: shallow fit represents the low attenuation function, and

deep fit represents the high attenuation function.

2.3.2 HPD characteristics

Custom-molded earplugs are a type of HPD that fit instantly to the user’s ear canal, by injecting

a soft expendable medical silicon rubber agent between a rigid core and an expendable envelope

(Voix and Laville, 2009).

The prediction of the attenuation function of these earplugs is conducted as described in

(Voix and Laville, 2009): an internal microphone is used to capture the passively transmit-

ted sound to the ear, and an external microphone is used simultaneously to capture the ex-

ternal sound. The attenuation functions are computed from the internal and external sound

pressure level. In a previous study (Nadon et al., 2015), eight human participants were fit-

ted with custom-molded earplugs. The corresponding transfer functions were assessed using

white noise. From this dataset, two transfer functions have been selected for the purposes of

the current study. These transfer functions represent two extreme cases: the first transfer func-

tion has a low attenuation and was obtained from a participant with a shallow fitted earplug,

while the second has a high attenuation and was obtained from a participant with a deeply

fitted earplug. The magnitudes of these transfer functions are illustrated in Figure 2.3. This

figure shows the frequency-dependent attenuations that both (shallow and deep) fits exhibit.
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It also shows that the shallow fit has two resonance frequencies, the first one corresponds to

a Helmholtz resonator resulting from the leaking earplug, while the second one corresponds

to the longitudinal resonance of the occluded ear canal. Figure 2.3 shows that the attenuation

function corresponding to the deep fit attenuates the signal by 10 dB below 3500 Hz, and by

5 dB around 5000 Hz, while it attenuates the high frequencies by about 30 dB.

2.4 Methodology

In the first part of this Section, we present the stimuli signals used for this study, while in

the second part, subjective tests conducted with 20 untrained human participants using the

generated stimuli signals and a test software are presented.

2.4.1 Stimuli generation

2.4.1.1 Types of signals

Two types of signals are used in this study. These signals are considered as desired signals for

an S-HPD application use case, thus their unaltered transmission through the digital earplug to

the protected ear is important. These signals are:

• Speech signals: one speech sentence uttered by a male speaker in Canadian French from

the HINT (Hearing in Noise Test) database (Lamothe et al., 2002) was used. The length

of this clean speech signal is around 2 seconds, and the sampling frequency is 22 kHz.

Two different scenarios are considered: the first, consists of presenting clean speech to the

participants. In the second scenario, noisy speech signals were presented to the participants

by artificially adding, to the same clean speech signal, babble and factory noise obtained

from the Aurora database (Hirsch and Pearce, 2000) with a 5 dB signal to noise ratio. This

situation mimics noisy environments, such as workplaces or restaurants, in which wearing

HPDs or other smart in-ear devices is beneficial.
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• Transient signals: transient signals are characterized by their abrupt high energy peaks

with a period varying between 5 and 10 ms followed by decaying oscillations with a longer

period. Hearing an echo of the transient signal can be annoying to the HPD wearer. For

this purpose, a bell ring obtained from a free online database (FreeSound, 2014) is used.

The sampling frequency is 44 kHz.

2.4.1.2 Signal processing

The two attenuation functions, corresponding to two fits of the earplugs, are applied to the four

signals presented in Section 2.4.1.1 for the generation of the passively transmitted signals y(n):

y(n) = x(n)∗h(n) (2.1)

with * for the convolution, x(n) for the original signal, h(n) the impulse response of the atten-

uation function, and n the sample number. The impulse response of the attenuation function

h(n) is adjusted to 44 μs, corresponding to the delay of the passively transmitted signal through

the earplug (15 mm traveled at 340 m/s).

Thus, eight signals are generated: four signals for the shallow fit, and four signals for the deep

fit. Figure 2.4 illustrates a block diagram for stimuli generation. The stimulus s(n) is generated

by adding the passively transmitted signal y(n) to the digitally transmitted signal x(n):

s(n) = y(n)+ x(n−d) (2.2)

with n > d and d is the number of taps that represents the delay difference between the original

signal transmitted via the digital path of the earplug and the passively transmitted signal.

Varying the delay d between the two signals will lead to the determination of the echo threshold

using a subjective tracking procedure described in the next subsection.
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Figure 2.4 Block diagram for the stimuli generation.

2.4.2 Subjective test protocol

The test was conducted in an ANSI S3.1 compliant audiometric booth with 20 French speaking

and normal hearing participants: 17 males and 3 females aged between 22 and 35 years of

age with an average age of 25 years. All signed a consent form prior to participation. The

subjective tests presented in this paper were approved by the internal review board of ETS

(Comité d’éthique de la Recherche of École de technologie supérieure) (CER, 2014).

This subjective test is conducted with untrained participants as the electronic HPDs are aimed

to be used by a large population, with no knowledge or experience in the field of acoustics.

Participants were outfitted with professional headphones and placed in front of a computer

screen equipped with a test interface which allows the user to change the delay between the

passively attenuated and the non-attenuated signals in real-time to determine the echo thresh-

old. The test interface was created using the open source software PureData (PureData, 2014).

Figure 2.5 illustrates a screen shot of this interface which has been developed in our labs.

Before the test, participants were instructed to find the echo threshold that corresponds to the

delay at which they start to hear an echo of the first signal. To do so, participants were instructed

to vary the delay by moving the wheel of the computer mouse: when the wheel is moved up, the

delay increased by 2 ms, when moving it down, the delay decreased by 2 ms steps. The delay
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Figure 2.5 Screen shot of the test interface designed with

PureData for real-time signal delaying.

could vary between 0 and 1000 ms. Before validating their response, participants were asked to

decrease the delay to be more accurate and detect the threshold of the just noticeable difference.

Once this threshold was found, they were asked to validate their response by pressing a button

and pass to the following stimuli.

Participants were instructed to fix the threshold to the maximum value (1000 ms) if the pas-

sively transmitted signal could not be distinguished from the digitally transmitted signal, i.e. if

no echo was perceptible.
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2.5 Data analysis and results

The test signals were presented to all the participants in the same order: starting with the

stimuli generated from the shallow earplug fit then the stimuli generated from the deep earplug

fit following this order: the bell ring signal, the clean speech, the speech corrupted by factory

noise, then the speech corrupted by babble noise.

Afterwards, the data collected from this test is subjected to statistical analysis.

2.5.1 Spectrogram analysis

Figure 2.6 illustrates the spectrograms of the bell signal, clean speech signal, and speech cor-

rupted by factory noise (each with the two fits) with no delay (d=0 ms) and with a delay of

80 ms. This figure shows that for the bell signal, a difference is observed between the two

spectrograms (d=0 and d=80 ms) for the shallow and deep fits. The same observations are also

noticed for the clean speech with the two fits. For speech corrupted by factory noise with deep

fit, we notice that there is no difference between the two spectrograms. This is due to the low

energy of the passively transmitted speech signal (as shown in Figure 2.6), which is masked by

the factory noise. However, with the shallow fit, we observe a difference in the spectrograms

between t=0.6 and t=0.8 seconds where there is an obvious redundancy of the speech segment.

2.5.2 Descriptive statistics

The minimum, the first quartile, the median, the third quartile, and the maximum were calcu-

lated upon the echo threshold determined by the participants depending on the stimuli and are

illustrated in the box-and-whisker plot in Figure 2.7.

Figure 2.7 shows that for the bell ring the echo threshold median for the shallow fit (16 ms) is

close to the median of the deep fit (26 ms). It also shows that for the clean speech, the median

is almost the same for the shallow (36 ms) and deep fits (39 ms). However, for the speech cor-

rupted by factory noise, the echo threshold medians are distant for the two fits (39 ms for the
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Figure 2.6 Spectrograms of the bell, clean speech, and speech

corrupted by factory noise with a delay of 0 and 80 ms between

the passively and the digitally transmitted signals for the shallow

and deep fits.

shallow fit and 76 ms for the deep fit), knowing that during the test, four participants notified

that they did not perceive an echo even if the maximum value was reached (1000 ms) for the

deep fit, which is due to the background noise which masks the passively transmitted speech

signal. With the last stimuli (speech corrupted by babble noise), a big difference is noticed be-

tween the shallow and deep fit stimuli. The median echo threshold for the shallow fit was found

at 43 ms, while for the deep fit, 15 subjects among the 20 did not notice any difference between

the passively and numerically transmitted signals. With the speech corrupted by babble noise

(deep fit), one participant fixed the echo threshold at 46 ms. This participant is a musician and

is very sensitive to changes in the frequency components of a signal. He commented that his

choice was very influenced by frequency components change in the signal.
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Figure 2.7 Echo threshold box and whisker plot. The asterix (*)

symbol upon the deep fit results of the speech corrupted by

factory noise reflects that 20 % of the subjects did not perceive

any difference between the passively and digitally transmitted

signals respectively, and the asterix (*) symbol upon the deep fit

results of the speech corrupted by babble noise reflects that 75 %

of the subjects did not perceive any difference between the

passively and digitally transmitted signals respectively.

2.5.3 Analysis of the variance

In order to assess significant differences between the echo thresholds obtained with each atten-

uation function, signal and participant, we subjected the echo threshold determined by the 20

participants to statistical analysis. For this purpose, a three way analysis of variance (ANOVA)

was conducted in MatlabTM (Mathworks, MA). The model used is not with repeated measure-

ments and the alpha value is 0.05 which corresponds to 95% confidence. In this analysis, two

factor interactions with three levels have been used and consist of: first, the interaction between

the fit type and the signal type; second, the interaction between the fit type and the participants,
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and third, the interaction between the signal type and the participant. Table2.1 illustrates the

details of the ANOVA analysis with the p-values

Results from the ANOVA confirm the previous obtained results and show that there was a

significant interaction between the type of the fit and the type of signal (F(1.5)=10.55, p <

0.05), while no significant interaction was found between the type of the fit and the participant

(F(1.5)=0.97) as well as between the type of the signal and participant (F(1.5)=0.79).

Source F p values

Fit type 35.03 0

Signal type 13.93 0

Participants 2.12 0.0237

Fit type * Signal type 10.55 0

Fit type * Participants 0.97 0.5087

Signal type * Participants 0.79 0.7945

Table 2.1 Results of the Analysis of variance ANOVA.

2.5.4 Determination of the echo threshold

The echo threshold is defined here as the minimum delay at which at least 20% of the partici-

pants perceive two distinct signals, as was done in (Haas, 1972). The echo threshold for each

stimuli was determined by plotting the Cumulative Density Functions (CDFs) which are shown

in Figure 2.8 The results are summarized in Table 2.2, which highlights the dependence on the

fit of the earplug (from 8 to 18 ms for the bell signal, and 16 to 26 ms for the clean speech).

With a deep fit, most participants could not distinguish the echo from the original sound for the

speech signals in babble noise.
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Figure 2.8 Cumulative Density Functions for the eight stimuli.

Table 2.2 The echo thresholds for the eight stimuli. For

the deep fit with factory noise, 20% of the subjects did

not perceive any difference between the passively and

digitally transmitted signals. In babble noise 75% of the

subjects did not perceive any difference between the

passively and digitally transmitted signals.

Signal Shallow (ms) Deep (ms)
Bell 8 18

Clean speech 16 26

Speech in factory 16 68

Speech in babble 22 *

2.6 Discussions and conclusions

As described in this paper, with the miniaturization of microelectronic devices, it is now pos-

sible to include a DSP in a HPD to perform real-time signal processing on incoming audio

signals. However, this signal processing introduces some delay which can be annoying to

the user. Determining the echo threshold in real-world conditions allows to set the allowable

processing delay of the DSP in such devices.

The allowable processing delay for the electronics represents the time difference between the

echo threshold and the delay of the acoustic path through the earplug. The delay of the acoustic

path through the earplug is around 44 μs (15 mm travelled at 340 m/s), which is non-significant
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when compared to the echo threshold reported in the study. Therefore, we conclude that the

delay introduced by the entire electronic path (from the microphone to the loudspeaker) should

be made lower than the echo threshold.

The subjective results presented in this paper showed that when the earplug has a shallow fit

and presents a resonance frequency in the critical frequency range of speech (between 200 and

1000 Hz), the echo threshold of clean speech stimuli is almost the same as the echo threshold

of speech corrupted by a stationary (factory) or non-stationary speech-shaped noise (babble)

(for 20% of the participants the echo threshold for the three stimuli is 16, 16, and 22 ms

respectively). However, when the earplug has a deep fit without resonance frequency in the

critical frequency range of speech, the echo threshold of clean speech stimuli is lower than

the echo threshold of speech corrupted by factory noise, while when the speech is corrupted

by speech-shaped noise (babble), there is no perceptible difference between the passively and

digitally transmitted signals.

From the current study, we conclude that the echo threshold between the passively and digitally

transmitted signals depends on four parameters:

• The attenuation function: the amount of attenuation of the in-ear device is a very impor-

tant parameter for the determination of the echo threshold between the passively and the

digitally transmitted signals. The higher the attenuation is, the higher the delay.

• The duration of the signal: the delay depends on the duration of the signal, if the signal

has a short duration such as transients, the delay is low and it increases when the incoming

signal duration increases.

• The presence of background noise: the current study showed that when background noise

is present, the echo threshold increases compared to clean speech conditions. For instance,

with a deep fit, the clean speech stimuli gave a median echo threshold of 38 ms, while when

speech is corrupted by factory noise, the median echo threshold was found at 96 ms.
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• The type of background noise: when the incoming signal is corrupted by background noise,

the delay increases since the background noise masks the passively transmitted signal. The

delay not only depends on the presence of background noise, but also on the type of noise:

if the background noise is non-stationary such as babble noise, the delay is higher than

when the background noise is stationary such as factory noise.

The delay between the passively and digitally transmitted signals depends not only on one

criterion but on the combination of the four criteria.

Our findings suggest that manufacturers of electronic HPDs and the next generation of dig-

ital in-ear devices should set the processing time depending first on the attenuation function

of the device. In addition, the processing time should be chosen as a function of the type

of the desired signal to be sent through the digital path of the HPD: if the electronic HPD is

designed to transmit signals with short periods such as transient signals, then the processing

time should be lower (between 8 and 18 ms) than if the device was designed to transmit other

signals such as speech signals (between 16 and 26 ms). Furthermore, if the device is developed

to be used in noisy environments, the processing time can be higher and depend on the nature

of the background noise. In situations where the processing time can be sufficiently long, other

sophisticated modules such as speech recognition, speaker recognition, signal identification or

background noise classification can be embedded in the in-ear devices. Nevertheless, in situa-

tions where the visual information is also provided to the in-ear device wearer, the processing

time should be determined as a function of this information and should not exceed a certain

amount of time (45 ms) to avoid generating a lip-sync error.
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3.1 Abstract

This paper presents a real-time voice activity detection (VAD) algorithm implemented in a

miniature Digital Signal Processor (DSP) for in-ear listening devices such as earphones or

headphones. This system allows consumers to hear external speech signals such as public

announcements or oral communication while listening to music without removing their listen-

ing devices. The proposed algorithm uses two normalized energy features that compare the

energy in the frequency region containing speech information with the frequency regions typ-

ically containing noise. The extraction of the normalized features represents the key of the

proposed VAD since it eliminates the need for a signal-to-noise ratio (SNR) estimator. The

VAD’s decision is made using two threshold comparison rules computed from the normalized

features and a hangover scheme triggered after a given number of observations. The algorithm

parameters, namely the frequency regions’ boundaries, number of observations, two decision

thresholds and hangover’s duration, have been optimized off-line using a genetic algorithm.

The performance of the proposed VAD is compared to a benchmark algorithm in four noise

environments and three SNRs. Results show that the average false positive rate (FPR) of the

proposed algorithm is 4.2% and the average true positive rate (TPR) is 91.4 % compared to the

benchmark algorithm which has a FPR average of 29.9% and a TPR average of 79.0%. The

proposed VAD is implemented in hardware to validate its reliability and complexity.
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3.2 Introduction

Nowadays, smart-phones, mp3 players, and other portable audio player devices are ubiquitous.

Wearing earphones or headphones for listening to music in public places such as airports, air-

planes, or railway stations causes sensory and cognitive distractions and isolates the wearer

from the external environment. For example, in a railway station when train departures are

announced, earphone wearers may miss this announcement and consequently miss their train.

Similarly, in an airplane, passengers must remove their earphones when a steward is address-

ing them.

To palliate problems caused by the wearing of earphones in public places, several tools have

been developed to enable consumers to hear external signals, ranging from push-to-hear elec-

tronic devices to dedicated wireless systems.

Earphone manufacturers have developed systems which include a microphone and a push but-

ton that allows the users to mute the music and transmit external sounds to the ear, thus allowing

communication without the need to remove the earphones. These devices are either available as

external dangles or included directly into the headphones. Since the users must manually push

a button, they must know that a spoken message is addressed, which is unsuitable in situations

where no visual cue is available (public announcement, for example). Software tools for exter-

nal signals transmission are also available in smart-phones. They enable consumers to hear the

external environment while listening to the music when the loudness of the external environ-

ment exceeds a certain threshold. Although these tools let the earphone wearers remain aware

of their external environment, they can be annoying since all signals (useful and not-useful) are

transmitted to the ear whenever they reach the predetermined loudness threshold.

Sophisticated wireless systems have also been developed to address this problem. These sys-

tems transmit the announcements to the wearer’s audio device via a network, and then play

relevant announcements in the earphones (Desai, 2014). This method requires a specific in-

frastructure in a given location, and the user cannot benefit from this technology where the

infrastructure has not been developed. The present paper describes a real-time Voice Activity
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Detection (VAD) system for smart earphones that can be integrated to current advanced com-

munication earpieces (Voix et al., 2014). The proposed system discriminates between a speech

(useful) signal and noise (not-useful) signal to transmit speech signals through the earphones

while blocking noise signals. A miniature Digital Signal Processor (DSP) is integrated in the

earphones for real-time speech and noise discrimination.

Voice activity detection is commonly used in various speech-based applications. In voice over

IP transmission and GSM communication, a VAD is used to encode non-speech segments with

a lower bit rate than speech segments and thus reduce the transmission rate (ITU T, 1996). It is

also widely used in human/machine interaction applications (Cho and Kim, 2011), (Lee et al.,

2009) for speech recognition or speaker identification and verification to reduce false alarm

rates due to the use of noise segments in the recognition process. Likewise, VADs are used

for noise reduction in hearing aids (Chung, 2004) and recently for smart hearing protection

(Lezzoum et al., 2013).

The performance of VADs relying solely on the extraction of one or several features (ITU T,

1996), (Tucker, 1992), (ETSI, 1999) degrades when the signal-to-noise ratios (SNR) decreases

(Beritelli et al., 2002). To palliate this problem, other VADs have been developed and rely on

the estimation of the a posteriori and a priori SNR using the signal first frames, assumed to

contain only noise signals (Sohn et al., 1999). Unfortunately, these VADs become sensitive

to changes in the SNR (Moattar and Homayounpour, 2009). Learning techniques or modeling

algorithms have also been applied to VADs (Wu and Zhang, 2011), (Liu et al., 2010) making

the VAD efficient but more complex and difficult to implement in a DSP with limited hardware

resources for real-time applications.

Recently, Hsu et al (Hsu et al., 2013) proposed an energy-based VAD where the decision is

made using a threshold upon the energy of the frequency modulation of harmonics. This VAD

has shown its effectiveness in low SNRs and requires low computational resources. However

its response delay makes it unsuitable for real-time low-latency applications.
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While a relatively low-complexity VAD has been proposed based on the inter-quartile range

statistic feature (Lezzoum et al., 2013), the current approach proposes improvements, using

simpler energy-based features, for an efficient implementation in a low-power DSP. The pro-

posed VAD is implemented in a miniature DSP for smart earphones or headphones applica-

tions. The proposed solution can be integrated into active noise control headphones, which are

already equipped with external microphone and other electronics. It can even be retrofitted to

traditional headphones or earphones by integrating a miniature external microphone and DSP.

This paper is organized as follows: Section 3.3 presents the proposed smart earphones and

their operating principle. Section 3.4 describes the proposed VAD algorithm. In Section 3.5,

the parameters used in the VAD’s decision are defined and their off-line optimization using a

genetic algorithm is performed. Section 3.6 presents the validation of the proposed VAD, and

Section 3.7 describes its implementation in a low-power DSP and its real-time validation in the

embedded system. Finally, Section 3.8 concludes the paper.

3.3 The smart earphone

Smart earphones are traditional earphones, in which a field-programmable electronic hardware

is embedded (Figure 3.1). To capture signals, a miniature external microphone is connected

to the audio input of an ultra-low power DSP. The DSP output is connected to a miniature

loudspeaker to transmit the desired signals to the ear (Carbonneau et al., 2013).

The main task of the proposed system is the discrimination between speech and noise signals

to allow speech signals to get through the earphones while blocking noise signals when speech

is absent to enable the wearer to listen to music. Figure 3.2 illustrates the operating principle

of the whole system.

3.4 The proposed VAD algorithm

A study conducted by Parikh et al. (Parikh and Loizou, 2005) on the influence of noise on

vowels and consonants concluded that when the speech signal is corrupted by noise, the first
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Figure 3.1 The hardware resources embedded in the

smart earphones

Figure 3.2 The selective operating principle of the system.

formant can be reliably detected compared to the second formant, which is heavily masked by

noise in low SNR (0 dB). Based on these findings, we propose the use of an energy feature
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which is extracted from the frequency region containing the first formant for speech charac-

terization. Thereafter, this feature is normalized using two noise features extracted from the

frequency regions containing typical noise information. The normalization of the energy fea-

ture eliminates the need for an SNR estimator. The VAD’s decision is made after multiple

observations using two decision thresholds, determined from the normalized energy features

in addition to a hangover scheme to consider the “long time” information, knowing that the

speech signal is highly time-correlated (Davis et al., 2006). The value of the two thresholds,

the frequency bounds, the number of observations and the hangover parameters are optimized

off-line using a genetic algorithm. The optimization increases the performance of the proposed

VAD by maximizing the F1 score (C. J. van Rijsbergen, 1979). Figure 3.3 illustrates the de-

tailed architecture of the proposed VAD algorithm. The signal is first time-windowed into i

frames. Features are extracted and the decision D(i) is made after N observations based on two

thresholds and a hangover scheme.

3.4.1 Windowing

The entire signal is cut into frames using a Hamming window. The length of each frame is 25

ms with 80 % overlap.

3.4.2 Feature extraction

3.4.2.1 Filterbank

The incoming signal is filtered into M=3 frequency bands using 4th order Butterworth filters.

Cut-off frequencies of the 3 bands (15-153 Hz, 153-1323 Hz, 1323-1944 Hz) have been opti-

mized off-line using a Genetic algorithm (see Section 3.5.3).



65

Figure 3.3 Block diagram of the proposed VAD algorithm.

3.4.2.2 Energy based feature

Parikh et al (Parikh and Loizou, 2005) concluded that when the speech signal is corrupted by

noise; the first formant can be reliably detected. Based on the conclusions of this study, the

energy of each frequency band is calculated. Figure 3.4 illustrates an example of the energy

in the three frequency bands for one speech frame produced by a male speaker corrupted by

car noise with 10, 5 and 0 dB SNRs. A1, A2, A3 denote the energy in the first, second, and

third frequency bands respectively. One can see that in the second frequency band, which

contains the first formant of the speech frame (a voiced phoneme), the energy of the speech is

significantly higher than the energy of the noise in this band, whereas the energy of the noise

in the first band (especially in 0 dB SNR) is higher for noise than speech.
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Figure 3.4 Energy in three frequency bands for one signal frame

with (a) 10 dB, (b) 5 dB and (c) 0 dB SNR.

3.4.2.3 Normalization

While Figure 3.5 shows that A2 is a reliable indicator of the presence of speech, it cannot be

used directly with a decision threshold in the VAD because it is dependent on the input signal

level. Thus, the following normalized ratios, which increase the VAD’s performance by taking

advantage of the different frequency content of speech and noise (A1 and A3), are proposed:

R1 =
A2

A1
(3.1)

R2 =
A2

A3
(3.2)

R1 is normalized by the low-frequency components, knowing that noise signals generally have

more energy in the lower frequencies than speech signals (Levitt, 2001). R2 is normalized
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Figure 3.5 A2 in speech, noise and noisy speech signal with 0 dB

SNR, in addition to the hand-labeled decision on clean speech.

by the high-frequency components that characterize high frequency noise signals. The VAD’s

decision is based on ratios R1 and R2, thus eliminating the need for an SNR estimator.

3.4.3 VAD’s decision

3.4.3.1 The decision thresholds

Two decision thresholds T 1 and T 2 are fixed upon the ratios R1 and R2. The VAD’s decision

is made after N observations:

D(i) =

⎧⎨
⎩

1 if R1(i : i+N)≥ T 1 and R2(i : i+N)≥ T 2

0 else
(3.3)

with N being the number of consecutive observations, i the frame number and D(i) the decision

in the current frame.
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3.4.3.2 Start and end of speech confirmation parameters

The VAD’s decision is made after multiple observations (start of speech confirmation parame-

ter). These observations are defined by the number of consecutive frames having ratios R1 and

R2 higher than thresholds T 1 and T 2 respectively and after which the decision is to be set to

1 (speech). Ramirez et al.(Ramírez et al., 2005) demonstrated that taking several frames into

account in the VAD improves the reliability of its decision. In the proposed VAD, the number

of consecutive frames should not exceed 8 frames to not exceed a delay of 40 ms. Hangover

schemes (end of speech confirmation parameter) have been widely used in VADs to reduce the

false rejection rate attributable to the non-detection of low energy speech frames containing

consonants such as fricatives and unvoiced stops (Sohn et al., 1999) (Davis et al., 2006). In the

adaptive Multi-Rate (AMR) VAD (ETSI, 1999), the hangover was set to 2 seconds if the signal

is of a complex nature.

3.5 Off-line parameters optimization

The choice of the two decision thresholds T 1 and T 2 depends on the desired specificity and

sensitivity of the VAD. High decision thresholds make the VAD more specific than sensitive,

which minimizes both the False Positive Rate (FPR) and True Positive Rate (TPR). Low deci-

sion thresholds make the VAD more sensitive by maximizing the TPR and FPR. The two de-

cision thresholds T 1 and T 2, the number of consecutive frames (start of speech confirmation),

and the hangover (end of speech confirmation), in addition to the frequency bands’ boundaries

are optimized off-line using a genetic algorithm approach by maximizing an objective function.

3.5.1 Objective function

In the literature, VAD performance evaluation can be performed using various metrics (Beritelli

et al., 2002). Nevertheless, solving an optimization problem requires the use of one metric

reflecting the entire performance of the VAD algorithm. For this purpose, the F1 score is used

as the objective function (C. J. van Rijsbergen, 1979):
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F1 = 2× precision× recall

precision+ recall
(3.4)

with

precision =
TPR

TPR+FPR
(3.5)

recall =
TPR

TPR+FNR
(3.6)

The F1 score combines the TPR, FPR and False Negative Rate (FNR). It reflects the VAD’s

accuracy by considering its precision and recall. In VAD algorithms, TPR, FPR and FNR

are respectively: the ratio of speech frames classified as speech, the ratio of noise frames

classified as speech, and the ratio of speech frames classified as noise. In the existing VAD

algorithms, these rates are calculated in noisy speech signals to distinguish between speech

and noise frames. However, for a smart earphone application, the TPR and FNR are calculated

for noisy speech signals and the FPR for noise signals. This evaluation method focuses on

the fact that once the speech frames have been detected, the detection of the next non-speech

frames does not have any detrimental effect on the performance of the proposed VAD. Whereas

when no speech signal is present, the detection of noise frames and their transmission to the

protected ear is significantly detrimental on the performance of the proposed VAD.

3.5.2 Audio signals used for off-line optimization

Off-line parameters optimization is conducted to maximize the F1 score, using a small number

of noisy speech signals. In the envisioned application, noise signals typical of everyday envi-

ronments are to be used. Thus 20 speech signals (14 speech signals produced by male speakers

and 6 speech signals produced by female speakers) from the TIMIT database (Zue et al., 1990)

corrupted by “Airport” noise recorded in real world environment with 5 dB SNR are used.

Speech and noise were artificially mixed together with 5 dB SNR. The TIMIT database was

chosen for the envisioned application because the speech signals in this database are not altered

by filters such as the ITU MIRS or ITU G.712, that tend to consider the realistic frequency
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characteristics of terminals and equipment in the telecommunication area (Hirsch and Pearce,

2000).

3.5.3 Genetic algorithm for off-line parameters optimization

Genetic algorithms (Goldberg, 1989) are randomized search and optimization techniques based

on the mechanism of natural selection and natural genetics. They are robust and efficient, they

adapt to a wide variety of environments and they produce a near optimal solution when solving

an optimization problem. The genetic algorithms are used to optimize the frequency bands’

boundaries, the hangover, the number of consecutive observations, and the decision thresholds.

In the optimization process, the lower and upper frequency bounds variations for the three

band-pass filters are illustrated in Table 3.1. The lower bound of the second and third frequency

bands correspond to the upper bound of the first and second frequency bands respectively.

Table 3.1 Frequency bands’ lower and upper bounds

for the optimization process

Bounds Lower bound (Hz) Upper bound (Hz)
1 10 20

2 50 250

3 250 1500

4 1500 6000

The hangover varies from 50 to 300 frames with a step of one frame (0.25 to 1.5 second). The

number of observations varies from 4 to 8 consecutive frames, which is equivalent to a decision

delay varying from 20 to 40 ms. After 10 generations, the genetic algorithm reached an optimal

solution with an F1 score of 98.5%. Figure 3.6 shows a plot of the function’s best and mean

penalty values in each generation with each generation being composed of 40 individuals. The

optimization process gave a hangover value of Hg=1.26 seconds and a number of consecutive

frames N=7. The optimized cut-off frequencies for the three band-pass filters are: [15, 153,

1323, 1944] Hz. These parameters are then used for the decision-making and the validation of

the proposed VAD algorithm using a validation database.
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Figure 3.6 Penalty values (1-F1) of the optimization process

using Genetic Algorithm.

3.6 Experiments and validation

3.6.1 Validation database

The validation database is composed of 10 sentences produced by 630 speakers (439 male

speakers and 191 woman speakers) from the TIMIT database (Zue et al., 1990). Signals are

sampled at 8 kHz. All 10 sentences are concatenated into one signal. Noisy speech signals

were created by adding the same noise at three SNRs (10, 5, and 0 dB) to each concatenated

speech signal. Four noise signals obtained from real world recordings were used. These noises

are representative of everyday environments to which consumers may be exposed to:

• Car: this environment tends to mimic the noise of the wind perceived by car passengers

with opened windows.
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• Airport: this noise was recorded in the hall of an airport, with talking crowds and baggage

trolleys passing by.

• Hammer: this noise contains transient noises. It is used to mimic some scenarios such as

renovations in the neighbourhood, or constructions in the street.

• Train: this noise was recorded near a railway with sounds of trains passing by.

3.6.2 Performance evaluation

The performance evaluation is conducted using the F1 score, in addition to the TPR and FPR.

The proposed algorithm is compared to Sohn’s VAD (Sohn et al., 1999) which uses the first

signal’s frames to estimate the a posteriori and the a priori SNR to make the decision. Figure 3.7

illustrates the F1 score results of both algorithms in all noise conditions. As it can be seen

in this figure, the F1 score of the proposed algorithm outperforms the F1 score of Sohn’s

algorithm in all noise environments and SNRs. In applications such as the smart earphones (to

simultaneously enable the wearer to listen to music and transmit speech signals when present),

the less desirable situation is the detection of short-time noise. This situation occurs when the

false positive rate is high. Table 3.2 presents the true positive rate and false positive rate for the

two VADs.

The FPR average of the proposed VAD is 4.2% compared to Sohn’s VAD which has a FPR

average of 29.9%. The same FPR is found in the three SNRs of each noise since both VADs

are insensitive to the level of the incoming signal. Furthermore, the TPR of the proposed

algorithm is higher than the TPR of Sohn’s algorithm in all noise environments in the range of

5 and 10 dB SNR. This is due to the hangover scheme presented previously, which permits the

detection of almost all the speech frames without interruptions or mid-speech clipping.
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Figure 3.7 F1 scores of Sohn’s and the proposed VAD in four

noise environments with 10, 5, and 0 dB SNR.

3.7 Hardware implementation

3.7.1 DSP overview

The DSP used for the implementation of the VAD is a stream-oriented DSP core provided in a

small 32-lead, 5 mm x 5 mm package. The Analog to Digital Converter (ADC) and the Digital

to Analog Converter (DAC) are high quality 24 bit stereo audio converters, and can operate

at sampling frequencies ranging from 8 kHz to 96 kHz. The DSP core consist of a simple

multiply-accumulate (MAC) unit with a data source and a coefficient source.
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Table 3.2 Performance evaluation of the proposed and

Sohn’s VADs in four noise environments and three SNRs

Noise Environment Proposed VAD (%) Sohn’s VAD (%)

Noise SNR TPR FPR TPR FPR

Car

10 97.6 0 87.5 20.9

5 91.3 0 76.1 20.9

0 73.4 0 60.2 20.9

Airport

10 98.4 0 85.5 14.9

5 97.0 0 72.9 14.9

0 88.4 0 55.6 14.9

Hammer

10 98.7 0 91.7 50.2

5 98.4 0 85.3 50.2

0 96.7 0 77.6 50.2

Train

10 97.7 16.8 92.7 33.9

5 91.1 16.8 86.4 33.9

0 68.4 16.8 76.5 33.9

Average 91.4 4.2 79.0 29.9

Three RAMs are encompassed in the address space of the DSP: the program RAM, the coeffi-

cient RAM, and the data RAM. The program RAM governs the execution of the instructions in

the core, and cannot exceed 1024 instructions per audio frame. The parameter RAM stores the

initial coefficients of the program and cannot exceed 1024 coefficients, while the data RAM

stores audio data-words for processing in addition to some run-time parameters. The data RAM

is divided into two memory addressing types: modulo and non-modulo memories. Each of the

modulo and non- modulo data RAM offer 4096 memory words.

3.7.2 Hardware implementation

The Auditory Research Platform (ARP) (Mazur and Voix, 2013) integrates the DSP in addition

to other associated electronics such as audio inputs, audio outputs, and battery. It is used to

implement the proposed VAD in real-time. Figure 3.8 illustrates the ARP with two earpieces,

in each ear-piece an external miniature microphone and an internal miniature loudspeaker are

integrated for external sound acquisition and VAD’s decision transmission respectively.
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Figure 3.8 The auditory research platform in which the VAD is

implemented for real-time processing connected to two earpieces

for audio signal acquisition and VAD’s decision transmission.

The hardware VAD implementation is made following the steps described in Section 3.4. The

resulting number of instructions per audio frame is 890, which is equivalent to a rate of 87%

from the entire program RAM. The data RAM used by the VAD is 346 (8% from the entire

modulo data RAM, and 0% from the non-modulo data RAM), while the coefficient RAM used

is 240 (23% of the coefficient RAM).
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3.7.3 VAD real-time tests and validation

The real-time validation of the proposed algorithm is performed using some of the noisy audio

samples used in the first validation process presented in Section 3.6. For this purpose, the audio

input of the ARP was connected to the audio output of a computer in which the noisy signals

were playing, while the output of the VAD’s decision was saved in the computer to compare it

with the result of the first validation presented in Section V. Figure 3.9 illustrates an example

of the comparison between the results of the VAD before its hardware implementation and the

VAD implemented in the DSP. This comparison is made using a signal composed of 3 s of

airport noise, 3 s of speech corrupted by airport signal with 5 dB SNR, and 3 s of airport noise

signal. The decision of the VAD in simulation and its hardware implementation are equivalent.

3.8 Discussions and conclusions

In this paper, a robust and yet simple real time VAD for smart earphones is presented. This

VAD uses an energy-based feature for the characterization of speech and noise signals. The

speech and noise characteristics are thereafter normalized and two decision thresholds are de-

termined. The decision is made after multiple observations and triggers a hangover scheme.

The algorithm parameters are optimized off-line using a genetic algorithm by maximizing the

F1 score which represents the global performance of the VAD. The parameters optimization is

performed using 20 speech signals corrupted by airport noise with 5 dB SNR. The first exper-

iment for the validation of the proposed VAD was conducted using 10 sentences produced by

439 male speakers and 191 female speakers corrupted by four noise environments. These ex-

periments showed that the proposed VAD is more efficient than a benchmark VAD. Coupling

multiple observations and the hangover scheme in the decision process shows that the pro-

posed VAD detects almost all speech signals without interruption since the true positive rate

average is 91.4%. The entire VAD system was validated for the smart earphones application.

The proposed VAD was implemented in a miniature low-power DSP integrated in a research

platform in which the audio inputs, battery, and other electronics were selected for real-time

implementation. The hardware resources show that other tasks can be combined to the VAD
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Figure 3.9 Comparison between the VAD decision on the

computer and the VAD decision obtained from the output

of the DSP.

such as a low complexity on-line parameters optimization algorithm to allow to the VAD to

adapt for each noise environment in which the smart earphones are used.
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4.1 Abstract

In this paper, a single-channel speech enhancement algorithm based on non-linear and multi-

band adaptive gain control (AGC) is proposed. The algorithm requires neither Signal-to-Noise

Ratio (SNR) nor noise parameters estimation. It reduces the background noise in the tem-

poral domain rather than the spectral domain using a non-linear and automatically adjustable

gain function for multi-band AGC. The gain function varies in time and is deduced from the

temporal envelope of each frequency band to highly compress the frequency regions where

noise is present and lightly compress the frequency regions where speech is present. Objective

evaluation using the PESQ (Perceptual Evaluation of Speech Quality) metric shows that the

proposed algorithm performs better than three benchmarks, namely: the spectral subtraction,

the Wiener filter based on a priori SNR estimation and a band-pass modulation filtering al-

gorithm. In addition, blind subjective tests show that the proposed algorithm introduces less

musical noise compared to the benchmark algorithms and was preferred 78.8% of the time

in terms of signal quality. The proposed algorithm is implemented in a miniature low power

digital signal processor to validate its feasibility and complexity for smart hearing protection

in noisy environments.
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4.2 Introduction

Nowadays, wearing Hearing Protection Devices (HPD) in workplaces and noisy environments

becomes a necessity for people exposed to high noise levels on a daily basis, to protect them

from what otherwise would damage the inner ear and induce hearing loss. Yet, in reality, most

wearers will not use their HPD when oral communication is needed (Hong et al., 2008). To

palliate this problem, we intend to develop a smart HPD (S-HPD) that guarantees protection

and discriminates between speech and noise to allow the transmission of enhanced speech

signals to the protected ear. For this purpose, the integration of a Digital Signal Processor

(DSP), an external microphone and an internal loudspeaker in a passive HPD are required

(Carbonneau et al., 2013). With one external microphone, single-channel speech enhancement

can be performed.

While multi-channel speech enhancement takes advantage of the spatial audio information,

single-channel speech enhancement does not benefit from these information and therefore re-

mains a challenging task, especially in low signal-to-noise ratio (SNR). Single channel speech

enhancement algorithms can be grouped into four main types (Loizou, 2007): spectral sub-

tractive, linear estimators, non-linear estimators, and subspace algorithms. Despite significant

differences in the type of estimated parameters, most of the aforesaid speech enhancement

algorithms use the signal’s first frames to estimate the noise parameters and update these pa-

rameters in non-speech segments using a voice activity detector (VAD). However, most existing

VAD algorithms are unreliable in low SNRs (Beritelli et al., 2002).

Single-channel speech enhancement algorithms usually perform in the spectral domain (Boll,

1979), and (Scalart and Fiho, 1996). However, reducing the noise in the spectral domain

may generate musical noise due to a random amplification of frequency bins that varies over

time (Leitner and Pernkopf, 2012) and (Cappé, 1994). In some cases, musical noise is more

annoying than the background noise itself. Much research has been conducted for the reduction

of the musical noise using post-filtering techniques or image processing approaches such as in

(Leitner and Pernkopf, 2012), (Esch and Vary, 2009), and (Hasan and Hasan, 2009).
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Other single-channel speech enhancement algorithms based on modulation filtering have been

proposed such as (Hermansky and Morgan, 1994), (Falk et al., 2007), and (Paliwal et al., 2010).

These methods require the constant computation of Discrete Fourier Transforms (DFTs) and

Inverse DFTs (IDFTs), making their use incompatible for real-time, low-latency applications

in embedded systems.

In (Westerlund et al., 2004) a time domain speech enhancement algorithm based on an Adap-

tive Gain Equalizer (AGE) has been proposed. In this algorithm, a gain is applied for each

frequency band based on an SNR estimation to boost the speech signal when the SNR in the

frequency band is high. While this algorithm proved to be effective at enhancing speech, it does

not significantly reduce the background noise when speech is absent. In the targeted applica-

tion, where the user wears hearing protection in noisy environments, continuous reduction of

background noise is an important feature. It would also be desirable in other applications such

as noise-canceling ear-buds. In (Parikh et al., 2009), an Adaptive Gain Control (AGC) based

on an SNR estimator was proposed. Unfortunately, it was also shown in (Parikh et al., 2009)

that the proposed SNR estimation method is not accurate in low SNR environments (0 dB) and

adds artefacts to the enhanced signal. In (Shahid et al., 2011), an AGE applied to the multi-

band temporal envelopes was proposed to boost the signal when speech is present. In this

method, the gain function is applied to the temporal envelope which is afterwards multiplied

by the carrier of the signal.

The authors introduced in (Lezzoum et al., 2014b) a single-channel speech enhancement algo-

rithm with a live demonstration using recordings. This paper extends this work with objective

and subjective evaluations of this algorithm, its comparison with three other state of the art

methods, in addition to its implementation in a miniature low-power DSP for smart hearing

protection applications.

The proposed algorithm calculates a time-varying and frequency-band dependent gain function

from the temporal envelope of each frequency-band. This function enables high compression of

frequency bands containing noise and light compression of frequency-bands containing speech.
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The proposed algorithm operates without any knowledge or estimation of the noise parameters,

only assuming that the background noise is additive. It will be shown that this gain function

reduces the background noise and improves the quality of the speech signal.

The paper is organized as follows. Section 4.3 details the proposed noise reduction algorithm.

In Section 4.4, the experimental methodology is presented. Section 4.5 discusses the objective

and subjective results. Section 4.6 presents the hardware implementation of the method, and

Section 4.7 concludes the paper.

4.3 Proposed algorithm

Figure 4.1 illustrates the architecture of the proposed algorithm. The incoming noisy speech

signal y(n) is composed of clean speech x(n) and additive noise w(n):

y(n) = x(n)+w(n) (4.1)

The incoming signal is divided into M=16 frequency bands using fourth order band-pass But-

terworth filters. Filter bandwidth are characterized by the equivalent rectangular bandwidth

(ERB) (Glasberg and Moore, 1990). The centre frequency of the first and last frequency bands

are 125 and 3700 Hz respectively.

The output of each filter is given by:

ym(n) = (y∗hm)(n) (4.2)

with hm(n) the impulse response of the mth band-pass filter, and the symbol “*” denoting

convolution.

The Hilbert envelope of the signal ym(n) is extracted as per the following equation:
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Figure 4.1 Block diagram of the proposed speech

enhancement algorithm.

Em(n) =
√

ym(n)2 + ỹm(n)2 (4.3)

with ỹm(n) the Hilbert transform of ym(n), defined as (Choi and Jiang, 2008):
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ỹm(n) = ym(n)∗ 1

πn
(4.4)

The proposed technique achieves noise reduction using multi-band time-varying gain func-

tions. Our investigation shows that these gain functions must meet three criteria:

• The gain function of each frequency band must be smooth and continuous to avoid abrupt

changes in the enhanced signal.

• The gain function must be chosen as a function of the temporal envelope Em(n) in order to

preserve the quality of speech without adding artefacts.

• The gain function should be near 1 in the frequency bands containing speech and near 0 in

the frequency bands containing noise, in order to preserve speech components and attenuate

noise components.

A time-varying gain function that fulfils these criteria is the low-pass filtered temporal envelope

Em(n) of the signal. The gain function is thus:

Gm(n) = (Em ∗L)(n) (4.5)

with L(n) the impulse response of a fourth order low-pass filter. The optimal cut-off frequency

fc of the low-pass filter is later determined in Section 4.4.1.

Enhancing the signal in each frequency band consists of multiplying the signal by its smoothed en-

velope:

x̂m(n) = Gm(n).ym(n) (4.6)

This can be seen as non-linear compression: frequency bands with high energy will barely be

compressed and frequency bands with low energy will be highly compressed.
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Figure 4.2 An example of the effect of the gain function for

noise reduction of a voice phoneme in four frequency bands,

centered at: 125 Hz, 258 Hz, 443 Hz, and 698 Hz. The noisy

speech is corrupted by car noise in 0 dB SNR.

The enhanced signal x̂(n) of each frame is reconstructed by summing the M frequency bands,

and rescaled using a gain constant a. In this paper, “a” is the ratio between the RMS (Root

Mean Square) values of the noisy and enhanced signals. This gain constant could also be set

by the user to adjust the desired listening level.

As an illustrative purpose, Figure 4.2 shows the noise reduction effect of the gain function

on a 250 ms speech signal corrupted by car noise. The clean speech signal is considered as

the reference to see how the gain function reduces the background noise continuously in the

temporal domain and in the different frequency bands. When speech is absent (from 0 to 0.1

second in the four frequency bands), the background noise is highly compressed. Figure 4.2

also shows that speech signal is amplified in the frequency band centered at 698 Hz due to the

presence of the first formant.
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Figure 4.3 illustrates three waveform and spectrogram charts: clean speech produced by a

male speaker, speech corrupted by car noise in 5 dB SNR, and the enhanced speech signal.

This figure shows, in the temporal and spectral domains, the background noise-reducing effect

of the proposed algorithm.

Figure 4.3 On the left are the spectrograms and on the right their

corresponding waveforms: top panel, the clean speech signal (a

male speaking: “the birch canoe slid on the smooth planks”),

middle panel, the same speech signal corrupted by car noise

in 0 dB SNR, bottom panel, the enhanced signal with the

proposed method.

4.4 Experimental methodology

Although the proposed algorithm can perform in a sample-based approach, it was implemented

in Matlab using 250 ms frames with 80% overlap for ease of simulations. Objective and subjec-

tive quality tests were conducted to evaluate the performance of the proposed noise reduction

algorithm. The results are shown in Section 4, and some audio samples are available online

(Lezzoum et al., 2015).
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4.4.1 Optimal cut-off frequency of the gain function

The fluctuation rate of the temporal envelope is called the modulation frequency and represents

one of the characteristics of speech signal. In (Drullman et al., 1994a), a study on the impact

of the modulation frequency on speech intelligibility was performed: the speech signal was

divided into different frequency bands, and the temporal envelopes and fine structures of each

frequency band were extracted. The temporal envelope has been low-pass filtered with differ-

ent cut-off frequencies (0, 0.5, 1, 2, 4, 8, 16, 32 and 64 Hz) to determine the most important

modulation frequency range for speech intelligibility, knowing that the cut-off frequency are

frequency-band independent. In these studies, it has been found that with a modulation fre-

quency of 16 Hz, the speech intelligibility remains the same, and when reducing it, the speech

intelligibility starts decreasing.

In this work, the same evaluation has been performed to find the optimal fluctuation rate of the

gain function that represents the cut-off frequency fc of the low pass filtered envelope. This

was achieved by using the perceptual evaluation of speech quality (PESQ) (ITU-T P.862, 2001)

as the objective function to maximize.

Signals from the Noizeus corpus (Hu and Loizou, 2008) were used: 30 speech utterances

corrupted by two noise environments, babble and car, in three SNRs (5, 0, and -5 dB). All

signals were sampled at 8 kHz. Figure 4.4 illustrates the PESQ metric obtained using 6 low-

pass filters with cut-off frequencies at 4, 8, 16, 32, 64, and 128 Hz. This figure shows that

higher PESQ scores are obtained at 16 Hz in both noise environments and SNRs. In 4 and

8 Hz the temporal envelope is almost at a constant value. Thus, the gain functions calculated

using these low cut-off frequencies are equivalent to a constant gain in each frequency band.

Low-pass cut-off frequencies of 32, 64, and 128 Hz also gave a PESQ score lower than the

16 Hz, due to their high fluctuation rate, which brings up artefacts in the enhanced signal.

From Figure 4.4, we conclude that 16 Hz is the optimal cut-off frequency for the gain function

low-pass filter.
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Figure 4.4 The PESQ metric calculated with different cut-off

frequencies for speech signal corrupted by car and babble noise in

5 and 0 dB SNR.

4.4.2 Objective evaluation

Although the ITU.T P862 standard (ITU-T P.862, 2001) mentions that the developed PESQ

metric has not been validated for noise reduction algorithms, it was shown in (Hu and Loizou,

2008) that among seven objective speech quality metrics for the evaluation of speech enhance-

ment algorithms, the PESQ metric is the most correlated with overall quality and signal distor-

tion. Thus, in this paper, the PESQ is used as the objective metric, using the same signals from
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the NOIZEUS database used in Section 4.4.1. The performance of the proposed algorithm was

compared to three noise reduction algorithms implemented in Matlab, namely: the Wiener fil-

ter based on an a priori SNR estimation (Scalart and Fiho, 1996), the spectral subtraction (Boll,

1979), and band-pass modulation filtering (Falk et al., 2007). The Wiener filter and spectral

subtraction codes were taken from (Loizou, 2007) (wiener-as and SpecSub), while the code of

the modulation filtering was obtained directly from the authors of (Falk et al., 2007). In the

spectral subtraction, the noise spectrum was estimated and updated from non-speech frames

detected using a simple VAD based on segmental SNR, while in the Wiener filter, non-speech

frames were detected using a priori SNR estimation. The Wiener filter and spectral subtrac-

tion were chosen because of their wide use as benchmark algorithms (e.g. (Ming et al., 2011),

(Chen and Loizou, 2010), (Paliwal et al., 2010)).

Other recent algorithms (e.g. (Westerlund et al., 2004), (Parikh et al., 2009), (Shahid et al.,

2011)) were not selected as benchmarks because, unlike the selected benchmarks, the code was

not available to the authors. Implementation intricacies such as non-optimal parameter settings

could have potentially led to biased comparisons.

4.4.3 Subjective evaluation

In addition to the objective evaluation procedure described above, two series of tests were

performed to subjectively compare the proposed algorithm to benchmarks, in terms of level of

musical noise and overall quality. To conduct these tests, 20 participants were recruited.

4.4.3.1 Musical noise assessment

In this test, the proposed algorithm and the three aforementioned benchmark algorithms are

evaluated in terms of musical noise generation. Similarly, 30 speech signals corrupted by “car”

and “babble” noise with 5, 0 and -5 dB SNR were used. The signals were identified by numbers

and presented in a random order to 10 trained participants. These participants were asked to

choose from the 4 signals processed with the four algorithms, the signal in which musical noise
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was the least perceptible. Before this test, participants were trained by being exposed to several

speech signals heavily corrupted by musical noise.

4.4.3.2 Overall quality evaluation

The overall quality was subjectively evaluated to determine user preference among the pro-

posed algorithm, three benchmarks and unprocessed signals. This evaluation was performed

using 30 speech signals corrupted by “car” and “babble” noise with 5, 0 and -5 dB SNR, with

10 participants. These participants were asked to pick the signal that has the best overall qual-

ity. During the tests, participants were allowed to repeat the same signal as often as needed.

4.5 Results and discussions

4.5.1 Objective test results

Figure 4.5 presents a comparison of PESQ results obtained in the two noise environments and

three SNRs using the noisy signals, the Wiener filter, spectral subtraction, band-pass modula-

tion algorithm and the proposed algorithm. In car noise, the band-pass modulation filtering, the

Wiener filter, and the proposed algorithm improve the quality of speech almost equally. How-

ever, in babble noise, the proposed algorithm shows better performances than the other three

benchmark algorithms. For instance, in -5 dB SNR with babble noise, the proposed algorithm

PESQ score was 1.62 while the Wiener algorithm scored 1.47, the modulation filtering scored

1.36 and the spectral subtraction scored 1.19.

4.5.2 Subjective test results

4.5.2.1 Musical noise results

Subjective results conducted for the evaluation of the proposed and benchmark algorithms

in terms of musical noise perception were averaged over all participants and signals. The
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Figure 4.5 PESQ results for (a) car noise and (b) babble noise in

-5, 0, and 5 dB SNRs using the unprocessed signals, the Wiener

algorithm, spectral subtraction, band-pass modulation filtering and

the proposed algorithm.
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proposed algorithm was chosen 96.3% of the time to be the algorithm with the least musical

noise, while spectral subtraction, the Wiener filter and modulation filtering were chosen 1.1%,

1.5% and 1.1% of the time respectively.

4.5.2.2 Overall quality results

The results of the subjective test evaluating the overall quality of processed and unprocessed

signals are illustrated in Table 4.1. Overall, in both noise environments (car and babble) and

the three SNRs (5, 0 and -5 dB), the proposed algorithm was chosen to be the algorithm with

the best overall quality 78.8% of the time.

Table 4.1 Overall quality results for the proposed

algorithm, the three benchmarks (SS corresponds to the

spectral subtraction, MF to the modulation filtering, and

W to the Wiener filter) and the noisy signals, in car and

babble noise with 5, 0 and -5 dB SNRs. Results indicate

the proportion of users who preferred each algorithm for

a given combination of noise and SNR conditions.

Noise Environments Proposed (%) SS (%) MF (%) W (%) Noisy (%)

Car

5 82.2 0.0 15.5 2.3 0.0

0 80.0 4.4 8.9 0.0 6.7

-5 66.7 8.9 17.8 4.4 2.2

Babble

5 97.7 0.0 2.3 0.0 0.0

0 86.6 4.4 2.3 6.7 0.0

-5 60.0 6.7 20 4.4 8.9

Average 78.8 4.1 11.1 3.0 3.0

4.6 Hardware implementation

The proposed algorithm was designed to be implemented in real-time on an embedded system.

To validate this goal, we show in this Section implementation details of the algorithm on a

low power DSP. The main purpose of this hardware implementation is the development of a

smart hearing protection device that enables enhanced speech signals to be transmitted to the

ear while protecting the S-HPD wearer from background noise.
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4.6.1 DSP overview

The DSP used for the implementation of the proposed algorithm was provided in a small 32-

lead, 5 mm x 5 mm package. The Analog to Digital Converter (ADC) and the Digital to Analog

Converter (DAC) are 24 bit stereo audio converters. They can operate at sampling frequencies

ranging from 8 kHz to 96 kHz. In the adress space of the DSP three RAMs are encompassed:

a program RAM, a coefficient RAM, and a data RAM. The program RAM cannot exceed

1024 instructions per audio frame and governs the execution of the instructions in the core.

The parameter RAM stores the initial coefficients of the program and cannot exceed 1024

coefficients. The data RAM is divided into two memory addressing types: modulo and non-

modulo memories. Each of the modulo and non- modulo data RAM offer 4096 memory words.

This RAM stores audio data-words for processing in addition to some run-time parameters.

4.6.2 Hardware implementation

The DSP and other associated electronics such as audio inputs, audio outputs, and battery are

integrated in an Auditory Research Platform (ARP) (Mazur and Voix, 2013). This platform is

illustrated in Figure 4.6. Two earpieces are connected to this platform, and in each earpiece, an

external miniature microphone and an internal miniature loudspeaker are integrated for external

sound acquisition and sound transmission.

The hardware implementation of the noise reduction algorithm is made following the steps

described in Section 4.3. The resulting number of instructions per audio frame is 333, which

is equivalent to a rate of 32.5 % from the entire program RAM. The data RAM used by the

algorithm is 140 (3.4 % from the entire modulo data RAM, and 0 % from the non-modulo data

RAM), while the coefficient RAM used is 124 (12.1 % of the coefficient RAM).

4.6.3 Real-time test

Real-time tests of the proposed algorithm were performed using some noisy speech signals. For

this purpose, the audio input of the ARP was connected to the audio output of a computer in
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Figure 4.6 The auditory research platform in which the speech

enhancement algorithm is implemented for real-time processing

connected to two earpieces for enhanced signals transmission.
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babble noise with 5 dB SNR (top panel) and the enhanced speech

signal using the algorithm implemented in the hardware platform

(bottom panel).
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which the noisy signals were playing, while the enhanced signals were saved in the computer.

Figure 4.7 shows the enhancement in the temporal and spectral domains.

4.7 Conclusions

This paper presented a noise reduction algorithm for the development of a smart hearing pro-

tection device that enables the transmission of enhanced speech while protecting the S-HPD

wearer from noise. It demonstrated that noise reduction and speech quality improvement can be

performed using a time-varying and frequency-band dependent gain function estimated from

the low-pass filtering of the temporal envelope. The proposed method overcomes two types of

problems in speech enhancement: one, the musical noise generally associated with processing

in the frequency domain, and two, the amplification and attenuation distortions caused by an

imperfect SNR and noise parameter estimation. Objective and subjective results show that the

proposed algorithm improves the perceptual quality of speech signals without prior estimation

of the noise or speech parameters. The hardware implementation of the proposed algorithm

validates its reliability and low complexity for the intended real-time application. The hard-

ware resources show that other tasks can be combined to the noise reduction method such as

a voice activity detection algorithm to discriminate between speech and noise and transmit en-

hanced speech signals to the protected ear, while keeping the ear protected from noise when

speech is not present. The proposed solution can also be integrated into active noise control

headphones, which are already equipped with external microphone and other electronics. Fu-

ture work includes subjective speech quality and intelligibility tests of the developed prototype

for its real world validation.
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CHAPTER 5

SYNTHESIS, CONTRIBUTIONS, RECOMMENDATIONS AND FUTURE WORK

This thesis presented in chronological order the steps followed for the fulfillment of the PhD

program and the development of speech-based algorithms for a smart hearing protector that en-

ables face-to-face communication by transmitting noise reduced speech signals to the wearer

while keeping him protected from high levels of noise. The following Sections present a syn-

thesis of the research work in addition to recommendations and future work.

5.1 Synthesis of the research work

The main objective of the thesis was to enable face-to-face communication for wearers of

hearing protection devices, by developing low complexity speech-based algorithms that could

be implemented into a new electronic hearing protection device: the smart HPD (S-HPD).

To achieve this objective, two sub-objective needed to be reached: first, the development of a

noise-robust voice activity detection (VAD) algorithm, and second the development of a real-

time noise reduction algorithm for speech quality and intelligibility enhancement.

Before to the development of the algorithms, a subjective study has been conducted to deter-

mine the maximum processing delay that the algorithms should not exceed knowing that, in the

case of a digital electronic circuit, the transmission of audio signals may be noticeably delayed

because of the latency introduced by the digital signal processor and by the analog-to-digital

and digital-to-analog converters (ADC) and (DAC). These delayed audio signals will hence

interfere with the audio signals perceived naturally through the passive acoustical path of the

device. For this purpose, two representative passive earplugs have been used to evaluate the

shortest delay at which human listeners start to perceive two sounds composed of the signal

transmitted through the electro-acoustic circuit and the passively transmitted signal: a shallow

earplug fit and a deep earplug fit. The shortest delay is called the echo threshold and repre-

sents the delay between the time of perception of one f used sound from two separate sounds.
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A transient signal, a clean speech signal, a speech signal corrupted by factory noise, and a

speech signal corrupted by babble noise were used to determine the echo thresholds of the two

earplugs. Twenty untrained listeners participated to the study, and were asked to determine

the echo thresholds using a test software in which attenuated signals were delayed from the

original signals in real-time. The findings showed that when using hearing devices, the echo

threshold depends on four parameters: (a) the attenuation function of the device, (b) the dura-

tion of the signal, (c) the level of the background noise and (d) the type of background noise.

Defined here as the shortest time delay at which at least 20 % of the participants noticed an

echo, the echo threshold was found to be 8 ms for a bell signal, 16 ms for clean speech and

22 ms for speech corrupted by babble noise when using a shallow earplug fit. When using a

deep fit, the echo threshold was found to be 18 ms for a bell signal and 26 ms for clean speech

and 68 ms for speech in factory. No echo threshold could be clearly determined for the speech

signal in babble noise with a deep earplug fit. Thus, this study showed that for speech signal,

the processing delay that the algorithms should not exceed is 16 ms, when assuming that the

earplug has a shallow fit.

After the determination of the processing delay, the first sub-objective consisted of developing

a VAD algorithm that distinguishes between speech and noise. Two challenges were facing

the development of the VAD: first, the low complexity challenge since the VAD had to be

implemented in a low power DSP, and two the robustness against noise since the S-HPD is

dedicated to be used in noisy environments which implies low signal to noise ratio (SNR).

The developed VAD uses two normalized energy features that compare the energy in the fre-

quency region containing speech information with the frequency regions typically containing

noise. The extraction of the normalized features represents the key of the proposed VAD since

it eliminates the need for an SNR estimator. The VAD’s decision is made using two thresh-

old comparison rules computed from the normalized features and a hangover scheme triggered

after a given number of observations. The algorithm parameters, namely the frequency re-

gions’ boundaries, number of observations, two decision thresholds and hangover’s duration,

have been optimized off-line using a genetic algorithm. This VAD was evaluated in different
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noise environments and with different SNRs (10, 5, and 0 dB) and showed that over the three

SNRs, the proposed VAD detects 91.4 % of the speech signal and 4.2 % of noise signal, which

shows its robustness against noise compared to a benchmark algorithm which detects 79.0 %

of speech and 29.9 % of noise in the same environments. In addition to the results obtained in

Chapter 3, Table 5.1 presents a comparison between the proposed VAD and two other VAD al-

gorithms namely: the G.729 from the ITU.T standard (ITU T, 1996) which combines different

features to decide if speech is present, and Segbroeck et al’s VAD in which a neural network is

used to classify speech segments and noise segments (Segbroeck et al., 2013). The comparison

is done in terms of TPR, FPR, use of speech for training and the use of a priori information

about the background noise. This comparison was performed using speech corrupted by babble

noise with 0 dB SNR from the NOIZEUS database (Hu and Loizou, 2007a).

Table 5.1 Comparison between two voice activity detection

algorithms in terms of true positives, false positives, use of speech for

training and the use of a priori information about the background noise.

Algorithm TPR FPR Training Priori knowl-
edge of noise

G.729 (ITU T,

1996)

94.1 82.5 No No

Segbroeck

(Segbroeck

et al., 2013)

73.3 70.5 Yes Yes

proposed VAD 73.4 0 No No

In addition to its robustness against the background noise, the low complexity of this VAD

enabled its implementation in a low power digital signal processor (DSP) offering 50 million

instructions per second, which led to the validation of the algorithm and the achievement of the

first sub-objective in the thesis.

The second sub-objective consisted of developing a noise reduction algorithm to enhance the

detected speech signal before its transmission to the protected ear. The developed algorithm is

based on non-linear and multi-band Adaptive Gain Control (AGC) and requires neither SNR
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nor noise parameters estimation, which eliminates the need for a speech/noise discrimination

to perform the noise reduction. Objective evaluation showed that the proposed algorithm per-

forms better than three benchmarks, and blind subjective tests showed that the proposed algo-

rithm introduces less musical noise compared to the benchmark algorithms and was preferred

78.8 % of the time in terms of signal quality. In addition, other subjective tests showed that the

proposed algorithm increases the intelligibility of speech compared to the noisy signals.

In the hardware implementation, the noise reduction algorithm uses sample based processing.

Thus, the algorithms will have a processing delay much lower than 16 ms (around 6 ms due

to the filter delay) which corresponds to the maximum delay that the algorithms should not

exceed to not produce a perceptual delay between speech signals transmitted via the passive

and active paths of the HPD.

5.2 Recommendations and future work

5.2.1 Recommendations

The current thesis enabled the development of low complexity speech detection and noise

reduction algorithms for the S-HPD application, which shows that all the objectives of the

thesis were successfully fulfilled.

Knowing that this project is a part of the bigger project nicknamed “the bionic ear”, and was

funded by Sonomax which represents the future technology manufacturer, other steps have to

be followed for the validation of the technology. These steps consist of:

5.2.1.1 Algorithms benchmarking

The current thesis presented a VAD and noise reduction algorithm. The performance of the

VAD algorithm was compared to Sohn’s VAD and the performance of the noise reduction

algorithm was compared to three benchmarks namely: the Wiener filter based on an a priori
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SNR estimation (Scalart and Fiho, 1996), the spectral subtraction (Boll, 1979), and band-pass

modulation filtering (Falk et al., 2007).

As future work, the proposed algorithm need to be compared to other benchmarks such as

(Wei et al., 2010), (Kamath and Loizou, 2002), (Chen et al., 2014) in terms of efficiency and

computational cost.

5.2.1.2 VAD and noise reduction combination

While the first step in the S-HPD development consisted of developing a VAD algorithm, and

the second step consisted of developing a noise reduction algorithm, another step has to be

performed in order to combine the two algorithms for the S-HPD application.

5.2.1.3 VAD hardware parameters optimization

Chapter 3 presented the hardware implementation of the VAD algorithm where the parameters

have been optimized manually. However, in the next step an automatic method for VAD pa-

rameters’ optimization in the hardware needs to be developed, knowing that in the algorithm

development step the parameters were optimized using the genetic algorithms in Matlab.

5.2.1.4 Adaptive Dynamic Range Compression: Parameters Optimization

Instead of using a level limiter, an adaptive dynamic range compressor (DRC) needs to be

developed to amplify low level sounds and compress high level sounds. For the best efficiency

of the S-HPD, the DRC has to be tested and its parameters optimized in the hardware.

5.2.1.5 Objective and Subjective evaluation of the S-HPD

After combining and implementing the VAD and noise reduction algorithms in the DSP, their

real-time objective and subjective evaluation need to be conducted using real-world noise en-

vironments.
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5.2.1.6 Smart hearing protection device for hearing impaired people

In North America, approximately 15 % of the population between the ages of 20 and 69 suffer

from hearing loss due to noise exposure (NIDCD, 2015). To not worsen their hearing loss,

keep them protected when exposed to high levels of noise, and enable face-to-face oral com-

munication to them, the S-HPD has to be evaluated with hearing impaired persons.
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Abstract
In this paper, a Voice Activity Detector (VAD) is proposed
for smart hearing protection applications where speech is to
get through the hearing protector while ambient noise is to be
blocked out. The VAD calculates a short-term statistical as-
sessment of the temporal envelopes within different frequency
bands. This assessment uses the Inter-Quartile Range (IQR)
and reflects the dispersion of the envelopes’ magnitudes. The
VAD’s decision is made using two threshold comparison rules
and a hangover scheme triggered after a given number of ob-
servations. These four parameters have been optimized off-line
using a genetic algorithm approach. The performance of the
proposed VAD is compared to Sohn’s VAD using a database of
90 speech signals corrupted by five real-world noise environ-
ments at Signal-to-Noise ratios (SNR) varying from 0 to +10
dB. Results show that the proposed VAD performs better than
Sohn’s VAD with an 85.9% (compared to 77.5%) F1 score aver-
aged across all SNRs and also minimizes by a factor of three the
mid-speech clipping rate. In addition, the evaluation of the pro-
posed VAD’s computational cost shows that its implementation
on-board a low-power low-consumption DSP is very feasible
and would enable smart hearing protection for hypersensitive
persons.
Index Terms: Voice activity detection, inter-quartile range, ge-
netic algorithms, temporal envelope

1. Introduction
Hyperacusis is defined as hypersensitivity and intolerance to or-
dinary environmental sounds [1]. It has been mentioned in [2]
that one in 10 people report such sensitivity to sound. Over
time, persons with hyperacusis begin to avoid social interac-
tion, withdraw completely from environments that were once
pleasant and become socially isolated [3]. The most common
treatment for this hearing disorder is desensitization by careful
presentation of sounds -limited in level and progressive in time-
, as well as wearing passive hearing protection devices (HPDs)
during daily activities to prevent the situation from worsening
until the desensitization therapy has succeeded [1].

However, wearing passive HPDs is somewhat inconvenient
for these patients because HPDs not only block unwanted noise
signals, but also wanted speech signals. To palliate this prob-
lem, a smart HPD i.e,. an active HPD that guarantees pro-
tection while discriminating between speech and noise to al-
low speech signals to get through to the protected ear is being
worked on. For this purpose, the integration of a Digital Sig-
nal Processor (DSP) in the traditional passive HPD is required.
The smartness of this HPD lies in its capability of transmit-
ting speech signals while protecting the ear from environmental
noise.

The discrimination between speech and noise signals is
known in the literature as Voice Activity Detection (VAD). Nu-

merous VAD algorithms have been developed; some require the
extraction of features such as: the periodicity [4], zero crossing
rate, full and low band energy and line spectrum frequencies
[5] or pitch [6]. However, the performance of these VADs de-
grades when the SNR decreases [7]. To palliate this problem,
other VADs have been developed and require the characteri-
sation of noise depending on an estimate during noise periods
such as the calculation of the a posteriori and a priori SNR [8].
Nevertheless, these VADs are sensitive to changes in the SNR
[9]. Therefore, some researchers resort to learning techniques
or modelling algorithms in their VAD [10], [11] and [12]. This
however, leads to other problems when the intended application
must operate in an embedded system with limited hardware re-
sources.

In this paper, we propose the calculation of a short-term sta-
tistical assessment of the temporal envelope within different fre-
quency bands. Extracting features from the temporal envelope
has been widely used for hearing aids to detect the presence of
speech and decide when gain should be reduced [13], [14], [15].

The VAD’s decision is made after multiple observations us-
ing two thresholds in addition to a hangover scheme to take into
consideration “long time” information, knowing that speech
signals are highly time-correlated [16]. Thresholds, number
of observations and hangover parameters are optimized off-line
using a Genetic Algorithm (GA) [17]. The VAD’s decision is
set after multiple observations and using a hangover scheme to
minimize false positives and mid-speech clipping knowing that
for hyperacusis patients wearing smart hearing protection, per-
ception of “short time” noise signals is unpleasant.

The paper is organised as follows. Section 2 introduces the
proposed VAD algorithm. Section 3 describes the off-line pa-
rameters optimization. Section 4 presents the validation and
discussions and section 5 the conclusions.

2. Proposed VAD Algorithm
Figure 1 illustrates the detailed architecture of the proposed
VAD where N is the number of observations, i the frame num-
ber and m the frequency band number.

2.1. Windowing

The entire signal is first cut into frames with a Hamming win-
dow. The length of each frame is 25ms with an 80% overlap.

2.2. Feature Extraction

2.2.1. Filter Bank

Each frame is passed into a filterbank of 16 frequency bands us-
ing -for ease on device implementation- a 4th order Butterworth
filter. Cut-off frequencies are described in the Bark scale [18]
and lie between 20 and 3150 Hz.

104



Figure 1: Diagram block of the proposed VAD algorithm.

2.2.2. Temporal Envelope Extraction

For each frame, the temporal envelope of each frequency band
is extracted using the Hilbert Transform. Envelope extraction
using the Hilbert transform involves the calculation of the ana-
lytic signal [19], as illustrated in Eq.1, where E(t) is the Hilbert
envelope of x(t).

E(t) =
√

x(t)2 + x̃(t)2 (1)

with x̃(t) the Hilbert Transform of x(t):

x̃(t) = x(t) ∗ 1

πt
(2)

2.2.3. Statistical Assessment of Temporal Envelopes

The statistical assessment is the Inter-Quartile Range (IQR) and
is calculated within the temporal envelopes of the various fre-
quency bands by using the 75th percentile, or third quartile
(Q3): the value below which 75% of the values in the distri-
bution lie, and the 25th percentile, or first quartile (Q1): the
value above which 25% of the values lie. The IQR is calculated
as shown in equation 3.

IQR = Q3−Q1 (3)

Figure 2 illustrates an example of the IQR in all frequency
bands for one signal’s frame showing speech produced by a
male speaker corrupted by noise with 5, 0 and -5 dB SNRs,
speech and then noise. Figure 2 also shows that in the eighth
frequency band (770-920 Hz) which represents the first formant
of the speech segment (a voiced phoneme), the IQR of speech
in a quiet setting is higher than that of the noise signal.

Figure 2: IQR calculated in the frequency bands of one signal’s
frame with (a): -5 dB, (b) 0 dB and (c) 5 dB SNR.

Figure 3: The area A1 calculated for speech in a quiet setting,
noisy setting with 0 dB SNR, and separate noise signal.

2.2.4. Area under IQR Curve

The ascertainment noted from Figure 2 is confirmed by the stud-
ies conducted in [20] on the influence of noise on vowels and
consonants, which concluded that when the speech signal is cor-
rupted by noise, the first formant can be reliably detected com-
pared to the second formant, which is heavily masked by noise
in low SNRs. Based on this conclusion, we choose not to con-
sider only one frequency band to characterize a speech signal,
but rather the area under the IQR curve from the third to the
ninth frequency band. This area is named A1 and its choice is
based on the frequency region containing the largest amount of
speech information. The area under the IQR curve is calculated
to take into consideration both spectral (first formant) and tem-
poral (IQR) characteristics. Figure 3 illustrates A1 for a speech
signal corrupted by a ‘Car’ noise in 0 dB SNR and A1 for noise
and speech separately. Figure 3 illustrates that A1 is typically
high when a speech signal is present, whereas when only noise
is present this area is low. This ascertainment has been validated
on different utterances.

2.3. VAD’s Decision

2.3.1. Normalization

Figure 3 shows that the VADs’ decision could be performed
using a decision threshold upon A1. However, this procedure
is not applicable directly on A1 since A1 depends on the IQR,
which itself depends on the scale of the temporal envelope. This
yields us to normalize the data by using two other areas under
the IQR curve that reflect the noise signal.

Speech and noise signals differ in their frequency compo-
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nents: noise signals have generally more energy in the lower
frequencies than speech signals, which have a lower energy in
these frequencies [21]. This ascertainment yields us to calcu-
late the area A2 under the IQR curve from the first frequency
band (20-100 Hz) to the second (100-200 Hz). The choice of
this area is based on the frequency region containing the most
noise information and the least speech information, it has been
found empirically to be the most reliable for noise assessment.
In addition to the A2 area, we added another area under the
IQR curve (A3) that characterizes high frequency noises. This
additional area is calculated in the high frequency bands and
represents an alternative choice in the decision.

The three areas show in our testing the same trends: when
the signal’s level increases, A1, A2, A3 increase and similarly,
when the signal’s level decreases, A1, A2 and A3 decrease.
This trend leads us to calculate the ratios R1 and R2 (see Eq. 4
and 5), upon R1 and R2 the first and second decision thresh-
olds T1 and T2 are determined using the genetic algorithm ap-
proach.

R1 =
A1

A2
(4)

R2 =
A1

A3
(5)

The use of T1 and T2 as a decision rule eliminates the need
for an adaptive decision threshold or an SNR estimator.

T1 and T2 must be optimized in addition to two other pa-
rameters: first, the number of observations that represents the
number of consecutive frames having R1 and R2 higher than
T1 and T2 respectively and after which the decision might be
set to 1 (speech) and second, the hangover parameter, which
represents the time after which the VAD is reset to 0.

3. Off-Line Parameters Optimization
3.1. Start of Speech Confirmation and Hangover Scheme in
Smart Hearing Protection

The start of speech confirmation is defined as the number N of
consecutive frames having R1 and R2 higher than T1 and T2
and after which the decision is set to 1. They have been used in
Ramirez et al’s VAD [22], where it was demonstrated that taking
several frames into account in the VAD improves the reliability
of the decisions.

The value N cannot exceed a certain number of consecutive
frames, otherwise lip-sync errors may occur. Lip sync errors are
defined by the ITU [23] as the errors between lip movement and
the perceived speech signal, and a lip-sync error of 40 ms was
considered acceptable. Thus, the maximum number of consec-
utive frames after which the decision might be set to one in the
proposed VAD is eight consecutive frames, which represents a
delay of 40 milliseconds.

The hangover scheme or end of speech confirmation has
been widely used in VADs to minimize the false rejection rate
caused by the non-detection of low energy speech frames con-
taining consonants such as fricatives and unvoiced stops.

3.2. Objective Function

To optimize the thresholds (T1 and T2), hangover, and num-
ber of observations, an objective function should be minimized.
This function’s role is to evaluate the performance of the VAD
algorithm. For this purpose, we used the F1 score measure [24].
This score combines the FPR (False Positive Rate), TPR (True

Positive Rate) and FNR (False Negative Rate). Knowing that
FPR, TPR, FNR are based on maximum of 100%.

F1 = 2× precision × recall

precision + recall
(6)

with

precision =
TPR

TPR + FPR
(7)

recall =
TPR

TPR + FNR
(8)

For the smart hearing protection application, we calculated
the TPR and FNR for the noisy speech signals and the FPR
for the noise signals. This evaluation method focuses on the
fact that once the speech signal has been detected it must be
transmitted in its entirety to the Smart HPD’s wearer -possibly
with a few seconds extra duration- while continuing to protect
the wearer from noise when no speech signals are present.

The objective function to be minimized is shown in Equa-
tion 9:

Penalty = 1− F1 (9)

3.3. Genetic Algorithm for Off-Line Parameter Optimiza-
tion

Genetic Algorithms (GAs) [17] are randomized search and op-
timization techniques based on the mechanisms of natural se-
lection and natural genetics. They are used to optimize the four
parameters using an optimization database. For the purposes of
this application, we have used a limited samples of five speech
signals corrupted by ‘Subway’ noise, with a 0 dB SNR knowing
that many hyperacusis patients are exposed daily to this type of
noise. The speech signals are from the TIMIT database [25]
and the noise signals from the AURORA database [26], both
sampled to 16 kHz. The hangover’s duration tends to vary be-
tween 50 and 250 frames which represents 0.25 to 1.25 seconds
and the number of observations varies from 4 to 8 consecu-
tive frames. The upper boundary of the hangover seems long
when compared to the hangover durations used in telecommu-
nications or speech recognition [27] and [16]. However, it was
considered that this was not to be included in the objective func-
tion since it theoretically does not reduce the performance of
the algorithm as it could reduce the performance of VADs for
telecommunications or speech recognition. It will not affect the
process but permit entire speech signal transmission without in-
terruption.

After 10 generations, the GA reached an optimal solution
with a best penalty value of 9%, which is equal to an F1 score of
91%. The optimization process gave a hangover of 250 frames
and 6 consecutive frames.

4. Validation and Discussions
In the first part of this section, we present the VAD’s perfor-
mance assessment and in the second part, we quantify the com-
putational cost of the proposed VAD.

4.1. Performance Assessment

The validation database is composed of 90 speech signals cor-
rupted by five everyday noise environments with 3 SNRs (10,
5 and 0 dB). The speech signals are from the TIMIT database
and the noise signals from the AURORA database. The average
length of each speech signal corrupted by noise is 3.06 seconds
and 83.6% of the signal comprises speech.
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Noise environment Sohn VAD Proposed VAD

Noise SNR F1 MSC F1 MSC F1*

Exhibition
0 dB 75.0 15.4 80.0 10.1 85.9
5 dB 78.9 10.8 91.3 2.3 94.5
10 dB 79.2 6.7 94.9 0.7 98.1

Babble
0 dB 73.2 9.9 78.6 1.6 76.3
5 dB 74.9 7.3 82.8 0.9 82.7
10 dB 76.1 5.6 82.1 0.4 81.0

Subway
0 dB 74.8 13.3 79.1 4.1 84.5
5 dB 76.2 8.5 91.3 1.8 88.9
10 dB 78.1 6.4 94.9 0.6 90.9

Airport
0 dB 76.2 9.4 77.5 4.5 77.7
5 dB 77.7 6.9 86.2 1.5 87.1
10 dB 79.2 5.2 87.5 0.2 85.5

Car
0 dB 79.7 15.6 77.0 13.2 79.8
5 dB 81.5 10.8 91.5 2.6 96.0
10 dB 83.0 7.4 95.1 0.5 98.7

Average Average 77.5 9.2 85.9 3.0 87.3

Table 1: Performance evaluation of the proposed VAD com-
pared to Sohn’s VAD using the F1 score and the MSC rates.

As mentioned previously, the F1 score is used to evaluate
the VAD’s performance. Sohn’s VAD [8] has been implemented
from the VoiceBox [28]. The proposed VAD is compared to
Sohn’s VAD, which has proven its effectiveness with standard
G729.B [5] AMR1, AMR2 [6] as demonstrated in [22] and [8].

In addition, we calculated the Mid-Speech Clipping rate
(MSC) which represents the rate of speech frames classified as
noise in the middle of the utterance. This measure is very im-
portant for speech intelligibility. The lower it is the more the
speech segment is intelligible.

Table 1 illustrates the comparison of the two VADs.

As shown in Table 1, the F1 score of the proposed VAD is
higher than the F1 score of Sohn’s VAD in all noise environ-
ments and SNRs except for the ‘Car’ noise in 0 dB SNR which
gives a F1 score of 77% instead of 79.5% for Sohn’s VAD.
The performance of the proposed VAD is more noticeable in
the range of 5 and 10 dB SNR where the F1 score average in
these SNRs has an increase of 11.2% for the proposed VAD.

Furthermore, we note from this table that the proposed VAD
minimizes about three times the mid-speech clipping rate in
comparison to Sohn’s VAD. This leads us to say that the hang-
over scheme described in this paper is not only simpler but also
more efficient than Sohn’s hangover.

Moreover, we evaluated the proposed VAD using one
speech signal of 150 seconds duration with 77.4% of speech
(46 signals concatenated into one signal without additive noise
periods between the 46 speech signals) corrupted by five noise
environments at three SNR levels. This evaluation was con-
ducted to validate the proposed algorithm with a signal of long
duration to ensure that the performance of the proposed VAD
is not only due to the hangover’s duration. F1 scores are illus-
trated in the last part of Table 1(F1*). F1* shows almost the
same F1 scores found earlier which enables us to validate the
proposed VAD for its further implementation.

4.2. Computational Cost

The required hardware resources for the smart hearing protec-
tor are quite similar to those presently used in hearing aids and
cochlear implants. The first two steps used in the feature ex-
traction stage of the proposed VAD are already optimized to

work in DSPs with limited hardware resources. For instance,
DSPs for hearing aids are provided with an integrated filterbank
coprocessor: the WOLA (Weighted Overlap Add) filterbank co-
processor [29], which allows the splitting of the signal in differ-
ent frequency bands using an optimized architecture. For this
purpose, we evaluated the additional computational cost arising
from the IQR and areas calculation, to calculate by how much
these two steps increase the number of instructions per second
in the entire process.

Data must be sorted to calculate the IQR by using a sorting
algorithm. Among the existing sorting algorithms, the Merge
sort requires Nlog2N operations per frame [30]. Furthermore,
to calculate A1, A2 and A3, 30 additions and 10 multiplica-
tions per frame are required. Table 2 shows the overall resource
requirements for these two steps.

Processing step Op. per frame Op. per second

IQR 55,337 11,067,400

Areas 40 8,000

Global 55,377 11,075,400

Table 2: Resource requirements for the 3rd and 4th steps in the
feature extraction stage of the proposed VAD (abbreviation Op.
defines the number of operations).

The targeted DSP for smart hearing protection offers typ-
ically 60 MIPS (Million Instructions Per Second). Thus, the
number of instructions per second required for the IQR and ar-
eas is 18.4% of the entire available number of instructions per
second. This is reasonable since 81.6% of the entire computa-
tional cost could be dedicated to the filterbank, the Hilbert en-
velope extraction, and other operations such as noise reduction
and dynamic range adaptation.

5. Conclusions
In this paper we proposed a new VAD particularly suited for
smart hearing protection for hyperacusis patients. The proposed
VAD uses a short term statistical assessment of the temporal en-
velope within different frequency bands. The VAD’s decision
is made after multiple observations using two decision thresh-
olds and a hangover scheme, all optimized off-line using a ge-
netic algorithm. Experiments conducted using speech signals
corrupted by five real-world noise environments show that cou-
pling the multiple observations and the hangover scheme in the
decision process permits the maximization of the VAD’s perfor-
mance. Results show that the proposed VAD is more efficient
than Sohn’s VAD which by itself is more efficient than the Stan-
dards G.729b and AMR1, AMR2. This leads us to assume that
the proposed VAD outperforms these standards as well. In ad-
dition to these satisfactory results, the proposed VAD requires
neither assumption nor noise estimation depending on the first
signal’s frames, and is sufficiently simple to be implemented in
a DSP of limited hardware resources. In future work, we in-
tend to validate the proposed VAD with subjective tests, work
on noise reduction to render the speech signals intelligible and
adapt the dynamic range of the incoming speech signals to send
them to the protected ear without damaging it.
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École de technologie supérieure
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Abstract

Currently, most noise reduction algorithms are based
on an a priori information such as signal-to-noise ratio
(SNR) or noise parameters estimation. They are mostly per-
formed in the spectral domain to reduce the background
noise at each frequency bin. However noise reduction in
the spectral domain may introduce musical noise and arte-
facts which are in some cases perceptually more annoying
than the background noise itself. In this “show and tell”,
we present a demonstration of a noise reduction algorithm
based on dynamic range compression (DRC) using a time-
varying and frequency-band dependant gain function de-
duced from the low-pass filtering of the temporal envelopes.
The algorithm is considered as blind since it requires nei-
ther SNR nor noise parameters estimation. A graphical user
interface (GUI) built under Matlab shows interactively the
noise reduction in the temporal (waveform) and spectral
(spectrogram) domains using live speech recordings mixed
to pre-recorded noise signals.

1. Introduction

Noise reduction algorithms are nowadays used in multi-

ple areas such as hearing aids, cochlear implants, telecom-

munication systems and human/robot interaction devices.

Most of existing noise reduction algorithms perform in the

spectral domain in order to reduce the background noise

differently in each frequency bin, for instance, the spectral

subtraction [1], the Wiener filter [2] [3], and the bandpass

modulation filtering [4]. However, enhancing the speech in

the spectral domain may introduce musical noise which is

well known in the field of speech enhancement, and repre-

sents a random amplification of frequency bins [5].

Anderson [6] proposed a frequency-band dependant and

time-varying gain function instead of frequency-varying

gain function for a fast dynamic range compression (DRC),

mentioning that the concept of frequency-band time-

varying gain function can be used in some audio processing

systems such as noise reduction. However, to our knowl-

edge, methods and results of a such approach has never been

demonstrated for noise reduction applications.

In this “show and tell”, a noise reduction algorithm us-

ing frequency-band dependant and time-varying gain func-

tion is proposed. The proposed method employs dynamic

range compression (DRC) theory in order to reduce the

dynamic range differently in each frequency band using a

time-varying gain function. This function is deduced from

the temporal envelope and tend to preserve the natural qual-

ity of the incoming signal.

In this “show and tell”, we demonstrate that the use of a

time-varying and frequency-band dependant gain function

enables noise reduction and speech quality improvement

without introducing musical noise. In addition this demo

shows that speech enhancement can be performed without

any knowledge, assumption, or estimation of the noise pa-

rameters.

2. Scientific and Technical Description

Figure 1 illustrates the architecture of the proposed noise

reduction algorithm.
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Figure 1. Block diagram of the proposed
speech enhancement algorithm.

The proposed algorithm performs in real-time using
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250 ms frames with 80% overlap.

The incoming signal is decomposed into N=16

frequency-bands using gammatone filterbank [7]. From

each frequency-band the temporal envelope is extracted us-

ing the Hilbert Transform [8]:

Ei,m(n) =
√
yi,m(n)2 + ỹi,m(n)2 (1)

with i the frame number and m the frequency band number.

ỹ(n) = y(n) ∗ 1

πn
(2)

with * denoting the convolution.

A gain function is deduced from the temporal enve-

lope of each frequency-band (see section 2.1), and is there-

after multiplied by the incoming signal yi,m(n) of the same

frequency-band. The enhanced signal x̂(n) of each frame

is reconstructed by summing the 16 frequency-bands, and

amplified by a constant α for the rescaling. Finally, the

overlap-add method is used for the reconstruction of the

global enhanced signal.

2.1. Time-Varying Gain Function Calcula-
tion

When combining the concepts of noise reduction and

DRC used in hearing aids [9], [6], a multi-band time-

varying noise reduction method can be obtained. According

to preliminary results in our research, the multi-band time-

varying gain function for noise reduction must meet three

criteria:

• The gain function of each frequency-band should be

smooth and continuous to avoid abrupt changes in the

enhanced signal.

• The gain function must be chosen as a function of the

temporal envelope Ei,m(n) in order to preserve the

quality of speech without adding artefacts.

• The gain function should be near to 1 in the

frequency-bands containing speech and near to 0 in the

frequency-bands containing noise, in order to preserve

speech components and attenuate noise components.

A time-varying gain function that fulfils all the above

cited criteria is a low-pass filtered temporal envelope, which

represents a smoothed version of the temporal envelope

Ei,m(n):

Gi,m(n) = Ei,m(n) ∗ L(t) (3)

with L(t) the impulse response of a lowpass filter with a

16 Hz cut-off frequency.

3 Objective Validation of the Proposed
Method

The proposed method is evaluated using 30 noisy speech

signals corrupted by “car” and “babble” noise in 5, 0, and

-5 dB SNR from the Noizeus corpus [10]. The perfor-

mance improvement of the proposed algorithm is compared

to noisy signals in addition to a modulation filtering based

speech enhancement algorithm [4] (benchmark algorithm)

using the Perceptual evaluation speech quality (PESQ) met-

ric [11] (see figure 2).
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Figure 2. PESQ results for the unprocessed
signals, the benchmark algorithm, and the
proposed algorithm.

4. System Demonstration

A graphical user interface (GUI) is built in Matlab for an

interactive demonstration of the proposed noise reduction

algorithm. Figure 3 presents a screenshot of the user in-

terface: part (1) shows the instructions that the user should

follow when using pre-recorded speech signals, or record-

ing a speech signal in live. Part (2) shows the experimen-

tal settings, while part (3) displays the enhancement in the

spectrogram and waveform frame by frame: part (3-a) illus-

trates the enhanced part while par (3-b) illustrates the noisy

part which will be enhanced. The part (4) of the interface

presents the results for each noisy/enhanced signal in terms

of PESQ.

A video of this demonstration is available in the web-

page: http://critias.etsmtl.ca/ts2014. This demonstration

runs on a laptop with professional headphones, and a mi-

crophone for live speech recordings.

5 Conclusions and Future Developments

In this “show and tell”, we demonstrate that the use of a

time-varying and frequency-band dependant gain function

enables to reduce the background noise and improves the

quality of the speech signal. In addition, we tend to show
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(1)

(2) (3-a) (3-b)
(4)

Figure 3. Screen-shot of the graphical user interface

that good noise reduction performance can be achieved

without any knowledge, assumption, or estimate of the

noise and speech parameters.

As future work, we tend to implement this algorithm in

a digital signal processor (DSP) for a real-world embedded

application.
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An algorithm for single channel enhancement of noisy speech has been implemented for a digital

hearing protection device. The developed algorithm operates without any knowledge or assump-

tion of noise parameters and reduces the noise in the temporal domain using a non-linear and auto-

matically adjustable gain function for multi-band dynamic range compression. The gain function

is deduced from the temporal envelope of each frequency-band and compresses the frequency re-

gions where speech is absent, to block ambient noise. Subjective evaluations have already shown

that the algorithm improves speech quality. In this work, subjective tests using the Hearing-In-

Noise-Test (HINT) approach and measuring the Speech Reception Threshold (SRT) now show

that the speech intelligibility was preserved, if not improved, for most listeners.

1. Introduction

For practical and economical reasons, Hearing Protection Devices (HPD) are often used to pro-

tect workers from the risk of Noise-Induced Hearing Loss, the number one occupational injury in the

workplace. HPDs reduce the sound energy reaching the wearer’s eardrum and -in their passive linear

form- cannot distinguish between noise and useful signals, such as speech and warning signals. This

issue can now be addressed using electronic HPDs that use an external microphone, a digital signal

processor (DSP) and an internal loudspeaker [3]. Such electronic could be integrated to an earmuff, or

could be integrated to a custom earplug, such as the one illustrated in Figure 1. Figure 2 illustrates the

electro-acoustical components and equivalent schematics of a digital version of a custom electronic

earplug, featuring a DSP running the speech denoising algorithm. Recent work by the authors [5],

presented a noise reduction method that calculates a time-varying and frequency band dependent gain

function from the temporal envelopes of each frequency band for Adaptive Gain Compression (AGC)

and applies it to the signal in each frequency band. This algorithm, illustrated in a block diagram

in Figure 3, enables high compression of frequency bands containing noise and light compression of

frequency bands containing speech and operates without any knowledge or estimation of the noise

parameters, only assuming that the background noise is additive. The authors have already shown

that the proposed use of a gain function that varies over time and frequency bands, does not introduce

any of the usual artefacts associated with speech denoising, and effectively reduces the background
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noise while improving the perceived quality of the speech signal. While promising, this subjective

evaluation is only partial, as the intelligibility of the speech processed by this algorithm has not yet

been assessed. Minimally, speech intelligibility should not be altered by the denoising algorithm, and

ideally, the proposed processing algorithm should actually enhance the intelligibility of the speech.

This paper presents an experimental study of the speech intelligibility achieved by subjects being ex-

posed, in a laboratory environment, to noisy speech signals with and without the proposed processing

algorithm, to assess its auditory benefits.

Figure 1: General principle of Digital Hearing Protection Device blocking industrial noises (left) and

letting a speech signal through (right)

Figure 2: Overview of the digital custom earpiece (a), its electro-acoustical components (b), and

equivalent schematics (c).

2 ICSV22, Florence, Italy, 12-16 July 2015

115



The 22nd International Congress of Sound and Vibration

Figure 3: Block diagram of the proposed denoising algorithm being evaluated (from [REF])

2. Method

2.1 Speech Intelligibility Assessment

To assess the effect of the proposed denoising algorithm on speech intelligibility, a psycho-

physical testing of a group of normal hearing users has been conducted using high-fidelity head-

phones under two testing conditions: without the proposed processing algorithm (baseline condition)

and with the proposed algorithm (measured condition). For benchmarking and comparison purposes,

the proposed processing algorithm (denoted "MBDNR") has been compared to processing algorithms

widely used, with source code publicaly available in [2], such as the Multiband spectral subtraction

from [4] (denoted "MBSS02") and the Wiener filter using decision-directed SNR estimation from

[8] (denoted "Wfscarlat96"). In both test conditions, a clean speech signal is contaminated at a con-

trolled signal-to-noise ratio (SNR) by a choice of two masking noises, taken from from the NOISEX

database. The first masking noise is a recording from the inside of a car (denoted "Car"), while the

second is babble noise (denoted "Babble"). The compound signal is then presented binaurally under

earphones to the test subject, in order to determine the speech reception threshold (SRT) defined as the

lowest level at which speech sentences can be correctly identified at least 50 percent of the time. The

speech signals are French Canadian sentences available from the Hearing-In-Noise-Test (HINT) [7]

and are presented using the Matlab Speech Testing Environment (MSTE) software [6]. As the MSTE

software also features a hearing-device simulator, the 3 algorithms tested can be simply simulated as

an input-output block, that alters the compounded audio signal being presented binauraly to the test

subject.

In the current study, both the speech and masking noises are presented through the earphones and

no attempt is made to auralize one signal versus the other, as one would typically do within the HINT

paradigm where speech signal would be presented in front of the test-subject while surrounded by

the masking noise. The MSTE software is designed to assess the SRT using various testing methods,

either using a fixed speech level presented at typical levels of 45-55 dB HL and adapting the level

of the masking noise ("adaptive masking level"), or using a fixed masking noise level and adapting

the speech level ("adaptive speech level") or even using fixed speech and masking noise levels while

adapting other metrics, such as the distortion threshold ("adaptive distortion threshold"). In the cur-

rent study, the adaptive masking level paradigm has been used and the level of the masking noise is

adjusted iteratively until the speech reception threshold is reached, level at which speech sentences
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can be correctly identified at least 50 percent. The sentence corpus used was the one adapted for the

French-Canadian language [9]. Accordingly, an SNR can be determined in each testing condition,

i.e. without and with the processing algorithm. By comparing the SNR achieved by the same individ-

ual subject with and without the proposed processing algorithm, for the same SRT, on two different

groups of speech sentences, it is possible to calculate the effect of the proposed processing algorithm.

If the SNR of the baseline condition (without processing) is higher than the SNR of the measured

condition (with processing algorithm), this clearly demonstrates that the proposed processing actu-

ally enhances the speech intelligibility, since the same SRT can be achieved while in the presence of

more masking noise.

2.2 Experimental Procedures

1. Test-subject Information : Each test-subject is welcomed by the experimenter and signs the

consent form that has been approved by the CER, the internal review board.

2. Hearing Threshold Measurement: Left and right auditory hearing thresholds are measured

with a clinical audiometer (Interacoustics, AC40) under calibrated headphones (Telephonics,

TDH 39). Pure-tone detection thresholds were assessed using an adaptive method at 250, 500,

1000, 2000, 3000, 4000 and 8000 Hz with supra-auricular earphones. All participants had

detection thresholds below 25dB HL at every frequency, which corresponds to normal hearing,

and they did not report any speech problems.

3. Practice Run: In order for the subject to familiarize him/herself with the testing procedure,

the experimenter performed the Adaptive Testing Procedure, described further below, for the

reference condition ("without processing");

4. Test Run The experimenter performed the Adaptive Testing Procedure, described further be-

low, while ensuring that the order of the 4 test conditions (baseline as well as "MBDNR",

"MBSS02"and "Wfscarlat96" processing algorithms) and list presentations were randomized

or counter-balanced across the subjects under high-fidelity circumaural headphones.

The MSTE’s adaptive tests are based on the one-up one-down procedure used to measure sen-

tence SRTs with the Hearing-In-Noise-Test (HINT) [7]. Each pre-recorded sentence is played to the

test-subject using headphones, together with the masking noise presented at the desired SNR, under

headphones to the test-subject. At the same time, the words of the sentence are displayed to the exper-

imenter, so that he/she can score the subject’s oral response provided via a talk-back system from the

sound booth to the experimenter desk. The testing procedure consists of two phases: First, a coarse

estimate of the threshold is calculated using a large SNR adjustment step size. Second, a smaller SNR

adjustment step size is used to get a more precise threshold. The number of sentences in a test list and

the length of each phase can be defined for each test material. This procedure, which has been shown

to converge to 50% intelligibility [1], [5], corresponds to a sentence SRT measurement, since all the

words of a test sentence must be recognized for a correct response to be registered.

For illustration purposes, following the HINT testing paradigm [7], the adaptive test procedure on

a list of 20 sentences is as follows:

– Sentence # 1 is played at the starting SNR and repeated until the subject repeats all words

correctly, increasing the (signal or SNR) level by 4 dB for each incorrect response. Once a

correct response is received, the SNR is decreased by 4 dB for the next sentence.

– Sentences # 2-4: For these sentences, the SNR is increased by 4 dB after each incorrect re-

sponse, and decreased by the same step size after each correct response.

– Sentence # 5 is played at a SNR computed as the mean of the signal level of the first sentence,

the levels of sentences # 2-4, and the level at which the fifth sentence would have been presented

based on the subject’s response to sentence # 4.

– Sentences # 6-20: For these sentences, the SNR is increased by 2 dB after each incorrect

response, and decreased by the same step size after each correct response. At the end of the
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list, the SRT for the given test condition is computed as the mean of the levels of sentences #

5-20 and the level at which the twenty first sentences would have been presented based on the

subject’s response to sentence # 20.

2.3 Results

The data collected during the adaptive test procedure consists in the individual SRT for each test

condition (baseline as well as "MBDNR", "MBSS02"and "Wfscarlat96" processing algorithms) for

the two masking noises ("car" and "babble") as well as a test condition without any background noise,

so that the speech level could be calibrated for the subject. The nine resulting conditions are listed

in Table 1, and these conditions are randomized across subjects, to limit the learning effect. The

individual results are presented in Table 2, for the ten individuals across the nine conditions, and are

expressed as individual SRTs as well as individual standard deviations resulting from the adaptive

adjustment. These individual SRTs can be averaged over all subjects for each test condition, along

with standard deviation, standard error, and 95% confidence interval. Note, that he masking noise tests

signals were not normalized nor calibrated in magnitude, as we were only interested in a differential

assessment with and without processing algorithm.

Table 1: The nine test conditions used
Condition Paradigm Masking Noise Algorithm

01 Adapt. Mask. Lvl. car none

02 Adapt. Mask. Lvl. car MBSS02

03 Adapt. Mask. Lvl. car Wfscarlat96

04 Adapt. Mask. Lvl. car MBDNR

05 Adapt. Mask. Lvl. babble MBSS02

06 Adapt. Mask. Lvl. babble Wfscarlat96

07 Adapt. Mask. Lvl. babble MBDNR

08 Adapt. Mask. Lvl. babble none

09 Fixed silence none

Table 2: Individual SRTs and standard deviation (in parenthesis) for the 12 subjects in the 9 condi-

tions, as well as group descriptive statistics

Subj. Cond. 1 Cond. 2 Cond. 3 Cond. 4 Cond. 5 Cond. 6 Cond. 7 Cond. 8 Cond. 9
1 -23.3 (9.1) -20.5 (6.6) -21.9 (7.6) -20.9 (6.7) -2.7 (2.4) -5.7 (1.7) -6.2 (2.2) -7.6 (2.6) 57.6 (4.5)

2 -22.6 (8.3) -18.9 (6.4) -21.2 (7.1) -21.9 (7.6) -3.3 (2.1) -3.7 (2.2) -5.9 (2.5) -8.0 (3.3) 56.2 (5.1)

3 -21.6 (8.0) -20.0 (6.7) -21.6 (7.4) -21.9 (7.6) 3.3 (1.9) -3.0 (4.2) -6.5 (2.9) -7.7 (2.2) 58.1 (4.0)

4 -23.3 (9.1) -21.2 (7.0) -21.9 (7.8) -22.6 (8.3) -1.0 (2.0) -7.4 (2.4) -10.4 (3.2) -7.3 (1.7) 58.9 (5.4)

5 -16.2 (4.0) -12.0 (2.8) -15.1 (3.6) -17.3 (6.8) 7.5 (2.6) -2.5 (1.6) -2.5 (2.2) 5.2 (4.5) 63.5 (2.2)

6 -21.6 (7.5) -16.8 (7.2) -19.1 (8.9) -22.4 (8.1) -2.8 (2.1) -4.8 (1.8) -6.4 (1.8) -5.3 (1.9) 57.8 (4.1)

7 -22.1 (7.8) -17.0 (6.2) -21.4 (7.1) -21.4 (7.1) -2.0 (1.9) -4.1 (3.0) -5.2 (2.7) -5.7 (1.7) 59.2 (3.9)

8 -23.3 (9.1) -19.5 (5.5) -21.6 (7.4) -23.1 (8.8) -2.3 (1.7) -3.7 (1.9) -7.0 (2.6) -6.7 (2.1) 57.6 (4.6)

9 -19.5 (6.1) -17.2 (6.2) -17.9 (7.6) -20.2 (7.3) 1.7 (2.0) -4.0 (2.5) -4.4 (2.9) -1.5 (3.1) 61.1 (2.5)

10 -22.4 (8.1) -20.5 (6.3) -20.9 (7.1) -22.1 (7.9) -2.1 (2.1) -5.3 (2.9) -8.3 (1.8) -6.0 (2.7) 60.6 (3.9)

11 -21.9 (8.4) -20.2 (6.5) -21.9 (7.6) -22.4 (8.1) -3.7 (2.2) -6.0 (2.4) -5.5 (3.3) -11.1 (2.7) 57.4 (4.3)

12 -20.9 (7.4) -20.7 (6.5) -21.4 (7.2) -22.6 (8.4) -4.1 (2.2) -6.0 (1.9) -7.0 (2.4) -8.6 (2.4) 59.7 (4.4)

AVG -21.6 -18.7 -20.5 -21.6 -1.0 -4.7 -6.3 -5.9 59.0

STD 2.0 2.6 2.1 1.6 3.5 1.4 2.0 4.2 2.0

STE 1.0 1.3 1.1 0.8 1.7 0.7 1.0 2.1 1.0

2.4 Discussion

The overall sound quality of the proposed and the two benchmarking algorithms were already

evaluated in a separate study using 20 speech signals corrupted by the “car” and “babble” noise with

0 and -5 dB SNR, with 10 other participants (3 females and 7 males). Results collected showed that
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participants preferred the signals processed with the proposed MBDNR algorithm in terms of over-

all quality in all noise conditions. While this preliminary result clearly indicates that the proposed

algorithm improves the quality of the noisy signals, little could be said of its effect on the speech

intelligibility. In the present study, 12 normal hearing subjects (2 females and 10 males) aged from 22

to 47 (mean 30.3 years) were tested for change in SRTs with and without the processing algorithm, so

that its effect on speech intelligibility could be assessed. From bottom line of Table 2, it can be seen

that in "car" noise the average speech reception threshold, on line "AVG" is similar for the proposed

MBDNR algorithm (case # 4) and without algorithm (case # 1), while the two other denoising algo-

rithm appears to have a lightly detrimental effect on the SRT, with respective increases of 2.9 dB and

1.1 dB for the "MBSS02" (case # 2) and "Wfscarlat96" (case # 3) algorithm. In "babble" noise the

average speech reception threshold is marginally better, by 0.4 dB, for the proposed MBDNR algo-

rithm (case # 7) than with the baseline test without algorithm (case # 8), while the two other denoising

algorithms appears to have a slightly detrimental effect on the SRT, with respective increases of 4.9

dB and 1.2 dB for the "MBSS02" (case # 5) and "Wfscarlat96" (case # 6) algorithm respectively. The

bottom lines of Table 2 present the group standard deviation (denoted "STD"), as well as the standard

error of the mean (denoted "STE") for further statistical testing. The SRTs obtained in case # 9, in

the absence of masking noise indicate that all subjects had a similar ability to understand speech, as

assumed from the selection tests outcomes. The standard deviations of the tracking process used in

the adaptative test procedure are indicated between parenthesis for each subject in each condition and

indicate the ability of one given subject to efficiently converge to the individual SRT reported.

3. Conclusions

An algorithm for single channel enhancement of noisy speech has been implemented in a digital

hearing protection device. Subjective evaluation conducted previously have shown that speech quality

has been improved, as it uses a non-linear and automatically adjustable gain function for multi-band

dynamic range compression that compresses the frequency regions where speech is absent to block

ambient noise. The psycho-physical tests conducted in this work, on normal hearing subjects using

the Hearing-In-Noise-Test (HINT) approach and measuring the Speech Reception Threshold (SRT),

showed that the speech intelligibility is typically unaffected by the proposed algorithm or can even

be slightly enhanced in the presence of babble noise. As the proposed MBDNR algorithm has a very

limited computational requirements, it is now foreseeable that it could soon be implemented in digital

hearing protection devices to protect against the risk of noise induced hearing loss while enabling

speech to be perceived.
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