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ANALYSE ET MODÉLISATION DES SOURCES D’INTERFÉRENCES RF
INDUITES PAR LES DÉCHARGES ÉLECTRIQUES DANS LES POSTES À

HAUTE-TENSION

Minh AU

RÉSUMÉ

Dans le contexte général des réseaux électrique intelligent (smart grid), l’utilisation des sys-

tèmes de communication analogique et/ou numérique avancés dans les postes à haute-tension

permet d’améliorer significativement, l’efficacité, la qualité et la sécurité du réseau électrique.

En effet, le déploiement d’un réseau de capteurs intelligents permet l’émergence d’outils de

diagnostique, de décision et de contrôle, plus performants, à la fois, rapides et automatisés sur

les équipements majeurs des postes tel que les transformateurs de courant, de tension et de

puissance, les disjoncteurs et sectionneurs. Les capteurs sans fil offrent un énorme potentiel

dans ce domaine. Cependant, les environnements des postes sont sujet à de fortes perturbations

électromagnétiques qui affectent ostensiblement les performances des communications sans fil.

Ce projet de recherche consiste à identifier, analyser, caractériser et modéliser les interférences

électromagnétiques dans les postes à haute-tension avec l’optique de déployer des réseaux de

communication sans fil.

Dans une première partie, nous proposons un protocole de mesure radio fréquence afin d’identi-

fier et de caractériser les sources d’interférences électromagnétiques sur une bande de fréquence

allant de 800 MHz à 5 GHz dans les postes à haute-tension. Les sources majeures de per-

turbations sont les irradiations causées par les décharges partielles. Les signaux induits sont

caractérisés par de fortes impulsions transitoires et les occurrences ont la particularité d’être cy-

clostationnaire. Ensuite, nous proposons une méthode de caractérisation permettant de mesurer

les caractéristiques physiques des signaux émis par les décharges en termes de statistiques du

premier- et du second-ordre.

Dans une seconde partie, nous étudions la modélisation des sources d’interférences électro-

magnétiques induites par les décharges partielles. Dans un premier temps, nous proposons

un modèle complet et cohérent qui lie les caractéristiques physiques des équipements haute-

tension au spectre radio fréquence des sources de bruit impulsif. En utilisant des métriques

statistiques de validation, nous avons pu mesurer la qualité de l’ajustement permettant, ainsi,

de valider le modèle en termes de statistiques du premier- et du second-ordre.

Enfin, nous proposons un modèle généralisé lorsque plusieurs sources de décharges partielles

ont lieu dans l’espace et dans le temps. En se basant sur un champ d’interférences de Poisson

dans l’espace et le temps, nous dégageons certaines propriétés statistiques intéressantes sur les

moments, les cumulants et les principales distributions de probabilités. Ceux-ci peuvent, à leur

tour, être utilisés dans les algorithmes de traitement du signal pour l’identification rapide des
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décharges partielles, de la localisation, et des techniques d’atténuation du bruit impulsif pour

les communications sans fil dans les postes.

Mots clés: Décharge partielles, Bruit impulsif, Caratérisation, Modélisation, Poste à haute-

tension, Interférences électromagnétiques
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ABSTRACT

In the context of the next generation of electric grids, called smart grids, the use of modern and

advanced communication systems in high-voltage substations can significantly improve the

efficiency, reliability and safety of the electric power grid. Indeed, the deployment of intelligent

sensor networks allows for the development of a more efficient, rapid, and automated remote

monitoring, control and diagnosis in major pieces of high-voltage equipment in substations:

current, potential, and power transformers, circuit breakers, and high-voltage disconnectors.

Wireless sensor networks offer significant benefits in this area. Unfortunately, high-voltage

substations are harsh and hostile environments whose wireless communication systems can

be interfered to such an extent as to render their performances severely degraded. This work

consists of the identification, characterization, and modelling of electromagnetic interferences

in substations for the deployment of wireless sensor networks.

In the first part, we propose a radio frequency measurement setup for electromagnetic inter-

ferences identification and characterization in the frequency range of 800 MHz to 5 GHz in

substations. The majority of interference sources comes from radiations caused by partial dis-

charges. The induced signals are characterized by strong transient impulses whose such events

follow a cyclostationary process. Next, a characterization process is proposed, by which phys-

ical characteristics of partial discharge can be measured in terms of first- and second-order

statistics.

In the second part, we investigate the modelling of electromagnetic interferences caused by

partial discharge sources. First, we propose complete and coherent approach model that links

physical characteristics of high-voltage installations to the induced radio-interference spectra

of partial discharge sources. The goodness-of-fit of the proposed physical model has been mea-

sured based on some interesting statistical metrics. This allows us to assess the effectiveness

of our approach in terms of first- and second-order statistics.

Finally, a generalized radio-noise model for substations is proposed, in which there are many

discharges sources that are randomly distributed over space and time according to the Poisson

field of interferers approach. This allows for the identification of some interesting statistical

properties of moments, cumulants and probability distributions. These can, in turn, be utilized

in signal processing algorithms for rapid partial discharge’s identification, localization, and

impulsive noise mitigation techniques in wireless communications in substations.
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INTRODUCTION

Two of the most pressing contemporary environmental issues are climate change and the man-

agement of scarce energy resources. The increased awareness of these issues encourages the

electricity industry to deploy advanced communication technologies within the electric grid for

the next generation of electric grids, called smart grids (Yan et al., 2013; Gungor et al., 2011;

Amin and Wollenberg, 2005). Since the early 21st century, this novel concept has emerged

to manage the increasing demand for energy resources while maintaining economic growth

and environmental sustainability. This new paradigm allows for decentralized production by

integrating renewable energy resources and enhancing consumer empowerment for sustainable

development (Farhangi, 2010; US Department of Energy Office, 2007a,b).

Over the last few years, the development of smart grid has become a promising area of research

for both industrial and academic researchers. We mention the development of:

• new information and communication technologies for better electricity management;

• battery energy storage systems for improving the power quality, reliability and energy effi-

ciency of the electric grid;

• smart grid interoperability for the integration of renewable energy resources.

Potential applications and benefits of the smart grid have been summarized by (Farhangi, 2010;

Gungor et al., 2010; Gungor and Lambert, 2006; Amin and Wollenberg, 2005).

Within this context, Hydro-Québec has one of the most extensive electric grids in North Amer-

ica. As of 2016, more than 500 substations are located in strategically-important locations.

Workers and maintenance supervisors on these sites require more information from major high

voltage (HV) equipment, such as power transformers and circuit breakers, to be collected via

a network of electronic intelligent devices, or EIDs (Riendeau et al., 2009b; Riendeau and Bé-

land, 2009; Riendeau et al., 2009a; Pater, 2009). However, using wired sensor networks might

be complex to manage in terms of wiring complexity, cost reduction and ease of deployment.
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Power-line communication (PLC) can be used as an alternative as mentioned in (Riendeau

et al., 2009a,b). This alternative is out of the scope of this thesis. Wireless communication

technologies might be relevant in substations (Gungor et al., 2011; Gungor and Lambert, 2006).

However, the transmitted signal can be degraded due to electromagnetic interferences (EMI) in

the environment.

Although wireless sensor networks avoid some constraints induced by wires, their deployments

require the study and analysis of the electromagnetic environment, especially in high-voltage

substations, which can be considered harsh and hostile environments. Indeed, the high-voltage

installations can produce discharge mechanisms in which the electromagnetic (EM) radiations

can interfere with the transmitted signal. Therefore, these installations have to be taken into

consideration to evaluate their impact on wireless communications. In addition, the multiple

reflectors induced by metallic structures in substations can produce destructive and constructive

interferences, which can impact the transmitted signal.

Motivations and objectives

Our research objective is to propose characterization methods of EMI phenomena in substa-

tions. Next, a generic model for wireless channel models is proposed. This may be used in

the design of new remote control and monitoring systems via wireless IED (WIED), as well as

for the performance analysis of wireless communications. This work may contribute to the de-

ployment of wireless communication systems in substations where significant improvement in

protection, control, automation and monitoring applications in HV equipment can be achieved.

In this document, EMIs induced by discharges in HV installations are particularly focused.

Partial discharges (PD) in the air are the predominant EMIs phenomena in which their activity

can take place in HV equipment: along the insulation surface or in an air gap located between

two separated conductors. When the local electric field is sufficiently high, the charged par-

ticles can collide, which produces an electron avalanche process in which electric discharges
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can occur. The induced charges and the currents generate high impulsive electromagnetic ra-

diations.

In this thesis, the main contribution is to propose: a full characterization of EMIs produced by

PDs and a generic impulsive noise model for wireless channels in substations. The proposed

model is a complete and coherent approach that links physical characteristics of PDs to the

induced radio interference spectrum. It allows for the performance analysis of wireless com-

munication systems as well as the design of robust receivers corrupted by impulsive noises in

substations. This work is based on three major axes of research, namely: i) the characteriza-

tion of radio frequency (RF) signals from PD activity in HV equipment; ii) the formulation of

a generic RF impulsive noise model induced by PD; iii) the statistical analysis of the model in

the presence of multiple PD sources.

Thesis organization

This document is organized in five chapters as follows:

Chapter 1 is a literature review of the characterization and interference modelling of radio

noise. Then, impulsive radio noise in high voltage substations is particularly emphasized. It is

shown that impulsive noise is mainly produced by PD sources in substations. The study of PD

is a well-developed field of research, even though electromagnetic radiation and its resultant

impact on wireless communication systems have been largely ignored in recent papers. PD

Measurement, detection and impulsive noise models induced by PD are summarized. In con-

clusion, our research objectives and the methodologies employed are detailed in the rest of the

document.

In Chapter 2, we develop a measurement setup using a wideband antenna to capture electro-

magnetic radiation induced by PDs in a frequency range of 800 MHz to 5 GHz which covers

frequency bands of conventional wireless communications. Then, signal processing tools are

developed for the first-order characterization of RF signals from PD activity in the air. EMIs
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induced by PDs are measured and characterized in a 735 kV substation. This chapter is mostly

based on our published conference paper (Au et al., 2013).

In Chapter 3, we propose first a coherent, detailed and validated PD model that links the phys-

ical characteristics of HV installations to the induced radio interference spectrum. PD sources

are generated experimentally in a 16 kV stator bar in the IREQ laboratory. Using our proposed

characterization process described in Chapter 2, our proposed model is validated by compar-

ing measurement results to the results of simulations. This chapter is based on our published

journal paper (Au et al., 2015b).

In Chapter 4, a general RF impulsive noise waveform model is proposed based on second-order

statistics. Time series models are used to estimate spectrum characteristics of RF impulsive

signals from PDs with a reasonable number of parameters. It is shown that residuals from

fitted time series models are stochastic processes in which the variance is not constant over

time. A heteroskedastic white Gaussian noise is used to reproduce the random behaviour of

transient impulsive waveforms. Measurement results and simulation results show that our RF

impulsive noise waveform model fits measurements accurately. This chapter is based on our

submitted journal paper (Au et al., 2015b)

In Chapter 5, the RF impulsive noise model is generalized in the presence of multiple PD

sources. A spatial and temporal Poisson point process (the Poisson field of interferers) is used

to emulate an environment typical of substations. This generalized model can take into account

physical-statistical parameters estimated from data. We employ our proposed RF impulsive

noise waveform model to reproduce typical impulsive noise waveforms in which parameters

are estimated from the measurements that were presented in Chapter 4. Moreover, the first-

order characteristics of PD such as power density, inter-arrival time and occurrence distribu-

tions from data can be used. In this chapter, the statistical properties of the generalized model

can be derived based on practical assumptions. Therefore, signal processing algorithms can

be implemented for rapid PD identification, localization, and impulsive noise mitigation tech-

niques. These can in turn be utilized in wireless communications in substations. This chapter
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is a summary of our research based on our proposed and published papers (Au et al., 2015a;

Ali et al., 2015; Au et al., 2015e).

Finally, we conclude this document with a summary of our work and a discussion of important

findings.

List of contributions

The majority of these works have been published or submitted to international conferences and

journals. They are listed as follows:

Conference papers

• an Experimental Characterization of Substation Impulsive Noise for an RF Channel Model

in Progress in Electromagnetics Research Symposium (Au et al., 2013);

• Mitigation of Impulsive Interference in Power Substation with Multi-Antenna Systems in

IEEE International Conference on Ubiquitous Wireless Broadband (Ali et al., 2015).

Journal papers

• a Model of Electromagnetic Interferences Induced by Corona Discharges for Wireless

Channels in Substation Environments in IEEE Transactions on Electromagnetic Compati-

bility (Au et al., 2015b);

• Analysis and Modelling of Wideband RF Impulsive Signals Induced by Partial Discharges

using Second-Order Statistics in IEEE Transaction on Electromagnetic Compatibility (sub-

mitted) (Au et al., 2015d);

• a Fast Identification of Partial Discharge Sources using Blind Source Separation and Kur-

tosis in Electronic Letters IET (Au et al., 2015e).





CHAPTER 1

CHARACTERIZATION AND MODELLING EMI FROM ELECTRIC
DISCHARGES: A LITERATURE REVIEW

1.1 Introduction

Communications technology for smart grid applications is an area of growing interest as men-

tioned in many publications (Yan et al., 2013; Gungor et al., 2011, 2010; Gungor and Lambert,

2006; Amin and Wollenberg, 2005). Indeed, its deployment can significantly improve the

efficiency, reliability and safety of the electric power grid (Gungor et al., 2010). This com-

munications technology can be classified into four types: power-line communications, satellite

communications, wireless communications and optical fiber communications. Of these tech-

nologies, wireless communications offers potential benefits for the implementation of smart

grids, such as rapid deployment, low installation cost, and mobility. However, in industrial

environments, the transmitted signal quality can be degraded due to various electromagnetic

interferences. As a result, it is necessary to evaluate the communication performance in such

environments.

Channel models are valuable tools for characterizing interference phenomena, performing

communications analyses, and designing and optimizing communication systems in harsh and

hostile environments. An accurate channel model can be provided through an experimen-

tal characterization of the interference sources that are produced mainly by electromagnetic,

electrostatic or non-electric sources. For conventional wireless communication systems, inter-

ferences often come from external electromagnetic sources. The deployment of wireless sen-

sor networks has been investigated by Gungor et al. (2010) and Gungor and Lambert (2006),

along with associated opportunities and challenges. While propagation channel measurements

in substations are presented, high-voltage installations can generate electromagnetic radiation

in instances when the spectrum can be measured above a few GHz, as is mentioned in several

publications (Portugués et al., 2003; Moore et al., 2006; Judd et al., 1996a; Sarathi et al., 2008;

Moose and O’dwyer, 1986). These electromagnetic interference (EMI) sources are highly im-
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pulsive with short durations generally caused by electric arc discharges and partial discharges

sources. Under such conditions, the conventional wireless communication systems listed in

Gungor et al. (2010) and Gungor and Lambert (2006) can be interfered to such an extent as to

render their performances severely degraded.

The subject of partial discharges (PD) is an intensive research area in which physical mecha-

nisms, measurement and characterization have been investigated for many years (Bartnikas,

2002; Bartnikas and McMahon, 1979; Florkowska and Wlodek, 1993; Judd et al., 1996a;

Trichel, 1939). The interest in partial discharges can be explained by the harmful effects these

discharges have been observed to have on electrical insulations, including irreversible dam-

age and possible failure. Moreover, electromagnetic radiations can also interfere with radio

communication devices such as TV or FM radio (CIGRÉ, 1974; Arai et al., 1985).

This chapter gives a general overview of EMIs and describes the measurement and characteri-

zation methods associated with them, in keeping with the latest research. Impulsive noise phe-

nomenon in substations are particularly emphasized and existing impulsive noise models are

discussed. The chapter is organized as follows: Section 1.2 introduces, defines, and classifies

the concept of EMI sources. A review of related literature shows the impact of impulsive EMI

sources; namely, that performance can be severely degraded in these special environments.

Many papers show that the performance can be severely degraded in these special environ-

ments. In Section 1.3, the characterization and existing impulsive noise models for commu-

nication channels are presented. In Section 1.4, the emphasis is on how EMIs are generated

mainly by partial discharge sources in substations. The physical mechanisms, measurements,

detection methods and existing PD models are reviewed. Section 1.5 concludes this chapter

with a brief summary and discussion of our proposed research. Through the literature review,

we will show that existing PD characterization methods do not assess if electromagnetic radia-

tion from PD activity is a source of interference for the radio communication systems operating

in the industrial, scientific and medical (ISM) radio bands and existing impulsive noise mod-

els cannot link the physical characteristics of high-voltage installations to the induced radio

interference spectrum neither.
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1.2 Concept of electromagnetic interferences and classification

This section presents a general overview of EMI, which can be classified into two categories:

natural noise sources and man-made noise sources. In high-voltage substations, man-made

noise sources are caused mainly by electric arc discharges in which electromagnetic radiations

are sources of interference for conventional wireless communication systems.

1.2.1 Definition of EMI sources

Electromagnetic interferences are observed when external sources interfere with any other

devices. Their tolerance to unwanted electromagnetic (EM) radiation should be analysed

and characterized in order to assess the electromagnetic compatibility (EMC) of interference

sources with any other electronic devices (Kaiser, 2005; Vasilescu, 2005).

We may distinguish intrinsic noise sources inherently generated by the electronic device itself

and the external noise generated by interferences. Intrinsic noise sources are generated inside

the device. A typical example of intrinsic noise is thermal noise. It comes from the motion

of free electrons inside a conductive material, which is inherently random and unavoidable.

The resulting signal amplitude fluctuates randomly. This can be modelled as Gaussian noise in

which the mean value is zero and its variance is given by:

v2
n = 4kBT RΔ f (1.1)

where kB is Boltzmann’s constant, T is the temperature, R is the resistance of the material and

Δ f is the bandwidth of the measurement system that has been employed.

External noise sources are unwanted signals in which EM waves come from undesired sources.

In the literature (Kaiser, 2005; Vasilescu, 2005), these interferences are classified into natural

noise sources (e.g. atmospheric noise, cosmic noise, etc.) or man-made noise sources (e.g.

industrial noise, arc welding, switches, etc.).
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1.2.2 Natural noise sources

These noise sources are produced by charged particles that are either present or produced natu-

rally in the environment. The waveform can be modelled as Gaussian noise (e.g. cosmic noise)

or as transient impulsive noise (e.g. lightning discharges). The emitted radiations can occupy

a wide range of frequencies; typically, they can reach a few GHz.

Atmospheric noises are generated by lightning discharges in thunderstorms. They are charac-

terized by fast transient waveforms and rapid time decay (10 to 100 μs). The current amplitude

can be 20 kA for an average arc discharge and 300 kA for a very high-arc discharge. They

are mostly harmful to humans and damage electronic devices embedded in aircraft. The fre-

quency spectrum can be up to 20 MHz and the spectral density has a form of∼ 1/ f (Vasilescu,

2005). This spectrum content explains why a natural noise sources are generally considered

less troublesome than man-made noise sources, which covers a much broader band.

1.2.3 Man-made noise sources

Electromagnetic man-made noise sources are generated by human activities via any electrical

or electronic devices that may be located in industrial, residential or business areas. These

sources can generate various type of waveforms like stationary random signals, non-stationary

random signals (e.g. impulsive noise), and/or modulated signals from undesired communica-

tion systems.

Interference sources can affect the reliability of communications systems and also damage elec-

tronic devices when the amplitude of the current is very high. These sources can be intentional

interferences (jammers) and/or unintentional interferences. The latter could come from EM

sources induced by the normal operation of any electronic device. As a result, it is necessary

to characterize and to quantify their impact on communication systems.

Among man-made noise sources, impulsive noise can be generated by automotive ignition

systems, arc welding, power-line distribution systems, high-voltage transmission lines or HV
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equipment in substations. The amplitude associated with such sources is very high and has

short durations compared to background noise: 50 to 310 μs in power-line distribution systems

(Zimmermann and Dostert, 2002; Degardin et al., 2002), and 50 to 200 ns in HV transmission

lines as reported in (CIGRÉ, 1974; Gary, 1998). The impulse repetition rate can range from

50 to 200 kHz in power-line distributions and around 50 to 100 kHz in HV transmission lines.

When impulsive noise is significant, communication performances can be severely degraded.

1.2.4 Communication channels in presence of impulsive noise

For several years, there has been a growing interest in both broadband power-line communi-

cations and wireless communications within industrial environments. Unfortunately, various

EMIs especially impulsive noise can interfere with communication systems. Many papers show

that the receivers perform poorly (Madi et al., 2011, 2010; Shan et al., 2007; Ma et al., 2005;

Haring and Vinck, 2000; Ghosh, 1996; Spaulding and Middleton, 1977). Due to extensive re-

search, more robust optimum and suboptimum receivers that function even in the presence of

impulsive noise have been developed, along with mitigation techniques (Ling et al., 2013; Ndo

et al., 2013; Tsihrintzis and Nikias, 1995; Ambike and Hatzinakos, 1994; Spaulding and Mid-

dleton, 1977).

Typically, communication channels include a transmitted signal and additive interferences such

that the received signal is written as:

x(t) = s(t)+n(t)+∑
k

uk(θk, t) (1.2)

where s(t) is the transmitted signal, n(t) is the receiver’s thermal noise and uk(θk, t) is the kth

interferer where θ is a set of random variables characterizing the interference. If we assume

that x(t) is a sequence of independent and identically distributed (iid) random variables with the

same expected value and a finite variance, then, the sum of overall received signals converges

in distribution to a Gaussian distribution. From this assumption, classical coding theory is well-

known (Proakis and Salehi, 2008; Goldsmith, 2005). However, when the receiver is corrupted
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by impulsive interferers, the probability density is heavy tailed. Therefore, the assumption of

Gaussian distribution no longer applies and the classical decoding scheme and detection rules

for additive white Gaussian noise (AWGN) channel fail to recover the transmitted message

from s(t).

1.3 Characterization and impulsive noise models

In the literature, models for impulsive noise are widely developed and used to extend the ex-

isting knowledge regarding the nature of impulsive noise sources and communication perfor-

mance analysis. In this section, characterization methods and existing impulsive models are

reviewed.

1.3.1 A statistical characterization of impulsive noise

In practice, measured impulsive noise consists of impulsive events and additive background

noise. The latter is produced by thermal noise from the measurement setup as well as ambient

noise, which is generated by many interferences below the level of impulses as depicted in

Figure 1.1. Since these impulsive waveforms are characterized by their short duration and high

amplitude, they can be detected using a simple threshold. A more sophisticated technique can

be used to extract impulses from overall background noise to yield an estimation of power

spectral density. This will be detailed in Chapter 2.

Impulsive interferences can be characterized in one of two ways. Using first-order statistics,

statistical distribution can be calculated using duration, the inter-arrival time between two con-

secutive impulses, amplitude, and energy. Assuming that impulsive noise is a non-stationary

random process, short-time analysis is used in the analysis of first-order statistics. Second-

order statistics utilizes power spectral densities, and a Spectrogram, a Wigner-Ville distribu-

tion, or a scalogram can be used to estimate PSD, (Mallat, 1998; Hammond and White, 1996;

Priestley, 1967).
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Figure 1.1 Typical example of impulsive noise

with background Gaussian noise

1.3.2 Impulsive noise models

Impulsive noise can be modelled as a succession of short impulse waveforms with background

noise over a large observation time. Various approaches can be used to represent impulsive

waveforms. Middleton (1999) classifies these interferences into three categories as follows:

• EMIs can produce negligible transient waveforms in a typical receiver. It is denoted by

Class A noise. In terms of receiver bandwidth Δ fR and duration of interference sources TU ,

the Class A noise assume that:

TU Δ fR � 1 (1.3)

• when EMIs are characterized by transient effects, they are denoted by Class B noise when

the receiver bandwidth and the duration of interference sources are:

TU Δ fR � 1 (1.4)
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• class C is a mixture of Class A and B in which Class B is predominant compared to Class

A.

An impulse can be modelled as a unit-impulse function u(t) = δ (t) with an infinitesimal time

width or duration. The integral of the impulse is given by:

∫ TU/2

−TU/2
δ (t)dt =

⎧⎪⎨
⎪⎩

1, −TU/2 < t < TU/2.

0, otherwise.

(1.5)

The Fourier transform is given by:

δ ( f ) =
∫
R

δ (t)e− j2π f tdt = 1 (1.6)

where f is the frequency domain of an arbitrary function. However, the unit-impulse function

with an infinitesimal time duration does not exist in practice because impulsive interferences

have a non-zero finite duration in real-life.

A channel response impulse can be used to model various impulsive noise waveforms such as

damped oscillation with transient effects, etc. As presented in Figure 1.2, a typical impulsive

waveform can be modelled by using a filter in which the input model is an ideal impulse. In

this condition, a power spectral density can be determined.

Input Impulse

Impulse Response Channel

Impulse

t t

Figure 1.2 Impulsive noise modelled by a filter
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For a given impulse time-occurrence tn, the resulting waveform can be written as a convolution

product between the input impulse and the filter, such that:

u(t) = hm(t)∗δ (t− tn) (1.7)

where the impulse response of the filter is given by hm(t) and ∗ is the convolution product

operator. Physically, the impulse response includes the propagation channel, the impulse re-

sponse of both the emitted source and the measurement setup. The power spectral density of

the resulting impulse is only determined by the power spectral density of this filter.

1.3.3 Probability models of impulsive noise

Impulsive noise can be characterized and modelled by its instantaneous amplitude probabil-

ity density function. This representation is commonly used in the study of communication

performance. Over a long observation time, the resulting noise is a superposition of many

independent sources with a random number of impulsive radiations and their locations are ran-

domly distributed in space. From Equation (1.2), without any signals to be transmitted at the

receiver (s(t) = 0) and assuming that background noise n(t) is modelled as a Gaussian noise

process, the overall noise is given by:

x(t) = ∑
k

uk(θk, t)+n(t) (1.8)

In the literature, many existing impulsive noise models have been developed, (Middleton, 1999;

Zimmermann and Dostert, 2002; Ndo et al., 2013; Vaseghi, 2008) . They can be classified as

either memoryless noise or memory noise models, (Vaseghi, 2008).
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1.3.3.1 Memoryless models

Poisson-Gaussian noise

We assume the overall noise to be a superposition of independent EMI emissions modelled as

a Poisson process for a large observation time T , while the amplitude distribution of impulses

is a Gaussian noise process. From Equation (1.8), the resulting noise is given by:

x(t) =
NI(t)

∑
k=1

akδ (t− tk)+n(t) (1.9)

where ak is the random amplitude of the impulse kth and the impulsive event is given by tk.

NI(t) is the number of impulses driven by a homogeneous Poisson process. The probability

occurrence of the kth impulse in the observation time T is given by:

f (k;λ ) = Pr [NI(t +T )−NI(t) = k)] =
e−λT (λT )k

k!
(1.10)

where λT is the average number of emissions occurring within the observation time and λ is

the density of emissions. The probability density function (PDF) of impulsive noise is given in

(Vaseghi, 2008) in a small time interval Δt by:

fI(u) = (1−λΔt)δ (u)+λΔt
1√

2πσu
e−u2/2σ2

u (1.11)

where σu is the variance of the impulsive component. Since the background noise and im-

pulsive noise are a sum of independent random processes, the resulting PDF is written as the

convolution product of the background noise PDF and the impulsive noise PDF such that:

fP+G(x) = fI(x)∗ fn(x) (1.12)
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where fn(x) is the Gaussian distribution of the background noise; and

fn(x) =
1√

2πσn
e−x2/2σ2

n (1.13)

where σn is the variance of the background noise component.

Middleton Class A and B noise

Extended to Poisson-Gaussian models, physical-statistical impulsive noise models are pro-

posed by Middleton (1999, 1983, 1977). Based on the Poisson field of interferers, the resulting

noise is a superposition of independent EMI sources randomly distributed in space which re-

sults in emissions that can be activated within a given observation time T . The PDF of overall

noise can be derived for Class A noise as:

fP+G(x) = e−A
∞

∑
m=0

Am

m!
√

2πσ2
m

e−x2/2σ2
m (1.14)

where σ2
m = m/A+Γ

1+Γ .

• the parameter A is the impulse index. This is the average number of emissions for a given

observation time. From Equation (1.10), A = λT where A ∈ [10−2,1
]
;

• the parameter Γ is the ratio between the level of the background noise and the level of the

impulsive noise component where Γ ∈ [10−6,1
]
.

The Class A PDF can be seen as a weighted sum of Gaussian probability densities. This model

is widely used due to its canonical form, and accordingly, this is an analytically tractable model

for narrowband interferences in which the transients in the typical receiver can be neglected.

Class B interferences with transient effects is a broadband noise model which is thus more

complex than the Class A noise model (Middleton, 1999). The interference noise model is

physically coherent, due the presence of the Gaussian noise component (background noise).
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However, six parameters and an empirical parameter have to be considered in this model,

which is more difficult to use.

α-stable noise

As an alternative to the Class B interference model, α-stable noise model is used to approx-

imate the Middleton Class B model (Nikias and Shao, 1995). The α-stable distribution was

introduced by Lévy (1925) in his study of normalized sums of iid random variables. Let X

be a stable random variable such that X ∼ Sα(σ ,β ,μ). The noise model is defined by its

characteristic function (c.f) MX( jξ ) given by:

MX( jξ ) = E

[
e jξ X

]
=

⎧⎪⎨
⎪⎩

exp{ jξ μ−|σξ |α (1− jβ sign(ξ ) tan(πα/2))} , α �= 1.

exp
{

jξ μ−|σξ |α (1− jβ sign(ξ ) 2
π log |ξ |)} , α = 1.

(1.15)

where E [·] denotes the expectation, 0 < α < 2 is the stability index, μ is a location parameter

real value, σ ≥ 0 is a scale factor and β is the skewness parameter where −1 ≤ β ≤ 1. The

model can take into consideration the heavy-tailed behaviour induced by impulsive events in

the distribution. By using the inverse Fourier transform, the PDF is obtained. However, closed

forms are difficult to derive. Only a few stable distributions can be written in closed forms for

specific parameters of α for:

• α = 2, the PDF is the Gaussian distribution, X ∼ S2(σ ,0,μ), where the mean is given by

μ and its variance is 2σ . Note that the scale factor σ is not the same as the variance of the

Gaussian noise;

• α = 1, the PDF is the Cauchy distribution, X ∼ S1(σ ,0,μ) and

• α = 1/2, the PDF is the Levy distribution, X ∼ S1/2(σ ,1,μ).

Middleton (1999) notes that the α-stable model is physically incomplete since the background

noise modelled as a Gaussian noise is not considered. These memoryless models have the
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advantage of being analytically tractable when parameters of these PDFs can be estimated by

using statistical methods (Zabin and Poor, 1991, 1989; Tsihrintzis and Nikias, 1996; Middle-

ton, 1983; Chambers et al., 1976). Based on these impulsive noise models, performance anal-

ysis of communication systems have been investigated (Tsihrintzis and Nikias, 1995; Spauld-

ing and Middleton, 1977; Wiklundh et al., 2009; Wang et al., 2011).

1.3.3.2 Impulsive noise with memory: Burst noise

Markov-Middleton

Memoryless impulsive noise models generate iid noise samples when time correlation is not

taken into account. In practice, most environments, such as high-voltage substations or power-

line distribution systems, experience impulsive noise in bursts, (Portugués et al., 2003; Zim-

mermann and Dostert, 2002; Moore et al., 2006). Markov chains have been investigated for

impulsive noise modelling in instances when this bursty behaviour of impulsive noise can be

reproduced.

Recently, a Markov-Middleton model has been proposed in (Ndo et al., 2013). This model

uses the Middleton Class A noise model but includes an extra parameter to ensure the presence

of impulse memory with a hidden Markov model, as shown in Figure 1.3. A transition state

is considered when duration within the state is null. The correlation between noise samples

is ensured by the probability px, which is independent of Middleton Class A parameters. The

entering state m = {0,1,2,3, · · ·} from the transition state is ensured by the probability pm such

that:

pm =
p′m

∑
m=0

p′m
(1.16)

where p′m = e−AAm/m!, according to the Middleton Class A PDF model. Each state generates

noise samples from a zero-mean Gaussian noise where its variance is given by σ2
m = m/A+Γ

1+Γ .
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The model has the same Middleton Class A PDF, which is analytically tractable, and the time

correlation of bursty impulsive noise is taken into consideration. However, the number of states

in Markov chains might be difficult to define, and the resulting impulsive noise samples are still

uncorrelated. Therefore, transient and damped oscillation effects are neglected.

Partitioned Markov chain

Alternatively, partitioned Markov chain (PMC) models can be used to reproduce memory ef-

fects of impulsive noise. A PMC model has been developed for broadband power-line commu-

nications in (Zimmermann and Dostert, 2002). This model can reproduce the bursty behaviour

of impulsive noise in PLC. Simulation results show that the model fits measurements. An

example of PMC for asynchronous impulsive noise is depicted in Figure 1.4. The K states

are partitioned into two groups; A denotes the absence of an impulsive component, and B, the

presence of an impulse event. This is the generalization of the Gilbert-Elliot model for bursty

impulsive noise modelling (Gilbert, 1960; Elliot, 1963). The latter considers only two states
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of the Markov chain. The two groups can be described independently by transition probabil-

ity matrices for free impulses states and for impulse states. In addition, transition states are

introduced in order to regulate the transition from free impulses states to impulse states and

vice versa. However, the definition of a suitable number of states in the Markov chain can

be challenging and the estimation procedure are complex, (Sacuto et al., 2013; Ndo et al.,

2013). Using these models can also drastically increase computational complexity, (Zimmer-

mann and Dostert, 2002; Sacuto et al., 2013).

· · · · · ·1 2 k k+1 k+2 K

Transition
state 1

Transition
state 2

B
(Impulse)

A
(Impulse free)

pA11

pA22

pB11

pB22

pAk+1,1

pAkk

pA1,k+1

pBg+1,g

pBgg

pBg,g+1

pA1,k+1

pAk+1,k pB2,g+1

pBg+1,2

pB1,g+1

pBg+1,1

pA2,k+1

pAk+1,2

Figure 1.4 Partitionned Markov chain for asynchronous impulsive noise

Taken from Zimmermann and Dostert (2002)

These statistical impulsive noise models can reproduce EMIs in various impulsive environ-

ments. However, they do not take into account the specificity of the electromagnetic environ-

ment in substations; In other words, they cannot provide any information linking the physical

characteristics of HV installations to the induced radio interference spectrum. The next section

focuses on the electromagnetic interferences in substations.
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1.4 The electromagnetic interferences in substations

In high-voltage substations, electric arc discharges can be generated in HV equipment, either

along insulation surfaces or in an air gap between a pair of electrodes. Their electromag-

netic radiations are man-made noise in which the amplitude is highly impulsive. Electric arc

discharges have been investigated for several years to understand the physical mechanisms in-

volved and to assess their impact on electrical insulation. These discharge are also EMI sources

for radio communications systems.

1.4.1 Ionization process and electrical discharge in gases

Discharges in gases are related to a partial or complete breakdown of a gas phenomenon. They

occur when an applied electric field is sufficiently high. In such instances, due to a strong

acceleration of free electrons, other neutral molecules and atoms become excited or ionized

by collisions in which kinetic energies are exchanged. An ionization process in gases can

take place by avalanche effect. Depending on the nature of the gas, the ionization process

can be significant when densities of electrons are high (Kuffel et al., 2000; Loeb, 1965; Bart-

nikas and McMahon, 1979). Townsend (1910) found that the current through a uniform field

air gap, grows exponentially when the applied voltage is sufficiently high, as shown in Figure

1.5. A pair of electrodes is separated by an air gap of a length d, and the electric field E be-

tween the electrodes is generated by an applied voltage. At voltages higher than V2, the current

growth is due to ionization by electron collision in the gas (Townsend, 1910).

Various ionization phenomena can be observed during an electric discharge, such as photoion-

ization and/or thermal ionization processes. Deionization by recombination and/or diffusion

can also be observed (Kuffel et al., 2000). In addition to a high field stress, an initiatory-free

electron rate can affect discharge events by a random time lag which depends on the amount of

pre-ionization or irradiation of the gap (Meek and Craggs, 1953).
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Figure 1.5 Current-voltage relationship in prebreakdown region

Taken from Kuffel et al. (2000)

1.4.2 Partial discharges mechanism

Three major types of discharges can be distinguished (Lemke, 2008). The first is internal

discharge, which refers to discharge within dielectric insulation caused by gaseous inclusion

or gas bubbles in liquids. The second major type of discharge is external discharge. Often

known as corona discharge, it takes place in ambient air. The third type occurs along solid

dielectric surfaces in ambient air. These discharges may bridge in a long gap distance and

can erode solid insulation surfaces due to the high temperature in the discharge site (Lemke,

2008; Hudon and Bélec, 2005). Their physical mechanism is related to the ionization processes

induced by electron-avalanches as observed in (Townsend, 1910; Loeb and Meek, 1940).

PD phenomena are represented as stochastic processes in which amplitude, inter-arrival time

between two successive impulses, and time occurrence are random variables. This can be ex-

plained by the variability of physical mechanisms such as the presence of ionizing radiation,

fluctuations in gas density or gas decomposition in cavities or dielectric surfaces, (Brunt and Kulka-

rni, 1990; Brunt, 1991). Under AC voltages, PDs occur on every half-cycle of the applied volt-
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age. Typical behaviours of impulsive noise from PD activity are presented in Figure 1.6. PD

events are superimposed upon the AC voltage.

t

V (t)
Negative polarity

Positive polarity

Impulse discharge

a) Discharge along insulation surfaces

t

V (t)

Negative polarity

Positive polarity

Impulse discharge

b) Discharge in an air gap

Figure 1.6 Typical behaviour of impulsive noise induced by a

discharge source

When PDs take place along insulation surfaces, an asymmetric behaviour between polarities

can be observed (Levesque et al., 2010; Hudon and Bélec, 2005). Their amplitude and oc-

currence are higher at negative polarity than at positive as depicted in Figure 1.6.(a). This

behaviour can be found during slot discharge, surface tracking or gap-type discharge events

(Hudon and Bélec, 2005; Lemke, 2008; Levesque et al., 2010). For PDs in an air gap, the

process occurs at the peak region of the applied AC voltage. At the negative polarity, impulses,

known as Trichel impulses, can be observed with high repetition rates (between 50 and 100

kHz) and low amplitude, while impulses at the positive polarity, known as a pre-breakdown

streamer, have low repetition rates with high amplitude as illustrated in Figure 1.6.(b). This be-

haviour can be found in overhead power-lines (Pakala and Chartier, 1971; Pakala et al., 1968;

Chartier et al., 1986; Gary, 1998; CIGRÉ, 1974).

These discharges can cause degradation and possible mechanical failure of electrical insula-

tions (Lemke, 2008; Kuffel et al., 2000; Bartnikas and McMahon, 1979). They are also in-
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terference sources for TV and FM radio (CIGRÉ, 1974; Arai et al., 1985). Over the last four

decades, PD detection and characterization methods have become important in the study of

aging mechanisms and life-time analysis of HV equipment.

1.4.3 Measurements and characterization of partial discharge sources

1.4.3.1 Measurement techniques

Partial discharges can generate electrical pulse currents, dielectric losses, electromagnetic radi-

ations, chemical reactions, and more. In this chapter, we present methods for PD detection and

measurement based on impulse currents and electromagnetic radiation. These two methods are

commonly used (Kuffel et al., 2000).

PD currents impulses

PD impulse currents can be measured by connecting the test object to a high-voltage source.

The circuit for a PD test includes an impedance Z and a coupling capacitor Ck in parallel to the

test object as depicted in Figure 1.7. The test object can be seen as a capacitor Ct . During the

short period of the partial discharge, Ck is a storage capacitor which can release a PD current

impulse Ipd(t) between Ck and the test object Ct .

The PD pulse apparent charge q can is given by:

q =
∫

Ipd(t)dt (1.17)

when Ck � Ct . It is said apparent because the measured charge q is not equal to the charge

locally involved at the discharge site (Kuffel et al., 2000; IEC-60270, 2000). Thus, the true

charge cannot be measured directly. However, a calibration procedure can be used to improve

the measurement of PD quantities.
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Figure 1.7 Test circuit for partial discharge detection

Taken from IEC-60270 (2000)

Most PD measurement systems based on PD impulse currents are integrated into the test circuit

as shown in Figure 1.7. The circuit includes a coupling device with its impedance Zmi, and

the measurement instrument is linked by a connecting cable. The coupling device can be a

passive filter, such as a parallel RLC resonance circuit as was used by Bartnikas and McMahon

(1979). The input current and the output voltage are linked by the impedance of the filter when

the apparent charge of PD pulse can be measured. Low- and high-frequency currents can be

filtered by adjusting the parameters of the RLC circuit.

PD electromagnetic radiations

EM radiations from PD activity can be detected by passive devices such as antennas or sensors.

They can be detected in the ultra high frequency (UHF) range (Hikita et al., 1998; Hoek et al.,

2012; Tenbohlen et al., 2008; Judd et al., 2005; Portugués et al., 2003; Pearson et al., 1991).

There are several advantages to these methods: sensors do not need electrical connection to

the high voltage circuit, they ensure a better signal-to-noise ratio, and their use allows failure

location to be determined by using PD localization methods (Tenbohlen et al., 2008). UHF PD

measuring methods are mostly used in gas-insulated substations (GIS) in which HV equipment

is contained in a sealed environment with sulfure hexafluoride gas (SF6). A typical measure-
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ment setup is presented in Figure 1.8. Signals from the UHF sensor are filtered, amplified by

RF stages and digitized by digitizing hardware to extract PD quantities.

Clock

Digitizing

Hardware

Scope

Power frequency

phase reference

Cable

HV plant

RF stage
UHF
Sensor

Figure 1.8 Typical measurement setup using UHF PD detection

Taken from Judd et al. (2005)

Electromagnetic radiations from PD can be measured using antennas. A typical measurement

setup includes a wideband antenna, RF filters and amplifiers. Impulses are recorded by a scope

over a very large frequency range. Pakala and Chartier (1971); Pakala et al. (1968) use a

wideband antenna to measure corona and gap-type discharges in a 60 Hz to 10 GHz frequency

range on 2.4 kV to 765 kV overhead power-lines under AC voltages. It has been found that

the power spectral density (PSD) of these interferences have a form of 1/ f γ where γ is the

exponent characterizing the decay over frequency (Pakala and Chartier, 1971; Pakala et al.,

1968; Portugués et al., 2003). The waveform is impulsive with transient effects (Portugués

et al., 2003; Portugués and Moore, 2006; Moore et al., 2005).

These discharges are also EMI sources for RF communications (Arai et al., 1985; Babnik

et al., 2003; Trinh, 2001; Madi et al., 2010). PD measurement and detection methods using

antennas are appropriate for RF channel characterization in substation environments. In the

literature, the physical mechanism of PD and its electromagnetic radiation is not explicit and

the characterization is often incomplete. For example, in (Pakala and Chartier, 1971) and
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(Pakala et al., 1968), information about the inter-arrival time, duration and occurrence of PD

is not provided. In (Portugués et al., 2003) (Portugués and Moore, 2006) and (Moore et al.,

2005), RF signals are measured in the frequency range 100 MHz to 1 GHz, which does not

cover the frequency range of conventional communication systems, which is 800 MHz to 5

GHz.

1.4.3.2 Characterization of PD impulses

PD phenomena are a category of stochastic processes whose characteristics can be described

as time-dependent random variables (Brunt, 1991). PD impulses are then characterized by:

• the repetition rate, which is the total number of PD impulses occurring within an arbitrary

time interval. With AC voltages, this time interval can be a cycle of the applied voltage.

Thus, the repetition rate is defined as the number of PD impulses per cycle. The repetition

rate can be also defined as the number of impulses during the positive or the negative

polarity of the AC voltage;

• the inter-arrival time (IAT), which is the time between two consecutive PD impulses. Under

AC voltages, IAT can be measured at the positive or at the negative polarity;

• the occurrence which is the time in which a PD occurs under the operating voltage. Under

AC voltages, the PD process is cyclostationary as the PD occurs at every half-cycle of the

applied voltage;

• the duration of an impulse. PD can have different physical processes in which the duration

can be variable;

• the amplitude of a discharge, which can be measured by the apparent charge of the PD

phenomena as recommended by the standard IEC 60270 in (IEC-60270, 2000). In this

case, impulse currents measurement methods are used. For electromagnetic radiations, the

average energy can be calculated.
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Under AC voltages, phase-resolved partial discharge (PRPD) representation is commonly used

in PD characterization (Brunt, 1991; Levesque et al., 2010; Hudon and Bélec, 2005). This is a

three-dimensional statistical representation of a PD process in which probability distributions

of PD events and amplitude are plotted on the phase of the operating voltage. One can iden-

tify typical patterns of PDs with PRPD as depicted in Figure 1.9. PD measured on a stator

bar in which PDs occur at every half cycle of the applied voltage. The PD impulse currents

measurement method is used in this figure.

Figure 1.9 PRPD pattern of PD measured on a stator bar

Taken from Hudon and Bélec (2005)

1.4.4 Partial discharge modelling

PD modelling is an extensive research area in which physical and statistical models have been

investigated (Niemeyer, 1995; Gutfleisch and Niemeyer, 1995; Levesque et al., 2013; Bhatti

et al., 2009; Madi et al., 2011). PD models can be classified as either physical PD models or

statistical PD models.
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1.4.4.1 Physical PD models

Physical PD models have been developed to extend knowledge about the evolution of PD activ-

ity. Researchers have shown that these models use the physical approach in which PD activities

are simulated in spherical voids (Niemeyer, 1995; Gutfleisch and Niemeyer, 1995), or in stator

bars (Levesque et al., 2013). Essentially, the electric field in the PD site is calculated by nu-

merical methods in each model. Based on physical criteria such as temperature, pressure and

the radius of the cavity, the critical value for discharge is determined. When the electric field

in a given PD site is higher than the critical value, a discharge occurs in which PD charge am-

plitude can be calculated physically. These models can reproduce the cyclostationary process

under AC voltages. However, the PD charge amplitude cannot provide any information about

the induced electromagnetic radiations. Waveforms and spectra of RF signals from the PD are

not taken into consideration.

1.4.4.2 Statistical PD models for wireless channels

Middleton Class A and α-stable noise models are commonly used to reproduce EMIs from

PD in wireless communication channels (Bhatti et al., 2009; Madi et al., 2011). Based on

measurement campaigns in substations or in laboratories, statistical parameters are estimated

from data using statistical methods (Zabin and Poor, 1991, 1989; Tsihrintzis and Nikias, 1996;

Middleton, 1983; Chambers et al., 1976). The resulting probability distributions are compared

to the experimental results. The Kullback–Leibler (KL) divergence is used to quantify the dif-

ference between two probability density (Kullback and Leiber, 1951). This is a non-symmetric

measure of the distance between two arbitrary probability densities f1 and f2. For discrete

probability densities, the KL divergence of f2 from f1 is defined by:

DKL = ∑
i

f1(i) ln
f1(i)
f2(i)

(1.18)
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If f1 and f2 are identical, then DKL = 0. In addition, a Kolmogorov-Smirnov (KS) test for the

null hypothesis that two sample data are from the same distribution. The test statistic is:

DKS = sup
x
|F1(x)−F2(x)| (1.19)

where F1(x) and F2(x) are the empirical cumulative distribution functions (CDF). supx is the

supremum. If two sample data are from the same distribution, then DKS converges to zero

(Massey, 1951).

An example of a typical PD impulse measured in a substation is depicted in Figure 1.10.

Gaussian, Middleton Class A and α-stable noise models are used to reproduce data. Pa-

rameters are estimated from the data using statistical methods (Zabin and Poor, 1991, 1989;

Tsihrintzis and Nikias, 1996; Middleton, 1983; Chambers et al., 1976). PDFs and resulting

noise samples are plotted for comparison. It can be seen that impulsive noise produces a

heavy-tailed distribution. Contrary to the Gaussian distribution, the heavy-tailed behaviour is

taken into account in Middleton Class A and α-stable noise models. Therefore, the KL diver-

gence values are smaller than those in the fitted Gaussian noise model as seen in Table 1.1.

However, the KS test has been conducted for a significance level of 5%, in which the p-values

can be derived from the test statistics values in the table (Massey, 1951). These p-values are

lower than 0.05 for all of these noise samples impulsive noise models. As a result, the test

indicates the rejection of the null hypothesis that noise samples from these statistical impulsive

noise models and the measured impulsive noise cannot come from the same distributions at

a 95% confidence interval. Moreover, these statistical models exhibit lack-of-fit because the

resulting waveforms generate iid noise samples which are not observed in the data. Indeed,

we can see that the PD impulse occurs in bursts with transient effects and damped oscillation.

Using KL divergence to validate statistical models from measurements is not accurate because

the spectrum characteristics of EMIs are not taken into account.
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Figure 1.10 Impulsive noise with fitted statistical models

Table 1.1 The goodness-of-fit of impulsive noise

models

Test statistics Gaussian Middleton Class A α-stable

DKL 1.18 0.596 0.08

DKS 0.56 0.24 0.195

1.5 Discussion and conclusion

In this chapter, impulsive noise measurements, characterization and modelling are reviewed.

Power-line distribution systems, high-voltage transmission lines and HV equipment in substa-

tions can generate impulsive EMIs. Performance of conventional wireless communication sys-

tems can be degraded drastically due to impulsive noise. Therefore, substation environments

can pose challenges to the reliability of wireless sensor networks due to various man-made

noise sources such as discharge phenomena. A performance analysis and the design of ro-
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bust receivers in this special environment can be provided based on accurate impulsive noise

models. To do so, it is necessary to identify and characterize these interference sources.

Impulsive noise in substation environments are generated by PDs when their occurrences fol-

low cyclostationary processes due to AC voltages. When insulations are subjected to intense

electric stress, an ionization process is generated by an electron-avalanche effect in the medium,

such as an air gap. A conductive channel in the air gap can create an electrical discharge. As

defined in (IEC-60270, 2000), a PD is characterized by an electric discharge that does not

completely bridge the space between two conducting electrodes. When this occurs, PD can

be measured and detected using coupling devices via its impulse current or by sensors and

wideband antennas via its electromagnetic radiations. PD phenomena are inherently stochastic

processes in which amplitude, inter-arrival time and occurrence can be described by time-

dependent random variables. It has been shown in literature that wideband RF signals from PD

activity have transient behaviour with damped oscillation when the power spectral density has

a form of 1/( f − f0)
γ , where f0 is a resonant frequency and γ is the exponent characterizing

the decay over frequency.

Our research objectives are to characterize and model RF signals from PD activity for wireless

communication channels. Several limitations from the literature review, show the current state-

of-the-art:

Measurement and characterization of EMI from PD

Although EMIs from PD activity have been measured using a wideband antenna on overhead

power-lines in the frequency range of 60 Hz to 10 GHz (Pakala and Chartier, 1971; Pakala

et al., 1968), these EMI sources are not fully characterized. For example, the inter-arrival time,

duration and occurrence of PD are not provided. Moreover, PD activity can also take place

in much HV equipment such as power transformers, bushbars or circuit breakers. Wideband

RF signals are measured in the frequency range of 100 MHz to 1 GHz when conventional
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wireless communications, such as cellular networks IEEE 802.11 and 802.15.4 do not operate

in practice (Portugués et al., 2003; Portugués and Moore, 2006; Moore et al., 2005).

Impulsive noise models

Physical PD models describe fundamental mechanisms of partial discharge and their impact on

electrical insulations. However, they have not been adapted for wireless channel modelling be-

cause the physical mechanism of PD and its electromagnetic radiation are not linked. Statistical

impulsive noise models for communication systems such as memoryless impulsive noise mod-

els are commonly used to reproduce EMIs in substation environments (Bhatti et al., 2009; Madi

et al., 2011). Their canonical forms and their analytic tractability can offer elegant solutions

to combat impulsive noise. However, it has been shown that these statistical models generate

iid noise samples which have not been observed in practice. Indeed, RF signals from PD have

transient effects with damped oscillation. PMC models can be used alternatively in order to

account for the transient effect of impulsive noise, as developed by Zimmermann and Dostert

(2002), Gilbert (1960), and Elliot (1963). However, the Markovian nature of these models

makes the analysis complex, because the definition of the number of states can be challenging

and the computational complexity can increase drastically. Statistical impulsive noise models

are physically limited because their parameters cannot provide any information about physical

characteristics of HV installations and the induced radio interference spectrum.

To our knowledge, as of 2016, we do not have a complete and coherent impulsive noise model

that link physical characteristics of high-voltage installations to the induced radio interference

spectrum. Our proposed research plan consists of the characterization of EMI impulsive noise

induced by PD sources as well as the formalization of a coherent model, detailed and validated

linking the discharge process to the induced far-field wave propagation.
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1.5.1 Proposed research plan

In the following chapters, we will investigate the characterization and the modelling of EMI

impulsive noise induced by PD sources for wireless RF channels.

A proposed characterization process of EMI induced by PD

A measurement setup will be employed to capture the electromagnetic radiations from PD

sources in substations, and a wideband antenna will be used to cover the frequency range

of conventional wireless communications, which is 800 MHz to 5 GHz. A characterization

process is proposed using short-time analysis in which impulsive interferences can be fully

characterized in terms of first- and second-order statistics. Under this condition, statistical

distributions of PD quantities can be represented over time (e.g. PRPD) and frequency (e.g.

PSD).

A physical model of EMI induced by PD

We propose the first model of impulsive EMIs, which is characterized by the cyclostationary

process under AC voltages. We formally link the physical characteristics of PD to the induced

electromagnetic radiations. Assuming a PD source as an electric dipole, the ionization process

leads to a conducting channel in which currents and charges generate electromagnetic wave

radiations. Therefore, there is a magnetic potential vector source and an electric scalar potential

source in which potentials can be expressed by solving Lorenz gauge condition equations in

the far-field region. Using our proposed characterization process, experimental results are

compared to the results of simulations to validate the effectiveness of our approach.

A generalized model of impulsive EMI in substations

We propose a generalized model of impulsive EMI in substations using second-order statistics.

Measurements in substations show that impulsive noise from PD activity are transient impul-

sive waveforms. Moreover, in the far-field region, the presence of multiple reflectors produces
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multiple reflected EM waves. As a result, the impulsive waveforms measured by an antenna are

distorted both by the propagation of the EM waves and the discharge source itself. Hence, we

may assume that PDs in HV equipment have a spectral signature whose the interference radio

spectra are distorted by multipath propagation effects. Time series models can approximate

the spectral characteristics of PDs from data with a reasonable number of parameters. We have

proposed a validation procedure to check the adequacy of the time series models (the goodness-

of-fit). The latter is measured by a statistical analysis of the residuals. We show that the random

behaviour of a transient impulsive waveform can be simulated using a heteroskedastic, white

Gaussian noise. To validate our approach, experimental results are compared to the results of

simulations.

A complete generalized model of impulsive EMI induced by PDs is proposed by using a spatial

and temporal Poisson point process (the Poisson field of interferers) in which transient impul-

sive waveforms are emulated by our proposed time series models with first-order statistics of

PDs obtained from data. The Poisson field of interferers model allows for the identification

of some interesting statistical properties of moments, cumulants and probability distributions.

These can, in turn, be utilized in signal processing algorithms for fast PD identification, local-

ization, and impulsive noise mitigation techniques in wireless communications in substations.



CHAPTER 2

MEASUREMENT AND CHARACTERIZATION OF EMI FROM PD ACTIVITY IN
HIGH-VOLTAGE SUBSTATIONS

2.1 Introduction

The phenomenon of impulsive noise is generated by PD sources in high-voltage substations.

A PD generates a current impulse, acoustic noise, visible and ultraviolet (UV) light and elec-

tromagnetic radiation, and accordingly its presence can be detected via several measurement

methods. In this chapter, PD measurement methods that are based on the detection of elec-

tromagnetic radiations. These PD instrument detectors have the advantage to be non-invasive

measurement methods for the HV equipment as well as one can assess impulsive EMI threats

to wireless communication systems.

This specific radio noise is a source of interference for the radio communication systems.

In the literature, electromagnetic radiations from PD activity have been measured in sev-

eral substations (Pakala and Chartier, 1971; Pakala et al., 1968; Portugués et al., 2003; Por-

tugués and Moore, 2006; Shan et al., 2011). However, the measurement setup employed does

not cover the frequency range used by conventional wireless communications, and so the im-

pulsive noise characterization is often incomplete. Inspired by related works in PD current

measurements and characterization (Brunt and Kulkarni, 1990; Brunt, 1991; Levesque et al.,

2010; Hudon and Bélec, 2005), we have developed a characterization process in which the

impulsive electromagnetic radiations from PD activity are fully characterized by the amplitude

of the power density, inter-arrival time, occurrence and spectrum.

The main objective in this chapter is to provide a non-invasive measurement and detection

method for the characterization of the electromagnetic radiations induced by PDs. This infor-

mation can then be applied towards the development of rapid on-line remote monitoring and

diagnostic tools in HV equipment, and/or for characterizing and modelling wireless channels in

substations. These impulsive interferences are measured using a wideband antenna surrounded
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by HV equipment in normal operation. This work is based on Au et al. (2013), in which results

are extended to the second-order of characterization (spectrum).

The first-order statistics are obtained from the measured data based on short-time analysis us-

ing a spectrogram and detection peak in instances when the power densities and occurrences

of these impulses have been estimated. A denoising process, based on wavelet transform and a

threshold, is implemented to improve the PD detection. Under these conditions, a full PD char-

acterization can be achieved by using the phase-resolved partial discharge (PRPD) representa-

tion and other first-order statistical distributions. The waveforms and spectral characteristics

of these impulses can be analysed based on autocorrelation function (ACF) and spectrogram.

This chapter is organized as follows: in Section 2.2, the measurement setup that has been em-

ployed is presented. A wideband antenna is used to measure and characterize impulsive noise

that is induced by PDs in the frequency range of 800 MHz to 5 GHz. In Section 2.3, signal

processing tools are presented for PD characterization in substations. In Section 2.4, measure-

ment campaigns in a 735 kV outdoor substation are presented. The proposed characterization

process is applied to the measurements in the substation when significant characteristics of

these PD impulses can be identified. Section 2.5 concludes this chapter with a brief summary

of our findings and suggestions for possible improvements in PD characterization methods.

2.2 The measurement setup

A wideband antenna is used for PD characterization in substations. The measurement setup is

as follows:

• a wideband log-periodic antenna from Rhode and Schwartz (HL050) in the frequency range

of 800 MHz to 26 GHz, in which the antenna gain is 8.5 dBi;

• a passband filter in the frequency range of 780 MHz to 3.2 GHz, in which the loss is less

than 1 dB. It allows for the reduction of unwanted signals below approximatively 800 MHz;
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• a radio frequency amplifier in the frequency range of 30 MHz to 3 GHz. The output signal

power of the filter can reach 12.8 dBm to ensure a better signal-to-noise ratio. The gain is

around 20 dB;

• a broadband limiter to protect our oscilloscope against unwanted signals up to 2.5 W in the

frequency range of 30 Hz to 6 GHz;

• a serial data analyser from LeCroy to capture signals up to a maximum of 256 million

samples. The maximum sample rate is 40 Gs/s.

In the measurement campaign, the observation time is 20 ms and the sample rate is Fs = 10

Gs/s. Hence, 200 M samples are recorded. The electromagnetic radio noise in substations can

be measured in the frequency range of 800 MHz to 5 GHz. The measurement campaign has

been conducted in specific locations in the substations when radiations from PD sources are

significant.

2.3 An experimental characterization of the discharge sources

2.3.1 Amplitude of measured signals

Electromagnetic radiations generated by PD sources are characterized by any RF gain in the

measurement setup by removing the antenna factor. As a result, the amplitude of the measured

signal in voltage (V) is converted into electric field strength in (V/m).

We denote u(θ , t) as the impulsive noise waveform measured in electric field strength (V/m),

where θ is a set of random variables characterizing its duration, occurrence and other physical

parameters. By denoting um(θ , t) as the impulsive waveform measured in voltage (V), we have:

u(θ , t) = um(θ , t)
√

Z04π
RGrλ 2

(2.1)

where R is the load resistance and Gr is the gain of the RF system including the filter, the RF

amplifier and the antenna. Z0 = 120π Ω is the freespace impedance and λ is the wavelength
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of wideband antenna. Note that this relationship is valid in far-field conditions. In practice, PD

sources and the antenna are separated by several meters, thereby establishing far-field condi-

tions.

2.3.2 Signal processing tools for impulsive noise measurement

2.3.2.1 The Denoising process

In practice, the measured signals consist of overall background noise produced by thermal

noise in RF components, interleaving artefacts, clock feedthrough noise in the scope and RF

signals which come from cellular phones at 1.7 and 1.9 GHz. The resulting noise received by

the antenna is written as:

x(θ , t) = ∑
k

uk(θ , t)+n(t) (2.2)

where n(t) is the signal of the overall background noise. Over a long observation time, the

presence of many impulses is a superposition of impulsive transient waveforms, where the

occurrences are randomly distributed over this interval of time.

By using a denoising process, the overall background noise can be removed to ensure a better

temporal and frequency location of each impulse. We use the wavelet transform to which a

threshold has been applied to remove low wavelet coefficients. The wavelet transform is used to

decompose a signal on a wavelet orthonormal basis. It defines a multi-resolution representation

of the signal (Mallat, 1998).

The discrete wavelet transform is based on the convolution of the signal with a pair of quadra-

ture mirror filters. The signal is decomposed by these filters successively. Since impulsive

components are above the background noise component, their wavelet coefficients are higher

than the background noise (Mallat, 1998). Low coefficient values can be set to zero by a hard

threshold defined by Donoho (Donoho and Johnstone, 1994) such that the threshold Th is given

by:

Th = σi
√

2log(Mi) (2.3)
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where σ2
i is the variance of the background noise and Mi is the number of samples for a given

level of decomposition i. Krim et al. (1999); Donoho and Johnstone (1994) have shown that

the background noise standard deviation is estimated by:

σi =
Medi

0.6745
(2.4)

where Medi is the estimated median value of the signal. Next, impulses are extracted by rescal-

ing the threshold value at each decomposition level, and the reconstructed signal is obtained

by the inverse of the wavelet transform. The denoising process can be summarized by Figure

2.1. The wavelet decomposition is applied to our measurements x(θ , t), where low wavelet co-

efficient values are set to zero by hard threshold Th at each level of decomposition. Impulsive

components can be estimated by using the inverse of wavelet transform. An extensive analysis

on denoising PD signals shows that a suitable estimation of impulsive transient-noise wave-

forms can be performed using Daubechies wavelets with 8 vanishing moments for 30 levels of

decomposition, (Ma et al., 2002; Satish and Nazneen, 2003; Au et al., 2013).

Wavelet Decomposition
x(θ, t)

Threshold

Wavelet Recomposition∑
k ûk(θ, t)

Th

Figure 2.1 Denoising

process using wavelets
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2.3.2.2 Short-time analysis for impulsive signals

Over a long observation time, many impulses can be observed in our measurements with dif-

ferent time occurrences. When their amplitude is significant, it is reasonable to say that the

process is non-stationary. In such instances, it may be useful to conduct a short-time analysis

to preserve information regarding the time-frequency location of impulse events.

Spectrograms can be used to yield a time-frequency representation of measured signals. Based

on the short-time Fourier transform, impulses can be written as follows:

U(θ , tw, f ) =
∫ +∞

−∞
u(θ , t)w(t− tw)e− j2π f tdt (2.5)

where w(t) ∈L 2(R) is a square-integrable temporal window function with a length of tw. The

spectrogram can be computed by the squared magnitude of the STFT as:

Suu(θ , tw, f ) =
1

Z0
|U(θ , tw, f )|2 (2.6)

where each segment Suu(tw, f ) is the power density of the process located in (tw, f ). To ensure a

better time-frequency localisation, we have to define properly the window function, the number

of samples that overlap between adjoining sections and the number of FFT. These parameters

will be defined in the next section.

2.3.2.3 Temporal location of an impulse

PD quantities can be estimated while maintaining their temporal locations. This allows for the

study of first-order statistics in terms of power density, inter-arrival time and time occurrence.

The power density of PD sources can be estimated using the marginal time condition in a

selected bandwidth Δ f near a given resonant frequency f0, as follows:

Suu(θ , tw) =
1

Z0

∫ f0+Δ f/2

f0−Δ f/2

∣∣U(θ , tw, f )
∣∣2

〈w(t),w(t)〉 d f (2.7)
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where 〈w(t),w(t)〉 is defined by:

〈w(t),w(t)〉=
∫ +∞

−∞
w(t)w∗(t)dt (2.8)

and w∗(t) is the complex conjugate of w(t).

An impulse detector is used for an experimental characterization of PD sources as illustrated in

Figure 2.2. First, impulsive noise emitted by PD sources is extracted from overall background

noise via a denoising process. Next, the power density of each impulse is calculated using the

short-time Fourier analysis. We use peak detection to measure the power density value at tw,

denoted as Pd . PD sources can be characterized in terms of their power spectral density.

Denoising Short-time
Analysis

Detection Peaks

Statistical
study

Impulse Detector

x(θ, t)
∑
k
ûk(θ, t)

Waveforms

Spectrum
and

Figure 2.2 Characterization process

2.3.3 Characterization metrics definition

We define characterization metrics based on the probability distributions of some physical pa-

rameters such as amplitude, inter-arrival time and occurrence (first-order statistics), as well as

power spectral density and autocorrelation function (second-order statistics).
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2.3.3.1 Characterization based on first-order statistics

Inspired by related research projects (Shan et al., 2011; Portugués et al., 2003; Au et al., 2013),

we define the first-order characterization metrics for the PD sources under AC voltages in terms

of:

• the power density of impulsive noise radiations Pd distribution (W/m2);

• the discharge occurrence tn distribution (s);

• the inter-arrival time Δt distribution (s).

These metrics are expressed as p(x)dx, which shows the probability that a discharge event

has a value between x and x+dx, independent of previous events. The phase-resolved partial

discharge (PRPD) representation is useful to show the power density distribution in a restricted

interval time between ti−1 and ti where δ ti = ti− ti−1 (Brunt, 1991). PRPD is expressed as:

p(Pd|δ ti) =
∫ ti

ti−1

p(tn)p(Pd)|tn)dtn (2.9)

where p(tn) is the probability per time unit of an impulse occurrence at tn ∈ [ti−1, ti]. p(Pd|tn)
determines the probability of a discharge event having a power density Pd if its occurrence

is tn. The PRPD representation is widely used in the study and analysis of these discharge

sources on insulation systems (Levesque et al., 2010; Bartnikas, 2002; Hudon et al., 2008;

Levesque et al., 2013). Because these sources are typically generated by AC voltages, the

processes are cyclostationary. Therefore, the PRPD representation can be used to characterize

the occurrences and power densities of these EMI sources per unit time or phase.

2.3.3.2 Characterization based on second-order statistics

Second-order statistics are defined by power spectral density (PSD) and autocorrelation func-

tion (ACF). It might be difficult to characterize non-stationary random processes of real-valued
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functions using second-order statistics. Nevertheless, PSD and ACF can be estimated using nu-

merical methods. By taking our measurements as a discrete-time signal u(n), the relationship

between the time variables t and n is given by:

t = nTs (2.10)

where Ts is the sampling period. Moreover, we assume that a characterization using second-

order statistics is restricted to a single impulse delimited by its duration. The length of the

measured discrete-time signal is given by M. As a result, an estimation of PSD and sample

ACF can be provided. The estimated PSD can be obtained by using the periodogram via

discrete Fourier transform. For an impulse u(n) sampled at Fs samples per unit time, the

estimated PSD is given by:

Puu( fk) =
1

M

∣∣∣∣ M

∑
n=1

u(n)e−2πn fk

∣∣∣∣
2

(2.11)

where the frequency is given by fk = k/M, where k = {0,1, · · · ,M−1}, and M is the number

of observations.

The ACF can be found by taking the covariance of u(n) and u(n− i). We define the autocorre-

lation for a lag i as ri such that:

ri =

M
∑

n=i+1
(u(n)− ū)(u(n− i)− ū)

M
∑

n=1
(u(n)− ū)2

(2.12)

where ū is the estimated mean value of the measured impulse. The ACF is used to check

whether samples noises are correlated when an impulse is observed. Accordingly, it allows us

to select an approach to modelling impulsive noise waveforms that fits our measurements using

a discrete-time filter.
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2.4 Measurements in substations

In this section, measurements from a 735 kV substation are presented. Although many mea-

surements were made in different locations within the substation, only one location is presented

in this thesis. These interference sources are randomly located in space and can be character-

ized based on our proposed metrics.We used AC power-lines in the scope to synchronize our

measurements. Since these PD sources are also generated by the three-phase AC voltages, the

measured occurrences can undergo a phase shift. Waveforms are captured periodically at the

beginning of each cycle of the AC power line.

2.4.1 Description of the environment

The antenna is surrounded by HV pylons with 735 kV overhead power-lines, circuit breakers,

a transformer and bush bars. Measurements were made in an outdoor substation where the

atmospheric pressure is 102 khPa, and the temperature is 20◦C. An environment typical of a

735 kV substation is shown in Figure 2.3. In this substation, 30 waveforms are captured. The

observation time is 20 ms sampled at 10 Gs/s.

Figure 2.3 Typical HV equipment in the 735 kV substation
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The measurement data consist of a train of impulses randomly located in time. The spectrogram

is used to detect each impulse for which power density, occurrence, and inter-arrival time can

be calculated. For a suitable time-frequency localisation, we use a Hamming window whose

length is set according to the average duration of impulses. In this measurement point, the

average duration is approximately 80 ns. As a result, the Hamming window length is set at

1024 samples, i.e 102.4 ns. The length of the FFT is Nfft = 2048 and 50% overlap is used. The

power density of each impulse is calculated in the bandwidth range of 0.2 to 5 GHz by using

the marginal time condition (see Equation (2.7)). Since the power density of the ambient noise

without any discharges is about −43.65 dBW/m2, Pd(tw) value is located at each signal peak

above −39.03 dBW/m2.

2.4.2 First-order statistics

PD processes can be characterized by first-order statistics such as amplitude, inter-arrival time

and occurrence. These parameters provide relevant information regarding the PD mechanism,

its physical process and electrical aging of HV equipment. These statistical quantities are

useful for the characterization of wireless channels in substations.

2.4.2.1 PRPD representation

EMI from PD can be characterized using PRPD representation, as depicted in Figure 2.4. It

is clear that PD characteristics can be described in terms of time-dependent random variables

when PD activity can follow the cyclostationary process induced by AC voltages. The power

density of these impulses are randomly distributed such that some PDs can reach 15 mW/m2.

Impulsive events occur randomly over time, even though they take place at every half-cycle

of the AC voltage. Note that since we have used the AC power-line of the scope to capture

impulses periodically, the measurement setup is not synchronized with AC voltages applied to

PD sources. Thus, a phase shift is observed in the PRPD.
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Figure 2.4 PRPD of EMI from PD activity in

a 735 kV substation

The total PD rate is 408 discharges per cycle when the number of PD events is more predomi-

nant during the first half-cycle, i.e within the time interval of 1 to 9.5 ms. Indeed, the PD rate

is 235 discharges per cycle during the first half-cycle whereas the PD rate is 129 discharges

per cycle during the second one. The average total power density is 1.4655 mW/m2. The av-

erage power density during the first half-cycle is 0.7891 mW/m2 and the second one is 0.5637

mW/m2. These measured quantities are summarized in Table 2.1.

Table 2.1 Summary of statistical quantities

Total PD PD first half-cycle PD second half-cycle

Rate (disch. per cycle) 408 235 129

Avg. power density (mW/m2) 1.4655 0.7891 0.5637
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2.4.2.2 Statistical distribution of PD characteristics

PD characteristics can be presented in terms of statistical distributions, such as PDFs and com-

plementary cumulative distribution functions (CCDFs) of power density, inter-arrival time and

time occurrence. The CCDF is given by:

F̄X(x) = 1−
∫ x

−∞
fX(τ)dτ (2.13)

where fX is the PDF of random variables produced by PD activity. PDFs and CCDFs are de-

picted in Figures 2.5 to 2.7. Power density and IAT distributions follow power law distributions

with a fast decay (see Figures 2.5 and 2.6). The average power density is P̄d = 1.4655 mW/m2

and the average IAT is Δ̄t = 47μs. PD occurrence distribution within a cycle has two separate

Gaussian distributions. Under AC voltage, PD discharges occur at every half-cycle because the

critical value for a discharge is reached when the local electric field in the PD site is intense.

This critical value and the intensity of the electric field affect amplitude, IAT and occurrence

of PD processes. On average, the majority of discharges take place at 6.2 ms during the first

half-cycle of the AC voltage and at 12.56 ms during the second one.
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Figure 2.5 Power density distribution
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Figure 2.7 Time occurrence distribution

EMIs induced by PD sources are measured from 800 MHz to 5 GHz. As a result, they can

be interference sources for wireless communications. Such events follow a cyclostationary

process due to AC voltages. The received signal emitted by a transmitter can be corrupted

by several impulses with high amplitude. The deployment of wireless sensor networks in

substations can pose several problems pertaining to their reliability due to the typical EMIs

that are emitted by PD sources.
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2.4.3 Waveforms and second-order statistics

Second-order statistics can be useful in characterizing RF signals from PD activity. It allows

for the analysis of the statistical distributions of an EMI’s power density over frequencies, and

also facilitates the identification of their spectral characteristics.

2.4.3.1 Typical waveform and spectrogram

A typical waveform from PD activity measured in the substation is depicted in Figure 2.8. The

PSD, the ACF and the spectrogram are used to represent the RF signal. To have a suitable

time-frequency resolution of the impulse, we use a Hamming window of tw = 3.2 ns length.

The FFT length is Nfft = 512 and 70% overlap is used.

The waveform of a discharge is characterized by a short rise time (4 ns), a long fall time (50

ns) with damped oscillation around f0 = 800 MHz, and high amplitude, maximal amplitude

0.75 V/m. During the rise time, the discharge can cover a large frequency range of 800 MHz

to 3 GHz when the discharge amplitude is high. During the fall time, it covers a frequency

range of 800 MHz to 1 GHz. The ACF exhibits a damped oscillation decay due to the damped

oscillation and transient effect of the measured impulse.

An impulse generated by a PD can be approximated by a damped harmonic oscillator such

that:

u(t) = u0(e−at− e−bt)sin(2π f0t +ϕ) (2.14)

where u0 is the amplitude of the impulse, a and b are respectively rise time and fall time decay,

f0 is the resonant frequency and ϕ is the phase shift of the measured impulse.

The ACF of u(t) in Equation (2.14) can be approximated by:

Ruu(τ) = E [u(t)u(t + τ)]≈ u2
0

2
(e−aτ + e−bτ)cos(2π f0τ) (2.15)

where τ is the time lag.
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Figure 2.8 Typical impulsive waveform

From these measurements, one can conclude that memoryless impulsive noise models can be

limited. Indeed, these noise models generate impulses in one sample in which the resulting

noise process is iid. Impulses from PD activity exhibit bursty behaviour and the ACF indicates

that, in the presence of transient impulsive noise induced by PD, samples are highly correlated

(see damped oscillated decay in the ACF).

2.4.3.2 Power spectral density

The spectral characteristics of PD impulses can be provided via second-order statistics. The

periodogram is used to estimate the PSD of these impulses in this work.

Power spectral density of an impulse

The PSD of measured PD impulse before and after the denoising process are depicted in Figure

2.9. When the wavelet transform is applied to the measurements, low wavelet coefficients are

considered to be ambient noise components. The hard threshold removes them and keeps
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high wavelet coefficients, i.e impulsive components. As a result, we have a good estimation

of the spectral characteristics of an PD impulse. Furthermore, deep fades can be observed at

some frequencies. This might be due to the presence of multipath effects in which multiple

reflections of EM waves are observed by the antenna.
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Figure 2.9 Waveforms and PSD of an impulse

Average Power spectral density

Based on the total number of Ndisch = 12,400 measured discharges, the average PSD is esti-

mated by using the periodogram in Equation (2.11) as:

P̄xx( f ) = E [Pxx(θ , f )]

=
1

Ndisch

Ndisch

∑
l=1

1

M

∣∣∣∣ M

∑
n=1

x(θl,n)e−2πn f
∣∣∣∣
2 (2.16)

where x(θl,n) is raw or denoised data. M is the number of observations. This has to be larger

than the duration of impulses. The average PSD is depicted in Figure 2.10 where M = 1024
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samples, i.e 10.24 μs. In Figure 2.10.(a), the average PSD is calculated from noisy data. The

green curve is the measured ambient noise PSD. RF communications can be seen around 900

MHz and around 1.9 GHz. Harmonics at 1.25, 2.5 and 3.75 GHz are created by interleaving

artefacts and clock feedthrough from the oscilloscope. On average, PD impulses can cover a

frequency range of 800 MHz to 2 GHz.
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Figure 2.10 Average power spectral density

2.5 Conclusion

In this chapter, a non-invasive PD measurement using wideband antenna was proposed for

EMIs induced by PDs in substations. The measurement setup still requires an AC power-line

to synchronize with AC voltages in substations. In addition, signal processing tools using

short-time analysis are presented for a full PD characterization by their electromagnetic radi-

ations from which first-order and second-order statistics can be derived. These tools can be

implemented into any wireless electronic devices using antennas for a rapid and on-line PD

diagnostic in HV equipment. By using short-time analysis, the user has to define the time win-

dow w(t), its length tw and the length of the FFT to ensure a suitable time-frequency resolution
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of impulses. Compared to Pakala and Chartier (1971), Pakala et al. (1968), Portugués et al.

(2003), Portugués and Moore (2006) and Shan et al. (2011), our proposed characterization

metrics are relevant because the physical characteristics of HV equipment and the induced PD

electromagnetic radiations are taken into account.

These signal processing tools are also valuable for the characterization of wireless commu-

nication channels in the presence of impulsive noise in substations. From the measurement

campaign in a 735 kV substation, within a frequency range of 800 MHz to 5 GHz, we have

seen that the spectrum of the impulsive EMIs can cover a large frequency range of 800 MHz

to 2 GHz on average. Thus, conventional communications systems, such as IEEE 802.15.4

which uses 915 MHz in the Americas and 868 MHz in Europe, ISM bands can be interfered

by PD impulses. One remarkable characteristic of PD is that the rise-time is very rapid so that

the spectrum can be up to 3 GHz, which can overlap communication systems operating at 2.4

GHz. Indeed, researchers have shown experimentally that performances of conventional wire-

less communication systems using 2.4 GHz ISM bands are degraded by PDs (Sacuto et al.,

2012; Madi et al., 2011; Bhatti et al., 2009, 2012; Shan et al., 2008b).

From our observations, EMIs induced by PD activity can be summarized as follows:

Random behaviour of PD

In substations, PDs take place under AC voltages in HV installations. When the electric field is

sufficiently high, the ionization process along the insulation surface of HV equipment leads to

PD. Their electromagnetic radiations can be detected by antennas in which conventional wire-

less communications operate. PD processes can be seen as time-dependent random processes

in which their occurrences follow a cyclostationary process due to AC voltages. Their occur-

rences, inter-arrival times and power densities are random processes due to fluctuations in gas

density, ionizing radiation, gas decomposition in cavities or dielectric surfaces, or because of

several other physical mechanisms.
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Transient impulsive noise

RF signals from PD activity create fast transient impulsive noise with high amplitude highly

above the average ambient noise power density. According to our measurements, they are

characterized by damped oscillations around 800 MHz with a rapid rise time (few ns) and a

fall time of 100 ns. They can be seen as non-stationary random processes due to the presence

of multiple reflections of EM waves.

In future work, an antenna array can be used in our measurement setup for PD localisation

and identification. Under this condition, one can estimate the number of PD sources and their

locations. Our proposed PD characterization process can be applied so that PRPD can be

plotted for each PD source located in different HV equipment.

In the next chapter, a physical PD model is proposed based on physical mechanisms to which

the induced electromagnetic radiation can be linked. The measurement setup and the proposed

characterization process are used to demonstrate the efficiency of our approach by comparing

measurement and simulation results.



CHAPTER 3

A PHYSICAL MODEL OF EMI INDUCED BY A PARTIAL DISCHARGE SOURCE

3.1 Introduction

Electromagnetic interferences (EMIs) can be categorized as either natural or man-made noise.

Impulsive noise can predominate naturally within atmospheric noise, such as lightning dis-

charges or cosmic radiations. It may also occur in man-made noise sources, such as power-line

distribution and transmission networks or ignition systems. Modelling these phenomena is an

active research area due significant impact of EMIs on the performance of communication sys-

tems (Ndo et al., 2013; Madi et al., 2011; Shinde and Gupta, 1974; Zimmermann and Dostert,

2002; Moose and O’dwyer, 1986; Meng et al., 2005; Middleton, 1977). In substation envi-

ronments, electromagnetic interferences are induced by corona discharges. They take place

within or along the insulation surface of high-voltage equipment like transformers, powerlines,

bushing bars, etc. The high voltages applied to electrodes that are separated by air cavities and

air gaps can lead to discharges when the dielectric strength of the air is surpassed. Currents and

charges induced by the discharge mechanism generate electromagnetic radiations (Rao et al.,

2007; Okazaki et al., 2005; Bartlett et al., 1999; Minegishi et al., 1989). The electromagnetic

waves interfere with conventional wireless communication systems that use radio frequency

such as TV, FM bands (CIGRÉ, 1974; Arai et al., 1985), and/or industrial, scientific and medi-

cal (ISM) bands (Madi et al., 2011; Shan et al., 2007; Bhatti et al., 2009). Regarding the latter,

the authors describe the impact on performances of conventional systems, and how they are

severely degraded by emissions of these electromagnetic interferences, which are induced by

discharges.

The primary interest in this chapter1 is to formalize a coherent, detailed, and validated model

that links the discharge process to the induced far-field wave propagation. To our knowledge,

1 This chapter is based on the published journal paper “A model of Electromagnetic Interferences In-

duced by Corona Discharges for Wireless Channels in Substation Environments” in IEEE Transaction

on Electromagnetic Compatibility, Vol. 57, No. 3 2015.
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this is the first complete and coherent approach model that links physical characteristics of

high-voltage installations to the induced radio-interference spectrum. The majority of the dis-

charge processes may be caused by partial discharges. This behaviour is distinct from other

classical models in the literature. Indeed, in substation environments, the applied voltage is

generally AC. As a result, occurrences of discharge events are cyclostationary processes which

vary according to the cycle of the AC voltage. Moreover, the emitted radiations occupy a wide

range of frequencies. The waveforms received through antennas are transient damped oscil-

lations whose their high amplitude far exceeds above background noise (Shan et al., 2008a;

Moore et al., 2006; Shan et al., 2011; Portugués et al., 2003; Au et al., 2013).

In this chapter, we propose the first model of these impulsive electromagnetic interferences

whose impulse events are cyclostationary processes and waveforms are transient impulses. We

adopt a physical approach to simulate partial discharges in which charge and current densities

of interference sources are deducted. The proposed model is inspired by models described in

Niemeyer (1995), Gutfleisch and Niemeyer (1995), and Fruth and Niemeyer (1992) in which

fundamental aspects of the discharge process have been taken into account. Then, the elec-

tromagnetic radiations from charge and current densities can be derived by using an electric

dipole approach of interference sources.

The chapter is structured as follows: in Section 3.2 and 3.3, we briefly describe the physical

aspect of the partial discharges (PD) process that takes place along the insulation surface. Then,

in Section 3.4, we model an electromagnetic (EM) radiation emitted by a partial discharge

source as an electrical dipole in which the interfering source’s current of charge density radiates

electromagnetic waves. A theoretical formalisation of these EM radiations is defined by using

retarded potential equations. Inspired by previous works (Shan et al., 2011; Portugués et al.,

2003; Au et al., 2013), we have defined characterization metrics to compare measurements

and the simulation results to validate the model in Section 3.5. Measurements are made in the

laboratory with a stator bar. Radiations emitted by partial discharge sources are characterized

by the phase-resolved partial discharge (PRPD), statistical distributions of power density, inter-

arrival time and occurrences. PD sources can also be characterized by power-spectral density
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(PSD) and impulsive waveforms. Results are discussed in Section 3.6 by comparing simulation

results and measurements with PD generated by a stator bar at 16 kVrms.

3.2 Partial discharge phenomenon and its mechanism

A partial discharge is an electrical discharge which partially bridges the insulation between

conductors. It is caused by imperfections within or along the insulation surface. These de-

fects could be gaseous inclusions containing voids, cracks in solid materials or bubbles in

liquids. From a physical point of view, PD is related to partial electrical breakdown phe-

nomena. When an electric field applied to a dielectric is sufficiently intense, an ionization

process occurs and leads to discharge. In addition to a high field stress, an initiatory electron

is required to discharge. Hence, a discharge occurs randomly in time, and has a time lag.

Several sources provide more thorough treatment of the discharge process (Niemeyer, 1995;

Gutfleisch and Niemeyer, 1995; Fruth and Niemeyer, 1992; Bartnikas, 2002; Townsend, 1910;

Loeb and Meek, 1940; Meek and Craggs, 1953).

A PD is characterized by a sudden drop in the local electric field due to the flow of electric

charges, causing a short current-impulse discharge. Radiations emitted by partial discharge

sources are random processes in terms of amplitude, the inter-arrival time between two suc-

cessive impulses and time occurrence. The random character of the process is explained by

complex physical mechanisms such as the presence of ionizing radiation, fluctuations in gas

density or gas decomposition, etc. (Brunt and Kulkarni, 1990; Brunt, 1991). In AC voltages,

impulsive events are cyclostationary and occur at every half-cycle of the applied voltage. An

example of a basic PD mechanism is shown in Figure 3.1. When the electric field is sufficiently

high to reach an exceeded value defined by Einc, a PD occurs. The impulse train is driven by

an AC voltage in this example. Δti is the inter-arrival time of subsequent PD events.
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Figure 3.1 Typical behaviour of discharge process

under AC voltage stress

Taken from Bartnikas and McMahon (1979)

3.3 The physical model of partial discharge source

Two physical parameters are required to initiate a discharge: the electric field stress amplitude

and the critical value that leads to the ionization process. In this section, we describe a phys-

ical model of the discharge process using models of the electric field stress and the discharge

occurrence in the ambient air.

3.3.1 Electric field stress

The amplitude of the electric field determines the amplitudes and rate of a PD. Depending

on the arrangement of electrodes and the presence of the space charge, the electric field dis-

tribution can be strongly non-uniform. PDs in substations are formed by non-uniform field

distributions due to asperities such as air cavities on insulation surface that have been degraded

by PD activities and high stress fields. The electric field along the insulation surface can be
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determined by an equivalent circuit a telegrapher’s equations and illustrated in Figure 3.2. The

presence of space charge is not considered.

Without space charges, the dielectric is represented by its conductivity at the interface of di-

electric surface-air, modelled by a resistance rs per unit length. Its permittivity is modelled by

a capacitance co per unit length. The term � denotes the width of the air gap.

�

Insulation

Grounded
Electrode

HV
Electrode

y

x z

Continuity
Boundary

a) Surface discharge generation

�

δxRs

Co Co

HV
Electrode

Grounded
Electrode y

x z

Continuity
Boundary

b) Equivalent circuit

Figure 3.2 Dielectric between a pair of HV electrodes and its

equivalent circuit

In the equivalent circuit, the electric field that is tangential to the insulation surface at the x

coordinate can be defined by the following equations:

∂U(x, t)
∂x

=−rsI(x, t) (3.1)

∂ I(x, t)
∂x

=−co
∂U(x, t)

∂ t
(3.2)

Let U∗ be the potential at the dielectric surface noted as:

U∗ =U0e jωt (3.3)

where U∗ is a periodic harmonic potential ∈ C, and U0 is the magnetude of the AC voltage.

Introducing boundary conditions, such that U(0) = 0 and U(�) = U0 (Kogan et al., 1995;
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David and Lamarre, 2006). In a given direction, x, the tangential electric field on the insulation

is expressed as:

E‖(x, t) =−
∂U∗(x, t)

∂x

E‖(x, t) =−αU0
cosh [(�− x)α]

sinh [�α]

(3.4)

with α =
√

jωrsco. If there are regions in which the electric field exceeds the Einc value, an

ionization process takes place and PD activity is observed. Furthermore, for a fixed value of

co, when rs → 1/co, the field distribution becomes uniform in the cavity and the local field

becomes E �U0/�. We assume the applied electric field E0(r, t) where r = (x,y,z) ∈ R
3 is

determined by the tangential electric field.

3.3.2 Discharge process

The area of the ionization process of air is defined when the amplitude of the electric field is

higher than the critical value. Electrons are released from the surface or at the cathode. The

deposited charges on the dielectric surface reduce the local field. As a result, the contribution

of PD events to the electric field is given by:

Ei(r, t) = E0(r, t)−Epd(r, t) (3.5)

where E0 is the local field due to the applied voltage between electrodes, Epd(r, t) is the re-

duced local field related to the discharge process. From Equation (3.5), PD activity is approxi-

mated by:

Epd(r, t) =
∞

∑
n=0

Eqnδ pd(r, t−Δtn) (3.6)

where δ pd(r, t) is a space-time function related to the electric field reduction during the dis-

charge process. Eqn is the contribution of the nth PD, and Δtn is the inter-arrival time between

two consecutive PD events. The critical value Ecr depends on a number of factors, such as dis-

charge type, the presence of a cavity or gap, the nature of gas or pressure temperature (Levesque
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et al., 2013). The critical value of a streamer discharge in a void can be used to initiate a dis-

charge, although PD does not take place in a spherical void, in keeping with related research

(Levesque et al., 2013; Niemeyer, 1995; Gutfleisch and Niemeyer, 1995). The threshold value

is a suitable approximation of the PD inception field. This is expressed as:

Einc = (E/P)crP
[

1+
B√
2P�

]
(3.7)

where (E/P)cr = 25.2 VPa−1m−1 and B = 8.6 m1/2 are constant values for the air (Gut-

fleisch and Niemeyer, 1995). P is the atmospheric pressure and � is related to air gap width.

Thus, PD occurs whenever the local field reaches Einc. Then, during the discharge process,

the local field is reduced until its residual field Eres is reached. This value is approximately

proportional to the critical field (Niemeyer, 1995; Gallimberti et al., 1985), such that:

Eres = γ(E/P)crP (3.8)

where γ is the dimensionless factor. Different values of γ can be assumed at different polarities

(Niemeyer, 1995). Under these conditions, by knowing Einc and Eres, the local field reduction

due to PD activity is expressed as:

Eq = Einc−Eres (3.9)

A high field stress is a necessary but insufficient condition to initiate a discharge. The presence

of an initiatory electron is required for a PD event. These electrons are produced from surfaces.

They are derived from a combination of physical processes such as field emission from cathodic

conductors, detrapping of electrons from traps at the insulator surface, collisions between ions,

or photo-ionization processes (Niemeyer, 1995). The surface emission can be modelled by

using the Richardson-Schottky formula (Levesque et al., 2013; Niemeyer, 1995) to model PD
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activity at insulation surfaces in the following equation:

Ne =
A
e

Sm exp

[
−Φ−√eE/(4πε0)

kBT

]
(3.10)

where Ne is the emitted electron rate from the surface of area A. e is the elementary charge,

Φ is an effective work function, E the electric field at the emitting surface, kB the Boltzmann

constant and T the temperature. Sm is the material surface state. Depending on the insulation

part or the conductive part, Sm can be written as:

Smc =CthT 2 (3.11)

Smi = ν0
q
A

(3.12)

where Smc is the characterization of the conducting part where Cth = 1.2 ·106 Am−2K−2 is an

universal constant. Smi is the characterization of the insulation part where ν0 � 1014 s−1 is the

fundamental phonon frequency and q is the deposited charge on the insulation by previous PD

events (Levesque et al., 2013; Niemeyer, 1995). The availability of initiatory electrons on the

surface determines the average delay between the time when the field reaches the critical value

Einc and the excess value required to initiate a discharge. Thus, PD occurrence can be delayed

due to these electrons emitted from the surface. The average time delay is expressed as:

τe =
1

Ne
(3.13)

The contribution of the surface emission gives stochastic properties of PD events. The cal-

culation of this time delay was made by von Laue (1925). It determines the probability that

a discharge will occur after the time when the field strength exceeds its critical value. This

effect is explained by the presence of free electrons which start an electron avalanche process.

Statistical properties, such as amplitude and time occurrence distributions of the PD activity,

are determined by these electrons. The number of the released electrons is assumed to be a ran-

dom value following the Poisson distribution law (Niemeyer, 1995; Brunt, 1991). Therefore,
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the probability of a PD occurrence is given by:

ppd = 1− pτe (3.14)

where ppd is the probability of a PD occurrence and pτe the probability of delayed electron

emission from the surface.

3.3.3 Current and charge density

When a PD occurs, charged particles move from cathode to anode via a conductive spark

streamer channel or electrical arc. During the discharge process, the electrical arc is seen as a

conductor. Under this condition, the current density J(r, t) flows uniformly in the conductor.

We assume the ionized air to be a plasma (Chang et al., 1991). We link the current density with

the electric field reduction and the plasma conductivity σ by:

J(r, t) = σEpd(r, t) (3.15)

The plasma conductivity is written as:

σ =
Ne2

meνc
(3.16)

where N is the density of electrons, e is the elementary charge, me is the electron mass and 1/νc

is the mean scattering time between subsequent charge collisions. The charge density induced

by a discharge can be written using the expression of the electric field induced by the discharge

process in keeping with Gauss’s law, such that:

ρ(r, t) = ε0∇ ·Epd(r, t) (3.17)

where ∇· is the divergence operator and ε0 the vacuum permittivity.
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3.4 The electromagnetic radiation of the interference source induced by partial dis-
charge

Due to the local ionization process, the ionized air becomes a conductor. Hence, charges

and currents are produced from the interference source. From the Lorenz gauge equation,

electromagnetic radiations can be derived from current and charge densities. In this section,

we assume a PD source to be an electric dipole. In the far field region, EM radiations and

power density are derived from the retarded potentials equations. Inspired by models in Rao

et al. (2007) and Moose and O’dwyer (1986), as well as many experimental results in Okazaki

et al. (2005), Minegishi et al. (1989), and Pakala et al. (1968), we propose a coherent approach

to model electromagnetic impulsive transient noise interferences induced by corona discharges

on high-voltage installations.

3.4.1 Electric dipole formulation

Due to the movement of charges, we assume that the ionization process leads to a conducting

channel in which currents and charges generate electromagnetic wave radiations. Therefore,

from the local ionization area, there is a magnetic potential vector source and an electric scalar

potential source produced by a current density and a charge density, respectively. From an

antenna located at a point r in the three-dimensional space in the far field region, potentials are

written by solving Lorenz gauge condition equations defined by:

∇ ·A(r, t)+ εμ
∂V (r, t)

∂ t
= 0 (3.18)

where A(r, t) and V (r, t) are respectively the magnetic vector potential and the electric poten-

tial. By assuming the harmonic time dependence, potentials A(r, t) and V (r, t) are written from

the solution to the Equation (3.18) respectively as:

A(r, t) =
μ
4π

∫
v′

J(r′, t− t ′)
e− jω√εμ|r−r′|

|r− r′| dv′ (3.19)
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V (r, t) =
1

4πε

∫
v′

ρ(r′, t− t ′)
e− jω√εμ|r−r′|

|r− r′| dv′ (3.20)

where J(r, t) is the current density and ρ(r, t) the charge density produced by the interference

source. The delayed time propagation from the interference source to an antenna respectively

positioned at r′ and r is represented by t ′ = |r′ − r|/c, where c is the speed of light in vacuum.

These retarded potentials equations can be seen as spatial convolution products by Green’s

functions.

It is worth remembering that during the discharge process, an electrical arc is a conducting

channel where charge and current densities generate electromagnetic waves. Consequently,

it is seen as a wire conductor when its length ζ is lower than the wavelength λ . Based on

Equation (3.6), the expression of the current impulse Ipd(t) produced by the interference source

is written as:

Ipd(t) =
∞

∑
n=0

σEqnδpd(t−Δtn) (3.21)

The integration in Equation (3.19) allows us to link the expression of the current Ipd(t) and the

length of the wire conductor ζ by Ipd(t)ζ . Now, the magnetic- and electric-radiated fields can

be determined by using:

Hr(r, t) =
1

μ
∇×A(r, t) (3.22)

Er(r, t) =−∇V (r, t)− ∂A(r, t)
∂ t

(3.23)

We place an antenna in the far field region where r� λ . The radiated fields by PD activity in

spherical coordinates esph = (er,eθ ,eϕ) are:

Hr(r,θ , t) =
jβ0Ipd(t)ζ

4πr
sinθe− jβ0r · eϕ (3.24)

Er(r,θ , t) =
√

μ0

ε0

jβ0Ipd(t)ζ
4πr

sinθe− jβ0r · eθ (3.25)

where β0 = ω√ε0μ0.
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3.4.2 Power radiation of the interference source received at the antenna

By assuming isotropic radiations in the far field region, the Poynting theorem allows for the

expression of the instantaneous power radiation emitted by the interference source as:

Ppd(t) =
∫

S
S(r,θ , t)dS

=
∫ 2π

0
dϕ

∫ π

0
Z0|Ipd(t)|2

(
β0ζ
4πr

)2

sin3 θr2dθ

= 2πZ0
|Ipd(t)|2

3

(
ζ
λ

)2

(3.26)

where S(r,θ , t) = Er(r,θ , t)×H∗r (r,θ , t) is the Poynting vector of PD radiation and Z0 =√
μ0/ε0 = 120π Ω. Since impulsive noise radiations are characterized by a fast transient

component, each impulse can be determined by its power density Pd(tn) such that:

Pd(tn) =
1

4πr2

∫ tn+tw/2

tn−tw/2
Ppd(t)dt (3.27)

where r is the distance between the interference source and the antenna, tw is the duration of

each impulse and tn is the time occurrence. If the observation point is an electric dipole such as

an antenna, the radiative power received depends on its effective surface or effective aperture

Ae, defined by:

Pr(θ ,ϕ) = Ae(θ ,ϕ)Pd (3.28)

where θ and ϕ are angular coordinates of the beam.

3.4.3 Modelling impulsive waveforms and PSD

Impulsive waveforms emitted by partial discharges can be modelled numerically by using a

linear time-invariant (LTI) filter, defined in the z-domain as:

U(z) = Hm(z)ε(z) (3.29)
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where ε(z) is the input of the LTI defined as a Dirac impulse, U(z) is the resulting impulsive

waveform and Hm(z) is the LTI filter. The latter includes both the frequency response of the

measurement setup and the discharge. We have interpolated the frequency response of the

measurement setup according to data sheets. Hm(z) is approximated by a digital resonator

written as:

Hm(z) = G
1− z−2

1− (2b0 cosω0)z−1 +b2
0z−2

Hms(z) (3.30)

where Hms(z) is given by the frequency response of the measurement setup, ω0 is the resonant

frequency, b0 gives the bandwidth and G is the normalization gain of the filter given by:

G =
(1−b0)

√
1+b2

0−2b0 cos 2ω0√
2(1− cos 2ω0)

(3.31)

Parameters of Hm(z) will be set. The model will be compared to experimental results in terms

of average power spectral density (PSD) and waveforms in the discussion.

3.4.4 Brief summary of interference induced by discharge source

The interference source can be summarized by the following statements:

• a high electric field stress and an initiatory first electron are required to initiate discharges;

• the availability of these delayed electron emissions affects the stochastic properties of im-

pulses in terms of power radiation, time occurrence and inter-arrival time;

• a PD activity reduces the local electric field due to deposited charges;

• discharge events follow the cyclostationary process when an AC voltage is applied;

• during the discharge process, charge and the current densities are produced by an electrical

arc;

• the electromagnetic radiations are derived from charge and the current densities during the

discharge process. An antenna can receive these radiations as an impulsive transient noise.
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An example of a computation of a PD process occurring at every rise of the AC voltage is

illustrated in Algorithm 3.1, with the presence of a first electron to initiate discharges. The

following notations are introduced for the implementation of partial discharges :

• l is the number of the cycle of the AC voltage;

• tinc+ and tinc− are the time of the first PD occurrence during the first half-cycle and the

second, respectively;

• tn is the time occurrence of the nth impulse;

• E0(t) is the local field applied to the electrodes, which is a AC voltage;

• Eq = Einc−Eres is the local field reduction due to the PD process;

• ΔE = Einc +Eres corresponds to the contribution of the electric field between the last PD

event and the first impulse at the last half-cycle;

• S(r,θ , t) is the Poynting vector;

• Ppd(t) is the power density of impulsive radiations emitted by a partial discharge source.

3.5 Experimental characterization process of the interference source

3.5.1 Definition of characterization metrics

Based on Chapter 2, the proposed model can be validated according to the characterization of

PD sources as follows:

• power density of impulsive noise radiations Pd distribution (mW/m2);

• PD occurrence tn distribution (s);

• inter-arrival time Δt distribution (s).
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Algorithm 3.1 Computation of PD process sequence during the first half-cycle

Data: Einc, Eres and E0(t)
Result: Compute Ppd(t) of PD process

1 Ensure ∃tn−1 ∈ t =
[
tinc− ; (2l−1)π + π

2

]
, a PD impulse exists for l > 0;

2 if l > 0 then
3 if ∃tn ∈ t =

[
tn−1 ; 2lπ + π

2

]
, E0(tn)−E0(tn−1) = ΔE then

4 Ppd(tn)←
∫

S S(r,θ , tn)dS;

5 end
6 n← n+1

7 end
8 while tn−1 < t ≤ 2lπ + π

2 do
9 if tn,∈ t,E0(tn)−E0(tn−1) = Eq then

10 Ppd(tn)←
∫

S S(r,θ , tn)dS;

11 n← n+1;

12 else
13 Ppd(t)← 0;

14 end
15 end

These first order statistics give PD occurrence and its power density distribution per unit time or

phase. For an isotropic antenna, the measured signal in voltage Vm(t) is converted into electric

field strength xm(t) defined by:

xm(t) =Vm(t)

√
Z04π

RGrλ 2
(3.32)

where R is the load resistance, Gr the gain of the RF system and λ the wavelength of the wide-

band antenna. In practice, the measured signal contains impulsive noise emitted by discharges

and the overall background noise. An impulse detector is used for an experimental characteri-

zation of PD. First, impulsive noise emitted by partial discharge sources is extracted from the

overall noise via a denoising process using a threshold applied to wavelet coefficients. Then,

the power density of each impulse is calculated by using a short-time Fourier analysis. PD pro-

cesses are characterized in terms of statistical distributions and also in terms of power spectral

density (dBW/m2/Hz).
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3.5.2 Denoising process

The power spectral density of the radiations that are received from partial discharge sources

can be estimated properly by using a denoising process that extract impulses from the overall

noise. The extraction procedure is based on wavelet transform. Then, a threshold is applied to

wavelet coefficients. By estimating the background noise level such as in Donoho and John-

stone (1994), impulses are extracted by rescaling the threshold values at each decomposition

level and the obtained signal is reconstructed by the inverse of wavelet transform. In the de-

noising process, Daubechies wavelets are used with eight vanishing moments and for 30 levels

of decomposition to yield a suitable estimation of impulsive transient noise waveforms (Au

et al., 2013).

3.5.3 Short-time analysis process

The measurement data contain a train of impulses located randomly in time. PD can be detected

by using a short-time analysis of the spectrogram of the waveform Xm(tw, f ) defined by:

Xm(tw, f ) =
∫
R

xm(t)w(t− tw)e− j2π f tdt (3.33)

where w(t) is the time window and tw is the window length parameter. The spectrogram is

useful in localizing fast transient signals in frequency and time. In Equation (3.33), each seg-

ment contains a power spectral density value. Therefore, PD can be localized in time by the

high value of the PSD in the segment. The power density of PD can be estimated by using the

marginal time condition. In order to determine the contribution of these impulses in RF range,

the power is calculated in a selected bandwidth Δ f near a given resonant frequency f0 based

on Equation (3.34).

Pd(tw) =
1

Z0

∫ f0+Δ f/2

f0−Δ f/2

∣∣Xm(tw, f )
∣∣2

〈w(t),w(t)〉d f (3.34)

To analyse each impulse in a given impulse train, we use a wide band spectrogram with a

Hamming window of tw = 6.4 ns length. The length of the FFT is Nfft = 2048 and 50% overlap
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is used. Under this condition, the measured power of the ambient noise without discharges is

about −53.20 dBW/m2. The power density of each impulse is calculated in the bandwidth

range of 0.2 to 5 GHz. Pd(tn) value is located at each signal peak above −47 dBW/m2 to

ensure the detection of significant impulsive noise emitted from partial discharge sources.

3.6 Experimental validation

In this section, the experimental validation is based on the comparison of measurement cam-

paign and the simulation results. The following subsections describe the measurement setup

including the PD sources produced by a stator bar. Then, the simulation parameters are adapted

according to measurement conditions. Note that the measurement setup, follows Chapter 2.

3.6.1 Brief description of measurement setup

3.6.1.1 The measurement setup

The following measurement setup includes:

• a wideband log periodic antenna from 0.8−26 GHz;

• a high pass filter from 780−3200 MHz;

• an RF amplifier is employed from 30−3000 MHz;

• a broadband limiter to protect RF equipment;

• an oscilloscope used for data acquisition, a serial data analyser.

The observation time is 20 ms at a 10 Gs/s sample rate (200 M samples). The oscilloscope is

synchronized to the HV voltage generator. Waveforms are captured periodically at the begin-

ning of each cycle of the AC voltage. Using this configuration, 30 waveforms are captured.

The antenna is positioned at d = 3 m from the stator bar in the far field region.
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3.6.1.2 PD sources from stator bar

A stator bar is used to generate PDs along the insulation surface. A main PD site is located on

the insulation surface as illustrated in Figure 3.3. In the middle of the bar, the semi-conducting

coating has been removed to expose the epoxy-mica insulation. An air gap between insulation

and grounded electrode, including the semi-conducting coating, can be seen. The Dimensions

and electrical properties of the dielectric and air cavities used are summarized in Table 3.1

and Figure 3.4. The conductivity of the insulation surface is attributed to the presence of

epoxy-mica. Levesque et al. (2010) have measured the conductivity of the epoxy-mica. It

can be found that σi can be ∼ 10−16 S/m for unaged dielectric, and ∼ 10−9 S/m for aged

dielectric. The air cavity is represented by the thickness of the semi-conducting coating on the

bar. Thus, when the electric stress is sufficiently high, PD activities can take place at the end of

the semi-conducting coating. A HV generator is applied to the stator bar. Surface discharges

are predominant in this experimentation. PDs are generated by an AC high voltage of 16 kVrms

at 60 Hz.

PD site Antenna
PD site

HV source
d = 3 m

Figure 3.3 Stator bar and measurement configuration

3.6.2 Simulation setup

Simulation parameters are defined by the following steps:
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Table 3.1 Dimensions and electrical properties of PD process

Dimensions Relative permittivity Conductivity

Model Height Width Depth εr σi

(mm) (mm) (mm) (S/m)

Air cavity 0.25 2.5 2 1 0

Dielectric 3.6 55 58 4 2.8 ·10−9

Insulation

S
/
C

co
at

Air Cavity

�

55 mm

58
m
m x

z

�

a) PD site with modelled air

gap cavities

Insulation

Air

S/C Coat

HV Electrode

y

x

Continuity
Boundary

0.25 mm

3.6 mm

z

� =2.5 mm

b) Dimensions of stator bar with an air cavity

Figure 3.4 The surface of a stator bar with modelled air cavities

3.6.2.1 Calculation of the electric field along the surface

The electric field inside air cavities is calculated from the equivalent circuit where rs and c0 are

the resistance of the insulation surface and the capacitance of the grounded wall, respectively.

Depending on the orientation of air cavities, � is in the x or z coordinate. These components

are written as:

rs =
1

σiAr

c0 =
ε0εrAc

ηδx

(3.35)

with δx = δ z = 0.5 mm, calculating the cross sectional area of the resistance Ar is the product

of the depth of the dielectric (58 mm) and its height (3.6 mm), the calculated resistance per
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unit length is rs = 1.72 TΩ/m. Calculating the overlapping surface area of the plates Ac as the

product of δx and the depth of the dielectric (58 mm). Since η is the height of the dielectric

(3.6 mm), the capacitance of the insulation is c0 = 0.604 nF/m. By applying an AC voltage at

16 kVrms, the tangential electric field is calculated from Equation (3.4). Since the tangential

electric field is complex, we use the absolute value to determine its amplitude.

3.6.2.2 Discharge process in air cavity parameters

These parameters have been set in keeping with several related works (Niemeyer, 1995; Gut-

fleisch and Niemeyer, 1995; Fruth and Niemeyer, 1992). PD activities take place on either side

of the air gap between the end of the semi-conducting coating and the insulation surface. In

Figure 3.4, four air cavities are considered. Although many PD sources can take place ran-

domly in these air cavities, four PD sources are assumed for each. PD sources are located in

the middle of the high-stress region. At 16 kVrms voltage, the electric field amplitude at x = 0

is 12.45 kV/mm as depicted in Figure 3.5. From Equation (3.7), under normal temperature and

pressure, the critical value to initiate a discharge is Einc = 3.96 kV/mm. Since the calculated

electric field amplitude is higher than the Einc, PD activity is observed.

We characterize PD amplitudes by the local field reduction, as defined in Equations (3.6) and

(3.9). The reduction depends on the deposited charges in the air cavity. Previous discharges

and other discharges in the vicinity of the air cavity can also affect this local field reduction

(Levesque et al., 2013; Brunt, 1991). The latter determine the behaviour of the inter-arrival

time and also the amplitude of the field reduction. We assume that Eq is a random value

following an exponential distribution, where the average value is:

Eq+ = Einc− γ+(E/P)crP

Eq− = Einc− γ−(E/P)crP
(3.36)

where Eq+ and Eq− are the local field reduction value of the conductive part and the insulation

part, respectively, where γ+ = 0.01 and γ+ = 1.2.
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Figure 3.5 Tangential electric field distribution

The release of free electrons from surfaces is given by Equation (3.10). We define the con-

ductive part and the insulation part by their work functions Φc and Φi, respectively. Although

emission surface parameters could not be measured directly, they have been adapted to repro-

duce measurements. We use Φc = 1.20 eV, τec � 36 μs and Φi = 1.38 eV, τes � 21 μs.

3.6.2.3 Stochastic property of the emitted radiations of PD sources

Due to the reduction of the local field, each air cavity generates charge and current density ac-

cording to Equations (3.15) and (3.17). The retarded potentials equations allow us to determine

the induced electromagnetic radiations from partial discharge sources, as defined in Equation

(3.27). The amplitude of the electromagnetic field is derived from the currents and the length

of the electric arc, Ipd(t)ζ . The amplitude of the current impulse depends on the local field

reduction value Eq and the conductivity of the ionized air σ as seen in the Equation (3.21).

The conductivity σ as defined in Equation (3.16) depends on the collision frequency between

species and the density of electrons. We assume that the combination of many PD sources
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affects the plasma conductivity randomly and independently. Moreover, due to the applied

voltage, the discharge process is time-dependent in terms of amplitude and occurrence. There-

fore, we express the plasma conductivity σ as:

σ+(σ+
0 , t) = σ+

0 f+(t)

σ−(σ−0 , t) = σ−0 f−(t)
(3.37)

where σ+
0 and σ−0 are the average random values. f+(t) and f−(t) are deterministic time-

dependent functions related to the influence of the electric field stress on charge density and

the mean scattering time. These functions determine the time occurrence distribution of PD

events. It maybe challenging to obtain parameters of plasma conductivity. Inspired by relevant

models (Zimmermann and Dostert, 2002; Moose and O’dwyer, 1986; Shan et al., 2011), we

have adapted these parameters with observations from the measurement campaign. Thus, we

choose that the quantity ζ σ can be considered as a random value according to Weibull dis-

tributions. Parameters of the distribution are estimated from empirical data obtained from the

measurement campaign. In addition, we have decided that time-dependent functions f+(t) and

f−(t) are Gaussian functions. The antenna is located 3 m from the source, and 30 cycles of the

60 Hz are considered.

3.6.3 Simulation-measurement comparison

3.6.3.1 PRPD comparison

The measurement campaign is conducted using voltage of 12 kVrms and 16 kVrms. In this

chapter, the discussion is restricted to the comparison at 16 kVrms. The power density of these

impulsive radiations and their occurrences can be compared in terms of the measurement and

simulation results by PRPD illustrated in Figure 3.6. According to measurements, PD events

occur at every half cycle of the AC voltage. These results show the cyclostationary process

of PD sources generated by an AC voltage. The impulse rate and the power density in the

negative part is higher compared to what occurs in the positive part. This is due to the number



79

of deposited charges on the insulation surface. They can be explained by a low value of the

electric field reduction on the cavity E−q < E+
q and a higher value of the air conductivity due to

the ionization process.

A high probability of having a PD with low amplitude of power density is observed and the

probability of having a high amplitude of power density is lower. This is because the local

field of PD activity has yielded a low value of reduction. Moreover, the emission of electrons

from surfaces influences the amplitude of the power density and the rate of PD events. When

the critical field stress Einc is reached, the presence of the initiatory electrons is not sufficient

to discharge. Consequently, a time delay is observed due to the excessive electric field stress-

to-discharge process, which causes the power density of impulsive radiations to increase. The

obtained PRPD from the simulation results matches with measurement results. Both results

indicate that the cyclostationary process of PD events are induced by the applied voltage. The

occurrence of discharge events is predominant at the negative polarity compared to the positive

one.
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Figure 3.6 Phase Resolved Partial Discharge 16 kVrms
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3.6.3.2 Statistical distributions comparison

The statistical distributions of power density, inter-arrival time and time occurrence for mea-

surements and the simulation at 16 kVrms are presented as an empirical probability density

function (PDF) and empirical complementary cumulative density function (CCDF) in Figure

3.7, Figure 3.8 and Figure 3.9. Statistical results shows that PD events can be described as

random processes in terms of power density amplitude, inter-arrival time and time occurrence.

Stochastic properties of PD events are explained by physical interactions between charged

particles, such when these particles recombine in order to reach their equilibrium state. These

interactions can take place because of previous discharges or as a result of the PD activities of

other sources. The excessive electric field stress of the applied voltage increases the probability

of releasing free electrons and charged particles by collision into the air. As a result, the air

becomes ionized.

Figure 3.7 shows power density distributions of measurement and simulation. The probability

of a high amplitude of power density decreases exponentially. The inter-arrival time distribu-

tions follow exponential distributions in measurement and simulation results (see Figure 3.8).

Figure 3.9 shows time occurrence distributions. PD events are observed as the applied volt-

age rises and falls. They follow the cyclostationary process induced by the frequency of the

applied voltage. The probability of observing a discharge at the negative polarity is higher

than the positive. Time occurrence PDF describes two Gaussian distributions. We compare

measurement and simulation results by plotting the empirical CCDF, measuring the Kullback-

Liebler (KL) divergence of the empirical PDF, and conducting a Kolmogorov-Sminorv (KS)

test at 5% significance level. It is observed that simulation results fit measurement results. In

Table 3.2, small KL-divergence values show a small divergence between PDFs obtained by

simulation and measurement. Using the test statistic values of the KS test (DKS) in this table,

the obtained p-values are 0.61, 0.72 and 0.37 for power density, inter-arrival time and time

occurrence respectively. As a result, the test does not reject the null hypothesis that simula-
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tion and measurement results come from the same distributions at 95%. Therefore, simulation

results are in agreement with experimental results in terms of first-order statistics.
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Table 3.2 The Goodness-of-fit: Measurement vs. simulation

Test Statistics Power density Inter-arrival time Time occurrence

DKL 0.1873 0.1706 0.2153

DKS 0.0687 0.0077 0.127

3.6.3.3 PSD and waveforms of impulses

Simulation results validate the proposed model in terms of PSD and waveforms. The average

PSD of measurement and simulation are presented in Figure 3.10. The ambient noise includes

thermal noise, RF communications at 1.7 and 1.9 GHz and harmonics at 1.25, 2.5 and 3.75

GHz caused by interleaving artefacts and clock feedthrough from the oscilloscope. The PSD

of impulses can be extracted from the ambient noise using a denoising process as depicted

in Figure 3.10.(b). Low wavelet coefficient values have been removed via a hard threshold

to extract the impulsive signal. However, the process can significantly modify the PSD of

impulses mainly at frequencies at which the PSD of ambient noise is dominant.
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PSD and waveforms can be provided by the proposed LTI model in Equation (3.30). We have

considered the ambient noise by adding a Gaussian white noise. Parameters of the LTI filter

have been set as follows: ω0 = 0.5027 (800 MHz) and b0 = 0.90 (bandwidth of 273.2 MHz

at −3 dB). By comparing the average PSDs, simulation results match experimentation results

(see Figure 3.10). However, the proposed model cannot perform distortions of waveforms as

depicted in Figure 3.11. This may due to multiple reflections of EM waves in the laboratory.

In this example, the denoised waveforms and their induced PSDs are presented. Their average

energies are approximately equal. It is seen that the measured waveform and the PSD are

widely distorted.

The proposed LTI filter models the impulse response of RF-signals from PD activity on aver-

age. The filter can be improved by taking into account multiple delayed impulses. This can

be done by using tapped delay line filters. The impulse response of the propagation chan-

nel should be estimated using measurements in the laboratory. Thus, a realistic impulsive RF

signals model can be obtained under this condition.
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Figure 3.11 Waveforms and PSD of an impulse

3.7 Conclusion

A physical model of EMIs induced by corona discharges is presented in this chapter. A high

stress field can produce an ionization process that leads to discharge. Charges and current den-

sities induce electromagnetic radiations. The interference sources induced by PDs have partic-

ular behaviours that differ in terms of occurrences and amplitude from classical models of im-

pulsive EMIs sources, (Shinde and Gupta, 1974; Middleton, 1977; Zimmermann and Dostert,

2002). Indeed, the AC voltages produce a cyclostationary behaviour of discharge events. Their

amplitudes are induced by the local reduction of the electric field and charged particles during

the discharge process.

The physical model allows for a coherent, detailed, and validated approach that links the dis-

charge process to the induced far field wave propagation. As a result, we can link certain

physical characteristics of high-voltage installations to the induced radio interference spec-

trum. We have shown the consistency of simulation results, provided by the proposed model,

over experimental results. We have validated the model in terms of amplitude i.e power den-
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sity, occurrences, and inter-arrival time of these impulsive radiations. We have also validated

the induced spectrum and waveforms of these radiations received at the antenna.

Future work may focus on extending the proposed model to contexts in which there are many

discharges with various parameters, such as electric field stress, where the insulation property

of dielectrics can reproduce the environment of substations, or wherever else high-voltage in-

stallations and their induced discharged sources are randomly distributed in space. Moreover,

based on the proposed LTI filter, modelling impulsive waveforms can be significantly improved

by taking into account multiple delayed impulses.

In the next chapter, an analysis and modelling of wideband RF impulsive signals induced by

partial discharges using second-order statistics is proposed. Based on an LTI filter, spectral

characteristics of the PD can be captured.





CHAPTER 4

ANALYSIS AND MODELLING OF WIDEBAND RF IMPULSIVE SIGNALS
INDUCED BY PARTIAL DISCHARGES USING SECOND-ORDER STATISTICS

4.1 Introduction

The recent advances in wireless sensor network (WSN) technologies in the last few years have

allowed for the emergence of new smart grid applications in for use in substations (Gungor

et al., 2010, 2011). However, the reliability of these WSNs can be affected by the multiple

presence of electromagnetic interferences (EMIs) from PD activity. Therefore, performance

analyses have to be evaluated in the presence of these EMIs. To do so, an accurate and generic

impulsive noise model is needed. At the same time, PD sources can cause mechanical failure

or permanent damage to insulation materials in HV equipment. Their electromagnetic radia-

tions can be detected by electronic devices for which significant improvements are possible for

protection, control, automation and monitoring of HV equipment (Tenbohlen et al., 2008; Judd

et al., 2005). An accurate model of RF signals induced by these impulsive EMIs is a valuable

tool in the design of efficient signal processing methods for PD source detection, localisation

and mitigation.

4.1.1 Motivation and prior related work

Au et al. (2013, 2015b) show that wideband impulsive noise waveforms emitted by partial dis-

charges are transient, their samples are correlated and their power spectral densities have ap-

proximately a form of∼ ( f − f0)
−γ , where f0 is the resonant frequency of the RF measurement

setup and γ > 0 an arbitrary exponent. One of the most common impulsive noise models used

are Middleton Class A and B (Middleton, 1977, 1999, 1979) and the α-stable noise models

(Weron and Weron, 1995; Samarodnitsky and Taqqu, 2000; Chambers et al., 1976). Although

these models can approximate noise samples with impulsive noise based on first-order statistic,

they are far from our observations. Indeed, an impulse is modelled by a single sample. Thus,

second-order statistics are, most of the time, inaccurate in the sense that the autocorrelation
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of an impulsive component yields a Dirac impulse function at zero so that the power spectral

density is constant over all frequencies (i.e not proportional to f−γ ).

Alternatively, Zimmermann and Dostert (2002), and Sacuto et al. (2013) have found that tran-

sient impulsive noise can be modelled based on a partitioned Markov chain. The model can

approximate second-order statistics from the measurements. However, the definition of a suit-

able number of states in the Markov chain can be challenging and the estimation procedure

are complex, (Sacuto et al., 2013; Ndo et al., 2013). Using these models can also drastically

increase computational complexity, (Sacuto et al., 2013). On the other hand, impulsive noise

can be modelled using Markov-Middleton or Gauss-Markov impulsive noise models as pre-

sented in Ndo et al. (2013), and Fertonani and Colavolpe (2009), which are used in order to

account for the bursty nature of impulsive noises. However, the resulting impulsive wave-

forms are modelled by a group of uncorrelated samples. Therefore, the transient behaviour

of the impulses is not taken into account and the modelled waveforms might be inaccurate.

These impulsive noise models are physically limited because their parameters cannot provide

any information linking the physical characteristics of HV installations to the induced radio

interference spectrum.

A simpler way to model impulsive transient waveforms is to use LTI filters as developed by Au

et al. (2015b), and Sadler (1996). Although these filters can capture spectral characteristics of

the impulsive radio interference spectrum in substations, the resulting waveform is determin-

istic, which is not observed in practice. A study of propagation effects of wideband radiation

signals from PD activity was investigated by Portugués and Moore (2006). It has been shown

that measured impulsive waveforms are, in general, distorted by the effect of multipath in elec-

tromagnetic wave propagation. This is due to the presence of multiple reflectors in substations.

Therefore, we may assume that PDs in HV equipment have spectral signatures whose resulting

impulsive radio interference spectra are distorted by multipath propagation effects.
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4.1.2 Main contribution and organization

In this chapter1, we propose a novel approach to modelling impulsive noise for wireless chan-

nels. By this approach, modelled waveforms stochastically resemble the measurements, in that

spectral characteristics of RF signals from PD sources can be captured, and the effect of mul-

tipath is taken into account. Compared to many approaches presented in the literature, such a

model can reproduce transient effects of impulsive noise, and it fits accurately measurements

in terms of second-order statistics. Moreover, a well-established validation procedure can be

implemented for the estimation of the spectral characteristics and the selection of a suitable

number of parameters in the LTI filter, (Dickey and Fuller, 1979; Phillips and Perron, 1988;

Box et al., 1994; Akaike, 1973; Schwarz, 1978). Our proposed impulsive noise model al-

lows for the study of the spectrum of radio signals from PD activity and its relationships with

physical characteristics of PD sites. This can be used to represent a generic environment of

substations for performance analysis of wireless communication networks, as well as for PD

detection methods.

The rest of this chapter is organized as follows: in Section 4.2, the measurement setup and two

major pieces of HV equipment in a 735 kV substation are briefly presented. In Section 4.3, a

review of measured impulsive noise is presented from this two HV equipment. We will show

that HV equipment has a spectral signature due to the spectral characteristics of the emitted PD.

In Section 4.4, we proposed a generalized model using an LTI filter approach, by which spectral

characteristics of PD sources in HV equipment can be captured. In Section 4.5, the adequacy of

the approach (the goodness-of-fit) can be measured by analysing the residuals of fitted ARMA

models whose distributions are non-Gaussian and whose variances are time-dependent. The

impulsiveness of the PD transient waveforms can be reproduced by assuming the conditional

heteroskedasiticity of the residuals. Finally, in Section 4.6, computer simulations are provided

1 This chapter is based on the submitted journal paper “Analysis and Modelling of Wideband RF

Impulsive Signals Induced by Partial Discharges Using Second-Order Statistics” in IEEE Transaction

on Electromagnetic Compatibility, January 2016.
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to validate the effectiveness of the proposed model vis-a-vis impulsive waveforms measured in

substations. The advantages and the limitations of our approach are also discussed.

4.2 Measurement setup

In the measurement campaigns, impulses are measured employing the measurement setup ex-

plained in Chapter 2. An antenna is positioned in the far field region of discharge sources.

Measurements are made in a 735 kV outdoor substation, in which EMI produced by two typ-

ical HV installations: i) a power transformer tank (PTT) in which the applied voltage is 735

kV, and ii) a current transformer tank (CTT).

In this chapter, we characterize the electromagnetic interferences generated by discharge sources

for any antenna or other RF component gain in our measurement setup. To do so, we consider

real valued impulsive noise waveforms whose amplitudes are measured in terms of electric

field strength in (V/m). This allows us to know the power densities of impulsive waves. We

use Equation (4.1) to convert signals in voltage to electric field strength, according to (Au et al.,

2015b):

u(θ , t) = um(θ , t)
√

Z04π
R�Grλ 2

(4.1)

where um(θ , t) is the measured waveform in voltage, Z0 = 120π Ω is the impedance of the

freespace, R� is the load resistance, Gr is the gain of the RF system including the antenna

and λ is a given wavelength of the wideband antenna. Since the power densities of impulsive

waveforms are mostly localized around f0 = 800 MHz, we choose the wavelength at λ = 0.375

m. We can analyse the resulting signals in baseband by removing the resonant frequency f0 via

a local oscillator and a mixer. Significant impulsive radiations emitted by discharge sources

are detected and captured by a given threshold slightly above the level of the background

noise. The sample rate is 10 Gs/s for a given observation time according to the durations of

impulses. From experimentations, significant impulses are captured above −33 dBW/m2 for

an observation time of approximately 50 ns in i) and −42 dBW/m2 for an observation time of

50 ns in ii).
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4.3 Conjectures and mathematical formulation of EM waves

This section provides a review of measured impulsive noises, a discussion of their properties,

and a generalization of our observations. Radiations emitted by discharge sources are impul-

sive, have short durations and exhibit a damped effect which decays over time. We analyse

measured waveforms by using a time-frequency representation and second-order statistics, us-

ing the autocorrelation function and power spectral density. The analysis will be helpful for

the design of a general model of impulsive noise induced by electric arc discharges.

4.3.1 Second-order statistics

4.3.1.1 Time-frequency analysis

It may be useful to have a time-frequency representation of transient waveforms. Under this

condition, we choose the spectrogram representation, which is based on the short-time Fourier

transform (STFT), such that:

U(θ , tw,ω) =
∫ +∞

−∞
u(θ , t)w(t− tw)e− jωtdt (4.2)

where u(θ , t) is the temporal waveform of impulsive noise and θ is a set of random variables

denoting the local variation of amplitude in the time-frequency domain, as well as duration,

time decay, etc. w(t) is a given time window function, with tw the length of the window. By

computing the spectrogram as the squared magnitude of the STFT, we obtain the following

expression:

Suu(tw,ω) =
1

Z0
|U(θ , tw,ω)|2 (4.3)

where each segment Suu(tw,ω) is the power density of the process located in (tw,ω). In order

to have a suitable time-frequency resolution, we compute the spectrogram by considering w(t)

as a Hamming function with a window length of 32 samples. The overlap percentage between

adjoining sections is 70% of 32 samples and the number of FFT is 512.
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4.3.1.2 Autocorrelation function

Sample autocorrelation is used to estimate the theoretical autocorrelation function (ACF) given

by:

rk =
Cov [u(θ , t),u(θ , t− k)]

Var [u(θ , t)]
(4.4)

where Cov [·, ·] is the estimated covariance function, Var [·] is the estimated variance and ū is

the estimated mean value of the measured waveform. The lag is given by k, when one lag is

chosen at the sampling interval of the oscilloscope, 0.1 ns. The 95%-confidence interval for

the identification of time series models is given by the Barlett’s formula as (Hamilton, 1994;

Woodward et al., 2012):

B =±1.96

√√√√ 1

M

(
1+2

k

∑
i=1

r2
i

)
(4.5)

where M is the number of observations and k > 0. Although Gauss-Markov processes take into

account the correlation, they are only one particular case of a first-order autoregressive process,

AR(1). The ACF function of our measurements suggests that a high order of ARMA processes

might be more accurate.

4.3.1.3 Results from the measurement campaigns

A typical example of waveforms captured in the measurement campaigns is depicted in Fig-

ures 4.1 and 4.2. Spectrograms and power spectral densities are also depicted. The spectro-

gram shows that the power of transient waveform is strong for a short duration with a large

frequency bandwidth, but decreases over both time and frequency. Since the noise samples are

correlated, the power spectral densities are non-constant over frequencies. Indeed, the power

spectral density (PSD) decays proportionally as ∼ f−γ where γ > 0. As shown in several

studies (Portugués and Moore, 2006; Portugués et al., 2003; Judd et al., 2005, 1996b), local

variations on PSD over frequency can be observed, which is characteristic of multipath effects.

Moreover, due to their transient behaviour, there are significant correlations for high values of



93

lag. As a result, using Middleton Class A and B and α-stable models might not be reasonable

because an impulse is modelled by a single sample. These waveforms can be seen as colored

impulsive noise. The autocorrelation function shows that there are significant correlations for

large values of lag. The ACFs decay slowly and go under the confidence interval.
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Figure 4.1 Waveform measured from PTT
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Figure 4.2 Waveform measured from CTT
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4.3.2 A physical interpretation

When a discharge occurs, the emission of electromagnetic radiations propagate through the

environment. Let aD(θ̄ , t) be the original transient impulse induced by an elementary electric

arc discharge where a is a random amplitude, θ̄ is a set of time-invariant random variables

denoting the duration, time decay, phase shift, and other spectral characteristics. In freespace,

the resulting measured impulsive noise u(θ , t) is the convolution product of aD(θ̄ , t) and the

measurement setup impulse response denoted by hm(t), such that:

u(θ , t) = α0aD(θ̄ , t)∗hm(t) (4.6)

where α0 is the signal freespace path loss coefficient and ∗ is the convolution product. The re-

sulting waveform at the antenna is a simple transient impulse with a damped effect. However,

the experimentations show that the amplitudes are distorted and attenuated. As a result, the

received impulsive noise might be subject to fading. By denoting W (θ̄ , t) as the convolution

product of the original transient impulsive waveform and the impulse response of the measure-

ment setup, the resulting impulsive waveform distorted and attenuated by multiple reflected

waves can be written as:

u(θ , t) = aW (θ̄ , t)∗h(t) (4.7)

where h(t) is the impulse response of the multipath channel, which can be defined as:

h(t) = ∑
k

αke jϕkδ (t− τk) (4.8)

where {αk} is a real positive gain of the path k, {ϕk} the associated phase shift and {τk} is the

propagation delay. The equation (4.7) can be rewritten as a shot-noise process:

u(θ , t) = ∑
k

αke jϕkaW (θ̄ , t− τk) (4.9)
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The multiple reflected waves induced by the environment cause both destructive and construc-

tive interferences that are received by the antenna. Therefore, the impulsive waveforms are

distorted by multipath effects, as seen in Figures 4.1 and 4.2.

4.4 The proposed model

In this section, we propose a general model for impulsive noise induced by electric arc dis-

charges when the waveforms are transient and their amplitudes are subject to multipath effect.

Our research questions are: i) what is the appropriate model for impulsive noise waveforms in-

duced by an electric arc discharge? and ii) How is the goodness-of-fit of the model, according

to measurements?

4.4.1 Theory of filters and its relationship with time series models

Let {ut}t∈T⊂Z be the stochastic process modelling an impulsive noise waveform indexed by

the discrete time set T , a subset of all integers Z. In keeping with the model described by Au

et al. (2015b), the random process ut can be modelled as a discrete time linear filter in the

z-domain, such that:

U(z) = Hd(z)ε(z) (4.10)

where U(z) is the output of the filter, Hd(z) is the z-transform of an impulse response of the

original impulse waveform received at the antenna, and ε(z) is the input stress characterizing

the electromagnetic disturbance in the environment. Hd(z) can be written as:

Hd(z) =
1+

q
∑

k=1
ψkz−k

1−
p
∑

i=1
φiz−i

(4.11)
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where all coefficients φi and ψk for any i = {1, · · · , p} and k = {1, · · · ,q} lie outside the unit

circle. By replacing Hd(z) in Equation (4.11) into Equation (4.10), we have:

U(z)

(
1−

p

∑
i=1

φiz−i

)
=

(
1+

q

∑
k=1

ψkz−k

)
ε(z) (4.12)

By using the inverse z-transform, we have in the time domain a time series by writing Equation

(4.12) as:

ut =
p

∑
i=1

φiut−i + εt +
q

∑
k=1

ψkεt−k (4.13)

These terms within the equation induce correlated samples, since ut depends on past samples.

Furthermore, if the disturbance εt is a Dirac impulse, a deterministic transient impulse without

any distortions is provided by the filter, as modelled in Au et al. (2015b), and Sadler (1996).

This is not observed in our measurements. For εt to be modelled as a white Gaussian noise, its

variance is constant over time, and the resulting waveform appears as a colored noise process

spread indefinitely over time. Thas not been observed here, and it is not appropriate for impul-

sive noise modelling either. Measured impulsive noise can be seen as colored noise; however,

its variance might be conditional, and therefore not constant over time.

4.4.2 Definition of the time series model

We define a lag operator L such that Liut = ut−i, where ut−i is the instantaneous amplitude of the

process at the discrete time t− i. We also define the differential operator Δ such that Δiut = (1−
L)iut is the i-th degree differencing operator. From the measured waveforms, it is convenient

to assume that impulsive noises do not express any seasonal effect. From the Box-Jenkins

methodology (Box et al., 1994), non-stationary random processes can be trend-stationary, as

written in Equation (4.14a) or difference-stationary, as written in Equation (4.14b), such that:

ut = mt + εt (4.14a)

Δdut = m+Ψ(L)εt (4.14b)
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where mt is a deterministic mean trend and m is a constant mean, εt is a zero-mean and uncor-

related stochastic process, Ψ(L) = 1+ψ1L+ψ2L2 · · · is an infinite degree polynomial operator

in which coefficients are absolutely summable, and all roots lying outside the unit circle, Δd are

d-th degree differencing operators. By assuming a finite degree polynomial operator, we can

define ut as a generalized autoregressive integrated moving average ARIMA(p,d,q), modelled

as:

Φp(L)Δdut = m+Ψq(L)εt (4.15)

where Φp(L) = 1−φ1L−φ2L2 · · ·−φpLp and Ψq(L) = 1+ψ1L+ψ2L2 · · ·+ψqLq are respec-

tively the p-th and the q-th degree operator polynomials where all coefficients are absolutely

summable and all roots lie outside the unit circle. The next task is to define the degrees (p,q)

of the ARMA model and the d-th degree of differencing operator that fit our measurements.

However, in ARIMA models, the process εt is assumed to be uncorrelated with a constant

mean or a constant variance over time. In Section 4.3, measured impulsive noise may exhibit

heteroskedasticity, i.e non-constant variance. When the variance of εt is not constant over time,

we can include additional conditional heteroskedasticity models to the time series ut , (Boller-

slev, 1986; Engle, 1982; Nelson, 1991). Among these models, we can mention autoregressive

conditional heteroskedascity (ARCH), generalized ARCH (GARCH) or exponential GARCH

(EGARCH). We formally express εt by:

εt = σtεt (4.16)

where εt is the white noise process and σt the time-dependent standard deviation of the process.

The variance σ2
t can be seen as a time series. It can be modelled as an ARMA process for time-

dependent effect of the disturbance εt (Bollerslev, 1986; Engle, 1982; Straumann, 2005). We

will define a suitable model, which fits measurements based on our assumptions. The latter

can be tested with various tests to be defined. In this chapter, the analysis of the time series

is restricted to the measured waveforms presented in Figures 4.1 and 4.2. Similar conclusions

with many measured impulsive noises can be drawn.
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4.4.3 Tests for unit roots

Before estimating and selecting a model, it is necessary to test the “stationarity” (i.e. d >

0 (Phillips and Perron, 1988)) and unit roots of the measured impulsive noises to avoid the

problem of spurious regression (Woodward et al., 2012; Hamilton, 1994; Box et al., 1994). To

do so, we can treat the ARIMA(p,d,q) model as an ARMA(p+d,q) model. As a result, we can

write Equation (4.15) as follows:

Φp+d(L)ut = m+Ψq(L)εt (4.17)

where Φp+d(L) = Φp(L)(1− L)d . Since measured impulsive noise fluctuates around zero-

mean, we assume that m = 0. Next, since all roots of the polynomial Ψq(L) lie outside of the

unit circle, the invertibility condition of the model is satisfied and thus we have:

Ψq(L)−1Φp+d(L)ut = εt (4.18)

We assume that a polynomial exists that is related Ω(L) related to the polynomial Ψq(L)−1Φp+d(L)

such that Equation (4.18) can be written as an AR process (Said and Dickey, 1984), defined

by:

Δut = (Ω(L)−1)ut−1 + εt

Δut = ρut−1 +
k−1

∑
i=1

γiΔut−i + εt

(4.19)

where γi is a function of the ARMA process. If the time series ut is suspected to be non-

stationary in difference, then a unit root exists where ρ = 0. In this case, the ARIMA(p,1,q)

model is recommended. The presence of unit roots may explain the non-stationary behaviour

of our measurements. As a result, unit root tests can be used to determine whether impulsive

noise contains a unit root.
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The augmented Dickey-Fuller (ADF) (Dickey and Fuller, 1979) and the Phillips-Perron (PP)

(Phillips and Perron, 1988) tests can be used to assess the presence of a unit root in the im-

pulsive waveform. Based on the model defined in Equation (4.19), without any intercept or a

drift terms, the null hypothesis of the unit root is H0 : ρ = 0 against the alternative hypothesis,

H1 : ρ < 0. The estimation of ρ̂ is based on ordinary least squares (OLS) and the test statistics

for the null hypothesis is given by the t-statistic. However, the test statistics do not follow a

standard distribution. Hence, the limiting distributions have been derived (Hamilton, 1994).

The resulting value is compared to the interpolated Dickey-Fuller critical values, based on the

tables in Fuller (1996) for the decision rule. An approximation of the p-values is given in

(MacKinnon, 1994) on the basis of a regression surface. However, for the ADF test, the pro-

cess εt should be stationary; in other words, εt does not exhibit conditional heteroskedasticity.

Furthermore, the selected number of lags should be appropriate to keep the test unbiased or to

decrease the power of the test.

At the same time, the PP test is a non-parametric test, based on the same model used in ADF

tests, that modifies the ADF test statistics. It is made robust to serialize correlation and het-

eroskedasticity in εt (Phillips and Perron, 1988; Newey and West, 1987). The PP test pro-

cedure remains the same as the ADF test, and it uses the critical values based on the same

tables in Fuller (1996). The tests need the number of autocovariance lags to include in the

Newey-West estimator of the long-run variance, which depends on the number of observations

M (Newey and West, 1987). This number is given by �4(M/100)2/9� where �·� is the floor

function. Another advantage is that we do not need to specify the number of lags for the test.

Hence, Equation (4.19) for the PP test is reduced to:

Δut = ρut−1 + εt (4.20)

The samples in our measurements may exhibit heteroskedasticity. As a result, it is reasonable

to choose the PP test. Table 4.1 depicts the results of the PP test. The waveforms, which are

presented in Figures 4.1 and 4.2 are tested. The test is set for a significance level of 5%. The
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test statistic values in the table are all below the interpolated Dickey-Fuller critical values and

the estimated ρ̂ is negative and the p-values are closed to zero. As a result, the test indicates the

rejection of the unit root null in favor of the alternative model, at a 95% confidence interval. In

other words, measured impulsive waveforms do not need to be differentiated. Thus, we should

use ARMA(p,q) models with no integration for transient impulsive noise modelling.

Table 4.1 Results of PP test obtained from the

measured impulsive noises

Waveforms Nb. obs Test-stat. Crit. val ρ̂

PTT. 510 −2.68 −1.94 −0.027

CTT. 500 −4.27 −1.94 −0.062

4.4.4 Estimation and selection

Since data do not need to be differentiated, we can use the ARMA(p,q) models. The next task

is to determine the degree (p,q) of the model at which coefficients φi and ψk can be estimated

from the observed data u by using the maximum likelihood estimation (MLE). The model

can be chosen based on the Akaike Information Criterion (AIC) (Akaike, 1973, 1974) or the

Schwarz Bayesian Information Criterion (SBIC) (Schwarz, 1978), written respectively as:

AIC = 2κ−2log(L(θ κ |u)) (4.21a)

SBIC =−2log(L(θ κ |u))+κ log(M) (4.21b)

where L(θ κ |u) is the optimized likelihood objective function value of the proposed model

parametrized by a vector θ κ , to be estimated from the observed data u. The number of free

parameters to be estimated is denoted by κ , and M, the number of observations. These values

include a penalty for complex models with additional parameters. The SBIC is more severe

than the AIC in terms of penalties, due to its relationship with the number of observations M.
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Note that the model with the lowest AIC or SBIC has the best fit. It has been found that the

ARMA(7,2) for PTT and the ARMA(4,1) for CTT are suitable models because AIC and SBIC

values are small compared to the other values of p and q. The residuals of fitted ARMA models

can be inferred to check the goodness-of-fit.

4.5 The goodness-of-fit

In this section, we study the models’ goodness-of-fit. The residuals of fitted ARMA models

are analysed to check the adequacy of the model. We will show that the residuals express

conditional heteroskedasticities. Therefore, ARMA models need to be improved by adding

ARCH effects.

4.5.1 Analysis of the residuals

Residuals are helpful for modelling the disturbance term εt so that ut behaves like transient im-

pulsive noise with correlated samples. Using the Box-Jenkins approach, the model is adequate

if the residuals are white noise, i.e serially uncorrelated with zero mean and constant variance.

It is necessary to determine if ARMA(p,q) models satisfy these conditions.

First of all, it is convenient to analyse the standardized residuals of fitted ARMA models by

checking their whiteness. This can be showed by using the normal probability plot in which

probability distributions of residuals can be graphically compared to the normal distribution

(Wilk and Gnanadesikan, 1968). In addition, a Kolmogorov-Smirnov (KS) test can be used.

These allow us to assess whether residuals could come from a normal distribution. Moreover,

ACF and partial ACF (PACF) can be plotted to check whether residuals are uncorrelated. The

bounds for autocorrelation set at 95% of confidence are given by:

B =±1.96√
M

(4.22)

The analysis of the autocorrelation can be refined by using the portmanteau test given by Ljung-

Box Q-test for Residual Autocorrelation (Ljung and Box, 1978; Box and Pierce, 1970). It tests
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for autocorrelation at multiple lags jointly. The null hypothesis is that the first K autocorrela-

tions are jointly zero. For a number of observations M, the Ljung-Box Q-statistic is given by

the portmanteau statistic written as:

Qε = M(M+2)
K

∑
k=1

r̂2
k(ε)

M− k
(4.23)

where r̂2
k(ε) is the estimated autocorrelation of residuals at lag k. Under the null hypothesis, Qε

follows a chi-square distribution χ2
K−p−q asymptotically with K− p− q degrees of freedom,

which depends on the (p,q) of the selected ARMA models. If a p-value is greater than a given

significance level, then the test fails to reject the null hypothesis and proves that the residuals

are not autocorrelated.

4.5.1.1 Residuals of fitted ARMA(7,2)

The distribution of the residuals is heavy-tailed since a deviation at the extreme values is ob-

served in Figure 4.3. Since, the p-value of the KS test is below 0.05 the test rejects the null

hypothesis of normal distribution at a 95% confidence interval. Therefore, the distribution

could not come from a normal distribution since the curve is not linear, and the KS test rejects

the null hypothesis. Furthermore, on the ACF and PACF, the correlation coefficients for differ-

ent values of lags are, in general, below the limits for autocorrelation. Therefore, the residuals

might be uncorrelated.

In order to check whether residuals are uncorrelated, we can use the Ljung-Box Q-test for

residual autocorrelation. The test is set to a significance level of 5% with different values of

K-first autocorrelations. Results of the test are depicted in Figure 4.4, in which the critical

values are plotted in a red curve and the calculated Q-statistic values are plotted in a blue curve

for the different values of K-first autocorrelations. The p-values are represented in this figure

below. These values are compared to 0.05, since the test is set to a significance level of 5%.
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Figure 4.3 Analysis of the residuals of fitted

ARMA(7,2) model

We can see that all values of the Q-statistic are below the critical values for different values

of K. The p-values are all above 0.05. As a result, the test fails to reject the null hypothesis

that the residuals are not autocorrelated at a confidence interval of 95% for different values of

K-first autocorrelations tests.
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Figure 4.4 Results of Ljung-Box Q-test for residual

autocorrelation of the ARMA(7,2)
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4.5.1.2 Residuals of fitted ARMA(4,1)

The distribution of the residuals is less heavy-tailed. The KS test fails to reject the null that

the distribution comes from the normal distribution. Nevertheless, a deviation at the negative

values is observed, as in Figure 4.5. The distribution might be left-skewed. Moreover, some

correlation coefficients are above the autocorrelation bounds in the ACF and the PACF. Hence,

we may not conclude graphically whether the residuals are uncorrelated.
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Figure 4.5 Analysis of the residuals of fitted

ARMA(4,1) model

The Ljung-Box Q-test for residual autocorrelation is also set for a significance level of 5%

with different values of K-first autocorrelations. The results of the test are depicted in Figure

4.6. We can see that there is no evidence to reject the null hypothesis that proves that the

residuals are not autocorrelated at a 95% confidence interval, since all values of the Q-statistic

are below the critical values and the p-values are all above 0.05 for different values of K-first

autocorrelations.

In summary, for both models ARMA(7,2) and ARMA(4,1), the distributions of the residuals do

not come from a normal distribution and the Ljung-Box Q-tests fail to reject the null hypothesis
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Figure 4.6 Results of Ljung-Box Q-test for residual

autocorrelation of the ARMA(4,1)

that the residuals are not autocorrelated. We can conclude that the disturbance terms εt are

uncorrelated non-Gaussian noise.

These proposed models need to be improved by adding additional parameters. Increasing the

number of (p,q) can refine our models. However, the models would be more complex and over-

fitting problems can occur (Hurvich and Tsai, 1988). Moreover, the heavy-tailed distributions

of the residuals cannot be explained by increasing the number of (p,q). On the other hand,

the proposed models can be refined by assuming that these residuals are the consequence of

non-linear effects such as heteroskedasticities.

4.5.2 Tests for heteroskedasticity

The ARMA(p,q) process with unconditional variance of the disturbance process εt may not

be a suitable assumption for modelling impulsive noises. When the process contains ARCH

effects, we can write the variance σ2
t of the process εt given the information set available,

which is denoted by It−1 = {εt−1,εt−2, · · ·} at discrete time t − 1 (Bollerslev, 1986; Engle,
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1982; Straumann, 2005):

σ2
t = E[ε2

t |It−1]

= ϒq′(L)ε2
t

= υ0 +
q′

∑
i=1

υiε2
t−i

(4.24)

where E[·] denotes the expectation and υi are coefficients of the polynomial ϒq′(L). We assume

that εt is zero-mean. The assumption for conditional heteroskedasticity can be tested by the

Ljung-Box Q-test of the squared residuals of fitted ARMA models (McLeod and Li, 1983). In

addition, the Engle’s ARCH test (Engle, 1982) for conditional heteroskedasticity can be set to

ensure that our measurements contains ARCH effects.

Several authors (Granger and Andersen, 1978; McLeod and Li, 1983) have noted that the anal-

yses of the squared residuals are useful for the detection of non-linear types of statistical de-

pendence in the residuals of fitted ARMA models. Similarly to the Ljung-Box Q-statistic in

Equation (4.21), the test statistic of squared residuals denoted by ε2 is given by the following

portmanteau statistic:

Qε2 = M(M+2)
K

∑
k=1

r̂2
k(ε

2)

M− k
(4.25)

Under the null hypothesis, Qε2 asymptotically follows a chi-square distribution χ2
K with K

degrees of freedom (McLeod and Li, 1983). The test rejects the null hypothesis of no auto-

correlation in the squared residuals if Qε2 > χ2
K where χ2

K is the chi-square distribution table

value.

In addition, the Engle’s ARCH test can be used. Following Equation (4.24), the null hypothesis

is H0 : υi = 0 for all i = 1 · · · q′. The test used is the Lagrange multiplier (LM) statistic MR2,

where M is the sample size and R2 is the coefficient of determination from fitting the ARCH(q′)

model for a number of lags q′. The null hypothesis indicates the failure to reject the no ARCH

effects (Engle, 1982). Under the null hypothesis, the asymptotic distribution of the test statistic
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is χ2 with q′ degrees of freedom. Note that the test can be applied to GARCH models since a

GARCH(p′,q′) model is locally equivalent to an ARCH(p′+q′) model (Bollerslev, 1986).

As depicted in Figures 4.7 and 4.8, the Ljung-Box Q-test for squared residual autocorrelation

rejects the null hypothesis that the squared residuals are not autocorrelated at 95% confidence

for different values of K-first autocorrelations. As a result, a non-linear effect should be taken

into account in our ARMA(p,q) models.
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Figure 4.7 Results of Ljung-Box Q-test for squared

residual autocorrelation of the ARMA(7,2)

Moreover, as seen in Figures 4.9 and 4.10, the null hypothesis is rejected for different values of

lags q′ at a confidence interval of 95%. Note that the test fails to reject the null hypothesis of

no ARCH effects in the residuals of fitted ARMA(4,1) models at lags up to q′ = 75. Due to its

complexity, in practice we will not use an ARCH model with q′ up to 75. As a result, we can

argue that our measurements contain heteroskedasticities in conformity with results obtained

from the Ljung-Box Q-tests for square residual autocorrelation.
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Figure 4.8 Results of Ljung-Box Q-test for squared

residual autocorrelation of the ARMA(4,1)
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Figure 4.9 Results of Engle test for residual

heteroskadasticity of the ARMA(7,2)

4.5.3 Analysis of the residuals of the improved models

Since the residuals of fitted ARMA(p,q) models contain conditional heteroskedasticities, the

models can be refined by adding a non-constant variance in the disturbance term εt . It is
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Figure 4.10 Results of Engle test for residual

heteroskadasticity of the ARMA(4,1)

believed that the variance is a form of the power law decay function. Hence, the EGARCH

models proposed by Nelson (1991) might be appropriate. According to the AIC and SBIC, we

find that ARMA(7,2)-EGARCH(9,6), denoted by Model 1 and ARMA(4,1)-EGARCH(12,8),

denoted by Model 2, are suitable models for our measurements. We can now analyse the

standardized residuals of fitted models.

In Figures 4.11 and 4.12, the distribution of the residuals in each model are less heavy-tailed,

not skewed and fit the red curve. In addition, the KS test’s p-values are 0.9 and 0.48 for

Model 1 and Model 2 respectively. Under such conditions, the residuals could come from a

normal distribution. The ACF and the PACF show that many lags are far below the limits

for autocorrelation. As a result, they might be uncorrelated, and we may conclude that the

residuals might be white Gaussian noise.

By using the Ljung-Box Q-test for residual and squared residual autocorrelations, the results

of the tests are resumed for a few values of K-first correlations in this chapter. As depicted in

Tables 4.2 and 4.3, all p-values are above the significance level of 5%. Hence, the Ljung-Box

Q-test fails to reject the null hypothesis that proves that the residuals are not autocorrelated at
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Figure 4.11 Analysis of the residuals of fitted Model 1
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Figure 4.12 Analysis of the residuals of fitted Model 2

95% of confidence for different values of K-first autocorrelations. Since we want a generic

model, it is reasonable to approximate the residuals from fitted ARMA-EGARCH models as

white Gaussian noise.
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Table 4.2 Results of Ljung-Box Q-test for residual

autocorrelation

p-value of Q statistic K = 10 K = 25 K = 60 K = 80

Model 1 0.83 0.93 0.87 0.82

Model 2 0.96 0.96 0.98 0.98

Table 4.3 Results of Ljung-Box Q-test for squared

residual autocorrelation

p-value of Q statistic K = 10 K = 25 K = 60 K = 80

Model 1 0.81 0.52 0.57 0.68

Model 2 0.47 0.24 0.28 0.2

4.5.4 Summary

Impulsive noise with correlated samples can be analysed and modelled using an LTI filters

approach. Their relationship with discrete time series can help us to choose a suitable filter,

such as the number of parameters, and the input time series is given by εt . From this analysis,

we can retain that:

• impulsive noise that is obtained by measurements can be fitted by ARMA(p,q) models

where all coefficients may lie outside the unit circle. Thus, the stationarity and the invert-

ibility conditions are satisfied;

• the impulsiveness of the data comes from conditional errors. Indeed, the residuals from fit-

ted ARMA models contain ARCH effects as shown with the Ljung-Box Q-test for squared

residual autocorrelation and the Engle test for residual heteroskedasticity;

• the ARMA models can be improved by adding ARCH effects such as EGARCH models.

Thus, the standardized disturbance term εt = εt/σt can be approximated by a white Gaus-

sian noise. This suitable approximation can reproduce distortions induced by the multipath

propagation effects.
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4.6 Simulation and results

4.6.1 Simulation parameters

In order to demonstrate the efficiency of the proposed model, we can simulate the resulting

waveforms obtained at the output of the LTI filters. They can be compared to measured im-

pulsive waveforms to determine the goodness-of-fit. The analysis of the obtained results is

provided.

By using the ARMA(p,q) models fitted from our measurements, we define a disturbance term

εt = σtεt , as defined in Equation (4.16) where εt is a white noise with normal distribution

∼ N (0,1) and σt is the time-dependent standard deviation. We choose to define the time-

dependent function given by:

σt =
σ0

tν
√

2π
exp

(
−(log t−μ)2

2ν2

)
(4.26)

where ν and μ are parameters related to the rise and decay time and σ0 is a normalized scale

parameter. These parameters are adjusted to compare measurement and simulation results.

4.6.2 A comparison of measurement vs. simulation results

By using the ARMA(p,q) models fitted from our measurements, and by considering the distur-

bance term εt as a white Gaussian noise whose variance is a time-dependent function, we can

plot the results obtained by a simulation. Simulated waveforms and spectral densities can be

compared to measured impulsive noise.

We use the ARMA(7,2) model with conditional heteroskedasticity. It is denoted by Model 1.

In Figure 4.13, the resulting waveform obtained by the model is an impulsive waveform. Its

power spectral density, in red curve, accurately fits the PSD of measurements, which are in

blue curve. The frequency response of the LTI filter is represented by the black curve. The
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PSDs are decaying as a form of∼ f−γ where γ > 0. The effect of the disturbance term induces

local variations of the PSD.

For Model 2, we use the ARMA(4,1) model, with conditional heteroskedasticity. The obtained

waveform and the PSD are depicted in Figure 4.14. The waveform is impulsive and randomly

distorted. By comparing the PSDs, the simulation fits the measurement accurately.
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4.6.3 Analysis of simulated impulsive waveforms

A more detailed analysis of simulated waveforms can be provided by studying their spectro-

grams and their autocorrelation functions. As depicted in Figures 4.15 and 4.16, the obtained

results are quite similar to the measured impulsive noises presented in Figures 4.1 and 4.2. The

samples of these impulsive waveforms are correlated. Indeed, slow decays, quite similar to

our measurements, are observed in the autocorrelation functions. Hence, there are significant

correlations at different values of lags. Moreover, the effect of the disturbance term, modelled

as a white noise with conditional variance, can reproduce the impulsiveness of the process. The
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spectrograms show that the power density of the simulated impulsive waveforms are strong for

a short duration with a large frequency bandwidth, and it decreases over time and frequency.

Note that the proposed model is based on the modelling of second-order statistics of the mea-

surements. The model can be validated using second-order statistics such as PSD, spectrogram

and ACF. This approach is accurate for modelling these impulsive noises.

4.6.4 Advantages and limitations of the proposed model

Compared to partitioned Markov chain based-model, the proposed approach allows for an ac-

curate estimation of the spectral characteristics of PD from data via a simple and straightfor-

ward estimation procedure (Dickey and Fuller, 1979; Phillips and Perron, 1988; Box et al.,

1994; Akaike, 1973; Schwarz, 1978). In addition, the measure of the goodness-of-fit allows us

to assess the adequacy and the accuracy of time series models.

The main issue of such approaches is the selection of the time series model and the number

of parameters to be estimated. The complexity of the model increases as the number of pa-

rameters increases and overfitting problems can occur (Hurvich and Tsai, 1988). There is a



115

5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Spectrogram

Fr
eq
ue
nc
y
[G

H
z]

−200

−190

−180

−170

−160

−150

−140

−130

−120

5 10 15 20 25 30 35 40 45

−1

−0.5

0

0.5

1

Time [ns]

A
m
pl
itu

de
[V
/m

]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

−180−160−140−120
Power density [dBW/m2/Hz]

0 50 100
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

A
C
F

Figure 4.15 Waveform obtained with the Model 1
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Figure 4.16 Waveform obtained with the Model 2

clear trade-off between the accuracy and the complexity of such models. Fortunately, this can

be resolved by using the Akaike information criterion (Akaike, 1973, 1974) or the Schwarz

bayesian information criterion (Schwarz, 1978).
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4.7 Conclusion

In this chapter, we propose a new approach to capturing spectral characteristics of EMIs in-

duced by PD activity, based on second-order statistics EMIs from PD activity. Experimenta-

tions and measurement campaigns show that the wideband impulsive noise waveforms emitted

by electric arc discharges are transient when samples are correlated. Moreover, their power

spectral densities have a form of approximately ∼ f−γ where γ > 0 is an arbitrary exponent.

These impulsive noises can be modelled by an LTI filter in which correlated samples are in-

duced by the autoregressive and/or the moving average terms. We can analyse the filter in a

time domain by using a time series in which all coefficients, the AR(p) and the MA(q) terms,

can be estimated by using the maximum-likelihood function.

From the analysis of the time series fitted from our measurements, all coefficients of the

ARMA(p,q) models lie outside the unit circle in which the stationarity condition is ensured.

The residuals of fitted ARMA models contain ARCH effects in which the variance could be

seen as a time dependent function, i.e. not constant over time. As a result, the models can be

refined by adding heteroskedasticity in the disturbance term. The standardized residuals from

fitted ARMA models with heteroskedasticity can be approximated by a white noise. Conse-

quently, the disturbance terms can be modelled as white noise with a time dependent variance.

It allows for the reproduction of distortions induced by the multipath propagation effects. The

efficiency of our approach is demonstrated by comparing the waveforms obtained by simulation

to those seen in measurements. Their second-order statistics fits our measurements accurately.

In future work, the proposed model can be extended to vector ARMA models with heteroskedas-

ticity in which the vector is a collection of many measured impulsive noise waveforms. The

estimation and the analysis follow the same procedure as described in this chapter exactly. Un-

der this condition, the ARMA(p,q) models and the parameters defining the heteroskedasticity

can be estimated empirically from any discharge sources generated by any HV equipment in

substation environments such as power transformers, overhead power lines, or circuit breakers.
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In the next chapter, a statistical analysis of impulsive RF signals from PD activity in a Poisson

field of interferers in substations is provided. Based on the work hitherto described, a generic

impulsive noise model is proposed by using a Poisson field of interferers. Based on practical

assumptions, statistical properties of our proposed model can be derived from which signal

processing algorithms can be implemented for a rapid PD identification and localisation in HV

equipment. Impulsive noise mitigation techniques can be implemented for wireless communi-

cations in substations.





CHAPTER 5

A STATISTICAL ANALYSIS OF IMPULSIVE NOISE IN A POISSON FIELD OF
INTERFERERS IN SUBSTATION ENVIRONMENTS

5.1 Introduction

The deployment of recent and advanced wireless communication technologies in substations

offers significant improvement in terms of the efficiency, reliability and safety of the elec-

tric power grid (Yan et al., 2013; Gungor et al., 2011, 2010; Gungor and Lambert, 2006;

Amin and Wollenberg, 2005). Unfortunately, high-voltage (HV) environments are harsh and

hostile to such an extent as to render wireless communication performances severely degraded

(Shan et al., 2007; Madi et al., 2010, 2011; Ndo et al., 2013). Accordingly, the development

of rapid and online methods of detection, identification and/or localization of partial discharge

(PD) sources using wireless intelligent electronic devices (WIED) is an area of growing inter-

est (Montanari and Cavallini, 2015; Wu et al., 2015; Ma et al., 2015; Au et al., 2015e). The

design of more accurate, rapid and efficient signal processing algorithms can be achieved with

tractable and reasonable assumptions underlying the physics of such radio frequency (RF) sig-

nals/noise in substations. This chapter deals with statistical characterization and analysis of

impulsive noise in situations in which RF impulsive signals are caused by electromagnetic

radiations from PD sources.

5.1.1 Prior and related work

The fields of PD measurement, diagnostics, and communications all offer overviews of prior

and related work pertaining to EMIs from PD sources.

5.1.1.1 EMIs in substation environments

The noise process typical of substation environments consists of impulsive discharges from

PD activity and background noise induced by the overall interferences in substations. The
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impulsive component is characterized by a strong amplitude with short durations, which makes

such a noise process non-Gaussian (Madi et al., 2010, 2011; Shan et al., 2007). Over a long

time observation, the rare events of these discharges produce heavy-tailed behaviour in the

probability distribution.

Over the last four decades, several measurement campaigns have been conducted in substations

using antennas in order to measure the EM radiations from PD activity (Pakala and Chartier,

1971; Arai et al., 1985; CISPR, 2010; Portugués et al., 2003; Sacuto et al., 2012; Au et al.,

2013). Based on measurement results, the radio noise emitted by PDs consists of very short

transient impulsive discharges of a duration of 10 to 200 ns, on average. The spectra have

a form of 1/ f γ , where γ is the exponent characterizing the decay over frequency (Au et al.,

2015b,d). The measurement of PD sources by their EM radiations has become increasingly

important to researchers because RF measurement systems are non-invasive to HV equipment,

they ensure a better signal-to-noise ratio, and their use allows failure location (Tenbohlen et al.,

2008; Judd et al., 2005; Portugués et al., 2003).

5.1.1.2 Partial discharge diagnostics

The presence of significant PD sources causes permanent damage to and possible failure of

HV equipment (Hudon and Bélec, 2005; Bartnikas, 2002; Kuffel et al., 2000). As a result,

researchers have proposed valuable diagnostic tools for the assessment of aging and lifespan of

power equipment. Over the last decade, PD diagnostic tools based on PD’s EM radiations have

been emphasized due to the ease of deployment, cost-effectiveness, speed, and the potential

for online remote monitoring of HV equipment (Tenbohlen et al., 2008; Judd et al., 2005;

Portugués et al., 2003; Pearson et al., 1991).

Moore et al. (2005), Markalous et al. (2008), Tang et al. (2009) and Sinaga et al. (2012)

have proposed several methods for identifying and localizing PD sources using ultra-high fre-

quency sensors (UHF) and/or acoustic sensors. Although the effectiveness of their proposed

approaches have been shown experimentally, the performance analysis of signal-processing
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methods underlying the identification and localisation of sources cannot be compared with var-

ious real-life situations, especially in terms of computational complexity. Therefore, it might

be useful to provide a generalized and physically-complete model that can be used for perform-

ing analyses of such signal processing methods, and designing and optimizing PD diagnostic

tool systems.

5.1.1.3 Communication in substation environments

Over the last few years, smart-grid has emerged as the next generation of electric grids. In

particular, the design of more robust wireless communication systems in substation environ-

ments is a growing interest (Madi et al., 2011; Shan et al., 2007; Ndo et al., 2013; Ali et al.,

2015; Ali, 2015). In the literature, researchers have used computer methods to simulate random

variables that reproduce EMIs which are typical of substations, based on related work in sta-

tistical impulsive-noise modelling (Middleton, 1999; Shao and Nikias, 1993a; Llow and Hatz-

inakos, 1998). Using the empirical probability distributions (first-order statistics) of experi-

mental data, the estimation procedure is well-established and straightforward (Zabin and Poor,

1989; Tsihrintzis and Nikias, 1995; Weron and Weron, 1995; Middleton, 1999). However,

this is not a satisfying condition when impulsive noise exhibits transient behaviour, because

second-order statistics are largely ignored.

Samarodnitsky and Taqqu (2000), Nikias and Shao (1995), Madi et al. (2011), and Ndo et al.

(2013) have provided performance communication analyses, and the design of more robust

communication systems have been built upon the assumption that such noise processes are in-

dependent and identically distributed (idd). When EMIs from PD produce transient impulsive

waveforms, the idd assumption does not hold because impulsive noise samples are correlated

(Au et al., 2015b,d; Sacuto et al., 2013). Recently, Ali (2015) has shown that communica-

tion systems that are robust against idd impulsive noise perform poorly when the receiver is

corrupted by transient impulsive noise.
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5.1.2 Contribution and organization

This chapter provides a statistical analysis of transient impulsive noise in substation environ-

ments. A new and generalized impulsive noise model will be implemented using the Poisson

field of interferers, from which first- and second-order statistics can be derived analytically

based on the physics of the noise process. The statistical analysis allows for the identification

of some interesting statistical properties of moments, cumulants and probability distributions.

These can, in turn, be utilized in signal processing algorithms for rapid PD identification, local-

ization, and impulsive noise mitigation techniques in wireless communications in substations.

The chapter is structured as follows: in Section 5.2, a mathematical formulation of multiple PD

interference sources is presented, based on tractable and reasonable assumptions regarding the

physical process of PD and the propagation of EM waves. By assuming that PD sources are ran-

domly distributed over space-time, the Poisson-field of interferers allows for the generalization

of an impulsive noise model in the presence of multiple PD sources in substations. In Section

5.3, probability distributions and first- and higher-order moments of such noice processes are

derived by taking advantage of the Poisson field of interferers. In Section 5.4, experimental and

simulation results are presented to assess the goodness-of-fit of the proposed filtered Poisson

process and existing impulsive noise models used by Shan et al. (2007), Shan et al. (2011),

Bhatti et al. (2009) and Madi et al. (2011) for substation environments. An estimation proce-

dure is proposed in order to compare first- and second-order statistics. Results show that it is

more appropriate to use the filtered Poisson process rather than memoryless impulsive noise

models when the impulsive component has transient effects. Section 5.5 is an application of

the generalized model, by which a new technique for a rapid and online identification of PD

sources is proposed using a blind-source separation technique. An estimation of a number of

PD sources can help to evaluate the insulation performance and lifespan of HV equipment.
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5.2 A mathematical formulation of multiple PD interference sources

In this section, we define a mathematical formulation of a noise process in the presence of mul-

tiple PD interference sources based on tractable and reasonable physical assumptions, thereby

establishing a generalized impulsive noise model for substation environments.

5.2.1 Electromagnetic radiations of multiple PD sources

Assuming a given receiver is surrounded by an arbitrary number of HV equipment under nor-

mal operation in a spatial region, ϒ ∈R
d where d is the dimension of the space. For simplicity,

the spatial region is restricted to a sphere in the three-dimensional Euclidean space where the

receiver is located at the origin.

5.2.1.1 The emission of the PD impulses

Inside this spatial region ϒ, each HV installation generates an arbitrary number of PD sources in

which the induced electromagnetic radiations produce transient impulsive waveforms. PD im-

pulses are characterized by a rapid impulse whose durations, rise-time, fall-time and amplitude

are linked to the physical characteristics of PD, such as over-voltages, ionization processes,

and/or free-electron rates (Bartnikas and Novak, 1993; Brunt, 1991). In such circumstances,

it is reasonable to assume that all of the PD sources share a common random mechanism in

which the original transient impulses induced by PD sources have the same type of waveform.

This is denoted by aD(θ̄ , t), where a is a real positive random amplitude, and θ̄ is a set of

time-invariant random variables denoting the duration, rise-time, and spectral characteristics.

5.2.1.2 Basic assumptions of spatial and temporal PD events

Inside the spatial region ϒ, we assume that the number of HV equipment is countable when

their positions are randomly distributed over space. Moreover, each HV installation has an

arbitrary and countable number of PD sources where their positions are denoted by r1,r2, · · ·
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and rk ∈ ϒ is a random variable. As a result, the distance between the kth PD source and the

receiver is written as rk = ‖rk‖, since the receiver is located at the origin of the spatial region.

In Chapters 2 and 3, we described that the emission of a single PD is linked to both the local

electric field and the number of free-electrons, which depend on the physical characteristics

of PD sites as well as the applied voltage, thermal aging, and electrical insulation of an HV

installation. Under such conditions, the amplitude and the time occurrence of the PD can be

described as time-dependent random variables. In particular, the time occurrence follows a

cyclostationary process due to the AC voltages. However, since the three-phase AC voltage

is used in substations, the cyclostationary condition might not hold due to the superposition

of all impulses from multiple PD sources. As a result, it is reasonable to assume that an

impulse akD(θ̄k, t) occurs independently at random time t1, t2, · · · ∈ R
+. In addition, we shall

assume that the random amplitude ak and the random parameter characterizing the impulse θ̄k

are independent and identically distributed (iid) whose statistical distributions are respectively

given by pa(a) and pθ̄ (θ̄). PD sources are also assumed to be independent; in other words,

the location rk, the temporal event of the impulse tk, the random amplitude ak and the random

parameter θ̄k of the kth are independent for all PD sources k = 1,2 · · · .

The resulting noise process observed by the receiver is a superposition of all transient PD im-

pulses activated in the spatial region ϒ. Since the receiver and PD sources are located in distinct

positions, a transient impulse will be attenuated and distorted by the propagation channel and

the receiver. With reasonable assumptions of the propagation conditions of EM waves, and the

spatial and temporal distribution of PD sources, the statistical properties of the received noise

process can be derived.

5.2.2 Propagation of EM waves induced by PD sources

Statistical properties of the received noise process can be derived with suitable assumptions of

the basic impulsive waveform of interferences sources. Middleton (1974, 1973) has specified

a very general waveform when the physical process of source emission is taken into consid-
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eration for major classes of noise processes. Unlike his expression, which requires some re-

strictions on the bandwidth of the receiver, we may simplify the expression by assuming that

all of the PD sources inside the spatial region have the same isotropic radiation pattern and the

receiver has an omni-directional antenna. This assumption is applicable for both narrowband

and wideband noise processes.

5.2.2.1 The noise process observed by the receiver

An emitted PD impulse observed by the receiver is distorted and attenuated by both a propaga-

tion channel and the receiver itself. These distortions can be determined by the beam patterns

of the PD source and the antenna, source location, and the impulse response of the receiver,

including RF and IF stages of linear filters. As conjectured in Chapter 4, a PD transient im-

pulse might be attenuated and distorted by the multipath effects induced by the presence of

multiple reflected EM waves of the emitted impulse and the impulse response of the receiver

by which the resulting impulsive signal has a transient effect. In such instances, the distortion

is produced by the convolution product of an original transient PD impulse aD(θ̄ , t) located at

r and the impulse response of the receiver, such that:

au(θ , t,r) = c(r)aD(θ̄ , t)∗h(t)

= c(r)au(θ , t)
(5.1)

where h(t) is the impulse response of both the propagation channel and the receiver. c(r) is

the attenuation factor function related to the distance between the PD source and the receiver.

This can be determined by the beam patterns of sources and the receiver. θ is a set of random

variables characterizing the distorted PD impulse observed by the receiver after any RF and IF

stages of linear filtering.

In the presence of multiple PD sources, the resulting noise process is given by the superposition

of all PD impulses, such that the instantaneous amplitude observed by the receiver is written
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as:

X =
NI

∑
k=1

aku(θk, tk,rk) (5.2)

where NI is the total number of PD impulses arriving at the receiver within a given time ob-

servation. This will be defined from assumptions with respect to the spatial and temporal dis-

tribution of the PD sources. Next, the definition and emulation of the attenuated and distorted

transient impulse u(θk, tk,rk) are examined in detail.

5.2.2.2 A generic temporal impulsive waveform from PD

According to measurements in substations and laboratories, a generic transient impulsive wave-

form from PD activity can be simulated the model proposed and developed in Chapter 4 whose

spectral characteristics of transient impulses have been gleaned from data. Our proposed time

series models are able to reproduce the transient behaviour of PD impulses that are randomly

distorted by the impulse response of both the propagation channel and the receiver. Following

our proposed model, a generalized PD impulse waveform is modelled numerically with an LTI

filter, which is given by:

ut =
pu

∑
i=1

φiut−i + εt +
qu

∑
k=1

ψkεt−k (5.3)

where ut is the real-valued discrete-time impulse waveform from PD activity, ut−i is the sam-

ple at discrete-time t − i. φi and ψk for any i = {1, · · · , pu} and k = {1, · · · ,qu} are spectral

characteristics of the impulse whose coefficients lie outside the unit circle. εt is the disturbance

term which controls the impulsiveness and the duration of the distorted impulsive noise. This

is modelled as a heteroskedastic Gaussian noise. In the presence of multiple PD sources, we

assume that these parameters are iid random variables. These values are summarized in the set

θ . The random parameter a and all of the random variables in θ are independent.

5.2.2.3 The attenuation factor

We assume that the antenna and PD sources are positioned to yield far-field conditions; in

other words, PD sources must be positioned so that the distance source-receiver is, at least,
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greater than the wavelength of the antenna’s receiver. As a result, the attenuation factor c(r)

in Equation (5.1) is a decreasing function of the distance from the source and the receiver.

For simplicity, c(r) is approximated by the inverse of the distance source-receiver with an

attenuation coefficient p, such that:

c(r) =
c0

rp (5.4)

where r = ‖r‖ is the distance source-receiver and c0 is a real positive random value induced by

multipath effects. These parameters can be obtained by measuring the propagation channels in

substations or any other environments where PD sources are observed.

5.2.3 Spatial and temporal distribution of PD sources

The spatial and temporal distributions of PD sources are intrinsically linked to the number of

pieces of HV equipment, their aging and the intensity of the electric field within PD sites. Let

Ξ be a finite space-time region in which the receiver observes such electromagnetic radiations

emitted by PD sources inside the spatial region ϒ(R1,R2) and within a finite time interval

[0,T ] where Ξ = ϒ(R1,R2)× [0,T ]⊂ ϒ× [0,+∞]. In such instances, we shall approximate the

noise process as follows: we assume that two PD sources cannot be located in the exact same

position and that their emissions could not occur at the same exact time. In addition, it is also

assumed that the number of PD events in the future is identically distributed over space and,

independent of past events. From this approximation, we claim that the spatial and temporal

distribution of PD sources follows a space-time Poisson point process (Parzen, 1962; Girault,

1966; Snyder and Miller, 1991). Thus, the total number of impulses arriving at the receiver

NI inside the space-time region Ξ is a random number following a space-time Poisson point

process whose the intensity is given by λ (r, t) where:

Ns =
∫

Ξ
λ (t,r)dtdr

=
∫ T

0

∫
ϒ(R1,R2)

λ (t,r)dtdr
(5.5)
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where Ns is the associated parameter of the Poisson distribution of PD sources inside Ξ, which

is the average number of PD sources radiating transient impulses. The probability mass func-

tion of NI is written as:

Pr(NI = k) =
Nk

s
k!

e−Ns (5.6)

for all k = 0,1,2,3, · · · . To yield mathematically tractable results, we assume the homogeneity

of the space-time Poisson point process whose intensity λ (t,r) = λ is constant. Physically,

the intensity λ is proportional to the number of pieces of HV equipment, their aging, the

degradation of the electrical insulation systems, and the average intensity of the electric field

within PD sites. Under such conditions, if the observation period is short, then the physical

characteristics of HV installations does not vary over space and time.

From the homogeneity of the space-time Poisson point process, the average number of PD

sources radiating transient impulses from Equation (5.5) is written as:

Ns = λS (5.7)

where S includes the volume of the spatial region and the time observation. We have restricted

the spatial region to a finite sphere in the three-dimensional Euclidean space within a time ob-

servation [0,T ], S = 4
3πR3T where R is the radius of the finite sphere. Therefore, the parameter

λ is the density of PD sources radiating impulses. Note that if the cyclostationary assumption

must hold, then the density is a time-dependent function with respect to the periods of AC

voltages. For simplicity, we assume that λ is constant.

The Poisson field of interferers allows us to formulate a generalized and physically complete

noise model for substation environments, in which the physical characteristics of HV installa-

tions are grouped into a few statistical quantities. The proposed impulsive model is a filtered

Poisson process whose typical response function u(θ , t,r) is a transient impulse induced by PD

activity in substations. The spectral characteristics, amplitude, and durations can be captured

from data (see Chapter 4). Moreover, the number of PD sources and their emissions can be

controlled by the density parameter λ (t,r) of the spatial and temporal Poisson point process.
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5.3 Statistical analysis

In this section, interesting statistical properties of the noise process can be derived based on

practical assumptions. Eventually, they could be used to design a more robust receiver in

impulsive noise environments, or in the development of new PD identification and detection

methods for rapid diagnostics of electrical insulation systems in HV equipment via WIEDs.

To do so, it is necessary to derive the first-order statistics of the instantaneous amplitude of the

resulting noise.

5.3.1 Probability density function of the instantaneous amplitude

Taking advantage of the Poisson field of interferers, we derive the probability density function

(PDF) of the instantaneous amplitude of Equation (5.2) via its characteristic function (c.f ).

Inside the space-time region Ξ, the c.f of the overall noise process X is given by:

MX( jξ ) =
∞

∑
k=0

E [exp( jξ X)]P(k) (5.8)

where E [·] denotes the expectation and P(k) is the probability of getting k PD impulses ob-

served by the receiver in Ξ. Since we have assumed a homogeneous Poisson point process

whose density parameter is constant λ , the average number of PD sources radiating tran-

sient impulses Ns is constant. Since X is filtered by a basic PD impulse waveform u(θ , t,r)

with a real positive random amplitude a whose {ai,θi, ti,ri} is an iid random sequence for all

i = 0,1,2, · · · , and the positions of PD sources and their occurrences are uniformly distributed

on any interval of space and time inside Ξ, the characteristic function is written as:

MX( jξ ) =
∞

∑
k=0

(
1

S

∫
Ξ
E [exp( jξ au(θ , t,r))]dtdr

)k Nk
s

k!
e−Ns (5.9)
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From the Taylor series expansion of an exponential function, Equation (5.9) is written as:

MX( jξ ) = exp

(
λ
∫

Ξ
(E [exp( jξ au(θ , t,r))]−1)dtdr

)

= exp

(
λ
∫

Ξ
(Qa,u( jξ )−1)dtdr

) (5.10)

Note that S =
∫

Ξ dtdr. From Section 5.2, we have assumed that {a,θ} and {t,r} are indepen-

dent and, therefore, all of these parameters are also independent. The PDFs of the real positive

amplitude a and the set of random variables θ are denoted by pa(a) and pθ (θ) respectively.

Using the attenuation factor in Equation (5.4) and since {a,θ} and {t,r} are independent, we

write Qa,u( jξ ) as follows (Rice, 1944, 1945):

Qa,u( jξ ) =
∫
R+

pa(a)
∫

Θ
pθ (θ)exp

(
jξ

c0

rp au(θ , t)
)

dθ da (5.11)

Assuming that c0 is a positive random value with a PDF pc0
(c0), for which the variable and all

mentioned random variables are independent. Thus, Qa,u( jξ ) can be written as:

Qa,u( jξ ) =
∫
R+

pa(a)
∫

Θ
pθ (θ)

∫
R+

pc0
(c0)exp

(
jξ

c0

rp au(θ , t)
)

dc0 dθ da (5.12)

As an approximation, let the space-time region Ξ go to infinity. Now, by taking the logarithm

of the characteristic function of X in Equation (5.10), and using the Fubini’s theorem, we have

(Rice, 1944, 1945):

logMX( jξ ) = λ
∫
R+

pa(a)
∫

Θ
pθ (θ)

∫
R+

pc0
(c0)

∫
Ξ

[
exp

(
jξ

c0

rp au(θ , t)
)
−1

]
dr dt da dθ dc0

= λ
∫
R+

pa(a)
∫

Θ
pθ (θ)

∫
R+

pc0
(c0)

∫ ∞

0

·
∫

ϒ

[
exp

(
jξ

c0

rp au(θ , t)
)
−1

]
dr dt dc0 dθ da

(5.13)
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where R1 → 0, R2 and T → ∞. Since the spatial region is restricted to a sphere with a radius

R→ ∞, Equation (5.13) is can be written in spherical coordinates as:

logMX( jξ ) = 4πλ
∫
R+

pa(a)
∫

Θ
pθ (θ)

∫
R+

pc0
(c0)

∫ ∞

0

·
∫ ∞

0

[
exp

(
jξ

c0

rp au(θ , t)
)
−1

]
r2dr dt dc0 dθ da

(5.14)

replacing g with c0ar−p, the integration-by-substitution gives the following equation:

logMX( jξ ) =
4πλ

p

∫
R+

a3/p pa(a)
∫

Θ
pθ (θ)

∫
R+

c3/p
0 pc0

(c0)
∫ ∞

0

·
∫ ∞

0
[exp( jξ gu(θ , t))−1]g−3/p−1dg dt dc0 dθ da

(5.15)

Hence, Equation (5.15) is simplified as:

logMX( jξ ) =
4πλ

p
E [aα ]E [cα

0 ]
∫

Θ
pθ (θ)

∫ ∞

0

∫ ∞

0
F (θ , t,g)dg dt dθ (5.16)

where α = 3/p is the stability index of the noise process and F (θ , t,g) is given by:

F (θ , t,g) = [exp( jξ gu(θ , t))−1]g−α−1 (5.17)

Note that Equation (5.16) is valid if and only if E [aα ] and E
[
cα

0

]
are finite and the integrand

F (θ , t,g) is absolutely integrable. Using Euler’s formula, the integral over space is given by:

∫ ∞

0
F (θ , t,g)dg =

∫ ∞

0
(cos(bg)−1)g−α−1dg+ j

∫ ∞

0
sin(bg)g−α−1dg

=
∫ ∞

0
−2sin2(bg/2)g−α−1dg+ j

∫ ∞

0
sin(bg)g−α−1dg

(5.18)

where b = ξ u(θ , t). In such instances, the integral on the left-hand side is absolutely inte-

grable if 0 < α < 2, and the right-hand side is absolutely integrable if 0 < α < 1 (Grad-

shteyn and Ryzhik, 2007). In this case, the integral is absolutely integrable if the attenuation

coefficient is p > 3 since α = 3/p. If we assume that the noise process X has a symmetric

probability distribution, then the characteristic function is real-valued. As a result, the integral
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is absolutely integrable if p > 3/2.

∫ ∞

0
F (θ , t,g)dg =−Γ(1−α)

α
|b|α

(
cos

(π
2

α
)
− j sign(b)sin

(π
2

α
))

(5.19)

where Γ(·) is the gamma function, such that:

Γ(x) =
∫
R+

tx−1e−tdt (5.20)

Finally, the logarithm of the characteristic function of X in Equation (5.16) is given by:

logMX( jξ ) =−σ |ξ |α (1− jβ sign(ξ ) tan(πα/2)) (5.21)

where

σ =
4πλΓ(1−α)cos(πα/2)

pα
E [aα ]E [cα

0 ]
∫

Θ
pθ (θ)

∫ ∞

0
|u(θ , t)|αdt dθ (5.22a)

β = sign(u(θ , t)) (5.22b)

where σ > 0 and β ∈ [−1,1]. The characteristic function of X has the form of the c.f of the α-

stable, if E [aα ], E
[
cα

0

]
and

∫ ∞
0 |u(θ , t)|αdt are finite. Therefore, the PDF of the instantaneous

amplitude of X can be approximated as an α-stable distribution. Note that if X has a symmetric

distribution, then the logarithm of the c.f in Equation (5.21) is simply:

logMX( jξ ) =−σ |ξ |α (5.23)

By using the Poisson field of interferers in which PD sources radiate transient impulsive wave-

forms in a realistic scenario, we have demonstrated that the PDF of X can be approximated

as an α-stable distribution, under certain conditions. This is characterized by a heavy-tailed

behaviour induced by the stability index 0 < α < 2 and a possible skewness (i.e. the probabil-

ity distribution is asymmetric) induced by β . However, in practice, the noise process consists
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of impulsive noise and an additive background noise, including thermal noise, in the receiver.

Hence, the resulting noise process is given by:

X =
NI

∑
k=1

aku(θk, tk,rk)+n(t) (5.24)

where n(t) is background noise, which is a spatially isotropic noise process. Assuming that the

central limit theorem holds for the background noise (i.e. non-impulsive noise), we consider

this to be a Gaussian noise. Under this condition, the logarithm of the c.f of the overall noise

process is written as:

logMX( jξ ) =−σ |ξ |α (1− jβ sign(ξ ) tan(πα/2))−σ2
n ξ 2 (5.25)

where σ2
n is the variance of the background noise. Note that the impulsive noise process and

the background noise are independent. As a result, the PDF of X is given by:

fX(x) =
1

2π

∫
R

MX( jξ )e− jξ xdξ (5.26)

The fX(x) of the noise process might be difficult to derive in closed-form because α-stable

cannot be written analytically except when α = 2,1, and 1/2, which are Gaussian, Cauchy and

Levy distributions respectively. When the background noise is negligible σ2
n � σ , the PDF

might be approximated by an α-stable distribution, but the PDF might be approximated by a

Gaussian distribution when σ2
n � σ . Assuming that the PDF of the noise process is α-stable,

the statistical analysis of the amplitude probability distribution, as well as its tails and moments,

is well-established. Extensive research covering the characterization and implementation of α-

stable noise processes has been provided in the literature (Chambers et al., 1976; Koutrouvelis,

1981; Samarodnitsky and Taqqu, 2000; Weron and Weron, 1995; Lévy, 1925). This analysis

is summarized in the following paragraphs. We will show that the high-order moments of the

α-stable distributions are not finite. In particular, the second-order moment is infinite. Unless

fractional lower-order moments are used, it is inappropriate to use an infinite variance in signal

processing problems (Shao and Nikias, 1993b). Fortunately, since the noise process is based
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on the Poisson field of interferers, Campbell’s theorem allows for the derivation of high-order

moments of the noise process, which are finite under certain conditions.

5.3.2 Amplitude probability distribution

The probability distribution is the cumulative distribution function (CDF) of the instantaneous

amplitude of the noise. This is characterized by the PDF of the noise, such that:

FX(x) = P(X ≤ x) =
∫ x

−∞
fX(ξ )dξ (5.27)

However, since we have demonstrated that the PDF is an α-stable distribution, a closed-form

is not available when 0 < α < 2 and particularly when α �= 0.5,1 and 2. Nevertheless, the CDF

is determined by α and β namely; if β = 0, then the CDF is symmetric around x = 0. When

β > 0, the CDF is right-skewed, i.e. the right-tail of the distribution is heavier than the left-tail

and P(X > x) > P(X < −x). On the other hand, the CDF is left-skewed, which means that

the left-tail of the distribution is heavier than the right-tail and P(X > x) < P(X < −x) when

β < 0. If α decreases, then the tail probabilities increase.

5.3.3 Tails and moments

The tail distribution is the complementary cumulative distribution function (CCDF) of the noise

process. This is defined as:

F̄X(x) = P(X > x) = 1−FX(x) (5.28)

Samarodnitsky and Taqqu (2000) have shown that tail behaviour is determined by α and β .

When 0 < α < 2 and −1 < β ≤ 1, then as x→ ∞ the tail approximation is given by:

P(X > x)∼ σα sin(πα/2)
Γ(α)

π
(1+β )x−α (5.29)
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However, when 0 < α < 2 and −1 ≤ β < 1, then as x → ∞ the lower tail approximation is

given by:

P(X <−x)∼ σα sin(πα/2)
Γ(α)

π
(1−β )x−α (5.30)

For any value of α < 2 and −1 < β < 1, the PDF and the CCDF are asymptotically power

laws. However, when β = −1 or 1, the tails of the distributions are not asymptotically power

laws.

5.3.3.1 Moments of α-stable distributions

The moments of the probability distribution is given by:

μk = E

[
Xk
]

=
∫
R

xk fX(x)dx
(5.31)

where μm is the kth moment of the probability distribution. Note that if the moments are

finite ∀k < ∞, then the mean, the variance and the kurtosis can be measured. Unfortunately,

Shao and Nikias (1993b) and Samarodnitsky and Taqqu (2000) have indicated that all moments

do not exist (i.e. μk is not finite) when the distribution is α-stable. In particular if 0 < α < 2,

then:

E

[
Xk
]
=

⎧⎪⎨
⎪⎩

∞, if k ≥ α.

μk < ∞, if 0 < k < α.

(5.32)

In other words, for 0 < α ≤ 1, first- or higher-order moments are not finite; for 1 < α < 2, the

first and all of the kth moments are finite when k < α . In particular, α-stable distributions have

infinite variance (i.e. μ2−μ2
1 = ∞). Under such conditions, higher-order moments such as the

second-order and/or the fourth-order moment cannot be exploited in practice. Shao and Nikias

(1993b) have derived fractional lower-order moments (i.e. μk < ∞ when 0 < k < α) for prac-
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tical engineering applications. Unfortunately, the authors have stated that these lower-order

moments are much harder to work with than second- and higher-order moments because they

introduce non-linearity to even linear problems.

5.3.3.2 Moments of shot-noise processes

Fortunately, since the proposed model is based on the Poisson field of interferers and the noise

process X is a shot-noise process filtered by a basic transient impulsive waveform, Campbell’s

theorem allows for the derivation of first- or higher-order moments (Rice, 1944). Assuming that

the impulsive noise process and the background noise are independent, statistical moments are

written as:

E

[
Xk
]
= λE

[
(au(θ , t,r))k

]
+E

[
nk(t)

]
(5.33)

Using our proposed basic waveform au(θ , t,r) and assuming that {ai,θi, ti,ri} is an iid random

sequence for all i = 0,1,2, · · · , we write the statistical moments as:

E

[
Xk
]
= λE

[
ak
]
E

[
uk(θ , t,r)

]
+E

[
nk(t)

]
= λE

[
ak
]
E

[
ck

0

]∫ T

0
E

[
uk(θ , t)

]∫
ϒ(R1,R2)

r−pkdr dt +E

[
nk(t)

] (5.34)

The noise process X has finite first- or higher-order moments if and only if E
[
ak], E[ck

0

]
and E

[
nk(t)

]
have finite moments and the integrands E

[
uk(θ , t)

]
and r−pk are integrable over

time and space respectively. In particular, by examining the integral over space in spherical

coordinates, we have:

∫
ϒ

r−pkdr = 4π
∫ R2

R1

r−(p−2)kdr (5.35)

Therefore, the noise process X has no finite first- or higher-order moments if and only if R1 = 0

and p− 2 ≥ 1/k or if R2 = ∞ and p− 2 ≤ 1/k (Lowen and Teich, 1990). In practice, the

receiver does not detect PD sources when R2 = ∞ and since we have assumed that the receiver
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is located at the origin of the sphere, there are no PD sources located at this position. Note that

R1 needs to be much greater than the wavelength of the antenna, thereby establishing far-field

conditions, which renders the attenuation factor in Equation (5.4) valid. If far-field conditions

hold, then the integrand r−pk is integrable over space ∀k < ∞. Moreover, since the waveform

u(θ , t) observed by the receiver is a transient impulse with a finite energy and duration, then

the integrand E
[
uk(θ , t)

]
is integrable over time ∀k < ∞.

5.3.4 A summary of important findings

We have proposed a generalized, complete, and physically-coherent radio-noise model for sub-

station environments with respect to the induced EMIs created by the presence of multiple PD

sources in HV equipment. Based on practical assumptions, we have assumed that PD sources

are distributed according to a space-time Poisson point process (the Poisson field of inter-

ferers). Accordingly, the basic transient impulsive waveform, au(θ , t,r), which is generated

by these sources, has been specified according to the far-field wave propagation and physical

characteristics of impulses such as amplitude, durations, and spectra.

This proposed model is a filtered Poisson point process, in which the number of PD sources

per unit volume or unit area, as well as the number of emissions per unit time per source, can

be set by a single density parameter λ . Although the cyclostationary process has been ne-

glected in this work, one could add a time-dependent function into the parameter λ to conduct

such processes. The relative intensity of the impulses can be derived using the far-field wave

propagation and the intensity of radiations.

Taking advantage of the Poisson field of interferers, the PDF of the instantaneous amplitude of

the resulting noise X has been derived from the characteristic function MX( jξ ). Under practi-

cal and realistic assumptions, we have demonstrated that the PDF can be approximated by an

α-stable distribution. However, all moments of these distributions do not exist. In particular,

the noise power level (second-order moment) and the degree of impulsiveness (fourth-order

moment) are not finite. As a result, signal processing methods based on these statistical mo-
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ments cannot be used for detection, estimation or identification. Fortunately, the Campbell’s

theorem allows for the derivation of first- or higher-order moments in closed-form. These mo-

ments are finite if and only if first- and higher-order moments of the basic transient impulsive

waveform and its random parameters are finite. In particular, by examining the integral ob-

tained in the spatial domain, we have found that first- and higher-order moments do not exist

when PD sources are located closed to the antenna position. Theoretically, such conditions

do not hold, because the attenuation factor used in Equation (5.4) is valid, if and only if the

far-field conditions are established.

The noise generation of our proposed model is physically coherent compared to other statistical

models using first-order statistics. This is because the spectra, occurrences and durations of the

impulsive component, as well as background noise, are taken into account. Moreover, the first-

order statistics, such as probability distributions and moments, can be linked to the physical

process of the noise, which can, in turn, be utilized for performing communications analyses

and designing and optimizing communication systems in substations.

5.4 Experimental and simulation results

In this section, a simple procedure for estimation is presented in order to reproduce such noise

processes in substations. Then, the estimated parameters will be used, by which the effec-

tiveness of the proposed approach will be shown by comparing measurement and simulation

results in terms of first- and second-order statistics. In addition, since α-stable and Middleton

Class A impulsive noise models are commonly utilized in substations environments, they will

be used for comparison (Shan et al., 2007, 2011; Bhatti et al., 2009; Madi et al., 2011).

5.4.1 Measurements in substations

Using the measurement setup that has been employed in Chapters 2, 3 and 4, the antenna

is surrounded by HV equipment, by which multiple PD sources can be detected. By setting a

time observation of T = 5 μs, many impulses from PD activity are captured via an oscilloscope.
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400 temporal waveforms have been recorded in the frequency range of 800 MHz to 5 GHz. PD

sources are characterized by any RF gain in the measurement setup by removing the antenna

factor. We have used a frequency mixer with a local oscillator of f0 = 800 MHz in order to

yield a baseband representation of RF signals. The EM radiations are measured in terms of

electric strength (V/m).

Since the antenna is positioned in a specific position within a substation and we do not have

any information on the location of PD sources, the noise process X is written as a temporal

function, such that:

X =
NI

∑
k=1

aku(θk, tk)+n(t) (5.36)

where NI is the number of observed impulses and ak is a random amplitude including the

attenuation induced by wave propagation and the amplitude generated by a PD source. n(t) is

the background noise.

5.4.2 A procedure for estimation

Based on the proposed characterization process in Chapter 2, a simple estimation procedure

of the noise process can be proposed, in which the estimated parameters can be utilized in our

proposed generalized impulsive noise model. The estimation procedure can be presented as

follows:

• assuming n(t) is a Gaussian noise, record waveforms when PD impulses have not occurred.

Then, estimate the level of the background noise, such that:

σ̂2
n = Var [n(t)] (5.37)

where Var [·] is the estimated variance;

• in the presence of PD impulses, count the number of impulses that have occurred. Hence,

the parameter density λ can be estimated by the average number of impulses occurring
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over time observation:

λ̂ =
N̄I

T
(5.38)

where λ̂ is the estimated density parameter and N̄s is the average number of impulses.

• detect each impulse and estimate the spectral characteristics via our proposed time series

models with heteroskedasticity. Note that the duration of an impulse can be estimated

using ARCH or EGARCH models. Next, check the goodness-of-fit of these models via the

estimation procedure detailed in Chapter 4;

• the amplitude a can be provided by measuring the variance of each PD impulse, such that:

â2
k = Var [aku(θk, tk)]

= Var [ak]
∫ Tu

0
|u2(θk, tk)|dt

(5.39)

where â2
k is the estimated square of the amplitude and Tu is the duration of an impulse.

Therefore, âk is obtained via the square-root of â2
k . Next, plot the histogram of âk or â2

k and

estimate the probability density.

In the measurement campaign, the estimated background noise level is σ̂2
n =−65.35 dBW/m2,

the average number of PD emissions is N̄s = 2.46 (i.e. the density is λ̂ = 4.92×10−5 s−1), and

the power density of PD impulses â2
k follows an exponential distribution whose average power

density is ā2
k =−51.96 dBW/m2.

5.4.3 Measurement-simulation comparison

Measurement and simulation results are presented for comparison. The goodness-of-fit is mea-

sured to assess the effectiveness of the approach.
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5.4.3.1 First-order statistics

Using our proposed generalized model, the estimated parameters have been utilized in order to

reproduce the impulsive noise process in substations. The adequacy of the model is discussed

via fist-order statistics from simulation and measurement results. α-stable and Middleton Class

A distributions are also provided. The empirical probability distributions (PDFs, CDFs, and

CCDFs) are presented to assess the goodness-of-fit of these models.

In Figure 5.1, a typical waveform is obtained by simulation using a second-order of autore-

gressive time series model with heteroskedasticity. The LTI filter reproduces the spectrum of

an impulse. Distortions and the duration are generated by the disturbance term. Using the

estimated parameters, the noise process X via the proposed impulsive noise model is depicted

in Figure 5.2.
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Figure 5.1 Impulsive waveform obtained by

simulation

As a comparison, 400 waveforms have been simulated to yield the overall empirical PDFs,

CDFs, and CCDFs. In addition, parameters of α-stable and Middleton Class A have been esti-
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Figure 5.2 Physical shot-noise process X

mated using statistical methods as developed by Middleton (1979), Zabin and Poor (1991), Mc-

Culloch (1986), and Tsihrintzis and Nikias (1996). Then, probability distributions are plotted

and the goodness-of-fit of the impulsive noise model are measured using the Kullback-Leibler

(KL) divergence, and the Kolmogorov-Smirnov (KS) test.

The empirical PDFs and CCDFs of measurements and impulsive noise models are depicted in

Figure 5.3. In the presence of impulsive noise, the PDF’s behaviours are heavy-tailed, and the

probability of having a strong amplitude (X > |0.05| V/m) represents to the impulsive com-

ponent. The probability densities are symmetric (i.e. fX(x) = fX(−x)), and the tail can be

described approximately as a power-law, such that F̄X(x)∼ |x|−ν as x > 0.05 V/m, where ν is

an exponent characterizing the decay. An accurate impulsive noise model can be defined by

its ability to reproduce the decay in the probability distribution. By comparing PDFs, however,

these impulsive noise models can reproduce the heavy-tailed behaviour; our generalized impul-

sive noise model is therefore more accurate compared to the α-stable and the Middleton Class

A distribution. Indeed, the proposed model has the smallest value in terms of KL-divergence

(see Table 5.1). The KS-test value in our model has again the smallest value; the p-values
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are 0.622, 0.5181, and 2.0× 10−4 for the proposed model, α-stable, and Middleton Class A

respectively. As a result, the KS-test rejects the null hypothesis that measurement results and

Middleton Class A noise model come from the same distribution at a 95% confidence interval.

The test does not reject the null hypothesis for the other impulsive noise models. In addition, by

comparing CCDFs, the tail of our proposed model is closer than other impulsive noise models.
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Figure 5.3 Probability distributions of the noise process

Table 5.1 The Goodness-of-fit: Measurement vs. impulsive

noise models

Test Statistics Proposed model α-stable Middleton Class A

DKL 0.0140 0.0437 0.0756

DKS 0.0306 0.0547 0.1294
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5.4.3.2 Second-order statistics

Although α-stable and Middleton Class A noise models might be adequate for noise processes

in substations, computer methods for reproducing noise samples are limited because the result-

ing random process X is independent and identically distributed so that the impulsive compo-

nent is modelled as a single-noise sample. As the noise process X is a collection of independent

random variables, the resulting autocorrelation function RX(τ) is defined as:

RX(τ) = E
[
X2
]

δ (τ) (5.40)

where δ (τ) is the Dirac impulse function. Under such a condition, the power spectral density

(PSD) of such noise processes is constant over all frequencies. In particular, an α-stable noise

process does not have a PSD because RX(0) =E
[
X2
]
, and we have shown that its second-order

moment does not exist. In practice, impulsive noise components are characterized by transient

effects whose spectra have a form of∼ ( f − f0)
−γ . From Equation (5.36), Campbell’s theorem

allows us to define the autocorrelation function and the power spectral density of the noise

process X , such that:

RX(τ) = λRu(τ)+Rn(τ)

= λE
[
a2
]
E [u(θ , t)u(θ , t + τ)]+E [n(t)n(t + τ)]

(5.41)

where τ is a temporal lag. If Ru(τ) exists for all value of τ , then the PSD of X is defined by the

Fourier transform of RX(τ) (Carson, 1931):

Sxx( f ) =
∫
R

RX(τ)e− j2π f τdτ

= λE
[
a2
]∫

R

(Ru(τ)+Rn(τ))e− j2π f τdτ

= λE
[
a2
]

Suu( f )+Snn( f )

(5.42)
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where Suu( f ) and Snn( f ) are PSDs of the transient PD impulse and background noise respec-

tively. Since Suu( f ) has a form of ∼ ( f − f0)
−γ , the PSD Sxx( f ) has a form of:

Sxx( f )∼ ( f − f0)
−γ +Snn( f ) (5.43)

The behaviour of such PSDs can be emulated via LTI filters. By using the periodogram, the

average PSD of the noise process has been estimated, as depicted in Figure 5.4. The measured

noise process contains transient PD impulses and background noise. Since we have used a

frequency mixer with a local oscillator at f0, the average PSD has a form of ∼ f−γ . On

average, the background noise consists of thermal noise, RF communications and harmonics

caused by interleaving artefacts and clock feedthrough from the oscilloscope. The average PSD

of the emulated noise process matches experimentation. A more accurate noise model can be

achieved by modelling RF communications and harmonics from the oscilloscope. This case

is beyond the scope of this work. The PSD of impulses has been extracted from the ambient

noise using a denoising process, as depicted in Figure 5.4.(b). Again, by comparing the average

PSDs, simulation results match experimentation.

Using filtered Poisson processes may be appropriate when impulsive noise has a spectrum of

∼ f−γ rather than using memoryless impulsive noise models that generate idd random noise.

Based on our proposed estimation methods, the effectiveness of our approach has been shown

for substation environments when impulses are generated by PD sources. Practical applications

can be implemented based on advanced signal processing methods for detecting, estimating,

and identifying any desired RF signals from RF communications and/or PD sources.

5.5 A rapid identification of PD sources using blind source separation

In this section1, we proposed a practical application for a rapid identification of PD sources

by using blind-source separation and calculating the fourth-order moment. Spatial second-

1 This work is based on the published journal paper “A Fast Identification of Partial Discharge Sources

Using Blind Source Separation and Kurtosis” in Electronic Letters IET. 2015
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Figure 5.4 Second-order statistics: average PSD

and higher order statistics have been exploited through multiple antennas (array of antennas)

combined by a measure of the degree of impulsiveness at each antenna to estimate the number

of PD sources in HV equipment.

5.5.1 Motivation and contribution

Recent advances in wireless sensor networks in substations can provide significant improve-

ments for protection, control, automation and monitoring. One example of remote monitoring

applications is a rapid insulation diagnosis in power equipment using WIEDs. PD activities

can cause irreversible damage and possible failure of electrical insulation systems. Insulation

performances and lifespan can be evaluated by measuring the number of PD sources in power

equipment. Electromagnetic radiations can be detected by wireless devices for remote moni-

toring applications. The resulting signal is highly impulsive when the spectrum can cover very

large frequency bands (above few GHz) (Au et al., 2013, 2015b).
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A technique for a rapid identification of PD sources is proposed. This can be implemented in

a low cost WIED for remote monitoring applications. By using multiple antennas, PD sources

can be separated based on BSS techniques via generalized eigenvalue decomposition presented

in Parra and Sajda (2003). Furthermore, the presence of significant impulsive events produces

heavy-tailed distribution when the excess kurtosis is greater than zero. Therefore, the number

of PD sources can be estimated by measuring the excess kurtosis of the demixed signals at each

antenna. To demonstrate the efficiency and the performance of the proposed method, we use

a generic and realistic impulsive noise model developed in Au et al. (2015c), where impulsive

waveforms are generated by autoregressive (AR) models and their parameters can be estimated

from various measurement campaigns in substations. Discharge sources are modelled as a

spatial PPP. One can control physical parameters such as the density of PD sources and the

average intensity of impulsive component over background noise.

5.5.2 System model

We consider N unknown PD sources written as a N× 1 vector u of a collection of impulsive

waveforms as:

u = [u1(t)u2(t) · · ·uN(t)]
T (5.44)

where ui(t) are complex-valued signals emitted by the ith PD sources. The receiver has M

dimensional observations x into a M×N complex-valued mixing channel H, such that:

x = Hu (5.45)

y = x+n (5.46)

where n is an additive background noise generated by thermal noise and ambient noise in a

substation. Note that no precise knowledge is available regarding either the mixing channel

or the sources. To recover discharge sources from observation, we need to find G, an inverse

matrix, such that:

û = G∗y (5.47)
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where G∗H = I and G∗ is the conjugate transpose of G. The number of PD sources can

be estimated from the demixed signals by measuring the excess kurtosis given by the fourth

moment about the mean minus three:

κi =
E
[
(ûi(t)−μi)

4
]

(E [(ûi(t)−μi)2])2
−3 (5.48)

where μi is the mean of the ith demixed signals. In the presence of significant impulsive signals,

the instantaneous amplitude distribution is heavy-tailed where κi > 0. Thus, the estimated

number of PD sources N̂ is given by summing κi greater than a given threshold Th > 0 to be

defined later:

N̂ = ∑
i
(κi > Th) (5.49)

An overview of the system model is depicted in Figure 5.5, where the receiver estimates the

number of PD sources in power equipment for remote monitoring applications.
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uN (t)

BSS

Mixing HSources u Observation y Demixing G
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û2(t)

u2(t)

Nb Sources
estimation

N̂

h11(t)

h 1
N
(t
)

h
M
1 (t)hMN (t)

Figure 5.5 Overview of the system model
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5.5.3 Blind source separation via generalized eigenvalue decomposition

Partial discharge phenomena are stochastic processes where the pulse height, event and spec-

trum depend on various physical parameters such as electric field intensity, free electron rate,

and ageing mechanism (Brunt, 1991). Hence, in the presence of multiple PD sources, it is

reasonable to consider that sources are independent, or at least decorrelated. Moreover, ac-

cording to the physical characteristics of radiated radio frequency (RF) signals from PD ac-

tivity measured by Au et al. (2013), and Au et al. (2015b), one can assume that PD are

non-Gaussian. During measurement campaigns in substations, these impulsive signals have

transient behaviour with damped oscillation. Therefore, sources may be non-white and/or non-

stationary processes.

According to Parra and Sajda (2003), two conditions are sufficient for source separation via

generalized eigenvalue decomposition: i) if sources are independent or decorrelated, the co-

variance matrix Ry can be written as:

Ry = E [yy∗]

= Rx +Rn

= HRuH∗+Rn

(5.50)

where Ru and Rn are diagonal. Therefore, Rx is also diagonal. Assuming the background

noise is modelled as a circular complex Gaussian noise, Rn = σ2I. ii) if PD sources are non-

Gaussian, non-stationary, or non-white, there exists Qu which has the same diagonalization

property such that:

Qx = HQuH∗ (5.51)

From equations (5.46) and (5.51), we write:

Qy = Qx +Qn (5.52)
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where Qn is also diagonalizable. From these two conditions, generalized eigenvalue decom-

position can be used for source separation (Parra and Sajda, 2003). Indeed, in Equation (5.50)

and Equation (5.52), by multiplying them by G and Equation (5.52) by Λ = RxQ−1
x +RnQ−1

n ,

we have:

RyG = QyGΛ (5.53)

From statistical assumptions, Q can have various forms. By assuming that sources are:

• non-stationary and decorrelated (Parra and Spence, 2000); we have:

Qy,1 = Ry = E [yy∗] (5.54)

• non-white and decorrelated (Weinstein et al., 1993); we have:

Qy,2 = Ry(τ) = E [y(t)y∗(t + τ)] (5.55)

where τ is a time delay. In this work, we consider that τ = 1 sample.

• non-Gaussian and independent (Cardoso and Souloumiac, 1993); we have :

Qy,3 = E [y∗yyy∗]−RyTr(Ry)−E
[
yyT ]

E [ȳy∗]−RyRy (5.56)

where ȳ is the conjugate of y and Tr(Ry) is the trace of Ry.

The inverse matrix G is given by the generalized eigenvalue of the matrices Ry and Qy.

5.5.4 Simulation and results

Performance of the proposed technique is provided using a Monte Carlo simulation, in which

PD sources are simulated based on spatial PPP and the number of sources is a random variable

unknown to the receiver. The average number of sources per unit volume or surface is given by
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λs. Over a long observation time, sources emit impulsive discharges when their events follow

a temporal PPP. The average number of emissions per unit time per sources is given by λe.

Transient impulsive signals from discharge activity are simulated by using autoregressive (AR)

models, such that a single discrete-time impulse ut is written as:

ut =
pu

∑
i=1

φiut−i + εt (5.57)

where coefficients {φi} are parameters of the model which can be obtained from measurements

in various substations. εt is a Gaussian noise process in which the variance is unconditional

(i.e. non-constant over time) in order to take into account the impulse duration (Au et al.,

2015b,c). The pulse height is an exponential random variable for which the average intensity

of impulsive component over background noise is given by Γ = σ2
u/σ2

n .

In this work, the receiver operates at an average rate of λs = 4 PD sources per unit volume or

surface. For an observation time of 5×104 samples, the average number of emissions is λs = 5

discharges per unit time per source. We use the second order of the AR model where pu = 2 in

Equation (5.57). Parameters are obtained from measurements in various substations.

For BSS, we use these three forms of Qy to recover PD sources. Their potential to estimate the

correct number of sources is compared via their probability of error Pe (the estimated number

of PD sources is not correct). To limit the probability of a false alarm, the estimated number of

sources N̂ is determined when the threshold Th = 1 according to Equation (5.49). Under this

condition, the excess kurtosis is zero because the background noise is modelled as a Gaussian

noise. Hence, the probability of a false alarm is Pfa = 0. The mixing channel H is a M×N

symmetric circular complex Gaussian noise. The probability of error Pe, is obtained from a

Monte Carlo simulation of 15000 simulations.

The performance of the receiver is plotted in Figure 5.6 where the probability of error Pe is

given for different values of Γ and different forms of Qy. The number of PD sources is a random

variable which is not known and not available to the receiver. The number of observations is
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M = 20, and thus always greater than the number of sources (M > N). By applying Qy,2 and

Qy,3 for BSS, the probability of error Pe decreases when the average intensity of the impulsive

component is higher than the background noise. However, Pe is high and nearly constant when

Qy,1 is applied. As a result, the number of PD sources can be determined with low probability

of error if we assume that the sources are non-white and decorrelated, or non-Gaussian and

independent. For high values of Γ, where discharges are more significant, the receiver can

estimate the exact number of PD sources when Qy,2 is applied.
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Figure 5.7 shows the performance of the receiver for a given number of observations where

only Qy,2 is applied. The probability of error Pe is high when the number of observations is

lower than the number of PD sources (M < N). The system is said to be underdetermined

because BSS cannot recover more than M sources. Nevertheless, there are at least M PD

sources. When the number of observations is greater than the number of PD sources (M > N),

the system is said to be overdetermined and the probability of error Pe decreases drastically
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because BSS can recover the exact number of PD sources. However, a very large number of

observations does not provide a better performance.
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A rapid identification of PD sources is proposed by which the number of sources can be esti-

mated in power equipments for remote monitoring applications using a low cost WIED. The

technique is based on BSS via a generalized eigenvalue decomposition and the number of

sources can be estimated by measuring the excess kurtosis. If we assume that the sources are

non-white and decorrelated, or non-Gaussian and independent, the exact number of PD sources

can be identified with a low probability of error, especially when discharges are significant.

Performances can be affected by an underdetermined problem in BSS.

5.6 Conclusion

When EMIs from PD activity generate transient RF signals, it is not reasonable to reproduce

such impulsive noise processes in substations via memoryless impulsive noise models because
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the resulting noise processes are idd, which implies that the PSD is constant over all frequen-

cies. However, experimentation shows that, on average, the PSD of RF signals from PDs

decays over frequency.

In this chapter, we have proposed a novel generalized impulsive noise model for substations.

We have used a filtered Poisson process so that first- and second-order statistics can be derived

based on practical and reasonable assumptions. The radio-noise process has been mathemat-

ically formulated based on the physics of PDs and the induced wave propagation. Taking

advantage of the Poisson field of interferers model, some interesting statistical properties of

moments, cumulants and probability distributions have been identified. These properties can

be used for characterizing interference phenomena, performing communications analyses, and

designing and optimizing communication systems or electronic intelligent devices for PD di-

agnostics in HV equipment.

The efficiency of our approach has been shown by comparing first- and second-order statistics

of measurement and simulation results. The transient RF signals induced by PD sources are

emulated by the time series models developed by Au et al. (2015d) with first-order statistics of

PDs obtained from data via a simple estimation procedure.

A practical application has been presented using our generalized impulsive noise model. We

have developed a method for rapid identification of PD sources in HV equipment. It has been

found that the number of PD sources can be estimated in arbitrary HV equipment via blind

source separation using a generalized eigenvalue decomposition and the fourth-moment of the

noise process.

Future work may focus on the comparison of impulsive noise models recently proposed by Sa-

cuto et al. (2013) using partitioned Markov chain models and/or any other existing impulsive

noise models whose second-order statistics are taken into account as developed by Zimmer-

mann and Dostert (2002), Gilbert (1960), and Elliot (1963). The proposed rapid identifica-

tion of PD sources can be tested experimentally in a laboratory with a definite number of PD

sources. We believe that signal processing algorithms using the fourth-order moment as pro-
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posed by Moulines and Cardoso (1995) can be implemented for PD localization together with

our proposed PD identification methods.





CONCLUSION

As mentioned in many publications, the deployment of recent and advanced communications

technology in substation environments is an area of growing interest (Yan et al., 2013; Gungor

et al., 2011, 2010; Gungor and Lambert, 2006; Amin and Wollenberg, 2005). This research

has contributed to investigating the reliability of wireless sensor networks in substations by

analysing, characterizing and modelling EMIs caused by PD sources. This allows for the de-

sign of more rapid and on-line PD diagnostic tools when EM radiations are generated by PD

sources in HV equipment, as well as the deployment of more robust wireless communication

systems against man-made noise in the environment typical of substations. We have success-

fully characterized EMIs induced by PD sources, and formalized a radio-noise model that links

the discharge process to the induced far-field wave propagation. To our knowledge, we have

first proposed a complete and coherent approach that the links physical characteristics of high-

voltage installations to the induced radio-interference spectrum. The last chapter reviews the

main highlights of the research, possible extensions, and the possible impact on research in the

field of both PD diagnostic in HV equipment and communication in the presence of impulsive

noise.

Measurement and characterization of EMIs from PD

Chapter 2 consists of the characterization of EMIs induced by PDs in substations. Using an

RF measurement setup with a wideband antenna, we have captured signals from PD. A char-

acterization procedure has been proposed for which first- and second-order statistics of PDs

have been measured and characterized experimentally via advanced signal-processing tools.

Our approach allows for the evaluation of the electromagnetic compatibility of PD interference

sources with any electronic communication devices in the range of 800 MHz to 5 GHz. This

work has been published in Progress in Electromagnetics Research Symposiums (Au et al.,

2013).

It has been found that such spectral interferences can cover the frequency range of 800 MHz

to 2 GHz on average. The RF signals from PD activity are characterized by very short rise



158

times so that the spectra can reach 3 GHz. Thus, PDs are a major source of interferences

for conventional wireless communications in ISM bands, in particular for the IEEE 802.15.4

standard which uses 915 MHz, 868 MHz and 2.4 GHz bands in the Americas, Europe and

worldwide. Experimentations have demonstrated that IEEE 802.15.4 standard performs poorly

in the presence of PDs and even worst when IEEE 802.11 standards are used in the 2.4 GHz

bands (Sacuto et al., 2012; Madi et al., 2011; Bhatti et al., 2009, 2012; Shan et al., 2008b).

As a result, substation environments can pose challenges to the reliability of wireless sensor

networks due to PD phenomena.

One possible solution is to provide an accurate and efficient wireless network plan by position-

ing sensors in strategic locations to avoid EM radiations from PD activity. Our RF measure-

ment setup can be used to assess the RF interference in substations. The level of the amplitude,

number of impulses, and duration might be excellent criteria for assessing electromagnetic in-

terference. Another possible solution is to use some communication systems that operate at

higher frequency. For example, IEEE 802.11a/n/ac use 5 GHz bands, and in Canada, IEEE

802.16 standards use 3.5 or 5.8 GHz bands. To our knowledge, there is no research that in-

vestigates the impact of PD on the performance of such wireless communications. Our RF

measurement setup can be extended for higher frequency bands by using an RF amplifier and

a bandpass filter that operates over a large frequency range (i.e. 2 to 10 GHz).

At the same time, the frequency range of 800 MHz to 2 GHz can be used for PD measurement,

detection, identification and localization, thereby allowing the development of rapid on-line

remote monitoring and diagnostic tools in HV equipment. PD phenomena are a category of

stochastic processes whose characteristics can be described as time-dependent random vari-

ables. With AC voltages, the PD process is especially cyclostationary as the PD occurs at

every half-cycle of the applied voltage.
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A physical model of EMIs from PD activity in substations

Chapters 3, 4, and 5 have contributed to modelling EMIs from PD activity for the deployment of

wireless communication systems in substations. They have also contributed to the development

of rapid and on-line PD diagnostic tools in HV equipment.

The literature has investigated impulsive radio-noise modelling for wireless communications

in substations. Most of the time, researchers use statistical impulsive noise models that are

mathematically tractable and well-established. One of the major drawbacks of such models is

that the noise samples are generated from random variables that are idd. Therefore, the PSD

is constant over all frequencies. Several experimentations reveal that impulses are transient

so that spectra have a form of 1/ f γ . As a result, it is not appropriate to use these statistical

impulsive noise models because they do not consider the physics underlying the radio-noise in

substations. Recently, Ali (2015) has shown that communication systems that are robust against

idd impulsive noise perform poorly when the receiver is corrupted by transient impulsive noise.

Physical models of PDs have been investigated in the literature as in (Niemeyer, 1995; Gut-

fleisch and Niemeyer, 1995; Fruth and Niemeyer, 1992; Levesque et al., 2013). Unfortunately,

they have not been adapted because the electromagnetic radiation of PD is not taken into ac-

count.

Physical model of EMI induced by a PD source: In Chapter 3, we proposed a coherent,

detailed, and validated EMI model that links the discharge process to the induced far-field

wave propagation. Assuming a PD source to be an electric dipole, the induced currents and

charges have been linked to a magnetic potential vector source and an electric scalar potential

source in which potentials can be expressed by solving Lorenz gauge condition equations in

the far-field region. This allows for the derivation of derive the electromagnetic radiation of

PD while keeping the cyclostationary process induced by AC voltages.

Using our proposed characterization process, we have successfully fulfilled validated the ef-

fectiveness of our approach. This work has been published in IEEE Transaction in Electro-



160

magnetic Compatibility (Au et al., 2015b). The major concern raised by the reviewers of this

journal paper pertained to the methodology that was employed to model transient impulsive

waveforms. We used an LTI filter to reproduce the transient behaviour, and spectral character-

istics were then estimated from data. Even though the LTI filter fits in terms of second-order

statistics, the approach needs to be refined because distortions induced by multipath effects are

not considered.

Modelling transient impulsive noise induced by PDs: In Chapter 4, we generalized the

approach by which spectral characteristics of PD and distortions can be estimated from data

via a simple procedure. We have shown that time-series models are a natural generalization

of LTI filter models, from which the estimation procedure and a measure of the goodness-of-

fit are well-established in the literature (Dickey and Fuller, 1979; Phillips and Perron, 1988;

Box et al., 1994; Akaike, 1973; Schwarz, 1978). The main issue is the selection of the time

series model and the number of parameters to be estimated. There is a clear trade-off between

the accuracy and the complexity of such models. Fortunately, this can be resolved by using

the Akaike Information Criterion (Akaike, 1973, 1974) or the Schwarz Bayesian Information

Criterion (Schwarz, 1978).

The goodness-of-fit has been measured by an analysis of the residuals from the fitted filters.

We have shown that the effect of distortion can be modelled as a time-dependent Gaussian

noise (i.e. heteroskedasticities in the residuals). These effects can be estimated via time se-

ries models with conditional heteroskedasticity such as ARCH, GARCH, or EGARCH. The

analysis of the goodness-of-fit and a comparison between measurement and simulation results

show the adequacy of the approach. This work has been submitted to IEEE Transaction on

Electromagnetic Compatibility (Au et al., 2015d).

A generalized radio-noise model for substations: Chapter 5 focuses on extending the radio-

noise model to contexts in which there are many PD sources that are randomly distributed in

space. The Poisson field of interferers has been used because it allows for the identification of

some interesting statistical properties of moments, cumulants and probability distributions that
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are linked by the physics of RF noise in substations. These can, in turn, be utilized in signal

processing algorithms for rapid PD identification, localization, and impulsive noise mitigation

techniques in wireless communications in substations.

Based on tractable and reasonable assumptions regarding the physical process of PD and the

propagation of EM waves in the far-field region, first- and second-order statistics have been de-

rived analytically by taking advantage of the Poisson field of interferers. We have demonstrated

that the probability distribution of the noise process can be approximated by an α-stable dis-

tribution. However, the main drawback of such an approximation is that first- and higher-order

moments do not exist. In particular, the variance is infinite, which is not physically relevant

because the power of an impulsive signal is finite. Under such conditions, Shao and Nikias

(1993b) have suggested using fractional lower-order moments for practical engineering appli-

cations. However, the authors have stated that these lower-order moments are much harder to

work with than second- or higher-order moments because they introduce non-linearity to even

linear problems. Fortunately, Campbell’s theorem allows for the derivation of first- or higher-

order moments in closed-form. These moments are finite if and only if first- and higher-order

moments of the basic transient impulsive waveform and its random parameters are finite.

The effectiveness of the proposed model has been shown by comparing first- and second-

order statistics of measurement and simulation results. The simulation parameters have been

estimated from data using a simple estimation procedure.

On the practical use of the proposed EMI model

The main research objective has been fulfilled in terms of characterizing EMIs induced by PD

sources and formalizing radio-noise model that links the discharge process to the induced far-

field wave propagation. We anticipate that, several practical applications can be implemented

for performance analyses, and the design and optimization of both PD diagnostic tools and

wireless communication systems.
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PD diagnostic tools in HV equipment: A new rapid identification of PD sources in HV

equipment has been presented. This work has been published in Electronic Letters IET (Au

et al., 2015e). Through an array of antennas, second-order statistics (the spatial covariance

matrix) have been exploited in order to estimate the number of PD sources in arbitrary HV

equipment. The generalized eigenvalue decomposition allows for the separation of PD sources.

The latter can be counted by measuring the kurtosis (i.e. fourth-order of moment) at each

antenna.

A performance analysis has been provided when the number of PD sources is not known by the

receiver. It has been shown that the performance can be affected when the number of antennas

is lower than the PD sources. The algorithm might be improved by estimating the number of

strong PD sources in HV equipment. This can be done by measuring the kurtosis because a

high value of the kurtosis suggests that the impulsive component is greater than the level of the

background noise.

The literature has largely investigated PD localization problems in assessing insulation condi-

tion in aged HV equipment. Several publications show that this is an area of intensive research

(Sinaga et al., 2012; Tenbohlen et al., 2008; Moore et al., 2005; Markalous et al., 2008; Wu

et al., 2015; Montanari and Cavallini, 2015; Kawada, 2003). PD localization methods use the

time difference of arrival (TDOA) between signals that is captured by an array of sensors or

antennas. Although such methods show high accuracy, their effectiveness is based on: first, the

assumption that there is a temporal correlation between signals captured by different sensors,

which actually depends on the position of sensors (Sinaga et al., 2012); second, that an ex-

pensive fast digital oscilloscope is needed to visualize a TDOA (Tang et al., 2006; Tenbohlen

et al., 2008); and third, that the arrival time between sensors is determined based on human

judgement (Moore et al., 2005; Markalous et al., 2008). We believe that more rapid, cost-

effective and automated PD localization algorithms can be developed based on spatial second-

or higher-order statistics as summarized by Trees (2004), and Gonen and Mendel (2010). One

of the most interesting methods is the use of spatial fourth-order moment, as proposed by

Moulines and Cardoso (1995), since background noise can be suppressed regardless of its
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coloring (Gonen and Mendel, 2010). Such approaches are only based on spatial statistical as-

sumptions of PD sources regardless of either temporal correlation or arrival time of impulses

between sensors. However, they need a suitable temporal synchronization between sensors.

Wireless communication in substation environments: Performing communications analyses

and designing and optimizing communication systems in such harsh and hostile environments

can be done through our proposed generalized radio-noise model. Recently, we have proposed

a novel impulsive noise mitigation technique with multi-antenna systems (Ali et al., 2015).

When PD sources are located in a specific region, those transient impulses arrive via the array

of antennas with an arbitrary arrival angle. In narrowband, the interference signals received at

each antenna differ only by amplitude and phase shifts. Taking a reference signal measured by

a given sensor, the phase shift of the strongest impulse is estimated. This allows for impulsive

noise mitigation, in which interference signals are cancelled successively. In addition, a new

decision rule has been proposed to manage the effects of both background noise and impulsive

noise components for decoding the transmitted message.

Simulation results show that the proposed receiver outperforms conventional receivers that are

robust against Gaussian noise; this effect is amplified even more when the number of antennas

is increased. However, the decision rule for impulsive noise mitigation is based on a heuristic

weighting factor. This factor should be increased as the relative intensity of impulsive interfer-

ences is high; in other words, the degree of impulsiveness (the fourth-order of moment) is one

important feature in the decision rule (Ali et al., 2015).

The generalized radio-noise model can be used to plan and optimize wireless networks in sub-

stations via some interesting signal processing methods for impulsive noise mitigation tech-

niques. In addition, new optimal and/or sub-optimal decision rules for decoding messages in

harsh and hostile environments can by developed.
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