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MÉTA-APPRENTISSAGE POUR LA SÉLECTION DYNAMIQUE DES ENSEMBLES
DE CLASSIFIEURS

Rafael MENELAU OLIVEIRA E CRUZ

RÉSUMÉ

Les systèmes de sélection dynamique des ensembles de classifieurs fonctionnent en estimant le

niveau de compétence de chaque classifieur estimé dans une région de compétence. Seuls les

plus compétents sont choisis dynamiquement pour classer chaque échantillon de test. Le niveau

de compétence des classifieurs est généralement estimé à partir du voisinage de l’échantillon

à classer, selon un critère donné, comme la performance locale ou la confiance du classifieur

de base, calculée sur ce voisinage. Cependant, en utilisant un seul critère de sélection, cela

peut conduire à une mauvaise estimation de la compétence du classifieur et par conséquent,

sélectionner des classifieurs incompétents.

Dans cette thèse, le mécanisme de sélection dynamique d’un classifieur est formulé comme un

méta-problème. Les méta-caractéristiques permettant de représenter ce méta-problème sont les

différents critères utilisés normalement pour mesurer le niveau de compétence du classifieur

de base. Chaque méta-caractéristique capture une propriété différente du comportement du

classifieur de base, et peut être considéré comme un critère différent pour estimer le niveau de

compétence d’un classifieur de base telles que la performance de classification dans une région

locale de l’espace de caractéristiques et de la confiance du classifieur pour la classification de

l’échantillon d’entrée. Ainsi, plusieurs critères peuvent être utilisés conjointement pour une

meilleure estimation des compétences des classifieurs.

Dans le chapitre 2, une nouvelle technique de sélection dynamique des ensemble de classi-

fieurs utilisant le méta-apprentissage est proposé, appelé META-DES. Cinq ensembles dis-

tincts de méta-caractéristiques, chacun correspondant à un critère différent pour mesurer le

niveau de compétence d’un classifieur pour la classification des échantillons d’entrée sont in-

troduits pour ce méta-problème. Les méta-caractéristiques sont extraites des données de val-

idation et utilisées pour entraîner un méta-classifieur pour prédire le niveau de compétence

des classifieurs étant donné un exemple à classer. Au cours de la phase de généralisation, les

méta-caractéristiques sont extraites de l’instance de requête et transmisent en entrée du méta-

classifieur, lequel détermine si un classifieur de base est assez compétent pour être ajouté à

l’ensemble. Des expériences sont menées sur plusieurs problèmes de reconnaissance. Les ré-

sultats expérimentaux montrent que le META-DES améliore considérablement la performance

en classification lorsqu’on les compare à l’état de l’art dans le domaine de la sélection dy-

namique.

Une analyse étape par étape de chaque processus du système META-DES est présentée au

chapitre 3. Nous montrons comment chaque ensemble de méta-caractéristiques est extrait,

ainsi que leur impact sur l’estimation du niveau de compétence du classifieur de base. En
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outre, une analyse de l’impact de plusieurs facteurs sur la performance du système est réalisée

sur le problème synthétique P2 : par exemple, le nombre de classifieurs inclus dans le bassin,

de même que la taille des données de validation sont considérés. Les résultats expérimen-

taux montrent que la sélection dynamique de classifieurs à fonctions discriminantes linéaires à

travers le schéma META-DES, permet de résoudre les problèmes de classification caractérisés

par une frontière de décision de géométrie complexe.

Dans le chapitre 4, une nouvelle version du schéma META-DES optimisé en fonction de la

performance de l’Oracle, appelé META-DES.Oracle est proposée. L’Oracle est une méthode

abstraite qui représente un mécanisme de sélection de classifieur idéal. Une sélection de méta-

caractéristiques effectuée à l’aide d’une optimisation par essaims particulaires (OEP, ou PSO en

anglais) est proposée pour améliorer la performance du méta-classifieur. La différence entre les

résultats obtenus par le méta-classifieur et ceux présentés par Oracle est minimisé. L’objectif

visé est d’augmenter la performance en sélection du méta-classifieur pour approcher celle de

l’Oracle. Les expériences réalisées à l’aide de 30 problèmes de classification démontrent que

la procédure d’optimisation basée sur la performance de l’Oracle conduit à une amélioration

significative de la précision de la classification par rapport aux versions précédentes du META-

DES.

Enfin, au chapitre 5, deux techniques sont analysées afin d’améliorer la performance en général-

isation du META-DES, ainsi que des autres techniques de sélection dynamique proposées

dans la littérature. Tout d’abord, une technique de sélection de prototypes est appliquée sur

les données de validation pour réduire la quantité de chevauchement entre les classes. Au

cours de la généralisation, un algorithme K-plus proches voisins adaptatif est utilisé pour

une meilleure définition du voisinage de l’échantillon d’essai. Le but visé est d’améliorer

l’estimation du niveau de compétence des classifieurs dans la région de compétence en don-

nant plus d’importance aux exelples qui sont éloignés de la frontière entre les classes. Des

expériences ont été effectuées en utilisant 10 techniques de sélection et plus de 30 problèmes

de classification. Les résultats démontrent que l’utilisation conjointe de la sélection de pro-

totypes pour éditer des données de validation et la distance d’adaptation locale améliorent

sensiblement la précision de la classification des techniques de sélection dynamique.

Mots clés: Reconnaissance de formes, ensemble de classifieurs, sélection dynamique de

classifieurs, méta-apprentissage, optimisation par essaims de particles, classi-

fieurs linéaires, perceptrons



DYNAMIC SELECTION OF ENSEMBLE OF CLASSIFIERS USING
META-LEARNING

Rafael MENELAU OLIVEIRA E CRUZ

ABSTRACT

Dynamic ensemble selection systems work by estimating the level of competence of each clas-

sifier from a pool of classifiers. Only the most competent ones are selected to classify each

specific test sample. The classifiers’ competences are usually estimated over the neighborhood

of the test sample, according to a given criterion, such as the local accuracy estimates or the

confidence of the base classifier, computed over the neighborhood of the test sample. However,

using only one selection criterion can lead to poor estimation of the classifier’s competence.

Consequently, the system end up not selecting the most appropriate classifier for the classifica-

tion of the given test sample.

In this thesis, dynamic ensemble selection is formalized as a meta-problem. From a meta-

learning perspective, the dynamic ensemble selection problem is considered as another clas-

sification problem, called the meta-problem. The meta-features of the meta-problem are the

different criteria used to measure the level of competence of the base classifier. Each set cap-

tures a different property of the behavior of the base classifier, and can be seen as a different

criterion for estimating the competence level of a base classifier; such criteria include, the clas-

sification performance in a local region of the feature space and the classifier confidence for

the classification of the input sample. The meta-classifier is trained, based on the defined set of

meta-features, to predict the competence level of a given base classifier for the classification of

a new test sample. Thus, several criteria can be used in conjunction for a better estimation of

the classifiers’ competences.

In Chapter 2, a novel dynamic ensemble selection framework using meta-learning is proposed,

called META-DES. Five distinct sets of meta-features, each corresponding to a different crite-

rion for measuring the level of competence of a classifier for the classification of input samples

are introduced for this specific meta-problem. The meta-features are extracted from the training

data and used to train a meta-classifier to predict whether or not a base classifier is competent

enough to classify an input instance. During the generalization phase, the meta-features are

extracted from the query instance and passed down as input to the meta-classifier. The meta-

classifier estimates whether a base classifier is competent enough to be added to the ensemble.

Experiments are conducted over several small sample size classification problems, i.e., prob-

lems with a high degree of uncertainty due to a lack of training data. Experimental results

show the proposed meta-learning framework greatly improves classification accuracy when

compared against current state-of-the-art dynamic selection techniques.

In Chapter 3, a step-by-step analysis of each phase of the META-DES framework is conducted.

We show how each set of meta-features is extracted as well as their impact on the estimation
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of the competence level of the base classifier. Moreover, an analysis of the impact of several

factors on the system performance is carried out; these factors include, the number of classifiers

in the pool, the use of different linear base classifiers, as well as the size of the validation data.

Experimental results demonstrate that using the dynamic selection of linear classifiers through

the META-DES framework, it is possible to solve complex non-linear classification problems

using only a few linear classifiers.

In Chapter 4, a novel version of the META-DES framework based on the formal definition

of the Oracle, called META-DES.Oracle is proposed. The Oracle is an abstract method that

represents an ideal classifier selection scheme. A meta-feature selection scheme using an over-

fitting cautious BPSO is proposed for improving the performance of the meta-classifier. The

difference between the outputs obtained by the meta-classifier and those presented by the Or-

acle is minimized. Thus, the meta-classifier is expected to provide results that are similar to

those of the Oracle. Experiments carried out using 30 classification problems demonstrate that

the optimization procedure based on the Oracle definition leads to a significant improvement

in classification accuracy when compared to previous versions of the META-DES framework.

Finally, in Chapter 5, two techniques are investigated in order to improve the generalization

performance of the META-DES framework as well as any other dynamic selection technique.

First, a prototype selection technique is applied over the validation data to reduce the amount

of overlap between the classes, producing smoother decision boundaries. During generaliza-

tion, a local adaptive K-Nearest Neighbor algorithm is employed for a better definition of the

neighborhood of the test sample. Thus, DES techniques can better estimate the classifiers’

competences. Experiments were conducted using 10 state-of-the-art DES techniques over 30

classification problems. The results demonstrate that the use of prototype selection in edit-

ing the validation data and the local adaptive distance significantly improve the classification

accuracy of dynamic selection techniques.

Keywords: Ensemble of classifiers, dynamic ensemble selection, classifier competence,

meta-learning, particle swarm optimization, linear classifiers
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INTRODUCTION

In recent years, Multiple Classifier Systems(MCS) have been widely studied as an alternative

for increasing efficiency and accuracy in pattern recognition applications. Several theoretical

and empirical studies have shown that a multiple classifier system or an ensemble of classifiers

produces more accurate recognition performance than a single classifier.

Generally speaking, MCS are composed of three stages [1]: (1) Generation, (2) Selection,

and (3) Integration or fusion (Figure 0.1). In the generation phase, a pool of classifiers is

trained. Here, the main concern in this training stage is creating a pool of classifier that are

diverse and accurate. Diversity in the context of MCS is related to the errors committed by

different classifiers. A pool of classifiers is considered diverse if its members make wrong

predictions in different instances. Consequently, combining their decisions is likely to improve

the classification accuracy.

Generation Selection Integration (Fusion)

Figure 0.1 Three phases of a MCS [Adapted from [1]]

Several methods have been proposed to obtain a pool of diverse classifiers, such as Bagging [3],

Random Subspace [4], AdaBoost [5], and Random Linear Oracles [6]. Diversity can also be

achieved by using different learning algorithms in the pool, such as Support Vector Machines

(SVM), Multi-Layer Perceptron neural networks (MLP), Decision Trees (DT), etc. In some

applications, such as biometrics, a pool of diverse classifiers can be obtained by using entirely

different feature domains, e.g., identification by speech and image [7]. A comprehensive anal-

ysis of diversity and its implications in multiple classifier systems is presented in [8; 9].
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In the second stage, based on a pool of classifiers, the goal is to select a subset containing

the most competent ones. In this thesis, we refer to the selected subset of classifiers as an

Ensemble of Classifiers (EoC). The classifier selection stage can be subdivided into two groups:

static and dynamic. In static approaches [10; 11; 12; 13], the selection is performed during

the training stage of the system, considering the global performance of the base classifiers

over either the training or the validation dataset. The selected classifier or EoC is then used

to classify of all unseen test samples. By contrast, dynamic ensemble selection approaches

(DES) [14; 15; 16; 17; 18; 19; 20; 21; 22; 23] select a different classifier or a different EoC for

each new test sample.

The third stage of an MCS consists in combining the outputs of the selected classifiers to predict

the label of a given test instance. There are several techniques for combining of multiple clas-

sifiers, such as probabilistic models based on the posterior probabilities obtained by the base

classifiers as presented in [24], Decision Templates and Dempster-Shafer combination [25].

Further, other classifier, such as a gating networks in mixture of experts [26], can be trained to

integrate the output of the base classifiers.

Problem Statement

This thesis is focused on the selection stage, more specifically on dynamic classifier and en-

semble selection techniques. DES techniques rely on the assumption that each base classifier

is an expert in a different local region of the feature space [27]. Thus, given a new test sample,

DES techniques aim to select the most competent classifiers for the local region in the feature

space where the test sample is located. Only the classifiers that attain a certain competence

level, according to a selection criterion, are selected. Recent work in the dynamic selection

literature demonstrates that dynamic selection techniques constitute an effective tool for clas-

sification problems that are ill-defined, i.e., for problems where the size of the training data is

small and there are not enough data available to model the classifiers [16; 17].
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The key issue encountered in DES is to define the criterion for measuring the level of compe-

tence of a base classifier. Most DES techniques [14; 22; 21; 20; 28; 29; 30; 31] use estimates

of the classifiers’ local accuracy in small regions of the feature space surrounding the query

instance as a search criterion for performing the ensemble selection. On the other hand, DES

techniques based on other criteria, such as the degree of consensus of the ensemble classi-

fiers [15; 16], encounter some problems when the search cannot find consensus among the

ensembles. In addition, they neglect the local performance of the base classifiers.

A crucial concept in the DES literature is the definition of the Oracle. The Oracle is an ab-

stract model defined in [32], which always selects the classifier that predicted the correct label,

for the given query sample, if such a classifier exists. In other words, it represents the ideal

classifier selection scheme. The Oracle is used in the DES literature in order to determine

whether the results obtained by proposed DES techniques is close to ideal accuracy or whether

they leave room for improvement. As reported in a recent survey [1], the results obtained by

DES techniques based solely on one source of information are still far from those achieved by

the Oracle. In addition, as stated by Ko et al. [14], addressing the behavior of the Oracle is

much more complex than applying a simple neighborhood approach, and the task of figuring

out its behavior based merely on a single source of information is not an easy one. Thus, mul-

tiple sources of information should be taken into account in order to improve the classification

accuracy of DES techniques, and to achieve results closer to the Oracle.

Furthermore, as stipulated by the “No Free Lunch” theorem [33], no algorithm is better than

any other over all possible classes of problems. Using a single criterion to measure the level

of competence of a base classifier is highly likely to lead to erroneous results. In our opinion,

the information captured by the different criteria reflects different properties of the behavior of

a base classifier, and we believe that these properties can be complementary. Thus, multiple

criteria should be taken into account in measuring the competence level of a base classifier in

order to achieve a more robust dynamic ensemble selection technique.



4

objectives

The objective of this thesis is to develop a framework in which several sources of information

or criteria can be used to obtain a better estimates of the classifier competences for dynamic

selection. In addition, since distinct classification problems are associated with different de-

grees of difficulty and data complexity [34], this thesis proposes a framework which also adapt

to the intrinsic characteristics of each classification problem by selecting the most appropriate

criteria for conducting the dynamic selection of classifiers.

The desired property is achieved by defining dynamic ensemble selection as a meta-problem.

From a meta-learning perspective, the dynamic ensemble selection problem is considered

as another classification problem, called the meta-problem. The meta-features of the meta-

problem are the different criteria used to measure the level of competence of the base classifier.

Each set captures a different property of the behavior of the base classifier, and can be seen

as a different criterion for estimating the competence level of a base classifier; such criteria

include the classification performance in a local region of the feature space and the classifier

confidence for the classification of the input sample.

The meta-features are used as input to a meta-classifier that decides whether or not a base

classifier is competent enough for the classification of an input sample based on the prede-

fined meta-features. When distinct criteria, encoded as meta-features, are used, although one

criterion might fail to properly estimate the competence level of the base classifier, due to a

high presence of noise in some local regions of the feature space [20] or due to low confidence

results [35], the system can still achieve good performance, since other meta-features are also

considered by the selection scheme. Hence, the expectation is that the proposed framework

can obtain higher classification accuracy.
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Contributions

The main contribution of this thesis is its formalization of dynamic ensemble selection as a

meta-problem, leading to the proposal of a novel dynamic ensemble selection framework using

meta-learning, called META-DES.

Since this thesis is manuscript-based, each chapter presents a different contribution to the de-

velopment of the META-DES framework, as well as means of improving dynamic ensemble

selection techniques in general. The contributions are listed below:

• In Chapter 2, the dynamic ensemble selection problem is formalized as a meta-problem and

the META-DES framework is presented. Five sets of meta-features are proposed. Exper-

imental results demonstrates that the META-DES outperforms the current state-of-the-art

dynamic classifier and ensemble selection techniques in several classification benchmarks.

• In Chapter 3, a deep analysis of each phase of the META-DES framework is conducted

using synthetic datasets in order to provide a better understanding of the framework. The

impact of each set of meta-feature for the estimation of the competence level of the base

classifiers is conducted.

• In Chapter 4, an optimization procedure for the META-DES framework is presented. The

optimization scheme is guided by the formal definition of the Oracle, which is an abstract

method that represents the ideal dynamic selection technique. The optimization procedure

significantly improves the classification performance of the META-DES framework.

• In Chapter 5, the influence of the data distribution in the dynamic selection dataset is ana-

lyzed. A prototype selection and adaptive distance are proposed for improving the perfor-

mance of DES techniques. It is important to mention that the contribution of this chapter

can be generalized to any dynamic classifier and ensemble selection technique.

Furthermore, in Appendix III a static classifier selection scheme using the definition of the

Oracle is presented for the problem of handwriting recognition.
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Figure 0.2 The flow of the thesis is shown by connected boxes. The solid arrows

indicate the dependencies between the chapters and appendixes (i.e., one chapter must be

read beforehand). Dashed arrows indicates the suggested readings between the chapters

and appendices for a better comprehension

This manuscript-based thesis is organized into five chapters. Figure 0.2 presents an overview

of the organization of this thesis. The chapters and appendixes inside the dashed box represent

the articles that were published or submitted during the development of the thesis. The solid
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arrows indicate the dependencies between the chapters (i.e., one chapter must be read before

the other for a better understanding of the proposed techniques). In addition, the dashed arrows

indicate the relationship between each chapter and the appendices. The appendices extends the

work of the corresponding chapters by exploring different aspects of the framework.

This thesis starts with an overview of dynamic selection techniques and meta-learning pre-

sented in the first chapter. They are presented from a classifier competence point of view,

which is the main concern examined in this thesis.

In Chapter 2, the dynamic ensemble selection problem is formalized as a meta-problem, and

the META-DES framework is presented. The meta-problem consists in defining whether the

base classifier is competent enough to classify a given query sample. The meta-features of the

meta-problem are the criteria used to measure the level of competence of the base classifier. A

total of five sets of meta-features are proposed, each being a different property of the behavior

of the base classifier. A meta-classifier is then trained, based on the meta-features, to determine

whether a base classifier is competent to predict the label of a given input pattern. The contents

of this chapter have been published in the Pattern Recognition journal.

Based on the framework proposed in Chapter 2, three training scenarios for the meta-classifier

are evaluated in Appendix I: problem-dependent, problem-independent and hybrid. In the

problem-dependent scenario, the meta-classifier is trained using meta-data extracted from one

classification problem, and is used as the classifier selector on the same problem. In the

problem-independent scenario, the meta-classifier is trained using the meta-data extracted from

one classification problem, and is used as the classifier selector on a different one. In the hy-

brid scenario, a single meta-classifier is trained using the meta-data extracted from all clas-

sification problems considered in this work, and is used as the classifier selector for all clas-

sification problems. Experimental results demonstrate that the training of the meta-classifier

is problem-dependent. Moreover, a strong correlation is found between the performance of

the meta-classifier and the classification accuracy of the META-DES. The contents of this ap-
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pendix was published in the Proceeding of the International Conference on Pattern Recognition

(ICPR) [36].

In Appendix II, two modifications to the META-DES framework are proposed: In the training

phase, we evaluate four different algorithms for the training of the meta-classifier. For the

generalization phase, a hybrid dynamic selection and weighting approach is proposed. The

hybrid scheme works as follows: first, an ensemble with the most competent classifiers is

selected. Then, the weights of the selected classifiers are estimated based on their levels of

competence. Thus, classifiers that attain the highest level of competence, for the classification

of the given query sample, have a greater impact on the final decision. The proposed hybrid

approach is called META-DES.H, and since it outperformed the META-DES, it is used in the

following chapters of this thesis.

In Chapter 3, a step-by-step analysis of each phase of the framework during training and test is

presented in order to provide a better understanding of the META-DES framework as a white

box. The influence of each set of meta-features, as well as their impact on the estimation of

the competence level of the base classifier are shown. In addition, an analysis of the impact

of several factors of the system performance, such as the number of classifiers in the pool,

the use of different linear base classifiers, as well as the size of the validation data are also

presented. Two types of linear classifiers, Perceptron and Decision Stumps, are considered. We

show that using the dynamic selection of linear classifiers through the META-DES framework,

we can solve complex non-linear classification problems where static combination techniques

such as AdaBoost cannot. The conclusions from this analysis servers as guidelines for further

developments in the META-DES framework, as well as for the understanding of dynamic

ensemble selection techniques in general. The contents of this chapter have been published

in arXiv Computing Research Repository (CORR) [37].

In Chapter 4, a novel version of the META-DES framework based on the formal definition

of the Oracle, called META-DES.Oracle, is proposed. First, 15 sets of meta-features are pro-

posed. Then, a meta-feature selection scheme using an overfitting cautious BPSO is proposed
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for minimizing the difference between the outputs obtained by the meta-classifier and those

obtained by the Oracle. Thus, the meta-classifier can present results that are similar to those of

the Oracle. Experiments conducted over 30 classification datasets demonstrate that the META-

DES.Oracle outperforms both the META-DES and META-DES.H. In addition, this chapter

also demonstrates that all 15 sets of meta-features are relevant in addressing the complex be-

havior of the Oracle, and that the choice of the best set of meta-features varies considerably

according to different classification problems. The contents of this chapter have been submitted

to the Information Fusion journal.

The idea behind the optimization scheme proposed in Chapter 4 derives from the analysis

conducted in Appendix III and IV. In Appendix III, a new framework for analyzing the rela-

tionship between different feature representations is proposed. The Oracle definition is used

to select the best subset of feature representations for the problem of handwritten digits and

character recognition. The contents of this appendix were published in the Expert Systems

With Applications journal [11].

In Appendix IV, the dissimilarity analysis presented in Appendix III is conducted in order to

understand the relationship between different criteria used in the literature with the dynamic

selection techniques to estimate the competence level of the base classifiers. The behavior of

the Oracle is also studied in the dissimilarity analysis framework. The dissimilarity analysis

shows that using meta-learning to combine several DES criteria is more likely to present a

behavior closer to the Oracle in the dissimilarity space. In addition, techniques that appear

closer to the Oracle in the dissimilarity space are more likely to achieve better classification

accuracy.

Chapter 5 comes directly from the analysis conducted in Chapter 3, showing that the distri-

bution of the dynamic selection dataset (DSEL), which is used to compute the competence of

the base classifiers during generalization, has a huge influence on the performance of the DES

techniques. In this chapter we demonstrate, using synthetic data, that the proposed META-DES

technique may not produce consistent results when there is a high degree of noise in DSEL, and
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so two techniques are therefore proposed: in the training stage, a prototype selection mecha-

nism is applied in DSEL to eliminate instances with a high risk of being noise and also to

reduce the amount of overlap between the classes. During the generalization stage, the local

regions of the query sample are estimated using an adaptive KNN rule (A-KNN), which shifts

the region of competence from the class border to the class centers. As such, samples that are

more likely to be noise are less likely to be selected to compose the region of competence. The

proposed method can be applied to any dynamic selection technique that uses local informa-

tion in estimating the competence of the base classifier. Experimental results demonstrate that

the proposed scheme significantly improves the classification performance of several DCS and

DES techniques, including the META-DES framework. The contents of this chapter have been

submitted to the Neural Computing and Applications journal.

Finally, a general conclusion and future works are presented in the last chapter of this thesis.



CHAPTER 1

DYNAMIC CLASSIFIER AND ENSEMBLE SELECTION REVIEW

Dynamic selection techniques consist, based on a pool of classifiers C, in finding a single

classifier ci, or an ensemble of classifiers C′, having the most competent classifiers to predict

the lass label for a specific instance, x j. Recent works in classifier and ensemble selection have

shown a preference for dynamic ensemble selection over static ensemble selection, especially

in dealing with ill-defined problems, i.e., when the size of the dataset is small and there is not

enough data to train a strong classifier having a lot of parameters to learn [16]. In addition, due

to insufficient training data, the distribution of the training data may not adequately represent

the real distribution of the problem. Consequently, the classifiers cannot learn the separation

between the classes in those cases.

The rationale behind dynamic ensemble selection techniques resides in the observation that not

every classifier in the pool is an expert in classifying all unknown samples. Each base classifier

is an expert in a different local region of the feature space [27]. Moreover, different patterns are

associated with distinct degrees of difficulties. It is therefore reasonable to assume that only a

few base classifiers can predict the correct class label.

Early works in dynamic selection started with the selection of a single classifier rather than

an EoC. In such techniques, only the classifier that attained the highest competence level is

used for the classification of the given test sample. These techniques are called dynamic clas-

sifier selection (DCS). The local classifier accuracy (LCA) [22] and the multiple classifier

behavior (MCB) [21] are examples of DCS techniques. However, given the fact that select-

ing only one classifier can be very error prone, some researchers decided to select a subset

of the pool of classifiers, C, containing all classifiers that attained a certain competence level,

rather than a single model. Such techniques are called dynamic ensemble selection (DES).

Example of DES techniques are the K-Nearests Oracles (KNORA) [14], K-Nearests Output

Profiles (KNOP) [16], Dynamic Overproduce and Choose (DOCS) [15], and the method based

on Randomized Reference Classifier (RRC) DES-RRC [18].
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Dynamic Selection
 Criterion

Individual Based

Group Based

Ranking

Local Accuracy

Oracle

Probabilistic

Behavior

Diversity

Ambiguity

Data handling

Figure 1.1 Taxonomy of the criteria for estimating the competence level in dynamic

selection [Adapted from [1]]

The key issue underlying dynamic selection is the notion of competence. The competence

level of a classifier defines how much we trust the expert, for the given classification task. The

most important component of dynamic selection techniques is the criterion used to measure

the competence level of the base classifiers, given a specific test sample x j. The most common

approach in the literature involves estimating the competence of the base classifiers in small

regions of the feature space surrounding the query sample, x j. This local region is usually

defined based on the KNN technique applied to either the training [22] or validation data [14].

In this thesis, we refer to such a set as the dynamic selection dataset, DSEL, in line with recent

works in the DES literature [1; 16; 17].
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The set with the K-Nearest Neighbors of a given test sample x j is called the region of compe-

tence, and is denoted by θ j = {x1, . . . ,xK}. Usually, the samples belonging to θ j are used to

estimate the competence of the base classifiers, based on various criteria, for the classification

of an unseen sample x j.

The criteria can be organized into two groups (Figure 1.1): individual-based and group-based

measures. The former present the measures where the individual performance of the base

classifier is used to estimate its level of competence. This category can be further divided into

five subgroups [1]: Ranking [22; 38], Accuracy [22; 20], Probabilistic Models [18; 39; 40; 41],

Behavior [21; 16] and Oracle [14].

The group-based measures are composed of metrics that take into account the interaction be-

tween the classifiers in the pool. This category can be further divided into three subgroups [1]:

Diversity [42; 43], Data Handling [19] and Ambiguity [15]. These measures are not directly

related to the notion of competence of a base classifier, but to the notion of pertinence, i.e.,

whether the base classifier work well in conjunction with other classifiers in the ensemble.

In the following sections, the DCS and DES techniques based on each source of information are

presented. In Appendix IV, the selection criteria embedded in several classifier and dynamic

selection techniques are analyzed from the classifier competence point of view. Furthermore,

the pseudo-code for each technique is presented in the following survey [1].

1.1 Individual-based measures

1.1.1 Ranking

Classifier rank was one of the first criteria proposed for estimating the competence level of

base classifiers in a dynamic selection. The ranking of a single base classifier ci could be

estimated simply by the number of consecutive correctly classified samples. The classifier

that correctly classifies the greatest number of consecutive samples derived from the validation

data is considered to have the highest competence level or “rank”. In addition, alternative
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ranking techniques based on mutual information were also proposed [38], but, because of their

complexity and because they were only defined to work with the Nearest Neighbor (NN) as

base classifiers, recent work has preferred the use of the simplified ranking method.

1.1.2 Local Accuracy

Classifier accuracy is the most commonly used criterion for dynamic classifier and ensemble

selection techniques [22; 14; 20; 30; 23; 28; 38; 29; 19]. Techniques that are based on local

accuracy first computes the region of competence. θ j of the given test sample x j. The region

of competence can be defined either on the training set [22] or on the validation set [14].

Based on the samples belonging to the region of competence, θ j, different means have been

proposed for estimating the local accuracy of the base classifier. For example, the Overall Lo-

cal Accuracy (OLA) [22] technique uses the accuracy of the base classifier in the whole region

of competence as a criterion for measuring its level of competence. The classifier that obtains

the highest accuracy rate is considered the most competent. The Local Classifier Accuracy

(LCA) [22] computes the performance of the base classifier in relation to a specific class la-

bel. The Modified Local Accuracy [29] works similarly to the LCA technique, with the only

difference being that each sample belonging to the region of competence is weighted by its

Euclidean distance to the query instance. As such, instances from the region of competence

that are closer to the test sample have a higher degree of influence when computing the per-

formance of the base classifier. Moreover, variations of the OLA and LCA techniques using

a priori and a posteriori probabilities were proposed by Didaci et al. [44] for obtaining more

precise estimates of the competence level of a base classifier.

The difference between these techniques lies in how they utilize the local accuracy information

in order to measure the level of competence of a base classifier. The main problem with these

techniques is their dependence on the definition of the region of competence, often performed

via K-NN or clustering techniques. The dynamic selection technique is likely to commit errors

when there is a high degree of overlap between the classes [20]. As reported in [14], using the
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local accuracy information alone is not sufficient to achieve results close to the Oracle. More-

over, any difference between the distribution of validation and test datasets may negatively

affect the system performance.

1.1.3 Oracle

Oracle-based techniques can be considered as a particular case of local accuracy techniques,

where the base classifier is expected to present perfect accuracy in the region of competence. In

other words, it can be interpreted as a "local Oracle" [1]. From this perspective, Ko et al. [14]

proposed the K-Nearest Oracles (KNORA) family of techniques, inspired by the Oracle con-

cept. Four techniques were proposed. The KNORA-Eliminate (KNORA-E), which considers

that a base classifier ci is competent for the classification of the query instance x j if ci achieves

a perfect accuracy for the whole region of competence. Only the base classifiers with a perfect

accuracy are used during the voting scheme. In The KNORA-Union (KNORA-U) technique,

the level of competence of a base classifier ci is measured by the number of correctly classified

samples in the defined region of competence. In this case, every classifier that correctly classi-

fied at least one sample can submit a vote. In addition, two weighted versions, KNORA-E-W

and KNORA-U-W were also proposed, in which the influence of each sample belonging to the

region of competence is weighted based on its Euclidean distance to the query sample x j.

1.1.4 Probabilistic

This class of meta-features is based on probabilistic models that are applied over the vector of

class supports produced by the base classifier ci for the classification of a given query sample.

The motivation behind probabilistic measures derives from the observation that classifiers that

perform worse than the random classifier, i.e., a classifier that randomly selects the classes with

equal probabilities, deteriorate the majority voting performance. In contrast, if the base classi-

fiers are significantly better than the random classifier, they are likely to improve the majority

voting accuracy [45]. Hence, each source of information belonging to this subgroup estimates
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the probability that the decisions of a given base classifier ci are significantly different from

that of a random classifier from different probabilistic or information-theoretic perspectives.

Several probabilistic criteria have been proposed for estimating the level of competence of the

base classifier, such as Logarithmic difference [46], Kullback-Leibler divergence [45], and the

Randomized Reference Classifier (DES-RRC) [18]. Moreover, techniques based on probabilis-

tic criteria have been successfully applied for the recognition of EMG signals in a bio-prosthetic

hand [47].

1.1.5 Behavior

This subgroup is based on information that is computed from the behavior of the predictions

made by the pool of classifiers through the concept of output profiles [16]. The output profile of

an instance x j is denoted by x̃ j =
{

x̃ j,1, x̃ j,2, . . . , x̃ j,M
}

, where each x̃ j,i is the decision yielded

by the base classifier ci for the sample x j. In such techniques, the local regions are defined in

the output profiles space, also called decision space, by computing the distances between the

output profile of the query sample, and those of the dynamic selection dataset.

Based on the information extracted from the decision space, the K-Nearest Output Profile

(KNOP) [17] is similar to the KNORA technique, with the difference being that the KNORA

works in the feature space, while the KNOP works in the decision space. The KNOP technique

first defines a set with the samples that are most similar to the output profile of the input sam-

ple, x̃ j in the decision space, called the output profiles set. The validation set is used for this

purpose. Then, similarly to the KNORA-E technique, only the base classifiers that achieve a

perfect recognition accuracy for the samples belonging to the output profiles set are used dur-

ing the voting scheme. The Multiple Classifier Behaviour (MCB) technique [21] also defines

a set with the most similar output profiles to the input sample using the decision space. Here,

the selection criterion is based on a threshold. The base classifiers that achieve a performance

higher than the predefined threshold, based on the Behavior-Knowledge Space (BKS) [48], are

considered competent, and are selected to predict the class label of the given test sample.
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1.2 Group based measures

Group-based methods work by estimating the competence level of a whole ensemble of clas-

sifiers rather than each classifier individually. This may be achieved either by generating a

population of EoC, C∗ = {C
′
1,C

′
2, . . . ,C

′
M′} (M

′
is the number of EoC generated), or using an

optimization algorithm such as genetic algorithms or greedy search [12; 15; 13]. In addition,

some techniques first select an EoC according to some individual-based criterion, such as local

accuracy, and then either add or remove classifiers from the selected EoC.

1.2.1 Diversity

Diversity in the context of dynamic selection has been used by some authors as a post-processing

means of improving classification performance after an ensemble is selected. Several metrics

for measuring diversity in an EoC have been proposed [8; 49]. Of all diversity measures, the

Double-Fault [50] measure garnered a lot of attention as it presents a higher correlation with

the majority voting accuracy [8] when compared to other diversity measures.

In [42], two DES techniques combining accuracy and diversity, K-NN and Selection and Clus-

ter and Selection, are proposed. They differ in how the region of competence of a test sample is

defined; the former is based on the K-NN technique, while the latter uses the K-Means cluster-

ing algorithm. The dynamic selection stages of both techniques are similar. First, the classifiers

are sorted based on their classification performance in the region of competence. A predefined

number of classifiers with the highest performance are selected to compose the EoC. After that,

the most diverse classifiers in relation to the selected EoC are added to the ensemble. In that

case, the double fault diversity measure is considered. An empirical comparison of dynamic

selection techniques based on accuracy and diversity was conducted by Souto et al. [51].

Another interesting DES technique that uses a diversity measure is the DES-CD method pro-

posed by Lysiak et al. [52]. In the DES-CD methods, the most competent classifiers are selected

based on the randomized reference classifier (RRC) proposed in [18]. Then, other classifiers

in the pool are added to the selected ensemble if they increase diversity.
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1.2.2 Ambiguity

Different ways of measuring the ambiguity or the consensus of the ensemble have been pro-

posed: Margin-based Dynamic Selection (MDS) [15], where the criterion is the margin be-

tween the most voted class and the second most voted class. The margin is computed simply

by considering the difference between the number of votes received by the most voted class

and those received by the second most voted class. Two variations of the MDS were proposed

in [15], namely, the Class-Strength Dynamic Selection (CSDS), which includes the ensemble

decision in the computation of the MDS, and the GSDS, where the global performance of each

EoC is also taken into account [16]. Another technique from this paradigm is the Ambiguity-

guided Dynamic Selection (ADS) [15], which uses the ambiguity among the base classifiers

of an EoC as the criterion for measuring the competence level of an EoC. The ambiguity is

calculated by the number of base classifiers of an ensemble that disagrees with the ensemble

decision. The lower this number is, the higher the level of competence of the EoC.

The advantage of ambiguity as a DES criterion stems from the fact that it does not require

information from the local region. However, in many cases, these techniques cannot find an

EoC with an acceptable confidence level. There is a tie between different members of the pool,

and the systems end up performing a random decision [16]. In addition, the pre-computation of

ensembles also greatly increases the overall system complexity as we are dealing with a pool

of EoC rather than a pool of classifiers.

1.2.3 Data handling

Xiao et al.[53] propose an interesting adaptive ensemble selection approach based on data

handling theory (GDMH) and complexity models. The system is based on a multivariate anal-

ysis theory for modeling complexity systems presented in [54]. Given a new test sample x j,

several ensemble configurations are evaluated using the GMDH. Then, the ensemble with op-

timal complexity is selected. Furthermore, a modification of the GDES method for dealing
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specifically with imbalanced distributions, called Dynamic Classifier Ensemble Selection with

Imbalance Distribution (DCEID), was proposed in [19].
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Abstract

Dynamic ensemble selection systems work by estimating the level of competence of each clas-

sifier from a pool of classifiers. Only the most competent ones are selected to classify a given

test sample. This is achieved by defining a criterion to measure the level of competence of

a base classifier, such as, its accuracy in local regions of the feature space around the query

instance. However, using only one criterion about the behavior of a base classifier is not suffi-

cient to accurately estimate its level of competence. In this paper, we present a novel dynamic

ensemble selection framework using meta-learning. We propose five distinct sets of meta-

features, each one corresponding to a different criterion to measure the level of competence

of a classifier for the classification of input samples. The meta-features are extracted from the

training data and used to train a meta-classifier to predict whether or not a base classifier is

competent enough to classify an input instance. During the generalization phase, the meta-

features are extracted from the query instance and passed down as input to the meta-classifier.

The meta-classifier estimates, whether a base classifier is competent enough to be added to the

ensemble. Experiments are conducted over several small sample size classification problems,

i.e., problems with a high degree of uncertainty due to the lack of training data. Experimental

results show the proposed meta-learning framework greatly improves classification accuracy

when compared against current state-of-the-art dynamic ensemble selection techniques.
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2.1 Introduction

Multiple Classifier Systems (MCS) aim to combine classifiers to increase the recognition ac-

curacy in pattern recognition systems [24; 9]. MCS are composed of three phases [1]: (1)

Generation, (2) Selection and (3) Integration. In the first phase, a pool of classifiers is gener-

ated. In the second phase, a single classifier or a subset having the best classifiers of the pool

is(are) selected. We refer to the subset of classifiers as Ensemble of Classifiers (EoC). The last

phase is the integration, and the predictions of the selected classifiers are combined to obtain

the final decision [24].

For the second phase, there are two types of selection approaches: static and dynamic. In

static approaches, the selection is performed during the training stage of the system. Then, the

selected classifier or EoC is used for the classification of all unseen test samples. In contrast,

dynamic ensemble selection approaches (DES) [14; 15; 16; 17; 18; 19; 20; 21; 22; 23] select

a different classifier or a different EoC for each new test sample. DES techniques rely on

the assumption that each base classifier is an expert in a different local region of the feature

space [27]. So, given a new test sample, DES techniques aim to select the most competent

classifiers for the local region in the feature space where the test sample is located. Only

the classifiers that attain a certain competence level, according to a selection criterion, are

selected. Recent work in the dynamic selection literature demonstrates that dynamic selection

techniques is an effective tool for classification problems that are ill-defined, i.e., for problems

where the size of the training data is small and there are not enough data available to model the

classifiers [16; 17].

The key issue in DES is to define a criterion to measure the level of competence of a base

classifier. Most DES techniques [14; 22; 21; 20; 28; 29; 30; 31] use estimates of the classifiers’

local accuracy in small regions of the feature space surrounding the query instance as a search

criterion to perform the ensemble selection. However, in our previous work [20], we demon-

strated that the use of local accuracy estimates alone is insufficient to achieve results close to

the Oracle performance. The Oracle is an abstract model defined in [32] which always selects
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the classifier that predicted the correct label, for the given query sample, if such classifier ex-

ists. In other words, it represents the ideal classifier selection scheme. In addition, as reported

by Ko et al. [14], addressing the behavior of the Oracle is much more complex than applying a

simple neighborhood approach.

On the other hand, DES techniques based on other criteria, such as the degree of consensus

of the ensemble classifiers [15; 16], encounter some problems when the search cannot find a

consensus among the ensembles. In addition, they neglect the local performance of the base

classifiers. As stated by the “No Free Lunch” theorem [33], no algorithm is better than any

other over all possible classes of problems. Using a single criterion to measure the level of

competence of a base classifier is very error-prone. Thus, we believe that multiple criteria to

measure the competence of a base classifier should be taken into account in order to achieve a

more robust dynamic ensemble selection technique.

In this paper, we propose a novel dynamic ensemble selection framework using meta-learning.

From the meta-learning perspective, the dynamic ensemble selection problem is considered as

another classification problem, called meta-problem. The meta-features of the meta-problem

are the different criteria used to measure the level of competence of the base classifier. We

propose five sets of meta-features in this paper. Each set captures a different property about the

behavior of the base classifier, and can be seen as a different dynamic selection criterion such

as, the classification performance in a local region of the feature space and the classifier confi-

dence for the classification of the input sample. Using five distinct sets of meta-features, even

though one criterion might fail due to problems in the local regions of the feature space [20]

or due to low confidence results [35], the system can still achieve a good performance as other

meta-features are also considered by the selection scheme. Furthermore, in a recent analy-

sis [55] we compared the criteria used to measure the competence of base classifiers embedded

in different DES techniques. The result demonstrates that, given the same query sample, dis-

tinct DES criteria select a different base classifier as the most competent one. Thus, they are not

fully correlated. Hence, we believe that a more robust dynamic ensemble selection technique

is achieved using five sets of meta-features rather than only one.
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The meta-features are used as input to a meta-classifier that decides whether or not a base

classifier is competent enough for the classification of an input sample based on the meta-

features. The use of meta-learning has recently been proposed in [56] as an alternative for

performing classifier selection in static scenarios. We believe that we can carry this further,

and extend the use of meta-learning to dynamically estimate the level of competence of a base

classifier.

The proposed framework is divided into three phases: overproduction, meta-training and gen-

eralization. In the overproduction stage, a pool of classifiers is generated using the training

data. In the meta-training stage, the five sets of meta-features are extracted from the training

data, and are used to train the meta-classifier that works as the classifier selector. During the

generalization phase, the meta-features are extracted from the query instance and passed down

as inputs to the meta-classifier. The meta-classifier estimates whether a base classifier is com-

petent enough to classify the given test instance. Thus, the proposed system differs from the

current state-of-the-art dynamic selection techniques not only because it uses multiple criteria

to perform the classifier selection, but also because the classifier selection rule is learned by

the meta-classifier using the training data.

The generalization performance of the system is evaluated over 30 classification problems. We

compare the proposed framework against eight state-of-the-art dynamic selection techniques

as well as static combination methods. The evaluation is focused on small size dataset, since

DES techniques has shown to be an effective tool for problems where the level of uncertainty

for recognition is high due to few training samples [16]. However, a few larger datasets were

also considered in order to evaluate the performance of the proposed framework under dif-

ferent conditions. The goal of the experiments is to answer the following research questions:

(1) Can the use of multiple DES criteria, as meta-features, lead to a more robust dynamic se-

lection technique? (2) Does the proposed framework outperform current DES techniques for

ill-defined problems?
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This paper is organized as follows: Section 2.2 introduces the notion of classifier competence,

and the state-of-the-art techniques for dynamically measuring the classifiers’ competence are

presented. The proposed framework is presented in Section 2.3. The experimental study is

conducted in Section 2.4. Finally, our conclusion is presented in the last section.

2.2 Classifier competence for dynamic selection

Classifier competence defines how much we trust an expert, given a classification task. The

notion of competence used is extensively in the field of machine learning as a way of selecting,

from the plethora of different classification models, the one that best fits the given problem.

Let C = {c1, . . . ,cM} (M is the size of the pool of classifiers) be the pool of classifiers and ci a

base classifier belonging to the pool C. The goal of dynamic selection is to find an ensemble of

classifiers C′ ⊂C that has the best classifiers to classify a given test sample x j. This is different

from static selection, where the ensemble of classifiers C′ is selected during the training phase,

and considering the global performance of the base classifiers over a validation dataset [10; 11;

12; 13].

Nevertheless, the key issue in dynamic selection is how to measure the competence of a base

classifier ci for the classification of a given query sample x j. In the literature, we can observe

three categories: the classifier accuracy over a local region, i.e., in a region of the feature space

surrounding the query instance x j, decision templates [57], which are techniques that work in

the decision space (i.e, a space defined by the outputs of the base classifiers) and the extent of

consensus or confidence. The three categories are described in the following subsections.

2.2.1 Classifier accuracy over a local region

Classifier accuracy is the most commonly used criterion for dynamic classifier and ensemble

selection techniques [22; 14; 20; 30; 23; 28; 38; 29; 19]. Techniques that are based on local

accuracy first define a small region in the feature space surrounding a given test instance x j,

called the region of competence. This region is computed using either the K-NN algorithm [14;
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22; 20] or by Clustering techniques [30; 23], and can be defined either in the training set [22]

or in the validation set, such as in the KNORA techniques [14].

Based on the samples belonging to the region of competence, a criterion is applied in order

to measure the level of competence of a base classifier. For example, the Overall Local Ac-

curacy (OLA) [22] technique uses the accuracy of the base classifier in the whole region of

competence as a criterion to measure its level of competence. The classifier that obtains the

highest accuracy rate is considered the most competent one. The Local Classifier Accuracy

(LCA) [22] computes the performance of the base classifier in relation to a specific class label

using a posteriori information [44]. The Modified Local Accuracy [29] works similarly to the

LCA technique, with the only difference being that each sample belonging to the region of

competence is weighted by its Euclidean distance to the query instance. That way, instances

from the region of competence that are closer to the test sample have a higher influence when

computing the performance of the base classifier. The classifier rank method [38] uses the

number of consecutive correctly classified samples as a criterion to measure the level of com-

petence. The classifier that correctly classifies the most consecutive samples coming from the

region of competence is considered to have the highest competence level or “rank”.

Ko et al. [14] proposed the K-Nearest Oracles (KNORA) family of techniques, inspired by the

Oracle concept. Four techniques are proposed: the KNORA-Eliminate (KNORA-E) which,

considers that a base classifier ci is competent for the classification of the query instance x j if

ci achieves a perfect accuracy for the whole region of competence. Only the base classifiers

with a perfect accuracy are used during the voting scheme. In The KNORA-Union (KNORA-

U) technique, the level of competence of a base classifier ci is measured by the number of

correctly classified samples in the defined region of competence. In this case, every classifier

that correctly classified at least one sample can submit a vote. In addition, two weighted ver-

sions, KNORA-E-W and KNORA-U-W were also proposed, in which the influence of each

sample belonging to the region of competence was weighted based on its Euclidean distance

to the query sample x j. Lastly, Xiao et al. [19] proposed the Dynamic Classifier Ensemble

for Imbalanced Data (DCEID), which is based on the same principles as the LCA technique.
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However, this technique also takes into account each class prior probability when computing

the performance of the base classifier for the defined region of competence in order to deal

with imbalanced distributions.

The difference between these techniques lies in how they utilize the local accuracy information

in order to measure the level of competence of a base classifier. The main issue with the tech-

niques arises from the fact that they depend on the performance of the techniques that define

the region of competence such as K-NN or clustering techniques. In our previous work [20],

we demonstrated that the effectiveness of dynamic selection techniques is limited by the perfor-

mance of the algorithm that defines the region of competence. The dynamic selection technique

is likely to commit errors when outlier instances (i.e., mislabelled samples) exists around the

query sample in the feature space [20]. Using the local accuracy information alone is not suffi-

cient to achieve results close to the Oracle. Moreover, any difference between the distribution

of validation and test datasets may negatively affect the system performance. Consequently,

we believe that additional information should also be considered.

2.2.2 Decision Templates

In this class of methods, the goal is also to select samples that are close to the query in-

stance x j. However, the similarity is computed over the decision space through the concept

of decision templates [57]. This is performed by transforming both the test instance x j and

the validation data into output profiles. The output profile of an instance x j is denoted by

x̃ j =
{

x̃ j,1, x̃ j,2, . . . , x̃ j,M
}

, where each x̃ j,i is the decision yielded by the base classifier ci for

the sample x j.

Based on the information extracted from the decision space, the K-Nearest Output Profile

(KNOP) [17] is similar to the KNORA technique, with the difference being that the KNORA

works in the feature space, while the KNOP works in the decision space. The KNOP technique

first defines a set with the samples that are most similar to the output profile of the input sam-

ple, x̃ j in the decision space, called the output profiles set. The validation set is used for this
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purpose. Then, similarly to the KNORA-E technique, only the base classifiers that achieve a

perfect recognition accuracy for the samples belonging to the output profiles set are used dur-

ing the voting scheme. The Multiple Classifier Behaviour (MCB) technique [21] also defines

a set with the most similar output profiles to the input sample using the decision space. Here,

the selection criterion is based on a threshold. The base classifiers that achieve a performance

higher than the predefined threshold are considered competent and are selected to form the

ensemble.

The advantage of this class of methods is that they are not limited by the quality of the region

of competence defined in the feature space, with the similarity computed based on the decision

space rather than the feature space. However, the disadvantage with this comes from the fact

that only global information is considered, while the local expertise of each base classifier is

neglected.

2.2.3 Extent of Consensus or confidence

Different from other methods, techniques that are based on the extent of consensus work by

considering a pool of ensemble of classifiers (EoC) rather than a pool of classifiers. Hence, the

first step is to generate a population of EoC, C∗ = {C
′
1,C

′
2, . . . ,C

′
M′} (M

′
is the number of EoC

generated) using an optimization algorithm such as genetic algorithms or greedy search [12;

15; 13]. Then, for each new query instance x j, the level of competence of an ensemble of

classifiers C
′
i is equal to the extent of consensus among its base classifiers.

Several criterion based on this paradigm was proposed: the Margin-based Dynamic Selection

(MDS) [15], where the criterion is the margin between the most voted class and the second most

voted class. The margin is computed simply by considering the difference between the number

of votes received by the most voted class and those received by the second most voted class.

Two variations of the MDS where proposed in [15], the Class-Strength Dynamic Selection

(CSDS), which includes the ensemble decision in the computation of the MDS, and the GSDS,

where the global performance of each EoC is also taken into account [16]. Another technique
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from this paradigm is the Ambiguity-guided Dynamic Selection (ADS) [15], which uses the

ambiguity among the base classifiers of an EoC as the criterion for measuring the competence

level of an EoC. The ambiguity is calculated by the number of base classifiers of an ensemble

that disagrees with the ensemble decision. The lower the number of classifiers that disagree

with the ensemble decision, the higher the level of competence of the EoC.

The greatest advantage of this class of methods stems from the fact that it does not require

information from the region of competence. Thus, it does not suffer from the limitations of

the algorithm that defines the region of competence. However, these techniques present the

following disadvantages: In many cases, the search cannot find an EoC with an acceptable

confidence level. There is a tie between different members of the pool, and the systems end

up performing a random decision [16]. In addition, some classifiers are more overtrained than

others. In this case, they end up dominating the outcome even though they do not present

better recognition performance [7]. The pre-computation of ensembles also greatly increases

the overall system complexity as we are dealing with a pool of EoC rather than a pool of

classifiers.

2.3 The Proposed Framework: META-DES

2.3.1 Problem definition

From the meta-learning perspective, the dynamic selection problem can be seen as another

classification problem, called the meta-problem. This meta-problem uses different criteria re-

garding the behavior of a base classifier in order to decide whether it is competent enough to

classify a given sample x j. Thus, a dynamic selection system can be defined based on two en-

vironments. A classification environment in which the input features are mapped into a set of

class labels w = {w1,w2, ...,wL} and a meta-classification environment in which information

about the behavior of the base classifier is extracted from the classification environment and

used to decide whether a base classifier ci is competent enough to classify x j.
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To keep with the conventions of the meta-learning literature, we define the proposed dynamic

ensemble selection in a meta-learning framework as follows:

• The meta-problem consists in defining whether a base classifier ci is competent enough to

classify x j.

• The meta-classes of this meta-problem are either “competent” or “incompetent” to classify

x j.

• Each meta-feature fi corresponds to a different criterion to measure the level of compe-

tence of a base classifier.

• The meta-features are encoded into a meta-features vector vi, j which contains the infor-

mation about the behavior of a base classifier ci in relation to the input instance x j.

• A meta-classifier λ is trained based on the meta-features vi, j to predict whether or not ci

will achieve the correct prediction for x j.

Thus, the proposed system differs from the current state-of-the-art dynamic selection tech-

niques not only because it uses multiple criteria, but also because the selection rule is learned

by the meta-classifier λ using the training data.

2.3.2 The proposed META-DES

The META-DES framework is divided into three phases (Figure 2.1):

a. The overproduction phase, where the pool of classifiers C = {c1, . . . ,cM}, composed of M

classifiers, is generated using the training instances x j,train from the dataset T .

b. The meta-training stage, in which samples x j,trainλ from the meta-training dataset Tλ are

used to extract the meta-features. A different dataset Tλ is used in this phase in order to

prevent overfitting. The meta-feature vectors vi, j are stored in the set T ∗
λ that is later used

to train the meta-classifier λ .
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c. The generalization phase, given a test sample x j,test resulting from the generalization data

G; its region of competence is extracted using the samples from the dynamic selection

dataset DSEL in order to compute the meta-features. The meta-feature vector vi, j is then

passed to the selector λ , which decides whether ci is competent enough to classify x j,test

and should be added to the ensemble, C′. The majority vote rule is applied over the

ensemble C′, giving the classification wl of x j,test .
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Figure 2.1 Overview of the proposed META-DES framework. It is divided into three

steps 1) Overproduction, where the pool of classifiers C = {c1, . . . ,cM} is generated, 2)

The training of the meta-classifier λ , and 3) The generalization phase where an ensemble

C′ is dynamically defined based on the meta-information extracted from x j,test and the

pool C = {c1, . . . ,cM}. The generalization phase returns the label wl of x j,test . hC, K and

Kp are the hyper-parameters required by the proposed system
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2.3.2.1 Overproduction

In this work, the Overproduction phase is performed using the Bagging technique [3; 58].

Bagging is an acronym for Bootstrap AGGregatING. The idea behind this technique is to build

a diverse ensemble of classifiers by randomly selecting different subsets of the training data.

Each subset is used to train one individual classifier ci. As the focus of the paper is on classifier

selection, and not on classifier generation methods, only the bagging technique is considered.

2.3.2.2 Meta-training

As shown in Figure 2.1, the meta-training stage consists of three steps: the sample selection

process, the meta-features extraction process, and the training of the meta-classifier λ . For

every sample x j,trainλ ∈ Tλ , the first step is to apply the sample selection mechanism in order

to know whether or not x j,trainλ should be used for the training of the meta-classifier λ . The

whole Meta-training phase is formalized in Algorithm 2.1.

2.3.2.2.1 Sample Selection

As demonstrated by Dos Santos et al. [15] and Cavalin et al. [16], one of the main issues

in dynamic ensemble selection arises when classifying testing instances where the degree of

consensus among the pool of classifier is low, i.e., when the number of votes from the winning

class is close or even equal to the number of votes from the second class. To tackle this issue, we

decided to focus the training of the meta-classifier λ to specifically deal with cases where the

extent of consensus among the pool is low. This step is conducted using a threshold hC, called

the consensus threshold. Each instance x j,trainλ is first evaluated by the whole pool of classifiers

in order to compute the degree of consensus among the pool, denoted by H
(
x j,trainλ ,C

)
. If the

consensus H
(
x j,trainλ ,C

)
falls below the consensus threshold hC, the instance x j,trainλ is used

to compute the meta-features.
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Input: Training data Tλ
Input: Pool of classifiers C = {c1, . . . ,cM}

1: T ∗
λ = /0

2: for all x j,trainλ ∈ Tλ do
3: Compute the consensus of the pool H

(
x j,trainλ ,C

)
4: if H

(
x j,trainλ ,C

)
< hC then

5: Find the region of competence θ j of x j,trainλ using Tλ .

6: Compute the output profile x̃ j,trainλ of x j,trainλ .

7: Find the Kp similar output profiles φ j of x̃ j,trainλ using T̃λ .

8: for all ci ∈C do
9: vi, j = MetaFeatureExtraction(θ j,φ j,ci,x j,trainλ )

10: if ci correctly classifies x j,trainλ then
11: αi, j = 1 “ci is competent for x j,trainλ ”

12: else
13: αi, j = 0 “ ci is incompetent for x j,trainλ ”

14: end if
15: T ∗

λ = T ∗
λ ∪

{
vi, j

}
16: end for
17: end if
18: end for
19: Divide T ∗

λ into 25% for validation and 75% for training.

20: Train λ using the Levenberg-Marquadt algorithm.

21: return The meta-classifier λ .

Algorithm 2.1: The Meta-Training Phase

Before extracting the meta-features, the region of competence of the instance x j,trainλ , denoted

by θ j = {x1, . . . ,xK}, must first be computed. The region of competence θ j is defined in

the Tλ set, using the K-Nearest Neighbor algorithm (line 5). Then, x j,trainλ is transformed

into an output profile. The output profile of the instance x j,trainλ is denoted by x̃ j,trainλ =
{

x̃ j,trainλ ,1, x̃ j,trainλ ,2, . . . , x̃ j,trainλ ,M
}

, where each x̃ j,trainλ ,i is the decision yielded by the base

classifier ci for the sample x j,trainλ [16; 17].

Next, with the region of competence θ j and the set with the most similar output profiles φ j

computed, for each base classifier ci belonging to the pool of classifiers C, one meta-feature

vector vi, j is extracted (lines 8 to 14). Each vi, j contains five sets of meta-features:
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2.3.2.2.2 Meta-feature extraction process

Five different sets of meta-features are proposed in this work. Each feature set fi, corresponds

to a different criterion for measuring the level of competence of a base classifier. Each set

captures a different property about the behavior of the base classifier, and can be seen as a

different criterion to dynamically estimate the level of competence of base classifier such as,

the classification performance estimated in a local region of the feature space and the classifier

confidence for the classification of the input sample. Using five distinct sets of meta-features,

even though one criterion might fail due to imprecisions in the local regions of the feature space

or due to low confidence results, the system can still achieve a good performance as other meta-

features are considered by the selection scheme. Table 2.1 shows the criterion used by each fi

and its relationship with one dynamic ensemble selection paradigm presented in Section 2.2.

Table 2.1 Relationship between each meta-features and different paradigms to compute

the level of competence of a base classifier

Meta-Feature Criterion Paradigm
f1 Local accuracy in the region of competence Classifier Accuracy over a local region

f2 Extent of consensus in the region of competence Classifier consensus

f3 Overall accuracy in the region of competence Accuracy over a local region

f4 Accuracy in the decision space Decision Templates

f5 Degree of confidence for the input sample Classifier confidence

Three meta-features, f1, f2 and f3, are computed using information extracted from the region of

competence θ j. f4 uses information extracted from the set of output profiles φ j. f5 is calculated

directly from the input sample x j,trainλ , and corresponds to the level of confidence of ci for the

classification of x j,trainλ .

f1 - Neighbors’ hard classification: First, a vector with K elements is created. For each in-

stance xk, belonging to the region of competence θ j, if ci correctly classifies xk, the k-th

position of the vector is set to 1, otherwise it is 0. Thus, K meta-features are computed.
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f2 - Posterior probability: First, a vector with K elements is created. Then, for each instance

xk, belonging to the region of competence θ j, the posterior probability of ci, P(wl | xk) is

computed and inserted into the k-th position of the vector. Consequently, K meta-features

are computed.

f3 - Overall Local accuracy: The accuracy of ci over the whole region of competence θ j is

computed and encoded as f3.

f4 - Output profiles classification: First, a vector with Kp elements is generated. Then, for

each member x̃k belonging to the set of output profiles φ j, if the label produced by ci for

xk is equal to the label wl,k of x̃k, the k-th position of the vector is set to 1, otherwise it is

0. A total of Kp meta-features are extracted using output profiles.

f5 - Classifier’s Confidence: The perpendicular distance between the input sample x j,trainλ

and the decision boundary of the base classifier ci is calculated and encoded as f5. f5 is

normalized to a [0−1] range using the Min-max normalization.
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Figure 2.2 Feature Vector containing the meta-information about the

behavior of a base classifier. A total of 5 different meta-features are

considered. The size of the feature vector is (2×K)+Kp +2. The class

attribute indicates whether or not ci correctly classified the input sample

A vector vi, j = { f1 ∪ f2 ∪ f3 ∪ f4 ∪ f5} is obtained at the end of the process (Figure 2.2). If

ci correctly classifies x j,trainλ , the class attribute of vi, j, αi, j = 1 (i.e., vi, j corresponds to the

behavior of a competent classifier), otherwise αi, j = 0. vi, j is stored in the meta-features dataset

T ∗
λ (lines 10 to 16).
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For each sample x j,trainλ used in the meta-training stage, a total of M (M is the size of the pool

of classifiers C) meta-feature vectors vi, j are extracted, each one corresponding to one classifier

from the pool C. In this way, the size of the meta-training dataset T ∗
λ is the pool size M×

number of training samples N. For instance, consider that 200 training samples are available for

the meta-training stage (N = 200), if the pool C is composed of 100 weak classifiers (M = 100),

the meta-training dataset is the number of training samples N × the number classifiers in the

pool M, N ∗M = 20.000. Hence, even though the classification problem may be ill-defined

due to the size of the training set, we can overcome this limitation in the meta-problem by

increasing the size of the pool of classifiers.

2.3.2.2.3 Training

The last step of the meta-training phase is the training of the meta-classifier λ . The dataset T ∗
λ

is divided on the basis of 75% for training and 25% for validation. A Multi-Layer Perceptron

(MLP) neural network is considered as the selector λ . The validation data was used to select

the number of nodes in the hidden layer. We use a configuration of 10 neurons in the hidden

layer since there were no improvement in results with more than 10 neurons. The training

process for λ is performed using the Levenberg-Marquadt algorithm. In addition, the training

process is stopped if its performance on the validation set decreases or fails to improve for five

consecutive epochs.

2.3.2.3 Generalization Phase

The generalization procedure is formalized by Algorithm 2.2. Given the query sample x j,test ,

in this phase, the region of competence θ j is computed using the samples from the dynamic

selection dataset DSEL (line 2). Following that, the output profiles x̃ j,test of the test sample,

x j,test , are calculated. The set with Kp similar output profiles φ j, of the query sample x j,test ,

is obtained through the Euclidean distance applied over the output profiles of the dynamic

selection dataset, D̃SEL.
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Input: Query sample x j,test
Input: Pool of classifiers C = {c1, . . . ,cM}
Input: dynamic selection dataset DSEL

1: C
′
= /0

2: Find the region of competence θ j of x j,test using DSEL.

3: Compute the output profile x̃ j,test of x j,test .

4: Find the Kp similar output profiles φ j of x̃ j,test using D̃SEL.

5: for all ci ∈C do
6: vi, j = FeatureExtraction(θ j,φ j,ci,x j,test)
7: input vi, j to λ
8: if αi, j = 1 “ci is competent for x j,test” then
9: C

′
=C

′ ∪ {ci}
10: end if
11: end for
12: wl = Ma jorityVote(x j,test ,C

′
)

13: return wl

Algorithm 2.2: Classification steps using the selector λ

Next, for each classifier ci belonging to the pool of classifiers C, the meta-feature extraction

process is called (Section 3.2.2.2), returning the meta-features vector vi, j (lines 5 and 6). Then,

vi, j is used as input to the meta-classifier λ . If the output of λ is 1 (i.e., competent), ci is

included in the ensemble C′ (lines 8 to 10). After every base classifier, ci, is evaluated, the

ensemble C′ is obtained. The base classifiers in C′ are combined through the Majority Vote

rule [24], giving the label wl of x j,test (line 12 and 13). The majority vote rule is used to combine

the selected classifiers since it has been successfully used by other DES techniques [1]. Tie-

breaking is handled by choosing the class with the highest a posteriori probability.

2.4 Experiments

2.4.1 Datasets

A total of 30 datasets are used in the comparative experiments. sixteen coming from the UCI

machine learning repository [59], four from the STATLOG project [60], four from the Knowl-

edge Extraction based on Evolutionary Learning (KEEL) repository [61], four from the Lud-
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mila Kuncheva Collection of real medical data [62], and two artificial datasets generated with

the Matlab PRTOOLS toolbox [63]. We consider both ill-defined problems, such as, Heart and

Liver Disorders as well as larger databases, such as, Adult, Magic Gamma Telescope, Phoneme

and WDG V1. The key features of each dataset are shown in Table 2.2.

Table 2.2 Key Features of the datasets used in the experiments

Database No. of Instances Dimensionality No. of Classes Source
Pima 768 8 2 UCI

Liver Disorders 345 6 2 UCI

Breast (WDBC) 568 30 2 UCI

Blood transfusion 748 4 2 UCI

Banana 1000 2 2 PRTOOLS

Vehicle 846 18 4 STATLOG

Lithuanian 1000 2 2 PRTOOLS

Sonar 208 60 2 UCI

Ionosphere 315 34 2 UCI

Wine 178 13 3 UCI

Haberman’s Survival 306 3 2 UCI

Cardiotocography (CTG) 2126 21 3 UCI

Vertebral Column 310 6 2 UCI

Steel Plate Faults 1941 27 7 UCI

WDG V1 50000 21 3 UCI

Ecoli 336 7 8 UCI

Glass 214 9 6 UCI

ILPD 214 9 6 UCI

Adult 48842 14 2 UCI

Weaning 302 17 2 LKC

Laryngeal1 213 16 2 LKC

Laryngeal3 353 16 3 LKC

Thyroid 215 5 3 LKC

German credit 1000 20 2 STATLOG

Heart 270 13 2 STATLOG

Satimage 6435 19 7 STATLOG

Phoneme 5404 6 2 ELENA

Monk2 4322 6 2 KEEL

Mammographic 961 5 2 KEEL

MAGIC Gamma Telescope 19020 10 2 KEEL

2.4.2 Experimental Protocol

The experiments were conducted using 20 replications. For each replication, the datasets were

randomly divided on the basis 50% for training, 25% for the dynamic selection dataset (DSEL),

and 25% for the test set (G). The divisions were performed maintaining the priors probabilities

of each class. For the proposed META-DES, 50% of the training data was used in the meta-

training process Tλ and 50% for the generation of the pool of classifiers (T ).
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For the two-class classification problems, the pool of classifiers was composed of 100 Per-

ceptrons generated using the bagging technique [3]. For the multi-class problems, the pool

of classifiers was composed of 100 multi-class perceptron classifier. The use of Perceptron as

base classifier comes from the following observations based on past works in the literature:

• The use of weak classifiers can show more differences between the DES schemes [14].

Thus, making it a better option for comparing different DES techniques.

• Past works in the DES literature demonstrate that the use of weak models as base classifier

achieve better results [15; 16; 64; 65; 20], where the use of decision trees or Perceptrons

outperform strong classification models such as KNN classifiers.

• As reported by Leo Breiman [3; 58], the bagging technique achieves better results when

weak and unstable base classifiers are used.

2.4.3 Parameters Setting

The performance of the proposed selection scheme depends on three parameters: the neigh-

borhood size, K, the number of similar patterns using output profiles Kp and the consensus

threshold hC. The dynamic selection dataset DSEL was used for the analysis. The following

methodology is used:

• For the sake of simplicity, we selected the parameters that performed best.

• The value of the parameter K was selected based on the results of our previous paper [20].

In this case, K = 7 showed the best overall results, considering several dynamic selection

techniques.

• The Kruskall-Wallis statistical test with a 95% confidence interval was used to determine

whether the difference in results was statistically significant. If two configurations yielded

similar results, we selected the one with the smaller parameter value as it leads to a smaller

meta-features vector.
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• The parameter hC was evaluated with Kp initially set at 1.

• The best value of hc was used in the evaluation of the best value for Kp.

• Only a subset with eleven of the thirty datasets are used for parameters setting procedure:

Pima, Liver, Breast, Blood Transfusion, Banana, Vehicle, Lithuanian, Sonar, Ionosphere,

Wine, Haberman’s Survival.

2.4.3.1 The effect of the parameter hC
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Figure 2.3 Performance of the proposed system based on the parameter hC on the

dynamic selection dataset, DSEL. K = 7 and Kp = 1

We varied the parameter hc from 50% to 100% at 10 percentile point interval. Figure 2.3

shows the mean performance and standard deviation for each hC value. We compared each

pair of results using the Kruskal-Wallis non-parametric statistical test with a 95% confidence

interval. For 6 out of 11 datasets (Vehicle, Lithuanian, Banana, Blood transfusion, Ionosphere



41

and Sonar) hC = 70% presented a value that was statistically superior to the others. Hence,

hC = 70% was selected.

2.4.3.2 The effect of the parameter Kp
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Figure 2.4 The performance of the system varying the parameter Kp from 1 to 10 on the

dynamic selection dataset, DSEL. hc = 70% and K = 7

Figure 2.4 shows the impact of the value of the parameter Kp in an 1-to-10 range. Once again,

we compared each pair of results using the Kruskal-Wallis non-parametric statistical test, with

a 95% confidence. The results were statistically different only for the Sonar, Ionosphere and

liver disorders datasets, where the value of Kp = 5 showed the best results. Hence, Kp was set

at 5.
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2.4.4 Comparison with the state-of-the-art dynamic selection techniques

In this section we compare the recognition rates obtained by the proposed META-DES, against

eight dynamic selection techniques found in the literature [1]. The objective of this comparative

study is to answer the following research question: (1) Can the use of multiple DES criteria

as meta-features lead to a more robust dynamic selection technique? (2) Does the proposed

framework outperform current DES techniques for ill-defined problems?

The eight state-of-the-art DES techniques used in this study are: the KNORA-ELIMINATE [14],

KNORA-UNION [14], DES-FA [20], Local Classifier Accuracy (LCA) [22], Overall Local

Accuracy (OLA) [22], Modified Local Accuracy (MLA) [29], Multiple Classifier Behaviour

(MCB) [21] and K-Nearests Output Profiles (KNOP) [17; 16]. These techniques were selected

because they presented the very best results in the dynamic selection literature according to a

recent survey on this topic [1]. In addition, we also compare the performance of the proposed

META-DES with static combination methods (Adaboost and Bagging), the classifier with the

highest accuracy in the validation data (Single Best), static ensemble selection based on the

majority voting error [66] and the abstract model (Oracle) [32]. The Oracle represents the

ideal classifier selection scheme. It always selects the classifier that predicted the correct label,

for any given query sample, if such classifier exists. For the static ensemble selection method,

50% of the classifiers of the pool are selected. The comparison against static methods is used

since it is suggested the DES literature that the minimum requirement for a DES method is to

surpass the performance of static selection and combination methods in the same pool [1].

For all techniques, the pool of classifiers C is composed of 100 Perceptrons as base classifier

(M = 100). For the state-of-the-art DES techniques (KNORA-E, KNORA-U, DES-FA, LCA,

OLA, MLA, MCB and KNOP), the size of the region of competence (neighborhood size), K

is set to 7, since it achieved the best result on previous publications [1; 20]. The size of the

region of competence K is the only hyper-parameter required for the eight DES techniques.

For the Adaboost and Bagging technique 100 iterations are used (i.e., 100 base classifier are

generated).
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Table 2.3 Mean and standard deviation results of the accuracy obtained for the proposed

DES and the DES systems in the literature. A pool of 100 Perceptrons as base classifiers

is used for all techniques. The best results are in bold. Results that are significantly better

(p < 0.05) are marked with a •
Database META-DES KNORA-E KNORA-U DES-FA LCA OLA MLA MCB KNOP

Pima 79.03(2.24) • 73.79(1.86) 76.60(2.18) 73.95(1.61) 73.95(2.98) 73.95(2.56) 77.08(4.56) 76.56(3.71) 73.42(2.11)

Liver Disorders 70.08(3.49) • 56.65(3.28) 56.97(3.76) 61.62(3.81) 58.13(4.01) 58.13(3.27) 58.00(4.25) 58.00(4.25) 65.23(2.29)

Breast (WDBC) 97.41(1.07) 97.59(1.10) 97.18(1.02) 97.88(0.78) 97.88(1.58) 97.88(1.58) 95.77(2.38) 97.18(1.38) 95.42(0.89)

Blood Transfusion 79.14(1.03) • 77.65(3.62) 77.12(3.36) 73.40(1.16) 75.00(2.87) 75.00(2.36) 76.06(2.68) 73.40(4.19) 77.54(2.03)

Banana 91.78(2.68) 93.08(1.67) 92.28(2.87) 95.21(3.18) 95.21(2.15) 95.21(2.15) 80.31(7.20) 88.29(3.38) 90.73(3.45)

Vehicle 82.75(1.70) 83.01(1.54) 82.54(1.70) 82.54(4.05) 80.33(1.84) 81.50(3.24) 74.05(6.65) 84.90(2.01) 80.09(1.47)

Lithuanian Classes 93.18(1.32) 93.33(2.50) 95.33(2.64) 98.00(2.46) 85.71(2.20) 98.66(3.85) 88.33(3.89) 86.00(3.33) 89.33(2.29)

Sonar 80.55(5.39) 74.95(2.79) 76.69(1.94) 78.52(3.86) 76.51(2.06) 74.52(1.54) 76.91(3.20) 76.56(2.58) 75.72(2.82)

Ionosphere 89.94(1.96) 89.77(3.07) 87.50(1.67) 88.63(2.12) 88.00(1.98) 88.63(1.98) 81.81(2.52) 87.50(2.15) 85.71(5.52)

Wine 99.25(1.11) • 97.77(1.53) 97.77(1.62) 95.55(1.77) 85.71(2.25) 88.88(3.02) 88.88(3.02) 97.77(1.62) 95.50(4.14)

Haberman 76.71(1.86) 71.23(4.16) 73.68(2.27) 72.36(2.41) 70.16(3.56) 69.73(4.17) 73.68(3.61) 67.10(7.65) 75.00(3.40)

Cardiotocography (CTG) 84.62(1.08) 86.27(1.57) 85.71(2.20) 86.27(1.57) 86.65(2.35) 86.65(2.35) 86.27(1.78) 85.71(2.21) 86.02(3.04)

Vertebral Column 86.89(2.46) 85.89(2.27) 87.17(2.24) 82.05(3.20) 85.00(3.25) 85.89(3.74) 77.94(5.80) 84.61(3.95) 86.98(3.21)

Steel Plate Faults 67.21(1.20) 67.35(2.01) 67.96(1.98) 68.17(1.59) 66.00(1.69) 66.52(1.65) 67.76(1.54) 68.17(1.59) 68.57(1.85)
WDG V1 84.56(0.36) 84.01(1.10) 84.01(1.10) 84.01(1.10) 80.50(0.56) 80.50(0.56) 79.95(0.85) 78.75(1.35) 84.21(0.45)

Ecoli 77.25(3.52) 76.47(2.76) 75.29(3.41) 75.29(3.41) 75.29(3.41) 75.29(3.41) 76.47(3.06) 76.47(3.06) 80.00(4.25) •
Glass 66.87(2.99) 57.65(5.85) 61.00(2.88) 55.32(4.98) 59.45(2.65) 57.60(3.65) 57.60(3.65) 67.92(3.24) 62.45(3.65)

ILPD 69.40(1.64) 67.12(2.35) 69.17(1.58) 67.12(2.35) 69.86(2.20) 69.86(2.20) 69.86(2.20) 68.49(3.27) 68.49(3.27)

Adult 87.15(2.43) • 80.34(1.57) 79.76(2.26) 80.34(1.57) 83.58(2.32) 82.08(2.42) 80.34(1.32) 78.61(3.32) 79.76(2.26)

Weaning 87.15(2.43) • 78.94(1.25) 81.57(3.65) 82.89(3.52) 77.63(2.35) 77.63(2.35) 80.26(1.52) 81.57(2.86) 82.57(3.33)

Laryngeal1 79.67(3.78) • 77.35(4.45) 77.35(4.45) 77.35(4.45) 77.35(4.45) 77.35(4.45) 75.47(5.55) 77.35(4.45) 77.35(4.45)

Laryngeal3 72.65(2.17) 70.78(3.68) 72.03(1.89) 72.03(1.89) 72.90(2.30) 71.91(1.01) 61.79(7.80) 71.91(1.01) 73.03(1.89)
Thyroid 96.78(0.87) 95.95(1.25) 95.95(1.25) 95.37(2.02) 95.95(1.25) 95.95(1.25) 94.79(2.30) 95.95(1.25) 95.95(1.25)

German credit 75.55(1.31) • 72.80(1.95) 72.40(1.80) 74.00(3.30) 73.33(2.85) 71.20(2.52) 71.20(2.52) 73.60(3.30) 73.60(3.30)

Heart 84.80(3.36) 83.82(4.05) 83.82(4.05) 83.82(4.05) 85.29(3.69) 85.29(3.69) 86.76(5.50) 83.82(4.05) 83.82(4.05)

Satimage 96.21(0.87) 95.35(1.23) 95.86(1.07) 93.00(2.90) 95.00(1.40) 94.14(1.07) 93.28(2.10) 95.86(1.07) 95.86(1.07)

Phoneme 80.35(2.58) 79.06(2.50) 78.92(3.33) 79.06(2.50) 78.84(2.53) 78.84(2.53) 64.94(7.75) 73.37(5.55) 78.92(3.33)

Monk2 83.24(2.19) • 80.55(3.32) 77.77(4.25) 75.92(4.25) 74.07(6.60) 74.07(6.60) 75.92(5.65) 74.07(6.60) 80.55(3.32)

Mammographic 84.82(1.55) • 82.21(2.27) 82.21(2.27) 80.28(3.02) 82.21(2.27 82.21(2.27) 75.55(5.50) 81.25(2.07) 82.21(2.27)

MAGIC Gamma Telescope 84.35(3.27) • 80,03(3.25) 79,99(3.55) 81.73(3.27) 81,53(3.35) 81,16(3.00) 73,13(6.35) 75,91(5.35) 80,03(3.25)

We split the results in two tables: Table 2.3 shows a comparison with the proposed META-

DES against the eight state-of-the-art dynamic selection techniques considered. A comparison

of the META-DES against static combination rules is shown in Table 2.4. Each pair of results

is compared using the Kruskal-Wallis non-parametric statistical test, with a 95% confidence

interval. The best results are in bold. Results that are significantly better (p < 0.05) are marked

with a •.

We can see in Table 2.3 the proposed META-DES achieves results that are either superior

or equivalent to the state-of-the-art DES techniques in 25 datasets (84% of the datasets). In

addition, the META-DES achieved the highest recognition performance for 18 datasets, which

corresponds to 60% of the datasets considered. Only for the Ecoli, Heart, Vehicle, Banana and

Lithuanian datasets (16% of the datasets) the recognition rates of the proposed META-DES
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Table 2.4 Mean and standard deviation results of the accuracy obtained for the proposed

DES and static ensemble combination. A pool of 100 Perceptrons as base classifier is

used for all techniques The best results are in bold. Results that are significantly better

(p < 0.05) are marked with a •
Database META-DES Single Best Bagging AdaBoost Static Selection Oracle

Pima 79.03(2.24) • 73.57(1.49) 73.28(2.08) 72.52(2.48) 72.86(4.78) 95.10(1.19)

Liver Disorders 70.08(3.49) • 65.38(3.47) 62.76(4.81) 64.65(3.26) 59.18(7.02) 93.07(2.41)

Breast (WDBC) 97.41(1.07) 97.04(0.74) 96.35(1.14) 98.24(0.89) 96.83(1.00) 99.13(0.52)

Blood Transfusion 79.14(1.03) • 75.07(1.83) 75.24(1.67) 75.18(2.08) 75.74(2.23) 94.20(2.08)

Banana 91.78(2.68) 84.07(2.22) 81.43(3.92) 81.61(2.42) 81.35(4.28) 94.75(2.09)

Vehicle 82.75(1.70) 81.87(1.47) 82.18(1.31) 80.56(4.51) 81.65(1.48) 96.80(0.94)

Lithuanian Classes 93.18(1.32) • 84.35(2.04) 82.33(4.81) 82.70(4.55) 82.66(2.45) 98.35 (0.57)

Sonar 80.55(5.39) 78.21(2.36) 76.66(2.36) 74.95(5.21) 79.03(6.50) 94.46(1.63)

Ionosphere 89.94(1.96) 87.29(2.28) 86.75(2.75) 86.75(2.34) 87.50(2.23) 96.20(1.72)

Wine 99.25(1.11) 96.70(1.46) 95.56(1.96) 99.20(0.76) 96.88(1.80) 100.00(0.01)

Haberman 76.71(1.86) 75.65(2.68) 72.63(3.45) 75.26(3.38) 73.15(3.68) 97.36(3.34)

Cardiotocography (CTG) 84.62(1.08) 84.21(1.10) 84.54(1.46) 83.06(1.23) 84.04(2.02) 93.08(1.46)

Vertebral Column 86.89(2.46) 82.04(2.17) 85.89(3.47) 83.22(3.59) 84.27(3.24) 97.40(0.54)

Steel Plate Faults 67.21(1.20) 66.05(1.98) 67.02(1.98) 66.57(1.06) 67.22(1.64) 88.72(1.89)

WDG V1 84.56(0.36) 83.17(0.76) 84.36(0.56) 84.04(0.37) 84.23(0.53) 97.82(0.54)

Ecoli 77.25(3.52) • 69.35(2.68) 72.22(3.65) 70.32(3.65) 67.80(4.60) 91.54(1.55)

Glass 66.87(2.99) • 52.92(4.53) 62.64(5.61) 55.89(3.25) 57.16(4.17) 90.65(0.00)

ILPD 69.40(1.64) 67.53(2.83) 67.20(2.35) 69.38(4.28) 67.26(1.04) 99.10(0.72)

Adult 87.15(2.43) • 83.64(3.34) 85.60(2.27) 83.58(2.91) 84.37(2.79) 95.59(0.39)

Weaning 79.67(3.78) • 74.86(4.78) 76.31(4.06) 74.47(3.68) 76.89(3.15) 92.10(0.92)

Laryngeal1 83.43(4.50) 80.18(5.51) 81.32(3.82) 79.81(3.88) 80.75(4.93) 98.86(0.98)

Laryngeal3 72.65(2.17) 68.42(3.24) 67.13(2.47) 62.32(2.57) 71.23(3.18) 100(0.00)

Thyroid 96.78(0.87) 95.15(1.74) 95.25(1.11) 96.01(0.74) 96.24(1.25) 99.88(0.36)

German credit 75.55(2.31) 71.16(2.39) 74.76(2.73) 72.96(1.25) 73.60(2.69) 99.12(0.70)

Heart 84.80(3.36) 80.26(3.58) 82.50(4.60) 81.61(5.01) 82.05(3.72) 95.90(1.02)

Satimage 96.21(0.87) 94.52(0.96) 95.23(0.87) 95.43(0.92) 95.31(0.92) 98.69(0.87)

Phoneme 80.35(2.58) • 75.87(1.33) 72.60(2.33) 75.90(1.06) 72.70(2.32) 99.34(0.24)

Monk2 83.24(2.19) 79.25(3.78) 79.18(2.57) 80.27(2.76) 80.55(3.59) 98.98(1.19)

Mammographic 84.82(1.55) 83.60(1.85) 85.27(1.85) 83.07(3.03) 84.23(2.14) 99.59(0.15)

MAGIC Gamma Telescope 84.35(3.27) 80.27(3.50) 81.24(2.22) 87.35(1.45) • 85.25(3.25) 95.35(0.68)

framework presented is statistically inferior to the best result achieved by state-of-the-art DES

techniques.

For the 12 datasets where the proposed META-DES did not achieved the highest recognition

rate (WDBC, Banana, Vehicle, Lithuanian, Cardiotocography, Vertebral column, Steel plate

faults, Ecoli, Glass, ILPD, Laryngeal3 and Heart) we can see that each DES technique pre-

sented the best accuracy for different datasets (as shown in Figure 2.5). The KNOP achieves

the best results for three datasets (Ecoli, Steel plate faults and Laryngeal3), the MCB for two

datasets (Vehicle and Glass), the DES-FA for 3 datasets (Banana, Breast cancer and Car-

diotocography) and so forth. This can be explained by the "no free lunch" theorem. There

is no criterion to estimate the competence of base classifiers that dominates all other when

compared with several classification problems. Since the proposed META-DES uses a com-

bination of five different criteria as meta-features, even though one criterion might fail, the
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system can still achieve a good performance as other meta-features are also considered by the

selection scheme. In this way, a more robust DES technique is achieved.
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Figure 2.5 Bar plot showing the number of datasets that each DES

technique presented the highest recognition accuracy

Moreover, another advantage of the proposed META-DES framework comes from the fact that

several meta-feature vectors are generated for each training sample in the meta-training phase

(Section 3.2.2). For instance, consider that 200 training samples are available for the meta-

training stage (N = 200), if the pool C is composed of 100 weak classifiers (M = 100), the meta-

training dataset is the number of training samples N × the number classifiers in the pool M,

N×M = 20.000. Hence, there is more data to train the meta-classifier λ than for the generation

of the pool of classifiers C itself. Even though the classification problem may be ill-defined, due

to the size of the training set, using the proposed framework we can overcome this limitation

since the size of the meta-problem is up to 100 times bigger than the classification problem. So,

our proposed framework has more data to estimate the level of competence of base classifiers

than the other DES methods, where only the training or validation data is available. This fact

can be observed by the results obtained for datasets with less than 500 samples for training,
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such as, Liver Disorders, Sonar, Weaning and Ionosphere where recognition accuracy of the

META-DES is statistically superior for those small size problems.

When compared against static ensemble techniques Table 2.4, the proposed META-DES achieves

the highest recognition accuracy for 24 out of 30 datasets. This can be explained by the fact that

the majority of datasets considered are ill-defined. Hence, the results found in this paper also

support the claim made by Cavalin et al. [16] that DES techniques outperform static methods

for ill-defined problems.

We can thus answer the research question posed in this paper: Can the use of meta-features

lead to a more robust dynamic selection technique? As the proposed system achieved better

recognition rates in the majority of datasets the use of multiple properties from the classifica-

tion environment as meta-features indeed leads to a more robust dynamic ensemble selection

technique.

2.5 Conclusion

In this chapter, we presented a novel DES technique in a meta-learning framework. The frame-

work is based on two environments: the classification environment, in which the input features

are mapped into a set of class labels, and the meta-classification environment, in which differ-

ent properties from the classification environment, such as the classifier accuracy in the feature

space or the consensus in the decision space, are extracted from the training data and encoded

as meta-features. Five sets of meta-features are proposed. Each set corresponding to a different

dynamic selection criterion. These meta-features are used to train a meta-classifier which can

estimate whether a base classifier is competent enough to classify a given input sample. With

the arrival of new test data, the meta-features are extracted using the test data as reference, and

used as input to the meta-classifier. The meta-classifier decides whether the base classifier is

competent enough to classify the test sample.

Experiments were conducted using 30 classification datasets coming from five different data

repositories (UCI, KEEL, STATLOG, LKC and ELENA) and compared against eight state-of-
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the-art dynamic selection techniques (each technique based on a single criterion to measure the

level of competence of a base classifier), as well as five classical static combination methods.

Experimental results show the proposed META-DES achieved the highest classification accu-

racy in the majority of datasets, which can be explained by the fact that the proposed META-

DES framework is based on five different DES criteria. Even though one criterion might fail,

the system can still achieve a good performance as other criteria are also considered in order to

perform the ensemble selection. In this way, a more robust DES technique is achieved.

In addition, we observed a significant improvement in performance for datasets with critical

training size samples. This gain in accuracy can be explained by the fact that during the Meta-

Training phase of the framework, each training sample generates several meta-feature vectors

for the training of the meta-classifier. Hence, the proposed framework has more data to train the

meta-classifier and consequently to estimate the level of competence of base classifiers than the

current state-of-the-art DES methods, where only the training or validation data is available.

Future works on this topic will involve:

a. The definition of new sets of meta-features to better estimate the level of competence of

the base classifiers.

b. The selection of meta-features based on optimization algorithms in order to improve the

performance of the meta-classifier, and consequently, the accuracy of the DES system.

c. The evaluation of different training scenarios for the meta-classifier.

In the next chapter a detailed analysis of the META-DES framework is conducted in order

to fully understand the impact of each set of meta-features for the definition of a competent

classifiers as well as other aspects of the framework in the training and test phases.
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Abstract

Dynamic ensemble selection (DES) techniques work by estimating the level of competence

of each classifier from a pool of classifiers. Only the most competent ones are selected to

classify a given test sample. Hence, the key issue in DES is the criterion used to estimate the

level of competence of the classifiers in predicting the label of a given test sample. In order

to perform a more robust ensemble selection, we proposed the META-DES framework using

meta-learning, where multiple criteria are encoded as meta-features and are passed down to

a meta-classifier that is trained to estimate the competence level of a given classifier. In this

technical report, we present a step-by-step analysis of each phase of the framework during

training and test. We show how each set of meta-features is extracted as well as their impact

on the estimation of the competence level of the base classifier. Moreover, an analysis of the

impact of several factors in the system performance, such as the number of classifiers in the

pool, the use of different linear base classifiers, as well as the size of the validation data. We

show that using the dynamic selection of linear classifiers through the META-DES framework,

we can solve complex non-linear classification problems where other combination techniques

such as AdaBoost cannot.
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3.1 Introduction

Multiple Classifier Systems (MCS) aim to combine classifiers in order to increase the recogni-

tion accuracy in pattern recognition systems [24; 9]. MCS are composed of three phases [1]:

(1) Generation, (2) Selection, and (3) Integration. In the first phase, a pool of classifiers is

generated. In the second phase, a single classifier or a subset having the best classifiers of the

pool is(are) selected. We refer to the subset of classifiers as the Ensemble of Classifiers (EoC).

In the last phase, integration, the predictions of the selected classifiers are combined to obtain

the final decision [24].

Recent works in MCS have shown that dynamic ensemble selection (DES) techniques achieve

higher classification accuracy when compared to static ones [1; 2; 14]. This is specially true

for ill-defined problems, i.e., for problems where the size of the training data is small, and

there are not enough data available to train the classifiers [16; 17]. The key issue in DES

is to define a criterion to measure the level of competence of a base classifier. Most DES

techniques [14; 22; 21; 20] estimate the classifiers’ local accuracy in small regions of the

feature space surrounding the query instance, called the region of competence, as a search

criterion for estimating the competence level of the base classifier. However, in our previous

work [20], we demonstrated that the use of local accuracy estimates alone is insufficient to

provide higher classification performance. In addition, a dissimilarity analysis among eight

dynamic selection techniques, performed in [55], indicates that techniques based on different

criteria for estimating the competence level of base classifiers yields different results.

To tackle this issue, in [2] we proposed a novel DES framework, called META-DES, in which

multiple criteria regarding the behavior of a base classifier are used to compute its level of

competence. The framework is based on two environments: the classification environment,

in which the input features are mapped into a set of class labels, and the meta-classification

environment, where several properties from the classification environment, such as the clas-

sifier accuracy in a local region of the feature space, are extracted from the training data and

encoded as meta-features. Given a test data, the meta-features are extracted using the test data
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as reference, and used as input to the meta-classifier. The meta-classifier decides whether the

base classifier is competent enough to classify the test sample.

One interesting properties of the META-DES framework is that it obtains higher classification

accuracy using only linear classifiers. In this work, we perform a deep analysis of the training

and classification steps of the META-DES framework. We perform step-by-step examples

in order to show the influence of different sets of meta-features used to better estimate the

competence of the base classifier. The analysis is conducted using the P2 problem [67; 68]

which is a two-class non-linear problem with a complex decision boundary. Furthermore, the

two-classes of the P2 problem have multiple class means, making it a difficult classification

problem.

The following points of the META-DES framework are studied:

• The use of weak, linear classifiers in the pool. In this work we consider both Perceptrons

and Decision Stumps as base classifiers.

• The influence of each set of meta-features for estimating the competence of a base classifier.

• The influence of the dynamic selection set (DSEL)1 in the recognition rate. The dynamic

selection data is used in order to extract the meta-features.

• The influence of the size of the Pool in the classification accuracy of the META-DES frame-

work.

The contributions of this work are as follows:

• It shows that using dynamic selection of linear and weak classifiers, such as Perceptrons

and Decision stumps, we can solve problems with complex decision boundaries, including

classification problems with multiple class centers.

1DSEL is often called validation data in several dynamic selection techniques.
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• It allows an understanding of why the META-DES framework achieves high recognition

accuracy using only linear classifiers. In previous works, the META-DES was presented

as a black box system. In this work, we use a step-by-step example to illustrate how the

framework is able to select the competent classifiers based on the five defined sets of meta-

features.

• It compares the dynamic selection of linear classifiers against static combination rules such

as AdaBoost, as well as classical single classifier models, such as Multi-Layer Perceptron

neural networks, Random Forest, and Support Vector Machnies (SVMs).

This document is organized as follows. Theoretical aspects of dynamic selection are introduced

in Section 3.2. The META-DES framework is presented in Section 3.3. An illustrative example

of the META-DES is presented in Section 3.4. Experiments are carried out in Section 3.5.

Conclusions are given in the last section.

3.2 Why does dynamic selection of linear classifiers work?

Let C = {c1, . . . ,cM} (M is the size of the pool of classifiers) be the pool of classifiers and ci a

base classifier belonging to the pool C. The goal of dynamic selection is to find an ensemble of

classifiers C′ ⊂C that has the best classifiers to classify a given test sample x j. DES techniques

rely on the assumption that each base classifier is an expert in a different local region of the

feature space [27]. Only the classifiers that attain a certain competence level, according to a

selection criterion, are selected to predict the label of x j. This is a different strategy when

compared with static selection, where the ensemble of classifiers C′ is selected during the

training phase, and considering the global performance of the base classifiers over a validation

dataset [10; 11; 12; 13].

When dealing with dynamic selection, we aim to select the appropriate classifier(s) for a spe-

cific test sample x j, rather than find the best decision border separating the classes. This is

a different concept, as compared to classical classification models, such as Support Vector

Machines (SVM) or Multi-Layer Perceptrons (MLP) Neural Networks in the sense that these
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classifiers search for the best separation between the classes during the training stages. This is

an important property of dynamic selection techniques, which makes them suitable for solv-

ing problems that are ill-defined, i.e., when there is not enough data available to train a strong

classifier having a lot of parameters to learn [16]. In addition, due to insufficient training data,

the distribution of the training data may not adequately represent the real distribution of the

problem. Consequently, the classifiers cannot learn the separation between the classes.

Let us consider, for instance, two circles representing the exclusive or XOR problem. The

problem is generated with 1000 data points, 500 for each class (Figure 3.1 (a)). Two linear

classifiers trained for this problem (two Perceptrons) c1 and c2, both with an individual accu-

racy of 50%. The decisions of c1 and c2 are shown in (Figure 3.1 (b) and (c) respectively).

Static combination rules, such as majority voting or averaging are useless in this case since the

base classifiers always yield opposite decisions, i.e., for any query sample x j, if c1 predicts that

x j belongs to class 1, c2 will predict that x j belongs to class 2 and vice versa. There is never a

consensus between the decisions obtained by these two classifiers.

Considering the same data, it is possible to split the feature space into four local regions (Fig-

ure 3.2): Q1, Q2, Q3 and Q4.

Using dynamic selection, it is possible to obtain a 100% accuracy rate using only these two

classifiers. Given a query instance x j, the system first checks the competence of each classifier

in the pool. Only the classifier(s) with the highest competence are selected. Classifiers that are

not experts in the local region will not influence the ensemble decision.

Given a query sample x j to be classified, using dynamic selection, the classification is per-

formed as follows(Equation 3.1):
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Figure 3.1 (a) The two circles data generated with 1000 data points, 500 samples for

each class; (b) illustrates the decision made by the Perceptron c1; (c) shows the decision

made by the Perceptron c2

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

If x j ∈ Q1 Select c1

If x j ∈ Q2 Select c2

If x j ∈ Q3 Select c2

If x j ∈ Q4 Select c1

(3.1)
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Figure 3.2 The two circles data divided into four regions

The key issue in DES is to define a criterion to measure the level of competence of a base

classifier. Most DES techniques [14; 22; 21; 20; 28; 29; 30; 31] use estimates of the classifiers’

local accuracy in small regions of the feature space surrounding the query instance as a search

criterion to perform the ensemble selection. There are other criteria, such as the degree of

consensus, in the ensemble [15], probabilistic models applied to the classifier outputs [18] and

decision templates [16; 17]. A recent survey on dynamic selection [1] covers all the DES

criteria used by different techniques.

In [2; 36], we proposed a novel DES framework in which multiple criteria regarding the be-

havior of a base classifier are used to have a better estimation of its level of competence. The

META-DES framework is presented in the following sections.

3.3 The META-DES Framework

The META-DES framework is based on the assumption that the dynamic ensemble selection

problem can be considered as a meta-problem. This meta-problem uses different criteria re-

garding the behavior of a base classifier ci, in order to decide whether it is competent enough

to classify a given test sample x j. The meta-problem is defined as follows [2]:
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• The meta-classes of this meta-problem are either “competent” (1) or “incompetent” (0) to

classify x j.

• Each set of meta-features fi corresponds to a different criterion for measuring the level of

competence of a base classifier.

• The meta-features are encoded into a meta-features vector vi, j.

• A meta-classifier λ is trained based on the meta-features vi, j to predict whether or not ci

will achieve the correct prediction for x j, i.e., if it is competent enough to classify x j

A general overview of the META-DES framework is depicted in Figure 3.3. It is divided into

three phases: Overproduction, Meta-training and Generalization.

3.3.1 Overproduction

In this step, the pool of classifiers C = {c1, . . . ,cM}, where M is the pool size, is generated

using the training dataset T . The Bagging technique [3] is used in this work in order to build a

diverse pool of classifiers.

3.3.2 Meta-Training

In this phase, the meta-features are computed and used to train the meta-classifier λ . As shown

in Figure 3.3, the meta-training stage consists of three steps: sample selection, meta-features

extraction process and meta-training. A different dataset Tλ is used in this phase to prevent

overfitting.

3.3.2.1 Sample selection

We decided to focus the training of λ on cases in which the extent of consensus of the pool is

low. This decision was based on the observations made in [15; 16] the main issues in dynamic

ensemble selection occur when classifying testing instances where the degree of consensus
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Figure 3.3 Overview of the proposed framework. It is divided into three steps 1)

Overproduction, where the pool of classifiers C = {c1, . . . ,cM} is generated, 2) The

training of the selector λ (meta-classifier), and 3) The generalization phase where the

level of competence δi, j of each base classifier ci is calculated specifically for each new

test sample x j,test . Then, the level of competence δi, j is used by the combination approach

to predict the label wl of the test sample x j,test . Three combination approaches are

considered: Dynamic selection (META-DES.S), Dynamic weighting (META-DES.W)

and Hybrid (META-DES.H). hC, K, Kp and ϒ are the hyper-parameters required by the

proposed system [Adapted from [2]]

among the pool of classifiers is low, i.e., when the number of votes from the winning class

is close to or even equal to the number of votes from the second class. We employ a sam-

ple selection mechanism based on a threshold hC, called the consensus threshold. For each

x j,trainλ ∈ Tλ , the degree of consensus of the pool, denoted by H
(
x j,trainλ ,C

)
, is computed.

If H
(
x j,trainλ ,C

)
falls below the threshold hC, x j,trainλ is passed down to the meta-features

extraction process.
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3.3.2.2 Meta-feature extraction

The first step in extracting the meta-features involves computing the region of competence of

x j,trainλ , denoted by θ j = {x1, . . . ,xK}. The region of competence is defined in the Tλ set

using the K-Nearest Neighbor algorithm. Then, x j,trainλ is transformed into an output profile,

x̃ j,trainλ =
{

x̃ j,trainλ ,1, x̃ j,trainλ ,2, . . . , x̃ j,trainλ ,M
}

, where each x̃ j,trainλ ,i is the decision yielded by

the base classifier ci for the sample x j,trainλ [16].

The similarity between x̃ j,trainλ and the output profiles of the instances in Tλ is obtained through

the Euclidean distance. The most similar output profiles are selected to form the set φ j ={
x̃1, . . . , x̃Kp

}
, where each output profile x̃k is associated with a label wl,k. Next, for each base

classifier ci ∈C, five sets of meta-features are calculated:

f1 - Neighbors’ hard classification: First, a vector with K elements is created. For each in-

stance xk, belonging to the region of competence θ j, if ci correctly classifies xk, the k-th

position of the vector is set to 1, otherwise it is 0. Thus, K meta-features are computed.

f2 - Posterior probability: First, a vector with K elements is created. Then, for each instance

xk, belonging to the region of competence θ j, the posterior probability of ci, P(wl | xk) is

computed and inserted into the k-th position of the vector. Consequently, K meta-features

are computed.

f3 - Overall Local accuracy: The accuracy of ci over the whole region of competence θ j is

computed and encoded as f3.

f4 - Output profiles classification: First, a vector with Kp elements is generated. Then, for

each member x̃k belonging to the set of output profiles φ j, if the label produced by ci for

xk is equal to the label wl,k of x̃k, the k-th position of the vector is set to 1, otherwise it is

0. A total of Kp meta-features are extracted using output profiles.

f5 - Classifier’s Confidence: The perpendicular distance between the input sample x j,trainλ

and the decision boundary of the base classifier ci is calculated and encoded as f5. f5 is

normalized to a [0−1] range using the Min-max normalization.
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A vector vi, j = { f1 ∪ f2 ∪ f3 ∪ f4 ∪ f5} (Figure 3.4) is obtained at the end of the process. If ci

correctly classifies x j, the class attribute of vi, j, αi, j = 1 (i.e., vi, j belongs to the meta-class

“competent”), otherwise αi, j = 0. vi, j is stored in the meta-features dataset T ∗
λ that is used to

train the meta-classifier λ . Figure 3.4 illustrates the format of the meta-features vector vi, j.
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Figure 3.4 Feature Vector containing the meta-information about the behavior of a base

classifier. A total of 5 different meta-features are considered. The size of the feature

vector is (2×K)+Kp +2. The class attribute indicates whether or not ci correctly

classified the input sample

3.3.2.3 Training

The last step of the meta-training phase is the training of the meta-classifier λ . In this work,

we considered a Naive Bayes for the meta-classifier λ , since this classifier model presented

the best classification results for the META-DES framework when compared against different

classifier models, such as a Multi-Layer Perceptron Neural Network and a Random Forest

classifier [69].

3.3.3 Generalization

Given the query sample x j,test , the region of competence θ j is computed using the samples

from the dynamic selection dataset DSEL. Following that, the output profiles x̃ j,test of the

test sample, x j,test , are calculated. The set with Kp similar output profiles φ j, of the query

sample x j,test , is obtained through the Euclidean distance applied over the output profiles of the

dynamic selection dataset, ˜DSEL.
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For each base classifier, ci, belonging to the pool of classifiers, C, the five sets of meta-features

are computed, returning the meta-features vector vi, j. Then, vi, j is used as input to the meta-

classifier λ . The support obtained by λ for the “competent” meta-class is computed as the level

of competence, δi, j, of the base classifier ci for the classification of the test sample x j,test . As

in [69], we consider a hybrid combination approach called META-DES.H. First, the base clas-

sifiers that achieve a level of competence δi, j > ϒ = 0.5 are selected to compose the ensemble

C′. Next, the decision of each selected base classifier is weighted by its level of competence.A

weighted majority voting approach is used to predict the label wl of the sample x j,test . Thus,

the decisions obtained by the base classifiers that attained a higher level of competence δi, j

have a greater influence in the final decision.

3.4 Why does the META-DES work: A Step-by-step example

In this section, we present a step-by-step example of the training and test phases of the META-

DES framework in order to understand the mechanisms behind the META-DES, and why it

achieves good generalization performance using only linear classifiers. For this example, we

use the P2 problem.

3.4.1 The P2 Problem

The P2 is a two-class problem, presented by Valentini [67], in which each class is defined in

multiple decision regions delimited by polynomial and trigonometric functions (Equation 3.2).

As in [68], E4 was modified such that the area of each class was approximately equal. The

P2 problem is illustrated in Figure 3.5. One can clearly see that it is impossible to solve this

problem using linear classifiers. The performance of the best possible linear classifier is around

50%.
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E1(x) = sin(x)+5 (3.2)

E2(x) = (x−2)2 +1 (3.3)

E3(x) =−0.1 · x2 +0.6sin(4x)+8 (3.4)

E4(x) =
(x−10)2

2
+7.902 (3.5)

Figure 3.5 The P2 Problem. The symbols I and II represents the

area of the classes 1 and 2 respectively

For this illustrative example, the P2 problem is generated as follows: 500 samples for training

(T ), 500 instances for the meta-training dataset (Tλ ), 500 instances for the dynamic selection

dataset DSEL, and 2000 samples for the test dataset, G. For the sake of simplicity, we use a

pool composed of 5 Perceptrons. We demonstrate that using only 5 Perceptrons it is possi-

ble to approximate the complex decision boundary of the P2 problem using the META-DES

framework.
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3.4.2 Overproduction

Figure 3.6 shows five Perceptrons generated using the bagging technique for the P2 problem.

The arrow in each Perceptron points to the region where the classifier output is class 1 (red

circle). Figure 3.7 presents the decision of each Perceptron individually.
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Figure 3.6 Five Perceptrons trained for the P2 Problem. The bagging technique was

used to generate the pool. The arrows in each Perceptron points to the region where the

classifier output is class 1 (red circle)

The best classifier of the pool (Single Best) achieves an accuracy rate of 53.5% (c1). The

performance of all other base classifiers is around the 50% mark. The Oracle result of this pool

obtained a recognition rate of 99.5%. The Oracle is an abstract model defined in [32], which

always selects the classifier that predicted the correct label, for the given query sample, if such

a classifier exists. In other words, it represents the ideal classifier selection scheme. There is at

least one base classifier that predicts the correct label for 99.5% of the test instances. The key
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Figure 3.7 Decision of each of the five Perceptrons shown separately. The arrow in each

Perceptron points to the region where the classifier output is class 1 (red circle)
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issue is finding the right criteria to estimate the competence of the base classifiers in order to

select only the competent ones.

3.4.3 Meta-training: Sample Selection

After generating the pool of classifiers C, the next step is the sample selection mechanism for

training the meta-classifier. Figure 3.8 illustrates the effect of the sample selection mechanism.

As in [2; 69] the consensus threshold hc is set at 70%. (Figure 3.8 (a)) shows the original Tλ set

before the sample selection. Figure 3.8 (b) shows the samples that were selected for training

the meta-classifier.
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b) Tλ after the sample selection mechanism

Figure 3.8 (a) The original Tλ dataset generated with 500 samples (250 for each class).

(b) Tλ after the sample selection mechanism was applied. 349 samples were selected

The sample selection mechanism focuses on samples whose correct labels are harder to predict,

i.e., when there is no consensus between the classifiers in the pool. Samples close to the

decision boundary are the ones more likely to be selected for the training of the meta-classifier.

This principle is similar to the support vectors in the SVM technique, in which samples close

to the decision boundary are used as support vectors to achieve a better separation between
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classes. In the META-DES framework, the samples close to the decision boundary are used

to train the meta-classifier, while samples that are closer to the class mean are not used for

training since the majority of base classifiers can correctly classify those samples. Only the

samples shown in Figure 3.8 (b) are passed down to the meta-features extraction process and

are used for the training of the meta-classifier λ .

3.4.4 Classification

To illustrate the classification steps of the system we consider five testing samples in different

parts of the feature space. The coordinates of the each query instance are: x1 = [0.2, 0.9],

x2 = [0.2, 0.1], x3 = [0.5, 0.5], x4 = [0.8, 0.7] and x5 = [0.9, 0.85]. Figure 3.9 illustrates the

positions of the five testing samples. x1 x3 and x5 belongs to class 1, x2 and x4 belongs to class

2.
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Figure 3.9 Five samples to be classified. x1 x3 and x5 belonging

to class 1, x2 and x4 belonging to class 2



66

In order to compute the region of competence and extract the meta-features for the given query

sample, the dynamic selection dataset (DSEL) is used in the generalization phase. The dynamic

selection dataset is shown in Figure 3.10.
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Figure 3.10 The dynamic selection dataset (DSEL) that is used to extract the

meta-features. The set DSEL was generated with 500 samples, 250 for each

class

As in our previous papers [2; 36], we consider the size of the region of competence K = 7,

i.e., the seven nearest neighbors of the query sample, and the size of the output profiles set

Kp = 5. Figure 3.11 shows the regions of competence of each training sample. The samples

belonging to the region of competence θ j, defined using DSEL, are shown for each testing

sample separately (Figures 3.11 (b) to Figure 3.11 (f)).

For each test sample x j, five meta-feature vectors are extracted, each one corresponding to the

behavior of one base classifier (c1 to c5) for the classification of x j. Tables 3.1 to 3.5 present
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the meta-feature vectors obtained for each test sample and base classifier. For each instance x j,

we present the meta-feature vectors computed for each of the 5 base classifiers as well as the

decision obtained by the meta-classifier, denoted by δi, j. δi, j = 1 means that the base classifier

was considered competent, and was thus used to predict the label of the query sample.

For the sample x1 (Table 3.1), it is an easier classification case since it is located close to the

mean of one of the class centers (w1). We can see in Figure 3.11 (b) that all instances in the

region of competence of x1 belong to the same class. The classifiers c1,c3 and c4 achieve a

100% recognition rate in the local region (as can be seen in Figure 3.7). This also holds true for

the decision space, where those base classifiers present the correct label for the most similar

output profiles as well. Thus it is clear that they are competent for the classification of x1.

Table 3.1 Meta-Features extracted for the sample x1

f1 f2 f3 f4 f5 δi, j
c1 1 1 1 1 1 1 1 0.65 0.66 0.59 0.62 0.66 0.76 0.61 1.00 1 1 1 1 1 0.97 1

c2 0 0 0 0 0 0 0 0.39 0.38 0.31 0.34 0.38 0.35 0.06 0.00 0 0 0 0 0 0.87 0

c3 1 1 1 1 1 1 1 0.84 0.81 0.77 0.81 0.82 0.91 0.82 1.00 1 1 1 1 1 0.99 1

c4 1 1 1 1 1 1 1 0.79 0.78 0.73 0.76 0.79 0.88 0.77 1.00 1 1 1 1 1 0.98 1

c5 0 0 0 0 0 0 0 0.30 0.32 0.24 0.24 0.29 0.37 0.23 0.00 0 0 0 0 0 0.87 0

For the classification of the instance x2, we can see that it is located closer to the border sep-

arating the two classes. We can see that there are samples in the region of competence of x2

belonging to both classes. The base classifiers that achieve a good performance considering

both the validation samples in the region of competence θ j and the most similar output profiles,

meta-feature f4, are considered competent.

Table 3.2 Meta-Features extracted for the sample x2

F1 F2 F3 F4 F5 δi, j
c1 1 0 1 1 0 0 1 1.00 0.00 0.97 1.00 0.00 0.00 0.89 0.57 1 0 1 1 1 1.00 1

c2 1 0 1 1 0 0 1 0.67 0.32 0.63 0.62 0.33 0.39 0.59 0.57 1 0 1 1 1 0.97 1

c3 1 0 1 1 0 0 1 0.89 0.11 0.87 0.87 0.14 0.17 0.81 0.57 1 0 1 1 1 0.99 1

c4 1 0 1 1 0 0 1 0.86 0.13 0.83 0.85 0.15 0.18 0.81 0.57 1 0 1 1 1 0.99 1

c5 0 1 0 0 1 1 0 0.28 0.70 0.19 0.20 0.67 0.79 0.23 0.43 0 1 0 0 0 0.87 0
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Figure 3.11 Local regions computed using the K-Nearest Neighbor algorithm in the

feature space. The region of competence of each testing sample is shown in one sub-figure
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The sample x3 is located in a region close to the lines generated by the Perceptrons c2, c3, c4

and c5. However, all neighbor samples of x3 belong to the same class. Thus, the classifiers

that achieve a good performance in the region of competence θ j, and also for the set φ j with

the most the similar outputs profiles of x̃3, are selected. It is important to note that, in contrast

to the testing instances x1 and x2, we can see that both the posterior probability meta-feature,

meta-feature f2, and the classifier’s confidence, meta-feature f5, produce lower results than the

ones presented in Tables 3.1 and 3.2 since the samples are closer to the decision boundary of

the base classifiers.

Table 3.3 Meta-Features extracted for the sample x3

F1 F2 F3 F4 F5 δi, j
c1 0 0 0 0 0 0 0 0.12 0.13 0.00 0.06 0.15 0.13 0.08 0.00 0 0 0 0 1 0.39 0

c2 1 1 1 0 0 1 1 0.60 0.51 0.46 0.43 0.47 0.60 0.45 0.71 1 0 1 1 0 0.66 1

c3 1 1 1 1 1 1 1 0.56 0.60 0.53 0.49 0.56 0.68 0.54 1.00 1 1 1 1 0 0.66 1

c4 0 1 0 0 0 0 1 0.47 0.52 0.43 0.41 0.48 0.57 0.45 0.29 0 0 0 0 0 0.36 0

c5 0 0 0 0 0 0 0 0.48 0.47 0.40 0.43 0.46 0.44 0.41 0.00 0 0 0 0 1 0.36 0

For the sample x4 (Table 3.4), we can see that the majority of its neighbor samples come from

a different class (Figure 3.11 (d)). If we consider dynamic selection techniques that are based

solely on accuracy information, such as local classifier accuracy (LCA) [22] or overall classifier

accuracy (OLA) [22], as well as the a priori and a posteriori methods [44], the base classifiers

c2, c3 and c4 are considered the most competent. So, using only the accuracy information in the

local regions (region of competence) may not be sufficient to select the competent classifiers.

However, these three classifiers predict the wrong label for x4; as shown in Figure 3.7, they

would predict that x4 belongs to class 1 (red circle).

Table 3.4 Meta-Features extracted for the sample x4

F1 F2 F3 F4 F5 δi, j
c1 1 0 1 0 0 1 0 0.92 0.37 0.93 0.00 0.37 1.00 0.00 0.43 1 1 1 0 0 0.99 1

c2 0 1 0 1 1 0 1 0.42 0.66 0.22 0.60 0.63 0.39 0.59 0.57 0 0 0 1 1 0.90 0

c3 0 1 0 1 1 0 1 0.16 0.81 0.06 0.77 0.77 0.17 0.75 0.57 0 0 0 1 1 0.90 0

c4 0 1 0 1 1 0 1 0.34 0.64 0.27 0.59 0.61 0.37 0.58 0.57 0 0 0 1 1 0.90 0

c5 1 0 1 0 0 1 0 0.62 0.37 0.57 0.31 0.37 0.72 0.32 0.43 1 1 1 0 0 0.89 0
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Through the use of different meta-features, the META-DES is able to select a competent clas-

sifier (c1) for the sample x4. The base classifier c1 achieves a better performance in the decision

space, (meta-feature f4) (it is able to predict the correct class label for the closest samples in the

decision space). Since each output profile x̃k in the decision space is associated with a sample

xk in the feature space, we present the most similar output profiles of the sample x̃4. We can

see that computing the similarity using the decision space yields distinct results, i.e., different

validation samples are selected for extracting the meta-features. In this case, the closest output

profiles, selected in the decision space, are from samples that belong to the same class of x4.

So, the meta-features extracted using those samples are more likely to reflect the behavior of

the base classifier c1 for the classification of the sample x4. In addition, the base classifier c1

also presents a higher posterior probability for the correct class label (meta-feature f2), and a

higher confidence in its answer for the classification of the query sample x4 (meta-feature f5)

when compared to the other base classifiers. Thus, it is considered as a competent classifier for

the classification of the sample x4.

It is important to mention that the base classifier c5 also predicts the correct label for the sample

x4. However, it was not considered as a competent classifier since it presented lower confidence

in its prediction (meta-feature f5) as well as lower results for f2 when compared to c1.

Table 3.5 Meta-Features extracted for the sample x5

F1 F2 F3 F4 F5 δi, j
c1 1 0 0 0 0 1 0 0.85 0.10 0.05 0.01 0.14 0.94 0.04 0.29 0 1 0 1 0 0.99 0

c2 0 1 1 1 1 0 1 0.27 0.74 0.68 0.70 0.71 0.33 0.71 0.71 1 0 1 0 1 0.98 1

c3 0 1 1 1 1 0 1 0.00 1.00 1.00 0.98 1.00 0.06 1.00 0.71 1 0 1 0 1 1.00 1

c4 0 1 1 1 1 0 1 0.21 0.78 0.76 0.74 0.79 0.24 0.76 0.71 1 0 1 0 1 0.98 1

c5 1 0 0 0 0 1 0 0.70 0.28 0.18 0.21 0.25 0.81 0.20 0.29 0 1 0 1 0 0.97 0

Considering these five testing samples, an interesting fact we can obtain from this example is

the influence of using the decision space for estimating the competence of the base classifiers,

especially considering the closest output profile (which holds the first position in the vector f4).

Based on Tables 3.1 to 3.5, when the base classifier predicts the correct label for the closest
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(first) output profile of the query sample, the probability of the base classifier being selected as

competent is high.

Figure 3.12 illustrates the decision boundary obtained by the META-DES framework. Using

only five linear weak classifiers and dynamic selection, we can approximate the complex de-

cision boundary of the P2 problem. The methodology used to define the decision boundary

obtained by the technique is presented in 3.7.1.
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Figure 3.12 Decision Boundary obtained by the META-DES system

using a pool of 5 Perceptrons. The META-DES achieves a recognition rate

of 95.50% using 5 Perceptrons

When we apply static combination rules such as majority voting or Adaboost, the classifica-

tion accuracy is much lower. Figure 3.13 illustrates the decision boundary obtained by static

ensemble techniques using five Perceptron classifiers. We show the decisions obtained using

the Average, Majority voting, Product, Maximum, as well as the Adaboost techniques. The av-
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erage and product rules achieve a recognition rate of 47.5%, while the maximum and majority

voting rules obtain an accuracy of 50%, and AdaBoost 56%. This can be explained by the fact

that all classifiers in the pool are used to predict the label. However, due to the complexity of

the problem, the degree of disagreement between the classifiers is very high. For the majority

of test samples, half of the base classifiers disagree with the other half (predicts a different class

label). The decisions of classifiers that are not experts for the local region end up negatively

influencing the final decision. Thus, the static combination rule yields results that are close

to random guessing. Even using techniques that assign weights to the base classifiers, such

as Adaboost, we cannot approximate the complex decision of the P2 problem using only five

linear classifiers.

3.5 Further Analysis

In this section, we evaluate the following aspects of the META-DES framework using the P2

problem:

a. The effect of the pool size on the classification accuracy.

b. The effect of the size of the dynamic selection dataset (DSEL) on the classification per-

formance of the system.

c. The results of static the combination techniques for the P2 problem. This analysis is

performed in order to provide an insight into why dynamic selection should be preferred

for solving complex classification problems.

d. The results of classical pattern recognition techniques such as Support Vector Machines

and Random Forest for the P2 problem.

For the sake of simplicity, we use the same methodology used in the previous section: 500

samples for training (T ), 500 instances for the meta-training dataset (Tλ ), 500 instances for

the dynamic selection dataset DSEL, and 2000 samples for testing, G. For each set, the prior
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a) Voting decision
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b) Averaging decision
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c) Maximum decision
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d) Product decision

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature 1

Fe
at

ur
e 

2

e) Adaboost decision

Figure 3.13 Decision boundaries generated by each static combination method. The

pool of classifiers is composed of the 5 Perceptrons presented in Figure 3.6
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probabilities of both classes are equal. Moreover, since the objective of this work is to study

whether dynamic selection of linear classifier can solve complex non-linear classification prob-

lems, we also consider Decision Stumps [70] as base classifiers. We show that the META-DES

framework works equally well using a pool of Decision Stumps.

3.5.1 The Effect of the Pool Size

For this experiment, we varied the size of the pool from 5 to 100 at 5 point intervals (20 results

are obtained). The size of the dynamic selection dataset (DSEL) was set at 500 (as shown in

Figure 3.10). The effect of the size of the pool of classifiers, M, is shown in Figure 3.14. We

can see that the size of the pool does not have a significant impact on the classification accuracy

of the META-DES, especially when the Perceptron is considered as the base classifier. This

finding can be explained by the fact that using only 5 base classifiers, the Oracle (ideal selection

scheme) achieves a classification accuracy of 99.5% and 100% using Perceptrons and Decision

Stumps, respectively. In other words, using five base classifiers, it is possible to represent the

whole feature space. The key to having good classification performance lies in defining a

criterion to select the best classifier(s) for any given test sample. An interesting point is that the

performance using decision stumps decreases as more classifiers are added to the pool, with the

recognition performance decreasing when more than 25 base classifiers are used. Therefore,

adding more classifiers does not always lead to higher classification accuracy.

Figures 3.15 and 3.16 illustrate the decision boundary obtained by the META-DES framework

using Perceptron and Decision, respectively, stump as base classifier. We can see that when

only 5 base classifiers are used, the decision boundary of the META-DES is close to the real

decisions of the problem.

3.5.2 The effect of the size of the dynamic selection dataset (DSEL)

Figure 3.17 shows the performance of the META-DES using both Perceptron and Decision

stumps according to the DSEL size. We varied the size of the dynamic selection dataset from
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Figure 3.14 The effect of the pool size, M in the classification

accuracy. Perceptron and Decision Stumps are considered as base

classifiers

50 to 1000 at 50 point intervals (20 configurations were tested). The distribution varying the

size of DSEL is presented in 3.7.4. For this experiment, the size of the pool was set at 100. We

can observe that the size of the dynamic selection dataset has a greater influence on the classi-

fication result. This can be explained by the fact that the dynamic selection dataset, DSEL, is

used in estimating the competence of the base classifiers, as shown in the classification exam-

ple (Section 3.4.4). With more samples in DSEL, the probability of selecting samples that are

similar to the query sample both in the feature space or in the decision space for extracting the

meta-features is higher. Hence, a better estimation of the competence of the base classifiers is

achieved.

Moreover, to better understand the influence of both the size of the pool and the size of the

dynamic selection dataset together, we constructed a 3D mesh plot showing the accuracy of the

system according to both parameters (Figures 3.18 and 3.19).
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a) 5 Perceptrons
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b) 10 Perceptrons
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c) 25 Perceptrons
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d) 50 Perceptrons
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e) 75 Perceptrons
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f) 100 Perceptrons

Figure 3.15 Decision boundaries generated by the META-DES framework for different

pool size. Perceptrons are used as base classifiers
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a) 5 Stumps
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b) 10 Stumps
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c) 25 Stumps
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d) 50 Stumps
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e) 75 Stumps
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f) 100 Stumps

Figure 3.16 Decision boundaries generated by the META-DES framework for different

pool size. Decision Stumps are used as base classifiers
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Figure 3.17 The effect of the DSEL size in the classification

accuracy. Perceptron and Decision Stumps are considered as

base classifiers. The results are obtained using a pool with

100 base classifiers, M = 100
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Figure 3.18 The effect of the pool size and the validation set size

(DSEL) in the accuracy of the system. Perceptrons are used as base

classifier

3.5.3 Results of static combination techniques

Figures 3.20 and 3.21 illustrate the accuracy rates of static combination techniques by varying

the size of the pool of classifiers. Furthermore, the decision boundaries for the static combi-



79

0 10 20 30 40 50 60 70 80 90 100

0
100

200
300

400
500

600
700

800
900

1000
65

70

75

80

85

90

95

Pool sizeDSEL size

A
cc

ur
ac

y 
(%

)

Figure 3.19 The effect of the pool size and the validation set size

(DSEL) in the accuracy of the system. Decision Stumps are used as

base classifier

nation techniques are shown in Figures 3.22 and 3.23 for Perceptrons and Decision Stumps,

respectively.

Even when the size of the pool is increased to 100 base classifiers (Figure 3.22), the static

combination techniques cannot approximate the decision of the P2 problem. The performance

using Decision Stumps as base classifiers is significantly better than that using Perceptrons

for the static combination rules, especially considering the AdaBoost technique. This fact can

be explained by the divide-and-conquer approach of decision stumps, in which each Stump

is trained using a single feature. Hence, the classification task may become easier for the

classifier model. However, the classification accuracy is still far from the performance obtained

by the META-DES framework. Even using only 5 base classifiers, the performance of the

META-DES is superior when compared to static combination techniques using up to 100 base

classifiers.
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Figure 3.20 Results of static combination techniques using Perceptron as base classifier

3.5.4 Single classifier models

In this section, we show the results of classical classification models for the P2 problem. We

evaluate three classifier models: MLP Neural Network, Support Vector Machines with Gaus-

sian Kernel (SVM) and Random Forest classifier. These classifiers were selected based on a

recent study [71] that ranked the best classification models in a comparison considering a total

of 179 classifiers over 121 classification datasets. All the classifiers were evaluated using the

Matlab PRTOOLS toolbox [63]. The parameters of each classifier were set as follows:

a. MLP Neural Network LM: The validation data was used to select the number of nodes

in the hidden layer. We used a configuration with 100 neurons in the hidden layer. The

training process was performed using the Levenberg-Marquadt algorithm. The training

process was stopped if its performance on the validation set decreased or failed to improve

for five consecutive epochs.
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Figure 3.21 Results of static combination techniques using Decision Stumps as base

classifier

b. MLP Neural Network RPROP: The validation data was used to select the number of nodes

in the hidden layer. We used a configuration with 100 neurons in the hidden layer. The

training process was performed using the Resilient Backpropagation algorithm [72] since

this algorithm presented both a faster convergence and better classification performance

in many applications [11]. The training process was stopped if its performance on the

validation set decreased or failed to improve for five consecutive epochs.

c. SVM: A radial basis SVM with a Gaussian Kernel was used. A grid search was performed

in order to set the values of the regularization parameter c and the Kernel spread parameter

γ .

d. Random Forest: We vary the number of trees from 25 to 200 at 25 point intervals. The

configuration with the highest performance on the validation dataset is used for general-

ization. Since there are only two features in the P2 problem, a decision stump is used

(depth = 1).
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a) Voting decision
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b) Averaging decision
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c) Maximum decision
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d) Product decision
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e) Adaboost decision

Figure 3.22 Decision boundaries generated by each ensemble method. The pool of

classifiers is composed of 100 Perceptron classifiers
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a) Voting decision
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b) Averaging decision
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c) Maximum decision
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d) Product decision
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e) Adaboost decision

Figure 3.23 Decision boundaries generated by each ensemble method. The pool of

classifiers is composed of 100 Decision stumps classifiers
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Since these classifiers do not require a meta-training stage, in these experiments, we merge the

training (T ) and meta-training set (Tλ ) into a single training set, thereby training the classifiers

with 1000 samples. The samples in the dynamic selection dataset (DSEL) are used for the val-

idation dataset. The decision boundary obtained by each classifier is presented in Figure 3.24.

The MLP neural network trained with Levemberg-Marquadt obtained a recognition accuracy

of 90%, while that trained with Resilient Backpropagation algorithm obtained 77%. The SVM

obtained a recognition accuracy of 93%, and the random forest classifier achieved 91%. The

classification accuracy of these single classifier models is lower than the performance of the

META-DES using a pool of either five Perceptrons or five Decision Stumps. This result can

be explained by the complex nature of the P2 problem. It is difficult to properly train a strong

classifier to learn the separation between the two classes. These classifiers might require more

training samples in order to obtain better generalization performance.

3.6 Conclusion

In this chapter, we perform a DEEP analysis of the META-DES framework using linear classi-

fiers. The analysis is conducted using the P2 problem, which is a complex non-linear problem

with two classes having multiple class centers. We demonstrate that using the META-DES

framework, we can approximate the complex non-linear distribution of the P2 problem using

few linear classifiers. The accuracy rate provided by the best linear classifiers trained for this

problem is around 50%. We demonstrate that using static combination techniques, it is impos-

sible to approximate the complex decision frontier of the P2 problem. Because of the complex

nature of the P2 problem, for every test sample, there is high disagreement between the pre-

dictions made by the base classifier. Since there is no consensus regarding the correct label

for the test sample, the static combination techniques end up making random decisions. Even

using techniques that assign weights to the base classifiers, such as AdaBoost, the classification

accuracy using 100 base classifiers is still very different from the performance of the META-

DES framework. Classifiers that are not experts in the local region where the query instance is

located end up negatively influencing the decision of the system. Using dynamic selection, the
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a) Levemberg-Marquadt NN
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b) Resilent Backpropagation NN
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c) Random Forest

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature 1

Fe
at

ur
e 

2

d) Radial Basis SVM

Figure 3.24 Decision boundaries obtained using a single classifier. (a) MLP-NN with

100 neurons in the hidden layer trained using Levemberg-Marquadt (90% accuracy). (b)

MLP-NN with 100 neurons in the hidden layer trained using Resilient Backpropagation

(77% accuracy). (c) Random Forest classifier (91% accuracy). Support Vector Machine

with a Gaussian kernel (d) (93% accuracy)

decisions of the base classifiers that are not experts for the given query sample are not taken

into account. Only the most competent classifiers are selected to the predict the label of the

query sample.

The size of the pool of classifiers did not have a significant influence on the recognition rate.

This finding can be explained by the fact that using only 5 base classifiers, the Oracle perfor-
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mance of the Pool is at 100%. In other words, there is at least one base classifier that predicts

the correct class label for every testing sample. The crucial element here is the criteria used

to estimate the level of competence of the base classifiers in order to always select those that

predict the correct class label for a given test sample. Moreover, we noticed a performance

drop when using decision stumps as base classifiers when more than 25 base classifiers are

used. These results indicate that increasing the number of base classifiers in the pool does not

always lead to greater classification accuracy. Thus, one aspect of the framework that must be

further investigated is how many base classifiers should be trained in the overproduction phase

for a given classification problem.

We evaluate the impact of the pool of classifiers and the size of the dynamic selection dataset

(DSEL) that is used in dynamically estimating the level of competence of the base classifier.

Experimental results show that the size of the dynamic selection dataset has a higher impact on

classification performance. This can be explained by the fact the majority of the meta-features

proposed for the META-DES framework are extracted from instances in DSEL that are similar

to the query sample, considering both the feature space and the decision space. With more

samples in the DSEL, the probability of selecting samples that are similar to the query sample

in both the feature space and in the decision space for extracting the meta-features is higher.

Hence, a better estimation of the competence of the base classifiers is achieved. The results

found in this analysis should be considered as a guideline for future work on the META-DES

and for other dynamic ensemble selection based on local accuracy information in general.

Furthermore, the META-DES framework presented a higher classification accuracy for the

P2 problem than did the classical single classifier model. This finding may be attributed to the

complex nature of the P2 problem, since a classifier such as an SVM or an MLP neural network

may require more training samples for a better generalization performance. Using dynamic

selection through the META-DES framework we can approximate the complex decision of the

P2 problem using less training data.
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It is important to mention that there is still room for improvement in the META-DES frame-

work. Using five base classifiers, the accuracy rate obtained by the META-DES is around

95%, while the Oracle performance is close to 100%. Future works will involve the definition

of new meta-features in order to achieve a behavior that is closer to the ideal dynamic selection

technique (Oracle).

3.7 Appendix

3.7.1 Plotting decision boundaries

When dealing with dynamic classifier or ensemble selection, for each classification sample

x j,test , a specific ensemble or base classifier is selected to perform the classification. Thus,

a grid is generated over the 2D image. The grid is generated in the same interval as the P2

classification problem [0, 1] for both axes. Each point on the 2D grid is passed down to the

dynamic selection technique in order to predict its label. After every point on the 2D grid is

evaluated, the MATLAB contour plot is used to separate the points that were classified between

the two classes. It is important to mention that the number of points on the grid influences the

definition of the decision boundary. A high number of points in the grid leads to a more precise

decision boundary. In our experiment, we use a 100× 100 grid, for a total of 10,000 points,

in order to have a more precise decision boundary map. For the static combination rules and

classification models the decision boundaries are plotted using the plotc function from the

PRTOOLS Matlab Toolbox [63].

3.7.2 Ensemble Generation

Figures 3.25 and 3.26 illustrate the pool of classifiers generated with bagging using Perceptrons

and Decision Stumps, respectively. We consider a pool of 5, 10, 25, 50, 75 and 100 base

classifiers. Considering a pool size of 100 classifiers, we can see that most of the classifiers

are in the same region. Thus, we believe the majority of classifiers are redundant. This can be

explained by the fact we used bagging for the generation of the pool. In the bagging technique,
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the bootstraps are randomly taken from the training data, and such, there is no guarantee that

a high diversity pool will be achieved. The use of techniques such as the Random Oracle [6],

may be considered in the future as an alternative for the generation of the pool in order to

achieve higher diversity at the pool level.

3.7.3 Sample Selection Mechanism: consensus threshold hc

In this section, we show the results of the sample selection mechanism by varying the value of

the threshold hc. Since the sample selection mechanism depends on the base classifier (i.e., the

consensus among the pool), we show the result of the sample selection mechanism using both

Perceptrons and Decision Stumps Figures 3.27 and 3.28 respectively.

Samples close to the decision boundary are the ones more likely to be selected for the training

of the meta-classifier. Hence, the sample selection mechanism focuses on samples that are close

to the decision boundaries thus, are harder to predict its correct label. This principle is similar

to the support vectors in the SVM, where samples close to the decision boundaries are used to

achieve the best separating hyperplanes. In our case, the samples close to the decision boundary

are used to train the meta-classifier in order to distinguish between a competent classifier from

an incompetent one in cases where a disagreement exists between the base classifiers in the

pool.

3.7.4 Size of the dynamic selection dataset (DSEL)

Figure 3.25 shows the dynamic selection dataset (DSEL) generated with different sizes. The

figures show the exact distributions of the dataset DSEL used to evaluate the performance

of the META-DES framework according to its size (Section 3.5.2). The size of the DSEL

has a significant impact on the performance of the META-DES framework 3.17. This can be

explained by the fact the meta-features are extracted based on the neighborhood of the query

sample x j,test projected in DSEL.
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a) 5 Perceptrons
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b) 10 Perceptrons
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c) 25 Perceptrons
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d) 50 Perceptrons
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e) 75 Perceptrons
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f) 100 Perceptrons

Figure 3.25 Base classifiers generated during the overproduction phase. The Bagging

technique is used to generate the pool of classifiers
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a) 5 Stumps
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b) 10 Stumps
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c) 25 Stumps
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d) 50 Stumps
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e) 75 Stumps
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f) 100 Stumps

Figure 3.26 Decision Stumps classifiers generated during the overproduction phase. The

Bagging technique is used to generate the pool of classifiers
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a) Consensus threshold hc = 50%
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b) Consensus threshold hc = 60%
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c) Consensus threshold hc = 70%
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d) Consensus threshold hc = 80%

Figure 3.27 Meta-training dataset Tλ after the sample selection mechanism is applied.

A pool composed of 100 Perceptrons is used
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a) Consensus threshold hc = 50%
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b) Consensus threshold hc = 50%
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c) Consensus threshold hc = 50%
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d) Consensus threshold hc = 50%

Figure 3.28 Meta-training dataset Tλ after the sample selection mechanism is applied.

A pool composed of 100 Decision Stumps is used
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b) DSEL 100 Samples
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c) DSEL 150 Samples
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d) DSEL 200 Samples
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e) DSEL 250 Samples
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f) DSEL 500 Samples

Figure 3.29 Distributions of the dynamic selection dataset (validation), used to extract

the meta-features during the generalization phase of the system
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Abstract

Dynamic ensemble selection (DES) techniques work by estimating the competence level of

each classifier from a pool of classifiers, and selecting only the most competent ones for the

classification of a specific test sample. The key issue in DES is defining a suitable criterion

for calculating the classifiers’ competence. There are several criteria available to measure the

level of competence of base classifiers, such as local accuracy estimates and ranking. However,

using only one criterion may lead to a poor estimation of the classifier’s competence. In order

to deal with this issue, we have proposed a novel dynamic ensemble selection framework using

meta-learning, called META-DES. A meta-classifier is trained, based on the meta-features

extracted from the training data, to estimate the level of competence of a classifier for the

classification of a given query sample. An important aspect of the META-DES framework

is that multiple criteria can be embedded in the system encoded as different sets of meta-

features. However, some DES criteria are not suitable for every classification problem. For

instance, local accuracy estimates may produce poor results when there is a high degree of

overlap between the classes. Moreover, a higher classification accuracy can be obtained if

the performance of the meta-classifier is optimized for the corresponding data. In this paper,

we propose a novel version of the META-DES framework based on the formal definition of

the Oracle, called META-DES.Oracle. The Oracle is an abstract method that represents an
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ideal classifier selection scheme. A meta-feature selection scheme using an overfitting cautious

Binary Particle Swarm Optimization (BPSO) is proposed for improving the performance of

the meta-classifier. The difference between the outputs obtained by the meta-classifier and

those presented by the Oracle is minimized. Thus, the meta-classifier is expected to obtain

results that are similar to the Oracle. Experiments carried out using 30 classification problems

demonstrate that the optimization procedure based on the Oracle definition leads to a significant

improvement in classification accuracy when compared to previous versions of the META-DES

framework and other state-of-the-art DES techniques.

4.1 Introduction

Multiple Classifier Systems (MCS) aim to combine classifiers in order to increase the recogni-

tion accuracy in pattern recognition systems [24; 9]. MCS are composed of three phases [1]:

(1) Generation, (2) Selection, and (3) Integration. In the first phase, a pool of classifiers is gen-

erated. In the second, a single classifier or a subset having the best classifiers of the pool is(are)

selected. We refer to the subset of classifiers as the Ensemble of Classifiers (EoC). In the last

phase, called integration, the predictions of the selected classifiers are combined to obtain the

final decision.

The classifier selection phase can be either static or dynamic. In static selection, the ensemble

is selected during the training stage. The classifiers with the best performance, according to

the selection criteria, considering the whole training or validation distribution are selected to

compose the ensemble. Then, the ensemble is used for the classification of all unseen data. In

dynamic approaches, the ensemble of classifiers is selected during the test phase. For each test

sample, the competence of the base classifiers is estimated according to a selection criterion.

Then, only the classifier(s) that attain a certain competence level, are used to predict the label of

the given test sample. Recent works in the MCS literature have shown that dynamic ensemble

selection (DES) techniques achieve higher classification accuracy when compared to static

ones [1; 2; 14]. This is especially true for ill-defined problems, i.e., for problems where the size

of the training data is small, and there are not enough data available to train the classifiers [16;
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17]. Moreover, using dynamic ensemble selection, we can solve classification problems with a

complex non-linear decision boundary using only a few linear classifiers, while static ensemble

techniques, such as Bagging and AdaBoost, cannot [37].

When dealing with DES, the key issue is to define a suitable criterion to select the most compe-

tent classifiers to predict the label of a specific query sample. Several criteria have previously

been proposed, based on different sources of information, such as the classifier local accu-

racy estimates in small regions of the feature space surrounding the query instance, called the

region of competence [22; 14], probabilistic models [18; 45; 39], ranking [38] and classifier

behavior [21; 16]. In our previous work [2], we proposed a novel DES framework using meta-

learning, called META-DES. The framework is divided into three steps: (1) Overproduction,

where the pool of classifiers is generated; (2) Meta-training, where the meta-features are ex-

tracted using the training data, and used as inputs to train a meta-classifier that works as a

classifier selector; and (3) the Generalization phase, in which the meta-features are extracted

from each query sample and used as input to the meta-classifier. The meta-classifier decides

whether the base classifier is competent enough to classify the test sample. The main advan-

tage of the META-DES framework is its modularity. Any criterion used to estimate the level

of competence of base classifiers can be encoded as a new set of meta-features and added to

the system. A total of five sets of meta-features were proposed in [2], each one representing a

different DES criterion, such as local accuracy information and degree of confidence. More-

over, in [37], a case study is presented demonstrating how the use of multiple criteria leads to

a more robust dynamic selection technique. Using multiple sets of meta-features, even though

one criterion might fail due to imprecisions in the local regions of the feature space or due to

low confidence results, the system can still achieve a good performance as other meta-features

are considered by the selection scheme. Because the META-DES framework considers the

dynamic selection problem as a meta-classification problem, we can significantly improve the

recognition accuracy of the system by focusing only on optimizing the performance of the

meta-classifier.
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However, there are some drawbacks to the META-DES framework. First, there are different

sources of information that were not considered by the previous version of the system, such

as probabilistic models, ambiguity, and ranking. Secondly, all sets of meta-features are used

for every classification problem with no pre-processing step at all. As stated by the “No Free

Lunch” theorem [33], there is no criterion for dynamic selection that outperforms all others

over all possible classes of problems. Different classification problems may require distinct sets

of meta-features. The meta-classifier training process is not optimized for each classification

problem. This can also lead to low classification results, since we found that the training of

the meta-classifier is problem-dependent [36]. For these reasons, the results obtained by the

META-DES framework were still far from those achieved by the Oracle. The Oracle is an

abstract model defined in [32], which always selects the classifier that predicted the correct

label, for the given query sample, if such a classifier exists. The Oracle performance is used

in order to know whether the performances achieved by DES techniques are close to the upper

limit performance or whether there is still room for improvements in classification accuracy.

In this paper, ten new sets of meta-features are proposed, using sources of information that were

not explored in the previous version framework, such as ranking, probabilistic models applied

over the decisions obtained by the meta-classifier, and ambiguity, for a better estimation of

the competence level of the base classifiers. The additional meta-features are motivated by a

recent analysis conducted in [55], demonstrating that using different sources of information

to estimate the competence level of the base classifiers is complementary and that combining

them leads to a more robust DES technique.

In order to better address the behavior of the Oracle, we first provide a formal definition of the

way the Oracle estimates the competence level of the base classifier. Following that, a meta-

feature selection scheme using an overfitting cautious Binary Particle Swarm Optimization

(BPSO) is conducted to optimize the performance of the meta-classifier, based on the Oracle

definition. The difference between the level of competence estimated by the meta-classifier and

that estimated by the Oracle is used as the fitness function for the BPSO. In other words, the

BPSO seeks a meta-features vector that minimizes the difference between the behavior of the
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meta-classifier and that of the Oracle in estimating the competence level of the base classifiers.

Thus, the meta-classifier is more likely to present results that are closer to that of the Oracle.

We call the proposed system META-DES.Oracle, since the formal definition of the Oracle is

used during the training stage of the meta-classifier.

Lastly, the classification stage is performed using a hybrid dynamic selection and weighting

scheme. The classifiers that attain a certain level of competence are selected to compose the

ensemble. Next, the meta-classifier is used to compute the weights of the selected base clas-

sifiers to be used in a weighted majority voting scheme. Base classifiers that present a higher

level of competence have greater influence on the classification of the query sample.

Experiments are conducted over 30 classification problems derived from different data reposi-

tories. We compare the results obtained by the proposed META-DES.Oracle with 10 state-of-

the-art dynamic selection techniques, as well as static ensemble methods, such as AdaBoost [5].

Furthermore, we also compare the results obtained by the proposed META-DES.Oracle with

those achieved by single classifier models, such as SVM with Gaussian Kernel and Random

Forest. The goal of the experimental study is to answer the following research questions: (1)

Are different sets of meta-features better suited for different problems? (2) Are all 15 sets of

meta-feature relevant? (3) Does the META-DES.Oracle obtain a significant gain in classifica-

tion accuracy when compared to the previous versions of the META-DES framework? (4) Does

the META-DES.Oracle outperform state-of-the-art DES techniques? (5) Is the performance

obtained by the proposed framework comparable to that of the best families of classifiers in the

literature [71]?

This paper is organized as follows: Section 4.2 introduces state-of-the-art techniques for dy-

namic classifier and ensemble selection. The META-DES.Oracle is detailed in Section 4.3. In

Section 4.4, we describe the 15 sets of meta-features proposed in this work. An illustrative

example using synthetic data is shown in Section 4.5. The experimental study is conducted in

Section 4.6. Finally, our conclusion and future works proposals are given in the last section.
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4.2 Related Works

In this section, we present an overview of the approaches for dynamic ensemble selection and

feature selection using evolutionary computation. They serve as complement to the motivations

of this work.

4.2.1 Dynamic selection

Dynamic selection of classifiers consists of finding a single classifier ci or an ensemble of

classifiers C′ that has the most competent classifiers to predict the label for a specific test

sample, x j, based on a pool of classifiers C. This is a different concept from static selection,

where the ensemble of classifiers C′ is selected during the training phase, and considering the

global performance of the base classifiers using either the training or validation dataset [10; 11;

12; 13].

The most important component of DES techniques is the criterion used to measure the level of

competence of a base classifier ci for the classification of a given query sample x j. The most

common approach involves estimating the accuracy of the base classifiers in small regions of

the feature space surrounding the query sample, x j, called the region of competence. This re-

gion is usually defined based on the KNN-rule applied to either the training [22] or validation

data [14]. Based on the region of competence, there are several sources of information that

can be used to measure the competence of the classifier in the DES literature [1]: Measures

based solely on accuracy, such as the Overall Local Accuracy (OLA) [22], Local Classifier

Accuracy (LCA) [22] and Modified Local Accuracy (MLA) [22], ranking information such as

the Classifier Rank [38] and the simplified classifier rank [22], probabilistic information calcu-

lated over the decision obtained by the base classifiers such as the Kullback Leibler divergence,

DES-KL [45] and the randomized reference classifier DES-PRC [18], classifier behavior cal-

culated using output profiles such as the KNOP technique [16] and the KNORA family of

techniques [14] using Oracle information. Furthermore, there are some selection criteria that

estimate the competence level of a whole ensemble of classifiers rather than the competence of
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each base classifier individually, such as the degree of consensus used in the Dynamic Over-

production and Choose technique (DOCS) [15], diversity [42] and data handling [19].

An important concept in the DES literature is the definition of the Oracle. The Oracle is an

abstract model defined in [32], which always selects the classifier that predicted the correct

label, for the given query sample, if such a classifier exists. In other words, it represents the

ideal classifier selection scheme. The Oracle is used in the DES literature in order to determine

whether the results obtained by the proposed DES techniques is close to ideal accuracy or

whether there is still room for improvements. As reported in a recent survey [1], the results

obtained by DES techniques based solely on one source of information are still far from those

achieved by the Oracle. As stated by Ko et al. [14], addressing the behavior of the Oracle is

much more complex than applying a simple neighborhood approach, and the task of figuring

out its behavior based merely on the pattern feature space is not an easy one. In addition,

in our previous work [20], we demonstrated that the use of local accuracy estimates alone is

insufficient to achieve good generalization performance.

To address these issues, in [2] we proposed a novel DES framework using meta-learning, called

META-DES. From a meta-learning perspective, the dynamic selection problem can be seen as

another classification problem, called the meta-problem. This meta-problem uses different

criteria regarding the behavior of a base classifier in order to decide whether or not a base

classifier ci is competent enough to classify a given sample x j. In this paper, our aim therefore

is to optimize the performance of the meta-classifier, using the meta-classification environment,

to obtain results closer to those of the Oracle.

4.2.2 Feature selection using Binary Particle Swarm Optimization (BPSO)

Given a set of features m, the objective of feature selection is to identify the most informative

subset of features m
′ ∈ m. The reasons for using feature selection methods [73] are: removal of

redundant and irrelevant features, reduction of dimensionality, reduction of the computational

complexity of the system, as well as improvement of the classification accuracy. There are
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two main factors when dealing with feature selection: the evaluation method, which is applied

to compute the fitness of each solution, and the search strategy, which is used to explore the

feature space in the search for a more suitable subset of features.

For the search strategy, the recent focus in the feature selection literature has been on evolu-

tionary computation techniques, such as Genetic Algorithms (GA) [74; 75], Particle Swarm

Optimization (PSO) [76; 77; 78], Differential Evolution (DE) [79; 80; 77] and Ant Colony Op-

timization (ACO) [81]. Evolutionary computation techniques have been shown to outperform

other feature selection methods, such as sequential feature selection SFS, in many applications,

especially when dealing with larger feature vectors, i.e., for classification problems with more

than 50 features [82].

Particle Swarm Optimization (PSO) is an evolutionary computation technique inspired from the

social behavior of birds flocking [76]. PSO is one of the most used evolutionary algorithms, due

to its simplicity and low computational cost. The technique is based on a group of particles

flying around in the search space to find the best solution. Recent works have shown the

preference for PSO over other classical optimization techniques, such as GA because GA has

too many parameters to set. Moreover, GA is very sensitive to the probability of crossover and

mutation operators, as well as to the initial population of solutions. Therefore, it is likely to get

stuck into local minima [73].

Since we are dealing with feature selection, a binary version of the PSO algorithm, BPSO is

considered. BPSO has been shown in many applications to outperform other optimization al-

gorithms in performing feature selection [76; 83; 84]. There are many versions of the BPSO

algorithm, such as the Improved BPSO [83], CatfishBPSO [78] and MBPSO [85]. Current

research the BPSO literature shows that the most important factor for achieving good conver-

gence and avoiding local minima is the transfer function [77], that is responsible for mapping

the continuous search space into a binary space. Generally speaking, there are two main types

of transfer functions, S-shaped and V-shaped [77]. The main difference between the two fami-

lies derives from the observation that the S-Shaped functions force the particles to switch 0 or
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1 values at each generation, while the V-Shaped transfer functions encourage particles to stay

in their current position when their velocity values are low, and switch the values only when

the velocity is high. For these reasons, V-Shaped transfer functions were shown to be better

both in terms of robustness to local minima and convergence speed. In this work, we consider

one S-Shaped transfer function and one V-Shaped function, which presented the best overall

performance, considering 25 benchmark functions [77].

4.3 The META-DES.Oracle

The META-DES framework is based on the assumption that the dynamic ensemble selection

problem can be considered as a meta-problem [36]. This meta-problem uses different criteria

regarding the behavior of a base classifier ci, in order to decide whether it is competent enough

to classify a given test sample x j. The meta-problem is defined as follows [2]:

• The meta-classes are either “competent” (1) or “incompetent” (0) to classify x j.

• Each set of meta-features fi corresponds to a different criterion for measuring the level of

competence of a base classifier.

• The meta-features are encoded into a meta-features vector vi, j.

• A meta-classifier λ is trained based on the meta-features vi, j to predict whether or not ci

will achieve the correct prediction for x j, i.e., if it is competent enough to classify x j.

An overview of the META-DES framework is illustrated in Figure 4.1. The framework is di-

vided into three phases: (1) Overproduction, (2) Meta-training, and (3) Generalization. Phases

(1) and (2) are performed in offline mode, i. e., during the training stage of the framework.

In the overproduction phase, the pool of classifiers C is generated using the training set T .

The following step is the meta-training stage, in which the meta-features are extracted for the

training of the meta-classifier λ . In this stage, the meta-features are extracted from the meta-

training set, Tλ , and from the dynamic selection dataset, DSEL. The meta-data extracted from
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Tλ , denoted by T ∗
λ , are used for the training of the meta-classifier, and those extracted from

DSEL, denoted by DSEL∗, are used as validation data during the BPSO optimization process.

Phase (3) is conducted on-the-fly, with the arrival of each new test sample, x j,test , coming from

the generalization dataset G. For each base classifier ci, a meta-features vector vi, j is extracted,

corresponding to the behavior of the base classifier ci for the classification of x j,test . vi, j is

passed down to the meta-classifier λ that estimates if ci is competent enough to predict the

label for x j,test . After all the classifiers in the pool C are evaluated, the selected classifiers C′

are combined using a weighted majority voting approach to predict the label wl of x j,test . The

main changes to the META-DES framework proposed in this paper are highlighted in different

colors:

a. The meta-feature extraction process, in which 15 sets of meta-features are extracted. Ten

new sets of meta-features are proposed in this work in order to explore different sources

of information for estimating the competence level of the base classifiers, such as proba-

bilistic models, ambiguity, behavior and ranking. The meta-feature extraction process is

presented in Section 4.4.

b. The meta-features selection using Binary Particle Swarm Optimization and guided by Or-

acle information for achieving a behavior closer to the Oracle. The meta-features selection

process is detailed in Section 4.3.2.2.

c. The combination approach, where a hybrid dynamic selection and weighting approach is

considered for the classification of the query sample x j,test (Section 4.3.3).

4.3.1 Overproduction

Similarly to [2], the Overproduction phase is performed using the Bagging technique [3]. The

Bagging technique works by randomly selecting different bootstraps of the data for training

each base classifier ci. Each bootstrap uses of 50% of the training data. The pool of classifiers

C is composed of 100 linear Perceptrons for the two-class problems and 100 multi-class linear
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Figure 4.1 Overview of the proposed framework. It is divided into three steps: 1)

Overproduction, where the pool of classifiers C = {c1, . . . ,cM} is generated, 2) The

training of the selector λ (meta-classifier), and 3) The generalization phase, where the

level of competence δi, j of each base classifier ci is calculated specifically for each new

test sample x j,test . hC, K, Kp and ϒ are the hyper-parameters required by the proposed

system

Perceptrons for the multi-class problems. The use of linear classifiers is motivated by the

finding in [37; 86; 6] showing that the META-DES framework can solve complex non-linear

classification problems with complex decision boundaries using only linear classifiers [37].
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4.3.2 Meta-training Phase

In this stage, the meta-features are extracted for the training of the meta-classifier λ . In this

version of the framework we extract meta-data from two sets: the meta-training set Tλ and the

dynamic selection (validation) DSEL. The meta-data extracted from the set Tλ , denoted by T ∗
λ

are used for the training of the meta-classifier. The meta-data extracted from the set DSEL,

denoted by DSEL∗ are used as validation data in the BPSO optimization scheme for preventing

overfitting.

4.3.2.1 Sample Selection

The first step in the meta-data generation process is the sample selection mechanism. The

sample selection mechanism is employed in order to focus the training of the meta-classifier

to deal with cases in which the extent of consensus of the pool is low, i.e., when there is

a disagreement between the classifiers in the pool, for the correct label. For each instance

x j
1 coming from either the meta-training set, Tλ , or the dynamic selection dataset DSEL, the

consensus of the pool is computed by the percentage of base classifiers in the pool that predicts

its correct label, denoted by H
(
x j,C

)
. If the percentage falls below the consensus threshold,

hc, the sample, x j, is passed down to the meta-features extraction process.

Next, for each base classifier, ci ∈ C, 15 sets of meta-features are computed. Each set of

meta-features is detailed in Section 4.4. The meta-feature vector vi, j containing the 15 sets

of meta-features is obtained at the end of the process. The meta-feature vector vi, j represents

the behavior of the base classifier ci for the classification of the query sample x j. If the base

classifier ci predicts the correct label for x j, the class attribute of vi, j, αi, j = 1 (vi, j belongs to

the meta-class “competent”), otherwise αi, j = 0 (belongs to the meta-class “incompetent”). vi, j

is stored in either T ∗
λ or DSEL∗. It is important to mention that for each sample, x j, a total

of M (M is the size of the pool of classifiers, C) meta-feature vectors vi, j are extracted, each

one representing the behavior of a single base classifier, ci, for the classification of the sample

1x j,DSEL coming from the set DSEL or x j,trainλ coming from the set Tλ
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x j. For instance, consider that 200 training samples are available for the meta-training stage

(N = 200); if the pool C is composed of 100 classifiers (M = 100), the meta-training dataset is

the number of training samples N × the size of the pool M, N ×M = 20.000. After obtaining

the sets T ∗
λ and DSEL∗, the BPSO meta-features selection procedure is called.

4.3.2.2 Meta-Feature Selection Using Binary Particle Swarm Optimization (BPSO)

Since we are dealing with feature selection, a binary version of the PSO algorithm, BPSO, is

considered. Each particle (solution) is composed of a binary string Si =
{
Si,1, ..., Si,D

}
(D is

the number of meta-features), where every bit Si,d represents a single meta-feature. The value

“1” means the meta-feature is selected and “0” otherwise.

At each generation, the velocity of the i-th particle is computed using Equation 4.1:

velocityg+1
i = wvg

i + c1 × rand × (pBesti −Sg
i )+ c2 × rand × (gBest −Sg

i ) (4.1)

Each particle makes use of its private memory, pBesti, which represents the best position the

i-th particle visited as well as the knowledge of the swarm, gBest, which represent the global

best position visited, considering the whole swarm. The constant w corresponds to the inertia

weight, c1 and c2 are the acceleration coefficients, and rand is a randomly generated number

between 0 and 1. The term c1 × rand × (pBesti −Sg
i ) represents the private knowledge of the

i-th particle, and the term c2 × rand × (gBest −Sg
i ) represents the collaboration of particles.

When dealing with binary search spaces, updating the position of a particle means switching

between “0” and “1”, i.e., whether or not the meta-feature is selected. The switching is con-

ducted based on the velocity of the particle. The higher the velocity of a particle, the higher its

probability of changing positions should be. However, the velocities are computed in the real

space rather than in the binary space (as shown in Equation 4.1). The velocity of the particle

needs to be converted into a probability value, representing the probability of changing the

position of the particle from “0” to “1” and vice versa. This step is conducted using a transfer
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function, T . A transfer function should work in a way that the higher the velocity value, the

higher the probability of changing position will be, since particles with higher velocity values

are probably far from the best solutions (pBesti and gBest). Similarly, a transfer function must

present a lower probability of switching position for lower velocity values [77]. The position

of the i-th particle is updated according to Equation 4.2.

Sg+1
i =

⎧⎨
⎩
(Sg+1

i )−1 I f rand < T (velocityd
i (g+1))

Sg+1
i I f rand ≥ T (velocityd

i (g+1))
(4.2)

Generally speaking, there are two main types of transfer functions, S-shaped and V-shaped [77].

In this work we consider one S-shaped transfer function proposed in [76] and one V-shaped

transfer function proposed in [77], in Equations 4.3 and 4.4, respectively. These transfer func-

tions were selected since they obtained the best results in several optimization benchmarks [77].

TS(x) =
1

1+ e−2x (4.3)

TV (x) =
∣∣∣∣
2

π
arc tan

(π
2

x
)∣∣∣∣ (4.4)

4.3.2.2.1 Fitness Function - Distance to the Oracle

The Oracle is an abstract method which always selects the classifier that predicts the correct

label for the test sample x j,test if such a classifier exists. Hence, the Oracle can be seen as an

ideal classifier selection scheme. In this work, we formalize the Oracle as the ideal classifier

selection technique which always selects the classifier that predicts the correct label, x j, and

rejects otherwise (Equation 4.5).
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⎧⎪⎨
⎪⎩

δi, j = 1, if ci correctly classifies x j

δi, j = 0, otherwise

(4.5)

In other words, the level of competence δi, j of a base classifier ci is 1 if it predicts the correct

label for x j, and 0 otherwise.

The fitness function is computed as follows: Given that δ λ
i, j and δ Oracle

i, j are the level of com-

petence of the base classifier ci for the classification of the instance, x j, computed by the

META-DES framework and the Oracle, respectively. The distance between both techniques

dλ ,Oracle is calculated by the mean squared difference between δ λ
i, j and δ Oracle

i, j (Equation 4.6).

dλ ,Oracle =
1

NM

√√√√ N

∑
j=1

M

∑
i=1

(
δ λ

i, j −δ Oracle
i, j

)2
(4.6)

where N and M are the size of the dataset and pool of classifiers, respectively.

Therefore, the BPSO optimization searches for a meta-classifier which minimizes the distance

dλ ,Oracle. In other words, we search for a meta-classifier λ that presents a behavior closer to the

ideal dynamic selection technique, for estimating the competence level of the base classifiers.

Moreover, the distance to the Oracle fitness function is motivated by the results obtained in our

previous work [55], in which we demonstrated that dynamic selection techniques with smaller

distances to the Oracle are more likely to achieve higher classification performance. We call

the proposed system META-DES.Oracle since the formal definition of the Oracle is used for

optimizing the performance of the meta-classifier.

4.3.2.2.2 Overfitting Control Scheme

Since the fitness function takes into account the performance of the meta-classifier, i.e., the

wrapper approach, the optimization process becomes another learning process and may be



110

��������

!"# !"#

$������%&�'����*+&��
�
��&�&���&-�

./��%&�789;��+�<���%=�
><='?�&��%&�@���&HH�<@��%&�
'����*+&��

�
K��<�*�&��&����&M�

�&�&����<��<@�'����*+&H

Q�+�-��&��%&�'<'?+���<��<@�
H<+?��<�K��K���-�T&&'��%&�.&H��

H<+?��<������%&���*%�U&��

�
��
��
��
��
�

�
��
��
��
��
�
	

Figure 4.2 Division of the datasets for the BPSO with global validation scheme

prone to overfitting [75; 43; 87]. The best solution found during the optimization routine may

have overfitted the optimization dataset, and may not have a good generalization performance.

To avoid overfitting, the sets used in the BPSO feature selection scheme are divided as illus-

trated in Figure 4.2. The meta-feature dataset,T ∗
λ , is split on the basis of 50% for the training

of the meta-classifier T T
λ and 50% for the optimization dataset T O

λ which is used to guide the

search in the BPSO scheme. The meta-feature vectors extracted from the dynamic selection

dataset, DSEL∗, are used to validate the solutions Si found by the BPSO algorithm.

There are three common methods for controlling overfitting in optimization systems [43]: Par-

tial Validation (PV), Backwarding Validation (BV), and Global Validation (GV). In this work,

we use the GV approach since previous works in the literature demonstrate that the GV is a

more robust alternative for controlling overfitting in optimization techniques [75; 43]. In the

GV scheme (see Algorithm 4.1), at each generation, the fitness of all particles Sg
i ∈ S are eval-

uated using the validation set, DSEL∗ (line 18 of the algorithm). If the fitness of the particle

Sg
i is better than the fitness of the particle kept in the archive, denoted by A , Sg

i is stored in the



111

archive (lines 19 and 20). Thus, at the end of the optimization process, the particle kept in A

is the one presenting the best fitness value, considering the validation data. The solution kept

in the archive, A , is used as the meta-classifier λ .

1: A = /0

2: Randomly initialize a swarm S =
{

S1, S2, ..., Smax(S)
}

3: for each generation g ∈ 1, ...,max(g) do

4: "Perform all steps to generate the new solutions"

5: for each particle Sg
i | i = 1, ..., max(S) do

6: Evaluate fitness of the particle Sg
i (Section 4.3.2.2.1).

7: if fitness(Sg
i ) < fitness(pBesti) then

8: pBesti = Sg
i

9: end if

10: if fitness(Sg
i ) < fitness(gBest) then

11: gBest = Sg
i

12: end if

13: end for

14: Compute the velocity of each particle using Equation 4.1.

15: Update the position of each particle using Equation 4.2.

16: for each particle Sg+1
i | i = 1, ..., max(S) do

17: Estimate the fitness of Sg+1
i using the dataset DSEL∗.

18: if fitness(Sg+1
i ) < fitness(A ) then

19: "Store Sg+1
i in the archive."

20: A = Sg+1
i .

21: end if

22: end for

23: end for

24: return The particle stored in the archive A .

Algorithm 4.1: BPSO meta-features selection with Global Validation
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4.3.3 Generalization Phase

Input: Query sample x j,test
Input: Pool of classifiers C = {c1, . . . ,cM}
Input: The solution kept in the archive A .

Input: dynamic selection dataset DSEL
1: C

′
= /0

2: for all ci ∈C do
3: Compute the meta-features selected in the archive A to obtain vi, j.

4: input vi, j to λ
5: Estimate the level of competence δi, j.

6: if δi, j ≥ ϒ then
7: C

′
=C

′ ∪ {ci}
8: δ ′

i, j = δ ′
i, j ∪

{
δi, j

}
9: end if

10: end for
11: “Each selected base classifier ci, j is weighted by it’s competence level δi, j.

12: wl =WeightedMa jorityVote(x j,test ,C
′
,δ ′

i, j)
13: return The predicted label wl for the sample x j,test

Algorithm 4.2: Classification steps using the selector λ

The generalization procedure is formalized by Algorithm 4.2. Given the query sample, x j,test ,

the region of competence θ j is computed using the samples from the dynamic selection dataset

DSEL. Following that, the output profiles, x̃ j,test of the test sample, x j,test , are calculated.

The set with Kp similar output profiles, φ j, of the query sample x j,test , is obtained through the

Euclidean distance applied over the output profiles of the dynamic selection dataset.

For each base classifier, ci, belonging to the pool of classifiers C, the meta-feature extraction

process is called (Section 4.4), returning the meta-features vector vi, j (lines 5 and 6). Only

the selected meta-features, which are kept in the archive A are extracted. Then, vi, j is used

as input to the meta-classifier λ . The support, δi, j, obtained by λ for the “competent” meta-

class, is computed as the level of competence of the base classifier, ci, for the classification

of the test sample, x j,test . The classification of the query sample, x j,test , is performed using

a hybrid dynamic selection and weighting approach. First, the base classifiers that achieve a
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level of competence, δi, j > ϒ = 0.5, are considered competent, and are selected to compose

the ensemble, C′ (lines 7 to 9). Next, the decision of each selected base classifier is weighted

by its level of competence, δi, j, using a weighted majority voting scheme (line 13) to predict

the label wl of the query sample x j,test . Thus, the base classifiers that attained a higher level of

competence, δi, j, have more influence in the final decision.

4.4 Meta-Feature Extraction

A total of 15 sets of meta-features are considered, with ten sets proposed in this paper, and five

coming from our previous work [2]. Each set fi captures a different property of the behavior

of the base classifier, and can be seen as a different criterion to dynamically estimate the level

of competence of the base classifier, such as the classification performance estimated in a

local region of the feature space and the classifier confidence for the classification of the input

sample. Using 15 distinct sets of meta-features, even though one criterion might fail due to

imprecisions in the local regions of the feature space or due to low confidence results, the

system can still achieve a good performance, as other meta-features are considered by the

selection scheme.

Table 4.1 shows the criterion used by each fi, the object used to extract the meta-feature (e.g.,

the region of competence, θ j), and its categorization based on the DES taxonomy suggested

in [1]. Each set of meta-features may generate more than one feature. The size of the feature

vector, vi, j, is (K ×8)+Kp +6.

Given a new sample, x j, the first step in extracting the meta-features involves computing its

region of competence, denoted by θ j = {x1, . . . ,xK}. The region of competence is defined in

the dynamic selection dataset DSEL set using the K-Nearest Neighbor algorithm. Then, x j

is transformed into an output profile x̃ j. The output profile of the instance x j is denoted by

x̃ j =
{

x̃ j,1, x̃ j,2, . . . , x̃ j,M
}

, where each x̃ j,i is the decision yielded by the base classifier ci for

the sample x j [16]. Then, the similarity between x̃ j and the output profiles of the samples

in DSEL is obtained through the Euclidean distance. The Kp most similar output profiles are



114

Table 4.1 A summary of each set of meta-features. They are categorized into the

subgroups proposed in [1]. K is the size of the region of competence, θ j, and Kp the size

of the output profiles set φ j containing the Kp most similar output profiles of the query

sample x j. The size of the meta-feature vector is (K ×8)+Kp +6. The sets of

meta-features marked with an * correspond to sets previously defined in [2]

Meta-Feature Criterion Domain Object No. of Features
fHard* Classification of the K-Nearest Neighbors Accuracy θ j K
fProb* Posterior probability obtained for the K-Nearest Neighbors Probabilistic θ j K
fOverall* Overall accuracy in the region of competence Accuracy θ j 1

fCond Conditional accuracy in the region of competence Accuracy θ j 1

fCon f * Degree of confidence for the input sample Confidence x j 1

fAmb Ambiguity in the vector of class supports Ambiguity x j 1

fLog Logarithmic difference between the class supports Probabilistic S(x j) K
fPRC Probability of Random Classifier Probabilistic S(x j) K
fMD Minimum difference between the predictions Probabilistic S(x j) K
fEnt Entropy in the vector of class supports Probabilistic S(x j) K
fExp Exponential difference between the class supports Probabilistic S(x j) K
fKL Kullback-Leibler divergence Probabilistic S(x j) K
fOP* Output profiles classification Behavior φ j Kp
fRank Classifier ranking in the feature space Ranking DSEL 1

fRankOP Classifier ranking in the decision space Behavior and Ranking φ j 1

selected to form the set φ j =
{

x̃1, . . . , x̃Kp

}
, where each output profile x̃k is associated with a

label wl,k.

4.4.1 Local Accuracy Meta-Features

These meta-features are based on the performance of the base classifier in a local region of

the feature space surrounding the query instance x j. Three sets of meta-features using local

accuracy estimation are considered:

4.4.1.1 Overall Local accuracy: fOverall

The accuracy of ci over the whole region of competence θ j is computed and encoded as fOverall

(Equation 4.7).

fOverall =
K

∑
k=1

P(wl | xk ∈ wl,ci) (4.7)
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4.4.1.2 Conditional Local Accuracy: fcond

The local accuracy of ci is estimated with respect to the output classes; wl (wl is the class

assigned for x j by ci) for the samples belonging to the region of competence, θ j (Equation 4.8).

fcond =
∑xk∈wl

P(wl | xk,ci)

∑K
k=1 P(wl | xk,ci)

(4.8)

4.4.1.3 Neighbors’ hard classificationL: fHard

First, a vector with K elements is created. For each instance xk, belonging to the region of

competence θ j, if ci correctly classifies xk, the k-th position of the vector is set to 1, otherwise

it is 0. Thus, K meta-features are computed.

4.4.2 Ambiguity

Ambiguity measures the level of confidence the base classifier ci has in its answer. A common

concept used to estimate the confidence of a classifier is based on the margin theory [5; 88].

The margin of a classifier is regarded as a good indicator of the classifier’s confidence. Two

meta-features are considered: one based on the maximum margin theory fcon f and one based

on the minimum margin theory famb. Since these meta-features do not take into account the

correct label of the sample, they are extracted directly from the query sample, x j.

4.4.2.1 Classifier’s confidence: fCon f

The perpendicular distance between the input sample, x j, and the decision boundary of the base

classifier ci is calculated and encoded as fcon f . The value of fcon f is normalized to a [0− 1]

range using the Min-max normalization.
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4.4.2.2 Ambiguity: fAmb

This information is simply computed by the difference between scores of the class with highest

support and the second highest one for the query sample, x j, e.g., consider that for a 3-class

classification problem, the scores obtained by the base classifier ci for a given query sample,

x j, are 0.65, 0.30 and 0.05. Then, the ambiguity value is famb = 0.65−0.30 = 0.35. A higher

value in famb means that the classifier decision is less ambiguous.

4.4.3 Probabilistic Meta-Features

This class of meta-features is based on probabilistic models that are applied over the vec-

tor of class supports produced by the base classifier ci for the classification of a given query

sample. The motivation behind probabilistic measures derives from the observation that clas-

sifiers that perform worse than the random classifier, i.e., a classifier that randomly select the

classes with equal probabilities, deteriorate the majority voting performance. In contrast, if the

base classifiers are significantly better than the random classifier, they are likely to improve

the majority voting accuracy [45]. Hence, each set of meta-features in this group estimates

the probability that the performance of a given base classifier ci is significantly different from

that of a random classifier derived from different probabilistic and information theory perspec-

tives [18; 40; 45; 41; 46].

For the definitions below, let S(xk) = {S1(xk), . . . ,SL(xk)} be the vector of class supports esti-

mated by the base classifier ci for a given sample, xk, where each value Sl(xk), l = 1,2 . . . , L

represents the support given to the l-th class and
L
∑

l=1
Sl(xk) = 1. Let Slk(x j) be the support given

by the base classifier ci for the correct class label of x j. The output of the random classifier

follows a uniform distribution, and is denoted by RC =
{

1
L , ...,

1
L

}
.
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4.4.3.1 Posterior probability: fProb

First, a vector with K elements is created. Then, for each instance xk, belonging to the region

of competence θ j, the posterior probability of ci, P(wl | xk) is computed and inserted into the

k-th position of the vector. Consequently, K meta-features are computed.

4.4.3.2 Logarithmic: fLog

First, a vector with K elements is created, fLog =
{

fLog(1), ..., fLog(K)
}

. For each instance,

xk, belonging to the region of competence θ j, the support obtained by the base classifier ci for

the correct class label, Slk(xk), is estimated. Then, a logarithmic function is applied to Slk(xk)

(Equation 4.9). The logarithmic function is used such that the value of the meta-feature is

negative if the support obtained for the correct class label is lower than the support obtained

from random guessing (i.e., Slk(x j)<
1
L ) and positive otherwise. The result of the logarithmic

function is inserted into the k-th position of the vector. Hence, K meta-features are computed.

flog(k) = 2×Slk(xk)
log(2)
log(L) −1 (4.9)

4.4.3.3 Entropy: fEnt

The entropy measures the degree of uncertainty in the vector of supports, S(xk), obtained by

the base classifier, ci. The meta-feature is calculated as follows: first, a vector with K elements

is created, fEnt = { fEnt(1), ..., fEnt(K)}. Then, for each instance, xk, belonging to the region

of competence, θ j, the entropy of the vector of class supports is computed, and inserted in the

k-th position of the vector fEnt (Equation 4.10). Thus, K meta-features are computed.

fEnt(k) =−
L

∑
l=1

Sl(xk)log(Sl(xk)) (4.10)
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4.4.3.4 Minimal difference: fMD

First, a vector with K elements is created, fMD = { fMD(1), ..., fMD(K)}. Then, for each

sample, xk, belonging to the region of competence, θ j, the difference between the support

obtained by the base classifier ci for the correct class label of xk, Slk(xk), and those obtained by

ci for each of the other classes, Sl(xk) | l �= lk, are calculated. The difference which produces

the minimal value is inserted in the k-th position of the vector fMD (Equation 4.11). Thus, K

meta-features are computed.

fMD(k) = minl ∈ L, l �= lk [Sl(xk)−Slk(xk)] (4.11)

4.4.3.5 Kullback-Leibler Divergence: fKL

The Kullback-Leibler (KL) divergence [89] estimates the competence of a base classifier ci

from the information theory perspective [45]. The meta-feature is computed as follows: first,

a vector with K elements is created, fKL = { fKL(1), ..., fKL(K)}. Then, for each member,

xk, belonging to the region of competence θ j, the KL divergence between the vector of class

supports, S(xk) = {S1(xk), . . . ,SL(xk)}, obtained by the base classifier, ci, and those obtained

by the random classifier, RC =
{

1
L , ...,

1
L

}
is computed. The result of the KL divergence is

inserted in the k-th position of the vector fKL (Equation 4.12). Consequently, K meta-features

are calculated.

fKL(k) =
L

∑
l=1

Sl(xk)log
Sl(xk)

RC
(4.12)

4.4.3.6 Exponential: fExp

First, a vector with K elements is created, fExp =
{

fExp(1), ..., fExp(K)
}

. For each sample,

xk, belonging to the region of competence θ j, the support obtained by the base classifier ci
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for the correct class label, Slk(xk), is estimated. Next, an exponential function is applied over

Slk(xk) to compute fExp (Equation 4.13). Using the exponential function, the value of fExp

increases exponentially when the value of Slk(xk) is higher than that obtained from random

guessing (Slk(xk) >
1
L ), and is negative otherwise. The result of the exponential function is

inserted in the k-th position of the vector. Hence, K meta-features are computed.

fExp(k) = 1−2
−1

(L−1)Slk(xk)
1−Slk(xk) (4.13)

4.4.3.7 Randomized Reference Classifier: fPRC

First, a vector with K elements is created, fPRC = { fPRC(1), ..., fPRC(K)}. For each sample,

xk, belonging to the region of competence θ j, the conditional probability of correct classifica-

tion estimated by the randomized reference classifier (RRC) proposed in [18] is estimated 2.

The result is inserted in the k-th position of the vector. Thus, K meta-features are computed.

4.4.4 Behavior meta-features

These measures take into consideration information extracted from the decision space, i.e.,

the outputs or behavior of the classifiers in the pool, rather than information from the feature

space. Global information about the whole pool of classifiers is considered. Furthermore,

many authors have successfully utilized DES criteria based on classifier behavior in estimating

the competence of base classifiers [16; 17; 2].

4.4.4.1 Output profiles classification: fOP

First, a vector with Kp elements is created. Then, for each member, x̃k, belonging to the set of

output profiles, φ j, if the label produced by ci for xk is equal to the label wl,k of x̃k, the k-th

position of the vector is set to 1, otherwise it is 0. A total of Kp meta-features are extracted.

2Matlab code for this technique is available on: http://www.mathworks.com/matlabcentral/fileexchange/

28391-a-probabilistic-model-of-classifier-competence
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4.4.5 Ranking Meta-Features

Ranking methods for estimating the competence of base classifiers have been proposed in [38].

The ranking is computed such that classifiers with higher ranking values are more likely to be

competent. In this work, we consider two types of ranking meta-features, one based on the

feature space, and the other on the decision space. They are defined below:

4.4.5.1 Simplified classifier rank: fRank

This meta-feature is inspired by the simplified classifier rank technique proposed in [22]. The

first step in extracting the ranking meta-feature is to order the instances in DSEL by its distance

to the query sample x j. fRank is computed as the number of consecutive correct predictions

made by the base classifier ci, starting from the closest sample to x j. The search stops when

the first misclassification is made.

4.4.5.2 classifier rank OP: fRankOP

This meta-feature is computed similarly to the previous frank. However the search is conducted

in the decision space, using the output profiles, φ j, rather than the dataset DSEL. Hence, the

first step is to order the output profiles in φ j by their similarity to the output profile of the query

sample x̃ j. Then, the number of consecutive correct predictions made by the base classifier ci

is computed as fRankOP .

4.5 Case study using synthetic data

In this section, we conduct experiments using a synthetic dataset in order to illustrate the ben-

efits of the meta-feature selection process and compare different versions of the META-DES

framework for solving a problem with a complex non-linear geometry using a pool composed

of linear classifiers. The P2 is a two-class problem, presented by Valentini [67], in which each

class is defined in multiple decision regions delimited by polynomial and trigonometric func-

tions (Equations 4.14, 4.15, 4.16 and 4.17). As in [68], E4 was modified such that the area of
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each class is approximately equal. The P2 problem is illustrated in Figure 4.3. It is impossible

to solve this problem using a single linear classifier, and the performance of the best possible

linear classifier is around 50%.

E1(x) = sin(x)+5 (4.14)

E2(x) = (x−2)2 +1 (4.15)

E3(x) =−0.1 · x2 +0.6sin(4x)+8 (4.16)

E4(x) =
(x−10)2

2
+7.902 (4.17)

Figure 4.3 The P2 Problem. The symbols I and II represent the area of the classes, 1 and

2, respectively

For this illustrative example, the P2 problem was generated as in [37]: 500 samples for training

(T ), 500 instances for the meta-training dataset (Tλ ), 500 instances for the dynamic selection

dataset DSEL, and 2000 samples for the test set, G. The pool of classifiers is composed of 5

Perceptrons (shown in Figure 4.4). The best classifier of the pool (Single Best) achieves an

accuracy of 53.5%. The performance of all other base classifiers is around the 50% mark. The

Oracle result of this pool obtained a recognition performance of 99.5%. In other words, there
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Figure 4.4 Five Perceptrons generated using the bagging technique for the P2 Problem.

The arrows in each Perceptron point to the region of class 1 (red circle)

is at least one base classifier that predicts the correct label for 99.5% of est instances. The

problem lies in selecting the competent classifiers in order to achieve a classification accuracy

close to the Oracle.
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Figure 4.5 Decision boundary obtained by two versions of the META-DES framework.

(a) META-DESs (b) META-DES.Oracle
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Figures 4.5 (a) and (b) show the decision boundary obtained by the META-DES [2], and the

proposed META-DES.Oracle, respectively3. We can observe that the META-DES.Oracle ob-

tains a really good approximation of the real decision boundary for the P2 problem. The

META-DES.Oracle proposed in this paper obtained a recognition accuracy of 97%, while the

accuracy of the META-DES was 94.5% [37]. Using the extended sets of meta-features and

the meta-feature selection procedure based on the Oracle definition, we observed a significant

gain in performance for the P2 problem. Thus, it is possible to reduce the big gap that exists

between the performances of the current state-of-the-art DES techniques and the ideal one, the

Oracle.

4.6 Experiments

4.6.1 Datasets

The experiments were conducted on the same 30 classification datasets used in our previous

work [2]. Sixteen are taken from the UCI machine learning repository [59], four from the

STATLOG project [60], four from the Knowledge Extraction based on Evolutionary Learning

(KEEL) repository [61], four from the Ludmila Kuncheva Collection of real medical data [62],

and two artificial datasets generated with the Matlab PRTOOLS toolbox [63]. The key features

of each dataset are shown in Table 4.2.

4.6.2 Experimental protocol

For the sake of simplicity, the experimental setup from our previous work [2] was used. The

experiments were carried out using 20 replications. For each replication, the datasets were

randomly divided on the basis of 50% for training, 25% for the dynamic selection dataset,

DSEL, and 25% for the test set, G. The divisions were performed while maintaining the prior

3The results achieved by different dynamic and static ensemble techniques for the P2 problem are presented

in the following report [37].
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Table 4.2 Key features of the datasets used in the experiments

Database No. of Instances Dimensionality No. of Classes Source
Pima 768 8 2 UCI

Liver Disorders 345 6 2 UCI

Breast (WDBC) 568 30 2 UCI

Blood transfusion 748 4 2 UCI

Banana 1000 2 2 PRTOOLS

Vehicle 846 18 4 STATLOG

Lithuanian 1000 2 2 PRTOOLS

Sonar 208 60 2 UCI

Ionosphere 315 34 2 UCI

Wine 178 13 3 UCI

Haberman’s Survival 306 3 2 UCI

Cardiotocography (CTG) 2126 21 3 UCI

Vertebral Column 310 6 2 UCI

Steel Plate Faults 1941 27 7 UCI

WDG V1 5000 21 3 UCI

Ecoli 336 7 8 UCI

Glass 214 9 6 UCI

ILPD 583 10 2 UCI

Adult 48842 14 2 UCI

Weaning 302 17 2 LKC

Laryngeal1 213 16 2 LKC

Laryngeal3 353 16 3 LKC

Thyroid 215 5 3 LKC

German credit 1000 20 2 STATLOG

Heart 270 13 2 STATLOG

Satimage 6435 19 7 STATLOG

Phoneme 5404 6 2 ELENA

Monk2 4322 6 2 KEEL

Mammographic 961 5 2 KEEL

MAGIC Gamma Telescope 19020 10 2 KEEL

probabilities of each class. For the proposed META-DES-Oracle, 25% of the training data was

used in the meta-training process Tλ .

For the two-class classification problems, the pool of classifiers was composed of 100 Percep-

trons generated using the Bagging technique. For the multi-class problems, the pool of clas-

sifiers was composed of 100 multi-class Perceptrons. The use of linear Perceptron classifiers

was motivated by the results reported in Section 4.5 showing that the META-DES framework

can solve non-linear classification problems with complex decision boundaries using only a

few linear classifiers. The values of the hyper-parameters, K, Kp and hc, were set at 7, 5 and

70%, respectively. They were selected empirically based on previous publications [20; 36; 2].

Hence, the size of the meta-feature vector is 67 ((7×8) +5+6).

The parameters of the BPSO algorithm were set based on previous work in the literature [78;

83; 84]: the population size was set at 20, the maximum number of generations max(g) = 100.

The weight function, w = 1.0, and acceleration coefficients, c1 = c2 = 2.0, were set using
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the standard values from [76]. Moreover, the optimization process was stopped if the fitness

of the best solution gBest failed to improve after 5 consecutive iterations. Since the BPSO

optimization process is a stochastic algorithm, for each replication, the BPSO was run 30

times. The best result, considering the Global Validation overfitting control scheme, was used

for generalization phase.

4.6.3 Analysis of the selected meta-features

In this section, we analyze the set of meta-features that are selected by the proposed technique.

The objective of this analysis is: (1) to verify whether different sets of meta-features are better

suited for different classification problems; and (2) to identify whether or not the proposed sets

of meta-features are relevant.

In the first analysis, we compare how often each individual meta-feature was selected. Fig-

ure 4.6 illustrates the selection frequency per meta-feature, considering 20 replications. We

present the results for each dataset separately. Each square represents an individual meta-

feature. The color of each square represents the frequency that each meta-feature is selected.

A white square indicates that the corresponding meta-feature was selected less than 25% of

the time. A light grey square means the meta-feature was selected with a frequency between

25% and 50%. A dark grey square represents a frequency of 50% to 75%, and a black square

represents a frequency of selection higher than 75%.

It can be seen that the frequency at which each meta-feature is selected varies considerably

between different datasets. For instance, the meta-feature based on the classification of the

neighbor samples, fhard , was selected with a frequency between 25 and 50% in the majority

of datasets. However, for the Wine dataset, it was not selected at all. The only exceptions

are for the meta-feature sets, fOP, which presented a 100% frequency of selection for all 30

datasets, and fcond . This finding demonstrates that distinct classification problems require a

different set of meta-features in order to better address the behavior of the Oracle. Different

problems are associated with different degrees of data complexity [34], and may require a
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Figure 4.6 The frequency at which each individual meta-feature is selected over 20

replications. Each dataset is evaluated separately. The color of each square represents the

frequency at which each meta-feature is selected. A white square indicates that the

corresponding meta-feature was selected less than 25% of the time. A light grey square

means the meta-feature was selected with a frequency between 25% and 50%. A dark

grey square represents a frequency of 50% to 75%, and a black square represents a

frequency of selection higher than 75%

distinct set of meta-features in order to obtain a meta-classifier that presents a behavior closer

to the Oracle for estimating the competence of the base classifiers. Hence, the results show

that the choice of the best set of meta-features is problem-dependent. In addition, we can see

that each individual meta-feature is selected for at least 20% of the datasets, considering all 30

classification problems (Figure 4.7). Hence, we believe that all sets of meta-features proposed

in this work are relevant.

4.6.4 Comparative study

In this section, we compare the results obtained by the proposed META-DES.Oracle, which is

based on 15 sets of meta-features, against the previous versions of the META-DES framework,

which are based only on five sets of meta-features defined in [2]. The objective of this com-
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Figure 4.7 Average frequency and standard deviation per meta-feature considering 30

classification problems

parative study is to answer the following research questions: (1) Does the optimization based

on the Oracle behavior lead to a significant gain in classification accuracy? (2) Does the use of

more meta-features lead to a more robust DES system?

The following versions of the META-DES framework are compared in this section:

a. S-shaped GV: The proposed META-DES.Oracle using S-shaped transfer function with

global validation.

b. V-shaped GV: The proposed META-DES.Oracle using V-shaped transfer function with

global validation.

c. S-Shaped: The proposed META-DES.Oracle using S-shaped transfer function without

global validation.
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d. V-Shaped: The proposed META-DES.Oracle using V-shaped transfer function without

global validation.

e. META-DES.ALL: The framework using the 15 sets of meta-features proposed in this

work without the optimization process.

f. META-DES.H: The Hybrid version, META-DES.H proposed in [69].

g. META-DES: The first version of the META-DES framework [2].

Table 4.3 Comparison of different versions of the META-DES framework. We present

the results of statistical tests at the end of the table

Dataset S-Shaped GV V-Shaped GV S-Shaped V-Shaped META-DES.ALL META-DES.H META-DES

Pima 77.35(2.43) 77.53(2.24) 77.06(2.86) 77.00(2.79) 78.34(3.26) 77.93(1.86) 77.76(1.75)

Liver 71.50(4.96) 72.02(4.72) 71.24(4.94) 71.11(5.70) 68.79(4.76) 69.69(4.68) 69.56(4.84)

Breast 96.78(0.82) 96.71(0.86) 96.71(0.86) 96.71(0.86) 96.86(0.85) 97.25(0.47) 97.41(0.50)
Blood 79.44(1.84) 79.38(1.76) 79.79(1.38) 79.20(1.69) 79.91(0.79) 78.25(1.37) 78.31(1.52)

Banana 94.66(1.09) 94.54(1.16) 94.39(1.14) 94.80(0.99) 95.69(1.35) 94.51(2.36) 94.42(2.37)

Vehicle 82.76(1.10) 82.87(1.64) 82.61(1.48) 82.82(1.23) 81.82(1.94) 83.55(2.10) 83.55(2.01)
Lithuanian 95.12(2.10) 94.97(2.00) 95.49(2.21) 95.04(2.34) 95.78(2.13) 93.26(3.22) 93.12(3.09)

Sonar 80.13(3.96) 81.63(3.90) 81.84(4.59) 81.42(4.30) 82.91(4.59) 82.06(5.09) 81.84(5.67)

Ionosphere 89.31(2.26) 89.94(1.97) 88.80(2.60) 89.56(2.20) 89.94(2.48) 89.06(2.21) 89.06(2.21)

Wine 99.02(1.61) 99.52(1.11) 99.27(1.61) 99.27(1.17) 99.52(1.11) 98.53(1.48) 98.53(1.48)

Haberman 73.35(3.32) 72.03(2.67) 73.06(2.97) 72.76(3.29) 74.22(2.85) 76.13(2.06) 76.13(2.06)

CTG 86.73(1.23) 86.37(1.10) 86.81(1.06) 86.68(1.16) 87.10(0.99) 86.08(1.24) 86.04(1.14)

Vertebral 85.47(3.21) 84.90(5.33) 85.05(4.71) 84.90(6.15) 86.47(2.38) 84.90(2.95) 85.62(2.35)

Faults 69.52(0.95) 69.32(1.18) 68.93(1.15) 69.02(1.46) 69.02(1.55) 68.95(1.04) 68.72(1.19)

WDVG1 84.70(0.39) 84.72(0.49) 84.75(0.52) 84.75(0.45) 83.30(0.82) 84.77(0.65) 84.84(0.60)
Ecoli 81.83(3.00) 81.57(3.47) 81.83(3.22) 81.44(3.63) 78.70(3.22) 80.66(3.48) 80.92(3.76)

GLASS 67.09(3.89) 66.46(4.22) 66.88(3.71) 66.04(4.12) 68.77(3.71) 65.21(3.53) 65.21(3.65)

ILPD 68.42(2.20) 69.79(3.15) 68.04(2.74) 68.65(3.13) 69.79(3.29) 69.64(2.47) 70.17(2.33)
Adult 87.29(2.02) 87.74(2.04) 87.67(2.13) 87.67(2.03) 85.17(3.15) 87.29(1.80) 87.22(1.84)

Weaning 81.29(3.43) 81.73(3.14) 80.86(3.75) 81.44(3.23) 80.71(3.89) 79.98(3.55) 79.69(3.71)

Laryngeal1 86.16(4.00) 87.42(2.98) 85.95(3.59) 86.58(3.24) 85.11(4.33) 87.21(5.35) 87.00(5.00)

Thyroid 96.60(1.12) 96.99(0.75) 96.60(0.77) 96.86(0.91) 96.60(0.77) 97.38(0.67) 97.38(0.67)

Laryngeal3 74.67(1.66) 73.67(2.14) 74.17(2.25) 73.79(2.03) 71.67(3.34) 73.54(1.66) 73.42(1.26)

German 75.03(1.99) 76.58(1.99) 75.43(1.92) 76.05(1.67) 71.56(2.91) 74.36(1.28) 74.54(1.30)

Heart 85.13(2.94) 86.44(3.38) 85.62(3.03) 85.13(2.75) 84.15(4.35) 85.46(2.70) 85.30(2.30)

Satimage 96.59(0.68) 96.65(0.83) 96.50(0.82) 96.55(0.80) 96.46(0.78) 96.46(0.79) 96.42(0.76)

Phoneme 84.76(0.77) 85.05(1.08) 84.62(0.95) 85.16(1.16) 85.22(0.88) 81.82(0.69) 81.77(0.72)

Monk2 94.15(2.18) 94.45(1.88) 94.35(1.72) 94.45(1.88) 92.91(1.84) 83.45(3.46) 83.34(3.32)

Mammographic 80.35(2.85) 80.72(2.56) 81.31(3.42) 79.92(3.44) 81.15(1.58) 84.30(2.27) 84.41(2.54)
Magic 85.69 (1.37 ) 86.02 (2.20) 85.79 (1.21) 85.80(2.54) 85.25(3.21) 85.650(2.27) 84.35(3.27)

Average rank 3.80(0.78) 3.00(0.92) 4.03(0.90) 4.16(0.82) 3.96(1.26) 4.33(0.93) 4.70(1.17)

Win-Tie-Loss 17-3-10 19-9-2 16-4-10 17-2-11 15-1-14 n/a n/a

Wilcoxon Signed Test ~ (ρ = .3044) + (ρ = .0316) ~ (ρ = .3389) ~ (ρ = .2623) ~ (ρ = .8612) n/a n/a

Classification accuracies are reported in Table 4.3. The best result achieved for each dataset

is highlighted in bold. The Friedman [90] test is used in order to compare the results of all

techniques over the 30 classification datasets. The Friedman test is a non-parametric equivalent
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of the repeated ANOVA measures, used to make comparison between several techniques over

multiple datasets [91]. For each dataset, the Friedman test ranks each algorithm, with the

best performing one getting rank 1, the second best rank 2, and so forth. Then, the average

rank and its standard deviation are computed, considering all datasets. The best algorithm is

the one presenting the lowest average rank. Since we are comparing seven techniques, the

degree of freedom is 6. We set the level of significance α = 0.05, i.e., 95% confidence. The

Friedman test shows that there is a significant difference between the seven approaches. Then,

a post-hoc Bonferroni-Dunn test was conducted for a pairwise comparison between the ranks

achieved by each technique. The performance of two classifiers is significantly different if

their difference in average rank is higher than the critical difference. The critical difference

is computed using the following equation: CD = qα

√
k(k+1)

6N , where the critical value qα is

based on the Studentized range statistic divided by
√

2. The results of the post-hoc test are

presented using the critical difference diagram proposed in [91] (Figure 4.8). The performance

of techniques in which the difference in average ranks is higher than the critical difference are

considered significantly different. Techniques with no statistical difference are connected by a

black bar in the CD diagram.

CD = 1.2974

7 6 5 4 3 2 1

3 V−shaped GV

3.8 S−shaped GV

3.9667 All Meta−Features

4.0333 S−shaped

4.1667V−shaped

4.3333META−DES.H

4.7META−DES

Figure 4.8 Graphical representation of the average rank for each DES technique

over the 30 datasets. For each technique, the numbers on the main line represent its

average rank. The critical difference (CD) was computed using the Bonferroni-Dunn

post-hoc test. Techniques with no statistical difference are connected by additional

lines



130

One interesting fact is that all techniques proposed in this work obtained lower rank val-

ues when compared to the previous version of the META-DES framework. The META-

DES.Oracle using the V-shaped transfer function obtained the best overall performance, achiev-

ing an average rank of 3.00. Moreover, the results obtained by this technique were also signif-

icantly better than those obtained by both the META-DES and META-DES.H.

The second statistical analysis is conducted in a pairwise fashion in order to verify whether the

difference in classification accuracy obtained by the META-DES.Oracle significantly improves

the classification accuracy when compared to the previous versions of the framework. To that

end, the Wilcoxon non-parametric signed rank test with the level of significance α = 0.05 was

used since it was suggested in [91] as a robust method for a pairwise comparison between

classification algorithms over several datasets. The results of the Wilcoxon statistical test are

shown in the last row of Table 4.3. Techniques that achieve performances equivalent to the

META-DES.H are marked with "~"; those that achieve statistically superior performance are

marked with a "+", and those with inferior performance are marked with a "-". ρ-values are

also shown in the last row of Table 4.3.

The results of the Wilcoxon signed rank test also demonstrate that the META-DES.Oracle using

the V-Shaped transfer function and the global validation overfitting control scheme obtained

classification results that are significantly superior when compared to both the META-DES.H

and the META-DES, with a 95% confidence over the 30 datasets considered in this work. Thus,

based on the analysis, we can answer the two research questions posed at the beginning of this

section: The meta-features selection optimization process does indeed significantly improve

the classification performance of the system, when compared to the previous versions of the

framework. In addition, we can also see that the system using 15 sets of meta-features without

meta-feature selection, META-DES.ALL, achieves similar results when compared to previous

versions of the framework (e.g., META-DES and META-DES.H). This suggest that simply

adding more meta-features does not always lead to a better classification accuracy. The meta-

feature selection stage is important for better addressing the behavior of the Oracle.
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For the sake of simplicity, we refer to META-DES.Oracle, the version of the framework using

the V-Shaped transfer function and global validation, in the rest of this paper.

4.6.5 Comparison with the state-of-the-art DES techniques

In this section, we compare the accuracy obtained by the proposed META-DES.Oracle against

ten state-of-the-art dynamic selection techniques [1]. The goal of this analysis is to know if the

performance of the proposed system is significantly superior when compared to state-of-the-

art DES techniques. The dynamic selection techniques used in this analysis are: Local Clas-

sifier Accuracy (LCA) [22], Overall Local Accuracy (OLA) [22], Modified Local Accuracy

(MLA) [29], K-Nearest Oracles-Eliminate (KNORA-E), K-Nearest Oracles-Union (KNORA-

U) [14], K-Nearest Output Profiles (KNOP) [16], Multiple Classifier Behavior (MCB) [21],

DES-PRC [18] and DCS-Rank [38]. These techniques were selected because they presented

the very best results in the dynamic selection literature according to a recent survey on this

topic [1].

The same pool of classifiers is used for all techniques in order to ensure a fair comparison. For

all techniques, the size of the region of competence, K, was set at 7 since it achieved the best

result in previous experiments [20; 2]. The results are shown in Table 4.4. For each dataset,

we performed a pairwise comparison between the results obtained by the proposed META-

DES.Oracle against those obtained by each state-of-the-art DES technique. The comparison

was conducted using the Kruskal-Wallis non-parametric statistical test, with a 95% confidence

interval. Results that are significantly better are marked with a •. In addition, the average rank

of each technique, as well as the result of the sign test, are presented at the end of Table 4.4.

Figure 4.9 illustrates the average rank of each technique using the CD diagram. Similarly to

Section 4.6.4, the CD was calculated using the Bonferroni-Dunn post-hoc test. The META-

DES.Oracle obtained the lowest average rank, 2.73, followed by the technique based on prob-

abilistic models, DES-PRC [18], presenting an average rank of 4.40. Hence, the performance

of the META-DES.Oracle is significantly better when compared to the majority of the state-of-
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Table 4.4 Mean and standard deviation results of the accuracy obtained for the proposed

META-DES.Oracle and 10 state-of-the-art dynamic selection techniques. The best results

are in bold. Results that are significantly better are marked with •
Database META-DES.Oracle KNORA-E [14] KNORA-U [14] DES-FA [20] LCA [22] OLA [22] MLA [29] MCB [21] KNOP [16] DES-PRC [18] DCS-Rank [38]

Pima 77.53(2.24) 73.79(1.86) 76.60(2.18) 73.95(1.61) 73.95(2.98) 73.95(2.56) 77.08(4.56) 76.56(3.71) 73.42(2.11) 75.41(2.73) 72.97(2.25)

Liver Disorders 72.02(4.72) • 56.65(3.28) 56.97(3.76) 61.62(3.81) 58.13(4.01) 58.13(3.27) 58.00(4.25) 58.00(4.25) 65.23(2.29) 63.70(4.14) 61.24(5.42)

Breast (WDBC) 96.71(0.86) 97.59(1.10) 97.18(1.02) 97.88(0.78) 97.88(1.58) 97.88(1.58) 95.77(2.38) 97.18(1.38) 95.42(0.89) 96.71(0.61) 96.01(1.00)

Blood Transfusion 79.38(1.76) • 77.65(3.62) 77.12(3.36) 73.40(1.16) 75.00(2.87) 75.00(2.36) 76.06(2.68) 73.40(4.19) 77.54(2.03) 75.89(1.41) 74.35(2.49)

Banana 94.54(1.16) 93.08(1.67) 92.28(2.87) 95.21(3.18) 95.21(2.15) 95.21(2.15) 80.31(7.20) 88.29(3.38) 90.73(3.45) 86.44(1.76) 93.44(1.73)

Vehicle 82.87(1.64) 83.01(1.54) 82.54(1.70) 82.54(4.05) 80.33(1.84) 81.50(3.24) 74.05(6.65) 84.90(2.01) 80.09(1.47) 82.76(1.81) 79.61(1.97)

Lithuanian Classes 94.97(2.00) 93.33(2.50) 95.33(2.64) 98.00(2.46) 85.71(2.20) 98.66(3.85) 88.33(3.89) 86.00(3.33) 89.33(2.29) 85.04(1.57) 93.41(1.22)

Sonar 81.63(3.90) • 74.95(2.79) 76.69(1.94) 78.52(3.86) 76.51(2.06) 74.52(1.54) 76.91(3.20) 76.56(2.58) 75.72(2.82) 80.13(5.09) 79.27(5.67)

Ionosphere 89.94(1.97) 89.77(3.07) 87.50(1.67) 88.63(2.12) 88.00(1.98) 88.63(1.98) 81.81(2.52) 87.50(2.15) 85.71(5.52) 87.88(2.48) 88.51(2.87)

Wine 99.52(1.11) • 97.77(1.53) 97.77(1.62) 95.55(1.77) 85.71(2.25) 88.88(3.02) 88.88(3.02) 97.77(1.62) 95.50(4.14) 98.52(1.57) 92.10(5.57)

Haberman 74.22(2.85) 71.23(4.16) 73.68(2.27) 72.36(2.41) 70.16(3.56) 69.73(4.17) 73.68(3.61) 67.10(7.65) 75.00(3.40) 75.15(2.50) 70.32(4.06)

Cardiotocography (CTG) 86.37(1.10) 86.27(1.57) 85.71(2.20) 86.27(1.57) 86.65(2.35) 86.65(2.35) 86.27(1.78) 85.71(2.21) 86.02(3.04) 84.90(1.02) 84.98(0.84)

Vertebral Column 84.90(5.33) 85.89(2.27) 87.17(2.24) 82.05(3.20) 85.00(3.25) 85.89(3.74) 77.94(5.80) 84.61(3.95) 86.98(3.21) 85.90(3.68) 83.62(3.38)

Steel Plate Faults 69.32(1.18) 67.35(2.01) 67.96(1.98) 68.17(1.59) 66.00(1.69) 66.52(1.65) 67.76(1.54) 68.17(1.59) 68.57(1.85) 67.58(0.95) 66.55(1.64)

WDG V1 84.72(0.49) • 84.01(1.10) 84.01(1.10) 84.01(1.10) 80.50(0.56) 80.50(0.56) 79.95(0.85) 78.75(1.35) 84.21(0.45) 84.46(0.48) 83.85(0.61)

Ecoli 81.57(3.47) • 76.47(2.76) 75.29(3.41) 75.29(3.41) 75.29(3.41) 75.29(3.41) 76.47(3.06) 76.47(3.06) 80.00(4.25) 78.82(3.58) 76.73(3.52)

Glass 66.46(4.22) 57.65(5.85) 61.00(2.88) 55.32(4.98) 59.45(2.65) 57.60(3.65) 57.60(3.65) 67.92(3.24) 62.45(3.65) 64.99(4.23) 56.81(6.15)

ILPD 69.79(3.15) 67.12(2.35) 69.17(1.58) 67.12(2.35) 69.86(2.20) 69.86(2.20) 69.86(2.20) 68.49(3.27) 68.49(3.27) 67.88(1.89) 67.81(2.52)

Adult 87.74(2.04) • 80.34(1.57) 79.76(2.26) 80.34(1.57) 83.58(2.32) 82.08(2.42) 80.34(1.32) 78.61(3.32) 79.76(2.26) 86.71(1.53) 83.04(2.42)

Weaning 81.73(3.14) 78.94(1.25) 81.57(3.65) 82.89(3.52) 77.63(2.35) 77.63(2.35) 80.26(1.52) 81.57(2.86) 82.57(3.33) 78.51(3.29) 77.19(2.18)

Laryngeal1 87.42(2.98) • 77.35(4.45) 77.35(4.45) 77.35(4.45) 77.35(4.45) 77.35(4.45) 75.47(5.55) 77.35(4.45) 77.35(4.45) 82.18(3.79) 79.45(3.46)

Laryngeal3 73.67(2.14) 70.78(3.68) 72.03(1.89) 72.03(1.89) 72.90(2.30) 71.91(1.01) 61.79(7.80) 71.91(1.01) 73.03(1.89) 72.41(1.87) 66.67(6.13)

Thyroid 96.99(0.75) • 95.95(1.25) 95.95(1.25) 95.37(2.02) 95.95(1.25) 95.95(1.25) 94.79(2.30) 95.95(1.25) 95.95(1.25) 96.85(0.96) 96.40(1.15)

German credit 76.58(1.99) • 72.80(1.95) 72.40(1.80) 74.00(3.30) 73.33(2.85) 71.20(2.52) 71.20(2.52) 73.60(3.30) 73.60(3.30) 75.07(2.36) 69.78(2.70)

Heart 86.44(3.38) 83.82(4.05) 83.82(4.05) 83.82(4.05) 85.29(3.69) 85.29(3.69) 86.76(5.50) 83.82(4.05) 83.82(4.05) 83.66(3.64) 79.74(4.34)

Satimage 96.65(0.83) • 95.35(1.23) 95.86(1.07) 93.00(2.90) 95.00(1.40) 94.14(1.07) 93.28(2.10) 95.86(1.07) 95.86(1.07) 95.60(0.75) 94.76(0.97)

Phoneme 85.05(1.08) • 79.06(2.50) 78.92(3.33) 79.06(2.50) 78.84(2.53) 78.84(2.53) 64.94(7.75) 73.37(5.55) 78.92(3.33) 73.64(1.55) 79.45(0.88)

Monk2 94.45(1.88) • 80.55(3.32) 77.77(4.25) 75.92(4.25) 74.07(6.60) 74.07(6.60) 75.92(5.65) 74.07(6.60) 80.55(3.32) 80.86(2.58) 86.21(4.93)

Mammographic 80.72(2.56) 82.21(2.27) 82.21(2.27) 80.28(3.02) 82.21(2.27 82.21(2.27) 75.55(5.50) 81.25(2.07) 82.21(2.27) 84.29(1.32) • 79.75(3.48)

MAGIC Gamma Telescope 86.02(2.20) 80.03(3.25) 79.99(3.55) 81.73(3.27) 81.53(3.35) 81.16(3.00) 73.13(6.35) 75.91(5.35) 80.03(3.25) 86.20(1.52) 76.72(1.13)

Average rank 2.73(1.34) 5.56(1.29) 5.33(1.07) 5.90(1.54) 6.20(1.44) 6.80(1.44) 7.30(1.52) 7.33(1.45) 5.93(1.51) 4.40(1.61) 8.10(1.53)

Win-tie-loss n/a 4-3-23 6-1-23 6-1-23 5-2-23 7-1-22 3-2-25 5-1-24 5-0-25 4-2-24 1-0-29

Wilcoxon Signed Test n/a - (ρ = .0003) - (ρ = .0014) - (ρ = .0014) - (ρ = .0152) - (ρ = .0161) - (ρ = .0001) - (ρ = .0003) - (ρ = .0003) - (ρ = .0003) - (ρ = .0003)
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Figure 4.9 Average rank of the dynamic selection methods over the 30 datasets.

The best algorithm is the one presenting the lowest average rank

the-art DES techniques. Only the DES-PRC obtained a statistically equivalent performance.

However, when we compared those two techniques in terms of wins, ties and losses as re-

ported in Table 4.4, we could see that the META-DES.Oracle obtained the best accuracy for
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24 datasets, while the DES-PRC outperformed the META-DES.Oracle only in 4 datasets. For

two datasets, the results of both techniques were tied. Furthermore, we also performed the

Wilcoxon non-parametric signed rank test with the level of significance α = 0.05 for a pair-

wise comparison between the results obtained by the META-DES.Oracle against state-of-the-

art DES techniques over the 30 datasets. The results of the Wilcoxon test are presented in the

last row of Table 4.4.

When a pairwise comparison between the techniques is performed, we can see that the META-

DES.Oracle dominates when compared against previous DES techniques. Its performance is

statistically better when compared to any of the 10 state-of-the-art techniques. This can be

explained by two factors: state-of-the-art DES techniques are based only on one criterion to

estimate the competence of the base classifier; this could be, local accuracy, ranking, proba-

bilistic models, etc. For instance, the ranking and probabilistic criteria used by the DCS-RANK

and DES-PRC techniques are embedded in the META-DES framework as meta-features frank

and fPRC, respectively. In addition, through the BPSO meta-features selection scheme, only

the meta-features that are relevant for the given classification problem are selected and used

for the training of the meta-classifier. As shown in Figure 4.6, the selected meta-features vary

considerably according to different classification problems. Thus, it is expected that the pro-

posed framework obtains a significant gain in performance when compared to previous DES

techniques.

4.6.6 Comparison with Static techniques

In this section, we compare the results obtained by the META-DES.Oracle against static en-

semble techniques as well as single classifier models. For the static ensemble techniques, we

evaluate the performance of the AdaBoost [5], Bagging [3], the classifier with the highest ac-

curacy in the validation data (Single Best) and a static ensemble selection method based on

the majority voting error proposed in [66]. Furthermore, three single classifier models are

considered: MLP Neural Network, Support Vector Machines with Gaussian Kernel (SVM)

and Random Forest classifier. These classifiers were selected based on a recent study [71]



134

that ranked the best classifiers in a comparison considering a total of 179 classifiers over 121

classification datasets.

The objective of this study is to determine whether the proposed META-DES.Oracle obtain

recognition accuracy that is either statistically better or equivalent to the ones achieved by the

best classifiers in the literature [71]. This is an important analysis since the DES literature still

lacks a comparison with classical classification approaches that do not use ensembles. In the

DES literature, the accuracy of the proposed techniques are only compared either with other

DES techniques or with static ensemble selection considering the same pool of classifiers [1].

All classifiers were evaluated using the Matlab PRTOOLS toolbox [63]. Since static tech-

niques require neither a meta-training nor a dynamic selection phase, the training (T ) and

meta-training set (Tλ ) were merged into a single training set. The dynamic selection dataset

(DSEL) was used as the validation dataset. The test set, G, remained unchanged. For each

replication, the parameters of the single classifier model were set as follows:

a. MLP Neural Network: We varied the number of neurons in the hidden layer from 10 to

100 at 10 point intervals. The configuration that achieved the best results in the validation

data was used. The MLP training process was conducted using the Levenberg-Marquadt

algorithm. The process was stopped if the performance on the validation set decreased or

failed to improve for five consecutive epochs.

b. SVM with a Gaussian Kernel: A grid search was performed in order to set the values of

the regularization parameter, c, and the Kernel spread parameter γ .

c. Random Forest: We varied the number of trees from 25 to 200 at 25 point intervals.

The configuration with the highest performance on the validation dataset was used for

generalization.

The classification accuracy of each technique is reported in Table 4.5. For each dataset,

we performed a pairwise comparison between the results obtained by the proposed META-
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DES.Oracle, against the results obtained by each state-of-the-art DES technique. The com-

parison was conducted using the Kruskal-Wallis non-parametric statistical test, with a 95%

confidence interval. Results that are significantly better at a 95% confidence are marked with

•. Moreover, we also report the average ranks and the results of the Wilcoxon test at the end of

Table 4.5. Figure 4.10 illustrates the critical difference diagram.

Table 4.5 Mean and standard deviation results of the accuracy obtained for the proposed

META-DES and static classification models. The best results are in bold. Results that are

significantly better (p < 0.05) are marked with •
Database META-DES.Oracle Single Best [1] Bagging [3] AdaBoost [5] Static Selection [66] MLP NN SVM Random Forest

Pima 77.53(2.24) 73.57(1.49) 73.28(2.08) 72.52(2.48) 72.86(4.78) 69.37(2.94) 76.56(2.71) 74.32(3.92)

Liver Disorders 72.02(4.72) 65.38(3.47) 62.76(4.81) 64.65(3.26) 59.18(7.02) 61.86(4.86) 71.27(4.10) 67.32(4.79)

Breast (WDBC) 96.71(0.86) 97.04(0.74) 96.35(1.14) 98.24(0.89) • 96.83(1.00) 95.77(0.74) 97.81(1.07) 95.85(1.37)

Blood Transfusion 79.38(1.76) • 75.07(1.83) 75.24(1.67) 75.18(2.08) 75.74(2.23) 76.38(1.48) 75.42(4.23) 73.03(6.35)

Banana 94.54(1.16) 84.07(2.22) 81.43(3.92) 81.61(2.42) 81.35(4.28) 98.11(0.85) 98.19(0.78) • 97.02(1.03)

Vehicle 82.87(1.64) • 81.87(1.47) 82.18(1.31) 80.56(4.51) 81.65(1.48) 72.31(8.63) 74.19(3.00) 79.00(2.42)

Lithuanian Classes 94.97(2.00) 84.35(2.04) 82.33(4.81) 82.70(4.55) 82.66(2.45) 92.66(3.15) 96.40(1.70) • 95.53(1.50)

Sonar 81.63(3.90) 78.21(2.36) 76.66(2.36) 74.95(5.21) 79.03(6.50) 76.15(6.09) 82.80(3.99) 84.80(6.62) •
Ionosphere 89.94(1.97) 87.29(2.28) 86.75(2.75) 86.75(2.34) 87.50(2.23) 86.36(4.31) 94.54(1.58) • 94.09(2.50)

Wine 99.52(1.11) • 96.70(1.46) 95.56(1.96) 99.20(0.76) 96.88(1.80) 92.88(10.30) 98.88(1.17) 97.33(2.29)

Haberman 74.52(2.94) 75.65(2.68) 72.63(3.45) 75.26(3.38) 73.15(3.68) 68.42(5.15) 71.10(2.21) 63.81(7.23)

Cardiotocography (CTG) 86.37(1.10) 84.21(1.10) 84.54(1.46) 83.06(1.23) 84.04(2.02) 88.19(2.27) 92.29(0.76) • 91.27(1.20)

Vertebral Column 84.90(5.33) 82.04(2.17) 85.89(3.47) 83.22(3.59) 84.27(3.24) 84.14(4.55) 84.74(4.33) 84.48(3.93)

Steel Plate Faults 69.32(1.18) 66.05(1.98) 67.02(1.98) 66.57(1.06) 67.22(1.64) 68.99(2.63) 74.00(1.72) • 69.83(3.05)

WDG V1 84.72(0.49) 83.17(0.76) 84.36(0.56) 84.04(0.37) 84.23(0.53) 81.68(7.82) 86.90(0.09) • 85.89(0.46)

Ecoli 81.57(3.47) 69.35(2.68) 72.22(3.65) 70.32(3.65) 67.80(4.60) 74.35(14.08) 83.88(2.42) 67.65(7.55)

Glass 66.46(4.22) 52.92(4.53) 62.64(5.61) 55.89(3.25) 57.16(4.17) 56.22(7.99) 60.60(5.17) 66.54(6.01)
ILPD 69.79(3.15) 67.53(2.83) 67.20(2.35) 69.38(4.28) 67.26(1.04) 64.31(3.68) 66.23(3.95) 65.68(3.94)

Adult 87.74(2.04) • 83.64(3.34) 85.60(2.27) 83.58(2.91) 84.37(2.79) 80.33(3.25) 85.31(3.06) 83.03(4.60)

Weaning 81.73(3.14) 74.86(4.78) 76.31(4.06) 74.47(3.68) 76.89(3.15) 80.92(4.77) 87.23(1.96) 88.25(2.93) •
Laryngeal1 87.42(2.98) • 80.18(5.51) 81.32(3.82) 79.81(3.88) 80.75(4.93) 76.98(6.01) 81.69(4.70) 80.18(4.81)

Laryngeal3 73.67(2.14) 68.42(3.24) 67.13(2.47) 62.32(2.57) 71.23(3.18) 64.26(4.19) 74.60(2.95) 71.12(4.73)

Thyroid 96.99(0.75) • 95.15(1.74) 95.25(1.11) 96.01(0.74) 96.24(1.25) 94.98(1.35) 94.79(0.10) 95.08(0.49)

German credit 76.58(1.99) • 71.16(2.39) 74.76(2.73) 72.96(1.25) 73.60(2.69) 64.20(3.98) 75.32(1.70) 70.35(5.85)

Heart 86.44(3.38) • 80.26(3.58) 82.50(4.60) 81.61(5.01) 82.05(3.72) 71.17(6.86) 83.44(3.28) 77.79(3.27)

Satimage 96.65(0.83) 94.52(0.96) 95.23(0.87) 95.43(0.92) 95.31(0.92) 92.65(2.97) 91.15(1.20) 96.21(1.42)

Phoneme 85.05(1.08) 75.87(1.33) 72.60(2.33) 75.90(1.06) 72.70(2.32) 82.11(4.17) 76.27(1.85) 89.59(0.20) •
Monk2 94.45(1.88) 79.25(3.78) 79.18(2.57) 80.27(2.76) 80.55(3.59) 99.25(1.21) • 96.57(1.38) 83.88(3.09)

Mammographic 80.72(2.56) 83.60(1.85) 85.27(1.85) • 83.07(3.03) 84.23(2.14) 77.88(9.87) 80.29(1.83) 77(1.12)

MAGIC Gamma Telescope 86.02(2.20) 80.27(3.50) 81.24(2.22) 87.35(1.45) 85.25(3.25) 83.07(2.20) 87.20(1.52) 88.65(2.32)
Average rank 2.43(0.86) 5.40(0.87) 4.80(1.02) 5.26(1.03) 4.70(0.83) 4.93(1.16) 3.26(1.04) 4.20(1.28)

Win-Tie-Loss n/a 3-1-26 4-0-26 5-1-24 3-1-26 4-1-25 12-3-15 10-2-18

Wilcoxon Signed Test n/a - (ρ = .0001) - (ρ = .0001) - (ρ = .0003) - (ρ = .0001) - (ρ = .0101) ~ (ρ = .3600) ~ (ρ = .2005)

Based on the result,s we can conclude that the META-DES.Oracle outperforms static ensem-

ble techniques. This result was expected since many works in the DES literature have shown

that dynamic selection outperforms static combination rules in many applications [1]. More-

over, this claim is especially true when a pool of weak linear classifiers is considered since

they become experts into different regions of the feature space. As reported in [37], a static

combination of base classifiers in such a case may not yield a good classification performance

since there may never be a consensus in the correct answer between the classifiers in the pool.

However, when dynamic selection is used, only the most competent classifiers for the given
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Figure 4.10 Average rank of the dynamic selection methods over the 30 datasets.

The best algorithm is the one presenting the lowest average rank

query sample are selected to predict its label. As such, the classifiers that are not experts in the

local region do not influence the ensemble decision negatively.

When compared with single classifier models, the META-DES.Oracle obtained the lowest

average rank. The results achieved META-DES.Oracle is statistically equivalent to those

achieved by the SVM classifier, based on both the Friedman test with Bonferroni-Dunn post-

hoc test, and the Wilcoxon sign test at α = 0.05 significance. Hence, the analysis demonstrate

the classification performance achieved by the proposed META-DES.Oracle is among the best

classifier models in the literature, since both SVM and Random Forests presented the overall

best performance in the analysis conducted by Delgado et al. [71].

It is important to point out that the META-DES.Oracle obtained a small advantage in terms of

wins, ties and losses when compared to the SVM classifier. The META-DES.Oracle presented

the best recognition accuracy in 16 datasets, while the SVM obtained a higher accuracy in

12 datasets. For two datasets (Vertebral Column and Mammographic), the results were tied.

This result may be explained by the fact most of the datasets used in this analysis are ill-

defined, i.e., small sample size datasets. For such datasets, the training data may not have

enough samples to train a single classifier model and select the best hyperparameters, e.g.,

the number of neurons in the hidden layer of an MLP neural network, or the regularization
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parameter, c, and the Kernel spread parameter, γ , in an SVM. In addition, since the training

set was small, there might be variations between the training and test distribution. The META-

DES.Oracle obtained the best results for several ill-defined problems, such as Liver disorders,

Blood transfusion, Heart, Laryngeal1, Wine and Thyroid. Those are all small-sized datasets

with less than 500 samples available for training. One advantage of the META-DES framework

is that the pool is composed of linear classifiers which do not require the selection of any hyper-

parameters. Thus, the training can be performed using small size datasets. Since the training

set is relatively small, the classifiers may specialize in local regions of the feature space. Using

dynamic selection, only the most competent classifiers in the local region where the test sample

is located are used to predict its label. Thus, through DES, it is still possible to obtain high

classification accuracy even for ill-defined problems.

Furthermore, the optimization process of the META-DES.Oracle framework is conducted in

the meta-problem, using the meta-data extracted in the meta-training stage. Several meta-

feature vectors are generated for each training sample in the meta-training phase. For instance,

consider that 200 training samples are available for the meta-training stage (N = 200); if the

pool C is composed of 100 weak classifiers (M = 100), the meta-training dataset is the number

of training samples N × the number classifiers in the pool M, N ×M = 20.000. Hence, even

though the problem may be ill-defined, the framework generates enough meta-training data in

order to properly train the meta-classifier. There is more data to train the meta-classifier λ

than for the generation of the pool of classifiers C itself. Hence, even though the classification

problem may be ill-defined, given the size of the training set, using the proposed framework,

we can overcome this limitation since the size of the meta-problem is up to 100 times bigger

than the classification problem.

4.7 Conclusion

In this chapter, we propose a novel DES framework using meta-learning and Oracle informa-

tion, called META-DES.Oracle. 15 sets of meta-features are proposed, using different sources

of information found in the DES literature for dynamically estimating the level of competence
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of base classifiers; these include, local accuracy, ranking, probabilistic, ambiguity and behav-

ior. Next, a meta-feature selection scheme using overfitting cautious Binary Particle Swarm

Optimization is performed to optimize the performance of the meta-classifier. The optimiza-

tion process is guided by a formal definition of the Oracle. Thus, the meta-classifier can better

address the complex behavior of the Oracle.

We have conducted a case study using the P2 problem, which is a synthetic dataset with a

complex non-linear decision border. We demonstrate that using a pool composed of 5 linear

Perceptron classifiers, it is possible to approximate the complex decision boundary of the P2

problem using the proposed framework. The proposed META-DES.Oracle obtained a recogni-

tion performance of 97%, which is closer to the results obtained by the Oracle, and compares

very favorably against previous versions of the META-DES framework.

Experiments were conducted using 30 classification problems. First, we performed an analysis

of the meta-features that were selected for each problem. The analysis demonstrated that the

selected sets of meta-features varies considerably according to different datasets. In addition,

each meta-feature was selected in at least 20% of the datasets. All sets of meta-features was

thus relevant in better addressing the complex behavior of the Oracle. Next, the performance

obtained by the proposed META-DES.Oracle was compared with previous versions of the

META-DES framework, as well as ten state-of-the-art dynamic selection techniques. Exper-

imental results demonstrate that the META-DES.Oracle outperforms the previous versions of

the technique in the majority of the datasets. In addition, the gain in performance obtained by

the META-DES.Oracle is shown to be statistically significant based on both the Friedman test

with a post-hoc Bonferroni-Dunn correction and the Wilcoxon sign rank test. Thus, the BPSO

meta-features selection scheme proposed in this paper does indeed significantly improve the

classification performance of the framework.

When compared with static and single classifier methods, the results achieved by the proposed

META-DES.Oracle are comparable with the best performing classifiers. Moreover, the results

confirm the claim that DES techniques outperform single classifier models for ill-defined prob-
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lems. Since the optimization process of the META-DES.Oracle is performed using the meta-

data generated during the meta-training stage, there is enough data to train and optimize the

meta-classifier. Thus, the proposed framework can deal with small sample size classification

problems.
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Abstract

In dynamic ensemble selection (DES) techniques, only the most competent classifiers, for the

classification of a specific test sample are selected to predict the sample’s class labels. The key

in DES techniques is estimating the competence of the base classifiers for the classification of

each specific test sample. The classifiers’ competence is usually estimated according to a given

criterion, which is computed over the neighborhood of the test sample defined on the validation

data, called the region of competence. A problem arises when there is a high degree of noise in

the validation data, causing the samples belonging to the region of competence to not represent

the query sample. In such cases, the dynamic selection technique might select the base classi-

fier that overfitted the local region rather than the one with the best generalization performance.

In this paper, we propose two modifications in order to improve the generalization performance

of any DES technique. First, a prototype selection technique is applied over the validation data

to reduce the amount of overlap between the classes, producing smoother decision borders.

During generalization, a local adaptive K-Nearest Neighbor algorithm is used to minimize the

influence of noisy samples in the region of competence. Thus, DES techniques can better es-

timate the classifiers’ competence. Experiments are conducted using 10 state-of-the-art DES

techniques over 30 classification problems. The results demonstrate that the proposed scheme

significantly improves the classification accuracy of dynamic selection techniques.
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5.1 Introduction

In the last few years, dynamic ensemble selection (DES) [1] has become an active research

topic in multiple classifier systems. The rationale behind such techniques resides in the ob-

servation that not every classifier in the pool is an expert in classifying all unknown samples.

Each base classifier1 is an expert in a different local region of the feature space [27].

Dynamic selection techniques consist, based on a pool of classifiers C, in finding a single

classifier ci, or an ensemble of classifiers C′, that has (or have) the most competent classifiers

to predict the label for a specific test sample, x j. The most important component of DES

techniques is how the competence level of the base classifier is measured, given a specific test

sample x j. Usually, the competence of a base classifier is estimated based on instances that

are similar to the query instance, using the K-Nearest Neighbors (KNN) technique and a set of

labeled samples, which can be either the training or validation set. In this paper, we refer to

such a set as the dynamic selection dataset (DSEL), following the conventions of the dynamic

selection literature [2; 1]. The set with the K-Nearest Neighbors of a given test sample x j is

called the region of competence, and is denoted by θ j = {x1, . . . ,xK}. The samples belonging

to θ j are used to estimate the competence of the base classifiers, for the classification of x j,

based on various criteria, such as the overall accuracy of the base classifier in this region [22],

ranking [38], ambiguity [15], oracle [14] and probabilistic models [45].

A problem arises with dynamic selection techniques when the samples in the local region

are not representative enough of the query sample. This may be seen in cases in which a high

degree of overlap is present between the classes, and as a result of noise or outliers. As reported

in [37], the performance of dynamic selection techniques is very sensitive to the distribution of

DSEL.

In order to illustrate how the presence of noise in DSEL can lead to poor classification re-

sults by using a dynamic selection technique, we perform a case study using the synthetic P2

problem proposed in [92]. The P2 is a bi-dimensional two-class synthetic classification prob-

1The term base classifier refers to a single classifier belonging to an ensemble or a pool of classifiers
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Figure 5.1 Case study using the synthetic P2 problem. The red circle represents the

class 1 and the blue cross the class 2. The axes represent the values of the two features of

the P2 problem. (a) The original distribution of DSEL. (b) The distribution of DSEL with

25% of added noise by switching labels of samples close to the class borders. The noisy

samples are highlighted in green. (c) Result of the META-DES framework using the

Original DSEL. (d) Results of the META-DES framework using the noisy DSEL.

lem in which each class is defined in multiple decision regions delimited by polynomial and

trigonometric functions.

For this example, the META-DES framework proposed in [2] is considered since it outper-

formed several dynamic selection techniques in multiple classification benchmarks. The P2
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problem was generated using the same methodology reported in [37]: 500 samples for the

training set (T ), 500 instances for the dynamic selection dataset, DSEL, and 2000 samples for

the test set, G. The original distribution of DSEL is shown in Figure 5.1 (a). The red circle and

blue cross represent samples belonging to class 1 and class 2, respectively.

Since there is no overlap between the classes in the original distribution, we generate noise in

DSEL by switching the labels of samples that are close to the decision border with a 25% prob-

ability (Figure 5.1 (b)). Samples that had their class labels changed are highlighted in green.

Figures 5.1 (c) and (d) show the approximation of the P2 border achieved by the META-DES

framework plotted over the test distribution. Figure 5.1 (c) presents the decision achieved us-

ing the original distribution of DSEL. In contrast, Figure 5.1 (d) presents the decision obtained

using DSEL with 25% of added noise. We can observe that the META-DES fails to obtain a

good approximation of the decision boundary of the P2 Problem when noise is added to DSEL.

Moreover, the errors committed by the META-DES occur in regions of the feature space where

the presence of noise in DSEL is more evident.

This work therefore aims to improve the classification accuracy of dynamic selection tech-

niques by reducing the presence of noise in DSEL. The proposed scheme is based on two

steps: The first modification proposed in this paper applies a prototype selection mechanism

to the dynamic selection set, DSEL, in order to eliminate instances highly likely to be noise,

and also reduces the amount of overlap between the classes. The Edited Nearest Neighbor

(ENN) [93] rule is used for this purpose. Secondly, the local regions of the query sample are

estimated using an adaptive KNN rule (AKNN), which shifts the region of competence from

the class border to the class centers. Samples that are more likely to be noise are less likely to

be selected to compose the region of competence. As such, we expect the dynamic selection

technique to be able to better estimate the competence level of a base classifier, leading to better

generalization performance. It should be mentioned that the proposed method can be applied

to any dynamic selection technique that uses local information in estimating the competence

of the base classifier.
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The proposed approach is evaluated using 10 state-of-the-art dynamic classifier and ensemble

selection techniques over 30 classification datasets. We evaluate four scenarios: (I) The dy-

namic selection techniques using the original dynamic selection dataset and the standard KNN

algorithm for computing the region of competence θ j; (II) The ENN is applied to edit DSEL

and the standard KNN is used; (III) Only the AKNN technique is used, and (IV) Both the ENN

and the AKNN techniques are used. The following research questions are analyzed: (1) Does

the prototype selection technique lead to an improvement in classification accuracy? (2) Which

scenario produces the best recognition rates? (3) Which dynamic selection technique benefits

the most from the proposed scheme?

This paper is organized as follows: The proposed approach is detailed in Section 5.2. The

experimental study is conducted in Section 5.3. Finally, our conclusion and future works are

presented in the last section.

5.2 Proposed method

Two changes are proposed in this paper; one during the training stage, and the other in the

generalization stage. In the training stage, we apply a prototype selection technique in the

dataset DSEL in order to remove noise and outliers. To that end, the Edited Nearest Neighbor

technique is considered since it is able to significantly reduce the presence of noise in the

dataset, thereby improving the KNN performance [93]. During the generalization stage, given

a new test sample x j,test , the region of competence θ j is computed based on the samples in the

edited dynamic selection dataset, denoted by DSEL
′
, using a local adaptive distance rule. Both

techniques are presented in the following sections.

5.2.1 Edited Nearest Neighbor (ENN)

There are three types of prototype selection mechanisms available [94]: condensation, edition

and hybrid. Condensation techniques are used in order to reduce the dataset size, without

losing the generalization performance of the system. Edition techniques aim to improve the
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performance of the KNN algorithm by removing instances with a high risk of being noise. The

editing process occurs in regions of the feature space with a high degree of overlap between

classes, producing smoother class boundaries. Hybrid techniques perform both a condensation

of the data and edition of the class borders. Since our goal is to improve the classification

accuracies, an edition technique is performed. The Edited Nearest Neighbor (ENN) [93] is

used since it is a very well-known technique for removing noise and decreasing the amount

of overlap in the class borders, producing smoother decision borders. Moreover, the ENN

technique is known to significantly improve the performance of the KNN [94].

Input: Dynamic Selection Dataset DSEL

1: DSEL
′
= DSEL

2: for each x j,DSEL ∈ DSEL do
3: if label

(
x j,DSEL

)
�= label

(
KNN

(
x j,DSEL

))
then

4: DSEL
′
= DSEL

′ \
{

x j,DSEL
}

5: end if
6: end for
7: return DSEL

′

Algorithm 5.1: The Edited Nearest Neighbor rule

Given the dynamic selection dataset DSEL, the ENN algorithm works as follows (Algorithm 5.1):

For each instance x j,DSEL ∈ DSEL, the class label of x j,DSEL is predicted using the KNN al-

gorithm using a leave-one-out procedure. A K = 3 was used, as suggested by Wilson [93],

in order to satisfy the asymptotic properties of the NN technique. If x j,DSEL is misclassified

by the KNN technique, it is removed from the set, since x j,DSEL is in a region of the feature

space where the majority of samples belongs to a different class. The edited dynamic selection

dataset, denoted by DSEL
′
, is obtained at the end of the process.

It should be mentioned that the ENN does not remove all samples in the class borders, and

that the intrinsic geometry of the class borders and the distribution of the classes are preserved.

Only instances that are associated with a high degree of instance hardness, i.e., those for which

the majority of neighbors belong to a different class, are removed. As reported in [95], these

samples have a reputation for being hard to be correctly classified by the majority of learning
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algorithms. Only the classifiers that overfitted the training data are able to predict its correct

class label. In such cases, the dynamic selection technique might select the base classifier that

overfitted the local region rather than the one that has the best generalization performance in

the region. By removing these instances, we expect the dynamic selection techniques to be

able to better estimate the base classifier’s competences.

5.2.2 K-Nearest Neighbor with Local Adaptive Distance

The locally adaptive distance for KNN was proposed in [96]. For each sample x j,DSEL′ in the

edited dynamic selection dataset DSEL
′
, the largest hypersphere centered on x j,DSEL′ , which

excludes all samples in DSEL
′

with a different class label, is constructed (Figure 5.2). Such a

hypersphere is built by computing its radius R j,DSEL′ , which is measured as the minimum dis-

tance between the sample R j,DSEL′ and a sample from a different class x jk,DSEL′ (Equation 5.1):

R j,DSEL′ = d
(

x j,DSEL′ ,x jk,DSEL′
)
− ε (5.1)

where d
(

x j,DSEL′ ,x jk,DSEL′
)

is the Euclidean distance between the instances x j,DSEL′ and

x jk,DSEL′ , ε is a small number (in this work ε = 0.01). w j,DSEL′ and w jk,DSEL′ are the labels of

x j,DSEL′ and x jk,DSEL′ , respectively.

Each instance belonging to DSEL
′

is associated with a hypersphere of radius R j,DSEL′ . The

hypersphere associated with each sample delimits the region within which its class label can

be generalized to other samples without making an error [96]. The hypersphere associated

with samples that are closer to the class center have a larger radius since they are more distant

from samples from different classes, when compared to those hyperspheres that are associated

with samples that are closer to the class boundaries. Figure 5.2 illustrates an example of the

hypersphere associated with different samples from the P2 problem.

The adaptive distance between a given test sample x j,test and a sample belonging to DSEL
′
,

x j,DSEL′ , is obtained using Equation 5.2.
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Figure 5.2 Example of the hypersphere associated with the samples

in DSEL
′
, considering the P2 problem. The red circle and the blue

cross represent samples belonging to class 1 and class 2, respectively.

The X- and Y-axes indicate the values of the two features of the P2

problem.

dadaptive(x j,test ,x j,DSEL′ ) =
d(x j,test ,x j,DSEL′ )

R j,DSEL′
(5.2)

The distance is said to be adaptive since the influence of each sample is normalized by a factor

R j,DSEL′ , which changes according to the spatial location of each instance in DSEL
′
. The

larger the value of R j,DSEL′ (i.e., larger hypersphere), the lower the value of dadaptive. The A-

KNN technique is beneficial in regions where there is a high degree of overlap between the two

classes, since it tends to identify samples that have larger hyperspheres as the nearest neighbors

to the query sample. As reported in [96], the majority of K-Nearest Neighbors selected are

more likely to have the same class label as the query sample. Thus, the dynamic selection

algorithm can better estimate the competence of the base classifiers for the classification of

x j,test .
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b) META-DES using the edited DSEL
′
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c) META-DES using the adaptive KNN
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d) META-DES using the edited DSEL
′

and the

Adaptive KNN

Figure 5.3 Case study using the two-dimensional P2 problem. The axes represent the

values of the two features of the P2 problem: (a) Distribution of DSEL after applying the

ENN technique to clean the border. Noisy samples are highlighted in green; (b) Result of

the META-DES framework using DSEL
′
for computing the local regions; (c) Result of

the META-DES using the adaptive distance (AKNN); (d) Result of the META-DES

framework using both the ENN and the AKNN techniques.

5.2.3 Case study

Using the same distributions of the P2 problem discussed in Section 1, if we apply the ENN

technique in editing the dynamic selection dataset, the overlap in the decision boundary is
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significantly removed. Figure 5.3 (a) shows the distribution of the edited dynamic selection

dataset DSEL
′
using the ENN prototype selection technique. Noisy samples are highlighted in

green. We can see that the majority of noisy samples were removed from DSEL. In addition,

we can see that the geometry of the decision border is still preserved. Figure 5.3 (b) shows

the result of the META-DES technique using the DSEL
′

in computing the local regions. The

META-DES can have a closer approximation of the real decision boundary of the P2 problem.

However, it can be seen that there are still some outliers in the edited DSEL, and their presence

still negatively affects the performance of the system.

The adaptive distance comes in handy in those cases since there is no guarantee that the ENN

will completely remove all noisy samples from DSEL. If we also use the adaptive distance

(Figure 5.3 (c)) in computing the region of competence θ j, the META-DES can obtain a de-

cision boundary that is close to those obtained using a noise-free DSEL. Thus, by editing the

dynamic selection dataset and the adaptive KNN distance, we can obtain a good approximation

of the decision boundary of the P2 problem, even with a high noise presence.

5.3 Experiments

In this section, we compare the impact of the adaptive distance and the editing of the class

boundaries using several state-of-the-art dynamic classifier selection and dynamic ensemble

selection techniques found in the literature.

5.3.1 Dynamic selection methods

A total of 10 dynamic selection techniques were considered in the experiments. In order to

have a balance between dynamic classifier selection (DCS) and dynamic ensemble selection

(DES), we considered five techniques from each paradigm. In addition, based on the dynamic

selection taxonomy proposed in [1], there were five categories: Ranking, Accuracy, Oracle,

Probabilistic and Behavior. To ensure the availability of a diverse set of techniques, we consid-

ered at least one technique taken from each category. We also included the META-DES in the
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experimental study which was published after the survey, and could be considered as belonging

to a different category (meta-learning). Thus, methods that use different sources of information

for estimating the competence level of the base classifiers were considered in the experimental

study. Table 5.1 illustrates the 10 dynamic selection techniques considered in this work.

For dynamic classifier selection, the following techniques were considered: Local classifier

Accuracy (LCA) [22], Overall Local Accuracy (OLA) [22], Modified Local Accuracy (MLA)

[29], Classifier ranking (RANK) [38] and the Multiple Classifier Behavior (MCB) [21]. The

following techniques for dynamic ensemble selection were considered: K-Nearest Oracles

Eliminate (KNORA-E) [14], K-Nearest Oracles Union (KNORA-U) [16], Randomized Refer-

ence Classifier (DES-PRC) [40], K-Nearest Output Profiles (KNOP) [16; 17], and the META-

DES framework [2]. The pseudo-code for each technique can be found in the following sur-

vey [1], and in [2], for the META-DES framework.

Table 5.1 Dynamic selection techniques considered in the experiments. Pseudo-code for

each technique can be found in the following survey [1], and in [2], for the META-DES

framework.

Technique Category Reference

DCS

Classifier Rank (RANK) Ranking Sabourin et al. [38]

Local Classifier Accuracy (LCA) Accuracy Woods et al.[22]

Overall Local Accuracy (OLA) Accuracy Woods et al.[22]

Modified Local Accuracy (MLA) Accuracy P.C. Smits[29]

Multiple Classifier Behavior (MCB) Behavior Giacinto et al.[21]

DES

K-Nearests Oracles Eliminate (KNORA-E) Oracle Ko et al.[14]

K-Nearests Oracles Union (KNORA-U) Oracle Ko et al.[14]

Randomized Reference Classifier (RRC) Probabilistic Woloszynski et al.[18]

K-Nearests Output Profiles (KNOP) Behavior Cavalin et al.[16]

META-DES Meta-Learning Cruz et al.[2]

5.3.2 Datasets

The experiments were conducted on 30 datasets taken from five different data repositories.

Sixteen datasets were taken from the UCI machine learning repository [59], four from the

STATLOG project [60], four from the Knowledge Extraction based on Evolutionary Learning
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(KEEL) repository [61], four from the Ludmila Kuncheva Collection of real medical data [62],

and two artificial datasets generated with the Matlab PRTOOLS toolbox [63]. The experimental

study is focused on small size datasets, since, as reported by Cavalin et al. [16], dynamic

selection techniques have been shown to be an effective tool for problems where the level of

uncertainty for recognition is high due to few training samples being available. However, a few

larger datasets, such as the Magic gamma telescope, phoneme and Adult, were also considered

in order to evaluate the performance of the proposed scheme for different types of classification

problems.

Since ensemble methods have recently become popular in dealing with the class imbalance

problem [97; 98], several imbalanced datasets, such as Ecoli, Glass, Satimage and Phoneme,

were also considered. Table 5.2 presents the main characteristics of the 30 classification

datasets. The imbalanced ratio (IR) is measured by the number of instances of the majority

class per instance of the minority class. Thus, a higher IR value indicates a higher degree of

imbalance.

In order to ensure a fair comparison between the results obtained by the proposed technique

and those from the DES literature, the same experimental setup as in previous works [2] is

considered. For each dataset, the experiments were carried out using 20 replications. For each

replication, the datasets were randomly divided on the basis of 50% for training, T , 25% for

the dynamic selection dataset, DSEL, and 25% for the generalization set, G. The divisions

were performed while maintaining the prior probabilities of each class. Since the META-DES

framework requires an additional training step for the training of the meta-classifiers (meta-

training), 25% of the training set was used in the meta-training phase. The pool of classifiers

C was composed of 100 Perceptrons generated using the Bagging technique. The size of the

region of competence (neighborhood size) K was equally set at 7 for all techniques. The hyper-

parameters for the META-DES framework were set according to guidelines proposed by the

authors [69; 37].
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Table 5.2 Summary of the 30 datasets used in the experiments [Adapted from [2]]. The

imbalanced ratio (IR) is measured by the number of instances of the majority class per

instance of the minority class.

Database No. of Instances Dimensionality No. of Classes IR Source
Pima 768 8 2 1.87 UCI

Liver Disorders 345 6 2 1.37 UCI

Breast (WDBC) 568 30 2 1.86 UCI

Blood transfusion 748 4 2 3.20 UCI

Banana 1000 2 2 1.00 PRTOOLS

Vehicle 846 18 4 1.09 STATLOG

Lithuanian 1000 2 2 1.00 PRTOOLS

Sonar 208 60 2 1.14 UCI

Ionosphere 315 34 2 1.78 UCI

Wine 178 13 3 1.47 UCI

Haberman’s Survival 306 3 2 2.78 UCI

Cardiotocography (CTG) 2126 21 3 9.40 UCI

Vertebral Column 310 6 2 2.1 UCI

Steel Plate Faults 1941 27 7 14.05 UCI

WDG V1 5000 21 3 1.02 UCI

Ecoli 336 7 8 71.50 UCI

Glass 214 9 6 8.44 UCI

ILPD 583 10 2 2.49 UCI

Adult 48842 14 2 3.17 UCI

Weaning 302 17 2 1.00 LKC

Laryngeal1 213 16 2 1.62 LKC

Laryngeal3 353 16 3 4.19 LKC

Thyroid 215 5 3 12.05 LKC

German credit 1000 20 2 2.33 STATLOG

Heart 270 13 2 1.25 STATLOG

Satimage 6435 19 7 9.29 STATLOG

Phoneme 5404 6 2 2.41 ELENA

Monk2 4322 6 2 1.11 KEEL

Mammographic 961 5 2 1.05 KEEL

MAGIC Gamma Telescope 19020 10 2 1.84 KEEL

5.3.3 Comparison between different scenarios

We evaluated four different scenarios for the dynamic selection techniques (Table 5.3).

For each scenario, we evaluated each dynamic selection technique over the 30 datasets, for

a total of 300 experiments (30 datasets × 10 techniques) per scenario. To compare the four

approaches, the Friedman rank analysis was conducted since it is a robust statistical method

for comparing multiple techniques over several datasets [91].
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Table 5.3 Four test scenarios

Scenario ENN Adaptive KNN
I No No

II Yes No

III No Yes

IV Yes Yes

For each dataset and dynamic selection method, the Friedman test ranks each scenario, with

the best performing one getting rank 1, the second best rank 2, and so forth. Then, the aver-

age rank of each scenario is calculated. The best scenario is the one that obtained the lowest

average rank. After the average ranks were computed, the post-hoc Bonferroni-Dunn test was

conducted for a pairwise comparison between the ranks achieved by each scenario. The perfor-

mance of two techniques is significantly different if their difference in average rank is higher

than the critical difference (CD) calculated by the Bonferroni-Dunn post-hoc test. The average

ranks of the four scenarios, as well as the results of the post-hoc test, are presented using the

CD diagram [91] (Figure 5.4). We can see, based on the CD diagram, that the performance of

Scenario IV is statistically better when compared to the other scenarios.

CD = 0.30706

4 3 2 1

1.9333
Scenario IV

2.4233
Scenario II2.7033Scenario III

2.94Scenario I

Figure 5.4 Critical difference diagram considering the four test scenarios. The best

algorithm is the one presenting the lowest average rank. Techniques that are

statistically equivalent are connected by a black bar.
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In addition to the Friedman analysis, we also conducted a pairwise comparison between Sce-

nario I (without using the ENN and A-KNN) and the other test scenarios, using the sign

test [91] calculated on the computed wins, ties and losses. The null hypothesis H0 meant

that both approaches yielded equivalent results, and a rejection in H0 meant that the proposed

approach was significantly better at a predefined significance level. In this work, we use the

significance level α = 0.05. To reject H0, the number of wins needs to be greater than or equal

to the critical value nc calculated using Equation 5.3:

nc =
nexp

2
+ zα

√nexp

2
(5.3)

where nexp is the total number of experiments (10 techniques × 30 datasets = 300), and zα =

1.645, for a significance level of α = 0.05. Hence, nc = 170.14.

Considering Scenario IV, the number of wins, ties and losses are 195, 23 and 82, respectively.

However, for computing the test, half the ties are added to the wins and the other half to

the losses, which gives us 206.5 wins and 93.5 losses. H0 is rejected since 206.5 > 170.14.

Scenario II also presented a significant gain in performance, with 186 wins and 114 losses,

while the performance of Scenario III was statistically equivalent (152 wins and 148 losses).

Based on the statistical analysis, we can conclude that Scenarios II and IV achieve results

that are statistically better when compared to Scenario I. Thus, the proposed scheme does

indeed lead to significant gains in performance for dynamic selection techniques. We can also

observe that the editing of DSEL using the ENN technique is the main factor in improving the

classification performance, since Scenario II also presented a significant gain in performance

when compared to Scenario I, while the performance of Scenario I and III was statistically

equivalent.
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5.3.4 Comparison between DES techniques

In order to identify which dynamic selection technique benefited the most from the proposed

scheme, we conducted an analysis considering each technique separately. We performed a

pairwise comparison between each DES technique using Scenarios I and IV. Only Scenario IV

is considered in this analysis since it outperformed Scenarios II and III in the previous exper-

iment. The comparison was conducted using the sign test calculated on the computed wins,

ties and losses. The null hypothesis, H0, meant that the corresponding DES technique achieved

equivalent results using Scenarios I and IV. In this case, the total number of experiments for

each DES technique is equal to the number of datasets nexp = 30.

In order to reject H0 at α = 0.05, the number of wins plus half the number of ties achieved by

a dynamic selection technique must be greater than or equal to the critical value, nc = 19.5.

As shown in Figure 5.5, the META-DES, OLA, LCA, KNORA-E, DCS-RANK and DES-PRC

achieved significant performance gains using the proposed approach.

0 5 10 15 20 25 30

META−DES.H

KNORA−E

KNORA−U

LCA

OLA

MLA

MCB

KNOP

DESPRC

DCSRANK

Te
ch

ni
qu

es

# Datasets

Win
Tie
Loss

Figure 5.5 Performance of the each dynamic selection technique using the ENN

and A-KNN in terms of wins, ties and losses. The dashed line illustrates the critical

value nc = 19.5.
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Furthermore, the Friedman test was used in order to compare the results of all the DES tech-

niques over the 30 classification datasets (Figure 5.6), using Scenarios I and IV. Techniques

marked with an * are the ones using the ENN and A-KNN (Scenario IV). It can be seen that

all DES techniques presented a lower average rank when using the proposed scheme (Scenario

IV). Moreover, the techniques that are based purely on local accuracy information, such as

LCA and OLA and DCS-RANK, presented a greater benefit, i.e., difference between the aver-

age ranks. For instance, the LCA* achieved an average rank of 9.96, while the average rank

for the original LCA technique was 12.96. Techniques that are not based on the information

extracted from the feature space, such as the MCB, which estimates the competence of the

base classifier using the decision space, are the ones with smaller differences in average ranks

(12.0 obtained by MCB against 11.4 achieved by the MCB*), which may simply be explained

by the fact the ENN technique reduces the amount of overlap in the feature space rather than

the decision space. Since the META-DES technique obtained the lowest average rank, we also

present the classification accuracies obtained by the META-DES and META-DES* for the 30

classification datasets (Table 5.4). The best results are highlighted in bold.

CD = 5.0271

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

3 META−DES.H*
4.1667 META−DES.H

6.2 DESPRC*
8.1667 KNORA−E*

8.5 DESPRC
8.7333 KNORA−U*
9.8667 KNOP*
9.9667 LCA*

10.2333 KNORA−U
10.6667 DCSRANK*10.7KNOP

10.8KNORA−E
11.4MCB*
12MCB
12.4667OLA*

12.9667LCA
13.6667DCSRANK

13.9667OLA

15.8MLA*

16.7333MLA

Figure 5.6 CD diagram considering all techniques. Techniques marked with a * are the

ones using Scenario IV.



158

5.3.5 Discussion

Looking at the classification results in Table 5.4, we can see that the proposed scheme works

well when dealing with problems with few classes, even when considering datasets with a high

degree of overlap between them, such as the Liver, Blood and Monk2, datasets. The proposed

scheme failed to improve the classification accuracy only in a few datasets. These datasets

generally have the same characteristics: They are both heavily imbalanced and small-sized. In

such cases, there may not be enough samples in the dynamic selection dataset for the ENN

filter and the AKNN to work properly. In fact, the ENN technique tends to remove instances

from the minority class since they are under-represented, and some isolated instances may be

considered as noise by the algorithm. Hence, we believe that the best strategy to deal with

problems that are heavily imbalanced involves using a prototype generation technique, such as

in [99; 100], to generate samples for the minority class, and apply the prototype selection only

for the majority class.

Another important aspect of the proposed scheme is that, by removing samples in DSEL, the

running time of the dynamic selection techniques decreases. For every technique, the running

time to classify a given test instance x j of each method is a combination of the definition of the

region of competence and evaluating the competence level of each classifier in the pool. The

definition of the region of competence is performed only once as it depends only on the input

sample x j, and not on the base classifier. Since it is performed based on the AKNN technique,

the cost is of order O(d×N), given that d and N are the number of dimensions and samples in

the dynamic selection dataset (DSEL
′
), respectively.

For each dynamic selection technique, the outputs of the base classifiers for the samples in

DSEL must first be pre-calculated during the training stage of the system and stored in a matrix.

The storage requirement for the pre-calculated information is O(M ×N ×Ω), with M and Ω

being the number of classifiers in the pool and the number of classes in the dataset. The

computational cost involved during generalization consists in accessing the outputs of the base

classifier stored in the matrix and applying the selection criteria for each base classifier in the
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pool. Thus, the cost of evaluating the competence of each classifier in the pool of classifiers is

O(M).

Therefore, besides improving the classification accuracy, the proposed scheme can also reduce

the memory requirement and the running time of dynamic selection techniques during the

generalization phase.

5.4 Conclusion

In this paper, we demonstrate that the performance of DES techniques is sensitive to the dy-

namic selection dataset distribution. A high degree of overlap in the dynamic selection dataset

may lead to poor estimations of the local competence of the base classifiers; thus, the dynamic

selection technique fails to select the most appropriate classifier for the classification of a new

query sample. We show that with two simple modifications, we can significantly improve the

generalization performance of any dynamic selection technique.

In order to evaluate the impact of the proposed scheme, we compared the results of ten dynamic

classifier selection and dynamic ensemble selection techniques over 30 classification datasets.

The experimental results demonstrate that the proposed scheme significantly improves the clas-

sification accuracy of the dynamic selection techniques. The scenario using both the ENN and

A-KNN techniques presented the overall best result. In addition, using only the ENN for edit-

ing the dynamic selection dataset brings about a significant gain in classification accuracy.

Future work will include the evaluation of different prototype selection techniques, as well as

prototype generation for dealing with problems that are both small sized and heavily imbal-

anced.
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Table 5.4 Comparison of the results achieved by META-DES

framework [2], considering Scenarios I and IV. Best results are

highlighted.

Dataset META-DES.H* META-DES.H
Pima 78.80(3.23) 77.93(1.86)

Liver 70.73(4.10) 69.69(4.68)

Breast 97.02(0.49) 97.25(0.47)
Blood 79.85(1.12) 78.25(1.37)

Banana 95.51(1.46) 94.51(2.36)

Vehicle 83.24(2.05) 83.55(2.10)
Lithuanian 94.75(2.71) 93.26(3.22)

Sonar 82.06(5.74) 82.06(5.09)

Ionosphere 89.31(2.94) 89.06(2.21)

Wine 99.02(1.83) 98.53(1.48)

Haberman 75.83(1.58) 76.13(2.06)
CTG 86.89(1.41) 86.08(1.24)

Vertebral 87.47(7.05) 84.90(2.95)

Faults 69.41(1.36) 68.95(1.04)

WDVG1 84.63(0.75) 84.77(0.65)
Ecoli 80.66(3.48) 80.66(3.48)

GLASS 65.21(3.53) 65.21(3.53)
ILPD 70.02(2.82) 69.64(2.47)

Adult 87.74(2.84) 87.29(1.80)

Weaning 81.15(3.33) 79.98(3.55)

Laryngeal1 87.63(4.19) 87.21(5.35)

Laryngeal3 74.17(2.89) 73.54(0.67)

Thyroid 96.99(6.13) 97.38(1.66)
German 75.87(2.59) 74.36(1.28)

Heart 85.62(3.34) 85.46(2.70)

Segmentation 96.52(1.06) 96.46(0.79)

Phoneme 82.68(1.31) 81.82(0.69)

Monk2 92.40(2.58) 83.45(3.46)

Mammographic 80.24(8.61) 84.30(2.27)
Magic 86.02(2.20) 85.65(2.27)



GENERAL CONCLUSION

In this thesis, a dynamic selection framework using meta-learning, called META-DES, is pro-

posed. The framework is based on two environments: the classification environment, in which

the input features are mapped into a set of class labels, and the meta-classification environ-

ment, in which different properties from the classification environment, such as the classifier

accuracy in the feature space or the consensus in the decision space, are extracted from the

training data and encoded as meta-features. Several sets of meta-features are proposed based

on distinct sources of information to characterize the competence of the base classifier, for the

classification of a specific test sample, such as local accuracy and confidence. These meta-

features are used to train a meta-classifier which can estimate whether or not a base classifier is

competent enough to classify a given input sample. With the arrival of new test data, the meta-

features are extracted using the test data as reference, and used as input to the meta-classifier.

The meta-classifier decides whether the base classifier is competent enough to classify the test

sample.

In Chapter II, the dynamic ensemble selection is formalized as a meta-problem. Then, a novel

DES framework using meta-learning, called META-DES, is proposed. In addition, five sets of

meta-features for the given meta-problem are proposed based on different DES criteria. The

proposed META-DES obtained higher classification performance when compared to several

state-of-the-art dynamic classifier and ensemble selection techniques.

In Chapter III, a deep analysis of the META-DES framework is conducted in order to under-

stand why it succeeds in achieving high recognition performance using only a few linear classi-

fiers. The analysis is conducted using the P2 problem, which is a complex non-linear problem

with two multi modal classes. The influence of each set of meta-features on the selection of

the most competent classifier is analyzed, as well as other aspects of the framework, such as

the influence of the sample selection mechanism, the size of the pool of classifiers, and the

distribution of the dynamic selection dataset (DSEL). Moreover, we show that the META-DES

framework can approximate the complex decision boundary of the P2 problem using either

Perceptrons or Decision Stumps as base classifiers, while static combination techniques such
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as AdaBoost and Majority Voting fail to approximate the complex decision boundary of the

P2 problem using such classifiers. The lessons learned in this analysis are used as a guideline

for further improvements not only for the META-DES framework, but for DES techniques in

general.

In Chapter IV, an evolution of the META-DES framework, called META-DES.Oracle, is pre-

sented. First, 10 new sets of meta-features are proposed in order to explore different sources

of information for dynamically estimating the competence level of the base classifiers, such

as probabilistic models, entropy and ranking. Then, a meta-feature selection scheme using an

overfitting cautious BPSO is proposed for optimizing the performance of the meta-classifier.

The BPSO optimization is conducted based on the formal definition of the Oracle. The differ-

ences between the outputs of the meta-classifier and the ideal outputs estimated by the Oracle

are minimized. Two topologies of the BPSO technique are considered, namely, V-shaped and

S-shaped. Experimental results show that the proposed optimization scheme significantly im-

proves the classification performance of the META-DES framework. In addition, the results

also demonstrate that the selection of the best sets of meta-features is also problem-dependent.

The meta-classifier requires different sets of meta-features in order to achieve a performance

close to those of the Oracle for different classification problems.

Lastly, in Chapter V, we show that the performance of the META-DES framework can be

sensitive to the presence of noise in the dynamic selection dataset (DSEL). Two techniques

ware suggested in order to improve classification accuracy in the presence of noise. During

the training stage, the Edited Nearest Neighbor prototype selection technique is applied over

DSEL for eliminating noise and reducing the amount of overlap among the classes. During

the dynamic selection (generalization) stage, the Adaptive KNN distance is used, and so sam-

ples that are more likely to be noise have a smaller chance of being selected to compose the

region of competence. The proposed scheme is applied to ten dynamic classifier and ensemble

selection techniques, including the proposed META-DES. Classification results demonstrate

that the generalization performance of dynamic selection techniques using both ENN and A-

KNN significantly improves the classification accuracy of several DES techniques. Moreover,
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the prototype selection method applied over the dynamic selection dataset (DSEL) is the main

factor in improving the classification performance of several DES techniques.

Future Works

The findings of this work suggests the following points as future works in this topic:

• A classifier generation technique for use in dynamic selection. Currently in the DES litera-

ture, techniques, such as bagging and random subspace are used. However, such techniques

were proposed to deal with static ensembles, and when they are used, the base classifiers

are generated based on a random sampling of the training data, with no guarantee that there

is diversity between the classifiers generated. In addition, some of the feature space might

not be covered by any of the base classifiers. The analysis conducted in Chapter 3 shows

that there are plenty of redundant classifiers in the pool when bagging is used in generating

the pool of classifiers.

• The results obtained in Chapters 3 and 5 indicates that the performance of both the META-

DES and the other DES techniques in the literature depends on the distribution of the dy-

namic selection dataset (DSEL). An interesting research direction would involve under-

standing the relationship between the distribution of DSEL and the decision hyperplanes

of the base classifiers.

• The use of prototype generation techniques in populating areas of the feature space where

the samples are sparse is another interesting research direction, since the experiments con-

ducted in Chapters 3 and 5 demonstrate that the distribution of DSEL has a huge influence

in the classification performance of dynamic selection techniques.

.
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Abstract

In this paper, we propose a novel dynamic ensemble selection framework using meta-learning.

The framework is divided into three steps. In the first step, the pool of classifiers is generated

from the training data. The second phase is responsible to extract the meta-features and train

the meta-classifier. Five distinct sets of meta-features are proposed, each one corresponding to

a different criterion to measure the level of competence of a classifier for the classification of a

given query sample. The meta-features are computed using the training data and used to train

a meta-classifier that is able to predict whether or not a base classifier from the pool is com-

petent enough to classify an input instance. Three different training scenarios for the training

of the meta-classifier are considered: problem-dependent, problem-independent and hybrid.

Experimental results show that the problem-dependent scenario provides the best result. In

addition, the performance of the problem-dependent scenario is strongly correlated with the

recognition rate of the system. A comparison with state-of-the-art techniques shows that the

proposed-dependent approach outperforms current dynamic ensemble selection techniques.

1. Introduction

Ensembles of Classifiers (EoC) have been widely studied in the past years as an alternative to

increase efficiency and accuracy in many pattern recognition [24; 9]. There are many examples
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in the literature that show the efficiency of an ensemble of classifiers in various tasks, such as

signature verification [101], handwritten recognition [11; 102] and image labeling [28]. Classi-

fiers ensembles involve two basic approaches, namely classifier fusion and dynamic ensemble

selection. With classifier fusion approaches, every classifier in the ensemble is used and their

outputs are aggregated to give the final prediction. However, such techniques [24; 103; 104; 11]

presents two main problems: they are based on the assumption that the base classifiers commit

independent errors, which is difficult to find in real pattern recognition applications. Moreover,

not every classifier in the pool of classifiers is an expert for every test pattern. Different pat-

terns are associated with distinct degrees of difficulties. It is therefore reasonable to assume

that only a few base classifiers can achieve the correct prediction.

On the other hand, dynamic ensemble selection (DES) techniques work by estimating the level

of competence of a classifier for each query sample separately. Then, only the most competent

classifiers in relation to the input sample are selected to form the ensemble. Thus, the key

point in DES techniques is to define a criterion to measure the level of competence of a base

classifier for the classification of the given query sample. In the literature, we can observe

several criteria based on estimates of the classifier accuracy in local regions of the feature

space surrounding the query sample [22; 20; 14; 29; 18], extent of consensus [15] and decision

templates [21; 48; 16; 64]. However, in our previous works [20], we demonstrate that using

only one criterion to measure the level of competence of a base classifier is very error-prone.

In this paper, we propose a novel dynamic ensemble selection framework using meta-learning.

The framework is divided into three steps: (1) overproduction, where the pool of classifiers is

generated, (2) Meta-training where the meta-features are extracted, using the training data, and

used as inputs to train a meta-classifier that works as a classifier selector. Five sets of meta-

features are proposed in this work. Each set of meta-features correspond to a different criteria

used to measure the level of competence of a base classifier such as the confidence of the base

classifier for the classification of the input sample, and its performance in predefined regions of

the feature space. (3) Generalization phase, in which the meta-features are extracted from each

query sample and used as input to the meta-classifier to perform the ensemble selection. Thus,
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based on the proposed framework we integrate multiple dynamic selection criteria in order to

achieve a more robust dynamic selection technique.

Three different training scenarios for the meta-classifier are investigated: (1) The meta-classifier

is trained using data from one classification problem, and is used as the classifier selector 1 on

the same problem; (2) The meta-classifier is trained using one classification problem, and is

used as the classifier selector on a different one; (3) A single meta-classifier is trained using the

data of all classification problems considered in this work, and is used as the classifier selector

for all classification problems.

Based on these three scenarios, we aim to answer three research questions: (1) Can the use

of meta-features lead to a more robust dynamic selection technique? (2) Is the training of the

meta-classifier problem-dependent? (3) Can we improve the performance of the meta-classifier

using knowledge from different classification problems? Experiments conducted over eleven

classification datasets demonstrate that the proposed technique outperforms current dynamic

selection techniques. Furthermore, the accuracy of the DES system is correlated to the perfor-

mance of the meta-classifier.

This paper is organized as follows: In Section 2 we introduce the notion of classifier compe-

tence for dynamic selection. The architecture of the proposed system is presented in Section 3.

Experimental results are given in Section 4. Finally, a conclusion is presented in the last sec-

tion.

2. Classifier Competence

The level of competence of a classifier defines how much we trust an expert, given a classifi-

cation task. It is used as a way of selecting, from a pool of classifiers C, the one(s) that best

fit(s) a given test pattern x j. Thus, in dynamic selection, the level of competence is measured

on-the-fly according to some criteria applied for each input instance separately. There are three

1In this paper, we use the terms meta-classifier and classifier selector interchangeably
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categories present in the literature [1]: the classifier accuracy over a local region, i.e., in a

region close to the test pattern; decision templates, and the extent of consensus.

2.1 Classifier accuracy over a local region

Classifier accuracy is the most commonly used criterion for dynamic classifier and ensemble

selection techniques [22; 14; 20; 30; 38; 29; 19]. Techniques that are based on this paradigm

first define a local region around the test instance, called the region of competence. This region

is computed using either the K-NN algorithm [14; 22; 20] or by Clustering techniques [30; 42].

For example, the OLA technique [22] selects the classifier that obtains the highest accuracy rate

in the region of competence. The Local classifier accuracy (LCA) [22] selects the classifier with

the highest accuracy in relation to a specific class label and the K-Nearests Oracle (KNORA)

technique [14] selects all classifiers that achieve a perfect accuracy in the region of competence.

The drawback of these techniques is that their performance ends up limited by the algorithm

that defines the region of competence [20].

2.2 Decision Templates

In this class of methods, the goal is also to select patterns that are close to the test sample

x j. However, the similarity is computed in the decision space through the concept of deci-

sion templates [57]. This is performed by transforming both the test instance x j and the val-

idation data into output profiles using the transformation T , (T : x j ⇒ x̃ j), where x j ∈ ℜD

and x̃ j ∈ ZM [17; 64] (M is the pool size). The output profile of a pattern x j is denoted

by x̃ j =
{

x̃ j,1, x̃ j,2, . . . , x̃ j,M
}

, where each x̃ j,i is the decision yielded by the classifier ci for

x j. Based on the information extracted from the decision space, the K-Nearest Output Profile

(KNOP) [17] is similar to the KNORA technique, with the difference being that the KNORA

works in the feature space while the KNOP works in the decision space. The Multiple Classi-

fier Behaviour (MCB) technique [21] selects the classifiers that achieve a performance higher

than a given threshold. The problem with using such information lies in the fact it neglects the

local performance of the base classifiers.
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2.3 Extent of Consensus or confidence

In this class of techniques, the first step is to generate a population of an ensemble of classifiers

(EoC), C∗ = {C
′
1,C

′
2, . . . ,C

′
M′} (M

′
is the number of EoC generated) using an optimization algo-

rithm such as a genetic algorithms or greedy search [13; 12]. Then, for each new query instance

x j, the level of competence of each EoC is computed using techniques such as the Ambiguity-

guided dynamic selection (ADS), Margin-based dynamic selection (MDS) and Class-strength

dynamic selection (CSDS) [15; 16]. The drawback of these techniques is that they require the

pre-computation of EoC, which increases the computational complexity. In addition, the pre-

computation of EoC also reduces the level of diversity and the Oracle performance (the Oracle

performance is the upper limit performance of an EoC [9]) of the pool [15].

3. Proposed dynamic ensemble selector

A general overview of the proposed framework is depicted in Figure I-1. It is divided into three

phases: Overproduction, Meta-training and Generalization.

3.1 Overproduction

In this step, the pool of classifiers C = {c1, . . . ,cM}, where M is the pool size, is generated

using the training dataset T . The Bagging technique [3] is used in this work in order to build a

diverse pool of classifiers.

3.2 Meta-Training

In this phase, the meta-features are computed and used to train the meta-classifier λ . We select

five subset of meta-features derived from the three categories presented in Section 2. As shown

in Figure I-1, the meta-training stage consists of three steps: sample selection, meta-features

extraction process and meta-training. A different dataset Tλ is used in this phase to prevent

overfitting.
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Figure-A I-1 Overview of the proposed framework. It is divided into three steps 1)

Overproduction, where the pool of classifiers C = {c1, . . . ,cM} is generated, 2) The

training of the selector λ (meta-classifier), and 3) The generalization phase where an

ensemble C′ is dynamically defined based on the meta-information extracted from x j,test
and the pool C = {c1, . . . ,cM}. The generalization phase returns the label wl of x j,test . hC,

K and Kp are the hyper-parameters required by the proposed system

3.2.1 Sample selection

We focus the training of λ on cases in which the extent of consensus of the pool is low. Thus,

we employ a sample selection mechanism based on a threshold hC, called the consensus thresh-

old. For each x j,trainλ ∈ Tλ , the degree of consensus of the pool, denoted by H
(
x j,trainλ ,C

)
,

is computed. If H
(
x j,trainλ ,C

)
falls below the threshold/ hC, x j,trainλ is passed down to the

meta-features extraction process.

3.2.2 Meta-feature extraction
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The first step in extracting the meta-features is to compute the region of competence of x j,trainλ ,

denoted by θ j = {x1, . . . ,xK}. The region of competence is defined in the Tλ set using the K-

Nearest Neighbor algorithm. Then, x j is transformed into an output profile, x̃ j by applying

the transformation T (Section 2.2). The similarity between x̃ j and the output profiles of the

instances in Tλ is obtained through the Manhattan distance. The most similar output profiles

are selected to form the set φ j =
{

x̃1, . . . , x̃Kp

}
, where each output profile x̃k is associated with

a label wl,k. Next, for each base classifier ci ∈C, five sets of meta-features are calculated:

f1 - Neighbors’ hard classification: First, a vector with K elements is created. For each in-

stance xk, belonging to the region of competence θ j, if ci correctly classifies xk, the k-th

position of the vector is set to 1, otherwise it is 0. Thus, K meta-features are computed.

f2 - Posterior probability: First, a vector with K elements is created. Then, for each instance

xk, belonging to the region of competence θ j, the posterior probability of ci, P(wl | xk) is

computed and inserted into the k-th position of the vector. Consequently, K meta-features

are computed.

f3 - Overall Local accuracy: The accuracy of ci over the whole region of competence θ j is

computed and encoded as f3.

f4 - Output profiles classification: First, a vector with Kp elements is generated. Then, for

each member x̃k belonging to the set of output profiles φ j, if the label produced by ci for

xk is equal to the label wl,k of x̃k, the k-th position of the vector is set to 1, otherwise it is

0. A total of Kp meta-features are extracted using output profiles.

f5 - Classifier’s Confidence: The perpendicular distance between the input sample x j,trainλ

and the decision boundary of the base classifier ci is calculated and encoded as f5. f5 is

normalized to a [0−1] range using the Min-max normalization.

A vector vi, j = { f1 ∪ f2 ∪ f3 ∪ f4 ∪ f5} is obtained at the end of the process. If ci correctly clas-

sifies x j, the class attribute of vi, j, αi, j = 1 (i.e., vi, j corresponds to the behavior of a competent

classifier), otherwise αi, j = 0. vi, j is stored in the meta-features dataset T ∗
λ .



172

3.2.3 Training

The last step of the meta-training phase is the training of λ . The dataset T ∗
λ is divided on the

basis of 75% for training and 25% for validation. A Multi-Layer Perceptron (MLP) neural

network with 10 neurons in the hidden layer is used as the meta-classifier λ . The training

process is stopped if its performance on the validation set decreases or fails to improve for five

consecutive epochs.

3.3 Generalization

Given an input test sample x j,test from the generalization dataset G, first, the region of compe-

tence θ j and the set of output profiles φ j, are calculated using the samples from the dynamic se-

lection dataset DSEL. For each classifier ci ∈C, the meta-features are extracted (Section 3.2.2),

returning the meta-features vector vi, j.

Next, vi, j is passed down as input to the meta-classifier λ , which decides whether ci is com-

petent enough to classify x j,test . If ci is considered competent, it is inserted into the ensemble

C
′
. After each classifier of the pool is evaluated, the majority vote rule [9] is applied over the

ensemble C′, giving the label wl of x j,test . Tie-breaking is handled by choosing the class with

the highest a posteriori probability.

Table-A I-1 Mean and standard deviation results of the accuracy for the three scenarios.

The best results are in bold. Results that are significantly better (p < 0.05) are underlined

Datasets DESD DESI DESALL λD λI λALL
Pima 77.74(2.34) 72.14(3.69) 77.18(2.99) 73.20 (3.48) 68.53(1.79) 72.57(2.12)

Liver 68.83(5.57) 59.22(3.64) 65.53(3.20) 68.92(2.22) 52.90(3.66) 62.29(3.14)

Breast 97.41(1.07) 96.99(3.64) 96.96(1.00) 97.54(1.04) 85.66(6.84) 96.97(1.15)

Blood 79.14(1.88) 75.39(5.55) 75.79(2.62) 82.83(5.57) 69.32(2.90) 74.28(2.87)

Banana 90.16(2.09) 82.52(13.24) 85.98(1.73) 91.14(3.09) 83.58(6.09) 80.21(8.97)

Vehicle 82.50(2.07) 80.25(3.73) 83.53(1.26) 82.38(2.34) 73.70(3.85) 88.67(3.15)
Lithuanian 90.26(2.78) 79.48(13.56) 87.40(1.87) 89.42(3.41) 82.20(6.31) 81.70(3.97)

Sonar 79.72(1.86) 53.14(6.66) 80.38(4.32) 76.15(2.43) 60.70(7.34) 75.42(2.91)

Ionosphere 89.31(0.95) 86.69(6.94) 88.97(2.51) 89.18(2.31) 67.44(3.42) 89.52(3.72)
Wine 96.94(3.12) 94.39(10.91) 95.11(6.69) 93.33(1.56) 90.86(4.49) 78.11(6.69)

Haberman 76.71(3.52) 72.77(6.34) 77.63(2.55) 76.31(2.35) 71.88(2.72) 76.23(4.91)
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4. Experiments

We evaluated the generalization performance of the proposed technique using eleven classifi-

cation datasets, nine from the UCI machine learning repository, and two, artificially generated

using the Matlab PRTOOLS toolbox2. The experiment was conducted using 20 replications.

For each replication, the datasets were randomly divided on the basis of 25% for training (T ),

25% for meta-training Tλ , 25% for the dynamic selection dataset (DSEL) and 25% for gener-

alization (G). The divisions were performed maintaining the prior probability of each class.

The pool of classifiers was composed of 10 Perceptrons. The value of the hyper-parameters K,

Kp and hc were 7, 5 and 70% respectively. They were selected empirically based on previous

results [20].

We evaluate three different scenarios for the training of the meta-classifier λ . For the following

definitions, let D = {D1,D2, . . . ,D11} be the eleven classification problems considered in this

paper, and Λ= {λ1,λ2, . . . ,λ11} a set of meta-classifiers trained using the meta-training dataset,

T ∗
λ ,i related to a classification problem Di.

a. Scenario I - λ dependent(λD): The selector λi is trained using the meta-training data T ∗
λ ,i,

and is used as the classifier selector for the same classification problem Di. This scenario

is performed in order to answer the first research question of this paper: Can the use of

meta-features lead to a more robust dynamic selection technique?

b. Scenario II - λ independent(λI): The selector λi is trained using the meta-training data

T ∗
λ ,i, and is used as the classifier selector for a different classification problem D j | i �= j.

The objective of this scenario is to answer the second question posed in this work: Is the

training of the meta-classifier application independent?

c. Scenario III - λALL: Here, we train a single meta-classifier λALL using the meta-training

data derived from all classification problems Di ∈D, T ∗
λ ,ALL =

{
T ∗

λ ,1 ∪T ∗
λ ,2 ∪ . . . ,∪T ∗

λ ,11

}
.

The objective of this scenario is to answer the third question posed in this paper: Can we

2www.prtools.org
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improve the performance of the meta-classifier using knowledge from different classifica-

tion problems?

For the rest of this paper, we refer to each scenario as λD, λI and λALL. We refer to DESD,

DESI and DESALL, the DES system created using each training scenario, respectively.

4.1 Results
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Figure-A I-2 Correlation between the performances of the

proposed DESD and λD. ρ = 0.88

Table I-1 shows a comparison of the results achieved related to scenarios I, II and III. Both the

DES performance and the meta-classifier performance are presented. We compare each pair of

results using the Kruskal-Wallis non-parametric statistical test with a 95% confidence interval.

Results that improved the accuracy significantly are underlined.

The λ -dependent scenario (DESD) obtained the best results. The only exception is for the

Vehicle problem, where the λALL achieved the best result. Furthermore, when the performance

of the meta-classifier is significantly better, the accuracy of the DES system is also significantly

better. This finding shows how the performance of the meta-classifier is correlated with the

accuracy of its corresponding DES system. The independent scenario, λI , presented the lowest
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Figure-A I-3 Correlation between the performances of the

proposed DESI and λI . ρ = 0.42
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Figure-A I-4 Correlation between the performances of the

proposed DESALL and λALL. ρ = 0.76

results for both the DES system (DESI) and meta-classifier (λI) in all cases. The accuracies of

λI and DESI are also significantly worse when compared to the other two scenarios.

We also study the correlation between the accuracy of the DES system and the performance of

the meta-classifier for the three scenarios. Figures I-2, I-3 and I-4 show the correlation between

the accuracy of the proposed DES system and the performance of the meta-classifier for the
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λD, λI and λALL scenarios, respectively. We compute the correlation coefficient, ρ , using the

Pearson’s Product-Moment.

Scenario I achieved the highest correlation coefficient ρ = 0.88, while Scenario III λALL pre-

sented a slightly lower coefficient, ρ = 0.76. Thus, the use of knowledge from a different clas-

sification problem also reduced the correlation between the meta-classifier and the accuracy of

the DES system. The correlation between λI and DESI was ρ = 0.42, which is significantly

lower than Scenarios I and III.

Table-A I-2 Mean and standard deviation results of the accuracy obtained for the

proposed DESD and the DES systems in the literature. The best results are in bold.

Results that are significantly better (p < 0.05) are underlined

Database DESD KNORA-E KNORA-U DES-FA LCA OLA KNOP
Pima 77.74(2.34) 73.16(1.86) 74.62(2.18) 76.04(1.61) 72.86(2.98) 73.14(2.56) 73.42(2.11)

Liver Disorders 68.92(2.22) 63.86(3.28) 64.41(3.76) 65.72(3.81) 62.24(4.01) 62.05(3.27) 65.23(2.29)

Breast (WDBC) 97.54(1.04) 96.93(1.10) 96.35(1.02) 97.18(1.13) 97.15(1.58) 96.85(1.32) 95.42(0.89)

Blood Transfusion 79.14(1.88) 74.59(2.62) 75.50(2.36) 76.42(1.16) 72.20(2.87) 72.33(2.36) 77.54(2.03)

Banana 90.16(2.09) 88.83(1.67) 89.03(2.87) 90.16(3.18) 89.28(1.89) 89.40(2.15) 85.73(10.65)

Vehicle 82.5(2.07) 81.19(1.54) 82.08(1.70) 80.20(4.05) 80.33(1.84) 81.50(3.24) 80.09(1.47)

Lithuanian Classes 90.26(2.78) 88.83(2.50) 87.95(2.64) 92.23(2.46) 88.10(2.20) 87.95(1.85) 89.33(2.29)

Sonar 79.72(1.86) 74.95(2.79) 76.69(1.94) 77.52(1.86) 76.51(2.06) 74.52(1.54) 75.72(2.82)

Ionosphere 89.31(0.95) 87.37(3.07) 86.22(1.67) 86.33(2.12) 86.56(1.98) 86.56(1.98) 85.71(5.52)

Wine 96.94(3.12) 95.00(1.53) 96.13(1.62) 95.45(1.77) 95.85(2.25) 96.16(3.02) 95.00(4.14)

Haberman 76.71(3.52) 71.23(4.16) 74.40(2.27) 74.47(2.41) 70.16(3.56) 72.26(4.17) 75.00(3.40)

Therefore, experimental results indicate that the training of the meta-classifier is problem-

dependent. The behavior of a competent classifier differs according to each classification prob-

lem. Furthermore, as the λALL selector performed worse than the λD, we failed to improve

the performance of the meta-classifier and DES system by adding knowledge derived from

other classification problems. However, the loss in accuracy might be explained by the use of

classification problems with completely different distributions and data complexities [105].

4.2 Comparison with the state-of-the-art

In Table I-2, we compare the recognition rates obtained by the proposed DESD against dynamic

selection techniques in the literature (KNORA-Eliminate [14], KNORA-Union [14], DES-
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FA [20], LCA [22], OLA [22] and KNOP [16]). We compare each pair of results using the

Kruskal-Wallis non-parametric statistical test with a 95% confidence interval. The results of

the proposed DESD over the Pima, Liver Disorders, Blood Transfusion, Vehicle, Sonar and

Ionosphere datasets are statistically superior to the result of the best DES from the literature.

For the other datasets, Breast, Banana and Lithuanian, the results are statistically equivalent.

We can thus answer the first question posed in this paper: Can the use of meta-features lead

to a more robust dynamic selection technique? As the result of the proposed DESD is signifi-

cantly better in eight datasets, the use of meta-learning indeed leads to a more robust dynamic

ensemble selection technique.

5. Conclusion

In this paper, we present a novel DES framework using meta-learning. Different properties

of the behavior of a base classifier are extracted from the training data and encoded as meta-

features. These meta-features are used to train a meta-classifier that can estimate whether a

base classifier is competent enough to classify a given input sample. Based on the proposed

framework, we perform three experiments considering three different scenarios for the training

of the meta-classifier.

Experimental results show that the training of the proposed meta-classifier is problem-dependent

as the dependent scenario, λD, outperformed both λI and λALL. In addition, the correlation be-

tween the performances of λD and the accuracy of the corresponding DESD is also higher than

that of the other two scenarios.

A comparison with the state-of-the-art dynamic ensemble selection techniques shows that the

proposed DESD outperforms current techniques. Moreover, the gain in accuracy observed

with our system is also statistically significant. Thus, we can conclude that the use of multiple

properties of the behavior of a base classifier in the classification environment indeed leads to

a more robust DES system.
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Future works on this topic will involve:

a. The evaluation of a different training scenario using only classification problems with

similar data complexity for the training of the meta-classifier.

b. the design of new meta-features in order to improve the performance of the meta-classifier,

and consequently, the DES system.
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Abstract

In Dynamic Ensemble Selection (DES) techniques, only the most competent classifiers are se-

lected to classify a given query sample. Hence, the key issue in DES is how to estimate the

competence of each classifier in a pool to select the most competent ones. In order to deal with

this issue, we proposed a novel dynamic ensemble selection framework using meta-learning,

called META-DES. The framework is divided into three steps. In the first step, the pool of

classifiers is generated from the training data. In the second phase the meta-features are com-

puted using the training data and used to train a meta-classifier that is able to predict whether

or not a base classifier from the pool is competent enough to classify an input instance. In this

paper, we propose improvements to the training and generalization phase of the META-DES

framework. In the training phase, we evaluate four different algorithms for the training of the

meta-classifier. For the generalization phase, three combination approaches are evaluated: Dy-

namic selection, where only the classifiers that attain a certain competence level are selected;

Dynamic weighting, where the meta-classifier estimates the competence of each classifier in

the pool, and the outputs of all classifiers in the pool are weighted based on their level of com-

petence; and a hybrid approach, in which first an ensemble with the most competent classifiers

is selected, after which the weights of the selected classifiers are estimated in order to be used in

a weighted majority voting scheme. Experiments are carried out on 30 classification datasets.
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Experimental results demonstrate that the changes proposed in this paper significantly improve

the recognition accuracy of the system in several datasets.

1. Introduction

Multiple Classifier Systems (MCS) aim to combine classifiers in order to increase the recogni-

tion accuracy in pattern recognition systems [24; 9]. MCS are composed of three phases [1]:

(1) Generation, (2) Selection, and (3) Integration. In the first phase, a pool of classifiers is

generated. In the second phase, a single classifier or a subset having the best classifiers of the

pool is(are) selected. We refer to the subset of classifiers as the Ensemble of Classifiers (EoC).

In the last phase, integration, the predictions of the selected classifiers are combined to obtain

the final decision [24].

Recent works in MCS have shown that dynamic ensemble selection (DES) techniques achieve

higher classification accuracy when compared to static ones [1; 2; 14]. This is specially true

for ill-defined problems, i.e., for problems where the size of the training data is small and

there are not enough data available to train the classifiers [16; 17]. The key issue in DES

is to define a criterion to measure the level of competence of a base classifier. Most DES

techniques [14; 22; 21; 20] use estimates of the classifiers’ local accuracy in small regions of

the feature space surrounding the query instance, called the region of competence, as a search

criterion to estimate the competence level of the base classifier. However, in our previous

work [20], we demonstrated that the use of local accuracy estimates alone is insufficient to

provide higher classification performance.

To tackle this issue, in [2] we proposed a novel DES framework, called META-DES, in which

multiple criteria regarding the behavior of a base classifier are used to compute its level of

competence. The framework is based on two environments: the classification environment,

in which the input features are mapped into a set of class labels, and the meta-classification

environment, where different properties from the classification environment, such as the clas-

sifier accuracy in a local region of the feature space, are extracted from the training data and
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encoded as meta-features. With the arrival of new test data, the meta-features are extracted

using the test data as reference, and used as input to the meta-classifier. The meta-classifier

decides whether the base classifier is competent enough to classify the test sample. The frame-

work is divided into three steps: (1) Overproduction, where the pool of classifiers is generated;

(2) Meta-training, where the meta-features are extracted, using the training data, and used as

inputs to train a meta-classifier that works as a classifier selector, and (3) the Generalization

phase, in which the meta-features are extracted from each query sample and used as input to

the meta-classifier to perform the ensemble selection.

In this paper, we propose two improvements to the META-DES framework. First, we modify

the training routine of the meta-classifier. The modification made is motivated by the fact that

there is a strong correlation between the performance of the meta-classifier for the selection of

“competent” classifiers, i.e., classifiers that predict the correct label for a given query sample

and the classification accuracy of the DES system [36]. Hence, we believe that the proposed

META-DES framework can obtain higher classification performance by focusing only on im-

proving the performance of the system at the meta-classification level. This is an interesting

feature of the proposed system especially when dealing with ill-defined problems due to crit-

ical dataset sizes [2]. Four different classifier models are considered for the meta-classifier:

MLP Neural Network, Support Vector Machines with Gaussian Kernel (SVM), s and Naive

Bayes [71].

Secondly, we propose three combination schemes for the generalization phase of the frame-

work: Dynamic selection, Dynamic weighting and Hybrid. In the dynamic selection approach,

only the classifiers that attain a certain level of competence are used to classify a given query

sample. In the dynamic weighting approach, the meta-classifier is used to estimate the weights

of all base classifiers in the pool. Then, their decisions are aggregated using a weighted ma-

jority voting scheme [9]. Thus, classifiers that attain a higher level of competence, for the

classification of the given query sample, have a greater impact on the final decision. In the hy-

brid approach, only the classifiers that attain a certain level of competence are selected. Then,

the meta-classifier is used to compute the weights of the selected base classifiers to be used in
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a weighted majority voting scheme. The hybrid approach is based on the observation that the

selected base classifiers might be associated with different levels of competence. It is feasible

that classifiers that attained a higher level of competence should have more influence for the

classification of the given test sample. The proposed framework differs from mixture of expert

techniques [106; 26], since our system is based on the mechanism used for the selection of dy-

namic ensembles [1; 2] rather than static ones [26]. In addition, mixture of experts techniques

are dedicated to the use of neural networks as base classifier, while, in the proposed framework,

any classification algorithm can be used.

We evaluate the generalization performance of the system over 30 classification problems de-

rived from different data repositories. Furthermore, the recognition performance of the system

is compared against eight state-of-the-art dynamic selection techniques according to a new sur-

vey on this topic [1]. Experimental results demonstrate that the choice of the meta-classifier

has a significant impact on the classification accuracy of the overall system. The modifications

proposed in this work significantly improve the performance of the framework when compared

to state-of-the-art dynamic selection techniques.

This paper is organized as follows: The META-DES framework is introduced in Section 2.

Experimental results are given in Section 3. Finally the conclusion is presented in the last

section.

2. The META-DES Framework

The META-DES framework is based on the assumption that the dynamic ensemble selection

problem can be considered as a meta-problem. This meta-problem uses different criteria re-

garding the behavior of a base classifier ci, in order to decide whether it is competent enough

to classify a given test sample x j. The meta-problem is defined as follows [2]:

• The meta-classes of this meta-problem are either “competent” (1) or “incompetent” (0) to

classify x j.
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• Each set of meta-features fi corresponds to a different criterion for measuring the level of

competence of a base classifier.

• The meta-features are encoded into a meta-features vector vi, j.

• A meta-classifier λ is trained based on the meta-features vi, j to predict whether or not ci

will achieve the correct prediction for x j, i.e., if it is competent enough to classify x j

A general overview of the META-DES framework is depicted in Figure II-1. It is divided into

three phases: Overproduction, Meta-training and Generalization.

2.1 Overproduction

In this step, the pool of classifiers C = {c1, . . . ,cM}, where M is the pool size, is generated

using the training dataset T . The Bagging technique [3] is used in this work in order to build a

diverse pool of classifiers.

2.2 Meta-Training

In this phase, the meta-features are computed and used to train the meta-classifier λ . As shown

in Figure II-1, the meta-training stage consists of three steps: sample selection, meta-features

extraction process and meta-training. A different dataset Tλ is used in this phase to prevent

overfitting.

2.2.1 Sample selection

We decided to focus the training of λ on cases in which the extent of consensus of the pool is

low. This decision was based on the observations made in [15; 16] the main issues in dynamic

ensemble selection occur when classifying testing instances where the degree of consensus

among the pool of classifiers is low, i.e., when the number of votes from the winning class

is close to or even equal to the number of votes from the second class. We employ a sam-

ple selection mechanism based on a threshold hC, called the consensus threshold. For each
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Figure-A II-1 Overview of the proposed framework. It is divided into three steps 1)

Overproduction, where the pool of classifiers C = {c1, . . . ,cM} is generated, 2) The

training of the selector λ (meta-classifier), and 3) The generalization phase where the

level of competence δi, j of each base classifier ci is calculated specifically for each new

test sample x j,test . Then, the level of competence δi, j is used by the combination approach

to predict the label wl of the test sample x j,test . Three combination approaches are

considered: Dynamic selection (META-DES.S), Dynamic weighting (META-DES.W)

and Hybrid (META-DES.H). hC, K, Kp and ϒ are the hyper-parameters required by the

proposed system [Adapted from [2]]

x j,trainλ ∈ Tλ , the degree of consensus of the pool, denoted by H
(
x j,trainλ ,C

)
, is computed.

If H
(
x j,trainλ ,C

)
falls below the threshold hC, x j,trainλ is passed down to the meta-features

extraction process.

2.2.2 Meta-feature extraction
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The first step in extracting the meta-features involves computing the region of competence of

x j,trainλ , denoted by θ j = {x1, . . . ,xK}. The region of competence is defined in the Tλ set

using the K-Nearest Neighbor algorithm. Then, x j,trainλ is transformed into an output profile,

x̃ j,trainλ =
{

x̃ j,trainλ ,1, x̃ j,trainλ ,2, . . . , x̃ j,trainλ ,M
}

, where each x̃ j,trainλ ,i is the decision yielded by

the base classifier ci for the sample x j,trainλ [16].

The similarity between x̃ j,trainλ and the output profiles of the instances in Tλ is obtained through

the Euclidean distance. The most similar output profiles are selected to form the set φ j ={
x̃1, . . . , x̃Kp

}
, where each output profile x̃k is associated with a label wl,k. Next, for each base

classifier ci ∈C, five sets of meta-features are calculated:

f1 - Neighbors’ hard classification: First, a vector with K elements is created. For each in-

stance xk, belonging to the region of competence θ j, if ci correctly classifies xk, the k-th

position of the vector is set to 1, otherwise it is 0. Thus, K meta-features are computed.

f2 - Posterior probability: First, a vector with K elements is created. Then, for each instance

xk, belonging to the region of competence θ j, the posterior probability of ci, P(wl | xk) is

computed and inserted into the k-th position of the vector. Consequently, K meta-features

are computed.

f3 - Overall Local accuracy: The accuracy of ci over the whole region of competence θ j is

computed and encoded as f3.

f4 - Output profiles classification: First, a vector with Kp elements is generated. Then, for

each member x̃k belonging to the set of output profiles φ j, if the label produced by ci for

xk is equal to the label wl,k of x̃k, the k-th position of the vector is set to 1, otherwise it is

0. A total of Kp meta-features are extracted using output profiles.

f5 - Classifier’s Confidence: The perpendicular distance between the input sample x j,trainλ

and the decision boundary of the base classifier ci is calculated and encoded as f5. f5 is

normalized to a [0−1] range using the Min-max normalization.
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A vector vi, j = { f1 ∪ f2 ∪ f3 ∪ f4 ∪ f5} is obtained at the end of the process. If ci correctly

classifies x j, the class attribute of vi, j, αi, j = 1 (i.e., vi, j belongs to the meta-class “competent”),

otherwise αi, j = 0. vi, j is stored in the meta-features dataset T ∗
λ that is used to train the meta-

classifier λ .

2.2.3 Training

The last step of the meta-training phase is the training of λ . The dataset T ∗
λ is divided on the

basis of 75% for training and 25% for validation. In this paper, we evaluate four classifier

models for the meta-classifier: MLP Neural Network, Support Vector Machines with Gaussian

Kernel (SVM), Random Forests and Naive Bayes. These classifiers were selected based on

a recent study [71] that ranked the best classification models in a comparison considering a

total of 179 classifiers and 121 datasets. All classifiers were implemented using the Matlab

PRTOOLS toolbox [63]. The parameters of each classifier were set as follows:

a. MLP Neural Network: The validation data was used to select the number of nodes in the

hidden layer. We used a configuration with 10 neurons in the hidden layer since there

were no improvement in results with more than 10 neurons. The training process for

λ was performed using the Levenberg-Marquadt algorithm. The training process was

stopped if its performance on the validation set decreased or failed to improve for five

consecutive epochs.

b. SVM: A radial basis SVM with a Gaussian Kernel was used. For each dataset, a grid

search was performed in order to set the values of the regularization parameter c and the

Kernel spread parameter γ .

c. Random Forest: A total of 200 decision trees were used. The depth of each tree was fixed

at 5.

d. Naive Bayes: A simple Naive Bayes classifier using a normal distribution to model nu-

meric features. No parameters are required for this model.
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2.3 Generalization

Given the query sample x j,test , the region of competence θ j is computed using the samples from

the dynamic selection dataset DSEL. Following that, the output profiles x̃ j,test of the test sample,

x j,test , are calculated. The set with Kp similar output profiles φ j, of the query sample x j,test ,

is obtained through the Euclidean distance applied over the output profiles of the dynamic

selection dataset, D̃SEL.

Next, for each classifier ci belonging to the pool of classifiers C, the meta-features extrac-

tion process is called, returning the meta-features vector vi, j. Then, vi, j is used as input to

the meta-classifier λ . The support obtained by the meta-classifier for the “competent” meta-

class, denoted by δi, j, is computed as the level of competence of the base classifier ci for the

classification of the test sample x j,test .

Three combination approaches are considered:

• META-DES.S: In this approach, the base classifiers that achieve a level of competence

δi, j > ϒ are considered competent, and are selected to compose the ensemble C′. In this

paper, we set ϒ = 0.5 (i.e., the base classifier is selected if the support for the "‘competent"’

meta-class is higher than the support for the "‘incompetent"’ meta-class). The final decision

is obtained using the majority vote rule [24]. Tie-breaking is handled by choosing the class

with the highest a posteriori probability.

• META-DES.W: Every classifier in the pool C is used to predict the label of x j,test . The

level of competence δi, j estimated by the meta-classifier λ is used as the weight of each

base classifier. The final decision is obtained using a weighted majority vote combination

scheme [9]. Thus, the decisions obtained by the base classifiers with a higher level of

competence δi, j have a greater influence on the final decision.

• META-DES.H: In this approach, first the base classifiers that achieve a level of competence

δi, j > ϒ = 0.5 are considered competent and are selected to compose the ensemble C′.

Next, the level of competence δi, j estimated by the meta-classifier λ , for the classifiers in
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the ensemble C′, are used as its weights. Thus, the decisions obtained by the base classifiers

with the highest level of competence δi, j have a greater influence in the final decision. A

weighting majority voting scheme is used to predict the label wl of x j,test .

3. Experiments

3.1 Datasets

A total of 30 datasets are used in the comparative experiments, with sixteen taken from the

UCI machine learning repository [59], four from the STATLOG project [60], four from the

Knowledge Extraction based on Evolutionary Learning (KEEL) repository [61], four from the

Ludmila Kuncheva Collection of real medical data [62], and two artificial datasets generated

with the Matlab PRTOOLS toolbox [63]. The key features of each dataset are shown in Ta-

ble II-1.

Table-A II-1 Key Features of the datasets used in the experiments

Database No. of Instances Dimensionality No. of Classes Source
Pima 768 8 2 UCI

Liver Disorders 345 6 2 UCI

Breast (WDBC) 568 30 2 UCI

Blood transfusion 748 4 2 UCI

Banana 1000 2 2 PRTOOLS

Vehicle 846 18 4 STATLOG

Lithuanian 1000 2 2 PRTOOLS

Sonar 208 60 2 UCI

Ionosphere 315 34 2 UCI

Wine 178 13 3 UCI

Haberman’s Survival 306 3 2 UCI

Cardiotocography (CTG) 2126 21 3 UCI

Vertebral Column 310 6 2 UCI

Steel Plate Faults 1941 27 7 UCI

WDG V1 50000 21 3 UCI

Ecoli 336 7 8 UCI

Glass 214 9 6 UCI

ILPD 214 9 6 UCI

Adult 48842 14 2 UCI

Weaning 302 17 2 LKC

Laryngeal1 213 16 2 LKC

Laryngeal3 353 16 3 LKC

Thyroid 215 5 3 LKC

German credit 1000 20 2 STATLOG

Heart 270 13 2 STATLOG

Satimage 6435 19 7 STATLOG

Phoneme 5404 6 2 ELENA

Monk2 4322 6 2 KEEL

Mammographic 961 5 2 KEEL

MAGIC Gamma Telescope 19020 10 2 KEEL
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Table-A II-2 Comparison of different classifier types used as the meta-classifier λ for

the META-DES framework. The best results are in bold. Results that are significantly

better are marked with a •

Meta-Classifier λ META-DES
Dataset λ MLP NN λ SVM λ Forest λ Bayes MLP NN SVM Forest Bayes
Pima 78.53(1.24) 79.46(1.67) 80.27(2.08) 79.63(1.75) 79.03(2.24) 77.58(1.67) 78.39(2.08) 77.76(1.75)

Liver 68.83 (5.57) 70.60(5.52) 69.56(5.17) 71.24(4.84) 70.08(3.49) 68.92(5.52) 67.88(5.17) 69.56(4.84)

Breast 95.43 (1.85) 97.19(0.61) 97.19(0.61) 97.66(0.50) 97.41(1.07) 96.94(0.61) 96.94(0.61) 96.94(0.61)

Blood 79.54(3.03) 79.18(1.88) 79.83(2.42) 79.66(1.52) 79.14(1.03) 77.84(1.88) 78.49(2.42) 78.31(1.52)

Banana 91.14(3.09) 95.17(1.75) 90.97(3.89) 95.67(2.37) • 91.78(2.68) 93.92(1.75) 89.72(3.89) 94.42(2.37) •
Vehicle 82.38(2.34) 82.50(1.92) 82.44(1.63) 82.76(2.01) 82.75(1.70) 83.29(1.92) 83.24(1.63) 83.55(2.01)
Lithuanian 93.42(3.41) 94.91(1.25) 97.89(0.81) • 93.72(3.09) 93.18(1.32) 94.30(1.25) 97.28(0.81) • 93.12(3.09)

Sonar 86.15(2.43) 85.88(4.08) 84.60(4.61) 86.95(5.67) • 80.55(5.39) 80.77(4.08) 79.49(4.61) 81.84(5.67)
Ionosphere 89.18(2.31) 87.35(2.42) 87.09(2.48) 87.35(2.21) 89.94(1.96) 89.06(2.42) 88.80(2.48) 89.06(2.21)

Wine 98.90(1.61) 98.90(1.61) 98.90(1.61) 97.25(1.48) 99.25(1.11) 99.27(1.61) 99.02(1.61) 98.53(1.48)

Haberman 76.31(2.35) 74.81(2.50) 75.69(2.19) 75.25(2.06) 76.71(1.86) 75.69(2.50) 76.56(2.19) 76.13(2.06)

CTG 82.00(5.22) 88.81(1.03) 88.60(1.04) 90.21(1.14) • 84.62(1.08) 85.64(1.03) 85.43(1.04) 86.04(1.14) •
Vertebral 86.89(2.46) 87.70(2.87) 87.85(3.54) 86.56(2.35) 86.89(2.46) 86.76(2.87) 86.90(3.54) 85.62(2.35)

Faults 70.21(4.26) 74.41(1.17) 74.41(1.17) 74.68(1.19) • 67.21(1.20) 68.45(1.17) 68.45(1.17) 68.72(1.19) •
WDVG1 83.26(1.36) 85.26(0.63) 85.23(0.50) 85.84(0.60) • 84.56(0.36) 84.67(0.63) 84.64(0.50) 84.84(0.36) •
Ecoli 77.09(4.84) 78.01(3.89) 76.74(3.58) 77.01(3.76) 77.25(3.52) 80.92(3.89) • 80.66(3.58) 80.92(3.76)

GLASS 69.18(1.49) • 63.31(4.40) 64.84(4.44) 64.89(3.65) 66.87(2.99) • 65.62(4.40) 64.16(4.44) 65.21(3.65)

ILPD 69.80(4.96) 70.48(2.17) 69.95(2.32) 71.09(2.33) • 69.40(1.64) 69.56(2.17) 69.03(2.32) 70.17(2.33)
Adult 87.00(6.29) 88.75(1.76) 88.68(1.29) 88.62(1.84) 87.15(2.43) 87.35(1.76) 87.29(1.29) 87.22(1.84)

Weaning 79.55(4.44) 79.75(2.85) 79.75(2.85) 80.33(3.71) 79.67(3.78) 79.10(2.85) 79.10(2.85) 79.69(3.71)
Laryngeal1 77.81(3.51) 80.08(3.67) 81.29(3.79) • 79.94(5.00) 79.67(3.78) 81.97(3.67) 82.18(3.78) • 81.97(5.00)

Laryngeal3 72.42(3.57) 72.63(0.87) 72.76(0.81) 73.82(0.67) 72.65(2.17) 73.17(2.32) 74.04(2.23) 74.42(1.26) •
Thyroid 96.16(5.96) 97.27(2.32) 97.15(2.23) 97.52(1.26) 96.78(0.87) 97.18(0.87) 97.31(0.81) 97.38(0.67)
German 75.00(4.18) 76.18(2.82) 77.11(1.58) • 75.38(1.30) 75.55(1.31) 75.34(2.82) 76.27(2.58) 74.54(1.30)

Heart 84.38(4.63) 83.67(2.76) 82.85(3.60) 86.99(2.30) • 84.80(3.36) 84.97(2.76) 84.15(3.60) 85.30(2.30)
Segmentation 96.89(0.74) 96.78(0.60) 96.95(0.75) 96.99(0.60) 96.21(0.87) 96.21(0.60) 96.38(0.75) 96.42(0.76)
Phoneme 80.99(3.88) 86.80(3.19) 86.80(3.19) 90.13(0.72) • 80.35(2.58) 78.44(3.19) 78.44(3.19) 81.77(0.72)
Monk2 83.89(2.59) 86.40(2.82) 85.68(2.45) 88.67(3.32) • 83.24(2.19) 81.08(2.82) 80.36(2.45) 83.34(3.32)
Mammographic 78.00(5.93) 87.30(1.82) • 87.30(1.53) 86.34(2.54) 84.82(1.55) 85.37(1.82) 85.37(1.53) 84.41(2.54)

Magic Gamma Telescope 75.40(2.25) 72.30(3.33) 74.57(3.56) 78.65(2.52) 84.35(3.27) 81.35(4.21) 84.35(3.27) 85.33(2.29)
Wilcoxon Signed Test n/a ~ (ρ = 0.110) + (ρ = 0.004) + (ρ = 0.007) n/a ~ (ρ = 0.70) ~ (ρ = 0.500) ~ (ρ = 0.30)

3.2 Experimental Protocol

For the sake of simplicity, the same experimental protocol used in previous publications [2; 36]

was used. The experiments were carried out using 20 replications. For each replication, the

datasets were randomly divided on the basis of 50% for training, 25% for the dynamic selection

dataset (DSEL), and 25% for the test set (G). The divisions were performed while maintaining

the prior probabilities of each class. For the proposed META-DES, 50% of the training data

was used in the meta-training process Tλ and 50% for the generation of the pool of classifiers

(T ).

For the two-class classification problems, the pool of classifiers was composed of 100 Per-

ceptrons generated using the bagging technique [3]. For the multi-class problems, the pool of

classifiers was composed of 100 multi-class Perceptrons. The use of Perceptron as base clas-
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sifier is based on the observations that the use of weak classifiers can show more differences

between the DES schemes [14], thus making it a better option for comparing different DES

techniques. Furthermore, as reported by Leo Breiman, the bagging technique achieves better

results when weak and unstable base classifiers are used [3].

The values of the hyper-parameters K, Kp and hc were set at 7, 5 and 70%, respectively. They

were selected empirically based on previous publications [20; 36; 2].

3.3 Comparison of different classification models as the Meta-Classifier

In this experiment, we analyze the impact of the classifier model used for the meta-problem

(i.e., for the selection of competent classifiers). The objective of this experiment is to verify

whether we can improve the classification performance of the META-DES system, previously

defined using an MLP neural network as the meta-classifier. The following classifier models

are considered: Multi-Layer Perceptron (MLP) Neural Networks as in [2], Support Vector

Machines with Gaussian Kernel (SVM), Random Forests and Naive Bayes.

Table II-2 shows a comparison of the performance of the meta-classifier λ and the recognition

accuracy obtained by the META-DES system using each classification model. The best results

are highlighted in bold. For each dataset, we compared the results obtained by the meta-

classifier λ and by the META-DES framework using the MLP network [2], against the best

result obtained by any of the other classifier models (SVM, Random Forest and Naive Bayes).

The comparison was performed using the Kruskal-Wallis non-parametric statistical test, with a

95% confidence interval. Results that are significantly better are marked with a •.

We can observe that when the meta-classifier achieves a recognition performance that is sta-

tistically superior for a single dataset, such as, Banana, Faults and WDGV1, for instance, the

META-DES is also likely to achieve superior accuracy for the same classification problem.

Figure II-2 shows the number of datasets that each classifier model achieved the highest ac-

curacy. The Naive Bayes classifier is ranked first, achieving the best results for 14 datasets,

followed by the MLP Neural Network with 8. SVM and Random Forests achieved the best
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results for 4 datasets each. The strong performance of the Naive Bayes may be explained by

the fact that the majority of the meta-features are binary, and this classifier model handles well

binary input features different than MLP Networks. In addition, it might indicate that the pro-

posed sets of meta-features are possibly independent [55]. This is an interesting finding since

the Naive Bayes model is much faster both in the training and testing stages when compared to

an MLP Neural Network or an SVM classifier.
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Figure-A II-2 Bar plot showing the number of datasets that

each classification model used a the meta-classifier λ
presented the highest recognition accuracy

Furthermore, in order to verify whether the difference in classification results obtained over

the 30 datasets is statistically significant, we performed a Wilcoxon non-parametric signed

rank test with 95% confidence for a pairwise comparison between the results obtained using an

MLP Neural Network against the best result obtained using a different classifier for the meta-

classifier. The Wilcoxon signed rank test was used since it was suggested in [91] as a robust

method for comparing the classification results of two algorithms over several datasets. The

results of the Wilcoxon statistical test are shown in the last row of Table II-2. Techniques that

achieve performance equivalent to the MLP network are marked with "~"; those that achieve

statistically superior performance are marked with a "+", and those with inferior performance



192

are marked with a "-". When comparing the performance of the four meta-classifiers, the results

achieved using Random Forests and Naive Bayes as the meta-classifier λ are significantly

superior.

Hence, we can conclude that significant gains in classification accuracy can be achieved by

choosing a more suitable classifier model for the meta-classifier λ . Although the choice of the

best meta-classifier may vary according to the classification problem (Table II-2), the results of

the META-DES using Naive Bayes as the meta-classifier achieves results that are statistically

superior when compared to the MLP neural network over the 30 datasets studied in this work.

3.4 Comparison Between Combination Approaches: Dynamic Selection, Dynamic

Weighting and Hybrid

In this section, we compare the three combination approaches presented in Section 2.3: Dy-

namic Selection, Dynamic weighting, and the Hybrid approach. For the sake of simplicity,

we present only the results obtained using the Naive Bayes as the meta-classifier λ since it

achieved the highest classification accuracy in the previous experiments (Table II-2).

The results achieved using the Naive Bayes as meta-classifier for the three combination ap-

proaches are shown in Table II-3. In order to select the best combination approach, we com-

pare the average ranks of each approach computed using the Friedman test, which is a non-

parametric equivalent of the repeated measures ANOVA used to compare several algorithms

over multiple datasets [107; 91]. The Friedman test ranks each algorithm, with the best per-

forming one getting rank 1, the second best rank 2, and so forth for each dataset separately.

The average rank is then computed, considering all datasets. Thus, the best algorithm is the

one with the lowest average rank. The approaches that use the proposed weighting scheme (Dy-

namic weighting and Hybrid) outperformed the Dynamic selection approach in accuracy. This

can be explained by the fact the outputs given by the Naive Bayes classifier can be directly

interpreted as the likelihood that the base classifier belongs to the "‘competent"’ meta-class.

Thus, the supports provided by the meta-classifier can directly be used as the weights of each
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classifier for a weighted majority voting scheme. This is different from other classification

models, such as Random Forests where their class supports cannot be directly interpreted as

such. Hence, the meta-classifier can also be used for the fusion (integration) of the classifiers in

the ensemble, rather than only for ensemble selection. Since the Hybrid combination approach

presents the highest recognition accuracy when the 30 datasets are considered (lowest average

rank) this combination approach is selected for the comparison against other state-of-the-art

DES techniques.

Table-A II-3 Comparison between the three classification approaches: Selection,

Weighting and Hybrid for the META-DES framework. The results using a Naive Bayes as

the meta-classifier λ are presented. The best results are in bold. The average rank is

shown in the last row of the table

Dataset META-DES.S META-DES.W META-DES.H

Pima 77.76(1.75) 77.64(1.68) 77.93(1.86)
Liver 69.56(4.84) 69.69(4.68) 69.95(3.49)
Breast 97.41(0.50) 97.25(0.47) 97.25(0.47)

Blood 78.31(1.52) 78.67(1.77) 78.25(1.37)

Banana 94.42(2.37) 95.13(1.88) 94.51(2.36)

Vehicle 83.55(2.01) 83.50(1.87) 83.55(2.10)

Lithuanian 93.12(3.09) 93.19(3.14) 93.26(3.22)
Sonar 81.84(5.67) 79.92(5.16) 82.06(2.09)
Ionosphere 89.06(2.21) 89.06(2.55) 89.06(2.21)

Wine 98.53(1.48) 98.53(1.08) 98.53(1.08)
Haberman 76.13(2.06) 76.42(2.38) 76.13(1.56)

CTG 86.04(1.14) 85.99(1.05) 86.08(1.24)
Vertebral 85.62(2.35) 85.76(2.55) 84.90(2.95)

Faults 68.72(1.19) 68.63(1.24) 68.95(1.04)
WDVG1 84.84(0.36) 84.83(0.63) 84.77(0.65)

Ecoli 80.92(3.76) 80.66(3.58) 80.66(3.48)

GLASS 65.21(3.65) 66.04(3.67) 65.21(3.53)

ILPD 70.17(2.33) 70.48(2.28) 69.64(2.47)

Adult 87.22(1.84) 87.29(2.20) 87.29(1.80)
Weaning 79.69(3.71) 79.83(2.94) 79.98(3.55)
Laryngeal1 87.00(5.00) 86.79(4.72) 87.21(5.35)
Laryngeal3 73.42(1.26) 73.79(1.38) 73.54(1.66)

Thyroid 97.38(0.67) 97.44(0.71) 97.38(0.67)

German 74.54(1.30) 75.03(2.04) 74.36(1.28)

Heart 85.30(2.30) 85.46(2.70) 85.46(2.70)

Segmentation 96.42(0.76) 96.34(0.74) 96.46(0.79)
Phoneme 81.77(0.72) 81.47(0.77) 81.82(0.69)
Monk2 83.34(3.32) 82.83(3.82) 83.45(3.46)
Mammographic 84.41(2.54) 84.62(2.46) 84.30(2.27)

Magic Gamma Telescope 85.33(2.29) 84.62(2.46) 85.65(2.27)
Friedman Average Rank (↓) 2.15 1.98 1.86

3.5 Comparison with the state-of-the-art DES techniques
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In this section, we compare the recognition rates obtained by the proposed META-DES.H

against eight state-of-the-art dynamic selection techniques in the DES literature: the KNORA-

ELIMINATE [14], KNORA-UNION [14], DES-FA [20], Local Classifier Accuracy (LCA) [22],

Overall Local Accuracy (OLA) [22], Modified Local Accuracy (MLA) [29], Multiple Classi-

fier Behaviour (MCB) [21] and K-Nearests Output Profiles (KNOP) [16].

For all techniques, we use the same pool of classifiers defined in the previous section (Sec-

tion 3.3) in order to have a fair comparison. The size of the region of competence (neighbor-

hood size), K is set to 7 since it achieved the best result in previous experiments [1; 20]. The

comparative results are shown in Table II-4. Due to size constraints, we only show the results

using Naive Bayes as the meta-classifier since it achieved the highest recognition accuracy in

the previous experiment. For each dataset, a Kruskal-Wallis statistical test with 95% confidence

was conducted to know if the classification improvement is statistically significant. Results that

are statistically better are marked with a •. The results of the proposed technique obtained the

highest accuracy in 20 out of 30 datasets. In addition, the accuracy of the proposed system was

statistically superior in 15 out of 30 datasets. The original META-DES framework [2], without

the improvements proposed in this paper, achieved results that are statistically superior in 10

out of the 30 datasets when compared with the state-of-the-art DES techniques.

Furthermore, we also consider the Wilcoxon test with 95% confidence, for a pairwise compar-

ison between the classification performances of the proposed system against the performance

of the state-of-the-art DES techniques over multiple datasets. The results of the Wilcoxon test

are shown in the last row of the table. The performance of the proposed META-DES.H sys-

tem is statistically better when all 30 datasets are considered. Hence, the experimental results

demonstrate that the changes proposed in this paper lead to a significant gains in performance

when compared to other DES algorithms.

4. Conclusion
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Table-A II-4 Mean and standard deviation results of the accuracy obtained for the

proposed META-DES using a Naive Bayes classifier for the meta-classifier λ and the

hybrid combination approach. The best results are in bold. Results that are significantly

better are marked with a •

Database META-DES.H KNORA-E KNORA-U DES-FA LCA OLA MLA MCB KNOP
Pima 77.93(1.86) 73.79(1.86) 76.60(2.18) 73.95(1.61) 73.95(2.98) 73.95(2.56) 77.08(4.56) 76.56(3.71) 73.42(2.11)

Liver Disorders 69.95(3.49) • 56.65(3.28) 56.97(3.76) 61.62(3.81) 58.13(4.01) 58.13(3.27) 58.00(4.25) 58.00(4.25) 65.23(2.29)

Breast (WDBC) 97.25(0.47) 97.59(1.10) 97.18(1.02) 97.88(0.78) 97.88(1.58) 97.88(1.58) 95.77(2.38) 97.18(1.38) 95.42(0.89)

Blood Transfusion 78.25(1.37) • 77.65(3.62) 77.12(3.36) 73.40(1.16) 75.00(2.87) 75.00(2.36) 76.06(2.68) 73.40(4.19) 77.54(2.03)

Banana 94.51(2.36) 93.08(1.67) 92.28(2.87) 95.21(3.18) 95.21(2.15) 95.21(2.15) 80.31(7.20) 88.29(3.38) 90.73(3.45)

Vehicle 83.55(2.10) 83.01(1.54) 82.54(1.70) 82.54(4.05) 80.33(1.84) 81.50(3.24) 74.05(6.65) 84.90(2.01) 80.09(1.47)

Lithuanian Classes 93.26(3.22) 93.33(2.50) 95.33(2.64) 98.00(2.46) 85.71(2.20) 98.66(3.85) 88.33(3.89) 86.00(3.33) 89.33(2.29)

Sonar 82.06(2.09) • 74.95(2.79) 76.69(1.94) 78.52(3.86) 76.51(2.06) 74.52(1.54) 76.91(3.20) 76.56(2.58) 75.72(2.82)

Ionosphere 89.06(2.21) 89.77(3.07) 87.50(1.67) 88.63(2.12) 88.00(1.98) 88.63(1.98) 81.81(2.52) 87.50(2.15) 85.71(5.52)

Wine 98.53(1.08) • 97.77(1.53) 97.77(1.62) 95.55(1.77) 85.71(2.25) 88.88(3.02) 88.88(3.02) 97.77(1.62) 95.50(4.14)

Haberman 76.13(1.56) • 71.23(4.16) 73.68(2.27) 72.36(2.41) 70.16(3.56) 69.73(4.17) 73.68(3.61) 67.10(7.65) 75.00(3.40)

Cardiotocography (CTG) 86.08(1.24) 86.27(1.57) 85.71(2.20) 86.27(1.57) 86.65(2.35) 86.65(2.35) 86.27(1.78) 85.71(2.21) 86.02(3.04)

Vertebral Column 84.90(2.95) 85.89(2.27) 87.17(2.24) 82.05(3.20) 85.00(3.25) 85.89(3.74) 77.94(5.80) 84.61(3.95) 86.98(3.21)

Steel Plate Faults 68.95(1.04) 67.35(2.01) 67.96(1.98) 68.17(1.59) 66.00(1.69) 66.52(1.65) 67.76(1.54) 68.17(1.59) 68.57(1.85)

WDG V1 84.77(0.65) • 84.01(1.10) 84.01(1.10) 84.01(1.10) 80.50(0.56) 80.50(0.56) 79.95(0.85) 78.75(1.35) 84.21(0.45)

Ecoli 80.66(3.48) 76.47(2.76) 75.29(3.41) 75.29(3.41) 75.29(3.41) 75.29(3.41) 76.47(3.06) 76.47(3.06) 80.00(4.25)

Glass 65.21(3.53) 57.65(5.85) 61.00(2.88) 55.32(4.98) 59.45(2.65) 57.60(3.65) 57.60(3.65) 67.92(3.24) 62.45(3.65)

ILPD 69.64(2.47) 67.12(2.35) 69.17(1.58) 67.12(2.35) 69.86(2.20) 69.86(2.20) 69.86(2.20) 68.49(3.27) 68.49(3.27)

Adult 87.29(1.80) • 80.34(1.57) 79.76(2.26) 80.34(1.57) 83.58(2.32) 82.08(2.42) 80.34(1.32) 78.61(3.32) 79.76(2.26)

Weaning 79.98(3.55) 78.94(1.25) 81.57(3.65) 82.89(3.52) 77.63(2.35) 77.63(2.35) 80.26(1.52) 81.57(2.86) 82.57(3.33)

Laryngeal1 87.21(5.35) • 77.35(4.45) 77.35(4.45) 77.35(4.45) 77.35(4.45) 77.35(4.45) 75.47(5.55) 77.35(4.45) 77.35(4.45)

Laryngeal3 73.54(1.66) 70.78(3.68) 72.03(1.89) 72.03(1.89) 72.90(2.30) 71.91(1.01) 61.79(7.80) 71.91(1.01) 73.03(1.89)

Thyroid 97.38(0.67) • 95.95(1.25) 95.95(1.25) 95.37(2.02) 95.95(1.25) 95.95(1.25) 94.79(2.30) 95.95(1.25) 95.95(1.25)

German credit 74.54(0.30) • 72.80(1.95) 72.40(1.80) 74.00(3.30) 73.33(2.85) 71.20(2.52) 71.20(2.52) 73.60(3.30) 73.60(3.30)

Heart 85.46(2.70) 83.82(4.05) 83.82(4.05) 83.82(4.05) 85.29(3.69) 85.29(3.69) 86.76(5.50) 83.82(4.05) 83.82(4.05)

Satimage 96.72(0.76) • 95.35(1.23) 95.86(1.07) 93.00(2.90) 95.00(1.40) 94.14(1.07) 93.28(2.10) 95.86(1.07) 95.86(1.07)

Phoneme 81.82(0.69) • 79.06(2.50) 78.92(3.33) 79.06(2.50) 78.84(2.53) 78.84(2.53) 64.94(7.75) 73.37(5.55) 78.92(3.33)

Monk2 83.45(3.46) • 80.55(3.32) 77.77(4.25) 75.92(4.25) 74.07(6.60) 74.07(6.60) 75.92(5.65) 74.07(6.60) 80.55(3.32)

Mammographic 84.30(2.27) • 82.21(2.27) 82.21(2.27) 80.28(3.02) 82.21(2.27 82.21(2.27) 75.55(5.50) 81.25(2.07) 82.21(2.27)

MAGIC Gamma Telescope 85.65(2.27) • 80.03(3.25) 79.99(3.55) 81.73(3.27) 81.53(3.35) 81.16(3.00) 73.13(6.35) 75.91(5.35) 80.03(3.25)

Wilcoxon Signed test n/a − (ρ = .0001) − (ρ = .0007) − (ρ = .0016) − (ρ = .0001) − (ρ = .0001) − (ρ = .0001) − (ρ = .0003) − (ρ = .005)

In this paper, we proposed two modifications to the novel META-DES framework. First, we

compared different classifier models, such as the MLP Neural Network, Support Vector Ma-

chines with Gaussian Kernel (SVM), Random Forests and Naive Bayes for the meta-classifier.

Next, we evaluated three combination approaches to the framework: Dynamic selection, Dy-

namic weighting and Hybrid. In the Dynamic selection approach, only the classifiers that attain

a certain level of competence are used to classify a given query sample. In the dynamic weight-

ing approach, all base classifiers in the pool are considered to give the final decision, with the

meta-classifier estimating the weight of each base classifier. In the hybrid approach, only the

classifiers that attain a certain level of competence are initially selected, after which their deci-

sions are aggregated in a weighted majority voting scheme. Thus, the base classifiers attaining

higher levels of competence have a greater impact on the final decision.

Experiments were conducted using 30 classification datasets derived from five different data

repositories (UCI, KEEL, STATLOG, LKC and ELENA). First, we observed a significant im-
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provement in accuracy using different classifier models for the meta-problem. The performance

of the META-DES trained using a Naive Bayes for the meta-classifier achieves results that are

statistically better compared to those achieved using an MLP Neural Network, according to the

Wilcoxon Signed Rank test with 95% confidence. This finding confirms the initial hypothesis

that the overall performance of the system improves when the recognition accuracy of the meta-

classifier improves. As the META-DES framework considers the dynamic selection problem

as a meta-classification problem, we can improve the recognition accuracy by focusing only on

improving the classification performance in the meta-problem. This finding is especially use-

ful for ill-defined problems since there is not enough data to properly train the base classifiers.

Techniques such as stacked generalization for the generation of more meta-feature vectors in

the data generation process as well as the use of feature selection techniques to achieve a more

representative set of meta-features can be considered to improve the recognition performance

at the meta-classification level.

In addition, we demonstrate that the framework can also be used to compute the weights of

the base classifiers. We found that the Naive Bayes classifier achieved the best result when the

dynamic weighting (META-DES.W) or hybrid (META-DES.H) approach is used. This can be

explained by the fact that the supports given by this classifier can be seen as the likelihood that

the base classifier belongs to the "‘competent"’ meta-class. Thus, the classifiers that are more

likely to be "‘competent"’ have greater influence on the classification of any given test sample.

When compared to eight state-of-the-art techniques found in the dynamic ensemble selection

literature, the proposed META-DES.H using a Naive Bayes classifier for the meta-classifier

presented classification accuracy that is statistically better in 15 out of the 30 classification

datasets. The original META-DES framework [2] achieved results that are statistically better

in 10 out of the 30 datasets when compared with the state-of-the-art DES techniques. Hence,

the changes to the META-DES framework proposed in this paper lead to a significant gain in

performance when compared against other DES algorithms.
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Abstract

One of the main problems in pattern recognition is obtaining the best set of features to represent

the data. In recent years, several feature extraction algorithms have been proposed. However,

due to the high degree of variability of the patterns, it is difficult to design a single representa-

tion that can capture the complex structure of the data. One possible solution to this problem

is to use a multiple-classifier system (MCS) based on multiple feature representations. Unfor-

tunately, still missing in the literature is a methodology for comparing and selecting feature

extraction techniques based on the dissimilarity of the feature representations. In this paper,

we propose a framework based on dissimilarity metrics and the intersection of errors, in order

to analyze the relationships among feature representations. Each representation is used to train

a classifier, and the results are compared by means of a dissimilarity metric. Then, with the aid

of Multidimensional Scaling, visual representations are obtained of each of the dissimilarities

and used as a guide to identify those that are either complementary or redundant. We applied

the proposed framework to the problem of handwritten character and digit recognition. The

analysis is followed by the use of an MCS built on the assumption that combining dissimilar

feature representations can greatly improve the performance of the system. Experimental re-

sults demonstrate that a significant improvement in classification accuracy is achieved due to

the complementary nature of the representations. Moreover, the proposed MCS obtained the
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best results to date for both the MNIST handwritten digit dataset and the Cursive Character

Challenge (C-CUBE) dataset.

1. Introduction

The selection of the feature extraction algorithm is known to be an important factor in the

performance of any recognition system [108]. However, designing a single feature extraction

algorithm in a complex recognition problem that can recognize every kind of pattern is un-

likely, because of the high degree of variability of the data. Some features might present a

better result for a predetermined class of patterns. For instance, in the problem of handwritten

character recognition, one feature extraction algorithm might represent lowercase letters bet-

ter, while another is a more robust performer for uppercase letters. Moreover, every feature

extraction technique represents a different aspect of the image, such as concavities [109], char-

acter structure [110], edges [111], projections [111], and directional information based on the

gradient [112].

In our opinion, the information captured by different feature extraction techniques can be com-

plementary, and a multiple-classifier system (MCS) developed using multiple feature represen-

tations achieves higher classification performance. Unfortunately, there is no framework in the

literature for comparing and analyzing the relationships among feature representations. Feature

extraction techniques are only compared based on classification accuracy, and none analyzes

the diversity among them.

In the MCS context, the system can only perform better than the best individual classifier when

there is diversity among the classifiers [8], so that they achieve different solutions. In other

words, we seek significantly different representations because they produce different solutions

- combining techniques that perform identically is not useful.

In this paper, we propose a novel framework to study the relationships among the various fea-

ture representations. Each feature extraction technique is used to train a classifier. Their results

are evaluated based on dissimilarity/diversity measures [8; 50]. Then, the relationships ob-
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tained are used to project each representation onto a space (Classifier Projection Space [113]).

Each feature extraction technique is represented by a point, and the distance between two points

corresponds to the difference between them. In this way, a spatial relationship is achieved be-

tween different representations. Feature representations that are close to one another produce

similar results, and so may be redundant. Combining them is unlikely to improve the accuracy

of the system, and they could be removed from the system without a significant loss in perfor-

mance. Those that are far apart are able to correctly recognize different classes of images, and

should be considered for an MCS.

The purpose of our proposed framework in this context is twofold: to perform an analysis of the

complementarity within a subset of feature extraction methods, and to serve as a methodology

for identifying and removing feature representations that produce similar results. In this way,

a more efficient MCS is achieved.

We apply this framework to the problem of handwritten character and digit recognition. This is

an important area in the field of pattern recognition, because of the many practical applications

that exist, such as mail sorting, bank check analysis, and form processing, all of which depend

on quality feature extraction techniques. Pattern recognition in handwritten documents is a

major challenge, owing to the diversity of handwriting styles. A writer can, for example,

change his writing style as a result of a change in his neurological status, the type of pen he

uses, and his hand position [114], especially if the shapes of the characters are complex [115].

A total of nine feature extraction techniques for handwritten recognition are evaluated here.

Two of them, Modified Edge-Maps and Multi-Zoning, are based on classical algorithms. We

selected techniques that capture different views of the image, such as concavities and pro-

jections, as well as techniques that capture the same type of information, such as directional

information based on the gradient, but are extracted using different algorithms. Our analysis

enables us to answer the following questions:

a. Do different feature extraction techniques present complementary information (i.e. are

they able to correctly classify different images)?
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b. Are feature extraction techniques that use a similar approach (e.g. different methods for

extracting the gradient) less complementary than techniques that use different character-

istics (e.g. edges, concavities)?

c. Can the proposed framework be used to select a subset of feature representations?

We perform an analysis of feature representations, which serves as the basis on which we

propose a novel MCS for handwritten recognition. The proposed system is applied to two dif-

ferent handwritten recognition tasks: digit recognition, and cursive character recognition. For

the handwritten digit recognition problem, we use the MNIST database, which is a very well-

known benchmark. For cursive character recognition, we use the Cursive Character Challenge

database (C-Cube). We carry out a sensitivity analysis for both cases, and demonstrate that the

use of complementary feature representations greatly improves recognition performance. We

also show that a scheme that includes a Multi-Layer Perceptron (MLP) neural network trained

to combine the classifiers presented the highest accuracy rates in both cases, and these rates are

also the best results obtained for these databases to date.

This paper is organized as follows. The framework for feature representation analysis is in-

troduced in Section 2. Section 3 describes the nine feature extraction techniques studied in

this paper. The evaluation of each feature extraction algorithm and the sensitivity analysis

of these algorithms are shown in Section 4. Section 5 shows the performance of the system

when an MCS is designed based on different feature representations. Finally, our conclusion is

presented in the last section.

2. Feature Representation Analysis

This section describes the feature representation selection scheme shown in Figure III-1. The

first step in this approach is to extract m different feature representations, F1, . . . ,Fm, of the

patterns from the data (DB). These feature representations are used to train m classifiers,

C1, . . . ,Cm, separately. Then, the dissimilarity matrix D (Section 2.1) and its projection onto

the classifier space D̃ (Section 2.2) are computed. The matrix D̃ contains the spatial relation-
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ship between the classifiers that is equivalent to their dissimilarities (matrix D). That spatial

relationship is used to perform the sensitivity analysis (Section 2.3), from which redundant

representations can be identified. Finally, a subset m′ ⊂ m of the feature representations is

selected.
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Figure-A III-1 Overview of the proposed feature representation selection scheme. Each

Fi represents one feature representation, and it is used to train the classifier Ci. Based on

the output of each pair (feature representation, classifier), we compute the dissimilarity

matrix D that is used to perform the classifier projection D̃ through multidimensional

scaling (MDS). The matrix D̃ is used to analyze the complementarity of the feature

representations and perform the selection.

2.1 Dissimilarity Matrix

The matrix D is an m×m symmetrical matrix, where each member d(i, j) represents the dis-

similarity between the classifiers Ci and Cj. In order to compute D, we first need to select

an appropriate metric that measures the difference between feature representations. There are

many diversity measures in the literature [8]. We selected the Double Fault [50], because it

has already been demonstrated that this measure presents a positive correlation with ensemble

accuracy [116]. Equation A III-1 shows the Double Fault measure between a pair of classifiers

Ci and Cj.
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d(i, j) =
N00

N00 +N01 +N10 +N11
(A III-1)

where Ni j is the number of examples correctly classified (1) or misclassified (0) for the classi-

fiers Ci and Cj respectively. In other words, the Double Fault measures the probability that the

same pattern is misclassified by both classifiers.

2.2 Classifier Projection Space

After the dissimilarity matrix D has been obtained, the next step is to project each feature repre-

sentation onto the Classifier Projection Space (CPS). The CPS is a Rκ space, where each clas-

sifier is represented as a point, and the Euclidean distance between two classifiers represents

their dissimilarity [113]. Classifiers that are similar are closer together in the CPS, while those

that are less similar are further apart. In this way, it is possible using CPS to obtain the spatial

representations of all the classifiers. This spatial representation provides a better understanding

of the relationships among the classifiers than when only the value of the diversity measure is

used. The diversity measure only describes the relationship between a pair of classifiers, while

the CPS shows the relationships among all the classifiers. A two-dimensional CPS is used for

better visualization. In order to obtain a two-dimensional classifier projection, a dimension-

ality reduction of the data is required. This can be achieved using Multidimensional Scaling

(MDS) [113; 117], which refers to a group of methods used to visualize high-dimensional data

mapped to a lower dimensional space [118].

Given the dissimilarity matrix D, a configuration X of m points in Rk,(k ≤ m) is computed

using a linear mapping, called classical scaling [117]. The process is performed through rota-

tion and translation, such that the distances after dimensionality reduction are preserved. The

projection X is computed as follows: first, a matrix of the inner products is obtained by the

square distances B =−1
2JD2J, where J = I − 1

mUUT , and I and U are the identity matrix and

unit matrix respectively. J is used as a normalization matrix, so that the mean of the data is

zero. The eigendecomposition of B is then obtained, B = QΛQT , where Λ is a diagonal ma-
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trix containing the eigenvalues (in decreasing order) and Q is the matrix of the corresponding

eigenvectors. The configuration of points in the reduced space is determined by the k largest

eigenvalues. Therefore, X is uncorrelated in the space Rk, X = Qk
√

Λk. In our case, k = 2.

MDS is obtained by applying the Sammon mapping over X . The Sammon mapping is a non-

linear projection that preserves the distances between the points [113; 117]. The mapping

is performed by defining a function, called stress function S (Equation A III-2), which mea-

sures the difference between the original dissimilarity matrix D and the distance matrix of the

projected configuration, D̃, where d̃(i, j) is the distance between the classifiers i and j in the

projection X , as defined in equation 2:

S =
1

∑m−1
i=1 ∑m

j=i+1 d(i, j)2

m−1

∑
i=1

m

∑
j=i+1

(d(i, j)− d̃(i, j)) (A III-2)

In other words, the objective of S is to minimize the difference between D and D̃, and so

the projection onto the CPS is found in iterative fashion. The algorithm starts with an initial

representation of points in Euclidean space (the configuration of points in X with its corre-

sponding distance matrix D̃). Then, the configuration of the points is adjusted to minimize S .

A scaled gradient algorithm [113] is used for this purpose. In the end, the distances between

the classifiers correspond to an approximation of their original dissimilarity.

Figure III-2 shows an example of the CPS space for different feature representations extracted

from the Iris dataset1. This dataset consists of four features. In order to simulate different

feature representations, we use random combinations of two and three features. Ten different

representations were generated: FS I to FS VI are combinations of two features, FS VII to

FS IX are combinations of three features, and FS X is a representation consisting of all four

features. A Perceptron was used as the classifier for each feature representation.

1http://archive.ics.uci.edu/ml/
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Figure-A III-2 Example of a two-dimensional CPS plot for different feature

representations extracted from the iris dataset.

2.3 Sensitivity Analysis

The first step in the sensitivity analysis is to use the CPS as a visual tool to group feature

representations based on the spatial information provided by the CPS. In Figure III-2, we can

observe that there are three feature representations that are really close together: FS V, FS IX,

and FS X. Consequently, they are probably redundant. In contrast, some feature representa-

tions, such as FS II and FS VI, are far apart, and can be considered to be from different groups.

We can see that the CPS is used to identify groups of representations that perform in similar

fashion.

The second step is to analyze the performance of some combinations of feature representations.

This is achieved using the concept of the Oracle, which produces the best possible result of any
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combination of classifiers [119]. It considers that the ensemble obtains the correct classification

if at least one classifier produces the true label. So, based on the analysis of the error performed

by Oracle, it is possible to know whether or not individual classifiers are able to correctly

recognize different patterns.

From the analysis in Figure III-2, we constructed two diagrams. The first is composed of

feature representations that are close together: FS V, FS IX, and FS X (Figure III-3a). The

second is composed of representations that are far apart, and can be considered to belong to

different groups: FS II, FS III, and FS VI (Figure III-3b). The number inside each circle

indicates the number of errors committed by each classifier. The area where the classifiers

intersect represents the errors committed by all of them, and can be viewed as the error obtained

by the Oracle combination (i.e. (FS V ∩ FS IX) is the number of patterns misclassified by the

Oracle combination).

The total number of errors obtained using FS X is 28 (Figure III-3a). However, none of these

errors was committed by this feature representation alone (i.e. an individual error). The major-

ity of the errors lie at the intersection of the three feature spaces. In other words, 23 patterns are

misclassified in the three feature subspaces, while 4 and 2 are common errors obtained by the

intersections (FS X ∩ FS IX) and (FS X ∩ FS V) respectively. So, errors committed by clas-

sifiers in the same group are likely to occur in the same patterns, which means that combining

them is unlikely to improve recognition performance.

In contrast, when representations that are far apart are combined (i.e. they belong to different

groups, such as FS II, FS III, and FS VI) (Figure III-3b), we can observe that the intersection

of the errors produces a lower value. For instance, from the 19 errors committed by FS III,

16 occur individually. The intersections (FS III ∩ FS II) and (FS III ∩ FS VI) produce errors

of 1 and 2 respectively. Moreover, looking at the intersection of the three techniques, we

note that no pattern was misclassified by all the techniques, as opposed to 23 in Figure III-

3a. Therefore, these feature representations can be considered complementary, since they can

correctly recognize different patterns.
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Figure-A III-3 Oracle error analysis for different feature representations

trained on the Iris dataset. (a) representations that belong to the same

cluster. (b) representations that belong to different clusters.

Consequently, we can identify representations that are redundant using the sensitivity analy-

sis. From the point of view of an MCS, there is no advantage to combining FS V with FS IX

and FS X for the Iris dataset, as they behave almost identically. So, instead of using m rep-

resentations, we can use the sensitivity analysis to select a more efficient set m′ = 3 (FS II,

FS III, and FS VI) that consists only of dissimilar representations. We expect that the subset

m′ produces results that are better than, or at least comparable to, the whole set m. Applying

this methodology in the context of feature representations, it is possible to compare different

representations and select only the most dissimilar ones. The selected feature representation is

used to construct a more robust MCS for pattern recognition problems.

3. Feature Extraction Methods

Feature extraction can be defined as a means for obtaining the most relevant information to

be used in the classification procedure [120]. There are several feature extraction techniques,

and choosing a technique can be considered the most important factor in the achievement of

high accuracy rates in a pattern recognition problem [108]. A total of nine feature extraction
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algorithms are summarized below. Feature sets I to VII have been proposed by others [110;

111; 109; 121; 122], and feature sets VIII and IX are new contributions.

3.1 Feature Set I: Structural Characteristics

This feature set is obtained by combining projections and profiles in a single feature vector.

First, the input image is scaled to a 32×32 matrix. Then, three types of histogram (horizontal,

vertical, and radial) and two types of profile (radial in-out and radial out-in) are computed.

The horizontal and vertical histograms (Figure III-4b and Figure III-4c) are calculated by sum-

ming the number of black pixels in each line and column respectively. So, 32 features are

generated for each histogram.

The radial histogram (Figure III-4d) is computed as the number of black pixels in 72 directions

at 5 degree intervals. The process progresses from the centroid of the image to its border, and

72 features are generated.

Radial In-Out and Radial Out-In profiles are defined by the position of the first and last black

pixel respectively, from a search that progresses from the centroid of the image to its border in

72 directions at 5 degree intervals. In this way, each profile generates 72 features. These fea-

tures form a 280-dimensional feature vector (32 horizontal projections + 32 vertical projections

+ 72 radial projections + 72 In-Out profiles + 72 Out-In profiles). Details of this technique are

described in [110].

3.2 Feature Set II: Image Projections

This method consists of extracting the radial and diagonal projections. The diagonal projec-

tions are computed by grouping the pixels in two diagonal lines (45◦ and −45◦). A total of 32

features are obtained for each diagonal.

To extract the radial projections, the image must first be divided into four quadrants: top,

bottom, right, and left. The quadrants are used to remove rotational invariance, which is an
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Figure-A III-4 Feature Set I: Example of a 5 digit projections.

undesirable characteristic in handwritten recognition, since it makes it impossible to distinguish

between some digits (e.g. digits 6 and 9).

For each quadrant, the radial projections are obtained by grouping pixels from its radial dis-

tance to the centroid of the image. The values of each projection are normalized to a [0− 1]

range. The normalized features are combined into a single vector containing 128 features (16

for each radial projection and 32 for each diagonal projection). More details about this proce-

dure are described in [111].
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3.3 Feature Set III: Concavity Measurement

These features are obtained using the following steps: The image (Figure III-5c) is scaled

to a matrix 18× 15, and divided into six zones. Each part contains its own 13-dimensional

feature vector, and the position of each feature vector corresponds to one of the 13 possible

configurations (Figure III-5d).
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Figure-A III-5 Feature Set V: The Concavity Measurement

procedure (a) Main directions. (b) Auxiliary directions. (c) Query

image. (d) The thirteen possible configurations. (e) Feature vector.

For each white pixel (background), the algorithm conducts a search, starting from that pixel

and moving in each of the four “main directions” (Figure III-5a). The search continues until

a black pixel (foreground) is found, or when the end of the image is reached. Finally, the

number of directions ending with a black pixel is computed, as are the directions themselves,

each of which corresponds to one of the 13 possible configurations (Figure III-5d). So, the

configuration in the feature vector corresponding to the result of the search is incremented.
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However, in some cases, the search may find a black pixel in the four “main directions”, but

that pixel is not in a closed area. In order to guarantee that the white pixel is in a closed region,

a new search is performed using the “auxiliary directions” (Figure III-5b). If the search using

one of the auxiliary directions reaches the end of the image without finding a black pixel, the

correct configuration (from the 10th to the 13th) is incremented. Otherwise, the point is in a

closed region (9th position of the feature vector).

To better understand the method, we analyze two cases. In the case of P1, the search finds a

black pixel in three directions: top, bottom, and left. So, the configuration corresponds to the

6th position of the vector (Figure III-5e), and this position is incremented. In the case of P2, the

search in the four main directions finds a black pixel. However, using the auxiliary directions,

the search also finds that the point is not in a closed region (no black pixel was found in the

bottom right auxiliary direction). Therefore, P2 corresponds to the 13th configuration.

These steps are computed for the six zones separately. At the end of the process, the feature

vectors of each zone are combined into a single vector with 78 (13× 6) features. A detailed

description of the algorithm is presented by Oliveira et al. [109].

3.4 Feature Set IV: MAT-based Directional Gradient

This algorithm computes the gradient components of a grayscale image. So, the first step in

this procedure is to transform a binary image into a pseudo-grayscale image using the Medial

Axial Transformation (MAT) algorithm. The Sobel operators in the horizontal Sx and vertical

Sy directions are applied to the pseudo-grayscale image Im, generating the X-gradient image

Imx and the Y-gradient image Imy . These are defined as:

Imx = Im ∗Sx (A III-3)

Imy = Im ∗Sy (A III-4)
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For each pixel, the magnitude r (i, j) and the phase Θ(i, j) are defined as:

r (i, j) =
√

I2
mx
(i, j)+ I2

my
(i, j) (A III-5)

Θ(i, j) = tan−1
I2
my
(i, j)

I2
mx
(i, j)

(A III-6)

In order to generate a fixed number of features, the phase of each pixel Θ(i, j) is quantized into

eight directions at π/4 intervals each. Then, the image is divided into 16 equally spaced sub

images, and, for each sub image, the number of pixels in each of the eight directions is used as

a feature. So, the feature vector size is equal to 128 (16 sub images × 8 directions). Details of

this feature extraction algorithm can be found in [121].

3.5 Feature Set V: Binary Directional Gradient

This algorithm computes the gradient components of a binary image. The gradient is computed

using the same procedure as that of a MAT-based directional gradient, defined in Section 3.4,

except that no MAT transform is needed, because a binary image is used instead of a grayscale

one. A total of 128 features are extracted per image.

3.6 Feature Set VI: Median Gradient

In this technique, the image is first enhanced using a median filter to remove noise. Next, the

Robert operators [123] in the horizontal Rx and vertical Ry directions are applied to the filtered

image to generate the X-gradient image Imx and the Y-gradient image Imy .

Imx = Im ∗Rx (A III-7)
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Imy = Im ∗Ry (A III-8)

The gradient is computed using the same procedure as described in the 3.4 section, generating

128 features. This method is described in detail by Zhang et al. [121].

3.7 Feature Set VII: Camastra 34D

This feature extraction algorithm was proposed by Camastra [122]. The image is divided into

16 sub images (cells), forming a 4×4 grid with a small overlap between them. Two operators

are computed for each cell. The first is similar to the Zoning algorithm, and computes the

number of black pixels (foreground) relative to the total number of black pixels in the whole

image. The difference is that, in the Zoning algorithm, the number of black pixels is computed

relative to the number of pixels in each zone. The second is a directional operator, which

estimates the directions of the pixels. The method defines N equally spaced lines in the selected

direction, after which the number of black pixels in each line is computed. The same steps are

performed for the orthogonal direction. The difference between the selected direction and the

orthogonal direction is used as a feature. The direction selected in this implementation was 0◦,

having the orthogonal direction of 90◦. This results in a feature vector with 32 values. Two

additional pieces of information were used as global features: The width/height ratio and the

portion of the character that is below the baseline. The final vector consists of 34 features

(16×2 local features + 2 global features).

3.8 Proposed Feature Extraction Algorithms

3.8.1 Feature Set VIII: Multi-Zoning

The idea behind using multiple configurations of zones simultaneously is to compute informa-

tion from the image at different levels of detail. Using larger zones, global information about

the shape of the character can be computed. In smaller zones, the focus is on local details,
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which are important for distinguishing between characters with similar shapes (e.g. digits 2

and 3). As a result, both global and local information is extracted at the same time.

This algorithm works as follows: an M ×N image is divided into several sub images, and the

percentage of black pixels in each sub image is used as feature. To achieve better recognition

performance, many different divisions (Figure III-6) are selected and grouped to form the fea-

ture vector. A total of thirteen different configurations (3×1,1×3,2×3,3×2,3×3,1×4,4×
1,4×4,6×1,1×6,6×2,2×6, and 6×6) were chosen, resulting in 123 (3+3+6+6+9+

4+4+16+6+6+18+18+36) features.

The Multi-Zoning technique differs from previous zoning techniques, such as the one described

by Impedovo et al. [124], in that the latter use only one zoning configuration. In the proposed

method, instead of searching for an optimal division, we use multiple divisions, in order to

have a representation of the image at different levels of detail. Moreover, we expect to achieve

a better result using multiple configurations, since it is difficult to find a single configuration

that can deal with the high degree of variability among handwriting styles.

3.8.2 Feature Set IX: Modified Edge Maps

This algorithm is a modified version of the Edge Maps algorithm of Chin et al. [111]. An M×N

image is first thinned using the Zhang-Suen algorithm [125] and scaled to a 25× 25 matrix.

Then, the Sobel operators [123] are used to extract four distinct edge maps: one horizontal,

one vertical, and two diagonal (45◦ and −45◦). Figure III-7 shows the four edge maps and the

image after the thinning process has been performed.

The four edge maps and the thinned image are then divided into 25 sub images of 5×5 pixels

each. The features are obtained through the computation of the percentage of black pixels in

each sub image (25 features for each map). They are then combined to form a single feature

vector containing 125 (25× 5) features. The original algorithm, the Edge Maps algorithm of

Chin et al. [111], does not compute the percentage of black pixels per sub image, but instead

uses the value of each pixel in greyscale as features.
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Figure-A III-6 Feature Set VIII: Thirteen configurations used in

the Multi-Zoning technique.

4. Empirical Evaluation of Feature Extraction Techniques

The analysis of the feature extraction techniques was performed by conducting experiments

using two different handwritten recognition problems: digit recognition and cursive character

recognition. In the latter experiment, the Cursive Character Challenge database was used, while

the handwritten digit recognition experiment was performed using the MNIST database. Both

databases are publicly accessible, and both have been widely used as benchmarks.
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Figure-A III-7 Feature Set IX: Example of the process for

obtaining the features for a character "A".

4.1 C-Cube Database

C-Cube is a public database available on the Cursive Character Challenge website [126]. It

consists of 57,293 images, including both uppercase and lowercase letters, manually extracted

from the CEDAR and United States Postal Service (USPS) databases. As reported by Camastra

et al. [126], there are three advantages to using this database:

a. It is already divided into training sets and test sets, and so the results of different re-

searchers can be rigorously compared.

b. It contains not only images, but also their feature vectors extracted using the algorithm

proposed by Camastra [122].

c. The results obtained using the state-of-the-art methods still leave room for significant

improvement.
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The database is divided into 38,160 (22,274 lowercase and 15,886 uppercase) images for train-

ing, and 19,133 (11,161 lowercase and 7,972 uppercase) images for testing. All the images

are binary and variable in size. For each image, four additional pieces of information are pro-

vided as global features: the distance between the base and the upper line, the distance between

the upper extremity and the baseline, the distance between the lower extremity and the base-

line, and the width/height ratio. The samples, which varied in number per class, were selected

based on their frequency of occurrence in the documents extracted from the CEDAR and USPS

datasets. Figures III-8 and III-9 show the distribution of the lowercase and uppercase letters

respectively.
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Figure-A III-8 Distribution of lowercase letters in

the C-Cube Database.

Thornton et al. [127] observed that the image files (test.chr and training.chr) available on the

C-Cube website do not match the feature vectors (test.vec and training.vec). For this reason,

they labeled the dataset with the feature vectors as Split A and the dataset with the image files as

Split B. In this work, only Split B is used, since the image files of the Split A are not available.
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Figure-A III-9 Distribution of uppercase letters in

the C-Cube Database.

4.2 MNIST Database

MNIST is a well-known handwritten digit recognition database. It contains 60,000 images for

training and 10,000 images for testing. All the images in the dataset are size-normalized and

centered to a 28×28 image.

The advantage of using this database is twofold. First, the images are already preprocessed.

Second, the database is already divided into a test set and a training set. This makes it easy to

compare the results obtained by different researchers.

4.3 Experimental Protocol

All the experiments were conducted using a three layer MLP, trained with the Resilient Back-

propagation (RPROP) [72] algorithm. This algorithm was chosen because it features a faster

convergence rate and produces a better result than the conventional Backpropagation [104;

102].
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The training set was divided into two parts: 80% for training, and 20% for validation. In

addition, the division was performed maintaining the distribution of each class, so the MLP

network is capable of estimating the Bayesian a posteriori probability [128]. Consequently,

their results can be combined through a probabilistic framework.

In every experiment, the number of nodes in the hidden layer was selected by means of the

crossvalidation method using the training data. The search was performed by varying the

number of nodes from 150 to 600 at 10-point intervals. Then, we replicated the configuration

that achieved the best results 10 times to obtain the average result. The weights of the neural

networks were randomly initialized before each execution.

4.4 Results for the C-CUBE Database

For each feature set, the global information provided by the database (width/height ratio, dis-

tance between the baseline and the upper line, distance from the baseline to the upper extrem-

ity, and distance from the baseline to the lower extremity) were included in the feature vector.

These features contributed to an average increase of two percentile points in the recognition

rate.

Two different experiments were performed. The first was conducted to evaluate the perfor-

mance of the technique for the uppercase and lowercase letters separately (split case). It is

important to do this, since some applications need to recognize either uppercase or lowercase

letters specifically. The second experiment was conducted using both; however, characters that

present similar shapes in the two cases were combined in a single class (joint case). An analy-

sis to verify whether or not the uppercase and lowercase forms of the same letters are similar in

shape was performed in [122]. The letters (C, X, O, W, Y, Z, M, K, J, U, N, F, V) presented the

greatest similarity between the two cases and were combined in a single class. This resulted in

39 classes in the second experiment.
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The results for the split and joint cases are shown in Tables III-1 and III-2 respectively. The

results are ordered by the recognition rates. The proposed Modified Edge Maps algorithm

presented the best result overall.

Table-A III-1 Recognition Rate by Feature Set for the C-Cube database. Uppercase and

lowercase letters. # Nodes is the number of nodes in the hidden layer, and Mean is the

average performance considering both uppercase and lowercase letters.

Method # Nodes Upper Case(%) Lower Case(%) Mean(%)
Modified Edge Maps 490 86.52 81.13 83.55 ± 0.27

Binary Grad. 490 86.35 79.89 82.58 ± 0.18

MAT Grad. 300 85.77 79.22 81.95 ± 0.19

Median Grad. 360 85.10 79.48 81.81 ± 0.21

Camastra 34D 400 79.63 84.37 81.74 ± 0.35

Zoning 450 84.46 78.07 80.74 ± 0.41

Structural 320 81.94 77.70 79.53 ± 0.56

Concavities 530 73.35 81.89 76.90 ± 0.16

Projections 500 71.73 79.90 75.10 ± 0.39

Most feature sets presented better accuracy for the upper case letters. The exceptions are

Image Projections, Concavity Measurement, and Camastra 34D. This fact supports the claim

that it is difficult to design a feature extraction method that can deal with the variability of the

patterns. In addition, the aim is to recognize both uppercase and lowercase letters, and so it is

an advantage to combine techniques that are expert in each task.

4.5 Results for the MNIST database

For the Modified Edge Maps and Directional Gradient methods, the number of nodes in the

hidden layer is 300. For the Zoning, Structural Characteristics, Concavity Measurement, and

Image Projection techniques, the number of nodes in the hidden layer is 360, 340, 175, and

330 respectively. Table III-3 shows the results for each feature set.

Table III-3 shows that some feature sets have better discriminative power for certain classes of

digits. A clear example of this occurs in digits with complex shapes, such as 8 and 9, where
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Table-A III-2 Feature set results for the C-Cube database (Joint Case). # Nodes is the

number of nodes in the hidden layer.

Method # nodes Recognition Rate(%)
Modified Edge Maps 490 82.49 ± 0.27

Binary Grad. 490 81.46 ± 0.18

MAT Grad. 300 80.83 ± 0.19

Median Grad. 360 79.96 ± 0.21

Camastra 34D 400 79.97 ± 0.35

Zoning 450 78.60 ± 0.41

Structural 320 77.07 ± 0.56

Concavities 530 74.90 ± 0.16

Projections 500 73.85 ± 0.39

Table-A III-3 Results for each feature extraction method for the MNIST database.

Digit Structural Edge Maps Projections Multi-Zoning Concavity MAT Grad. Binary Grad. Median Grad. Camastra 34D
0 98.88 97.86 98.17 98.88 96.13 97.96 98.46 98.06 98.46

1 99.12 98.15 98.42 98.95 98.33 98.68 99.03 99.11 99.03

2 96.03 95.26 95.26 96.23 95.66 95.16 96.22 96.31 96.22

3 96.14 94.76 94.76 96.84 91.69 94.46 96.23 96.23 96.23

4 97.25 92.15 96.33 97.05 92.98 96.94 98.16 97.45 98.16

5 95.63 94.73 93.61 96.96 95.56 96.30 95.62 95.96 95.62

6 97.81 96.66 97.18 97.08 96.35 97.39 96.45 96.76 96.45

7 96.89 93.77 95.43 95.62 94.38 95.04 95.81 94.94 95.81

8 96.00 93.54 93.74 95.90 89.64 95.54 93.83 93.42 93.83

9 95.60 90.58 93.85 95.16 92.11 92.66 94.44 95.14 94.44

Mean 96.95 ± 0.29 94.78 ± 0.15 95.72 ± 0.13 96.84 ± 0.18 94.31 ± 0.25 95.83 ± 0.13 96.47 ± 0.12 96.38 ± 0.12 96.47 ± 0.32

the difference between the largest and smallest values can be more than six percentile points.

For the digits 0, 1, 4, 6, 7, 8, and 9, the Structural Characteristics method achieved the best

results, while for the digits 2, 3, and 5, the proposed Multi-Zoning technique obtained a better

recognition rate.

The techniques that presented the best results for the MNIST database, Structural Character-

istics and Multi-Zoning, are among the worst performers for the C-Cube database (Tables III-

1 and III-2). The proposed Modified Edge Maps presented the best accuracy for the C-Cube

database, and the second worst result for the MNIST database. This is another reason to use

multiple feature extraction techniques.
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4.6 Sensitivity Analysis

The validation dataset was used to compute the dissimilarity matrix D and its projection onto

the two-dimensional CPS D̃. Figure III-10 shows the CPS for the C-Cube database. Based

on visual analysis, four groups of feature representation can be observed. The Modified Edge

Maps and Image Projection techniques are a long way from every other point, and can be

considered an atomic cluster. The Structural Characteristics and Concavity Measurement tech-

niques make up another group. The last cluster is composed of the gradient methods (MAT

Gradient, Binary Gradient, and Median Gradient), as well as the Camastra 34D and Zoning

techniques. The fact that the three gradient methods are close to one another is an interesting

finding, and the reason for their proximity is that the gradient-based techniques extract simi-

lar information (directional), with a slight difference in the preprocessing of the image. The

Camastra 34D method also computes directional information.
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Figure-A III-10 Classifier Projection Space for the C-Cube dataset.

The axes of the CPS plot have no significance, and only the distances

between the points are important.

Figure III-11 presents the Oracle error analysis for the C-Cube database. We compare feature

representations that are next to one another against representations that are far apart. Figure III-
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11a shows the Oracle error analysis for three techniques that are close together in the CPS and

can be considered to be from the same group. In this case, the three methods that extract infor-

mation based on gradients (MAT-based Gradient, Binary Gradient, and Median Gradient) are

compared. The total number of errors committed using the MAT-based Gradient representa-

tion is 3668. Approximately 20% of the errors (692 images) are misclassified by this feature

representation alone. The intersection between the MAT-based Gradient and the Binary Gra-

dient methods shows that 2113 images are misclassified, while 1849 images are misclassified

when MAT-based and Median Gradient representations are used. In addition, 986 images are

misclassified based on the intersection of the three techniques. Therefore, as the majority of

errors of these three techniques occur in the same images, combining them is unlikely to result

in improved performance.

In contrast, Figure III-11b shows the Oracle error analysis for the MAT-based Gradient with

two representations that are far apart in the CPS: Projections, and Edge-Maps. In this case, we

can easily see that the majority of errors committed by the MAT-based Gradient, 2058 happens

only individually. Both the pair-wise intersections and the intersection of the three techniques

produce a much lower number of errors, and only 252 images are misclassified considering

these three feature representations. This number is approximately 10 times less than the num-

ber of images that are misclassified when only the MAT-based Gradient is considered (2058).

So, the errors made by the three techniques occurred in distinct patterns, and therefore can be

considered complementary, since they are able to correctly classify different images.

Figure III-12 shows the CPS plot for the MNIST database. We can identify three feature

representations that are far away from all the others: Concavities, Zoning, and Structural Char-

acteristics. As with the C-Cube experiment, the results of the gradient-based methods and the

Camastra 34D representation are close together, forming a group of similar feature representa-

tions. The Modified Edge Maps representation results lie between the Zoning and Projections

representation results, and these methods can also be considered to belong to a distinct group.
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Figure-A III-11 Oracle error analysis for the C-CUBE dataset. (a)

Comparison of feature representations that belong to the same cluster.

(b) Comparison of feature representations that are far apart.
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Figure-A III-12 The Classifier Projection Space of the MNIST dataset.

Figure III-13a shows the Oracle error analysis among three methods: Structural Characteristics,

Multi-Zoning, and Concavity Measurement. Only nine images were misclassified by the three

methods used simultaneously. Moreover, the pairwise intersection of the three techniques also

reduces the number of errors. As a result, these three techniques together are able to correctly

classify different images. Figure III-13b shows the intersection of three techniques that are
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Figure-A III-13 Oracle error analysis for the MNIST dataset. (a)

comparison of feature representations that are far apart. (b)

comparison of feature representations that form a cloud of points.

closer together on the CPS plot (Structural Characteristics, Edge Maps, and MAT-based Gra-

dient). In this case, the intersection of errors shows that it is possible to reduce the individual

errors, since they present complementary information.

So, based on the proposed framework, we can answer two of the questions posed in this paper:

Do different feature extraction techniques present complementary information? We demon-

strate that different feature extraction techniques are indeed complementary. The majority of

the techniques are far apart in the CPS for both datasets. Furthermore, combining them us-

ing the Oracle analysis can reduce the individual error by a factor of as high as 10 for the

C-Cube dataset (Figure III-11b), and can result in a very low error rate for the MNIST dataset

(Figure III-11a).

The exceptions are the representations that extract the gradients of the images. Therefore, in

answer to the second question: Are feature extraction techniques that use a similar approach

(e.g. different methods to extract gradients) less complementary than techniques that use dif-

ferent characteristics (e.g. edges, concavities)? According to Figures III-10 and III-12, the

gradient-based methods based (MAT-based Gradient, Binary Gradient, and Median Gradient)

are really close to each other, creating a cloud of points. In addition, the results of the Oracle

analysis (Figure III-11(b)) demonstrate that the number of errors that are common to the three
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techniques is higher than the number of individual errors. From this, we can conclude that

techniques using similar approaches are less complementary, and are likely to misclassify the

same images.

5. Multiple-Classifier Systems

MCS have been widely studied as an alternative means of increasing efficiency and accuracy

in pattern recognition systems [24; 9; 129]. The main motivation for using classifier ensembles

comes from the observation that errors committed by classifiers trained with different feature

extraction methods do not overlap. Another reason to use them is based on the divide-and-

conquer paradigm: instead of using a single set consisting of all feature sets, the idea is to use

each feature extraction method separately and combine their results. There are many examples

in the literature that show the efficiency of an ensemble of classifiers in various tasks, such as

signature verification [101], pedestrian detection [130], and image labeling [28].

The advantage of combining classifiers that deal with distinct feature sets is that they represent

different transformations of the image into the feature space. Suppose, for example, that a

pattern is located near the decision boundary. The recognition of this pattern is a difficult task

in the feature space used. It is still difficult when multiple classifiers are applied over the same

feature space. However, if different feature spaces are used, this pattern might be close to the

decision boundary in one feature space, but the same pattern might be far from the decision

boundary of another feature space, as its transformation is completely different. In this way,

the pattern can be easily recognized.

5.1 Trained Combiner

Duin [7] concluded that fixed combination rules only achieve the best results in very strict

conditions. Normally, these results are suboptimal, and the performance of these rules falls far

short of the performance of the Oracle. For instance, the Product rule is known to fail if one

of the classifiers’ estimates is close to zero, or is accidentally zero. So, if one feature set is not

suitable for the query image, the system is likely to fail. The majority vote rule only produces
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the correct classification if at least half the classifiers predict the correct class. However, there

are certain images that are correctly classified in only one or two of the nine feature sets, and

so we cannot achieve a performance close to the Oracle using this combination rule either.

Consequently, we decided to use a trained combiner in order to achieve a more robust combi-

nation of classifiers. Trained combiners usually perform better, since the combiner can adapt

to the classification problem [7]. In this methodology, the outputs of the base classifiers are

used as input features for a new classifier that is trained to aggregate the results. During the

training phase, the combiner learns how to deal with difficult situations, such as, for example,

when a small subset of the base classifiers produces the correct answer.

In the experimental study, the trained combiner is an MLP network with one hidden layer.

Neural networks are good candidates for use as trained combiners, because they are robust to

noise. This means that the MLP combiner can still predict the correct output, even when the

majority of the base classifiers present errors.

5.2 Experimental Protocol

In this section, the results obtained by combining the feature extraction techniques are pre-

sented. For the combination module, the MLP combiner is compared to well-known fixed

combination rules. The fixed rules considered are Sum, Product, Maximum, Median, Voting,

and Oracle. The theoretical framework for the fixed combination rules is described in [24; 119].

The experiment was conducted using 10 iterations, in order to obtain the mean and standard

deviation for the results. For each iteration, the base classifiers were retrained following the

protocol described in Section 4.3. This replication is important, since the results are sensitive

to the initial weight configuration of the base classifiers.

For each image in the training set, the a posteriori probability for each feature set is estimated

and used as an input feature to train the MLP combiner. Two experiments were conducted us-

ing this combiner: MLPall, which consists of the nine feature representations, and MLPselection,
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which consists of a subset using feature representations selected based on the sensitivity anal-

ysis.

For the MLPselection configuration, the MAT-based Gradient, Binary Gradient, Median Gradi-

ent, and Camastra 34D techniques are considered redundant for both datasets (Section 4.6).

As we use only the Binary Gradient to represent this group of techniques, because it achieved

the highest accuracy, the configuration MLPselection consists of only 6 feature representations:

Modified Edge Maps, Concavity Measurement, Multi-Zoning, Structural Characteristics, Bi-

nary Gradient, and Image Projections.

In every experiment, combiner training is accomplished using the Resilient Backpropagation

algorithm. The number of nodes in the hidden layer of the MLP combiner was selected using

the crossvalidation method with the training data. The search was conducted by varying the

number of nodes from 10 to 300 at 10-point intervals. The number of nodes in the hidden layer

of the MLP combiner for the C-Cube and MNIST datasets were 300 and 50 respectively.

5.3 Results for the C-Cube Dataset

Tables III-4 and III-5 show the results of the combination for the C-Cube database. A Kruskal-

Wallis non parametric statistical test (95% confidence level) applied to the difference in accu-

racy rates showed that the results with the combination rules are statistically significant when

compared to the classifiers trained using a single feature extraction technique. This can be

explained by the fact that the feature extraction techniques considered in this analysis present

complementary information; the majority of them are far apart in the CPS (Figure III-10). This

means that the recognition performance could be improved any combination rule.

The only exception was the Product rule. Its results for the separate case were not statistically

better than those of the Modified Edge Maps technique. This might be explained by the fact

that there was a large difference in the accuracy of the feature representations.
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Table-A III-4 Results of each combination method for the C-Cube database. Uppercase

and lowercase letters.

Method Upper Case(%) Lower Case(%) Mean(%)
Sum 91.21 86.94 88.92

Product 85.92 79.52 82.37

Maximum 89.83 85.22 87.14

Median 91.00 87.33 88.86

Maj. Vote 90.99 87.44 88.92

MLPall 91.39 88.45 89.67
MLPselection 90.89 88.25 88.85

Oracle 96.87 97.24 97.09

Table-A III-5 Results of each combination rule for the C-Cube database (Joint case).

Method Best (%) Mean (%)
Sum 88.51 88.22 ± 0.19

Product 86.99 85.52 ± 0.89

Maximum 85.48 85.73 ± 0.67

Median 88.84 88.04 ± 0.53

Maj. Vote 89.22 88.00 ± 0.81

MLPall 89.65 89.28 ± 0.22
MLPselection 89.54 88.98 ± 0.50

Oracle 97.78 97.25 ± 1.72

Figure III-14 shows the box plot with the results for the combination rules for the C-Cube

database. The gain in recognition performance for the MLP combiner is statistically significant

when compared with that of the fixed combination rules. The MLPall combiner presented the

best mean result. However, based on the Kruskal-Wallis test, the results were not statistically

better than those of the reduced combination, MLPselection.

5.4 Results for the MNIST Database

Table III-6 shows the results obtained by the combination methods for the MNIST database.

The recognition performance of all the combination rules was a great improvement over all the

(feature extraction, classifier) pairs shown in Table III-3. The Kruskal-Wallis non parametric



229

Sum Product Maximun Median Maj. Vote MLPall MLPselection

10

11

12

13

14

15

Combination rule

E
rr

or
 r

at
e 

(%
)

Boxplot for the C−CUBE Dataset

Figure-A III-14 Boxplot diagram comparing the combination rules for the CCUBE

database. MLPall and MLPselection are the MLP combiner for the experiment using every

feature representation and the reduced feature representation set respectively.

statistical test with a 95% confidence level was also used, and the result obtained by every

combination rule was statistically better. Once again, the gain in performance is explained

by the fact that the majority of feature representations considered presents complementary

information.

As with the C-Cube dataset, the trained combiner outperformed the other combination rules.

The MLPselection combination achieved an accuracy rate close to the Oracle performance (which

was 100%). This is due to the ability of the network to learn how to perform the best combina-

tion using the training set. In addition, the standard deviation of the trained combiner is 0.04%,

which is approximately six times less than the standard deviation for the Maximum rule. Even

when one or more feature sets produce a very inaccurate result, the trained combiner is still

able to predict the correct output. Figure III-15 shows the box plot for the combination rules.
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Table-A III-6 Results of each combination rule for the MNIST database.

Method Best (%) Mean ± std dev (%)
Sum 99.23 98.96 ± 0.42

Product 99.55 99.27 ± 0.34

Maximum 99.58 99.43 ± 0.23

Median 99.12 98.85 ± 0.25

Maj. Vote 98.98 98.63 ± 0.49

MLPall 99.72 99.70 ± 0.01
MLPselection 99.76 99.72 ± 0.04

Oracle 100 100 ± 0.00

The median result of both MLPall and MLPselection achieved a lower error rate than the best

results of the other combination rules.

Furthermore, the result of the MLP combiner is followed by the Maximum rule that also pre-

sented a high recognition rate. This is because of the ability that some of the feature extraction

methods have to recognize certain types of digits.

In both experiments, the results using all the feature representations (MLPall) and the configu-

ration following the sensitivity analysis (MLPselection) are statistically equivalent. Nevertheless,

for the C-Cube dataset, the MLPselection achieved a result 0.04 percentile points higher than that

of MLPall. This is an interesting finding, since MLPselection is composed of a small number of

feature representations. The redundant nature of MLPall might interfere with the performance

of the combination. This means that we can answer the third question posed in the introduc-

tion, as follows: The proposed framework selects feature representations that can be used to

construct an efficient MCS in terms of accuracy rates.

5.5 Computational Time

Analyzing the proposed system when the trained combiner is used, the average computational

time per image is 4 milliseconds for the MNIST and 9 milliseconds for the C-Cube dataset.

The application was developed using C++ running on a 2.40 Ghz machine with four cores.
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Figure-A III-15 Boxplot diagram comparing the combination rules for the MNIST

database. MLPall and MLPselection are the MLP combiner for the experiment using every

feature representation and the reduced feature representation set respectively.

We measured the difference in computational cost of the MLP combiner and the fixed com-

bination rule. That difference is measured in microseconds, and does not affect the overall

computational time of the system. This was expected, since the MLP combiner has a total

of 30,000 connections (60 inputs × 50 hidden nodes × 10 output nodes), while the network

trained with the Structural Characteristics feature set has 952,000 connections (280 inputs ×
340 hidden nodes × 10 output nodes). In other words, the cost of computing the combination

is approximately 31 times less than the cost of computing a single feature set.

5.6 Comparison with the State of the Art

The best results obtained for the C-Cube database are shown in Table III-7. To the best of our

knowledge, the proposed combination scheme outperforms all the previous results in the Split

B of this database. Furthermore, it is important to observe that the past best results are based on
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Support Vector Machines (SVM) using the one-versus-the-rest approach [131]. This method

trains one specific classifier for each class. For this problem, a large number of classifiers is

required, which is one of the drawbacks of these approaches. As far as we know, the proposed

system is the first to show high accuracy using only MLPs.

Table-A III-7 Comparative results for the C-Cube database. RBF = Radial Basis

Network with 5120 centers, HVQ = Hierarchical Vector Quantization, MDF = Modified

Directional Features, SVM = SVM with Radial basis Kernel.

Algorithm Recognition Rate(%)
HVQ-32 [132] 84.72

HVQ-16 [132] 85.58

MDF-RBF [127] 80.92

34D-RBF [127] 84.27

MDF-SVM [127] 83.60

34D-SVM + Neural GAS [122] 86.20

34D-MLP [122] 71.42

Proposed 89.28 ± 0.22

The best results obtained for the MNIST database are shown in Table III-8. The proposed

combination scheme outperformed all the previous results for this database. It is also important

to observe that many of the best results [133; 134; 135; 136; 137; 138] are based on large neural

networks, such as Convolutional Neural Networks or Deep Neural Networks. In addition, the

techniques used previously need to expand the training data by creating new images through

distortions [133; 134; 135; 136; 139; 138]. Our approach to achieving high performance in

handwritten recognition is different, in that no additional training data is required.

6. Conclusion

We have proposed a new framework for analyzing the relationship between different feature

representations. Each representation is used to train a single classifier, and the dissimilari-

ties between them are computed to generate a dissimilarity matrix. Through the Multidimen-

sional Scaling method (Sammon Mapping), this dissimilarity matrix is embedded in a two-
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Table-A III-8 Comparative Results for the MNIST Database.

Method Distortions Recognition Rate(%)
Boosted LeNet-4 [133] Affine 99.30

unsupervised sparse

features + SVM [140]

- 99.41

Trainable feature ex-

tractor + SVM [134]

Affine 99.46

Large convolutional

network + unsuper-

vised pretraining [137]

- 99.47

PNCN classifier [139] Skewing 99.56

Cascade ensemble

classifier (without

rejection) [141]

- 99.59

Convolutional neural

networks [135]

Elastic 99.60

Large convolutional

network + unsuper-

vised pretraining [136]

Elastic 99.61

6 Layers MLP 841-

2500-2000-1500-1000-

500-10 [138]

Elastic 99.65

Proposed - 99.72 ± 0.04

dimensional space (CPS) where the Euclidean distance between two feature representations

reflects their dissimilarity. Based on this two-dimensional plot, a sensitivity analysis is per-

formed in order to determine whether the representations are complementary or redundant.

We have applied the proposed framework to two handwritten recognition datasets: the Cursive

Character Challenge (C-Cube) for handwritten letters, and the MNIST dataset for handwritten

digits. The results demonstrate that feature representations using distinct approaches (edges,

projections, gradient, and concavities) extract information that is dissimilar. Consequently,

they are complementary. Techniques that use the same observations, using a different rule to

compute the features (e.g. the MAT-based Gradient, Median Gradient, and Binary Gradient)

perform in a similar fashion. They appear close to each other in both experiments and are likely

to commit errors on the same images. As a result, they can be considered redundant.
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A multiple-classifier system using distinct feature extraction techniques was designed based

on the feature representation analysis. As the majority of techniques considered present com-

plementary information, the results of every combination rule outperform the best individual

classifier for both datasets. With the aim of searching for the optimal combination rule, we

used a neural network as a combiner. The results show that the proposed approach presents

better accuracy when compared with state-of-the-art techniques.

The two experiments that were performed: one using all the feature representations, and the

other a reduced set of representations based on a sensitivity analysis, demonstrate that the

strategies are statistically equivalent. In some cases, the reduced set of representations can

even achieve higher performance, as redundant classifiers can negatively affect performance.

This shows that our framework can also be used to perform feature representation selection.

In this paper, however, we use the empirical analysis of the CPS and the Oracle error analysis

manually, in order to make this selection. An algorithm designed to perform the selection

automatically using our framework is currently being developed.
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Abstract

In Dynamic Ensemble Selection (DES), only the most competent classifiers are selected to

classify a given query sample. A crucial issue faced in DES is the definition of a criterion for

measuring the level of competence of each base classifier. To that end, a criterion commonly

used is the estimation of the competence of a base classifier using its local accuracy in small

regions of the feature space surrounding the query instance. However, such a criterion cannot

achieve results close to the performance of the Oracle, which is the upper limit performance

of any DES technique. In this paper, we conduct a dissimilarity analysis between various

DES techniques in order to better understand the relationship between them and as well as the

behavior of the Oracle. In our experimental study, we evaluate seven DES techniques and the

Oracle using eleven public datasets. One of the seven DES techniques was proposed by the

authors and uses meta-learning to define the competence of base classifiers based on different

criteria. In the dissimilarity analysis, this proposed technique appears closer to the Oracle when

compared to others, which would seem to indicate that using different bits of information on

the behavior of base classifiers is important for improving the precision of DES techniques.

Furthermore, DES techniques, such as LCA, OLA, and MLA, which use similar criteria to

define the level of competence of base classifiers, are more likely to produce similar results.
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1. Introduction

In recent years, ensembles of Classifiers (EoC) have been widely studied as an alternative for

increasing efficiency and accuracy in pattern recognition [24; 9]. Classifier ensembles involve

two basic approaches, namely, classifier fusion and dynamic ensemble selection. With classi-

fier fusion approaches, each classifier in the ensemble is used, and their outputs are aggregated

to give the final prediction. However, such techniques [24; 104] present two main problems:

they are based on the assumption that the base classifiers commit independent errors, which

rarely occurs to find in real pattern recognition applications.

On the other hand, Dynamic Ensemble Selection (DES) techniques [1] rely on the assumption

that each base classifier1 is an expert in a different local region of the feature space. DES tech-

niques work by measuring the level of competence of each base classifier, considering each

new test sample. Only the most competent(s) classifier(s) is(are) selected to predict the class of

a new test sample. Hence, the key issue in DES is defining a criterion for measuring the level

of competence of a base classifier. Most DES techniques [14; 22; 20; 29] use estimates of the

classifier’s local accuracy in small regions of the feature space surrounding the query instance

as search criteria to carry out the ensemble selection. However, in our previous work [20], we

demonstrated that this criterion is limited, and cannot achieve results close to the performance

of the Oracle, which represents the best possible result of any combination of classifiers [9]. In

addition, as reported by Ko et al. [14], addressing the behavior of the Oracle is much more com-

plex than applying a simple neighborhood approach, and the task of figuring out its behavior

based merely on the pattern feature space is not an easy one.

To tackle this issue, in [36] we proposed a novel DES framework in which multiple criteria

regarding the behavior of a base classifier are used to compute its level of competence. In this

paper, we conduct a dissimilarity analysis between different DES techniques in order to better

understand their relationship. The analysis is performed based on the difference between the

levels of competence of a base classifier estimated by the criterion embedded in each DES

1The term base classifier refers to a single classifier belonging to an ensemble or a pool of classifiers
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technique. All in all, we compare the DES criteria of seven state-of-the-art DES techniques,

including our proposed meta-learning framework. In addition, we also formalize the Oracle as

an ideal DES technique (i.e., a DES scheme which selects only the classifiers of the pool that

predict the correct class for the query instance) to be used in the analysis.

The dissimilarities between different DES criteria are computed in order to generate a dissimi-

larity matrix, which is then, used to project each DES technique onto a two-dimensional space,

called the Classifier Projection Space (CPS) [113]). In the CPS, each DES technique is repre-

sented by a point, and the distance between two points corresponds to their degree of dissimi-

larity. Techniques that appear close together present similar behavior (i.e., they are more likely

to produce the same results), while those appearing far apart in the two-dimensional CPS can

be considered different. Thus, a spatial relationship is achieved between different techniques.

The purpose of the dissimilarity analysis is twofold: to understand the relationship between

different DES techniques (i.e., whether or not the criteria used by DES techniques present a

similar behavior), and in order to determine which DES technique presents a behavior that is

closer to the behavior of the ideal DES scheme (Oracle).

This paper is organized as follows: Section 2 introduces the DES techniques from the literature

that are used in the dissimilarity analysis. The proposed meta-learning framework is described

in Section 3. Experiments are conducted in Section 4, and finally, our conclusion is presented

in the last section.

2. Dynamic ensemble selection techniques

The goal of dynamic selection is to find an ensemble of classifiers, C′ ⊂C containing the best

classifiers to classify a given test sample x j. This is different from static selection, where

the ensemble of classifiers C′ is selected during the training phase, and considering the global

performance of the base classifiers over a validation dataset. In dynamic selection, the classifier

competence is measured on-the-fly for each query instance x j.
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The following DES techniques are described in this section: Overall Local Accuracy (OLA) [22],

Local Classifier Accuracy (LCA) [22], Modified Local Accuracy (MLA) [29], KNORA-Eliminate [14],

K-Nearest Output Profiles (KNOP) [16] and Multiple Classifier Behavior (MCB) [21].

For the definitions below, let θ j = {x1, . . . ,xK} be the region of competence of the test sample

x j (K is the size of the region of competence), defined on the validation data, ci a base classifier

from the pool C = {c1, . . . ,cM} (M is the size of the pool), wl the correct label of x j and δi, j

the level of competence of ci for the classification of the input instance x j.

Overall Local Accuracy (OLA)

In this method, the level of competence δi, j of a base classifier ci is simply computed as the

local accuracy achieved by ci for the region of competence θ j. (Equation A IV-1). The classifier

with the highest level of competence δi, j is selected.

δi, j =
K

∑
k=1

P(wl | xk ∈ wl,ci) (A IV-1)

Local Classifier Accuracy (LCA)

This rule is similar to the OLA, with the only difference being that the local accuracy of ci is

estimated with respect to the output classes; wl (wl is the class assigned for x j by ci) for the

whole region of competence, θ j (Equation A IV-2). The classifier with the highest level of

competence δi, j is selected.

δi, j =
∑xk∈wl

P(wl | xk,ci)

∑K
k=1 P(wl | xk,ci)

(A IV-2)

Modified Local Accuracy (MLA)
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The MLA technique works similarly to the LCA. The only difference is that each instance xk

belonging to the region of competence θ j is weighted by its Euclidean distance to the query

sample x j. The classifier with the highest level of competence δi, j is selected.

KNORA-Eliminate (KNORA-E)

Given the region of competence θ j, only the classifiers that achieved a perfect score, consid-

ering the whole region of competence, are considered competent for the classification of x j.

Thus, the level of competence δi, j is either "competent", δi, j = 1 or "incompetent", δi, j = 0.

All classifiers considered competent are selected.

Multiple Classifier Behavior (MCB)

Given the query pattern x j, the first step is to compute its K-Nearest-Neighbors xk,k = 1, . . . ,K.

Then, the output profiles of each neighbor x̃k are computed and compared to the output profile

of the test instance x̃ j according to a similarity metric DOutPro f . If DOutPro f > threshold, the

pattern is removed from the region of competence. The level of competence δi, j is measured

by the recognition performance of the base classifier ci over the filtered region of competence.

The classifier with the highest level of competence δi, j is selected.

K-Nearest Output Profiles (KNOP)

This rule is similar to the KNORA technique, with the only difference being that KNORA

works in the feature space while KNOP works in the decision space using output profiles.

First, the output profiles’ transformation is applied over the input x j, giving x̃ j. Next, the

similarity between x̃ j and the output profiles from the validation set is computed and stored

in the set φ j. The level of competence δi, j of a base classifier ci for the classification of x j is

defined by the number of samples in φ j that are correctly classified by ci.
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Oracle

The Oracle is classically defined in the literature as a strategy that correctly classifies each

query instance x j if any classifier ci from the pool of classifiers C predicts the correct label for

x j. In this paper, we formalize the Oracle as the ideal DES technique which always selects the

classifier that predicts the correct label x j and rejects otherwise. The Oracle as a DES technique

is defined in Equation A IV-3:

⎧⎪⎨
⎪⎩

δi, j = 1, if ci correctly classifies x j

δi, j = 0, otherwise

(A IV-3)

In other words, the level of competence δi, j of a base classifier ci is 1 if it predicts the correct

label for x j, or 0 otherwise.

3. Dynamic ensemble selection using meta-learning

A general overview of the proposed meta-learning framework is depicted in Figure IV-1. It is

divided into three phases: Overproduction, Meta-training and Generalization. Each phase is

detailed in the following sections.

3.1 Overproduction

In this step, the pool of classifiers C = {c1, . . . ,cM}, where M is the pool size, is generated

using the training dataset T . The Bagging technique [3] is used in this work in order to build a

diverse pool of classifiers.

3.2 Meta-Training

In this phase, the meta-features are computed and used to train the meta-classifier λ . As shown

in Figure IV-1, the meta-training stage consists of three steps: sample selection, the meta-
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Figure-A IV-1 Overview of the proposed framework. It is divided into

three steps 1) Overproduction 2) Meta-training and 3) Generalization

[Adapted from [36]]

features extraction process and meta-training. A different dataset Tλ is used in this phase to

prevent overfitting.

3.2.1 Sample selection

We focus the training of λ on cases in which the extent of consensus of the pool is low. Thus,

we employ a sample selection mechanism based on a threshold hC, called the consensus thresh-

old. For each x j,trainλ ∈ Tλ , the degree of consensus of the pool, denoted by H
(
x j,trainλ ,C

)
,

is computed. If H
(
x j,trainλ ,C

)
falls below the threshold hC, x j,trainλ is passed down to the

meta-features extraction process.
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3.2.2 Meta-features extraction

In order to extract the meta-features, the region of competence of x j,trainλ , denoted by θ j =

{x1, . . . ,xK} must be first computed. The region of competence is defined in the Tλ set using the

K-Nearest Neighbor algorithm. Then, x j is transformed into an output profile, x̃ j by applying

the transformation T , (T : x j ⇒ x̃ j), where x j ∈ ℜD and x̃ j ∈ ZM [16]. The output profile of a

pattern x j is denoted by x̃ j =
{

x̃ j,1, x̃ j,2, . . . , x̃ j,M
}

, where each x̃ j,i is the decision yielded by

the classifier ci for x j. The similarity between x̃ j and the output profiles of the instances in

Tλ is obtained through the Euclidean distance. The most similar output profiles are selected to

form the set φ j =
{

x̃1, . . . , x̃Kp

}
, where each output profile x̃k is associated with a label wl,k.

Next, for each base classifier ci ∈C, five sets of meta-features are calculated:

f1 - Neighbors’ hard classification: First, a vector with K elements is created. For each in-

stance xk, belonging to the region of competence θ j, if ci correctly classifies xk, the k-th

position of the vector is set to 1, otherwise it is 0. Thus, K meta-features are computed.

f2 - Posterior probability: First, a vector with K elements is created. Then, for each instance

xk, belonging to the region of competence θ j, the posterior probability of ci, P(wl | xk) is

computed and inserted into the k-th position of the vector. Consequently, K meta-features

are computed.

f3 - Overall local accuracy: The accuracy of ci over the whole region of competence θ j is

computed and encoded as f3.

f4 - Output profiles classification: First, a vector with Kp elements is generated. Then, for

each member x̃k, belonging to the set of output profiles φ j, if the label produced by ci for

xk is equal to the label wl,k of x̃k, the k-th position of the vector is set to 1, otherwise it is

0. A total of Kp meta-features are extracted using output profiles.

f5 - Classifier’s Confidence: The perpendicular distance between the input sample x j,trainλ

and the decision boundary of the base classifier ci is calculated and encoded as f5. f5 is

normalized to a [0−1] range using the Min-max normalization.
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A vector vi, j = { f1 ∪ f2 ∪ f3 ∪ f4 ∪ f5} is obtained at the end of the process. It is important

to mention that a different vector vi, j is generated for each base classifier ci. If ci correctly

classifies x j,trainλ , the class attribute of vi, j, αi, j = 1 (i.e., vi, j corresponds to the behavior of a

competent classifier), otherwise αi, j = 0. vi, j is stored in the meta-features dataset (Figure IV-

1).

3.2.3 Training

With the meta-features dataset, T ∗
λ , on hand, the last step of the meta-training phase is the

training of the meta-classifier λ . The dataset T ∗
λ is divided on the basis of 75% for training

and 25% for validation. A Multi-Layer Perceptron (MLP) neural network with 10 neurons

in the hidden layer is considered as the selector λ . The training process for λ is performed

using the Levenberg-Marquadt algorithm, and is stopped if its performance on the validation

set decreases or fails to improve for five consecutive epochs.

3.3 Generalization

Given an input test sample x j,test from the generalization dataset G, first, the region of compe-

tence θ j and the set of output profiles φ j, are calculated using the samples from the dynamic

selection dataset DSEL (Figure IV-1). For each classifier ci ∈C, the five subsets of meta-features

are extracted, returning the meta-features vector vi, j. Next, vi, j is passed down as input to the

meta-classifier λ , which decides whether ci is competent enough to classify x j,test . In this case,

the posterior probability obtained by the meta-classifier λ is considered as the estimation of

the level of competence δi, j of the base classifier ci in relation to x j,test .

After each classifier of the pool is evaluated, the majority vote rule [9] is applied over the

ensemble C′, giving the label wl of x j,test . Tie-breaking is handled by choosing the class with

the highest a posteriori probability.
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4. Experiments

We evaluated the generalization performance of the proposed technique using eleven classifi-

cation datasets, nine from the UCI machine learning repository, and two artificially generated

using the Matlab PRTOOLS toolbox2. The experiment was conducted using 20 replications.

For each replication, the datasets were randomly divided on the basis of 25% for training (T ),

25% for meta-training Tλ , 25% for the dynamic selection dataset (DSEL) and 25% for general-

ization (G). The divisions were performed while maintaining the prior probability of each class.

The pool of classifiers was composed of 10 Perceptrons. The values of the hyper-parameters

K, Kp and hc were set as 7, 5 and 70%, respectively. They were selected empirically based on

previous publications [20; 36].

4.1 Results

Table-A IV-1 Mean and standard deviation results of the accuracy obtained for the

proposed meta-learning framework and the DES systems in the literature. The best results

are in bold. Results that are significantly better (p < 0.05) are underlined

Database Proposed KNORA-E MCB LCA OLA MLA KNOP Oracle
Pima 77.74(2.34) 73.16(1.86) 73.05(2.21) 72.86(2.98) 73.14(2.56) 73.96(2.31) 73.42(2.11) 95.10(1.19)

Liver Disorders 68.83 (5.57) 63.86(3.28) 63.19(2.39) 62.24(4.01) 62.05(3.27) 57.10(3.29) 65.23(2.29) 90.07(2.41)

Breast Cancer 97.41(1.07) 96.93(1.10) 96.83(1.35) 97.15(1.58) 96.85(1.32) 96.66(1.34) 95.42(0.89) 99.13(0.52)

Blood Transfusion 79.14(1.88) 74.59(2.62) 72.59(3.20) 72.20(2.87) 72.33(2.36) 70.17(3.05) 77.54(2.03) 94.20(2.08)

Banana 90.16(2.09) 88.83(1.67) 88.17(3.37) 89.28(1.89) 89.40(2.15) 80.83(6.15) 85.73(10.65) 94.75(2.09)

Vehicle 82.50(2.07) 81.19(1.54) 80.20(4.05) 80.33(1.84) 81.50(3.24) 71.15(3.50) 80.09(1.47) 96.80(0.94)

Lithuanian Classes 90.26(2.78) 88.83(2.50) 89.17(2.30) 88.10(2.20) 87.95(1.85) 77.67(3.20) 89.33(2.29) 98.35 (0.57)

Sonar 79.72(1.86) 74.95(2.79) 75.20(3.35) 76.51(2.06) 74.52(1.54) 74.85(1.34) 75.72(2.82) 94.46(1.63)

Ionosphere 89.31(0.95) 87.37(3.07) 85.71(2.12) 86.56(1.98) 86.56(1.98) 87.35(1.34) 85.71(5.52) 96.20(1.72)

Wine 96.94(4.08) 95.00(1.53) 95.55(2.30) 95.85(2.25) 96.16(3.02) 96.66(3.36) 95.00(4.14) 100.00(0.21)

Haberman 76.71(3.52) 71.23(4.16) 72.86(3.65) 70.16(3.56) 72.26(4.17) 65.01(3.20) 75.00(3.40) 97.36(3.34)

In Table IV-1, we compare the recognition rates obtained by the proposed meta-learning frame-

work against dynamic selection techniques explained in this paper: Overall Local Accuracy

(OLA) [22], Local Classifier Accuracy (LCA) [22], Modified Local Accuracy (MLA) [29],

KNORA-Eliminate [14], K-Nearest Output Profiles (KNOP) [16] and the Multiple Classi-

fier Behavior (MCB) [21]. We compare each pair of results using the Kruskal-Wallis non-

2www.prtools.org
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parametric statistical test with a 95% confidence interval. The results of the proposed frame-

work over the Pima, Liver Disorders, Blood Transfusion, Vehicle, Sonar and Ionosphere datasets

are statistically superior to the result of the best DES from the literature. For the other datasets,

Breast, Banana and Lithuanian, the results are statistically equivalent.

4.2 Dissimilarity Analysis

In this section, we conduct a dissimilarity analysis between distinct DES techniques. The anal-

ysis is performed based on the difference between the level of competence δi, j estimated by

each DES technique for a given base classifier ci, for each query sample x j (Section 2). The

goal of the dissimilarity analysis is twofold: to understand the behavior of different DES tech-

niques (i.e., whether or not the criterion used by DES techniques present a similar behavior),

and in order to see which DES criterion is closer to the behavior of the criterion used by the

ideal DES scheme (Oracle) for the estimation of the competence level of a base classifier.

Given 8 dynamic selection techniques, the first step of the dissimilarity analysis is to compute

the dissimilarity matrix D. This matrix D is an 8×8 symmetrical matrix, where each element

dA,B represents the dissimilarity between two different DES techniques, A and B. Given that δ A
i, j

and δ B
i, j are the levels of competence of ci in relation to x j for the techniques A and B, respec-

tively, the dissimilarity dA,B is calculated by the difference between δ A
i, j and δ B

i, j (Equation A

IV-4).

dA,B =
1

NM

N

∑
j=1

M

∑
i=1

(
δ A

i, j −δ B
i, j

)2
(A IV-4)

where N and M are the size of the validation dataset and the pool of classifiers, respectively.

For each dataset considered in this work, a dissimilarity matrix (e.g., DPima,DLiver ) is com-

puted, with the mean dissimilarity values over 20 replications. Then, the average dissimilarity

matrix D̄ is obtained by computing the mean and standard deviation of the eleven dissimilar-

ity matrices. Table IV-2 shows the average dissimilarity matrix D̄. Both the average and the
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standard deviation values are presented. Each line or column of the dissimilarity matrix can be

seen as one axe in the 8th dimensional space. Each axe in this space represents the distance

to a specific DES technique, for instance, the first axe represents the distance to the proposed

meta-learning framework; the second represents the distance to the KNORA technique and so

forth.

Table-A IV-2 The average dissimilarity matrix D̄. The values are the mean and standard

deviation computed over the eleven dissimilarity matrix

Meta-Learning KNORA MCB LCA OLA MLA KNOP Oracle
Meta-Learning 0 0.36(0.06) 0.46(0.15) 0.40(0.07) 0.36(0.06) 0.40(0.04) 0.53(0.08) 0.54(0.03)

KNORA 0.36(0.06) 0 0.89(0.06) 0.42(0.01) 0.44(0.01) 0.71(0.04) 0.74(0.11) 0.68(0.01)

MCB 0.46(0.15) 0.89(0.06) 0 0.58(0.01) 0.89(0.06) 1.06(0.07) 0.75(0.03) 0.72(0.08)

LCA 0.40(0.07) 0.42(0.01) 0.58(0.01) 0 0.42(0.01) 0.45(0.02) 0.31(0.04) 0.60(0.06)

OLA 0.36(0.06) 0.44(0.01) 0.89(0.06) 0.42(0.01) 0 0.71(0.04) 0.74(0.11) 0.68(0.11)

MLA 0.40(0.04) 0.71(0.04) 1.06(0.07) 0.45(0.02) 0.71(0.04) 0 0.54(0.01) 0.63(0.07)

KNOP 0.53(0.08) 0.74(0.11) 0.75(0.03) 0.31(0.04) 0.74(0.11) 0.54(0.01) 0 0.86(0.12)

Oracle 0.54(0.03) 0.68(0.01) 0.72(0.08) 0.60(0.06) 0.68(0.11) 0.63(0.07) 0.86(0.12) 0

4.2.1 Classifier Projection Space

The next step is to project the dissimilarity matrix D̄ onto the Classifier Projection Space (CPS)

for a better visualization of the relationship between all techniques. The CPS is an Rn space

where each technique is represented as a point and the Euclidean distance between two tech-

niques is equal to their dissimilarities [113]. Techniques that are similar to one another appear

closer in the CPS while those with a higher dissimilarity are more distant. Thus, it is possible to

obtain a spatial representation of the dissimilarity between all techniques. A two-dimensional

CPS is used for better visualization. To obtain a two-dimensional CPS, a dimensionality re-

duction of the dissimilarity matrix D̄ in the R8 to D̃ in the R2 is required. This reduction is per-

formed using Sammon mapping [117]; that is, a non-linear Multidimensional Scaling (MDS)

projection onto a lower dimensional space such that the distances are preserved [113; 117].

Given the dissimilarity matrix D̄, a configuration X of m points in Rk,(k ≤ m) is computed

using a linear mapping, called classical scaling [117]. The process is performed through rota-
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tion and translation, such that the distances after dimensionality reduction are preserved. The

projection X is computed as follows: first, a matrix of the inner products is obtained by the

square distances B =−1
2JD2J, where J = I − 1

mUUT , and I and U are the identity matrix and

unit matrix, respectively. J is used as a normalization matrix such that the mean of the data is

zero. The eigendecomposition of B is then obtained as, B = QΛQT , where Λ is a diagonal ma-

trix containing the eigenvalues (in decreasing order) and Q is the matrix of the corresponding

eigenvectors. The configuration of points in the reduced space is determined by the k largest

eigenvalues. Therefore, X is uncorrelated in the Rk, X = Qk
√

Λk space. In our case, k = 2.

The CPS projection is obtained by applying Sammon mapping over the matrix X . The map-

ping is performed by defining a function, called stress function S (Equation A IV-5), which

measures the difference between the original dissimilarity matrix D̄ and the distance matrix of

the projected configuration, D̃, where d̃(i, j) is the distance between the classifiers i and j in

the projection X .

S =
1

∑m−1
i=1 ∑m

j=i+1 d(i, j)2

m−1

∑
i=1

m

∑
j=i+1

(d(i, j)− d̃(i, j)) (A IV-5)

The two-dimensional CPS plot is shown in Figure IV-2. Figure IV-2(a) shows the average CPS

plot obtained considering the average dissimilarity matrix D̄, while Figure IV-2(b) shows an

example of the CPS plot obtained for the Liver Disorders dataset DLiver.

An important observation that can be drawn from Figure IV-2(a) is that the LCA, OLA and

MLA appear close together in the dissimilarity space. Which means, that the criteria used by

these three techniques to estimate the level of competence of a base classifiers present similar

behaviors when averaged over several classification problems. Thus, they are very likely to

achieve the same results [11]. This can be explained by the fact that these three techniques are

based on the same information (the classification accuracy over a defined local region in the

feature space), with little difference regarding the use of a posteriori information by the LCA

technique or weights for the MLA technique.
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Figure-A IV-2 Two-dimensional CPS plot for the average dissimilarity matrix D̄ and for

the dissimilarity matrix obtained for the Liver disorders dataset DLiver. It is important to

mention that the axes of the CPS plot cannot be interpreted alone. Only the Euclidean

distances between the points count

The meta-learning framework appears closer to the Oracle in the two-dimensional CPS (Fig-

ures IV-2(a) and (b)). In addition, the meta-learning framework is also closer to the techniques
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from the local accuracy paradigm (LCA, OLA and MLA) than to any other DES technique,

which can be explained by the fact that three out of the five meta-features comes from estima-

tions of the local regions ( f1, f2 and f3).

Table IV-3 presents the dissimilarity measure for each DES technique in relation to the Oracle.

Results show that the proposed meta-learning framework is closer to the behavior of the Oracle

as it presents the lowest dissimilarity value on average, 0.54. The LCA technique comes closer,

with an average dissimilarity value of 0.60. Thus, we suggest that the use of multiple criteria

to estimate the level of competence of a base classifier results in a DES technique that obtains

a estimation of the level of competence of a base classifier closer to that provided by an ideal

DES scheme (Oracle).

Table-A IV-3 Mean and standard deviation of the dissimilarity between each DES

technique from the Oracle for each classification problem. The smallest dissimilarity

values are highlighted

Database Meta-Learning KNORA-E MCB LCA OLA MLA KNOP
Pima 0.32(0.04) 0.43(0.01) 0.47(0.08) 0.36(0.06) 0.43(0.01) 0.44(0.07) 0.41(0.02)

Liver Disorders 0.50(0.04) 0.61(0.01) 0.67(.008) 0.56(0.06) 0.61(0.01) 0.60(0.07) 0.51(0.02)

Breast Cancer 0.59(0.35) 1.22(0.10) 1.20(0.10) 0.69(0.01) 1.20(0.10) 0.77(0.03) 1.20(0.10)

Blood Transfusion 0.33(0.03) 0.40(0.01) 0.46(0.01) 0.36(.003) 0.40(0.01) 0.44(0.08) 0.4(0.01)

Banana 0.33(0.10) 0.29(0.01) 0.36(0.01) 0.24(0.01) 0.29(0.01) 0.36(0.01) 0.34(0.01)

Vehicle 0.36(0.07) 0.49(0.01) 0.48(0.02) 0.36(0.04) 0.49(0.01) 0.37(0.05) 0.47(0.02)

Lithuanian Classes 0.47(0.14) 0.49(0.02) 0.56(0.02) 0.39(0.04) 0.49(0.02) 0.54(0.01) 0.51(0.03)

Sonar 0.58(0.10) 0.91(0.04) 0.88(0.01) 0.70(0.01) 0.91(0.04) 0.85(0.02) 0.84(0.06)

Ionosphere 0.62(0.22) 0.89(0.05) 0.88(0.06) 0.70(0.07) 0.89(0.05) 0.68(0.02) 0.88(0.06)

Wine 1.03(0.20) 0.88(0.11) 0.98(0.11) 0.73(0.02) 0.88(0.11) 0.93(0.06) 0.82(0.14)

Haberman 0.79(0.04) 0.89(0.05) 1.01(0.05) 0.82(0.02) 0.89(0.05) 0.92(0.04) 0.86(0.06)

Mean 0.54(0.05) 0.68(0.01) 0.72(0.08) 0.60(0.06) 0.68(0.11) 0.63(0.07) 0.86(0.12)

5. Conclusion

In this paper, we conducted a study about the dissimilarity between different DES techniques.

These dissimilarities are computed in order to generate a dissimilarity matrix. Through Sam-

mon Mapping, the dissimilarity matrix is embedded in a two-dimensional space, called the
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Classifier Projection Space (CPS), where the Euclidean distance between two feature repre-

sentations reflects their dissimilarity.

Based on the visual representation provided by the CPS, we can draw two conclusions:

• The proposed technique is closer to the Oracle in the dissimilarity space, which indicates

that the use of different types of information about the behavior of base classifiers is indeed

necessary in order to achieve a DES technique that is closer to the Oracle.

• Techniques that use the same kind of information to compute the level of competence of the

base classifiers, such as LCA, OLA and MLA, are more likely to present the same results

when their performance is averaged over several problems.

Future works in this topic include: i) The design of new sets of meta-features; ii) Carrying

out a comparison of different meta-features vectors in order to achieve a set of features that

can better address the behavior of the Oracle; and, iii) Increasing the number of classification

problems in the analysis.
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