

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

 THESIS PRESENTED TO
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY

Ph. D.

BY
Sébastien ADAM

SYSTEMATIC INFERENCE OF THE CONTEXT OF UTILIZATION
OF THE DESIGN KNOWLEDGE BY USING A REFERENCE MODEL

MONTREAL, JUNE 07, 2016

 Sébastien Adam, 2016

This Creative Commons licence allows readers to download this work and share it with others as long as the

author is credited. The content of this work may not be modified in any way or used commercially.

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Alain Abran, Thesis Supervisor
Department of LOG/TI at École de technologie supérieure

Mrs. Ghizlane El Boussaidi, Thesis Co-supervisor
Department of LOG/TI at École de technologie supérieure

Mrs. Catherine Laporte, President of the jury
École de technologie supérieure

Mr. Christian Desrosiers, Chair, Board of Examiners
Department of LOG/TI at École de technologie supérieure

Mr. Hamid Mcheick, External Evaluator
Université du Québec à Chicoutimi - UQAC

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON MAY 12, 2016

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGMENTS

I would like to thank my family and friends for the support they provided me through my

doctoral project. In particular, I acknowledge my wife for her love, encouragement, efforts,

assistance, and sacrifices.

I would like to express my gratitude to my supervisors, the professors Alain Abran and

Ghizlane El Boussaidi, for their expertise and understanding that added to my doctoral

experience. A very special thanks to Alain for his assistance in writing reports, articles, and

this thesis, and for inspiring me kindness, promptness, and motivation over many ways. A

very special thanks to Ghizlane for his assistance in defining the focus of my project. I thank

both of you for our exchanges that enriched my doctoral experience.

I express also my gratitude to the other members of my board of examiners.

SYSTEMATIC INFERENCE OF THE CONTEXT OF UTILIZATION
OF THE DESIGN KNOWLEDGE BY USING A REFERENCE MODEL

Sébastien ADAM

ABSTRACT

Software engineering is concerned with systematic procedures for obtaining software that
meets the customer’s expectations. Taking into account the impacts of the software design
artifacts when designing the architecture of a software system is critical, but it remains a
major challenge. The contribution of the architecture to achieve or not targeted objectives
results from the utilization in the architecture and in the detailed design of an appropriate set
of software design artifacts (SDAs) such as styles, tactics, and design patterns. The styles and
design patterns organize the design decisions, and the tactics are building blocks of these
styles and patterns. The software designer is responsible for applying tactics, patterns, and
styles that best achieve the targeted objectives. This requires understanding what objectives
are affected by the styles, patterns, and tactics applied, identifying which styles and patterns
best support a set of tactics, and discerning which set of design decisions produces the best
balance across the targeted objectives. The software designers encounter at least three
problems when discerning the design context and measuring the effects of a style, a design
pattern, or a tactic on a set of objectives:

1. the representation schemes usually used to describe the SDAs force the software
designers to extract from textual descriptions the finer-grained decisions and the
related explications about how they impact the objectives;

2. the explanations of these impacts are described in terms of characteristics of quality,
and they are not precisely detailed and supported with contextual design rationale;

3. the effects of a design decision are not quantified but merely discussed textually
making it hard to evaluate which decision is better than others in a particular context.

This research project provides a reference model of software design artifacts for describing
the styles, patterns, and tactics using a set of software design artifacts and arguments. This
reference model and the related techniques will support designers to systematically analyze
styles, tactics, and design patterns for inferring the order of treatment of the related issues
from given sets of software design artifacts and contextualized arguments.

Keywords: Design knowledge management, Design artifact, Reference model, and Design

decision support system.

INFÉRENCE SYSTÉMATIQUE DU CONTEXTE D’UTILISATION DES
CONNAISSANCES DE CONCEPTION À L’AIDE D’UN MODÈLE DE RÉFÉRENCE

Sébastien ADAM

RÉSUMÉ

La définition d’activités systématiques pour développer des logiciels satisfaisants les attentes
des parties prenantes est une préoccupation du génie logiciel. Concevoir l’architecture et la
conception détaillée d’un logiciel est une activité critique. Atteindre les objectifs ciblés
résulte de l'utilisation d'un ensemble approprié d’artéfacts de conception tels que les styles,
les tactiques et les patrons. Les styles et les patrons organisent les décisions de conception.
Les tactiques sont des blocs de construction des styles et des patrons. Le concepteur du
logiciel est responsable d’appliquer les styles, les patrons et les tactiques pour permettre
d'atteindre au mieux les objectifs ciblés. Pour satisfaire les parties prenantes, le concepteur
doit:

• comprendre les objectifs affectés par les styles, les patrons et les tactiques appliqués;
• identifier les styles et les patrons pour supporter au mieux l’ensemble des tactiques;
• prendre des décisions pour produire le meilleur équilibre entre les objectifs ciblés; et
• comprendre les effets des artéfacts de conceptions utilisés.

Le concepteur du logiciel a quelques préoccupations lors de la mesure des effets des styles,
des patrons et des tactiques sur un ensemble d'objectifs ciblés, incluant:

• les schémas de représentations textuelles ou graphiques généralement utilisés pour
décrire les styles, les patrons et les tactiques obligent le concepteur à extraire les
décisions de conception et les connaissances de leurs effets sur le logiciel;

• les effets sont décrits en termes de caractéristiques de qualité et ne sont pas
précisément détaillés et soutenus par des explications contextuelles; et

• les effets ne sont pas quantifiés, ce qui rend difficile d'évaluer quelle décision est
mieux qu’une autre dans un contexte particulier.

Ce projet de recherche propose un modèle de référence pour décrire les styles, les patrons et
les tactiques à l’aide d’un ensemble d’artéfacts de conception et d’arguments. Le modèle de
référence et les techniques connexes sont proposés pour soutenir le concepteur lors de
l’analyse des styles, des patrons et des tactiques utilisés dans un contexte particulier. La
méthodologie proposée permet d’inférer à partir d’un ensemble d’arguments contextualisés
l'ordre de traitement des problèmes liés à l’utilisation des artéfacts de conception.

Mots-clés: gestion des connaissances de conception, artéfact de conception, modèle de
référence, système d'aide à la décision de conception.

TABLE OF CONTENTS

Page

INTRODUCTION ...1
Software Engineering and Software Architecture ...1
The Design Knowledge (DK) Base ...1
The Software Designer Role ..3
Research Problem ..3
Research Question, Hypothesis, and Approach ...5
Research Goal, Research Sub-Goals and Research Objectives ...5
Originality and Expected Benefits ...8
Research Methodology ..9

Phase 1 – Collect Data .. 10
Phase 2 – Develop the Reference Model .. 10
Phase 3 – Develop techniques ... 11

Validation of Research Results ..11
Validation Activities ... 12

Thesis Organization ...13

CHAPTER 1 LITERATURE REVIEW ..15
1.1 Basic Concepts ...15

1.1.1 Software Development Approach .. 15
1.1.2 Software Architecture Design and Detailed Design 16
1.1.3 Software Architecture ... 17
1.1.4 Architectural Style and Tactic .. 18
1.1.5 Design Pattern .. 20
1.1.6 Characteristics of quality .. 22

1.2 Effects of Styles, Design Patterns, and Tactics on the Software Quality24
1.3 Approaches for Representing Tactics, Design Patterns and Styles26

1.3.1 Representation Schemes for Tactics ... 26
1.3.1.1 Catalog of Architectural Tactics .. 27
1.3.1.2 Feature and UML-Based Modeling ... 28
1.3.1.3 Formal Specifications .. 29

1.3.2 Representation Schemes for Design Patterns and Styles 29
1.3.2.1 GOF-Based Template for Design Patterns 29
1.3.2.2 Catalogue of Styles .. 30
1.3.2.3 Architecture Definition Languages (ADL) 31
1.3.2.4 Formal Representations of Styles .. 32
1.3.2.5 UML-Based Representations of Styles 32
1.3.2.6 Ontology-Based Representations of Styles 33

1.3.3 Synthesis of the Representations of Tactics, Design Patterns, and Styles . 33
1.3.3.1 The Representation of Tactics ... 33
1.3.3.2 The Representation of Design Patterns 34
1.3.3.3 The Representation of Styles ... 34

XII

1.4 Approaches for Supporting Architectural Design ..35
1.4.1 Attribute-Driven Design Method ... 35
1.4.2 Quality Ontology and Architectural Knowledge Base 36
1.4.3 Limitations of the Approaches ... 37

1.5 Summary of the Activities and Artifacts of the Design Process38
1.6 Approaches for Supporting Design Traceability ...40

1.6.1 Design Decisions .. 40
1.6.2 Design Rationale .. 44

1.7 Summary of Design Knowledge (DK) Management ...45
1.7.1 Reasons, Challenges, and Issues for Managing DK 45
1.7.2 DK Management in Practice .. 47
1.7.3 The Proposed Activities of the DK Management Process 48

1.8 Summary of the Requirements for Design Methods and DK Management51
1.9 The Proposed Structure of Software Design Artifacts (SDAs)52

CHAPTER 2 THE PROPOSED SOFTWARE ARCHITECTURE MAPPING (SAM)
FRAMEWORK..55
2.1 The proposed Software Architecture Mapping (SAM) framework55
2.2 The proposed Software Architecture Mapping process and roles57
2.3 The proposed reference model ...59
2.4 Justification of the proposed reference model ...60
2.5 Limitations of the proposed reference model ..61
2.6 Positioning the SAM framework within the literature ...61

2.6.1 Methods Requirements Coverage .. 61
2.6.2 Assessment of the rules for architectural documentation 63
2.6.3 Assessment regarding the related works on design decisions 64

2.7 Limitations of the SAM framework ...65

CHAPTER 3 EXAMPLES OF UTILIZATIONS OF THE SAM FRAMEWORK67
3.1 Case study: the SAM framework in the context of a SIS ..70

3.1.1 Introduction to the context of software cockpit systems 70
3.1.2 The activity “Create a SSM” – iteration 1 .. 71
3.1.3 The activity “Describe arguments” .. 72
3.1.4 The activity “Analyze arguments” ... 73
3.1.5 The activity “Create a SSM” – iteration 2 .. 75
3.1.6 Analysis of the case study .. 75
3.1.7 How the SAM framework addresses the conclusions of the case study 76

3.2 Case study: the SAM framework for analysing the TM design pattern77
3.2.1 Description of the TM design pattern ... 77
3.2.2 SSM of the TM design pattern ... 78
3.2.3 Arguments related to the TM design pattern .. 80
3.2.4 Analysis of the case study .. 84

XIII

3.3 Experiment: human participants for applying the reference model87
3.3.1 Experiment planning .. 87
3.3.2 Experiment process and schedule ... 88
3.3.3 Experiment subjects, groups, and profiles .. 89
3.3.4 The design context and collected data .. 91
3.3.5 Statistics from the collected data .. 91
3.3.6 Analysis of the experiment ... 92
3.3.7 Limitations of the experiment .. 93
3.3.8 How the SAM framework addresses the conclusions of the experiment ... 93

3.4 Case study: the classification technique for analyzing catalogs of DK95
3.4.1 SSM of the Layered style ... 95
3.4.2 SSM of the modifiability tactics ... 97
3.4.3 An analysis of the results of the case study .. 100

3.5 Case study: the SAM framework for designing a web site ..102
3.5.1 Context of the case study .. 102
3.5.2 Decision points considered for the case study .. 103
3.5.3 SSMs created for developing the web site ... 104
3.5.4 Analysis of the case study .. 111
3.5.5 Limitations of the case study .. 112

3.6 Experiment for evaluating the SAM framework with a human participant113
3.6.1 Context of the experiment .. 113
3.6.2 Experiment planning .. 114
3.6.3 Experiment process and schedule ... 114
3.6.4 Experiment subject ... 115
3.6.5 Participant profile ... 116
3.6.6 Design context and data collection ... 116
3.6.7 Part 1 – SSM created by the participant for the TM design pattern 116

3.6.7.1 Analysis of Part 1 ... 118
3.6.7.2 Conclusions of Part 1 ... 120

3.6.8 Part 2 – SSMs created for developing the web site 122
3.6.8.1 Analysis of Part 2 ... 124
3.6.8.2 Conclusions of Part 2 ... 126

3.6.9 Limitations of the experiment .. 126

CHAPTER 4 A TECHNIQUE FOR CREATING A SOFTWARE STRUCTURES MAP ..127
4.1 The proposed classification technique ...127
4.2 The tasks of the classification technique ...129
4.3 Task 1 – Extract verbs and nouns ..129
4.4 Task 2 – Identify SDAs and relationships ...130
4.5 Task 3 – Classify the SDA ...131

4.5.1 The Zachman Framework for Enterprise Architecture 131
4.5.2 The proposed classification scheme (CS) .. 132
4.5.3 The proposed decision tree ... 135
4.5.4 The proposed SDAs descriptions ... 137

XIV

4.6 Task 4 – Format the relationship ...140
4.6.1 The proposed relationship description format .. 141

4.7 Task 5 – Structure the SDAs ..142
4.8 Task 6 – Infer the SSM ..142

4.8.1 The proposed inference heuristics .. 143
4.8.2 The proposed Software Structures Map (SSM) 147

4.9 Summary of contributions..148

CHAPTER 5 A TECHNIQUE FOR DESCRIBING ARGUMENTS149
5.1 Introduction ..149
5.2 The tasks of the argumentation technique ...151
5.3 Task 1 – Select the SDAs and relationships ..152
5.4 Task 2 – Select the activities ..152
5.5 Task 3 – Elicit the issues ..152

5.5.1 The proposed issue description format ... 152
5.5.2 The proposed common issues ... 153
5.5.3 The proposed issue validation heuristics .. 154

5.6 Task 4 – Select the dimensions ..155
5.7 Task 5 – Describe the arguments ...156

5.7.1 The proposed argument description format .. 156
5.7.2 The proposed argument validation heuristics ... 157

5.8 Summary of contributions..158

CHAPTER 6 A TECHNIQUE FOR ANALYZING ARGUMENTS159
6.1 Introduction ..159
6.2 The tasks of the analysis technique ..160
6.3 Task 1 – Rank the activities and dimensions ...161
6.4 Task 2 – Select the SDAs and relationships ..161
6.5 Task 3 – Describe the structured arguments ..161

6.5.1 The proposed structured argument format ... 162
6.6 Task 4 – Rank the arguments and generate views ...163

6.6.1 The proposed multi-dimensional views ... 163
6.7 Summary of contributions..165

CONCLUSION AND FUTURE WORK ..167
Research contributions ...167
How the SAM framework addresses the research goal and objectives168
Limitations of the research project and future work ..170

XV

APPENDIX I DESIGN ACTIVITIES AND SOFTWARE DESIGN ARTIFACTS173

APPENDIX II EXAMPLE OF A SSM FOR AN OBJECT-ORIENTED FRAMEWORK 185

APPENDIX III THE SSMS OF THE MODIFIABILITY TACTICS195

APPENDIX IV INPUTS AND OUTPUTS OF THE EXPERIMENT (SYS869)207

APPENDIX V INPUTS AND OUTPUTS OF THE CASE STUDY (WEB)219

APPENDIX VI INPUTS AND OUTPUTS OF THE EXPERIMENT (WEB)225

BIBLIOGRAPHY ..228

LIST OF TABLES

Page

Table 1.1 Example of a representation scheme used to describe the architectural styles18

Table 1.2 Example of a representation scheme used to describe the design patterns20

Table 1.3 Measures, formula, and operands for maintainability [Iso9126]23

Table 1.4 The proposed activities of the design process ...39

Table 1.5 Architecture decision description template (adapted from Tyre05)41

Table 1.6 Current state of the research on design decisions ...42

Table 1.7 Issues for design knowledge management ..47

Table 1.8 Activities, techniques, and issues of the DK management process49

Table 2.1 Methods requirements coverage ...61

Table 2.2 Assessment of the rules for architectural documentation64

Table 2.3 Assessment of the SAM framework for the related works on design decisions ...65

Table 2.4 Limits of the SAM framework ..65

Table 3.1 The SSM of the architectural concern “Scope of the framework” – version 171

Table 3.2 Issues related to the architectural concern “Scope of the framework”72

Table 3.3 Arguments related to the SSM of the concern “Scope of the framework”73

Table 3.4 Rankings for the activities, dimensions, and arguments of the SCS framework ..74

Table 3.5 View of the SCS framework arguments ...74

Table 3.6 Added SDAs for the SSM of the concern “Scope of the framework”75

Table 3.7 The SSM of the Template Method design pattern ..78

Table 3.8 Relationships between the SDAs of the Template Method design pattern80

Table 3.9 Some issues related to the SDAs of the TM design pattern82

Table 3.10 Arguments related to the TM design pattern ..83

XVIII

Table 3.11 Design pattern description: sections and SDAs ..85

Table 3.12 Classification counts for the SDAs of the TM design pattern85

Table 3.13 Number of participants and missing responses, and ratio of missing responses ..91

Table 3.14 The SSM of the Layered style...95

Table 3.15 The SSM of the modifiability tactics ..97

Table 3.16 Style description: sections and SDAs ...100

Table 3.17 Classification counts for the SDAs of the Layered System style101

Table 3.18 Classification counts for the SDAs of the modifiability tactics101

Table 3.19 The decision points used for triggering the activities of the SAM process103

Table 3.20 Issues for the SAM framework ...111

Table 3.21 SDAs identified by the participant without using the SAM framework117

Table 3.22 SSM created by the participant for the TM design pattern117

Table 3.23 SDAs that were not identified by the participant ..118

Table 3.24 Summary of utilization of the SAM framework for Part 1119

Table 4.1 Verbs and nouns that describe the “Exception Detection” tactic in [Scot09]130

Table 4.2 The proposed classification scheme of the SAM framework134

Table 4.3 The descriptions of some SDAs related to the Why interrogative137

Table 4.4 The descriptions of some SDAs related to the When interrogative138

Table 4.5 The descriptions of some SDAs related to the What interrogative139

Table 4.6 The descriptions of some SDAs related to the Which interrogative139

Table 4.7 The descriptions of some SDAs related to the How interrogative140

Table 4.8 The descriptions of some SDAs related to the Where interrogative140

Table 4.9 The relationships of the SAM framework...141

Table 4.10 Inference heuristics for the SDAs related to the Why interrogative143

XIX

Table 4.11 Inference heuristics for the SDAs related to the When interrogative144

Table 4.12 Inference heuristics for the SDAs related to the What interrogative145

Table 4.13 Inference heuristics for the SDAs related to the Which interrogative146

Table 4.14 Inference heuristics for the SDAs related to the How interrogative146

Table 4.15 Inference heuristics for the SDAs related to the Where interrogative147

Table 4.16 The table format used for representing a SSM ...148

Table 5.1 Examples of issue descriptions using a SDA, a verb, and a complement153

Table 5.2 The proposed list of verbs ...153

Table 5.3 Examples of common issue descriptions for the SAM framework154

Table 5.4 The proposed issue validation heuristics ..155

Table 5.5 The proposed dimensions of the SAM framework ...156

Table 5.6 Factors constituting the argument description of the SAM framework157

Table 5.7 The proposed argument validation heuristics ...158

Table 6.1 The structured argument format ..162

Table 6.2 Example of a generic multi-dimensional view ...163

Table 6.3 Contextualization of the dice game framework ..164

Table 6.4 - Evaluation activities performed for the SAM framework169

LIST OF FIGURES

Page

Figure 1.1 The client-server architectural style ...2

Figure 1.2 The increase available resources architectural tactic ..2

Figure 1.3 Activity diagram of the research methodology ..9

Figure 1.4 Proposed structure of software design artifacts in the SAM framework53

Figure 2.1 Overview of the Software Architecture Mapping (SAM) framework56

Figure 2.2 The proposed SAM process ..57

Figure 2.3 Overview of the Software Architecture Mapping process58

Figure 2.4 The proposed reference model of the SAM framework59

Figure 3.1 Overview of the process planned for the experiment ...88

Figure 4.1 The proposed classification technique of the SAM framework128

Figure 4.2 Perspectives of the CS: organizational, design, problem, and solution134

Figure 4.3 The decision tree for classifying a design knowledge item136

Figure 5.1 The argumentation technique of the SAM framework150

Figure 6.1 The analysis technique of the SAM framework ...160

Figure 6.2 Multi-dimensional view of the arguments related to the DGSF165

LIST OF ABREVIATIONS

ABAS Attribute-Based Architectural Styles

ADD Attribute-Driven Design

ADL Architecture Description Language

CS Classification Scheme

DD Design Decision

DK Design Knowledge

EA Enterprise Architecture

GOF Gang-Of-Four

IEC International Electrotechnical Commission (www.iec.org)

IEEE Institute of Electrical and Electronics designers (www.ieee.org)

ISO International Organization for Standardization (www.iso.org)

OCL Object Constraint Language

OWL Web Ontology Language

SAD Software Architecture Description

SAM Software Architecture Mapping

SDA Software Design Artifact

SDD Software Design Description

SEI Software Engineering Institute (www.sei.cmu.edu)

SIS Software-Intensive System

SSM Software Structures Map

SWRL Semantic Web Rule Language

UML Unified Modeling Language (www.uml.org)

INTRODUCTION

Software Engineering and Software Architecture

Software engineering is defined as the systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software to improve its quality; i.e., its ability to

support the stakeholders’ needs [IEEE610]. In particular, software designers improve the

level of software quality by educating themselves and using bodies of knowledge, standards,

best practices, and certification mechanisms [Kruc06].

The software designer’s community considers the design process, the software architecture it

provides, and the reuse of design knowledge as fundamental levers for quality [Iso42010,

Ovas10, Kim09, Scot09, Shaw06, Bert05, Bass03, Bach03, Clem03]. In the “Guide to the

Software Engineering Body of Knowledge – SWEBOK”, software architecture design is a

key sub-area of software engineering [Abra01, Garl00a].

Software architecture describes design elements from which software products are built,

interactions among those elements, patterns that guide their composition, and constraints on

these patterns [Medv00]. Several studies (e.g., [SEI11, Bass03, Shaw96, Garl95]) list

benefits of an appropriate architecture and conclude that the quality of a software system

depends largely on the quality of its architecture. During the development process, the

systematic development of complex software architecture that supports the specified quality

requirements remains a major challenge.

The Design Knowledge (DK) Base

Much knowledge and support for software design is provided by the software architecture

literature including catalogs of styles, design patterns, and tactics, design decisions and

quality models (e.g. [Iso42010, Iso25000, Zimm12, Ovas10, Zimm09, Kim09, Scot09,

Bass03, Clem03, Gran02, Gamm95]).

2

Design decisions, styles, design patterns, and tactics are used to explicitly describe reusable

design knowledge (DK). An architectural style and a design pattern organize the design

elements in a way that has been recognized as a proven solution to a design problem. Each

design decision, style, design pattern, and tactic may promote or disadvantage one or more

quality requirements. Software designers describe and use the DK in various ways for

building software that support the quality requirements. The inadequate usage of DK may

cause significant impact on software quality when the most prioritized quality requirements

are disadvantaged. The software designers need to add many details to produce an

implementable design, which may reduce the claimed benefits of the styles, design patterns,

or tactics.

For example, Figure 1.1 presents the Client-Server architectural style and Figure 1.2 presents

the increase available resources architectural tactic. To maintain the system level of

performance when the number of clients increases, the Client-Server style facilitates the

addition of a second server. The addition of a server and its interactions with the clients may

reduce the level of security of the system, which has more possible points of attack for

intruders. In such a context, the architects need to take decisions among a large space of

solutions [Scot09].

Figure 1.1 The client-server
architectural style

Figure 1.2 The increase available resources
architectural tactic

3

The Software Designer Role

The software designers execute many activities described in [Bass03] for designing a

software product with proven characteristics of quality. To take into account multiple

objectives during the design process, the software designers select and prioritize the quality

requirements that are architecturally relevant. The most prioritized quality requirements are

called the architectural drivers. The software designers use the architectural drivers to make

design decisions for designing parts of the architecture. Each decision may affect one

(sensitivity point) or more (tradeoff point) quality requirements. The software designers have

to evaluate alternatives and make tradeoffs among conflicting decisions in order to reduce

risks and determine sets of design decisions that best support the project objectives.

Research Problem

There are multiple sources (users, marketing, etc.) and categories (constraints, business

drivers, technical limits, etc.) of project objectives relating to the software design process.

The evaluation of many design decisions is made before any software is built. A lack of

detail about either the problem or solution space may lead software designers to

inappropriate or suboptimal design decisions [Kozi11]. The software designers employ the

DK base to understand, tailor, and describe alternate designs that have proven to be useful for

previous projects with comparable contexts and project objectives.

Styles, design patterns, and tactics are mostly described in textual format. They may be

complex and their interactions are not always evident. The software designers need to add

significant amounts of details to produce an implementable design, which may reduce the

claimed benefits of the styles, patterns, and tactics. To take full advantage of accumulated

knowledge, the software designers need frameworks and tools to manage the DK and relate it

to the decisions taken and software design artifacts (SDAs) used for designing the software.

4

The software designers need to discern:

1. the SDAs, issues, and arguments that best describe the design context;

2. the design decisions including styles, tactics, and design patterns that produce the best

balance across orthogonal, complementary, and antagonistic objectives ; and

3. the objectives that are affected by the styles, design patterns, and tactics used.

The objectives include the quality requirements that should be precisely defined since the

architecture is built to support them. Systems often have different sets of requirements for

different modes of execution. Many of the particular quality requirements are in conflict

(e.g., adding efficiency is often realized at the price of portability and maintainability) and

the qualitative nature of these requirements makes the appropriate levels of satisfaction

difficult to clarify. Evaluating the impacts of a set of design decisions on a set of objectives is

a complex activity. In particular, the design context may be complex considering the nature

of the objectives, the number of SDAs, including styles, design patterns, and tactics

available, and their relationships with the quality requirements.

Many organizations maintain design decisions, SDAs, and tailored information items in a DK

base to help document control, development, and maintenance activities. Most of the models,

methods, and tools provide limited analysis capability and views in the DK base [Ovas10,

Bach07, Bass05, Tyre05, Bass03, Clem03]. Reusing the DK contributes to the design

capability of the organizations and accrues returns of investments in designing the software

and building the systems [Bass03]. By managing the artifacts produced for designing

software-intensive systems, the software designers may reuse the resulting DK during the

development and decision processes of current and future projects.

5

The software designers encounter at least three problems when analyzing the design context

and the effects of the design decisions on a set of objectives:

1. The representation schemes and design document templates usually used to share the

DK (i.e., design decisions, styles, patterns, and tactics) force the software designers to

extract and infer the finer-grained decisions, context knowledge, and explications

about how the SDAs impact the objectives from the textual descriptions.

2. The issues and the impacts are merely discussed in terms of quality characteristics

making it hard to evaluate which decision is better than others in a particular context.

3. The techniques, models, and tools that support the DK management usually aim at

sharing the design decisions using templates and do not support sharing finer-grained

SDAs and other activities such as acquiring, reusing, evaluating, and maintaining DK.

Research Question, Hypothesis, and Approach

This doctoral project is characterized in terms of the research question it investigates, the

research approach it adopts, and the criteria by which it evaluate the results. From our point

of view, the software design artifacts (SDAs) constitute the explicit DK. For this doctoral

project, the research question was: “what is a good DK management approach (i.e., DK

model and techniques) for supporting the software designers when inferring and describing

SDAs and DK related to particular decisions points of the design process?”

The design decisions are useful for aggregating cohesive sets of SDAs at particular decisions

points during the design process. The research’s main hypothesis was that a valuable DK

management approach should provide techniques for:

- managing the finer-grained SDAs that relate to each decision point;

- describing the design decisions, issues, and impacts using the finer-grained SDAs; and

- supporting the inference of the SDAs and issues related to a particular decision point.

Finally, a valuable approach should be assessed using the requirements for DK management

defined in the literature.

6

The research hypothesis has been verified using a conceptual, theoretical, and qualitative

empirical research approach. The conceptual part was required to identify and clarify the

meaning, relationships, descriptions, and use of the finer-grained SDAs in to order to make

specific proposals about how to manage them. The theoretical part was required to develop a

reference model and techniques for managing the DK and the related SDAs, issues, and

impacts. The qualitative empirical part was required to demonstrate the reliability and

usability of the proposed reference model and techniques for managing the DK.

Research Goal, Research Sub-Goals and Research Objectives

The research goal was to develop supports for guiding the software designers when inferring

the context of the design decisions during the design process. To tackle this research goal the

following research strategy has been chosen:

1. identify and understand the descriptions of SDAs from catalogs of styles, design

patterns, and tactics, and software architecture and software design documents.

2. structure the SDAs in a reference model for DK management; and

3. develop techniques for acquiring DK and supporting the software designers when

using the reference model and DK base of SDAs during the design process.

This research project has permitted to develop an approach using the existing works, of

[Iso42010, Iso12207, Zimm12, Ovas10, Zimm09, Kim09, Scot09, Gran08, Bach07, Kruc06,

Tang06, Bass05, Tyre05, Bass03, Clem02, Abra01, Gamm95].

The research goal includes the following sub-goals (A-C) and research objectives (1-7).

Sub-goal A. Develop a description format for describing the SDAs and relationships that are

used by the software designers during the design process.

Research objective 1: Establish descriptive criteria for describing the finer-grained SDAs

that compose the styles, design patterns, and tactics.

7

Research objective 2: Establish exclusive criteria for classifying these finer-grained SDAs.

Research procedure: This research objective requires studying and representing with

descriptive and exclusive criteria the finer-grained SDAs. The resulting criteria will be used

to develop a description format for describing the SDAs, including styles, design patterns,

and tactics.

Sub-goal B. Define a reference model for representing the SDAs and their relationships.

Research objective 3: Develop a structure for creating semantic networks of SDAs that may

be used for describing styles, design patterns, and tactics.

Research procedure: A semantic network is used as a form of knowledge representation; it

represents semantic relations between concepts. Relating finer-grained SDAs that relate to

the styles, design patterns, and tactics in a semantic network will allow to represent the SDAs

as instantiations of semantic networks. The styles, design patterns, and tactics will instantiate

common nodes and relations for constituting the semantic networks using aggregations of

SDAs. The reference model should be suited for representing the node types (e.g., Tactic)

and relations (e.g., Mandatory or Exclusive-or) of the semantic networks.

The related works on tactics, styles, and design patterns should be the starting points for

populating the design knowledge base using the descriptions given in [Bass03, Clem03,

Gran02, Gamm95]. Such aggregations of artifacts should make discernible every part of the

styles, design patterns, and tactics descriptions, instead of using the textual format that

obscures significant information.

Research objective 4: Define an argument format for describing the impacts of particular

utilizations of the SDAs.

8

Research procedure: Describing the arguments that relate to the utilization of the SDAs will

allow to populate a design knowledge base of common issues and arguments. The styles,

design patterns, and tactics will relate to common issues and arguments.

Sub-goal C. Systematize the utilization of the reference model and descriptions formats.

Research objective 5: Establish a technique and work instructions that help the software

designers populate a design knowledge base using the reference model, and the descriptions

of styles, design patterns, and tactics.

Research objective 6: Establish a technique and work instructions that help the software

designers populate a design knowledge base of arguments that relate to particular utilizations

of SDAs.

 Research objective 7: Establish a technique and work instructions that help the software

designers analyze the impacts of particular utilizations of the SDAs.

Originality and Expected Benefits

Many studies have proposed different models, techniques, and tools to describe and reuse the

design knowledge (DK) [Ovas10, Kim09, Scot09, Harr08, Bach05, Bass03, Clem03].

However, previous studies have underlined the importance of having a reference model (RM)

and the related techniques that can be used for managing the DK (see Section 2.4.3) using the

finer-grained SDAs related to the design decisions, design patterns, tactics, and styles. This

research is a step toward understanding, describing, and reusing the design decisions, tactics,

design patterns, and styles, and their relationships to other SDAs of the DK base.

9

Five research deliverables were produced for this research project:

• a Reference Model (RM) for describing the SDAs, issues, and arguments;

• a Design Knowledge (DK) base of tactics, patterns, and styles knowledge;

• a technique for populating a DK base of SDAs using the RM;

• a technique for populating a DK base of arguments using the RM;

• a technique for reusing the DK base while designing.

Research Methodology

Figure 1.3 presents the phases, activities, and outcomes of the research methodology that

have been executed. The phases are subdivided into lists of tasks and detailed in the next

subsections.

Figure 1.3 Activity diagram of the research methodology

10

Phase 1 – Collect Data

Phase 1 aimed at collecting data about the software design artifacts (SDAs) and their

relationships. The following research tasks have been executed:

• Study the literature review for the state-of-the-art on design approaches, software

design artifacts (SDAs), and design knowledge (DK) management.

o Analyze models, techniques, and tools relating to SDAs and DK management.

o Analyze techniques and tools that use DK bases to support software designers.

• Summarize the state-of-the-art for design approaches, SDAs, and DK management.

• Identify the finer-grained SDAs that provide DK, including the SDAs that relate to

the styles, design patterns, and tactics descriptions.

o Identify the issues relating to DK management and SDAs.

• Establish the software architecture mapping (SAM) framework for classifying SDAs.

• Apply the SAM framework in a case study.

Outcomes: literature review (see Chapter 1), classification scheme and SDA description

format (see Chapter 4), case study (see Chapter 3 and Appendix I).

Phase 2 – Develop the Reference Model

Phase 2 aimed at developing the reference model and convey the design knowledge extracted

from the literature review. The following research tasks have been executed:

• Describe the node types and relations of the semantic network of SDAs.

• Describe the argument format and relations of the semantic network of arguments.

• Develop the concepts of the reference model that constitute the semantic networks.

• Case study: Apply the reference model to the description of the tactics, design

patterns, and styles given in [Scot09, Bass03, Clem03, Gamm95].

Outcomes: SSM, argument description format, case study – see Chapter 3 and Appendix II.

11

Phase 3 – Develop techniques

Phase 3 aimed at developing the techniques for using the reference model. The following

research tasks have been executed:

• Develop heuristics for identifying the SDAs.

• Develop a classification scheme and a decision tree for classifying the SDAs.

• Develop steps and work instructions that support using the reference model for

populating a DK base of semantic networks of SDAs.

• Develop steps and work instructions that support using the reference model for

populating a DK base of semantic networks of arguments.

• Develop steps and work instructions for using the DK base of related SDAs and

arguments for analysis the impacts of utilization of the SDAs in project contexts.

Outcomes: classification technique (Chapter 4), argumentation technique (Chapter 5),

analysis technique (Chapter 6), case study (Chapter 6).

Validation of Research Results

This section summarises the validation objectives and validation scope, and activities that

have been conducted for validating the proposed Software Architecture Mapping (SAM)

framework. As stated in [Zimm09], “research contributions in software engineering must be

validated. A validation of the monetary value and business benefits such as opportunities to

increase revenue or reduce cost would be required when creating a business case for the

development of a commercial version of the proposed solution”. Such an analysis is difficult

to perform in practice [Zimm09] and was not a primary goal of the thesis validation. “The

important validation objectives were to evaluate technical feasibility, to confirm the practical

value for the target audience, and to evaluate the usability. Practical value and usability have

been considered but remain to be evaluated in more details, i.e., whether software designer

are willing and able to apply the SAM framework and whether such application is beneficial”

[Zimm09].

12

Validation Activities

The case studies and experiments described in CHAPTER 3 and a self-assessment of

requirements served as the primary validation activity types. The evaluation activities

focused on confirming the key hypothesis that SDAs, SSMs, arguments, and views recur and

can be modeled according to the reference model.

The case studies have been developed to evaluate the technical feasibility of the SAM

framework concepts by creating:

- the SSMs of a framework in the context of software cockpits;

- the SSMs of a web site in the context of a web engineering project; and

- the SMMs of design patterns, styles, and tactics used in software engineering courses.

The experiments have been conducted with human participants for evaluating the reliability,

efficiency, accuracy, and usability of the SAM framework.

1. For the first experiment, selected research results were proposed to participants for

eliciting issues and describing arguments related to the design of a framework in the

context of a detailed design course at ÉTS.

2. For the second experiment, selected requirements were proposed to a participant for

creating the SSMs, eliciting the issues, and describing the arguments related to the

design of a web site. In addition, the participant was required to create the SSM of the

Template Method design pattern.

Another validation activity was to conduct self-experiments. For instance, previous versions

of the SAM framework have been used for teaching the software architecture and detailed

design courses at ÉTS. These activities helped to ensure that the developed reference model

is applicable for software designers independent of their expertise and experience.

Finally, a self-assessment of requirements has been conducted using the requirements catalog

described in section 2.6 as a source of validation criteria for the case studies. In addition, a

prototype tool was developed to support the proposed approach.

13

The preliminary validation results were used to improve subsequent versions of the SAM

framework and reference model. The validation produced sufficient evidence that the core

concepts such as the reference model work in practice. The justification for conducting case

studies is that the selected cases yielded a reasonable coverage of the concepts proposed in

the SAM framework without causing unmanageable validation efforts for the involved

researchers and the case study participants.

Thesis Organization

The thesis is organized as follows.

CHAPTER 1 presents the literature review. This chapter introduces the basic concepts (i.e.,

software architecture, styles, tactics, design patterns, and characteristics of quality) related to

the software architecture design and detailed design. This literature review provides the

synthesis on the works, challenges, and issues related to:

1) the representation of styles, tactics, and design pattern;

2) the activities and artifacts of the design process; and

3) design knowledge (DK) management.

It also provides a summary of the requirements for design methods and DK management.

Finally, it describes the proposed structure of software design artifact (SDA) that is the basic

concept for developing our approach. Appendix I describes the SDAs of the design process.

CHAPTER 2 presents the proposed Software Architecture Mapping (SAM) framework,

SAM process, and the reference model for managing the SDAs. This chapter presents the

arguments justifying the reference model and describes its limits. This chapter also compares

the SAM framework with approaches in the literature review and presents its limits.

14

CHAPTER 3 presents seven examples of utilizations of the SAM framework, including five

cases studies and two controlled experiments. These examples are the outputs of the

validation process for evaluating the SAM framework. This chapter describes the software

structures maps (SSMs) that were created, the SDAs that were classified, the arguments that

were described for various academic and industrial contexts.

CHAPTER 4 presents the classification technique for creating a Software Structures Map

(SSM) that classifies and relates the SDAs.

CHAPTER 5 presents the argumentation technique for relating the software design artifacts

(SDAs) to the activities and dimensions they impact. This technique supports the elicitation

of the issues and the description of the arguments that relate to the utilization of the SDAs.

CHAPTER 6 presents a technique for supporting the analysis of the arguments using multi-

dimensional views. This technique supports the systematic inference of

• the order of treatment of arguments related to a context of application of SDAs; and

• the order of utilization of the related design knowledge.

CHAPTER 7 presents the conclusions, contributions, and future work of this research

project.

CHAPTER 1

LITERATURE REVIEW

1.1 Basic Concepts

1.1.1 Software Development Approach

The international standard ISO 29110 on Lifecycle Profiles for Very Small Entities (VSEs)

[Iso29110] propose a set of activities that constitute any software development approach for

very small entities (i.e., enterprise, organizations, departments, or projects – up to 25 people).

Such entities often implement software used in larger systems that require suppliers of high

quality software. This standard decomposes the software development into two processes:

project management (PM) and software implementation (SI). An output of the PM process is

the project plan. The purpose of the SI process is the systematic execution of the analysis,

design, construction, integration and tests activities for implementing software products

according to the project plan and the specified requirements. The standard integrates

practices based on the selection of standards elements from ISO 12207 on Software life cycle

processes [Iso12207], and ISO 15289 on Content of life-cycle information items

(documentation) [Iso15289] for the PM and SI processes. The focus of this thesis is on the SI

process.

The execution of the SI process is driven by the project plan, which guides the execution of

the software requirements analysis, software architectural and detailed design, software

construction, software integration and test, and product delivery activities. The customer

usually provides a statement of work as an input to the development approach. The PM

process establishes a project plan based on the statement of work. The software designers use

the project plan to perform the SI process in order to produce a software configuration that

satisfies the customer and other stakeholders. More precisely, the focus of this thesis is on the

software architecture design and detailed design.

16

1.1.2 Software Architecture Design and Detailed Design

Software requirements are defined, analyzed for correctness and testability, approved by the

stakeholders, baselined, and communicated to software designers who will design the

software. Software architecture design and detailed design are usually performed separately

in order to describe the software components and connectors and their related software units.

Subsequently, the software construction activity produces and tests the software units in

order to verify their consistency with requirements and the design. The software is produced,

including performing integration of software units, components and connectors. The

verification and validation of the work products are performed in order to achieve

consistency among the work products in each activity. Finally, the software configuration is

integrated and delivered to the acquirer in accordance with the agreed requirements.

First in the design, the software architecture design (SAD) activity aims at developing the

software architecture. The SAD produces the software components and connectors, their

internal and external interfaces, and their topologies and semantics [Iso12207, Bass03]. The

SAD aims at establishing consistency and traceability between software design and software

requirements.

Second, the software detailed design (SDD) activity aims at developing a detailed design of

each component and connector. The SDD describes the software units that compose each

component and connector, including the external interfaces, structures, and sequences of

interactions of the units [Iso12207]. The SDD aims at establishing consistency and

traceability between detailed design, software requirements, and architectural design. For

some authors [Bass03, Clem03], the software architecture is the most important deliverable;

and the establishment of the consistency and traceability between detailed design, software

requirements, and architectural design is a challenge.

17

1.1.3 Software Architecture

The literature defines the software architecture from many perspectives [SEI11, Bass03,

Clem03, Medv00]:

1. a centerpiece artifact;

2. the set of principal design decisions about the software system;

3. the software design artifacts that pervade all major facets of software systems; the

description of elements from which systems are built, interactions among those

elements, patterns that guide their composition, and constraints on these patterns;

4. the software structures (e.g., modules; components and connectors; or allocation) of

the system;

5. the set of elements such as modules (e.g., class), components and connectors (e.g.,

process), and their visible properties, behavior, and relationships (e.g.,

synchronization) in different structures and contexts (e.g., execution);

6. the set of principal design decisions about the software system that pervade all major

facets of a software system, including structural, deployment, non-functional,

evolution, and runtime concerns [Medv00]; and

7. the structures of the software system composed of several types of elements (e.g.,

class and process) and relationships (e.g., subdivision and synchronization).

There is no universally accepted definition of software architecture [Clem03], although it is a

centerpiece artifact for software designers and its roots run deep in software engineering

[SEI11, Abra01, Garl00a]. The software architecture concerns the externally visible portion

of the elements; it represents an abstraction of the software system. It defines elements such

as software components and connectors along with their relationships (topology), behavior,

and visible properties. Externally visible properties refer to those assumptions other elements

can make of a component or a connector [Clem03]. The software architecture describes how

a component uses, is used, is connected to, and interacts with other elements in different

contexts (e.g., compilation and execution).

18

As presented in [Clem03], the software architecture is what makes the sets of elements work

together as a successful whole. [Perr92] proposes the following model: Software Architecture

= {Elements, Form, Rationale}. This model refers to processing elements, data elements, and

connecting elements. In [Bass03], the authors refine the model where Software Architecture

= {Components and Connectors, Topology and Semantic, Rationale}.

1.1.4 Architectural Style and Tactic

Architectural styles are important software design artifacts that allow a software designer to

reuse the collected wisdom of the architecture design community to solve recurring problems

[Klei99]. Table 1.1 provides an example of a representation scheme used to describe the

architectural styles. The representation scheme is used to describe the properties, components

and connectors, relations, constraints, and strengths of the Layered System architectural

style. An architectural style organizes the components and connectors of the software

architecture [Bass03]. It describes known properties and patterns of data and control

interaction among the components [Shaw96, Busc96]) to enable reuse and evolution of the

design [Klei99]. It is a package of decisions that allows reasoning about the system design in

terms of desired properties [Bass03]. It defines how to carry out the design and imposes

constraints, semantics, vocabularies, and types for the components and connectors, along

with qualitative reasoning about the strengths and weaknesses of the design [Klei99, Garl94].

An architectural style helps to interpret and analyze the software architecture.

Table 1.1 Example of a representation scheme used to describe the architectural styles

Properties

• A layer is an intermediary between software, hardware, or layers.
• Each layer has a public interface that provides a cohesive set of services.
• The public interface is more than just the API (assumptions, etc.).
• A change in one layer does not affect the lower layers.

Components / Connectors

• One or more layers are defined.
• The name, content, and cohesion scheme of each layer is specified.
• The interface should not expose functions dependent on a particular platform.

19

Relations

• The inter/intra-relationships of each layer are specified.
• The exceptions of each layer are specified.

Constraints

• The order of interaction is important (closest layer, layer bridging, etc.).
• The use of the upper layers is prohibited (except: exceptions, data flow, etc.).
• A layer cannot be above and below another layer at the same time.
• Each software component is allocated to a single layer.

Strengths

• Permit system evolution.
• Facilitate work assignment.
• Favor reuse.
• Manage complexity.

A style packages many tactics: architectural tactics are the building blocks of the software

architecture and styles [Bass03]. They are among the first design decisions made during the

development process. As presented in [Scot09], “architectural design is a complex search

through a large space of possibilities, the use of tactics guides and constrains this search and

makes it more tractable. A tactic suggests an analytic model for design and analysis, which

may range from guidelines and heuristics to precise mathematical models”.

A tactic may help to increase the level of quality of a system. Each tactic specifies how a

quality attribute can be controlled through design decisions to achieve a response [Bass05].

For example, layering a system may increase maintainability by isolating a system from

changes in the underlying platform. The layer style achieves this isolation by using many

tactics described in [Scot09, Bach07, Bass03]: Semantic Coherence, Abstract Common

Services, Use Encapsulation, Use an Intermediary, and Restrict Communication Paths. A

tactic is a decision for tailoring software designs, styles, and design patterns.

20

1.1.5 Design Pattern

As mentioned in [Clem03], styles and design patterns “are alike in that both are catalogued

partial design solutions, captured in practice, and must be instantiated and completed before

application to an actual system”. However, “a style tends to refer to a coarser grain of design

solution than a pattern”. Design patterns are usually finer-grained engineering artifacts that

pact together a set of design decisions such as tactics and describe how they affect software

product quality. Both design patterns and styles package a set of tactics.

A design pattern describes a general solution to a recurring problem that occurs under

specific circumstances [Gran02, Gamm95]: it organizes the software modules in a way that

has been recognized as a proven solution to a design problem. It describes the design

concerns to be solved and the software design it proposes to address these concerns. The

general solution has been recognized to be useful for designing previous software products

with comparable characteristics of quality. However, a design pattern is only advice, and the

software designers have to figure out how to apply it to his circumstances. Software

designers may use the same design pattern many times, but it is never exactly the same

project-specific solution. Table 1.2 provides an example of a representation scheme used to

describe the design patterns. In general, a design pattern description has four essential

elements [Gamm95]: the pattern name, the problem it addresses, the solution it provides, and

the consequences it implies. The representation scheme is used to describe the Template

Method design pattern.

Table 1.2 Example of a representation scheme used to describe the design patterns

Pattern Name

• Template Method
Problem

• Implement the invariant parts of an algorithm only once
• Factor and localize common behavior to avoid code duplication
• Control extension

21

Solution

Key: UML
Consequences

• Facilitate factoring out common behavior.
• Permit inverted control structure.
• Reduce duplication of code.
• Favor reuse.

A design pattern may be used to evaluate, before any software is built, how well the software

design may support software product quality. To properly choose and apply the patterns and

their related tactics, the software designers need to evaluate what characteristics of quality

are affected by each of the design patterns and tactics used, and discern what set of patterns

and tactics produces the best balance across the quality requirements. However, a pattern is

complex and its interactions with other patterns and tactics are not always evident. In

particular, the boundaries between the design patterns are fuzzy. As stated in [Fowl08],

“designers can never just apply the solution blindly, which is why pattern tools have been

such miserable failures”. Design decisions have to be made in order to use a design pattern.

22

1.1.6 Characteristics of quality

There are many definitions of software quality, each reflecting a particular quality

philosophy and approach. A quality model, as proposed in [Iso9126, Gali04, Bass03], may be

used to make the meaning of the quality requirements and the level of quality more precise

and easy to evaluate for a system. The characteristics of quality of a software system such as

maintainability or performance are usually defined in a quality model by specifying the set of

quality attributes required for the stakeholders’ software acceptance [Bass03].

Software designers are required to analyze how their most relevant design decisions affect

the characteristics of quality. The literature provides many definitions of software quality

[Iso24765, Iso25000, Gali03]. In this thesis, software quality refers to the level to which a

system, component, or process meets specified requirements as well as the needs and

expectations of clients and users [Iso24765]. This vague definition is not useful in practice.

Software designers may use quality models [Iso9126, Gali03] to make the meaning of quality

requirements and the level of quality more precise and easy to evaluate.

The series of standards ISO 25000, also known as SQuaRE (System and Software Quality

Requirements and Evaluation) [Iso25000], is a framework for the evaluation of software

product quality. The international standard ISO 25010 on System and software quality

models [Iso25010], and related works [Iso9126, Gali03, Bass03], recommend to

hierarchically decompose software product quality into multiple characteristics.

The ISO 25010 standard provides a quality model that decomposes the software product

quality into eight characteristics of quality: functionality, reliability, operability, performance

efficiency, security, compatibility, maintainability, and transferability. Characteristics are

further subdivided into subcharacteristics. Each subcharacteristic is further subdivided into a

set of measures. For example, Table 1.3 presents the definitions of two subcharacteristics and

three measures related to maintainability.

23

The standard proposes to use characteristics, subcharacteristics, and measures as a checklist

of issues related to quality. Software designers use such measures, and other artifacts such as

specific scenarios [Bass03], to specify the software quality requirements, evaluate the design

decisions, and assess whether the resulting software meets the requirements or design

objectives.

Table 1.3 presents three measures related to maintainability. Each measure (e.g., Activity

recording) is defined by a formula (e.g., a / b) that contains the operands (e.g., a and b). The

software designers assign values to the operands in order to reflect the design decisions that

shape the software product. The software designers need to make design decisions that

optimize a set of measures. Therefore, the design problem may be formulated by a set of

threshold values assigned to the measures (e.g., Xi = 0.7). The threshold values are the targets

software designers need to control when evaluating a software design. The evaluation results

and the threshold values are compared to determine the software quality.

Table 1.3 Measures, formula, and operands for maintainability [Iso9126]

Sub-
Characteristic

Maintainability Subcharacteristic Definition
Definition Measure, Formula, and Operands

Analysability

Capability of the software
product to be diagnosed
for deficiencies or causes
of failures in the software,
or for the parts to be
modified to be identified

Activity recording

X = A / B

A = Number of implemented data login items

B = Number of data items to be logged

Readiness of diagnostic function (DF)

X = A / B

A = Number of implemented DFs

B = Number of DFs required

Changeability

Capability of the software
product to enable a
specified modification to
be implemented

Change recordability

X = A / B

A = Number of implemented data login items

B = Number of data items to be logged

24

1.2 Effects of Styles, Design Patterns, and Tactics on the Software Quality

As presented in [Scot09, Bass03, Clem03], both design patterns and styles package a set of

tactics. These authors define a pattern or a style as a description of a solution to a multi-

variable problem, and a tactic as a description of a solution to a single-variable problem. A

tactic is primarily used to support a single characteristic of quality in [Scot09, Bass03] but it

may also be used to support multiple characteristics as well.

For example, the Layer pattern achieves portability by encapsulating platform-specific details

behind stable interfaces. In this case, the tactic “Use Encapsulation” is necessary for both

portability and maintainability. Each tactic may relate to a set of measures [Kozi11] for

which the software designer measures the impact of the tactic on the software product’s

quality. Each measure details a software quality objective. Each characteristic of quality may

relate to multiple objectives.

The problem of attaining software product quality involves optimizing a set of orthogonal,

complementary, and antagonistic targets. The software designers may express the design

problem as a multi-objective optimization problem (MOOP) or a multiple objective non-

linear programming problem [Kozi11, Ralp85, Stad84, Stad79].

This kind of problems has at least four definitions that software designers need to specify:

1. the set of objective functions that defines the problem-space;

2. the set of threshold values that defines constraints on the solution-space;

3. the set of solutions that defines the solution-space;

4. the definition of the aggregate objective function for optimizing the solutions.

25

The set of objective functions may be specified using a vector M = [f1 … fm] of m measures

formulas with M Ԑ Q, where Q is a quality model that defines objectives functions to

maximize or minimize.

Software designers use threshold values to control that evaluation results are acceptable for

all measures. The threshold values may be specified using a vector T = [t1 … tm] of m

threshold values assigned to the measures formulas. The vector T specifies the acceptable

evaluation results that candidate design solutions need to achieve. The threshold values are

the degrees of freedom that constrain the solution-space S Ԑ C, where C is the search space.

In the set of solutions, each design solution provides a set s = (d1 … dn) of n design decisions

(e.g., using a style, a design pattern, or a tactic) that defines the solution-space s Ԑ S. A

design solution sc = (d1 … dn)c is a candidate solution if each of its related evaluation result ri

for any measure formula fi (with only one formula for each measure) is at least equals to the

related threshold value.

For a candidate solution sc, F(sc) represents the aggregate objective function that combines

the evaluation results of a vector M(sc) = [fi(sc) | (1<=i<=m)] of m objectives functions. If the

optimality is a maximum, max(F(sc)) represents a design problem that is a multi-objective

optimization problem. The problem is the search of a candidate design solution sc of n design

decisions that maximizes the aggregate objective function F in a solution-space S.

A weighted-sum approach may be used to let the software designers influence how a design

decision d impacts a vector M = [f1 … fm] of m objective functions. Each objective function

is multiplied by a weighted value £i, where Rm is a set of valid weighted values. The weights

are usually based on the issues and the measures that need to be evaluated by the software

engineers. The objective functions and the set of weights need to be normalized in order to

sum values of consistent magnitudes.

26

1.3 Approaches for Representing Tactics, Design Patterns and Styles

To evaluate the effects of the design decisions (e.g., using styles or tactics) on the

characteristics of quality, software designers need to represent and use these concepts in a

manner that supports systematic evaluations. Catalogs of design artifacts such as tactics and

styles allow a software designer to reuse the collected wisdom of the software engineers’

community to solve recurring problems [Bach07]. Representing appropriate DK in a format

useful for supporting the software implementation process involves numerous vocabularies

and constraints [Kim10a]. Software designs are based on styles, design patterns, and tactics

that provide a domain-specific design vocabulary and constraints on the design solution.

This section presents a list of representation schemes used to describe styles, design patterns,

and tactics. This analysis of the literature gives an idea of the general trends in the research

community [Kim10a, Scot09, Bass03, Clem03, Ande01, Klei99, Shaw97, Bush96]. Software

designers have worked on formalizing architecture documentation practice into the IEEE

standard 1471-2000 [Ieee1471], a recommended practice for architectural description of

software-intensive systems. This standard establishes a framework of concepts and a

vocabulary for discussing architectural issues of software systems. It specifies the required

content of architectural descriptions, which may be useful for understanding the required

content of styles and design patterns descriptions. Clements et al. [Clem03] detail what

should be contained in an architectural description.

1.3.1 Representation Schemes for Tactics

The tactics are finer-grained design decisions that constitute architectural styles and design

patterns. This section presents three representation schemes for tactics: a catalog of

architectural tactics [Scot09, Bass03], a UML-based graphical modeling notation for tactics

[Kim10a, Kim09, Gies07, Booc99], and a formal representation of tactics [Wyet09]. An

overview of advantages and disadvantages of these representation schemes is provided next.

27

1.3.1.1 Catalog of Architectural Tactics

A catalog of architectural tactics has been proposed in [Bass03]. In this catalog, each tactic

(e.g., Increase available resources) is related to a quality attribute (e.g., Performance) and a

specific interest (e.g., Resource management) that describes the issue to be solved. A tactic is

documented in a textual format and describes the situation when it can be applied. It may be

accompanied by box-and-line drawings that present the organization of the tactic’s

components and connectors. Subsequent works have refined parts of the catalog and

categorization introduced in [Bass03].

In [Scot09], the authors review the availability tactics. They refine some tactics into lower-

level tactics (e.g., System Monitor is refined into Heartbeat and Watchdog). In addition to

refining the categorization, the authors do the same as in [Bass03] and provide some

examples of specific implementation techniques and the expected results for each tactic. To

illustrate how a tactic is described in [Bass03] and [Scot09], the following description is

taken from [Scot09]:

“Exception Detection refers to the detection of a system condition that alters the
normal flow of execution. For distributed real-time embedded systems, the
Exception Detection tactic can be further refined to include System Exceptions,
Parameter Fence, and Parameter Typing tactics. System Exceptions will vary
according to the processor hardware architecture employed and include faults
such as divide by zero, bus and address faults, illegal program instructions, and
so forth. The Parameter Fence tactic incorporates an a priori data pattern (such as
0xDEADBEEF) placed after any variable-length parameters of an object.”

28

1.3.1.2 Feature and UML-Based Modeling

Architectural tactics may be described in more formal languages as well. Some researchers

use Unified Modeling Language (UML) graphical diagrams to describe the structural and

behavioral aspects of tactics [Kim09]. UML is a popular graphical modeling notation for

object-oriented software development [Booc99]. It provides capabilities such as multiple

design views, semi-formal semantics, and a formal Object Constraint Language (OCL) for

expressing constraints on design elements [Gies07]. UML 2.0 allows software designers to

represent the architectural aspect of software.

In [Kim09], the authors propose to use a feature modeling approach [Czar00] to link together

the desired quality attributes, the interests of stakeholders, and the architectural tactics. The

root of the feature model gives the name of the quality attribute (e.g., safety), each node of

the first level specifies a stakeholder interest (e.g., resist the attacks), and each lower-level

node is connected to one or more lower-level nodes and gives the name of an architectural

tactic (e.g., authenticate users).

A link between two tactics is a relationship that the software designer should consider to

elaborate a design that supports the related quality attribute and interests. To support the

implementation of the high-level design, Kim et al. [Kim09] specify each tactic using a role-

based meta-modeling language (RBML). They use UML to represent the structural and

behavioral constraints of each tactic using UML-based roles in a class and sequence diagram.

The semantics of the tactics are specified by a set of roles. A role extends an element of the

UML meta-model by adding a set of constraints that the instances of the role must respect.

Kim et al. [Kim09] also define rules for the systematic liaison and composition of the tactics.

29

1.3.1.3 Formal Specifications

A formal specification of tactics may help to clarify the required quality and make explicit

the decisions software designers may have to make regarding the tactics. A formal

specification can be analyzed. Wyet has used the Z formal notation to specify the tactics for

the security quality attribute [Wyet09]. These specifications serve to prove that the system

specification is consistent and correctly implements the tactics. They provide a framework to

analyze specific security mechanisms.

1.3.2 Representation Schemes for Design Patterns and Styles

Some authors of the pattern community claim that styles may be subsumed by the idea of

patterns [Gies06]. Styles and design patterns are not distinguished consistently. Usually the

terms design patterns refer to lower-level artifacts, and architectural styles refer to higher-

level artifacts [Gies06]. A pattern describes a solution to a recurring problem that occurs in a

specific context [Alex77]. The pattern states the design issue to be solved, the trade-offs

between the issues involved, and the situation when it can be applied.

1.3.2.1 GOF-Based Template for Design Patterns

A pattern can be documented in various forms, which include the Gang-of-Four (GOF)

[Gamm95] and Coplien [Copl96] forms. These forms contain sections for intent, motivation,

applicability, structure, participants, collaborations, consequences, and related patterns. The

textual format of these forms may be accompanied by box-and-line drawings that present the

organization of the pattern’s components and connectors.

30

1.3.2.2 Catalogue of Styles

Specific formats exist to represent styles as well. Many formats of styles are textual [Garl94,

Shaw96, Bush96, Ande01] and human-oriented. They describe styles in natural language as a

collection of components, connectors, and constraints (i.e., topological or semantic) on how

they can be combined. In [Shaw97], Shaw and Clements consider a style as a set of design

rules that identify the kinds of components and connectors that can be used to compose a

system, together with local and global constraints on their topology. The authors use the

control and data issues as well as other criteria to classify the styles. They aim to “establish a

uniform descriptive standard for styles, provide a systematic organization to support uses of

information about styles, and help choosing styles for a given problem”. A primary objective

of their classification is to capture the common meanings of the informal styles descriptions

into a systematic form.

In [Klei99], the authors introduce the notion of an Attribute-Based Architectural Style

(ABAS). They explicitly associate a style with a qualitative or quantitative reasoning

framework. “Every ABAS comprises a problem description, a stimulus to which the ABAS

is to respond and the expected response measures, an architectural style that provides

designers with the wisdom of preceding designers faced with similar problems, a description

of how the quality attribute models are related to the style, and the conclusions about the

predicted architectural behavior. Linking analytic models to architectural styles allows an

architect to reuse the cumulated experience of the various attribute communities”.

An ABAS is specific to only one quality attribute and it makes reusing styles with

predictable properties the foundation for more precise reasoning about architectural design

[Klei99]. However, all of the representations including ABASs are more textual than formal.

31

1.3.2.3 Architecture Definition Languages (ADL)

Architectural styles are usually represented in forms that are more human-oriented. Styles

may be described using formal techniques as well. Examples of formal techniques are the

style specifications in Architecture Definition Languages (ADLs) [Garl00b]. An ADL may

be used to model components, connectors, and topologies at a high level of abstraction and

focuses on abstract architecture and explicit treatment of connectors.

As mentioned in [Medv00], an ADL provides an abstract description of the style and a

foundation for architecture construction. It exposes the high level style constraints and the

rational for specific choices. An ADL supports domain specific styles descriptions and

system constraints checking of conformance to style constraints, quality attributes, and

component and connectors dependencies. However, ADLs subsume different formal

semantic theories and thus focus on different application domains, architectural styles, or

aspects of the architectures they model [Medv00].

[Medv00] present a classification methodology and a framework for comparing ADLs. They

identify and compare many ADLs and conclude that every ADL must provide the means for

the explicit specification of the architectural components, connectors, and topologies. This

study is helpful to understand what a style description may comprise. It identifies the

strengths and weaknesses of each ADL, which allows designers to choose an appropriate

ADL for particular needs. Complementary languages, such as the formal specification

language Z [Spiv92], have been used to model styles rules and constraints [Loul06,

Medv99b, Abow95, Abow93] and realize dynamic style refinement and composition via

strict consistency checking [Nadh08, Loul06, Loul04].

32

1.3.2.4 Formal Representations of Styles

Formal methods, such as the Z notation, use mathematical models for model checking and

theorem proving [Clar96, Wing98]. In particular, the Z notation provides a framework within

which styles may be specified (connectors are usually not explicit [Meht00, Alle97]),

designed, analyzed, and verified in a systematic rather than ad hoc manner. Extensions such

as the Object-Z [Smit00a, Duke95], an object-oriented version of the Z notation, have been

proposed to simplify the use of formal methods and augment capabilities.

1.3.2.5 UML-Based Representations of Styles

Many researchers facilitate the use of formal methods through Unified Modeling Language

(UML [Booc96]) graphical diagrams [Mila08]. They use automated graph transformation

[Loul04, Guo05] and generation of the Z schemas skeletons [Dupu00]. UML 2.0 allows

designers to represent the architectural aspect of software in accordance with architectural

styles more effectively [Kace05].

Still, many modeling constructs from ADLs cannot be mapped directly to the UML [Gies07].

UML extensions have been proposed to represent architectural concepts (e.g., topological

constraint and connectors) [Medv99b, Robb98]. Nonetheless, UML cannot be extended to

model and efficiently express every feature of every ADL. Bringing together UML and

formal methods may help to make style representations more rigorous.

The OCL [Warm99] is the specification language that aims to formalize the UML. UML is

based on a meta-model that states rigid rules and constraints on the elements of a UML

diagram. However, the OCL is more appropriate for that purpose [Omg06]. It is a formal

technique that can be used to specify invariants on classes, types and interfaces as well as

pre-conditions and post-conditions, state changes, guards, and constraints on operations and

methods.

33

The creators of OCL claim that OCL is easier to read and write than other formal languages

and that there is no need for a strong mathematical background to use OCL [Omg06]. As

mentioned in [Rich02], a formal foundation should make the meaning of constraints more

precise and should help to eliminate ambiguities and inconsistencies. Another important

aspect of a formal specification language is its ability to support refinement.

1.3.2.6 Ontology-Based Representations of Styles

Some researchers apply the Web Ontology Language (OWL) and the Semantic Web Rule

Language (SWRL) to improve the semantics of architectural styles, components, and

connectors [Zhan09]. The OWL is a XML-based language for describing ontologies

[Smit00b]. An ontology defines a conceptualization of a particular domain. It is created

using concepts from the domain, properties of those concepts, and relationships between

concepts.

The OWL provides the building blocks for specifying the semantics of styles in a well-

defined manner [Bern01]. The Semantic Web Rule Language (SWRL) is an OWL-based rule

language [Horr04]. SWRL allows users to write rules in terms of OWL concepts such as

classes, properties, individuals, and data values. It provides deductive reasoning capabilities

when performing inference. The mapping between the OCL and the SWRL has been

addressed in the literature [Rewe06]. The main benefit of such an approach is that

UML/OCL rules can be mapped into all other rule languages (e.g., Jess and Prolog).

1.3.3 Synthesis of the Representations of Tactics, Design Patterns, and Styles

1.3.3.1 The Representation of Tactics

The representations of tactics in [Scot09, Bass03] use a textual format that makes it difficult

to systematically select appropriate tactics, to compare them, and to evaluate the

consequences of applying a tactic or a combination of tactics for a particular problem.

34

The term tactic usually refers to fine-grained artifacts, but the textual format provides no

exclusive criteria and makes it difficult to determine whether something is a tactic or not. In

[Kim09], the authors use UML 2.0 to represent the architectural tactics. However, UML has

neither the semantics nor the capability to characterize all the tactics’ properties [Kim09].

Extension to UML results in dependence to a tool, which reduces the portability of the

representation. In addition, this approach provides no support for evaluating the impact of a

tactic on the software quality characteristics. In [Wyet09], the authors use the Z formal

notation to specify the tactics and prove that the system specification is consistent and

correctly implements the tactics. However, such a formal method to represent tactics has not

been largely used yet. The Z notation uses complex formal semantics and elements of logic

and mathematics that require advanced skills to represent the tactics.

1.3.3.2 The Representation of Design Patterns

The textual format of GOF-based templates [Gamm95] makes it difficult to select

appropriate patterns, to compare them, and to evaluate the consequences of applying a

pattern or a combination of patterns for a particular problem [Gies06, Alle97]. The term

design pattern usually refers to design artifacts, but the textual format provides no exclusive

criteria and makes it difficult to determine whether something is a design pattern or not. In

addition, this approach provides no support for evaluating the impact of a design pattern on

the software characteristics of quality. Still, such a textual format to represent design patterns

is largely used.

1.3.3.3 The Representation of Styles

The list of style representation schemes mentioned so far [Clem02, Ande01, Medv00, Klei99,

Busc96, Garl95] illustrates some trends in the research community. Most software

architectures are based on one or more architectural styles that provide a domain-specific

design vocabulary and a set of constraints on how styles are used.

35

None of the works and representation schemes cited so far takes architectural tactics into

account: they are attentive to styles only. These approaches provide little or no support for

selecting styles based on the required level of quality and to evaluate the impact of a style on

the level of quality. Their primary concern is the achievement of the functional requirements.

Applying the GOF-based templates to the style concept requires a broad interpretation of the

pattern concept. The templates used to represent lower-level concepts such as patterns are not

intended to represent higher-level concepts such as styles [Monr97]. The level of abstraction

of styles is not consistent from one author to the next [Clem02, Busc96, Garl95] making it

difficult to decide whether a description is a style or not.

1.4 Approaches for Supporting Architectural Design

1.4.1 Attribute-Driven Design Method

One of the approaches that support the architectural design process is the Attribute-Driven

Design method (ADD) [Bass03]. ADD proposes an iterative process to designing software

architecture. At each iteration of the ADD, the architect chooses the architectural tactics and

styles that satisfy the most important quality attributes for that iteration, called architectural

drivers. The ADD describes a cycle for planning the design fragments, implementing the

software structures, and verifying the resulting design. It repeats this cycle until all

architectural drivers are met. To choose and apply the tactics and styles that best achieve the

drivers, software designers can use methods such as the ones proposed in [Bass05, Bach03].

ADD as described in [Wojc06, Bass03] starts after the requirements analysis in the software

implementation process. It provides the first level of decomposition of the modules (systems,

subsystems, layers, packages, classes, etc.). The system is the first module decomposed.

Then, each resulting module is considered for decomposition. The choice of the module to

decompose is based on the architectural drivers. ADD iteratively decomposes a system or

system element by applying architectural tactics and styles that meet the quality requirements

of the system.

36

The ADD method iterates on three activities and seven steps. Planning the design aims to

select the types of elements that achieve the requirements (steps 1 to 4). Implementing the

design aims to instantiate the elements to satisfy the requirements (steps 5 and 6). Verifying

the design aims to determine if the resulting software design meets the requirements (step 7).

1.4.2 Quality Ontology and Architectural Knowledge Base

Another approach used to support the architectural design process is given in [Ovas10]. They

propose an approach to fully integrate quality requirements in the software design process.

Their approach allows the software designer to manage and track the quality attributes from

the requirements specification to the architecture design. The approach proposes a process

with three phases: 1) the quality requirements modeling phase, 2) the architectural modeling

phase where quality requirements models are transformed into architectural models, and 3)

the evaluation phase. The first two phases are divided into two processes.

Each of the two first phases includes a knowledge engineering process and a software

engineering process. The knowledge engineering process aims at creating quality ontology

and an architectural knowledge base, while the software engineering process uses this

ontology and knowledge to model the quality requirements and the software architecture of a

particular system. The ontology represents the architect’s understanding of a quality attribute,

while the quality requirements model represents the client's needs.

The architectural knowledge base is a directory of reusable artifacts, including generic and

domain specific tactics and styles, as well as profiles of quality attributes. The tactics and

styles are organized to allow a search using the name of the quality attributes they support.

The quality requirements model can therefore be used to define the styles that serve as a

starting point of the architecture and the tactics that are used to refine the styles. The entities

of the resulting architectural models are annotated with the quality attributes they support.

37

The objective of the third phase is to evaluate the architecture to determine the level to which

the requirements were attained and suggest improvements. The architect makes the

assessment in three stages. First, it prioritizes the quality attributes. For the architectural

drivers identified, a tradeoff analysis is performed. Then the software designer evaluates the

quality attributes of high and medium importance. Finally, the software designer compares

the results of the evaluations with the acceptance criteria derived from the requirements and

then identify possible improvements.

1.4.3 Limits of the Approaches

Many approaches have been proposed to support the architectural design and decision

processes [Zimm12, Ovas10, Kim09, Bach07, Tyre05, Bass05, Bass03, Bach03, Clem02],

but few approaches (e.g. [Zimm12, Ovas10]) support the software designers in managing and

keeping track of the accumulated knowledge during the architectural design process. The

focus of ADD is the process of architecting systems in order to satisfy a set of quality

attributes and to manage tradeoffs between these attributes. ADD provides no support to

manage the artifacts that it produces and uses. The approach proposed by Ovaska et al.

[Ovas10] focuses on finding tactics and styles using quality attributes. While this is very

useful, an architect still needs to keep track of the rationale, objectives and constraints that

led the choice of the quality attributes.

Although many architectural tactics and styles have been described and cataloged [Scot09,

Bass03, Clem02, Shaw96, Busc96, Garl94] in the literature, few approaches support the

software designers in selecting and using the appropriate styles. In all cases, both tactics and

styles are documented in textual formats. The textual formats of tactics and styles make it

difficult to select appropriate tactics and styles, to compare them, and to evaluate the

consequences of applying each of them for a particular problem [Scot09, Kim09]. In

particular, the binding and composition rules given in [Kim09] are in a textual format.

38

Various models and tools for the management of architectural knowledge have been

compared in [Pari08] according to some properties, including stakeholder-specific content,

easy manipulation of content, descriptive in nature, and support for codification,

personalization, and collaboration [Shah09]. Shahin et al. conclude that many models capture

and document the rationale, constraints, and alternatives of architectural decisions [Shah09].

Existing models express similar concepts in different terms. Also, there is a lack of tool-

support, particularly for personalization. In addition, the management of the relationships

between the architectural decisions and the elements they influence (e.g., files and views) is

still a challenge [Tyre05, Khal10]. Many models use a textual format for describing the

architectural decisions and do not keep track of the resulting artifacts.

1.5 Summary of the Activities and Artifacts of the Design Process

This section summarizes the common activities and SDAs related to the design process.

From the literature, Table 1.4 identifies six activities (i.e., select, identify, define, specify,

describe, and evaluate) for the design process, altogether with the SDAs generated or used by

each activity. The proposed list of activities and SDAs is based on the selection of activities

and SDAs from the related works [Iso42010, Apri11, Bass03, Clem03] and the vocabulary

and activities from ISO 12207 on Software life cycle [Iso12207, Iso29110].

Related works decompose the design process into finer-grained or coarser-grained activities

than the decomposition proposed in Table 1.4. From this perspective, the design process is

decomposed in a manner that emphasizes the refinements of the artifacts while designing.

The activities in the upper rows provide artifacts that are used by the activities in the lower

rows for developing, evaluating, and describing designs. The inputs and outputs of these

activities are SDAs that should be managed – see Appendix I for more descriptions of these

SDAs.

39

Table 1.4 The proposed activities of the design process

Activities Attribute-Driven
Design (ADD)

ISO12207 ISO29110 Relevant SDAs

Select the
objectives

Confirm there is
sufficient
requirements
information

Establish and document
software requirements

Understand
requirements
specification

Need, goal, expectations, risks,
politics, business model,
situational factors, requirements,
constraints, business rules,
domain objects, processes,
activities, tasks, procedures

Refine requirements
and make them
constraints

Refine requirements
and make them
constraints

Choose an element of
the system to
decompose

Schedule for software
integration

Identify candidate
architectural drivers

Identify
knowledge
artifacts

Choose a design
concept that satisfies
the architectural
drivers

 Architectural concerns,
application domain, standards,
regulations, conventions,
properties, patterns, styles, tactics

Define
architectural
artifacts

Instantiate
architectural elements
and allocate
responsibilities

Allocate the
requirements to its
software components

Identify
software
components
and associated
interfaces

Architectural design rationale,
architectural risks, assumptions,
scenarios, design fragments

Specify
system
artifacts

Define interfaces for
instantiated elements

Refine the software
components to facilitate
detailed design

Provide the
detail of
software
components
and their
interfaces to
allow the
construction in
an evident
way

Detailed design rationale,
system’s risks, assumptions,
operation contracts, modules,
components and connectors Develop a top-level

design for the database
Develop a top-level
design for the interfaces

Describe
architectural
artifacts

 Document a top-level
design for the database

Document the
software
component
identification

Glossary, views, viewpoints

Document a top-level
design for the interfaces

Develop and document
preliminary versions of
user documentation

Evaluate
software
structures

Verify requirements Define and document
preliminary test
requirements

 Acceptance and assurance
criteria, internal measures,
external and in-use measures,
evaluation records Evaluate the

architecture, interface,
and database designs
Conduct review(s)
Document the results of
the evaluations

40

1.6 Approaches for Supporting Design Traceability

Existing approaches attempt to support design traceability with specific processes, models,

and tools. They assist software designers in their decision-making activities by characterizing

and managing the design decisions, the design rationale, and the relationships between them

[Zimm12, Ovas10, Zimm09, Wanf09, Jans07, Kruc06, Tang06, Jans05, Tang05, Tyre05,

Jans04, Bass03, Clem03]. Tang et al. [2009] classified architectural knowledge into four

general categories: context knowledge (problem space), general knowledge (styles, tactics,

and patterns), reasoning knowledge (design decision and design rationale), and design

knowledge (design fragments and software structures). This section presents the reasoning

knowledge.

1.6.1 Design Decisions

Software designers make design decisions (DDs), such as choosing patterns, styles, and

tactics. Zimmermann and al. [Zimm09, Kruc06] proposed eight decision types, including

decisions for pattern selection, pattern adoption, technology selection, technology profiling,

vendor asset selection, and vendor asset configuration.

As stated in [Zimm12, Tyre05], “developers want guidance on how to proceed with a design.

Customers want a clear understanding of the environmental changes that must occur and

assurance that the design meets their business needs. Other designers want a clear, salient

understanding of the design’s key aspects, including the rationale and options the original

designer considered”. The purpose of the design decisions proposed in [Zimm10] is to:

• “Provide a single place to find design decisions

• Make explicit the rationale and justification of design decisions

• Preserve design integrity

• Ensure that the design is extensible and can support an evolving system

• Provide a reference of documented decisions

• Avoid unnecessary reconsideration of the same issues”

41

Table 1.5 presents the template proposed in [Tyre05] for capturing the information of a DDs.

Many recent design approaches provide support for documenting and using DDs as core

artifacts of software design [Zimm12, Ovas10, Zimm09, Wanf09, Jans07, Kruc06, Jans05,

Tyre05, Jans04], including design rationale [Tang07, Tang06], architectural decision models

[Zimm09], decision relationships [Zimm09, Kruc06]. These approaches provide tool support

for architectural knowledge management and decision-making by maintaining a knowledge

repository. They treat software design as a design decision process and manage architectural

and design knowledge for documenting design decisions explicitly. These decision-centric

approaches capture design rationale and use requirements as a basis to support reasoning.

Table 1.5 Architecture decision description template (adapted from Tyre05)

Issue Describe the architectural design issue

Decision State the decision rationale

Status State the decision’s status

Group Group to help organize the set of decisions

Assumptions Describe the underlying assumptions (limits) in the environment

Constraints Capture constraints to the environment that the decision poses

Positions List the viable design alternatives

Argument Outline why the designers selected a position

Implications State the decision’s implications

Related decisions List the related decisions

Related requirements Map the decision to the objectives or requirements

Related artifacts List the related architecture or design artifacts

Related principles List the agreed-upon set of principles

Notes Capture notes and issues discussed

In spite of that, most software designers omit to document the DDs and design rationale,

which may lead to costly support efforts for system evolution, lack of communication

between the stakeholders, and limited reusability of software artifacts [Capi10, Wanf09,

Tyre05, Bosc04].

42

Table 1.6 presents a summary of the related works and state of the research on DDs. In most

development processes, DDs are not documented explicitly but are implicit in the designs

[Wanf09, Tang06]. Software designers may not have the time or the ability to document their

designs [Tyre05]. In addition, existing tools provide limited support for managing DDs and

the rationale that lead to them. Most approaches do not relate DDs to individual design

artifacts. They support defining and sharing design decisions. In addition, existing

approaches provide limited support for managing the knowledge of the problem space that

influenced the design, the styles, tactics, and patterns used in the design, and the related

design artifacts, design rationale, and design decisions [Tang09].

Table 1.6 Current state of the research on design decisions

Related
works

 “+” means the related works DO realize the claim
“-“ means the related works DO NOT realize the claim

Zimmermann
et al. – IBM
research
laboratory
(2007 to 2012)

+ describe and formalize an architectural decision model
+ describe a metamodel and modeling principles for design decisions
+ describe architectural patterns as conceptual architecture alternatives
+ capture decisions required, decisions made, and possible solutions
+ describe dependency relations, integrity constraints, and production rule
+ describe steps: identification, making, and enforcement of decision

Tang et al.
(2009)

+ provide a comparative study of architecture knowledge management tools
+ define 10 criteria of an evaluation framework for tools
+ define usage scenarios for architectural knowledge management tools

Capilla and
Babar (2008)

+ describe the concept of variability model
+ describe binding time, variation points, variants, and their relationships
+ associate design decisions to variation points and variants
+ review existing tools for capturing and managing design decisions
- check the inconsistencies in the variability model

Boer et al.
(2007)

+ compare tools capabilities for decisions modeling

Kruchten et al.
(2006)

+ define a semantic ontology for decisions
+ describe attributes and types of decisions
+ describe when and how decisions are made
+ define types of decision dependencies
+ focus on the visualization of the decisions
+ identify many use cases for decision knowledge
- describe formally what is an architectural decision
- treat design problem and solution as distinct entity
- separate decisions required and decisions made
- propose concepts for structuring decision models

43

Abrams et al.
(2006)

+ provide modeling tool support for design artifacts
+ introduce a topic hierarchy
+ define an outcome attribute in the decision entity
+ define alternatives as a separate entity

Akerman and
Tyree (2006)

+ define an ontology for decisions to support the design of software
architectures

Tyree et al.
(2005)

+ define a template for documenting architectural design decisions

Jansen and
Bosch (2005)

+ view software architecture as a composition of a set of design decisions
+ treat decisions as a first class architecture design concept
+ focus on change over time as a dominating force for decision making
+ distinguish design problems and solutions to them
+ outline the attributes that are required to capture related knowledge
+ integrate decision models with models for other viewpoints
+ compare tools capabilities for decisions modeling
- introduce their metamodel in text and figures
- explicit dependencies between different problems or different solutions
- propose concepts for structuring decisions and fragments
- propose solutions for the reuse of architectural decision knowledge

Bass et al.
(2003)

+ mention the term architectural decision
+ describe tactics as architectural decisions
+ propose quality attributes and design concerns for classifying tactics
- define what is an architectural decision

IBM Unified
Method
Framework

+ define a template for capturing architectural decisions
+ in use on professional services engagements for IBM clients since 1998
+ provide reference architectures with decisions made during design
- formally specify the metamodel

Tool Support

SEURAT,
PAKME,
ADDSS,
AREL,
Archium,
Knowledge
Architect,
SPLE

+ define metamodels for managing decisions
+ provide tools with decision modeling capabilities
+ capture design decisions, design rationale, and design models
+ support basic decisions dependencies
+ support traceability between requirements, design decisions, and design
+ support software architecture design, documentation, and evaluation
+ provide a knowledge repository of generic and specific knowledge
+ document the chain of dependencies between decisions
- provide support for managing the decisions and the design rationale
- support variability management
- relate design decisions to individual architectural parts
- ensure the integrity of the decision model
- maintain explicit relationships between design artifacts

44

1.6.2 Design Rationale

“Design rationale capture the reasons behind the design decisions” [Tang06a]. Many works

confirm the need to manage the design rationale in an effective design reasoning model for

system maintenance [Tang06a, Tang05, Tyre05, Bosc04, Clem03, Bass03, Ulri02, Perr92].

Tang et al. present a survey of nine types of generic design rationales from the literature:

design constraints, design assumptions, weakness, benefit, cost, complexity (risk), certainty

of design (non-risk), certainty of implementation (non-risk), and tradeoffs. They classify

additional types of factors that influence design into three categories: business goals oriented,

requirement oriented (functional and non-functional), constraints and concerns [Tang06a].

Software designers capture design rationale either to deliberate about a design or to track the

results of the reasoning [Tang06a, Tang06b]. The approaches to representing design rationale

include argumentation-based [Lee91, Kunz70, Toul58] and template-based [Iso42010,

Ieee1016, Bass03, Clem03] representations. Argumentation-based approaches use networks

of arguments and issues, and a resolution process for deliberation about a design [Lee97,

Lee91, Kunz70]. Deliberation refers to the act of considering different points of view for

coming to a reasoned design. Template-based approaches use formatted documentation for

capturing the result of the reasoning [Iso42010, Iso1016, Tyre05, Clem03]. For

argumentation-based approaches, Tang et al. [Tang06a] identify three challenges that

concern Template-based approaches as well:

1. the identification of the knowledge for reasoning;

2. the creation of the design reasoning model to retain the knowledge; and

3. the utilization of the design rationale to help understand a design.

Tang et al. [Tang06a] also identify issues for these approaches:

1. the cognitive burden to capture the design rationale;

2. the lack of traceability of both

a. the design artifacts being discussed; and

b. the relationships between the design rationale.

45

1.7 Summary of Design Knowledge (DK) Management

DK management requires insight into the organization and its processes in order to tailor

activities, techniques, and tools to the context, and it requires insight into the SDAs produced

or used by each activity of the design process. Organizations that develop or maintain

software should manage the DK. In this thesis, a software design artifact (SDA) is any

conceptual artifact that is part of the DK related to the problem and solution spaces from

which software designers develop and maintain software designs.

The related works’ questions, objectives, open issues, and future studies provide insights,

templates, and techniques for DK management. This summary captures the common

vocabulary, issues, challenges, and activities related to DK management. The purpose of this

summary on DK management is to develop a better understanding of the related challenges.

1.7.1 Reasons, Challenges, and Issues for Managing DK

A standard definition of DK, and a standard definition of DK management, that would make

consensus is still not found in the literature. Ad-hoc DK management hinders standardization

and causes confusion and ambiguity [Pari08]. It is recommended in [Pari08] for software

designers “to be specific in defining the semantic of their DK to get over this lack, which

helps community to work on a common realization of the term”.

Software designers manage the DK for many reasons:

• they need to understand and tailor alternate design solutions that have proven to be

useful for designing previous projects with comparable contexts and objectives;

• they aim at improving the design capability of the organizations, and accruing returns

on investments in designing the software and building the systems;

• they reuse the DK for improving the design process of actual and future projects.

46

The software designers need to manage the DK for evaluating how each SDA impacts the

software design and the capability of the system to satisfy stakeholders’ needs. Thinking

about each SDA from multiple perspectives may be difficult. Insufficient details about the

SDAs and their relationships and interactions may lead software designers to inappropriate or

suboptimal decisions. In addition, the business context (e.g., software product lines and

technologies) and changing objectives may force the designers to re-evaluate the initial

design decisions. Transforming legacy designs according to new contexts [Ulri02] requires

DK management. To paraphrase [Luze13], the purpose of the DK management process is to

provide relevant, timely, and complete DK to designated parties during and, as appropriate,

after a software product life cycle for supporting the decision-making activities and

improving the resulting designs.

For achieving successful DK management, software designers must realize pre-requisites:

1. understand the DK management process;

2. understand the design process and related decision-making activities;

3. manage the SDAs that constitute the DK relating to these two processes.

Many reasons make the DK difficult to manage [Pari08, Tyre05]:

1. software designers often do not document the DK they use [Tyre05];

2. approaches for architecting software focus on the components and connectors, and

structures of allocation [Bass03];

3. DK is often not shared with the appropriate stakeholders;

4. DK is not used by the users when they have the possibility to use it; or

5. the design process does not support DK management.

The lack of traceability results in maintenance cost, design erosion, and lack of DK. From

this survey of the literature [Iso42010, Zach11, Ovas10, Kim09, Scot09, Pari08, Tang06,

Tyre05, Deme03, Bass03, Clem03, Argo00, Medv00, Dave98, Bush96, Gamm95, Garl95,

Szul95], Table 1.7 presents the issues described in related works for DK management.

47

Table 1.7 Issues for design knowledge management

1. Lack of traceability of software design artifacts

2. Limited analysis capability

3. Locating the expertise

4. Lack of recipient motivation

5. Lack of recipient absorptive capacity

6. Lack of recipient retentive capacity

7. Lack of source motivation

8. Lack of perceived reliability of source

9. Causal ambiguity (why sharing)

10. Lack of trust relationships

11. Misunderstanding of the design knowledge

12. Need for tailored design knowledge

13. Tacit, implicit, explicit design knowledge

14. Need for tailored forms of design knowledge

15. Lack of consistency of the design knowledge

16. Intolerance of mistakes

17. Intolerance of redundancy

18. Lack of upfront discussion

19. Media change the context for communicating

20. Lack of meeting places

21. Lack of scientific rigor

22. Lack guarantees of validity

23. Spatial, temporal, technical, and social concerns

24. Challenges between diverse design communities

25. Different cultures, vocabularies, and referential

26. Lack of up-to-date knowledge

27. Lack of explicit collaboration between teams

28. Complex relationships of knowledge item

29. Rotation of personnel

30. Design knowledge management overhead

31. Lack of measurable indicators

32. Inadequate management support

33. Inadequate skill of participants

34. Improper organizational structure

35. Lack of widespread contribution

36. Lack of relevance, quality, and usability

37. Need tailored approaches, models, and tools

38. Improper budgeting

39. Lack of responsibility and ownership

40. Flexible learning objectives

1.7.2 DK Management in Practice

Many works in the literature depict approaches, models, and tools devoted to DK

management [Pari08]. Organizations maintain the SDAs and tailored information item in DK

databases or using other supports in order to make the DK explicit. They may share the

SDAs by using many documents (e.g., System Design Document, Interface Design

Document, Database Design Description, Software Design Description, Interface Design

Document, Software Requirements Specification).

48

Seven conclusions are retained from the literature on approaches, models, and tools for

managing DK [Khal10, Shah09, Tyre05]:

1. models document rationale, constraints, and alternatives of design decisions;

2. models express similar concepts in different terms;

3. software designers lack support for personalization;

4. software designers lack support for managing relationships between design decisions

and design artifacts (e.g., files and views);

5. models use a textual format for describing the design decisions;

6. models do not keep track of many relationships between design artifacts; and

7. current approaches focus on a subset of the activities of the DK management process.

This literature review has not identified any approach taking into account all the activities

and artifacts identified in this thesis related to DK management and design process. Most of

the approaches, models, and tools provide limited views into the DK base [Zimm09, Ovas10,

Kim09, Pari08, Tyre05, Clem03, Bass03]. The approaches support the design process but

few approaches support the software designers using multiple perspectives (e.g., quality,

people, functions, activities) for managing the DK during the design process.

1.7.3 The Proposed Activities of the DK Management Process

Table 1.8 identifies the activities of the DK management process: acquiring, defining,

reusing, sharing, communicating, evaluating, and managing. This table links the activities to

the techniques, issues, and works from the literature. The proposed list of activities is based

on the selection of activities from the related works [Luze13, Zimm12, Rus02, Ulri02] and

the vocabulary and activities from ISO 12207 on Software life cycle [Iso12207].

49

Table 1.8 Activities, techniques, and issues of the DK management process

Acquiring - Techniques for acquiring the design knowledge from people or artifacts

1. Analyzing code and test cases

2. Analyzing documentation

3. Analyzing software design artifacts

4. Analyzing version history

5. Interviewing / surveying people

6. Running software

Issues from Table 1.6: 1 to 13, 16, 17, 32 to 35, 40

References: Deme03, Bass03, Ulri02, Dave98, Szul95

Defining a design knowledge base - Techniques for representing the design knowledge in forms that facilitate

its management

1. Cataloguing of software design artifacts

2. Cataloguing best practices for the design process

3. Defining a design knowledge database referential (e.g., software architecture description document)

4. Defining a standard representation of the design knowledge (e.g., ontologies, notations, and templates)

5. Defining a standard vocabulary

Issues from Table 1.6: 2, 12 to 14, 32 to 35

References: Ovas10, Kim09, Scot09, Tyre05, Bass03, Clem03, Medv00, Bush96, Gamm95, Garl95, Iso42010

Reusing - Techniques for reusing the design knowledge during the design process

1. Analyzing the design knowledge databases

2. Generating software design artifacts

3. Analyzing the software design artifacts

4. Using a design knowledge database referential

5. Using a standard vocabulary

Issues from Table 1.6: 1, 2, 11 to 15, 32, 33, 36

References: Ovas10, Kim09, Bass03

Sharing - Techniques for sharing the design knowledge person-to-artifact in forms that improve its

management

1. Standardizing ontologies, notations, and templates

2. Using a design knowledge database

3. Documenting the software architecture

4. Documenting software design decisions

5. Documenting lessons learned

6. Modeling views on the software architecture

7. Using standard graphical notations

50

Issues from Table 1.6: 7 to 17, 32, 33, 40

References: Zimm12, Ovas10, Zimm09, Kim09, Pari08, Bass03, Clem03, Tyre05, Argo00, Szul95

Communicating - Techniques for conveying the design knowledge person-to-person

1. Meeting people

2. Teaching people

Issues from Table 1.6: 4 to 13, 18 to 20, 32 to 34, 40

References: Pari08, Ulri02

Evaluating - Techniques for assessing the validity of the design knowledge

1. Using assessment checklists

2. Using measurable indicators

3. Executing review

Issues from Table 1.6: 21, 22, 31, 32, 33, 36

References: Apri11, Bass03

Managing - Techniques for managing the process of acquiring, evaluating, defining, reusing, sharing,

visualizing, and communicating the knowledge

1. Planning design knowledge management process

2. Tailoring approaches, models, and tools

3. Tailoring design knowledge management process

4. Controlling design knowledge management process

5. Using reward schemes

6. Providing cultural support

7. Creating communities of practice

Issues from Table 1.6: 13, 23 to 30, 32 to 39

References: Zach11, Argo00, Szul95

51

1.8 Summary of the Requirements for Design Methods and DK Management

Based on the literature review, this section summarizes the requirements for approaches

supporting design methods and DK management [Zimm12, Zimm09, Hofm07, Kruch06].

Zimmermann et al. classify these requirements according to three categories [Zimm09]:

software engineering method (entire software lifecycle), software architecture design method

(design process), and DK management (DK management). These requirements are used in

[Zimm09] to analyze existing design methods. They will be similarly used to assess whether

the approach proposed in this thesis meets the following requirements (see related works).

Requirements for software engineering method (see [Zimm09]):

R1: Method anatomy = process + notation + supporting techniques and content;

R2: Provide standard description format and metamodel;

R3: Be broadly applicable and actionable, e.g., provide templates and examples;

R4: Provide link between requirements engineering (analysis) and design work;

R5: Ease method content authoring (extensibility) and tailoring (usability).

Requirements for software architecture design method (see [Zimm09]):

R6: Provide multiple architectural viewpoints;

R7: Be driven by quality attributes and stakeholder goals;

R8: Support decomposition of complex design issues (architectural analysis);

R9: Support composition of resolved design issues (architectural synthesis);

R10: Provide a managed to do list;

R11: Support architecture evaluation.

Requirements for DK management (see [Zimm09]):

R12: Obtain required knowledge

R13: Tailor identified knowledge

R14: Document decisions

R15: Align with other models

52

1.9 The Proposed Structure of Software Design Artifacts (SDAs)

Based on the literature review, this section proposes a structure of software design artifacts

(SDAs) for DK management. This structure of SDAs is the basic concept supporting the

approach proposed in this thesis, which defines SDAs as any conceptual artifact that

1) provides design knowledge (DK) about the problem or solution spaces of a software

design, and

2) corresponds to the identification heuristics presented in Section 4.4.

A SDA is either elementary or composite. The proposed heuristic is that an elementary SDA

does not require the utilization of another SDA in the design solution, while a composite

SDA does require the utilization of another SDA from the solution space when being used.

For example, a tactic is an elementary SDA as proposed in [Bass03], while a design pattern

and a style are composite SDAs [Clem03, Gamm95]. Tactics from [Bass03] described in

Appendix IV require no SDA from the solution space. The Template Method design pattern

requires the utilization of the polymorphism tactic [Gran02, Gamm95]. A SDA may have one

or more applications (e.g. resulting in multiple descriptions of the tactics [Scot09, Kim09,

Bass03, Lars02], design patterns [Gran02, Gamm95], and styles [Clem03]).

From our point of view, the SDAs constitute the explicit DK that relates to both the design

process and the DK management process. From the literature, many SDAs and relationships

between them are identified and represented in the SDA structure proposed in Figure 1.1

where a SDA may be, but is not limited to [Iso25010, Iso42010, Zimm12, Harr11, Medv10,

Jans06, Tyre05, Bass03, Clem03, Bach03, Gamm95]:

Elementary SDAs

• a tactic [Bass03],

• a quality attribute scenario [Bass03],

• a measure [Iso25010]

53

Composite SDAs

• a design pattern [Gran02, Gamm95],

• a style [Clem03],

• a design decision [Zimm12, Zimm09, Tyre05],

• a view [Clem03, Iso42010],

• an architectural description [ISO42010],

• or any input or outcome of the design process.

Figure 1.1 Proposed structure of software design artifacts in the SAM framework

54

CHAPTER 2

THE PROPOSED SOFTWARE ARCHITECTURE MAPPING (SAM)
FRAMEWORK

This chapter presents the Software Architecture Mapping (SAM) framework developed in

Phase 2 of our research methodology. This chapter is organized as follows and presents:

• an overview of the proposed SAM framework (Section 2.1);

• the proposed activities of the SAM framework (Section 2.2);

• the proposed reference model of the SAM framework (Section 2.3);

• the arguments for justifying the proposed reference model (Section 2.4);

• the limits of the proposed reference model (Section 2.5);

• the positioning of the SAM framework in the literature review (Section 2.6); and

• the limits of the SAM framework (Section 2.7).

2.1 The proposed Software Architecture Mapping (SAM) framework

Figure 2.1 presents an overview of the proposed SAM framework. The colored shapes are the

concepts that support the Attribute-Driven Design (ADD) method [SEI11, Nort07, Bass03].

The SAM framework is based on these concepts from the literature (i.e., quality attributes

[Iso25010, Bass03], architectural decisions [Zimm12, Zimm09, Jans06, Kruc06, Tyre05],

software architecture [Iso42010, Bass03, Medv00], styles [Clem03], tactics [Kim09, Scot09,

Bass03], design patterns [Gran02, Gamm95], and analysis methods [Bass03]). To manage

the knowledge that relates to existing models and description templates, the SAM framework

defines four basic concepts that constitute its reference model (i.e., the SDA, software

structures map (SSM), argument, and view).

56

Figure 2.1 Overview of the Software Architecture Mapping (SAM) framework

The two starting points in Figure 2.1 illustrate the two use cases proposed in this thesis for

the SAM framework. Firstly, the SAM process may be executed for acquiring and sharing

the knowledge extracted from descriptions of styles, tactics, and design patterns. Then, the

resulting design knowledge base (i.e., SDAs and SSMs) will be used to support the design

process. At particular decision points in the design process (e.g., selection of a pattern

[Zimm12, Zimm09]), the software designers will use the SSMs of styles, tactics, or patterns

as checklists of SDAs for eliciting issues, describing arguments, and creating views. For a

specific decision point, a SSM will record the general, contextual, and design knowledge

[Tang06], and the arguments will record the reasoning knowledge.

57

2.2 The proposed Software Architecture Mapping process and roles

Figure 2.2 presents the overview of the proposed SAM process: it provides three activities

(i.e., create a software structures map (SSM)), describe arguments, and analyze arguments.

The SAM process aims at inferring the order of treatment of the arguments related to the

utilization of particular SDAs during the design process.

Figure 2.2 The proposed SAM process

SAM is the process of managing the design knowledge base that organizes the SDAs and the

related DK used during the development process. Figure 2.3 presents the task flow and data

flow that exist between the SAM process and the architecting activities from Table 1.4.

58

Figure 2.3 Overview of the Software Architecture Mapping process

The proposed SAM process includes three activities for supporting the analysis of a SDA,

and its related SDAs and issues:

1. Create a SSM: a SSM is created for classifying and relating the SDAs in a semantic

network (a SSM is a traceability matrix for the SDAs and their relationships).

2. Describe arguments: the arguments are described for eliciting the issues that relate to

the SDAs.

3. Analyze arguments: the arguments are analyzed to create views that support inferring

the order of treatment of the related arguments based on rankings provided during the

analysis.

59

The SAM framework defines two phases of knowledge processing:

1. Asset creation is performed by a knowledge engineer, i.e., a software designer

tasked with the creation of assets (i.e., SDAs, SSMs, arguments, and views);

2. Asset consumption is performed by software designers that use the DK in the

reusable assets on their projects.

2.3 The proposed reference model

Figure 2.4 presents the proposed reference model of the SAM framework. The reference

model includes four concepts:

• the software design artifact (SDA),

• the software structures map (SSM),

• the argument, and

• the view.

The argument aggregates the issue, reasoning description, dimensions, and activities.

Figure 2.4 The proposed reference model of the SAM framework

60

Each SDA has some related SDAs and issues. The SAM framework proposes to use

1. the SSMs for structuring the SDAs,

2. the arguments for describing the issues that relate to the SDAs, and

3. the views for analyzing the impact of the arguments on dimensions and activities.

2.4 Justification of the proposed reference model

The proposed reference model addresses the conclusions retained from the literature review

[Khal10, Shah09, Pari08, Tyre05]. In particular, the reference model:

• captures rationale, constraints, design decisions, and the related explanations and

quantifications about how they impact objectives using SDAs, SSMs, and arguments;

• reduces the possibility to express similar concepts in different terms using finer-

grained SDAs;

• takes into account all activities and SDAs identified in the literature review related to

the design process and DK management;

• supports personalization for context-specific design process and DK management

using personalized SSMs;

• captures the relationships between design decisions and SDAs using SSMs;

• captures the relationships between SDAs using SSMs;

• provides multiple perspectives for managing the DK using arguments and views;

• supports an integrated approach of the design process and DK management;

• captures the DK from textual catalogs using SDAs, SSMs, and arguments;

• supports the selection and comparison of the SDAs using SSMs; and

• supports the evaluation of the SDAs and the consequences of applying each of them

using SSMs, arguments, and views.

61

2.5 Limitations of the proposed reference model

The proposed reference model has limitations with regards to the conclusions retained from

the literature review [Khal10, Shah09, Pari08, Tyre05]. In particular, the reference model:

• captures the DK in a textual form;

• does not capture:

o the relationships between design decisions,

o the contextual knowledge (e.g., names, dates, version number),

o attributes and types of decisions,

o when and how decisions are made, and

o types of decision dependencies; and

• does not make explicit the relationships between SSMs.

2.6 Positioning the SAM framework within the literature

This section aims at positioning the SAM framework as a software engineering method, a

software design method, and a design knowledge management method as described in

[Zimm09], and a design documentation method based on the rules described in [Clem02].

The next sections present the requirements, rules, and conclusions from the literature that

have been used for assessing the SAM framework.

Methods Requirements Coverage

Table 2.1 aims at assessing the SAM framework with regards to the requirements established

in CHAPTER 1 for software engineering methods, software architecture design methods, and

architectural knowledge management. CHAPTER 3 introduces applications of the SAM

framework that were developed during the validation process to support the assessments

presented in Table 2.1.

Table 2.1 Methods requirements coverage

Requirement SAM framework Assessment

62

R1: Method anatomy =

process + notation +

supporting techniques and

content

SAM process, descriptions

formats, work instructions,

techniques for classification,

argumentation, and analysis

the three techniques and

work instructions support the

three activities of the SAM

process

R2: Provide standard

description format and

metamodel

SDAs, issues, and arguments

description formats, reference

model

the description formats for

issues and arguments support

the reference model

R3: Be broadly applicable

and actionable, e.g., provide

templates and examples

Classification scheme (CS),

reference model, examples of

SSMs

the techniques and templates

are applicable to design

patterns, tactics, styles, and

design decisions

R4: Provide link between

requirements engineering

(analysis) and design work

CS, argument format the CS and the argument

format provide this link

R5: Ease method content

authoring (extensibility)

and tailoring (usability)

CS, heuristics, work

instructions

the CS, work instructions,

and heuristics can be

authored and tailored

R6: Provide multiple

architectural viewpoints

CS, argument format the CS and argument format

provide multiple viewpoints

R7: Be driven by quality

attributes and goals

CS, argument format the CS and argument format

provide multiple viewpoints

R8: Support decomposition

of complex design issues

(architectural analysis)

CS, argument format the CS and argument format

support the decomposition of

complex SDAs and issues

R9: Support composition of

resolved design issues

(architectural synthesis)

CS, argument format the CS and argument format

support the composition of

designs and rationale

R10: Provide a managed to

do list

CS, argument format, analysis

technique

the SSMs, arguments, and

analysis technique provide

63

managed to do lists

R11: Support architecture

evaluation

CS, argument format, analysis

technique

arguments, views, and

analysis technique support

architectural evaluation

R12: Obtain required

knowledge

Classification technique,

argument format

the classification technique

and argument format provide

research capabilities

R13: Tailor identified

knowledge

Techniques for classification,

argumentation, and analysis

the techniques support

tailoring the context, general,

reasoning, and design

knowledge

R14: Document decisions Techniques for classification,

argumentation, and analysis

the techniques document

context, general, reasoning,

and design knowledge

R15: Align with other

models

CS, argument format the CS align with multiple

models for design patterns,

tactics, styles, and decisions

2.6.1 Assessment of the rules for architectural documentation

Table 2.2 aims at assessing the SAM framework with regards to the rules established in

[Clem02] for architectural documentation. CHAPTER 3 introduces applications of the SAM

framework that support the assessments presented in Table 2.2.

64

Table 2.2 Assessment of the rules for architectural documentation

Rule SAM framework Assessment

R1: Write documentation

from the reader’s point

of view

Work instructions,

classification scheme

the work instructions and classification

scheme support writing documentation

for a software designer’s point of view

R2: Avoid unnecessary

repetition

Reference model,

description formats

the SDAs, SSMs, issues, arguments,

and description formats reduce

unnecessary repetition

R3: Avoid ambiguity Classification scheme,

description formats

the classification scheme and the

description formats provide fine-

grained SDAs, SSMs, and arguments

R4: Use a standard

organization

Classification scheme,

description formats

the classification scheme and the

description formats provide the

standard organization

R5: Record rationale Classification scheme,

SDAs, SSMs,

arguments

the column ‘Why’ of the classification

scheme and the arguments capture the

rationale of the design decisions

R6: Keep documentation

current

SAM process, work

instructions, description

formats

the SAM process, work instructions,

and description formats aim at keeping

the documentation current

R7: Review

documentation for

fitness of purpose

Work instructions,

reference model,

description formats

the work instructions aim at producing

fine-grained SDAs, SSMs, arguments,

and description formats

2.6.2 Assessment regarding the related works on design decisions

Table 2.3 aims at assessing the SAM framework with regards to the claims established in the

literature review for design decisions. CHAPTER 3 introduces applications of the SAM

framework that support the assessment presented in Table 2.3.

65

Table 2.3 Assessment of the SAM framework for the related works on design decisions

The SAM framework DOES realize the following claim
+ describe an architectural decision model
+ describe a metamodel and modeling principles for design decisions
+ capture decisions required, decisions made, and possible solutions
+ define a semantic ontology for decisions
+ separate decisions required and decisions made
+ propose concepts for structuring decision models
+ define alternatives as a separate entity
+ define a template for documenting architectural design decisions
+ view software architecture as a composition of a set of design decisions
+ treat decisions as a first class architecture design concept
+ outline the attributes that are required to capture design knowledge
+ propose solutions for the reuse of architectural decision knowledge
+ define a template for capturing architectural decisions
+ define metamodels for managing decisions
+ capture design decisions, design rationale, and design models
+ support basic decisions dependencies
+ support traceability between requirements, design decisions, and design
+ support software architecture design, documentation, and evaluation
+ provide a knowledge repository of generic and specific knowledge
+ document the chain of dependencies between decisions
+ provide support for managing the decisions and the design rationale
+ relate design decisions to individual architectural parts

2.7 Limitations of the SAM framework

Table 2.4 presents the limitations of the SAM framework with regards to the claims

established in the literature review for the related works on design decisions.

Table 2.4 Limits of the SAM framework

 The SAM framework DOES NOT realize the following claim
- describe dependency relations, integrity constraints, and production rules
- describe formally what is design decisions, attributes and types of decisions
- describe when and how decisions are made
- define types of decision dependencies
- treat a design problem and its solution as distinct entities
- support variability management
- ensure the integrity of the decision model

CHAPTER 3

EXAMPLES OF UTILIZATION OF THE SAM FRAMEWORK

This chapter presents seven examples of utilization of the SAM framework, including five

cases studies and two experiments. The order of presentation corresponds to the order of

realization of the examples. The objectives of the cases studies and experiments were

oriented towards the evaluation of the relevance, value, and effectiveness of the SAM

framework:

• Verify that the SAM framework meets the needs for which it was developed

• Demonstrate the value of the SAM framework for the user

• Identify the strengths and weaknesses of the SAM framework

• Determine how the SAM framework should be improved

Section 3.1 describes the SSMs, arguments, and views that were produced for the context of

projects developing software-intensive systems (SISs). This case study provides an example

of the utilization of the classification scheme (CS) and the SSM description format of the

SAM framework. APPENDIX I describes the SDAs that were classified using the CS for this

case study. APPENDIX II describes the context and SSMs that were created.

Section 3.2 describes the SSMs, arguments, and views that were produced for the context of

an undergraduate course on object-oriented software design at ETS. This case study provides

an example of the utilization of the CS, the classification and argumentation techniques, and

the description formats of the SAM framework. This case study describes a SSM and

arguments for a utilization of the Template Method (TM) design pattern published at the

Software Engineering and Knowledge Engineering (SEKE 2013) conference.

68

Section 3.3 describes the experiment with human participants that was conducted in the

context of a graduate course in software engineering at ETS. This experiment provides an

example of application of the reference model and description formats of the SAM

framework. APPENDIX III describes the inputs, outputs, and analysis of the experiment.

Section 3.4 describes the SSMs that were produced for encoding catalogs of styles [Clem02],

design patterns [Gamm94], and tactics [Bass03], and an analysis of the outputs of the case

study. This case study provides an example of the utilization of the classification scheme and

the classification technique of the SAM framework. APPENDIX IV describes the SSMs of

the modifiability tactics [Bass03] produced for this case study. This case study has been

published as a paper at the Software Engineering and Knowledge Engineering (SEKE 2015)

conference. The detailed version of this case study has been submitted to the Journal of

Software Engineering and Knowledge Engineering (JSEKE 2016).

Section 3.5 describes the SSMs and arguments that were produced for developing the web

site of a small organisation that planned to sell products online, and an analysis of the outputs

of the case study. This case study was performed to evaluate the technical feasibility of

applying the techniques of the SAM framework in a small web engineering problem.

APPENDIX V describes the outputs of the case study.

Section 3.6 describes the controlled experiment and the SSMs and arguments that were

produced by a human participant who applied the SAM framework to the web engineering

problem described in Section 3.5. The experiment was conducted to evaluate the usability of

the SAM framework. APPENDIX VI describes the work statement for the experiment.

69

In addition, a support tool was developed and used for managing the SDAs and SSMs of the

SAM framework. This prototype provides the SDA and SSM managers. The SDA manager

implements the classification scheme of the SAM framework and is based on the Java

programming language and the Eclipse development platform. The SSM manager

implements a Java-based compiler that provides a lexical and syntactical parser for the SSMs

and arguments of the SAM framework. The compiler was based on SableCC [Gagn98]. This

prototype was not planned for this research project and is not described in this thesis. The

next sections present the validation activities that were conducted for the research project.

70

3.1 Case study: the SAM framework in the context of a SIS

For this case study, a SSM and the related contextual reasoning were created for analyzing

the architectural concern “Scope of the framework”. This SDA drives many design decisions.

This section describes two versions of the SSM and the arguments for illustrating how a SSM

is iteratively created. The SSMs and the context were based on the technical documentation

and industrial background of projects developing full flight simulators (FFS) [Bass03].

APPENDIX I describes the SDAs that were used to create the SSM. APPENDIX II describes

the detailed SSM that was created by executing many iterations of the SAM process, and the

reasoning for this case study. The following sub-sections present:

• the introduction to the context of software cockpit systems (Section 3.1.1);

• the SSM created during iteration 1 (Section 3.1.2);

• some arguments described during iteration 1 (Section 3.1.3);

• some arguments analyzed during iteration 1 (Section 3.1.4);

• the SSM updated during iteration 2 (Section 3.1.5);

• an analysis of the case study (Section 3.1.6); and

• a description of how the SAM framework addresses the conclusions (Section 3.1.7).

3.1.1 Introduction to the context of software cockpit systems

Projects involving development of FFS training devices deal with constraints on time and

budgets for flight test data, vendor data, aircraft parts, engineering hours, verification,

validation, and customization. These training devices must meet very aggressive cost targets

and regulation controls. This competitive context led organizations to make a technological

paradigms shift from procedural approaches to object-oriented and component-based

approaches. The development team is required to design the software cockpit system (SCS)

framework that will support the implementation of various SCSs. The framework is required

to provide common classes that SCSs will reuse for simulating the cockpit of various

airplanes. The major goals are to reduce maintenance costs and eliminate design defects in

SCSs.

71

3.1.2 The activity “Create a SSM” – iteration 1

The first activity of the SAM process aims at creating a SSM.

Table 3.1 presents the SSM that was manually created during the first iteration of the SAM

process.

Table 3.1 The SSM of the architectural concern “Scope of the framework” – version 1

Interrogative

SDA type SDA description

Why

Goal Reduce maintenance costs

Goal Eliminate design defects

Architectural concern Scope of the framework

When

Situational factor Legacy systems transformation strategy

Organizational risk Development paradigm shift

Regulation FFS Level D control

What

Constraint Shorten schedule

 Limited budget

Property Extensibility

 Reusability

 Framework

 Object-oriented paradigm

 Component-based paradigm

Which

Style Layered system

Architectural tactic Abstract Common Services

Design fragment SCS framework layer

 SCS layer

72

3.1.3 The activity “Describe arguments”

The second activity of the SAM process aims at describing the arguments related to a SSM.

For this case study, some issues and arguments were described for identifying additional

SDAs that relate to the SDA “Scope of the framework”. The examination of

Table 3.1 has allowed to describe the issues in Table 3.2 and the arguments in Table 3.3. The

arguments provide the reasoning descriptions about the issues and refer to activities and

dimensions that are strengthened (+) or weakened (-) by the issues.

For this example, the arguments refer to:

• three activities – see Table 3.2:

o managing (M),

o designing (D), and

o implementing (I), and

• three dimensions – Table 3.3:

o functions (F),

o people (P), and

o quality (Q).

Table 3.2 describes some issues and activities that were considered. The table provides the

issue number and description, and the activities inferred from each issue description.

Table 3.2 Issues related to the architectural concern “Scope of the framework”

Issue # Issue description (SDA + verb + complement) Activities
1 The object-oriented paradigm is not well mastered D I M
2 The component-based paradigm is not well mastered D I M
3 The reusability objectives are not defined D I M
4 The extensibility objectives are not well defined D I M
5 The layered system style is not well mastered D I M

73

Table 3.3 presents some arguments that were described for explaining the issues, and the

dimensions inferred from the reasoning description of each argument. For each argument, the

table provides the argument number, its related issue number, its reasoning description, and

the dimensions impacted (- or +) by the argument. For example, the argument #1 may

negatively impact people and quality considering that the team member role will be executed

by humans and their object oriented skills may impact the quality of the software product.

Table 3.3 Arguments related to the SSM of the concern “Scope of the framework”

Arg.

Issue

Reasoning description Dim.

1 1 The candidate team members lack of skills, expertise, and knowledge
for using the object-oriented paradigm

-P -Q

2 2 The software designers have difficulty to define the software
components of the SCS

-Q

3 3 The legacy systems transformation strategy make it difficult to
validate the reusability objectives of the SCS framework

-F -Q

4 4 The software designers have difficulty to establish a consensus for
the extensibility objectives of the SCS framework

-P -Q

5 5 The design constraints of the layered system style have not been
examined for the SCS framework

-Q

3.1.4 The activity “Analyze arguments”

The ranking (H: high, M: medium, L: low, and X: not relevant) was used to describe how

much each activity, dimension, and argument from Table 3.3 is relevant to the context. Table

3.4 presents a fictive contextualization of the activities, dimensions, and arguments. The

ranking has been quantified, for illustrative purposes, as H=100, M=10, L=1, and X=0.

74

Table 3.4 indicates that designing and quality are the most important factors for the context.

As a result of the rankings, the weight of argument #1 (M=10) will be multiplied by ten

thousand (10000 = 100 * 100) in the view’s cell that intersects the design activity (H) and

quality dimension (H) (i.e., argument 1 is part of this cell) while its weight will be multiplied

by one thousand (1000 = 100 * 10) in the view’s cell that intersects the design activity (H)

and functions dimension (M). A total impact value is then computed for each cell of the view

by summing the multiplied weights (i.e., argument’s ranking * activity’s ranking *

dimension’s ranking) of the arguments it contains. These values are then translated into

priorities (1 is the highest priority). The priorities in Table 3.5 proposes the following order

of treatment for the arguments #1 to #5: 4 (H*H*H=1000000), 2 (H*H*H=1000000), 1

(M*H*H =100000), 3 (L*H*H=10000), and 5 (X*H*H=0).

Table 3.4 Rankings for the activities, dimensions, and arguments of the SCS framework

Activities’ rankings for the analysis Arguments’ rankings Related factors

Implementing L Argument Iteration 1 Activities Dimensions

Designing H 1 M D I M P Q

Managing M 2 H D I M Q

 3 L D I M F Q

Dimensions’ rankings for the analysis 4 H D I M P Q

People M 5 X D I M Q

Functions M

Quality H

Table 3.5 View of the SCS framework arguments

Iteration 1 Dimension

Activity F P Q

D 4 3 1 8

I 9 8 7 24

M 6 5 2 13

 19 16 10

75

3.1.5 The activity “Create a SSM” – iteration 2

Table 3.6 presents the updated version of the SSM proposed for the architectural concern

“Scope of the framework”. The evolution of the SSM results from the design decisions made

to address the arguments. The addition of some SDAs will support new arguments, and it

will impact the ranking of some arguments. The cycle (SDAs>Arguments>Decisions>SDAs)

may continue until the arguments rankings equal some thresholds (e.g., L). For example, the

argument #4 in Table 3.3 is addressed by adding two SDAs to the SSM in Table 3.6.

Table 3.6 Added SDAs for the SSM of the concern “Scope of the framework”

Arg.

Issue

Reasoning description Dim.

4 4 The software designers have difficulty to establish a consensus for
the extensibility objectives of the SCS framework

-P -Q

Interrogative

SDA Type SDA Description

What

Scenario Every software system implements a common interface

Which

Architectural tactic Localize changes

3.1.6 Analysis of the case study

This case study reinforced evidence regarding the validity of the proposed classification

scheme (CS) and the need for techniques and work instructions that support populating

knowledge bases of SDAs and SSMs. The following conclusions result from the analysis of

the case study:

76

• Reliability - A large number of SDAs were classified using all cells of the CS. No

SDA was rejected. The capacity of the CS for classifying a large number SDA types

in the context of complex SIS provided evidence that the CS is reliable.

• Usability - The SDA types were used for discerning the semantic of each SDA. Most

of the SDAs were easy to classify. However, some SDAs were difficult to classify

and reinforced evidence regarding the need for exclusive and description criteria for

describing SDAs.

• Reliability - The focus of the case study was the creation of the SSM. The arguments

were described in APPENDIX II to provide the reasoning descriptions of the SSM.

These arguments lack precision and format. In addition, the views were described for

illustrative purposes and were not used for the case study. The views and arguments

reinforced evidence regarding the need for techniques and a support tool for

managing the DK. In particular, the views were not useful without tool due to

management overhead.

3.1.7 How the SAM framework addresses the conclusions of the case study

The SAM framework addresses some conclusions of the case study.

For the usability,

• the classification technique and work instructions proposed in CHAPTER 4 support

populating knowledge bases of SDAs and SSMs.

For the reliability,

• the argumentation technique proposed in CHAPTER 5 supports describing the

arguments; and

• the description formats proposed in Section 5.5.1 and Section 5.7.1 for the issues and

arguments should reduce the lack of precision and format of the descriptions.

77

3.2 Case study: the SAM framework for analysing the TM design pattern

This case study has been developed for applying the classification scheme, the argumentation

technique, and the argument description format of the SAM framework. This section presents

the SSM and arguments created for analysing the Template Method (TM) design pattern.

This SDA relates to many SDAs. This section describes the context of the SSM and some

related arguments for illustrating how a SSM is created using a catalog of design patterns

[Gamm95]. The following sub-sections present:

• the description of the TM design pattern (Section 3.2.1);

• the SSM created for the TM description in [Gamm95] (Section 3.2.2);

• some arguments related to the TM design pattern (Section 3.2.3); and

• an analysis of the case study (Section 3.2.4).

3.2.1 Description of the TM design pattern

The Template Method (TM) design pattern is used for providing reusability and extensibility

of algorithms in object-oriented software [Gamm95]. It aims to implement the skeleton of an

algorithm in a base class, and calls primitive methods that subclasses override to provide

concrete behavior. The base class interface declares the algorithm as a template method,

which calls abstract primitive methods that represent the algorithm’s variation points.

The subclasses implement the primitives to specialize the algorithm. As a result, the

algorithm’s structure is written only once and is indirectly specialized in subclasses, which

reduces duplication of code and enforces class interface stability. Also, the template method

allows the addition of instrumentation in the base class, and lightens users' duty since he is no

longer required to call a primitive.

78

3.2.2 SSM of the TM design pattern

Table 3.7 presents the SSM of the TM design pattern, as described in [Gamm95]. The SDA

Id is used to establish the relationships in Table 3.8. The SDA Type refers to a cell in the

classification scheme. The SDA description provides the meaning of the SDA.

Table 3.7 The SSM of the Template Method design pattern

Software Design Artifacts

Id Type Description

Why

Dc1 Design concern Avoid code duplication

Dc2 Control subclasses extension

Ac3 Localize changes

Ac4 Prevention of ripple effect

Dr1 Design rationale Fix the steps of the algorithm and their ordering

Dr2 Let subclasses define the steps of the algorithm

Dr3 Maintain the algorithm’s structure

Dr4 Limit extension points

Dr6 Provide default behavior

Dr7 Control access to the operations

When

Si1 Situational factor Multiple kinds of primitive operations

Co1 Convention Naming convention

Sy1 Symbol UML notation

What

Re1 Requirement Specify for subclass writers which operations are hooks

Re2 Specify for subclass writers which operations are abstract

Pr1 Property Object-oriented paradigm

Pr4 Object-oriented programming language

Pr2 Reusability

Pr3 Extensibility

Op1 Operational. Define an abstract base class

Op4 Define a template method

Op5 Define a concrete child class

79

Op5 Define hook operations

Op7 Declare a final template method

Op8 Declare protected primitive operations

Op9 Declare abstract primitive operations

Vp1 Viewpoint Class diagram

Vp2 Sequence diagram

Vp3 Package diagram

Which

Ro1 Role Subclass writers

Sp1 Structural pattern Template Method

Sp2 Factory Method

Ta1 Tactic Abstract Common Services

Ta2 Information hiding

Ta3 Semantic coherence

Ta4 Maintain existing interface

Ta5 Use Encapsulation

Ta6 Use an Intermediary

Ta7 Restrict Communication Paths

Sf1 Structural fragment C++ language

Sf2 Class library

Ss1 Software structure Abstract class definition

Ss2 Concrete class definition

Ss3 Template method definition

Ss4 Primitive operation declaration

Ss5 Primitive operation definition

Ss6 Hook operation definition

How

Be1 Behavior The template method controls the order of execution

Be4 The hook operations do nothing by default

Where

Af1 Allocation fragment Class file

As1 Allocation structure AbstractTemplate.cpp

As2 ConcreteTemplate.cpp

80

Table 3.8 summarizes the relationships extracted from [Gamm95] for the proposed SDAs.

Table 3.8 Relationships between the SDAs of the Template Method design pattern

SDA Relationship SDA

Sp1 Mandatory Ta1

Sp1 Optional Ta2

Sp1 Optional Ta3

Sp1 Optional Ta4

Sp1 Optional Ta5

Sp1 Optional Ta6

Af2 Uses Af1

Ss1 Generalizes Ss2

Ss2 Specializes Ss1

Ss3 Calls Ss5

Ss3 Calls Ss6

Ss1 Composes Ss3

Ss1 Composes Ss4

Ss1 Composes Ss6

Ss2 Composes Ss5

3.2.3 Arguments related to the TM design pattern

The proposed argumentation technique of the SAM framework aims at describing issues that

occur by using the SDAs. This section presents the results of applying the technique to the

utilization of the Template Method (TM) design pattern.

81

Step 1) Task 1 to Task 3 for eliciting issues

The first step aims at eliciting issues that occur by using the TM design pattern. Table 3.7

provides the SSM of the TM, as described in [Gamm95]. For this case study, three activities

(i.e., managing, designing, and implementing) related to the classification scheme (CS) (see

Section 4.5.2) and the design knowledge management (DKM) process (see Section 1.7.3)

were considered:

• Managing (M) refers to the activity “Select the objectives” of the CS or any activity

of the DKM process; it deals with roles (e.g., subclass writers), situational factors,

and conventions (e.g., naming convention) that constitute the organizational system.

• Designing (D) refers to the activity “Identify knowledge” or “Specify system” of the

CS. Designing deals with the detailed structures (e.g., abstract class) and the

requirements (e.g., a threshold for the execution time) that refine the architectural

properties.

• Implementing (I) usually deals with algorithms and specific characteristics (e.g.,

which keyword: while or for).

The selected SDAs, relationships, and activities provide the SSMs for eliciting the issues.

Each selected SDA will be examined as a root for trees of related SDAs. Some issues will be

elicited by focusing on one SDA after another. Table 3.9 presents the descriptions of some

issues that may hinder the usage of the TM design pattern, and the related activities. Each

issue refers to either a SDA or a relationship between two SDAs.

82

Table 3.9 Some issues related to the SDAs of the TM design pattern

Issue # Issue description (SDA + verb + complement) Activities
1 The naming convention is not described M I D
2 The template method behavior is subject to change M I D
3 The primitive operation is not well identified I D
4 The hook operation is not well identified I D
5 The object-oriented paradigm is not well mastered M I D
6 The reusability objective is not well defined M I D
7 The extensibility objective is not well defined M I D
8 The subclass writer role is not described M I D
9 The programming language is not well mastered M I D
10 The primitive operation can be called by any caller I D
11 The subclass writer does not use the naming conv. M I
12 The abstract class lacks cohesion D
13 The template method may be overridden M I

In the next step, the arguments will tie each issue to some SDAs, activities, and dimensions.

Step 2) Task 4 and Task 5 for describing the arguments

The reasoning description relates an issue to SDAs, activities, and dimensions constituting an

argument; it describes the reasoning that supports the issue description. For this case study,

the dimensions people (P), quality (Q), and functions (F) will be examined. Table 3.10

describes some arguments related to the TM design pattern. For each argument, the table

provides the argument number, its related issue number, its reasoning description, and the

dimensions impacted (- or +) by the argument.

83

For example, the issue #5 may impact people and quality considering that the software

designer’s role will be executed by a human and his object oriented skills may impact the

quality of the software product.

Table 3.10 Arguments related to the TM design pattern

Arg.

Issue

Reasoning description (the SDAs are underlined) Dim.

1 1 The subclass writer has difficulty to identify the template method,
the primitive operation, and the hook operation

-P Q

2 2 Modifying the template method’s behavior will impact the software
products that depend on this behavior

-F Q

3 3 The subclass writer has difficulty to identify the primitive operation -Q
4 4 The subclass writer has difficulty to identify the hook operation -F Q
5 5 Using the object-oriented paradigm requires levels of skills,

expertise, and knowledge of candidate team members
-P Q

6 6 Modifying the reusability objective requires modifying the interface
of the class that implements the template method

-F Q

7 7 Modifying the extensibility objective requires modifying the
interface of the class that implements the template method

-F Q

8 8 The subclass writer has difficulty to identify the template method,
the primitive operation, and the hook operation

-P

9 9 The subclass writer has difficulty to use the object-oriented language -P Q
10 10 An uncontrolled call to the primitive operation will cause a

functional problem
-F

11 12 There are too many primitives operations -Q
12 12 The low cohesion makes reusing the abstract class more tedious -Q
13 12 The class cohesion is proper for the team’s expertise +Q
14 13 The subclass writer may override the template method -F
15 13 A final method cannot be overridden +F
16 13 The final mechanism is hackable -FQ

The arguments describe plausible impacts that may occur by using the design pattern.

However, only appropriate descriptions and utilizations of the SDA lead to planned impacts

on the dimensions.

84

3.2.4 Analysis of the case study

This case study reinforced evidence regarding the validity of the proposed classification

scheme (CS), reference model, and description formats of the SAM framework. The

following conclusions result from the analysis of the case study:

• Reliability - A large number of SDAs, issues, and arguments were described using the

proposed description formats. This case study provided evidence that the reference

model and description formats have the potential for expressing all categories of DK.

• Usability - The argumentation technique proposed in CHAPTER 5 was used to

describe the issues and the arguments. The description formats and the verbs,

activities, and dimensions have proved to be useful checklists for identifying issues

and arguments.

• Usability - The focus of the case study was the creation of the SSM and the

description of the related issues and arguments. The classification and argumentation

techniques have proved useful for populating the DK base of reusable SDAs, issues,

and arguments in a systematic manner.

• Usability - The description of the issues reinforced evidence regarding the need for a

tool-support for managing the DK. Many issues should have been inferred using a

tool-support and the activities of the DK management.

The descriptions examined for identifying the SDAs and relationships were formatted and

divided into sections (e.g., Pattern Name, Intent, Structure, Collaborations, Consequences)

according to a template, as described in [Gran08, Gamm95]. Each section of a design pattern

description provided knowledge for identifying particular SDAs. Table 3.11 summarizes

from which sections of the design pattern’s template used in [Gamm95] were extracted the

information for the proposed SDAs.

85

Table 3.11 Design pattern description: sections and SDAs

Sections of the design pattern description SDA type

Intent, Motivation Rationale

Consequences Property

Implementation, Participants, Sample Code, Structure Operationalization

Consequences, Participants, Sample Code Behavior

Collaborations, Structure Structure

Implementation Convention

Consequences Procedure

Consequences Role

Applicability, Implementation, Known Uses Situational factor

Table 3.12 summarizes in which cells of the classification scheme were classified the SDAs

used for describing the TM design pattern in [Gamm95].

Table 3.12 Classification counts for the SDAs of the TM design pattern

 Why When What Which How Where

Objectives 1 2 1 4

Knowledge 4 1 4 9 18

Fragment 2 1 3

Structure 7 7 6 2 2 24

Description 1 3 4

Evaluation 0

 11 3 16 18 2 3 53

86

The counts in Table 3.12 indicate that the description of the TM design pattern provides a

higher number of SDAs related to software structure than the number of SDAs related to

software fragment. The counts are coherent with the claim that design patterns describe more

detailed designs than tactics and styles that describe architectural designs. In addition, the

column “Which” in Table 3.12 provides the highest count, which is coherent with the

categorization of the TM as a structural design pattern proposed by the GOF in [Gamm95].

87

3.3 Experiment: human participants for applying the reference model

This section describes the experiment that was conducted to evaluate the reference model, the

work instructions, and the argument description format of the SAM framework in the context

of the graduate course SYS869 “Sujets spéciaux: Expérimentation en génie logiciel”. The

following sub-sections present:

• the experiment planning (Section 3.3.1);

• the experiment process and schedule (Section 3.3.2);

• the experiment subjects, groups, and profiles (Section 3.3.3);

• the proposed design context and the collected data (Section 3.3.4);

• the statistics from the collected data (Section 3.3.5);

• the analysis of the experiment (Section 3.3.6);

• the limitations of the experiment (Section 3.3.7); and

• a description of how the SAM framework addresses the conclusions of the

experiment (Section 3.3.8).

3.3.1 Experiment planning

The object of the experiment was the proposed reference model of the SAM framework. The

focus of the experiment was the evaluation of the data collected from the participants who

used the analysis approach proposed by the SAM framework. The following characteristics

were examined:

• Reliability (repeatable outputs);

• Efficiency (time, effort, cost, results);

• Usability (required background), and

• Accuracy (validity of the evaluation)

88

3.3.2 Experiment process and schedule

Figure 3.1 presents the process of three activities (i.e., Preparation, Execution, and

Evaluation) planned for the experiment. The preparation activity was planned for presenting

the experiment process and related descriptions, analysis model, and forms to the

participants. The execution activity was planned for analyzing a design problem and the

related software design artifacts using the proposed analysis approach, model, and form. The

evaluation activity was planned for analyzing the participants’ forms and reporting on the

experiment.

Figure 3.1 Overview of the process planned for the experiment

89

During the experiment, the participants were asked to analyze the description of the software

framework introduced in Section 3.3.4. One hour was scheduled for executing the

experiment in a workshop. The execution of the experiment includes:

• a presentation (30 min.) to the participants of

• the experiment;

• the approach described in CHAPTER 2;

• the design problem to be examined; and

• the software design artifacts to be examined.

• the individual execution of the analysis by the participants (30 min.)

• Analyze the proposed design problem;

• Analyze the eight proposed issues;

• Elicit two additional issues;

• Describe ten arguments;

• Rank the arguments.

3.3.3 Experiment subjects, groups, and profiles

Twenty participants participated in the experiment. The participants of the experiment were

the graduate students registered in SYS869 2013, as well as practitioners invited to the

experiment workshop organized at ETS during the summer of 2013. There was no risk to the

people involved in this experiment. No identifying information from participants was

collected. Participants voluntarily participated in the experiment by attending the training and

the experiment sessions.

90

The participants were grouped according to the following profiles:

• Subjects of the study: post-graduate and undergraduate students, from academia and

industry

• Selection criteria: three (3) profiles, according to the level of experience in designing

software, as follows:

Profile#1: participants with less than two years in designing software.

These were graduate students in engineering or science; or were students at

the undergraduate level in software engineering

Profile#2: practitioners with two (2) years of experience in designing software

Profile#3: practitioners with five (5) years of experience in designing software

From the participants’ profiles, the participants were clustered into three groups for preparing

the experiment (i.e., for adjusting the training to be given to the participants before the

execution of the experiment):

• Group 1: limited knowledge (30 min. training)

o Background: science, engineering (e.g., project manager and coder)

o Training: software development, design patterns, analysis process and model

• Group 2: sufficient knowledge (20 min. training)

o Background: design activity, software design patterns

o Training: software development, analysis process and model

• Group 3: advanced knowledge (10 min. training)

o Background: software development, design activity, software design patterns

o Training: analysis process and model

91

3.3.4 The design context and collected data

The design context of this experiment was based on the project proposed to undergraduate

students for designing a software framework that provides the skeleton of a dice game. The

design of the software framework was required to provide a set of classes that can be reused

and extended to allow the software implementation of various dice games. Three patterns

were required to be used in this project: Iterator, Template Method (TM), and Strategy. The

resulting Dice Game Software Framework (DGSF) was required to be simple enough to be

understood by junior programmers with backgrounds only in procedural programming. The

experiment was planned for a manual data collection by the participants in a workshop. From

the participant and analysis forms, the data in Appendix III were collected.

3.3.5 Statistics from the collected data

The following information was obtained from the analysis of the collected data. Table 3.13

presents the number of participants according to the groups and profiles, and the number of

missing responses in their analysis forms out of a total of ten possible responses.

Table 3.13 Number of participants and missing responses, and ratio of missing responses

Nb. Participants Nb. Missing Resp. Nb. Missing Resp. / Nb. Part.

Manager 8 49 6,1

Architect 3 17 5,7

Designer 4 32 8,0

Programmer 5 38 7,6

Profile 1 9 76 8,4

Profile 2 5 22 4,4

Profile 3 6 38 6,3

92

3.3.6 Analysis of the experiment

The results reinforced evidence regarding the need for support for the proposed analysis

approach, including techniques and work instructions for supporting it. In particular, the

following conclusions result from the analysis:

• Reliability - A large number of arguments should be rejected due to the lack of

consistency between the reasoning description and the impacted activities and

dimensions of each argument.

• Reliability - Combining the responses of the participants for each particular issue

leads to similar impacted activities and dimensions for every argument (i.e., every

argument has impact on all the proposed activities and dimensions). However, the

related reasoning descriptions do not describe all the proposed impacts on the activity

and dimension identified. In addition, the architects provide a more consistent set of

impacted activities and dimensions for each argument.

• Reliability - Many arguments require interpretation due to the lack of precision and

format in the reasoning description, issue, and argument. The participants provide

sentences that lack semantics and syntax.

• Usability - The architects provides the highest number of responses and number of

valid arguments. This is consistent with the proposed design problem context related

to the architecture of a framework.

• Usability - The participants provide impacted activities and dimensions that seem to

be consistent with their backgrounds and profiles (i.e., managers refers to people,

architect refers to quality, etc.).

93

• Accuracy - In many cases, for a particular issue, the related reasoning description

provides new issues instead of explaining how the examined issue impacts the

activities and dimensions. This indicates a lack of understanding of the purpose of the

reasoning description.

• Efficiency - A large number of participants do not provide the two additional issues

that were required in the analysis form. This indicates that issue identification is

complex or that the allowed time and training for the experiment was not sufficient.

3.3.7 Limitations of the experiment

The generalization of results is limited due to the fact that:

• only twenty participants participated in the experiment,

• only one hour was used to conduct the experiment,

• only an academic design problem context was used, and

• multiple interpretations of the arguments were possible.

In addition, the criteria for the rejection of an argument need to be clarified.

3.3.8 How the SAM framework addresses the conclusions of the experiment

The SAM framework addresses some conclusions of the experiment.

For reliability,

• the argument validation heuristics proposed in Section 5.7.2 should reduce the

number of arguments rejected due to a lack of coherence;

• the description formats proposed in Section 5.5.1 for the issues and in Section 5.7.1

for the arguments should reduce the lack of precision and format of the descriptions.

94

For accuracy,

• the argumentation technique proposed in CHAPTER 5 supports describing how the

issues impact the activities and dimensions.

For efficiency,

• the classification technique proposed in CHAPTER 4 supports populating knowledge

bases of SDAs and SSMs that should make the elicitation of issues more effective.

95

3.4 Case study: the classification technique for analyzing catalogs of DK

For this case study, many SSMs were created for populating a base of reusable DK using the

proposed classification technique. The descriptions of the tactics in [Bass03], the design

patterns in [Gamm95], and the styles in [Clem03] were used to create the corresponding

SSMs. Any tactic, design pattern, or style being examined drove the inclusion of the other

SDAs from its description into the SSM (i.e., any SDA in the SSM is cohesive with the

tactic, design pattern, or style for which the SSM is being created). The following sub-

sections presents:

• the SSM of the Layered System style (Section 3.4.1);

• the SSM of the modifiability tactics (Section 3.4.2); and

• an analysis of the results of the case study (Section 3.4.3).

3.4.1 SSM of the Layered style

Table 3.14 presents the SSM of the Layered style described in [Clem03].

Table 3.14 The SSM of the Layered style

SDA Type Description

Why

Ac1 Concern Manage complexity

Ac2 Concern Communicate the structure

Ac3 Concern Localize changes

Ac4 Concern Prevention of ripple effect

Ara1 Rationale Partition software into layers with public interfaces

Ar2 Rationale Isolate each layer from changes in other layers

Vd1 Description Inter and intra-layer usage rules

Vd2 Description Exceptions to the usage rules

When

Si1 Situational Unused services in a layer

96

Si2 Situational Multiple layers

Ari1 Risk Assumptions about layer’s properties

Ari2 Risk Restricted well-defined upward usages

Ari3 Risk Layer bridging

Sy1 Symbol UML notation

What

Co1 Constraint If layer A is above layer B, then layer B cannot be above layer A

Co2 Constraint Every unit of software is allocated to exactly one layer

Re1 Requirement Every unit of software has a platform independent interface

Re2 Requirement Layers interact according to a strict downward ordering relation

Pr1 Property Modifiability

Pr2 Property Portability

Vp1 Viewpoint Layer diagram

Im1 Measure Number of upward usages

Im2 Measure Number of layer bridging

Im3 Measure Cohesion

Which

Sp1 Pattern Layered style

Ta1 Tactic Information hiding

Ta2 Tactic Semantic coherence

Ta3 Tactic Maintain existing interface

Ta4 Tactic Abstract Common Services

Ta5 Tactic Use Encapsulation

Ta6 Tactic Use an Intermediary

Ta7 Tactic Restrict Communication Paths

Sf1 Fragment Interface for the layer

Sf2 Fragment Upper layer

Sf3 Fragment Lower layer

St1 Structure Upper virtual machine

St2 Structure Lower virtual machine

Sv1 View Layered view

Ro1 Role User of a layer

Where

Ap1 Pattern Work assignment

97

3.4.2 SSM of the modifiability tactics

Table 3.15 presents the SSM of the modifiability tactics described in [Bass03].

Table 3.15 The SSM of the modifiability tactics

Software Design Artifacts
Id Type Description

Why

Go1 Goal Control the time to implement, test, and deploy changes

Go2 Control the cost to implement, test, and deploy changes

Dc1 Concern Localize changes

Dc2 Prevention of ripple effect

Dc3 Defer binding time

Ra1 Rationale Ensure that anticipated changes in a module are semantically coherent

Ra2 Assign responsibilities in a module that have semantic coherence

Ra3 Ensure that responsibilities work together without excessive reliance on other modules

Ra4 Reduce the number of modules directly affected by a change

Ra5 Restrict changes to a small set of modules

Ra6 Limit anticipated changes in scope

Ra7 Provide common services through specialized modules

Ra8 Restrict changes to a small set of modules

Ra9 Assign responsibilities in order to minimize the effects of the changes

Ra10 Allow a module to compute a broader range of functions based on input

Ra11 Define an input language for a module

Ra12 Ensure that changes can be made by adjusting the input language

Ra13 Restrict possible options in order to minimize the effects of the changes

Ra14 Reduce the necessity of making changes to modules not directly affected by a modification

Ra15 Assign responsibilities for an entity into smaller pieces

Ra16 Make some information private, and other information public

Ra17 Make public responsibilities available through specified interface

Ra18 Separate the interface from the implementation

Ra19 Create public abstract interface that mask variations

Ra20 Embody variations within the existing responsibilities

Ra21 Embody variations by replacing one implementation of a module with another

Ra22 Restrict the modules with which a given module shares data

98

Ra23 Insert an intermediary that manages activities associated with a dependency

Ra24 Convert the data syntax produced by a module into that assumed by another

Ra25 Convert the syntax of a service from one form into another

Ra26 Mask changes in the identity of an interface

Ra27 Enable the location of a module to change without affecting another module

Ra28 Guarantee the satisfaction of all requests within certain constraints

Ra29 Create instances as needed by actions of an intermediary

Ra30 Support plug-and-play operation

Ra31 Do registration at runtime

Ra32 Do registration at loadtime

Ra33 Set parameters at startup

Ra34 Allow late binding of method calls

Ra35 Allow loadtime binding

Ra36 Allow runtime binding of independent processes

When

Sr1 Risk Difficult to mask changes to the meaning of data and services

Sr2 Difficult to mask dependencies on quality of data or quality of services

Sr3 Difficult to mask dependencies on resource usage and resource ownership

Sr4 An intermediary cannot compensate for semantic changes

Sr5 Additional overhead to manage the registration

Sr6 Additional overhead to manage the initialization

Sr7 Additional overhead to manage the late binding

Sr8 Additional overhead to manage the loadtime binding

What

Pr1 Property Modifiability

Pr2 Reusability

Oc1 Opera. Declare abstract signature

Im1 Measure Coupling

Im2 Cohesion

Im3 Number of modules that require changing to implement a change

Im4 Number of modules directly affected by a change

Im5 Number of modules that consume data produced by the given module

Im6 Number of modules that produce data consumed by the given module

Which

Ta1 Tactic Maintain semantic coherence

Ta2 Abstract common services

Ta3 Anticipate expected changes

99

Ta4 Generalize the module

Ta5 Limit possible options

Ta6 Hide information

Ta7 Maintain existing interface

Ta8 Restrict communication paths

Ta9 Use an intermediary

Ta10 Runtime registration

Ta11 Configuration files

Ta12 Polymorphism

Ta13 Component replacement

Ta14 Adherence to defined protocols

Sf1 Fragment Application framework

Sf2 Middleware software

Sf3 Interpreter

Sf4 Blackboard repository

Sf5 Passive repository

Sf6 Broker

Sf7 Name server

Sf8 Façade

Sf9 Bridge

Sf10 Mediator

Sf11 Strategy

Sf12 Proxy

Sf13 Factory

Sf14 Resource manager

Sf15 XML configuration file

St1 Structure Module of constants input parameters

St2 Public interface

St3 Module that consumes data

St4 Module that produces data

100

3.4.3 An analysis of the results of the case study

This case study reinforced evidence regarding the usefulness of the proposed classification

scheme (CS), techniques, and work instructions for populating DK bases of SDAs and SSMs.

A large number of SDAs were classified using all cells of the CS. No SDA was rejected. The

capability of the CS to classify all the SDAs extracted from various catalogs of DK provided

evidence that the CS is reliable. The SDA types were used for discerning the semantic of

each SDA. Most of the SDAs were easy to classify.

Table 3.16 presents the distribution of the SDAs into the sections of the style’s template used

in [Clem03].

Table 3.16 Style description: sections and SDAs

Sections of the style
description

SDA

Overview Rationale

Properties Property

Elements Operationalization

 Behavior

Relations, Topology Structure

Implementation Convention

Consequences Procedure

Consequences Role

Applicability Situational factor

Table 3.17 summarizes the classification counts for SDAs related to tactics and styles, in

which cells of the classification scheme are classified the SDAs used for describing the

Layered System style in [Clem03].

101

Table 3.17 Classification counts for the SDAs of the Layered System style

 Why When What Which How Where

Objectives 2 1 3

Knowledge 4 2 8 1 15

Fragment 2 3 2 3 10

Structure 2 2 4

Description 2 1 1 1 5

Evaluation 3 3

 8 6 10 15 0 1 40

Table 3.18 summarizes in which cells of the classification scheme are classified the SDAs

used in [Bass03] for describing the modifiability tactics.

Table 3.18 Classification counts for the SDAs of the modifiability tactics

 Why When What Which

Objectives 2 2

Knowledge 3 8 2 14 27

Fragment 36 15 51

Structure 1 4 5

Description 0

Evaluation 6 6

 41 8 9 33 91

The counts in Table 3.17 and Table 3.18 indicate that the descriptions of the tactics and style

provide a higher number of SDAs related to software fragments than the number of SDAs

related to software structure. The counts are consistent with the claim that design patterns

describe more detailed designs than tactics and styles that describe architectural designs. The

column “Which” in Table 3.17 also provides the highest count, which is consistent with the

categorization of the Layered style as a structural style proposed by Clement and al. in

[Clem03].

102

3.5 Case study: the SAM framework for designing a web site

This section presents the case study selected for applying the SAM framework to the

development of a web site. The following sections present:

• the context of the case study (Section 3.5.1),

• the decision points considered for the case study (Section 3.5.2),

• the SSMs produced for developing the web site (Section 3.5.3) ,

• the analysis of the case study (Section 3.5.4), and

• the limitations of the case study (Section 3.5.5).

3.5.1 Context of the case study

This case study was conducted in the context of the development of a web site for a small

organization that reproduces framed diplomas on metal. The project deals with constraints on

the budget and the following requirements for the web site:

• The web site is always available;

• The web site is available on all platforms;

• The web site is available in French and English;

• Five web pages compose the site: Entry, Home, Enterprise, Products, and Contacts;

• The web pages shall be valid according to the strict syntax of HTML;

• The same presentation (e.g., font and background) is used for all web pages;

• It is possible to modify the presentation (e.g., font and background) of a web page;

• It is possible to send an email to the company using a form on the web page;

• It is possible to navigate forward and backward between the descriptions of the

products.

103

3.5.2 Decision points considered for the case study

Table 3.19 presents the decision points that were identified during the literature review and

used for triggering the activities proposed by the SAM process during this case study.

Table 3.19 The decision points used for triggering the activities of the SAM process

Decision point Triggered activity Output

Apply a style Create a SSM SSM of the style

Create a SSM SSM of the context of application of the style

Describe arguments Arguments related to the context of application

Apply a pattern Create a SSM SSM of the pattern

Create a SSM SSM of the context of application of the pattern

Describe arguments Arguments related to the context of application

Apply a tactic Create a SSM SSM of the tactic

Create a SSM SSM of the context of application of the tactic

Describe arguments Arguments related to the context of application

Define a

fragment

Create a SSM SSM of the context of definition

Describe arguments Arguments related to the context of definition

Specify a

structure

Create a SSM SSM of the context of specification

Describe arguments Arguments related to the context of specification

Select a

technology

Create a SSM SSM of the context of selection

Describe arguments Arguments related to the context of selection

104

3.5.3 SSMs created for developing the web site

The following SSMs and arguments were created during the execution of the first iteration of

the web site development project. For this case study, some SDAs were described using two

versions of the same SSM to illustrate that creating a SSM is an iterative activity. The name

of the SSM (e.g., SSM – Client/Server) is the name of the SDA that provides cohesiveness

for the SSM. In particular the decision of using the Client-Server style is a prerequisite. A

web site is hosted on a web server. The web navigator sends requests for web pages to the

web server. The following SSMs are two versions of the same SSM. During the creation of

the first SSM, the focus was on identifying this fundamental style.

SSM – Client-Server

Decision point: Apply a style

Property: Scalability

Style: Client-Server

During the review of the SSM, the focus was on identifying explicitly the SDAs that relate to

the utilization of the style.

SSM – Client-Server

Decision point: Apply a style

Property: Scalability

Style: Client-Server

Fragment: Web server

Fragment: Web navigator

Fragment: Web site

The following SSMs are two versions of the same SSM. During the creation of the first SSM,

the focus was on identifying a pattern that will support portability.

105

SSM – Use a light client

Decision point: Apply a pattern

Property: Portability

Pattern: Use a light client

During the review of the SSM, the focus was on identifying the requirement and SDAs that

relate to the utilization of the pattern. In particular, the web navigator will be a light client.

SSM – Use a light client

Decision point: Apply a pattern

Requirement: The web site is available on all platforms

Property: Portability

Style: Client-Server

Fragment: Web navigator

Pattern: Use a light client

The following SSMs are two versions of the same SSM. During the creation of the first

version, the focus was on identifying the business model related to the web server.

SSM – Web server

Decision point: Select a technology

Requirement: The web site is always available

Property: Availability

Constraint: Limited budget

Business model: External contract

Structure of objects: External organisation

Fragment: Web server

During the review of the SSM, the focus was on identifying the SDAs that relate to the web

server and describing an argument that supports the choice of an external organization for

hosting the web server.

106

SSM – Web server

Decision point: Select a technology

Requirement: The web site is always available

Property: Availability

Constraint: Limited budget

Business model: External contract

Structure of objects: External organisation

Structure of objects: Web site owner

Fragment: Web site

Fragment: Web server

Risk: Availability issues

Issue: the availability property is difficult to ensure

Reasoning: an external organisation will manage the web server to ensure the availability of

the web site

The following SSMs are two versions of the same SSM. During the creation of the first

version, the focus was on identifying the risk and the assumption that makes it acceptable.

SSM – Security

Decision point: Apply a tactic

Tactic: Adherence to defined protocols

Protocol: HTTP

Requirement: It is possible to send emails to the company using a form on the web page

Properties: Security

Risk: Personal information usurpation

Assumption: The user is responsible for not sharing personal information

During the description of the arguments, the risk and the assumption led to the identification

of the following structure of objects, domain object, and argument.

107

 SSM – Security

Decision point: Apply a tactic

Tactic: Adherence to defined protocols

Protocol: HTTP

Requirement: It is possible to send emails to the company using a form on the web page

Properties: Security

Domain object: User

Structure of objects: Web site owner

Risk: Personal information usurpation

Assumption: The user is responsible for not sharing personal information

Assumption: The web site owner is responsible for not requesting personal information

Issue: HTTP is a protocol with insecure exchanges

Reasoning: The HTTP protocol makes the user’s information accessible

Dimension: Quality, People

The following SSMs are also two versions of the same SSM. During the creation of the first

version, the focus was on identifying the risk of presentation problems.

SSM – Limited budget

Decision point: Select a technology

Fragment: Web navigator

Fragment: Operating platform

Requirement: The same presentation (e.g., font) is used for all web pages

Constraint: Limited budget

Process: Validating presentation

Risk: Presentation problem

Issue: The presentation is difficult to validate

108

During the review of the SSM, the focus was on identifying the SDAs that relate to the

process of validating presentations and describing an argument that supports the choice of an

external organization for hosting the web server.

SSM – Limited budget

Decision point: Select a technology

Fragment: Explorer web navigator

Fragment: Safari web navigator

Fragment: Windows OS

Fragment: Apple IOS

Requirement: The same presentation (e.g., font) is used for all web pages

Constraint: Limited budget

Process: Validating presentation

Risk: Presentation problem

Issue: The requirement will be difficult to meet

Reasoning: The presentation is not managed identically on all platforms

Reasoning: The limited budget makes it impossible to validate a presentation on all platforms

The following SSMs were also created during the first iteration of the SAM process.

SSM – Portability

Decision point: Select a technology

Properties: Portability

Fragment: Web navigator

Language: HTML

Language: Java Script

Language: CSS

Assumption: The language is supported by all web navigators

109

SSM – Responsiveness

Decision point: Apply a tactic

Requirement: It is possible to send emails to the company using a form on the web page

Properties: Responsiveness

Behavior: The web client process validates the entries of the user form

Language: Java Script

SSM – HTTP

Decision point: Apply a tactic

Properties: Interoperability

Tactic: Adherence to defined protocols

Protocol: HTTP

SSM – Anticipate expected changes

Decision point: Apply a tactic

Requirement: It is possible to modify the presentation (e.g., font) of a web page

Design concern: Localize changes

Properties: Modifiability

Tactic: Anticipate expected changes

Issue: The requirement is not specific enough

SSM – Configuration files

Decision point: Apply a tactic

Requirement: It is possible to modify the presentation (e.g., font) of a web page

Design concern: Localize changes

Properties: Modifiability

Tactic: Configuration files

Language: CSS

Assumption: The configuration files will support modifying the presentation of a web page

110

SSM – Reusability

Decision point: Apply a tactic

Requirement: The same presentation (e.g., font) is used for all web pages

Design concern: Localize changes

Properties: Reusability

Tactic: Configuration files

Language: CSS

Assumption: The configuration files will provide the same presentation for all web pages

Many SSMs including the following SSM were created during the second iteration of the

SAM process.

SSM – Syntax validator

Decision point: Select a technology

Requirement: The web pages shall be valid according to the strict syntax of HTML 4.01

Constraint: Limited budget

Property: Validity

Property: Portability

Task: Validate a web page

Fragment: Web page

Structure of objects: W3C

Fragment: Syntax validator

Issue: Validating a web page is not difficult

Reasoning: The syntax validator will ensure the validity of the web pages

111

3.5.4 Analysis of the case study

This case study reinforced evidence regarding the usefulness of the proposed classification

scheme (CS) and descriptions formats for populating DK bases of SDAs and SSMs. Many

SDAs were classified using the SDAs types. No SDA was rejected. The capability of the CS

for classifying the SDAs used in a web engineering context provided evidence that the CS is

reliable.

This case study also reinforced evidence that the SAM framework has some of the issues

presented in Table 1.7 for the DK management. Table 3.20 describes the issues for the SAM

framework in the context of this case study.

Table 3.20 Issues for the SAM framework

Issue for the DK management

• Need for tailored forms of design knowledge

• Complex relationships of knowledge item

• Design knowledge management overhead

• Lack of measurable indicators

• Lack of relevance and usability

• Inadequate tool support

• Lack of scientific rigor

Brief description

• Need for tailored SSMs and decisions types

• Relationships for SDAs, SSMs, arguments, and decisions

• Overhead for using the issue description format

• Lack of comparable approaches and results

• Arguments and views were not useful for this case study

• For managing SDAs, SSMs, arguments, and views

• Steps of the SAM process may be intertwined or skipped

In particular, a small number of issues and arguments were described. The requirements were

selected in order to limit the number of issues related to the design of the web site. In

addition, some arguments do not describe the impacts of issues on the activities and

dimensions. The requirements were also selected to limit these impacts. Therefore, the issues

and reasoning descriptions were sufficient to describe the arguments. There is a management

overhead for describing the issues using the proposed description format. The SDA, verb,

and complement require the user to describe the design problem issues in a formatted

manner. The format is simple but not intuitive for some issues. For this case study, views

were not useful. The overhead for producing views without tool-support is significant.

112

3.5.5 Limitations of the case study

The generalization of results is limited due to the fact that:

• only two participant participated in the case study,

• a limited schedule and budget were used to conduct the case study,

• only a small design problem context was used, and

• multiple interpretations of the requirements were possible.

113

3.6 Experiment for evaluating the SAM framework with a human participant

This section describes the experiment that was conducted with a human participant for

evaluating the classification technique and the argumentation technique of the SAM

framework. The following sub-sections present:

• the context of the experiment (section 3.6.1),

• the experiment planning (Section 3.6.2);

• the experiment process and schedule (Section 3.6.3);

• the experiment subjects (Section 3.6.4);

• the participant profile (Section 3.6.5);

• the design context and data collection (Section 3.6.6);

• the SSMs created by the participant (Section 3.6.7 and Section 3.6.8); and

• the limitations of the experiment (Section 3.6.9).

3.6.1 Context of the experiment

The experiment was conducted in a research laboratory with no budget or constraints on the

schedule. The experiment was conducted by a human participant required to apply the SAM

framework in order to produce:

Part 1 – the SSM for the Template Method design pattern, and

Part 2 – the SSMs, issues, and arguments for designing a web site.

114

3.6.2 Experiment planning

The objects of the experiment were the tasks of the SAM process, the classification scheme,

and the descriptions formats for the SSMs, issues, and arguments of the SAM framework.

The participant was required to provide SSMs, issues, arguments, and feedback about his

utilization of the SAM framework. The goal of the experiment was the evaluation of the data

collected from the participant. The following characteristics were examined:

• Reliability (repeatable outputs);

• Efficiency (time, effort, cost, results);

• Usability (required background, relevance of work instructions), and

• Accuracy (validity of the evaluation)

3.6.3 Experiment process and schedule

The process of three activities (i.e., Preparation, Execution, and Evaluation) planned for the

experiment was similar to the process presented in Figure 3.1.

The preparation activity was planned for presenting the experiment process and the related

descriptions, analysis model, and forms to the participant in a meeting. A two hour period

was scheduled for the presentation.

The execution activity was conducted by the participant. Two hours were scheduled for the

analysis of the TM design pattern in a workshop. For the analysis of the web engineering

problem, three workshops of two hours were scheduled.

The evaluation activity was planned to analyze the participant’s forms and to report on the

experiment.

115

In particular, the following activities were executed during the experiment:

• a presentation to the participant of :

• the reference model (SDA, SSM, and argument);

• the classification and argumentation techniques;

• the classification scheme and description formats;

• examples of SDAs, SSMs, issues, and arguments;

• the experiment and work instructions;

• the SDA types to be examined;

• the activities of the DK management to be examined;

• the TM design pattern to be examined;

• the web engineering problem to be examined.

• the execution of the analysis by the participant to:

• create the SSM of the TM design pattern

• create SSMs, elicit issues, and describe arguments for the web site.

3.6.4 Experiment subject

One person participated in the experiment. The participant was a graduate student with a

masters degree in software engineering at ETS. There was no risk to the participant involved

in this experiment. No identifying information from the participant was collected. The

participant voluntarily participated in the experiment by attending the training and the

experiment workshops.

116

3.6.5 Participant profile

The participant was selected according to the following profile:

• graduate student in software engineering;

• more than five years of experience in designing software; and

• background: web development, styles, tactics, design patterns.

3.6.6 Design context and data collection

The experiment was planned for data collection by the participant in a workshop. For the first

part of the experiment, the SSM of the TM design pattern and qualitative feedback about the

approach were collected. The second part of the experiment was conducted in the context of

the web engineering problem proposed in section 3.5. The web site was required to be simple

enough to be designed by the participant within the limited budget and time. For designing

the web site, the participant was required to use the requirements presented in 3.5.1 and the

decisions points presented in 3.5.2 for creating SSMs and describing arguments. The SSMs,

issues, arguments, and qualitative feedback were collected from the participant.

3.6.7 Part 1 – SSM created by the participant for the TM design pattern

For the first part of the experiment, the participant was required to:

1) identify the SDAs from the description of the TM design pattern in [Gamm95],

2) classify the SDAs, and

3) infer the SSM of the TM pattern.

For the first iteration, the participant was required to identify SDAs from the pattern

description but without being briefed about the SAM framework. The participant was asked

to consider any conceptual artifact that provides design knowledge about the problem or

solution spaces of a software design. The SDAs in Table 3.21were identified by the

participant.

117

Table 3.21 SDAs identified by the participant without using the SAM framework

Avoid code duplication
Control subclasses extension
Fix the steps of the algorithm and their ordering
Let subclasses define the steps of the algorithm
Reusability
Abstract class definition
Concrete class definition
Template method definition

 Primitive operation definition
 The template method calls the primitive operation

The participant was briefed about the SAM framework for the second iteration. Then, the

participant was required to create the SSM of the TM design pattern. The SSM in Table 3.22

was created by the participant.

Table 3.22 SSM created by the participant for the TM design pattern

Design pattern Template method
Design concern Avoid code duplication

Control subclasses extension
Design rationale Localize common behavior
 Implement the invariant parts of an algorithm once
 Factorize the steps of the algorithm and fix their ordering

Let subclasses define the steps of the algorithm
Provide default behavior
Limit extension points
Minimize primitive operations

Requirement Specify hook operation
Specify abstract operation

Convention Naming convention
Property Reusability
Operationalization Define an abstract base class

Define a template method
Define a concrete child class
Define hook operations
Declare a final template method
Declare protected primitive operations
Declare abstract primitive operations

Structural pattern Factory Method
Behavior The template method calls the primitive operations

118

3.6.7.1 Analysis of Part 1

The catalog of patterns described in [Gamm95] was used by the participant for creating the

SSM of the TM design pattern. The SDAs described in other catalogs including [Bass03] and

[Clem02] were not considered in Part 1.

The SSM in Table 3.22 was compared to the SSM in Table 3.7 for the TM design pattern.

The required SDAs were identified by the participant but not the SDAs in Table 3.23.

Table 3.23 SDAs that were not identified by the participant

SDA type SDA
Design rationale Control access to the operations
Situational factor Multiple kinds of primitive operations
Role Subclass writers
Structural fragment C++ language

Class library
Software structure Abstract class definition

Concrete class definition
Template method definition
Primitive operation declaration
Primitive operation definition

 Hook operation definition
Software behavior The hook operation does nothing by default
Allocation fragment Class file

The SDAs classified as “operationalization” in the problem space usually have a one-to-one

correspondence with the SDAs classified as “software structure” in the solution space. An

operation contract describes an operationalization and an operation declaration is the

software structure that implements the contract. This correspondence may cause ambiguity.

Using the interrogatives (i.e., what and which) of the classification scheme and the inference

heuristics reduces this ambiguity. Nonetheless, corresponding SDAs seem redundant.

119

The participant was required to report which parts of the SAM framework were used for

classifying each SDA. Table 3.24 summarizes the feedback provided by the participant about

his utilization of the SDA type descriptions, classification scheme, and inference heuristics

for Part 1.

Table 3.24 Summary of utilization of the SAM framework for Part 1
S

D
A

 T
yp

e

C
la

ss
if

ic
at

io
n

S
ch

em
e

(I
nt

.)

C
la

ss
if

ic
at

io
n

S
ch

em
e

(A
ct

.)

In
fe

re
nc

e

he
ur

is
ti

cs

S
D

A
 T

yp
e

D
es

cr
ip

ti
on

Design pattern X X

Design concern X X X X

Design rationale X X X X

Requirement X X X

Convention X X

Property X X

Operationalization

Software behavior X X X

The SDAs of types “Design pattern”, “Convention”, and “Property” were classified only by

using the interrogative and the SDA type descriptions. To classify the SDAs of types “Design

concern”, “Design rationale” and “Requirement”, the participant used every parts of the

classification technique and reported the following remarks:

- The SDA types, the CS, and the inference heuristics refer to many

concepts. The interrogatives and activities of the CS were used to

reduce the significant burden of understanding the concepts and their

relationships.

120

- The task “Identify verbs and nouns” was used to identify the SDAs.

However, the pattern descriptions provide examples of applications for

each pattern. It was hard to discern between the SDAs that relate to

examples and SDAs that constitute the design pattern.

- The interrogatives and activities of the decision tree were used for

identifying candidate SDAs types for each relevant verb and noun.

- The inference heuristics were used for classifying the SDA “Specify

the hook operation” as a “Requirement” and for discerning that the

requirement is addressed to the TM class writer, which has been

classified as a “Role”.

- The inference heuristics and the concepts of software fragment and

software structure were used for discerning the difference between a

design concern and a design rationale.

3.6.7.2 Conclusions of Part 1

The SMM and feedback provided by the participant reinforced evidence regarding the

reliability and usability of the proposed tasks of the classification technique, the CS, the

SDAs types, the decision tree, and the inference heuristics. The following conclusions were

reported for Part 1:

• Reliability - Many SDAs were classified using many SDA types ;

• Reliability - No knowledge item was rejected (i.e., all SDAs were classified) ;

• Usability - All expected SDAs were identified ;

• Usability - All SDAs were classified in the expected cases of the CS ;

121

• Usability - Some SDAs were classified and then rejected due to the lack of

instructions for discerning the SDAs that relate to the pattern description and the

SDAs that relate only to examples of applications of the pattern.

• Usability - Some SDAs were renamed due to the lack of naming instructions.

122

3.6.8 Part 2 – SSMs created for developing the web site

A design knowledge base of SDAs including patterns [Gran02, Gamm95], styles [Clem02],

tactics [Bass03], design concerns, and properties were provided to the participant who

described the following SSMs and issues during the workshops. APPENDIX VI describes

some inputs and outputs for the workshops.

SSM – Client-Server

Decision point: Apply a style

Style: Client-Server

Fragment: Web navigator

Fragment: Web server

SSM – Three-tier architecture

Decision point: Apply a style

Property: Availability

Style: Three-tier architecture

Fragment: Web server

Fragment: Application server

Fragment: Database server

SSM – Interoperability

Decision point: Apply a tactic

Properties: Interoperability

Tactic: Adherence to defined protocols

Protocol: HTTP

123

SSM – Portability

Decision point: Select a technology

Properties: Portability

Requirement: The web site is available on all platforms

Language: HTML

Language: Java Script

Language: CSS

Issue: The requirement is not well defined

Reasoning: The platforms may be workstations, mobile devices, or software among others

SSM – Availability

Decision point: Apply a tactic

Properties: Availability

Requirement: The web site is always available

Tactic: Use a spare device

Tactic: Use a spare process

Allocation fragment: Web server host device

Behavioral fragment: Web server process

Behavioral fragment: Load balancer process

Behavior: The load balancer detects when the web server process does not respond

Behavior: The load balancer handles the initialisation of the web server process

Behavior: The load balancer handles the distribution of work

Issue: The requirement is not well defined

Reasoning: Modifying the web site may impact its availability for controlled periods of time

124

3.6.8.1 Analysis of Part 2

During the first workshop, the participant designed the web site by sketching UML diagrams

to help visualize decisions and alternatives about the design. Then, the participant created the

SSMs and described the related SDAs of types “Property”, “Design pattern”, “Style”,

“Tactic”, and “Fragment”. Many SDAs were not identified and the decisions were not

detailed at the end of the first workshop. In particular, the issues, the arguments, and the

SDAs of types “Design concern”, “Design rationale”, and “Requirement” were not described.

At the beginning of the second and third workshops, the participant was required to review

the SSMs for describing additional or invalid SDAs, issues, and arguments. For addressing

the issues elicited during a workshop, some SDAs were added to or retrieved from the SSMs

during subsequent workshops. At the end of the second workshop, the SSMs and decisions

were sufficiently detailed to support an implementation of the web site. However, the

decomposition of the SSMs and the cohesiveness between the related SDAs were somehow

deficient. For example, the SSM “Availability” previously introduced may have been

decomposed into the two following SSMs by separating the two tactics “Use a space device”

and “Use a space process”.

SSM – Availability

Decision point: Apply a tactic

Properties: Availability

Requirement: The web site is always available

Tactic: Use a spare device

Allocation fragment: Web server host device

125

SSM – Availability

Decision point: Apply a tactic

Properties: Availability

Requirement: The web site is always available

Tactic: Use a spare process

Behavioral fragment: Web server process

Behavioral fragment: Load balancer process

Behavior: The load balancer detects when the web server process does not respond

Behavior: The load balancer handles the initialisation of the web server process

Behavior: The load balancer handles the distribution of work

During the third workshop, the participant was required to decompose coarse-grained SSMs

and identify additional or invalid SDAs, issues, and arguments. The participant used the

propositions of both the classification and argumentation techniques for Part 2 and reported

the following remarks:

- The issue description format was useful for identifying and describing the issues. The

proposed activities of the DK management were useful for identifying some issues.

- The argument description format (i.e., reasoning) was more intuitive and useful than the

issue description format for thinking about the design problem. The scope of the

arguments did not seem useful for documenting the decisions.

- The instructions for evaluating the SSMs (e.g., granularity and required SDAs types)

were not explicitly detailed.

126

3.6.8.2 Conclusions of Part 2

The SMMs and feedback provided by the participant reinforced evidence regarding the

reliability and usability of the proposed CS, the SDAs types, the SSM description format, and

the issue description format.

The following conclusions were retained for Part 2:

• Reliability - Many SDAs were classified using many SDA types ;

• Reliability - No knowledge item was rejected (i.e., all SDAs were classified) ;

• Usability - ALL SDAs were classified in the expected cases of the CS ;

• Usability - Some SDAs were renamed due to the lack of naming instructions ;

• Usability - Some SDAs of particular types were not identified ;

• Usability - The SSMs were less intuitive than UML diagrams for designing ;

• Usability - The SSMs were more effective than UML diagrams for documenting ;

• Usability - Many SSMs were incomplete at the end of the first workshop ;

• Usability - Some SSMs were coarse-grained at the end of the second workshop ;

• Usability - SDAs, issues, and arguments were missing at the end of the workshops.

3.6.9 Limitations of the experiment

The generalization of results is limited due to the fact that:

• only two participants participated in the experiment,

• only a few hours were used to conduct the experiment,

• only a small design problem context was used, and

• multiple interpretations of the requirements were possible.

CHAPTER 4

A TECHNIQUE FOR CREATING A SOFTWARE STRUCTURES MAP

This chapter presents the classification technique developed in the first activity of Phase 3 of

our research methodology in Figure 1.3. This chapter proposes a technique for creating a

software structures map (i.e., the first activity of the SAM process “Create a SSM” – see

Figure 2.2). It presents a classification scheme (CS) that organizes SDAs into a matrix, in a

manner derived from the Zachman Framework [Zach11] for enterprise architecture. An

instantiation of this CS is a traceability matrix called a software structures map (SSM) that

records the SDAs and their relationships. The approach is illustrated through the analysis of

the Template Method (TM) design pattern as an example of a SDA.

This chapter is organized as follows. Section 4.1 presents an overview of the proposed

classification technique. Section 4.2 to Section 4.8 describe the six tasks of the technique and

the propositions for supporting the SAM framework, including the identification heuristics,

classification scheme, decision tree, SDA description, relationship description format,

inference heuristics, and software structures map. Section 4.9 presents the conclusions,

contributions, and future work of this chapter.

4.1 The proposed classification technique

Figure 4.1 presents the proposed classification technique which aims at creating a SSM by

extracting the verbs and nouns for structuring the SDAs and relationships that constitute the

description of a style, a design pattern, or a tactic. This figure presents the task flow for the

six tasks of the proposed classification technique and the data flow for the inputs and outputs

of each task. In particular, the SAM framework proposes four inputs to support the

classification technique: identification heuristics, decision tree, classification scheme, and

inference heuristics.

128

Figure 4.1 The proposed classification technique of the SAM framework

129

4.2 The tasks of the classification technique

Six tasks constitute the proposed classification technique:

1. extract verbs and nouns,

2. identify SDAs and relationships,

3. classify the SDAs,

4. format the relationships,

5. relate the SDAs, and

6. infer the SSM.

Tasks 1 and 2 aim at identifying candidate SDAs and relationships from the description of a

decision, a style, a pattern, or a tactic using the identification heuristics. Tasks 3 and 4 aim at

classifying the SDAs using the CS, the decision tree, and the SDAs descriptions, and

formatting the relationships using the relationship format. Tasks 5 and 6 aim at structuring

the SDAs and inferring the SSM by using the relationships and inference heuristics.

4.3 Task 1 – Extract verbs and nouns

Task 1 of the classification technique aims at extracting the verbs and nouns from the

descriptions of design patterns, tactics, or styles. Table 4.1 presents the verbs and nouns

extracted from the following description of the “Exception Detection” tactic. The verbs and

nouns are selected to be classified. Expressions that certainly do not describe knowledge are

removed. Verbs should be extracted in their basic form, which means that the verbs are not

conjugated (i.e., infinitive verbs without the “to”).

“Exception Detection refers to the detection of a system condition that alters the
normal flow of execution. For distributed real-time embedded systems, the
Exception Detection tactic can be further refined to include System Exceptions,
Parameter Fence, and Parameter Typing tactics. System Exceptions will vary
according to the processor hardware architecture employed and include faults
such as divide by zero, bus and address faults, illegal program instructions, and
so forth. The Parameter Fence tactic incorporates an a priori data pattern (such as
0xDEADBEEF) placed after any variable-length parameters of an object.”

130

Table 4.1 Verbs and nouns that describe the “Exception Detection” tactic in [Scot09]

Verb expression Noun expression

Refer Exception detection tactic

 Detection of system condition

Alter Normal flow of execution

Refine Distributed real-time embedded systems

 System Exceptions tactic

 Parameter Fence tactic

 Parameter Typing tactic

Vary Processor hardware architecture

Include Divide by zero fault

 Bus fault

 Address fault

 Illegal program instructions

4.4 Task 2 – Identify SDAs and relationships

Task 2 of the classification technique aims at verifying the verbs and nouns for identifying

candidate SDAs and relationships. The nouns are usually the objects (i.e., SDAs) in the

sentence, and the verbs are some actions (i.e., SDAs) or relations between the objects (i.e.,

relationships). For guiding the identification of the SDAs, the SAM framework proposes that

a SDA provide knowledge related to a design, using the following identification heuristics.

The proposed heuristics are adapted from the heuristics used in [Bour02] for identifying the

fundamental principles of software engineering.

131

1. less specific than software implementation, i.e. implementation may be selected,

within a particular technological context, to accomplish the intent of an SDA;

2. more enduring than software implementation, i.e. an SDA should be described in a

way that allows multiple implementations;

3. typically discovered or abstracted from practice and should have some

correspondence with best practices such as styles, design patterns, and tactics;

4. coherent with more general or specific artifacts;

5. precise enough to be capable of analysis;

6. related to one or more SDAs.

4.5 Task 3 – Classify the SDA

Task 3 uses the classification scheme (CS) for structuring the SDA, and the decision tree and

SDA descriptions for guiding its classification into a cell of the SSM. The CS of the SAM

framework is adapted from the CS of the Zachman Framework (ZF) for enterprise

architecture [Zach11].

4.5.1 The Zachman Framework for Enterprise Architecture

The traceability of the artifacts that result from the design decisions is problematic for the

software architecture as it is for the enterprise architecture. The Zachman Framework (ZF)

for enterprise architecture [Zach11] proposes a classification scheme for that problem. The

ZF classifies the artifacts related to the enterprise architecture into a two dimensional matrix.

Six interrogatives (What, Where, When, Why, Who and How) label the columns of the

matrix, and six levels of perspective label the rows for transforming more abstract ideas

(upper row) into more concrete ideas (lower row). The ZF is indeed a taxonomy that

organizes the artifacts of the enterprise architecture (EA) into multiple perspectives.

132

The ZF “is simply a logical structure for classifying and organizing the descriptive

representations of an Enterprise that are significant to the management of the Enterprise, as

well as to the development of the Enterprise's systems”. Zachman's vision is that a holistic

approach to EA that explicitly addresses every relevant issue from every relevant perspective

should best accomplish business value and agility. The enterprise is viewed as an

organizational system. The EA provides the blueprint for realizing this organizational

system; it organizes the business processes, technologies, and information systems of the

enterprise. To manage the complexity of the EA, the ZF organizes its structures and

behaviors, principles, policies, and standards as a collection of perspectives represented in a

two-dimensional matrix.

The ZF does not define a methodology or any specific technique for managing the artifacts.

The matrix is a template that structures the artifacts of the EA, such as goals, rules, processes,

material, roles, locations, and events. The ZF classifies and organizes the descriptive

representations of an EA. The level of detail in the ZF is a function of each cell that describes

one perspective of the EA. Each cell refers to a model (e.g., a list, a table, or a diagram) that

addresses specific concerns and stakeholders. Zachman affirms that the ZF “yields the total

set of descriptive representations relevant for describing an enterprise” [Zach11]. This

classification scheme has not yet been adapted for the software architecture.

4.5.2 The proposed classification scheme (CS)

Table 4.2 presents the proposed classification scheme (CS) and Figure 4.2 presents the four

perspectives of the CS:

• organizational space;

• design space;

• problem space; and

• solution space.

133

The CS organizes the SDAs extracted from the analysis of the descriptions of styles, design

patterns, and tactics, and quality models and standards. The CS captures the SDAs about the

design problem and solution spaces, and about explicit or implicit relationships between the

SDAs. The CS captures the SDAs that influence the life cycle of a system.

The CS organizes the SDAs into a matrix based on the Zachman Framework for enterprise

architecture [Zack11]. The matrix classifies the SDAs according to their descriptions and

relationships, as described in [Bass03, Clem03, Iso42010, Iso9126, Apri11, Leff08]. More

specifically:

• the rows represent the activities of the software design process, and

• the columns represent the interrogatives (why, when, what, which, how, and where).

The outcomes of the following activities occupy the row labels: select the objectives, identify

the knowledge that has been successful in achieving similar objectives, and define, specify,

describe, and evaluate the software architecture.

The problem space is split into the interrogatives why, when, and what.

• The rationale (WHY issues) provides reasoning about the problem.

• The context (WHEN issues) describes the contextual influences on the solution.

• The drivers (WHAT issues) define the problem.

The solution space is split into the interrogatives: which, how, and where.

• The structures of domain objects and design elements have roles (WHICH issues) in

realizing the solution. Usually, they have:

o to execute designed behaviors (HOW issues), and

o assigned locations (WHERE issues).

The SDAs in the top row of Table 4.2 define the problems and solutions from an

organizational perspective. The ones in the five lower rows do the same from a design

perspective. Each lower-row contains artifacts for refining the interrogatives of the row that

is above it, from the general objectives to the specific system artifacts.

134

Table 4.2 The proposed classification scheme of the SAM framework

Figure 4.2 Perspectives of the CS: organizational, design, problem, and solution

135

Each activity that labels a row in the CS is regarded both from the perspective of the problem

space and the solution space. In addition, the SDAs of both procedural and technical

solutions are organized into the CS. The procedural solutions define the processes, activities,

and tasks that the user of a software product should realize to produce the outcomes needed

by the stakeholders. The technical solutions provide the artifacts that the user employs to

achieve his objectives. The procedural and technical solutions are intertwined. The

procedural solutions describe how the user should employ the technical solutions to attain his

objectives. The technical solutions support, limit, and constrain how the user can use a

software-intensive system.

4.5.3 The proposed decision tree

The decision tree in Figure 4.3 is used for classifying the SDAs. The question form (as

proposed in [Zimm12]) is used for supporting the classification task. Software designers will

use the following questions in sequence for classifying the design knowledge item being

examined in a column (interrogative), a space (organizational or design), and a row (activity)

of the CS. Then, they will select an artifact from the targeted cell. The questions begin with

the prefix “Does the SDA describe”. Each question relates to one of the four main questions

presented in the decision tree: which interrogative, space, activity, and artifact best render the

meaning of the SDA in the context of a SSM?

1. Which interrogative?

 - why: “… a reasoning for the SSM?”

 - when: “…a contextual information for the SSM?”

 - what: “… a target for a solution?”

 - which: “… the element of a solution?”

 - how: “… the behavior of an element?”

 - where: “… the allocation of an element?”

136

2. Which space?

 - organizational: “… the organizational space? ”

 - design: “… the design space? ”

3. Which activity? (only SDAs classified into the design space)

- reusing knowledge: “… an information that is part of the design knowledge base?”

- architecting software: “… an information about a design fragment?”

- designing software: “… an information about a design structure?”

4. Which artifact?

 - use the SDA descriptions

Figure 4.3 The decision tree for classifying a design knowledge item

137

4.5.4 The proposed SDAs descriptions

To classify an artifact, Table 4.3 to Table 4.8 describe the SDAs proposed in the literature.

This section describes the SDAs that relate to the top four rows of the CS.

Table 4.3 The descriptions of some SDAs related to the Why interrogative

Why: These SDAs provide reasoning for the SSM

Need: a statement of what is necessary for a system to be suitable

(e.g., lift up developers’ productivity)

Goal: a desired outcome of user interaction with a software product

(e.g., control the time to implement a software component)

Architectural concern: an area of interest specified with respect to a goal in terms relevant

for architecting (e.g., define the scope of the software development kit)

Design concern: an area of interest specified with respect to a goal in terms relevant for

designing (e.g., avoid code duplication)

Architectural rationale: a statement of reasons for a design fragment (e.g., isolate each

layer from changes in other layers)

Design rationale: a statement of reasons for a software structure (e.g., define an algorithm,

defer steps to subclasses)

138

Table 4.4 The descriptions of some SDAs related to the When interrogative

When: These SDAs describe the context of the SSM

Situational factor: a factor of the organizational context that is problematic (e.g., legacy

systems transformation strategy)

Business model: a model of how an organization develop software

(e.g., prototyping on contract)

Policy: a position of governance that organize control over humans

(e.g., politic for the security of information)

Organizational risk: a risk at strategic level for an organization

(e.g., development paradigm shift)

Standard: a set of requirements, specifications, guidelines, or characteristics (e.g., the

international standard ISO 42010)

Convention: a de facto standard (e.g., naming convention)

Architectural risk: a risk at architectural level for architecting a design fragment (e.g., layer

bridging)

Architectural assumption: taking for granted some SDAs in the SSM for architecting a

design fragment (e.g., the properties of a layer)

Design risk: a risk at the detailed design level for designing a software product (e.g.,

deprecating an operation)

Design assumption: taking for granted some SDAs in the SSM for designing a software

structure (e.g., the signature of an operation)

139

Table 4.5 The descriptions of some SDAs related to the What interrogative

What: These SDAs provide the targets for the solution space

Requirement: a condition that is realizable by a software product (e.g., the software product

shall provide up-to-date status in debug mode)

Organizational constraint: a limit that constrains some SDAs in the SSM (e.g., object-

oriented technologies)

Architectural property: a condition about a property of the elements or relations of a design

fragment (e.g., performance, object-oriented paradigm)

Architectural constraint: a limit that constrains the elements or relations of a design

fragment (e.g., a unit of software is allocated to exactly one layer)

Scenario: a description of how a software product should respond to a stimulus

Operation contract: an operation that is part of a module interface

Table 4.6 The descriptions of some SDAs related to the Which interrogative

Which: These SDAs provide the elements and relations of the solution space

Domain object: a human, device, or software interacting with the system to execute some

tasks (e.g., subclass writer)

Structure of domain objects: a set of domain objects interacting with the system to execute

some tasks (e.g., development team)

Design pattern: a description of how the elements of a design fragment relate to each other

in order to address a design concern (e.g., client-server style)

Design tactic: a description of how a quality attribute can be controlled by using a design

tactic to achieve a response measure (e.g., use an intermediary)

Structural fragment: a set of elements and relationships of a design fragment (e.g.,

instantiation of the template method)

Structure of modules: a set of elements and relationships of a software structure (e.g.,

implementation of the template method)

140

Table 4.7 The descriptions of some SDAs related to the How interrogative

How: These SDAs provide the behaviors of the solution space

Process: a description of a sequence of activities, inputs, and outputs

Activity: a description of a sequence of tasks of a process

Task: a description of a step of an activity

Procedure: a description of the tasks, inputs, and outputs of an activity

Pattern of interactions: a description of how the elements of a design fragment should

interact (e.g., client-server style)

Behavioral fragment: a description of the interactions among a set of software elements of a

design fragment (e.g., instantiation of the client-server style)

Behavior of components and connectors: a description of the interactions among a set of

software elements of a software structure (e.g., implementation of a client-server protocol)

Table 4.8 The descriptions of some SDAs related to the Where interrogative

Where: These SDAs describe where the elements of the solution space are allocated

Allocation of domain objects: a description of where the elements of the organizational

solution space are allocated (e.g., an activity of a process allocated to a work station)

Pattern of allocation: a description of where the elements of a design fragment should be

allocated (e.g., work assignment style)

Allocation of architectural elements: a description of where the elements of a design

fragment are allocated (e.g., a software process allocated to a processor)

Allocation of components and connectors: a description of where the elements of a

software structure are allocated (e.g., an instantiated module allocated to a software process)

4.6 Task 4 – Format the relationship

Task 4 aims at formatting the relationship between the SDAs using the proposed description

format. The relationships from the DK base will be used for identifying any match in

meaning between a candidate relationship and a formatted relationship.

141

4.6.1 The proposed relationship description format

The SAM framework identifies some relationships between the SDAs from the literature

[Iso42010, Ovas10, Zimm09, Shah09, Pari08, Kim09, Bass03, Clem03, Gamm95] – see

Table 4.9. Each relationship is described using a unique identifier, a description of the

relationship, and the SDAs between which the relationship applies.

Table 4.9 The relationships of the SAM framework

Relationship Description of the relation SDA-to-SDA

Mandatory [Kim09,

Zimm09]

A SDA mandatories another SDA : Property-to-Concern, Concern-to-

Tactic, Tactic-to-Tactic, Pattern-to-Tactic

Optional

[Kim09]

A SDA optionally implies another SDA : Property-to-Concern,

Concern-to-Tactic, Tactic-to-Tactic, Pattern-to-Tactic

Exclusive-or

[Kim09, Zimm09]

A SDA excludes another SDA : Property-to-Concern, Concern-to-

Tactic, Tactic-to-Tactic, Pattern-to-Pattern

Inclusive-or

[Kim09, Zimm09]

A SDA may be used with another SDA : Tactic-to-Tactic, Pattern-to-

Pattern

Constrain

[Kim09]

A SDA constrains another SDA : Tactic-to-Tactic, Pattern-to-Tactic

Encapsulate

[Iso42010, Gamm95]

A SDA encapsulates another SDA : Structure-to-Operation

Generalize

[Iso42010, Gamm95]

A SDA generalizes another SDA : Structure-to-Structure

Specialize

[Iso42010, Gamm95]

A SDA specializes another SDA : Structure-to-Structure, Scenario-

to-Property

Compose

[Iso42010, Gamm95]

A SDA composes another SDA : Structure-to-Structure

Aggregate

[Iso42010, Gamm95]

A SDA aggregates another SDA : Structure-to-Structure

142

Realize

[Iso42010]

A SDA realizes another SDA : Structure-to-Operation

Instantiate

[Iso42010, Jans08]

A SDA instantiates another SDA : Fragment-to-Pattern, Structure-to-

Pattern, Structure-to-Tactic

Influences

[Zimm09]

A SDA influence another SDA : Concern-to-Concern

Refinedby

[Zimm09]

A SDA is refined by another SDA : Concern-to-Concern

DecomposesInto

[Zimm09]

A SDA decomposes into another SDA : Concern-to-Concern

Triggers

[Zimm09]

A SDA triggers another SDA : Pattern-to-Concern

4.7 Task 5 – Structure the SDAs

Task 5 aims at structuring the SDAs. To establish the relationships between the SDAs, the

relationships extracted from the description are combined with the relationships from the

SAM framework. The network of SDAs can be derived through the selection of relationships

in the resulting set of candidate relationships.

4.8 Task 6 – Infer the SSM

The tasks of the classification technique aim at inferring the SSM using the SDAs and

relationships extracted from the descriptions and the inference heuristics. The extracted

SDAs can be combined with the SDAs from the existing SSMs. The SSM can be inferred

through the analysis of the resulting set of SDAs.

143

4.8.1 The proposed inference heuristics

Table 4.10 to Table 4.15 present the inference heuristics proposed for inferring a SSM using

the classified SDAs and the formatted relationships. The inference heuristics aim at

controlling the level of cohesiveness between the SDAs of a SSM. Only one SDA drives the

cohesiveness of a SSM (i.e., any SDA within this SSM must be cohesive with this driver

SDA).

Table 4.10 Inference heuristics for the SDAs related to the Why interrogative

SDAs Inference heuristics

Need, Goal

- Describe reasoning for the organizational problem space

- Not directly measurable

- Influence all SDAs of a software structures map (SSM)

Architectural concern,

Design concern

- Part of the design knowledge base

- Describe concerns for the SSM’s design space

- Influence all SDAs of a SSM’s design space

- Relate to a goal in the SSM

Architectural rationale - Set rationale for elements and relations of a design fragment

- Relate to an architectural concern in the SSM

Design rationale - Set rationale for elements and relations of a software structure

- Relate to a design concern in the SSM

144

Table 4.11 Inference heuristics for the SDAs related to the When interrogative

SDAs Inference heuristics

Situational factor,

Business model, Politic,

Organizational risk

- Describe the organizational context

- Influence some SDAs of the SSM

- Relate to a concern in the SSM

Standard, Convention - Part of the design knowledge base

- Describe the context of the SSM’s design space

- Influence some SDAs of the SSM’s solution space

- Relate to a SDA in the SSM’s organizational space

Architectural risk or

assumption

- Describe the architectural context of the SSM’s

- Influence some SDAs of the SSM’s solution space

- Relate to a SDA in the SSM’s organizational space

Design risk or

assumption

- Describe the design context of the SSM

- Influence the elements and relations of a software structure

145

Table 4.12 Inference heuristics for the SDAs related to the What interrogative

SDAs Inference heuristics

Requirement,

Organizational

constraint

- Describe an organizational condition or limit

- Influence some SDAs of the SSM’s solution space

- Relate to a goal in the SSM

Architectural property,

Architectural constraint

- Part of the design knowledge base

- Describe an architectural condition or limit

- Not directly measurable

- Influence some SDAs of the SSM’s design space

- Relate to a goal in the SSM

Scenario - Describe a stimulus on the system and a measure of its response

- Directly measurable

- Influence some SDAs of the SSM’s design space

- Relate to an architectural property or constraint in the SSM

- Relate to a design fragment in the SSM

Operation contract - Describe an operation of a module interface

- Relate to a software structure in the SSM

146

Table 4.13 Inference heuristics for the SDAs related to the Which interrogative

SDAs Inference heuristics

Structure of domain

objects

- Describe the elements, relationships, and responsibilities of the

organizational solution space

Pattern, Tactic - Part of the design knowledge base

- Describe the structural elements, relationships, and

responsibilities of a design fragment

Structural fragment - Describe the architectural elements, relationships, and

responsibilities of a design fragment

Structure of modules - Describe the design elements, relationships, and responsibilities

of a software structure

Table 4.14 Inference heuristics for the SDAs related to the How interrogative

SDAs Inference heuristics

Process, Activity,

Task, Procedure

- Describe the behavior of some elements in the SSM’s

organizational solution space

- Relate to some SDAs of the design solution space

Pattern of interactions - Part of the design knowledge base

- Describe the pattern of interactions of the software elements

- Relate to a behavioral fragment in the SSM

Behavioral fragment - Abstract and project-specific

- Describe the interactions among the elements of a design

fragment in the SSM

Behavior of components

and connectors

- Concrete and project-specific

- Describe the interactions among the elements of a software

structure in the SSM

147

Table 4.15 Inference heuristics for the SDAs related to the Where interrogative

SDAs Inference heuristics

Allocation of domain

objects

- Describe the allocation of some domain objects in the SSM’s

organizational solution space

- Relate to some SDAs of the SSM’s design solution space

Pattern of allocation - Part of the design knowledge base

- Describe a pattern of allocation of software elements

- Relate to a design fragment in the SSM

Allocation of

architectural elements

- Project-specific

- Describe the allocation of the elements of a design fragment in

the SSM

Allocation of

components and

connectors

- Project-specific

- Describe the allocation of the elements of a software structure in

the SSM

4.8.2 The proposed Software Structures Map (SSM)

The software structures map (SSM) is:

• an instantiation of the CS, and

• a matrix of traceability.

A SSM records design knowledge (DK) about a software design. SSMs should be managed

as part of the DK. A SSM captures DK about direct or indirect relationships between SDAs.

The SAM framework relies on this knowledge base of SSMs which trace the SDAs used

during the design process. Table 4.16 presents the table format used for representing a SSM.

Each interrogative regroups only the SDAs classified into the corresponding column of the

CS. The SDA type gives the corresponding line of the CS.

148

Table 4.16 The table format used for representing a SSM

SDA Type SDA Description
Why

When

What

Which

How

Where

4.9 Summary of contributions

The contributions of this chapter are:

1. a technique for:

a. extracting and structuring the SDAs using the SSMs; and

b. transforming textual descriptions to networks of SDAs.

2. a classification scheme and a decision tree for classifying the SDAs;

3. work instructions for supporting the creation of a SSM; and

4. descriptions of SDAs and relationships based on a uniform SSM format;

CHAPTER 5

A TECHNIQUE FOR DESCRIBING ARGUMENTS

5.1 Introduction

This chapter presents the argumentation technique developed during the second activity of

Phase 3 of our research methodology in Figure 1.3. Argumentation is defined as reasoning

using imperfect knowledge by eliciting arguments for exploring issues. The SAM framework

uses arguments for describing how the selected SDAs may impact the activities and

dimensions under examination. An activity relates to other activities for constituting a

process of an organizational system. Work teams have to take into account the SDAs they

used in order to adapt how to perform some activities, and to address the issues of the

systems they are developing.

The proposed argumentation technique of the SAM framework includes two steps:

1) selecting the SDAs from one or more SSMs, and the activities being examined for

eliciting the issues that occur by using each SDA, and

2) describing the arguments that explain how the issues may impact the activities

and dimensions.

This chapter describes the tasks, inputs, and outputs of the argumentation technique, as

presented in Figure 5.1. The hypothesis is that describing arguments using the technique

proposed in this chapter should support the identification of important issues that occur by

using a SDA such as a pattern, tactic, or style during the development of a system.

150

Figure 5.1 The argumentation technique of the SAM framework

151

5.2 The tasks of the argumentation technique

Five tasks constitute the proposed argumentation technique – see Figure 5.1:

1) select the SDAs and relationships,

2) select the activities,

3) elicit the issues,

4) select the dimensions, and

5) describe the arguments.

The classification technique of the SAM framework (see CHAPTER 4) will have produced

the SSMs. The argumentation technique proposes to use the SSMs for selecting the SDAs

and relationships (task 1). The selected SDAs and relationships, and the activities

descriptions of both the design process (see Section 1.5) and design knowledge management

process (see Section 1.7.3) will be used for selecting the activities to be examined. Then, the

selected SDAs, relationships, and activities, a list of common issues (see Section 5.5.2), and

an issue description format (see Section 5.5.1) will be used for eliciting the issues (task 3).

Then, the elicited issues and the proposed dimensions descriptions will be used for selecting

the dimensions (task 4) to be examined (see Section 5.6). Finally, the argumentation

technique aims at describing the arguments (task 5) that provide reasoning about the elicited

issues and their plausible impacts on the selected activities and dimensions.

The impacts of an argument may differ depending on the context of use of a SDA. The

arguments may be analysed iteratively for addressing the issues that relate to the utilization

of the SDA. The analysis of the arguments is part of the analysis technique of the SAM

framework. The proposed analysis technique will be described in CHAPTER 6.

152

5.3 Task 1 – Select the SDAs and relationships

During the execution of a design process, the arguments related to a SDA will usually vary

from being relevant to being irrelevant as a result of the evolution of the software being

designed. Therefore, the arguments will usually be described iteratively. The selection of the

SDAs and relationships will depend on the participants that execute the argumentation

technique, the design process they are executing, and the focus of the current iteration. The

argumentation technique allows different understandings of the SDAs as the design evolves.

5.4 Task 2 – Select the activities

In the SAM framework, the activities of the design process are explicitly related to the SDAs

through the classification scheme (see Section 4.5.2). In addition, the activities of the design

knowledge management process are related to all SDAs; this means that any SDA may be

acquired, defined, reused, communicated, shared, and managed. Specifically, a SDA is

related to an activity if the addition of the SDA to a system may cause change in the activity

description being examined. The activities descriptions are usually formatted and divided

into sections (e.g., Activity identifier, Tasks, Inputs, and Outputs) according to a template, as

described in [ETVX, NASA, Iso12207]. An activity description refers to a set of cohesive

tasks [Iso24765]. The tasks are cohesive as they contribute to the achievement of a common

goal. A task usually relates to one or more SDAs.

5.5 Task 3 – Elicit the issues

5.5.1 The proposed issue description format

An issue occurs by introducing a SDA into a system being developed. One or more issues

may be elicited for every identified change to a system. The argumentation technique uses a

specific format to describe the issues. An issue description is composed of a SDA (subject), a

verb, and a complement, as presented in Table 5.1. Each issue description summarizes a

problem that occurs by using a SDA.

153

Table 5.1 Examples of issue descriptions using a SDA, a verb, and a complement

SDA Verb and Auxiliary Complement
Object-oriented paradigm Is not Mastered
Template method Is Subject to change

The SAM framework proposes a list of verbs such as in Table 5.2 that will be used for

describing the issues. Each verb is described using an identifier and a description, and is

related to a list of usual complements. The verbs are described in terms of shared meaning

components and similar syntactic behavior of words used for describing issues. Verbs do not

provide means for full semantic inference; however, they capture abstractions (e.g. syntactic

or semantic) that provide additional data about the issues, and they express something that

alters the meaning of the issues descriptions. Verbs also support change from ad-hoc issues

descriptions to predicate-issue structures. The verbs are used as a mean to ease the elicitation

of issues and to provide an issue description format.

Table 5.2 The proposed list of verbs

Verb and Auxiliary Description
Is / Is not Express an intrinsic state of being
Has / Has not Express an extrinsic state of being
Do / Do not Express an action or an absence of action
Can / Can not Express a possibility or a limit
Exclude / Require Express a binding between multiple parties
Augment / Lack / Make / Reduce Express a consequence of a state of being
Shall / Must Express a requirement or an unavoidable action
Should / Should not Express recommendation or possibilities
Will / Will not Express a self-declaration of intent
May / May not Express a permission or a restriction

5.5.2 The proposed common issues

A list of common issues will be used as a support for eliciting issues. Some of the issues

presented in Section 1.7.1 are described in Table 5.3 using the issue description format

proposed by the SAM framework.

154

Table 5.3 Examples of common issue descriptions for the SAM framework

Issue description from the literature SDA type Verb Complement
Lack of traceability Requirement Lack traceability
Limited analysis capability Behavioral

fragment
Have a limited analysis

capability
Locating the expertise Domain

object
Cannot locate the expertise

Lack of recipient motivation Domain
object

Lack motivation

Lack of source motivation Domain
object

Lack motivation

Lack of recipient absorptive capacity Domain
object

Lack absorptive capacity

Lack of recipient retentive capacity Domain
object

Lack retentive capacity

Lack of trust relationships Domain
object

Lack trust relationships

Misunderstanding of the design
knowledge (DK)

Domain
object

Be misunderstanding the
DK

Need for tailored design knowledge Domain
object

Require tailored DK

Tacit, implicit, explicit design knowledge Domain
object

Require explicit DK

5.5.3 The proposed issue validation heuristics

The issue validation heuristics aims at verifying that the issue descriptions adhere to the

criteria described in Table 5.4. These criteria are adapted from the description of the

characteristics of a good software requirements specification detailed in [Ieee860].

155

Table 5.4 The proposed issue validation heuristics

Criterion Issues validation heuristic
Correct An issue is correctly described if it has all required criteria
Atomic An issue is atomic if it relates to only one SDA

Unambiguous
An issue is unambiguous if it is described in terms that only allow a
single interpretation

Complete An issue is complete if relevant descriptive information is provided
Consistent An issue is consistent if there are no conflicts within its description

Unique
An issue is unique if there is no other issue that allow the same
interpretation

Analyzable
An issue is analyzable if analysis can be made completely,
consistently, and correctly

Verifiable An issue is verifiable if a person or tool can check it for correctness

5.6 Task 4 – Select the dimensions

A dimension (e.g., quality) is a perspective on a set of evaluation results used to determine

the successful utilizations of a SDA (e.g., object-oriented paradigm). A SDA relates through

its intrinsic issues (e.g., the object-oriented paradigm is not mastered) to the dimensions that

it may impact. Five dimensions (adapted from [Wieg97]) are described in Table 5.5:

functions, people, budget, schedule, and quality.

The SAM framework mandates that a dimension be described using an identifier and a

generic question (as proposed in [Zimm12]). For each dimension, we propose to use a

generic question that summarizes the impacts (+ or -) of any issue on the evaluation results.

For example, the impacts of any issue on the quality may be summarized by the following

generic question: what is the estimated impact of the issue in terms of the capability of the

system to deliver (+) or not (-) quality? This generic question may be made specific for any

issue and evaluation result being examined during the analysis: what is the estimated impact

of the issue ‘The object-oriented paradigm is not mastered’ in terms of the capability of the

system to deliver (+) or not (-) ‘reusable modules’?

156

Table 5.5 The proposed dimensions of the SAM framework

Dimension Generic question Example of a specific question

Functions

What is the estimated impact of the
issue X in terms of the capacity of
the system to execute (+) or not (-)
the software function Y?

What is the estimated impact of the issue
‘The object-oriented language is not
appropriate’ in terms of the capacity of
the system to execute (+) or not (-) the
software function ‘Load balancing’?

People

What is the estimated impact of the
issue X in terms of the capacity of a
human to execute (+) or not (-) the
task Y?

What is the estimated impact of the issue
‘The object-oriented paradigm is not
mastered’ in terms of the capacity of a
‘Programmer’ to execute (+) or not (-) the
task ‘Implementing a subclass’?

Budget

What is the impact of the issue X in
terms of the number of budgeted
resources saved (+) or invested (-)
to execute a task Y?

What is the estimated impact of the issue
‘The object-oriented paradigm is not
mastered’ in terms of the number of
budgeted resources saved (+) or invested
(-) to execute the task ‘Implementing a
subclass’?

Schedule

What is the estimated impact of the
issue X in terms of the number of
work hours saved (+) or invested (-)
to execute a task Y?

What is the estimated impact of the issue
‘The object-oriented paradigm is not
mastered’ in terms of the number of work
hours saved (+) or invested (-) to execute
the task ‘Implementing a subclass’?

Quality

What is the estimated impact of the
issue X in terms of the capability of
the system to deliver (+) or not (-)
quality?

What is the estimated impact of the
argument ‘The object-oriented paradigm
is not mastered’ in terms of the capability
of the system to deliver (+) or not (-)
‘reusable modules’?

5.7 Task 5 – Describe the arguments

5.7.1 The proposed argument description format

The SAM framework describes an argument using an aggregation of factors. A factor is

defined as an essential element for planning the utilization of SDAs such as design patterns,

tactics, or styles. In the SAM framework, an argument aggregates at least five factors. Table

5.6 presents the names and the descriptions of the five proposed factors constituting any

argument description. A factor may be a SDA, an issue, a reasoning description, an activity,

or a dimension. The argument description ties the factors altogether.

157

Table 5.6 Factors constituting the argument description of the SAM framework

Name Description
SDA Software design artifact being examined
Issue Problem that occurs by using or not using a SDA
Reasoning Reasoning description about an issue or a solution
Activity Set of cohesive development tasks
Dimension Perspective on a set of evaluation results

An issue is related to a dimension if there is any suspicion that the occurrence of the issue in

a system may produce the variation (+ or -) of a dimension evaluation result. The generic

question associated to each dimension is used as a means to facilitate thinking about relevant

variations. Each dimension will be examined in turn.

A reasoning description about an issue describes the chain of reasoning that ties together the

argument’s parts: it exposes the relationships between a set of factors. The following

shortened reasoning description refers to three SDAs, an activity, an issue, and four

dimensions: “Using an object-oriented paradigm requires levels of skills, expertise, and

knowledge. The software designer does not master the object-oriented paradigm. This issue

impacts the software product’s quality.”

The two last parts of the argument description format specify the scope of the argument. It

refers to activities and dimensions that are strengthened (+) or weakened (-) by the argument.

The activities are inferred from the activities related to the SDA exposed in the argument’s

reasoning description while the dimensions are inferred from the dimensions impacted by the

issue that prompted the argument.

5.7.2 The proposed argument validation heuristics

The argument validation heuristics aims at verifying that the argument descriptions adhere to

the criteria described in Table 5.7. These criteria are adapted from the description of the

characteristics of good software requirements specification detailed in [Ieee860].

158

Table 5.7 The proposed argument validation heuristics

Criterion Arguments validation heuristic

Correct
An argument is correctly described if it has
all required criteria

Unambiguous
An argument is unambiguous if it allows a
single interpretation

Complete
An argument is complete if relevant
descriptive information is provided

Consistent
An argument is consistent if there are no
conflicts within its description

Unique
An argument is unique if there is no other
argument that allow the same interpretation

Analyzable
An argument is analyzable if analysis can be
made completely, consistently, and correctly

Verifiable
An argument is verifiable if a person or tool
can check it for correctness

5.8 Summary of contributions

The contributions of this chapter are:

1. a technique for eliciting issues and describing arguments using the SSMs and SDAs;

2. an argument format for relating the SDAs to their factors of influence (i.e., SDAs,

issues, reasoning, activities, dimensions);

3. work instructions for supporting the description of issues and arguments; and

4. descriptions of issues and arguments based on uniform description formats.

CHAPTER 6

A TECHNIQUE FOR ANALYZING ARGUMENTS

6.1 Introduction

This chapter presents the analysis technique developed during the third activity of Phase 3 of

our research methodology in Figure 1.3. This chapter describes a technique to support a

systematic analysis of the SSMs and arguments. The proposed analysis technique will use:

• the ranked dimensions and activities for inferring the SSMs to be analyzed,

• the inferred SSMs for providing the SDAs and relationships to be analyzed,

• the selected SDAs and relationships for inferring the arguments to be analyzed,

• the ranked arguments for producing quantitative information in views, and

• the views for identifying relevant arguments related to the utilization of the SDAs.

The impacts of an argument will differ depending on the context of use of a SDA. Section

6.2 presents the tasks of the analysis technique, and Section 6.3 to Section 6.6 describes these

tasks. Section 6.5.1 presents an example of structured arguments. Section 6.7 presents the

summary of the contributions.

160

Figure 6.1 The analysis technique of the SAM framework

6.2 The tasks of the analysis technique

The following tasks constitute the proposed analysis technique of the SAM framework:

1) rank the activities and dimensions

• for inferring the list of SSMs,

2) select the SDAs and relationships

• for inferring the list of candidate arguments,

3) describe the reasons, alleviations, and rebuttals for the structured arguments,

4) rank the arguments and generate views

• for inferring the order of treatment of the arguments.

The analysis technique will produce weighted arguments and quantitative views.

161

6.3 Task 1 – Rank the activities and dimensions

The technique will use rankings for evaluating how much each activity and dimension is

relevant for a project’s context. The rankings will differ depending on the project’s context.

The technique will use rankings for filtering the arguments that should be further analyzed.

6.4 Task 2 – Select the SDAs and relationships

The analysis technique will use the classification scheme and the ranked activities to infer the

list of candidate SSMs. The rows of the classification scheme that correspond to the ranked

activities will provide the SDAs from which the SSMs will be inferred. Then, the technique

will use the selected SDAs, their related arguments, and the ranked dimensions to infer the

list of candidate arguments. The arguments that relate to the ranked dimensions will be the

candidate arguments.

6.5 Task 3 – Describe the structured arguments

The list of candidate arguments will be used for eliciting reasons, alleviations, and rebuttals.

For each candidate argument, Task 3 iterates on four steps performed as follows:

1) select the candidate argument being examined;

2) describe its reasons, alleviations, and rebuttals;

3) structure the resulting arguments;

4) verify that the structured argument is correctly described.

The output of this task is a list of structured arguments. The first step of Task 3 aims at

selecting the candidate argument being examined by reasoning about how its related issue

may impact the ranked activities and dimensions considering the project’s context. The

second step aims at describing reasons, rebuttals, and alleviations that affect the intensity of

the candidate argument. The third step aims at structuring the candidate argument, which

implies relating it to its reasons, rebuttals, and alleviation. Finally, the fourth step aims at

verifying that the structured argument is correctly described, as characterized by the

proposed arguments validation heuristics in Table 5.7.

162

6.5.1 The proposed structured argument format

An argumentation structures a set of arguments. The primary argument provides the claim,

reasoning, activities, and dimensions of the argumentation. Reasons, rebuttals, and

alleviations are connection points. The reasons are arguments that support the claim. The

rebuttals are counter-arguments for the claim. The alleviations are arguments that affect the

intensity of the argument. These related arguments describe how the SDAs may contribute to

the creation or resolution of issues. For example, the SDA “Naming Convention” is used to

describe the rebuttal or alleviation “The naming convention is well described” for the

candidate argument “The hook operations are not well identified”.

Table 6.1 The structured argument format

Argument: argumentation’s claim, reasoning, activities, and dimensions

Reasons: arguments that support the claim

Rebuttals: arguments that establish the falsity of the claim

Alleviations: arguments that reduce the intensity of the claim

The primary argument supports the elicitation of reasons that augment the intensity of the

argumentation’s claim. For example, both issues “The extensibility objectives are not well

defined” and “The deferred steps are not well known” are parts of reasons that support the

claim “The template method is subject to change”.

163

6.6 Task 4 – Rank the arguments and generate views

The technique will use rankings for evaluating how much each argument is relevant to a

project’s context. The rankings will differ depending on the project context. The technique

will use the rankings for adjusting the weights of these arguments. The arguments will be

contextualized and their weights will be calculated using the rankings. Each argument is

potentially the root of a tree of arguments that contains reasons, rebuttals, and alleviations.

The arguments relating to the most prioritized activities, dimensions, and arguments will

produce higher values in the contextual (i.e., quantified) views. The analysis technique will

infer a generic multi-dimensional view of the arguments that relate to the selected activities

and dimensions under analysis.

6.6.1 The proposed multi-dimensional views

Table 6.2 presents an example of a view where the rows are labeled with the activities

designing, implementing, and managing, and the columns are labeled with the dimensions

functions, people, and quality.

Table 6.2 Example of a generic multi-dimensional view

 Function People Quality

Designing

Implementing

Managing

The rankings of the activities, dimensions, and arguments will generate contextual views that

are subjective and quantified. These views will be used to identify critical factors to the

project, which correspond to view’s cells that have higher values. The view’s cells will be

prioritized based on their values. The most prioritized cell (i.e., with a priority of 1) will be

used for reasoning further about factors that relate to this cell in order to nullify or reduce its

value. Then, after these critical factors are addressed, their ranking will be adjusted.

164

The adjusted rankings will provide new priorities. The analysis technique will iterate these

steps (i.e., identifying flaws and taking actions accordingly) until the user is satisfied with the

values in the views (i.e., specific threshold values are attained). The weighting may be

different depending on the project’s context and nature. These rankings are used for filtering

the arguments that shall be further analyzed from the multi-dimensional view. One

experiment for applying the SAM framework was in the context of an undergraduate course

of object-oriented software design at ETS. The project analyzed in this experiment focused

on the design and implementation of the skeleton of a dice game software framework

(DGSF). Table 6.3 presents a contextualization of the factors and a view for the DGSF.

Table 6.3 Contextualization of the dice game framework

Activities’ rankings for the analysis
Arguments’ rankings for each iteration

Arg. Iter1 Iter2 Iter3

Architecting M 1 L L L

Designing H 2 H H H

Implementing M 6 M L X

Managing L 7 L X X

Dimensions’ rankings for the analysis
9 H H H

11 X X X

Budget X 15 L L L

Functions M 22 H L X

People M 24 X X X

Quality H 25 H X X

Schedule M 29 X X X

165

Figure 6.2 Multi-dimensional view of the arguments related to the DGSF

Activity Dimension

Iteration 1 F P Q S

A 10 11 3 8

D 6 5 1 2

I 13 12 4 7

M 16 15 9 14

Iteration 2

A 7 6 1 5

D 14 13 16 12

I 11 10 15 9

M 8 4 2 3

6.7 Summary of contributions

The contributions of this chapter are:

1. descriptions of views based on a uniform description format;

2. a technique for creating views using activities and dimensions; and

3. a technique for inferring the order of treatment of the arguments using ranked factors.

CONCLUSIONS AND FUTURE WORK

To use design knowledge (DK), software designers face challenges such as understanding

and tailoring styles, design patterns, and tactics. Such software design artifacts (SDAs) may

be complex and their interactions with other SDAs are not always obvious. The software

designer needs to add significant amounts of details to produce an implementable design,

which may reduce the claimed benefits of the styles, patterns, and tactics. To take full

advantage of the DK, the designers need frameworks and tools to manage this knowledge but

also to relate it to the decisions taken and the resulting artifacts of the software design. Many

organizations maintain artifacts and tailored information items in databases to help the

document control, development, and maintenance activities.

Research contributions

The software designers should benefit from systematic support. This research project allowed

the development of the Software Architecture Mapping (SAM) framework introduced in

CHAPTER 2. The SAM framework aims at supporting software designers in managing the

DK during the design process. Specifically, this project allowed the development of the

following solutions for supporting the software designers, illustrated with case studies:

1. A reference model for describing the SDAs, including styles, design patterns, and

tactics along with their relationships.

2. A technique for populating a DK base using the reference model and the descriptions

of design patterns, tactics, and styles.

3. An argument format for describing the issues and impacts related to the utilization of

the SDAs in particular contexts.

4. A technique for populating a DK base of arguments using the argument format.

5. A technique for supporting the analysis of the impact of design patterns, tactics,

styles, or other SDAs on a software design.

168

CHAPTER 2 also presented a requirements self-assessment that has been conducted using

the requirements from the literature on DK management (e.g., architectural documentation

rules [Clem02]). In addition, the SAM framework has been applied in industrial contexts

(i.e., software cockpits design and web engineering) and academic contexts (i.e., catalogs of

styles, patterns, and tactics, undergraduate design courses, and web engineering) for

evaluating its technical feasibility and usability for novice designers. CHAPTER 3 presented

five cases studies and two xperiments.

In CHAPTER 4, we presented a technique and the reference model that support the analysis

of the DK. We identified information items and established descriptive and exclusive criteria

for the finer-grained SDAs composing styles, design patterns, and tactics. Then, we use finer-

grained SDAs for representing styles, design patterns, tactics, and design decisions as

aggregations of SDAs. Such aggregations of SDAs make discernible every part of the DK,

instead of using the usual textual format that may obscure significant information. In

CHAPTER 5, we proposed an argument-based technique for relating the SDAs to the

activities and dimensions they impact. Finally, in CHAPTER 6, we presented a technique for

supporting the analysis of the arguments using multi-dimensional views in order to

systematically infer the order of treatment of the arguments in a particular context. The three

proposed techniques support the software designers for managing DK. For constituting these

techniques, we proposed novel contributions; reference model, identification heuristics,

decision tree, classification scheme, inference heuristics, issue format, and argument format.

How the SAM framework meets the research goal and objectives

The SAM framework meets the research goal and supports the software designers when

managing DK and issues that arise in designing systems. Table 6.4 summarizes the

evaluation activities performed for the SAM framework and presented in Chapter 3.

169

Table 6.4 Evaluation activities performed for the SAM framework

Activity Context Inputs Outputs

Case study Software cockpits Software architecture
description

SDAs, SSMs and
arguments

Case study Undergraduate
course (LOG121)

Work statement SDAs, SSMs,
arguments, and views

Experiment Graduate course
(SYS869)

Work statement SDAs and arguments

Case study Styles, tactics,
and patterns

Bass03, Clem02, Gran02,
Gamm95

SDAs, SSMs, and
arguments

Case study Web site of an
organisation

Work statement SDAs, SSMs, and
arguments

Experiment Pattern and web
engineering

Work statement SDAs, SSMs, and
arguments

Assessment SAD and DKM Requirements, conclusions,
and rules from the literature

Assessments results

The SAM framework meets the research goal, sub-goals (A-C), and objectives (1-7), as

follows:

• The classification technique of the SAM framework presented in CHAPTER 4 aims

at systematizing the creation of a SSM. This technique allows the software designers

to describe (Objective 1) and classify (Objective 2) the SDAs using the descriptive

and exclusive criteria, the classification scheme, and the decision tree of the SAM

framework. Then, these SDAs are used to describe the styles, design patterns, and

tactics using SSMs (Objective 2). Such aggregations of SDAs make discernible every

part of the styles, design patterns, and tactics descriptions, instead of using the current

textual format that obscures significant information. The classification technique of

the SAM framework (Objective 4) was applied in a case study presented in

CHAPTER 3. This case study uses the works on tactics, styles, and design patterns in

[Gran08, Bass03, Clem03, Gamm94] for populating a DK base (Objective 3).

170

• The argumentation technique of the SAM framework (Sub-goal C) presented in

CHAPTER 5 aims at describing arguments (Objective 5). This technique allows the

software designers to argument about the issues that relate to the SDAs and their

relationships for creating network of arguments. Then, these arguments may be used

to describe the issues that relate to the styles, design patterns, and tactics. The

argumentation technique has been applied in a case study presented in CHAPTER 3.

This case study uses issues extracted from our literature review on design knowledge

management as a starting point for populating the reference model (Objective 6).

• The analysis technique of the SAM framework (Sub-goal D) presented in CHAPTER

6 aims at systematizing the analysis of the SDAs. This technique allows the software

designers to analyze the issues related to the SDAs and generate views. These views

may be used for inferring the order of treatment of the issues, and then the context of

utilization of the SDAs. In particular, the resulting views should help the software

designers to apply styles, design patterns, and tactics in a particular context by

addressing the right issues at the right time (Objective 7).

Limitations of the research project and future work

This research project permitted to identify additional future work that should contribute to

enhance experiences of using the SAM framework. Future work related to the classification

technique includes:

1. validating the technique through experimentation with industrial participants;

2. developing support tools for:

a. inferring the context of utilization of design patterns, tactics, or styles;

b. populating a design knowledge base of SDAs and SSMs;

c. generating a SSM from a UML diagram, and vice-versa;

d. recognizing design patterns, tactics, or styles from a SSM; and

e. merging the SSMs of design patterns, tactics, or styles.

171

Future work related to the argumentation technique includes:

1. validating the technique through experimentation with industrial participants;

2. developing tool supports for:

a. populating a design knowledge base of issues and arguments;

b. inferring the issues and arguments related to the utilization of a SDA; and

c. inferring the list of SDAs that provide solutions for the issues and arguments.

Future work related to the analysis technique includes:

1. validating the technique through experimentation with industrial participants;

2. developing tool supports for:

a. inferring the order of treatment of a set of arguments;

b. generating views from arguments, and vice-versa.

The following research tasks should also be executed in future work:

• Elaborate heuristics to apply and analyze the impacts of the tactics, design patterns,

and styles described using the reference model of the SAM framework.

• Develop algorithms for analysing DK bases of SDAs, SSMs, arguments, and views.

• Develop a tool for supporting the techniques of the SAM framework.

The software designer should execute pre-defined tasks for creating SSMs, eliciting

arguments, and analysing arguments. Four case studies were presented in this thesis,

including a case study with participants. However, the techniques were not evaluated in the

context of large software development projects in the industry. Future work should evaluate

the understandability and usability of the SAM framework in industrial contexts.

Future work also includes developing a tool that supports the reference model and systematic

inference of the context of application of the styles, design patterns, and tactics from the

objectives. The operationalization of the reference model will provide algorithms, decision

trees, and heuristics for automating the three techniques proposed in this thesis.

172

The rules given in [Kim09] will provide a baseline for automating the composition and

binding of the styles, design patterns, and tactics. The guidelines for systematically

exploiting the reference model in a tool and the quality of the data produced by the three

techniques and tool will be evaluated in future work.

There are at least four future benefits of the SAM framework that should also be evaluated:

• Enhance the skills of the actors involved in the design process.

• Allow the creation of tools to support the design process.

• Support the systematic construction of software architecture.

• Support the automation of the design process.

 APPENDIX I

ACTIVITIES AND SOFTWARE DESIGN ARTIFACTS OF THE DESIGN PROCESS

This section describes the activities and software design artifacts of the design process

identified from the literature.

Select the objectives

Activity Description. Selecting the objectives aims at choosing the most important objectives

that should drive the design decisions (DDs) about the software architecture [Bass03]. An

objective is something toward which work is to be directed. The objectives define the

organizational and technical problems that software architectures must address. Somehow the

objectives influence the procedures and teamwork organization that support the life cycle of

software architecture [Bass03]. Software architecting requires such objectives to be clearly

defined, communicated, shared, evaluated, and reuse during the design process. Approaches,

models, and tools exist for supporting the selection of the objectives.

Related artifacts. The first row of the proposed classification scheme (see Figure 4.1)

presents common artifacts types used for sharing the objectives that a system should sustain.

Needs, goals, and expectations are the rationales for the objectives, the guide for architecting.

A need gives a meaning to the DDs: it states what is necessary for a system to be suitable

(e.g., the system shall reduce maintenance costs) and for the user to realize its tasks

effectively and efficiently (e.g., the system shall lift up developers’ productivity). Needs are

translated into more precise objectives that the solution shall achieve. A goal gives a specific

direction to the DDs but does not specify where the end is. A goal is a desired outcome of

user interaction with a product that describes in terms not directly measurable the final

product (e.g., the framework shall ease developments of system-specific components).

174

An expectation (or feature [Leff03]) is a goal that is realizable under a specified

organizational context by a domain object, which may be a human, device, or software

interacting with the system to execute some tasks at specific locations in the environment

(e.g., the system shall provide up-to-date status in debug mode). An expectation may be

defined as the result of a business use-case [Leff03], which describes the actors who

participate in the business activities and how these activities take place.

Needs, goals, and expectations are made realizable and measurable by translating them into

software requirements [Leff03], which state the conditions that govern the design of the

architectural elements. Altogether, these artifacts record the organizational objectives that are

used by the software designers to tailor specific architectural and system artifacts.

Identify the Knowledge Artifacts

There are commonalities among the systems an organization develops and maintains.

Recurring approaches are used by the organizations that lead software projects, from having

standard domain models, to the way in which developers write code [Ulri02]. An

organization gains efficiency when patterns can be defined by skilled practitioners and

propagated across the work teams. Propagating the knowledge engenders increasing returns

because it can be reused once created [Bass03].

Activity Description. The software designer uses his background to identify the design

knowledge. This knowledge results from the design concerns, domain-specific and

contextual information, and architectural properties and designs that have been products of

successful developments of similar software architectures [Bass03]. They constitute a

directory of reusable information that influences the software architecture of SISs. This

activity of the design process aims to identify the DK artifacts that have proven useful in

defining and attaining objectives similar to the ones selected in the previous activity. The

outcome of this activity is a set of system-independent artifacts that seem to be useful for

attaining the objectives.

175

Design Artifacts – Architectural Knowledge. The second activity of the CS summarizes the

artifacts we considered as providers of the DK. We use the architectural and design concerns

to bind the architectural problem space, but we consider they constitute the rationales of the

DDs, not the drivers that shape the software structures. The architectural concerns refine the

business goals in terms relevant for defining the architectural problem space (e.g., define the

scope of a product-line [Bass03]). The design concerns are more specific about the design

problems (e.g., localize changes in a component). The software designers need to address

design concerns soon for architecting the right level of quality and functional capacity in

SISs. More precise context about the application domain may be required to identify

pertinent concerns and make the DDs. Different industries may have distinct standards,

regulations, and conventions that ease interactions and reduce duplication of effort.

The architects employ the architectural and design concerns and what they know about the

context of the problem for making choices about the relevant architectural properties, which

may be quality attributes [Bass03] or characteristics of quality that shall be inherent in the

software architecture (e.g., maintainable, distributed). Clements et al. [Clem03] define a

property as additional information about entities and relations, such as names and

characteristics of quality. The software designers may use quality models [Iso25010] to

define the characteristics of quality of SISs. Then, they use quality attributes to identify

relevant measures, which shall permit to quantify the characteristics of quality and thus more

objectively evaluate the level of quality and functional capacity of SISs [Bass03].

Many DDs are made for architecting properties of SIS. The architects have the responsibility

to choose, compose, apply, and maintain the set of tactics and patterns that provide the

desired properties [Kim09]. These artifacts encode reusable DK about solutions to well-

known problems. They provide generic solutions to address common design and architectural

concerns. Each pattern and tactic may promote or disadvantage one or more properties. The

inadequate usage of the patterns and tactics may cause significant impacts when crucial

properties are not guaranteed. We classified tactics and patterns into the solution space, but

they also provide insights and descriptions for understanding the problem space.

176

The software designers first use the architectural properties to identify tactics [Bass03],

design patterns, and styles [Clem03] of structural, behavioral, and allocation types. An

architectural pattern is a package of decisions. It describes how the entities of a design

fragment relate to each other to provide properties and software structures and behaviors,

which address one or more design concerns. A pattern is a description of known properties,

patterns of data, control interaction, constraints, semantics, vocabularies, and types for the

entities of the solution, along with qualitative reasoning about the strengths and weaknesses

of the proposed solution [Gran02, Gamm95]. A pattern is a composite of multiple

architectural tactics. A tactic is a basic design decision, which tailors software architectures

and patterns [Scot09, Kim09, Bass03]. It aims to address a design concern [Bass03]. A tactic

specifies how a single quality attribute can be controlled through a design decision to achieve

a response measure [Bass03].

Indeed a pattern is a composite of multiple architectural tactics. For example, Scott and

Bachmann have described the Layer pattern in [Scot09]. The Layer pattern supports the

maintainability of a system by isolating each layer from changes in other layers. This

isolation is achieved using many tactics to control maintainability: Semantic Coherence,

Abstract Common Services, Use Encapsulation, Use an Intermediary, and Restrict

Communication Paths. In addition, the Layer pattern achieves portability by encapsulating

platform-specific details behind stable interfaces. The tactic “Use Encapsulation” is

necessary for both portability and maintainability.

Structural tactics and patterns focus on the elements required for solving a problem, along

with the relationships and responsibilities of those elements. Behavioral tactics and patterns

focus on the interactions that a set of components and connectors shall perform to solve a

problem, although they may imply structural solutions. Tactics and patterns of allocation

type focus on allocation of elements that constitute the solution to a problem [Bass03].

Likewise, they may imply structural solutions.

177

Define the Architectural Artifacts

The software architecture is composed of design fragments tailored by the software designer,

which design alternate solutions by making DDs for achieving the stated and implied

objectives. The specialization of the architectural knowledge should permit to produce a set

of architectural artifacts for defining abstract software structures (i.e., design fragment) and

architectural interactions and allocations to be detailed further by the system artifacts.

Activity Description. The third activity aims to define the artifacts that describe the problem

and solution spaces in terms relevant for architecting. The architectural artifacts precise the

objectives identified in the upper-rows. They provide explanations, contextual information,

and conditions that contribute influences on the design fragments of the software under

construction. This activity should serve to define both the architectural problem space and the

design fragments, which describe generic solutions for the architectural problems.

Design Artifacts – Architectural Artifacts. The third row of the CS summarizes the

architectural artifacts examined in this thesis. The concerns are refined into rationales, which

explain the DDs that structure the entire software. Artifacts such as generation tables and

general scenarios [Bass03] capture the risks, events, assumptions, and circumstances that

may affect elements of the system. They help to identify key parameters that must be

reasoned about and offer a way to refine the vague requirements and architectural properties

into more detailed scenarios [Bass03].

We classified the quality attribute scenarios as artifacts for recording information about the

problem space. General and concrete scenarios are distinguished in [Bass03]. General

scenarios are independent of any system and characterize the quality attributes that

potentially any system may exhibit [Bass03]. They contain quality attribute parameters used

to identify appropriate reasoning frameworks [Bach05], which encapsulate quality attribute

knowledge and decision guidelines useful to understand the parameters of the problem and

define the structures and behaviors of the system.

178

General scenarios need to be made system specific [Bass03], which consists to affect value to

each part of a general scenario, for fixing the decision criteria used to evaluate the structures

and behaviors of a system. A concrete scenario is an instance of a general scenario. It is a

quality attribute requirement used to specify and control a quality attribute that a system shall

exhibit [Bass03]. The quality attribute requirements specify the characteristics of quality

(e.g., performance and usability) required for a system [Bass03]. A concrete scenario is used

to describe how the system shall response to a specific stimulus in a precise context for

providing an acceptable level of quality to the stakeholders.

A concrete scenario has six parts labeled source, stimulus, artifact, environment, response,

and measure [Bass03]. The measure of the response is what should be tested as a threshold

for the acceptable level of quality specified by the stakeholders. The quality attribute

scenarios are also used to identify roles (or generic responsibilities) to be assigned later to

design fragments, which define cohesive sets of architectural elements (also called entities or

tailored roles) from which system specific artifacts are instantiated.

General and concrete scenarios may be managed as reusable architectural artifacts for driving

DDs. The most architecturally relevant concrete scenarios are called architectural drivers in

[Bass03]. They stem from business goals and user needs and some of them may be important

drivers for architecting. The architects use these drivers to make DDs and tailor roles to

specific problems for designing parts of the architecture, which are design fragments. Each

decision of the architect may affect one (sensitivity point) or more (tradeoff point) of the

architectural drivers. The architects use analysis methods [Bass03] to evaluate the

alternatives and make tradeoffs among the conflictual decisions in order to reduce the risks

and make the DDs that shape the design fragments in a manner that best support the drivers.

179

The DDs and the resulting design fragments are architectural artifacts [Tyre05]. As defined

in [Jans08], a DD is a description of additions, subtractions, and modifications to the

software architecture, the reasons behind the decision, and the rules, constraints, and

requirements enforced by the resulting design fragment. A DD may report additional

information [Tyre05, Shah09], including references to external artifacts such as plans and

risks. We classified the information recorded for a DD into both the problem and solution

spaces on the row third of the CS.

The generic roles identified from the DK are instantiated into design fragments and result in

elements of the software architecture such as modules, components, and connectors [Bass03].

The software architect must choose, understand, bind, compose, and tailor the DK for

defining the design fragments that satisfy the parameters’ values defined by the concrete

scenarios [Scot09, Kim09]. The design fragments comprise the entities, which represent the

types of elements that will be instantiated into system-specific elements to achieve the

conditions [Bass03, Fair07, Khal10]. A design fragment gives a decomposition of entities

with architectural responsibilities, relationships, and interactions, and the locations of those

entities in the environment. As stated by Fairbanks [Fair07], the design fragments are used to

define the scale of a solution for more specific design decisions to be made. Therefore, the

DDs and design fragments define the architectural designs and thus bind the detailed designs,

constraining both problem and solution spaces.

Specify the System Artifacts

The specification of the system artifacts aims to refine the generic entities of the design

fragments into specific architectural elements, which will be parts of the SISs. The architects

need detailed rationales, system-specific contextual information, and realizable conditions to

make more specific design decisions about the architectural structures under construction.

180

Activity Description. The fourth activity should serve to refine the architectural problems and

instantiate the architectural structures, which implement the technical solutions to the

problems. The major outcome should be a concrete description of the rationales, contextual

considerations, and conditions of the problem space and the resulting architectural structures.

The specification of the system artifacts aims to instantiate the architectural entities provided

by the candidate design fragments for satisfying the conditions quantified by the concrete

scenarios [Wojc06]. It should permit to refine the problem space and realize the architectural

structures, which implement the technical solutions to the organizational and architectural

problems.

Design Artifacts – System Artifacts. The fourth row of the CS summarizes the system

artifacts we identified in this thesis. The concerns are refined into rationales, which explain

the detailed design decisions that govern the implementation of the architectural elements. A

quality model defines measurement thresholds (parameters’ values) that specify the

acceptable level of quality for the software structures under construction [Bach03]. These

thresholds become the measures of the concrete scenarios [Bass03], which precise the

context of use and conditions that affect specific architectural structures. Each scenario may

lead to many method contracts [Meye97], which specify pre-conditions, post-conditions, and

exception conditions, inputs and side effects, and invariants for methods that will supply

implementations for the generic responsibilities defined in the design fragments.

The method contracts specify evaluation criteria for the software modules. They provide

software documentation for the behavior of the methods and thus facilitate code reuse. The

software architects bind, compose, and tailor the design fragments for architecting the

software structures that satisfy the concrete scenarios [Scot09, Kim09] and the associated

method contracts. The architectural structures are elaborated to realize the architectural

fragments by specifying the elements, methods, properties, interactions, and locations that

will characterize the software [Bass03, Wojc06]. These structures provide the architectural

modules, components and connectors, and allocation schemes.

181

Describe the Architectural Views

The architectural description of software‐intensive systems aims to communicate the DDs

and the resulting software structures, behaviors, and allocation schemes of the software

architecture. The description of the architectural problem and solution spaces is considered as

essential for sharing the architectural knowledge with various stakeholders and understanding

the impacts of future changes to the systems [Iso42010, Clem02].

Activity Description. The fifth activity should permit to produce the architectural views that

describe the problems and the resulting software architecture. The major outcome of this

activity should be a set of views that provide descriptions of rationales, contextual

considerations, and conditions that form the software structures. A view that reports too

much information may be fragmented into many view packets, each showing a fragment of

the entire view [Iso42010].

Design Artifacts – Architectural Views. The concept of view is defined in [Iso42010,

Clem02]. The fifth row of the CS reports the artifacts we selected for mapping the views that

make up the software architecture document [Iso42010]. A view is introduced by a concise

description that recaps the purpose and contents of the view. It provides explanation,

justification, and reasoning about the DDs that have been made. The context of each view is

defined by the view scope and symbols, and the vocabulary of the view used to show

interactions with external entities.

A view conforms to a viewpoint [Iso42010, Clem02]. A viewpoint defines the purposes and

audience for, the set of concerns to be treated by, and the modeling, evaluation, and

consistency-checking techniques used by any conforming view [Iso42010]. A view is a

description of the structures, behaviors, or allocations schemes of the software from the

perspective of a cohesive set of concerns defined by a viewpoint [Iso42010]. It visually

represents and textually explains a specific type of architectural elements that compose the

system, their properties, and the relations among them.

182

Evaluate the Software Structures

Various analysis methods aim at evaluating software architectures from both organizational

and architectural perspectives [Bass03]. Every method obliges the architects to identify the

evaluation criteria, perform the analysis, and report the results of the assessment. The

architects compare the results with the evaluation criteria and identify possible

improvements. The evaluation of the software structures aims to provide quality records,

which track objective evidence that the software architecture sustains the selected objectives.

The architects need to record the evaluation criteria and the resulting appraisal data as parts

of the DK [Bass03].

Activity Description. The sixth activity should produce the artifacts used to determine the

level of achievement of the requirements. The outcome should be a set of evaluation criteria

and records that provide the appraisal data. Sufficient records should be made to furnish

objective evidence of quality achievements. These records shall be identifiable and made

available as inputs for the acceptance and assurance processes.

System Artifacts. The sixth row of the CS presents the evaluation criteria and records we

considered in this thesis. The architects use assurance criteria to provide control over the

architecting activities in order to ensure that the work team is doing the job right. Then, the

assessors use the acceptance criteria to determine if the requirements are met, in order to

ensure that the work team did the right job. In the SAM we refer to acceptance testing by the

architect prior to end the architecting iteration.

As defined in [Iso25010], software architecture “quality can be evaluated by measuring

internal attributes (typically static measures of intermediate products), or by measuring

external attributes (typically by measuring the behavior of the code when executed), or by

measuring quality in use attributes. The objective is for the product to have the required

effect in a particular context of use”. The software architecture is evaluated for internal

attributes. It is an interim product that is mostly seen from the internal and developers view.

183

Design control measures should provide appraisal data for verifying or checking the

adequacy of design. The evaluation process should provide records for assessing the quality

of the architectural structures, behaviors, and allocation schemes.

 APPENDIX II

EXAMPLE OF A SSM FOR A SOFTWARE COCKPIT SYSTEM FRAMEWORK

This section describes our example of a SSM for an object-oriented and component-based

framework required to support the development of software cockpit systems [Bass03]. We

partitioned the SSM in Table A II.1 and Table A II.2, respectively the problem and solution

spaces. The SSM is based on our findings about architecting flight simulators. The SDAs are

extracted from our experience and the literature about software architecture, design

knowledge, and architecting software-intensive systems, including flight simulators

[iso42010, iso25000, Bass03, clem03, Ulri02, Mars85, Foga67, Perr66].

Reasoning descriptions for the SSM

A software cockpit system (SCS) framework provides classes, which software designers

extend for developing the software that simulates the cockpit of various airplanes. In this

example, the SCS framework is part of a software development kit (SDK) that also provides

tools and documentation for architecting, building, and maintaining SCSs. The systems that

extend and compose the classes of the SCS framework acquire the capacity to support third

parties environments, including hardware dispatchers that may control the life cycle of a

simulation, from loading to exiting the software systems. The framework influences the

procedural solution and shape the work team that executes development tasks.

The work team is formed of software and system specialists, and junior software engineers,

which participate in developing the components that constitute the software cockpit systems.

The system development process is based on the concepts defined in the SCS framework,

which define built-in services to ease some of the design processes. The developers work in

parallel to build specialized parts of the SCS. Junior software designers follow a standard

procedure for building most of the SCS components.

186

Table A II.1 Example of a SSM (artifacts of the problem space)

187

Table A II.2 Example of a SSM (artifacts of the solution space)

188

The development process allows complex software functions such as memory management

to be handled by a group of software specialists that are responsible for designing those

functions. Software and system specialists use the framework to develop software

foundations for various cockpits’ systems. Junior software designers concentrate their efforts

on the implementation of the functionalities to be simulated. Most of the functions and tests

run on a single workstation. The following reasoning descriptions are used for creating the

SSM in Table A II.1 and Table A II.2.

• Three goals for architecting software product-lines: reduce maintenance costs,

reduce development costs, and increase quality.

• Reduction of maintenance costs is a primary goal. Many studies report that

software maintenance makes up most of the total cost of software development

projects.

• Legacy systems make up a large part of the problem and solution spaces.

• Each customer has its specific customization requirements, which require

prototyping and changes that often cause significant maintenance costs.

• Every cockpit needs updates after delivery to correct faults or improve its level of

quality.

• Maximizing reusability of pre-tested components is essential.

• Organizations use a framework to impose a set of reusable components along with

standardized component development procedures executed by structured teams,

with defined roles and task-specific tools.

• A framework is a technical solution that provides proven software designs and

implementations for producing better software products and significant cost

savings by defining common architectural structures and behaviors. The

framework can be specialized to produce custom products. By extending the

framework, the software products will have similar structures, which make them

easier to develop and maintain. A framework is shaped by many patterns that

provide known properties. It controls the main body of execution and lets

developers write the code it calls.

189

• The architectural properties of a framework written in C++ will be parts of any

SCS. An object-oriented language such as C++ relies heavily on inheritance and

dynamic binding to achieve reusability. It requires standardization and shall

provide the capacity to configure custom SCSs without having to touch the

implementations. Object-oriented programming techniques such as data

abstraction, encapsulation, interfaces, inheritance, and polymorphism are tactics

in [Scot09, Bass03] used to encapsulate variable implementations behind stable

interfaces. Existing methods are reused and extended by inheriting from the

framework base classes and overriding pre-defined hook methods using patterns

like Template Method.

• Encapsulating together a set of operations with the data they access allows

designers to decompose problems into collections of interacting components and

connectors [Bass03]. This modularity localizes the impact of changes and makes

the software easier to understand and maintain. In addition, layered system

increases software maintainability since it enables the delivery of pre-tested

components in each of the layers. Configuration files may be edited in standard

XML (Extensible Markup Language) and used by a factory to instantiate generic

components into specific objects.

• Classes are packaged in a dynamic link library (DLL) file and tools are provided

in executable files over the Windows operating system.

• Libraries contain code and data that provide services to independent programs.

This encourages the sharing and changing of code and data in a modular fashion,

and eases its distribution.

• Modularity allows changes to be made in a single self-contained DLL shared by

several applications without any change to the executable applications

themselves.

• Executable applications and libraries link to each other through the linking

process, which defers binding at runtime.

190

• To achieve consistency for declarations in different translation units in C++,

header files contain declarations of the constants, types, data, and functions

publically provided by the class.

• A header file is included in source files containing executable code and/or data

definition.

• The framework aims to provide fundamental services and classes to facilitate

development and maintenance of the SCSs.

• The basic classes shall be reused under various contexts (e.g., debug and

instructor modes) for distinct systems (e.g., brakes and engines).

• The basic classes shall be used to create frameworks that can best fulfill particular

system’s needs.

• Certain systems may not be replaced in short term.

• The first prototypes will integrate procedural and object-oriented components.

• The Editor is a task-specific tool for editing configuration files used to compose

and initialize only object-oriented components when simulations start.

• The SDK shall provide proper framework and toolset to develop SCSs, given the

component development procedure.

• The framework shall promote a component-based programming approach.

• The framework shall provide a layer of core modules from which custom

components will be written and controlled at runtime.

• The Core layer will be composed of standard software units, which can be

extended and composed to build custom SCSs.

• The Core layer will sit over the foundation layer that provides services for

simulating, the C++ language, and the Windows operating system, causing layer

bridging.

• The standard software units will perform key abstractions such as the Component,

Factory, and Parser modules that can be reused for developing the software that

sits over it. The Component module encapsulates SCSs behind a stable interface

and controls their execution in a standardized manner. It is the base software unit

191

for building SCSs components. The aircraft will be decomposed into many

systems, which in turn are built using many logical components.

• A composition file permits to specify in XML and compose at load-time a

component using a factory pattern. In addition, the initialization file permits to

specify properties whose value will be set per instance at load time from the XML

file; these properties may affect the later behavior of the component instance.

• The Editor will allow the user to visually edit the composition, properties, and

parameters of the components.

• The Component module uses these configuration files to instantiate system-

specific components without containing any system-specific logic.

• Each module will have a header file used to describe its API and a source file that

used to define the executable code.

• The modules will be packaged in the dynamic-link library Core.dll.

• The executable file Editor.exe will provide the Editor module.

• Standardization will save time and money in development and allow for easier

maintenance.

• The predictability of the development process increases as standardization is

spread over more elements.

• The Component class will define the foundation on which software designers can

base their systems.

• The Component class will implement the Template pattern. The template methods

can be indirectly specialized (using the “do” methods), which enforces class

interface stability, allows the addition of instrumentation in the base class, and

lighten user’s responsibility since it is no longer required to call the overloaded

method.

• The standardized Component class will ease the customization of the components

that compose the various SCSs.

• The Component class shall provide the services to manage the entire life cycle of

the SCSs components. It shall allow users for customizing a component that

extends the Component class.

192

• The Component class will define the load, init, execute, and exit template

methods [32] that constitute a standard execution interface. This class will also

define the doLoad, doInit, doExecute, and doExit primitive methods that user

classes can redefine to be called at particular moments by the execution package.

• Every cockpit’s component will be controlled according to template methods

where connections are standardized.

• Any dispatcher that knows the Component interface may be responsible for

executing the simulation. The Component interface will ease future changes in

simulated environments.

• The load method will be called on every component the first time the component

is called. This method will load the composition file associated to the component

and instantiate children of this component if any.

• The factory method will instantiate an object specified by its class name. The init

method will be called on every component the first time the component is called;

just after the load method is executed.

• This operation will be used to prepare the application for the beginning of the

simulation. The load and init methods will call the parser to process the XML

configuration files.

• When initialization is done, the execute method will be called on every

component if the component is linked to the dispatcher.

• The exit method will be called on every component at the component destruction.

It shall be used to flush buffers on disk or any other operation normally done at

application’s closure.

• The XML file will contain values used by the doInit method of the component to

set its properties at initialization time. For a SCS, these files will be packaged

together with the DLL of the system.

• Software designers will use the Unified Modeling Language (UML) to draw

graphical diagrams, which is a de-facto modeling language with wide acceptance

and tool support for object-oriented software development. It supports multiple

193

viewpoints, semi-formal semantics, and a formal language for fixing constraints

on design elements.

• The view System Foundation Classes will present the framework as a set of

classes offering services to ease the creation and maintenance of software

components. It will conform to the module viewpoint, which requires breaking up

the system into a set of decomposable modules.

• The view System Execution Package will show the relationship between the

components of the framework, the simulation dispatcher, and specific SCSs. The

dispatcher will use the Component interface to execute the simulation logic of a

system. This view will conform to the component-and-connector viewpoint,

which requires breaking up the system into a set of executable units.

• The view System Packaging will show the system’s packaging that should be

made so that generic system packages can be used for customizing various

application of this system. This view conforms to the allocation viewpoint and

documents the relationships between the framework and its environment.

 APPENDIX III

INPUTS AND OUTPUTS OF THE EXPERIMENT WITH HUMAN PARTICIPANTS

Figure A III.1 Participant form of an architect

196

Figure A III.2 Analysis form of an architect (page 1)

197

Figure A III.3 Analysis form of an architect (page 2)

198

Figure A III.4 Analysis form of a designer (page 1)

199

Figure A III.5 Analysis form of a designer (page 2)

200

Figure A III.6 Analysis form of a programmer (page 1)

201

Figure A III.7 Analysis form of a programmer (page 2)

202

Figure A III.8 Analysis form of a manager (page 1)

203

Figure A III.9 Analysis form of a manager (page 2)

204

Figure A III.10 Data collected using the participant form

205

Figure A III.11 Data collected using the analysis form (part 1)

206

Figure A III.12 Data collected using the analysis form (part 2)

 APPENDIX IV

THE SSMS OF THE MODIFIABILITY TACTICS

Table A III.1 to Table A III.14 present the SSMs of the modifiability tactics described in

[Bass03].

Table A IV.1 Software design artifacts (SDA) of the tactic “Maintain semantic coherence”

SDA Type Description

Why

Go1 Goal Control the time to implement, test, and deploy changes

Go2 Goal Control the cost to implement, test, and deploy changes

Dc1 Concern Localize changes

Ra4 Rationale Ensure that anticipated changes in a module are semantically coherent

Ra5 Rationale Assign responsibilities in a module that have semantic coherence

Ra6 Rationale
Ensure that responsibilities work together without excessive reliance on

other modules

What

Pr1 Property Modifiability

Im2 Measure Coupling

Im3 Measure Cohesion

Im1 Measure Number of modules that require changing to implement a change

Which

Ta2 Tactic Maintain semantic coherence

208

Table A IV.2 Software design artifacts (SDA) of the tactic “Abstract common services”

SDA Type Description

Why

Go1 Goal Control the time to implement, test, and deploy changes

Go2 Goal Control the cost to implement, test, and deploy changes

Dc1 Concern Localize changes

Dc2 Concern Prevention of ripple effect

Ra1 Rationale Reduce the number of modules directly affected by a change

Ra2 Rationale Restrict changes to a small set of modules

Ra3 Rationale Limit anticipated changes in scope

Ra4 Rationale Provide common services through specialized modules

What

Pr1 Property Modifiability

Pr2 Property Reusability

Im1 Measure Number of modules directly affected by a change

Im1 Measure Number of modules that require changing to implement a change

Which

Ta1 Tactic Abstract common services

Sf1 Fragment Application framework

Sf2 Fragment Middleware software

209

Table A IV.3 Software design artifacts (SDA) of the tactic “Anticipate expected changes”

SDA Type Description

Why

Go1 Goal Control the time to implement, test, and deploy changes

Go2 Goal Control the cost to implement, test, and deploy changes

Dc1 Concern Localize changes

Ra1 Rationale Limit the number of modules directly affected by a change

Ra2 Rationale Restrict changes to a small set of modules

Ra3 Rationale Assign responsibilities in order to minimize the effects of the changes

What

Pr1 Property Modifiability

Im1 Measure Number of modules directly affected by a change

Im1 Measure Number of modules that require changing to implement a change

Which

Ta1 Tactic Anticipate expected changes

210

Table A IV.4 Software design artifacts (SDA) of the tactic “Generalize the module”

SDA Type Description

Why

Go1 Goal Control the time to implement, test, and deploy changes

Go2 Goal Control the cost to implement, test, and deploy changes

Dc1 Concern Localize changes

Ra2 Rationale Allow a module to compute a range of functions based on input

Ra3 Rationale Define an input language for a module

Ra4 Rationale Ensure that changes can be made by adjusting the input language

What

Pr1 Property Modifiability

Im1 Measure Number of modules that require changing to implement a change

Which

Ta2 Tactic Generalize the module

Fr1 Fragment Interpreter

St1 Structure Module of constants input parameters

211

Table A IV.5 Software design artifacts (SDA) of the tactic “Limit possible options”

SDA Type Description

Why

Go1 Goal Control the time to implement, test, and deploy changes

Go2 Goal Control the cost to implement, test, and deploy changes

Dc1 Concern Localize changes

Ra2 Rationale Restrict options in order to minimize the effects of the changes

What

Pr1 Property Modifiability

Im1 Measure Number of modules that require changing to implement a change

Which

Ta2 Tactic Limit possible options

212

Table A IV.6 Software design artifacts (SDA) of the tactic “Hide information”

SDA Type Description

Why

Go1 Goal Control the time to implement, test, and deploy changes

Go2 Goal Control the cost to implement, test, and deploy changes

Dc1 Concern Localize changes

Dc1 Concern Prevent ripple effects

Ra4 Rationale
Reduce the necessity of making changes to modules not directly

affected by a modification

Ra5 Rationale Assign responsibilities for an entity into smaller pieces

Ra6 Rationale Make some information private, and other information public

Ra7 Rationale Make public responsibilities available through specified interface

What

Pr1 Property Modifiability

Im1 Measure Number of modules that require changing to implement a change

Which

Ta2 Tactic Hide information

213

Table A IV.7 Software design artifacts (SDA) of the tactic “Maintain existing interface”

SDA Type Description

Why

Go1 Goal Control the time to implement, test, and deploy changes

Go2 Goal Control the cost to implement, test, and deploy changes

Dc1 Concern Localize changes

Dc2 Concern Prevention of ripple effect

Ra1 Rationale Separate the interface from the implementation

Ra2 Rationale Create public abstract interface that mask variations

Ra3 Rationale Embody variations within the existing responsibilities

Ra4 Rationale
Embody variations by replacing one implementation of a module with

another

When

Sr1 Risk Difficult to mask changes to the meaning of data and services

Sr2 Risk Difficult to mask dependencies on quality of data or quality of services

Sr3 Risk
Difficult to mask dependencies on resource usage and resource

ownership

What

Pr1 Property Modifiability

Im1 Measure Number of modules that require changing to implement a change

Which

Ta1 Tactic Maintain existing interface

St1 Structure Public interface

St2 Opera. Declare abstract signature

214

Table A IV.8 Software design artifacts (SDA) of the tactic “Restrict communication paths”

SDA Type Description

Why

Go1 Goal Control the time to implement, test, and deploy changes

Go2 Goal Control the cost to implement, test, and deploy changes

Dc1 Concern Localize changes

Dc2 Concern Prevention of ripple effect

Ra1 Rationale Restrict the modules with which a given module shares data

What

Pr1 Property Modifiability

Im1 Measure Number of modules that require changing to implement a change

Which

Ta1 Tactic Restrict communication paths

St1 Structure Module that consumes data

St1 Structure Module that produces data

Im1 Measure Number of modules that consume data produced by the given module

Im1 Measure Number of modules that produce data consumed by the given module

215

Table A IV.9 Software design artifacts (SDA) of the tactic “Use an intermediary”

SDA Type Description

Why

Go1 Goal Control the time to implement, test, and deploy changes

Go2 Goal Control the cost to implement, test, and deploy changes

Dc1 Concern Localize changes

Dc2 Concern Prevention of ripple effect

Ra1 Rationale
Insert an intermediary that manages activities associated with a

dependency

Ra2 Rationale
Convert the data syntax produced by a module into that assumed by

another

Ra3 Rationale Convert the syntax of a service from one form into another

Ra4 Rationale Mask changes in the identity of an interface

Ra5 Rationale
Enable the location of a module to change without affecting another

module

Ra6 Rationale Guarantee the satisfaction of all requests within certain constraints

Ra7 Rationale Create instances as needed by actions of an intermediary

When

Sr1 Risk An intermediary cannot compensate for semantic changes

What

Pr1 Property Modifiability

Im1 Measure Number of modules that require changing to implement a change

Which

Ta1 Tactic Use an intermediary

Fr1 Fragment Blackboard repository

Fr2 Fragment Passive repository

Fr3 Fragment Broker

Fr4 Fragment Name server

Fr5 Fragment Façade

216

Fr6 Fragment Bridge

Fr7 Fragment Mediator

Fr8 Fragment Strategy

Fr9 Fragment Proxy

Fr10 Fragment Factory

Fr11 Fragment Resource manager

Table A IV.10 Software design artifacts (SDA) of the tactic “Runtime registration”

SDA Type Description

Why

Go1 Goal Control the time to implement, test, and deploy changes

Go2 Goal Control the cost to implement, test, and deploy changes

Dc1 Concern Defer binding time

Ra1 Rationale Support plug-and-play operation

Ra2 Rationale Do registration at runtime

Ra3 Rationale Do registration at loadtime

When

Sr1 Risk Additional overhead to manage the registration

What

Pr1 Property Modifiability

Which

Ta1 Tactic Runtime registration

217

Table A IV.11 Software design artifacts (SDA) of the tactic “Configuration files”

SDA Type Description

Why

Go1 Goal Control the time to implement, test, and deploy changes

Go2 Goal Control the cost to implement, test, and deploy changes

Dc1 Concern Defer binding time

Ra1 Rationale Set parameters at startup

When

Sr1 Risk Additional overhead to manage the initialization

What

Pr1 Property Modifiability

Which

Ta1 Tactic Configuration files

Fr1 Fragment XML configuration file

Table A IV.12 Software design artifacts (SDA) of the tactic “Polymorphism”

SDA Type Description

Why

Go1 Goal Control the time to implement, test, and deploy changes

Go2 Goal Control the cost to implement, test, and deploy changes

Dc1 Concern Defer binding time

Ra1 Rationale Allow late binding of method calls

When

Sr1 Risk Additional overhead to manage the late binding

What

Pr1 Property Modifiability

Which

Ta1 Tactic Polymorphism

218

Table A IV.13 Software design artifacts (SDA) of the tactic “Component replacement”

SDA Type Description

Why

Go1 Goal Control the time to implement, test, and deploy changes

Go2 Goal Control the cost to implement, test, and deploy changes

Dc1 Concern Defer binding time

Ra1 Rationale Allow loadtime binding

When

Sr1 Risk Additional overhead to manage the loadtime binding

What

Pr1 Property Modifiability

Which

Ta1 Tactic Component replacement

Table A IV.14 Software design artifacts (SDA) of the tactic “Adherence to defined
protocols”

SDA Type Description

Why

Go1 Goal Control the time to implement, test, and deploy changes

Go2 Goal Control the cost to implement, test, and deploy changes

Dc1 Concern Defer binding time

Ra1 Rationale Allow runtime binding of independent processes

When

Sr1 Risk Additional overhead to manage the runtime binding

What

Pr1 Property Modifiability

Which

 APPENDIX V

INPUTS AND OUTPUTS OF THE CASE STUDY IN WEB ENGINEERING

Work statement

The following web pages were required by the customer for the web site.

Figure A V.1 Web page ‘Entry.html’

220

Figure A V.2 Web page ‘Home.html’

Figure A V.3 Web page ‘Enterprise.html’

222

Figure A V.4 Web page ‘Products.html’

223

Figure A V.5 Web page ‘Contacts.html’

224

 APPENDIX VI

INPUTS AND OUTPUTS OF THE EXPERIMENT WITH A HUMAN PARTICIPANT

Work statement for the development of the web site

“Votre tâche consiste à concevoir le site Web de la compagnie « Mégrafo Inc. ». Cette
compagnie reproduit des diplômes sur du métal encadré. Utilisez les fichiers disponibles dans
megrafo.zip.

Règle de conception

Vous devez créer votre site à l'aide du langage HTML. Vous devez remettre des pages
valides (XHTML et CSS). Vous pouvez utiliser les validateurs du W3C pour vous assurer de
la validité de vos pages. Vous devez déterminer le type de document le plus stricte possible
pour chaque fichier.

Répertoire de travail

Créez le répertoire /megrafo dans lequel vous mettrez tous les fichiers html que vous
utiliserez. Créez le répertoire /megrafo/images dans lequel vous mettrez toutes les images
que vous utiliserez. Créez le répertoire /megrafo/css dans lequel vous mettrez toutes les
feuilles de styles que vous créez.

Feuilles de style externes : styles_base.css et liens.css

Créez un fichier nommé styles_base.css. Indiquez le commentaire « Styles de base pour le
site Web de Mégrafo. » dans le haut du fichier. Dans ce fichier, créez les styles suivants.

L'élément body a l'image de fond « rd1956_filigrane_l.jpg », cette dernière est fixée et ne se
répète pas. Dans l'élément body, le texte est de couleur « #000033 », cette dernière est
spécifiée dans la forme courte de CSS. La police par défaut du texte est « Monotype Corsiva
», mais cette dernière n'est pas supportée par tous les navigateurs. Pour ces derniers, la police
du texte est « sans-serif ». La taille du texte est de 12 points.

Le texte défini dans l'élément h1 a une taille de 18 points, dans l'élément h2 une taille de 14
points et dans l'élément h3 une taille de 12 points. Dans l'élément p, la police par défaut du
texte est «Tashoma », mais cette dernière n'est pas supportée par tous les navigateurs. Pour
ces derniers, la police du texte est « sans-serif ».

226

Créez un fichier nommé liens.css. Indiquez le commentaire « Styles des liens pour le site
Web de Mégrafo. » dans le haut du fichier. Dans ce fichier, créez les styles suivants.

Le texte dans l'élément a n'est pas enrichi. Il est de couleur « #ffff00 », cette dernière est
spécifiée dans la forme courte de CSS. La police par défaut du texte est «Helvetica », mais
cette dernière n'est pas supportée par tous les navigateurs. Pour ces derniers, la police du
texte est « sans-serif ». La taille du texte est de 8 points et les caractères sont espacés (ou le «
crénage » est) de « 0.2em ». L'espace entre la zone de contenu et la bordure est de 10 pixels
en haut et en bas, et de 0 pixel à gauche et à droite.

Le texte dans l'élément a:hover n'est pas enrichi. Il est de couleur « #ffffff », cette dernière
est spécifiée dans la forme courte de CSS. La police par défaut du texte est «Tashoma », mais
cette dernière n'est pas supportée par tous les navigateurs. Pour ces derniers, la police du
texte est « sans-serif ». La taille du texte est de 8 points. L'espace entre la zone de contenu et
la bordure est de 10 pixels en haut et en bas, et de 0 pixel à gauche et à droite. La bordure du
bas a une largeur de 1 pixel, est solide et de couleur « #ffff00 ». Cette dernière règle souligne
le texte d'un trait jaune lorsque le curseur passe au-dessus d'un lien.

Dans les fichiers nommés accueil.htm, entreprise.htm et contacts.htm, insérez un lien vers la
feuille de style externe « styles_base.css ». Dans le fichier menu.htm, insérez un lien vers la
feuille de style « liens.css ».

Styles internes

Dans le fichier nommé menu.htm, la couleur de fond de l'élément body est « #000000 », cette
dernière est spécifiée dans la forme courte de CSS. Dans l'élément body, le texte est de
couleur « #ffffff », cette dernière est spécifiée dans la forme courte de CSS. La police par
défaut du texte est « Monotype Corsiva », mais cette dernière n'est pas supportée par tous les
navigateurs. Pour ces derniers, la police du texte est « sans-serif ». La taille du texte est de 14
points et les caractères sont espacés (ou le « crénage » est) de 2 pixels. L'espace entre la zone
de contenu et la bordure est de 0 pixel pour tous les côtés. Le texte défini dans l'élément h1 a
une taille de 18 points et n'est pas indenté.

227

Dans le fichier nommé contacts.htm, les bordures en bas et à gauche de l'élément table ont
une largeur de 2 pixels, sont solides et de couleur « #000033 », cette dernière est spécifiée
dans la forme courte de CSS. Les autres bordures (en haut et à droite) ont une largeur de 0
pixel. L'espace entre la zone de contenu et la bordure est de 5 pixels pour tous les côtés.
L'espace entre les bordures est également de 5 pixels pour tous les côtés.

Dans le fichier nommé marge.htm, la couleur de fond de l'élément body est « #000033 »,
cette dernière est spécifiée dans la forme courte de CSS. Dans l'élément body, le texte est de
couleur « #ffffff », cette dernière est spécifiée dans la forme courte de CSS.

Dans le fichier nommé produits.htm, la couleur de fond de l'élément body est « #000033 »,
cette dernière est spécifiée dans la forme courte de CSS. La police par défaut du texte est «
Monotype Corsiva », mais cette dernière n'est pas supportée par tous les navigateurs. Pour
ces derniers, la police du texte est « sans-serif ». Le texte défini dans l'élément h1 a une taille
de 18 points. Dans l'élément p, la police par défaut du texte est «Tashoma », mais cette
dernière n'est pas supportée par tous les navigateurs. Pour ces derniers, la police du texte est
« sans-serif ». Les images ont une largeur de 122 pixels, une hauteur de 107 pixels et ont une
largeur de 0 pixel pour les bordures. Les images sont centrées dans la page à l'aide d'un
élément de niveau bloc dont la classe se nomme « centre ».

Styles en ligne

Dans tous les fichiers, remplacez chaque attribut dédié à la présentation par une règle CSS
valide. De plus, éliminez les attributs inutilisés. Par exemple, l'attribut border ="0" associé à
l'élément table dans le fichier contacts.htm est inutile puisqu'une règle CSS créée
précédemment produit le même effet.

Liste des propriétés utilisées

Les propriétés CSS utilisées pour ce travail pratique sont les suivantes :

background-attachment, background-color, background-image, background-repeat, border,
border-bottom, color, font-family, font-size, height, letter-spacing, padding, text-align, text-
decoration, text-indent, width

229

BIBLIOGRAPHY

[Abow93] G. Abowd, R. Allen, and D. Garlan. “Using Style to Understand Descriptions of

Software Architecture.” First ACM SIGSOFT Symposium on the Foundations of

Software Engineering, pages 9-20, Los Angeles, CA, December 1993.

[Abow95] Abowd, G. D., Allen, R., Garlan, D., “Formalizing style to understand

descriptions of software architecture”, ACM Transactions on Software Engineering

and Methodology, pp. 319–364, 1995.

[Abra01] Abran, A., Bourque, P., Dupuis, R., and W. Moore, J., “Guide to the Software

Engineering Body of Knowledge”, IEEE Press, Piscataway, NJ, USA, 2001.

[Abra06] Abran , A., Al-Qutaish, R. E., Cuadrado-Gallego, J., “Investigation of the

Metrology Concepts in ISO 9126 on Software Product Quality Evaluation”, In

Proceedings of the 10th WSEAS International Conference on Computers

(ICComp'2006), July 13-15, Athens, Greece, 2006, pp. 864-872. (ISBN: 960-8457-

47-5)

[Alex77] Alexander, C., Ishikawa, S., Silverstein, M., “A pattern language: towns, buildings,

construction”, volume 2 of Center for Environmental Structure, Oxford Univ. Press,

New York; ISBN 0-19-501919-9, 1977.

[Alle97] Robert Allen and David Garlan. A formal basis for architectural connection. ACM

Transactions on Software Engineering and Methodology (TOSEM), Volume 6, July

1997, 213-249.

[Ande01] Jonas Andersson and Pontus Johnson. 2001. Architectural Integration Styles for

Large-Scale Enterprise Software Systems. In Proceedings of the 5th IEEE

International Conference on Enterprise Distributed Object Computing (EDOC '01).

IEEE Computer Society, Washington, DC, USA, 224-.

[Argo00] Argote, L., Ingram, P. 2000. “Knowledge transfer: A basis for competitive

advantage in firms”, Organizational Behavior and Human Decision Processes, 82,

150–169.

230

[Bach01] Bachmann, F., Clements, P., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.,

Special report, CMU/SEI-2001-SR-010, SEI Workshop on Software Architecture

Representation, May 2001.

[Bach03a] Bachmann, F., Bass, L., Klein, M., “Deriving Architectural Tactics: A Step

Methodical Architectural Design”, Technical Report, CMU/SEI-2003-TR-004, March

2003.

[Bach03b] Bachmann, F., Bass, L., Klein, M., “Preliminary Design of ArchE: A Software

Architecture Design Assistant”, Technical Report, CMU/SEI-2003-TR-021,

September 2003.

[Bach07] Bachmann, F., Bass, L., Bianco, P., “Software Architecture Design with ArchE”,

Software Engineering Institute, March 2007.

[Barb95] Mario Barbacci, Thomas H., Longstaff Mark, H. Klein, Charles B. Weinstock,

Technical report, CMU/SEI-95-TR-021 ESC-TR-95-021, December 1995.

[Bass03] Bass, L., Clements, P., Kazman, R., “Software architecture in practice”, 2nd,

Addison Wesley, 2003.

[Bass05] Bass, L., Ivers, J., Klein, M., Merson, P., “Reasoning Frameworks”, Technical

report, CMU/SEI-2005-TR-007, July 2005.

[Bern01] Tim Berners-Lee, James Hendler, and Ora Lassila, “The semantic web”, Scientific

American, 35–43, May 2001.

[Bert05] A. Bertolino, A. Bucchiarone, S. Gnesi, H. Muccini, “An architecture-centric

approach for producing quality systems”. In QoSA, pages 21–37, 2005.

[Bhat05] Sutirtha Bhattacharya and Dewayne E. Perry. 2005. Predicting Architectural Styles

from Component Specifications. 5th Working IEEE/IFIP Conference on Software

Architecture (WICSA '05). IEEE Computer Society, DC, USA, 231-232.

[Booc96] G. Booch, I. Jacobson, J. Rumbaugh, “Unified Modeling Language for Object

Oriented Development”, Rational Software Corporation, 1996.

[Booc99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User

Guide. Addison-Wesley, 1999.

[Bosc04] J. Bosch, "Software architecture: The next step" in Lecture Notes in Computer

Science. vol. 3047, 2004, pp. 194-199.

231

[Busc96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael

Stal. 1996. Pattern-Oriented Software Architecture: A System of Patterns. John Wiley

& Sons, New York, NY, USA.

[Capi08] Capilla, R., Babar, M. A.: On the Role of Architectural Design Decisions in

Software Product Lines Engineering. Software Architecture: Second International

Conference, ECSA 2008

[Clar96] Edmund M. Clarke and Jeannette M. Wing. Formal methods: state of the art and

future directions. ACM Comput. Surv. 28, 4 (December 1996), 626-643.

[Clem03] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R.,

Stafford, J.: Documenting Software Architectures – Views and Beyond. Addison

Wesley, Boston (2003)

[Copl96] Coplien, J., Software Patterns, New York; ISBN 1-88484-250-X, 1996.

[Copl97] James O. Coplien. 1997. Idioms and Patterns as Architectural Literature. IEEE

Software. 14, 1 (January 1997), 36-42.

[Cord06] Rogelio Limon Cordero and Isidro Ramos Salavert. 2006. Using Styles to Improve

the Architectural Views Design. International Conference on Software Engineering

Advances (ICSEA '06). IEEE Computer Society, DC, USA, 49-57.

[Czar00] Czarnecki, K., Eisenecker, U., “Generative Programming: Methods, Tools, and

Applications”, Addison Wesley, 2000.

[Dave98] Davenport, T. H., Prusak, L. 1998. Working knowledge: How organizations

manage what they know. Boston, MA. Harvard Business School Press.

[Deme03] Demeyer, Ducasse et Nierstrasz, Object-Oriented Reengineering Patterns, 2003,

Morgan Kaufmann Publishers

[Duke95] Roger Duke, Gordon Rose, and Graeme Smith. 1995. Object-Z: a specification

language advocated for the description of standards. Computer Standards &

Interfaces, 17, 5-6 (September 1995), 511-533.

[Dupu00] Sophie Dupuy, Yves Ledru, and Monique Chabre-Peccoud. 2000. An Overview of

RoZ: A Tool for Integrating UML and Z Specifications. 12th International

Conference on Advanced Information Systems Engineering (CAiSE '00), Benkt

Wangler and Lars Bergman (Eds.). Springer-Verlag, London, UK, 417-430.

232

[East93] Eastwood, A., “Firm fires shots at legacy systems”, Computing Canada, p. 17, 1993.

[Erli00] Erlikh, L., “Leveraging legacy system dollars for E-business”, IEEE IT Pro, 2000,

17-23.

[Fire05] Donald G. Firesmith: “Quality Requirements Checklist”, in Journal of Object

Technology, vol. 4, no. 9 November-December 2005, pp. 31-38,

www.jot.fm/issues/issue_2005_11/column4

[Gamm95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, "Design Patterns: Elements of

Reusable Object-Oriented Software", Addison-Wesley, 1995.

[Garl94] D. Garlan, M. Shaw, "An introduction to software architecture", Technical report,

Carnegie Mellon University, Pittsburgh, PA, USA, 1994.

[Garl95] D. Garlan, D.E. Perry, "Introduction to the special issue on software architecture",

IEEE Transactions on Software Engineering, 21(4): 269–274, 1995.

[Garl00a] D. Garlan, "Software architecture: a roadmap”, Conference on The Future of

Software Engineering, pages 91–101, New York, NY, USA, 2000, ACM.

[Garl00b] David Garlan, Robert T. Monroe, and David Wile. Acme: architectural description

of component-based systems. In Foundations of component-based systems, Gary T.

Leavens and Murali Sitaraman (Eds.). Cambridge University Press, New York, NY,

USA 47-67, 2000.

[Gies06] Simon Giesecke. 2006. Taxonomy of architectural style usage. In Proceedings of

the 2006 conference on Pattern languages of programs (PLoP '06). ACM, New York,

NY, USA, , Article 32 , 10 pages.

[Gies07] Simon Giesecke, Matthias Rohr, Florian Marwede, and Wilhelm Hasselbring. 2007.

A style-based architecture modelling approach for UML 2 component diagrams. In

Proceedings of the 11th IASTED International Conference on Software Engineering

and Applications (SEA '07), Jeffrey E. Smith (Ed.). ACTA Press, Anaheim, CA,

USA, 530-538.

[Gold05] Elspeth Golden, Bonnie E. John, and Len Bass. 2005. The value of a usability-

supporting architectural pattern in software architecture design: a controlled

experiment. In Proceedings of the 27th international conference on Software

engineering (ICSE '05). ACM, New York, NY, USA, 460-469.

233

[Grad87] R. B. Grady, D. L. Caswell, "Software measures: establishing a company-wide

program", Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.

[Grun04] Grünbacher, P., Egyed, A., Medvidovic, N., “Reconciling Software Requirements

and Architectures with Intermediate Models,” Journal for Software and System

Modeling (SoSyM), Vol.3, N.3, August 2004, pp. 235-253.

[Guo05] Ping Guo, Gregor Engels, and Reiko Heckel. 2005. Architectural Style - Based

Modeling and Simulation of Complex Software Systems. In Proceedings of the 12th

Asia-Pacific Software Engineering Conference (APSEC '05). IEEE Computer

Society, Washington, DC, USA, 367-374.

[Hami99] Ali Hamie. 1999. Enhancing the Object Constraint Language for More Expressive

Specifications. In Proceedings of the Sixth Asia Pacific Software Engineering

Conference (APSEC '99). IEEE Computer Society, Washington, DC, USA, 376-.

[Harr08] Harrison, N.B., Avgeriou, P., “Incorporating Fault Tolerance Tactics in Software

Architecture Patterns”, Proceedings of the RISE/EFTS Joint International Workshop

on Software Engineering for Resilient Systems, pp. 9-18, 2008.

[Hofm07] Christine Hofmeister, Philippe Kruchten, Robert L Nord, Henk Obbink, Alexander

Ran, Pierre America: “A general model of software architecture design derived from

five industrial approaches”, Journal of Systems and Software, Vol. 80, Issue 1, pp.

106--126 (2007)

[Horr04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin

Grosof, Mike Dean, SWRL: A Semantic Web Rule Language, W3C

Recommendation, http://www.w3.org/Submission/SWRL/, May 2004.

[Hors06] Horstmann, C., “Object-Oriented Design and Patterns”, Second Edition, Wiley,

2006.

[IEEE1471–00] IEEE Std. 1471–2000, “IEEE Recommended Practice for Architectural

Description of Software-Intensive Systems”, IEEE, 2000.

[IEEE610.12-90] IEEE Std 610.12-1990 (R2002), “IEEE Standard Glossary of Software

Engineering Terminology”, IEEE, 1990.

[Inkp96] Inkpen, A. C. (1996) “Creating knowledge through collaboration”, California

Management Review, Vol 39, No 1, pp 123-140.

234

[ISO24765-08] ISO-IEC-24765, “Systems and software engineering vocabulary”,

International Organization for Standardization, 2008.

[ISO9126-01] ISO/IEC-9126, “Software Engineering - Product Quality Model”, International

Organization for Standardization, Geneva (Switzerland), 2004.

[ISO42010] Standard, I.: ISO/IEC 42010 Systems and Software Engineering -

Recommended Practice for Architectural Description of Software-Intensive Systems,

2011.

[ISO25000] Standard, I.: ISO/IEC 25000 Systems and software engineering - Systems and

software Quality Requirements and Evaluation (SQuaRE), 2014.

[Jack06] Jackson, S., Chuang, C., Harden, E., Jiang,Y. 2006. Toward developing human

resource management systems for knowledge-intensive teamwork. Research in

Personnel and Human Resources Management, 25, 27–70.

[Jans04] Jansen, A., Bosch, J.: Evaluation of Tool Support for Architectural Evolution. In:

19th IEEE International Conference on Automated Software Engineering, pp. 375--

378. IEEE Computer Society, Linz (2004)

[Jans05] Jansen, A., Bosch, J., "Software Architecture as a Set of Architectural Design

Decisions," in Software Architecture, 2005. WICSA 2005. 5th Working IEEE/IFIP

Conference on, 2005, pp. 109-120.

[Jans07] Jansen, A., Van der Ven, J., Avgeriou, P., and Hammer, D. K., "Tool Support for

Architectural Decisions," in Software Architecture, 2007. WICSA '07. The Working

IEEE/IFIP Conference on, 2007, pp. 4-4.

[Kace05] Mohamed Hadj Kacem and Ahmed Hadj Kacem. 2005. Using UML2.0 and GG for

Describing the Dynamic of Software Architectures. In Proceedings of the Third

International Conference on Information Technology and Applications (ICITA'05)

Volume 2 - Volume 02 (ICITA '05), Vol. 2. IEEE Computer Society, Washington,

DC, USA, 46-51.

[Kell08] Kelly, S., Tolvanen, J., “Domain-specific Modelling: Enabling Full Code

Generation”, ISBN: 978-0-470-03666-2, 2008.

[Khal10] Khaled, L.: Achieving Goals through Architectural Design Decisions. Journal of

Computer Science. 6, 1424--1429 (2010)

235

[Kim09] Kim, S., Kim, D-K., Lu, L., Park, S., “Quality-driven architecture development

using architectural tactics”, in the journal of Systems and Software Vol.82, Issue 8,

August 2009, pp.1211-1231.

[Kim10] Kim, S., Kim, D., Park, S. “Tool support for quality-driven development of

software architectures”, In Proceedings of the IEEE/ACM international conference on

Automated software engineering (ASE '10), ACM, New York, NY, USA, 127-130,

2010.

[Kim10a] Jung Soo Kim, David Garlan. 2010. Analyzing architectural styles. J. Syst. Softw.

83, 7 (July 2010), 1216-1235.

[Klei99] M. Klein, R. Kazman, "Attribute-Based Architectural Styles", Technical report,

CMU/SEI-99-TR-022, October 1999.

[Kozi11] Koziolek, A., Koziolek, H., Reussner, R.: PerOpteryx: Automated Application of

Tactics in Multi-Objective Software Architecture Optimization. In: Proceedings

International Conference on the Quality of Software Architectures, pp. 33--42 (2011)

[Kruc06] Kruchten, P., Lago, P., Vliet, H.V.: Building up and Reasoning about Architectural

Knowledge. In: 2nd International Conference on the Quality of Software

Architectures (QoSA), pp. 39--47. (2006)

[Kruc95] Kruchten, P.: Architectural Blueprints—The “4+1” View Model of Software

Architecture. Paper published in IEEE Software 12 (6), pp. 42--50. IEEE Computer

Society, Linz (1995)

[Lams03] van Lamsweerde, A., “From System Goals to Software Architecture,” in Formal

Methods for Software Architectures, LNCS, vol.2804, pp.25-43, 2003.

[Larm05] C. Larman, “Applying UML and patterns: an introduction to object-oriented

analysis and design and the unified process”, Upper Saddle River (NJ), Prentice Hall,

2005.

[Losa03] F. Losavio, L. Chirinos, N. Lévy, A. Ramdane-Cherif, “Quality characteristics for

software architecture”. Journal of Object Technology, 2(2): 133–150, 2003.

[Loul04] Imen Loulou, Ahmed Hadj Kacem, Mohamed Jmaiel, and Khalil Drira. 2004.

Towards a Unified Graph-Based Framework for Dynamic Component-Based

Architectures Description in Z. In Proceedings of the The IEEE/ACS International

236

Conference on Pervasive Services (ICPS '04). IEEE Computer Society, Washington,

DC, USA, 227-234.

[Loul06] I. Loulou, A. H. Kacem, M. Jmaiel, and K. Drira. 2006. Compositional

specification of event-based software architectural styles. In Proceedings of the IEEE

International Conference on Computer Systems and Applications (AICCSA '06).

IEEE Computer Society, Washington, DC, USA, 337-344.

[Medv10] Nenad Medvidovic and Richard N. Taylor. 2010. Software architecture:

foundations, theory, and practice. In Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering - Volume 2 (ICSE '10), Vol. 2.

ACM, New York, NY, USA, 471-472.

 [Medv99a] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. “A Language and

Environment for Architecture-Based Software Development and Evolution.” In

Proceedings of the 21st International Conference on Software Engineering (ICSE’99),

Los Angeles, CA, May 1999.

[Medv99b] N. Medvidovic and D. S. Rosenblum. “Assessing the Suitability of a Standard

Design Method for Modeling Software Architectures.” In Proceedings of the First

Working IFIP Conference on Software Architecture (WICSA1), pages 161-182, San

Antonio, TX, February 1999.

[Medv00] Medvidovic N., Taylor R.N., “A classification and comparison framework for

software architecture description languages”, IEEE Transactions on Software

Engineering, Vol.26, No.1, p.70-93, January 2000.

[Medv02] Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E.

Robbins. 2002. Modeling software architectures in the Unified Modeling Language.

ACM Trans. Softw. Eng. Methodol. 11, 1 (January 2002), 2-57.

[Meht00] Nikunj R. Mehta, Nenad Medvidovic, and Sandeep Phadke. 2000. Towards a

taxonomy of software connectors. In Proceedings of the 22nd international

conference on Software engineering (ICSE '00). ACM, New York, NY, USA, 178-

187.

237

[Mike09] Categories of software requirements,

http://www.mikethearchitect.com/2009/04/qualifying-architecture-with-quality-

attributes.html

[Mila08] Mohamed Nadhmi Miladi, Mohamed Hadj Kacem, Achraf Boukhris, Mohamed

Jmaiel, and Khalil Drira. 2008. A UML rule-based approach for describing and

checking dynamic software architectures. In Proceedings of the 2008 IEEE/ACS

International Conference on Computer Systems and Applications (AICCSA '08).

IEEE Computer Society, Washington, DC, USA, 1107-1114.

[Mill03] J. Miller, J. Johansson, MDA Guide, Object Management Group, 2003.

www.omg.org/docs/omg/03-06-01.pdf

[Monr96] Robert T. Monroe and David Garlan. 1996. Style-Based Reuse for Software

Architectures. In Proceedings of the 4th International Conference on Software Reuse

(ICSR '96). IEEE Computer Society, Washington, DC, USA, 84-.

[Monr97] Robert T. Monroe, Andrew Kompanek, Ralph Melton, and David Garlan. 1997.

Architectural Styles, Design Patterns, and Objects. IEEE Softw. 14, 1 (January 1997),

43-52.

[Mylo92] Mylopoulos, J., Chung, L., Nixon, B., “Representing and using non-functional

requirements: a process-oriented approach,” IEEE Transactions on Software

Engineering, 1992; 18(6).

[Nadh08] Mohamed Nadhmi Miladi, Mohamed Hadj Kacem, Achraf Boukhris, Mohamed

Jmaiel, and Khalil Drira. 2008. A UML rule-based approach for describing and

checking dynamic software architectures. In Proceedings of the 2008 IEEE/ACS

International Conference on Computer Systems and Applications (AICCSA '08).

IEEE Computer Society, Washington, DC, USA, 1107-1114.

[Nort07] Linda Northrop, Architecting High Quality Software, September, 2007 © 2007

Carnegie Mellon University

[Omg06] OMG. Object Constraint Language Version 2, Object Management Group, May

2006, http://www.omg.org/spec/OCL/2.0/.

238

[Ovas10] Ovaska, E., Evesti, A., Henttonen, K., Palviainen, M., Aho, P., “Knowledge based

quality-driven architecture design and evaluation”, Journal of Information and

Software Technology, Vol.52 pp.577–601, June 2010.

[Pahl09] Claus Pahl, Simon Giesecke, and Wilhelm Hasselbring. 2009. Ontology-based

modelling of architectural styles. Inf. Softw. Technol. 51, 12 (December 2009), 1739-

1749.

[Pari08] Parizi, R.M., Ghani, A.: Architectural Knowledge Sharing (AKS) Approaches: a

Survey Research. Journal of Theoretical and Applied Information Technology, 1224--

1235 (2008)

[Ralp85] Ralph E. Steuer, “Multicriteria Optimization -Theory, Computation and

Application”, 1985

[Rewe06] REWERSE I1 Rule Markup Language (R2ML), 2006, http://oxygen.informatik.tu-

cottbus.de/rewerse-i1/?q=node/6.

[Reza05] Hassan Reza and Emanuel Grant. 2005. Quality-Oriented Software Architecture. In

Proceedings of the International Conference on Information Technology: Coding and

Computing (ITCC'05) - Volume I - Volume 01 (ITCC '05), Vol. 1. IEEE Computer

Society, Washington, DC, USA, 140-145.

[Rich02] Mark Richters and Martin Gogolla. 2002. OCL: Syntax, Semantics, and Tools. In

Object Modeling with the OCL, The Rationale behind the Object Constraint

Language, Tony Clark and Jos Warmer (Eds.). Springer-Verlag, London, UK, UK,

42-68.

[Robb98] J. E. Robbins, N. Medvidovic, D. F. Redmiles, and D. S. Rosenblum. “Integrating

Architecture Description Languages with a Standard Design Method.” In Proceedings

of the 20th International Conference on Software Engineering (ICSE’98), pages 209-

218, Kyoto, Japan, April 1998.

[Scot09] Scott, J., Kazman, R., “Realizing and Refining Architectural Tactics: Availability”,

Technical report, CMU/SEI-2009-TR-006, August 2009.

[Seac03] Seacord, R., Plakosh, D. & Lewis, G., “Modernizing Legacy Systems: Software

Technologies, Engineering Processes, and Business Practices”, SEI Series in

Software Engineering, Addison-Wesley, 2003.

239

[Shah09] Shahin, M., Liang, P., Khayyambashi, M.R.: Architectural Design Decision:

Existing Models and Tools. In: WICSA/ECSA 2009, pp. 293--296. IEEE, Cambridge

(2009)

 [Shar10] Sharafi, S.M., Ghazvini, G.A., Emadi, S., “An analytical model for performance

evaluation of software architectural styles”, Software Technology and Engineering

(ICSTE), pp.394-398, 2010.

[Shaw95] M. Shaw and D. Garlan. “Formulations and Formalisms in Software Architecture.”

Jan van Leeuwen, editor, Computer Science Today: Recent Trends and

Developments, Springer-Verlag Lecture Notes in Computer Science, Volume 1000,

1995.

[Shaw96] M. Shaw, D. Garlan, “Software architecture: perspectives on an emerging

discipline”, Prentice-Hall, USA, 1996.

[Shaw97] Mary Shaw and Paul C. Clements. 1997. A Field Guide to Boxology: Preliminary

Classification of Architectural Styles for Software Systems. In Proceedings of the

21st International Computer Software and Applications Conference (COMPSAC '97).

IEEE Computer Society, Washington, DC, USA, 6-13.

[Smit00a] G. Smith. The Object-Z Specification Language. Kluwer Academic Publisher,

2000.

[Smit00b] Michael K. Smith, Chris Welty, and Deborah L. McGuinness. Owl web ontology

language guide. W3C Recommendation, http://www.w3c.org/TR/owl-guide/,

February 2004.

[Spiv92] Spivey, J.M., “The Z Notation: A reference manual”, 2nd edition, Prentice Hall

International Series in Computer Science, 1992.

[Stad79] Stadler, W., “A Survey of Multicriteria Optimization, or the Vector Maximum

Problem,” Journal of Optimization Theory and Applications, Vol. 29, pp. 1-52, 1979.

[Stad84] Stadler, W. “Applications of Multicriteria Optimization in Engineering and the

Sciences (A Survey),” Multiple Criteria Decision Making –Past Decade and Future

Trends, ed. M. Zeleny, JAI Press, Greenwich, Connecticut, 1984.

[Stan09] Standish Group, “CHAOS Report”, West Yarmouth, Massachusetts, Standish

Group Report, 2009.

240

[Tang10] Antony Tang, Paris Avgeriou, Anton Jansen, Rafael Capilla, and Muhammad Ali

Babar. 2010. A comparative study of architecture knowledge management tools. J.

Syst. Softw. 83, 3 (March 2010), 352-370.

[Tria95] Triantaphyllou, E., Mann, H. S., “Using the Analytic Hierarchy Process for

Decision Making in Engineering Applications: Some Challenges”, International

Journal of Industrial Engineering: Applications and Practice, 2(1):35--44, 1995.

[Tyre05] Tyree, J., Akerman, A.: “Architecture Decisions: Demystifying Architecture”.

IEEE Software 22, 19--27 (2005)

[Wanf09] Wanfeng Bu, Antony Tang, and Jun Han, “An analysis of decision-centric

architectural design approaches”, Technical Report: SUTICT-TR2009.01, 2009.

[Warm99] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling

with UML. Addison-Wesley, 1999.

[Wyet09] Wyeth, A., Zhang, C., “Formal specification of software architecture design tactics

for the security quality attribute”, California State University, Sacramento, Master

thesis, 2009.

[Wing98] Jeannette M. Wing. 1998. Formal Methods: Past, Present, and Future. In

Proceedings of the 4th Asian Computing Science Conference on Advances in

Computing Science (ASIAN '98), Jieh Hsiang and Atsushi Ohori (Eds.). Springer-

Verlag, London, UK, 224-.

[Wojc06] Wojcik, R. & a.l., “Attribute-driven design”, SEI, 2006.

http://www.sei.cmu.edu/publications/documents/06.reports/06tr023.html

[Wood07] W. G. Wood, “A practical example of applying ADD”, SEI, 2007.

http://www.sei.cmu.edu/publications/documents/07.reports/07tr005.html

[Wood09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. 2009.

Formal methods: Practice and experience. ACM Comput. Surv. 41, 4, Article 19

(October 2009), 36 pages.

[Zach11] The Zachman Framework, http://zachman.com/about-the-zachman-framework

[Zimm12] O. Zimmermann, C. Miksovic, J. Küster, Reference Architecture, Metamodel and

Modeling Principles for Architectural Knowledge Management in Information

241

Technology Services. Journal of Systems and Software, Elsevier. Volume 85, Issue 9,

Pages 2014-2033, Sept. 2012.

[Zimm11] O. Zimmermann, Architectural Decisions as Reusable Design Assets. IEEE

Software, Volume 28, Issue 1, Pages 64-69, Jan./Feb. 2011.

[Zimm09] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, N. Schuster, Managing

Architectural Decision Models with Dependency Relations, Integrity Constraints, and

Production Rules. Journal of Systems and Software, Elsevier. Volume 82, Issue 8,

August 2009, Pages 1249-1267.

[Zhan09] Zhang, W., Hansen, K. M., Fernandes, J., “Towards OpenWorld Software

Architectures with Semantic Architectural Styles, Components and Connectors”, In

Proceedings of the 2009 14th IEEE International Conference on Engineering of

Complex Computer Systems (ICECCS '09), IEEE Computer Society, Washington,

DC, USA, 40-49, 2009.

[Zou07] Zou, X. Huand, J.C., Settimi, R., and Solc, P. “Automated classification of non-

functionnal requirements”. ACM, Requirements Engineering, p. 103-120, 2007.

