
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

UNIVERSITÉ DU QUÉBEC

THESIS PRESENTED TO

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

Ph.D.

BY

Faten M’HIRI

ANGIOGRAPHIC IMAGE ANALYSIS FOR THE DIAGNOSIS OF CORONARY

DISEASE IN YOUNG PATIENTS

MONTREAL, 29 JUNE 2016

Faten M’hiri, 2016



This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.



BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS:

M. Luc Duong, thesis director

Département de génie logiciel et des technologies de l’information, École de technologie

supérieure

M. Mohamed Cheriet, co-advisor

Département de la génie de la production automatisée, École de technologie supérieure

M. Éric Wagnac, committee president

Département de génie mécanique, École de technologie supérieure

M. Tien Dai Bui, external examiner

Department of Computer Science and Software Engineering, Concordia University

Mme. Sylvie Ratté, invited examiner

Département de génie logiciel et des technologies de l’information, École de technologie

supérieure

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON 24 MAY 2016

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE





"A man will continue to have knowledge as long as he is seeking knowledge.

If he assumes that he has knowledge, then he has become ignorant."

Ibn Al-Mubarak





ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor and co-supervisor Luc Duong and Mohamed

Cheriet for giving me the chance to take this adventure. Thank you Luc for your advice and for

introducing me to this wonderful research topic by accepting me as an intern and as a student

later. Thank you also for giving me the opportunity to have my first teaching experience. Thank

you M. Cheriet for your help, advice and support during all this time.

I thank the board of examiners: professors Éric Wagnac, Tien Dai Bui, and Sylvie Ratté, who

took patience to read and evaluate this work.

I am indebted to professor Christian Desrosiers: collaborating with you helped me a lot and I

learned so much about graph theory, machine learning and enhancing my scientific approach.

I thank our collaborators in Sainte-Justine Hospital who taught me more about the medical

side of this research and who gave me insightful feedback: Dr. Joaquim Miró and Dr. Nagib

Dahdah and also Dr. Mohamed Leye, Dr. Philippe Adjagba and Dr. Mohamed Bakloul.

I’m grateful to my friend T. Hoang Ngan Le from whom I learned so much on image process-

ing. Thank you for your advice and generosity.

A PhD can be an adventure with a fair share of challenges, but thanks to all of my past and

present lab-mates, they made it into a wonderful adventure. I learned so much with you. Thank

you for your priceless support. Jonathan and Julien thank you for your help when I started this

work. And thanks to the ones who have been part of this lab or still are: The two Jean-

Philippe, Mathieu, Étienne, Pierre-André, Françoise, Sébastien, Soumaya, Matthias, Antoine,

Guy, Himani, Davi, Lina, Alpa (my writing partner. Thank you very much for proofreading

this work), Kuldeep, Emir, Érick, Otilia, Atefeh, Edgar, Laura, Ruth, Mellie, Xavier, Rémi,

Ruben, Gerardo, Binh and Audrey. Thanks to Nedia for the hot chocolate. Many thanks

to my colleagues in the Synchromedia Lab (Reza, Marta, David, Lucas, Rachid) and to the

members of Liv4D lab at the École Polytechnique de Montréal (Lama (thank you for your

encouragements and advice), Hervé and Rola).



VIII

Je tiens à remercier mes parents Sabah et Radhi Mhiri, pour être des parents formidables,

toujours ouverts et à l’écoute. Merci à toi maman de m’apprendre à être patiente mais toujours

déterminée. Merci, papa de m’avoir toujours dit que dans la vie on peut tout faire tant qu’on a

la volonté. Votre décision de quitter la Tunisie pour nous et de venir reconstruire une nouvelle

vie au Canada, alors que vous aviez tout en Tunisie, est une preuve pour moi que tout est

possible... même avoir plusieurs vies dans une vie. Merci à mon frère Fares qui m’inspire

malgré son jeune âge: merci pour ton humour décalé et ta joie de vivre.

Merci à mon mari et meilleur ami Habib Sakka, qui a été d’un soutien inconditionnel et indé-

fectible: Merci de croire en moi et de m’encourager à me dépasser et à devenir meilleure et

merci de toujours garder ton sens de l’humour.

Je suis reconnaissante envers toute ma famille Mhiri et Fantar, qui m’a toujours encouragée

dans la poursuite de mes études, et aux nouveaux membres de ma famille: tata Fatma, tonton

Lotfi, Aicha et toute la famille Sakka. Merci pour votre accueil, votre générosité sans faille et

vos encouragements.

Merci aussi à tous mes amis d’ici et d’ailleurs: Emira, Rania, Asma, Juliette et Anne Marie. Je

suis reconnaissante aux employés de l’ETS, avec lesquels j’ai eu le plaisir de travailler, et à mes

camarades du club Tributerre de m’avoir poussé à sortir du laboratoire et à mieux apprécier

la vie étudiante. Merci aux techniciens du département LOG/TI à l’ETS et aux techniciennes

de Sainte Justine et au reste de l’équipe de cardiologie.

I thank the young patients of Sainte Justine and their families. This work is dedicated to them.

Finally, this research was conducted thanks to the financial support of Fond de recherche du

Québec - Nature et technologie (FQRNT) and the Natural Sciences and Engineering Research

Council of Canada (NSERC-CRSNG).



ANGIOGRAPHIC IMAGE ANALYSIS FOR THE DIAGNOSIS OF CORONARY
DISEASE IN YOUNG PATIENTS

Faten M’HIRI

ABSTRACT

Congenital heart disease (CHD) is the leading cause of birth defects worldwide. In Canada,

about 1 in 100 of newborns are with CHD. New methods and protocols to both diagnose and

treat CHD are needed. To diagnose or treat newborns or young patients, cardiologists often

use percutaneous catheter-based interventions (PCI). PCI is based on using a real-time two-

dimensional X-ray moving sequence to navigate inside the patient’s heart. This moving se-

quence will display the artery of the patient during one or more cardiac cycles. During one

cardiac cycle, the diameter of a healthy coronary artery (CA) changes: it expands in diastole,

when the blood flow in the artery increases, and it shrinks in systole. Capturing these diameter

changes is one of the measures used to evaluate the state of the CA as an indicator for a vascular

disease. These measurements are usually done manually on X-ray frames or using other image

modalities such as ultrasounds. This research sheds new light on an automatic method that can

guide the diagnosis of coronary arteries from 2D X-ray sequences. Measuring CA diameter

automatically in the X-ray sequence is not a straightforward task. First, a segmentation step is

needed to extract CA in 2D X-ray angiograms. Second, the CA is tracked during the moving

sequence. Finally, with the segmented and tracked CA, an automatic method measures the di-

ameters of CA at each frame of the sequence and an assessment of diameter variations during

the sequence is presented. Each step presents different challenges regarding : the complexity

of CA structure, the lack of contrast in the images, the presence of motion artifacts, and the

small variations of diameters from one frame to the next. This work introduces new methods

for segmentation, tracking and diameter measurements. Our project is held in collaboration

with the cardiology department at Sainte Justine’s children hospital. The methods developed

in this research have been tested and evaluated on a dataset of X-ray sequences of young pa-

tients. Qualitative and quantitative results show the efficiency of the methods from segmenting

and tracking to measuring the diameter’s variation from X-ray moving sequence.

Keywords: Segmentation, coronary arteries, graph-based method, angiographies, tracking,

cardiology, vessel detection, X-ray





L’ANALYSE D’IMAGE ANGIOGRAPHIQUES POUR LE DIAGNOSTIQUE DES
PATHOLOGIES CORONARIENNE EN PÉDIATRIE

Faten M’HIRI

RÉSUMÉ

Les cardiopathies coronariennes sont parmi les malformations congénitales les plus observées

chez l’enfant et les nouveau-nés. Au Canada, un nouveau né sur 100 est atteint de cardiopathie

congénitale. Aujourd’hui, il existe un réel besoin de nouvelles méthodes et protocoles pour

diagnostiquer et traiter ces cardiopathies. Pour traiter ou faire le diagnostique de ces car-

diopathies, des interventions coronariennes percutanées (ICP) sont réalisées. Les ICP sont

guidées par une séquence de radiographies 2D prises en temps-réel durant un ou plusieurs cy-

cles cardiaques. Durant un cycle cardiaque, le diamètre d’une artère coronaire saine change:

ce diamètre va se dilater en diastole quand le flux sanguin croit à l’intérieur de l’artère et se

contracter en systole. Cette variation de diamètre est l’une des mesures utilisées pour évaluer

l’état de l’artère coronaire (AC) comme indicateur de pathologie vasculaire. Cette mesure est

souvent calculée manuellement à partir d’une image de la séquence radiographique ou encore

en utilisant d’autres modalités d’imagerie comme l’échographie. Cette recherche présente une

nouvelle contribution sur une méthode qui guidera le diagnostique des artères coronaires à par-

tir des séquences de radiographies 2D. Mesurer automatiquement le diamètre d’une artère coro-

naire dans une séquence radiographique est une tâche complexe. D’abord, une étape de seg-

mentation est nécessaire pour extraire l’AC dans la séquence radiographique. Ensuite, l’artère

est traquée durant la séquence en mouvement. Finalement, en utilisant le résultat de segmenta-

tion et de suivi de l’artères, une méthode automatique de mesure de diamètre est appelée pour

évaluer les variations de diamètres. Chaque étape présente différents défis reliés à: la complex-

ité de la structure des AC, au niveau de contraste limité dans certaines images, à la présence

d’artéfacts de mouvement, et à la faible variation de diamètre d’AC d’une image à la suivante.

Cette recherche introduit de nouvelles méthodes pour la segmentation, le suivi et la mesure de

diamètre à partir de séquence de radiographie 2D. Notre projet est réalisé avec la collabora-

tion du département de cardiologie du CHU Sainte Justine. Les méthodes développées ont été

testées et évaluées sur une base de données de radiographies de jeunes patients. Les résultats

qualitatifs et quantitatifs montrent l’efficacité des méthodes de segmentation et suivi et celle de

la mesure des variations de diamètre à partir des séquence radiographiques.

Mots clés: Segmentation, artères coronaires, méthodes basées sur les graphes, angiogra-

phies, suivi du mouvement, cardiologie, détection de vaisseaux sanguins, radio-

graphies





CONTENTS

Page

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 1 RESEARCH PROBLEM .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Research hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Segmentation of coronary arteries from 2D X-ray angiogram . . . . . . . . . . . . . . 11

1.3.2 Spatio-temporal segmentation (or segmentation and tracking) of

coronary arteries in 2D X-ray angiogram sequences . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.3 Evaluation of coronary artery’s distensibility measure . . . . . . . . . . . . . . . . . . . . . . 12

CHAPTER 2 LITERATURE REVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Clinical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Anatomy of the heart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Heart defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Cardiac catheterization for coronary aretries treatment . . . . . . . . . . . . . . . . . . . . . 15

2.2 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Topological features for vascular structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Segmentation methods for vascular structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2.1 Variational approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2.2 Graph-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Evaluating Segmentation : validation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Quantification of vascular structures (distensibility) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

CHAPTER 3 CORONARY ARTERIES SEGMENTATION FROM 2D X-RAY

ANGIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Proposed method : Vessel Walker for coronary artery segmentation . . . . . . . . . . . . . . . . . 33

3.2.1 Preliminary works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Vessel Walker : segmentation method combining Random walks

and vesselness filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2.1 Semi-automatic formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2.2 Automatic formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2 Influence of parameters α , β and r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.3 Influence of seed points number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.4 Vessel walker compared to existing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.5 Limitations of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



XIV

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

CHAPTER 4 TEMPORAL SEGMENTATION OF CORONARY ARTERIES

IN ANGIOGRAPHIC SEQUENCES (2D+T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Superpixel Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Proposed method : Temporal segmentation of CA in 2D X-ray moving

sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Preliminary works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1.1 Temporal Vessel Walker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1.2 Multiscale Temporal Vessel walker (M’hiri et al.
(2015)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Temporal Vessel Walker with superpixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.2.1 Segmentation of the first frame : Vessel Walker method

using superpixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2.2 Segmentation and tracking : Temporal Vessel Walker

using superpixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2.3 Proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.2 Comparing the proposed method to polyline tracking . . . . . . . . . . . . . . . . . . . . . . 71

4.4.3 Extending the TVW model using superpixels : contribution of the

proposed algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.4 Parameter’s influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.4.1 Superpixel size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.4.2 Tracking parameter μ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.4.3 Influence of parameters α and β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.5 Performance depending on the nature of the vessel : RCA , LAD

or Cx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

CHAPTER 5 AUTOMATICALLY MEASURING VESSEL’S DISTENSIBILTY

FROM 2D X-RAY SEQUENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Proposed Method : Using VWT for vessel’s diameter measurement in 2D

X-ray sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Temporal vessel walker method to track part of a vessel . . . . . . . . . . . . . . . . . . . 92

5.2.2 Measuring vessel’s diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.2 Results on simulated coronary arteries sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.3 Results using patients sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.3.1 Results using aorta dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



XV

5.3.3.2 Results using coronary arteries dataset . . . . . . . . . . . . . . . . . . . . . . . . .103

5.4 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

APPENDIX I PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116





LIST OF TABLES

Page

Table 3.1 Average performance on the 9 angiograms, obtained by Frangi’s

filter (VF), the active contour method (AC), the random walks

algorithm (RW) and our proposed method (both in the automatic

(VW-A) and semi-automatic (VW-SA) formulations) . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 4.1 Average performance of the polyline tracking method (Dubuisson-

Jolly et al. (1998)) versus our proposed algorithm on the dataset . . . . . . . . . . . . . 72

Table 4.2 Average performance (Precision, Recall and Dice coefficient) on the

first four angiographic sequences of our dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 5.1 Mean diameter measurement (in mm) using the proposed method

and Mirzaalian’s method, with the corresponding mean squared

error computed on each sequence of the aorta dataset . . . . . . . . . . . . . . . . . . . . . . . .103





LIST OF FIGURES

Page

Figure 1.1 Percutaneous catheter-based intervention : the catheter (the black

tube) is inserted from a blood vessel in the groin and is advanced

into the heart. Image Adapted from "Balloon-tipped catheter" used

under Creative Common by Bruce Blaus (BruceBlaus (2016)). . . . . . . . . . . . . . . . 6

Figure 1.2 X-ray frame without the contrast agent (left) and the same X-ray

after the injection of the contrast agent (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 1.3 Overview of research questions and objectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.1 Anatomy of the heart : the four chambers of the heart. Image

Adapted from "Human heart diagram" used under Creative

Common created by ZooFari (ZooFari (2010)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.2 Anatomy of the heart : Coronary arteries. Image Adapted from

"Illustration of coronary arteries" used under Creative Common by

Bruce Blaus (BruceBlaus (2013)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.3 Graph representation of an image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.1 Overview of CA segmentation : (left) Original image, (right)

Segmentation result overlaid in yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.2 The presence of dark tubular regions that does not correspond

to coronary arteries can be challenging for an automatic

segmentation: Red circle on the left shows a stenal suture; red

circle on the top shows a bone from the rib cage ; the arrow points

to the catheter (the dark long tube crossing the image). . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.3 Influence of parameter α on Dice, Recall and Precision values

(respectively from top to bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.4 Influence of parameter β on Dice, Recall and Precision values

(respectively from top to bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.5 Influence of the neighbourhood radius r on Dice, Recall and

Precision values (respectively from top to bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.6 The influence of the percentage of seeded pixels on the

segmentation results. Top: Original X-rays with different

percentage of seeded pixels (blue pixels for background seeds,



XX

red pixels for foreground seeds). Bottom: Corresponding

segmentation masks in yellow overlaid on the X-rays. . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.7 Influence of the percentage of seed number in the image on the

performance in terms of Dice coefficient, Recall and Precision and

AUC values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 3.8 Segmentation results obtained with automatic thresholding. From

top to bottom: Groundtruth, Active contours results, random walks

results and our proposed method using the fully automated and the

semi-automatic formulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.9 Top figure : manually selected seeds for image number 6 (blue

dots are background seeds ; red dots are foreground seeds) Bottom

row : From left to right : segmentation masks of RW and VW-SA

methods overlaid on the groundtruth mask : White color shows

perfect overlap ; green color shows false negatives and pink color

shows false positives in the segmentation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.10 Foreground class probabilities obtained by Frangi’s filter (left) and

our proposed method (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 4.1 Overview of the segmentation of a coronary artery in 2D+time:

Segmenting and tracking the RCA lumen (highlighted in yellow)

in an angiographic motion sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.2 X-ray frame oversegmented with superpixels (red lines are the

borders of superpixels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.3 Representation of the temporal graph Gτ : Node i from image

I t−1 is connected to the node having the same location as I t

and its surrounding 8-neighbours. We compute the temporal

similarity measures between i and all the connected nodes ( j and

its neighbors). source: M’hiri et al. (2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.4 Multiscale hierarchical angiography segmentation at a single scale.

source : M’hiri et al. (2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.5 Proposed pipeline for spatio-temporal segmentation of an artery in

2D X-ray angiogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.6 The steps for segmentation of the first frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



XXI

Figure 4.7 3D adjacency matrix connecting the centerline result and the

extracted lumen and computing the similarity between the pixels

on the centerline and the pixels belonging to the extracted lumen.. . . . . . . . . . . 65

Figure 4.8 The defined region of interest (ROI) for sink nodes selection. . . . . . . . . . . . . . . . 66

Figure 4.9 Temporal connections between selected source nodes and sink

nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 4.10 Computing superpixels at different sizes : left SPsize = 20 ; right :

SPsize = 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 4.11 Computed centerline at different frames (left to right : frame

2, 4 and 9) on sequence 8 and their overlap on the groundtruth

centerline. Top row: PolyTrack results. Bottom row: Our results.

Green colored pixels show false negative; pink colored pixels show

false positives and white colored pixels are for true positives (i.e.

overlap) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 4.12 Results showing per-pixel probability values to belong to the

foreground as computed with the TVW alone (left) and with

superpixels (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 4.13 Segmentation overlaid on the original frame 4 of the RCA

sequence 3 of our dataset. Top row: the groundtruth (left) and the

TVW with superpixels result (right). Bottom row: TVW method

pixelwise (left) and TVW within the multiscale approach (right). . . . . . . . . . . . 76

Figure 4.14 Influence of the superpixel size on Dice , Recall and Precision

using our proposed work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 4.15 Influence of the superpixel on the computation times per frame . . . . . . . . . . . . . 78

Figure 4.16 Influence of the superpixel using the TVW with superpixels model

at different superpixel sizes on the probability values . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 4.17 Influence of the superpixel using the VWT with superpixels model

at different superpixel sizes on the segmentation result . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 4.18 Influence of the μ values on Dice , Recall and Precision using the

TVW with superpixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 4.19 Influence of the μ values on the TVW results: first row :

segmentation masks overlaid in yellow on original frames. Bottom

row : Segmentation mask displaying true positives (white), false



XXII

positives (pink), false negatives (green) . From left to right : results

at μ = 0 , 1 and 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 4.20 Influence of α (left column) and β (right column) parameters on

the overall performance using the proposed method. . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 4.21 Performance of the proposed pipeline depending on the nature of

the coronary arteries. Top to bottom : Circumflex artery (Cx), Left

anterior desending artery LAD) and Right coronary artery (RCA). . . . . . . . . . . 85

Figure 4.22 Segmentation mask overlaid in yellow on the original frames of

three sequences at different times. Top row: result on LAD artery.

Second row: result on a Cx artery. Third row: result on an RCA

artery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 5.1 Segmenting and tracking part of vessel in a motion sequence to

measure its diameter and compute distensibility measure . . . . . . . . . . . . . . . . . . . 89

Figure 5.2 Manual measurements of coronary artery’s diameter at different

parts of the vessel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 5.3 Segmentation and tracking of a section of a CA as defined by the

manually selected ROI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 5.4 The different steps to compute vessel’s diameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 5.5 Top row : Segmented section (in yellow) of a right coronary artery

overlaid on different frames in the synthetic sequence. Bottom

row : our results and their overlap on the groundtruth mask.

Green colored pixels show false negative; pink colored pixels show

false positives and white colored pixels are for true positives (i.e.

overlap). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 5.6 Diameter measurements of the targeted section of the vessel

at each of the 96 frames of the simulated sequence. Red

curve : TVW segmentation result with our proposed diameter

measurements. Pink curve : Diameter measured using our

diameter computation method on the groudtruth segmentation

masks provided by the XCAT system. Blue curve : Diameter

measured using Mirzaalian and Hamarneh (2010) method on the

groudtruth segmentation masks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 5.7 Original X-ray frame displaying the ascending aorta (left) and the

same X-ray after applying Weickert (1998) filter (right). . . . . . . . . . . . . . . . . . . . . . 99



XXIII

Figure 5.8 Results on the sequence 2 of our dataset. Top: The defined

region of interest (ROI) in the first frame of the second sequence

displaying the ascending aorta. Second row: Results of the VW

method on the first frame, the method assigns a probability value to

each pixel to belong to the foreground (left). Segmentation result

of the VW within the ROI. Bottom: Segmentation results of the

TVW at frame 8 and 16 of the sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

Figure 5.9 Diameter values of the second sequence displaying the ascending

aorta using the proposed approach and Mirzaalian approach,

compared to groundtruth values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

Figure 5.10 Diameter values per frame using the proposed approach and

Mirzaalian approach compared to groundtruth values on sequence

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Figure 5.11 Segmentation results of the part of interest in the right coronary

artery at four different frames in sequence 4.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Figure 5.12 Left: Diameter values per frame using the proposed approach on

sequence 2 of the coronary arteries dataset with the corresponding

ECG signal (the blue curve with the red circles. The circles

corresponds to the frame acquisition times). Right: Manually

computed diameter by a medical expert from Sainte Justine’s

hospital. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Figure 5.13 Segmentation result of the segment of interest at four different

frames in sequence 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108





LIST OF ABREVIATIONS

AC Active Contour method

AUC Area under the ROC curve

CA Coronary Arteries

CHD Congenital Heart Defect/Disease

CT Computed Tomography

Cx Circumflex Coronary Artery

ECG Electrocardiography

GC Graph cuts method

LAD Left Anterior Descending Artery

MAPCAs major aortopulmonary collateral arteries

MSCT Multi-Slice Computer Tomography

PCI Percutaneous coronary intervention

RCA Right Coronary Artery

ROC Receiver Operating Characteristic

RW Random Walker method

SP Superpixel

TVW Temporal Vessel Walker method

TVWSP Temporal Vessel Walker method with Superpixels

VW Vessel Walker method



XXVI

VWSP Vessel Walker method with Superpixels

2D Two dimensions

3D Three dimensions



INTRODUCTION

Congenital heart disease (CHD) is the leading cause of birth defects worldwide (Peter WG

et al. (2010)). In Canada, about 1 in 100 of newborns have CHD. According to the Canadian

Congenital Heart Alliance (2010) (CCHA), the survival rate of these newborns to adulthood

increased from 20% to 90%, in 60 years. However, as mentioned by the CCHA, more work has

to be done in the area of heart disease research and CHD in particular. Therefore, new methods

and protocols to both diagnose and treat CHD are needed.

CHD leads to malformations at different structures in the heart, including coronary arteries.

Indeed, these arteries can be affected in several ways, showing pathologies such as stenosis (a

narrowing of the artery) or aneurysms (an enlargement of the artery).

To diagnose or treat young patients with pathological coronary arteries, cardiologists often use

percutaneous catheter-based interventions (PCI). PCI is preferred to open heart surgery, espe-

cially with young patients. These procedures involve the insertion of a catheter through the

vascular system and are guided by real-time two-dimensional (2D) X-ray moving sequence

to navigate inside the patient’s heart. These 2D X-ray sequences, also called fluoroscopy or

angiogram sequences, can be used to evaluate the distensibility of coronary arteries. Distensi-

bility is one accurate indicator of cardiovascular disease by assessing blood vessels elasticity.

More precisely, the distensibility index measures how the vessel’s diameter stretches or dilates

as the blood flow increases or decreases. The artery’s diameter variation during the cardiac

cycle is a key indicator of healthy or pathological arteries. For example, a low distensibility

measure indicates a small variation of the diameter and a possible artery wall stiffness due to

a vascular disease. Therefore, measuring coronary arteries (CA) diameter variation along the

X-ray sequence is essential to compute distensibility index.

Diameter measurements are usually done manually by a technical expert. However, manual

measurement lacks precision and shows inter and intra oberver variability. Other measurements

techniques are proposed in the literature or in existing software (Gronenschild et al. (1994) and

PIEMedical and Medis ) to semi-automatically segment part of a vessel. These software work
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on one single X-ray frame and do not evaluate the vessel diameter along the moving sequence.

Moreover, most of the existing works that assess the distensibility measure are applied on

other imaging modalities, such as ultrasound. The present research explores, the possibility of

computing the distensibility measure automatically from 2D X-ray sequence. To the best of

our knowledge, this is the first study that involves a temporal analysis of the diameter variation

of the coronary artery during the cardiac sequence, automatically and based on a monoplane

2D X-ray angiographic sequence.

Measuring the diameter of an artery during the X-ray sequence is not a straightforward task.

First, the coronary arteries are segmented from 2D X-ray angiograms. Second, a coronary

artery is tracked in time during the moving sequence to capture the diameter changes. Finally,

using the segmentation and tracking result, the measurement of the artery’s diameter at each

frame must be precise to compute the distensibility index. This thesis focus on each one of

the mentioned 3 steps that lead to measuring distensibility. The following section presents the

outline of the manuscript to describe our work.

0.1. Manuscript Overview

First, the manuscript starts by detailing the research problem and objectives within the defined

clinical context. Then, the second chapter presents the clinical context, as well as the existing

works on the topics of: medical image segmentation, structure tracking and the quantification

of vascular structures.

The three following chapters can be read independently, since each of them represents one

research objective and describes the proposed method to reach each objective with the corre-

sponding experimental results.

Chapter 3 introduces our first contribution in segmenting tubular structure in general and coro-

nary arteries in particular from 2D X-ray images. Automatic segmentation of arteries is a

key step before measuring its physiological properties. However, segmenting arteries from

2D angiograms is challenging due to the complexity of the structure and the artifacts within
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the image. We propose a new method that combines prior information (using intensity and

topological information) together with an existing segmentation approach, the random walks

by Grady et al. (2006a). This combination leads to our first contribution: the Vessel Walker

method for vessel segmentation.

In chapter four, the manuscript presents the second research objective, where temporal infor-

mation is added to not only segment but also to track one coronary artery in the X-ray sequence.

Such step provides the necessary information to assess the dynamics of the vessel during the

cardiac cycle. To do so, it is important to track and segment the artery accurately, while dealing

with the complex cardiac and respiratory motions. We propose a new spatio-temporal algo-

rithm for segmenting a specific coronary artery and tracking it in the X-ray moving sequence.

This algorithm uses a modified version of the Vessel Walker, with temporal information, lead-

ing to a Temporal Vessel Walker for coronary artery segmentation and tracking.

Chapter 5 uses the two previous contributions to compute the diameter changes of an artery

during the moving sequence. Such computations provide the cardiologist with the necessary

information to evaluate the artery’s elasticity by measuring its distensibility index. To do so, an

accurate measurement of the artery’s width during the cardiac cycle is necessary. These mea-

surements are based on precise segmentation results to capture the diameter changes. The fifth

chapter presents the pipeline for measuring distensibility index: First, the method automati-

cally segment the vessel of interest (or part of a vessel that a cardiologist wants to evaluate).

Then, the vessel is tracked and segmented in the moving sequence. Finally, the diameters of

the vessel at each frame of the sequence are computed automatically. We believe that this

contribution is the first to tackle distensibility measurement in this specific context, where the

diameter of a coronary artery is computed automatically during the cardiac cycle using only a

monoplane 2D X-ray sequence.

Finally, the last chapter summarizes the work accomplished and gives perspectives for future

work.





CHAPTER 1

RESEARCH PROBLEM

1.1 Problem statement

According to the World Health Organization (WHO (2014)), cardiovascular disease is the num-

ber one cause of mortality in the world. More specifically, congenital heart defects (CHD) are

culpable for the high rate of mortality among newborns and children (Peter WG et al. (2010)).

CHD often affects the coronary arteries showing pathologies such as stenosis (a narrowing of

the artery) or aneurysms (an enlargement of the artery). One popular procedure used to diag-

nose or treat CHD are percutaneous catheter-based interventions (PCI). As shown in Figure

1.1, these procedures involve the insertion of a catheter through the vascular system and are

guided by a real-time 2D X-ray angiogram (or fluoroscopy). Since blood vessels are invisible

to X-rays as shown in the first image in Figure 1.2, a contrast agent is injected through the

vessels to depict them, during PCI (Figure 1.2b).

Arterial distensibility is one of the most accurate measures used by cardiologists to diagnose

CHD Cheung et al. (2002). This measure evaluates the elasticity of a blood vessel to expand

and contract with cardiac contraction (systole) and relaxation (diastole) (Godia et al. (2007)).

Having a low distensibility measure can be an indicator of an artery wall stiffness and, there-

fore, of a vascular disease. This measure evaluates the vessel’s diameter changes in response

to cardiac work. Hence, a precise measurement of a blood vessel’s diameter during the car-

diac cycle is critical to compute the distensibility, and to help the detection of cardiovascular

diseases.
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Figure 1.1 Percutaneous catheter-based intervention : the

catheter (the black tube) is inserted from a blood vessel in the

groin and is advanced into the heart.

Image Adapted from "Balloon-tipped catheter" used under

Creative Common by Bruce Blaus (BruceBlaus (2016)).

a) frame with no contrast agent b) frame with contrast agent

Figure 1.2 X-ray frame without the contrast agent (left) and the

same X-ray after the injection of the contrast agent (right).
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This research focus on the evaluation of diameter changes during the cardiac cycle automat-

ically from monoplane 2D X-ray sequences. An overview of the research questions and ob-

jectives is presented in Figure 1.3 and they are detailed in the following. The general research

question is :

Can we evaluate the changes of coronary artery’s diameter, directly from monoplane 2D

X-ray moving sequences?

Figure 1.3 Overview of research questions and objectives.

Extracting coronary arteries automatically from angiogram is necessary before computing ves-

sel diameter. Different works proposed automatic methods for vascular segmentation. How-

ever, it is still an open research topic. Moreover, segmenting vessels from 2D X-ray angiograms

represents a different challenge than segmenting vessels from other imaging modalities such

as Magnetic Resonance Imaging (MRI) or Multi-Slice Computer Tomography (MSCT). Fur-
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thermore, other imaging techniques can beneficiate from better prior (eg. the Hounsfield unit

in MSCT is used to detect vessels). Such information cannot be used in 2D X-rays. Besides

processing 2D images can be challenging due to vessel overlap or low contrast in some regions.

The issue to consider at this step is: Can an automatic segmentation of coronary arteries be

as accurate as an expert’s manual segmentation from a 2D X-ray image?

Additionally, X-ray angiograms are real-time moving sequences that capture not only the struc-

ture of the coronary artery but also its motion in time. To compute the diameter changes during

the cardiac cycle, one has to segment and track simultaneously the same artery in the moving

sequence. Both respiratory and cardiac motions have to be considered during tracking, since

these motions affect the coronary arteries’ shape as well as their location. The second step of

our research is to segment the same artery (or part of an artery) in the X-ray moving sequence.

This leads to the second research question: Does the use of temporal information helps in

segmenting the same coronary artery in the 2D X-ray moving sequence?

Finally, the segmented and tracked coronary artery has a diameter that changes according to

the level of blood flow within it. Indeed, a healthy artery’s wall would expand, when there is

an important level of blood flow, and shrinks, when the flow decreases. Distensibility is one

accurate indicator of cardiovascular disease by evaluating the elasticity and the condition of an

artery. Such measure needs a precise computation of the artery’s diameter during the cardiac

cycle. These measurements are often computed using other imaging modalities such as ultra-

sound or biplane X-ray sequences. Our third research question is: Can an automatic approach

capture the diameter changes in the cardiac cycle from monoplane 2D X-ray sequences?

Challenges

Our research focus on the segmentation, tracking and measurement of coronary arteries from

monoplane 2D X-ray angiograms. Different challenges should be considered:

• Coronary arteries (CA) are complex tubular structures : They are thin elongated structures

with various diameters and bifurcations. This makes the segmentation step challenging
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especially with young patients, where the vessels are smaller than in adults. Moreover, 2D

X-ray angiograms are a projection of a three-dimensional structure in a two-dimensional

plane. The projection causes the loss of depth information, where two vessels at different

levels of depth would be pictured as overlapping in the 2D angiogram. Furthermore, since

a contrast agent is injected to depict coronary arteries, this agent disappears as it moves,

with the blood flow, through the arteries. This causes the contrast to decrease during the

X-ray sequence.

• Coronary arteries are moving structures in the angiography sequence : Indeed, they are in-

fluenced by respiratory and cardiac motions which makes their position and shape changes

in the sequence.

• Coronary arteries are thin structures: therefore they have small diameter (with a diameter

as small as 1 mm in newborns and 4.5 mm in teenagers (Oberhoffer et al. (1989))) and the

variability of the diameter during the cardiac cycle is smaller (can be less than 1 mm). The

extraction and the measurement of the arteries have to be precise enough to capture this

variability.

• This research is conducted on a pediatric population which implies: small vascular struc-

tures, a faster heart rate than an adult’s and a restricted injection doses of the contrast agent.

Besides, some X-rays of patients that have been previously operated, depict sternal sutures.

These are dark and tubular structures that can be misperceived as blood vessel by a seg-

mentation method.

• Dataset availability: To our best knowledge, no dataset of 2D X-ray angiogram sequence is

available with the corresponding ground truth data. Therefore, a first step in this research

is to construct a dataset of angiograms with the collaboration of Sainte-Justine’s Children

Hospital after the approval of the Sainte-Justine’s Institutional Ethics Review Board. More-

over, to evaluate quantitatively the accuracy of the computed results, a ground truth of this

dataset has to be built with the help of technicians and cardiologists at Sainte-Justine’s

Hospital.
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Clinical application

This work is conducted with the collaboration of two cardiologists from CHU Sainte Justine’s

Cardiology Department : Dr. Joaquim Miró and Dr. Nagib Dahdah and their team. All the

data collected and the results obtained are supervised and validated by two experts from Sainte

Justine.

1.2 Research hypothesis

The work proposes a new automatic method for evaluating coronary arteries to guide the di-

agnosis of heart disease in the pediatric population. This section highlights the hypothesis that

are investigated in the research :

Hypothesis 1 : An automatic method to extract coronary arteries from 2D angiograms can be

as accurate as an expert’s manual segmentation.

Automatic segmentation of vascular structures remains an open research topic despite the fact

that different works have tackled this problem. Yet it is still a challenging task due to the

nature of the structure. Besides, the segmentation method depends on the imaging modality

that is used. This work seeks for an automatic segmentation method able to extract the lumen

of vascular structures as accurately as a segmentation expert.

Hypothesis 2 : Using temporal information in 2D X-ray moving sequence helps segmenting

and tracking a specific coronary artery.

Coronary arteries are moving structures. Temporal information can be used to segment and

track the same artery in the angiography sequence. The segmentation result at one frame can

be used as a temporal prior for segmenting the rest of the frames. Extracting the same coronary

artery in the moving sequence will provide important information regarding the elasticity of

the artery or the presence of deformations.
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Hypothesis 3 : Distensibility measure can be computed directly from monoplane 2D X-ray

angiograms.

Distensibility is based on evaluating the coronary arteries’ diameter changes in the cardiac cy-

cle. It is often computed using other imaging modalities such as ultrasound images (Godia

et al. (2007)), MRI or biplane X-ray sequences. This hypothesis evaluates whether disten-

sibility measure can be computed automatically from monoplane 2D X-rays. To do so, the

segmentation and tracking result is used to compute the diameter of the vessel at each frame of

the sequence. The measurement of the artery should be precise to capture the diameter changes

and obtain thereby the distensibility measure.

1.3 Research objectives

To evaluate each hypothesis, this section defines our research objectives.

1.3.1 Segmentation of coronary arteries from 2D X-ray angiogram

Objective 1 : Propose an automatic segmentation approach for coronary arteries from 2D

X-ray images.

The result should be as precise as a manual segmentation and improve other existing segmen-

tation approaches. To do so, we take into account the observed limitations in 2D angiograms

(vessel overlap, low contrast level, presence of other dark tubular structures, etc.). There are

different information that can be used to characterize coronary arteries : using intensity infor-

mation, topological information or local information within a neighbourhood. A combination

of these characteristics can bring to an accurate segmentation result. To reach this objective, we

propose different segmentation approaches either using active contours (M’hiri et al. (2012b))

or normalized cut (M’hiri et al. (2012a)). However, a new segmentation approach named "Ves-

sel Walker" (M’hiri et al. (2013)) has shown a better performance to segment the coronary

artery tree. This work is further presented in Chapter 3 of the manuscript.
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1.3.2 Spatio-temporal segmentation (or segmentation and tracking) of coronary arteries
in 2D X-ray angiogram sequences

Objective 2 : Design a pipeline for segmenting and tracking a coronary artery (or a specified

part of the artery) from 2D X-ray angiogram sequences.

Both respiratory and cardiac motions should be considered while segmenting and tracking the

artery. The result should be as accurate as a manual ground truth. The method should consider

respiratory and cardiac motions to track the coronary arteries. Moreover, the method has to

consider that the intensity level changes from one frame to the following, as the contrast agent

disappears. We propose a new spatio-temporal segmentation model that uses temporal prior to

segment and track an artery. The model has encouraging quantitative, and qualitative results

in comparison with existing works. The proposed pipeline, focus on tracking and segmenting

one artery of interest, defined by the cardiologist. The result enhances other existing vessel-

tracking method introduced by Dubuisson-Jolly et al. (1998). The final framework is presented

in Chapter 4 of this manuscript.

1.3.3 Evaluation of coronary artery’s distensibility measure

Objective 3 : Define a method to compute the artery’s diameter from 2D X-ray angiogram

sequences and to display the diameter changes during the cardiac cycle.

The diameter measurements have to be precise to capture the variations during the cardiac

cycle. Moreover, the method should process the artery that a cardiologist wants to evaluate.

To assess the precision of the solution, the method should be tested on simulated angiogram

sequence and on large vessels such as the aorta (since the diameter changes are bigger and

easier to capture). Finally, the method has to be evaluated on a dataset of patient’s angiograms

displaying coronary arteries. The proposed solution uses the spatio-temporal model that solves

objective 2. We define a method to measure vessels’ diameters through the cardiac sequence.

The diameter values computed along the cardiac cycle and the blood pressure values can be

used to estimate arterial distensibility. The proposed method is presented in Chapter 5.



CHAPTER 2

LITERATURE REVIEW

2.1 Clinical context

2.1.1 Anatomy of the heart

Figure 2.1 Anatomy of the heart : the four chambers of the heart.

Image Adapted from "Human heart diagram" used under Creative

Common created by ZooFari (ZooFari (2010)).

The cardiovascular system is responsible for the blood circulation in the body. The heart is

the principal organ in this system. It pumps blood around the body to distribute oxygen and

nutrients and to remove carbon dioxide and waste products. Located between the lungs in the

middle of the chest, the heart is divided in four chambers : the left and right atria are the upper

chambers and the left and right ventricles are the lower ones (Fig. 2.1). It is surrounded by a

double-layered sac called the pericardium.
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The coronary arteries play a crucial part in delivering oxygen and nutrients to the heart. They

encircle the surface of the heart forming a crown. The coronary arteries are divided in two main

arteries: the right coronary artery (RCA) and the left coronary artery which bifurcates into the

left anterior descending (LAD) and the circumflex artery (CX) (Fig. 2.2).

The cardiac function is regulated by the cardiac cycle. One heart bump refers to one cardiac

cycle. This cycle is defined by two stages. The diastole stage is when the heart’s cavities are

dilated and filled with blood. It is followed by the systole, when the heart contracts and the

blood is pumped out into the aorta.

Figure 2.2 Anatomy of the heart : Coronary arteries.

Image Adapted from "Illustration of coronary arteries" used under

Creative Common by Bruce Blaus (BruceBlaus (2013)).

2.1.2 Heart defects

Coronary artery disease is the most common of heart disease affecting the blood circulation.

Some of the diseases affecting the heart and its arteries are:
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• Atherosclerosis: when the arteries are narrowed or blocked, causing stenosis. This leads to

a poor blood circulation.

• Tetralogy of fallot: A congenital heart defect that creates a deviation of the blood flow and

a low oxygenation of the blood. This can lead to anomalies in the coronary arteries.

• Kawasaki disease: A children’s disease can cause aneurysms in the coronary arteries, which

are abnormal dilation of the arteries’ walls.

Heart diseases are treated with medication, surgery or non-surgical procedures. The latter is

mostly preferred to surgery since they are less dangerous for young patients.

2.1.3 Cardiac catheterization for coronary aretries treatment

Cardiac catheterizations, such as PCI, are non-surgical procedures used for the diagnosis or

treatment of coronary arteries. A catheter, which is a thin tube, is inserted through the vas-

cular system to the location of the heart and the targeted coronary arteries (Figure 1.1). The

imaging modality used for navigation guidance during percutaneous procedures is real-time

two-dimensional X-ray angiography. Since blood vessels are invisible through X-rays, a ra-

diopaque contrast agent is injected at key times through the catheter to depict coronary arteries

(1.2). The X-ray angiography helps not only for navigation guidance but also for evaluating

the dynamics of the coronary arteries. However, these X-rays have some limitations:

• The presence of Poisson noise that can degrade the image quality (Cesarelli et al. (2013)).

• The limited contrast depending on the injection of the contrast agent.

• The artery may not be visible in totality but gradually in time as the contrast agent is moving

with the blood flow.

• The presence of stents, surgical pins and the catheter that can affect the segmentation result.

• The representation of a complex 3D structure (coronary tree) projected into a 2D plane

(leading to the loss of depth information).
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2.2 Segmentation

Segmentation is defined as the "task of decomposing image data into meaningful structures that

are relevant for a specific task" (Preim and Bartz (2007)). Indeed, segmentation depends on

the nature of the structure of interest and on the imaging modality. A segmentation method is

evaluated on four terms: "Robustness, Accuracy, Reproducibility and Speed" (Preim and Bartz

(2007)).

An accurate, robust and repeatable segmentation of vessels from the 2D angiograms is paramount

to obtain either biophysical measurement of the vessels or a good registration or reconstruction

for navigation guidance. As mentioned by various research, a weak segmentation can greatly

affect other results. Rivest-Henault et al. (2012) mentions that a poor 2D segmentation affects

the performance of their 2D-3D coronary artery registration method. Additionally, Hipwell

et al. (2003) claims that the robustness of their registration algorithm depends on the segmen-

tation result of the vascular structure.

Two categories of basic approaches are known in image segmentation : First, edge-based ap-

proach that search for object’s borders such as Canny (1986) edge detector. Second, region-

based approach that consider the structure of interest as a homogeneous region. Edge-based

approaches can bring accurate segmentation result thanks to its local-based nature. However,

it can be sensitive to noise and can return discontinuous object boundaries. On the other hand,

region-based techniques rely on a global approach to segment an image such as the threshold-

based method of Otsu (1979), the region-growing method of Wong et al. (2009) or the water-

shed segmentation of Serra (1982).

Since the late 1980 ’s, segmentation problems are formulated as the minimization of an energy

function (Geman and Geman (1984) and Mumford and Shah (1989)). This function is usually

divided into a data term and a smoothness term. The optimal segmentation result is the one

that puts this energy to its minimum. Today, most modern segmentation approaches are based

on this energy formulation (Lombaert (2012)).
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An ideal segmentation solution is the one that can be computed automatically, where no user

interaction is needed. Such method can hardly exist, especially in medical images, where

there are different anatomical structures and where some anomalies may be observed due to

the presence of pathologies or to imaging artifacts. As denoted by Lombaert (2012), a unique

automatic solution cannot be efficient to handle all these different cases.

In the context of vessel segmentation from X-rays, several works have been proposed. They

either rely on a previously defined prior model or on some manual initialization. The research

in this field remains an open topic. Kirbas and Quek (2004) and Lesage et al. (2009) review

various segmentation techniques, both in 2D and in 3D. In their review, Lesage et al. (2009)

concludes that while vascular segmentation is still a challenging task, techniques that use a

prior appearance model and those based on a combination of existing models are more suitable

to enhance the efficiency of the results.

Extraction approaches are categorized in two families of methods: variational approaches and

graph-based approaches. They are discussed in the second subsection. Prior appearance mod-

els can be defined, for instance, based on intensity features or topological feature. One of the

most efficient topological features in vessel segmentation is described in the following subsec-

tion.

2.2.1 Topological features for vascular structures

Special filters have been proposed in the literature to highlight tubular structures, such as blood

vessels. One of the well-performing methods is the Hessian-based filter. Introduced by Sato

et al. (1998) and Frangi et al. (1998), these techniques analyze the eigenvalues and eigenvectors

of the Hessian matrix of the image. Frangi’s work is an extension of Sato’s method for vessel

enhancement in X-ray angiography. A recent work of Rivest-Henault and Cheriet (2013) intro-

duced a 3D curvilinear structure detection filter which brings robust performance in detecting

vessel-like structures despite the presence of bifurcations.
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In the formulation of Frangi et al. (1998), the method is based on the analysis of the Hessian

matrix computed using convolutions by Gaussian masks at different scales in order to extract

different vessels of different diameters. For a specific scale σ , the Hessian matrix of the image

I is computed. For each pixel pi from I , the technique computes the two smallest eigenvalues

λ1,λ2 of the Hessian matrix at scale σ : with |λ1| ≤ |λ2| and −→u 1,−→u 2 are their corresponding

normalized eigenvectors. Pixel pi belongs to a tubular structure if |λ1| is close to 0 and |λ1| is

lower than |λ2|. The direction of the curvature (i.e along the vessel) is indicated by the smallest

eigenvector −→u 1. Frangi’s method returns a vesselness value bi,σ ∈ [0,1] for each pixel pi at a

scale σ . The measure bi,σ expresses a probability-like value that pixel pi belongs to a tubular

structure at scale σ and is computed as follows:

bi,σ =

⎧⎨
⎩

0, ifλ2 < 0

exp(− R2
B

2β 2 )(1− exp( S2

2c2 )) otherwise,
(2.1)

where RB = λ1/λ2 is a measure of blobness. The value of S =
√

λ 2
1 +λ 2

2 distinguishes back-

ground pixels and β ,c > 0 are controlling parameters. Once bi,σ is computed at different

scales σ for a pixel pi, the technique extracts the maximum response bi,σ value among all

tested scales. This vesselness filter returns a high vesselness value at the centerline location of

the vessel and a lower value near the borders. Their ability to highlight vessel-like structures in

the image have been used in several applications. The filter is usually used as a preprocessing

step or as a topological feature to extract vessels. Rudyanto et al. (2014) noticed that the most

efficient segmentation techniques are the ones based on vesselness approaches.

However, it is difficult to segment vessels using only vesselness filters. Indeed, Hessian-based

methods is measure to highlight vessel’s centerline and not vessel’s lumen. Therefore, apply-

ing a simple threshold on the filter’s result may generate disconnected regions, not providing

sufficient robustness for vessel lumen identification. Moreover, as noticed by Lesage et al.

(2009), these filters can be sensitive to local deformations in the vessel, such as bifurcation or

the sudden change of vessel’s diameter (i.e. in the presence of a stenosis or an aneurysm in
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the vessel). In the recent literature, they are usually combined with other methods or filters

to overcome the limitations of vesselness filters, while appreciating their ability to enhance

vascular structures (Freiman et al. (2009); Hernández-Vela et al. (2012)).

2.2.2 Segmentation methods for vascular structures

Various researches have addressed the problem of coronary arteries segmentation or vessel

segmentation in general. These researches can be categorized in two families of approaches:

variational approaches, such as levelsets, and graph-based (or combinatorial) approaches, such

as graph-cuts. The latter have the advantage to represent connectivity information between

pixels.

2.2.2.1 Variational approaches

Variational approaches have been widely applied in medical images. Such methods rely on a

defined model to segment the structure of interest. They include information about the size,

shape and intensity distributions of the structure. Deformable models is a well-known varia-

tional approach, where a contour is initialized and is later deformed, under computed forces

until it covers the foreground structure.

Variational approaches based on region growing have been proposed for vessel lumen seg-

mentation, such as the work of Zhao et al. (2014) and active contours by Zhao et al. (2015b).

These methods have the advantage of returning a well-connected region. However, they are

sensitive to the initial seed location and to the complex topology of vascular tree, and can have

topological problems leading to a high rate of false positives and false negatives (Sun et al.

(2012)).

Levelsets can be used to solve variational models. The method defines a wavefront propagat-

ing towards the object of interest (i.e. the boundaries of the foreground). The motion of the

wavefront is guided by information extracted from the image, such as intensity distribution

and the image’s gradient (Preim and Bartz (2007)). The contour, initialized at a dimension n, is
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considered as the zero levelset of a function Φ at a higher dimension (n+1). The displacement

of the contour is computed using the level set function Φ and it evolves following vector N,

which is the normal to the contour, and under a speed function FI , defined depending on the

nature of the image and the targeted object.

Levelsets have been used in various medical images applications. Sun et al. (2012) used them

to segment blood vessels in 2D angiograms. Their model use local morphology features within

the levelset formulation acheiving robust results.

Researchers have proposed new methods to segment thin and elongated structures by includ-

ing shape priors in the levelset formultation. Indeed, relying on pixel homogeneity and edge

contrast can be insufficient to extract challenging structures like thin and elongated structures

(Cremers (2015)). Wang et al. (2012) introduced a level set method guided by a 3D cylinder

model. This model is generated from computed centerlines. The method shows successful

results in extracting the coronary arteries in CTA. However, the authors mentioned that the

method is sensitive to the initial centerline computation, which can limit the overall segmenta-

tion.

Levelsets method has a capacity to segment complex structures, which is convenient to segment

coronary arteries. However, it can be computationally expensive and has to be initialized either

using other techniques or manually selected seeds.

Variational approaches can be efficient in segmenting complex vascular structures yet, unlike

graph-based methods, they do not guarantee repeatability. They can depend on the initialization

parameters. Besides, the convergence to a global optimum is not guaranteed in methods based

on levelsets (Boykov and Funka-Lea (2006)).

2.2.2.2 Graph-based approaches

Graph-based methods are combinatorial approaches that have been successfully used to solve

vessel segmentation problems, such as shortest-path (Benmansour and Cohen (2011)), random
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walks (RW) by Grady et al. (2006a) or graph-cuts (Shahzad et al. (2013); Freiman et al. (2009);

Hernández-Vela et al. (2012)). These techniques have been applied to segment different vas-

cular structures: from coronary arteries to the aorta or retinal vessels. Yet, most graph-based

methods use intensity values as features to compute the segmentation. In the case of X-ray

angiograms, using only intensity features can give limited solutions. Graph-based methods

represent an image as a connected graph, where the pixels are nodes of the graph connected by

edges. Most method uses the Laplacian matrix to define this connected graph.

Laplacian Matrix :

Figure 2.3 Graph representation of an image.

In a graph-based segmentation method, image I of size n×n = N is represented by an undi-

rected graph G = (V,E), as illustrated in Figure 2.3. V is the node set where each pixel pi from

I corresponds to a node vi from V (|V |= N). E is the edge set that connects two neighbouring

nodes to each other (i.e. a node vi is connected to v j by an edge ei j in E, if their corresponding

pixels pi and p j are in the vicinity of radius r). The graph is represented by the adjacency

matrix W ∈ R
N×N , where [W ]i j = wi j is the weight of the edge ei j connecting nodes vi to v j,
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defined as:

wi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
{− γ (Ii −I j

)2}
, if dist(pi, p j)≤ r

and i �= j

0, otherwise.

(2.2)

Ii corresponds to the intensity feature (or other features) of pixel pi and γ is a parameter

controlling the effect of intensity’s differences on the weight. Different distance metrics can

be used to consider whether or not two pixels are neighbours : Euclidean distance, L1 or

Manhattan distance. The degree matrix D ∈ R
N2

is a diagonal matrix that describes the degree

[D]ii = di of each node vi from the graph G such as: di = ∑ j �=i wi j. Finally, image connectivity

information is represented by the Laplacian matrix L which is the difference between the degree

and adjacency matrices: L = D−W .

After computing the graph representation of the image (i.e. the Laplacian matrix), a graph-

based algorithm searches for the optimal "cut" in the graph, dividing the image pixels in two

subsets: foreground (i.e. the vessel lumen, opacified by the contrast agent) and background.

To solve this optimization problem, different graph-based methods can be applied. Three well-

performing methods are graph cuts, Laplacian eigenmaps and random walks:

a. Graph cuts method: Graph cuts adds to the graph G two terminal nodes s and t called

the source and the sink node respectively. The method searches for the cut C that divides the

graph in two subsets: the nodes that belong to the foreground region and include the source

node s, and the one that belongs to the background including the sink node t. The optimal cut C

contains all the edges connecting two pixels belonging to different subset. |C| is the weight of

the cut C and is computed as the sum of all the cut edges’ weight. The optimal cut C will have

the minimal weight cut |C|. Therefore, graph cuts are represented as an optimization challenge

called the min-cut/maxflow problem. The min-cut/maxflow is formulated as the minimization

of the following energy equation (Boykov and Kolmogorov (2004)):

E( f ) = λ ∑
p∈N

Dp( f ) + ∑
(p,q)∈V

Wp,q( fp, fq). (2.3)
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The first term of the equation, called the data term, represents the cost of assigning the la-

bel f (i.e. background or foreground) to the pixel p. It is usually based on a apriori known

feature distribution model (using manually selected seeds, for example). The second term or

the smoothness term is the regularization energy that evaluates the similarity W between two

neighbouring pixels p and q. Parameter λ >= 0 controls the tradeoff between the data and

smoothness terms.

Graph cuts is a robust and repeatable technique. Moreover, it is independent on the initializa-

tion parameters (Grady and Alvino (2009)). It has been successfully adapted and applied on

the most complex segmentation problems, especially in medical images. To segment thin and

tube like structures, such as coronary arteries, using intensity information only is not sufficient.

Freiman et al. (2009) suggested to use vesselness features with intensity information in the

graph cut formulation to extract the carotid artery from 3D MSCT volume. On the other hand,

Hernández-Vela et al. (2012) uses a graph cuts with geodesic paths and vesselness features to

segment coronary arteries from 2D X-ray angiograms. Despite its efficiency and performance,

the most noticed limitation of the graph cuts method is that it does not guarantee a sub-pixel

accuracy, unlike variational methods. Moreover, as mentioned by Grady et al. (2006b), graph

cuts are known to search for the smallest region surrounding foreground seeds to define the re-

gions, which can be beneficial in some cases. The downside of such properties is the small-cut

problem and hence big region needs more specified seeds.

b. Laplacian eigenmaps: Laplacian eigenmaps have been widely used to solve clustering

problems such as segmentation, where the method aims to find two clusters in one image: A

cluster of foreground pixels and one of background pixels. This method evaluates the eigen-

vectors of the Laplacian matrix to find clusters in the image. Von Luxburg (2007) presents

a complete tutorial on how the eigenanalysis of the Laplacian matrix can solve a clustering

problem. Several works have exploited the relationship between the spectral properties of the

Laplacian matrix and the partitioning of the graph. The ratio-cut algorithm introduced by Ha-

gen and Kahng (1992) is one of these works. The method solves the small-cut limitation of

graph-cuts by adding the constraint that clusters should be containing a reasonably large num-
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ber of nodes. The algorithm, looks for a mapping f : I → {0,1} that minimizes the ratio

between the weight of the cut |C| and the number of pixels mapped to 1 (i.e. the foreground

pixels). Ratio-cut is formulated as:

argmin
f∈{0,1}n

n
∑

i=1

n
∑
j=1

wi j( f i − f j)
2

n
∑

i=1
f 2

i

. (2.4)

Shi and Malik (2000) introduced another formulation to use the spectral properties of the Lapla-

cian: The Normalized cut. Normalized cut considers both the dissimilarity between different

groups and the similarity within groups. The method has successful results in segmenting

images.

Laplacian eigenmaps methods succeed in segmenting continuous regions. However, they have

limited results when extracting thin and elongated structures such as vascular structures. There-

fore, other features in addition to intensity information must be added. Moreover, these meth-

ods have a high computational cost, depending on the image size and the sparsity of the Lapla-

cian matrix.

c. Random walks: The method outperforms other graph-based method since it does not

suffer from the small cut problem noticed with graph cuts (Grady et al. (2006b)). Moreover,

it is robust to noise and the computation requires solving a set of linear equations, which is

computationally faster than spectral methods. The method requires user specified seeds and it

computes the path on a graph that a random walker would take to go from an unseeded pixel to

the closest seeded one. Having each node (or pixel) connected to a seed makes the RW robust

to noise. RW apply the minimization of real numbers instead of the binary constraint defined

in graph cuts. Therefore, the method gives a "confidence value" (or probability value) instead

of a straightforward binary segmentation (like graph cuts). However, random walks does not

work without specified seeds, and does not support cases, where the object is formed by dis-

connected regions in the image. Grady (2005) modified the random walks to include a prior

model, making the method independent of seeds, if needed. The method produces encouraging
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results despite the variability in intensity values within regions, using an intensity profile of the

different regions to be segmented. However, intensity distribution can be insufficient in some

cases and other features should be used as a prior instead.

Recent graph-based works include the optimization of the boundary curvature, which is ini-

tially used by variational methods. Schoenemann et al. (2009) presents curvature of an object

boundary on a graph and succeed in preserving thin and elongated objects. Another similar

model was introduced by Nieuwenhuis et al. (2014). However their method may be limited

when the data term from equation 2.3 is poorly defined (i.e. when object and background have

similar distributions). El-Zehiry and Grady (2016) recently presented a contrast driven elastica

model that overcomes this limitation and has a robust segmentation result even when the data

term is poorly defined.

In general, graph-based methods are appealing, because they preserve the connectivity infor-

mation during segmentation, mostly by using pixel intensities as prior. Moreover, most of

the graph-based methods show robustness to noise. However, to extract thin and elongated

structures like blood vessels, relying on only intensity information is not sufficient. There-

fore, adding other features such as topological information (like vesselness information) to a

graph-based method can give more accurate solutions.

Different methods have been proposed to combine graph-based approaches with vesselness

information to segment vascular structures. Hernández-Vela et al. (2012) presents a solution

based on graph-cuts and vesselness information together with geodesic paths to segment CA

from 2D angiograms. However, some limitations are noticed regarding bifurcations or wher-

ever there is a vessel overlap. The method proposed by Freiman et al. (2009) combines graph-

cuts and vesselness information to segment the carotid artery from 3D MSCT-scans. The graph

is computed using an estimated intensity probability distribution function. This can be robust in

the case of CT-scans (thanks to the Houndsfield scale) but not for 2D X-ray angiography, where

the contrast among a vessel can be limited. Moreover, both Hernández-Vela et al. (2012) and

Freiman et al. (2009) use the graph cuts method, which may encounter the small-cut problem,



26

depending on seeds location. The random walks method stands out from the other graph-based

solutions due to its robustness, flexibility and fast computations to find a segmentation solution

Grady et al. (2006a). Additionally, the method avoids the "small-cut" problem while being

computationally faster than other graph-based methods.

2.2.3 Evaluating Segmentation : validation metrics

To evaluate the performance of a segmentation method, several metrics can be computed. They

all rely on comparing the segmentation result to a defined ground truth. First, Dice index mea-

sures the agreement between a computed mask (C) and a ground truth mask (G) and computed

as:

Dice(C,G) =
2× |C | ∩ | G |
|C |+ | G | . (2.5)

The returned coefficient range is between 0 and 1. The higher the Dice, the better is the

agreement.

Precision and recall metrics are robust detectors to over and under-segmentation errors, respec-

tively. Over-segmentation produces a low precision value, while under-segmentation gives a

low recall. A robust segmentation would yield a trade-off of both high precision and recall

values.

Finally, the Receiver Operating Characteristic curve (ROC) indicates the robustness of an al-

gorithm over different threshold values. More precisely it is useful for evaluating methods that

does not bring a binary segmentation result but rather a probability-like result (such as random

walks results), where different threshold values can be tested. A high value of the area under

the ROC curve (AUC) indicates the robustness of the algorithm over different threshold values.

2.3 Tracking

Tracking is defined as identifying the location of a moving structure, such as coronary arteries,

within a motion sequence (such as a video). Several techniques have been proposed for tracking
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vascular structures from X-ray angiography. Instead of tracking the whole artery’s lumen (the

artery tube), these methods usually track the centerline of the artery (a thin line within the

artery) and then extracts the artery’s lumen if needed.

Polyline tracking method proposed by Dubuisson-Jolly et al. (1998) uses an adaptive method

for tracking vessel’s centerline represented by polylines in angiogram sequences. While the

method return successful qualitative results, a pre-processing step involving a rigid registration

is necessary to handle respiratory motion and to simplify the computations. Without such

preprocessing, the computations of the method can be memory and time consuming as it needs

to find the shortest path on a large graph representing all the possible segments that can be

part of the centerline. Also, representing the artery by a polyline could lead to the loss of

curvature information. Methods like Gao and Sundar (2012) define a motion model to track

manually selected seeds. However, the authors mention that the model is limited to cardiac

motion and additional steps may be necessary to handle respiratory motion to infer arteries

displacements. Other methods propose to track landmarks of the blood vessels.Yumei (2011)

proposed to automatically track blood vessels branches and junctions. The method shows good

results in tracking the junctions in 2D X-ray sequences. However, as denoted by the authors,

significant changes in the structure of the blood vessels, such as overlapping vessels, can limit

the performance of the method.

Other works measure the 3D displacement of coronary arteries from 2D biplane angiograms.

The work in Sundar (2015) presents a method for non-rigid registration of 3D CA with 2D

fluoroscopic images. A global transformation model is then presented to get an initial align-

ment based on rigid and affine registration. The registration is further refined by non-rigid

registration method defined by the authors. Hadida et al. (2012) modeled the coronary arteries’

motion using a stochastic approach and based on a 2D angiographic sequences together with a

3D CTA model of the patient’s arteries. In these cases, a 3D model of coronary arteries should

be pre-acquired.
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Another work presented by Compas et al. (2014) introduces a spatio-temporal approach to

extract and track the coronary artery tree. While it shows robustness in tracking the vessels’

centerline using multiscale optical flows, the vessel lumen is computed at each point in the

centerline individually and does not compute a global optimum to extract the lumen. This

computation may be sensitive to local deformation or noise. Moreover, the method tracks all

the tube-like structures in the sequence and does not focus on tracking a specific vessel or part

of the vessel.

Other methods focus on tracking other blood vessels such as cortical or retinal vessels. For

instance, the work in Ding et al. (2011) tracks cortical vessels using intensity and vesselness

information by searching in the actual frame along the orthogonal line to the vessels’ centerline

computed in the previous frame. This approach works well for cortical vessels which are

subject to a rigid movement and where the vessel features are invariant in time. The work

in Cao et al. (2011) tracks retinal vessels. Both cortical and retinal vessels do not undergo

the same complex combination of respiratory and cardiac motions observed with coronary

vessels. Indeed, in X-ray angiography, the coronary arteries are subject to rigid and non-rigid

movement (cardiac and respiratory). These arteries’ features may change in the angiography

sequence due to the diffusion of the contrast agent (i.e., the intensity inside the vessel decreases

as the contrast agent disappears).

Similar studies using spatio-temporal segmentation exist in the literature. These studies focus

mostly on other modalities such as CT scans (Laguitton et al. (2007)) or MRI (Cousty et al.

(2010)), which are not subject to the same constraints as 2D angiography sequences (projec-

tions, overlapping vessels, contrast diffusion, etc.).

To summarize, various methods have been proposed, to track coronary arteries in 2D angiog-

raphy sequences. However, they are limited to tracking the centerline of the vessel (and not

the lumen). Moreover, most of the works track the whole coronary tree and not one vessel in

particular.
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2.4 Quantification of vascular structures (distensibility)

Many measurements can be computed to evaluate the biophysical properties of arteries and

assess the dynamics of the arteries in the cardiac cycle. Distensibility measure is one of the

strongest indicators that evaluates arteries’ dynamics and can predict a potential cardiovascular

disease at an early stage (Cheung et al. (2002)). The measure evaluates the ability of an artery

to expand and contract with cardiac contraction (systole) and relaxation (diastole) (Godia et al.

(2007)) and computed as the following :

Distensibitliy =
( Lumen diameter at end systole − Lumen diameter at end diastole

Lumen diameter at end diastole )

blood pressure at end systole − blood pressure at end diastole
(2.6)

Distensibility measure is known to be higher in healthy patients and lower in patients with

vascular disease (Kelle et al. (2011)). As shown in equation (2.6), distensibility relies mostly

on the difference of the artery’s diameter in systole and diastole. There have been different

approaches for measuring arteries diameter in the cardiac cycle. Some methods would com-

pute the diameter manually by an operator (a cardiologist or a clinical technician) from X-ray

frames. However, this depends on the operator’s experience and the measurements may not

be precise. Other methods imply that the operator trace manually a centerline and a software

computes the distance automatically to the borders of the vessel using edge detection tech-

niques (Tomasello et al. (2011)). Nonetheless, such methods depend on the precision of traced

centerline and the operator may not be precise, not to mention that this tracing can be time

consuming.

On the other hand, an automatic quantitative evaluation makes the measurement more objective

and independent from the clinician’s experience. There are different commercialized systems

to quantify arteries’ diameter. As described by Tomasello et al. (2011), the two most commonly

used systems are CAAS from PIEMedical and QAngio from Medis. However, to the best of

our knowledge, these software compute the diameter from one image but does not evaluate the

diameter changes in time from one segment of a vessel.
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Besides, other works on distensibility involves studies on other imaging modalities: using MRI

images (Kelle et al. (2011)); CT scans (Ahmadi et al. (2010)) (manually and automatically with

Workstation AW 4.4; GE Medical Systems) ; using ultrasound (Maurice et al. (2014)) or using

3D reconstructed model from biplane views (Girasis et al. (2013)). Kelle et al. (2011) Eval-

uates the distensibility of coronary arteries from MRI images which have higher resolution

than 2D X-rays. The method was evaluated on adult patients and showed accurate quantitative

measurements. From our understanding, the artery’s diameter is computed at systole and di-

astole without any tracking of the artery. Maurice et al. (2014) applies binary segmentation to

measure the lumen of the carotid artery in ultrasound images. This may not be accurate in the

case of 2D X-rays.

In conclusion, several methods exist to quantify the artery’s diameter. Nonetheless, all these

methods rely on computing the diameter one frame at a time and without an automatic tracking

of the arterial structure in the moving sequence.



CHAPTER 3

CORONARY ARTERIES SEGMENTATION FROM 2D X-RAY ANGIOGRAPHY

3.1 Introduction

Percutaneous coronary interventions are used for the diagnosis and treatment of coronary ar-

teries (CA) pathology, especially among newborns and young patients. These interventions

are guided by real time 2D X-ray angiographies. Automatic segmentation of coronary arteries

from angiograms is of clinical importance since it provides cardiologists with additional in-

formation, such as measuring different physiological properties of the patient’s arteries. An

Figure 3.1 Overview of CA segmentation : (left) Original

image, (right) Segmentation result overlaid in yellow.

accurate and repeatable vessel segmentation from the 2D angiograms is a valuable tool to ob-

tain both, an accurate delineation of anatomy with precise measurement of vessels and a good

registration or reconstruction for navigation guidance Hadida et al. (2012); Rivest-Henault

et al. (2012); Liao et al. (2010).

Segmenting CA from 2D angiograms can be challenging due to the complexity of their struc-

ture, the quality of the 2D X-ray image, and due to the presence of sternal sutures (as shown

in Figure 3.2). Besides, angiograms are 2D projections of a 3D structure (the patient’s thorax).
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Thus, we can observe overlapping vessels that are in reality two vessels at different levels of

depth.

Figure 3.2 The presence of dark tubular regions that does not

correspond to coronary arteries can be challenging for an

automatic segmentation: Red circle on the left shows a stenal

suture; red circle on the top shows a bone from the rib cage ; the

arrow points to the catheter (the dark long tube crossing the

image).

Two observations were considered to segment coronary arteries from 2D angiograms :

• Coronary arteries form connected regions with an intensity level different from the back-

ground;

• They constitute a set of different tubular segments where the intensity level varies mostly

across the vessel.

As suggested by Lesage et al. (2009), the combination of a prior appearance information and

existing segmentation models can enhance the result. In that matter, our work segmentation

model adds prior information about intensity level and topological features. As described in

section 2.2, recent works have considered similar combinations to segment arteries, like the
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work of Hernández-Vela et al. (2012) or Freiman et al. (2009). However, the first work pre-

sented some limitations in extracting arteries’ bifurcations and overlapping vessels, whereas

the second work was applied on MSCT data using the Houndsfield values as prior, which does

not apply to 2D X-ray angiographies. Another existing work is the random walks with prior

(RWprior) presented by Grady (2005) and Andrews et al. (2010). Unlike the original RW for-

mula, RWprior can rely on a prior model over pixels’ intensity distribution or other feature

computed from the processed image or other images. However, RWprior does not include any

topological prior, which limits the performance for segmenting coronary arteries. Our work

modifies the original random walks (RW) formulation of Grady et al. (2006a) by including a

prior on intensity distribution. This chapter assesses the following hypothesis : An automatic

method to extract coronary arteries from 2D angiograms can be as accurate as an expert’s

manual segmentation (Figure 3.1).

3.2 Proposed method : Vessel Walker for coronary artery segmentation

This section presents our main contribution: the Vessel Walker method. Firstly, an overview

of our previous works, that led to the new proposed model, is presented. Following that, a

description of the Vessel Walker model, is provided.

3.2.1 Preliminary works

The main contribution was preceded by two previous works : first an approach based on ac-

tive contours (M’hiri et al. (2012b)) published in the International Conference on Information

Science, Signal Processing and their Applications ISSPA’12 and second a model using lapla-

cian eigenmaps ( M’hiri et al. (2012a)) presented in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops CVPRW’12.
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Adaptive framework using active contours (M’hiri et al. (2012b))

We propose, at first, an adaptive segmentation framework of tubular structures in X-ray an-

giography, based on active contour method. The framework combines global and local active

contours. It automatically computes the weights of local and global forces according to the

image homogeneity using the approach from Cheng and Sun (2000) and it initializes the con-

tour using vesselness filter by Frangi et al. (1998) . Experimental results have proved that the

proposed framework overcomes the weaknesses of using global and local approaches individ-

ually. However, the adaptive active contour relies only on intensity information and does not

use any topological information (besides the initialized contour) which results in the presence

of false positives and of disconnected regions.

An alternative solution is to use graph-based approaches. These approaches have the advantage

of preserving the neighbouring information, which solves the limitations of active contours.

Moreover, graph-based methods usually guarantees the repeatability of the solution, unlike

active contours.

Combining Laplacian eigenmaps and vesselness filters (M’hiri et al. (2012a))

We propose a segmentation method that aims at extracting CA, automatically. Our formulation

incorporates vesselness features with connectivity information using a graph representation of

the image, to segment structures with similar intensities and vesselness responses. The method

succeeds in extracting vessels on synthetic and pediatric datasets despite the presence of local

deformations. Nonetheless, computing eigenvectors can be time consuming, especially for

images with big resolution and big neighbourhood size.

Based on these previous works on active contours and laplacian eigenmaps, we conclude that:

a. Graph-based methods are more accurate, in our case, and helps to preserve connectivity

information
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b. Using vesselness information within a segmentation model helps to extract thin, elongated

structures

This leads us to our main contribution: the Vessel Walker model.

3.2.2 Vessel Walker : segmentation method combining Random walks and vesselness
filters

Based on our work using the Laplacian eigenmaps (M’hiri et al. (2012a)), we explored the idea

of combining graph-based method and vesselness features, further. Random walks method is

well known to surpass other graph-based solutions by its fast computation to find a globally

optimal solution and is less sensitive to the shrinking bias problem.

A new model is defined based on the random walks that adds vesselness information. This

method, called Vessel Walker (VW), was first introduced in M’hiri et al. (2013). Vessel Walker

extends the random walks formulation by adding a vesselness prior. Therefore, the method can

preserve the connectivity information using the graph representation of the image. Moreover, it

can extract only vessels given the vesselness features used in the formulation. Finally, the orig-

inal random walks needs the specification of seed points to define foreground and background

regions. The Vessel Walker can be solved automatically considering the vesselness features.

Nonetheless, it can use manually selected seed points if we need to refine the segmentation of

regions with low contrast or high level of noise.

Given an image I represented by a graph G = {N,E}, the VW method searches for a mapping

f : I →{0,1}, where, fi = 1, if the pixel i belongs to the vessel, and fi = 0, if i belongs to the

background. Let bi ∈ [0,1] be a value representing the vesselness of pixel i as computed using

equation (2.1) by Frangi et al. (1998). This mapping minimizes the following energy equation:

E( f ) =
1

2

|I |
∑
i=1

|I |
∑
j=1

wi j( fi − f j)
2 + α

|I |
∑
i=1

(1−bi) f 2
i

+ β
|I |
∑
i=1

bi( fi −1)2.

(3.1)
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The first term of the energy formulation minimizes the total weight of edges in the graph, which

connects background and foreground regions (wi j computed using equation (2.2) ). Parameters

α,β ≥ 0 are used to control the trade-off between minimizing the vesselness of background

pixels and maximizing the vesselness of foreground pixels. Since the equation in 3.1 is based

on an extension of the random walks formula using not only intensity but also vesselness

information, the method is called Vessel Walker.

To express this formulation in a matrix form, let L be the Laplacian matrix derived using the

adjacency matrix presented in Equation (2.2). We denote by b the vector of vesselness values

bi, and let B be a diagonal matrix such that [B]ii = bi. The energy function can be rewritten as:

E( f ) = f�
(
L+αI +(β −α)B

)
f − 2βb� f + βb�1 (3.2)

= f�M f − 2βb� f + βb�1. (3.3)

with I representing the identity matrix and 1 representing a vector of ones.

The proposed model can be solved automatically or semi-automatically using a set of selected

seeds.

3.2.2.1 Semi-automatic formulation

To refine the segmentation of smaller vessels or noisy regions, manually selected seeds are

needed . Given a set of seeds S , the pixels of I are reordered in two groups containing

labelled and unlabelled pixels. We denote by fU the mapping of unlabelled pixels and by f L

the mapping of labelled ones. We can then rewrite Equation (3.2) as:

E( f ) =

[
f�U f�L

]⎡⎢⎣ MUU MUL

M�
UL MLL

⎤
⎥⎦
⎡
⎢⎣ fU

f L

⎤
⎥⎦

− 2β
[

b�U b�L

]⎡⎢⎣ fU

f L

⎤
⎥⎦ + βb�1.

(3.4)



37

Expanding this equation gives:

E( f ) = f�U MUU fU + 2 f�U MUL f L + f�L MLL f L −2β f�U bU −2β f�L bL + βb�1. (3.5)

To find the optimal solution, we relax the integer constraint on f , derive the function with

respect to the variable fU , and set the result to zero:

∂E
∂ fU

= 2MUU fU + 2MUL f L −2βbU = 0. (3.6)

This yields the following solution:

fU = M−1
UU

(
βbU −MUL f L

)
. (3.7)

Once the solution for fU is computed, a threshold θ value is estimated automatically using

Otsu’s algorithm Otsu (1979) to obtain a binary segmentation result. We can then compute the

binary segmentation of image I with the given θ :

IF = {i ∈ I | fi ≥ θ}, (3.8)

IB = {i ∈ I | fi < θ}. (3.9)

where IF is the set of pixels belonging to the foreground in the VW solution and IB is the set

of background pixels.

While seeds can be used to refine the segmentation in regions where the vesselness response is

unreliable, the proposed method can also be used without any seeds.

3.2.2.2 Automatic formulation

In this fully automatic approach, the solution can be obtained by relaxing the integer constraints

on f and deriving equation (3.2) with respect to variables f and setting the result to zero. This
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gives the following solution:

f = β
(
M
)−1b. (3.10)

We then apply the threshold θ on vector f , as described in the previous subsection 3.2.2.1, to

obtain a binary segmentation mask. Otsu’s algorithm can be used to fix the value of θ .

3.3 Experimental results

This section evaluates if the proposed segmentation method generates results as accurately as

manual segmentation. First, we start by presenting the data acquisition protocol. Then, we list

the different metrics used for evaluating the segmentation. The following section, assesses the

influence of the VW parameters and the seed numbers. Finally, a comparative study shows the

results of the proposed method with other existing methods in the literature.

3.3.1 Data Acquisition

The proposed method was tested on nine 2D X-ray images presenting left and right coronary

arteries acquired from adult patients during coronary catheterization. Each image has the size

of 256× 256 pixels. The groundtruth of the images was computed using frangi’s vesselness

filter with manual post-processing to eliminate false positives.

3.3.2 Influence of parameters α , β and r

Different parameters, in the presented work, have their influence on the accuracy of the final

result. In this section, we present the effect of the Vessel walker most influential parameters:

α,β and the neighbourhood size r (in Equation (2.2)). These parameters control, respectively,

the influence of background and foreground information and the sparsity of the adjacency

matrix. Therefore, the selection of their values depends on each dataset.

A k-fold cross-validation step was applied to select the right parameter values in terms of α,β

and r, where, the number of folds is equal to the number of the sequences, k = 9. The following
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figures (3.3, 3.4 and 3.5) show the mean values over all the dataset in terms of Dice, recall and

precision depending on each of these parameters.

This section evaluates if the proposed segmentation method generates results as accurately as

manual segmentation. First, we start by presenting the data acquisition protocol. Then, we list

the different metrics used for evaluating the segmentation. The following section, assesses the

influence of the VW parameters and the seed numbers. Finally, a comparative study shows the

results of the proposed method with other existing methods in the literature.

Parameter α has a high influence on the number of false positives. As shown in the last curve

in Figure 3.3, the higher the value of α , the higher the mean precision value, which makes the

parameter have fewer false positive errors. On the other hand, as α gets a higher value, the

recall does not change until after α = 2, where the value of recall drops to 0.2. This can be

explained by the fact that the more α controls the precision, the less true positives we may get.

In conclusion, α minimizes the vesselness of background pixels: from Eq. (3.1), the lower the

vesselness value of bi, the lower the probability for the corresponding pixel pi to belong to the

foreground: As α gets bigger value, this probability gets lower. As shown in Figure 3.4,

parameter β as a greater influence on the recall values than on the precision. The higher the

β value is, the more true positives we get. This proves that if a pixel pi has a high vesselness

value bi, parameter β maximizes the probability for that pixel to belong to the foreground. We

can also notice that β influences precision values. However, these values change from 0.63 to

0.73, which is not a big influence compared to its effect on recall values. Whereas, as β grows

from 0.002 to 20, recall grows from 0.4 to 0.75.

An optimal choice between α and β is necessary to obtain both high recall and precision

values. The values of these parameters have to be defined depending on the contrast level in

the image. The k-fold cross validation returned an optimal value for α = 2 and β = 20.

The size of the neighbourhood radius r can be critical in computing the segmentation. The

value should be large enough to facilitate the diffusion of information across noisy pixels but

small enough so that we can keep the sparsity of the Laplacian matrix, thus, keeping a moderate
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Figure 3.3 Influence of parameter α on Dice, Recall and

Precision values (respectively from top to bottom).

computation time and memory requirements. As shown in Figure 3.5, the radius r has a greater

influence on recall values (from recall= 0.49 at r = 1 to 0.74 at r = 5). The larger the radius

size, the more true positives are added to the segmentation result. This influence is reversed

in the case of precision values. Indeed, the radius r is inversely proportional to the robustness

of the method to false positives. Finally, as r gets higher, Dice value increases until r = 5
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Figure 3.4 Influence of parameter β on Dice, Recall and

Precision values (respectively from top to bottom).

where it levels out around a Dice value of 0.73. The neighbourhood size r has a large influence

on the computation of the Laplacian matrix L that expresses the similarity measure between

pixels. If r value is low, similar pixels that are in the vicinity of each other might not have

the same label in the segmentation result. On the other hand, if the value of r is high, the

Laplacian matrix becomes less sparse and finding the right segmentation result would involve
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Figure 3.5 Influence of the neighbourhood radius r on Dice,

Recall and Precision values (respectively from top to bottom).

complex computations and pixels that are not necessarily similar to each other would share the

same label. The k-fold cross validation returned an optimal value for the neighbourhood radius

r = 5.
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3.3.3 Influence of seed points number

Specifying seeds can be useful, especially around regions with low contrast and noisy regions

(e.g. in the case of small vessels with low contrast agent to depict them). To evaluate their

influence on the VW performance, we randomly selected foreground and background seeds

using the ground truth masks. At the beginning, we started without any specified seeds, then

we seeded from 1% of foreground pixels and 1% of background pixels to 90% of each, fore-

ground and background pixels. Figure 3.6 shows the seeded pixels on the image at different

percentages of the image’s pixels: starting at 0%, then 5% of foreground and background re-

gions are seeded (respectively in red and blue) until 70% of seeded pixels. The bottom row

displays the corresponding segmentation result to each percentage of seed used. As the number

of seeds grows, we can notice that fewer errors are made and more true positives are detected.

a) 0% seeded

pixels

b) 5% seeded

pixels

c) 20%

seeded pixels

d) 70%

seeded pixels

e) Segmenta-

tion with 0%

seeded pixels

f)

Segmentation

with 5%

seeded pixels

g)

Segmentation

with 20%

seeded pixels

h)

Segmentation

with 70%

seeded pixels

Figure 3.6 The influence of the percentage of seeded pixels on

the segmentation results. Top: Original X-rays with different

percentage of seeded pixels (blue pixels for background seeds, red

pixels for foreground seeds). Bottom: Corresponding

segmentation masks in yellow overlaid on the X-rays.
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Figure 3.7 evaluates the influence of the percentage of seeded pixels in the dataset on the

performance of the vessel walker method. In the four graphics, the results show that as the

number of seeds in the images grows from 0% to 90% of the pixels, the performance of the

VW enhances as well. We notice that the automatic VW (with a number of seeds = 0) performs

with AUC = 0.96 which shows the robustness of the method even when no seeds are selected.

Moreover, this automatic formulation performs better in terms of Recall = 0.73 than Precision

= 0.66. This explains that the VW has the tendency to highlight pixels with even low vesselness

values. The AUC evolution curve, shows that as the percentage of seeded pixels in background

and foreground grows from 0% to 10%, the AUC value "jumps" from 0.96 to 0.99.

3.3.4 Vessel walker compared to existing methods

Table 3.1 Average performance on the 9 angiograms, obtained

by Frangi’s filter (VF), the active contour method (AC), the

random walks algorithm (RW) and our proposed method (both in

the automatic (VW-A) and semi-automatic (VW-SA)

formulations)

VF AC RW VW-A VW-SA
Precision 0.77 0.68 0.54 0.66 0.63

Recall 0.35 0.54 0.76 0.73 0.82

Dice 0.46 0.58 0.62 0.68 0.70

AUC 0.94 0.93 0.93 0.96 0.97

The Vessel Walker method (both with the automatic (VW-A) and semi-automatic formulations

(VW-SA)) was evaluated on the presented dataset. Moreover, the method is compared to the

vesselness filter (VF) by Frangi et al. (1998), the random walks algorithm (RW) by Grady et al.

(2006a) and our previous work on active-contour method (AC) (M’hiri et al. (2012b)). To get a

binary segmentation, the prescribed threshold of 0.5 was used for RW result, while Frangi and

our VW method used Otsu’s Otsu (1979) thresholding technique. For the VW parameters, the

optimal values used were α = 2 ; β = 20 and r = 5 with Frangi’s vesselness filter computed

within the scales [1,3]. The adjacency matrix (Eq. (2.2)) parameter was fixed to γ = 850 .
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Figure 3.7 Influence of the percentage of seed number in the

image on the performance in terms of Dice coefficient, Recall and

Precision and AUC values.
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Regarding the RW and the semi-automatic formulation, we used the same set of seed points

representing 0.2% of pixels seeded with background and foreground seeds.

Figure 3.8 Segmentation results obtained with automatic

thresholding. From top to bottom: Groundtruth, Active contours

results, random walks results and our proposed method using the

fully automated and the semi-automatic formulations.

Table 3.1 shows the mean performance of our proposed method and the other methods on

the dataset in terms of precision, recall, Dice coefficient and the area under the ROC curve
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(AUC). ROC curves were computed by varying the threshold (parameter θ defined in section

3.2.2.1) from 0 to 1. The result in table 3.1 shows that the proposed method has a good tradeoff

between the precision and recall values in both automatic and semi-automatic formulations.

The semi-automatic method shows the best Dice value of 0.70. Besides, both of our automatic

and semi-automatic methods achieved the best performance, in terms of AUC value of 96%

and 97% respectively. This proves the robustness of the proposed method to the potential bias

of threshold selection.

Figure 3.8 shows four angiograms and their corresponding segmentation (overlaid in yellow),

obtained with the Active Contour method, the random walks algorithm, and our Vessel Walker

approach (using the automatic and semi-automatic formulations). The qualitative results show

how both of the automatic and semi-automatic methods succeed in extracting vessels. Thanks

to the vesselness features, the method extracts both large and small vessels with low contrast.

The VW-A brings satisfactory results in comparison with the RW and AC. However, the VW-A

can be limited in regions with low contrast which can disconnect parts of the coronary arteries

(e.g. Fig. 3.8, third column and fourth row). In such cases, the automatic result can be

enhanced with specifying seeds and the VW-SA can correct the limitations of the VW-A in the

most challenging cases.

Both RW and VW-SA, as shown in Figure 3.9, used the same seed points to compute the results.

While, we can see that RW failed in extracting the coronary artery due to leakage problems, our

method avoids this limitation by using the vesselness features. Finally, both of the proposed

formulations bring fewer false negative results than the Active Contour method. Despite the

fact that the original contour of the AC method was initialized using vesselness results, the

method relies only on intensity homogeneity to deform the contour, which can make it more

sensitive to low contrast regions.

Finally, Figure 3.10 shows Fangi’s vesselness values and our VW f non-thresholded result.

The figure shows the probability value per-pixel of belonging to the foreground regions. Values

from 0 to 1 are colour-coded such that the lowest possible foreground probability is dark blue
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Figure 3.9 Top figure : manually selected seeds for image

number 6 (blue dots are background seeds ; red dots are

foreground seeds) Bottom row : From left to right : segmentation

masks of RW and VW-SA methods overlaid on the groundtruth

mask : White color shows perfect overlap ; green color shows

false negatives and pink color shows false positives in the

segmentation results

and the highest one is red. Our proposed method emphasizes the coronary arteries and their

bifurcations more accurately than the vesselness filter alone.Figure 3.8 shows that all methods

extract part of the catheter with the coronary artery. While the structure does not belong in

the coronary arteries, it is shown in the images as part of the vessels since it is connected to

them and shares the same tubular features. Further work would add a post-processing step

to suppress the catheter from the coronary arteries. Overall, our proposed method succeeded

in extracting all the dark tubular structures in the images. To summarize, the Vessel Walker
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Figure 3.10 Foreground class probabilities obtained by Frangi’s

filter (left) and our proposed method (right).

extends both of Frangi’s vesselness filter and random walks, combining the advantages of both

these approaches.

3.3.5 Limitations of the method

The VW method in both automatic and semi-automatic formulations has shown successful

segmentation results. However, some limitations of the method were noticed and should be

considered to further improve the VW:

• Threshold θ selection : Despite the fact that VW shows robustness across various θ

values, as shown with the high AUC (96% and 97% from Table 3.1), using Otsu’s thresh-

olding solution does not seem to give the best binary result (which explains the relatively

low Dice coefficient). We considered using different thersholding techniques such as K-

means or fixing the threshold at 0.5. However, these results are not conclusive enough.

We might consider exploring other thresholding techniques. Another solution would be

to have an additional prior to the VW formulation, such as the vessel direction, to better

distinguishes between background and foreground pixels.
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• Automatic versus semi-automatic formulations : Semi-automatic formulation can be

helpful in some challenging cases. However, our focus will be on how we can enhance the

VW formulation to make the automatic method more accurate and robust in these cases.

• Image contrast: The dataset used for VW evaluation was challenging, especially for the

low image quality. In this case, we may consider adding a preprocessing step (such as

applying the anisotropic filter by Weickert (1998)) to enhance the quality of the image and

the contrast of small vessels before applying the VW method.

3.4 Conclusion

This chapter presented our first contribution which is a new segmentation method to extract

coronary arteries from 2D X-ray angiograms. The method, called Vessel Walker (VW), com-

bines a graph-based method with vesselness prior. The method modifies the Random walks

model to include vesselness information. Vessel walker was compared to the Random walks

and other methods and has shown better quantitative results with a Dice of 0.70.

Future works

While our method presents an AUC higher than 97%, using Otsu’s method does not seem ac-

curate enough to get a binary segmentation between the foreground and background pixels.

Further investigation has to be done to find a suitable thresholding method for the VW. More-

over, other priors can be included in the model, such as the direction and scale of the vessel

computed with the vesselness filter (Frangi et al. (1998)).



CHAPTER 4

TEMPORAL SEGMENTATION OF CORONARY ARTERIES IN ANGIOGRAPHIC
SEQUENCES (2D+T)

4.1 Introduction

Two-dimensional X-ray moving sequences (called angiograms) are used in percutaneous coro-

nary interventions (PCI). They are a valuable tool to diagnose and treat coronary artery (CA)

pathologies in newborns and young patients. The accurate and repeatable vessel segmentation

and tracking in 2D angiograms (as illustrated in Figure 4.1) are essential for the assessment of

the biophysical measurements of coronary arteries to predict cardiovascular diseases. These

measurements include computing the vessel segment length (Tomkowiak et al. (2014)) or de-

tecting stenosis (Janssen et al. (2010)) or estimating the severity of a stenosis by measuring the

vessel’s diameter (Compas et al. (2014)). Segmenting and tracking the artery along the moving

angiography sequence is a key step for measuring the artery and assessing its dynamic change

in the cardiac cycle.

Figure 4.1 Overview of the segmentation of a coronary artery in

2D+time: Segmenting and tracking the RCA lumen (highlighted

in yellow) in an angiographic motion sequence

Vessel segmentation from a 2D moving sequence is a challenging task. First, the visualization

of coronary arteries in X-rays depends on the diffusion of the contrast agent in the blood flow.
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The faster the diffusion of the contrast agent, the harder it is to outline the artery. This is the

case for pediatric patients, where the heart rate can be as high as 160 beats per min (twice

that of an adult). Therefore, an entire vessel tree cannot be depicted in one single image, but

gradually in the angiography sequence at a typical frame rate of 15 or 30 frames/s. Moreover,

the displacements of coronary arteries are influenced by both the respiratory and the cardiac

motions. For these reasons, it is difficult to track coronary arteries automatically with these

motions. To address this problem, temporal coherence should be preserved, while segmenting

the artery in all the frames in the sequence. This coherence will guarantee that the method is

tracking the specific artery despite the respiratory and cardiac motions. The tracking result is

crucial in order to evaluate the artery’s function and elasticity.

In addition, using new image features to define homogeneous groups of pixels can enhance

the segmentation accuracy. Superpixels have been used to define image primitives for image

segmentation (Ren and Malik (2003)). They can help by preserving the essential information

while simplifying the spatio-temporal segmentation. Instead of extracting pixels independently,

the method would extract a group of connected pixels that share the same properties.

Our objective is to design a spatio-temporal segmentation algorithm that can be coherent both

spatially and temporally for pediatric interventional cardiology. The spatial coherence guaran-

tees that the method segments one particular vessel from the background, while the temporal

coherence tracks the segmented vessel in the motion sequence. The results obtained will guide

cardiologists after PCI interventions in evaluating the dynamics and the measurements of the

vessel of interest (VOI) during the cardiac cycle.

This chapter evaluates the following hypothesis: Using temporal information in 2D X-ray mov-

ing sequence helps segmenting and tracking coronary arteries (Figure 4.1).

The contribution of this chapter is the development of an algorithm for segmenting a specific

coronary artery in a moving X-ray sequence, while preserving a spatio-temporal coherence.

Figure 4.1 illustrates the results of the proposed work, where a specific coronary artery is
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segmented and tracked in a moving X-ray sequence. The contribution is divided into three

parts:

a. Enhancing the vessel walker method by incorporating superpixels (Ren and Malik (2003))

instead of pixels.

b. Adding a temporal prior to the vessel walker method to segment and track in time: the

Temporal Vessel Walker.

c. Proposing a pipeline where a clinician can specify by two clicks a vessel of interest. This

vessel is segmented and tracked automatically during the angiographic sequence.

The findings are expected tp significantly contribute to the field of segmentation and tracking

in 2D X-ray sequences. Most importantly, the findings may lead to the development of new

protocols for assessing and evaluating coronary artery dynamics directly from monoplane 2D

X-ray sequences.

4.2 Literature review

Different approaches have been proposed in literature for segmenting coronary arteries. A

complete review of segmentation methods can be found in Lesage et al. (2009). However,

most segmentation methods deal with the segmentation of a single image, and not a moving

angiogram sequence. To consider the movement of a CA, other studies have proposed a solu-

tion for tracking the same structure in time. The polyline tracking method that was proposed

by Dubuisson-Jolly et al. (1998) extracts and tracks a CA’s centerline in 2D angiographic se-

quences. The CA’s centerline is represented by a set of lines or polylines, and each line is

retrieved in the sequence. The polyline tracking method is a reference work in the literature

(Gao and Sundar (2012)), and shows successful qualitative results. Moreover, the method is

formulated as a minimization problem on a constructed graph, similar to our method. However,

to handle respiratory motion and simplify the computations, polyline tracking is applied after a
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pre-processing step. Otherwise, the computations can be memory intensive and time consum-

ing because the solution relies on finding the shortest path within a large graph in which each

node represents a possible line segment of the centerline. Moreover, the polyline representation

of a vessel may lead to the loss of curvature information.

Gao and Sundar (2012) proposed a motion model to track seeds that belong to the CA during

the angiography sequence. Nonetheless, their model considers only cardiac motion, and not

both cardiac and respiratory displacements.

More recently, Compas et al. (2014) presents a spatio-temporal approach to extract and track

the coronary artery tree. However, the method tracks the entire tree, and not only one artery in

particular. It is accepted that tracking one artery is more challenging because all of the arteries

in the sequence will share similar features, and it is difficult to automatically distinguishes one

from the others, while dealing with the artery’s motion in time. Besides, in Compas et al.

(2014), the vessel lumen is extracted at each point in the centerline individually and does not

compute a global optimum.

Finally, while other studies have used spatio-temporal segmentation to track and segment ar-

teries, they either focus on other types of arteries, which do not have the same motion as CA

(such as cortical vessels in Ding et al. (2011)), or they work on other imaging modalities such

as 3D CT scans in Laguitton et al. (2007), where the artery’s displacements are not depicted in

the same manner as in 2D X-ray angiograms.

To the best of our knowledge, this work is the first to undertake a spatio-temporal segmentation

method, where the method tracks the lumen of one specific artery, while being robust to both

respiratory and cardiac motions from a monoplane 2D X-ray sequence.

4.2.1 Superpixel Method

To enhance the segmentation process, one effective pre-processing step for image representa-

tion is superpixel extraction. First introduced by Ren and Malik (2003), the method organizes
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Figure 4.2 X-ray frame oversegmented with superpixels (red

lines are the borders of superpixels)

an image into small groups of pixels sharing the same features with low contour energy in-

side the group.The use of superpixels, on the other hand, preserves the important information

needed for segmentation, while simplifying the representation of the image and reducing the

model’s search space. One of the most efficient methods for superpixel computations is the

simple linear iterative clustering (SLIC) by Achanta et al. (2012). The method performs a

local clustering of pixels using their colour values and spatial locations. Figure 4.2 shows an

X-ray frame segmented using the SLIC superpixel algorithm 1.

Superpixels have been used within graph-based methods. For instance Çiğla and Alatan (2010)

used them within a normalized cut segmentation approach. Another work, presented by Desrosiers

(2015), used superpixels with the random walks method to enhance the segmentation. Super-

pixels simplifies the graph size and the retrieval of the optimal solution, where each node

represents one superpixel instead of one pixel in the image.

1We used the implementation of SLIC from the VLFeat package : http://www.vlfeat.org/api/slic.htm
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4.3 Proposed method : Temporal segmentation of CA in 2D X-ray moving sequences

This section presents our main contribution for a spatio-temporal algorithm to segment and

track coronary arteries. Before presenting the main method, we start by introducing our pre-

liminary works on the subject that lead us to the main contribution.

4.3.1 Preliminary works

To find the right solution to our spatio-temporal segmentation challenge, we started by first

defining the Temporal Vessel Walker method (TVW). The method extends the original Vessel

Walker formulation, presented in Chapter 3, by adding temporal prior to preserve the structure

of interest. This work has been presented at the International Conference on Image Processing

(ICIP2015).

4.3.1.1 Temporal Vessel Walker

In a multiple-frame sequence where we observe the same vessel of interest, we want to segment

the vessel from a new frame I t at time t, knowing the segmentation result in its previous frame

I t−1.

The proposed idea is as follows: If we have a pixel pt−1
i at location i in I t−1 and pt

j at the same

location in I t , and if pt
i or one of its neighbors shares the same features as pt−1

i , then pixel

pt
j or one of its neighbors has a high probability of having the same label (i.e., background or

foreground label) as pt−1
i . To guarantee this temporal similarity, we define graph Gτ , which

connects by edges each pixel pt−1
i in I t−1 to pixel pt

j and its neighbors within a radius rτ from

I t , as shown in Figure 4.3. Each edge has a weight wτi j expressing the similarity between pt−1
i

and pt
j using the following formulation:

wτi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
{− γτ (It−1

i − It
j
)2}

, if i = j

or dist(i, j)≤ rτ

0, otherwise.

(4.1)
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Figure 4.3 Representation of the temporal graph Gτ : Node i
from image I t−1 is connected to the node having the same

location as I t and its surrounding 8-neighbours. We compute the

temporal similarity measures between i and all the connected

nodes ( j and its neighbors).

source: M’hiri et al. (2015).

It−1
i is the intensity value at pixel pt−1

i and γτ a parameter controlling the effect of the intensity

differences on the weight.

We define the new Temporal Vessel Walker (TVW) following a Bayesian approach. The pro-

posed method looks for a mapping f that maximizes the posterior probability of the Markov

random field (MRF) associated with the label map:

f = argmax
f

p( f |Y, f t−1) (4.2)

∝ p( f )p(Y | f )p( f t−1 | f ). (4.3)

The maximization problem is equivalent to the minimization of the energy function:

E( f ) = log(p( f )) + log(p(Y | f )) + log(p( f t−1 | f )) . (4.4)
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where each term is defined as follows, and the first term:

log(p( f )) =−
|I |
∑
i=1

|I |
∑
j=1

wi j( fi − f j)
2. (4.5)

the second term:

log(p(Y | f )) = f 2
i log(p(yi | fi = 1)) + (1− fi)

2 log(p(yi | fi = 0)). (4.6)

with

p(yi | fi = 1) = N (1,α−1) (4.7)

p(yi | fi = 0) = N (0,β−1) (4.8)

the third term expresses the temporal prior:

log(p( f t−1 | f )) =
N

∑
i=1

N

∑
j=1

wτi j( f j − f t−1
i )2. (4.9)

Combining these terms leads to the final formulation of the energy function:

E( f ) =
1

2

|I |
∑
i=1

|I |
∑
j=1

wi j( fi − f j)
2 + α

|I |
∑
i=1

(1−bi) f 2
i

+ β
|I |
∑
i=1

bi( fi −1)2 +μ
|I |
∑
i=1

|I |
∑
j=1

wτi j( f j − f t−1
i )2.

(4.10)

The last term in the equation conserves temporal coherence, where the formulation tries to

obtain the segmentation result f in the actual frame similar to the segmentation result f t−1

obtained from the previous frame I t−1. Parameter μ > 0 is a parameter controlling the weight

of the temporal prior in the overall TVW formulation. Representing equation (5.1) in a matrix

form yields :

E( f ) = f�M f − 2βb� f + βb�1 + μT. (4.11)
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With

M = (D−W )+αI +(β −α)B. (4.12)

and

T = f�Dτ f −2 f�Wτ f t−1 + f t−1�Dt−1
τ f t−1. (4.13)

I is the identity matrix and B ∈R
(n×n)2

is a diagonal matrix with [B]ii = bi the vesselness value

for each pixel. D−W represents the Laplacian matrix (as defined in Eq. (2.2)) computed at I t ,

Wτ is the temporal adjaceny matrix using Eq. (4.1) and Dτ and Dt−1
τ are the degree matrices

computed using Wτ .

Relaxing the binarity constraint on f and deriving the function with respect to f yields to the

following:
∂E
∂ f

= 2M f − 2βb + 2μDτ f −2μWτ f t−1 = 0. (4.14)

The solution of the equation gives :

f = (M+μDτ)
−1(βb+μWτ f t−1). (4.15)

The resulting f vector describes the probability that each pixel belongs to the foreground. To

obtain a binary segmentation, a threshold has to be selected or computed. In our implementa-

tion, we chose the thresholding algorithm by Otsu (1979) to find a final binary segmentation of

f . This well-performing method computes the threshold that minimizes the weighted within-

class variance.

The TVW method extracts the vessel in I t having the result f t−1 from I t−1. However, in the

context of coronary arteries displayed in angiographic sequences, the shape and the position

of the vessel can change dramatically due to the respiratory and cardiac motions and to the

diffusion of the contrast over time. Applying TVW alone, while connecting pixels between two

images, may succeed in extracting parts of the coronary artery and tracking it in the sequence.
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However, it can also amplify the effect of background noise especially around the borders

of the vessel when the contrast can be limited (as it is discussed in the result section 4.4).

Consequently, additional steps are necessary to enhance the result of VWT in the context of

coronary arteries segmentation in angiographic sequences.

4.3.1.2 Multiscale Temporal Vessel walker (M’hiri et al. (2015))

Figure 4.4 Multiscale hierarchical angiography segmentation at

a single scale.

source : M’hiri et al. (2015)

To capture cardiac and respiratory motions, using the Temporal Vessel Walker alone for seg-

mentation and tracking is not sufficient. For this reason, the method is used within a hierarchi-

cal framework to track the structure accurately with the use of Histogram of Oriented Gradient

(HOG) features. As presented in Figure 4.4, at the beginning of the sequence, the method asks
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the user (i.e, a clinician) to select seeds defining the artery or part of the artery to track. Those

seeds are used by the Vessel Walker method (from Chapter 3) to compute the segmentation at

the first frame. Then, for the rest of the sequence, the seeds are retrieved using the Histogram

of Oriented Gradient (HOG) features. These features were introduced by Dalal and Triggs

(2005) and are known to be robust to illumination changes. To simplify the computations and

limit noise effect, a frame is partitioned into subregions where each seed is the center of one

subregion. The TVW Eq. (5.1) is computed for each subregion. The results for all subregions

are then combined to find the segmentation for one frame at one scale mi. These steps are

reapplied on the sequence at different scales mi = [1,m]. Finally, the segmentation results at

different sizes are rescaled to their original size. The final mask is computed using weighted

combinations of these results. Finally, shape matching technique, by Ling and Jacobs (2007),

is applied between the segmentation results of frames I t and I t−1 to ensure the coherence

between both results.

Using TVW within a multiscale framework gives encouraging results by keeping track of the

specified artery in the sequence. However, the results are still limited especially in the case

of overlapping vessels, where it is more difficult to distinguish the vessel of interest from the

overlapping vessel. Moreover, the use of TVW in a pixelwise fashion can show some limita-

tions, since each pixel is treated independently from the rest of the image. Indeed, computing

temporal similarity between pixels without considering the global context in the image can

limit the performance. This is even more challenging when segmenting overlapping vessels or

when the contrast is limited.

A new proposition is to enhance the TVW performance by computing similarities between

groups of pixels. Superpixel grouping method can be a good alternative. Instead of computing

temporal similarities between pixels independently, we compute similarities between superpix-

els which are a more meaningful entity to segment and to track. Moreover, using TVW within

a multiscale approach can enhance the result but it is not sufficient especially with cardiac and

respiratory motions. Besides, part of the information in the frame can be lost, when the frame’s

size is too small. In that context, superpixels can also be an interesting solution where the
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VWT is applied at different sizes of superpixel to capture large and thinner parts of the same

artery, while dealing with the artery’s motion.

The following section presents the proposed algorithm for spatio-temporal tracking using the

TVW with superpixels to segment and track a coronary artery in 2D X-ray sequence.

4.3.2 Temporal Vessel Walker with superpixels

Figure 4.5 Proposed pipeline for spatio-temporal segmentation

of an artery in 2D X-ray angiogram

The proposed algorithm uses the TVW method, with the incorporation of superpixels , to

segment and track the vessel lumen. Figure 4.5 summarizes the proposed algorithm: At the

beginning of the sequence, the clinician defines the vessel of interest by specifying -using a

simple click- the limits of the vessel. The vessel walker method with superpixels is applied to

segment all the vessels in the image. This result is further refined to extract only the lumen of

interest based on the seeds specified by the clinician, as described in section 4.3.2.1. For the
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rest of the sequence, the Temporal Vessel Walker with superpixels is applied, as described in

section 4.3.2.2. To track and segment the vessel, the method uses the segmentation result at the

first frame of the sequence and the segmentation result at the previous frame as prior. The steps

presented in Figure 4.5 are applied using different superpixel sizes to capture thick and thin

parts of the same artery. The results obtained at different superpixel sizes are merged using a

weighted combination to get a final segmentation result. All these steps are summarized in the

algorithm 4.1 at section 4.3.2.3.

4.3.2.1 Segmentation of the first frame : Vessel Walker method using superpixels

Figure 4.6 The steps for segmentation of the first frame

At the beginning of the X-ray sequence, and because we do not have an initial prior, the method

starts by asking the operator to specify two seed points. These seeds corresponds to the be-

ginning and the end of the vessel of interest, as shown in the first image in Figure 4.6. More

than two seeds can be defined in the case when the contrast in the image is limited, or if there

is vessel overlap or many bifurcations. Using the Vessel Walker and the specified seeds, the

method extracts the vessel of interest as described in the following subsections. It is important
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to perfectly extract the lumen of the first frame in the sequence, which is why different steps

are used (as shown in Figure 4.6):

a. Extending the Vessel Walker method using superpixels : The Vessel walker automatic

method, described in Chapter 3, is applied by using superpixel information instead of

pixels. Image I is undersegmented to a number Nsp of superpixels spi,i = 1..Nsp. The

image is then represented by an undirected graph G = (V,E). V is the node set where

each superpixel spi from I is represented by node vi from V (|V | = Nsp). E is the edge

set that connects two neighbouring nodes to each other. The weight wi j of each edge ei j

describes mean intensity similarity between two neighbouring superpixels vi to v j:

wi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
{− γ (Ispi −Isp j

)2}
, if dist(spi,sp j)≤ r

and i �= j

0, otherwise.

(4.16)

Where Ispi corresponds to the mean intensity in the superpixel spi and γ is a parameter

controlling the effect of intensity’s differences on the weight. The same equation defined

at (3.2) in Chapter 3 is applied, where instead of pixels we simplify the computations of

VW by using superpixels. The result (second image in Figure 4.6) extracts all the vessel-

like structures in a frame. To extract only the vessel of interest (VOI) as specified by the

clinician, the following step is needed.

b. Extracting the vessel of interest using VW result : To extract the vessel of interest,

first, the centerline of the vessel is computed, then its corresponding lumen is segmented.

• Computing the centerline of the vessel: The centerline can be represented as the short-

est path that connects the endpoints of the vessel (i.e., selected seeds) passing by pixels

with similar features to them. Using the VW result, a first centerline is retrieved by the

Hamilton-Jacobi Skeleton (Bouix et al. (2005)). Since the clinician can select a seed

a little far from the actual centerline and these seeds are hard contraint in our pipeline,

their location should be as accurate as possible. For this reason, the seeds location is
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enhanced by moving them to the closest centerline point (for more accurate result).

Then, the adjacency matrix is computed using the geodesic distance map (using the

work of Sundar et al. (2006)) and using other features such as intensity similarity be-

tween seeds and all the pixels of the image and their orientation, we compute the new

adjacency matrix as described in Freiman et al. (2012). Dijikstra’s shortest path algo-

rithm (Dijkstra (1959)) computes the centerline of the vessel based on the computed

matrix and seed locations. The method allows the user to initialize more than two

points along the vessel of interest (VOI), when necessary. The centerline will then

be computed iteratively, where two consecutive seed points are connected using the

shortest path algorithms. The resulting centerline is then constructed one segment at

a time. The result is shown in the third image at Figure 4.6.

• Computing the lumen of the vessel: Once the centerline is extracted from the first

Figure 4.7 3D adjacency matrix connecting the centerline result

and the extracted lumen and computing the similarity between the

pixels on the centerline and the pixels belonging to the extracted

lumen.

frame, a region surrounding the centerline is defined (the radius of the region is se-

lected empirically depending on the dataset) and the lumen within that region is ex-

tracted (fourth image in Figure 4.6). However, this result can include some bifurca-
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tions of the VOI that are not interesting for the clinicians (third image in Figure 4.6).

Those small erroneous bifurcations are detected by computing the 3D adjacency ma-

trix between the centerline and the lumen, keeping only pixels that are similar to the

ones in the centerline as shown in Fig. 4.7. This is motivated by the fact that around

a specific neighbourhood, the centerline and the lumen must share the same Vessel

Walker probability value. If there is any bifurcation or vessel’s crossover, the simi-

larity value is low between the centerline and these regions. We apply Otsu (1979)

threshold to remove the regions that have low similarity values in the 3D adjacency

matrix to get the final segmented vessel. The result is shown in the last image in Figure

4.6.

While computing the lumen at the first frame may seem to be demanding in terms of the number

of steps and computations, the complete computation takes a mean time value of 20 s per frame

(running non-optimized Matlab code on an Intel Core i7 3.1 GHz).

4.3.2.2 Segmentation and tracking : Temporal Vessel Walker using superpixels

Figure 4.8 The defined region of interest (ROI) for sink nodes

selection.

The Temporal Vessel Walker (TVW) in equation (5.1) is extended using superpixels. These

groups of pixels increase the accuracy of the retrieval of similar groups from one frame to
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the next. The temporal adjacency matrix Wτ (defined in Eq.(4.1) is modified to use superpixels

instead of pixels. The source nodes are the superpixels belonging to frame I t−1 and sink nodes

are the ones that belong to I t . The value of wτi j expresses the similarity of the mean intensity

value of two neighbouring superpixels2. Because the motion from I t−1 to I t is located

Figure 4.9 Temporal connections between selected source nodes

and sink nodes

around a specific region, we simplify the computations in the equation (4.1) by selecting only

the superpixels in I t−1 and I t within a specific region (instead of using all the superpixels in

I t−1 and I t). Therefore, the selected source nodes are only the superpixels belonging to the

foreground segmentation result in I t−1, and the sink nodes in frame I t are those belonging

to a specific region of interest ROIτ (as shown in the last image in Figure 4.8), which is the

region surrounding the foreground result at I t−1, where the radius of the ROIτ is selected

based on the maximum displacement of arteries from one frame to the next. The temporal

adjacency matrix is computed using the selected source and sink nodes, as defined in Figure

4.9. Considering only these specific nodes gives a sparse adjacency matrix, which speeds up

the computations and limits the background noise.

2This computation was done using the code for the region adjacency graph, source :

http://www.mathworks.com/matlabcentral/fileexchange/16938-region-adjacency-graph–rag-
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4.3.2.3 Proposed algorithm

Algorithm 4.1 summarizes the proposed pipeline (as illustrated in Figure 4.5) for a spatio-

temporal segmentation of 2D X-ray angiography sequence.

Data: Input 2D X-ray sequence of f ramei ; i = 1...nbFrm

The weights corresponding to each superpixel size weight j

Result: Segmentation result TVW∗
i of the sequence ; i = 1 ... nbFrm

1 for each f ramei i ← 1 to nbFrm do

2 if f ramei = 1 then

3 Ask operator to select seeds (limits of the vessel) ;

4 Apply Vessel Walker with superpixel (VW) ;

5 Compute the centerline and lumen using the VW result ;

6 else

7 for SPsize j ← 1 to SPsizeMax do

8 Compute TVW using f ramei−1 => TVW(i,i−1) ;

9 Compute TVW using f rame1 => TVW(i,1) ;

10 TVWsize j = TVW(i,i−1) +2×TVW(i,1) ;

11 TVWi = TVWi +weight j ×TVWsize j ;

12 end

13 Threshold the result : TVW ∗
i = TVWi > mean(TVWi) ;

14 end

15 end

Algorithm 4.1: Proposed algorithm for tracking and segmenting coronary arteries in 2D X-ray

sequences

At the first frame ( f ramei = 1), the operator (the cardiologist) specifies the artery to be tracked.

The centerline of the artery is computed and then its lumen is segmented using the vessel walker

method. Then, for the rest of the sequence, the algorithm applies the temporal vessel walker
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Figure 4.10 Computing superpixels at different sizes : left

SPsize = 20 ; right : SPsize = 13

at different superpixel sizes (where SPsize j = [1...SPsizeMax]) to track and segment the same

artery in the angiographic sequence.

For each frame i, and at each superpixel size SPsize j, the algorithm computes the temporal

vessel walker, using the segmentation result obtained from the previous frame (TVW(i,i−1))

and again using the result at the first frame (TVW(i,1)). The computations use the segmentation

mask of the previous frame because the changes from the previous to the actual frame are

less dramatic. Besides, the changes in intensity from consecutive frames are less important.

However, during segmentation in the moving sequence, the result of the previous frame may

contain some errors (such as overlapping vessels or missing parts of the vessel of interest).

Therefore, in addition to the previous frame, the SP-TVW is applied using the first-frame

segmentation mask as prior, because this prior was computed accurately. Consequently, both

SP-TVW results (i.e., using the previous frame and first frame) are combined to determine the

final segmentation result TVWsize j, computed at a specific superpixel size.
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Because the CA’s thickness changes from the proximal to the distal parts of the artery, the

result is applied at different superpixel sizes (SPsize j = 1..SPsizeMax ). Figure 4.10 shows the

superpixels computed at different sizes. We notice that a large SPsize captures the proximal

and thick parts of the artery (highlighted region A in Figure 4.10), which have a high contrast

with the background. On the other hand, a smaller SPsize captures the distal thinner parts of

the artery, where the contrast level is limited (highlighted region B in Figure 4.10). For this

reason, the segmentation result VWT size j is computed at different superpixel sizes.

The results for the same frame at different superpixel sizes are weighted and combined to

obtain a final segmentation result VWTi at frame i: as the SPsize value decreases, more weight

is given to the corresponding TVW result (i.e., the value of k j gets higher). To obtain a binary

segmentation mask, TVWi is thresholded (as shown in the last line in algorithm 4.1). Once the

segmentation mask TVW ∗
i is obtained, the method uses it to compute the segmentation result

VWTi+1 in the next frame in the sequence, until the end of the sequence.

4.4 Experimental results

4.4.1 Data Acquisition

To evaluate the proposed work, we used a dataset of 12 angiographic sequences of coronary

catheterization. The sequences were acquired from six young patients with congenital heart

disease from the Sainte-Justine’s Hospital (Montreal, Canada). These data were saved and

anonymized into the DICOM format, and were recorded after approval by Sainte-Justine’s

Institutional Ethics Review Board. The angiograms were acquired by a C-arm Infinix-CFI

BP by Toshiba profiling : six angiograms of right coronary arteries (RCA), three angiograms

of the left anterior descending artery (LAD) and three others of the circumflex branch (Cx).

Each sequence comprised nine frames (±2) having a size of 512× 512 pixels, and each of

which represents a single cardiac cycle selected as the one that best delineates the anatomy

from among the full angiographic acquisition. Different challenges are observed in the dataset:

The frame-rate is low (15 fps), which makes the motion from one frame to the following more
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pronounced. In addition, some sequences depict sternal sutures (when the patient has been

previously operated on), which are dark tubular regions that can alter the segmentation result.

Because it can be complex and time-consuming to manually segment all of the sequence’s

frames, one segmentation expert has manually segmented 4 key frames for each sequence.

Each key frame represents a different stage of the cardiac cycle: at the beginning (0%), at 20%,

at 40%, and at the end of the cycle (100%). Using these frames, it is sufficient to evaluate

the performance of the segmentation method, since each frame represents different motion

changes along the sequence. We assume that, based on these key-frames, we can estimate the

performance of the segmentation method. Only the main vessels were segmented (i.e. RCA,

LCA and Cx). The manual segmentation is delimited at a terminal bifurcation or when the

vessel would measure half of its original diameter. This ground-truth data has been subject to

a double correction and validation by two cardiologists (the 4th and 5th authors).

Vessel lumen’s segmentation is evaluated using the ROC curve’s AUC, precision, recall, and

Dice metrics. To evaluate the centerline extraction and tracking, we modified the classical

computations of precision and recall metrics. PrecisionCL, RecallCL and the distance error

were computed as proposed in Hernández-Vela et al. (2012): for each pixel in the ground truth,

we checked within its neighbourhood of radius 5 if there is a corresponding point from the

computed centerline. Finally, we computed the location error between the ground truth and the

computed result to evaluate the accuracy of the centerline location.

4.4.2 Comparing the proposed method to polyline tracking

Our algorithm was evaluated in comparison with the polyline tracking method by Dubuisson-

Jolly et al. (1998). The polyline tracking is a well-performing method that is still cited in the

literature as a reference work for tracking CA in moving sequences (Gao and Sundar (2012)).

Besides, the method is formulated as a minimization problem on a constructed graph, similarly

to the proposed method.
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Because the polyline tracking follows only the centerline of the vessel, and that our work

tracks the lumen of the vessel, the evaluation of both methods is in terms of centerline tracking

and not lumen tracking. To do so, we applied the Hamilton-Jacobi Skeleton (Bouix et al.

(2005)) method is used to extract the centerline from the SP-TVW lumen. The Hamilton-

Jacobi method analyzes the normalized flux of the gradient vector field to detect the skeletal

points (or centerline points). It has been proven to be computationally efficient and robust to

boundary noise. Both the polyline and the proposed methods were initialized using the same

centerline computed from the first frame (as described in section 4.3.2.1).

Table 4.1 displays the performance of the polyline tracking and our algorithm on the dataset.

The results are evaluated in terms of the centerline precision (PrecisionCL), and recall (Re-

callCL), and distance error. The proposed method has a higher trade-off than polyline tracking

in terms of PrecisionCL and RecallCL. Moreover, its corresponding distance error of 0.23mm

is lower than that obtained using polyline tracking, which returns a mean distance error of

0.94mm.

Table 4.1 Average performance of the polyline

tracking method (Dubuisson-Jolly et al. (1998)) versus

our proposed algorithm on the dataset

PolyTrack TVW
PrecisionCL 0.78 0.81

RecallCL 0.75 0.78

Distance error 0.94 0.23

Figure 4.11 shows the centerline extraction performance using the proposed method and the

polyline tracking method on sequence 8 of our dataset displaying a left anterior descending

artery. Polyline tracking preserves the general shape of the initialized artery. This is explained

by the fact that the neighborhood search using the polyline tracking is small. However, as the

artery expands because of the cardiac work, the polyline tracking cannot capture some parts of

the artery. Indeed, the images in the first row in Fig.4.11 displays green coloured pixels that
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b) Polyline tracking results

c) Our results

Figure 4.11 Computed centerline at different frames (left to

right : frame 2, 4 and 9) on sequence 8 and their overlap on the

groundtruth centerline. Top row: PolyTrack results. Bottom row:

Our results. Green colored pixels show false negative; pink

colored pixels show false positives and white colored pixels are

for true positives (i.e. overlap)

exhibit false negatives. We believe that this is caused by the length constraint in the polyline

method. The constraint ensures that the length of the artery does not change from one frame to

the following. The proposed algorithm gives more accurate results and retrieves the coronary

artery in the rest of the sequence with fewer false negatives, as shown in the second row of

Fig.4.11. Moreover, despite the presence of false positives in the proposed result (pink pixels),

the proposed method overlaps more with the ground-truth compared to the polyline method. As

a matter of fact, the location of the computed centerline is well aligned with the ground-truth

data. This is illustrated by the presence of more white pixels in the proposed results than the

polyline result in Fig.4.11. Indeed, the proposed method combines the prior information from
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the previous frame but it also relies on the actual frame’s information in terms of vesselness

and intensity values. Therefore, the method is able to extract the centerline and to track it

accurately in the sequence.

4.4.3 Extending the TVW model using superpixels : contribution of the proposed algo-
rithm

Table 4.2 displays the mean results on four angiographic sequences of our database using the

temporal vessel walker (TVW) with superpixels in comparison to using TVW pixelwise and to

the TVW within the multiscale approach as introduced in M’hiri et al. (2015).

Table 4.2 Average performance (Precision, Recall and

Dice coefficient) on the first four angiographic

sequences of our dataset

VWT VWT(multiscale) VWT(SP)
Precision 58.75% 85% 79.75 %

Recall 82% 52.75% 73.5 %

Dice 63.25% 63.5% 75.5 %

Using the TVW method pixelwise, while we have a better recall value, there is limited pre-

cision. The TVW within the multiscale approach returns the highest precision result, but it

yields low recall values. In this approach, TVW is applied on subregions of the image, which

limits the effect of noise. However, in the multiscale framework, TVW is computed at different

scales of each frame, which can lead to the loss of contrast (especially at small scales) making

the final segmentation result limited with low recall. On the other hand, TVW with superpixels

returns the highest trade-off between recall and precision values, and the highest Dice value of

75.5%. Indeed, adding superpixels helps retrieving similar groups of pixels from one frame to

the next more accurately than applying TVW in a pixelwise fashion. Besides, the use of su-

perpixels improves the size of the adjacency matrix (the size of the matrix gets smaller), which

makes the computations straightforward. Finally, TVW with superpixels limits the effect of

noise propagation noticed with the TVW pixelwise.
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Figure 4.12 Results showing per-pixel probability values to

belong to the foreground as computed with the TVW alone (left)

and with superpixels (right)

Figure 4.12 illustrates the computed probabilities of pixels belonging to the foreground (i.e.,

the non-thresholded results computed using Eq. (5.1)), using the temporal vessel walker for-

mulation with and without superpixels. The colors in the images show the probability values;

the red pixels correspond to probability that it belongs to the foreground close to 1, while the

blue pixels correspond to a probability of 0. The use of superpixels better highlights the dif-

ference between the foreground and background regions, whereas the result computed without

superpixels has some limitations in terms of extracting parts of the vessels. This is observed

particularly in the yellow region at the end of the vessel where the probability values are around

0.6 and 0.5.

Figure 4.13 shows the ground-truth and the segmentation results using the three approaches

in sequence 3 of our dataset at frame 4. In the left image of the second row, the use of TVW

pixelwise displays false positives in its segmentation mask, where sternal sutures belonging

to the background is highlighted as part of the artery. SP-TVW and the multiscale approach

exhibit more precise results in the extraction of the artery. Nonetheless, the multiscale approach

is less precise around the borders of the vessels, where its segmentation mask oversteps the

edges of the vessel.
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Figure 4.13 Segmentation overlaid on the original frame 4 of the

RCA sequence 3 of our dataset. Top row: the groundtruth (left)

and the TVW with superpixels result (right). Bottom row: TVW

method pixelwise (left) and TVW within the multiscale approach

(right).

4.4.4 Parameter’s influence

This section evaluates the influence of the algorithm’s parameters on the overall performance.

Different parameters are tested : superpixel size, μ , α and β .

4.4.4.1 Superpixel size

In this section, we evaluate the effect of the superpixel size (SPsize) on the mean performance

in terms of Dice, precision and recall values, as illustrated in Figure 4.14. The values were

computed on the first three sequences of the dataset. Each sequence represents a different type

of coronary arteries : LAD, Cx, RCA. When the SPsize becomes too large, each superpixel will

regroup pixels that are less similar to each other. Therefore, pixels belonging to the vessels and
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Figure 4.14 Influence of the superpixel size on Dice , Recall and

Precision using our proposed work

to the background will get grouped in the same superpixel and if the segmentation result makes

this superpixel as part of the foreground it will include the background pixels that are within

this superpixel. This explains the sensitivity of the precision curve when the superpixel size be-

comes larger than 10. On the other hand, recall value increases as the SPsize is increased, until

it reaches the value of SPsize= 10 pixels. Indeed, superpixels creates groups of similar pixels,

making a high rate of true positives. This shows the importance of selecting the appropriate

SPsize, especially in the case of thin long structures like coronary arteries. When the SPsize

is too small (around 4 pixels), the algorithm has a high precision, making fewer false positive
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errors. On the other hand, at the same SPsize value, the recall is lower than when using a higher

SPsize (= 10). Finally, Dice index, affected by both precision and recall curves, increases until

SP size = 10.

Figure 4.15 Influence of the superpixel on the computation

times per frame

Figure 4.15 shows the impact of the size of superpixels on the computation times. Note that

as the SP size increases the computation times are faster. As the SP size becomes bigger,

the number of nodes in the adjacency and temporal adjacency graphs decreases, making the

matrices computation lighter.

Finally, Figure 4.17 displays the impact of different superpixel sizes (from the largest 100 to the

smallest 4) on the segmentation result. We can see that as the SPsize gets smaller, fewer errors

are made. However, when the SP size is the smallest, there is some difficulty highlighting the

border of the vessel.

Selecting the right SPsize is important to keep a balance between high recall and precision

values. However, one coronary artery may have thick diameter, at the proximal part of the

artery and a thinner diameter at the distal part of the artery (as shown in Fig.4.10). That is
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a) SPsize = 100 b) SPsize = 20

c) SPsize = 10 d) SPsize = 4

e) SPsize = 2

Figure 4.16 Influence of the superpixel using the TVW with

superpixels model at different superpixel sizes on the probability

values

why the proposed method computes the SP-TVW at different superpixel sizes to optimize the

trade-off between precision and recall, which guarantee a better performance.

4.4.4.2 Tracking parameter μ

Figure 4.18 shows the influence of the temporal parameter μ on our method. We tested the

temporal vessel walker using the previous segmentation frame as a prior and at a fixed optimal
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a) SPsize = 100 b) SPsize = 20

c) SPsize = 10 d) SPsize = 4

e) SPsize = 2

Figure 4.17 Influence of the superpixel using the VWT with

superpixels model at different superpixel sizes on the

segmentation result

superpixel size. These tests were done on the first three sequences of the dataset. The first curve

in Figure 4.18 displays the performance in terms of the Dice values as μ increases.When the μ

value is between 0.1 and 1, the Dice curve increases and reach a peak at μ = 1. Once μ > 1,

the performance drops dramatically. Optimal values for the temporal parameter μ are within

the interval [0.1,1]. This temporal parameter can have a critical impact on the performance

because it helps to ensure that the vessel of interest is tracked along the angiography sequence.
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Figure 4.18 Influence of the μ values on Dice , Recall and

Precision using the TVW with superpixels

Parameter μ has the same effect on the precision curve where the optimal value of μ is within

the interval [0.5,1]. However, the parameter does not affect the recall values (as shown in the

second curve in Figure 4.18). Having a temporal prior may limit the rate of false positives,
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but it can also limit the true positive rate; hence, μ increases the precision level but can also at

certain values limits the recall value.

Figure 4.19 Influence of the μ values on the TVW results: first

row : segmentation masks overlaid in yellow on original frames.

Bottom row : Segmentation mask displaying true positives

(white), false positives (pink), false negatives (green) . From left

to right : results at μ = 0 , 1 and 10

Figure 4.19 displays the proposed method’s results on the second frame of sequence 2 in the

dataset. Each column shows the result for μ = 0 , 1 and μ = 10. The top row shows the effect

of μ on the segmentation masks. There is an improvement between μ = 0 and μ = 1, where

the background noise around the end of the vessel is limited to μ = 1. However, when μ gets a

higher value, more background noise is added because the SP-TVW highlights the connection

between the previous segmentation result and the actual frame.

These findings are highlighted further in the second row in Figure 4.19, where there is some

overlap between the segmentation mask and the ground-truth, where false positive pixels are

coloured in pink, false negatives in green and true positives are in white. When parameter

μ = 1, false positives are limited compared to the result at μ = 0. On the other hand, when

μ = 10, the true positive rate increases and more pixels are coloured in white. However, the

method becomes less robust to the background noise. The results in Figure 4.19 proves that
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having a μ value close to 1 helps the method in tracking the structure of interest, while being

more robust to background noise.

4.4.4.3 Influence of parameters α and β

Figure 4.20 Influence of α (left column) and β (right column)

parameters on the overall performance using the proposed method.

The impact of parameters α and β , from equation (5.1), is presented in Figure 4.20. Parameter

α influences the weight of the foreground pixels. As the value of α increases, the more robust

becomes the result to the background noise, increasing the precision value. On the other hand,

when α is greater than 10, the method will discriminate not only background noise, but also the
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pixels belonging to the vessels, which explains the low recall values. The value of α should be

optimally selected to preserve a trade-off between precision and recall. The Dice curve shows

that an optimal value of α = 10 leads to this trade-off.

The parameter β affects the weight of the background pixels. Unlike parameter α , higher β

values result in a higher recall. However, background pixels that have an important vesselness

value will be considered as part of the foreground. This limits the precision of the method. The

Dice curve shows that at β = 50, the method gives the optimal segmentation result.

An optimal choice between α and β values will respect a good trade-off between recall and

precision. That’s why their values have to be selected depending on the nature of the dataset.

4.4.5 Performance depending on the nature of the vessel : RCA , LAD or Cx

The parameters’ values were empirically selected following a K-fold cross validation on our

9 angiography dataset. Optimal values used were α = 50, β = 1000, and temporal parameter

μ = 0.05. Superpixel sizes for the SLIC Achanta et al. (2012) implementation are 20 and 10

(with a regularizer value 0.01). Frangi’s vesselness scales are within the range [1,8]. Finally,

γ = 4000 and r = 1 were selected for the adjacency matrix, and γτ = 50 and rτ = 1 for the

temporal adjacency matrix.

The performance of the proposed framework is assessed in tracking and extracting the vessel’s

lumen during the angiographic sequence. Because the motion range depends on the nature of

the coronary artery, we evaluated the dataset according to each category of coronary arteries

(RCA, LAD or LCX). Figure 4.21 shows the dependence of the performance depending on

the nature of the artery in terms of dice, precision, and recall values. Figure 4.22 shows the

segmentation results at different frames in different sequences displaying from top to bottom :

LAD, Cx and RCA arteries. The method gives the best performance when tracking RCA, with

a dice close to 0.8. The RCA is one of the arteries that have a large motion range under the

cardiac work. Despite the motion, the method is able to track and extract the artery accurately.

Segmenting and tracking Cx arteries is more challenging, but there is still gives a good trade-
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Figure 4.21 Performance of the proposed pipeline depending on

the nature of the coronary arteries. Top to bottom : Circumflex

artery (Cx), Left anterior desending artery LAD) and Right

coronary artery (RCA).

off between the precision and recall with a mean Dice of 0.7. LAD arteries are the most

challenging cases, because of their nature in terms of their shape and motion. Indeed, in all

the sequence displaying LAD, there is a vessel overlap or vessels that bifurcate from the main
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artery and the tracking gets more challenging as it is difficult to distinguish between the arteries.

Therefore, more features must be added to enhance the method in such cases.

Overall, the method shows a high recall value with all the types of vessels. However, the

method seems to be more sensitive to the background noise in some sequences. This can be

explained by different factors : the presence of overlapping vessels, the decrease of contrast

level in the sequence and the low frame rate that leads to a large motion range from one frame

to the following. The results are encouraging in terms of tracking the right structure of interest

and extracting it from the background. More work has to be conducted in order to enhance the

precision of the method by adding new features, such as the vessel’s orientation.

Figure 4.22 Segmentation mask overlaid in yellow on the original frames

of three sequences at different times. Top row: result on LAD artery.

Second row: result on a Cx artery. Third row: result on an RCA artery.
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4.5 Discussion and conclusion

This work presents a spatio-temporal algorithm for simultaneous segmenting and tracking of a

coronary artery in a 2D X-ray moving sequence based on the "Temporal Vessel Walker" (TVW)

and superpixels. The model is defined as the combination of a temporal prior and intensity

and topological features. The superpixels method regroup similar pixels, which leads to the

accurate extraction of thinner and thicker parts of the same artery and fewer computations.

Besides, combining different superpixel sizes leads to an optimal precision/recall trade-off and

a better extraction of thinner and thicker parts of the same artery.

The chapter presented different iterations that were proposed to enhance the TVW result. Since

tracking a vessel accurately while dealing with respiratory and cardiac motions is challenging.

The best solution was to use the VWT with superpixel grouping at different superpixel sizes,

making the tracking of a specific artery in the sequence accurate.

Experimental tests on a dataset for young patients show the efficiency and robustness of the

proposed algorithm, while dealing with respiratory and cardiac motions. Moreover, the algo-

rithm gives better performance than the polyline tracking method, which is a reference work on

vessel tracking. Results of the proposed pipeline prove that it is possible to track and segment

a vessel simultaneously without any pre-processing step to deal with the respiratory motion or

cardiac motion alone. The ability to accurately track a specific artery (or part of an artery) may

be crucial for measuring the properties of the vessel during the cardiac cycle as well as helping

with the detection of pathologies.

Future Works

Future work includes the development of an adaptive formulation to automatically select the

parameters of the proposed method depending on the contrast level in the X-ray sequence.

Moreover, additional features are needed, such as the vessel’s direction, to solve the challenge

of overlapping vessels. Finally, more tests with longer sequences at different cardiac cycles

will help to evaluate the repeatability of the proposed method.





CHAPTER 5

AUTOMATICALLY MEASURING VESSEL’S DISTENSIBILTY FROM 2D X-RAY
SEQUENCES

5.1 Introduction

Early detection of blood vessel anomalies can improve the treatment of cardiovascular patholo-

gies such as Kawasaki disease or arteriosclerotic vascular disease. Such pathologies affect the

elasticity of coronary arteries (CAs) as mentioned by Vaujois et al. (2013). The elasticity of

coronary arteries during the cardiac cycle is used to assess vascular function, for diagnosis

and treatment. Distensibility measure is one of the most accurate indicator of elasticity and

of any potential cardiovascular disease at an early stage (Cheung et al. (2002)). This measure

computes the correlation between vessel’s diameter changes in systole and diastole, with the

variations in blood pressure. A healthy artery displays differences between its diameter during

the cardiac cycle, resulting in a high distensibility measure.

Figure 5.1 Segmenting and tracking part of vessel in a motion

sequence to measure its diameter and compute distensibility

measure
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An accurate measurement of the blood vessel’s diameter from 2D X-ray angiograms is critical

to compute distensibility. An optimal solution to guide cardiologists is to: 1) Segment the

section of the vessel of interest. 2) Track the same vessel’s section in the moving sequence. 3)

Compute its diameter at each frame. All these steps should be held automatically as illustrated

in Figure 5.1.

Extracting, tracking and measuring the diameter of arteries from moving sequences is a chal-

lenging task. First, segmenting arteries can be dependent on the nature of the artery and the

imaging modality. An exhaustive litterature review on the subject can be found Lesage et al.

(2009). Different approaches have been proposed to address the challenge of segmenting blood

vessels. They are either based on variational approaches such as the levelsets (Zhao et al.

(2015a)) or graph-based methods such as graphcuts (Shahzad et al. (2013)) or random walks

(Zhu and Chung (2013)). In this work, we used our Vessel Walker method, described in chapter

3, that extends the random walks method by Grady et al. (2006b) to segment blood vessels.

Secondly, vessels like coronary arteries are subject to a combination of cardiac and respiratory

motions, which are challenging to model as noticed by Shechter et al. (2004). Also, clinicians

need to evaluate a specific part of the artery. Existing solutions, such as the work of Compas

et al. (2014) track the entire coronary tree in the angiogram sequences. This is used to detect

the presence of stenosis but not to evaluate the elasticity of a specific segment of an artery. In

this chapter, we focus on tracking and evaluating a segment of the artery within a specific re-

gion of interest defined by a cardiologist. This can be challenging, since this segment is a dark

tubular structure similar to all the arteries displayed in the sequence. Third, diameter changes

in the cardiac cycle can be very small (less than 1mm for coronary arteries). Therefore, a

precise measurement tool to capture small diameter changes is needed.
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Figure 5.2 Manual measurements of coronary artery’s diameter

at different parts of the vessel.

Computing distensibility usually involves manual diameter measurements at specific locations

in one or two frames in the angiographic sequence, as displayed in Figure 5.2. However, such

procedure can be time consuming and can lead to important interobserver and intraobserver

variability as noticed by Tomasello et al. (2011). Other measurement techniques are proposed

in the literature or in existing software (Gronenschild et al. (1994); PIEMedical; Medis) to

semi automatically segment part of a vessel from a single frame. To the best of our knowledge,

these methods do not include a temporal analysis of the diameter variation; neither do they

track the vessel in the moving sequence. In addition, existing works that evaluate distensibility

measure are applied on other imaging modalities, such as ultrasound images (Maurice et al.

(2014)), CT images (Ahmadi et al. (2010)) or MRI (Kelle et al. (2011)). Studies on quantifying

arterial structures based on 2D X-ray angiograms do not present fully automatic tracking of the

diameter of a specific part of an artery in the cardiac sequence. Besides, some of these works

usually use a 3D reconstructed model from biplane views to evaluate the vessel’s width, as

described in Girasis et al. (2013).

Few groups have studied the correlation between the assessment of CA distensibility from 2D

angiography sequences and the detection of pathologies, using automatic centerline extraction

and diameter estimation (Benovoy et al. (2016, 2015)). The present research is enrolled in
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the line of these studies and explores the automatic computation of blood vessel’s diameter

variation from monplane 2D X-ray sequences.

The present research explores, the possibility of computing distensibility measures, of a spe-

cific segment of a coronary artery during the cardiac sequence, automatically and based on

monoplane 2D X-ray angiographic sequence. This chapter evaluates the following hypoth-

esis: Distensibility measure can be computed directly from monoplane 2D X-ray angiograms

(Figure 5.1).

5.2 Proposed Method : Using VWT for vessel’s diameter measurement in 2D X-ray
sequences

Figure 5.3 describes the steps of the proposed method. First, a region of interest (ROI) sur-

rounding a section of an artery is selected (first image in Fig.5.3). Then the artery within the

ROI is segmented and tracked, using our proposed method described in the following section.

Finally, the diameter of the extracted artery is computed at each frame, and is described in

section in 5.2.2.

5.2.1 Temporal vessel walker method to track part of a vessel

Figure 5.3 Segmentation and tracking of a section of a CA as

defined by the manually selected ROI
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The proposed algorithm uses the temporal vessel walker for segmenting and tracking a segment

of a coronary artery in a moving X-ray sequence. To specify the segment of interest, the

algorithm asks the clinician to specify a region of interest (ROI) surrounding the segment, in

the first frame of the sequence (as shown in the first image in 5.3). The Vessel Walker method is

applied to segment the vessel within the ROI. Then, for the rest of the sequence, the Temporal

Vessel Walker (TVW) is applied to segment and track the vessel of interest. The results of

these stages are illustrated in Figure 5.3. The TVW segmentation method is defined as the

minimization problem. Having the segmentation result f t−1 from the previous frame at time

(t − 1), the method computes the segmentation result f at the current frame at time t. The

optimal solution f is a mapping f : I → {0,1}, where fi = 1, if the pixel i belongs to the

vessel, and fi = 0, if i belongs to the background. The method is defined as the following

energy equation:

E( f ) =
1

2

|I |
∑
i=1

|I |
∑
j=1

wi j( fi − f j)
2 + α

|I |
∑
i=1

(1−bi) f 2
i

+ β
|I |
∑
i=1

bi( fi −1)2 +μ
N

∑
i=1

N

∑
j=1

wτi j( f j − f t−1
i )2.

(5.1)

Where frame I is represented by a graph G = {N,E}, with a node set N representing all

pixels in the image. Each pair of neighbour nodes is connected by an edge with a weight wi j

expressing the intensity similarity between the nodes (i.e. between pixels). The vesselness of

pixel i is expressed with bi ∈ [0,1] and is computed using the method by Frangi et al. (1998).

Parameters α,β ≥ 0 are used to control the trade-off between minimizing the vesselness of

background pixels and maximizing the vesselness of foreground pixels. Parameter μ controls

the weight of temporal prior information in the final segmentation result. Since the temporal

vessel walker model does not have a fixed term to validate that the extracted vessel-segment

length is similar to the segment extracted in the first frame, a rigid registration step is added.

Finally, for each segmented frame and to limit the background noise, a postprocessing step is

applied to get only the biggest connected component as a segmentation result.
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5.2.2 Measuring vessel’s diameter

The diameter of the segmented vessel is computed at each frame. The proposed method starts

by extracting the centerline of the vessel using the Hamilton-Jacobi Skeleton as defined by

Bouix et al. (2005) and shown in the first image in Figure 5.4. The Hamilton-Jacobi method is

well known for its accuracy in extracting skeletons (or centerlines) homotopic to the original

objects. The method analyzes the normalized flux of the gradient vector field to detect the

skeletal points. It has been proved to be computationally efficient and robust to boundary

noise.

Figure 5.4 The different steps to compute vessel’s diameter

To measure the diameter, the vesselness vector for each centerline point is computed using

the method by Frangi et al. (1998). This vector indicates, at each point of the centerline, the

direction of the vessel. Then, for each centerline point, the method looks for the boundary

pixels on either side of the centerline, following the direction normal to the vesselness vector

at that centerline point (as illustrated in the second image in Fig.5.4). The diameter of the vessel

at each point is computed as the distance between each centerline point and its corresponding

boundary pixel. The diameter of the vessel is computed as the sum of the distances between

each centerline point and its corresponding boundary pixel from two sides of the centerline

(Last image in Figure 5.4).

The method computes the diameter at each point of the vessel’s centerline. Such information

can be valuable for identifying deformation within the vessel such as stenosis (if the vessel di-
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ameter decreases drastically). If the objective is to detect local deformations within the vessel,

then each diameter at each centerline point would be evaluated independently. However, in the

context of this work, we consider the mean diameter value of the segment of interest.

The proposed approach is a modification of the method presented in Compas et al. (2014) to

compute vessel’s stenosis.

5.3 Experimental results

5.3.1 Data acquisition

To evaluate the proposed method, three dataset have been selected :

a. Simulated data: One simulated X-ray sequence displaying the CA tree. The sequence

was acquired with the XCAT phantom, developed by The Carl E. Ravin Advanced Imag-

ing Laboratories (Segars and Tsui (2009)). The XCAT provides a realistic view of CAs

in 2D X-ray angiography. The sequence displays in 69 frames, right and left coronary

arteries moving under respiratory and cardiac motions. Ground truth segmentation mask

of the artery is provided using the XCAT system, this is used to evaluate the segmentation

accuracy of the proposed TVW method.

b. Patient’s data: Seven 2D X-ray sequences of young patients were acquired from Sainte-

Justine Hospital (Montreal, Canada). The data were saved and anonymized into the DI-

COM format, and were recorded after approval by the Sainte-Justine’s Institutional Ethics

Review Board. The angiograms were acquired by a C-arm Infinix-CFI BP by Toshiba and

display coronary arteries and the ascending aorta:

a. Four 2D X-ray sequences of young patients displaying coronary arteries. Groundtruth

segmentation masks are not provided. However, two X-ray sequences have corre-

sponding manual diameter measured by one clinical expert at one frame.
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b. Three X-ray sequences displaying the ascending aorta of three young patients. To

evaluate the diameter computations of the proposed method, the width of the ascend-

ing aorta was manually measured by an experienced user, at each frame. Knowing

that the aorta can be much larger than a coronary artery, the degree of manual mea-

surement error can be smaller. Therefore, these manual measurements are used to

validate the diameter computations.

Our final results are compared to manual measurements and to the work of Mirzaalian and Hamarneh

(2010). This work involves graph based method and Markov Random Field to assess blood ves-

sel’s scale. The following experiments evaluate the segmentation, the tracking and the width

measurements of coronary arteries and the aorta on simulated and patient’s X-ray sequences.

5.3.2 Results on simulated coronary arteries sequence

The proposed method is evaluated on the simulated X-ray sequence. The objective is to evalu-

ate the accuracy of the method in segmenting, tracking and measuring a section of a right coro-

nary artery. We used the Dice index to assess the overlap of our results with the groundtruth

mask provided using the XCAT system. The mean performance of the method has a high Dice

value of 0.98 with a precision result of 1 and recall of 0.96. Such results confirm the accuracy

and robustness of the proposed method in segmenting and tracking a section of an artery in all

the 96 frames of the sequence.

Figure 5.5 shows the results of tracking and segmenting a selected part of a right coronary

artery (RCA) on the simulated XCAT sequence. Some parts of the vessel can be missed.

However, the level of false positives in very low (limited pink regions in the images on the

bottom row), which highlights the precision of the method. Overall, the method gives a good

tradeoff between precision and recall leading to encouraging Dice value. Moreover, the method

successfully tracks the artery despite its large motion.
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Figure 5.5 Top row : Segmented section (in yellow) of a right

coronary artery overlaid on different frames in the synthetic

sequence. Bottom row : our results and their overlap on the

groundtruth mask. Green colored pixels show false negative; pink

colored pixels show false positives and white colored pixels are

for true positives (i.e. overlap).

Figure 5.6 Diameter measurements of the targeted section of the vessel at each of the 96

frames of the simulated sequence. Red curve : TVW segmentation result with our

proposed diameter measurements. Pink curve : Diameter measured using our diameter

computation method on the groudtruth segmentation masks provided by the XCAT

system. Blue curve : Diameter measured using Mirzaalian and Hamarneh (2010) method

on the groudtruth segmentation masks.
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Since the ground-truth results in terms of vessel’s diameter in the sequence were not avail-

able, the vessel’s width from the ground-truth masks were computed using our diameter ap-

proach and using the method proposed by Mirzaalian and Hamarneh (2010). We compared

these measurements to our proposed TVW method. Figure 5.6 shows the different diame-

ter measurements of the section of RCA in the simulated sequence. The three curves have a

similar pattern with values of diameter close to each other. Our computed mean diameter is

4.58±0.29mm. Comparing our results (red curve) with the ground truth measurements using

Mirzaalian’s method (blue dashed curve) gives a mean squared error is 0.16±0.11mm. Com-

paring our results with the ground truth measurements using our measurement approach (pink

dotted curve) brings a MSE = 0.18±0.31mm. Both errors are relatively low and our method

succeed in measuring the diameter while capturing the small diameter changes.

Despite the differences of diameter measurements between the 3 curves, they all have the

same pattern repeated 5 times. This pattern corresponds to 5 cardiac cycles simulated by the

sequence. The three curves capture the same diameter changes in systole and diastole which

confirms the hypothesis that it is possible to capture the small changes in an artery’s diameter

from 2D X-ray sequences. More tests should be made in order to assess the precision of our

diameter measurements. The following section evaluates this precision.

5.3.3 Results using patients sequences

5.3.3.1 Results using aorta dataset

The proposed method was tested on three sequences displaying the aorta. The aorta is a large

blood vessel, with large diameter variations in the cardiac cycle. Sequences showing the as-

cending aorta were selected and their corresponding diameter were manually computed. Un-

like coronary arteries and since they have a larger diameter, the degree of manual measurement

error can be smaller.
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The sequences displaying the aorta have low contrast, compared to CAs sequences. Therefore,

the intensity level is inhomogeneous in the aorta and the contrast with the image’s background

is low. To enhance the contrast level in the frame, the anisotropic filter introduced by Weickert

(1998) and further developed by Kroon et al. (2010) is applied in order to enhance the homo-

geneity within the aorta, while limiting noise level. It has the quality of smoothing the image

in the homogeneous regions, while preserving the edges of these regions. The anisotropic filter

was then applied to the sequences of the ascending aorta to enhance the homogeneity within

the aorta region, as displayed in Figure 5.7.

a) Original frame b) Filtered frame

Figure 5.7 Original X-ray frame displaying the ascending aorta

(left) and the same X-ray after applying Weickert (1998) filter

(right)

Moreover, superpixel computation by Achanta et al. (2012) have been added as a pre-processing

step to simplify the segmentation and tracking step. Superpixels method defines small groups

of similar pixels. It is an oversegmenation method that ensures that similar pixels stay con-

nected together, while respecting object’s boundaries. Since the contrast in these images can

be limited and the intensity level inside the aorta can be inhomogeneous, superpixels helps cre-

ating large groups of similar connected pixels. This makes the segmentation and tracking more

accurate. Moreover, using superpixels simplifies the design of the graph G used in equation
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(5.1) by considering each superpixel as one node of the graph (instead of considering each pixel

as a node in the graph G). Additionally, the registration step is skipped because the motion of

the aorta is not as large as CAs’ motion.

Figure 5.8b displays the selected ROI in the second sequence of our dataset. Figure 5.8a shows

the probabilities assigned by the Vessel Walker method to each pixel in the frame. We notice

that the method highlights accurately the aorta (red colored regions showing high probabilities

to belong to the aorta) from the background (blue colored regions showing low probabilities).

Using this result, the segmentation mask is computed on the part of the aorta within the spec-

ified ROI. The result on the first frame is displayed in yellow on Fig. 5.8c. The segmentation

and tracking results on the other frames (Fig. 5.8d and 5.8e) using TVW and superpixels show

that the method succeeds in extracting and tracking the specified part of the ascending aorta.
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a) Frame 1: VW result

b) ROI on Frame 1 c) Frame 1

d) Frame 8 e) Frame 16

Figure 5.8 Results on the sequence 2 of our dataset. Top: The defined

region of interest (ROI) in the first frame of the second sequence displaying

the ascending aorta. Second row: Results of the VW method on the first

frame, the method assigns a probability value to each pixel to belong to the

foreground (left). Segmentation result of the VW within the ROI. Bottom:

Segmentation results of the TVW at frame 8 and 16 of the sequence.

Figure 5.9 shows the mean diameter of the ascending aorta computed at each frame of the

sequence. It displays the diameter variation curve using our approach (red curve) compared
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to ground-truth manual measurements (blue dashed curve) and the diameter computed using

the approach by Mirzaalian and Hamarneh (2010) (pink dotted curve). Our measurements are

close to the ground truth. Indeed, the computed mean squared error is 0.7± 0.6 mm. The

proposed diameter measurement performs better than the approach by Mirzaalian.

Figure 5.9 Diameter values of the second sequence displaying

the ascending aorta using the proposed approach and Mirzaalian

approach, compared to groundtruth values.

Table 5.1 shows the mean diameter result over each sequence of the aorta data set. The first and

second columns of the table exhibit the diameter computed using our method and Mirzaalian’s.

Third and fourth columns show the corresponding mean squared error (MSE) between our

measurements and the manual ground-truth and between Mirzaalian’s result and the ground-

truth. The results indicate that the proposed method returns better performance with a mean

MSE= 1.5mm compared to Mirzaalian approach, which has a mean MSE= 18.1mm. This is

explained by the fact that their method works accurately on thin vessels and is not adapted to

compute the scale of large vessels like the aorta. Our method on the other hand can compute

accurately the scales of both thin and large vessels.
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Table 5.1 Mean diameter measurement (in mm) using the proposed method and

Mirzaalian’s method, with the corresponding mean squared error computed on each

sequence of the aorta dataset

Seq. Diameter
(TVW)

Diameter
using Mirzaalian’s work

MSE
(TVW)

MSE
Mirzaalian’s work

1 41.6± 2.6 12.3 ±2.7 2.1± 2.2 27.4± 1.6

2 26.6± 2.2 10.3 ±2.7 0.7 ± 0.6 16.7 ± 3.5

3 26.5± 2.0 14.7 ±2.6 1.7± 1.8 10.1± 2.9

Mean 31.6 12.4 1.5 18.1

5.3.3.2 Results using coronary arteries dataset

Figure 5.10 Diameter values per frame using the proposed

approach and Mirzaalian approach compared to groundtruth

values on sequence 1.
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The proposed approach is tested on 4 angiographic sequences displaying coronary arteries. For

the first sequence, the diameter was manually measured. It is true that these manual measure-

ments may be not as precise as the ones on the aorta. However, it can be used as a general

indicator of the performance of the proposed method.

Figure 5.10 shows the computed diameter values per each frame of sequence 1. The curves

from the ground-truth (blue dashed curve) and the proposed method (red curve) are close to

each other and have measurements in common (for example at frames : 9 and 26). This is

further shown by an MSE of 0.52± 0.35mm. Moreover, the proposed diameter measurement

method performs better than the method by Mirzaalian and Hamarneh (2010), where its curve

is far below the ground truth results with MSE= 1.19±0.67mm.

Manual measurement by a clinician was provided on one frame from sequences 2 and 4. Fig.

5.11a shows the manual measurements of the artery made by a clinician on sequence 4 of the

dataset. The rest of the images in Fig. 5.11 show the manually specified region of interest in the

first frame of sequence 4 of our dataset with the computed segmentation results overlaid in yel-

low on four different frames of the sequence. The segmentation results are encouraging since

they track accurately the specified section of the vessel despite the presence of cardiac and res-

piratory motions. Moreover, the computed mean diameter using our method is 3.08±0.2mm

which is close to the diameter measured around region B in Image 5.11a with a measurement

of 3mm, indicating again the accuracy of the proposed method.
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a) Manual measurements of the RCA b) frame 1 with ROI (white box)

c) frame 5 d) frame 15

e) frame 25 f) frame 50

Figure 5.11 Segmentation results of the part of interest in the

right coronary artery at four different frames in sequence 4.
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Figure 5.12 Left: Diameter values per frame using the proposed

approach on sequence 2 of the coronary arteries dataset with the

corresponding ECG signal (the blue curve with the red circles.

The circles corresponds to the frame acquisition times). Right:

Manually computed diameter by a medical expert from Sainte

Justine’s hospital.
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Figure 5.12 shows, on the left, the computed diameter at each frame of the second sequence

of the dataset with its corresponding electrocardiography (ECG) signal on the bottom. The

diameter values decrease and then increase depending on the changes in the ECG signal. The

diameter curve starts with a maximum value at the first three frames of the sequence and de-

creases after frame 4. The decrease of diameter happens at the first spike in the ECG signal

(near the QRS complex), which corresponds to the systole phase of the cardiac cycle. At that

time, the blood is ejected from the heart and therefore the blood flow is limited in the CAs.

After the first peak, the diameter starts to increase again around frame 10 of the sequence. This

corresponds in the ECG signal to the diastole, when the arteries are filled with blood. The di-

ameter curve reaches a maximum again before the second spike in the ECG signal. This shows

that the proposed automatic method can capture the diameter variation corresponding to the

cardiac cycle. The image on the right in Fig. 5.13 shows that the diameter manually measured

around segments A and B is 1.9mm which is close to our computed mean diameter value of

1.555±0.13mm.

Figure 5.13 shows the segmented section of the vessel (overlaid in yellow) at four different

frames of the sequence. We can notice the method brings encouraging results in segmenting

and tracking accurately the part of the vessel as defined in the ROI in 5.13a. At frame 10 the

method retrieve the wrong section of the artery. This is again caused by the abrupt change of

vessel location from one frame to the next. This is corrected accordingly at frame 19 of the

sequence. Overall, we can conclude the proposed method has encouraging result to segment,

track and measure the diameter of the vessel. Results are precise enough to capture the vessel

diameter changes in the cardiac cycle, which is the objective of the research.

In spite of that, more work has to be done on the method to accurately capture the section of

the artery despite the large motion. This can be done by adapting the neighbourhood search

of the temporal vessel walker method depending on the nature of the coronary artery. Indeed,

the right and left coronary motions are different and more tests should be done on that aspect.

Besides, the neighbourhood size should be adapted depending on the frame rate and the frame

acquisition times in the cardiac cycle.
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a) frame 1 with ROI (white box) b) frame 4

c) frame 10 d) frame 19

Figure 5.13 Segmentation result of the segment of interest at

four different frames in sequence 2

5.4 Discussion and conclusion

In this chapter, the temporal vessel walker (TVW) method was evaluated for segmenting and

tracking a specific part of the coronary artery in 2D X-ray sequences. The result is used to

capture the diameter changes in the artery according to heart contraction and relaxation. We

proposed an efficient method to measure the diameter at different frames of the sequence. This

proves to be more efficient than the existing method of Mirzaalian and Hamarneh (2010). The

temporal vessel walker with a post-processing step showed encouraging result in segmenting

and tracking not the whole artery but a section of an artery, which is a more challenging task.

Experimental results showed that the proposed TVW with the diameter measurement method
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brings encouraging performance and the results are close to the manually computed diameters

with a low mean squared error. Moreover, the diameter changes seem to coincide with the

changes in the cardiac cycle at systole and diastole, which is a crucial information to compute

distensibility measure and evaluate vessel’s elasticity. The tests were applied on simulated and

real sequences of coronary arteries together with sequences displaying the ascending aorta.

Experimental results illustrate the good performance of the method in tracking the right sec-

tion of the artery and in measuring the diameter variations accurately. Finally, in this chapter

we showed that an automatic method can be efficient to segment, track and measure coro-

nary artery thickness from monoplane 2D X-ray sequences. This is a crucial information that

can help clinicians in their work and eventually prevent some anomalies that can occur in the

coronary arteries.

Future Works

Additional works have to be made in order to make the temporal vessel walker more robust to

the location change of the coronary artery in the moving sequence. Moreover, a length term

and a curvature term should be added to the model to guarantee that the method is tracking the

same segment of the vessel in the sequence. Finally, other diameter measurements approaches

should be considered to enhance the precision of the computations.





CONCLUSION

The presented research explores new methods to guide cardiologists in their task of treating

congenital heart disease (CHD). CHD can lead to pathologies in the coronary arteries. To treat

these coronary arteries, percutaneous catheter-based interventions (PCI) are used. To guide

cardiologists while navigating through the arterial system, PCI is based on real-time 2D X-

ray angiograms. These angiograms can be used not only for navigation guidance but also for

diagnosing coronary arteries deformations. One of the measures used to detect CHD is arterial

distensibility. Distensibility evaluates the ability of the coronary artery to expand and contract

with cardiac contraction (systole) and relaxation (diastole). More precisely, the measure studies

the artery’s diameter changes in the cardiac cycle. Assessing the diameter of coronary arteries

is usually done either manually by a technician after PCI or using other imaging modalities

such as ultrasound images. The main question raised in this research is : Can we evaluate the

changes of coronary artery’s diameter, directly from monoplane 2D X-ray moving sequences?

To address this question, our research presented three main contributions. First, it introduced

a new segmentation method combining the random walks method and topological features

to segment coronary arteries in 2D X-ray images. Second, a spatio-temporal segmentation

approach is proposed to segment and track the coronary artery in 2D X-ray moving sequence.

These two contributions have led to the final work on evaluating the arteries’ diameter changes

within the cardiac cycle, automatically from monoplane 2D X-ray sequences. More precisely,

our work evaluated three hypotheses.

Hypothesis 1 : An automatic method to extract coronary arteries from 2D angiograms can be

as accurate as an expert’s manual segmentation.

The objective is to propose an automatic segmentation approach for coronary arteries from 2D

X-ray images. We introduced a new method that includes vesselness features with random

walks formulation. The resulting method is called Vessel Walker (VW). It was compared to

the random walks formulation and other existing methods have shown better quantitative and

qualitative results in segmenting coronary arteries in 2D X-ray images, with a mean Dice value
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of 70%. Despite the lack of contrast and the presence of noise, the method proved to bring

accurate results, close to a manual segmentation.

Hypothesis 2 : Using temporal information in 2D X-ray moving sequence helps segmenting

and tracking a specific coronary artery.

At this stage, we designed a framework for segmenting and tracking one coronary artery in the

2D X-ray moving sequence. To do so, a new formulated approach adds to the Vessel Walker

equation a temporal prior. This prior describes the segmentation result of the coronary artery

acquired from one frame of the sequence to guide the segmentation in the following frame. The

new approach, defined as the Temporal Vessel Walker, also used superpixel grouping which

makes the approach more robust while dealing with the respiratory and cardiac motions. We

argue that the proposed framework can track and segment a vessel simultaneously without any

pre-processing step to deal with the respiratory motion or cardiac motion alone. The method

has more accurate quantitative results than existing methods, in tracking the centerline and in

segmenting the lumen of the artery.

Hypothesis 3 : Distensibility measure can be computed directly from monoplane 2D X-ray

angiograms.

Our objective is to automatically compute vessel’s diameter from 2D X-ray angiogram se-

quences as accurately as expert measurements. We used both the Vessel Walker and Temporal

Vessel Walker to segment and track a specific coronary artery in the X-ray sequence. Exper-

imental results proved that the method has accurate performance in segmenting, tracking and

measuring the vessel’s diameter. The method was evaluated on simulated X-ray angiograms

and patient’s angiograms displaying the aorta and coronary arteries. Our results were compared

to manual measurements and showed that diameter computations were close to manual ground

truth. The results confirmed the hypothesis that it is possible to capture the small changes

during the cardiac cycle in an artery’s diameter from monoplane 2D X-ray sequences. Such

results can be used to compute distensibility index. This is a crucial information that can help



113

clinicians in their work and eventually prevent some anomalies that can occur in the coronary

arteries.

The main objective of this thesis is segmenting and tracking coronary arteries from 2D X-ray

images to compute biophysical measurements. We focus on coronary arteries but we assume

that the proposed methods can be applied on any vascular structure, such as pulmonary arteries.

We believe that all the research objectives were achieved. Each objective was validated through

several experiments. However there is abundant room for further progress in some parts of the

proposed work. First, to further evaluate the efficiency of these methods, tests on larger dataset

should be made. Such dataset should include coronary arteries displaying local deformation

such as stenosis or aneurysms. This will help evaluate the efficiency of the methods in detect-

ing such cases. Moreover, adding other features besides intensity and vesselness information

can enhance the performance of the proposed segmentation method. Besides, Vessel Walker

and Temporal Vessel Walker rely on different parameters to process images. We notice that

these parameters could be different depending on the nature of the dataset and the quality of

the X-rays. Future work will consider defining an automatic approach to tune these parame-

ters depending on the contrast level in the image. Furthermore, our work focus on 2D X-ray

sequences. We assume that the proposed methods can be applied on other 2D or 3D moving

sequences such as ultrasounds or MRI. Additional tests should be considered to validate this

hypothesis.

To conclude, we believe that having an automatic pipeline to evaluate the elasticity of coronary

arteries may lead to early detection of cardiac pathologies in newborns. Additional tests are

needed to validate this assumption. Moreover, the research in congenital heart defects still

has various questions that remain unanswered according to the Canadian Congenital Heart

Alliance (2010). To address these questions, research engineers and computer scientists need

to collaborate with cardiologists. Such collaboration would lead to bring new technologies and

to improve protocols in cardiac interventions, making a better life for children.
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