

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

THESIS PRESENTED TO
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
A MASTER'S DEGREE WITH THESIS IN SOFTWARE ENGINEERING

M.A.Sc.

BY
Sana MAKI

SYSTEMATIC REVIEW OF RECOMMENDATION SYSTEMS IN SOFTWARE
ENGINEERING

MONTREAL, JULY 27, 2016

© Copyright Sana Maki, 2016 All rights reserved

© Copyright

Reproduction, saving or sharing of the content of this document, in whole or in part, is prohibited. A reader

who wishes to print this document or save it on any medium must first obtain the author’s permission.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Sègla Kpodjedo, Thesis Supervisor
Department of Software and IT Engineering at École de technologie supérieure

Mrs. Ghizlane El Boussaidi, Thesis Co-supervisor
Department of Software and IT Engineering at École de technologie supérieure

Mr. Christian Desrosiers, President of the Board of Examiners
Department of Software and IT Engineering at École de technologie supérieure

Mrs. Latifa Guerrouj, Member of the jury
Department of Software and IT Engineering at École de technologie supérieure

THIS THESIS WAS PRENSENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON JULY 15, 2016

AT ECOLE DE TECHNOLOGIE SUPERIEURE

ACKNOWLEDGMENTS

I would like to thank my supervisors, Professor Sègla Kpodjedo and Professor Ghizlane El

Boussaidi, for the opportunity to work on this research project and for their great help and

guidance throughout this thesis. I would also like to thank my colleagues at LASI laboratory

for their outstanding support and advices, and my welcoming friends in Montreal for the fun

environment and the great source of energy they created.

I would also like to thank the jury members for accepting to review my work, for their

brilliant feedback and relevant remarks.

I dedicate this work to my father who passed away, he will always be my biggest inspiration

and my role model. I would like to thank my mother, my source of strength and wisdom, and

my brothers for their endless support and kindness.

Finally, I would like to thank every person who supported me and encouraged me to achieve

this project efficiently.

ÉTUDE SYSTÉMATIQUE DES SYSTÈMES DE RECOMMANDATION

EN GÉNIE LOGICIEL

Sana MAKI

RÉSUMÉ

Les systèmes de recommandation en génie logiciel représentent un domaine de recherche
intéressant pour l'évolution et la maintenance des systèmes logiciels, puisqu'ils aident les
développeurs dans leurs tâches en suggérant des informations qui peuvent être pertinentes au
contexte de la tâche en cours. Ces suggestions peuvent être des fragments de code
réutilisables extraits à partir des versions précédentes d'un projet, des invocations de
méthodes de bibliothèques externes, des solutions extraites des rapports de bugs, etc.

Dans la littérature, les systèmes de recommandation en génie logiciel existants se présentent
sous différentes formes et soutiennent divers objectifs. Ils partagent de nombreuses
caractéristiques et nécessitent souvent les mêmes étapes. Cependant, quelques travaux
mettent en évidence les étapes fondamentales pour construire un système de
recommandation. En essayant d'analyser quelques systèmes de recommandation, nous avons
remarqué de nombreuses ambiguïtés dans quelques aspects de ces étapes. D'où vient le
besoin de considérer une approche différente afin de clarifier les différents aspects de ces
étapes.

Dans ce mémoire, nous présentons une revue de littérature systématique qui identifie les
différentes caractéristiques des composants fondamentaux dont on a besoin pour implémenter
un système de recommandation en génie logiciel. Pour ce faire, nous avons analysé un
échantillon de 46 outils de recommandation. D'abord, nous avons analysé le processus
d'extraction de contexte qui permet de récupérer les informations contextuelles de la tâche de
programmation en cours. le contexte peut être éventuellement traitées et rendues sous la
forme d'une sortie qui va être utilisé par le moteur de recommandation. Ce dernier récupère
des cas similaires au contexte extrait à partir d'un corpus de données, afin de générer un
ensemble de recommandations qui peut être filtré avant d'être présenté au développeur.

Cette analyse nous a permis de proposer un modèle de fonctionnalités qui représente des
caractéristiques importantes de chaque composant, illustrées à travers les systèmes de
recommandation analysés et d'identifier certains problèmes.

Mots-clés: Systèmes de recommandation, génie logiciel, maintenance des logiciels.

SYSTEMATIC REVIEW OF RECOMMENDATION SYSTEMS IN SOFTWARE
ENGINEERING

Sana MAKI

ABSTRACT

Recommendation Systems in Software Engineering (RSSE) represent a promising research
area in software evolution and maintenance, as they assist developers in their tasks by
providing information items that can be relevant to the context of the task at hand. These
information items can be reusable code snippets retrieved from previous versions of a
project, method invocations from external libraries, solutions extracted from bug reports, etc.

In literature, existing RSSEs come in different shapes and support various goals. Yet, they
share many features and often require the same steps. A handful works highlights the basic
keys to build a RSSE. However, these key steps ran into many ambiguities when we tried to
analyze some RSSEs. These ambiguities leaded us to consider a different approach in order
to clarify different aspects of these key steps.

In this thesis, we conduct a systematic literature review that identifies various features
characterizing basic components we need to implement RSSE. To do so, we analyze a
sample of 46 RSSEs. First, we analyzed the context extraction component which retrieves the
contextual information of the programming task at hand that can be possibly treated and
rendered as an output to the second component. This component is the recommendation
engine which matches the extracted context with data stored in a corpus in order to generate a
set of recommendations that can be filtered before being presented to the developer.

This analysis led us to propose a feature model that represents important characteristics of
each component illustrated through the analyzed RSSEs and identify some open issues.

Keywords: Recommendation systems, software engineering, software maintenance.

TABLE OF CONTENTS

Page

INTRODUCTION ...1

CHAPTER 1 LITERATURE REVIEW ..1
1.1 Basic concepts ..1

1.1.1 Recommendation System (RS) ... 1
1.1.2 Recommendation System in Software Engineering (RSSE) 2

1.2 RS surveys ...2
1.3 Relevant RSSE works ..8

1.3.1 RSSE surveys .. 8
1.3.2 Building RSSE works ... 10
1.3.3 Evaluating RSSE works .. 14

1.4 Limitations of existing works ..17

CHAPTER 2 RESEARCH METHODOLOGY ..19
2.1 Planning of the study ...19

2.1.1 Research questions .. 19
2.1.2 Search strategy .. 20
2.1.3 Selection criteria ... 22
2.1.4 Data extraction strategy .. 22

CHAPTER 3 EXECUTION OF THE STUDY ...25
3.1 RSSEs supporting developers in change tasks...25
3.2 RSSEs supporting developers in API usage ..29
3.3 RSSEs supporting developers in refactoring tasks ..32
3.4 RSSEs supporting developers in solving exception failures, bugs, conflicts and testing

tasks..34
3.5 RSSEs recommending reusable software components and components' design37
3.6 RSSEs assisting developers in exploring local codebases and visited source locations39
3.7 Other RSSEs ..41

3.7.1 RSSE assisting developers in software prototyping activities 41
3.7.2 RSSE assisting developers in tagging software artifacts 42
3.7.3 RSSE recommending experts ... 43

3.8 Conclusion ...44

CHAPTER 4 RESULTS ANALYSIS ...45
4.1 Context Extraction ...45

4.1.1 What is context in RSSE ? .. 45
4.1.2 Context Extraction: An overview ... 46
4.1.3 Trigger... 46
4.1.4 Context input ... 48

4.1.4.1 Input Scope .. 48

XII

4.1.4.2 Specific Elements to extract... 49
4.1.5 Treatment .. 50
4.1.6 Output ... 52

4.2 Recommendation Engine ...53
4.2.1 Recommendation Engine: An overview ... 53
4.2.2 Corpus ... 54

4.2.2.1 Raw Data .. 55
4.2.2.2 Treatment ... 56
4.2.2.3 Processed Data ... 57

4.2.3 Recommendation .. 58
4.2.3.1 Treatment ... 59
4.2.3.2 Filtering / Ranking ... 60
4.2.3.3 Recommendations Nature .. 61

CHAPTER 5 DISCUSSION ..63
5.1 Results Synthesis ...63

5.1.1 Context extraction process .. 63
5.1.2 Recommendation engine ... 65

5.2 Validity threats ...68
5.2.1 External validity .. 68
5.2.2 Internal validity ... 69

CONCLUSION ..71

ANNEX I RSSE DESCRIPTION ..73

ANNEX II RSSE ANALYSIS: CONTEXT EXTRACTION PROCESS81

ANNEX III RSSE ANALYSIS: RECOMMENDATION ENGINE87

BIBLIOGRAPHY ..95

LIST OF TABLES

Page

Table 1.1 Summary of techniques' descriptions ..6

Table 1.2 Summary of recommendation techniques in each application domain7

Table 1.3 Recommendation landscape...9

Table 1.4 RSSE design dimensions ...11

Table 1.5 Kinds of development decisions to be taken when building a SCoReS12

Table 1.6 Detailed development decisions of a SCoReS ...13

Table 1.7 Categorization of dimensions ..15

Table 1.8 Summary of metrics ...15

Table 3.1 Categorization of analyzed tools ..25

LIST OF FIGURES

Page

Figure 0.1 Building steps of an RSSE ...2

Figure 2.1 Research methodology ...20

Figure 2.2 Filtering approach ..21

Figure 2.3 Context extraction phase ..23

Figure 2.4 Recommendation Engine ...23

Figure 3.1 An example that shows the files programmers view and edit while
performing tasks. This example is simplified from the actual interaction
traces of bug reports #124039, #176690, #204358, and #290505 in the
Eclipse Bugzilla system ...28

Figure 3.2 Augmented access graph. e, f, g, g0, h represent
functions, x, y, z, w represent data, and A represents a composite type30

Figure 3.3 Example ...31

Figure 3.4 Sample user-item database ...38

Figure 4.1 A Feature Model for context extraction in RSSEs47

Figure 4.2 Features of the trigger ..48

Figure 4.3 Features of the input scope ..49

Figure 4.4 Features of the specific element to extract ...50

Figure 4.5 Features of the input treatment ..51

Figure 4.6 Features of the output...53

Figure 4.7 A Feature Model for the recommendation engine in RSSEs54

Figure 4.8 Features of the raw data ...55

Figure 4.9 Features of the raw data treatment ...57

Figure 4.10 Features of the processed data ...58

XVI

Figure 4.11 Features of the recommendation treatment ..60

Figure 4.12 Features of the filtering and ranking ..61

Figure 4.13 Features of the recommendations nature ...62

LIST OF ABREVIATIONS

API Application Programming Interface

AST Abstract Syntax Tree

BoW Bag of Words

CBF Content-Based Filtering

CF Collaborative Filtering

CI Computational Intelligence

CR Change Request

CVS Control Version System

DAG Direct Acyclic Graph

DCL Dependency Constraint Language

DOI Degree Of Interest

GA Genetic Algorithm

IDE Integrated Development Environment

KBF Knowledge-Based Filtering

LSI Latent Semantic Indexing

MIS Method Invoking Sequence

NLP Natural Language Processing

NN Nearest Neighbors

QA Question / Answer

RS Recommendation System

RSSE Recommendation System in Software Engineering

XVIII

SCoReS Source Code-based Recommendation System

SLR Systematic Literature Review

TF-IDF Term Frequency - Inverse Document Frequency

INTRODUCTION

Research Context and Problematic

As software systems evolve, their information resource including source code, external

libraries and other documents (e.g. design documents) grow considerably as well. This

diversity of information makes software systems’ evolution and maintenance a challenging

task. For instance, developers may encounter challenges in searching for relevant artifacts

related to a given feature request or for source code examples and in adapting them to the

programming task at hand. In some cases, documentation can be obsolete or not available

which makes developers ask questions to more experienced developers who may be too busy

to answer and then developers spend considerable time to get the desired information.

In this perspective, various information retrieval and research tools, usually based on regular

expressions, have been developed to help developers locating information in which they are

interested, but such tools are context-independent. So developers need to select interesting

components according to the task at hand, which is usually a time consuming and an error-

prone task. Therefore, Recommendation Systems in Software Engineering (RSSE) appear as

interesting tools that consider the context of the developer's task in order to provide relevant

information which ranges from project artifacts of the project under development (Cubranic

et al., 2005) to components retrieved from the web (Sawadsky et al., 2013).

In literature, existing RSSEs come in different shapes and support various goals like

recommending API method invocations (Long et al., 2009), reusable software components

(McCarey et al., 2005), etc. However, they share many features and often require the same

steps. A couple of surveys were conducted to analyze existing RSSEs (e.g. (Happel and

Maalej, 2008), (Mohebzada et al., 2012)). Most of them focused on identifying when and

what to recommend, while others tried to outline different recommendation techniques.

2

Also a handful works tried to highlight steps that are basic keys to implement RSSEs (e.g.

(Robillard et al., 2010), (Mens and Lozano, 2014)). This process typically starts with the

extraction of the context of the programming task at hand and provides an input to the

recommendation engine which generates a set of recommendations that can be filtered before

being presented to developers and maintainers. Figure 0.1 shows the basic components in

RSSE.

In view of the aforementioned, we were interested to conduct a systematic review in order to

deeply analyze a sample of existing RSSEs and to identify various features characterizing

each component we need to build an RSSE.

Figure 0.1 Building steps of an RSSE
Adapted from Maki et al. (2015, p.151)

Research objectives

The main goal of this research work is to examine the basic components for implementing

RSSE tools and to identify their different design and implementation choices. In particular,

we limit our study to RSSE tools supporting developers in maintenance and evolution tasks

including refactoring, debugging, change tasks, etc.

3

To this end, the objectives specific to this thesis are:

• Identification of the main characteristics of the context extraction component

• Identification of the main characteristics of the recommendation engine component

including its subcomponents: corpus, recommendation technique and filtering.

Thesis structure

The remainder of this thesis is organized as follows. The first chapter presents a literature

review of relevant existing works on recommendation systems in general and in software

engineering in particular. Chapter two describes the planning of our study by presenting our

research questions and the selection criteria taken to answer these questions. Chapter three

presents the description of the analyzed sample of RSSEs. The results of this analysis are

presented in chapter four, and discussed in chapter five. Finally, we conclude our thesis and

we present some future works.

CHAPTER 1

LITERATURE REVIEW

In this chapter, we present an overview of existing RS and RSSE surveys, and some relevant

research works about RSSE building process and its evaluation. Finally, we identify the

limitations that will be addressed by our review.

1.1 Basic concepts

In this section, we define the notion of recommendation systems in general. Then, we

introduce the same concept in software engineering.

1.1.1 Recommendation System (RS)

An RS is a software tool providing useful suggestions about a particular item in order to help

the user making a decision, for instance which book to buy or what music to listen to (Ricci

et al., 2011). The need for RSs emerged especially with the introduction of e-commerce web

sites and the explosive growth of information available on the web. In this perspective, an

item denotes what the RS recommends to a user which can be a CD, a book, a movie, and so

on. There are two types of recommendations: (1) personalized and (2) non-personalized

recommendations (Ricci et al., 2011).

Personalized recommendations are usually presented as a ranked list of items. This ranking

can be defined as a prediction of the most useful items. It is computed based on the user

preferences. These preferences can be expressed:

• explicitly, e.g. as ratings assigned by the user for a particular item; or

• implicitly which are usually inferred by interpreting users' actions, e.g. visiting a

particular item's page can be considered as an implicit sign of preference for that item.

Non-personalized recommendations are simpler to produce and are often used in

magazines and newspapers, for instance, suggesting the top ten selections of magazines. This

type of recommendations is not typically addressed by RS researches.

1.1.2 Recommendation System in Software Engineering (RSSE)

In software engineering, software development and maintenance activities present many

information navigation issues and challenges. As software systems evolve, their information

resources tend to keep growing (e.g. source code, change history, bug reports, discussion

forums) and to depend on an ever-increasing set of external libraries.

Developers and maintainers usually tend to invoke existing source code components, e.g.

reusable code snippets from project histories or methods from external libraries, rather than

writing code from scratch. Thus, they may encounter two main challenges: (1) retrieving the

suitable information from the various information resources, (2) learning its correct usage

and adapting it to the programming task at hand. Therefore, this dynamicity and

overwhelming diversity of information resources motivate the development of RSSE in order

to support developers. Robillard et al. (2010) defined RSSE as « ... a software application

that provides information items estimated to be valuable for a software engineering task in a

given context. » (Robillard et al., 2010).

1.2 RS surveys

Many RS reviews have been conducted in order to present an overview of different existing

recommendation techniques and to identify their drawbacks. In this section, we report some

relevant RS reviews.

3

Adomavicius and Tuzhilin (2005) conducted a survey analyzing a sample of

recommendation approaches in order to identify various limitations and to propose possible

extensions. The analyzed approaches are classified into three categories: Content-Based

Filtering (CBF), Collaborative Filtering (CF) and hybrid recommendation approaches.

CBF approach recommends items similar to the ones liked by the user in the past, based on

his preferences and personal interests. These preferences can be presented as a set of

keywords or categories. They are usually extracted from items descriptions which contain

textual information, for instance, in a movies RS, preferences can be genres, lead actors,

directors. A weighted measure can be affected to each keyword in order to determine its

relevance in the textual description, e.g. Term Frequency - Inverse Document Frequency

(TF-IDF) which is a weight assigned to every term according to its importance (frequency) to

a document in a corpus or a collection of documents. In order to compute similarity, the

recommendation techniques used can be based on heuristics, e.g. cosine similarity measure,

or based on models using machine learning techniques, e.g. artificial neural networks.

Adomavicius and Tuzhilin (2005) identified three main limitations in CBF approach:

• limited content analysis which is usually performed by a computer in the case of a textual

content, otherwise it is performed manually which is often time-consuming;

• overspecialization as the recommended items are limited to items similar to those liked

by the user and may include the same information; and

• new user problem as the new user did not yet rate items so the content-based approach

would not be able to understand his preferences and, thus, to recommend relevant items.

CF approach recommends items which are most liked by users with similar preferences as

the active user. For instance, in order to recommend a movie, CF approach tries to identify

users with movies preferences similar to the ones of the active user and then recommends the

movies which are most liked by the similar users previously identified. Similarity algorithms

used by CF approaches are classified in two main categories: heuristic-based, e.g. Nearest

Neighbors (NN) algorithm, and model-based algorithms, e.g. clustering. Adomavicius and

Tuzhilin (2005) discussed the three following limitations in CF approach:

4

• new user problem which is identified in CBF limitations;

• new item problem as the new item cannot be recommended until it is rated by some

users; and

• rating sparsity as the items that have been rated by few users would be rarely

recommended. The same goes for users with different preferences; compared to the rest

of users; who would not be able to have similar users and thus to get relevant

recommendations. A possible solution to address this limitation is to use information

incorporated in user profile in similarity computing.

Hybrid approach combines the CBF and CF approaches in order to address some of their

limitations. This combination can be performed in four different ways:

• implementing CBF and CF techniques separately and then combining the two

recommenders by combining their ratings into one final rating;

• adding some CBF characteristics to CF approach, for instance maintaining content-based

users profiles in CF approach allows to address the ratings sparsity limitation as an

unrated item could be recommended if it matches the user preferences;

• adding some CF characteristics to CBF approach, for instance performing the

collaborative approach on a set of user profiles;

• implementing a single recommendation approach that incorporates CBF and CF

characteristics.

Adomavicius and Tuzhilin (2005) proposed some extensions in order to avoid the limitations

identified such as:

• better comprehension of users and items by using more advanced profiling techniques,

e.g. data mining rules, instead of traditional techniques, e.g. keywords;

• incorporating multi-criteria ratings, e.g. restaurants recommendations may consider food,

service and decor ratings;

• using implicit ratings, e.g. time spent visiting an item web page; and

• considering contextual information such as time (e.g. season, month, year), place, and

companion in proposing travel-related recommendations.

5

The limitation of discarding contextual information has been addressed a couple years later

by the same authors in (Adomavicius and Tuzhilin, 2011) where they discussed the concept

of context in RSs and proposed three major approaches to incorporate context into the

recommendation process. Adopting the representational view proposed by Dourish in

(Dourish, 2004), Adomavicius and Tuzhilin (2011) considered context as a set of predefined

information that doesn't change significantly over a short time period. This contextual

information can be obtained in three different ways: (1) explicitly by asking questions, e.g.

filling out a web form, (2) implicitly, e.g. the location of the user that can be detected by a

mobile phone, or (3) by inferring, i.e. using data mining techniques. Adomavicius and

Tuzhilin (2011) proposed the following three main paradigms to incorporate context in

recommenders:

• pre-filtering that adds contextual information to the recommendation input, i.e. data is

selected and constructed according to that specific context;

• post-filtering which adds contextual information to the recommendation output, i.e.

ratings are computed on the entire data and then recommendations are filtered according

to the contextual information of each user; and

• contextual modeling which adds contextual information to the recommendation function,

i.e. context is used directly to compute ratings prediction.

In (Lu et al., 2015), the authors conducted a review of the latest RSs. The analyzed papers are

classified into two main types: (1) papers on recommendation techniques, i.e. approaches and

methods, and (2) papers on RS applications, i.e. software, which are clustered according to

the application domains into eight main categories: e-tourism, e-business, e-government, e-

commerce/e-shopping, e-learning, e-library, e-group activities and e-resource services. The

reviewed recommendation techniques in (Lu et al., 2015) includes traditional techniques, e.g.

CF and CBF (previously presented), Knowledge-Based Filtering (KBF), hybrid methods, and

advanced techniques, e.g. Computational Intelligence (CI), social network-based, context

awareness-based and group aggregation recommendation approaches. A short description of

each of these techniques is presented in Table 1.1.

6

The review conducted in (Lu et al., 2015) shows that traditional recommendation techniques

are still frequently used, in particular hybrid techniques which aim to avoid the limitations of

using a single traditional recommendation technique, i.e. CF, CBF, KBF. Regarding

advanced recommendation techniques, context aware and social network-based

recommendation techniques are popular, and CI techniques are applied in all application

domains. Yet, some open research topics have been identified in this review such as mobile-

based context-sensitive and real time context awareness-based recommendation techniques.

A summary of the reviewed RS applications in (Lu et al., 2015) is presented in Table 1.2.

Table 1.1 Summary of techniques' descriptions
Adapted from (Lu et al., 2015)

Approach Description

KBF This approach recommends items based on a deep knowledge about items

(semantic knowledge, e.g. ontology). Depending on the user's preferences,

KBF approach uses a set of constraints to describe which item has to be

recommended

CI This approach includes clustering techniques, artificial neural networks

(ANN) and genetic algorithms. Clustering techniques gather similar items

into one cluster and are usually used to find k-nearest neighbors. ANN

technique is a weighted graph that links a set of inter-connected nodes. It is

inspired by the architecture of the biological brain and it has been used to

construct movies and TV recommender systems. Genetic algorithm (GA) is

a stochastic search technique which is used often to address optimization

problems.

Social

network-

based

approaches

These approaches have emerged with the explosive growth of social

networking tools. They help to overcome sparse data sets problem which is

one of CF limitations (i.e. inability to find sufficient similar neighbors).

They also improve the user's trust as the active user would be more

influenced by suggestions from his friends than by website advertising.

7

Approach Description

Context

awareness-

based

approaches

These approaches use contextual information that could be relevant to

recommend useful items in specific circumstances such as place, time, etc.

Context is defined as « any information that can be used to characterize the

situation of an entity. An entity could be a person, a place, or an object that

is considered relevant to the interaction between a user and an application,

including the user and the application themselves. » (Dey et al., 2001).

Group

aggregation

approaches

These approaches, known also as e-group activity, recommend a group of

user suggestions when preferences of group members are unclear. They are

applied in movies, music, events and travel plans recommendation.

Table 1.2 Summary of recommendation techniques in each application domain
Extracted from Lu et al. (2015, p.27)

Domains Techniques No. of

listed

referen-

ces

CBF CF KBF Hyb-

rid

Computa-

tional

Intelligen-

ce

Social

Net-

work

Context

Aware

Group

Aggre-

gation

E-

government

1 5 1 5 4 9

E-business 1 3 3 4 5

E-

commerce

3 1 4 1 4 2 8

E-library 2 2 3 1 6

E-learning 2 11 2 10

E-tourism 5 9 9 9 3 2 11 18

E-resource 9 16 6 15 8 1 1 27

E-group

activity

9 5 2 5 1 2 21

Total 31 39 36 41 27 6 12 2 104

8

1.3 Relevant RSSE works

In this section, we present an overview of relevant works on RSSEs including surveys and

other works that focus on building and evaluating RSSEs.

1.3.1 RSSE surveys

Compared to RS works, only a handful reviews have been conducted on RSSE. In this

section, we report relevant RSSE reviews published in the last decade.

In (Happel and Maalej, 2008), the authors conducted a survey of the papers that were

published between 2003 and 2008 (six RSSEs). This survey aims to identify potentials and

limitations of the analyzed RSSEs with a particular focus on their architecture (e.g. client/

server, web application), their trigger events (proactive or reactive) and the type of

recommended information (e.g. methods, project artifacts). Happel and Maalej (2008)

outlined a recommendation landscape following two main dimensions:

• when to recommend, i.e. recommendation process is triggered proactively ("Propose") or

reactively ("Ask to share"); and

• what to recommend, i.e. information to recommend which is classified into development

information (e.g. code, project artifacts) and collaboration information (e.g. people to

contact).

Table 1.3 summarizes the outlined recommendation landscape. Then, the authors identified

some limitations such as: (1) the non-flexible architecture (e.g. standalone applications), and

(2) the disregard of contextual information of the programming task at hand, or simply its

restriction to the file level.

In the same perspective, the authors in (Mohebzada et al., 2012) attempted to identify

research gaps in RSSE by providing an overview of recommendation systems for

requirements engineering.

9

This study used a systematic mapping that included 23 publications between 2004 and 2011.

The authors outlined the following characteristics of recommendation systems for

requirements engineering:

• recommendation techniques (e.g. CF, CBF, etc.);

• types of recommended items (e.g. stakeholders of a project, software project planning,

etc.);

• recommendation modes (i.e. proactive or reactive) and the output form (e.g. web page);

• cross-dimensional features (e.g. user's feedback, rationale behind recommendations, etc.);

• recommender architecture (e.g. web-based tool, standalone desktop application ,etc.).

Table 1.3 Recommendation landscape
Extracted from Happel and Maalej (2008, p.13)

What When
Information Access

Propose...
Information Provision

Ask to share...

D
ev

el
op

m
en

t

Code Auto completion, code examples,

methods to use

Ways of reusing APIs, used

documentations

Artifacts Related, useful artifacts Artifacts used for solving a specific

problem

Quality

measures

Problematic change, Patterns to

improve quality

How problems have been solved,

new patterns

Tools Not used features, How-to

automate specific tasks

Experience reports on using new

tools

C
ol

la
b

or
at

io
n

People Experts to contact Associations of people with

expertise areas

Awareness

measures

Ad-hoc collaboration Collaboration artifacts (mail, chat,

decision rationale)

Status

Priorities

Open related issues, Risks

New priorities

Status, open issues

Reason of priority changes

10

The analysis of Mohebzada et al. (2012) revealed some limitations of recommendation

systems for requirements engineering such as:

• non-integrated recommenders in existing work environments of requirements engineering

which could be addressed by plug-ins architecture;

• limited "explainability features" like rationale behind recommendations; and

• limited number of proactive recommenders.

More recently, in (Pakdeetrakulwong et al., 2014), the authors analyzed a sample of 25

RSSEs that were published between 2006 et 2014. The reviewed papers were classified

according to the software development life cycle phases as follows: (1) nine requirements,

gathering and analysis recommenders, (2) three design recommenders, (3) eleven

implementation recommenders, and only (4) two testing recommenders. This study outlined

the different recommendation techniques and the knowledge representation used (e.g.

semantic representation) according to recommender goals and identified benefits and issues

of the existing RSSEs. The authors noticed that the analyzed recommenders were developed

to improve software productivity only for one software development phase and in particular

the implementation phase. Thus, it would be of great help if recommenders help software

teams in more than one phase of software life cycle. Regarding recommendation techniques

and knowledge representations, the traditional representations based on structured or semi-

structured format of data and the syntactic matching operations are the most used ones. These

features can be improved by leveraging semantic ontologies.

1.3.2 Building RSSE works

In (Robillard et al., 2010), the authors presented an overview of some relevant recommenders

focusing on how RSSEs can help developers. Also they outlined some design dimensions,

potentials and gaps of existing RSSEs. In this study, the main dimensions identified

(summarized in Table 1.4) involve:

11

• a data context collection process which can be implicit or explicit and mainly involve

information like the user's past interactions (e.g. browsed components, etc.) and the

current task (e.g. debugging, adding new feature, etc.);

• a recommendation engine that analyze additional data to generate recommendations using

ranking techniques; and

• a user interface that triggers the recommendation process implicitly or explicitly (i.e.

proactive and reactive modes) and presents results to the user.

This overview revealed some RSSE benefits like proactive mode which delivers

automatically relevant information to developers rather than waiting for an explicit request.

However, many limitations have been identified such as: “cold-start problem” of a project

that could be addressed by leveraging data from other similar projects, and the output form

which is presented as a list of recommendations in most of RSSEs so there are a limited

explanation features.

Table 1.4 RSSE design dimensions
Extracted from Robillard et al. (2010, p.85)

Nature of the context Recommendation engine Output mode

Input:

explicit | implicit | hybrid

Data:

source | change | bug reports |

mailing lists | interaction

history | peers' actions

Mode:

push | pull

Ranking:

yes | no

Presentation:

batch | inline

Explanations:

from none to detailed

User feedback:

None | locally adjustable | individually adaptive | globally adaptive

12

In the same perspective, the authors in (Robillard and Walker, 2014) reviewed the various

software information sources that could be relevant to generate recommendations (e.g.

project history, external libraries, user interaction traces, etc.), and presented a more detailed

overview of RSSEs aspects. These aspects are:

• data preprocessing such as parsing source code or analyzing commits;

• capturing context by gathering all information about the current development task;

• generating recommendations by performing a recommendation technique that takes as an

input the processed data and the captured context; and

• presenting recommendations to the developer.

This general overview has been detailed by Mens and Lozano particularly for Source Code-

based Recommendation System (SCoReS) in (Mens and Lozano, 2014) in order to outline

relevant decisions to build a SCoReS. First, the authors presented an overview of a handful

of existing recommenders, and then tackled important development choices of a SCoReS.

These choices were classified according to the phase of the development cycle into two main

categories: (1) decisions related to the recommendation approach, and (2) decisions related to

the user interactions with the recommender. Table 1.5 summarizes these decisions. Also, the

authors tried to answer these key decisions by going through a sample of SCoRes and

discussing the development choices taken.

Table 1.5 Kinds of development decisions to be taken when building a SCoReS
Extracted from Mens and Lozano (2014, p.103)

 Requirements Design Implementation Validation

Approach 1. Intent 3. Corpus 5. Method 7. Support

User interaction 2. HCI 4. General I/O 6. Detailed I/O 8. Interaction

In table 1.6, we detail the proposed decisions related to the approach and to the user

interaction in each development cycle phase.

Table 1.6 Detailed development decisions of a SCoReS
Adapted from Mens and Lozano (2014, p.120-121)

 Requirements Design Implementation Validation

Approach 1. Intent:

• Intended user

• Supported task

• Cognitive support

• Proposed information

3. Corpus

• Program code

• Complementary

information

• Correlated

information

5. Method

• Data selection

• Type of analysis

• Data requirements

• Intermediate

representation

• Analysis technique

• Filtering

7. Support

• Empirical validation

• Usefulness

• Correctness

User interaction 2. HCI (Human Computer

Interaction)

• Type of the system

• Type of recommender

• User involvement

4. General Input/Output

• Input mechanism

• Nature of input

• Response triggers

• Nature of output

• Type of output

6. Detailed Input/Output

• Type of input

• Multiplicity of output

8. Interaction

• Usability

• System availability

• Data availability

13

More recently in (Proksch et al., 2015), the authors outline the different steps that should be

taken to build a RSSE using some examples of recommenders that assist developers in API

usage. The identified steps are described as follows:

1. Framing the problem to solve by determining the task (i.e. the goal), the context (i.e.

information and tool environment) and the target user (e.g. novice developers);

2. Determining the inputs, i.e. data available to provide recommendations (e.g. open-source

repositories, QA websites, etc.);

3. Building the recommender, i.e. mechanisms used to generate recommendations using

inputs, including traditional techniques (e.g. collaborative filtering), data mining and

machine learning(e.g. association rule mining);

4. Delivering recommendations which includes the recommendation mode (reactive or

proactive) and the presentation of the provided recommendations; and

5. Evaluating the recommender including the evaluation of the proposals presentation (e.g.

creating mock-ups in early design stages) and the recommendation engine (e.g. user

studies, automated experiments, etc.).

1.3.3 Evaluating RSSE works

As evaluation is an important step to complete the building process of any software tool, we

present an overview of some relevant works on approaches and metrics to evaluate RSSEs.

In (Avazpour et al., 2014), the authors review a range of evaluation metrics, measures and

commonly used approaches to evaluate RSSEs. As a first step, the authors investigate a set of

dimensions that can be relevant to assess RSSE quality. These dimensions are grouped into

four main categories (summarized in Table 1.7):

• Recommendation-centric dimensions which evaluate the generated recommendations;

• User-centric dimensions assess the degree to which RSSE fulfills the user needs;

• System-centric dimensions evaluate the recommendation system itself; and

• Delivery-centric dimensions gauge the recommendation system in the context of use.

14

15

Table 1.7 Categorization of dimensions
Extracted from Avazpour et al. (2014, p.247)

Recommendation-centric User-centric System-centric Delivery-centric

Correctness Trustworthiness Robustness Usability

Coverage Novelty Learning rate User preference

Diversity Serendipity Scalability

Recommender confidence Utility Stability

 Risk Privacy

For each dimension, the authors outline the most commonly used metrics. For instance,

correctness which evaluates how close the provided recommendations are to users' interests,

can be differently measured depending on the type of the generated recommendations (e.g.

predicting user ratings, ranking items, etc). For instance, to recommend interesting items,

classification metrics such as precision, recall, accuracy and specificity are the most

commonly used metrics. Table 1.8 summarizes the identified metrics and techniques.

Table 1.8 Summary of metrics
Extracted from Avazpour et al. (2014, p.267)

Dimension Metric / Technique Type(s)

Correctness Ratings: root-mean-square-error, normalized (RMSE),

mean absolute error (MAE), normalized MAE

Ranking: normalized distance-based performance measure,

Spearman’s ρ, Kendall’s τ, normalized discounted

cumulative gain

Classification: precision, recall, false positive rate,

specificity, F-measure, receiver operating characteristic

curve

Quantitative

16

Dimension Metric / Technique Type(s)

Coverage catalog coverage, weighted catalog coverage, prediction

coverage, weighted prediction coverage

Quantitative

Diversity diversity measure, relative diversity, precision–diversity

curve, Q-statistics, set theoretic difference of

recommendation lists

Quantitative

Trustworthiness user studies Qualitative

Confidence neighborhood-aware similarity model, similarity indicators Qualitative /

Quantitative

Novelty comparison of recommendation lists and user profiles,

counting popular items

Qualitative /

Quantitative

Serendipity comparison of recommendation lists and user profiles,

ratability

Qualitative /

Quantitative

Utility profit-based utility function, study user intention, user

studies

Qualitative /

Quantitative

Risk depends on application and user preference Qualitative

Robustness prediction shift, average hit ratio, average rank Quantitative

Learning rate correctness over time Quantitative

Usability user studies (survey, observation, monitoring) Qualitative /

Quantitative

Scalability training time, recommendation throughput Quantitative

Stability prediction shift Quantitative

Privacy differential privacy, RMSE vs. differential privacy curve Qualitative /

Quantitative

User preference user studies Qualitative /

Quantitative

As an example of evaluation techniques, the authors in (Said et al., 2014) outline the

concepts of benchmarking process for evaluating RSSEs and present a multi-dimensional

approach.

17

Benchmarking is an evaluation methodology used to assess the quality of a tool in

comparison with other tools, and its process follows four main steps: (1) target specification,

(2) data collection, (3) evaluation and analysis, and (4) implementation. Traditional

benchmarking techniques usually evaluate one dimension (e.g. accuracy) and neglect

business and technical aspects. The proposed multi-dimensional approach is composed of

three main aspects:

1. User aspects which are related to the impact on the user's attitude (e.g. persuasiveness,

trustworthiness) and aim to identify interesting items and to reduce the time of the

decision-making process;

2. Business aspects which are related to business requirements such as increased user

retention and user loyalty and can be measured using metrics like click through-rate (the

ratio of recommendation selected by the user per the total number of recommendations)

and average page views per visit in case of websites; and

3. Technical aspects which consider technical constraints including data, system (hardware

and software limitations), reactivity (ability to provide relevant recommendations in real-

time), scalability (ability to provide relevant recommendations independently of the

dataset size), robustness, etc.

1.4 Limitations of existing works

In this section, we summarize the limitations identified in both RSSE surveys and works that

build RSSEs.

Regarding RSSE surveys, we noticed that existing surveys aim to identify potentials and gaps

of RSSE with a particular focus on some features like the recommender’s architecture (plug-

ins, web applications, etc.), its mode (reactive or proactive), the recommendation techniques

and the nature of information presented to the developer. However, these surveys did not

discuss the input nature, i.e. information to be extracted that can be relevant to the task at

hand, and the data used to provide recommendations, and whether this data is processed

before being used to generate recommendations.

18

The same features (i.e. recommender modes, recommendation technique and output) were

considered by works that build RSSEs. In particular, the work by Mens and Lozano

highlights more features to consider in each development life cycle phase of building source

code-based recommenders. However, we tried to use their classification on some RSSEs with

inputs different from source code (e.g. queries, project artifacts, etc.) and it ran into many

ambiguities, such as:

• the ambiguity of recommender types which was defined as advisor, finder or validator;

• the user involvement and the input mechanism can be considered as one decision that

explain how the input should be entered.

We noticed also that the input type which requires whether an additional information has to

be selected or not, is requested in the implementation phase in the development cycle.

However, it should be considered in earlier phases. These ambiguities forced us to consider a

different approach.

In particular, we concluded that there was a need to clarify the key steps and to characterize

the basic components of an RSSE regardless of the input type and the supporting goal.

However, we do not focus on RSSE evaluation means in this survey.

CHAPTER 2

RESEARCH METHODOLOGY

To conduct our systematic literature review, we adopted the approach proposed in

(Kitchenham, 2004). This approach is used to identify and evaluate available research in a

particular field and includes three main phases:

• Planning of the study by developing a review protocol that includes the research

questions, the search strategy, the selection criteria and the data extraction strategy;

• Executing the study includes the collection of data addressing the research questions;

and

• Analyzing / interpreting the results of the study.

In this chapter, we detail the first step to conduct systematic literature review. The other steps

are covered by the following chapters.

2.1 Planning of the study

In this section, we present the planning of the study we used to identify the set of papers and

to filter out papers we consider relevant to our research questions. Figure 2.1 depicts our

research methodology and details in particular the planning of our study.

2.1.1 Research questions

In this study, we formulated the following research questions:

• (Q1) : Which features characterize the context extraction process adopted by RSSEs ?

• (Q2) : Which features characterize the recommendation engine used by RSSEs to

provide recommendations ?

In order to answer these research questions, we selected a sample of RSSE papers published

in scientific conferences and journals within the last decade.

20

Figure 2.1 Research methodology

2.1.2 Search strategy

To select a sample of papers published in scientific conferences and journals within the last

decade, we queried the research engine Compendex, known also as Engineering Village,

which is an engineering bibliographic database providing a searchable index of the scientific

literature. We performed the following query:

• (("recommendation system" OR "recommendation tool" OR "recommender") AND

("software engineering" OR "software development" OR "software maintenance" OR

"software evolution" OR "software project")).

21

The search related to this query returned 272 results on which we performed a preliminary

screening based on papers’ title and abstract. Based on our selection criteria, described in the

next subsection, we retained 78 publications that contain three duplicate tools (two different

papers of Rascal and NavClus). We performed a second screening based on papers’

introduction and conclusion and we filtered out 21 paper. After reading the rest of papers, we

kept 36 relevant papers. Figure 2.2 summarizes the filtering approach.

To enlarge our study, we selected RSSEs that were analyzed in (Mens and Lozano, 2014).

We kept papers that are published within the last decade and we filtered out those that were

found by our query (Mendel (Lozano et al., 2011), Hipikat (Cubranic et al., 2005), Strathcona

(Holmes et al., 2006)). We retained a sample of 10 publications. The final sample of the

analyzed RSSEs is composed of 46 relevant papers.

Figure 2.2 Filtering approach

22

2.1.3 Selection criteria

We were interested only in the publications presenting recommendation systems in software

engineering, particularly the ones related to software development. To do so, we defined the

following exclusion criteria:

i. Papers from fields other than software engineering, e.g. e-commerce, e-tourism, e-

business, e-learning, health-care, etc.

ii. Papers presenting tools that do not support software development tasks, e.g. tools

supporting requirements elicitation, works management (e.g. helping managers

building their teams), or evaluation of recommendation systems.

iii. Papers presenting other studies which were discussed in the previous chapter (e.g.

literature reviews).

2.1.4 Data extraction strategy

We prepared tables to accurately record any information that can be relevant to answer our

research questions. To do so, we followed two main steps in order to extract the following

data categories:

1. Context extraction phase which is usually prompted by a triggering event to collect

the contextual information (i.e. input) that may be treated in order to generate an

output. The context input has to be retrieved within a given scope and possibly

involves the extraction of specific elements. Figure 2.3 shows an overview of this

phase.

2. The recommendation engine takes as an input the context extraction output and then

performs a treatment in order to generate recommendations which can be filtered or

ranked before being presented to the developer. The recommendation engine possibly

involves a corpus which is a set of raw data that can be treated in order to generate an

output (processed data) used to recommend items. An overview of this phase is

shown in Figure 2.4.

23

Figure 2.3 Context extraction phase

Figure 2.4 Recommendation Engine

CHAPTER 3

EXECUTION OF THE STUDY

In this chapter, we present the sample of RSSEs analyzed. We cluster these tools according

to the supported goal into seven main categories. Table 3.1 presents an overview of this

categorization.

Table 3.1 Categorization of analyzed tools

Supported goal Number of papers

Change tasks 12

API usage 6

Refactoring 4

Debugging and testing 11

Reusable software components 5

Exploring codebases 5

Others:

Prototyping

Tagging

Recommending experts

1

1

1

In some categories, we describe a sample of the selected tools. The remaining recommenders

are described in ANNEX I.

3.1 RSSEs supporting developers in change tasks

Software developers, especially newcomers, often encounter difficulties in their change

tasks. They usually have to understand the existing code, implementing the required

modifications without breaking something in the process.

26

Thus, they need assistance to accomplish their first tasks. However, allocating an

experienced member to assist newcomers could be expensive and not always possible for a

long time period. And even for experienced members, locating the software artifacts relevant

to the changing task at hand could be an error-prone and a time consuming task. In this

perspective, RSSEs can be helpful by providing useful software artifacts. In the following,

we describe some of the selected tools supporting these goals.

Mentor (Malheiros et al., 2012) assists newcomers in the realization of their first tasks by

recommending solved change requests and their related source files. The process is triggered

explicitly by developer's request. It starts with an open change request composed of different

fields (summary, description and developers’ comments) written in a natural language text.

Those fields are concatenated and compared to a set of solved change requests stored in a

database which are processed beforehand into an advanced statistical model. The tool

analyzes every stored change request and version control files in order to identify and store

the associated relations (i.e. by scanning the commit messages). To do so, a heuristic based

on regular expressions is used. To identify change requests similar to the open one, a

comparison is performed using an entropy measure. The entropy of the open change request

is calculated using the advanced statistical model of every stored change request. The similar

changes are then classified according to their entropy scores and presented to the developer.

Clicking on a recommended change request, the tool shows the associated revisions and

source files.

Hipikat (Cubranic et al., 2005) is a similar RSSE which assists newcomers by

recommending artifacts from the current project. A project memory is formed implicitly by

all the artifacts of the project under development and links between those artifacts (e.g. file

revisions which implemented a particular change request). An artifact could be: (1) a change

task artifact (e.g. feature request and bug report), (2) a source file version stored in Control

Version System (CVS), (3) a message (e.g. emails and forums), or (4) an other document

(e.g. design documents). The links between project artifacts are inferred by Hipikat using

different heuristics such as:

27

• clustering (e.g. clustering change task requests that have been fixed within the same

time window);

• regular expression based heuristics for instance used to match change requests with

the related file versions, etc.

The project memory is built and updated automatically, and the recommendations can be

generated as soon as any part of the memory is formed. The recommendation process is

triggered explicitly by the developer, selecting an artifact from the project under

development and sending a request from a contextual menu. The selected artifact is

tokenized, converted into a Bag of Words (BoW) which is processed to form a weighted

vector and projected into a semantic space using Latent Semantic Indexing (LSI) which is an

advanced Natural Language Processing (NLP) technique. Artifacts similar to the selected one

are identified for two main situations: (1) either the selected artifact already exists in the

project memory and Hipikat recommends the related artifacts based on the links stored in the

project memory, or (2) the text similarity of two weighted vectors is performed using a

cosine similarity measure. The similar artifacts identified are classified and ordered

according to the similarity confidence which could be numeric (i.e. text similarity score) or

descriptive (e.g. "high-checked in within the last five minutes"). Artifacts are clustered

according to their types (e.g. CVS files) and each presented artifact provides a reason (e.g.

check in to bug resolution).

The other RSSEs in this category work more closely with source code in order to recommend

useful source code artifacts or elements. For instance, MI (Lee and Kim, 2015) recommends

files to edit by leveraging developer interaction histories (i.e. viewed and edited files). The

goal of the proposed tool is to help developers even before editing a file. The key idea is that

the recommender monitors the last viewed (and edited if exist) files in a sliding window

(referred as viewed-edited-sized sliding window) and looks for previous tasks with similar

viewed files in a corpus formed of interaction traces. These interactions are stored as a pair of

sets (viewed files, edited files) associated to a given task (e.g. bug fixing tasks). Based on

association rules, the tool recommends the files edited in the identified similar tasks.

28

Once the developer edits a file from those recommended, the edited file is then considered in

the new context with the viewed files to recommend other files to edit. For instance, Figure

3.1 shows an example in which developers have performed three tasks T0, T1 and T2, and a

developer is performing a task T3. As the current viewed files (d, b, c) have been viewed in

the task T0, MI then recommends the files that were edited in T0 (c, e).

Figure 3.1 An example that shows the files programmers view and edit while performing
tasks. This example is simplified from the actual interaction traces of bug reports #124039,

#176690, #204358, and #290505 in the Eclipse Bugzilla system
Extracted from Lee and Kim (2015, p.316)

Mendel (Lozano et al., 2011) is a similar RSSE which assists developers in their change

tasks. The tool detects what is missing in an entity (e.g. method, class) by analyzing related

entities based on inheritance dependencies and identifying the most common properties. For

instance, the family set of a class is composed of the direct superclass and its direct

subclasses (i.e. siblings, nephews / nieces). In order to identify the common traits (dominant

and recessive) in a family, Mendel sets two threshold measures. The identified traits (i.e.

structural properties: types, naming or structural conventions) are thus recommended to be

considered by the entity under development.

Other recommenders may help developers in planning complex modification tasks such as

pragmatic reuse activities.

29

For instance, the recommender proposed in (Holmes et al., 2009) assists developers in

planning their reuse tasks based on the structural relevance and the reuse cost of an element

(e.g. class or method). The tool is an extension of Suade which is a topology analyzer of

software dependencies, merged with Gilligan which is an environment for planning

pragmatic reuse tasks. The proposed approach automatically recommends software elements

that can be reused when a developer is triaging elements in the reuse plan. The tool extracts

methods and fields of the triaged elements in Gilligan and analyzes the topology of the

structural dependency graph built by Suade in order to identify their structural neighbors (e.g.

callers of each method in the triaged elements). A degree of interest and a reuse cost measure

are assigned to the identified neighbors based on their structural relevance (specificity and

reinforcement) and the number of their descendants. The weighted elements are then ranked

before being presented to the user.

3.2 RSSEs supporting developers in API usage

To improve their productivity, developers often tend to reuse existing libraries instead of

writing the code from scratch. However, they may encounter difficulties in instantiating a

particular object or in invoking related API methods which are usually complex to use and

not well documented. In this perspective, RSSEs can be of great help to get familiar with API

methods usage.

Altair (Long et al., 2009) recommends API methods based on structural information. The

developer sends a query that contains an API method signature. The tool analyzes the query

and extracts the data accessed by the given method that will be used to compute pair-wise

overlap with API methods stored in a corpus. An API in the corpus is represented as a

bipartite access graph where there are two types of vertices: functions and data, and edges

represent access relations. Some heuristics are used to extend this graph into an augmented

access graph (Figure 3.2 shows an example of augmented access graph). API methods

identified by the overlap treatment are ranked and only the top ten results are selected. They

are then clustered according to their purpose before being presented to the developer.

30

Figure 3.2 Augmented access graph. e, f, g, g0, h represent
functions, x, y, z, w represent data, and A represents a composite type

Extracted from Long et al.(2009, p.205)

Other RSSEs in this category assist developers in API usage by suggesting code snippets. For

instance, MAPO (Zhong at al., 2009) recommends API usage patterns and their related code

snippets. The developer selects an API method name from the body of the method under

development and sends a request from the contextual menu. Methods and class names are

extracted and sent as a query to a corpus containing API patterns. The corpus is formed of

open source projects invoking API methods. A code analyzer is used to retrieve API method

call sequences that will be clustered into patterns according to similarity of methods and

classes' names computed by Levenshtein distance. The patterns and its associated sequences

are presented to the developer as links which lead, when clicked, to the related code snippets.

Strathcona (Holmes et al., 2006) is another RSSE that recommends relevant API usage

examples of source code according to the context of the task at hand. These examples are

generated from a repository of existing applications that use the API. The developer selects a

code snippet in the file under development and sends a request from the contextual menu.

The tool extracts the structural context from the selected source code snippet. The structural

context is a set of syntactic elements (e.g., the method signatures, the names of the types that

declare those methods, etc.). Strathcona uses a set of heuristics based on structural facts

similarity, e.g. a CALLS heuristic mines the repository to retrieve code snippets that make

the same method calls as the structural context.

31

The repository of source code is indexed by the structural facts which are extracted in the

same manner as the context. The similar code snippets identified are then ranked and only

top ten results are presented to the developer as an example of usage with an illustrative

graphical view and the rationale for selecting each example.

APISynth (Lv et al., 2014) assists developers in correctly instantiating API objects by

providing a set of API Method Invoking Sequences (MISs). The developer sends a query that

contains source and destination types and the tool returns a sequence of code statements that

instantiate a new object of the second type starting from an object of the first type. To

recommend these sequences, a repository of existing projects using the API is presented as a

Direct Acyclic Graph (DAG); called also Weighted API Graph (WAG). DAG is a connected

graph where nodes represent API methods and edges are built if the output type of an API

method matches an input type of another API method (an example is shown in Figure 3.3).

The tool uses the Key-Path based Loose algorithm to identify DAGs appropriate to the given

query. The identified paths are ranked according to some criteria such as the path length, i.e.

the shortest path represents the higher rank.

Figure 3.3 Example
Extracted from Lv et al. (2014, p.596)

32

3.3 RSSEs supporting developers in refactoring tasks

Software refactoring aims to maintain and understand software systems by restructuring the

existing source code. However, selecting the appropriate refactoring operation that could be

relevant to the current project is a challenging task due to the lack of documentation and

large code bases. In this perspective, RSSEs can be helpful by providing relevant refactoring

opportunities.

In (Bavota et al., 2014), the authors proposed an approach that recommends refactoring

opportunities based on team development activity. The basic assumption of this approach is

that code entities (e.g. methods or classes) modified by the same team could be extracted and

grouped together in a separate module (e.g. class or package). A team is defined as a group of

developers who has worked on the same source code entities. A code analyzer is used to

parse the source code of a project and to extract its change history and the associated authors

within a specified time window. The retrieved changes (e.g. methods added, removed or

updated) are tokenized and rendered into a BoW. A clustering technique is used to group

developers working on same code entities into teams. The output of this technique is a tree,

called dendrogram, where the leafs represent developers and the remaining nodes are the

possible clusters (i.e. teams). In order to recommend refactoring opportunities, a detection

algorithm is used, for instance the algorithm detects methods edited by the same team, if the

number of these methods is superior to a threshold then those methods can be extracted to

form a separate class. Thus, the approach recommends code entities to be extracted (e.g.

methods, classes).

Thies and Roth in (Thies and Roth, 2010) proposed another approach to support refactoring

tasks by providing rename refactoring opportunities. Based on variable assignments, the key

idea of this approach is that a variable assigned to another usually points to the same object

and if both variables are declared with the same type, they are likely used for the same

purpose. The recommender analyzes the source code of a project and extracts variable

assignments' statements in order to build an assignment graph.

33

Using this graph, the tool detects the assignment of two variables having the same type but

different names. In order to identify the variable name to recommend, some techniques are

used such as misspelled names, synonyms names, etc.

DCLFix (Terra et al., 2012) is another recommender that assists developers and maintainers

in refactoring tasks by recommending refactoring guidelines. The tool provides

recommendations to remove violations detected by constraints defined using the Dependency

Constraint Language (DCL). These constraints are checked using a companion tool

DCLCheck. The recommendation process is triggered implicitly when an architectural

violation is detected. DCLFix then extracts statements from the source code where the

constraint has been violated. To generate recommendations, some preconditions have to be

validated, for instance, to extract a method that will be moved to another class, the tool

should find an appropriate class for the extracted method. To do so, the tool computes the

similarity between the method and the class using the Jaccard similarity coefficient and

returns the class with the highest value of similarity coefficient.

Other recommenders may help developers in repairing programs affected by evolution and

refactoring modifications such as SemDiff (Dagenais and Robillard, 2008). This tool

captures adaptive changes (e.g. method additions and deletions) and recommends similar

adaptations (e.g. replacement methods). The proposed approach is based on the assumption

that « ... calls to deleted methods will be replaced in the same change set by one or more

calls to methods that provide a similar functionality. » (Dagenais and Robillard, 2008, p.

482). The developer selects a method call that no longer exists in the source code of the

project or the framework and sends a request to a corpus containing changes' sets. The corpus

is formed of log files which are preprocessed using clustering and mining heuristics to

retrieve change sets. These files are clustered according to log entries that occur in the same

given time window and share the same user and log message. To find a replacement for the

method selected by the developer, the tool looks for all the methods where a call to the

selected method was deleted and gathers all the added method calls in these methods.

34

The identified methods (i.e. added methods) are weighted, filtered by removing methods that

have a weight value below a given threshold (set at 0.6) and then ranked before being

presented to the developer as a list of changes (e.g. replacement methods). Clicking on a

recommendation, the tool shows the source file where the recommended change replaced the

old method call.

3.4 RSSEs supporting developers in solving exception failures, bugs, conflicts and
testing tasks

During the software development process, developers often encounter problems in fixing

bugs and solving exception failures that appear in their IDE. They usually look for solutions

in resolved previous bugs or in Question / Answer (QA) web resources. Yet, the exception or

bug context is not considered. In such cases, developers should enter the suitable query to get

useful solutions which often leads to failed searches.

Some recommenders support developers in solving exception failures by providing relevant

information in QA web resources. For instance, SurfClipse (Rahman and Roy, 2014) is a

recommender that assists developers in solving exception failures by providing, in a first

step, search queries, and in a second step, relevant web pages from QA web resources. The

tool provides interactive and proactive working modes. When an exception occurs in the

IDE, the tool analyzes the encountered exception and its context code to recommend a

ranked list of search queries. SurfClipse extracts tokens (e.g. method name, class name) from

the stack trace and builds a token graph. A weight is assigned for each token using the

Degree Of Interest (DOI) and a variation of PageRank algorithm. Only the top scoring five

tokens are selected to formulate a ranked list of search queries by combining each three of

them. When the developer selects a search query from the recommended list, a search

process is launched to collect results from three search engines (Google, Yahoo and Bing)

and the QA website StackOverflow. A dynamic corpus is formed of the collected results

which are analyzed and ranked according to their content relevance (i.e. title and textual

content of each page). Only the top 30 results are presented to the developer as a list of web

pages links. Clicking on a link, the tool shows the content of the web page.

35

Other recommenders assists developers in fixing their bugs, such as AutoFix (Pei et al.,

2015). The recommender, integrated in the EiffelStudio development environment,

automatically finds bugs and suggests source code patches. AutoFix recommends two types

of changes: changes to the implementation and changes to the specification. First, to find

bugs, the developer enters the name of the class to be analyzed in a typing box. Then,

AutoFix calls a companion tool AutoTest to generate unit tests for the given class and to

execute them. The faults identified by the failed executions are displayed to the user. To

generate fixes for these faults, AutoFix identifies locations that are responsible for the bug

using dynamic analysis of the executed tests and builds some fix suggestions that will be

injected into the failing locations. The validation of these snippets is performed using the set

of tests generated by AutoTest and the snippets that pass this validation are presented to the

user.

Some recommenders help developers in bug triage tasks, such as Sibyl (Anvik and Murphy,

2011) which recommends developers to whom assign the report, affected components and

subcomponents, and other project members who may be interested in the report. To do so,

the recommender builds a corpus of bug reports collected from an issue tracking system.

These reports are mined in order to extract the associated features and then clustered

according to features categories. Using the title and the description, each report is tokenized,

with the removal of all stop words, and converted into a weighted vector using TF-IDF

technique. Given a new report (tokenized and weighted in the same manner as the corpus),

the recommender uses a machine learning algorithm (Support Vector Machines) to retrieve

similar reports. The reports are then ranked and the ones with similarity scores higher than a

given threshold are selected to be recommended. The recommendations (i.e. developers,

components and other project members) are then presented to the user as drop-down boxes.

Some approaches assist developers and maintainers in investigating and resolving conflicts

when merging parallel source code versions, such as ScoreRec (Niu et al., 2012) which

recommends a ranked list of conflicting software entities based on cost and benefit

estimations.

36

To quantify the cost estimation of conflict resolution, the recommender uses the existing tool

Semantic Diff which takes as an input two versions of a procedure (i.e. a method) and returns

the semantic differences between them, i.e. dependence pairs where « ... a pair of variables,

(x, y), forms a dependence pair if x's value after execution of the procedure depends on y's

value before the procedure is executed. » (Niu et al., 2012). A procedure presents a conflict if

its parallel versions return different sets of dependence pairs, and the cost estimation of

fixing this conflicting procedure is computed based on the number of the identified

inconsistent dependence pairs. Then, the benefit estimation of a procedure is determined

according to change impacts caused by global variables. Finally, the identified set of

conflicting procedures is ranked according to the benefit/cost ratio before being presented to

the developer. Clicking on a particular procedure, the tool displays a detailed explanation in a

separate window.

Other recommenders, such as Test Tenderer (Janjic and Atkinson, 2013) help developers in

testing tasks by leveraging previously created test cases to proactively provide test case

suggestions. The recommendation process starts when a user developed a class and starts

writing tests, the tool extracts automatically all method invocations in the class under test

(i.e. the developed class) that will be sent to SENTRE, an existing search engine for unit tests

implemented previously by the same authors. The search engine run a query against a corpus

formed of test cases which are analyzed in order to extract the associated interfaces. Based on

the extracted contextual information, the tool search for interfaces semantically similar to the

one under test (i.e. written by the developer) and identifies the associated test cases using the

dependencies stored in the corpus. The tool then executes the developer's test against the

classes under test associated to the test cases identified in the search, and the tests that pass

this step are then ranked before being presented to the developer. The ranking is performed

according to some criteria such as: the interface similarity, the overlap in the statement

execution sequence between the test written by the developer and those returned by the

search, etc.

37

3.5 RSSEs recommending reusable software components and components' design

While most existing RSSEs tend to recommend source code snippets or artifacts during the

code phase, developers may need software components' design or implementation. Various

mining tools and search engines can help them, yet they are context independent which often

lead to an overwhelming quantity of results or no results at all.

In (Ichii et al., 2009), the authors propose an extension to the search engine SPARS-J in

order to help developers in finding a component suitable to their needs, components related

to this component and code examples to reuse these components. The tool extracts implicitly

a developer's browsing history when the developer starts navigating through the results

returned by the search engine SPARS-J. Recommendations to the developer are made using

the collaborative filtering technique, based on the assumption that developers who have

similar browsing histories (or navigation sessions) require similar components. To do so, the

current navigation session is compared to a collection of developers' browsing histories

which are stored as ratings in a corpus, i.e. a component is rated 1 if the developer browsed

the source code of the component. The identified components are then ranked and filtered,

i.e. the components that the developer has already seen are eliminated.

Rascal (McCarey et al., 2005) is another tool that provides reusable software components by

tracking developers usage histories. When the developer edits a source file, the recommender

extracts implicitly the invoked methods in it and forms a vector by counting the number of

times each method has been invoked in the active class. The resultant vector is used as the

relevant context to retrieve similar components from previous projects stored in a corpus

which is continually updated as new classes or projects are developed. Those projects are

processed in the same manner as the context in order to form a matrix (Figure 3.4 shows an

example). Recommendations are made using a collaborative filtering technique based on the

assumption that similar users, i.e. classes, tend to invoke same methods. These

recommendations are then ranked using content-based filtering technique by examining the

order in which each class has invoked the methods to recommend.

38

Figure 3.4 Sample user-item database
Extracted from McCarey et al. (2005, p.264)

A-SCORE (Shimada et al., 2009) is a similar recommender that leverages existing source

code to provide reusable software components. When the developer edits a source code file,

specifically when a comment or a statement delimiter is typed, the tool extracts implicitly a

set of code elements (e.g. comments, field statements, method invocations, etc.). The

extracted elements are tokenized to generate a bag of words, which is converted into a query

and then into a weighted vector with the weight being the code element's distance from the

cursor. The resultant vector is used to query a corpus formed of source code of existing

projects which are parsed in the same manner as the contextual information (i.e. each source

file is tokenized and converted into a weighted vector). A weighted matrix is built using the

extracted code elements, where rows represent code elements (e.g. comments, field

statements, method invocations, etc.) and columns are software components (i.e. classes)

with the weight being the number of occurrences of every code element in a given class. This

matrix is then projected into a semantic space using Latent Semantic Indexing (LSI).

Recommendations are generated by computing cosine similarity of existing components to

the contextual information, and then ranked according to their similarity scores before being

presented to the developer.

Some other recommenders aim to propose components' design such as Code Conjurer

(Hummel et al., 2010) which recommends software components' design by identifying the

intersection of similar artifacts. When the developer edits a file, the tool extracts method

signatures and class names that is sent as a query to the search engine Merobase.

39

In the same manner, Code Conjurer extracts method signatures of the search results and

counts the number of occurrences of each method signature. Only method signatures that

appear more often than a given threshold are selected. An explorer that contains components

(i.e. classes) and its associated method signatures is displayed to the developer.

3.6 RSSEs assisting developers in exploring local codebases and visited source
locations

Browsing web resources, documentations or searching in local codebases is time-consuming

activity in software development. Various retrieval tools and search engines can help

developers in doing so but again, they are context-independent. In this perspective, RSSEs

help developers search efficiently by leveraging data from past and current browsing.

Sando (Ge et al., 2014) helps developers in exploring local codebases to find the relevant

code snippets by recommending search queries. The proposed recommendation technique

relies on the following data source components:

• Local dictionary of the codebase which contains terms that appears at least once in the

codebase;

• Term co-occurrence matrix is formed of the terms collected from the codebase, each

element in the matrix represents the count of two terms that appear in the same entity in

the codebase; and

• Verb-direct-object pairs represent related verbs and objects, e.g. "open file", "create

instance", etc.

The recommender supports pre-search and post-search recommendation modes. In the pre-

search mode, when the developer issues a search query, the recommender retrieves the

software entities whose indexed terms match with the given query and the recommended

queries are listed in a drop-down menu. In the post-search mode, the recommender is

triggered implicitly when the manual query entered by the developer fails.

40

In the same perspective, Refoqus (Haiduc et al., 2013) is a recommender that assists

developers in reformulating queries. For a given query, the tool recommends a reformulation

strategy to improve its performance. These strategies depend on the properties of the query

(e.g. expansion strategy performed when the given query contains a single term). To provide

recommendations, the tool requires a corpus formed of previous queries and their relevant

results. For each query, Refoqus computes its property measures based on different

weighting heuristics (e.g. Average Inverse Document Frequency, etc.), and then applies to

each query four reformulation techniques: three of them support query expansion based on

lexical similarity and weighting, and the last supports query reduction. The obtained results

are compared to identify the best reformulation strategy for each query in the corpus. Hence,

every query is defined by a set of property measures and a reformulation strategy. The

obtained data is presented as a classification tree which is used to provide recommendations.

When a new query is typed by the developer, Refoqus computes the property measures (in

the same manner as the queries in the corpus) and retrieves the reformulation strategy to

apply using the text retrieval engine Lucene.

Reverb (Sawadsky et al., 2013) is a recommender that provides web pages from the

developer's previous browsing history that can be useful to the current development task. The

tool extracts implicitly code elements that have been viewed by the developer and constructs

an AST. Specific code elements are extracted from the AST (e.g., type declarations, method

invocations, etc.) and used to form a query against a corpus that contains indexed web pages

previously browsed by the developer. To generate recommendations, Reverb uses Apache

Lucene similarity scoring that uses vector space model to match the formed query with the

indexed web pages based on content similarity and the frequency and recency of page visits.

The returned pages are ranked according to the visits of the developer (i.e., frequency and

recency). The gathered results are ranked and then a links’ list of the top ten scored web

pages is presented to the developer.

NavClus (Lee et al., 2013) is a graphical code recommender which helps developers find

unexplored source code locations that can be relevant to visit.

41

To do so, the tool considers the last sequence, without loops, of code elements (e.g. classes

and methods) being viewed by the developer and uses it against a corpus of interaction

traces. Those stored sequences are clustered using a k-nearest neighbor clustering algorithm.

To retrieve clusters similar to the given query, the recommender uses a similarity metric

based on TF-IDF. The identified code elements are then presented as a class diagram in a

graphical view, clicking on a code element the tool shows the related source location.

Other recommenders help developers and maintainers in exploring and understanding a

project, such as the recommender proposed in (Sora, 2015) which identifies and suggests the

most important classes in a given project. The tool analyzes the project source code and

represents it as graph where nodes are classes or interfaces and edges are static dependencies

between them. To provide recommendations, the recommender ranks the graph nodes (i.e.

classes) using the PageRank algorithm. The key idea is that a class which is used by many

classes may represent a fundamental data and can be considered as an important class.

Similarly, a class which is using other important classes can be considered as an important

one. Finally, the tool displays only top 20 ranked classes.

3.7 Other RSSEs

3.7.1 RSSE assisting developers in software prototyping activities

Some recommenders aim to assist developers in software prototypes development.

Prototyping activity usually contains two phases:

• identification of a candidate features set to implement a product; and

• implementing a selection of the identified features.

Some tools support developers only in the first phase, while others provide assistance in both

phases, such as the approach proposed in (McMillan et al., 2012) which leverages open-

source repositories to mine feature descriptions and its associated software components.

42

In the first phase, the developer sends a request for recommendations by describing the

features of the new product. The written text is then tokenized, stemmed and rendered into a

BoW that will be used to query a corpus. This corpus is formed of source code and

specification documents retrieved from open-source repositories. Documents are mined in

order to retrieve feature descriptions which are then clustered as many feature descriptions

can represent similar functionality. The retrieved information is presented as a binary matrix

where rows represent products and columns are features. Similarly, the source code is mined

to retrieve modules (i.e. packages) associated to the mined features whose relations are

presented as matrix where rows are modules and columns are features, and also dependencies

between modules which are presented as a direct graph.

Using a cosine similarity, the tool generates a preliminary check list of features and

recommends features with a score higher than a given threshold (fixed 0.6). The developers

select the ones that seem relevant to the new product description. Based on the selected

features, the recommender uses the content based filtering to generate additional

recommendations. All the selected features are then used in the second phase to recommend

the associated modules by requiring the modules/features matrix. To minimize coupling costs

of recommended packages, the tool assigns weights (i.e. coupling cost values) to the vertices

of the dependencies graph (i.e. direct graph) using a variation of the PageRank algorithm.

3.7.2 RSSE assisting developers in tagging software artifacts

In software engineering, tagging has been proven to be a useful mechanism in searching and

classifying software artifacts, since it provides annotations to tag artifacts relevant to a given

software activity. In this perspective, RSSE can be of great help for developers.

For instance, TagRec (Al-Kofahi et al., 2010) recommends tags not only for new work items

but also untagged and tagged existing work items. A work item describes a development

activity and contains a summary, a description of the activity, a tag and relevant software

artifacts related to the given activity.

43

The tool parses every work item, tokenizes and stems its terms with removing grammatical

terms and stop-words. The obtained BoW is used to build a correlation matrix where the

correlation value between two terms is determined based on the number of work items in

which these two terms occur together. To provide recommendations, TagRec uses the fuzzy

set theory where « Each term defines a fuzzy set and each work item has a degree of

membership in this set. The key idea is to associate a membership function for each work

item with respect to a particular term. » (Al-Kofahi et al., 2010). The membership values

range from 0 (i.e. no membership) to 1 (i.e. full membership) and are considered as the

degrees of relevance of terms that are the most suitable to describe a given work item. The

terms that have membership values higher than a chosen threshold are recommended to

developers as tags.

3.7.3 RSSE recommending experts

In distributed software development, finding an expert of a given package or a piece of code

is a challenging task due to the lack of knowledge sharing and synchronous communication

in distributed teams which affect negatively the team's productivity. This problem can be

addressed by RSSEs that identify and recommend people with the right knowledge.

For instance, Conscius (Moraes et al., 2010) helps developers in finding experts when they

need assistance in a programming task by leveraging source code history, the project

documentation and communication histories (mailing lists). To do so, the tool analyzes the

content of the mailing lists and identifies the related source code and documentation

(javadoc) using mining techniques. The obtained dependencies form a corpus that will be

used when a developer writes a message to request recommendations. Conscius analyzes the

typed message, identifies the referenced classes and finds classes and documentations

(javadoc) related to the identified classes using the dependencies stored in the corpus. The

tool then identifies a set of keywords in the javadoc and assigns a weight to each keyword

based on its frequency in the document.

44

The obtained list of keywords is associated to top-level javadoc packages and is compared to

the keywords extracted from the message written by the developer (i.e. context) using fuzzy

similarity technique. The package with the highest similarity score is used to identify

developers who sent emails with the requested knowledge (i.e. the package with the highest

similarity score). Then, the tool assigns to each identified developer two main scores:

• communication score computed according to the number of messages sent by the

developer that contain the identified package; and

• development score which depends on the number of commits on the classes extracted

from the context in the CVS source files.

The tool recommends developers with highest score (sum of the two scores mentioned

above) as experts.

3.8 Conclusion

In this chapter, we presented a sample of the analyzed RSSEs. We classified these RSSEs

according to their goals into seven categories:

• Supporting developers in change tasks;

• Assisting developers in API methods usage;

• Supporting developers and maintainers in refactoring tasks;

• Solving exception failures, bugs and testing tasks;

• Recommending software components and components' design;

• Assisting developers in exploring local codebases and visited source locations; and

• Various goals such as software prototyping activities, tagging software artifacts and

recommending experts.

CHAPTER 4

RESULTS ANALYSIS

This chapter presents various features for each key step in RSSE building. First, we describe

the context extraction process by identifying different efficient ways used to retrieve useful

information and converting it into data. Then, we present the recommendation engine that

takes into account the extracted context to provide recommendations.

4.1 Context Extraction

4.1.1 What is context in RSSE ?

Context is a multifaceted concept which can be specified differently. Bazire and Brézillon in

(Bazire and Brézillon, 2005) tried to understand this concept. However, they noticed that « ...

it is difficult to find a relevant definition satisfying in any discipline. Is context a frame for a

given object? Is it the set of elements that have any influence on the object? Is it possible to

define context a priori or just state the effects a posteriori? Is it something static or dynamic?

» (Bazire and Brézillon, 2005). In a previous work (Dourish, 2004), Dourish proposed some

answers and stated that context concepts could be presented following two main axis:

representational and interactional.

Representational concept describes the features of the environment surrounding a particular

activity but it is separate from the activity itself. It is perceived as a form of information

which can be known and predefined as it does not change significantly over short time period

(e.g. codebases and repositories). Thus, it is considered delineable and stable as it does not

vary from instance to instance of an activity or an event.

Interactional concept, unlike representational concept, is derived from the activity as it is

actively produced and maintained through the task at hand.

46

Thus, it is perceived as a relational property linking objects or activities. It is defined

dynamically and it is specific to each activity or action.

As we consider context extraction as the retrieval process of information relevant to a given

programming activity, we consider the interactional axis as the most appropriate. We

consider context the volatile data being edited (or even browsed) as it is more susceptible to

convey useful information about the programming task at hand. In the following section, we

propose and present some key components to define context extraction.

4.1.2 Context Extraction: An overview

In this section, we represent the identified techniques and concepts using feature modeling

formalisms which are proposed in (Czarnecki et al., 2006). Feature modeling is an approach

for describing and modeling requirements of products especially in software product lines

development. A feature model is presented as a tree called feature diagram. Figure 4.1 shows

the top-level feature diagram which presents an overview of different key components

characterizing the context extraction process. The legend presented under the figure explains

the notation. We consider that the context extraction process is triggered by an event that will

initiate the collection of an input which can be treated to produce an output. The input has a

scope which represents the highest level of hierarchy to reach in order to retrieve the relevant

information (e.g. file, package, project), and may require the extraction of specific elements

within the scope (e.g., method invocations within the file).

4.1.3 Trigger

The context extraction process can be triggered explicitly or implicitly by an event. The

explicit, i.e. reactive mode is usually prompted by an action that calls for recommendations,

e.g. clicking on a button "Query for Recommendations" from a contextual menu (e.g. Hipikat

(Cubranic et al., 2005)). However, the implicit, i.e. proactive mode is activated by an event

which is monitored by the RSSE and considered as an implicit call for recommendations,

e.g., browsing a code element in Mendel (Lozano et al., 2011).

47

Figure 4.1 A Feature Model for context extraction in RSSEs
Extracted from Maki et al. (2015, p.154)

Figure 4.2 shows the trigger's feature diagram. In the reactive mode, the context extraction is

triggered by an explicit command which is usually clicking on a button that can be in a

contextual menu (e.g. Hipikat (Cubranic et al., 2005) and MAPO (Zhong at al., 2009)), a

search box, i.e. sending a query (e.g. APISynth (Lv et al., 2014) and DebugAdvisor (Ashok

et al., 2009)), or a custom view of the workspace (e.g. Mentor (Malheiros et al., 2012)).

In the proactive mode, a variety of triggering events has been noticed, it ranges from:

• browsing a web page or a code element (e.g. class or method) such as MI (Lee and Kim,

2015); to

• editing source code (e.g. Test Tenderer (Janjic and Atkinson, 2013)); to

• scrolling with a mouse (e.g. NavClus (Lee et al., 2013)); to

• typing a query in a search box (e.g. Sando (Ge et al., 2014)) or getting no results from a

search; to

• run-time events (e.g. thrown exception in ExceptionTracer (Amintabar et al., 2015)).

Some RSSEs provide both modes, such as SurfClipse (Rahman and Roy, 2014) which is an

Eclipse plugin with a default pro-active mode that is triggered when an exception is thrown.

48

This mode can be deactivated by the developer. It is then replaced with a reactive mode,

which requires the selection of an exception from the console view.

Figure 4.2 Features of the trigger
Extracted from Maki et al. (2015, p.156)

4.1.4 Context input

As we previously mentioned, a context input is retrieved within a given scope and possibly

involves the extraction of some specific elements.

4.1.4.1 Input Scope

The scope represents the highest level that has to be considered in the context input to get

relevant information. Figure 4.3 shows the main features of the scope which are related to

space and time aspects. Space aspect can be:

• a code snippet (e.g. Strathcona (Holmes et al., 2006));

• code hierarchy that ranges from a line of code to the whole project (e.g. Suade (Holmes et

al., 2009));

• project artifacts such as logs, bug reports (e.g. Hipikat (Cubranic et al., 2005)), change

requests (e.g. Mentor (Malheiros et al., 2012)), etc.;

49

• elements in the workspace such as the stack trace (e.g. ExceptionTracer (Amintabar et al.,

2015)) or a search box (e.g. Altair (Long et al., 2009)).

Regarding time aspect, the scope can be limited to a session (e.g. from the launch of the IDE

in Reverb (Sawadsky et al., 2013)) or to a time interval (e.g. month, year, etc. (Bavota et al.,

2014)).

Figure 4.3 Features of the input scope
Extracted from Maki et al. (2015, p.156)

4.1.4.2 Specific Elements to extract

Sometimes, only a portion of the scope is considered relevant for extracting the context.

Figure 4.4 shows the features of the specific element to extract. This element can be:

• a code element that ranges from identifiers (e.g. Concern-Detector (Robillard and

Manggala, 2008)), to statements (e.g. DCLFix (Terra et al., 2012)), to methods signatures

(e.g. SemDiff (Dagenais and Robillard, 2008)) to exceptions (e.g. (Cordeiro et al.,

2012));

• a query that could be written in natural language text (e.g. Conscius (Moraes et al.,

2010)) or in customized structure such as debugger output (e.g. DebugAdvisor (Ashok et

al., 2009));

• a sequence of browsed elements (e.g. Reverb (Sawadsky et al., 2013)).

50

However, some RSSEs may extract a combination of various elements (e.g. Mendel (Lozano

et al., 2011)).

Figure 4.4 Features of the specific element to extract
Extracted from Maki et al. (2015, p.156)

4.1.5 Treatment

The treatment of the context input mainly involves parsing, weighting and filtering

techniques as presented in figure 4.5.

Parsing is generally the first step which usually involves tokenization techniques.

Tokenization can be performed on text such as project artifacts (e.g. (Denninger, 2012)) or

source code elements such as identifiers (e.g. (Heinemann and Hummel, 2011)). For

instance, the CamelCase convention is frequently used to split identifiers formed of several

words into distinct words, i.e. an identifier getMessage may be tokenized into get and

message.

51

More complex parsing techniques can be used to further extract specific code elements, to

retrieve project data (e.g. change history of a project in a specific time window and the

associated authors in (Bavota et al., 2014)) or custom features (e.g. DebugAdvisor (Ashok et

al., 2009).

Weighting can be a second step that follows parsing. Weighting techniques include simple

counts of code elements, e.g. number of times a method has been invoked in a given class

(e.g. Rascal (McCarey et al., 2005)), or more complex techniques, e.g. probabilities

assignment to terms in a set of documents using TF-IDF (Thompson and Murphy, 2014).

Filtering is usually used to remove or classify data. It may include a stemming technique

which replaces related terms with a unique representative (e.g. values and valued can be

presented as value) (De Souza et al., 2014), or clustering techniques (Bavota et al., 2014).

To those main techniques, we can add other techniques such as binary tagging which

indicates the presence of an element (e.g. SPARS-J (Ichii et al., 2009)), or advanced NLP

techniques such as LSI (e.g. SurfClipse (Rahman and Roy, 2014)).

Figure 4.5 Features of the input treatment
Extracted from Maki et al. (2015, p.157)

52

4.1.6 Output

Figure 4.6 shows the different categories of data structures used as an output of the context

extraction process (i.e. structures to which the context input is transformed). The main

categories are sets, weighted vectors, sequences, queries, trees and graphs.

Sets reveal minimal treatments performed and usually are the collection of initial elements

retrieved from the input scope (e.g. Mendel (Lozano et al., 2011), Suade (Holmes et al.,

2009), Altair (Long et al., 2009), etc.). Binary vectors can be viewed as another type of sets,

yet in such case, the complete alphabet is known and then 1 indicates the presence of an

element (e.g. (Heinemann and Hummel, 2011)). Bag of words are usually the output of

tokenization treatment where the input is split into a set of terms. They are usually used with

simple input such as queries including natural language text (e.g. Conscius (Moraes et al.,

2010)) or method names (e.g. MAPO (Zhong at al., 2009)), or selected code snippets.

Weighted vectors can be viewed as hash tables with keys being terms, code elements (e.g.

method invocations) or other data and values being simple counts such as the number of

times a method has been invoked in a class (e.g. Rascal (McCarey et al., 2005)) or the result

of more complex operations (e.g. ImpRec (Borg, 2014)).

The structure of retrieved data can be more complex such as trees and graphs, for instance:

• an abstract syntactic tree (AST) (e.g. Reverb (Sawadsky et al., 2013));

• a dendrogram (Bavota et al., 2014) which is a tree where the leafs are specific elements

(e.g. methods, developers, etc.) and the remaining nodes are possible clusters of those

elements;

• an assignment graph where the nodes represent variables and the directed edges represent

references (e.g. (Thies and Roth, 2010)); and

• a graph of tokens which represents a set of entities or terms and their relationships (e.g.

SurfClipse (Rahman and Roy, 2014)).

53

Figure 4.6 Features of the output
Extracted from Maki et al. (2015, p.156)

Based on the classification we proposed in this section, we built the table presented in

ANNEX II, which summarizes the context extraction process in the tools we studied.

4.2 Recommendation Engine

4.2.1 Recommendation Engine: An overview

We consider that the recommendation engine contains a recommendation component that

performs a treatment in order to generate recommendations which can be filtered or ranked

before being presented to the developer. The recommendation engine possibly involves a

corpus which is a set of raw data that can be treated in order to generate an output (processed

data) used to recommend items. Figure 4.7 shows the top-level feature diagram which

presents an overview of features characterizing the recommendation engine component.

54

Figure 4.7 A Feature Model for the recommendation engine in RSSEs

4.2.2 Corpus

In (Mens and Lozano, 2014), the authors stated that the corpus of Source Code-based

Recommendation System (SCoReS) « ... is program code, yet it is sometimes complemented

with additional sources of information such as change management or defect tracking

repositories, informal communications, local history, etc. » (Mens and Lozano, 2014). We

consider a corpus every data source used to provide recommendations that may include

project artifacts, external libraries, QA websites, etc. A corpus can be generated and updated

automatically by leveraging project artifacts related to a given project such as Hipikat

(Cubranic et al., 2005), or created manually by the developer, for instance, Concern-Detector

(Robillard and Manggala, 2008) allows the developer to add code elements in a view related

to a concern that is used later to generate recommendations. In other cases, a corpus can be

dynamic when it consists of search results collected from a search engine, as those results

depend on the given query.

As we previously mentioned, a corpus is a set of raw data that can be possibly treated and

rendered as a processed data which will be used to generate recommendations. In the

following subsections, we detail the corpus features.

55

4.2.2.1 Raw Data

Raw data is a set of primary information that will be used to provide recommendations. As

shown by Figure 4.8, raw data may range from (1) source code of existing projects or

external libraries (e.g. source code of an API in Altair (Long et al., 2009)), to (2) project

artifacts that can be solved change requests (e.g. Mentor (Malheiros et al., 2012)), source file

versions stored in CVS, bug reports (e.g. Hipikat (Cubranic et al., 2005)), concerns (e.g.

Concern-Detector (Robillard and Manggala, 2008)), logs of debugger sessions, developers'

messages (e.g. emails and forums) or other documents (e.g. design documents), to (3)

developer interaction histories such as viewed or edited code elements (e.g. MI (Lee and

Kim, 2015), NavClus (Lee et al., 2013)), to (4) unit test cases related to existing projects (e.g.

Test Tenderer (Janjic and Atkinson, 2013)).

Some RSSEs tend to leverage information in web resources such as QA web sites (e.g. Stack

Overflow). In such cases, raw data can be:

• questions and answers of a QA web site (e.g. ExceptionTracer (Amintabar et al., 2015));

• a set of collected results related to a search query (e.g. SurfClipse (Rahman and Roy,

2014), Code Conjurer (Hummel et al., 2010)); or

• browsing histories of visited web pages (e.g. Reverb (Sawadsky et al., 2013)).

Figure 4.8 Features of the raw data

56

4.2.2.2 Treatment

The raw data can be processed using different techniques as presented in Figure 4.9. This

treatment mainly involves the usage of some heuristics such as:

• mining of relevant information that will be compared to the context of the current

development task, for instance mining API method invocations sequences (e.g. MAPO

(Zhong at al., 2009)), mining questions and its related answers from QA web sites (e.g.

(Cordeiro et al., 2012)), etc.;

• clustering such as clustering bugs fixed within the same time window (e.g. bugs fixed

within the last six hours) or clustering similar artifacts based on structural similarity (e.g.

Hipikat (Cubranic et al., 2005)); and

• regular expressions that can be used to identify links between change requests and the

associated version control files (e.g. Mentor (Malheiros et al., 2012)).

Sometimes, the raw data is processed in the same manner as the context using the same

techniques, such as:

• parsing which mainly involves tokenization of code elements such as identifiers (e.g.

(Heinemann and Hummel, 2011)) or more complex parsers (e.g. DebugAdvisor (Ashok

et al., 2009));

• stemming (e.g. (Denninger, 2012), (De Souza et al., 2014));

• weighting that may include simple counts of code elements such as number of times a

method has been invoked in a given class (e.g. Rascal (McCarey et al., 2005)), or more

complex weighting operations such as probabilities assignment to terms in a set of

documents (e.g. Mentor (Malheiros et al., 2012)); and

• binary tagging which indicates the presence of an element (e.g. SPARS-J (Ichii et al.,

2009), Javawock (Tsunoda et al., 2005)).

57

Figure 4.9 Features of the raw data treatment

4.2.2.3 Processed Data

Figure 4.10 shows the different categories of the processed data, i.e., data produced by the

treatment of the raw data in the corpus. The main features identified are weighted vectors and

matrices, patterns (or clusters), trees and graphs.

Weighted vectors usually present document artifacts by assigning weights to terms (or

symbols) in each document in order to indicate its importance in the document and possibly

in the entire collection of documents (e.g. Hipikat (Cubranic et al., 2005), Sibyl (Anvik and

Murphy, 2011), etc.).

Matrices can be viewed as hash tables relating two different types of keys that can be code

elements (e.g. row being class names and columns being method invocations) or other data.

A matrix can be: (1) binary where each row consists of a binary vector, for instance "1"

indicates that the method has been invoked in the class of a given row (e.g. Javawock

(Tsunoda et al., 2005)), or (2) weighted where values can be simple counts, for instance the

number of times a method has been invoked in the class of a given row (e.g. Rascal

(McCarey et al., 2005)).

58

Patterns are usually the output of clustering treatment, for instance clustering method calls

sequences (e.g. MAPO (Zhong at al., 2009)) or similar browsing histories (e.g. NavClus (Lee

et al., 2013)).

The data stored in the corpus can be presented as graphs or trees, for instance:

• an augmented access graph where vertices are functions and data and edges represent

access relations (e.g. Altair (Long et al., 2009));

• a Direct Acyclic Graph (DAG) which is a connected graph where nodes represent API

methods and edges are built if the output type of an API method matches an input type of

another API method (e.g. APISynth (Lv et al., 2014));

• a relationship graph which links description bugs with the associated source files,

functions and authors (e.g. DebugAdvisor (Ashok et al., 2009)); or

• a binary search tree relating terms extracted from a codebase (e.g. Sando (Ge et al.,

2014)).

Figure 4.10 Features of the processed data

4.2.3 Recommendation

As we previously mentioned, the recommendation engine includes a recommendation

component that performs a treatment in order to generate recommendations which can be

filtered or ranked before being presented to the developer.

59

4.2.3.1 Treatment

In order to generate recommendations, we distinguish two types of treatments: (1) treatments

based on inference, and (2) no-inference based techniques. Figure 4.11 shows the different

features of recommendation treatment.

Inference-based techniques are usually based on the comparison of the extracted context of

the current development task with the process data stored in the corpus. These techniques

mainly involve:

• lexical similarity which computes the distance between two terms using simple scoring

functions such as Levenshtein distance (e.g. MAPO (Zhong at al., 2009)), or more

advanced measures such as entropy measure (e.g. Mentor (Malheiros et al., 2012));

• structural similarity which usually represents the textual similarity between two vectors

and can be computed by simple measures such as the Hamming distance (e.g.

(Heinemann and Hummel, 2011)), or more advanced measures such as the scoring

function of Apache Lucene (e.g. Refoqus (Haiduc et al., 2013)); and

• weighting techniques which are often used to indicate importance of entities (or tokens)

in a graph or results returned by a search engine, for instance TF-IDF (e.g. NavClus (Lee

et al., 2013)), PageRank algorithm (e.g. SurfClipse (Rahman and Roy, 2014)), etc.

To these techniques, we can add traditional techniques like collaborative filtering (e.g.

Javawock (Tsunoda et al., 2005)), content-based filtering (e.g. (McMillan et al., 2012)) and

search algorithms such as Key-Path based Loose algorithm (e.g. APISynth (Lv et al., 2014)),

or advanced overlap ranking techniques (e.g. Altair (Long et al., 2009)).

No inference-based techniques mainly involve simple operations to generate

recommendations such as: (1) association rules technique (e.g. MI (Lee and Kim, 2015)), (2)

binary tagging (e.g. AutoFix (Pei et al., 2015)), (3) defining a threshold (e.g. Mendel (Lozano

et al., 2011)), or (4) performing a simple count (number of occurrences) to select relevant

information that will be recommended (e.g. Code Conjurer (Hummel et al., 2010)).

60

Figure 4.11 Features of the recommendation treatment

4.2.3.2 Filtering / Ranking

The set of relevant information selected by the recommendation treatment can be ranked and

/ or filtered before being presented to the user. Figure 4.12 shows the different features of the

ranking and filtering processes.

Ranking usually reveals the classification of the data returned by the recommendation

treatment component. This classification can be performed according to:

• the score computed in the treatment phase (e.g. A-SCORE (Shimada et al., 2009), Sibyl

(Anvik and Murphy, 2011), Selene (Murakami et al., 2014), etc.);

• number of occurrences (e.g. (Heinemann and Hummel, 2011));

• path length for instance the shortest path in a given graph represents the higher rank (e.g.

APISynth (Lv et al., 2014));

• custom criteria such as coverage criteria in testing tasks (e.g. Test Tenderer (Janjic and

Atkinson, 2013)); or

• a traditional recommendation technique like content-based filtering (e.g. Rascal

(McCarey et al., 2005)).

Filtering involves the removal of some data returned by the recommendation treatment

component.

61

It may be performed by defining a threshold such as selecting the top ten results (e.g. Hipikat

(Cubranic et al., 2005)) or by eliminating components or results that have been already

viewed or browsed by the developer (e.g. SPARS-J (Ichii et al., 2009)).

Figure 4.12 Features of the filtering and ranking

4.2.3.3 Recommendations Nature

Recommendations can be presented to the developer in various manners. Figure 4.13 shows

the main features of recommendations nature that we have identified. Basically

recommendations are presented as:

• a list of links that range from API methods (e.g. APISynth (Lv et al., 2014)), to code

snippets (e.g. Strathcona (Holmes et al., 2006)), to project artifacts such as change

requests (e.g. Mentor (Malheiros et al., 2012)), bug reports (e.g. DebugAdvisor (Ashok et

al., 2009)), CVS files, and web pages that could be relevant to visit (e.g. (Cordeiro et al.,

2012));

• clusters of API methods invoking sequences (e.g. Altair (Long et al., 2009)) or of project

artifacts (e.g. Hipikat (Cubranic et al., 2005));

• an explorer including API patterns and its associated method invocation sequences (e.g.

MAPO (Zhong at al., 2009)), software components and their associated method

signatures (e.g. Code Conjurer (Hummel et al., 2010)), or concerns that could be relevant

to the current development task (e.g. Concern-Detector (Robillard and Manggala, 2008));

or

62

• drop-down menus that contain a set of recommended search queries (e.g. Sando (Ge et

al., 2014)).

Recommendations may be accompanied with additional information that can help the

developer to examine whether a recommendation is relevant to the current task, such as:

• the rationale which usually explains the reason behind recommending a given item such

as check-in close to a bug resolution (e.g. Hipikat (Cubranic et al., 2005)); and

• graphical views often presented as class diagram (e.g. Strathcona (Holmes et al., 2006),

Navclus (Lee et al., 2013)).

We perceived that recommendations’ presentation can be hierarchical, for instance

recommendations presented as a list of change requests, when the developer clicks on a link

of the list, the tool shows the CVS files related to the selected change request (e.g. Mentor

(Malheiros et al., 2012)).

Based on the classification we proposed in this section, we built the table presented in

ANNEX III, which summarizes the results of our analysis of the studied RSSEs according to

our recommendation engine feature models.

Figure 4.13 Features of the recommendations nature

CHAPTER 5

DISCUSSION

In this chapter, we discuss the results presented in the last chapter according to our research

questions and we conclude with validity threats.

5.1 Results Synthesis

As we previously mentioned, the main goal of this study is to answer the following research

questions:

• (Q1) : Which features characterize the context extraction process adopted by RSSEs?

• (Q2) : Which features characterize the recommendation engine used by RSSEs to provide

recommendations?

We answer these questions in the following subsections.

5.1.1 Context extraction process

To answer the question (Q1), the different features, characterizing the context extraction

process, and collected from our analysis of RSSEs sample are summarized in ANNEX II. We

discuss below these results according to the high-level features of the context extraction

process and the goal categories of the studied RSSEs.

Regarding the trigger which is the first feature characterizing context extraction process, the

first observation is that it was difficult to recognize what it was for many tools like

(Heinemann and Hummel, 2011) and (Thies and Roth, 2010). This aspect usually denotes

that these tools are still in the proof-of-concept phase or they do not really capture a specific

context but gather information at a project level in order to infer some generic

recommendations.

64

Considering the sample of tools we analyzed, we noticed that slightly more tools are reactive

in their support to developers. When we do see goal categories of RSSEs, most API usage

tools work on a reactive mode except the work in (Heinemann and Hummel, 2011) which is

unclear on its trigger. However, code exploration and software component recommendation

tools all work on a proactive mode.

Regarding the scope, more than half of the tools use some levels of code hierarchy or code

snippet as their scope, with file and project levels being the most commonly used (e.g. Code

Conjurer (Hummel et al., 2010), Mendel (Lozano et al., 2011)). Search-related views and

various project artifacts make for most of the rest of the tools. However, we noticed that only

one tool restricts itself to a package to extract the relevant information. These findings reveal

that the considered contextual information have evolved a bit since the review of (Happel and

Maalej, 2008) and that many tools do now go beyond the file level. When we consider our

goal categories, we perceive that change tasks tools tend to use larger scopes such as project-

level artifacts or code hierarchy (e.g. Hipikat (Cubranic et al., 2005), Mendel (Lozano et al.,

2011)), as they may need to make sure that the considered changes comply with unwritten

rules within the project. Most of the tools recommending software components tend to

consider the class under development as a scope as it may be easier in identifying similar

classes. However, we noticed that the temporal dimension seems relevant in only three cases,

two of which are related to refactoring ((Bavota et al., 2014), (Thies and Roth, 2010)).

Elements to be extracted are closely related to the scope but there are still some relevant

differences. For instance, the number of tools that extract code source elements is far higher

than the number of those that use source code to define their scope. All the analyzed tools

extract specific code elements, with methods signatures (e.g. Altair (Long et al., 2009),

Mendel (Lozano et al., 2011)), type information (e.g. APISynth (Lv et al., 2014), MAPO

(Zhong at al., 2009)) and specific statements (e.g. SurfClipse (Rahman and Roy, 2014),

Reverb (Sawadsky et al., 2013), etc.) being the most required elements. In many cases, these

source code elements are extracted from queries, artifacts, etc.

65

As for the treatment used to process the extracted information, we noticed that it is very

diverse ranging from common techniques like tokenization (e.g. Hipikat (Cubranic et al.,

2005), MAPO (Zhong at al., 2009), etc.) to indexing and retrieval operations like LSI (e.g.

SurfClipse (Rahman and Roy, 2014)). However, some relatively simple techniques, such as

stemming, rarely appear. There was no clear observation related to the goal categories.

Regarding the output, sets, in particular bags of words, are the most dominant output.

Weighted vectors usually go with some complex model (e.g. Hipikat (Cubranic et al., 2005))

and complex structures such as trees like (Heinemann and Hummel, 2011) and (Thies and

Roth, 2010), and graphs (e.g. SurfClipse (Rahman and Roy, 2014)) are not as rare as could

be thought. When we consider our goal categories, we perceive that API usage tools tend to

use simple structures like sets and bags of words (e.g. Altair (Long et al., 2009), Strathcona

(Holmes et al., 2006)) as it may be an easier way to match context terms with API terms. The

same observation holds for tools recommending software components, which is expected

given the similarity of purposes between these two categories. In contrast, RSSEs assisting

developers in refactoring tasks tend to use trees and graphs, which is unsurprising as the

refactoring operations to be recommended should be compliant with the complex structure of

the code. On the other end of the spectrum, order and hierarchy seem to be relevant for tools

assisting code exploration (e.g. Reverb (Sawadsky et al., 2013), NavClus (Lee et al., 2013)),

as they tend to go for graphs, trees or sequences.

5.1.2 Recommendation engine

To answer the question (Q2), the different features, characterizing the recommendation

engine component, and collected from our analysis of RSSEs sample are summarized in

ANNEX III. We discuss below these results according to high-level features of the

recommendation engine component and the goal categories of the analyzed RSSEs.

The first observation is that ten tools (21%) don't have a corpus (six of them are refactoring

and debugging tools) to generate their recommendations.

66

In this case, corpus is blended with the context scope, as refactoring and debugging tools try

to infer some generic recommendation based on the contextual information collected at a

project level.

When we look at the raw data used to provide recommendations, we notice that more than

half of the tools use source code or project artifacts (e.g. Hipikat (Cubranic et al., 2005),

Altair (Long et al., 2009), MAPO (Zhong at al., 2009), etc.). Interaction histories, results

returned by a search engine and QA web sites make for most of the rest of the tools.

Regarding our goal categories, we perceived that change tasks tools tend to leverage project

artifacts (e.g. Hipikat (Cubranic et al., 2005)); instead API usage tools use source code of the

API or projects using a given API in order to provide recommendations.

In many cases, this raw data is processed in a high number of tools with source code and

project artifacts being the most commonly treated (e.g. MAPO (Zhong at al., 2009), Rascal

(McCarey et al., 2005)). In contrast, a dynamic corpus formed by results returned by a search

engine is not processed.

As for the raw data treatment, we noticed that the most common techniques used are

weighting (e.g. APISynth (Lv et al., 2014), Mentor (Malheiros et al., 2012)) and heuristics

including mining, clustering and regular expressions-based (e.g. MAPO (Zhong at al., 2009),

NavClus (Lee et al., 2013)). In some cases, RSSEs may use several techniques according to

the type of the raw data (e.g. Hipikat (Cubranic et al., 2005)), and sometimes the same

techniques used to treat the context (e.g. DebugAdvisor (Ashok et al., 2009)). There was no

clear observation related to the goal categories.

Regarding the processed data, matrices, vectors, graphs and trees are the most dominant

output of raw data treatment. As for our goal categories, we perceived that change tasks tools

tend to use vectors (e.g. Mentor (Malheiros et al., 2012), Hipikat (Cubranic et al., 2005)) as it

may be easier for matching contextual information with project artifacts.

67

Most of the tools recommending software components represent their processed data as a

matrix (e.g. Rascal (McCarey et al., 2005), Javawock (Tsunoda et al., 2005), A-SCORE

(Shimada et al., 2009)).

When we consider the recommendation treatment, the first observation is that the number

of tools using inference-based techniques is far higher than the number using no inference

techniques. Regarding the inference-based techniques, more than half of the tools use lexical

or structural similarities to match contextual information with the process data stored in the

corpus. Overlap (e.g. Concern-Detector (Robillard and Manggala, 2008), Altair (Long et al.,

2009)), weighting (e.g. SurfClipse (Rahman and Roy, 2014), NavClus (Lee et al., 2013)) and

traditional techniques like collaborative filtering (e.g. SPARS-J (Ichii et al., 2009), Rascal

(McCarey et al., 2005)) and content-based filtering techniques (McMillan et al., 2012) make

for most of the rest of the tools. Regarding our goal categories, we noticed that tools

recommending software components tend to use collaborative filtering technique based on

the assumption that developers who have similar usage or browsing histories require similar

components (e.g. SPARS-J (Ichii et al., 2009), Rascal (McCarey et al., 2005)). Finally,

RSSEs supporting change tasks and API usage tend to go with lexical and structural

similarity techniques to provide recommendations.

Regarding the ranking and filtering of recommendations, the first observation is that the

number of tools that rank and / or filter their recommendations before being presented to the

developer is far higher than the number of those that do not. Also we noticed that most tools

either rank (e.g. APISynth (Lv et al., 2014), DebugAdvisor (Ashok et al., 2009)) or rank and

filter (e.g. Strathcona (Holmes et al., 2006), SurfClipse (Rahman and Roy, 2014), Rascal

(McCarey et al., 2005), etc.) the recommendations set. As for the ranking, more than half of

the tools rank their recommendations according to the similarity score computed by the

recommendation technique. On the other end of the spectrum, threshold filtering is the most

technique used as it may be easier to select, for instance, the top ten scored results. As for our

goal categories, we noticed that most of the refactoring tools do not rank neither filter their

recommendations as they may try to infer some generic recommendations.

68

Finally, when we consider recommendations presented to the developer, we notice that

most tools present their recommendations in a hierarchical manner with lists of links and

explorers being the most commonly used (e.g. Mentor (Malheiros et al., 2012), Hipikat

(Cubranic et al., 2005), Concern-Detector (Robillard and Manggala, 2008), etc.), as it may be

easier for the developer to quickly check the returned results and the related files by clicking

on links. However, the rationale (e.g. Hipikat (Cubranic et al., 2005), Strathcona (Holmes et

al., 2006)) and graphical views (e.g. Strathcona (Holmes et al., 2006), NavClus (Lee et al.,

2013)) are rarely displayed. In some cases, tools are unclear on the presentation of the

recommended results, and this again indicates that these tools are still in the proof-of-concept

phase. Regarding our goal categories, tools supporting change tasks, API usage, debugging

tasks and recommending software components tend to present their recommendations as lists

of links or explorers so the developer can check the associated project artifacts (e.g. Hipikat

(Cubranic et al., 2005)), or the related web page (e.g. SurfClipse (Rahman and Roy, 2014)),

etc.

When we consider all characteristics, we notice the degree of variability ranging from the

trigger to recommendations. There are no two tools that share significant similarities along

that path, which means that (i) the analyzed RSSEs has succeeded in gathering a diverse set

of recommenders or that (ii) RSSE researchers have not converged to some best practices in

building RSSEs.

5.2 Validity threats

In this section, we discuss the factors having an impact on the validity of this study. We

highlight some points that we consider as threats.

5.2.1 External validity

External validity threats are related to the possibility of generalizing the results of the

experiment regardless of the study conditions.

69

In the case of systematic literature reviews, the external validity depends on the selected set

of papers. By the choice of our exclusion criteria, we excluded papers that did not

demonstrate a recommendation approach / tool. This tactic mitigate the external validity.

5.2.2 Internal validity

Internal validity threats are related to how well a study or an experiment is done. In the case

of systematic literature reviews, internal validity refers to how well the results represent the

true opinion expressed in literature. In this systematic review, it was not always easy to get

the needed information from the published papers. As shown in tables summarizing the

results (ANNEX II, ANNEX III), many papers are unclear about some important aspects and

in some cases, there is no clear distinctions between the context and the corpus used to

provide recommendations. Sometimes, there are no real context as researchers simply try to

leverage information at a project level.

CONCLUSION

In this thesis, we conducted a systematic literature review to identify features characterizing

each component we need to build an RSSE. To do so, we adopted the approach proposed in

(Kitchenham, 2004) for conducting software engineering systematic literature reviews. Then,

we classified the identified publications into seven categories according to the development

task they support. We deeply analyzed each component starting from the data considered as

the context to how it can be possibly treated and rendered as an output for the

recommendation engine component. The latter is composed of three subcomponents: corpus

which contains data used to get recommendations that possibly can be treated,

recommendation technique which matches context with the data stored in the corpus, and

possibly a filtering subcomponent that ranks and filters recommendations before being

presented to the developer. This analysis led us to propose feature models that identify

various design and implementation choices for each component.

To the best of our knowledge, it is to date the largest study on this topic. This work can be

extended by including other important categories of recommendation tools such as code

completion tools and by analyzing the evaluation techniques used to assess the

recommender's quality.

In the mid-term, we plan to evaluate the different choices identified through experiments

with the studied RSSEs. This study can be interesting to outline the best practices to design

and implement an RSSE.

In the long-term, we can use the identified features to design and implement an RSSE

framework which is a toolbox of reusable components for building RSSEs.

ANNEX I

RSSE DESCRIPTION

RSSE Category Description
(Yamada
and
Hazeyama,
2013)

Change
Task

The tool supports developers and maintainers in understanding a
software project by using the program package name (i.e. java
package) to recommend relevant software artifacts such as
exchanged messages and design documents. The developer
selects a program package that s/he wants to understand and
then selects a mode. The tool provides two modes:
• a mode that retrieves documents and messages from source

code (program package name): the recommender extracts
candidate method signatures that are similar to the package
name from CVS source code;

• a mode that retrieves messages from documents: the tool
extracts “artifact words” which are words that compose a
communication message or a document, that are similar to
the package name (in the same manner as the first mode).

Then, the recommender retrieves the artifacts related to the
extracted information using cosine similarity between vector
space models of artifacts and the retrieved information. The
recommendations are presented as a list of artifacts. Clicking on
an artifact, the tool shows the content of the associated
document or communication message.

(Thompson
and
Murphy,
2014)

Change
Task

This approach helps developers when they start a new task by
recommending one resource as the initial starting point (e.g.
source file). This approach is based on the assumption that
similar tasks, i.e. similar task descriptions, consider and change
similar resources. To provide recommendations, a corpus is
formed using previous tasks descriptions composed of different
fields (title, description and developers’ comments) written in a
natural language text. These tasks are weighted using TF-IDF
and rendered into weighted vectors. The tool mines the context
associated to each task (in the previous tasks). A task context is
defined as the set of resources selected or edited during the work
on the given task. To generate recommendation, the
recommender computes the similarity between a new task,
processed in the same manner and rendered into a weighted
vector, with previous tasks and ranks the results. Considering
the top two ranked results, the tool computes the overlap of all
their resources and returns one random resource.

74

RSSE Category Description
SDiC
(Antunes et
al., 2012)

Change
Task

This RSSE recommends source code artifacts relevant to the
task at hand by retrieving a context model presenting structural
(artifact) and lexical (artifact terms) ontology of a selected
artifact in the workspace. The relevance to the current task is
captured through the analysis of the developer interactions with
the artifacts in the workspace (e.g., opening or closing a file).
Artifacts’ similarity to the current context model is inferred from
the structural similarity (distance between artifacts) and the
lexical similarity (distance between terms). The identified
similar artifacts are ranked according to a weighted sum of the
similarity scores.

(Denninger,
2012)

Change
Task

The proposed approach helps developers in finding code
elements (methods and classes) relevant for a given change
request (CR) using a combination of multiple predictors with
machine learning. The recommender leverages information
stored in issue tracking and version control systems. A corpus is
formed of source code which is parsed in order to extract
identifiers and comments (using CamelCase convention and
stemming), CRs, source file revisions and links between them
which are retrieved using mining algorithms. The proposed
recommendation approach is based on the following three
prediction approaches:
• similarity of a given CR to former revisions based on textual

similarity between the fields of CRs (title and description)
and commit messages;

• textual similarity of the given CR to former CRs;
• textual similarity between the CR and both identifiers and

comments extracted from source code.

The scored code artifacts identified by each approach are then
weighted to make them comparable using machine learning, and
then only top scored n code artifacts are presented to the
developer.

Concern-
Detector
(Robillard
and
Manggala,
2008)

Change
Task

The recommender supports developers in their change tasks by
recommending concern-related code elements (fields and
methods) that overlap with code elements being currently
modified. A concern is defined as a high level concept such as
requirements and design decisions. A companion tool Concern-
mapper is used to map existing source code elements to a
concern. The mapping is performed manually by the developer
who creates a view corresponding to a concern and adds any
code element to the concern view.

75

RSSE Category Description
Change-
Commander
(Gall et al.,
2009)

Change
Task

The proposed recommender recommends method invocation
changes when the developer inserts a method invocation in the
file under development by leveraging change history. This
recommender relies on two companion tools: (1) Evolizer which
mines software archives (e.g. CVS, bug-tracking system, etc.),
and (2) ChangeDistiller which extracts changes for each revision
from the mined change history. Using these two tools, a corpus
is formed of change type patterns which are clusters of changes,
particularly those related to bug fixing, that frequently appear
together. « For instance, when an if-statement with a certain
condition is often put around a method invocation, the
corresponding changes form a pattern. » (Gall et al., 2009). To
provide recommendations, the tool looks for changes related to
the method invocation entered by the developer and assigns a
frequency (i.e. occurrence number) to each identified change.
The list of method invocations is then ranked before being
presented to the developer.

ImpRec
(Borg,
2014)

Change
Task

The recommender assists developers in Change Impact Analysis
(CIA) when a change is required for an issue report. The
proposed approach forms a corpus, similar to the project
memory of Hipikat, presented as a network of software artifacts
and trace links of previous CIA reports. The content of each
artifact is indexed using Apache Lucene and weighted according
to the importance of the artifact in the corpus. Given a new issue
report, the tool identifies similar issue reports using the
structural similarity of Lucene. Starting from the identified set
of similar issue reports, ImpRec uses a breadth-first search
algorithm to identify change impact candidates. These
candidates are then ranked using some network measures and
textual similarity.

(Heinemann
and
Hummel,
2011)

API Use The proposed RSSE recommends API methods using
information incorporated in identifiers. It is based on the
assumption that code snippets using similar identifiers usually
use similar methods. To do so, the tool parses the source code
files of existing projects invoking API methods, and converts it
into an Abstract Syntax Tree (AST). Traversing the AST, the
tool analyzes method calls within every method body and, for
every method call, it extracts all identifiers from the beginning
of the method body to the line of the method call. In case of
compound identifiers, the camel case convention is applied;
identifiers parts composed of a single character are removed and
the remaining parts are stemmed. The resulting BoW is used to
form a matrix (columns represent identifiers terms and lines
represent method calls).

76

RSSE Category Description
 Each row consists of a binary vector where "1" indicates that the

identifier term occurs in the lines preceding the method call.
This matrix is used to recommend API methods invocations.
The recommendation process is triggered implicitly when the
developer is editing a file. The tool extracts the context
identifiers and forms a binary vector (same process described
above). The hamming distance is used to compute similarity of
two binary vectors. The methods invocations of the identified
similar binary vectors are recommended and ranked according
to their number of occurrences.

Selene
(Murakami
et al., 2014)

API Use This recommender goes beyond the file under development to
extract information relevant to the current editing activity. The
tool includes source code related to the current method or class
(e.g. the callers and callees of the current method). First, the tool
monitors the source file under development, extracts code
elements (e.g. method, file, class) and assigns to each retrieved
element a degree-of-interest (DOI) which depends on the
developer's activity (e.g. a selected or edited method has higher
relevance score than others in the same file). These elements are
then rendered into a weighted vector used to query a repository
formed of open-source projects using a given API. The files of
these projects are tokenized and converted into weighted vectors
using the TF-IDF technique. Based on a cosine similarity,
Selene identifies files similar to the query, and then retrieves
lines that are similar to those in the file under development using
a simple algorithm (i.e. the tool splits every result file into
segments of 20 lines and computes similarity between the code
under development and every segment). The identified code
snippets are then displayed to the developer.

(Cordeiro et
al., 2012)

Debugging The tool assists developers when their code fails with an
exception by recommending relevant information gathered from
the QA web site Stack Overflow. The recommender is triggered
implicitly when an exception stack trace appears in the IDE. The
exception is analyzed and a bi-dimensional context is retrieved
which contains: (1) Structural context that considers all the
references identified in the exception stack trace; and (2) Lexical
context which is composed of the names of said references.

The extracted context is used to form a query for retrieving
relevant answers stored in a corpus. This corpus is built from
questions and answers extracted from the QA web site Stack
Overflow which are usually composed of alternate blocks of text
and source code. These blocks are analyzed and processed in
order to identify exception stack traces.

77

RSSE Category Description
 If no stack traces were detected, the source code blocks are

parsed to form the appropriate AST. The mined information
(exception stack traces and source code) is indexed by the terms
that represent the associated source code references. These terms
are tokenized using the CamelCase convention, for instance a
code snippet associated to the method reference
Database.connect() is indexed by the terms database and
connect. The formed corpus is queried when the context is
extracted and only the search results containing the name of the
exception are mined (a maximum of 200 results). These results
are ranked according to a weighted sum of retrieval score
(scoring function of Apache Lucene), structural and lexical
scores. The final recommendations are presented as a list of
relevant Stack Overflow web pages, clicking on a link, the
recommender shows its content.

Exception-
Tracer
(Amintabar
et al., 2015)

Debugging The recommender helps developers in solving exceptions by
automatically providing solutions. However, this tool does not
only leverage information from the QA website StackOverflow
but also open-source repositories (SourceForge). When an
exception occurs, the tool analyzes the stack trace and extracts
statements that caused the exception and then constructs a
directed graph that represents objects used in the code. This
graph is used to identify other objects involved in the exception
failures, the type of each object and the invoked methods. Using
the extracted information (i.e. the exception and contextual
information in the code), the tool formulates two queries:
• the first one is written in a specific language to mine
source files and constructs for each file a directed graph that will
be used to extract paths with limited sizes; and
• the second query is written in a natural language text to
search discussions in StackOverflow.

The retrieved source files and web pages are then presented to
the developer as list of links, clicking on a link, the tool displays
the associated code snippet / discussion in StackOverflow.

(De Souza
et al., 2014)

Debugging The approach helps developers in solving their problems by
providing a ranked list of questions / answers (QA) pairs
retrieved from the QA website StackOverflow with respect to
the developer's query. A given query, written in natural language
text, is tokenized, stemmed and rendered into a BoW that will be
used as a search query against a corpus. This corpus is built by
retrieving QA pairs of the website StackOverflow. The content
of each pair (title, question and answer, except the code
snippets) is tokenized and stemmed.

78

RSSE Category Description
 As for the code snippets in questions and answers, the tool

extracts the names of methods, classes and interfaces that will be
tokenized using CamelCase and added to the resultant QA pair
document. The search engine Apache Lucene is used to retrieve
QA pair documents textually similar to the query by computing
the Lucene's score. To improve the quality of the retrieved pairs,
the tool considers the votes of the StackOverflow community. A
final score (i.e. the arithmetic mean of Lucene's score and
StackOverflow score) is assigned to each pair. Then, a ranked
list containing the top 10 QA pair documents is displayed.

Debug-
Advisor
(Ashok et
al., 2009)

Debugging The recommender supports developers in fixing their bugs by
recommending relevant information (e.g. people, source files,
methods, etc.). The developer sends a query that could include
kilobytes of unstructured data (e.g. natural language text) and
structured data (e.g. debugger output). The recommender
extracts from the given query a set of features using a feature
parser. These features are formalized as typed documents that
have the following four type structures: unordered bag of terms,
ordered list of terms, weighted terms and key-value pairs. These
typed documents are subsequently converted into bags of words
which are used for similarity purposes with previously fixed
bugs. A corpus is formed of bug reports and VCS source files.
The bug reports are processed in the same manner as the query
and indexed based on TF-IDF. The VCS is mined in order to
retrieve version control revisions that were made to fix the bugs
and to build a relationship graph which relates elements in the
bug description (e.g. source files, functions, people, etc.). In the
first phase, the recommender uses customized lexical similarity
measures to identify fixed bugs that are similar to the given
query. A variation of PageRank algorithm is performed on the
relationship graph in order to assign weights to the graph
entities. A ranked list of those entities, i.e. bug reports, source
files, functions and people is recommended to the developer.

(Kpodjedo
et al., 2008)

Debugging The approach identifies the critical classes developers should
focus on in testing tasks. Given two class diagrams of a system
at different evolution levels, the tool builds a mapping by
identifying classes that have been modified, added or deleted.
Using this mapping, the tool assigns the following weights for
each class, based on the assumption that frequently changed
classes are fault-prone, (1) PageRank which measures the
importance of a given class in the system, and, (2) Evolution
Cost which evaluates class changes in a time period. The
recommendations are presented as a graphical view (scatter-
plot) to indicate the distribution of the identified classes.

79

RSSE Category Description
(Erfani et
al., 2013)

Debugging The proposed approach helps developers in testing tasks by
providing unit test case examples. The developer selects a
function to test and sends a request from the contextual menu.
The tool extracts the selected method and applies to it any code
clone treatment (e.g. weighting, tokenization, stemming, etc.) to
get it ready for comparison with other functions stored in a
corpus. A corpus is formed of existing source code projects and
their associated unit test cases. Clone detection techniques are
performed using an existing tool which is based on a detection
threshold to identify cloned fragments. For each clone class, the
tool identifies: (1) the cloned methods which have at least one
unit test case, and (2) the clone fragments which have no unit
test case. For these clone fragments, unit test cases are then
recommended based on existing unit test cases associated to the
clone class.

Javawock
(Tsunoda et
al., 2005)

Component The recommender provides software components, in particular
java components, based on collaborative filtering technique.
However, this tool considers java programs (class files written
by the developer) as users, java library class files used in the
program as items, and uses both CF algorithms: user-based and
item-based (unlike Rascal which uses only user-based
technique). User-based method determines users with ratings
(i.e. preferences) similar to those of the target user, predicts
ratings of new items using ratings of similar users and then
recommends new items that seem to be preferred by the target
user. Item-based method determines items with ratings similar
other items rated by the target user and predicts ratings of new
items using ratings of similar items (already identified). Given a
java program (uploaded by the developer), Javawock extracts
the set of library class files' names used in the given program
and uses it to query a corpus formed of existing java programs
using java library classes. These programs are presented as a
binary matrix where rows are programs and columns are library
class files. Each value in this matrix is set to 1 if the given
program uses the library class file in the associated column,
otherwise it is set to 0. Using the collaborative filtering
technique, the tool identifies similar java library class names and
ranks them according to their similarity scores before being
presented to the user as a list of links.

ANNEX II

RSSE ANALYSIS: CONTEXT EXTRACTION PROCESS

RSSE Catego-

ry

Trigger

CUD=Crea-

te/Update

/Delete

Scope

S=Space

W=Work-

space

PA=Project

Artifact

Element

C=Code

Element

Treatment

P=Parsing

W=Weigh-ting

F=Filtering

Output

S=Set

Mentor Change

Task

R/Custom

View

S/PA/Chan-

ge Request

Change

Request

Fields

W/Complex/

PPM

W.

Vector

Hipikat Change

Task

R/C. Menu S/Project

Artifact

 P/Tokenize

W/Complex

S/BoW

W.

Vector

Yamada

and

Haze-

yama

Change

Task

R/Custom

View

S/CH/Packa

-ge

C/Package

name

 Set

Thomp-

son and

Murphy

Change

Task

Unclear S/Project

Artifact

Task

description

Fields

W/Complex W.

Vector

Dennin-

ger

Change

Task

R. S/PA/Chan-

ge Request

Change

Request

Fields

P/Tokenize S/BoW

MI Change

Task

P/Browsing S/PA/Chan-

ge History

Time

 Set,

Query

82

RSSE Catego-

ry

Trigger

CUD=Crea-

te/Update

/Delete

Scope

S=Space

W=Work-

space

PA=Project

Artifact

Element

C=Code

Element

Treatment

P=Parsing

W=Weigh-ting

F=Filtering

Output

S=Set

Change-

Com-

mander

Change

Task

P/CUD S/CH/Class C/Signature Set

Mendel Change

Task

P/Browsing S/CH/Pro-

ject

C/Statement

Signature,

Dependency

Type

 Set

Concern

Detector

Change

Task

P/CUD S/PA/Con-

cern

S/CH/Class

C/Identifier

C/Signature

 Set

ImpRec Change

Task

Unclear S/PA/Issue

Report

 P/Tokenize

W/Complex

S/BoW

W.

Vector

Suade Change

Task

P/Browsing CH/Project C/Signature,

Field

 Set

Altair API Use R/Search

Box

S/W/Search

Box

C/Statement

C/ Signature

P/CP/Code

Element

Set

MAPO API Use R/Contex-

tual Menu

S/CH/Class C/Identifier

C/Signature,

C/Type

P/Tokenize S/BoW

Strath-

cona

API Use R/Contex-

tual Menu

S/Code

Snippet

Code Set

83

RSSE Catego-

ry

Trigger

CUD=Crea-

te/Update

/Delete

Scope

S=Space

W=Work-

space

PA=Project

Artifact

Element

C=Code

Element

Treatment

P=Parsing

W=Weigh-ting

F=Filtering

Output

S=Set

Heine-

mann &

Hummel

API Use Unclear

CH/Method C/Identifier P/Tokenize

F/Stemming

B.

Vector

S/BoW

Selene API Use R/Custom

view

S/CH/Class C/Signature,

Field

P/CP/Code

Element

W/Complex

W.

Vector

API-

Synth

API Use R/Search

Box

S/W/Search

Box

C/Type N/A Sequen

-ce

Bavota et

al.

Refacto

-ring

R. S/PA/Chan-

ge History

Time

 P/Token,

Project Data

F/Clustering

S/BoW

G/Tree

Thies

and Roth

Refacto

-ring

Unclear CH/Project

Time

C/Statement G/Tree

DCLFix Refacto

-ring

P/Run-time/

DCL

Constraint

Violated

CH/Project C/Statement Set

SemDiff Refacto

-ring

R/ C. Menu S/CH/Class C/Signature Set

Cordei-ro

et al.

Debug-

ging

P/Run-time S/W/Stack

Trace

C/Exception P/Tokenize,

Code Elt

W/Count,

VSM

Query

84

RSSE Catego-

ry

Trigger

CUD=Crea-

te/Update

/Delete

Scope

S=Space

W=Work-

space

PA=Project

Artifact

Element

C=Code

Element

Treatment

P=Parsing

W=Weigh-ting

F=Filtering

Output

S=Set

Surf-

Clipse

Debug-

ging

R/Custom

View

P/Run-time

S/W/Stack

Trace

S/CH/Line

C/Exception

C/Statement

P/CP/Code

Element

LSI

Graph

Excep-

tion

Tracer

Debug-

ging

P/Run-time S/W/Stack

Trace

S/CH/Line

C/Exception

C/Statement

P/CP/Code

Element

Graph,

Query

De Souza

et al.

Debug-

ging

R/Search

Box

S/W/Search

Box

Query P/Tokenize

F/Stemming

S/BoW

Debug-

Advisor

Debug-

ging

R/Search

Box

S/W/Search

Box

S/PA/Logs

Query P/Tokenize

P/Custom

Feature

S/BoW

AutoFix Debug-

ging

R/Box S/W/Search

Box

Query (class

name)

 Unclear

Sibyl Debug-

ging

Unclear S/PA/Bug

Report

C/Fields P/Tokenize

W/Complex

W.

Vector

Score-

Rec

Debug-

ging

R. CH/Project C/Field P/Complex Set

(pairs)

Erfani et

al.

Debug-

ging

R/Contextua

l Menu

CH/Method C/Statement “any code

clone

technique”

“any

clone

output”

TestTen-

derer

Debug-

ging

P/CUD S/CH/Class C/Signature Set

RSSE Catego- Trigger Scope Element Treatment Output

85

ry CUD=Crea-

te/Update

/Delete

S=Space

W=Work-

space

PA=Project

Artifact

C=Code

Element

P=Parsing

W=Weigh-ting

F=Filtering

S=Set

Kpod-

jedo et

al.

Debug-

ging

Unclear S/Project

artifact

(Class

diagrams)

 Graph

SPARS-J Compo-

nent

P/Browsing S/W/Search

Results

 Binary

Tagging

Set

Rascal Compo-

nent

P/CUD S/CH/Class C/Signature W/Simple

Count

W.

Vector

Java-

wock

Compo-

nent

R/Custom

view

S/CH/Class C/Class

names

P/Complex S/B.

Vector

A-

SCORE

Compo-

nent

P/CUD S/CH/Class C/Signature,

Field,

Comments,

Statement

P/Tokenizatio

n

W/Simple

Count

S/BoW

W.

Vector

CodeCo-

njurer

Compo-

nent

P/CUD S/CH/Class C/Signature

C/Type

 Set

Sando Explora

-tion

P/Query S/W/Search

Box

Query Unclear

Refoqus Explora

-tion

Unclear S/W/Search

Box

Query W/Complex W.

Vector

Reverb Explora

-tion

P/Browsing CH/Project

Time

Code F/Clustering Sequen

-ce

NavClus Explora

-tion

P/Scrolling S/Code

Snippet

C/Statement P/CP/Code

Element

G/Tree

Query

RSSE Catego- Trigger Scope Element Treatment Output

86

ry CUD=Crea-

te/Update

/Delete

S=Space

W=Work-

space

PA=Project

Artifact

C=Code

Element

P=Parsing

W=Weigh-ting

F=Filtering

S=Set

Sora Explora

-tion

R. S/CH/Projec

t

C/Dependen

-cy

P/ CP/Code

Element

Graph

McMilla

n et al.

Prototy-

ping

R. S/W/Search

Box

Query/Text P/Tokenize

F/Stemming

S/BoW

TagRec Tagging Unclear S/Project

Artifact

Work items

Fields

P/Tokenize

F/Stemming

S/BoW

Matrix

Cons-

cius

Experts R. S/W/Search

Box

Query/Text P/Tokenize S/BoW

ANNEX III

RSSE ANALYSIS: RECOMMENDATION ENGINE

RSSE Category Corpus Recommendation Engine

 Raw Data

Treatment

H=Heuristic

W=Weighting

Processed

Data

M=Matrix

Treatment

LS=Lexical

Similarity

Filtering/Ranking

R=Ranking

F=Filtering

Recommendations

Nature

LL=Links List

Mentor Change

Task

PA/ Change

request

W/Complex/

PPM

H/Regular

expressions

W. Vector I/LS/A/Entropy R/Score LL/Change Request

Hipikat Change

Task

PA/Log,

Bug Report,

Email

Forum,

Other

Documents

P/Tokenize

W/Complex

H/Clustering

H/Regular

expressions

W. Vector I/SS/Advanced R/Score C/Project Artifacts

+ LL

Rationale

Yamada &

Hazeyama

Change

Task

SC/Project

PA/Log

W/Complex W. Vector I/LS + SS R/Score LL/Project Artifacts

RSSE Category Corpus Recommendation Engine

 Raw Data

Treatment

H=Heuristic

W=Weighting

Processed

Data

M=Matrix

Treatment

LS=Lexical

Similarity

Filtering/Ranking

R=Ranking

F=Filtering

Recommendations

Nature

LL=Links List

Thompson

and

Murphy

Change

Task

Project

Artifact

W/Complex

H/Mining

W. Vector I/SS/Simple,

Overlap

 One Project Artifact

(unclear

presentation)

Denninger Change

Task

SC/Project,

PA/Change

request,Log

P/Tokenize

+Stemming

H/Mining

Dependencies I/SS/Lucene R/Score

F/Threshold

Project artifacts

(unclear)

MI Change

Task

IH/Edited,

Viewed

H/Mining S/Set pairs NI/Association

Rules

R/Occurrences

number

LL/Files

ChangeCo-

mmander

Change

Task

PA/Log,

Bug reports

H/Mining,

Clustering

Patterns I/Weighting R/Score LL/Methods

Mendel Change

Task

 NI/Threshold LL/Structural

Properties

Concern-

Detector

Change

Task

PA/Concern I/Overlap E/Concern

ImpRec Change

Task

PA/Issue

Reports

P/Tokenize

W/Complex

W. Vector I/SS/Lucene,

Search alg.

R/Score Change Impacts

(Unclear)

88

RSSE Category Corpus Recommendation Engine

 Raw Data

Treatment

H=Heuristic

W=Weighting

Processed

Data

M=Matrix

Treatment

LS=Lexical

Similarity

Filtering/Ranking

R=Ranking

F=Filtering

Recommendations

Nature

LL=Links List

Suade Change

Task

 I/W/DOI R/Score E/Components

Altair API Use SC/External

Library

Heuristics G/Augmented

Access Graph

I/Overlap +

Clustering

R/Score

F/Threshold

C/API Methods

+LL

MAPO API Use SC/Projects Mining

H/Clustering

Patterns I/LS/Simple/

Levenshtein

R/Score E/API Patterns

Strathcona API Use SC/Projects S/BoW I/LS/Simple R/Score

F/Threshold

LL/Code Snippets

Graphical View

Rationale

Heinemann

and

Hummel

API Use SC/Projects P/Tokenize M/Binary I/SS/Simple/

Hamming

R/Occurrences

number

API Methods

(Unclear

presentation)

Selene API Use SC/Projects P/Tokenize

W/Complex

W. Vector I/SS/Advanced R/Score

F/Threshold

LL/Code snippets

APISynth API Use SC/Projects W/Simple

Count

G/DAG I/Search

Algorithm

R/Path Length LL/API Methods

89

RSSE Category Corpus Recommendation Engine

 Raw Data

Treatment

H=Heuristic

W=Weighting

Processed

Data

M=Matrix

Treatment

LS=Lexical

Similarity

Filtering/Ranking

R=Ranking

F=Filtering

Recommendations

Nature

LL=Links List

Bavota et

al.

Refactoring NI/Threshold Structural

Properties

Thies and

Roth

Refactoring I/LS/Simple Structural

Properties

DCLFix Refactoring I/SS/Simple/

Jaccard

 LL/Structural

Properties

SemDiff Refactoring PA/Log H/Clustering,

Mining

Set I/Weighting R/Score

F/Threshold

LL/Methods

Cordeiro et

al.

Debugging QA/Stack-

Overflow

H/Mining Code

Snippets

I/SS + LS R/Score

F/Threshold

LL/Web Pages

SurfClipse Debugging Dynamic

corpus/

search

results

 I/W/PageRank

LS

F/Threshold

R/Score

LL/Search Queries

LL/Web Pages

Exception-

Tracer

Debugging SC/Projects

QA/SO

 I/Search

algorithm

 LL/Code snippets

LL/Web Pages

90

RSSE Category Corpus Recommendation Engine

 Raw Data

Treatment

H=Heuristic

W=Weighting

Processed

Data

M=Matrix

Treatment

LS=Lexical

Similarity

Filtering/Ranking

R=Ranking

F=Filtering

Recommendations

Nature

LL=Links List

De Souza

et al.

Debugging QA/Stack-

Overflow

H/Mining,

P/Tokenize,

Stemming

Patterns I/SS/Lucene R/Score

F/Threshold

LL/Documents

(Q&A pairs)

Debug-

Advisor

Debugging PA/Log,

Bug report

P/Tokenize

P/Custom

Feature

W/TF-IDF

Mining

S/BoW

Relationship

Graph

I/LS/Advanced

I/W/PageRank

R/Score LL/Methods, Bug

Report

AutoFix Debugging NI/Binary

tagging

 LL/Code snippets

Sibyl Debugging PA/Bug

Reports

H/Mining,

Clustering,

P/Tokenize,

W/Complex

W. Vectors I/SS/Advanced R/Score

F/Threshold

Drop-Down Menu/

Developers,

Components

ScoreRec Debugging I/LS,

Weighting

R/Score LL/Methods +

Rationale 91

RSSE Category Corpus Recommendation Engine

 Raw Data

Treatment

H=Heuristic

W=Weighting

Processed

Data

M=Matrix

Treatment

LS=Lexical

Similarity

Filtering/Ranking

R=Ranking

F=Filtering

Recommendations

Nature

LL=Links List

Erfani et

al.

Debugging SC/Projects

Unit Test

Cases

 NI/Threshold Unit Test Cases

(Unclear

presentation)

Test

Tenderer

Debugging SC/Projects

Unit Test

Cases

P/Complex Dependencies I/Clustering R/Custom Criteria Test Cases

(Unclear

presentation)

Kpodjedo

et al.

Debugging I/Weighting Graphical View

SPARS-J Component IH/

Browsing

Binary

Tagging

Ratings I/CF R/Score

F/Browsed

Components

E/Software

Components

Rascal Component SC/Projects W/Simple

Count

W. Matrix I/CF F/CBF

R/Score

E/Software

Components

Javawock Component SC/Projects B. Tagging B. Matrix I/CF R/Score LL/Components

A-SCORE Component SC/Projects P/Tokenization

W/Simple

Count, LSI

W. Matrix I/SS R/Score E/Software

Components

92

RSSE Category Corpus Recommendation Engine

 Raw Data

Treatment

H=Heuristic

W=Weighting

Processed

Data

M=Matrix

Treatment

LS=Lexical

Similarity

Filtering/Ranking

R=Ranking

F=Filtering

Recommendations

Nature

LL=Links List

Code-

Conjurer

Component Dynamic

corpus/

search

results

 NI/Simple

Count

F/Threshold E/Software

Components and

method signatures

Sando Exploration SC/Projects Tree

Matrix

S/Term Pairs

I/LS/Simple Drop-down Menu/

Search Queries

Refoqus Exploration Queries +

Search

Results

W/Complex

LS, Clustering

Tree I/SS/Lucene Reformulation

strategy (Unclear

presentation)

Reverb Exploration IH/

Browsing

 I/SS/Advanced R/Score

F/Threshold

LL/Web Pages

NavClus Exploration IH/

Browsing

H/Clustering Patterns

(clusters of

sequences)

I/W/TF-IDF Graphical View

Sora Exploration I/W/PageRank F/Threshold Files (Classes)

(Unclear p.)

93

RSSE Category Corpus Recommendation Engine

 Raw Data

Treatment

H=Heuristic

W=Weighting

Processed

Data

M=Matrix

Treatment

LS=Lexical

Similarity

Filtering/Ranking

R=Ranking

F=Filtering

Recommendations

Nature

LL=Links List

McMillan

et al.

Prototyping PA/

Documents

SC/Projects

H/Mining,

Clustering

Matrix

Graph

I/SS, CBF

I/W/PageRank

F/Threshold Check List/Features

E/Packages

TagRec Tagging I/Weighting

(complex)

F/Threshold List of tags

Conscius Experts PA/Email,

Javadoc,

SC/Project

H/Mining Dependencies I/Weighting,

SS/Advanced

R/Score Experts (unclear

presentation)

94

BIBLIOGRAPHY

Adomavicius, Gediminas and Alexander Tuzhilin. 2005. “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible extensions”.
IEEE Trans. Knowl. Data. En. vol. 17, n° 6, (June 2005), p. 734-749.

Adomavicius, Gediminas and Alexander Tuzhilin. 2011. “Context-Aware Recommender

Systems”. In Recommender Systems Handbook, Ricci, Francesco, Lior Rokach,
Bracha Shapira and Paul B. Kantor (Eds.), p. 217-253. New York: Springer Science +
Business Media.

Al-Kofahi, Jafar M., Ahmed Tamrawi, Tung Thanh Nguyen, Hoan Anh Nguyen and Tien N.

Nguyen. 2010. “Fuzzy Set Approach for Automatic Tagging in Evolving Software”.
In Proceedings of the International Conference on Software Maintenance, ICSM,
(Timisoara, Romania, September 12-18, 2010), p. 1-10.

Amintabar, Vahid, Abbas Heydarnoori and Mohammad Ghafari. 2015. “ExceptionTracer: A

Solution Recommender for Exceptions in an Integrated Development Environment”.
In Proceedings of the 23rd International Conference on Program Comprehension,
(Florence, Italy, May 18-19, 2015), p. 299-302.

Antunes, Bruno, Joel Cordeiro and Paulo Gomes. 2012. “SDiC: Context-based retrieval in

Eclipse”. In Proc. of the 34th ICSE (Zurich, Switzerland), p. 1467-1468.

Anvik, John and Gail C. Murphy. 2011. “Reducing the effort of bug report triage:

Recommenders for development-oriented decisions”. ACM Transactions on Software
Engineering and Methodology, vol. 20, n° 3, p 10 (35 pp.), Aug. 2011

Ashok, B., Joseph Joy, Hongkang Liang, Sriram K. Rajamani, Gopal Srinivasa and

Vipindeep Vangala. 2009. “DebugAdvisor: A Recommender System for Debugging”.
In Proceedings of the Joint 12th European Software Engineering Conference and
17th ACM SIGSOFT Symposium on the Foundations of Software Engineering,
(Amsterdam, The Netherlands, August 24 - 28, 2009), ESEC-FSE '09, p. 373-382.

Avazpour, Iman, Teerat Pitakrat, Lars Grunske and John Grundy. 2014. “Dimensions and

metrics for evaluating recommendation systems”. In Recommendation Systems in
Software Engineering, Robillard, Martin P., Walid Maalej, Robert J. Walker and
Thomas Zimmermann (Eds.), p. 245-273. Berlin: Springer-Verlag.

Bavota, Gabriele, Sebastiano Panichella, Nikolaos Tsantalis, Massimiliano Di Penta, Rocco

Oliveto and Gerardo Canfora. 2014. “Recommending refactorings based on team Co-
maintenance patterns”. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering, (Vasteras, Sweden, September 15 -
19, 2014), ASE '14, p. 337-342.

96

Bazire, Mary and Patrick Brézillon. 2005. “Understanding context before using it”. In

Proceedings of 5th International Conference on Modeling and Using Context, p. 29-
40.

Borg, Markus. 2014. “Context-Based recommendation to support problem solving in

software development”. In Proceedings of 29th ACM/IEEE International Conference
on Automated Software Engineering, (Vasteras, Sweden, September 15-19, 2014), p.
891-894.

Cordeiro, Joel, Bruno Antunes, and Paulo Gomes. 2012. “Context-Based recommendation to

support problem solving in software development”. In Proceedings of Third
International Workshop on Recommendation Systems for Software Engineering,
(Zurich, Switzerland), RSSE '12, p. 85-9.

Cubranic, Davor, Gail C. Murphy, Janice Singer, and Kellogg S. Booth. 2005. “Hipikat: a

project memory for software development”. IEEE Trans. Software En, vol. 31, n° 6,
(June 2005), p. 446-65.

Czarnecki, Krzysztof, Chang Hwan Peter Kim and Karl Trygve Kalleberg. 2006. “Feature

models are views on ontologies”. In Proceedings of 10th International Software
Product Line Conference, p. 41-51.

Dagenais, Barthélémy and Martin P. Robillard. 2008. “Recommending adaptive changes for

framework evolution”. In Proceedings of the 30th International Conference on
Software Engineering, (Leipzig, Germany, May 10-18, 2008), p. 481-490.

Denninger Oliver. 2012. “Recommending relevant code artifacts for change requests using

multiple predictors”. In Proceedings of the 3rd International Workshop on
Recommendation Systems for Software Engineering, (Zurich, Switzerland, June 04,
2012), p. 78-79.

De Souza, Lucas B. L., Eduardo C. Campos and Marcelo de A. Maia. 2014. “Ranking crowd

knowledge to assist software development”. In Proceedings of the 22nd International
Conference on Program Comprehension, (Hyderabad, India, June 2-3, 2014), p. 72-
82.

Dey, Anind K., Gregory D. Abowd and Daniel Salber. 2001. “A conceptual framework and a

toolkit for supporting the rapid prototyping of context-aware applications”. Human-
Computer Interaction, vol. 16, (2001), p. 97–166.

Dourish, Paul. 2004. “What we talk about when we talk about context”. Pers. Ubiquit.

Comput. vol. 8, n° 1 (2004), p. 19-30.

97

Erfani, Mostafa, Iman Keivanloo and Juergen Rilling. 2013. “Opportunities for Clone
Detection in Test Case Recommendation”. In Proceedings of 37th Annual Computer
Software and Applications Conference Workshops, p. 65-70.

Gall, Harald C., Beat Fluri and Martin Pinzger. 2009. “Change analysis with evolizer and

changedistiller”. IEEE Software, vol. 26, n° 1 (January-February 2009), p. 26-33.

Ge, Xi, David Shepherdy, Kostadin Damevskiz and Emerson Murphy-Hill. 2014. “How the

Sando Search Tool Recommends Queries”. In Proceedings of IEEE Conference on
Software Maintenance, Reengineering, and Reverse Engineering, (Antwerp,
Belgium), CSMR-WCRE '14, p. 425-8.

Haiduc, Sonia, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia and Tim

Menzies. 2013. “Automatic Query Reformulations for Text Retrieval in Software
Engineering”. In Proceedings of the 35th International Conference on Software
Engineering, (San Francisco, CA, United states, May 18-26, 2013), p. 842-851.

Happel, Hans-Jörg and Walid Maalej. 2008. “Potentials and challenges of recommendation

systems for software development”. In Proceedings of International Workshop on
Recommendation Systems for Software Engineering, Co-located with the 16th ACM
SIGSOFT International Symposium on the Foundations of Software Engineering,
(November 10, 2008), RSSE '08, p. 11-15.

Heinemann, Lars and Benjamin Hummel. 2011. “Recommending API methods based on

identifier contexts”. In Proceedings of the 3rd International Workshop on Search-
Driven Development: Users, Infrastructure, Tools, and Evaluation, Co-located with
ICSE 2011, (Waikiki, Honolulu, HI, USA, May 28, 2011). SUITE '11, p. 1-4.

Holmes, Reid, Robert J. Walker and Gail C. Murphy. 2006. “Approximate structural context

matching: An approach to recommend relevant examples”. IEEE Trans. Software
Eng, vol. 32, n° 12 (December 2006), p. 952-970.

Holmes, Reid, Tristan Ratchford, Martin P. Robillard and Robert J. Walker. 2009.

“Automatically Recommending Triage Decisions for Pragmatic Reuse Tasks”. In
Proceedings of 24th IEEE/ACM International Conference on Automated Software
Engineering, (Auckland, New zealand, November 16-20, 2009), p. 397-408.

Hummel, Oliver, Werner Janjic and Colin Atkinson. 2010. “Proposing software design

recommendations based on component interface intersecting”. In Proceedings of 2nd
International Workshop on Recommendation Systems for Software Engineering in
Conjunction with the 32nd ACM/IEEE International Conference on Software
Engineering, (Cape Town, South Africa, May 04, 2010), RSSE '10, p. 64-68.

Ichii, Makoto, Yasuhiro Hayase, Reishi Yokomori, Tetsuo Yamamoto and Katsuro Inoue.

2009. “Software component recommendation using collaborative filtering”. In

98

Proceedings of ICSE Workshop on Search-Driven Development-Users,
Infrastructure, Tools and Evaluation, (Vancouver, Canada, May 16, 2009). SUITE
'09, p. 17-20.

Janjic, Werner and Colin Atkinson. 2013. “Utilizing software reuse experience for automated

test recommendation”. In Proceedings of the 8th International Workshop on
Automation of Software Test, (San Francisco, CA, United states, May 18-19, 2013), p.
100-106.

Kitchenham, Barbara, 2004. Procedures for Performing Systematic Reviews. Keele

University Technical Report, Keele, UK.

Kpodjedo, Segla, Filippo Ricca, Philippe Galinier and Giuliano Antoniol. 2008. “Not all

classes are created equal: Toward a recommendation system for focusing testing”. In
Proceedings of International Workshop on Recommendation Systems for Software
Engineering, Co-located with the 16th ACM SIGSOFT International Symposium on
the Foundations of Software Engineering, (Atlanta, GA, United states, November 9,
2008), p. 6-10.

Lee, Seonah and Sunghun Kim. 2015. “The Impact of View Histories on Edit

Recommendations”. IEEE Transactions on Software Engineering, vol. 41, n° 3
(March 2015), p. 314-30.

Lee, Seonah, Sungwon Kang and Matt Staats. 2013. “NavClus: a graphical recommender for

assisting code exploration”. In Proceedings of 35th International Conference on
Software Engineering, (San Francisco, CA, USA), ICSE '13, p. 1315-18.

Long, Fan, Xi Wang and Yang Cai. 2009. “API Hyperlinking via structural overlap”. In

Proceedings of the Joint 12th European Software Engineering Conference and 17th
ACM SIGSOFT Symposium on the Foundations of Software Engineering,
(Amsterdam, The Netherlands, August 24 - 28, 2009). ESEC-FSE '13, p. 203-212.

Lozano, Angela, Andy Kellens and Kim Mens. 2011. “Mendel: Source Code

Recommendation based on a Genetic Metaphor”. In Proceedings of 26th IEEE/ACM
Int. Conf. Autom. (Lawrence, KS, USA). ASE '11, p. 384-7.

Lu, Jie, DianshuangWu, Mingsong Mao,Wei Wang and Guangquan Zhang. 2015.

“Recommender System application developments: A survey”. Decision Support
Systems, vol. 74, p. 12-32.

Lv, Chen, Wei Jiang, Yue Liu, and Songlin Hu. 2014. “APISynth: A New Graph-Based API

Recommender System”. In Proceedings of 36th International Conference on Software
Engineering, ICSE Companion, (Hyderabad, India, May 31 - June 07, 2014). ICSE
Companion '14, p. 596-7.

99

Maki, Sana, Sègla Kpodjedo and Ghizlane El Boussaidi. 2015. “Context Extraction in
Recommendation Systems in Software Engineering: A Preliminary Survey”. In
Proceedings of 25th Conference of the Center for Advanced Studies on Collaborative
Research (CASCON), (IBM Corp., Markham, Ontario, Canada, November 2 - 4,
2015), p. 151-160. Gould, Jordan, Marin Litoiu and Hanan Lutfiyya (Eds.).

Malheiros, Yuri, Alan Moraes, Cleyton Trindade and Silvio Meira. 2012. “A source code

recommender system to support new comers”. In Proceedings of the 36th Annual
Computer Software and Applications Conference, (COMPSAC '12), p. 19-24.

McCarey, Frank, Mel Ó Cinnéide and Nicholas Kushmerick. 2005. “Rascal: a recommender

agent for agile reuse”. Artificial Intelligence Review, vol. 24, n° 3-4 (December
2005), p. 253-76.

McMillan, Collin, Negar Hariri, Denys Poshyvanyk, Jane Cleland-Huang and Bamshad

Mobasher. 2012. “Recommending Source Code for Use in Rapid Software
Prototypes”. In Proceedings of the 34th International Conference on Software
Engineering, (Zurich, Switzerland, June 2-9, 2012), p. 848-858.

Mens, Kim and Angela Lozano. 2014. “Source Code-Based Recommendation Systems”. In

Recommendation Systems in Software Engineering, Robillard, Martin P., Walid
Maalej, Robert J. Walker and Thomas Zimmermann (Eds.), p. 93-130. Berlin:
Springer-Verlag.

Mkaouer, Wiem, Marouane Kessentini, Slim Bechikh, Kalyanmoy Deb and Mel Ó Cinnéide.

2014. “Recommendation System for Software Refactoring Using Innovization and
Interactive Dynamic Optimization”. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, (September 15–19,
2014, Vasteras, Sweden.), p. 331-336.

Mohebzada, Jamshaid G., Guenther Ruhe and Armin Eberlein. 2012. “Systematic Mapping

of Recommendation Systems for Requirements Engineering”. In International
Conference on Software and System Process, ICSSP 2012, p. 200-209.

Moraes, Alan, Eduardo Silva, Cleyton da Trindade, Yuri Barbosa and Silvio Meira. 2010.

“Recommending Experts Using Communication History”. In Proceedings of the 2nd
International Workshop on Recommendation Systems for Software Engineering,
(Cape Town, South africa, May 4, 2010) p. 41-45.

Murakami, Naoya, Hidehiko Masuhara and Tomoyuki Aotani. 2014. “Code

Recommendation Based on a Degree-of-Interest Model”. In Proceedings of the 4th
International Workshop on Recommendation Systems for Software Engineering,
(Hyderabad, India, June 3, 2014), p. 28-29.

100

Niu, Nan, Fangbo Yang, Jing-Ru C. Chengy and Sandeep Reddivari. 2012. “A Cost-Benefit
Approach to Recommending Conflict Resolution for Parallel Software
Development”. In Proceedings of the 3rd International Workshop on
Recommendation Systems for Software Engineering, (Zurich, Switzerland, June 4,
2012), p. 21-25.

Pakdeetrakulwong, Udsanee, Pornpit Wongthongtham and Waralak V. Siricharoen. 2014.

“Recommendation systems for software engineering: A survey from software
development life cycle phase perspective”. In Proceedings of 9th International
Conference for Internet Technology and Secured Transactions, (Feb. 10, 2015).
ICITST '14, p. 137-142.

Pei, Yu, Carlo A. Furia, Martin Nordio and Bertrand Meyer. 2015. “Automated Program

Repair in an Integrated Development Environment”. In Proceedings of 37th IEEE
International Conference on Software Engineering, (Florence, Italy, May 16-24,
2015), p. 681-684.

Proksch, Sebastian, Veronika Bauer and Gail C. Murphy. 2015. “How to Build a

Recommendation System for Software Engineering”. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), Software Engineering - International Summer Schools,
LASER 2013–2014, Revised Tutorial Lectures, vol. 8987, p. 1-42.

Rahman, Mohammad Masudur and Chanchal K. Roy. 2014. “SurfClipse: Context-Aware

Meta-search in the IDE”. In Proceedings of 30th International Conference on
Software Maintenance and Evolution, ICSME '14, p. 617-20.

Ricci, Francesco, Lior Rokach and Bracha Shapira. 2011. “Introduction to Recommender

Systems Handbook”. In Recommender Systems Handbook, Ricci, Francesco, Lior
Rokach, Bracha Shapira and Paul B. Kantor (Eds.), p. 1-35. New York: Springer
Science + Business Media.

Robillard, Martin P. and Putra Manggala. 2008. “Reusing program investigation knowledge

for code understanding”. In Proceedings of 16th International Conference on
Program Comprehension. ICPC '08, p. 202-11.

Robillard, Martin P., Robert J. Walker and Thomas Zimmermann. 2010. “Recommendation

Systems for Software Engineering”. IEEE Software, vol. 27, n° 4, (Juillet - Aout), p.
80-6.

Robillard, Martin P. and Robert J. Walker. 2014. “An Introduction to Recommendation

Systems in Software Engineering”. In Recommendation Systems in Software
Engineering, Robillard, Martin P., Walid Maalej, Robert J. Walker and Thomas
Zimmermann (Eds.), p. 1-11. Berlin: Springer-Verlag.

101

Said, Alain, Domonkos Tikk and Paolo Cremonesi. 2014. “A Methodology for Ensuring the
Relative Quality of Recommendation Systems in Software Engineering”. In
Recommendation Systems in Software Engineering, Robillard, Martin P., Walid
Maalej, Robert J. Walker and Thomas Zimmermann (Eds.), p. 275-300. Berlin:
Springer-Verlag.

Sawadsky, Nicholas, Gail C. Murphy and Rahul Jiresal. 2013. “Reverb: Recommending

Code-Related Web Pages”. ICSE '13, p. 812-21.

Shimada, Ryuji, Yasuhiro Hayase, Makoto Ichii, Makoto Matsushita and Katsuro Inoue.

2009. “A-SCORE: Automatic software component recommendation using coding
context”. In 31st International Conference on Software Engineering - Companion
Volume - ICSE-Companion, (Vancouver, Canada, May 16-24, 2009), p. 439-40.

Sora Ioana. 2015. “A PageRank based recommender system for identifying key classes in

software systems”. In Proceedings of the 10th Jubilee IEEE International Symposium
on Applied Computational Intelligence and Informatics, (Timisoara, Romania, May
21-23, 2015), p. 495-500.

Terra, Ricardo, Marco Tulio Valente, Krzysztof Czarnecki and Roberto S. Bigonha. 2012. In

Proceedings of 16th European Conference on Software Maintenance and
Reengineering, (Szeged, Hungary, March 27-30, 2012), p. 335-340.

Thies, Andreas and Christian Roth. 2010. “Recommending rename refactorings”. In

Proceedings of 2nd International Workshop on Recommendation Systems for
Software Engineering in Conjunction with the 32nd ACM/IEEE International
Conference on Software Engineering, (Cape Town, South Africa, May 04, 2010),
RSSE '10, p. 1-5.

Thompson, C. Albert and Gail C. Murphy. 2014. “Recommending a starting point for a

programming task: An initial investigation”. In Proceedings of 4th International
Workshop on Recommendation Systems for Software Engineering, (Hyderabad, India,
June 03, 2014), RSSE '14, p. 6-8.

Tsunoda, Masateru, Takeshi Kakimoto and Naoki Ohsugi. 2005. “Javawock: A java class

recommender system based on collaborative filtering”. In Proceedings of 17th
International Conference on Software Engineering and Knowledge Engineering,
(Taipei, Taiwan, July 14-16, 2005), p. 491-497.

Yamada, Hiroaki and Atsuo Hazeyama. 2013. “A support system for helping to understand a

project in software maintenance using the program package name”. In Proceedings of
12th International Conference on Computer and Information Science, (Niigata, Japan,
June 16-20, 2013), p. 411-416.

102

Zagalsky, Alexey, Ohad Barzilay and Amiram Yehudai. 2012. “Example Overflow: Using
Social Media for Code Recommendation”. In Proceedings of Third International
Workshop on Recommendation Systems for Software Engineering, (Zurich,
Switzerland), RSSE '12, p. 38-42.

Zhong, Hao, Tao Xie, Lu Zhang, Jian Pei and Hong Mei. 2009. “MAPO: Mining and

Recommending API Usage Patterns”. ECOOP '09. ACM, New York, NY, p. 318-343.

