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MÉTHODE DES ÉLÉMENTS FINIS ÉTENDUE-LEVEL SET POUR LA 
SIMULATION DES ÉCOULEMENTS DIPHASIQUES ET À SURFACE LIBRE 

 

Adil FAHSI 

 

RÉSUMÉ 

 
Cette thèse est consacrée à l’étude et au développement de la méthode des éléments finis 
étendue (XFEM) pour la simulation des écoulements diphasiques. La méthode XFEM est 
naturellement couplée à la méthode level set pour permettre un traitement efficace et flexible 
des problèmes contenants des discontinuités et des singularités mobiles. Les équations de 
Navier-Stokes sont discrétisées en utilisant une paire élément fini stable (Taylor-Hood) sur 
des maillages triangulaires ou quadrangulaires. Pour la prise en compte des différentes 
discontinuités à travers l’interface, différents enrichissements de la vitesse et/ou la pression 
peuvent être utilisés. Cependant, l’ajout de ces enrichissements peut amener à une paire 
vitesse-pression instable.  
 
Dans ce travail, on considère différents schémas d'enrichissement mixtes, la précision et la 
stabilité de ces schémas sont étudiées numériquement. Dans un deuxième temps, on 
s’intéresse à la modélisation de la force de tension superficielle. Cette force engendre un saut 
dans le champ de pression à travers l'interface. En raison de l’utilisation de la méthode 
XFEM pour capturer le saut dans la pression, la précision dépend principalement de 
l’approximation des vecteurs normaux et de la courbure de l’interface. Une nouvelle méthode 
pour calculer les vecteurs normaux est proposée. Cette méthode utilise des raffinements 
successifs du maillage à l'intérieur des éléments coupés par l’interface. Ceci permet 
d'approximer l’interface par des segments linéaires, et les vecteurs normaux construits sont 
naturellement perpendiculaire à l'interface. Des comparaisons avec des solutions analytiques 
et numériques montrent que cette méthode est efficace.  
 
La quadrature de la formulation variationnelle des éléments coupés par l’interface est 
améliorée en utilisant une subdivision récursive. La réinitialisation du level set est réalisée 
par une approche directe basée sur un raffinement de maillage afin de préserver la propriété 
de la distance signée de la fonction level set. Les méthodes proposées sont testées et validées 
sur des tests numériques de complexité croissante: écoulement de Poiseuille diphasique, 
écoulement extensionnel, réservoir rectangulaire soumis à une accélération horizontale, 
sloshing dans un réservoir, effondrement d’une colonne d'eau avec et sans obstacle, et bulle 
montante dans un récipient d'eau. Pour tous les régimes d'écoulement, nos résultats sont en 
bon accord avec soit des solutions analytiques ou des données de références expérimentales 
ou numériques. 
 
Mots-clés: écoulement diphasique incompressible; méthode des éléments finis étendue; 
enrichissements de la vitesse et de la pression; condition inf-sup; tension superficielle; 
écoulement à surface libre 





 

AN EXTENDED FINITE ELEMENT-LEVEL SET METHOD FOR SIMULATING 
TWO-PHASE AND FREE-SURFACE TWO-DIMENSIONAL FLOWS 

 
Adil FAHSI 

 
ABSTRACT 

 
The present work discusses the application of the extended finite element method (XFEM) to 
model two-phase flows. The XFEM method is naturally coupled with the level set method to 
provide an efficient and flexible treatment of problems involving moving discontinuities. The 
Navier-Stokes equations are discretized using a stable finite element pair (Taylor-Hood) on 
triangular or quadrangular meshes. In order to account for the discontinuities in the field 
variables across the interface, kink or jump enrichments may be used for the velocity and/or 
pressure fields. However, these enrichments may lead to an unstable velocity-pressure pair. 
In this work, different enrichment schemes are considered, and their accuracy and stability 
are numerically investigated. In cases with a surface tension force, a jump in the pressure 
field exists across the moving interface. Because we employ the XFEM to capture this jump, 
the accuracy mainly relies on the precise computation of the normal vectors and the 
curvature. A novel method of computing the vectors normal to the interface is proposed. This 
method computes the vectors normal by employing the successive refinement of the mesh 
inside the cut elements. This provides a high resolution of the interface position. The normal 
vectors thus constructed are naturally perpendicular to the interface. Comparisons with 
analytical and numerical solutions demonstrate that the method is effective. 
 
The quadrature of the Galerkin weak form for the intersected elements is improved by 
employing a mesh refinement. The reinitialization of the level set field is realized by a direct 
approach in order to recover the signed-distance property. The proposed methods are tested 
and validated for various numerical examples of increasing complexity: Poiseuille two-phase 
flow, extensional flow problem, a rectangular tank in a horizontal acceleration, sloshing flow 
in a tank, a collapsing water column with and without obstacle, and a rising bubble. For all 
flow regimes, excellent agreement with either analytical solutions or experimental and 
numerical reference data is shown. 
 
Keywords: incompressible two-phase flow; extended finite element method; velocity and 
pressure enrichments; inf-sup condition; surface tension; free surface flows 
 





 

TABLE OF CONTENTS 
 

Page 

INTRODUCTION .....................................................................................................................1 

CHAPTER 1  GOUVERNING EQUATIONS OF TWO-FLUID FLOWS .....................11 
 Incompressible Navier-Stokes equations .....................................................................11 

1.1.1 Boundary, interface and initial conditions ................................................ 13 
 Interface description for two-phase fluid flows ...........................................................16 

1.2.1 Description of the level set ....................................................................... 16 
 Closure .........................................................................................................................19 

CHAPTER 2  THE EXTENDED FINITE ELEMENT METHOD (XFEM) ...................21 
 A literature review of the XFEM .................................................................................21 

2.1.1 Coupling XFEM with the level set ........................................................... 24 
2.1.2 Applications .............................................................................................. 24 

 The XFEM formulation ...............................................................................................25 
2.2.1 Modeling strong discontinuities ................................................................ 27 
2.2.2 Modeling weak discontinuities ................................................................. 31 

 Example: One dimension bi-material bar ....................................................................35 
 Closure .........................................................................................................................38 

CHAPTER 3  SPACE AND TIME DISCRETIZATIONS...............................................39 
 Derivation of the weak formulation of the Navier-Stokes equations ..........................39 
 Time discretization of the Navier-Stokes equations ....................................................42 
 Strategies for numerical integrations ...........................................................................45 

3.3.1 Decomposition of elements ....................................................................... 45 
3.3.2 Linear dependence and ill-conditioning .................................................... 48 
3.3.3 Time-Stepping in the XFEM .................................................................... 49 

 Derivation of the weak formulation of the level set transport equation ......................50 
 Level set update and reinitialization ............................................................................51 

3.5.1 Numerical example: Vortex in a box ........................................................ 51 
3.5.2 Reinitialization .......................................................................................... 55 

 Inf-sup stability issue with XFEM ...............................................................................57 
 Closure .........................................................................................................................59 

CHAPTER 4  NUMERICAL SIMULATION OF SURFACE TENSION EFFECTS .....61 
 Numerical computation of normal and curvature ........................................................61 

4.1.1 L2-projection method................................................................................ 62 
4.1.2 Geometric method: Closest point on the interpolated interface ................ 64 

 Comparison: Spatial convergence................................................................................69 
 Comparison: Moving interface ....................................................................................74 

CHAPTER 5  SOLUTION PROCEDURE .......................................................................79 
 Coupling of Navier-Stokes equations with level set transport equation ......................79 



XII 

 Time step size limit ..................................................................................................... 81 
 The Navier-Stokes/level set coupling algorithm ......................................................... 82 

CHAPTER 6  NUMERICAL TESTS .............................................................................. 85 
 Stationary straight interface ........................................................................................ 86 

6.1.1 Poiseuille two-phase flow ......................................................................... 86 
6.1.2 Extensional flow problem ......................................................................... 97 

 Numerical examples: A moving interface ................................................................ 103 
6.2.1 Rectangular tank under horizontal acceleration ...................................... 103 
6.2.2 Sloshing flow in a tank ........................................................................... 109 

6.2.2.1 Comparison of 10 P R− ×  and 10 P sign− ×  enrichment.......... 112 
6.2.3 Dam break problem ................................................................................. 114 
6.2.4 Dam break with an obstacle .................................................................... 118 
6.2.5 Bubble rising in a container fully filled with water ................................ 121 

CONCLUSION ..................................................................................................................... 131 

BIBLIOGRAPHY ................................................................................................................. 133 
 
 



 

LIST OF TABLES 
 

Page 
 
 

Table 6-1   XFEM approximations and their abbreviations .........................................88 

Table 6-2   Errors of the interface slope for different enrichments ............................105 

Table 6-3   Physical properties and dimensionless numbers defining test case .........122 

Table 6-4   Collected data from simulations and reference values observed in          
simulations by (Hysing, Turek et al. 2009) ..............................................127 

Table 6-5   Mass errors for rising bubble at 3 st =  ...................................................129 

 





 

LIST OF FIGURES 

 
Page 

 
 

Figure 0.1  Examples of immiscible fluids in industrial and natural processes .............1 

Figure 0.2  Kink and jump discontinuities .....................................................................3 

Figure 0.3  Schematic picture of a classical sharp interface and a diffuse interface ......4 

Figure 0.4  Jump in the pressure field ............................................................................7 

Figure 1.1  Two immiscible fluids 1Ω  and 2Ω  separated by the interface intΓ  ..........11 

Figure 1.2  Two-phase flow discontinuities: (a) viscosity jump, (b) density jump,    
and (c) surface tension ...............................................................................15 

Figure 1.3  Definition of level set function ..................................................................17 

Figure 1.4  A circular interface in 2D (a) represented by the signed distance     
function φ  (b) ............................................................................................18 

Figure 2.1  Domain with a circular interface illustrating the set of enriched nodes    
and the enriched elements ..........................................................................26 

Figure 2.2  Problem statement ......................................................................................28 

Figure 2.3  Enriched basis function for a strong discontinuity in 1D ..........................30 

Figure 2.4  Enriched basis function for a weak discontinuity in 1D ............................32 

Figure 2.5  Enriched basis function for modified abs-enrichment (Moës, Cloirec        
et al. 2003) for a weak discontinuity in 1D ................................................34 

Figure 2.6  Bi-material rod in traction ..........................................................................35 

Figure 2.7  XFEM and FEM solutions of the bi-material rod ......................................37 

Figure 2.8  XFEM solution with 1 element and modified abs-enrichment function ....37 

Figure 3.1  Elements used in this work ........................................................................42 

Figure 3.2  Sub-elements and integration points. Red line depicts the interface,       
and blue points depict the nodes ................................................................46 



XVI 

Figure 3.3  Curved interface inside a quadratic element and integration error            
committed with the linear approximation of the interface. In green, the 
approximated interface and computed points iP  on the interface ........... 47 

Figure 3.4  Estimation of the iso-zero level set position. In blue, grid points ............. 47 

Figure 3.5  An interface passing close to a vertex (left) or edge (right) ..................... 48 

Figure 3.6  Time evolution of the iso-zero level set for the vortex in a box ............... 53 

Figure 3.7  Comparison of the final shape of the iso-zero level set for the vortex        
in a box. The initial shape of the disk is taken as a reference ................... 54 

Figure 3.8  Area of the disk over time t  ..................................................................... 54 

Figure 3.9  Example of recursive subdivision of level 4 to localize a circular  
interface. In black, the initial mesh. In blue, the refined mesh ................. 56 

Figure 3.10  Reinitialization of the level set function using a recursive subdivision                 
of level 4: (a) before the reinitialization; (b) after the reinitialization ...... 57 

Figure 4.1  Example of recursive subdivisions of different levels to localize the 
interface. Red curve depicts the exact interface, and green points       
depict the iso-zeros level set ..................................................................... 65 

Figure 4.2  A quadratic element .................................................................................. 66 

Figure 4.3  Closest point. Blue dots are grid points with their corresponding       
closest point ( )c x  on the interface as red dots. Collinear vectors     

( )colv x  are drawn from ( )xc x


.  ”+ ” and   ”− ” indicate the signs of      

the level set nodal values .......................................................................... 68 

Figure 4.4  Projection of the tangential unit vector intt . The normal unit vector        

intn  is then computed using (4.17); the segments iS  are in red and          

the iso-zeros level set iP  are in green ....................................................... 68 

Figure 4.5  Computational domain for the static disc test case ................................... 70 

Figure 4.6  Stationary circular bubble: convergence study, 2 normL −  of the error           

on the normal (a) and curvature (b). We compare the two following 
methods on structured meshes: The geometrical method ( T6Geo− )      
and the 2 projectionL − method using a linear element ( 2 T3L − )           

and a quadratic element ( 2 T6L − ) ........................................................... 72 



XVII 

Figure 4.7  Stationary circular bubble: convergence study of the T6Geo−  method   
for different levels of refinement rn  ..........................................................74 

Figure 4.8  Moving circular bubble: initial configuration ............................................75 

Figure 4.9  Moving circular bubble: convergence study at 1 st = , 2 normL −  of the 

error on the normal (a) and curvature (b) and convergence rates (m) .......76 

Figure 5.1  Flowchart for weak coupling between Navier-Stokes and level set 
transport equations .....................................................................................80 

Figure 6.1  Two-phase Poiseuille: computational domain and mesh, with       
h 0.05e =  ....................................................................................................86 

Figure 6.2  Two-phase Poiseuille: the 1 1P P−  enrichment performs better than the  

10 P−   and 2 1P P−  enrichments. The horizontal velocity is evaluated        

at the Gauss points of each element ...........................................................89 

Figure 6.3  Two-phase Poiseuille: convergence study for the different enrichment 
schemes ......................................................................................................90 

Figure 6.4  Two-phase Poiseuille: evolution of the numerical inf-sup hβ  ..................93 

Figure 6.5  Position of the interface across elements ...................................................94 

Figure 6.6  Minimum element area ratio minA  ............................................................95 

Figure 6.7  Two-phase Poiseuille: influence of an ill-conditioned system ..................96 

Figure 6.8  Extensional flow problem: computational mesh, with h 0.091e =  ............98 

Figure 6.9  Extensional flow problem with jump in the viscosity: convergence    
study, 2 normL −  of the error in the pressure field and convergence     

rates (m) .....................................................................................................98 

Figure 6.10  Extensional flow problem with jump in the viscosity: pressure field ........99 

Figure 6.11  Extensional flow problem with jump in the viscosity: comparison            
of the pressure field section at 0.5x=  ....................................................100 

Figure 6.12  Extensional flow problem with jump in the viscosity and       
discontinuous volume force: convergence study, 2 normL −  of the       

error in the pressure field .........................................................................101 



XVIII 

Figure 6.13  Extensional flow problem with jump in the viscosity and       
discontinuous volume force: pressure fields for the sign function         
(left)  and the ridge function (right) ........................................................ 102 

Figure 6.14  Tank under horizontal acceleration: initial configuration and 
computational mesh, h 0.016e =  ............................................................ 104 

Figure 6.15  Tank under horizontal acceleration: free surface for different    
enrichments ............................................................................................. 106 

Figure 6.16  Parasite velocities: the ∅ − P1 enrichment (a) performs better than         
the P1 − P1 (b) and the  P2 − P1 (c) enrichments ................................. 107 

Figure 6.17  Numerical smoothing region ................................................................... 108 

Figure 6.18  Sloshing tank: initial configuration and computational mesh, with 
h 0.015e ≈  .............................................................................................. 110 

Figure 6.19  Sloshing tank: interface position and velocity solution in m / s  for   
various time instances ............................................................................. 111 

Figure 6.20  Sloshing tank: interface height at the right side wall .............................. 112 

Figure 6.21  Sloshing tank: comparison of snapshots of the velocity field at     
t 1.20 s=  ................................................................................................. 112 

Figure 6.22  Sloshing tank: mass conservation for [ ]t 0, 6 s∈  ................................... 113 

Figure 6.23  Sloshing tank: comparison of mass conservation using n 0r =  and    

n 1r =  for the numerical integration ....................................................... 114 

Figure 6.24  Dam break problem: initial configuration ............................................... 115 

Figure 6.25  Dam break problem: Dimensionless width /wx a  (i) and height     

/(2 )wy a  (ii) as a function of time, comparison with experimental         

data from (Martin and Moyce 1952) ....................................................... 116 

Figure 6.26  Dam break problem: comparison of the numerical and experimental   
(Koshizuka, Tamako et al. 1995) free surfaces ....................................... 117 

Figure 6.27  Dam break with an obstacle: initial configuration .................................. 119 

Figure 6.28  Dam break with an obstacle: comparison of the numerical and           
experimental (Koshizuka, Tamako et al. 1995) free surfaces ................. 120 



XIX 

Figure 6.29  Rising bubble: initial configuration .........................................................122 

Figure 6.30  Rising bubble: snapshots of the three computational meshes.                              
(a) 1280 elements; (b) 2508 elements; (c) 4781 elements .......................124 

Figure 6.31  Rising bubble: pressure solution in 2N/m  and interface position for 
various time instances ..............................................................................125 

Figure 6.32  Rising bubble: temporal evolution of (a) center of mass position            
and (b) rising velocity. Comparison of the results with simulation data 
from (Hysing, Turek et al. 2009) .............................................................126 

Figure 6.33  Rising bubble: final shape of the bubble at 3 st =  and reference     
solution by Hysing et al. (Hysing, Turek et al. 2009) ..............................128 

Figure 6.34  Rising bubble: mass errors at 3 st =  .......................................................129 

 

 





 

LIST OF ABREVIATIONS 
 
 

ALE Arbitrary Lagrangien-Eulerien 

BB Babuska-Brezzi condition 

BDF Backward Differentiation Formula 

CFD Computational Fluid Dynamics 

CSF Continuum Surface Force method 

CFL Courant-Freidrichs-Lewy number 

Dof Degrees of freedom 

FEM Finite Element Method 

FSI Fluid-Structure Interaction problems 

GFEM Generalized Finite Element Method 

GLS Galerkin/Least-Squares 

LEFM Linear Elastic Fracture Mechanics 

LS Level Set 

MLPG Meshless Local Petrov-Galerkin 

QUAD Quadrangle 

RK Runge-Kutta time integration 

PDE Partial Differential Equation 

PUM Partition of Unity property 

SPH Smoothed Particle Hydrodynamics 

SSP Strong-Stability Preserving 

SUPG Streamline/Upwind Petrov-Galerkin 

TRI Triangle 

VMS Variational Multiscale method 

VOF Volume-of-Fluid method 

XFEM eXtended Finite Element Method 





 

LIST OF SYMBOLS 
 
abs( )⋅  absolute value function 

( )A ⋅  area of specified domain 
α  interface thickness 

hβ  stability coefficient 

C  convective matrix 
corr( )⋅  corrected value 
εδ   Dirac delta function 

ijδ  Kronecker symbol 

D( )⋅  Direchlet boundary value 

γ  surface tension coefficient 
∇  continuous gradient operator 
∇ ⋅  continuous divergence operator 

DΓ  Dirichlet boundary 

NΓ  Neumann boundary 

intΓ  Interface 

( )uε  rate of deformation tensor 
κ  curvature 
μ  dynamic viscosity 
v  kinematic viscosity 
ρ  density 

( , )puσ  Cauchy stress tensor 

Lτ  stabilization parameter of SUPG term of level set equation 

φ  level set function 
Ω  domain 
∂Ω  domain boundary 

eΩ  element domain 
e  element 
⋅  Euclidean norm   

( )ex⋅  exact value 

Eo  Eötvös number 
I  set of all nodes 

*I  set of enriched nodes 
0( )⋅  initial value 

f  right-hand-side vector 
f  frequency 

STf  surface tension force vector 

g  magnitude of gravity force vector 



XXIV 

g  gravity force vector 
Hα  Heaviside function 

G  gradient matrix 
ψ  global enrichment function 

he  characteristic element length 
1( )H Ω  Sobolev space of square-integrable functions with square-integrable first 

derivatives 
i  node 
( )i⋅  nodal value 

I  identity tensor 

⋅  jump operator 

( )k⋅  identifier for fluid in two-phase flow 

K  viscous matrix 

max( )⋅  maximal value 

min( )⋅  minimal value 

M  local enrichment function 
M  mass matrix 
n  number of degrees of freedom 
n  number of space dimensions 

eln  number of elements 
n s  number of sampling time steps 

rn  level of mesh refinement 

num( )⋅  numerical value 

n  outer unit normal vector on domain boundary 

intn  unit normal vector on interface 

int int,x yn n  first and second components of the normal unit vector 

N  shape function 
N  matrix containing shape functions 
N  matrix containing shape and enrichment functions 

2 ( )L Ω  Hilbert space of square-integrable functions 

p  pressure 
P  vector of pressure degrees of freedom 

iP  iso-zero level set position 

q  pressure weighting function 
r  radius 

ref( )⋅  reference value 
*( )⋅  related to enrichment 

Re  Reynolds number 
sign( )⋅  sign function 



XXV 

S  slope 

pS  solution function space for pressure 

Su  solution function space for velocity 

Sφ  solution function space for level set 

δ  smaller distance to interface 
t  time 
T  period 

endt  time period 

tΔ  time-step length 

intt  unit tangential vector on interface 

int int,x yt t  first and second components of the tangential unit vector 

t∂  time derivative 

u  velocity vector 
u  velocity vector along axisx −  

nu  normal component of the velocity at the interface 

U  vector of velocity degrees of freedom 
υ  velocity vector along axisy −  
v  velocity weighting function 

xv  velocity weighting function (for u ) 

yv  velocity weighting function (for υ ) 

( )V ⋅  volume of specified domain 

pV  weighting function space for pressure 

Vu  weighting function space for velocity 

Vφ  weighting function space for level set 
i
jω   weights of the pointQ −  Gauss quadrature 

w  level set weighting function 

Gx  center of mass 

G G,x y  first and second coordinate of center of mass 

x  coordinate vector 
,x y  first (horizontal) and second (vertical) coordinate 
i
jx   points of the pointQ −  Gauss quadrature 

 





 

INTRODUCTION 

 

Multi-phase flow simulation is an indispensable tool for controlling and predicting physical 

phenomena in a wide range of engineering and industrial systems, e.g., aerospace, chemical, 

biomedical, ship hydrodynamics, hydraulic design of dams, nuclear and naval engineering. 

The main numerical modeling difficulties are due to the jumps in fluid properties (density 

and viscosity) across the interface, the discontinuities of the flow variables across the 

interface, the surface tension force that introduces a jump in the pressure field, the changes in 

the topology of the interface as it evolves with time, and the time and space multi-scales that 

can exist in the physical phenomena.  

 

 

    

 

 

    

 
 

Figure 0.1 Examples of immiscible fluids in industrial and natural processes 

 

In two-fluid flow simulations, it is known that unphysical currents or spurious velocities may 

occur in fluid regions adjacent to an interface (Ganesan, Matthies et al. 2007; Zahedi, 

(a) Atmospheric flows (b) Marine engineering 

(c) Rising bubbles (d) Dam break 
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Kronbichler et al. 2012). Their magnitude depends on various factors, such as, the 

approximation of the pressure jump across the interface, the approximation of the normal 

vectors to the interface and the curvature required for the calculation of the surface tension 

force. Spurious velocities may affect the prediction of flow field velocities, or, in more 

extreme circumstances, can cause the complete break-up of an interface. Therefore, the 

minimization of such unphysical currents is highly desirable. 

 

Numerous methods have been developed for handling incompressible two-fluid flows. The 

main difference between them methods is how the interface is represented. All methods can 

be divided into two general groups: 

• interface-tracking methods or moving mesh: front tracking methods (Unverdi and 

Tryggvason 1992), arbitrary Eulerian-Lagrangian methods (ALE) (Huerta and Liu 

1988), boundary integral methods (Best 1993), and deforming space-time finite element 

formulations (Tezduyar, Behr et al. 1992; Tezduyar, Behr et al. 1992). These methods 

are accurate for rigid moving boundaries, but the re-meshing procedure can fail when 

the interface topology is significantly altered; and 

• interface-capturing methods or fixed mesh: volume of fluid methods (VOF) (Hirt and 

Nichols 1981; Pilliod Jr and Puckett 2004), level set methods (Osher and Sethian 1988; 

Sussman, Smereka et al. 1994; Sethian 1999), and diffuse interface methods 

(Verschueren, Van De Vosse et al. 2001). These methods are more convenient when 

large deformations occur at the interface, but they require a higher mesh resolution. 

 

Interface-tracking methods offer an accurate description of the interface and thereby conserve 

masses (volumes) quite well. In the case of topological changes, which are encountered in 

immiscible multi-phase flows, these methods are inconvenient and induce significant loss of 

accuracy, especially when frequent re-meshing is necessary. The challenge associated with 

the interface-tracking approaches is to address significant topological changes, such as 

stretching, tearing or merging of configurations. In contrast, the interface-capturing methods 

are naturally able to account for topological changes of the interface between fluids. This 

allows for a flexible interface description compared to the interface-tracking methods, but 
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they are often less accurate, e.g., in terms of mass conservation. To increase the accuracy, a 

mesh refinement is often used close to the interface. 

 

The level set method, introduced by Osher and Sethian (Osher and Sethian 1988), is a 

popular approach for describing the interface motion in two-phase fluid flows (Sussman, 

Smereka et al. 1994; Sussman, Fatemi et al. 1998) because it can efficiently handle rapid 

topological changes as well as the splitting and merging of fluids. Owing to the implicit 

capture of the interface, some elements may be cut by the interface, and discontinuities 

therefore occur inside them. Strong and weak discontinuities are encountered. Problems with 

strong discontinuities present a jump in the solution field, whereas for weak discontinuities, 

the solution field is continuous and shows a kink, and a jump appears in the derivative of the 

solution field.  

 

 

Figure 0.2 Kink and jump discontinuities 

 

Using a standard finite element method (FEM), the jumps and kinks in the pressure and 

velocity fields across the interface cannot be represented explicitly (Gross and Reusken 

2011). To overcome this problem, we can use the diffuse interface method. The viscosity and 

density can be regularized such that instead of jumping discontinuously, they go smoothly 

from 1ρ  to 2ρ  ( 1μ  to 2μ ) over several elements, see Figure 0.3.   
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1ρ

2ρ

1ρ

2ρ

 

Figure 0.3 Schematic picture of a classical sharp interface                                                    
and a diffuse interface 

 

However, such approaches may introduce unphysical diffusive effects (Smolianski 2001). 

The extended finite element method (XFEM) originally developed for crack problems by 

Belytschko and Black (Belytschko and Black 1999) and redefined by Moës et al. (Moës, 

Dolbow et al. 1999) addresses these difficulties by enriching the approximation space to 

represent a known type of discontinuity in the element interiors. XFEM utilizes the partition 

of unity property (PUM) of the finite element shape functions (Melenk and Babuška 1996). 

The XFEM popularity is observed because a non-adapted mesh could be used, and the 

laborious re-meshing procedures are no longer necessary. 

  

Owing to the PUM, strong discontinuities can be accurately reproduced by the sign of the 

level set function or the jump enrichment (Dolbow, Moës et al. 2000), and the optimal 

convergence rate can be obtained upon mesh refinement. A weak discontinuity can be 
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incorporated by the absolute value of the level set function (abs-enrichment or kink 

enrichment); one alternative proposed by Moës et al. (Moës, Cloirec et al. 2003) is the 

modified abs-enrichment. These enrichments were initially applied to solid mechanics 

problems. 

 

In two-phase fluid flows, various enrichment schemes for the velocity and/or pressure can be 

imagined. Chessa and Belytschko (Chessa and Belytschko 2003; Chessa and Belytschko 

2003) applied the standard abs-enrichment to account for kinks in the velocity field but did 

not enrich the pressure field for problems with and without surface tension effects. In 

addition to the kink enrichment of the velocity field, Minev et al. (Minev, Chen et al. 2003) 

employed a jump enrichment of the pressure field due to the presence of surface tension 

effects. In contrast, Groß and Reusken (Groß and Reusken 2007) used Heaviside enrichment 

to enrich the pressure field for 3D two-phase flows with surface tension effects, but they did 

not enrich the velocity field. Zlotnik and Díez (Zlotnik and Díez 2009) generalized the 

modified abs-enrichment (Moës, Cloirec et al. 2003) for phasen −  flow ( 2n > ), in which 

different interfaces intersect an element. They enriched the velocity and pressure fields in the 

case of quasi-static Stokes flow problems. Fries (Fries 2009) used the intrinsic XFEM and 

performed the enrichment of both the velocity and pressure fields for two-phase flow 

problems with surface tension effects. Cheng and Fries (Cheng and Fries 2012) developed 

the h-version of XFEM and used sign enrichment to account for the jump and/or kink in the 

pressure field in 2D and 3D two-phase incompressible flows. Sauerland and Fries (Sauerland 

and Fries 2011; Sauerland 2013) suggested the use of sign enrichment to enrich the pressure 

as a means to represent weak and strong pressure discontinuities, but not for the velocity; 

they reported that enriching the velocity does not significantly improve the results, and in 

some cases of unsteady flows, the convergence problems were so severe that no convergence 

was achieved (Liao and Zhuang 2012). Recently, several XFEM enrichments, following a 

similar approach to reproduce the internal discontinuities of two-phase flows, were proposed, 

e.g., by Ausas et al. (Ausas, Buscaglia et al. 2012) and Wu and Li (Wu and Li 2015).  

 



6 

The issue of the discretization of the incompressible Navier-Stokes equations is an important 

aspect of one-phase and two-phase flow modelling. The approximation spaces of velocity 

and pressure must satisfy the inf-sup stability condition (LBB) to avoid spurious pressure 

modes in the numerical solution. There are two strategies for dealing with the LBB 

condition: (i) satisfying it by choosing an appropriate velocity-pressure element pair, where 

interpolants of one order lower than those of the velocity are used for the pressure 

interpolation and (ii) avoiding it by stabilizing the discretized weak formulation. The 

stabilization enables the use of equal-order interpolation for the pressure and velocity 

fields. Using numerical experiments, Legrain et al. (Legrain, Moës et al. 2008) analysed the 

stability of incompressible formulations in elasticity problems enriched with XFEM. They 

concentrated on the application of XFEM to mixed formulations for problems with fixed 

interfaces such as the treatment of material inclusions, holes and cracks. In two-phase flows, 

Groß and Reusken (Groß and Reusken 2007) refine the mesh close to the interface and 

modify the Taylor-Hood element ( P2/P1) by enriching the pressure with discontinuous 

approximations ( P1/P0  enrichment). They proved the optimal error bounds for the P1/P0  

approximation, but the inf-sup stability and the order of convergence issue was not 

investigated numerically or theoretically; it remains an open problem (Esser, Grande et al. 

2010). Sauerland and Fries (Sauerland and Fries 2011; Sauerland 2013) numerically 

investigated different enrichment strategies for two-phase and free-surface flows, utilizing a 

stabilized Galerkin-Least-Squares (GLS) formulation because the basic interpolations for the 

velocity and the pressure are of equal order ( Q1/Q1). However, the stability of these 

strategies was not shown. 

 

The modeling of the surface tension force presents another difficult task in two-phase flows 

and remains a challenge for two reasons. The first is that it requires the computation of the 

normal and surface curvatures of the interface, i.e., first and second derivatives of the level 

set function. The second difficulty is that the surface tension is applied on the interface, 

which is not straightforward to realize in the case of an implicit interface representation, i.e., 

in the context of the level set function, on a surface embedded in the mesh. Yet, one 

possibility is to convert the surface tension force into a volume force employing the 
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continuum surface force method (CSF) (Brackbill, Kothe et al. 1992). Thereby, the pressure 

jump is smoothed across a certain distance ε  instead of being treated accurately (see Figure 

0.4). The focus of this work lies on a sharp interface representation and on the XFEM to 

capture the discontinuities within elements by enriching the approximation space. 

 

 

Figure 0.4 Jump in the pressure field 

 

The present research has two objectives. First, we analyze different enrichment schemes of 

velocity and/or pressure fields, and their accuracy and stability are numerically investigated 

for test cases involving weak and/or strong discontinuities. We advocate the use of Taylor-

Hood mixed interpolations ( P2/P1 or Q2/Q1) as the basic element; they have been proven to 

be robust and more stable even at large Reynolds numbers (Arnold, Brezzi et al. 1984). 

Second, we present a novel approach for computing the vectors normal to the interface, 

which are indispensable for the calculation of the curvature and surface tension force. In this 

approach, a multi-level mesh refinement is first realized inside cut elements, and the points 

on the interface with a zero level set in each sub-element are then computed; those points are 

connected with straight segments iS  that are stored. Finally, the vectors normal to the 

piecewise linear interface are constructed. Thereby, the normal vectors are perfectly 

perpendicular to the interpolated interface. We analyze the accuracy of the approach, first on 

a geometric case and then on the complex simulation of the bubble rise problem. 
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The thesis is divided into six chapters. In the first one, we give an introduction to two-fluid 

flow modelling together with the motivation for the present study. Chapter 1 introduces the 

governing Navier-Stokes and the level set transport equations. The equations are 

accompanied by initial, boundary, and interfacial conditions for the two-fluid interface. 

Chapter 2 presents the extended finite element method (XFEM) for the spatial discretization. 

Different enrichment schemes for two-phase flows are discussed. Chapter 3 considers the 

following aspects: (a) derivation of the weak formulation of the incompressible Navier-

Stokes equations and the level-set transport equation, (b) time discretization of the Navier-

Stokes equations, (c) strategies for numerical integration, (d) level set updating and 

reinitialization, and (e) the inf-sup stability issue with XFEM. The following chapter deals 

with the modelling of surface tension. This is followed by a discussion on the construction of 

the vectors normal to the interface.  Chapter 5 describes in detail the coupling between the 

Navier-Stokes equations and level set equation with accompanying flowchart. Furthermore, 

we highlight the time-step size limit. Numerical results for several test cases are presented in 

Chapter 6. Finally, the thesis is summarized, and the main conclusions and suggestions for 

future research are presented. 

 

Publications related to this thesis 

 

The results presented in this thesis have led to the following publications in international 

journals: 

 

Fahsi, A. and A. Soulaimani (Submitted 2016). "Numerical investigations of the XFEM for 
solving two-phase incompressible flows." International Journal for Numerical 
Methods in Fluids FLD-16-0243. 

 
Touré, M. K., A. Fahsi, et al. (2016). "Stabilised finite-element methods for solving the level 

set equation with mass conservation." International Journal of Computational Fluid 
Dynamics 30(1): 38-55. 

 

Further published material includes contributions to conferences proceedings. 
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CHAPTER 1 
 
 

GOUVERNING EQUATIONS OF TWO-FLUID FLOWS 

The governing incompressible Navier-Stokes and the level set transport equations are 

detailed in this chapter. Those equations are accompanied by initial, boundary, and interfacial 

conditions. The chapter also describe the possible discontinuities across the interface of the 

flow variables. 

 

 Incompressible Navier-Stokes equations 

The domains occupied by two or more immiscible fluids are denoted by kΩ , with kΩ = ∪Ω  

the computational domain and Γ  its boundary (cf. Figure 1.1). The interface separating the 

phases is denoted by intΓ , with the normal vector intn . 

 

2Ω

1Ω

NΓ

intn

ΓnΓ

intΓ

DΓ

 

Figure 1.1 Two immiscible fluids 1Ω  and                                                            

2Ω  separated by the interface intΓ  

 

The fluid density ρ  and viscosity μ  are functions of position and time, so that 
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x
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We only consider two-dimensional spatial domains in this thesis. For each phase k , the 

Navier-Stokes equations governing the incompressible Newtonian flows are written as 

 

 ( ) int ST2 ( ) ( , ) ,k k kp
t

ρ μ ρ δ∂ + ⋅∇ = −∇ +∇⋅ + + Γ ∂ 
u

u u u g x fε  (1.3) 

 

 0.∇⋅ =u  (1.4) 

 

or in component notation 

 

 int ST2 ( , )k k k k x x

u u u p u u
u g f

t x y x x x y y x

υρ υ μ μ ρ δ
    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = − + + + + + Γ     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

x  

 

 int ST2 ( , )k k k k y y

p u
u g f

t x y y x y x y y

υ υ υ υ υρ υ μ μ ρ δ
      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + = − + + + + + Γ      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

x  

 

 0
u

x y

υ∂ ∂+ =
∂ ∂

 

 

where (1.3) denotes the momentum equations and (1.4) the continuity equation 

(incompressibility constraint), T( , )u υ=u  the fluid velocity vector, t  the time, p  the 

dynamic pressure, g  the gravitational acceleration, ( )uε  the rate of deformation tensor 

 

 T1
2( ) ( ( ) )= ∇ + ∇u u uε  (1.5) 

 

and STf  the surface tension force which is defined as 



13 

 ST int( ) γ κ=f x n  (1.6) 

 

where γ  is the surface tension coefficient in the normal direction, κ  is the interfacial 

curvature, int( , )δ Γx  is the Dirac delta function, and intΓ  is the interface line (surface in 3D). 

 

1.1.1 Boundary, interface and initial conditions 

In order to obtain a well-posed problem, boundary conditions have to be imposed on the 

external boundary Γ and on the interface. The Dirichlet and Neumann boundary conditions 

are prescribed as 

 

 D D,= ∀ ∈Γu u x  (1.7) 

 

 N,Γ⋅ = ∀ ∈Γn h xσ  (1.8) 

 

where DΓ  denotes the Dirichlet boundary, NΓ  the Neumann boundary, Du  and h  the 

specified velocity and stress, respectively, ( , ) 2 ( )kp p μ= − +u I uσ ε  the Cauchy stress tensor, 

Γn  the outward pointing normal vector on the boundary Γ ,  and I  the identity tensor. 

 

The interfacial equilibrium conditions, which couple the stress and velocity between the two 

phases at the interface, are given by 

 

   [ ]
1 2

int end0, , 0,t t
Ω Ω

= − = ∀ ∈Γ ∈u u u x  (1.9) 

 

   [ ]int int int end, , 0,t tγ κ⋅ = ∀ ∈Γ ∈n n xσ  (1.10) 
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where the operator  •  represents the jump across the interface intΓ . It can be seen from the 

equilibrium condition of the interfacial force (1.10) that the total stress generated by two-

phase flow is balanced with the surface tension. 

 

Initial conditions complement the problem as indicated: 

 

 0( , 0) ( ), at 0t= ∀ ∈Ω =u x u x x  (1.11) 

 

Inserting the definitions for stress and strain tensors into the interface condition for the 

normal stress (1.10) results in 

 

 ( ) [ ]T
int int int end( ) , , 0,p t tμ γ κ− + ∇ + ∇ ⋅ = ∀ ∈Γ ∈I u u n n x 

    (1.12) 

 

It is clear that the presence of the viscosity jump or/and the surface tension at the interface 

leads to a jump in the pressure field and a jump in the velocity gradient across the interface. 

In the hydrostatic case ( =u 0) and without surface tension ( 0γ = ), the momentum equation 

in (1.3) reduces to 

 

 [ ]end, , 0,k kp t tρ∇ = ∀ ∈Ω ∈g x  (1.13) 

 

Along the interface, Eq. (1.13) can be written as 

 

     [ ]int end, , 0,p t tρ∇ = ∀ ∈Γ ∈g x  (1.14) 

 

We note that the gravitational forces in combination with a jump in the density lead to a jump 

in the pressure gradient. 

 

In the numerical simulation of incompressible immiscible two-phase flows, we need to 

account for 
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• a jump in the gradient velocity (or kink in the velocity) across the interface where 

viscosity jumps exist (cf. Figure 1.2a); 

• a jump in the pressure where viscosity jumps or/and surface tension exist (cf. Figure 

1.2a and Figure 1.2c); and 

• a jump in the gradient pressure (or kink in the pressure) where density jumps exist (cf. 

Figure 1.2b). 

 

1μ

2μ
u p

1ρ

2ρ
p

g

γ

p

 

Figure 1.2 Two-phase flow discontinuities: (a) viscosity jump,                                            
(b) density jump, and (c) surface tension 
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 Interface description for two-phase fluid flows 

In this section, we introduce the level set method as a method for the implicit representation 

of interfaces. The level set method (Osher and Sethian 1988) is a numerical technique 

originally developed to analyze and follow the motions and deformations of an interface 

under an arbitrary velocity field. This velocity can depend: on the position of the interface, 

on time, on a related underlying physical problem, on a geometrical property of the interface 

or on any other parameters. Osher and Sethian proposed to introduce a smooth scalar 

function ( )φ x  defined on all n∈x   which, at all times, should represent an interface intΓ  of 

dimension n 1−  as the set where ( ) 0φ =x .  

 

Up to now, this method has been successfully applied to numerous physical problems: multi-

phase fluid flows (Sussman, Smereka et al. 1994), crack propagation (Strouboulis, Babuška 

et al. 2000), computer vision and shape recognition (Kass, Witkin et al. 1988), fire 

propagation simulation (Karypis and Kumar 1998), image processing (Karihaloo and Xiao 

2003) and even in movie special effect. Moreover, as we will see later, the level set 

description/method fits naturally with the extended finite element method (XFEM) (see 

section 3.4). 

 

1.2.1 Description of the level set 

A level set function φ  is defined on the overall domain Ω  to indicate the interface intΓ . It is 

initialized for every point x  as a signed distance to the given interface at the initial time: 

 

 ( )( )*
int

0 * *
int( , 0) ( ) min sign ( ) ,tφ φ

∈Γ
= = = − − ⋅ − ∀ ∈Ω

x
x x x x n x x x  (1.15) 

 

With this definition, the level set function verifies the Eikonal property 

 

 0( ) 1φ∇ =x  (1.16) 
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Each phase subdomain is then identified according to the sign of the level set function: 

 

 

1

int

2

0, ,

( , ) 0, ,

0, .

tφ

< ∀ ∈Ω
= ∀ ∈Γ

> ∀ ∈Ω

x

x x

x

 (1.17) 
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Figure 1.3 Definition of                                                                         
level set function 

 

As an example, we define intΓ  as a circle centered at the origin with radius 0.50r = . We 

define ( )φ x  to be the signed distance function, with a positive sign inside the circle. We have 

 

 2 2( ) r x yφ = − +x  (1.18) 

 

This ( )φ x  is shown in Figure 1.4.  
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Figure 1.4 (a) A circular interface in 2D (b) represented by the signed distance function φ . 

 

Because the interface intΓ  is moving during the simulation, ( , )tφ x  is governed by the pure 

transport equation 

 

 
[ ]end

0

0 , 0,

( , 0) at 0

t t
t

t

φ φ

φ φ

∂ + ⋅∇ = ∀ ∈Ω ∈
∂

= ∀ ∈Ω =

u x

x x

 (1.19) 

 

where ( , )tu x  is the convective fluid velocity, which is the solution of the Navier-Stokes Eq. 

(1.3) and (1.4). 

 

If the level set is smooth enough, the normal and curvature fields can be computed as 

 

 int int

( , )
( , ) ,

( , )

t
t

t

φ
φ

∇= ∈Γ
∇

x
n x x

x
 (1.20) 

 

and 
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2 2

int int2 2 3/2

2
( , ) ( , ) ,

( )
y xx x yy x y xy

x y

t t
φ φ φ φ φ φ φ

κ
φ φ ε
+ −

= −∇ ⋅ = − ∈Γ
+ +

x n x x  (1.21) 

 

here, e.g. xφ  denotes the first derivative of φ  in x-direction and 710ε −= . Note that the unit 

normal vector intn  always points to the domain where 0φ > . 

 

An accurate approximation of both the normal and the curvature is a crucial ingredient for 

the precise modeling of the surface tension force. However, the level set function evolution 

may develop discontinuities in its derivatives near regions of strong topological changes, 

making the curvature discretization difficult. To improve the results, one can resort to higher-

order space approximations (Cheng and Fries 2012). Conversely, if an explicit time 

integration method is used, the surface tension term induces a strong stability constraint on 

the time step. 

 

 Closure 

In this chapter, we have presented the governing equations essential to solve two-phase 

incompressible flow. The Navier-Stokes equations, the main physical phenomena that occur 

at the interface between fluids, the boundary and initial conditions, and the interfacial 

conditions are first given in Section 1.1. The interfacial conditions reveal that: 

• the jumps of fluid viscosity and density need to be accurately taken into account in order 

to satisfy the interfacial equilibrium; and 

• the surface tension force plays an important role in the two-phase flows. This force 

needs to be accurately computed. 

 

The description of the interface is realized implicitly by the level set function. In order to 

account for the interface motion a standard advection equation is solved using the fluid 

velocity. 

 

 





 

CHAPTER 2 
 
 

THE EXTENDED FINITE ELEMENT METHOD (XFEM) 

The extended finite element method (XFEM) is a numerical technique for solving arbitrary 

discontinuities in finite element method (FEM), based on the generalized finite element 

method (GFEM) and the partition of unity method (PUM). It extends the classical FEM 

approach by enriching the solution space with discontinuous functions. This is accomplished 

in local regions of the computational domain which contain discontinuities. In this chapter, 

an introduction and a brief literature review of the XFEM are first given. This is then 

followed by a description of the XFEM approximation with enrichments for both weak and 

strong discontinuities. 

 

 A literature review of the XFEM 

In the previous chapter, it has been shown that the presence of surface tension force and/or a 

jump in viscosity at the interface leads to a jump in the gradient of the velocity and a jump in 

the pressure at the interface. A kink in the pressure also occurs owing to the jump in density. 

The question remains how these discontinuities across the interface can be incorporated into 

the discretization. 

 

The standard FEM is unable to model discontinuities in the solution on element interiors 

because the shape functions are generally at least 1C  on the element and 0C  between 

elements. To accurately resolve this class of problems, the discontinuity position has to 

coincide with the FEM mesh (i.e. interface tracking). If the problem involves evolving 

discontinuities, this approach can become arduous and re-meshing process may become 

necessary. This can also introduce errors, since all the existing nodes must be mapped onto a 

new and different set of nodes. 

 

Therefore, much attention has been devoted to the development of the so-called Mesh Free 

methods that overcome the difficulties related to the mesh. Mesh Free methods are a 
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response to the limitations of FEM, these methods use a set of nodes scattered within the 

problem domain as well as sets of nodes scattered on the boundaries of the domain to 

represent (not discretize) the problem domain and its boundaries. One of the earliest Mesh 

Free methods is smoothed particle hydrodynamics (SPH), introduced by Gingold and 

Monaghan in an astrophysical context (Gingold and Monaghan 1977). Later, the SPH 

method has been extended to deal with free surface incompressible flows; applications 

include the splashing of breaking waves and the dam breaking problem (Monaghan 1994). 

SPH method has many advantages in computation, e.g. simple in concept, easy to implement, 

suitable for large deformations of the interface, meshfree, etc. However, SPH method has 

sevral main technical drawbacks, e.g. difficulty in enforcing essential boundary conditions 

and the numerical algorithm suffers from strong instability. Over the ensuing decades, 

various new Mesh Free methods have been developed, aimed at improving the performance 

and eliminating pathologies in numerical computations, we can mention the Element Free 

Galerkin (EFG) proposed by Belytschko et al (Belytschko, Lu et al. 1994) and meshless local 

petrov-Galerkin (MLPG) (Atluri and Shen 2002). While Mesh Free methods have been 

applied successfully to a wide range of applications, they suffer from some difficulties: 

• they are often unstable and less accurate, especially for problems governed by PDEs 

(Partial Differential Problems) with derivative boundary conditions; 

• the computational cost is higher than FEM; 

• the shape functions are not polynomial and require high-order integration schemes. 

 

In 1996, Melenk and Babuška (Melenk and Babuška 1996) developed the mathematical 

background of the partition of unity method (PUM), namely that the sum of the shape 

functions must be unity. They showed that the classical FE basis can be extended to represent 

a specific given function on the computational domain and that some advantages found in the 

Mesh Free methods can be realized using PUM. The basic idea of PUM is to enrich or to 

extend the finite element approximation by adding special shape functions, typically non-

polynomial, to capture desired features in the solution. This notion of enriching the finite 

element approximation is not new (Benzley 1974; Schönheinz 1975). In (Melenk and 

Babuška 1996; Babuška and Melenk 1997), the additional functions are added globally to the 
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finite element approximation. This method did not get a lot of success due to the fact that the 

enrichment is global, the resulting stiffness matrix is symmetric and banded, and its sparsity 

is not significantly compromised. 

 

Another instance of the PUM is the generalized finite element method (GFEM), Strouboulis 

et al. (Strouboulis, Copps et al. 2001) use GFEM for solving different elliptic problems by 

enriching the entire domain. The enrichment technique improves the solution by introducing 

additional shape functions but the second advantage of this method is that discontinuous 

shape functions can be added allowing to represent non-smooth behavior independently of 

the mesh. Later, as the jumps, kinks, and singularities in the solution are generally local 

phenomena, they adopted the local or minimal enrichment by restricting the enrichment only 

to a subset of the domain.  

 

Belytschko and Black (Belytschko and Black 1999) adopted the PUM to model crack 

growth, by locally enriching the conventional finite element (FE) approximation with the 

exact near tip crack fields. A main feature of this work was the adding of discontinuous 

enrichment functions, and the use of a mapping technique to model arbitrary discontinuities. 

Unfortunately, the mapping procedure is difficult for long discontinuities. As a result, some 

level of re-meshing technique is implemented as the crack propagates.  

 

Later Dolbow et al. (Dolbow and Belytschko 1999; Dolbow, Moës et al. 2000) and Moes et 

al. (Moës, Dolbow et al. 1999) improved the method and called it the extended finite element 

method (XFEM) by adding a magnificent procedure called enrichment that contains a 

Heaviside function and the asymptotic near tip field. One of the differences with GFEM 

method was that, any kind of generic function can be incorporated in XFEM to construct the 

enriched basis function, however the current form of GFEM has no such differences with 

XFEM: «The XFEM and GFEM are basically identical methods: the name generalized finite 

element method was adopted by the Texas school in 1995–1996 and the name extended finite 

element method was coined by the Northwestern school in 1999.» (Belytschko, Gracie et al. 
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2009). Following these pioneering works, the X-FEM approach has rapidly attracted a lot of 

interest and has been the topic of intensive researches and applications. 

 

2.1.1 Coupling XFEM with the level set 

A significant advancement of the XFEM was given by its coupling with the level set method. 

The level set method complements the XFEM extremely well as it provides the information 

on where and how to enrich. Stolarska et al. (Stolarska, Chopp et al. 2001) presented the first 

implementation of level set method for modeling of crack propagation within the XFEM 

framework where the interface evolution was successfully performed by the level set method. 

Later, Moës et al.  (Moës, Gravouil et al. 2002) and Gravouil et al. (Gravouil, Moës et al. 

2002) performed a combined XFEM and the level set method to construct arbitrary 

discontinuities in 3D analysis of crack problems. Beside providing a theoretical method to 

update the position of the interface, the use of the level set method offered complementary 

capabilities such as simplifying the selection of the nodes to be enriched and defining the 

discontinuous enrichment functions. 

 

2.1.2 Applications 

Over the years, the XFEM-community continually grew and the method developed quickly. 

It has been incorporated into the general purpose codes such as ABAQUS and LS-DYNA. 

By now, advances in the XFEM have led to applications in various fields of computational 

mechanics and physics. 

• linear elastic fracture mechanics (LEFM);  

• cohesive fracture mechanics; 

• composite materials and material inhomogeneities; 

• plasticity, damage, and fatigue problems; 

• two-phase flows; 

• fluid–structure interaction; 

• fluid flow in fractured porous media; 
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• solidification problems; 

• thermal and thermo-mechanical problems; 

• contact problems; 

• topology optimization; 

• piezoelectric and magneto-electroelastic problems. 

 

 The XFEM formulation 

In the XFEM, the standard finite element method is extended by incorporating an enrichment 

function ( , )tψ x , chosen judiciously, to reproduce the desired discontinuity inside the cut 

element. This is achieved via a partition of the unity (PUM) property (Melenk and Babuška 

1996). Applied to the velocity field, an enriched velocity approximation can be defined as 
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 (2.1) 

 

where ( )iNu x  is the standard FEM shape function for node i , ( , )iM tu x  is the local 

enrichment function, iu  are the nodal variable values, i
∗u  are the additional XFEM 

unknowns, I  is the set of all nodes in the domain Ω , *I  is the set of enriched nodes (the 

nodes of elements cut by the interface), ( )iN ∗u x  is the partition of unity function for node i , 

and ( , )tψ x  is the global enrichment function. 

 

An enriched approximation for the pressure field is defined as 

 

 
*

( , ) ( ) ( ) ( , ) ( , )p p p p
i i i i i

i I i I

p t N p N t t pψ ψ∗ ∗

∈ ∈

 = + ⋅ −  x x x x x  (2.2) 
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The first term in (2.1) is the standard finite element approximation while the second term is 

called the enrichment. It is obvious that the property ( )i i ijN δ=x  ( 1 ifij i jδ = =  ) does not 

necessarily guarantee that ( )i i=u x u . Specifically, if the enrichment term does not vanish at 

the enriched node *i I∈  it follows that ( )i i≠u x u . 

 

 

Figure 2.1 Domain with a circular interface illustrating                                                          
the set of enriched nodes and the enriched elements 

 

A necessary condition to ensure the convergence is that the functions ( )iN x  and ( )iN ∗ x  

build a partition of unity over the domain, i.e., 

 

 

*

( ) 1;

( ) 1.

i
i I

i
i I

N

N

∈

∗

∈

=

=





x

x
 (2.3) 

 

In the context of XFEM, the functions ( )iN x  and ( )iN ∗ x  are chosen to be the classical shape 

functions. However, the functions ( )iN ∗u x  can be linear or quadratic shape functions. The 
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order is sometimes chosen differently for ( )iNu x  and ( )iN ∗u x . The functions ( )p
iN ∗ x  are 

linear. 

 

Figure 2.1 illustrates which nodes are enriched for a circular interface in a discretized 

domain. It is observed that all nodes are enriched which belong to elements intersected by the 

interface. 

 

2.2.1 Modeling strong discontinuities 

As we have mentioned in the previous paragraph, any generic function representing the 

behavior of the approximating field across the interface can be easily incorporated into the 

approximation space. Strong discontinuity shows a jump in the field (cf. Figure 0.2), hence in 

such cases enriching the approximation space with a sign-enrichment function or a 

Heaviside-enrichment function are reasonable choices. 

 

 ( )sign

1 if ( , ) 0

( , ) sign ( , ) 0 if ( , ) 0

1 if ( , ) 0

t
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φ
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φ
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 ( )H

0 if ( , ) 0
( , ) H ( , )

1 if ( , ) 0

t
t t

t

φ
ψ φ

φ

≤= = 
>

x
x x

x
 (2.5) 

 

The resulting enriched basis functions formed by multiplication of the partition of unity 

shape functions and the enrichment functions contain a jump at the interface and thus gives a 

better approximation to the field variable. 

 

Let us consider a body with domain Ω . The domain is discretized into 3 elements 1Ω , 2Ω  

and 3Ω . Let there be a discontinuity in element 2, such that it incorporates a strong 

discontinuity at *=x x  in the field variable (cf. Figure 2.2).  
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*( ) 0φ =x

*x

 

Figure 2.2 Problem statement 

 

Let 2 ( )N x  and 3 ( )N x  are the classical linear finite element shape functions associated with 

nodes 2 and 3 respectively, which also satisfy the PUM. 

 

The XFEM approximation to the field variable u , reads as 
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where *( ) ( )N N=x x . It can be noticed from the Figure 2.3, that the enriched basis function 

thus formed by the multiplication of the shape functions and the enrichment function, 

contains a jump at *=x x  required to approximate the behavior of u . 

 

The jump at the interface can be written as 
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where u+  and u−  are the values of the variable u  just at the left and just at the right of the 

interface intΓ .  
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Figure 2.3 Enriched basis function for a strong discontinuity in 1D 
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2.2.2 Modeling weak discontinuities 

A weak discontinuity shows a kink at the interface and has discontinuous derivative. For 

modeling fields having discontinuous derivatives usually an abs-enrichment is used. 

 

 ( )abs ( , ) abs ( , ) ( , )t t tψ φ φ= =x x x  (2.7) 

 

It can be observed from the Figure 2.4, that the enriched basis function thus formed by the 

multiplication of the shape functions and the enrichment function, contains a kink at *=x x . 

 

In our 1D we can define abs ( )ψ x  as: 

 

 *
abs ( )ψ = −x x x  (2.8) 

 

Illustrated in Figure 2.4. The XFEM approximation then reads: 

 

 [ ]
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abs abs( ) ( ) ( ) ( ) ( )i i i i i
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Figure 2.4 Enriched basis function for a weak discontinuity in 1D 

 

However, the abs-enrichment is not zero in partially-enriched elements (cf. Figure 2.4). The 

functions *( )iN x  do not build a global partition of unity in Ω , so convergence and instability 

problems may result. Therefore, the modified abs-enrichment as proposed by Moës et al. 
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(Moës, Cloirec et al. 2003) (also known as the Ridge function) is also considered in our 

study, since it is zero in the blending elements. This enrichment function is given by: 

 

 R ( , ) ( , ) ( ) ( , ) ( )i i i i

i I i I

t t N t Nψ φ φ
∈ ∈

= − x x x x x  (2.11) 

 

Remark 

It is important to note that the enrichment term in the XFEM approximation and thereby the 

approximation itself is time dependant. 
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Figure 2.5 Enriched basis function for modified abs-enrichment (Moës, Cloirec et al. 2003) 
for a weak discontinuity in 1D 

 

The level set function, as a scalar function, is discretized by the shape functions ( )iNφ x  (the 

same as for the velocity in the standard FEM): 
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 ( , ) ( ) ( )i i

i I

t N tφφ φ
∈

=x x  (2.12) 

 

where ( )i iφ φ= x  is the value of the level set function at node i . 

 

 Example: One dimension bi-material bar 

This section serves the purpose to demonstrate the XFEM in a particular realization for the 

case of a weak discontinuity. We consider the example of a bi-material 1D rod in traction. 

Let us assume a bar of length L 1 unit=  with two distinct Young moduli 1 1unitE =  and 

2 2 unitE =  subject to a traction force 1 unitF =  along the x  axis (see Figure 2.6). 

 

1E 2E
Fl

Lx

   

 

Figure 2.6 Bi-material rod in traction 

 

We can see in Figure 2.6 that the displacement field u  present a kink (first order 

discontinuity) in *x l= . The governing equation for a constant section A  and no line force is 

in strong form 

 

(a) Problem statement (b) Exact solution 
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and in weak form 
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where w  denotes the test function. 

 

A direchlet boundary condition is prescribed on the left side (0) 0u =  and a Neumann 

boundary condition on the right ( L)
2

u

xE A F∂
∂ = . 

 

The exact solution to this problem is given by: 
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2 1
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ex
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x x l
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u x

F F l E E
x l x

E A A E E
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

 (2.15) 

 

First degree shape functions are used in this example and the analysis was carried out with a 

mesh consisting of 3 elements. We can see in Figure 2.7 that the classical finite element 

approximation fails at reproducing the analytical solution. Using the modified abs-

enrichment, the XFEM approximation can retrieve the exact solution of the material rod. 
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Figure 2.7 XFEM and FEM solutions of the bi-material rod 

 

Using one single element, we can see in Figure 2.8 that the added shape functions are 

quadratic. 

 

  

Figure 2.8 XFEM solution with 1 element and modified                                                 
abs-enrichment function 
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 Closure 

In this chapter, we have given a brief literature review of the XFEM with definitions of the 

standard enrichment functions used for various kinds of discontinuities. We have seen the 

advantages of coupling the XFEM and level set methods. The simple examples presented 

have clarified the idea of introducing specific shape functions to model different 

discontinuities. We can remark that the integration has to be carried out carefully since the 

enrichment term in the XFEM approximation present discontinuities inside elements. 

 

Summarized, in the context of the two-phase flows:   

• the viscosity jump will require kink enrichment of the velocity field and jump 

enrichment of the pressure field; 

• the density jump and gravity dominated flows will require kink enrichment of the 

pressure field; and 

• surface tension force dominated flows will require jump enrichment of the pressure 

field. 

 

 



 

CHAPTER 3 
 
 

SPACE AND TIME DISCRETIZATIONS 

In this chapter, the weak form of the governing Navier-Stokes and the level set transport 

equations are first derived. This is then followed by the temporal discretization of the Navier-

Stokes equations. The subcell quadrature strategy essential to XFEM is then detailed. 

Subsequently, the issues of ill-conditioning and time-stepping in XFEM are discussed. The 

level set updating and the reinitialization procedure are presented next. Finally, the 

conditions for the inf-sup stability of mixed formulation are reviewed.   

 

 Derivation of the weak formulation of the Navier-Stokes equations 

We will now proceed to derive the weak form. The finite element method is used to obtain a 

numerical solution for the governing equations. Using Galerkin’s weight residual method and 

assuming appropriate solution function spaces S u  for u  and pS  for p  as well as weighting 

function spaces Vu  for v  and pV  for q , the weak form for the momentum equation (1.3) is 

given as follows: find S∈ uu  and pp S∈  such that 
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The following reformulation can be carried out for the second integral: 

 

 

( ) ( )

D N

(2 ( )) d d

d : d

ip μ
Ω Ω

Γ
Γ ∪Γ Ω

⋅ ∇ −∇⋅ Ω = ⋅ ∇ ⋅ Ω

= ⋅ ⋅ Γ − ∇ Ω

 
 

u σ

σ n σ

v ε v

v v
 (3.2) 



40 

Integration by parts is applied and the resulting boundary integrals are split into their 

complementary subsets.  

 

 
D N N
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d : d d : d
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In the following, the class of test functions v  is restricted to those vanishing on the Dirichlet 

portion of the boundary DΓ , i.e. 0=v  on DΓ . Thus, the boundary integral over DΓ  in 

equation (3.3) drops out. Further applying the Neumann boundary condition (1.8) the 

expression in equation (3.3) is obtained. 

 

Substituting (3.3) into (3.1), we obtain 
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The weak form of the continuity equation is found by multiplying (1.4) by the test function q  

and integrating over the entire domain Ω . 

 

 d 0 pq q V
Ω

∇⋅ Ω = ∀ ∈ u  (3.5) 

 

This is then added to (3.4) to obtain 
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The weak form can be written as 
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 Cont d
u

W q
x y

υ

Ω

 ∂ ∂= + Ω ∂ ∂   (3.9) 

 

It is obvious from (3.6) that only first order derivatives of both the trial functions u  and the 

test functions v  appear. No derivatives of the pressure and the pressure test function q  
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occur. Moving on the boundary conditions, it is noted that the Neumann boundary condition 

(1.8) is incorporated as a natural boundary in the weak form.  

 

The formulation (3.6) is discretized using the enriched Taylor-Hood element on triangles 

P2/P1 (quadratic velocity/linear pressure) or on rectangles Q2/Q1 (biquadratic 

velocity/bilinear pressure), see Figure 3.1. These finite elements satisfy the Babuska-Brezzi 

condition for single-phase flows (Brezzi and Fortin 1991); hence, it is not necessary to 

stabilize the continuity equation.  

 

It should be noted that for high Reynolds numbers, it is possible to add some stabilization 

terms to the Galerkin weak form, as in the SUPG, GLS, and VMS methods of Hughes 

(Hughes, Feijóo et al. 1998). 

 

(a) Taylor-Hood el .
P2/P1

(b) Taylor-Hood el.
Q2/Q1

Velocity node Pressure node

 

Figure 3.1 Elements used in this work 

 

 

 Time discretization of the Navier-Stokes equations 

A semi-implicit Euler BDF1 (the backward differentiation formula of order 1) scheme is 

used for time discretization; let us denote by  nu  and np  the approximations of the 

velocity u  and pressure p  fields at time nt , respectively, so that the resulting algebraic 

system of equations reads 
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where subscript n  is the number of degrees of freedom for the velocity. 
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where subscript m  is the number of degrees of freedom for the pressure. 
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Ω
= Ω u uN N  (3.21) 

 

 
T1 1 1 1

, ,( ) ( ) d ,n n n n
u x yKυ μ+ + + +

Ω
= Ω u uN N  (3.22) 

 

 
T T1 1 1 1 1 1

, , , ,( ) ( ) 2( ) ( ) d ,n n n n n n
x x y yKυυ μ+ + + + + +

Ω

 = + Ω  u u u uN N N N  (3.23) 

 

 
T1 1 1 1( ) ( ) d ,n n n n nρ+ + + +

Ω
= ⋅ ∇ Ω u u

uC N u N  (3.24) 

 

 
T1 1 1( ) ( ) d ,n n p n

p
+ + +

Ω
= − ∇⋅ Ω uG N N  (3.25) 

 

 1 1 1
grav ( ) d ,n n nρ+ + +

Ω
= Ω uF N g  (3.26) 

 

 
int

1 1
ST int( ) ( ) d ,n nγ κ φ+ +

Γ
= Γ uF N n  (3.27) 

 

 
N

1 1
ext ( ) d .n n+ +

Γ
= Γ uF N h  (3.28) 
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and where N  includes the enrichment functions: 

 

 [ ]T1 1 1 1( , ) , , , , , , ,nn nnN N N M M Mφ =N x    (3.29) 

 

Following the proposed time discretization, the discrete semi-implicit formulation 

(3.10) yields a linear problem in the variables  1n+u  and 1np +  to be solved only once at each 

time 1nt + . 

 

 Strategies for numerical integrations 

Due to the addition of discontinuous enrichment functions in the approximation space, some 

parts of the integrands in the weak formulation (3.6) also comprise discontinuities. Therefore, 

the application of the standard Gauss quadrature leads to significant errors. Particular 

procedures are required for an accurate quadrature of the weak formulation, see, e.g., (Fries 

and Belytschko 2010). 

 

3.3.1 Decomposition of elements 

We can decompose an element eΩ  into sub-elements e
iΩ  such that e e

i i∪ Ω = Ω , e
i i∩ Ω = ∅ . 

Since 

 

 

( )
1

d d
e e

i

e e
i

i

Q

i i
j j

i j

g g

gω

Ω Ω

=

Ω = Ω

≈

 

 x

 (3.30) 

  

Where i
jx  and i

jω  are the knot points and weights of the pointQ −  Gauss quadrature used in 

sub-element e
iΩ . This decomposition does not affect the value of the analytic integral. 
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However, if we can choose a decomposition such that the integrand g  is smooth on each 

sub-element then standard Gauss quadrature can be used on each part and the same accuracy 

can be obtained for the integration over elements with a discontinuity as for those without. 

The sub-elements are used simply for the integration so they need not conform, and they 

introduce ne new unknowns into the problem. We exclude the case where the interface 

intersects the same element edge twice.   

 

intΓ
+

+
+
+

+

+
++

+

 

Figure 3.2 Sub-elements and integration                                                                              
points. Red line depicts the interface,                                                                                 

and blue points depict the nodes 

 

Decomposing into sub-elements of the same type as the original element has the advantage 

that the element’s integration scheme can be used. The order of the integration scheme must 

be increased for integrals involving enriched basis function they have a higher polynomial 

degree. 

 

Figure 3.3(a) shows the integration error committed. For quadratic elements, the use of a 

linear approximation of the interface inside each cut element is not adequate. To improve the 

numerical integration we consider a piecewise linear interface. The cut quadratic element is 

subdivided into four triangular sub-elements so that linear interpolation of the interface can 

be employed in each. We see in Figure 3.3(b) that this approach is much accurate, and will be 

used later for all numerical examples. 
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intΓ

h
intΓ

1P

2P
1P

2PiP

 

Figure 3.3 Curved interface inside a quadratic element and integration error            
committed with the linear approximation of the interface. In green,                                       

the approximated interface and computed points iP  on the interface 

 

In the case of a curved interface, the estimation of the iso-zero level set position iP  can 

suffer from imprecisions, as shown in Figure 3.4.   

 

( )φ 2x

1x (1)P

Γ

2x

1( )φ x
(1)( )Pφ

exP

(2)P

 

Figure 3.4 Estimation of the iso-zero level set                                                         
position. In blue, grid points 

 

To obtain a better geometrical accuracy, we implement the secant method (Norato, Haber et 

al. 2004).  
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 ( )
( )

( 1) ( ) ( ) ( )
( )

( )
if ( ) ( ) 0

( ) ( )

i
i i i i

n ni
n

P
P P P P

P

φ φ φ
φ φ

+ = − − <
−

x x
x

 (3.31) 

 

where ( )nφ x  is the level set value at node 1 or 2 (for example, in Figure 3.4: (0)
1P = x  and 

2n =x x ). The procedure is repeated until 1( )i
sPφ ε+ ≤ . We use two iterations in our 

computations ( 310sε
−= ).  

 

3.3.2 Linear dependence and ill-conditioning 

One disadvantage of the XFEM is that an ill-conditioned system of equations may occur in 

some circumstances, specifically, if a sub-element of an intersected element is too small (as 

in Figure 3.5) , the matrix will be ill-conditioned  (Fries and Belytschko 2010).  

 

intΓ

intΓ

 

Figure 3.5 An interface passing close to a                                                                          
vertex (left) or edge (right) 

 

It is common to remove the enrichments associated with these nodes (Bordas, Nguyen et al. 

2007), whose enrichment functions have very small supports, by imposing a Dirichlet 

boundary condition. For any corner node i , 

 

 min0 and 0 ifi i ip φ φ∗ ∗= = ≤u  (3.32) 
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for example, in this work 3
min min(h ) 10eφ −= ⋅ . An alternative option is to apply special 

preconditioners in the solution phase (Béchet, Minnebo et al. 2005). 

 

Another possibility is to shift the level set of these nodes during the XFEM iteration in order 

to improve the ratio of the areas on both sides of the interface. The nodal level set value is 

thus changed to:  

 

 corr
min minsign( ) ifi i i iφ φ φ φ φ φ= + ⋅ ≤  (3.33) 

 

where i is a corner node. In this work, we choose the last strategy (3.33), that of shifting the 

level set. 

 

3.3.3 Time-Stepping in the XFEM 

In problem with stationary interfaces, the level set function is kept fixed. In this case the 

enriched basis functions are independent of time. However, in problems with moving 

interface, the level set function varies with time. 

Chessa et al. (Chessa, Smolinski et al. 2002) and Chessa and Belytschko (Chessa and 

Belytschko 2004; Chessa and Belytschko 2006) have identified that serious problems may 

occur if standard time-integration methods from the classical FEM are used with time-

dependent enrichments. 

 

The time integration of the local acceleration term in the weak form requires that special 

attention be given to the cut elements. Note that the interface positions in time levels n  and 

1n+  are required. This is a consequence of integrating the mass matrix n
uM .  

 

 
T

1
int int

1

( ) ( )
( ) ( ) dn n

n n n n

t t
ρ +

+
Γ Γ

Ω
= Ω u u

uM N N  (3.34) 
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Fries and Zilian (Fries and Zilian 2009) specified that it is essential in this case to use a more 

elaborate quadrature in cut-elements that considers int ( )ntΓ  and 1
int ( )nt +Γ . However, as only 

the cut elements are enriched, there are some nodes that were enriched at the previous time 

level but are not enriched at the current time level, and vice versa. That is, some enrichment 

degrees of freedom are removed, and new ones are added. 

 

Rasthofer et al. (Rasthofer, Henke et al. 2011), suggested a quasi-static enrichment approach 

for the velocity field, that consists of ignoring the enrichment part of the previous time level: 

 

 
int ( )

( ) ( ) n

n n
i i t

i I

N
Γ

∈

= uu x u  (3.35) 

 

In this work, this simpler approach is used. For further discussion, we refer the reader to 

Henke’s thesis (Henke 2012). 

 

 Derivation of the weak formulation of the level set transport equation 

To obtain the weak formulation of the level set transport equation using the Streamline 

Upwind Petrov-Galerkin (SUPG) finite element method, an appropriate solution function 

space Sφ  for φ  and a weighting function space Vφ  for w  are assumed: find Sφφ ∈  such 

that 

 

 

L

1

d

( ) d 0 V
e

ne

e

t

t φ

φ φ

φτ φ

Ω

Ω=

∂ ⋅ + ⋅∇ Ω + ∂ 

∂ ⋅∇ ⋅ + ⋅∇ Ω = ∀ ∈ ∂ 





u

u u

w

w w

 (3.36) 

 

where Lτ  is the SUPG stabilization parameter. There are numerous definitions for this 

parameter proposed in the literature; we use the simplest definition 
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 L 22

1

22
het

τ =
   +   Δ   

u
 (3.37) 

 

where tΔ  denotes the time-step length. 

 

 Level set update and reinitialization 

The temporal part of the level set equation is discretized using a sufficiently accurate explicit 

time-marching scheme. For this purpose, we use the strong-stability preserving (SSP) explicit 

high-order TVD Runge-Kutta method (Shu and Osher 1989).  

 

If we rewrite (1.19) as 

 

 ( )L
t

φ φ φ∂ = − ⋅∇ =
∂

u  (3.38) 

 

then, for example, the third order SSP Runge-Kutta method gives 

 

 ( )

( )

(1)

(2) (1) (1)

1 (2) (2)

( )

3 1
( )

4 4

1 2
( )

3 3

n n

n

n n

t L

t L

t L

φ φ φ

φ φ φ φ

φ φ φ φ+

= + Δ

= + + Δ

= + + Δ

 (3.39) 

 

3.5.1 Numerical example: Vortex in a box 

In this example, we measure a dissipation error that is relevant in level set method. If the 

velocity field u  is incompressible (i.e. 0∇ ⋅ =u ), then area delimited by iso-zero level set 

should be conserved in time. Our problem is the vortex in a box, introduced by Bell et al. 
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(Bell, Colella et al. 1989) and applied as a level set test problem by Enright et al. (Enright, 

Fedkiw et al. 2002). We consider a disk of radius 0.15r =  placed at T(0.50, 0.75) .  The 

initial level set function is given by 

 

 2 2( ) ( 0.50) ( 0.75)r x yφ = − − + −x  (3.40) 

 

The computational domain is a square of size [ ] [ ]0,1 0,1× . We consider the following stream 

function 

 

 2 21
ψ sin ( )sin ( )x yπ π

π
=  (3.41) 

 

That defines the following velocity field 

 

 

2

2

ψ
sin(2 )sin ( )

ψ
sin(2 )sin ( ).

u y x
y

x y
x

π π

υ π π

∂= =
∂

∂= − = −
∂

 (3.42) 

 

By multiplying u  by a periodic function in time ( ) cos( )g t t Tπ= , the velocity field is 

inverted after half of the period 8 sT =  and the level set function φ  comes back to its initial 

position. The domain is discretized using 50 50×  triangular elements. Figure 3.6 shows the 

evolution in time of the disk (represented by the iso-zero level set).  Result provided by a 

pure advection of the level set function, i.e. by merely solving the level set transport equation 

(1.19). 
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Figure 3.6 Time evolution of the iso-zero level set for the vortex in a box 

 

Figure 3.7 shows a zoom of the superposition of the initial solution and the solution after one 

period. 
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Figure 3.7 Comparison of the final shape of the                                                                      
iso-zero level set for the vortex in a box. The                                                                     
initial shape of the disk is taken as a reference 

 

A more detailed insight into area (or mass) conservation is obtained from (3.43), which 

provides the area of the disk ( )d ( )A tΩ , given in terms of the initial area ( )d ( 0)A tΩ =  as  

 

 
( )

( )
d

d

( )
a % 100

( 0)

A t

A t

Ω
= ×

Ω =
 (3.43) 

 

 

Figure 3.8 Area of the disk over time t  
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We observe that the interface is retained accurately. 

 

3.5.2 Reinitialization 

Because the level set function is transported by the discrete velocity field, its smoothness and 

its distance function properties (i.e. ( , ) 1tφ∇ =x ) will not necessarily be preserved due to 

the accumulation of numerical errors. A reinitialization process is usually adopted when 

updating the level set function φ  such that the intended smoothness and properties are 

maintained as much as possible throughout the simulation. There are many ways to 

reinitialize the signed distance function, including using a straightforward method, as in 

(Merriman, Bence et al. 1994; Smolianski 2001), or solving a Hamilton-Jacobi type PDE, as 

in (Sussman, Smereka et al. 1994; Peng, Merriman et al. 1999). Only the straightforward 

geometric reinitialization technique is used in this study. This technique is simple; it consists 

of subdividing the cut elements recursively into sub-elements of the same type (for details, 

please refer to section 4.1.2), finding the points on the interface with a zero level set in each 

sub-element, and connecting those points with straight segments iS  that are stored. Figure 

3.9 shows a refined mesh of level 4 to localize a circular interface. 

 

Next, the signed distance from a point x  that does not belong to any cut element to the set of 

segments iS  is computed as 

 

 ( ) ( )( ) *
mod ( ) sign ( ) min , ,i

i
dist S Iφ φ= × ∀ ∈Ω∩x x x x  (3.44) 

 

where *I  denotes the set of near nodes defined in section 2.2. 
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Figure 3.9 Example of recursive subdivision of level 4 to localize a                               
circular interface. In black, the initial mesh. In blue, the refined mesh 

 

As an illustration, consider a distorted circle on the domain [ ]20.02, 0.02Ω= − ; the interface 

is the circle with center T(0, 0)  and radius 0.01r = . We disturb the level set by a random 

signal, and the obtained perturbed level set function is given by equation (3.45), such that the 

interface ( )φΓ  is unchanged and the other iso-contours are gradually made false (cf. Figure 

3.10a). Applying the reinitialization scheme, the corrected iso-contours are found in Figure 

3.10b. 

 ( , ) sin sin(5θ)
20

r l
x y l

r

πφ  = +  
 

 (3.45) 

 

with 2 2l r x y= − +  and ( )1θ tan /y x−= .  
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Figure 3.10 Reinitialization of the level set function using a recursive                     
subdivision of level 4: (a) before the reinitialization; (b) after                                             

the reinitialization 

 

 

 Inf-sup stability issue with XFEM 

The standard P2/ P1 approximations satisfy the inf-sup stability condition for single-phase 

flows. As the enrichments are used, the resulting XFEM element must satisfy the 

compatibility condition (also known as the LBB condition) 

 

 0

1 0

div( ) d
inf sup 0
h hp

h h

hh hq S S

q

q
β βΩ

∈ ∈

Ω
= ≥ >

uv

v

v
 (3.46) 

 

where  1
•  and  0

•  denote the 1H  and 2L  norms, respectively, and 0β  is the stability 

coefficient independent of the mesh size h e . If the inf-sup stability condition is satisfied, 

then the numerical solution ( , )h hpu  is oscillation-free and converges to the exact solution 

( , )ex expu  at the optimal order 

 

-0
.0

1
-0.01

-0.01

0
01

-0.01

0

0

0

(a)
0 0.02

-0.02

0

0.02

-0.01
-0.01

-0
.01

-0.01

-0
.0

1

0

0

0

0.
00

5

(b)
0 0.02

-0.02

0

0.02

1



58 

 ( )01 0 1 0
1 C inf inf

h h
p

h h h h
ex ex ex ex

S q S
- p p p qβ

∈ ∈

 + − ≤ + − + − 
 u

u u u v
v

 (3.47) 

 

where C  denotes a constant independent of h e . 

 

The inf-sup stability condition (3.46) is difficult to prove analytically for the XFEM 

approximations considered (to our knowledge, there is no theoretical proof in the literature). 

A numerical test has been proposed, in which hβ  is evaluated using meshes of increasing 

refinement (Babuška, Caloz et al. 1994; Babuška and Melenk 1997). If hβ  does not decrease 

to zero as the mesh size is decreased, it can be concluded that the inf-sup stability test is 

passed for that problem (Legrain, Moës et al. 2008; Sousa, Ausas et al. 2012). Consider the 

finite element discrete system corresponding to the steady Stokes problem written in the form 

 

 
T

P

p

p

     
  =   
         

uu u

u

K K FU

K 0 0
 (3.48) 

 

where 

 

 { } { }: d ( , ) 1, 2, , n, , 2n 1, 2, , n, , 2n
ij

i j
Ω

= ∇ ∇ Ω ∀ ∈ × u u
uuK N N      (3.49) 

 

 ( ) { } { }div d ( , ) 1, 2, , n, , 2n 1, 2, , m, , 2mp
p ij

i j
Ω

= − Ω ∀ ∈ × u
uK N N      (3.50) 

 

with n  and m  are the numbers of degrees of freedom for the velocity and pressure fields, 

respectively. We also use the pressure mass matrix, defined by 

 

 { } { }d ( , ) 1, 2, , m, , 2m 1, 2, , m, , 2mp p
p ij

i j
Ω

= Ω ∀ ∈ ×M N N      (3.51) 
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To test if an XFEM scheme is stable, we numerically compute the inf–sup parameter hβ . It 

can be proven that hβ  is given by the square root of the lowest positive eigenvalue of the 

generalized eigenvalue problem 

 

 T 1 qp p p qλ− =u uu uK K K M  (3.52) 

 

where T 1
p p

−
u uu uK K K  is the Schur complement. 

 

To solve this eigenvalue problem, the matrices uuK  and pM  should be non-singular; 

therefore, the interface should not pass very close to the nodes (section 3.3.2).  If hβ  is 

bounded from below as the mesh is refined, then the inf-stability test is passed and the error 

approximation is bounded by the projection error of the exact solution ( , )ex expu  onto the 

enriched finite element spaces. The projection error is expected to converge faster with 

XFEM than with the standard finite element approximations. 

 

 Closure 

In this chapter, we have presented a detailed derivation of the weak form of the Navier-

Stokes equations. The strategy of numerical integration is discussed in Section 3.3 were 

subcell integration is used due to the discontinuous enrichment functions in the XFEM. The 

intersected quadratic element is subdivided into four triangular sub-elements so that linear 

interpolation of the interface can be employed in each. Thereafter, the resulting sub-elements 

are further subdivided to obtain subcells for the purpose of integration. 

 

The weak formulation of the level set equation is given in Section 3.4. For time discretization 

we have chosen an explicit Runge-Kutta (RK) method of order 3. Because the level set 

function is transported by the flow velocity, its signed distance property (i.e., ( , ) 1tφ∇ =x ) 

is not preserved. Therefore, a reinitialization procedure is indispensable. In this thesis, we 

employ a straightforward geometric reinitialization (Section 3.5.2). 
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In the context of XFEM, there are still important areas open to further research: 

• the solution to the ill-conditioned; and  

• the development of efficient and accurate techniques for time-stepping in the XFEM. 

Improvement has been made in the ill-conditioned, as mentioned in this chapter. However, 

the issue of the time-stepping is not resolved yet.   

 

 

 



 

CHAPTER 4 
 
 

NUMERICAL SIMULATION OF SURFACE TENSION EFFECTS 

For many multi-fluids flows, surface tension effects may play an important role and can 

therefore not be neglected. The surface tension forces are a result of the uneven molecular 

forces of attraction experienced by fluid molecules near the interface. In this chapter we are 

concerned with the accurate modeling of surface tension forces.  

 

The modeling of surface tension forces is computationally difficult and still remains a 

challenge for two reasons. The first one is that it requires the computation of the normal and 

surface curvatures of the interface, i.e., first and second derivatives of the level set function. 

The second difficulty is that the surface tension is applied at the interface, i.e., in the context 

of the level set function, on a surface embedded in the mesh. 

 

We recall from the weak formulation of the Navier-Stokes equations (3.6) that the surface 

tension term is expressed as 

 

 
int

int( ) dγ κ φ
Γ

⋅ Γ nv  (4.1) 

 

where γ  is the surface tension coefficient, κ  is the curvature, and intn  is the unit normal 

vector to the interface intΓ  between the two fluids 1Ω  and 2Ω  (pointing to the domain where 

0φ > ) . 

 

 Numerical computation of normal and curvature 

It was noted before that the curvature is given by the Laplacian of the level set function. It is 

therefore natural to expect that unless ( )φ x  is sufficiently smooth, the computed curvature κ  

will be noisy (Groß and Reusken 2007). In this section, two numerical methods for 
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computing the normal vectors to the interface are discussed and compared. The first method 

computes the normal vectors using the gradient of the level set function: 

 

 int

φ
φ

∇=
∇

n  

 

Smooth normal vectors are reconstructed using the 2 projectionL − method. This method is 

stable and convergent in the sense of 2L . The second method evaluates the normal vectors in 

a straightforward way. In this method, a multi-level mesh refinement is first realized inside 

cut elements. Next, the points on the interface with a zero level set in each sub-element are 

computed and connected with straight segments iS  that are stored. Finally, the normal 

vectors to the piecewise linear interface are constructed. 

 

4.1.1 L2-projection method 

Because the interface normal unit vector intn  and curvature κ  are the first and second 

derivatives of the level set function, respectively, they can be approximated by a combination 

of appropriate projection and gradient recovery techniques. The continuous approximation 

G of the gradient of the level set function is reconstructed via the 2L -projection: 

 

 d d , Vφφ
Ω Ω

⋅ Ω = ⋅∇ Ω ∀ ∈ Gw w w  (4.2) 

 

where w  denotes the test function. 

 

Therefore, the vector of the nodal dof of G is the solution of the linear system 

 

 G G=M G F  (4.3) 
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where 

 

 
T

G Gd , dφ φ φ φ
Ω Ω

= Ω = ∇ Ω M N N F N  (4.4) 

 

Subsequently, we compute the unit normal for each node i  as 

 

 int,
i

i
i

= G
n

G
 (4.5) 

 

Similarly, the interfacial curvature can be obtained by the 2L - projection 

 

 ( )intd d Vφκ
Ω Ω

⋅ Ω = − ⋅ ∇⋅ Ω ∀ ∈  nw w w  (4.6) 

 

For a closed domain Ω , the surface integral can be integrated by parts, and the result 

involves only the normal to the interface 

 

 int intd d d , Vφκ Γ
Ω Ω Γ

⋅ Ω = ∇ ⋅ Ω− ⋅ ⋅ Γ ∀ ∈  n n nw w w w  (4.7) 

 

where Γn  denotes the unit normal to the domain boundary Γ . 

 

Denoting by κ  the vector of the interfacial curvature at the nodes, one solves the linear 

system 

 

 G κκ =M F  (4.8) 

 

where 
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 int intd dφ φ
κ Γ

Ω Γ
= ∇ ⋅ Ω− ⋅ ⋅ Γ F N n N n n  (4.9) 

 

Equation (4.7) avoids the direct imposition of derivatives on the normal vector intn . For an 

accurate and stable approximation of the gradient and the curvature, it is important that 

( , )tφ x  be very close to a signed distance function satisfying the Eikonal equation (1.16): 

 

 ( , ) 1tφ∇ =x  

 

Even if φ  is initially a distance function, it typically ceases to be so with time, due to the 

deformations induced by the velocity field. One remedy to this problem is to recover relation 

(1.16) by means of a reinitialization procedure, as described in section 3.5. 

 

4.1.2 Geometric method: Closest point on the interpolated interface 

The normal vector can be found using the closest point ( )c x  to the interface. The strategy is 

employed as follows: 

 

First, to obtain an accurate interface representation, the intersected elements are recursively 

subdivided. Figure 4.1 illustrates the general refinement procedure. Here, four levels of 

refinement are applied. The approach is quite simple, as the elements from the initial mesh 

that are cut by the interface are subdivided into four sub-elements of the same type; see 

Figure 4.1(a). Those sub-elements resulting from the first refinement being cut by the 

interface are refined a second time, see Figure 4.1(b) and so forth for the next level 

refinements. Subsequently, the points on the interface with a zero level set in each sub-

element are connected with straight segments (cf. Figure 4.1(d)). 
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(a) Recursive subdivision of 
level nr = 1. rn 1=

             
rn 2=

 

 

rn 3=
             

rn 4=
 

Figure 4.1 Example of recursive subdivisions of different levels to localize the interface. Red 
curve depicts the exact interface, and green points depict the iso-zeros level set 

 

  



66 

The value of the level set function at a point x  can be computed using a usual finite element 

interpolation: 

 

 
6

1

( ) ( )i i
i

x Nφ φ
=

= x  (4.10) 

 

where ( )i iφ φ= x  is the value of the level set function at node i . It is to be noted that the 

above computations are performed only for elements or sub-elements which are affected by 

the interface intΓ . 

 

In local coordinate system, the real shape functions for a 6-noded triangle are defined as 
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 (4.11) 

 

 

Figure 4.2 A quadratic element 
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where iL  are the area coordinates 

 

 
2A

i i i
i

a b x c y
L

+ +=  (4.12) 

 

The area of the triangle is simply computed as 

 

 

1 1

2 2

3 3

1
1

A det 1
2

1

x y

x y

x y

 
 
 =
 
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 (4.13) 

 

and 

 

 

1 2 3 3 2 1 2 3 1 3 2

2 3 1 1 3 2 3 1 2 1 3

3 1 2 2 1 3 1 2 3 2 1

a x y x y b y y c x x

a x y x y b y y c x x

a x y x y b y y c x x

= − = − = −

= − = − = −

= − = − = −

 

 

Second, for each grid point in Ω , we calculate the closest point to the approximated interface 

(see Figure 4.3). The closest point from x  to the interface h
intΓ  is defined as 

 

 ( )* h
int

*( ) min
∈Γ

= −
x

c x x x  (4.14) 

 

and the collinear unit vector colv  is 

 

 ( ) ( )
( ) sign ( )

( )col φ −=
−

x c x
v x x

x c x
 (4.15) 
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h
intΓ

colv

x

( )c x

2Ω

1Ω

− − − −

+ + + +
 

Figure 4.3 Closest point. Blue dots are grid points with their                               
corresponding closest point ( )c x  on the interface as red                                                      

dots. Collinear vectors ( )colv x  are drawn from ( )xc x


.  ”+ ”                                                          

and   ”− ” indicate the signs of the level set nodal values 

 

In the next step, the tangential unit vectors on the piecewise linear interface are computed by 

exploiting recursive subdivision (see Figure 4.4).  

 

h
intΓ

1P
2P

inttintn

( )c x

iS

iP

+

x

 

Figure 4.4 Projection of the tangential unit vector intt . The                                              

normal unit vector intn  is then computed using (4.17); the                                            

segments iS  are in red and the iso-zeros level set iP  are in green 
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The tangential unit vectors are therefore 

 

 1
int

1

i i

i i

P P

P P
+

+

−=
−

t  (4.16) 

 

The direction adopted when computing the tangential vectors is inconsequential because the 

direction of the normal unit vector is to be chosen according to the sign of the collinear unit 

vector. Recall from section 1.2.1 that the normal unit vector is defined to always points to the 

domain where 0φ > . The situation is presented in Figure 4.3 and in Figure 4.4.  

 

The normal vectors can now be computed as 

 

 
int

int

int

sign( )

sign( )

x y
col

y x
col

v t

v t

 
 =
  

n  (4.17) 

 

where int
xt  and int

yt  are the x −  and componentsy − of the tangential unit vector intt , 

respectively, and x
colv  and y

colv  are the x −  and componentsy − of the collinear unit vector 

colv , respectively.  

 

Subsequently, the curvature is calculated using equation (4.7). The quality of the 

representation depends on the mesh size (i.e., level of refinement rn ) and on the curve 

characteristics. Therefore, when the level set is made of non-smooth curves, the level of 

refinement is very important to obtain a satisfying geometrical representation of the interface. 

Both the numerical and geometrical errors are reduced as the mesh becomes more refined. 

 

 Comparison: Spatial convergence 

First, we compare the accuracy of the normal and curvature approximations with the two 

methods proposed above. 
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A stationary disc is considered. The following test case is proposed by Marchandise et al. 

(Marchandise, Geuzaine et al. 2007). The radius of the disc is 1.0 mr =  and is positioned at 

the center of the computational domain Ω  that is a square of size [ ] [ ]2, 2 2, 2− × −  as shown 

in Figure 4.5. The level set is given by 

 

 2 2( ) x y rφ = + −x  (4.18) 

  

 

Figure 4.5 Computational domain for the                                                                             
static disc test case 

 

The accuracy is evaluated by computing the 2 normL − of the error on the normal and 

curvature fields 
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where xn  and ex
xn  ( yn  and ex

yn ) are the approximated and exact normal in the directionx −  (

directiony − ), respectively, κ  and exκ  are the approximated and exact values of the 

curvature,  eΩ  refers to the element domain, and εδ  is the Dirac delta function. We have 

 

 
2 2 2 2

( ) , ( )ex ex
x y

x y
n n

x y x y
= =

+ +
x x  (4.21) 

 

and: 

 

 
2 2
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where ε  represents the interface thickness, 0.5ε = . 

 

For this example, we have chosen a linear triangular element (T3) and a quadratic triangular 

element (T6) to approximate the level set function. Figure 4.6 shows the 2 normL − of the 

error for the normal and curvature fields as a function of the mesh size. A constant 

refinement level rn 7=  is employed. The convergence rates (m) indicated in Figure 4.6 are 

the average slopes of the respective convergence curves.  
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Figure 4.6 Stationary circular bubble: convergence study, 2 normL −                                      

of the error on the normal (a) and curvature (b). We compare the two                         
following methods on structured meshes: The geometrical method                                           
( T6Geo− ) and the 2 projectionL − method using a linear element                                            

( 2 T3L − ) and a quadratic element ( 2 T6L − ) 

 

From Figure 4.6(a), we observe that the quadratic interpolation 2 T6L −  leads to better 

accuracy. However, the convergence rate is only suboptimal at approximately 2.11(h )Ο . On 

the other hand, using linear interpolation 2 T3L − , the accuracy is significantly lower, and 
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the normal vectors approximation is on the order 2.04(h )Ο , which compares well with the 

optimal rate of 2(h )Ο . The T6Geo−  method yields good accuracy. 

For the curvature approximation, in Figure 4.6(b), we observe that all three methods lead to 

approximately the same accuracy. However, the results show that the convergence rate of the 

2 T3L −  method is much faster. 

 

Figure 4.7 compares the convergence study of the T6Geo−  method for different levels of 

refinement r3 n 7≤ ≤ . We observe a clear convergence to the exact solutions as the 

refinement level increases. 
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Figure 4.7 Stationary circular bubble: convergence study of                                                  
the T6Geo−  method for different levels of refinement rn  

 

 

 Comparison: Moving interface 

To test the robustness of the method in a more general case, we performed the same spatial 

convergence study when the interface evolves over time. The center of the disc is initially 

placed at T( 0.50, 0.50)− − . The advection is driven by a constant velocity field 
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T(0.50, 0.50)=u  so that the disk moves from its initial position to the center of the square in 

1.0 s .  

 

 

Figure 4.8 Moving circular bubble: initial                                                            
configuration 

 

Figure 4.9 shows the 2 normL − of the error for the normal and curvature fields, computed at 

the final time 1.0 sendt = , as a function of the mesh size. The time step length is set to 

0.001stΔ =  for all simulations, and the reinitialization procedure (described in Section 3.5) 

is performed every 25 time steps. A constant refinement level rn 7=  is maintained. 
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Figure 4.9 Moving circular bubble: convergence study                                                            
at 1 st = , 2 normL − of the error on the normal (a)                                                                 

and curvature (b) and convergence rates (m) 

 

Figure 4.9(a) compares the convergence results on the normal; we can see that the accuracy 

of all three methods is lower than that obtained from the stationary bubble case. The 2 T6L −  

method still offers a more accurate result than the T6Geo−  method. 

 

From Figure 4.9(b), we clearly see that the 2 projectionL −  method fails to predict an 

accurate curvature; our method T6Geo−  leads to a much better accuracy and convergence 
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rate. The above simple demonstration has tremendous implications on the numerical 

accuracy of the curvature term that is used for the computation of the surface tension force.  

From the remarks made in this section, we retain the following rule. In the case of flow 

problems with moving interfaces, the normal vectors will be computed by means of the 

geometrical method T6Geo− . Another advantage of using this method is that the normal 

vectors are naturally perpendicular to the piecewise linear interface. On the other hand, for 

problems with stationary interfaces, the 2 projectionL −  method using a quadratic 

interpolation will be used. 





 

CHAPTER 5 
 
 

SOLUTION PROCEDURE 

In this chapter, the solution procedure will be described. Almost all the necessary ingredients 

have been presented in previous chapters: governing equations, spatial and temporal 

discretization, enrichment of the approximation space, sub-cell quadrature and discretization 

of the surface tension. This is then followed by a discussion on the time-step imposed due to 

the time scales of the various involved physical phenomena (gravitational force, viscous 

term, surface tension force, etc.). 

 

 Coupling of Navier-Stokes equations with level set transport equation 

The time dependence of the enrichment functions not only complicates the time integration, 

but it also intervenes and couples the fluid flow with the level set.  

 

In a two-phase fluid flow, a change in fluid velocity affects the position of the interface, 

which in turn affects the fluid velocity and so on. In general, this type of coupled problem is 

solved using a segregated approach (Fries and Belytschko 2010). This means that the flow 

field is calculated with a fixed interface, and then the interface is moved by the computed 

velocity field. We distinguish two methods: a weak coupling and strong coupling. In a weak 

coupling, the procedure is carried out only once per time step. In contrast, with a strong 

coupling, the procedure is repeated until convergence is achieved in both the velocity field 

and the interface position. Strong coupling between the flow and the interface solvers should 

offer high accuracy. However, the convergence of the segregated solver is not guaranteed 

(Carlos, Park et al. 2001), and the required number of iterations may increase significantly. 

On the other hand, as a small time step size of 4 310 10 (s)− −  is required for the greater 

accuracy of the level set, the differences in the solution fields between two successive time 

levels are sufficiently small. Due to its stability and rapidity, a weak coupling is employed in 

this work. The flowchart in Figure 5.1 summarizes the solution procedure. 
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Figure 5.1 Flowchart for weak coupling between                                                            
Navier-Stokes and level set transport equations 
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Our experience indicates that the reinitialization procedure of the level set function only has 

to be performed for long-time two-phase flow simulations. The level set is reinitialized if 

 

 ( )max i rφ ε− ∇ >1  (5.1) 

 

with [ ]0.05, 0.10rε ∈ . 

 

 Time step size limit 

The time step must be controlled to maintain the stability when updating the flow field and 

the level sets. The time step is obtained based on the CFL number, the gravitational force, the 

viscous term, and the surface tension force 

 

 
h

min
e

ct Ω

 
Δ ≤   

 u
 (5.2) 

 

 
h

min
e

gt gΩ

 
Δ ≤   

 
 (5.3) 

 

 
23 h Re

min
14

e

vt
ρ

μΩ

 
Δ ≤  
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 (5.4) 

 

where the elemental Reynolds number is defined as 

 

 
h

Re
2

eρ
μ

=
u

 

 

According to Brackbill et al. (Brackbill, Kothe et al. 1992), due to the explicit treatment of 

the surface tension, the time step restriction is given as follows: 
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3/2

min he
stt

ρ
γΩ

 
Δ ≤   

 
 (5.5) 

 

The time step is then updated as 

 

 1 β min( , , , )n
c g v stt t t t t+Δ = × Δ Δ Δ Δ  (5.6) 

 

where the factor β  is a user-defined CFL number. 

 

 The Navier-Stokes/level set coupling algorithm 

The coupling between the flow and the level set field is detailed in Algorithm 5-1. Recall that 

the level set function is used for two reasons: to locate the interface and to construct the 

enriched functions. Therefore, the same spatial discretization is used for both the flow and 

the level set fields. Given fluid properties, initial conditions for the flow and level set fields, 

and boundary conditions the time loop is started. At the beginning of each time step, the flow 

is first computed (3.6). An update of the distribution of the enriched nodes and elements is 

realized. This step is followed by a construction of integration cells. And then we solve for 

the velocity and pressure. The computed velocity field is used to advect the interface to a 

new position (3.36). Reinitalization of the level-set field is arranged at the end of the time 

step. 
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Algorithm 5-1  Coupling algorithm 

 

 
1. set domain Ω  and generate mesh 

2. initialise flow and level set solvers: 0 , , , , , βk kφ ρ μ γ g   

3. set 0t =  and 0n =  

4. set initial values 0n =u u , 0np p= , and 0nφ φ=  on Ω  

5. set boundary values for 0u  and 0p  on DΓ  and NΓ  

6.  

7. time-loop: while endt t≤  

8.  

9.      time step restriction 

10.           compute time step tΔ  according to Section 5.2 

11.  

12.      level set solver 

13.           compute int ( )nφn  and ( )nφκ  according to Section 4.1.2 

14.  

15.       level set solver → flow solver: transfer int, ( ), ( )n n nφ φ φn κ  

16.  

17.      flow solver 

18.           update distribution of enriched nodes and elements 

19.           construct XFEM elements sub-divided into cells e
iΩ  such that e e

i i∪ Ω = Ω  

                and e
i i∩ Ω = ∅  

20.           define the knot points i
jx  and weights i

jω  of the pointQ −  Gauss 

                quadrature in each cell e
iΩ   

21.           compute surface tension term                                   

22.           set boundary values for 1n+u  and 1np +  on DΓ  and NΓ   
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23.           solve for 1n+u  and 1np +  according to Section 3.2 

24.  

25. flow solver → level set solver: transfer 1n+u  

26.  

27.      level set solver 

28.           solve for 1nφ +  according to section 3.4 

29.           compute 1nφ +∇  

30.           if reinitialization: 1n
i rφ ε+− ∇ >1   

31.                reinitialize 1nφ +  according to Section 3.5.2 

32.           end if 

33.  

34.      update time step: 1nt t t += + Δ  and 1n n= +  and return to step 7 

35.  

36. end while 

 

 

 



 

CHAPTER 6 
 
 

NUMERICAL TESTS 

This chapter presents the numerical tests. We investigate different enrichment schemes of 

velocity and/or pressure fields with ( )iN ∗u x  of different orders than ( )iNu x . Whenever 

possible, we choose test cases where theoretical or numerical solutions are available such that 

comparisons can be made with our results. 

 

The first part is devoted to problems with a stationary interface. All test cases in this part are 

calculated using the stationary Navier-Stokes equations. The classical Poiseuille problem is 

chosen to compare the numerical solutions with the analytical solution. The stability, in the 

sense of the inf-sup condition, is studied numerically. Next, an extensional flow is 

considered; the problem exhibits a strong discontinuity in the pressure field because of a 

jump in the viscosity. 

 

The second part addresses flow problems with a moving interface. First, a simple test case of 

two immiscible fluids flowing in a tank subjected to a constant horizontal acceleration is 

studied. At steady state, the interface should remain straight, and the theoretical slope is 

known. Subsequently, a time-varying acceleration causing water sloshing with large 

amplitude is considered; this test case helps to verify that the chosen enrichment schemes are 

capable of simulating unsteady interfaces with large deformations. The validation work is 

continued for the test case of a dam break over a terrain with or without an obstacle. The last 

test is a bubble rising in a container fully filled with water; the problem exhibits a weak 

discontinuity in the velocity field and a strong discontinuity in the pressure field. We 

compare the two methods of computing the normal vectors (Section 4.1) in this test case. 
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 Stationary straight interface 

6.1.1 Poiseuille two-phase flow 

The horizontal stratified flow of two immiscible and incompressible fluids between parallel 

walls is first considered. The length of the channel is L 1.25 m= , the height is H 0.25 m= , 

and the interface is located at H
0 2h α= + , where α  is set to be 310 −  (the parameter α  is 

used to avoid the interface being too close to a node). The gravitational acceleration is 

T 2(0, 9.81) m/s= −g . 

 

The fluid characteristics are as follows:  

• density 3

1 1000 kg/mρ = , 3

2 1 kg/mρ = ; and 

• dynamic viscosity 1 1 kg/(m.s)μ = , 2 0.10 kg/(m.s)μ = .  

 

Surface tension is not included in this test case, that is, weak discontinuities in the velocity 

and pressure fields occur across the interface. 

 

The long-time solution will converge to the steady state solution, which can be described by 

an analytical solution (6.3).  

 

 

 

Figure 6.1 Two-phase Poiseuille: computational                                                                        
domain and mesh, with h 0.05e =  
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The pressures are imposed on the right and left limits of the calculation domain to ensure a 

pressure difference 310 PapΔ = − . The velocity is set to zero at the top and bottom 

boundaries: 

 

 ( , 0) ( , H) 0x y x y= = = =u u  (6.1) 

 

and the vertical velocity component υ  is zero at the inlet and outlet boundaries for all 

degrees of freedom (i.e., the enrichment dofs are also set to zero): 

 

 ( 0, ) ( L, ) 0x y x yυ υ= = = =  (6.2) 

 

The analytical solution assuming fully developed flow is 
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 (6.3) 

 

and 

 

 ( , ) 0ex x yυ =  (6.4) 

 

where 

 

 

2 2
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1
2 0 1 0

2 1
2
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p
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 (6.5) 
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The errors between the analytical and numerical solutions are measured using the normalized 

2 normL − defined as 

 

 2
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e ee e

e ee e

e e
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e e
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− Ω + − Ω−
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  
  

u

u u

u
 (6.6) 

 

where u  and exu  (υ  and exυ ) are the approximated and exact velocities in the x -direction    

( y -direction), respectively, and eΩ  refers to the element domain.  

 

It seems natural to use the ridge enrichment (2.11) for the velocity, and sign-enrichment (2.4) 

or the ridge-enrichment for the pressure. We use the following abbreviations: 

 

Table 6-1  XFEM approximations and their abbreviations 

 

case velocity pressure u
iN
∗  uψ  p

iN
∗  pψ  

1 ∅ − Pଵ 
enrich. 

none 1P R×  0  - 1P  Rψ  

2 none 1P sign×  0  - 1P  signψ
 

3 Pଵ − Pଵ 
enrich. 

1P R×  1P R×  1P  Rψ  1P  Rψ  

4 1P R×  1P sign×  1P  Rψ  1P  signψ
 

5 Pଶ − Pଵ 
enrich. 

2P R×  1P R×  2P  Rψ  1P  Rψ  

6 2P R×  1P sign×  2P  Rψ  1P  signψ
 

 

 

The comparison between the numerical and analytical velocity field is presented in Figure 

6.2. The solutions have been computed for the unstructured mesh shown in Figure 6.1. 

We can clearly observe a parabolic profile for each subdomain. 
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Figure 6.2 Two-phase Poiseuille: the 1 1P P−  enrichment performs better than the           

10 P−   and 2 1P P−  enrichments. The horizontal velocity is evaluated at                                

the Gauss points of each element 



90 

 

 

 

 

 

 
 

Figure 6.3 Two-phase Poiseuille: convergence                                                                    
study for the different enrichment schemes 
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Figure 6.3 compares the convergence results between different enrichment schemes. The 

horizontal axis refers to the element size, and the vertical axis refers to the 2 normL −  of the 

error. A sequence of unstructured meshes was generated, with mesh sizes of 1/N  where 

{ }N 20, 40, 60, 80,100,124= . The convergence rates (m) indicated in Figure 6.3 are the 

average slopes (m). 

 

In the case where the velocity field is not enriched (i.e., 10 P−  enrichment), there is high 

error and poor convergence 1(h )Ο , as shown in Figure 6.3(a). The enrichment of the pressure 

field does not improve the convergence rate of the velocity error. This result can be explained 

by the fact that the interface conditions are not respected.  

 

The interface condition for the normal stress (1.12) can be rewritten as 

 

 ( )T
int int int( ) ,p μ γ κ− + ∇ + ∇ ⋅ = ∀ ∈ΓI u u n n x 

    (6.7) 

 

The influence of the surface tension is neglected in this test case. 
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 (6.8) 

 

where intnu = ⋅u n  is the normal component of the velocity at the interface.  

 

From Eq. (6.8) we should have 
int

0nu
nμ ∂
∂ = 

    and   0p = . The first condition cannot be 

satisfied since we have 
int

0nu
n
∂
∂ = 
    and   0μ ≠ , leads to 
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   int
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2 0,nu
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n
μ ∂− + ≠ ∀ ∈Γ
∂

x
 
 
 
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 (6.9) 

 

This error can be decreased by refining the mesh in the vicinity of the interface. 

 

On the other hand, using first-order ( )iN ∗ x  (i.e., 1 1P P−  enrichment, first-order ( )iN ∗u x  and 

( )p
iN ∗ x ) leads to the (nearly) exact solution, as shown in Figure 6.3(b), with the  2 normL −  

on the order of 1310− .  

 

For the functions ( )iN ∗u x  and ( )p
iN ∗ x  of the same order as the FEM shape functions ( )iN u x  

and ( )p
iN x , respectively, (i.e., 2 1P P−  enrichment, Figure 6.3(c)), we observe a convergence 

order of 5/2(h )Ο , which is suboptimal to the supposedly optimal convergence order 3(h )Ο  

for the velocity. 

 

An important observation can be made that both the convergence rate and accuracy are 

affected significantly when the order of [ ]( ) ( , ) ( , )i iN t tψ ψ∗ ⋅ −u x x x  in the enrichment part is 

higher than the order of ( )iN u x ; indeed, this is one condition for the XFEM convergence. 

Furthermore, to satisfy the velocity continuity as required by the Galerkin formulation, a 

continuous ( , )tψ x  must be used, such as the Ridge enrichment, and therefore ( )iN ∗u x  

should be of order 1.  

 

This convergence study was a first step to evaluate the different enrichment strategies for 

stationary interfaces. The verification of the inf-sup condition is another aspect in the 

validation. The inf-sup hβ  is approximated for the Poiseuille problem using gradually 

refined unstructured triangular meshes. The evolution hβ  value is plotted in Figure 6.4. 
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Figure 6.4 Two-phase Poiseuille: evolution of the numerical inf-sup hβ  
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For a structured mesh, the inf-sup values are constant for all enrichments (cf. Figure 6.4 (a), 

(c), and (e)). This indicates that these enrichments pass the inf-sup test (equation (3.46)) and 

are predicted to be stable.   

 

In contrast, for an unstructured mesh, Figure 6.4 (b), (d), and (f) show that as the mesh is 

made finer, the inf-sup values corresponding to all signp×  enrichments vary significantly. 

This trend indicates that the enrichments do not pass the inf-sup test. We believe that this 

comes from an ill-conditioned system. 

 

To allow for a clear comparison, we analyze the effect of an ill-conditioned system on the 

accuracy of the different enrichment schemes in the following study. We discretize the 

domain with a structured 16 80×  mesh ( h 0.0156e ≈ ) to easily change the position of the 

interface across elements, as depicted in Figure 6.5. An ill-conditioned system will occur 

when the interface intΓ  is approximately aligned with a node or an element edge. The 

interface position is varied from 4δ 10−=  to 7δ 10−= .   

 

 

Figure 6.5 Position of the interface across elements 

 

The variation of the minimum element area ratio minA  with δ  is shown Figure 6.6. 

 

 ( )1 2*minA min A Ae e

e I
Ω Ω

∈
=  (6.10) 

 

where *I  is the set of intersected elements. The minimum area ratio is on the order of 410 −  

to 1010− . 
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Figure 6.6 Minimum element area ratio minA  

 

The criterion in equation (3.32) is not applied when constructing the system matrices. The 

values of the 2 normL −  error on the velocity field are shown in Figure 6.7 as the interface 

position δ  varies. 

 

As seen from Figure 6.7, if the pressure is enriched with the sign-enrichment, the 2,L u  value 

increases drastically as the ratio of the intersected areas decreases, and the accuracy is 

significantly affected. In contrast, for the Ridge-enrichment, we observe that 2,L u  remains 

approximately constant, which indicates very little effect on the accuracy. This is particularly 

advantageous for iterative solvers and/or nonlinear problems. 
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Figure 6.7 Two-phase Poiseuille: influence of                                                                         
an ill-conditioned system 
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6.1.2 Extensional flow problem 

The following test case is proposed by Ausas et al. (Ausas, Buscaglia et al. 2012). We 

consider two fluids in a unit square domain with viscosities 1 kg/(m.s)5μ =  and 

2 kg/(m.s)1μ = , separated by a straight horizontal interface at 0h 0.5 m=  (cf. Figure 6.8). 

The density ρ  is equal to 310 kg/m  for both fluids. Neglecting the gravity and the influence 

of the surface tension and imposing the linear velocity field 

 

 
1

( )
x

y

− 
=   
 

u x  (6.11) 

 

the pressure field has a jump across the interface because of a jump in the viscosity. 

 

 
( )
( )

2 21
1 2 02

2 21
02

( ) 2 ( ) if h
( )

( ) if h

x x y y
p

x x y y

ρ μ μ

ρ

 − + + − <= 
− + ≥

x  (6.12) 

 

The pressure is imposed null at the point T(1, 1) .  

 

A sequence of unstructured meshes was generated; the first one is presented in Figure 6.8. 

We compute the pressure error in the 2 normL − as a function of h e  for two enrichment 

schemes. The results of the convergence study are shown in Figure 6.9. 
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Figure 6.8 Extensional flow problem:                                                                    
computational mesh, with h 0.091e =  

 

 

Figure 6.9 Extensional flow problem with jump in                                                                     
the viscosity: convergence study, 2 normL −  of the                                                                     

error in the pressure field and convergence rates (m) 

 

Figure 6.9 compares the convergence results between the Ridge-enrichment and the sign-

enrichment. We observe that using the Ridge-enrichment leads to a poor convergence rate of 

1/2(h )Ο  and produces higher pressure errors due to the jump in the pressure field. In contrast, 
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using the sign-enrichment leads to the optimal convergence rate of 2(h )Ο  and to a much 

better accuracy.  

 

Figure 6.10 shows the pressure fields for the sign function (top) and the ridge function 

(bottom).  

 

 

 

 

 

 

Figure 6.10 Extensional flow problem with                                                           
jump in the viscosity: pressure field 
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Note that the case without inertial effects (i.e., 1 2 0ρ ρ= = ) corresponds to a constant 

pressure field on each fluid, with a jump at the interface of magnitude 1 22 ( )μ μ− . 

 

The views of these pressure fields at 0.5x =  are compared in Figure 6.11, in which we can 

clearly observe the improved behavior near the interface when the sign-enrichment is used.  

 

 

 

 

 

 

Figure 6.11 Extensional flow problem with jump in the                                                          
viscosity: comparison of the pressure field section at 0.5x =  

 

If a discontinuous volume force is introduced, 
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 0

0

0;

10 if h

0 if h

x

y

g

y
g

y

=

− <= 
≥

 (6.13) 

 

the analytical solution for the pressure field is given by: 

 

 
( )
( )

2 21
0 1 2 02

2 21
02

( ) (h y) 2 ( ) if h
( , )

( ) if h

yx x y g y
p x y

x x y y

ρ μ μ

ρ

 − + − − + − <= 
− + ≥

 (6.14) 

 

in which there is a jump in the pressure of size 1 22 ( )μ μ−  and a jump in the pressure 

gradient of size ygρ . The boundary conditions and interface position are the same as in the 

previous case. Figure 6.12 shows the 2 normL −  of the error in the pressure field for different 

meshes, and Figure 6.13 indicates the pressure fields for the sign function (left) and the ridge 

function (right). 

 

 

Figure 6.12 Extensional flow problem with jump in the                                                 
viscosity and discontinuous volume force: convergence                                                 

study, 2 normL −  of the error in the pressure field 
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Figure 6.13 Extensional flow problem with jump in the                                                              
viscosity and discontinuous volume force: pressure fields                                                         
for the sign function (left) and the ridge function (right) 

 

The sign-enrichment still achieves an optimal convergence rate of 2(h )Ο  and an optimal 

accuracy. 
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 Numerical examples: A moving interface 

In this section, we extend the comparison of different XFEM enrichments to cases of 

unsteady flows with moving interfaces.  

 

For all test cases in this section, the reinitialization procedure is performed using a constant 

refinement level of rn 4= .  

 

6.2.1 Rectangular tank under horizontal acceleration  

The first test case is that of the flow of two fluids in a rectangular tank moving with a 

horizontal acceleration. The height of the tank is H 0.365 m= , the length is L 0.584 m= , 

and the interface is located at 0h 0.2 m= . This is a relatively simply case where the behavior 

of the enrichments can be easily assessed; the slope of the free water surface obtained at the 

steady regime can be compared with the theoretical result. 

 

At the initial instant, the two fluids are at rest (cf. Figure 6.14), and then the acceleration is 

increased over a period T , 

 

 
( ) min ,1.0 ;

3

( ) .

x

y

g t
g t

T

g t g

 = ×  
 

=

 (6.15) 

 

where 29.81 m/sg = −  and 2 sT = . 

 

The properties of the fluids are 3
1 1000 kg/mρ = , 3

2 1kg/mρ = , 1 0.03 kg/(m.s)μ = , and 

2 0.001 kg/(m.s)μ = . The influence of the surface tension is neglected in this test case. Slip 

boundary conditions are prescribed along the walls of the tank, and the reference pressure 
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20.0 N/mp =  is applied at the top wall. The domain Ω  is discretized with 1114 triangular 

elements (cf. Figure 6.14), and the simulation spans 3.0 s . 

 

 

Figure 6.14 Tank under horizontal acceleration: initial configuration                                        
and computational mesh, h 0.016e =  

 

The position of the interface between two fluids in a rectangular tank when the tank is 

subjected to constant acceleration along the directionx −  is given by 

 

 0 0

L
h

2
x

y

g
y x

g
 = − − + 
 

 (6.16) 

 

where 0y  is the free surface height of the liquid from the bottom of the tank. 

 

The observed flow shows an interface (free surface) whose slope gradually increases until it 

reaches a steady value close to the theoretical ex 1 3x yS g g= − = −  when the enrichments are 

stable. 

 

Table 6-2 shows the relative error in the computed slope for different enrichments when a 

steady solution is reached. 
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 num ex

ex

% 100
S S

E
S

−
= ×  (6.17) 

 

Table 6-2  Errors of the interface slope for different enrichments 

 

case velocity pressure numS  %E  

1 ∅ − Pଵ 
enrich. 

none 1P R×  0.3316−  0.65 %  

2 none 1P sign×  0.3307−  0.79 %  

3 Pଵ − Pଵ 
enrich. 

1P R×  1P R×  -  

4 1P R×  1P sign×  -  

5 Pଶ − Pଵ 
enrich. 

2P R×  1P R×  incomputable  

6 2P R×  1P sign×  incomputable  

(-) computations diverge. 

 

As indicated in cases ( c ) to ( f ) in Figure 6.15, when the velocity field is enriched, unstable 

solutions are obtained. In comparison, the solutions only enriched by the pressure field show 

no oscillations (cases ( a ) and (b ) in Figure 6.15). The combination of enriched 1 1P P−  

approximations appears to suffer from instability (cases (c ) and ( d ) in Figure 6.15); the 

segregated solver broke down during a fluid solve. 
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Figure 6.15 Tank under horizontal acceleration: free surface for different enrichments 

 

The velocity enrichment led to spurious velocities or unphysical currents close to the 

interface. These parasite velocities initially disrupt the flow, leading to the phenomenon 

being amplified until the system can no longer be resolved (cf. Figure 6.15( c ) and ( d )). We 

observe that these currents decrease slightly in magnitude with the increased mesh 

refinement and/or with smaller computational time steps.  

0
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0
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2 1 1 1

0

0.1

0.2

0.3
t = 3.0 s

0

0.1

0.2

0.3
t = 3.0 s

2 1( ) P R P Re × − ×  2 1( ) P R P signf × − ×  

1 1( ) P R P signd × − ×  1 1(c) P R P R× − ×  

1( ) 0 P signb − ×  1( ) 0 P Ra − ×  
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Figure 6.16 Parasite velocities: the ∅ − Pଵ                                                            
enrichment (a) performs better than the Pଵ − Pଵ (b)                                                     

and the  Pଶ − Pଵ (c) enrichments 

 

We conclude that velocity enrichments require additional stabilization terms in the 

variational formulation, as performed in (Schott, Rasthofer et al. 2015). These results 

motivate the decision to not enrich the velocity field, but rather employ a smoother viscosity 

(6.18) across the interface. The subsequent test cases will further justify this choice. 
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The viscosity μ  in the flow field can be smoothed out across the interface as 

 

 ( ) 1 1 ( )i

j

Hα
μμ φ φ
μ

 
= + −  

 
 (6.18) 

 

in which subscripts i  and j  denote two adjacent phases, and the smoothed Heaviside 

function is usually expressed as:  

 

 
( )

0

sin( )
( )

2 2

1
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φ α

π φ αφ αφ φ α
α π

φ α

≤ −

 += + <

 ≥

 (6.19) 

 

where α  represents the interface thickness. This parameter must be chosen adequately, we 

refer to (Zahedi and Tornberg 2010) for a discussion of how the regularisation zone decays 

for different values of hemα = . Based on these results, we have chosen 1.5h 2he eα =  . 

 

 

Figure 6.17 Numerical smoothing region  
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6.2.2 Sloshing flow in a tank 

We consider a two-phase sloshing flow. The sloshing of liquids in moving containers is of 

practical concern in many engineering applications, such as containers for transporting 

liquids on highways, the design of automotive fuel tanks, seismically excited storage tanks, 

ships and space vehicles, and dams. The amplitude of the sloshing depends on the frequency 

and amplitude of the tank motion, the fluid fill level, the tank geometry and the liquid 

properties. The unsteady character of the flow and the strong deformation of the interface 

make this case test interesting for assessing the numerical solver.  

 

The domain Ω  is a rectangular tank with height H 0.50 m=  and width L 1 m= . The two 

fluids in 1Ω  and 2Ω  are initially at rest and separated by a horizontal level set 0h 0.275 m=  

(cf. Figure 6.18). The fluids’ movement is driven by an oscillating gravity vector. This is to 

mimic a periodic ’tank’ motion, swinging forth and back and pointing up to 4 degrees away 

from the downward y  direction at its limits, 

 

 
( )

( )
max

max

( ) sin sin(2 ) ;

( ) cos sin(2 ) .

x

y

g t g f t

g t g f t

θ π

θ π

= −

=
 (6.20) 

 

where 29.81 m/sg = − , max 4 /180θ π= , and 1 Hzf = .  

 

The densities of the two fluids in 1Ω  and 2Ω  are 3
1 1000 kg/mρ =  and  3

2 1kg/mρ = , and the 

dynamic viscosities are 1 0.03 kg/(m.s)μ =  and 2 0.001 kg/(m.s)μ = , respectively. The 

influence of the surface tension is neglected in this test case. 
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Figure 6.18 Sloshing tank: initial configuration and                                              
computational mesh, with h 0.015e ≈  

 

Slip boundary conditions are prescribed along the walls of the tank, and 20.0 N/mp =  is set 

along the upper boundary. The domain Ω  is discretized with 2497 triangular elements (cf. 

Figure 6.18), and the simulation spans 6.0 sendt = .  

 

No enrichment is used for the velocity field, which is continuous at the interface and merely 

exhibits a kink; however, the pressure field is enriched with either the sign-enrichment or the 

Ridge-enrichment. 

 

The simulation presented is not based on any experimental or analytical test case; it only 

serves to show the potential of the method to capture the large-amplitude sloshing. 

 

The fluid movement thus initiated tends to amplify, forming a large-amplitude wave. Figure 

6.19 shows the interface position and velocity solution in m / s  for various time instances 

using the 10 P sign− ×  enrichment. The inclination angle of the tank is exactly the same as 

the angle of the gravity vector from its initial vertical position. 
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Figure 6.19 Sloshing tank: interface position and velocity                                                
solution in m / s  for various time instances 



112 

To depict the dynamics in the tank, we plot the interface height versus time at the right side 

wall, as shown in the following plot. 

 

 

Figure 6.20 Sloshing tank: interface height at the                                                                  
right side wall 

 

 

6.2.2.1 Comparison of 10 P R− ×  and 10 P sign− ×  enrichment 

     

Figure 6.21 Sloshing tank: comparison of snapshots of the velocity field at t 1.20 s=  
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Figure 6.21 illustrates that 10 P R− ×  enrichment leads to disturbed and higher values for the 

velocity field, while a smooth and regular velocity field can be observed using 10 P sign− ×  

enrichment.  

 

Finally, we perform a study on the mass conservation properties of the two enrichments. 

Because both fluids are incompressible, the densities are constant. Mass conservation then 

dictates that the area of each fluid should not change over time. Figure 6.23 compares the 

mass errors of the liquid in 1Ω  over time calculated by 

 

 
( ) ( )

( )
1 1

1

( ) ( 0)
Mass error % 100

( 0)

A t A t

A t

Ω − Ω =
= ×

Ω =
 (6.21) 

  

where ( )1( )A tΩ  is the total area of the liquid in 1Ω  at time t . We should note that we have 

not used any ad hoc algorithm to enforce the global mass conservation. 

 

 

Figure 6.22 Sloshing tank: mass conservation for [ ]t 0, 6 s∈  

 

As mentioned before, the surface tension force is neglected; the magnitude of the pressure 

jump across the interface depends on the jump in the normal derivative of the normal 
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velocity nu  and the jump in the viscosity. Although the jump in the viscosity is too small, this 

error (  
int

2 0nu
np μ ∂
∂− + ≠ 

   ) should not be neglected. This is may be the reason that the 

10 P sign− ×  enrichment is more accurate compared to the 10 P R− ×  enrichment.  

 

We also tested the procedure, described in Section 3.3.1, for the subcell division required for 

the Gaussian quadrature of the Galerkin weak form. We recall that the numerical integration 

used employs the subdivision procedure ( n 1r = ). For comparison, the above test is repeated 

for the 10 P sign− ×  enrichment without any subdivision ( n 0r = ). Figure 3.3 shows an 

improvement in the mass conservation using the subdivision integration. 

 

 

Figure 6.23 Sloshing tank: comparison of                                                                            
mass conservation using n 0r =  and n 1r =                                                                             

for the numerical integration 

 

 

6.2.3 Dam break problem 

The simulation of the collapse of a column of water in a tank is a test case commonly used to 

validate the ability of a code to simulate complex unsteady free surface flows. The 
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simulations presented here correspond to the experimental tests carried out by Martin and 

Moyce (Martin and Moyce 1952) and Koshizuka et al. (Koshizuka, Tamako et al. 1995).  

 

 

Figure 6.24 Dam break problem: initial                                                              
configuration 

 

The problem consists of a rectangular column of water initially sustained by a dam that is 

suddenly removed. Under the influence of gravity T 2(0.0, 9.81) m/s= −g , the water collapses 

and flows downward until it violently hits the opposite wall. Then, the water rises along the 

wall and collapses again, producing a sloshing effect.  

 

The maximum flow speed, between the instants 0.23 st =  and 0.27 st = , exceeds 2.60 m / s , 

and the depth is approximately 0.05 m . The Reynolds number based on these values is 

Re 13000= . 

 

The domain Ω , as shown in Figure 6.24, is a tank with dimensions [ ] [ ]0, 4 0, 0.40a × , where 

0.146 ma = , following references (Martin and Moyce 1952) and (Koshizuka, Tamako et al. 

1995). The water column has dimensions [ ] [ ]0, 0, 2a a× . The densities of the fluids are 

3
1 1000 kg/mρ =  and 3

2 1kg/mρ = , and the dynamic viscosities are 1 0.01 kg/(m.s)μ =  and 

2 0.001 kg/(m.s)μ = . The influence of surface tension is neglected in this test case.  

 

4a

0.
40

m

gy

2a

a
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Slip boundary conditions are assumed along the three solid walls and the upper boundary is 

free; a zero-traction Neumann boundary condition is set along the upper boundary. The 

computational domain is discretized with 1949 elements (38 25) 2× × , and the simulation 

lasts for 1.0 sendt = . 

 

In Figure 6.26 the evolution of the free surface is compared with the experimental results 

published in (Koshizuka, Tamako et al. 1995), showing good qualitative agreement. 

 

The evolution of the water front wx , the position of its tip ( 0)wx t a= = , and the height 

wy  of the column, measured at the left vertical wall ( 0) 2wy t a= = , as functions of time are 

shown in Figure 6.25. For comparison, the experimental values taken from Martin and 

Moyce (Martin and Moyce 1952), denoted by “MM”, are also included.  

 

 

Figure 6.25 Dam break problem: Dimensionless width /wx a  (i)                                          

and height /(2 )wy a  (ii) as a function of time, comparison with                                          

experimental data from (Martin and Moyce 1952) 

 

We observe the good agreement between the numerical results and the experimental data 

(Martin and Moyce 1952). The observed difference in Figure 6.25(i) (dimensionless width of 



117 

the water column as a function of time) may be explained by the slip boundary condition 

assumed at the side walls and the bottom of the numerical test setup. Note also that the 

experimental data deviate somewhat from each other. 

 

 

      

 

      

 

      
 

Figure 6.26 Dam break problem: comparison of the numerical and                       
experimental (Koshizuka, Tamako et al. 1995) free surfaces 

 

t = 0.0 s

t = 0.20 s

t = 0.40 s
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Figure 6.26 Continued 

 

 

6.2.4 Dam break with an obstacle 

A more severe case, which has been considered by Greaves (Greaves 2006), Koshizuka et al. 

(Koshizuka, Tamako et al. 1995), and Ubbink (Ubbink 1997), amongst others, is when a 

rectangular obstacle ( 0.024 0.048 m× ) is placed on the bottom of a tank (cf. Figure 6.27).  

 

t = 0.60 s

t = 0.80 s

t = 1.0 s
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Figure 6.27 Dam break with an obstacle: initial                                                      
configuration 

 

The domain is discretized with 2684 elements, and the simulation lasts for 0.50 sendt = . 

 

The evolution of the free surface is compared with the snapshots taken by Koshizuka et al. 

(Koshizuka, Tamako et al. 1995) in Figure 6.28. The agreement between the experimental 

and numerical results is very good; the simulation accurately captures the instant that the 

wave hits the opposite wall. However, there are small differences at instant 0.50 st = , when 

the interface is highly contorted with considerable spray. 
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Figure 6.28 Dam break with an obstacle: comparison of the numerical and           
experimental (Koshizuka, Tamako et al. 1995) free surfaces 

 

 

 

  

t = 0.0 s

t = 0.10 s

t = 0.20 s
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Figure 6.28 Continued 

 

 

6.2.5 Bubble rising in a container fully filled with water 

We consider in this subsection the problem of a bubble rising in water due to buoyancy. Until 

now, we have only studied test cases with weak discontinuities along the moving interface. 

t = 0.30 s

t = 0.40 s

t = 0.50 s
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To test the ability of 10 P sign− ×  enrichment to address situations where a large surface 

tension exists, we consider a test case from (Hysing, Turek et al. 2009).  

 

We initially placed a circular bubble of diameter 0 0.50 mD = centered at T(0.50, 0.50) m  in 

a 1.0 2.0 m×  rectangular domain, see Figure 6.29. Gravitation acts in the vertical y-direction 

as T 2(0.0, 0.98) m / s= −g . The properties of the fluids are listed in Table 6-3.  

 

2Ω

1Ω
2

m

1 m

0 0.5 mD =

0.
5

m

g

 

Figure 6.29 Rising bubble: initial                                                                             
configuration 

 

 

Table 6-3  Physical properties and dimensionless numbers defining test case 

 

( )3

kg

m1ρ  ( )32
kg

m
ρ  ( )1

kg

m s
μ ⋅  ( )2

kg

m s
μ ⋅ ( )2

kg

s
γ  Re  Eo  1 2ρ ρ  1 2μ μ  

1000 100 10 1 24.5 35 10 10 10 
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where the Reynolds and Eötvös numbers are defined as 

 

 2 0 0

2

Re ,
gD Dρ
μ

=  (6.22) 

 

 
2

2 0
2

Eo
g Dρ
γ

=  (6.23) 

 

Depending on these characteristic numbers, three regimes can be distinguished for the bubble 

shapes: spherical bubbles ( Re 1<  and Eo 1< ); ellipsoidal bubbles (1 Re 100< <  and 

1 Eo 100< < ); and cap-like bubbles (100 Re 500< <  and 100 Eo 500< < ).  

 

In this case test, we consider a nine-node biquadratic quadrilateral element in which the 

velocity is biquadratic (defined through nine nodes) while the pressure is bilinear (defined 

through the four corner nodes). 

 

The pressure approximation is sign-enriched (i.e., 10 Q sign− × ). Slip boundary condition 

was imposed on the vertical walls, no-slip conditions on the horizontal walls, and 

20.0 N/mp =  on the upper wall. As an initial condition, the velocity field is set to 0 . 

Computations were conducted until end 3 st =  with a time step of 0.003 stΔ = . The 

reinitialization procedure is performed using a refinement level rn 5= . 

 

Two methods of calculating the normal vector intn  are compared: 

• method 2 Q9L − : The normal vector is computed by means of the L2-projection method, 

as described in section 4.1.1;  

• method Q9Geo− : The normal vector is computed by using a piecewise linear interface 

and a constant refinement level of rn 5= , as described in section 4.1.2.   

 



124 

To evaluate the behavior of the new method Q9Geo− , we compare results from three 

successively refined non-uniform meshes, see Figure 6.30. 

 

           

Figure 6.30 Rising bubble: snapshots of the three computational                                    
meshes. (a) 1280 elements; (b) 2508 elements; (c) 4781 elements 

 

Figure 6.31 depicts the interface position at different time instances as well as the pressure 

field. We can clearly observe a jump in the pressure field. The bubble gets deformed while 

remaining compact. This is due to the low Eo  number (high surface tension) and low 

density and viscosity ratios. 
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Figure 6.31 Rising bubble: pressure solution in 2N/m  and interface position                        
for various time instances 

 

The following parameters were considered to compare the simulation results with the 

reference data of Hysing et al. (Hysing, Turek et al. 2009): 

• center of mass: can be used to track the translation of a bubble, defined by 

 

 2

2

G G G

d
( , )

d
x y Ω

Ω

Ω
= =

Ω
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x
x

1
 (6.24) 

  

where 2Ω  denotes the region that the bubble occupies (cf. Figure 6.29). 

 

• rise velocity or terminal velocity: terminal velocity is the constant velocity of a rising 

bubble when time no longer significantly influences the local velocity: 
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Figure 6.32 illustrates the temporal evolution of the parameters’ center of mass position and 

rising velocity. The velocity increases until a maximum and then decreases to a constant 

value. 

 

Table 6-4 presents data collected in the simulations and compares them to results observed in 

simulations by (Hysing, Turek et al. 2009). 

 

 

      

 

      
 

Figure 6.32 Rising bubble: temporal evolution of (a) center of mass position and (b) rising 
velocity. Comparison of the results with simulation data from (Hysing, Turek et al. 2009) 
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Table 6-4  Collected data from simulations and reference values observed in          
simulations by (Hysing, Turek et al. 2009) 

 

 Average (h )ei  0.0363 0.0257 0.0185 
Reference 

values 

Max rise 
velocity 

2 Q9L −  0.2315 0.2457 0.2490 
0.2417 

Q9Geo−  0.2362 0.2405   0.2445 

Time for max 
velocity 

2 Q9L −  0.9197 0.9243 0.9283 
0.9213 

Q9Geo−  0.9189 0.9217 0.9254 

Center of mass 
at 3 st =  

2 Q9L −  1.0822 1.0863 1.0896 
1.0813 

Q9Geo−  1.0688 1.0754 1.0798  

 

 

We observe that the Q9Geo−  method yields a better accuracy than the  2 Q9L −  method. 

  

The level set function is reinitialized using the straightforward approach. For details, please 

refer to section 3.5. Due to the piecewise linear nature of the interpolated interface, kinks 

exist in the level set function. Therefore, any existing noise in the gradient, i.e., the normal 

vectors, was further amplified. This is the main reason why the 2 Q9L −  method fails to 

accurately compute the curvature. 

 

Figure 6.33 compares the bubble shape at the final time ( 3 st = ) with the results from 

(Hysing, Turek et al. 2009). A similar conclusion can be drawn for the results, i.e., the 

Q9Geo−  method yields the best accuracy. 
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Figure 6.33 Rising bubble: final shape of the bubble at                                                     
3 st =  and reference solution by Hysing et al.                                                               

(Hysing, Turek et al. 2009) 

 

Table 6-5 compares the mass errors of the bubble for the two methods of calculating the 

normal vector using different non-uniform grid resolutions. 
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Table 6-5  Mass errors for rising bubble at 3 st =  

 

 Average (h )ei  0.0363 0.0257 0.0185 

Mass error (%) 

2 Q9L −  5.20 3.16 2.21 

Q9Geo−  2.03 1.26 0.79 

 

 

 

Figure 6.34 Rising bubble: mass errors at 3 st =  

 

Figure 6.34 shows that the Q9Geo−  method leads to a much better mass conservation 

compared to the 2 Q9L −  method. 

 





 

CONCLUSION 

 

In this thesis, the XFEM/level set methods have been studied to solve the incompressible 

flows of two immiscible fluids. Such a combination of those two numerical methods results 

in a simple, general, and effective algorithm capable of simulating diverse flow regimes 

presenting large viscosity and density ratios (up to 1000) and large surface tension. Different 

enrichment schemes have been investigated for the well-known Taylor-Hood element 

without any stabilization. 

 

In problems with stationary interfaces, we found that the enrichment of the velocity field 

offers the potential for significant improvements in the accuracy and convergence rates, in 

particular when the interpolation of the velocity enrichment ( ( )iN ∗u x ) is one order less than 

that used in the standard FE part ( ( )iNu x ). Very accurate results and optimal convergence 

rates have been obtained by means of the sign-enrichment for weak or strong discontinuities 

in the pressure field. However, the linear dependency is a considerable issue of this 

enrichment. The accuracy and the stability are significantly affected as shown by our 

numerical studies. 

 

In problems with moving interfaces, severe instabilities may appear, especially when the 

velocity is enriched. For free surface flows driven by gravity (surface tension is neglected) 

and for relatively high Reynolds numbers, pressure enrichment is sufficient to obtain 

accurate and very stable solutions. The sign-enrichment is superior to Ridge-enrichment, 

regardless of whether the surface tension dominates. 

 

A novel method of computing the vectors normal to the interface has been proposed. This 

method computes the normal vectors by employing the successive refinement of the mesh 

inside the cut elements. The normal vectors thus constructed are perfectly perpendicular to 

the interpolated interface. Comparisons with analytical solutions and numerical results 

demonstrate that the method is accurate.  
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We enumerate the various novel features of the current solver for simulating two-phase 

incompressible flows. 

• the flow solver utilizes a direct solver with a semi-implicit scheme for time 

discretization. This scheme, leading to a linear system, is: easier to handle in 

combination with the XFEM, accurate, and computationally less expensive; 

• the numerical integration in the XFEM is improved by employing a mesh refinement 

inside the cut elements; 

• high gradients in the velocity field are accounted for by smoothing the viscosity in the 

vicinity of the interface; and 

• the mesh refinement approach allows for a more accurate reinitialization procedure. 

 

It is obvious that only a portion of the wide field of two-phase and free-surface flows was 

treated in this work. In a future work, the further development of the solver framework aims 

at: 

• improving the performance, the need for a higher-order temporal discretization; 

• extending to three-dimensional two-phase flows, using the Taylor-Hood element (P2/P1) 

and an iterative solver for the linear system; 

• parallelization, currently, only 2D two-phase flow problems are treated. However, for 

complex 3D problems, the parallelization can be exploited by parallelizing the entire 

solver; and  

• enlarging the area of possible applications. 
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