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DES SITES CONTAMINÉS 
 

Niloofar SHOARI 

 
RÉSUMÉ 

 
L’analyse statistique de concentrations des contaminants dans les sols, l’eau et l’air constitue 
une composante essentielle de la caractérisation des sites contaminés. Ce type d’analyse 
présente des défis attribuables à la présence d'observations non détectées ou censurées à 
gauche relatives à des mesures inférieures à une limite de détection. Il est nécessaire de 
prendre en compte les valeurs censurées dans un ensemble de mesures de concentrations 
parce qu'elles n'impliquent pas l'absence de contamination, mais le manque de précision des 
instruments de mesure. En effet, des traces de polluants dangereux peuvent constituer des 
risques pour la santé humaine et l'environnement. Même si une étude environnementale 
permet de fournir un échantillon représentatif de données de concentration conformément à 
des protocoles analytiques bien conçus et à des procédures de validation des données, des 
analyses statistiques inadéquates ne prenant pas en compte correctement les observations 
censurées peuvent ne pas refléter l'état réel du site. Manifestement, des mesures de 
réhabilitation basées sur une image faussée des conditions de contamination pourraient être 
inefficaces et non durable écologiquement et économiquement. 
 
L'objectif principal de cette recherche vise à examiner en détail l’influence des 
concentrations non détectées sur les décisions découlant des études de caractérisation des sols 
contaminés. À cette fin, nous explorons différentes méthodes statistiques (i) pour estimer les 
statistiques descriptives (ii), pour quantifier l'incertitude sur les estimés, et (iii) pour analyser 
les éventuelles dépendances liées aux observations groupées, lesquelles peuvent être 
inhérentes aux techniques d'échantillonnage. Le remplacement de valeurs censurées par une 
constante choisie de façon arbitraire est une pratique courante tant chez les spécialistes que 
chez les chercheurs. En revanche, il existe un certain nombre de méthodes paramétriques et 
non paramétriques permettant de tirer des déductions à partir des données censurées et, par 
conséquent, offrir un aperçu plus exact du problème. Les méthodes paramétriques, 
comprenant les procédures basées sur le maximum de vraisemblance et la régression, 
évaluent les statistiques descriptives grâce à l'ajustement d'une distribution paramétrique aux 
données. Étant donnée l’asymétrie à droite des données de concentration, les distributions 
gamma, Weibull et log-normale constituent les modèles paramétriques les plus plausibles, ce 
dernier type étant le plus souvent utilisé dans les études environnementales. Les procédures 
non paramétriques telles que la méthode Kaplan-Meier, cependant, ne nécessitent aucune 
hypothèse de distribution. 
 
La présente étude utilise un exercice exhaustif de simulations des données, où le type de 
distribution sous-jacent est connu, afin d’évaluer la performance des estimateurs 
paramétriques et non paramétriques. Les simulations comprennent un grand nombre de 
scénarios avec différents pourcentages de censure, tailles d’échantillons de données et degrés 
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d’asymétrie des données. Cette recherche met également en évidence l'importance 
d'examiner la robustesse des méthodes paramétriques contre une mauvaise spécification du 
modèle de distribution. En utilisant les données simulées, nous élucidons comment la 
substitution des valeurs censurées fausse les estimations et pourquoi cette approche devrait 
être écartée, même quand il s'agit de données où le pourcentage de censure est limité. Nous 
avons découvert que la méthode du maximum de vraisemblance reposant sur l'hypothèse de 
la loi log-normale est hautement sensible à l'asymétrie des données, à la taille de 
l'échantillonnage et au pourcentage des valeurs censurées. Alors que la méthode de 
maximum vraisemblance basée sur la distribution log-normale est principalement utilisée 
dans les études environnementales, notre avons constaté qu'il faut faire preuve de prudence 
en supposant une distribution log-normale. Nous recommandons plutôt l'estimateur du 
maximum de vraisemblance reposant sur une distribution gamma, ainsi que des méthodes 
fondées sur la régression (utilisant un modèle log-normal ou gamma) et la technique Kaplan-
Meier. En ce qui concerne les incertitudes sur les estimations relatives aux données réelles de 
concentration, pour lesquelles la vraie structure des données est inconnue, nous évaluons la 
performance des estimateurs paramétriques et non paramétriques en employant une technique 
de «bootstrapping». Les conclusions tirées du bootstrapping de données réelles sont 
conformes avec celles déduites à partir des données simulées. 
 
Une partie importante de cette recherche porte sur la présence d'une corrélation entre les 
concentrations, en lien avec des techniques d'échantillonnage. Nous fournissons un 
fondement statistique et conceptuel ainsi que les raisons d'appliquer des modèles à effets 
mixtes capables d'accommoder la dépendance entre les données tout en tenant compte des 
observations censurées. Les méthodes statistiques habituelles tiennent pour acquis que les 
échantillonnages de données de concentration sont indépendants. Cependant, dans les études 
de la caractérisation environnementale de sites, cette supposition sera probablement 
contredite parce que les observations de concentration obtenues, par exemple, du même trou 
de forage pourraient être corrélées. Cela peut ensuite affecter les procédures de détermination 
de nombre d’échantillons de sol. Ainsi, nous avons eu recours à des modèles à effets mixtes 
pour capturer d'éventuelles dépendances dans les données ainsi que la variabilité entre 
groupes. La pertinence de l'estimé de la variabilité inter-forage est attestée par la 
détermination du nombre optimal de trous de forage de même que d'échantillons devant être 
prélevées à chaque trou de forage. Le modèle à effets mixtes que nous proposons fournit un 
aperçu de l'étendue verticale de la contamination, ce qui peut être utile pour concevoir des 
stratégies d'assainissement. 
 
Les conclusions de cette recherche doctorale aident à accroître la sensibilisation à 
l'importance des observations censurées auprès de la communauté scientifique, des 
professionnels de l’environnement, ainsi que des décideurs politiques. Cette thèse constitue 
une contribution à la littérature en améliorant notre compréhension des aspects comparatifs 
des diverses méthodes statistiques dans le contexte des études de caractérisation de sites ainsi 
qu’en proposant une uniformisation des recommandations concernant l’utilisation de ces 
méthodes. Elle s'annonce, par conséquent, très prometteuse en tant que ligne directrices à 
suivre pour les chercheurs, les spécialistes et les décideurs. 
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QUANTITATIVE ANALYSIS OF LEFT-CENSORED CONCENTRATION DATA IN 
ENVIRONMENTAL SITE CHARACTERIZATION 

 
Niloofar SHOARI 

 
ABSTRACT 

 
A key component of site characterization is the statistical analysis of contaminant 
concentrations in soil, water and air samples. Such analysis can pose challenges due to the 
presence of nondetects or left-censored observations, which are measurements smaller than a 
detection limit. Censored values should be accounted for because they do not imply the 
absence of contamination, but the insufficient accuracy of the measuring instruments. Indeed, 
trace levels of hazardous pollutants can pose risks to the human health and the environment. 
Even if an environmental investigation achieves a representative sample of concentration 
data according to sound analytical protocols and data validation procedures, improper 
statistical analyses that do not properly accommodate censored observations may not 
represent actual site conditions. Obviously, remedial designs based on a distorted view of the 
contamination condition could be ineffective and not sustainable environmentally and 
economically.  
 
The main goal of this research is to scrutinize the impact of left-censored values on site 
characterization outcomes. To this end, we explore different statistical methods (i) to 
estimate descriptive statistics, (ii) to quantify uncertainty around estimates, and (iii) to 
examine potential dependencies across observations due to clustering as an inherent part of 
sampling techniques. Substituting censored values with an arbitrarily selected constant is 
commonly practiced by both practitioners and researchers. In contrast, there are a number of 
parametric and non-parametric methods that can be used to draw inferences from censored 
data, and therefore, provide a more realistic insight into a contamination problem. Parametric 
methods, such as maximum likelihood and regression-based procedures, estimate descriptive 
statistics through fitting a parametric distribution to data. Due to the right-skewed shape of 
concentration data, gamma, Weibull, and lognormal distributions are the most plausible 
parametric models, with the latter being the most commonly used in environmental studies. 
Non-parametric procedures such as the Kaplan-Meier method, however, do not require any 
distributional assumption.  
 
This study employs a comprehensive data simulation exercise, in which the true underlying 
distribution is known, to evaluate the performance of parametric and non-parametric 
estimators based on a large number of scenarios differing in censoring percent, sample size, 
and data skewness. This research also highlights the importance of investigating the 
robustness of parametric methods against model misspecifications. Using simulated data, we 
elucidate how substituting censored observations provides biased estimates and why it should 
be avoided even for data with a small percentage of censoring. We found that the maximum 
likelihood method based on the lognormality assumption is highly sensitive to data skewness, 
sample size, and censoring percentage. While the lognormal maximum likelihood method is 
mainly used in environmental studies, our findings point out that caution should be exercised 
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in assuming a lognormal density distribution of data. Instead, we recommend the maximum 
likelihood estimator based on a gamma distribution, regression-based methods (using either a 
lognormal or gamma distribution), and the Kaplan-Meier technique. With respect to 
quantifying the uncertainty around estimates for real concentration data, in which the true 
structure of data is unknown, we evaluate the performance of parametric and non-parametric 
estimators employing a bootstrapping technique. The conclusions drawn from bootstrapping 
of real data are in accordance with those inferred from the simulated data. 
 
An important part of this research investigates the presence of correlation, associated with 
sampling techniques, among concentration observations. We provide statistical and 
conceptual backgrounds as well as motivations for mixed effects models that are able to 
accommodate dependence across data points while accounting for censored observations. 
Standard statistical methods assume that samples of concentration data are independent. 
However, in environmental site characterization studies, this assumption is likely to be 
violated because concentration observations collected, for example, from the same borehole 
are presumably correlated. This can in turn affect sample size determination procedures. We 
therefore employ a mixed effects model to capture potential dependencies and between group 
variability in data. The relevance of the estimated between-borehole variability is explained 
in terms of determining the optimal number of boreholes as well as samples to be collected 
from each borehole. Our proposed mixed effects model also provides insights into the 
vertical extent of contamination that can be useful in designing remediation strategies.  
 
The findings of this doctoral research help increase the awareness of the scientific 
community as well as practitioners, exposure assessors, and policy-makers about the 
importance of censored observations. Aiming at unification of the field, this thesis 
contributes to literature by improving our understanding of the comparative aspects of 
different statistical methods in the context of site characterization studies. It thus offers 
considerable promise as a guideline to researchers, practitioners, and decision-makers. 
 
 
Keywords: left-censored observations, site characterization, maximum likelihood estimation, 
regression on order statistics, Kaplan-Meier, mixed effects model 
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INTRODUCTION 

 

To date, the Federal Contaminated Sites Inventory has listed over 22,000 contaminated or 

suspected contaminated sites from which 2,393 are located in Quebec. According to Quebec 

contaminated sites inventory, Système de gestion des terrains contaminés (GTC), 8,334 sites 

had been registered in the system in 2010. These sites are not just in remote areas. In 

Montreal, for example, 1,617 sites have been identified (Hébert & Bernard, 2013). A 

sustainable revitalization of contaminated sites requires a comprehensive characterization 

followed by the adoption of appropriate remediation technologies. Within this context, the 

main goal of a site characterization study is to determine the type, concentration, location and 

extent of contamination. To this end, Quebec guidance on site characterization (Ministère du 

Développement durable, de l’Environnement, de la Faune et des Parcs du Québec, 2003a) 

recommends following the three steps below. 

Phase I preliminary site characterization includes review of present and historical records, 

site visits, interviews, and identifying potential areas of contamination. If information 

obtained indicate any contamination evidence, phase II should be performed. 

Phase II preliminary site characterization includes collection of field samples and 

analyzing them to confirm the nature as well as the horizontal and vertical extent of 

contamination. 

Phase III exhaustive site characterization incorporates a series of actions for a more 

detailed characterization of a contaminated site if the result of phase II confirm the presence 

of pollution. These actions include further delineation of the impacted area, determining the 

volumes of contaminated material, and evaluating potential risks for human health and the 

environment. 

 

Phase II and III always involve collection and chemical analysis of samples for contaminants 

concentrations. Given that the resultant concentration data sets are representative of site 

conditions, statistical analysis is used to decide whether or not the site is polluted and should 

undergo some remediation actions. Estimating descriptive statistics is the most important 

application of statistical analysis since they are employed in other statistical procedures; 
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some applications include quantifying the potential impact on human health and the 

environment, monitoring compliance with environmental standards, and devising/refining 

sampling strategy. Another important statistical analysis in site characterization can be the 

study of the association between contaminants and selected soil properties. Or, in the case 

that a human health risk assessment process is incorporated into the site characterization 

study, the relationship between the pollution and their adverse effects on health is of interest. 

Other more sophisticated applications of statistics include principal component analysis and 

identifying spatial and temporal patterns of contamination. 

 

Even with technical advances in chemical analysis protocols and laboratory instrumentations, 

there remains a threshold below which contaminants concentrations are not precisely 

quantifiable. These concentrations are called left-censored (equivalently nondetects) and 

present a serious challenge in data analysis. The problem exacerbates when environmental 

scientists substitute censored observations with arbitrary constants before carrying out any 

statistical analysis. Helsel (2006) refers to substitution of nondetects as a “data fabrication” 

method because those measurements that are considered as highly unreliable are then treated 

as actually observed values. This approach diminishes data representativeness and provides 

biased results, potentially compromising human health and the environment and causing 

financial losses. However, substitution of censored values is commonly practiced because, as 

said by Helsel (2010a), “there is an incredibly strong pull for doing something simple and 

cheap.”  

 

Alternatively, researchers have exploited methodologies from survival analysis, which were 

originally developed for right-censored medical data. From the estimation point of view, the 

alternative methods to deal with left-censored data fall into two categories: 

a) Parametric methods that fit a distribution to data through maximum likelihood or 

probability plotting. The estimates obtained from the maximum likelihood method 

(MLE) are those that maximize a likelihood function, which is a product of the 

probability density function (pdf) when an observation is detected and the cumulative 

distribution function (cdf) when an observation is censored. On the other hand, the 
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most popular probability plotting-based method is the regression on order statistics 

(ROS) which involves fitting a regression line to data on a probability plot. A novel 

extension of the ROS technique is based on a gamma assumption and is called 

gamma regression on order statistics (GROS). In the case that one of the above 

parametric methods is used to impute values for censored observations, the robust 

versions of MLE and ROS (rMLE and rROS, respectively) are obtained. Since the 

statistical distribution of concentration data is typically right-skewed, a lognormal 

distribution is often fitted to data. However, other similar distributions (such as 

Weibull and gamma) are occasionally encountered; 

b) Non-parametric methods such as Kaplan-Meier (KM), which does not require any 

distributional assumption and uses only data ranks.  

 

A number of simulation studies have been devised to assess the merits of these alternatives to 

substitution, but their sometimes contradictory conclusions still rule out recommending a 

single method as the preferred approach. This is the main reason for which nondetects are 

still substituted with arbitrary constants despite the fact that numerous publications provide 

recommendations against it. The findings of this doctoral research help increase the 

awareness of the scientific community as well as practitioners, exposure assessors, and 

policy-makers about the importance and benefits of considering censored data as such in 

quantitative analysis. Using data simulations and real data analysis, this thesis investigates 

the impact of left-censored values on different aspects of contaminated sites characterization. 

In particular, the focus has been on appropriate strategies to (i) estimate descriptive statistics 

and associated uncertainty, and (ii) to model dependency in concentration observations 

coming from the same borehole. Overall, this thesis illustrates best practices to handle left-

censored concentration data that should be incorporated in the environmental policies and 

procedures toward a sustainable characterization of contaminated sites.  
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Characterization data with left-censored observations 

 

Before proceeding with a detailed discussion on the impact of left-censored data, we define 

three key relevant terms: limit of blank (LOB), limit of detection (LOD), and limit of 

quantification (LOQ). This terminology is adopted from the Clinical and Laboratory 

Standard Institute (2004). The LOB is the highest expected concentration of a chemical when 

replicates of a blank sample are measured. The LOD is the minimum concentration of a 

chemical that can be distinguished from the absence of the chemical with a stated confidence 

limit. The LOD is estimated by preparing and analyzing a series of blank samples and using 

the mean and standard deviation of the replicates with some confidence factor. Instead of the 

LOD, some laboratories use the LOQ to report their analysis results. The LOQ is the lowest 

concentration at which the chemical can be reliably quantified. Throughout this thesis, we 

use the general term detection limit (DL) to refer to LOD or LOQ. Those concentration 

measurements below the DL are called left-censored or nondetects.  

 

Two types of censoring are encountered: in type I censoring, which is the typical situation of 

environmental data, the censoring point is known (this is the DL in chemical analytical 

practice) and the number of censored data is random. In type II censoring, on the other hand, 

the number of censored observations is fixed in advance and the censoring point is a random 

variable. Type II censoring typically occurs in life-testing and reliability investigations. 

 

Significance of left-censored data  

 

Although a left-censored observation does not report an exact value of a chemical 

concentration, it still contains the information that the measurement falls somewhere between 

zero and DL. Considering the efforts and expenses dedicated to environmental data 

collection and analysis, it seems worthwhile to investigate more sophisticated statistical 

methods in order to extract the maximum amount of reliable information from left-censored 

data. It is crucial to acknowledge that left-censored concentrations do not necessarily 

insinuate the absence of contamination; rather they indicate that the precision of the 
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analytical instrument was too low to reliably quantify a concentration value. The importance 

of accounting for left-censored concentrations is highlighted when dealing with historical 

concentration data, where analytical instruments were still less powerful and DLs were 

higher. In addition, in the case of highly toxic contaminants such as dioxins and arsenic, even 

trace levels may pose risks to human health and the environment.  

 

A wide range of management decisions can also be affected by left-censored data. In 

environmental studies, left-censored data impact not only the estimation of statistical 

parameters, but also the characterization of data distributions, inferential statistics (e.g., 

comparing the mean of two or more populations) (Finkelstein, 2008; Antweiler, 2015), the 

determination of correlation coefficients, the construction of  regression models (Lynn, 2001; 

Schisterman, Vexler, Whitcomb & Liu, 2006). In addition to the environmental sciences, 

handling left-censored data has been a challenge in astronomy (Feigelson & Babu, 2012), 

occupational health (Succop, Clark, Chen & Galke, 2004; Hewett & Ganser, 2007), and food 

health (European Food Safety Authority, 2010). 

 





 

CHAPTER 1 
 
 

RESEARCH FOCUS AND OBJECTIVES 
 
 
1.1 Objectives 

The main objective of this PhD thesis is to address the issues associated with the presence of 

left-censored concentrations, which is a pervasive problem in environmental research. Within 

the context of characterization of contaminated soils, the specific objectives focus on two 

important aspects of statistical inferences. The first aspect is to identify appropriate strategies 

for estimating descriptive statistics of a soil population; these estimates are employed in 

decision-making process (e.g., compliance with a regulatory standard) or in improving the 

precision of a characterization study (e.g., determining the sample size). The second aspect 

highlights the importance of accounting for dependency among concentration observations 

while left-censored values are accommodated. Statistical analyses throughout this 

dissertation focus on quantifying the bias resulting from the substitution of left-censored 

observations with arbitrary constants. As substituting is a common approach to deal with left-

censored concentration data among practitioners and researchers, we are interested in 

understanding and comparing the consequences of a characterization study when the 

substitution or alternative techniques are employed.  

 

1.2 Synopsis  

1.2.1 Evaluating the performance of different estimators based on simulated 
censored data (Chapters 3&4) 

Despite proliferation of simulation studies that compare different statistical methods for 

analyzing censored data, yet there is a need for further investigations because of the 

following concerns: 
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a) Most previous simulation studies overlooked exploring the impact of data distribution 

skewness on the performance of the estimators under study. Indeed, failing to accounting for 

a wide range of data skewness might have led to the lack of general agreement between 

different studies. In fact, as mentioned by Singh, Maichle & Lee (2006), simulation results 

derived for low skewed data cannot be generalized for highly skewed data; 

b) In previous simulations, artificial data were mainly generated from normal and lognormal 

distributions; and consequently, the parametric estimation methods (e.g., MLE) relied on 

these distributions. Given that no theoretical study supports the assumption that 

environmental concentration data are normally or lognormally distributed, there is a need for 

a comprehensive simulation framework that encompasses other distributions and explores the 

robustness of estimators against distribution misspecifications; 

c) Previous simulation studies discouraged the substitution of censored values due to the lack 

of a theoretical basis. However, some of these studies report simulation scenarios where the 

performance of the substitution approach equals that of other alternative methods. Therefore, 

it is useful to understand reasons for which substitution may or may not result in biased 

estimates.  

 

Given the above aspects, the main objective of chapter 3 is to investigate the properties of 

alternative statistical methods that can handle left-censored data. To this end, we design a 

comprehensive simulation study that compares the performance of the MLE, rROS, GROS, 

and KM estimators under different scenarios of percentage of censoring, sample size, and 

data skewness. In addition, this simulation study evaluates the robustness of the parametric 

methods (i.e., MLE, rROS, and GROS) to distributional misspecification. According to our 

simulations, the MLE method based on lognormal and Weibull distributions provides inflated 

estimates of the mean and standard deviation when data distribution is highly skewed and 

censoring percent is large. Relating to sample size, although current literature indicates that 

50 observations are sufficient to guarantee reliable MLEs, our simulations show that more 

than 50 observations might be required in the case that the distribution is highly skewed. 

Among other finding, this chapter demonstrates that the methods of MLE (using gamma 

assumption), rROS, GROS, and KM should be considered for estimating descriptive statistics 



9 

of censored environmental data sets because of their robustness against distributional 

assumptions, censoring percent, and skewness. 

 

The simulation study reported in chapter 4 of this thesis discusses inherent problems 

associated with the substitution of censored observations, the most commonly practiced 

approach. We illustrate that the performance of the substitution approach varies according to 

the population’s distributional characteristics (such as coefficient of variation and skewness) 

that are unknown a priori. For the same reason, substitution of censored observations should 

be avoided even when the censoring percent is as low as 10%. For a general overview of the 

simulation framework used in chapters 3 and 4, Table 1.1 reports a summary of different 

parameters of the simulation study. 

 

Table 1.1 An overview of the different parameters used in the simulation study 

 

Data generating distributions 

Lognormal 
Weibull 
Gamma 
Mixture lognormal 
Mixture Weibull 
Mixture gamma 

True values of the mean and standard 
deviation 

ߤ = 1,2,3,… ߪ 10, = 0.5, 1.2,1.9,2.6,3.3,4 

Sample size 60, 120, 180, 240, 300, 360 

Censoring percent 10%, 30%, 50%, 70% 

Statistical methods 

Substitution with DL/2 
Maximum likelihood estimation (MLE) 

• Lognormal 
• Gamma 
• Weibull 

Robust regression on order statistics (rROS) 
Gamma regression on order statistics (GROS)
Kaplan-Meier (KM) 

 



10 

1.2.2 Quantifying uncertainty of different estimators through bootstrapping 
(Chapter 5) 

The results reported in chapter 4 showed that the substitution approach is not reliable for 

computing the mean and standard deviation of data when left-censored observations are 

encountered. With respect to alternative estimation techniques (i.e., MLE, rROS, GROS, and 

KM), some amount of uncertainty is always associated with the estimates. This uncertainty 

arises from the presence of left-censored concentrations as we do not have any knowledge 

regarding the true value of left-censored measurements. 

 

We use a bootstrapping technique to provide uncertainty information along with the 

estimates of the mean and standard deviation obtained from the aforementioned alternative 

estimators. Unlike the analyses discussed in chapter 3 and 4 that were based on computer-

generated data, the adopted methodology in chapter 5 allows making inferences based on real 

concentration data. Concentration data sets used in this research are from chemical analysis 

of soil samples collected for characterizing a brownfield site in Montreal, Canada. 

 

We assume, as other bootstrapping applications, that the concentration data at hand is a 

representative sample of a soil population. The idea behind the bootstrapping is to take 

repeated draws with replacement from the actual concentration data and treat these draws 

(bootstrap samples) as possible random samples that could have been taken in the real world. 

Using the MLE, rROS, GROS, and KM estimators, we compute the statistics of interest (the 

mean and standard deviation in this thesis) for each bootstrap replicate. This yields an 

approximation to the distribution of the statistics provided by a given estimator that is used to 

calculate the uncertainty of that estimator in terms of confidence intervals. The 

abovementioned procedure is a non-parametric bootstrapping technique, which avoids 

making unnecessary assumptions about the distribution of concentration data.  

 

The conclusions drawn from bootstrapping of real data are in accordance with those inferred 

from the simulated data. In general, the MLE method using the lognormal and Weibull 

distributional assumptions leads to the highest levels of uncertainty whereas the MLE under 
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gamma assumption, rROS, GROS, and KM produce less uncertainty. Moreover, the rROS, 

GROS, and KM estimators have small approximate biases. Calculating the mean and its 95% 

upper confidence level of real contaminant concentration data, we demonstrate that adopting 

an inappropriate statistical method results in imprecise estimates, which contribute to the 

global uncertainty in the outcomes. 

 

1.2.3 Accounting for dependence in data in presence of left-censored concentrations 
(Chapter 6) 

In this chapter we discuss that sampling strategies in environmental site characterizations 

result in concentration data with a nested structure. Under this aspect, observations are 

generated from different groupings in data, so that those nested in the same borehole may 

share similar traits. In fact, it is quite plausible to postulate that concentration measurements 

obtained from the same borehole are likely to be correlated due to some unmeasured known 

or unknown factors. Employing standard approaches, for which independence assumption is 

crucial, to analyze such data leads to unfounded conclusions. To tackle this issue, while 

accommodating left-censored observations, we propose a mixed effects model that accounts 

for data dependencies. It is thus possible to estimate between-borehole variability. In 

addition, we set the proposed model in a way that allows us to estimate the mean value of 

concentration of a given contaminant at different depths or type of material constituting the 

brownfield site. 

 

A major implication of the adopted approach in the context of site characterization studies 

relates to determination of optimal sample size in terms of the number of required boreholes 

as well as the number of required samples per borehole. It should be highlighted that the 

current practice does not follow statistical approaches. Moreover, this chapter examines the 

vertical extent of contamination that can be useful in defining the remediation depth. 
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1.2.4 List of manuscripts 

This dissertation includes 4 published manuscripts. Figure 1.1 presents the manuscripts and 

also their main findings. The manuscripts are listed as follows. 

 

Manuscript (1): Shoari, Niloofar, Jean-Sebastien Dubé and Shoja'eddin Chenouri. (2015). 

Estimating the mean and standard deviation of environmental data with below detection limit 

observations: Considering highly skewed data and model misspecification. Chemosphere, 

138, 599-608. 

 

Manuscript (2): Shoari, Niloofar, Jean-Sébastien Dubé and Shoja'eddin Chenouri. (2016). 

On the use of the substitution method in left-censored environmental data. Human & 

ecological risk assessment, 22 (2), 435-446. 

 

Manuscript (3): Shoari, Niloofar and Jean-Sébastien Dubé, (2016). An investigation of the 

impact of left‐censored soil contamination data on the uncertainty of descriptive statistical 

parameters». Environmental Toxicology and Chemistry.  35 (10), 2623-2631. 

 

Manuscript (4): Shoari, Niloofar and Jean-Sébastien Dubé, (2017). Application of mixed 

effects models for characterizing contaminated sites. Chemosphere. 166, 380-388. 

 

 

 

 
 

 

 

 

 

 

 



13 

 

 

Figure 1.1 Manuscripts and their main findings 

 

 

 





 

CHAPTER 2 
 
 

LITERATURE REVIEW 
 
 
The literature review of this thesis provides an overview of statistical methods that can be 

used for interpreting data containing left-censored observations. This chapter consists of two 

parts. The first part reviews publications that have focused on identifying appropriate 

strategies to accurately estimate the statistical parameters of left-censored data. The related 

concepts and mathematical formulations for different statistical methods are explained in 

Appendix I of the thesis. Moreover, major articles are organized in chronological order 

(Table 2.2) to provide a perspective on the developments over the past 30 years. In addition 

to parameter estimation, environmental studies may require performing regression analyses 

on censored data in order to investigate the relationship between a response variable (e.g., 

arsenic concentration in soil) and one or more explanatory variables (e.g., soil type). In this 

regard, the second part of the literature review gathers all studies that developed regression 

models while accounting for left-censored data.  

 

2.1 Parameter estimation of left-censored data 

Many publications use Monte Carlo experiments to explore and compare the performance of 

substitution with alternative estimators. Some relevant studies include Gilliom & Helsel 

(1986); Helsel & Cohn (1988); Newman, Dixon, Looney & Pinder (1989); She (1997); Singh 

& Nocerino (2002); Lubin et al. (2004), Hewett & Ganser (2007). All of the above studies 

share the same research design: Let θ be the true distributional parameter (e.g., mean or 

standard deviation) of the reference population, from which artificial data of size n were 

generated. Note that normal and lognormal distributions were typical in simulation studies. 

For a given censoring percentage, say c%, a censoring point was imposed at the cth percentile 

of the reference population. To be precise, for data sets generated from distribution ߤ)ܨ,  ,(ଶߪ
the censoring point was calculated as ିܨଵ(ܿ; ,ߤ	 .)ଵିܨ ଶ), whereߪ ) is the inverse cumulative 

distribution function. Within a set of simulations, substitution and alternative methods were 
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used to estimate ߠ෠, where ߠ෠ was the estimated statistical parameter of the simulated data. To 

investigate and compare the ability of different estimators in reproducing the correct values 

for θ, bias and/or mean square error (MSE) were utilized as the comparison criteria. The 

common conclusion of the published literature was that substituting censored data introduced 

an estimation bias and it should be avoided. 

 

El-Shaarawi & Esterby (1992) provided analytical expressions for quantifying the bias due to 

substitution of censored values. However, the application of these expressions is limited 

because (i) they are valid only for normally and lognormally distributed data; and (ii) they 

require knowledge about the proportion of censoring, mean, and variance, which are usually 

unknown. Helsel (2005, 2006, and 2010b) consistently emphasized the unreliability of 

substitution and discussed how it would provide poor estimates for different statistical 

analyses (i.e., the mean, standard deviation, t-value, correlation coefficient, regression slope, 

p-value, etc.). Nevertheless, substitution remains a common practice in environmental studies 

(e.g., Farnham, Singh, Stetzenbach & Johannesson, 2002; Krapac et al., 2002; Sapkota, 

Heidler & Halden, 2007; Schäfer, Paschke, Vrana, Mueller & Liess, 2008; Higley, 2010; 

Hsu, Guo, Wang, Liaoand & Liao, 2011; Jones, 2011; Vassura, Passarini, Ferroni, Bernardi 

& Morselli, 2011; Watkins et al., 2016). 

 

A few studies suggested the use of substitution of censored observations. Hornung & Reed 

(1990) suggested the substitution method whenever less than 50% of data were nondetects. 

Clarke (1998) advocated substitution of a constant rather than the MLE and ROS methods 

when data sets were small (with less than 10 observations). The failure of the parametric 

methods might have been due to small sample size because distributional properties could 

not be accurately established with only a few observations. In a comparative Monte Carlo 

simulation study, She (1997) reported that the estimates obtained after substituting censored 

data with DL/2 were sometimes as good as those provided by the KM estimator. Also, 

Hewett & Ganser (2007) reported simulation scenarios where substitution was recognized as 

the estimation method of choice. Although some studies reported good agreement between 
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the substitution and alternative methods, Leith et al. (2010) cautioned that this behavior 

should not be interpreted as evidence of equivalency between these methods. 

 

Rather than using the simplistic substitution technique, researchers developed parametric 

procedures that use the observed values in combination with the information contained in the 

censored part. The two main categories of parametric procedures are based on maximum 

likelihood and probability plotting. The maximum likelihood methods can be traced back to 

the work of Cohen (1959; 1961) who developed a version of MLE that relied on look-up 

tables to estimate statistical parameters of censored data. The Cohen’s MLE method has a 

drawback of being restricted to normally distributed data that contain a single DL, whereas 

concentration data are typically skewed and contain multiple DLs. Gilliom & Helsel (1986) 

considered estimating statistical parameters of singly censored (with only one DL) water 

quality data and conducted a comparative simulation study to compare the performance of 

substitution, MLE, and probability plotting procedures. Assuming that environmental data 

are lognormally distributed, their simulations suggested the MLE as the best estimator of 

different percentiles. However, the performance of the MLE method was not satisfactory for 

estimating the mean and standard deviation. Later, in a related study, Helsel & Cohn (1988) 

extended the work of Gilliom & Helsel (1986) and investigated the effect of the presence of 

multiple DLs on the performance of different estimators.  

 

The MLE method for multiply censored and normally distributed data (or approximately 

normally distributed after log-transformation) was discussed by El-Shaarawi & Naderi 

(1991). Instead of using Cohen’s look-up tables, they developed likelihood functions needed 

to estimate the mean and standard deviation of data. To employ the MLE method under the 

normality assumption, Shumway, Azari & Kayhanian (2002) suggested using a Box-Cox 

transformation to generate approximately normal data. The first problem with transformation 

is the transformation bias, which occurs when the estimates are back-transformed to the 

original scale (Helsel, 1990). To resolve this issue, Shumway et al. (2002) employed the 

Quenouille-Tukey Jackknife to improve the quality of estimates and to compensate for the 

transformation bias. The second problem is the ambiguity as to which transformation (e.g., 
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logarithmic, square root, inverse, and arcsine) should be used. While most previous 

simulation studies used the MLE with lognormal assumption for lognormal or contaminated 

lognormal data generating distributions, European Food Safety Authority (2010) 

demonstrated the adequacy of the MLE method under Weibull and gamma assumption when 

applied to lognormal data and vice versa. 

 

Hewett & Ganser (2007) considered a comprehensive simulation study that aimed at 

identifying an “omnibus” method for estimating the mean and 95th percentile of exposure 

data sets containing nondetects. Their study incorporated several simulation scenarios using 

computer-generated data from lognormal and contaminated1 lognormal distributions with 

different censoring percentages. The estimation methods examined were substitution, several 

variations on the MLE and ROS, non-parametric quantile and KM. No single method showed 

superiority across all simulation scenarios although the MLE-based techniques generally 

performed well. However, their study did not address confidence intervals.  

 

Despite numerous researchers tended to favor the MLE method, the results of some 

investigations (for instance, Lee & Helsel, 2007 and Jain & Wang, 2008) indicated the 

limited ability of this method when dealing with small data sets and large censoring percent. 

These investigations agreed that the MLE method may not show some of its desirable 

properties (consistency, efficiency, and asymptotic normality) for small data sets (with <50 

uncensored values as reported in Helsel, 2005) with large amount of censoring (Helsel, 

2012).  

 

A parametric method based on probability plotting was discussed in Travis & Land (1990). 

This method assumes that observations (or log-transformed observations) below and above 

the DL are normally distributed. It fits a regression line on probability plot of data and the 

intercept and slope of this line provide the estimates of the mean and standard deviation, 

                                                 
 
1 A contaminated lognormal distribution is a combination of two or more lognormal distributions. 
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respectively. Although censored observations are treated as unknown, their percentile values 

are accounted for. This method is commonly known as regression on order statistics (ROS).  

 

An extension of the above mentioned fully parametric methods (i.e., MLE and ROS) are 

referred to as “imputation” or “robust” procedures, in the hope to have estimators that are 

both reliable and easier to implement. In these methods the observation above the DL are 

combined with imputed values for observation below the DL and thus standard statistical 

methods can be applied. The censored observations are imputed using some initial estimates 

obtained from MLE or ROS. Two popular examples include robust MLE (rMLE) proposed 

by Kroll & Stedinger (1996) and robust ROS (rROS) developed by Helsel & Cohn (1988). 

Hewett & Ganser (2007) discussed that the rMLE and rROS slightly outperform their fully 

parametric counterparts. For example, when dealing with small data sets or when data 

distribution does not exactly match the assumed distribution, the rROS approach outperforms 

the MLE. Specific applications of the rROS was reported by Baccarelli et al. (2005) to 

estimate mean levels of dioxin in marine water samples and by Röösli et al. (2008) to 

estimate the mean and different quantiles of radiofrequency measurements subject to 

censoring.  

 

The advantages of robust procedures were reported in Huybrechts, Thas, Dewulfand & Van 

Langenhove (2002) where they identified two problems associated with fully parametric 

methods: First, the presence of outliers may falsify the lognormality assumption and may 

results in highly biased estimates. Secondly, even if data happens to be lognormally 

distributed, the estimates of the mean and standard deviation suffer from the back-

transformation bias. They pointed out that robust parametric methods are not very sensitive 

to departures from the assumed distribution. Moreover, the censored observations are 

predicted and can be directly back-transformed to original scale avoiding the transformation 

bias. 

 

In addition to the rROS and rMLE, the environmental literature reports other ad-hoc 

imputation techniques that are less frequently used. For data ܺ censored at DL, the imputed 
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values are generally conditional expected values of ܺ, given nondetects are smaller than DL, 

that is ܧ[ܺ|ܺ <  :Some relevant papers in this regard are listed below .[ܮܦ

• Lynn (2001) developed an imputation technique based on maximum likelihood. The 

imputed values were random draws from a normal distribution whose parameters were 

maximum likelihood estimates (MLEs); 

• Succop et al. (2004) employed the MLE method to derive initial estimates of the sample 

mean and standard deviation. These estimates were used to impute censored 

observations, which they called “the most provable value”; 

• Lubin et al. (2004) carried out a multiple imputation procedure where Tobit regression 

followed by a non-parametric bootstrapping was used to estimate the mean and standard 

deviation of lognormally distributed data. These estimates were used to construct a 

lognormal distribution and the imputed values were random draws from that distribution. 

Comparing the performance of Lubin’s against Lynn’s imputation method, Jain et al. 

(2008) showed the superiority of the Lubin’s method for censoring percent larger than 

20%; 

• Aboueissa & Stoline (2004) proposed a new imputation technique that performed as well 

as the MLE method. Their method employed information regarding the number of 

observations below and above DL as well as the estimates of the mean and standard 

deviation of the uncensored part of the data. However, the application of their 

methodology is limited to low skewed normal and lognormal data subjected to a single 

DL with a censoring percent of less than 50%; 

• Krishnamoorthy, Mallick and Mathew (2009) proposed a methodology valid for data that 

can be represented by a normal distribution. An appropriate transformation such as 

lognormal or cube root transformation may be necessary to be able to employ their 

technique. This imputation method uses initial estimates of the mean and standard 

deviation based on the uncensored data, with some adjustments to compensate for 

parameter overestimation since only above-DL values are considered. Through 

simulation studies and real data examples, the authors demonstrated that their imputation 

technique worked well for small to moderately large sample sizes; 
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• Ganser & Hewett (2010) proposed the β-substitution method which consists of 

substituting censored observations with a data-dependent β factor multiplied by the DL. 

They demonstrated that their proposed substitution technique performed equally well 

when compared to the MLE method, particularly in simulation scenarios with small 

sample sizes. They did not include KM when comparing the performance of their new 

method. To complement this study, Huynh et al. (2014) devised a simulation framework 

to evaluate the performance of β-substitution against its competitors, MLE and KM. They 

concluded that the β-substitution method performed as well as or better than MLE and 

KM methods for data from lognormal and contaminated lognormal distributions. When 

data contain multiple DLs, this methodology suffers from a drawback in that the average 

of DLs is considered in the algorithm as if the data had a single DL. 

 

Another promising estimation method falls under the category of non-parametric techniques 

that do not require any parametric assumption about the data; all that matters is the relative 

rank of observations. As the distribution of left-censored concentration data is complex and 

often unknown, She (1997) favored the non-parametric KM estimator. For estimating the 

95% upper confidence level (95UCL) of censored concentration data sets, the simulation 

study by Singh et al. (2006) considered the impact of censoring percent as well as the degree 

of skewness on the performance of different statistical methods. Overall, they advocated the 

KM estimator on the basis that parametric methods relying on lognormal distribution 

assumption resulted in unrealistically inflated estimates. Importantly, they noted that an 

estimation method may perform differently depending on whether data are low or highly 

skewed. Antweiler & Taylor (2008) questioned the reliability of research studies based on 

data generated from known distributions as it might have been caused the preference of 

parametric estimators. They used a more precise laboratory instrument and re-measured the 

contaminants concentrations of the samples that had previously provided censored data, 

making it possible to attribute a concentration value to censored measurements. This resulted 

in having two concentration data sets for each contaminant, one with censored observation 

and the other one without them. They applied the substitution (with zero, DL, and DL/2, a 

random number between zero and the DL), rROS, MLE (under normal and lognormal 
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assumption), and KM methods to estimate statistical parameters of data and compared these 

to the true values. They concluded that generally the KM method estimated the mean, 

standard deviation, 25th, 50th, and 75th percentiles with less error. The simulation results of 

European Food Safety Authority (2010) also suggested the KM method when the underlying 

distribution of data was not easily identified and particularly, the censoring percentage was 

lower than 50%. Some sample applications of KM can be found in Pajek, Kubala-Kukuś, 

Banaś, Braziewicz & Majewska (2004); Helsel (2010b); and Barghi, Choi, Kwon, Lee & 

Chang (2016). However, the KM method is not recommended for data sets with only one DL 

and whenever the smallest observation is a nondetect (Hewett & Ganser, 2007).  

 

Despite attempts of researchers to encourage the use of alternative estimators, we still 

encounter studies that avoid using them. The computational complexity of implementing 

alternative estimators is often one of the hurdles. However, increasing availability of standard 

software programs has resolved this problem. For example, the computation of the MLE 

method through Microsoft Excel Solver Tool was made available by Finkelstein & Verma 

(2001). Flynn (2010) presented an estimation technique that was also simply implemented in 

an Excel worksheet and claimed that the mean and standard deviation estimates provided by 

their methodology were comparable to those obtained from the restricted MLE method. This 

methodology imputes censored values by maximizing the Shapiro-Wilk statistic such that a 

normal distribution is produced. The rough assumption of this estimation technique is that 

data or transformed data follow a normal distribution. In two companion papers by Lee & 

Helsel (2005; 2007), S-language software implementations for the rROS and KM methods 

are explained. 

 

The second reason that prevents using the alternative estimators is the lack of clarity as to 

what is the best course of action to take in the presence of left-censored data. In an attempt to 

unify the opinions, Helsel (2012) reviewed several papers on the performance of various 

methods for estimating statistical parameters of data and gave a concise summary of the 

results as reported in Table 2.1.  
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Table 2.1 Summary of recommended methods for estimating the statistical parameters 2 

 

 Sample size 

Censoring percent <50 observations >50 observations 

<50% Imputation or KM/Turnbull Imputation or KM/Turnbull 

50%-80% 
rMLE, rROS, multiple 

imputation 
MLE, multiple imputation 

>80% 
Report only % above a 
meaningful threshold 

May report high sample 
percentiles (90th, 95th) 

 

In addition to employing appropriate estimation technique(s), it is crucial to identify adequate 

methods for constructing confidence intervals as these indicate the uncertainty in the 

estimates. However, the majority of the above-mentioned investigators did not address this 

issue. Assuming that data (or transformed data) follows a normal distribution, confidence 

intervals around the mean based on the Student’s t-statistic are computed as (̂ߤ ఈݐ− ଶ⁄ ,(௡ିଵ)ඥߪොଶ ݊⁄ ߤ̂ , + ଵିఈ)ݐ ଶ)⁄ ,(௡ିଵ)ඥߪොଶ ݊⁄ ), where ̂ߤ and ߪොଶ may be computed using any of 

the parametric estimators such as MLE or an extension of it. Singh et al. (2006) and Helsel 

(2012) discussed that these parametric intervals are highly sensitive to the normality 

assumption and if applied for skewed data sets, the estimated confidence intervals may be 

biased (and sometimes unrealistic, for example, in the case that negative lower confidence 

levels are estimated). Another shortcoming with this confidence interval is the lack of clarity 

about whether ݊ represents the total number of observations, or only the number of 

uncensored observations. Bootstrapping (Efron, 1981) is a compelling method for computing 

confidence limits around the statistic of interest (mean, median, percentile, etc.). This method 

consists of sampling with replacement from the original data for B times and calculating the 

statistic of interest for each draw. Doing so, one obtains B estimates of the statistic (for 

example, mean), which are used to describe the probability distribution of that statistic. This 

                                                 
 
2 Adopted from Helsel (2012), page 93 
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probability distribution serves as a basis for calculating the confidence interval. Being a non-

parametric technique, bootstrapping has the advantage of not relying on the normality 

assumption of data. Frey & Zhao (2004) fit lognormal, Weibull, and gamma distributions 

using MLE to estimate the mean concentration of censored urban air toxics data. They also 

employed the bootstrap method to calculate the uncertainty around the estimated mean. Their 

paper showed that the range of uncertainty increased with increasing censoring percent and 

coefficient of variation (coefficient of variation was used as an indicator of data variability), 

and on the other hand, decreased when sample size got larger. Singh et al. (2006) considered 

several estimation methods including Tiku’s method, Scheneider’s approximate UCL 

method, Student t-statistic, Land’s H-statistic, Chebyshev inequality, and different versions 

of bootstrapping to calculate the 95UCL of the mean. They concluded that the KM estimator 

followed by Chebyshev, student’s t-statistic, or bootstrap provided good estimates of 95UCL. 

A review of prior publications that evaluated the performance of different estimators is 

reported in chronological order, as illustrated in Table 2.2. 

 

2.1.1 Current norms of environmental agencies on censored data 

The guidelines issued by USEPA (2000) advocate substitution of censored data by half of the 

DL when less than 15% of data is censored. However, Helsel (2006) states that the 15% cut-

off value is simply based on judgment rather than any peer-reviewed publication. If 15%-

50% of data are censored, USEPA (2000) recommends using the MLE, trimmed, or 

winsorized mean and standard deviation. For data sets with more than 50% censoring, a 

percentile larger than the censoring percent can be used, instead of the mean value, to 

represent contamination level. This guideline cautions practitioners when using the MLE 

method for small data sets (n<20), as it may produce biased results. Although not discussed 

in details, this document gives some recommendations on which statistical parameter to use 

for different censoring percent and coefficient of variation. Noticeable is that after 6 years, 

another document issued by USEPA (2006) incorporates the same elements of the prior 

guidance on how to handle censored data. The Appendix of the Local Limits Development 

Guidance (USEPA, 2004) recognizes that substitution of censored data results in biased 
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estimates and encourages the use of rROS and MLE techniques. In a report published by Oak 

Ridge National Laboratory, Frome & Wambach (2005) recommends MLE as the first 

method of choice and KM when the data distribution is hard to identify. 

 

Canadian Federal and provincial government documents related to site characterization are 

strongly based on the above-mentioned USEPA guidelines for handling left-censored data. 

Within the context of risk-based site characterization, the guidance document “human health 

detailed quantitative risk assessment” provided by Health Canada (2010) accepts substitution 

for low censoring amounts; however, no threshold for censoring percent is reported. In 

addition, this document recommends the rROS method for modest to large data sets and the 

MLE method only for large data sets without giving any indicative value about the sample 

size. Similarly, Canadian Council of Ministers of the Environment (2016) suggests the use of 

substitution as long as censoring percent is less than 10%. For higher censoring percent, this 

guidance recommends one of the MLE, rROS, or KM estimation techniques. Surprisingly, 

the problem of left-censoring has not been mentioned in “Guide de caractérisation des 

terrains” (Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs 

du Québec, 2003a). 



 

Table 2.2 Review of prior publications (in chronological order) on the performance of estimators for left-censored data 

 

year Reference Methodology Estimators 
Considered 
distributions 

Distributional 
parameters 

Preferred estimators 

1986 
Gilliom & 
Helsel 

Monte Carlo 
simulations 

subs, ROS, MLE
lognormal, delta, 
contaminated lognormal, 
gamma 

μ=1 
σ=0.25, 0.5, 1, 2 

ROS for estimating 
percentiles; MLE for 
estimating the mean 
and standard deviation 

1988 
Helsel & 
Cohn 

Monte Carlo 
simulations 

subs,  
ROS, rROS, 
MLE 

lognormal, delta, 
contaminated lognormal, 
gamma 

μ=1 
σ=0.25, 0.5, 1, 2 

rROS 

1989 
Newman et 
al. 

3 water 
quality data 
sets subject to 
artificial 
censoring 

subs, ROS, 
MLE, 
restricted MLE, 
bias-corrected 
MLE 

Normal, 
Lognormal 

μ=18.3, σ=3.83; 
μ =997, σ=19.9;                
μ= 5.21, σ=2.16           

Restricted MLE when 
the underlying 
distribution is known; 
ROS when the 
underlying distribution 
cannot be identified 

1990 
Hass & 
Scheff 

Monte Carlo 
simulations 

subs, ROS, 
rROS, Cohen’s 
MLE, restricted 
MLE, bias 
corrected MLE 

normal    
contaminated  normal 

μ=0,σ=1;                           
μ=(1,-1),σ=1;                    
μ=0,σ=1,5 

Bias-corrected and 
restricted MLE 

1992 
El-Shaarawi 
& Esterby 

Developed 
analytical 
expressions 

          - 
normal 
lognormal 

μ=1,2,3,…,10    
σ=1 

Quantifying the bias of 
substitution depends 
on a variety of 
parameters; MLE is 
preferred. 

1996 
Kroll & 
Stedinger 

Monte Carlo 
simulations 

MLE, rMLE, 
ROS, PPWM 

contaminated lognormal, 
gamma, lognormal, 
Delta, Weibull, log-
Pearson III 

μ=1    
σ=0.25, 0.5, 1, 2 

rMLE 
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Year Reference Methodology Estimators 
Considered 
distributions 

Distributional 
parameters 

Preferred estimators 

1997 She 
Monte Carlo 
simulations 

subs, ROS, 
MLE,KM 

lognormal, gamma 
μ=1    
σ=0.25,0.5,1,2 

KM 

1998 Clarke 
Monte Carlo 
simulations 

subs, ROS, MLE 
normal , lognormal, 
gamma 

μ=1 
σ=0.1,0.5,1,2 

Subs 

2002 
Shumway 
et al. 

Monte Carlo 
simulations 

rROS, MLE lognormal, gamma 
log: (μ=2.77,σ=0.75) 
gamma:(μ=4 ,σ=2.83) 

MLE followed by 
Jackknife to reduce 
transformation bias 

2002 
Singh & 
Nocerino 

Monte Carlo 
simulations 

subs, rROS 
 EM algorithm,  
Cohen’s MLE, 
restricted MLE, 
unbiased MLE 

normal μ=5, σ=2 restricted MLE 

2002 
Huybrechts 
et al. 

3 water quality 
data sets subject 
to artificial 
censoring 

Cohen’s MLE, 
bias-corrected and 
restricted MLE,  
ROS, rROS 

lognormal 
μ=12.9, σ=17.8;                 
μ=26.7, σ=35;                    
μ=199, σ=473 

robust bias-corrected 
and restricted MLE; 
rROS 

2005 
Baccarelli  
et al. 

Dioxin data 
subs, MLE, ROS, 
rROS 

lognormal                 - rROS 

2006 Singh et al. 
Monte Carlo 
simulations 

subs, MLE, bias-
corrected MLE, 
restricted MLE, 
EM algorithm, 
delta method, 
ROS, rROS, KM, 
winsorization 

normal, lognormal, 
gamma 

Normal:(μ=100, σ=30) 
Log:(μ=5,σ=0.75,1.5,2) 
Gamma:(α=0.5,0.75,2; 
β=100) 

KM followed by 
bootstrap for 95UCL 

2007 
Hewett & 
Ganser 

Monte Carlo 
simulations 

subs, ROS, rROS, 
MLE, rMLE, 
succop imputation 

lognormal, 
contaminated 
lognormal 

GM=1,GSD=1.2-4 
 
MLE 

 



 

year Reference Methodology Estimators 
Considered 
distributions 

Distributional 
parameters 

Preferred estimators 

2008 
Antweiler 
& Taylor 

Concentrations 
of inorganic 
compounds 

subs, MLE, ROS, 
rROS, KM, subs 
with Instrument-
generated data 

lognormal  
normal  
 

ߤߪ < 5.4 KM 

2008 Jain et al. 

Actual data set 
subject to 
artificial 
censoring 

Lubin’s method;      
Lynn’s method 

lognormal 
ߤߪ < 1.6 Lubin’s method 

2010 
European 
Food Safety 
Authority 

Monte Carlo 
simulations 

subs, ROS,MLE, 
KM 

lognormal, gamma, 
contaminated 
lognotmal, lognormal 
with zero values. 

Log: (μ=1, σ=2); 
Gamma:(α=1.07,β=0.70) 

KM for <50% 
censoring; otherwise, 
MLE 

2014 Huynh et al. 
Monte Carlo 
simulations 

β-subs, MLE, KM 

lognormal, 
contaminated 
lognormal 
 

GM=1,GSD=2,3,4,5 β-subs 

EM: Expectation maximization; KM: Kaplan Meier; MLE: Maximum likelihood estimation, rMLE: robust maximum likelihood estimation; PPWM: 
partial probability weighted moments; ROS: regression on order statistics, rROS: robust regression on order statistics; Subs: substitution GM: Geometric 
mean; GSD: Geometric standard deviation 
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Remarks 

 

The literature review reveals that previous studies reached different conclusions about 

appropriate analysis of left-censored data. We believe that the following shortcomings led to 

such an inconsistency: 

a) Failure to investigate the impact of data skewness: the MLE method wins when data 

are generated from low to medium skewed distributions as in Shumway et al. (2002) 

and Hewett & Ganser (2007); 

b) Failure to explore the robustness of different methods to departure from an assumed 

distribution: the general attitude in previous studies has been to generate data from a 

lognormal distribution and to employ parametric estimators that rely on lognormality 

without investigating the consequences when real data do not closely adheres to the 

distributional assumption; 

c) Failure to consider and compare the uncertainty intervals provided by different 

estimators. 

 

2.2 Modeling of concentration data containing left-censored observations 

Previous studies investigating the effect of censored data on developing regression models 

led to the general conclusion that substituting nondetects with a single constant produces 

biased and misleading estimates (Helsel, 1990; Thompson & Nelson, 2003; Lubin et al., 

2004; Helsel, 2005; Eastoe, Halsall, Heffernan & Hung, 2006; Jin, Hein, Deddens & Hines, 

2011; Helsel, 2012). For example, Eastoe et al. (2006) showed that substitution of censored 

concentrations of semi-volatile organic compounds confounded the year-on-year mean trend 

of pollution, specifically when the censoring percent was higher than 50%.  

 

Appropriate procedures while investigating the relationship between a response variable 

containing nondetects (i.e., concentration data) and explanatory variable(s) is broadly 

classified into parametric and non-parametric. With respect to parametric methods, the most 

common procedure has been Tobit regression (Tobin, 1958), which is based on the 
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assumption of normal error distribution. However, the performance of Tobit regression is not 

satisfactory when assumptions related to normality and uniformity of errors are violated 

(Austin, Escobar & Kopec, 2000), and the censoring percent is large (>30% according to Uh, 

Hartgers, Yazdanbakhsh & Houwing-Duistermaat, 2008). Another popular parametric 

method for analyzing censored data is imputing nondetects and combining them with 

uncensored data before performing the modeling analysis. Simulation studies have shown 

that the multiple imputation method produces unbiased estimates of regression parameters 

(Liu, Lu, Kolpin & Meeker, 1997; Lubin et al., 2004; Uh et al., 2008). Despite good 

properties of the imputation method, Lubin et al. (2004) pointed out that this technique was 

not necessary when individual values for nondetects were not needed, which in that case they 

recommended using Tobit regression. Among non-parametric techniques for left-censored 

data, the literature review points out to Buckley-James regression (Buckley & James, 1979), 

Schmitt’s weighted least square regression (Schmitt, 1985), least absolute deviations 

regression (Powell, 1984), and Theil-Sen regression (Sen, 1968 and Theil, 1992), among 

others. The latter is particularly interesting as it accommodates censoring in both response 

and explanatory variables (i.e., doubly censored data).  

 

The essential assumption of censored regression models is independency between 

observations, which may not necessarily be true when observations reside in groups. For 

example, for assessing the exposure of workers to air pollutants at a workplace, Peretz, 

Goren, Smid & Kromhout (2002) collected repeated measurements of inhalable particulates 

from a randomly selected number of workers. The measurements obtained from the same 

worker formed a group and thus were likely to be correlated. Another example of data 

collection process that induced correlation was reported in Bogner, Gaul, Kolb, 

Schmiedinger & Huwe (2010): for the purpose of investigating the significant factors 

affecting water flow process in a forest soil, Bogner et al. (2010) collected soil samples from 

different areas of the forest situated approximately 50 m apart (i.e., plots) and at different 

depths (i.e., horizons). Obviously, observations collected from the same plot (or horizon) 

were likely to be more related to each other than to the observations from different plots (or 

horizons). Applying standard regression models to the above-mentioned examples does not 
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necessarily give consistent results because the independency assumption is not satisfied. As a 

matter of fact, biased estimates with erroneously narrow confidence intervals may be 

obtained (Kreft & De Leeuw, 1998), implying that a regression parameter is significant while 

actually is not.  

 

A promising approach of fitting regression models to data where some degree of dependency 

is suspected is mixed effects models. In addition to producing the least biased estimates of 

regression parameters, mixed effects models enable estimation of within- and between-group 

variance components, whereas simple regression models only provide a global variance. 

Some studies in the field of exposure assessment (e.g., European Food Safety Authority, 

2010 and Jin et al., 2011) and epidemiology (e.g., Thiebaut & Jacqmin-Gadda, 2004; Twisk 

& Rijmen, 2009; Vaida & Liu, 2009) employed mixed effects models, while incorporating 

nondetects in the models. However, to our knowledge, the benefits of these models in the 

field of environmental engineering and in particular for site characterization studies have not 

been explored. 

 

Remarks 

 

The unique property of mixed effects models is the inclusion of both fixed and random 

effects. While fixed effects describe the average relationship between a response and 

explanatory variables, random effects accounts for inherent heterogeneity in response due to 

different groups. Literature review revealed that most environmental data analyses 

considered either (i) censored linear regression models, ignoring the correlation between 

measurements or (ii) mixed effects models, ignoring below DL observations. 
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3.1 Abstract 

In environmental studies, concentration measurements frequently fall below detection limits 

of measuring instruments, resulting in left-censored data. Some studies employ parametric 

methods such as the maximum likelihood estimator (MLE), robust regression on order 

statistic (rROS), and gamma regression on order statistic (GROS), while others suggest a 

non-parametric approach, the Kaplan-Meier method (KM). Using examples of real data from 

a soil characterization study in Montreal, we highlight the need for additional investigations 

that aim at unifying the existing literature. A number of studies have examined this issue; 

however, those considering data skewness and model misspecification are rare. These aspects 

are investigated in this paper through simulations. Among other findings, results show that 

for low skewed data, the performance of different statistical methods is comparable, 

regardless of the censoring percentage and sample size. For highly skewed data, the 

performance of the MLE method under lognormal and Weibull distributions is questionable; 

particularly, when the sample size is small or censoring percentage is high. In such 

conditions, MLE under gamma distribution, rROS, GROS, and KM are less sensitive to 

skewness. Related to model misspecification, MLE based on lognormal and Weibull 

distributions provides poor estimates when the true distribution of data is misspecified. 

However, the methods of rROS, GROS, and MLE under gamma distribution are generally 
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robust to model misspecifications regardless of skewness, sample size, and censoring 

percentage. Since the characteristics of environmental data (e.g., type of distribution and 

skewness) are unknown a priori, we suggest using MLE based on gamma distribution, rROS 

and GROS. 

 

3.2 Introduction 

It is often necessary to estimate statistical parameters of contaminant concentration 

distributions. For example, in contaminated site characterization, this helps us to determine 

the average level of contamination of a remediation unit or to make statistical inferences to 

differentiate contaminated soil layers. Complications occur when the contaminant 

concentrations cannot be quantified because the precision of the laboratory instrument is not 

sufficient to distinguish the presence of the contaminant from the background noise. As a 

result, qualitative information is obtained since all we know is that the concentration lies 

between zero and the detection limit (DL) of measuring instruments (El-Shaarawi & 

Piegorsch, 2002; Ofungwu, 2014). A measurement that is less than the DL is called a left-

censored data point. Furthermore, the concentration data might contain multiple DLs due to 

the use of different measuring instruments, analytical methods, or combining data sets with 

different DLs (Jin et al., 2011; He, 2013). 

 

In survival analysis, there are several statistical methods to accommodate right-censored data 

that can be adapted to address the problem of left-censoring in environmental studies. The 

most common methods to handle left-censored data include (i) the Maximum Likelihood 

estimator (MLE), (ii) methods based on Regression on Order Statistics (ROS), and (iii) 

Kaplan–Meier (KM) procedure. The MLE and ROS-based methods are parametric 

approaches that assume a predetermined distribution for the data, whereas the KM method is 

a non-parametric approach and does not require any distributional assumption. The two 

common versions of ROS are the robust ROS (rROS) and gamma ROS (GROS) methods that 

rely on lognormal and gamma assumptions, respectively. 
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Although several studies try to offer guidelines about how to deal with left-censored data 

through Monte Carlo simulations (Singh et al., 2006; Helsel, 2010b; Helsel, 2012), there has 

been no general agreement on an appropriate strategy. Literature review reveals that, in 

addition to sample size (Annan, Liu and Zhang, 2009; Gardner, 2012) and percentage of 

censoring (Kroll & Stedinger, 1996; Huynh et al., 2014), skewness of the underlying 

distribution influences the performance of the methods (USEPA, 2006). To our knowledge, 

only a few studies consider skewness when assessing the performance of the statistical 

methods in estimating the distributional parameters. For example, USEPA (2006) guidelines 

state that conclusions derived for low skewed distributions cannot be generalized to 

moderately and highly skewed ones. We believe that the reason for which the conclusions of 

previous studies are not in general agreement is the fact that the impact of skewness was 

overlooked. In fact, the comparative simulations that were based on low to moderately 

skewed distributions or the simulations in which the results were averaged over a wide range 

of distributions generally argue in favor of the MLE method under lognormal assumption 

(Lynn, 2001; Shumway et al., 2002; Hewett & Ganser, 2007; Jain et al., 2008; European 

Food Safety Authority, 2010). On the other hand, studies that include more skewed 

distributions report poor performance of MLE under lognormal assumption (Gilliom & 

Helsel, 1986; Helsel & Cohn, 1988). 

 

In addition to the issue of skewness mentioned earlier, there is an issue regarding the 

performance of the parametric methods in the case of misspecified distributions. The 

common practice in environmental literature is to assume that data are lognormally 

distributed and to use the MLE and rROS methods based on this assumption (El-Shaarawi, 

1989; Huybrechts et al., 2002; Baccarelli et al., 2005; Caudill et al., 2007; Leith et al., 2010). 

It is crucial to know how these methods behave if the underlying parametric model is 

misspecified. This occurs because  

a) There is no evidence that all environmental data are actually lognormal; 

b) There is not any straightforward extension of goodness-of-fit tests to establish the true 

underlying distribution of a given environmental data set due to the presence of left-

censored observations. 
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Unfortunately, comprehensive studies that examine the robustness of the parametric 

estimators in the case of model misspecification are rather rare. Although the MLE method 

under lognormal assumption has been widely studied (for example, Gilliom & Helsel, 1986; 

She, 1997; Shumway et al., 2002; Hewett & Ganser, 2007; among others), only a few 

environmental studies have attempted to investigate the performance of MLE under Weibull 

and gamma assumptions (Schmoyeri, Beauchamp, Brandt & Hoffman, 1996; European Food 

Safety Authority, 2010). 

 

This paper aims at unifying the existing literature on environmental data analysis in the 

presence of left-censored data by addressing the above mentioned issues. To infer 

conclusions applicable to more realistic scenarios, we investigate the robustness of the 

methods under study to variations in data skewness and departures from a distributional 

assumption. This is key in the analysis of concentration data as neither the underlying 

distribution nor the skewness is exactly known a priori. We employ an extensive simulation 

exercise to evaluate the performance of the MLE, rROS, GROS, and KM methods in 

estimating distributional parameters in simulation scenarios based on different levels of 

skewness and data generating distributions. The particular objective of this work is to address 

the issue of the robustness of the parametric methods (i.e., MLE, rROS and GROS). This is 

achieved by: 

a) Investigating the robustness of MLE and rROS based on lognormal assumption when 

the data are generated from Weibull, gamma, and some mixture distributions; 

b) Investigating the robustness of MLE under Weibull assumption when the data are 

generated from lognormal, gamma, and some mixture distributions; 

c) Investigating the robustness of MLE and GROS based on gamma assumption when 

the data are generated from lognormal, Weibull, and some mixture distributions. 

Careful collection and chemical analysis of environmental samples leads to obtaining 

concentration data sets that are representative of the actual contamination level of the 

sampling location. However, extracting correct information contained in the data and 

estimating the contamination level at the scale of a remediation unit or the site is possible 

using adequate statistical methods. Decisions made upon appropriate statistical methods 
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protect human health and environment, optimize the allocation of financial resources and 

save time and effort. The conclusions of this study are applicable to any process that include 

contaminant quantification such as environmental monitoring and risk assessment. 

 

3.3 Estimation techniques 

In this section, we briefly describe the most common statistical methods for analyzing left-

censored data. These are maximum likelihood estimation, methods based on regression on 

order statistics, and Kaplan–Meier methods. 

 

Maximum Likelihood estimation (MLE) utilizes a likelihood function to estimate the 

distributional parameters. The likelihood function describes the likelihood of observed data, 

given any member of an assumed parametric family of distributions. In this method, the 

distributional parameter θ (e.g., the mean and standard deviation) is estimated by maximizing 

the likelihood function with respect to these parameters. Let ݕଵ, ,ଶݕ … ,  ௡ be someݕ

observations (i.e., contaminant concentrations) and let ࡸࡰ = ,ଵܮܦ) … ,  ௡) denote theܮܦ

vector of censoring points (detection limits). The observed concentration data consist of pairs (ݔ௜, ௜ݔ ௜) whereߜ = max(	ݕ௜, ௜ߜ ௜) andܮܦ = ௜ݕ)ܫ ≥ ௜ߜ ௜), meaning thatܮܦ = 1 if ݕ௜ ≥  ௜ (inܮܦ

that case ݔ௜ = ௜ߜ ௜) andݕ = 0 if ݕ௜ < ௜ݔ ௜ (in that caseܮܦ = ݅ ௜) for anyܮܦ = 1,… , ݊. For a 

random sample of size ݊, the likelihood contribution from the ith observation is expressed as 

the probability density function ݂(ݔ௜;  if the observation is not censored, and as the ,(ߠ

cumulative density function ݔ)ܨ௜;  ݊ if it is left-censored. For a full sample of	(ߠ

observations, the likelihood function is given by 

 

ܨܮ  ∝ෑ݂(ݔ௜; ;௜ݔ)ܨఋ೔(ߠ ଵିఋ೔௡(ߠ
௜ୀଵ  (3.1) 

 

Under mild regularity conditions which are not mentioned here, maximum likelihood 

estimators are asymptotically normally distributed (Knight, 2000). This means that, for large 

enough samples, the histograms of MLEs, under repeated sampling, should resemble the 
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curve of a probability density function of normal distribution. In addition, it is known that 

MLEs are statistically consistent estimators of the respective population parameters, meaning 

that as the sample size tends to infinity, the MLE estimates become closer and closer to the 

true values of the population parameters (Lawless, 2003). In order to use the asymptotic 

normality of MLEs, a sufficiently large sample size is required. The adequate sample size 

depends on the underlying assumptions on the population. In addition, the sample size should 

be larger when data sets consist of left-censored observations. Based on simulation studies, 

Perez & Lefante (1997) concluded that the larger the variability of data or the percentage of 

censoring, the larger the sample size required. Further discussions on the use of the 

maximum likelihood method with censored data can be found in Kuttatharmmakul, Smeyers-

Verbeke, Massart, Coomans & Noack (2000) and Lee & Wang (2003). 

 

Robust Regression on Order Statistics (rROS) assumes that data distribution is lognormal. 

Under this assumption, the scatter plot of the ordered logarithm of the uncensored 

observations against the quantiles of the normal distribution should show a straight line. The 

intercept and the slope of the regression line yield an estimate of the mean and standard 

deviation, respectively. These estimates are employed to predict censored observations 

(Helsel, 2012). The predicted values are combined with the observed values resulting in a 

complete data set for which usual methods can be used to estimate statistical parameters. 

Although the lognormal distribution has been the most commonly used model in 

environmental studies, Singh, Singh & Iaci (2002) computed upper confidence limits based 

upon a gamma distribution and concluded that gamma distribution is more appropriate to 

model uncensored environmental data. Consequently, Singh & Singh (2013) developed the 

ROS method based on gamma distribution (GROS) and included its implementation in 

ProUCL (version 5.0.00), statistical Software for analysis of environmental data with left-

censored observations. 

 

Gamma Regression on Order Statistics (GROS) fits a regression line to the scatter plot of 

the ordered uncensored observations against gamma quantiles. Note that one has to estimate 

the shape and scale parameters of the gamma distribution based on the uncensored 
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observations in order to compute the respective gamma quantiles. The censored observations 

are then predicted using the intercept and slope of the regression line and combined with the 

observed values resulting in a complete data set. 

 

Kaplan–Meier (KM) is a non-parametric technique meaning that it does not rely on a 

parametric distributional assumption. This method estimates the cumulative distribution 

function, (ݔ)ܨ = ܲ(ܺ ≤  is the probability of (ݔ)ܨ non-parametrically. Recall that (ݔ

observing a concentration less than or equal to a certain value ݔ. The resulting estimate of (ݔ)ܨ is a step function, each step corresponding to an uncensored observation. 

 

3.4 Demonstration of the problem 

As mentioned earlier, conflicting opinions exist on selecting a suitable technique for handling 

left-censored data. While some researchers advocated the use of the MLE method, others 

preferred either the rROS or a non-parametric approach. In this section, we estimate the mean 

and standard deviation of distribution of real concentration data for four contaminants 

(pyrene, fluoranthene, acenaphthylene, naphthalene) measured in soil samples obtained from 

a site characterization study conducted in Montreal, Canada. In addition to the methods of 

rROS, KM, and MLE under lognormal distribution, which are commonly studied in the 

environmental literature, we include the MLE method based on Weibull and gamma 

distributions as well as the ROS method that relies on gamma assumption. 

 

Table 3.1 shows how different methods can provide quite different estimates. Referring to 

the literature recommendations about dealing with left-censored environmental data (e.g., 

USEPA, 2006; Helsel, 2012), the MLE method under lognormal assumption should provide 

good estimates with the sample size and percentage of censoring reported in Table 3.1. 

However, interestingly, the estimates provided by lognormal MLE are unreasonably larger 

compared to the estimates provided by other methods (i.e., rROS, GROS, MLE under 

Weibull and gamma assumptions, and KM). This is particularly clear when estimating the 
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standard deviation of the soil population under study. We believe the reason of the 

discrepancy between our example and the literature can be the following. 

a) The literature recommendations do not take into account the impact of skewness on 

the performance of the methods; 

b) Assuming the lognormality for environmental data as a default and computing the 

estimates based on such assumption is incorrect. 

The example reported in Table 3.1 clearly demonstrates the necessity for additional 

simulations to investigate the behavior of different estimators for a wide range of data 

skewness. Also, we need to explore the robustness of the estimators to distribution 

misspecification given the fact that the underlying distribution of real data is unknown. 

 

 



 

Table 3.1 The estimates of the mean and standard deviation of some concentration data from a characterization study  
(3 significant digits) 

 

Contaminant n 
% 

Censoring 

MLE 

(lognormal) 

MLE 

(gamma) 

MLE 

(Weibull) 

rROS 

(lognormal) 

GROS 

(gamma) 
KM 

Estimation of the mean (mg/kg) 

Pyrene 62 21 66.9 18.4 17.9 18.4 18.3 18.4 

Fluoranthene 62 21 89.3 22.5 21.7 22.5 22.5 22.6 

Acenaphthylene 62 53 1.51 1.02 0.97 1.02 1.01 1.07 

Naphthalene 60 55 5.40 1.81 2.02 1.82 1.8 1.91 

Estimation of the standard deviation (mg/kg) 

Pyrene 62 21 3.63*103 39.3 63.4 65.1 65.1 65.2 

Fluoranthene 62 21 5.80*103 49.1 79.2 85.3 85.3 85.4 

Acenaphthylene 62 53 26.7 2.54 3.75 3.32 3.33 3.34 

Naphthalene 60 55 3.60*102 4.97 10.6 5.63 5.64 5.66 
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3.5 Methodology  

Monte Carlo simulations were used to assess the performance of MLE, rROS, GROS and 

KM methods under a variety of conditions, including sample size, degree of skewness, 

percentage of censoring, and model misspecification. We simulated data by generating 

samples from a set of distributions and by allocating a given percentage of data as left-

censored. Environmental literature states that concentration data are often right-skewed, 

therefore, we used lognormal, gamma, Weibull and some mixture distributions that 

assimilate such data. The mixture distributions are used to investigate the effects of 

departures from an assumed distribution (i.e., model misspecification) on the estimates. We 

assumed that the mean of each distribution equals to one (ߤ = 1) and the standard deviation 

 takes any of the values 0.5, 1.2, 1.9, 2.6, 3.3, 4. The mixture distributions were (ߪ)

considered to have two components: the first component is one of the above mentioned 

distributions, and the second component belongs to the same distributional family but with ߤ = 3 and ߪ = 0.5. Data sets generated from mixture distributions consisted of a proportion 

of 0.75 of the first component and 0.25 of the second one (contaminant distribution). For 

each combination of ߪ and the type of the distribution, the skewness (ߛ) was computed, 

formulas are given in Appendix III. Figure 3.1 shows the shape of distributions for different ߪ as well as the corresponding amount of skewness. Note that, for a fixed ߤ, as ߪ increases, 

the distributions become more skewed. Based on the shape of distributions (Figure 3.1), we 

set a subjective criterion that distributions with 1>ߪ are referred to low skewed distributions, 1 < ߪ < 2 to moderately skewed distributions, and ߪ > 2 to highly skewed distributions. 

Each generated data set consisted of ݊ = 60	observations and contained 30%, 50% and 70% 

left-censored values. The censoring scheme was defined by computing four censoring points 

corresponding to four different quantiles of the data generating distribution so that scenarios 

with the desired percentage of censoring were obtained.  
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a) lognormal distribution                      b) Weibull distribution 

 
            c) gamma distribution                         d) Mixture lognormal distribution 

 
          e) Mixture Weibull distribution              f) Mixture gamma distribution 

 

 

Figure 3.1 Density plots for different distributions with different degrees of skewness 
reported in Table 3.1 
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The mean and standard deviation of each distribution were estimated from the simulated data 

using the parametric MLE (under lognormal, Weibull and gamma distributions), rROS, 

GROS and non-parametric KM methods. 

 

To compare different estimation methods, we assessed the performance of estimators using 

the mean square error (MSE). For each simulation scenario, 1000 samples of size ݊ =60 

were drawn. Let ߠ෠௜ be the estimate of ߠ (either ߤ	or ߪ of a population) based on the ith sample 

of size n, ݅ = 1,2, … 1000 , the Monte Carlo approximation of MSE of ߠ෠	is given by 

 

෠൯ߠ෣൫ܧܵܯ  = 11000 ෍(ߠ෠௜ଵ଴଴଴
௜ୀଵ  ଶ (3.2)(ߠ−

 

Furthermore, to evaluate the robustness of rROS and lognormal MLE, which are based on 

lognormal assumption, against model misspecification, analyses were done based on data 

generated from gamma, Weibull and mixture distributions. In the same way, the robustness 

of GROS and MLE under Weibull and gamma assumptions were assessed by analyzing data 

that were not generated from Weibull and gamma distributions, respectively. 

 

3.6 Results 

Simulation results show that the skewness, percentage of censoring, and sample size have an 

impact on the performance of the methods. The impact of these parameters is discussed 

below. Figure 3.2 and Figure 3.3 show the MSEs of various methods in estimating the mean 

and standard deviation for different simulation scenarios, respectively. The y-axes are in log-

scale, whereas the x-axes are in linear scale. 
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a) lognormal distribution 

 

b) Weibull distribution 

 

c) gamma distribution 

 

Figure 3.2 The MSE of mean estimates obtained by several methods for ߤ =  0.5,1.2,1.9,2.6,3.3,4=ߪ ,1
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a) lognormal distribution 

 

b) Weibull distribution 

 

c) gamma distribution 

Figure 3.3 The MSE of standard deviation estimates obtained by several methods for ߤ =  0.5,1.2,1.9,2.6,3.3,4=ߪ ,1

 

3.6.1 The impact of skewness 

Estimation of the mean: Figure 3.2 shows that the MLE, rROS, GROS and KM methods 

generally produce comparable MSE values in simulation scenarios with 30% and 50% 

censoring. Note that because of the similarity of the MSE values, these points may seem to 

overlap. For the mean estimation, the impact of skewness comes into play in cases with 70% 
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censoring. For example, in scenarios of lognormal and Weibull distributions with 70% 

censoring, the MLE method tends to produce slightly larger MSEs for highly skewed data 

ߪ) =3.3 and 4). In scenarios with <50% censoring, the performance of the KM method is 

either comparable or slightly worse than the MLE method. However, when the censoring 

percent increases to 70%, the performance of KM can dramatically deteriorate. As the 

skewness increases, the performance of the MLE, rROS and GROS methods starts to 

deteriorate and in some cases can be even worse than the KM method. For example, in the 

case of lognormal distribution with 70% censoring, the performance of MLE is even worse 

than KM. 

 

Estimation of the standard deviation: For estimating the standard deviation, the impact of 

skewness is more pronounced. Figure 3.3a and b depict the MSE values in log-scale 

produced by different estimators based on data sets generated from lognormal and Weibull 

distributions. In both cases, the MLE method performs evidently better for cases 

characterized by low skewed distributions. See the superiority of the MLE for all scenarios 

with 0.5=ߪ. On the other hand, for moderately to highly skewed distributions, the MLE 

method performs poorly compared to the rROS, GROS and KM methods. An important 

observation inferred from Figure 3.3c is that, contrary to the cases of lognormal and Weibull 

distributions, MLEs under gamma distribution are robust to variations in skewness of 

distributions. Simulation results also show that the rROS and GROS methods are robust to 

skewness regardless of the percentage of censoring and type of the underlying data 

generating distribution. Note that these two methods generally provide similar MSEs across 

all simulation scenarios. 

 

3.6.2 The impact of the percentage of censoring and sample size 

It is important to note that the effect of skewness on the performance of the methods 

described in this paper should be studied along with other factors such as the percentage of 

censoring and sample size. For example, in the case of estimating the standard deviation 

based on data generated from lognormal and Weibull distributions with 30%, 50% and 70% 
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censoring, the MLE method produces the lowest MSEs as long as ߪ is equal or below 2.6, 

1.9, and 1.2, respectively ( Figure 3.3a and b). This implies that the smaller the percentage of 

censoring, the less sensitive the MLE to skewness. 

 

In addition to the skewness of distributions and percentage of censoring, the simulation 

results highlight the importance of the sample size on the performance of the methods used in 

this study. Environmental literature often considers MLE as a reliable estimator when the 

sample size contains at least 50 observations (Helsel, 2006; Helsel, 2012). However, it has 

come to our attention that this statement is only valid when the underlying distribution has 

low skewness. Even if the rule of thumb of having data sets with at least 50 observations is 

respected in our simulation study, we observe that the MLE method produces poor estimates 

of the standard deviation in scenarios based on highly skewed distributions. For example, see 

the MSE values obtained by MLE in scenarios of lognormal distribution, 30% censoring, and ߪ ≥ 3.3 in Figure 3.3a. It is worth mentioning that, under some fairly general conditions, 

MLE is asymptotically consistent, and normally distributed with the rate of convergence that 

depends on the shape of the distribution. This is clearly evident in our simulation study 

showing that the required sample size to use the asymptotic properties of MLE strongly 

depends on the type of the data generating distributions and their skewness. To illustrate this, 

we focus on three simulation scenarios in which MLE performs poorly (discussed previously 

in Figure 3.3a and b): 

a) lognormal distribution with 60 observations, σ=3.3 and 50% censoring; 

b) lognormal distribution with 60 observations, σ=4 and 50% censoring; 

c) Weibull distribution with 60 observations, σ=4 and 50% censoring. 

 

Simulations were repeated for these critical scenarios except that the sample size gradually 

increased up to 360 while other simulation parameters were maintained as before. Table 3.2 

shows the impact of skewness on the consistency of the MLE method. The MSE values in 

bold represent the smallest MSE and thus the preferred method. In the case of the lognormal 

population with ߪ = 3.3, MLE under lognormality produces the worst estimate of the 

standard deviation (with MSE=21.279) compared to the rROS, GROS, and KM methods for 
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sample size as large as 60 observations, and is the best estimator (with MSE=4.257) when the 

sample size increases to 120. For the same distribution, when ߪ increases to 4 the minimum 

sample size for which the MLE under lognormality outperforms rROS, GROS and KM is 

180. Based on simulations for the critical scenario of Weibull distribution, the sample size of ݊ =180 is sufficiently large to obtain reliable MLEs. Figure 3.4 illustrates the asymptotic 

normality property of MLEs. We observe that in data sets with 60 observations generated 

from lognormal and Weibull distributions, the histograms of the MLEs are skewed however 

they approach normal distribution as the sample size increases to 360. On the other hand, 

when data come from gamma distributions, 60 observations are sufficient for approximate 

normality to hold. 

 

Table 3.2 Mean square error (MSE) in estimating the standard deviation for lognormal data 
with 50% censoring 

 

Sample size MLE KM rROS GROS 
lognormal (ߪ = 3.3) 

60 21.279 5.427 5.398 5.339 
120 4.257 5.12 5.103 5.06 
180 1.943 3.221 3.223 3.181 
240 1.536 2.576 2.581 2.543 
300 1.232 3.072 3.072 3.042 
360 0.808 2.98 2.981 2.954 

lognormal (ߪ = 4) 
60 32.875 7.761 7.737 7.667 
120 10.664 9.602 9.563 9.51 
180 4.389 8.123 8.105 8.06 
240 2.709 27.57 27.482 27.439 
300 2.369 5.882 5.879 5.841 
360 1.715 5.076 5.077 5.037 

Weibull (ߪ = 4) 
60 12.154 6.614 6.583 6.574 
120 4.938 4.87 4.854 4.848 
180 2.957 3.437 3.433 3.428 
240 1.975 3.391 3.387 3.383 
300 1.514 2.906 2.903 2.899 
360 1.212 2.856 2.853 2.85 
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 Lognormal distributions, n=60                         Lognormal distributions, n=360 

 
Weibull distributions, n=60                         Weibull distributions, n=360 

  
Gamma distributions, n=60                         Gamma distributions, n=360 

  

Figure 3.4 Histogram of the standard deviation of lognormal, Weibull, and gamma 
distributions with ߪ =3.3  
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3.6.3 The impact of distributional misspecification 

Identifying the underlying distribution of environmental data is not straightforward due to the 

presence of left-censored observations. This limitation can lead researchers to incorrectly 

assume lognormality for the majority of environmental data and to use parametric methods 

based on this assumption. Use of the popular parametric methods for analyzing left-censored 

data under lognormality (i.e., MLE, rROS) would lead to biased estimates and potentially 

misleading inferences. Besides, Singh et al. (2002) suggest assuming a gamma distribution 

for uncensored environmental data and employ the ROS method based on such assumption 

(i.e., the GROS method) (Singh & Singh, 2013). In this section, we explore the robustness of 

MLE, rROS and GROS to distributional misspecification and show that MLE based on 

gamma assumption is generally a robust estimator. Table 3.3 shows the MSEs obtained by 

the MLE, rROS and GROS estimators in the misspecified settings with 50% censoring; the 

MSE values obtained with 30% and 70% censoring are available in Appendix III. In Table 

3.3, the extremely large MSEs (values larger than 1000) are replaced by a star. For each 

simulation scenario, one can get the relative error of each parametric method in case of 

misspecified distribution by 

 

 Percentage of error for method ݅ = ௜ܧܵܯ − ∗ܧܵܯ∗ܧܵܯ  (3.3) 

 

where ܧܵܯ௜	is the MSE of method ݅ and ܧܵܯ∗ is the smallest MSE obtained from MLE, 

rROS, GROS and KM. Note that method ݅ refers to any parametric method used in this paper 

such as rROS, GROS, and MLE under lognormal, gamma, Weibull distributions. As can be 

seen in Table 3.3, the MLE method under lognormal assumption leads to very large MSEs 

when the simulated data are generated from moderately to highly skewed Weibull, gamma 

and mixture distributions. The poor performance of lognormal MLE is clearly evident when 

comparing the average values of the percentage of error for each method. The MLE under 

Weibull assumption performs well in a few scenarios where the underlying distribution is a 

lognormal or a mixture of lognormal or Weibull distributions. Otherwise, using the MLE 

under Weibull assumption leads to large MSEs especially when the underlying distributions 
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are highly skewed. On the contrary to lognormal and Weibull assumptions for the MLE 

method, the MLEs obtained under gamma distribution seem to be less affected by model 

misspecification. In fact, the MLE under the gamma distribution generally provides 

reasonably small MSEs and percentages of errors, regardless of the type of underlying 

distribution and its skewness. Moreover, our simulation results show that the performance of 

rROS and GROS are comparable since similar MSEs are obtained by these methods. 

Although the methods of rROS and GROS generally perform well, the average values of the 

percentage of error reported in Table 3.3 suggest that the performance of these methods 

deteriorate when data come from a lognormal or a mixture of lognormal distributions. Based 

on the discussions above, we conclude the following: 

• The MLE method under lognormal and Weibull assumptions provide good estimates only 

in a few simulation scenarios and thus are not robust estimators; 

• The MLE method under gamma assumption, followed by the rROS and GROS methods, 

are fairly robust estimators, regardless of the percentage of censoring, underlying 

distribution of data and skewness. 

 



 

Table 3.3 The MSE of the mean and standard deviation produced by rROS, GROS and MLE under different distributional 
assumptions and model misspecification in scenarios with 50% censoring 

 

  MSE of the mean estimates MSE of the standard deviation estimates 
True 
dist. 

Parameters 
ࣆ) = ૚) MLE 

(lognormal) 
MLE 

(Weibull) 
MLE 

(gamma) 
rROS 

(lognormal) 
GROS 

(gamma) 
MLE 

(lognormal) 
MLE 

(Weibull) 
MLE 

(gamma) 
rROS 

(lognormal) 
GROS 

(gamma) 

W
ei

bu
ll 

ߪ = 0.5 0.006 NA 0.005 0.007 0.007 0.005 NA 0.004 0.006 0.005 ߪ = 1.2 0.051 NA 0.026 0.027 0.028 1.166 NA 0.054 0.067 0.067 ߪ = 1.9 0.340 NA 0.059 0.060 0.059 89.998 NA 0.312 0.474 0.466 ߪ = 2.6 2.147 NA 0.120 0.122 0.119 * NA 1.084 1.721 1.711 ߪ = 3.3 8.611 NA 0.187 0.189 0.185 * NA 2.432 3.988 3.979 ߪ = 4 42.261 NA 0.236 0.238 0.235 * NA 4.750 6.583 6.574 

Percentage of error * - 1% 6% 5% * - 4% 57% 49% 

ga
m

m
a 

ߪ = 0.5 0.005 0.005 NA 0.005 NA 0.006 0.005 NA 0.006 NA ߪ = 1.2 0.060 0.026 NA 0.027 NA 1.592 0.069 NA 0.063 NA ߪ = 1.9 5.785 0.096 NA 0.062 NA * 2.059 NA 0.301 NA ߪ = 2.6 * 1.655 NA 0.103 NA * 303.905 NA 0.846 NA ߪ = 3.3 * 612.686 NA 0.184 NA * * NA 2.264 NA ߪ = 4 * * NA 0.271 NA * * NA 4.246 NA 

Percentage of error * * - 3% - * * - 15% - 

lo
gn

or
m

al
 

ߪ = 0.5 NA 0.007 0.005 NA 0.01 NA 0.007 0.006 NA 0.015 ߪ = 1.2 NA 0.024 0.025 NA 0.033 NA 0.111 0.111 NA 0.220 ߪ = 1.9 NA 0.044 0.056 NA 0.060 NA 0.534 0.593 NA 1.119 ߪ = 2.6 NA 0.066 0.108 NA 0.111 NA 1.507 1.777 NA 3.151 ߪ = 3.3 NA 0.094 0.164 NA 0.165 NA 3.063 3.607 NA 5.339 ߪ = 4 NA 0.115 0.197 NA 0.198 NA 5.394 6.176 NA 7.667 

Percentage of error - 10% 43% - 71% - 3% 10% - 96% 

 

(Continued) 
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  MSE of the mean estimates MSE of the standard deviation estimates 
True 
dist. 

Parameters 
ࣆ) = ૚) MLE 

(lognormal) 
MLE 

(Weibull) 
MLE 

(gamma) 
rROS 

(lognormal) 
GROS 

(gamma) 
MLE 

(lognormal) 
MLE 

(Weibull) 
MLE 

(gamma) 
rROS 

(lognormal) 
GROS 

(gamma) 

M
ix

tu
re

 W
ei

bu
ll

ߪ  = ߪ  0.39 0.349 0.322 0.344 0.229 0.212 0.224 0.239 0.216 1.00 = ߪ  0.224 0.232 0.223 0.158 0.356 0.287 0.298 0.301 0.262 1.38 = ߪ  0.576 0.567 0.522 4.084 0.448 0.415 0.404 0.42 0.319 1.88 = ߪ  1.524 1.389 1.240 59.858 0.524 0.529 0.500 0.542 0.396 2.43 = ߪ  2.881 2.747 2.496 * 0.59 0.615 0.577 0.645 0.567 3.00 = 3.58 1.195 0.72 0.646 0.689 0.656 * 4.278 4.694 5.422  

Percentage of error 16% 22% 14% 17% 22% * 7% 16% 23% 15% 

M
ix

tu
re

 
ga

m
m

a 

ߪ = ߪ 0.008 0.008 0.019 0.010 0.083 0.034 0.025 0.023 0.023 0.026 1.00 = ߪ 0.049 0.044 0.063 0.046 2.407 0.056 0.050 0.04 0.040 0.114 1.38 = ߪ 0.221 0.191 0.263 1.009 * 0.063 0.069 0.064 0.077 4.067 1.88 = ߪ 0.720 0.644 0.667 40.863 * 0.092 0.117 0.109 0.668 * 2.43 = ߪ 1.626 1.529 1.385 * * 0.129 0.162 0.155 13.783 * 3.00 = 3.58 * 860.356 0.240 0.246 0.202 * * 2.595 3.602 3.765 

Percentage of error * * 10% 20% 15% * * 63% 25% 36% 

M
ix

tu
re

  
lo

gn
or

m
al

 

ߪ = ߪ 0.009 0.007 0.021 0.012 0.091 0.034 0.024 0.023 0.024 0.026 1.00 = ߪ 0.115 0.107 0.045 0.050 0.614 0.044 0.041 0.037 0.036 0.060 1.38 = ߪ 0.597 0.589 0.168 0.210 2.880 0.055 0.064 0.059 0.055 0.13 1.88 = ߪ 4.557 4.553 0.960 0.649 8.388 0.129 0.145 0.137 0.082 0.225 2.43 = ߪ 4.026 4.030 1.339 1.146 26.14 0.114 0.140 0.132 0.093 0.383 3.00 = 3.58 0.565 0.120 0.184 0.193 0.162 46.173 2.201 2.73 6.686 6.678 

Percentage of error 180% 2% 30% 39% 33% * 18% 49% 242% 250% 

NA: Not Applicable           
 

 



 

3.7 Summary and conclusions 

This paper evaluates the performance of the most common statistical methods for handling 

left-censored data. The methods under study are MLE, rROS, GROS and KM. Our 

simulation study emphasizes the importance of including skewness, percentage of censoring 

and sample size when evaluating the performance the aforementioned statistical methods. 

Some of the highlights are as follows: 

• Impact of skewness: we observe that in the case of low skewed data, the performance of 

the MLE, rROS, GROS and KM methods are comparable although the MLE method 

provides slightly better estimates. When dealing with highly skewed data, the 

performance of the MLE method drastically deteriorates. For example, the simulations 

show that the MLE method under lognormal and Weibull assumption provides poor 

estimates in simulation scenarios with moderately to highly skewed distributions even 

though the simulated data were generated from lognormal and Weibull distributions; 

• Impact of percentage of censoring: as the percentage of censoring decreases, the MLE 

method becomes more robust to variation to skewness; 

• Impact of sample size: there is no magical sample size that guarantees the superiority of 

the MLE method over the others. In fact, our simulations show that the appropriate 

sample size strongly depends on the type of the distribution and its skewness. 

 

Recall that the true distribution of left-censored environmental data and their characteristics 

(such as skewness) are unknown. Therefore, it is crucial to have an estimator that is robust to 

variations in skewness as well as model misspecification. This paper investigated the impact 

of model misspecification on the performance of rROS, GROS, and MLE covering a wide 

range of data skewness. Simulation results in this study show that the MLE under gamma 

assumption, rROS, and GROS are viable alternatives to accommodate a variety of right-

skewed distributions, regardless of the percentage of censoring. 
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4.1 Abstract 

In risk assessment and environmental monitoring studies, concentration measurements 

frequently fall below detection limits (DL) of measuring instruments, resulting in left-

censored data. The principal approaches for handling censored data include the substitution-

based method, maximum likelihood estimation, robust regression on order statistics, and 

Kaplan-Meier. In practice, censored data are substituted with an arbitrary value prior to use 

of traditional statistical methods. Although some studies have evaluated the substitution 

performance in estimating population characteristics, they have focused mainly on normally 

and lognormally distributed data that contain a single DL. We employ Monte Carlo 

simulations to assess the impact of substitution when estimating population parameters based 

on censored data containing multiple DLs. We also consider different distributional 

assumptions including lognormal, Weibull, and gamma. We show that the reliability of the 

estimates after substitution is highly sensitive to distributional characteristics such as mean, 

standard deviation, skewness, and also data characteristics such as censoring percentage. The 

results highlight that although the performance of the substitution-based method improves as 

the censoring percentage decreases, its performance still depends on the population’s 

distributional characteristics. Practical implications that follow from our findings indicate 
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that caution must be taken in using the substitution method when analyzing censored 

environmental data. 

 

4.2 Introduction 

Analytical results of environmental samples often contain non-quantitative concentration 

measurements that are below the detection limits (DL) of measuring instruments. Left-

censored concentrations, reported as less than DL, complicate any traditional statistical 

analysis. The common practice to circumvent the issues due to left-censoring is to substitute 

censored values with an arbitrary number (e.g., 0, DL/2, ܮܦ √2⁄ , or DL) and to analyze data 

with traditional methods such that the substituted values are assumed to be actual observed 

data (e.g., Zhao & Frey, 2003; McCarthy, O'Brien, Charrier & Hafner, 2009; Wu et al., 2011; 

Struciński et al., 2015). In this regard, some studies recommend the use of the maximum 

likelihood estimation method (MLE) or robust regression on order statistics (rROS), which 

are based on a distributional assumption, or the non-parametric Kaplan-Meier (KM) 

approach. For example, Hewett & Ganser (2007) concluded that MLE is an appropriate 

method to estimate the mean and 95th percentile of left-censored occupational health data. In 

contrast, Antweiler & Taylor (2008) used KM to estimate the mean, standard deviation, and 

different quantiles of left-censored data with <70% censoring.  

 

Helsel & Cohn (1988) used artificial censored data sets to assess the performance of several 

estimators and concluded that substituting left-censored values with an arbitrary constant 

produces estimates with large bias and mean square error (MSE). El-Shaarawi & Esterby 

(1992) provided a tool to quantify the bias due to substitution when the mean and standard 

deviation of data as well as the proportion of censored values are available. However, they 

acknowledged that, in practice, the magnitude and direction of the bias are not quantifiable 

because distributional parameters of data (i.e., mean and standard deviation) are unknown. In 

other studies, including Hornung & Reed (1990), Farnham et al. (2002), Hewett & Ganser 

(2007), Antweiler & Taylor (2008), European Food Safety Authority (2010), and Leith et al. 

(2010), the substitution-based method performed reasonably well under certain simulation 
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circumstances although its use was avoided due to lack of a theoretical basis. When the 

percentage of censoring is small (e.g. <15%), USEPA (2006) and Eastoe et al. (2006) agreed 

that substitution gives results comparable to both parametric and non-parametric methods. 

However, Helsel (2006) questioned whether there was a censoring percentage below which 

reliable results could be obtained. 

 

Previous studies have focused mainly on evaluating the performance of the substitution-

based method for normally and lognormally distributed data sets that contain a single DL. 

However, it often occurs, especially in contaminated site assessment for instance, that 

environmental samples are analyzed by different laboratories or in different time periods and, 

therefore, the resulting data sets often contain multiple DLs. In addition, no study has 

established that all environmental data follow a specific distribution. Thus, this study 

considers censored data sets characterized by multiple DLs and a variety of right-skewed 

distributions (i.e., lognormal, Weibull and gamma distributions with different levels of 

skewness). In this paper, inherent problems associated with arbitrary substitution are 

explored and compared to parametric and non-parametric methods. Among other 

investigations, this study also determines the efficacy of the substitution-based method versus 

the MLE, rROS, and KM methods for estimating the mean and standard deviation of 

distributions based on data with a small percentage of censoring.  

 

4.3 Alternative methods for handling left-censored data 

The most commonly used methods to handle left-censored data are MLE, rROS, and KM. 

The MLE method utilizes a likelihood function to estimate the distributional characteristics 

or attributes. The likelihood function provides the likelihood of observed data, under any 

given member of an assumed family of distributions. In this method, a distributional 

parameter ߠ (e.g., the mean or the standard deviation) is estimated by maximizing the 

likelihood function with respect to this parameter. Let ݕଵ, ,ଶݕ … ,  ௡ be ݊ independent andݕ

identically distributed observations from a population with the probability density function ݂(ߠ|ݔ) and cumulative distribution function (ߠ|ݔ)ܨ. Also, let ܮܦଵ, ,ଶܮܦ … ,  ௡ denoteܮܦ
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detection limits or censoring points. The observed concentration data set consists of pairs 

,௜ݔ) ௜ݔ ௜) whereߜ = max	(ݕ௜, ௜ߜ ௜) andܮܦ = 1 if ݕ௜ ≥ ௜ߜ ௜ andܮܦ = 0 otherwise. The 

likelihood function based on the observed data is given by 

 

 ෑ݂(ݔ௜; ;௜ݔ)ܨఋ೔(ߠ ଵିఋ೔௡(ߠ
௜ୀଵ  (4.1) 

 

The method of robust ROS (rROS) is based on the assumption that the data generating 

distribution is either normal or lognormal. As discussed in Helsel (2012), the ROS method 

considers the scatter plot of the ordered uncensored data (in the case of normal distribution) 

or the ordered logarithm of uncensored data (in the case of lognormal distribution) against 

the quantiles of the standard normal distribution. If the distributional assumption (either 

normal or lognormal) is correct, the regression line fitted to this scatter plot is approximately 

linear. The intercept and the slope of the regression line are estimates of the mean and 

standard deviation of the underlying distribution, respectively. In a robust version of ROS, 

these estimates are then employed to predict censored observations. These predicted values 

are combined with the observed values resulting in a complete data set for which traditional 

estimation methods (e.g., the simple average of the observations and their standard deviation) 

can be used. 

 

KM is a non-parametric method that does not rely on a distributional assumption to estimate 

the population characteristics. The KM method estimates the cumulative distribution function 

of contaminant concentration, (ݔ)ܨ = ܲ(ܺ ≤  .without assuming any specific form for F ,(ݔ

Further discussions on the use of the KM method with left-censored data can be found in 

Gillespie et al. (2010) and Helsel (2012). 
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4.4 Methodology 

An extensive Monte Carlo simulation study was conducted to compare the performance of 

the MLE, rROS, and KM methods versus substituting the censored values with a constant 

prior to use of familiar methods for estimating the mean and standard deviation of 

contaminants distribution. Simulated data were generated under different right-skewed 

distributions for given μ and σ. To have censored data sets with multiple DLs, we imposed 

10% and 50% censoring to the generated data. In total, for each censoring percent 180 

simulation scenarios were studied in this paper. The estimated mean and standard deviation 

of the corresponding data generating distributions were compared for different methods of 

estimation and also to the true values. The simulation procedure is as follows.  

 

Step 1: Generate data from lognormal, Weibull, and gamma distributions with sample size 

n=60 observations for all combinations of µ = 1, 2,…,10, and σ =0.5, 1.2, 1.9, 2.6, 3.3, 4. The 

wide range of ߤ and ߪ results in data sets with a coefficient of variation (CV=ߪ ⁄ߤ ) ranging 

between 0.05 and 4. As an example, Figure 4.1 shows different shapes of lognormal 

distribution for ߤ = 1 and 4 ,3.3 ,2.6 ,1.9 ,1.2 ,0.5=ߪ. This Figure clearly illustrates that, for a 

given ߤ, as ߪ increases, the value of the CV increases and consequently, the distribution 

becomes more skewed. In this study, skewness was defined in terms of CV such that CV<1 

refers to mildly skewed data, 1≤CV<2 to moderately skewed data, and CV≥2 to highly 

skewed data. A Similar convention was used in Singh et al. (2006) to represent the skewness.  

Step 2: Use fictional DLs to accommodate left-censoring as follows. To obtain data sets with 

50% censoring and multiple DLs, the 0.2, 0.4, 0.6, and 0.8 quantiles of the underlying data 

generating distribution were computed. 25% of the simulated data (from step 1) were 

censored at 0.2 quantile, 25% at 0.4 quantile, 25% at 0.6 quantile, and 25% at 0.8 quantile. 

Similarly, to obtain data sets with 10% censoring and multiple DLs, we computed 0.05, 0.10, 

and 0.15 quantiles of the distributions; 33% of the simulated data were censored at 0.05 

quantile, 33% at 0.10 quantile ,and 33% at 0.15 quantile.  
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Figure 4.1 The shape of lognormal distribution for µ=1 and 
different σ values corresponding to CV=0.5, 1.2, 1.9, 2.6, 3.3, 4 

 

Step 3: The mean and standard deviation of each population were estimated by 

• Substituting censored values with DL/2 and using the traditional estimation methods for 

complete data sets; 

• MLE under lognormal, gamma, and Weibull assumptions; 

• rROS (under lognormal assumption); 

• KM method. 

Step 4: For each data generating distribution, repeat steps 1 to 3 N=1000 times and compute 

the Monte Carlo approximations of the MSEs of the estimators of the parameter ߠ (either ߤ 

or ߪ). To be precise, suppose ߠ෠௜ is an estimate of ߠ based on ith simulated data set with 

certain combination of ߤ and ߪ. The approximated MSE of ߠ෠ is given by 

 

෠൯ߠ෣൫ܧܵܯ  = 11000 ෍(ߠ෠௜ − ଶଵ଴଴଴(ߠ
௜ୀଵ  (4.2) 

 

where ߠ is the true value depending on the underlying combination of ߤ and ߪ. Note that 

similar to the MSE, we have the following Monte Carlo bias-variance decomposition. 
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 MSE෣൫θ෠൯ = varෞ ൫θ෠൯ + bıas෢ (θ෠) (4.3) 

 

where  

 

 varෞ ൫θ෠൯ = 11000 ෍(θ෠୧ − θ෠)ଶଵ଴଴଴
୧ୀଵ  (4.4) 

 

 ܾଓܽݏ෣൫ߠ෠൯ = ቀߠ෠ −  ቁଶ (4.5)ߠ

 

෠ߠ  = 11000 ෍ ෠௜ଵ଴଴଴ߠ
௜ୀଵ  (4.6) 

 

All simulations were implemented in the statistical software R and the code for simulation 

scenarios based on lognormal distribution is available in Appendix IV (Algorithm-A IV-1). 

 

4.5 Results and discussions 

4.5.1 Data from lognormal distribution 

Figure 4.2 and Figure 4.3 illustrate the MSE values provided by the traditional statistical 

methods after substitution of the censored values together with those provided by the MLE, 

rROS, and KM methods. These figures represent simulation scenarios based on the data sets 

generated from lognormal distributions with µ = 1, 2,…,10 and σ=0.5, 1.9, 3.3, with 50% 

censoring. The plots for all other scenarios of σ are available in Figure-A IV-1 and Figure-A-

IV-2 of Appendix IV. Note that, in Figure 4.2 and Figure 4.3, the y-axis is in log-scale, 

whereas the x-axis is in linear scale. In general, the substitution-based method does not 

consistently perform better or worse than other methods (i.e., MLE, rROS, and KM) across 

all simulation scenarios. For example, for the mean estimation, Figure 4.2b shows that the 

substitution-based method has comparable or smaller MSEs compared to other estimators as 
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long as the simulated data are generated from μ equal to 1 and 2 and σ=1.9. However, the 

substitution-based method provides larger MSEs for any combination of μ>2 and σ=1.9. For 

the standard deviation estimation (Figure 4.3b), the performance of the substitution-based 

method is similar or better than other methods in scenarios where the simulated data are 

generated from μ=1,2,3,4 and σ=1.9. When the μ of the data generating distribution exceeds 

5, the performance of the substitution-based method starts to deteriorate. The same 

observations can be made for any given σ in this study (see the plots in Appendix IV). 

 

          a)                                             b)                                           c) 

 

 

Figure 4.2 The MSEs of different methods in estimating the mean of lognormal distribution 
with μ=1,2,…,10 and a) σ=0.5, b) σ =1.9, c) σ=3.3 

 

          a)                                            b)                                             c) 

 

 

Figure 4.3 The MSEs of different methods in estimating the standard deviation of lognormal 
distribution with μ=1,2,…,10 and a) σ=0.5, b) σ =1.9, c) σ=3.3 
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As shown in Figure 4.2 and Figure 4.3, depending on the characteristics of the simulated data 

(i.e., mean and standard deviation of the data generating distributions), substituting the 

censored observations may or may not lead to good estimates. This result is probably due to 

misspecification of the shape of the original distribution of data after substituting the 

censored observations with a constant value. To further investigate the reason for this 

behavior of the substitution-based method, let us focus on the simulation scenarios of σ=1.9 

with 50% censoring. Figure 4.4 shows the distribution of data after substitution with DL/2 

superimposed on the distribution of uncensored data in the following three situations: 

1) Substitution of the censored values results in estimates that are equivalent to those 

provided by MLE, rROS, and KM (μ=2, σ=1.9); 

2) Substitution of the censored values leads to slight over/under estimation (μ=5, σ=1.9); 

3) Substitution of the censored values clearly results in poor estimates (μ=10, σ=1.9). 

 

         a)                                            b)                                           c) 

 

 

Figure 4.4 The distributions of original and substituted data generated from lognormal 
distributions with σ=1.9 and different ߤ values a) ߤ = 2, b) ߤ = 5, and c) ߤ = 10 

 

Noticeable is that, in the case of μ=2 (Figure 4.4a), the shape of the distribution of 

uncensored and substituted data is almost similar. However, when μ increases (Figure 4.4b 

and Figure 4.4c), substituting the censored values introduces a peak at the substituted value, 

leading to an incorrect characterization of the shape of the distribution. In fact, as observed in 

Figure 4.4c, substitution of censored values generates a bimodal distribution, which is far 

from the shape of the original distribution. We also investigate whether the distribution 
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remains lognormal after the substitution of censored observations visually by the quantile-

quantile (Q-Q) plots and formally by the Shapiro-Wilk test. The Q-Q plots for the substituted 

data for the three aforementioned scenarios (i.e., lognormal distribution, ߤ = 2,5,10	and ߪ =1.9, 50% censoring), are shown in Figure 4.5. All Q-Q plots in this Figure include clusters of 

horizontal points of substituted values, changing the initial distribution of data sets. However, 

the impact of substitution is more pronounced in some simulation scenarios. For example, the 

Q-Q plot of the substituted data simulated from μ=2 (Figure 4.5a) appears roughly linear, 

indicating that the data set after substitution of the censored observation may be still 

lognormal. As μ increases, substantial deviation from linearity indicates that the substituted 

data no longer follow the lognormal distribution (Figure 4.5b and Figure 4.5c). A Shapiro-

Wilk test provides p-values smaller than ߙ = 0.05, rejecting the normality of log-

transformed data in all three scenarios. 

 

            a)                                          b)                                          c) 

 

Figure 4.5 The Q-Q plots of substituted data generated from lognormal distribution with 
σ=1.9 and different μ values a) ߤ = 2, b) ߤ = 5, and c) ߤ = 10 

 

To provide a better demonstration of the shortcomings of the substitution-based method in 

estimating the mean and standard deviation compared to the alternative methods, Figure 4.6 

illustrates MSEs of the substitution-based method for different combinations of μ and σ. The 

following can be inferred from Figure 4.6: 

1. Related to the mean estimation, Figure 4.6a shows that, for a given σ, substitution 

produces larger MSEs as μ increases. Moreover, for any μ>4, substitution produces larger 

MSEs as σ decreases; 
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2. Obtaining good estimates of the standard deviation (i.e., estimates with small MSEs) is 

largely influenced by the underlying σ of data (Figure 4.6b). For example, when the 

underlying σ of the simulated data is 0.5, the MSE values increase as μ increases. On the 

other hand, when the underlying σ of the simulated data is 1.9, the MSEs initially decrease 

(up to μ =4) and then start increasing as μ becomes larger. This implies that the performance 

of traditional methods after substitution of the censored values is difficult to predict before 

knowing the distributional characteristics of the data. 

 

a)                                                                            b) 

 

Figure 4.6 The MSEs of the substitution method in estimating a) the mean and  
b) standard deviation for different combinations of μ and σ of lognormal distribution 

 

Figure 4.7a and Figure 4.7b illustrate the MSEs produced by MLE in estimating the mean 

and standard deviation of lognormal distributions with different combinations of the 

parameters μ and σ. For conciseness, only the results obtained from the MLE method are 

depicted since plots produced by the rROS and KM methods are similar. Plots relative to the 

rROS and KM methods are illustrated in Figure-A IV-3 and Figure-A IV-4 of Appendix IV. 

Comparison of Figure 4.7a and Figure 4.7b implies that MSEs of MLEs of the mean are 

approximately constant over different values of μ, whereas this behavior is not clearly 

observed for estimating the standard deviation. In fact, large MSEs are obtained at the left-

end of the curves in Figure 4.7b, corresponding to moderate and highly skewed distributions 

(CV>1). This behavior is not surprising as Singh et al. (2006) and Shoari, Dubé & Chenouri 
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(2015) agreed that the performance of estimators in the case of moderately to highly skewed 

data sets differs from that of the mildly skewed data sets. 

 

a)                                                                           b) 

    

Figure 4.7 The MSEs of the MLE method in estimating a) the mean and b) standard 
deviation for different combinations of μ and σ of lognormal distribution 

 

4.5.2 Data from Weibull and gamma distribution 

In simulation scenarios based on the data sets generated from Weibull and gamma 

distributions, substituting censored values with a constant does not consistently lead to better 

or worse estimates than those provided by MLE, rROS, and KM. This result is in agreement 

with observations made for lognormal data sets discussed in Section “Data from lognormal 

distribution”. The related Figures are available in Appendix IV (Figure-A IV-5 through 

Figure-A IV-8). Moreover, simulation results confirm that the performance of substitution-

based estimators of the mean and standard deviation depends upon distributional parameters 

no matter whether the underlying distribution is Weibull or gamma (Figure 4.8 and Figure 

4.9).  
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a)                                                                            b) 

 

Figure 4.8 The MSEs of the substitution method in estimating a) the mean and  
b) standard deviation for different combinations of μ and σ of Weibull distribution 

 

 a)                                                                          b) 

 

Figure 4.9 The MSEs of the substitution method in estimating a) the mean and  
b) standard deviation for different combinations of μ and σ of gamma distribution 

 

4.6 Why not substituted even for small censoring percent? 

To investigate the adequacy of substitution for small percentages of censoring, the simulation 

experiment was repeated for scenarios with only 10% censoring. As expected, simulation 

scenarios with 10% censoring generally result in smaller MSEs than those with 50% 
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censoring. However, this decrease is not systematic and its magnitude depends on the CV of 

the underlying distribution. Table 4.1 reports the average percent reduction in MSE for 

different distributions and CVs. As shown in Table 4.1, reducing the percentage of censoring 

to 10% substantially improves the performance of traditional estimators of the mean and 

standard deviation only in CV<0.5 simulation scenarios. When CV exceeds 0.5, MSEs either 

decrease slightly or, surprisingly, increase in some cases. Despite the recommendation of 

some environmental guidelines to use substitution for handling data sets with small amounts 

of censoring (e.g., USEPA, 2006; 2009), the simulation results reported herein show the 

inadequacy of substitution even for data with small percentages of censoring. Note that the 

inadequacy of substitution is also reported in other studies, notably El-Shaarawi & Esterby 

(1992), Singh & Nocerino (2002), and Helsel (2006). 

 

Table 4.1 Averaged percent reduction in the MSE of the substitution-based method when the 
censoring percentage is reduced to 10% 

 

 
Estimation of the  

mean 

Estimation of the 

standard deviation 

CV Lognormal Weibull Gamma Lognormal Weibull Gamma 

CV<0.5 88% 86% 87% 62% 55% 62% 

0.5≤CV<2 19% 12% 13% 6% 14% 10% 

CV≥2 -10% -2% 7% -13% -7% 4% 

 

4.7 Summary and conclusions 

This study investigated the performance of the substitution-based estimators of the mean and 

standard deviation of a distribution based on left-censored observations. Monte Carlo 

simulation results revealed that the performance of the substitution-based method depends on 

the intrinsic distributional characteristics of the lognormal, Weibull, and gamma 

distributions. This finding is in accordance with El-Shaarawi & Esterby (1992). They 

analytically demonstrated that the performance of substitution in estimating the parameters of 
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normal and lognormal distributions based on censored data with only one DL depends on 

distributional characteristics. This paper extended the conclusions to other right-skewed 

distributions such as Weibull and gamma distributions with different levels of skewness. In 

addition, we considered more realistic situations in which multiple DLs exist as these 

thresholds change among different laboratories/measuring instruments or over time. 

 

Generally, the substitution method resulted in less reliable estimates than those obtained from 

the alternative methods. Only for certain pairs of µ and σ, substitution provided reliable 

estimates. However, it has to be stressed that in real environmental studies the intrinsic 

characteristics of populations under study are unknown. Therefore, it cannot be determined a 

priori if a given population is characterized by these specific µ and σ for which substitution 

would provide more reliable estimates than the alternative methods. The alternative methods 

discussed in this paper were found to be less sensitive to distributional parameters. In 

particular, the performance of these methods in estimating the mean was independent from 

the magnitude of the mean, for any σ. However, these methods produced larger MSEs for 

estimating the standard deviation when distributions were moderate to highly skewed (i.e., 

CV>1 herein).  

 

Despite recommendations of some environmental guidelines on using the substitution 

method for estimating distributional parameters of contaminant concentration data with low 

percentage censoring, simulation results in this paper showed the inadequacy of this 

estimator even for these situations. We recommend practitioners adopt one of the alternative 

methods when analyzing data with censored observations, and avoid substituting censored 

data with arbitrary constants. 
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5.1 Abstract 

Left-censored concentration data are frequently encountered because measuring instruments 

cannot detect concentrations below instruments detection limit (DL). For statistical analysis 

of left-censored data, environmental literature mainly refers to the following methods: 

maximum likelihood estimation (MLE), regression on order statistics using lognormal and 

gamma assumption (rROS and GROS, respectively), and Kaplan-Meier. A number of 

simulation studies examined the performance of these methods in terms of bias and/or mean 

square error. However, no matter which method is adopted, some uncertainty is introduced 

into outcomes since all is known about a left-censored observation is that the concentration 

falls between 0 and the DL. Data used here come from analysis of soil samples collected for 

a site characterization in Montreal, Canada. Employing non-parametric bootstrap, we 

quantify the uncertainty and bias in the mean and standard deviation estimates obtained by 

the MLE (under lognormal, Weibull, and gamma distributions), rROS, GROS, and KM 

methods. First, we demonstrate that the highest uncertainty is associated with MLEs under 

lognormality and Weibull assumptions while a gamma assumption leads to estimates with 

less uncertainty. Second, we show that although an increase in sample size improves the 

uncertainty, it reduces the bias only in the rROS, GROS, and KM methods. Finally, 
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comparing percentage uncertainty in the mean of contaminant data, we illustrate that 

adopting an inappropriate estimator results in large uncertainties. 

 

5.2 Introduction 

Collecting representative soil samples is a crucial step to gain an unbiased and precise 

knowledge on levels of contamination of the soil population under study. Strategies required 

to ensure that a representative sample is obtained focus on minimizing the uncertainties 

associated with sampling protocol, sample preparation and chemical analysis; some examples 

can be found in Gerlach, Dobb, Raab & Nocerino (2002); Nocerino, Schumacher & Dary 

(2005); Boudreault, Dubé, Sona & Hardy (2012) and Dubé et al. (2015). Once a 

representative sample is obtained, the estimation of statistical parameters (e.g., the mean and 

standard deviation) of the resultant concentration measurements actually represents the 

contamination levels in the soil population under study. This procedure is usually 

straightforward when the precision of measuring instruments is sufficient to detect the 

presence of the contaminant from the background noise. However, we frequently encounter 

left-censored observations that are concentration measurements falling between 0 and the 

detection limit of measuring instruments. The lack of knowledge on the true concentration of 

left-censored observations leads to inferences with some amount of uncertainty.  

 

The common practice to treat left-censored data has been to substitute censored values with 

an arbitrary constant (e.g., half DL) and to use standard techniques to analyze data. However, 

numerous studies (e.g., Hewett & Ganser, 2007 and Gilliom & Helsel, 1986) expressed 

concern about the biased estimates obtained by the substitution approach. Shoari, Dubé and 

Chenouri (2016) discouraged the use of the substitution method as they demonstrated that the 

reliability of the estimates after substitution is highly sensitive to intrinsic characteristics of a 

population (such as mean, standard deviation, skewness), which cannot be known a priori. 

More recently, several alternative methods are available in the literature to address the 

problem of left-censoring. The most common ones to estimate distributional parameters of a 

population are: i) maximum likelihood estimation (MLE) under lognormal, Weibull, and 
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gamma distributional assumption, ii) robust regression on order statistics (rROS), iii) gamma 

regression on order statistics (GROS), and iv) Kaplan-Meier (KM). Estimates obtained by 

these estimators contain some amount of bias and uncertainty. 

 

In studies based on Monte Carlo simulations, the bias and uncertainty are quantifiable 

because the true values of parameters are known. Some examples of Monte Carlo simulation 

studies for left-censored data can be found in Kroll & Stedinger (1996), Sinha, Lambert and 

Trumbull (2006), Hewett & Ganser (2007), European Food Safety Authority (2010), and 

Shoari et al. (2015), among others. Typically, the mean square error (MSE) is used as criteria 

to reflect both bias and uncertainty of the estimates in each simulation scenario. However, the 

issue arises when quantifying the bias and uncertainty of the estimates based on real 

concentration data is of interest because the true parameters are unknown. Bootstrapping is a 

data-based simulation that circumvents this issue. In bootstrapping, random samples are 

repeatedly drawn from an approximation distribution (based on the original dataset) and the 

statistics of interest are estimated in each sampling event. The resultant replications of the 

bootstrapped statistics are used as the basis for computing the approximated bias and the 

uncertainty in the sample estimate of the unknown parameter. Based on complete (without 

censoring) simulated data, Tong, Chang, Jin & Saminathan (2012) and Tong, Saminathan & 

Chang (2016) concluded that bootstrap provides reliable uncertainty estimates for data with 

small sample sizes for a variety of data distributions (normal, lognormal, uniform, Weibull, 

gamma, and beta). Frey & Zhao (2004) proved the reliability of the bootstrapping technique 

in estimating the uncertainty of the mean estimates obtained by MLE when the simulated 

data were left-censored. Some other examples regarding the application of bootstrapping are 

in Zhao & Frey (2006), and Babamoradi, van den Berg & Rinnan (2013). 

 

Environmental exposure assessments are based on exposure models that combine 

contaminant concentration levels and exposure time and pathways to predict a population 

exposure to a certain contaminant. To represent concentration levels in exposure models, 

estimates of statistical parameters of contamination data (e.g., the mean value) serve as input. 

Uncertainty of input data (due to the presence of left-censored observations) contributes to 
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the uncertainty of output. Using the bootstrap method on concentration data from a 

characterization study, we aim at quantifying the bias and, more importantly, the uncertainty 

of the estimates of the mean and standard deviation provided by the aforementioned 

estimators. The concentration data used in the present study are contaminant concentration 

measurements of soil samples collected for the purpose of a site characterization study in 

Montreal, Canada. In the present study, we assume that the sampling uncertainty has been 

minimized and consequently, representative samples have been obtained. Under this 

assumption, we show that inadequate analysis of left-censored concentration data generates 

an additional source of uncertainty, which is reflected in the estimates of the concentration 

mean and standard deviation. 

 

5.3 Case study  

We consider concentration data sets obtained from soil samples collected for a site 

characterization study conducted in Montreal, Canada (Quéformat Ltée., 2004 and Groupe 

Qualitas inc., 2010). Data sets consist of concentration measurements of 15 inorganic and 53 

organic contaminants in soil samples collected from 45 sampling locations. For each 

contaminant, the sample size varies between 13 and 62 observations and the censoring 

percentage ranges between 0% and 100%. In the present study, we consider only those 

contaminants with the censoring percentage of 2%-80%; Table 5.1 reports the sample size 

and the censoring percentage for each contaminant. In the results section, the contaminants 

discussed are numbered for ease of reference to Table 5.1. 
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Table 5.1 The sample size and censoring percentage for each contaminant 

 
 Contaminant Sample size Censoring % 

1 As 51 2% 

2 Hg 13 15% 

3 Phenanthrene 62 16% 

4 Fluoranthene 62 18% 

5 Pyrene 62 19% 

6 Chrysene 62 23% 

7 Benzo (b,j,k)fluoranthene 62 23% 

8 Benzo (a) pyrene 61 25% 

9 Benzo (a) anthracene 61 27% 

10 Sn 51 29% 

11 Mo 51 33% 

12 Indeno (1,2,3-cd) pyrene 61 36% 

13 Benzo (g,h,i) perylene 61 38% 

14 Anthracene 62 39% 

15 Benzo (a,h) anthracene 61 44% 

16 1-Methyl naphthalene 62 45% 

17 2-Methyl naphthalene 62 45% 

18 Acenaphtene 62 50% 

19 1,3-Dimethyl naphthalene 62 52% 

20 Acenaphtylene 62 52% 

21 Naphthalene 62 53% 

22 Cd 51 67% 

23 2,3,5- Trimethyl naphthalene 62 77% 
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5.4 Methodology 

In the present study, we use the bootstrap technique to evaluate the quality of the mean and 

standard deviation estimates that are obtained from the methods of MLE (under lognormal, 

Weibull, and gamma assumption), rROS, GROS, and KM. Some general definitions for 

bootstrapping are presented in this section. The bootstrap method is based on the assumption  

that the sample is representative of the population under study, and that the observations are 

independently and identically distributed. Under these assumptions, bootstrapping enables us 

to show the substantial uncertainty associated with statistical inferences. In the present study, 

like previous studies (e.g., Frey & Zhao, 2004; Zhao & Frey, 2006), we assume that our 

concentration data set satisfies both conditions mentioned above. Our statistical inferences 

are therefore given based on identically distributed observations and representativeness 

assumptions. 

 

Suppose ܺ = ,ଵݔ} ,ଶݔ … ,  ௡} is a random sample of size n drawn from a population with anݔ

unknown distribution ݂. And, let the distribution መ݂ be a parametric or non-parametric 

estimate of ݂. Essentially, bootstrapping consists of taking a large number of bootstrap 

samples ௜ܺ∗ = ∗௜,ଵݔ} , ∗௜,ଶݔ , … , ∗௜,௡ݔ }, ݅ = 1,2, … ,  from the distribution መ݂. In the case መ݂ is ܤ

defined non-parametrically (by an empirical distribution function), the bootstrap method is 

referred to as non-parametric bootstrapping. This involves taking independent samples drawn 

with replacement from the original data set B times. A parametric bootstrap is performed 

when መ݂ is estimated by fitting a parametric model to the data (using the maximum likelihood 

estimation method for instance), and bootstrap samples are simulated from the fitted model. 

More details and applications of bootstrapping can be found in Efron (1981), Efron & 

Tibshirani (1986), and Davison & Hinkley (1997). Due to lack of knowledge of a specific 

family of parametric models that describes the original data, we limit our attention to the 

non-parametric bootstrap method. Detailed steps of the adopted approach for left-censored 

data are described as follows. 
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Step 1: Organize the original data set as pairs of (ݔ௜, ,(௜ߜ ݅ = 1,2,… , ݊, where ݔ௜ is the ith 

observable concentration value and ߜ௜ is a binary indicator function that defines whether the 

observable concentration is censored or not. The indicator function ߜ௜ takes the value 1 if ݔ௜ 
is uncensored, and 0 otherwise.  

Step 2: Construct bootstrap samples by taking random samples with replacement n times, 

where n is the sample size of the original data set. This is achieved by simultaneous sampling 

of both observable concentration and its corresponding indicator so that the bootstrap sample 

gets the form ܺ∗ = ,∗௜ݔ)} ,{(∗௜ߜ ݅ = 1,2, … , ݊. 
Step 3: For the bootstrap sample, calculate the statistic of interest, ߠ෠∗ by the MLE (under 

lognormal, Weibull, and gamma distribution), rROS, GROS, and KM methods. In the present 

study, the statistic of interest is the mean, ̅ݔ∗, and standard deviation, ݏ∗, of the bootstrap 

sample. Details regarding the computation of the aforementioned estimators can be found in 

Hewett & Ganser (2007), Helsel (2012), and Shoari et al. (2015)  

Step 4: Repeat steps 2 and 3 a large number of times, say B=1000, so that we have a 

sequence of bootstrap estimates, ߠ෠௕∗, ܾ = 1,2, … ,   .ܤ

Step 5: Construct the approximated bias and the 95% confidence interval by using the 

equations described in the next section.  

 

5.4.1 Bootstrap approximated bias and confidence interval 

The approximated bias of ߠ෠∗ is given by  

 

ߝ = ∗෠௕ߠ)෍ܤ1 − ෠)஻ߠ
௕ୀଵ  (5.1) 

 

where ߠ෠ is the estimated statistic from the original data. Among various estimators of ߠ෠ , we 

resort to the rROS method because previous simulation studies showed the good performance 

of rROS in a wide range of simulation scenarios (Gilliom & Helsel, 1986; Hewett & Ganser, 

2007; Shoari et al., 2015).  
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The uncertainty is determined in terms of the length of the bootstrap confidence intervals. 

Two methods used in the present study to calculate bootstrap confidence intervals are the 

percentile and the bias corrected and accelerated percentile (BCa) methods. In the percentile 

method, the (1 −   confidence interval is calculated as 100%(ߙ2

,෠∗(ఈ஻)ߠ]   ෠∗(ଵିఈ)஻] (5.2)ߠ

 

where ߠ෠∗(ఈ஻) and ߠ෠∗(ଵିఈ)஻ are the ߙth and (1 −  th values of the ordered estimates of the(ߙ

statistic of interest, ߠ෠௕∗, ܾ = 1,2, … ,  ෠∗s does not resemble the curveߠ If the distribution of B .ܤ

of a normal distribution, the confidence intervals of the percentile method may be biased. To 

adjust for this bias, Efron & Tibshirani (1994) suggested using the BCa confidence intervals 

as  

,(௅ݍ)∗෠ߠ]   (5.3) [(௎ݍ)∗෠ߠ

 

where ߠ∗(ݍ௅) and ߠ∗(ݍ௎) are the ݍ௅th and ݍ௎th value of ordered ߠ෠௕∗, b= 1,2,… ,  The .ܤ

values of ݍ௅ and ݍ௎ are given as 

௅ݍ  = 	Φ(ݖ଴ + ଴ݖ + ఈݖ ଶ⁄1 − ܽ൫ݖ଴ + ఈݖ ଶ⁄ ൯) (5.4) 

 

௎ݍ  = 	Φ(ݖ଴ + ଴ݖ + ଵିఈ)ݖ ଶ⁄ )1 − ܽ൫ݖ଴ + ଵିఈ)ݖ ଶ⁄ )൯) (5.5) 

 

where ݖఈ ଶ⁄  and ݖ(ଵିఈ ଶ⁄ ) are the ߙth and (1 − ߙ 2)⁄ 	th quantiles of the standard normal 

distribution, ݖ଴	and ܽ are bias-correction and acceleration factors, respectively, and are given 

as 
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ܽ = ∑ ∗෠(ି௜)ߠ) − ∗(ି)ߠ )ଷ௡௜ୀଵ6൫∑ ∗෠(ି௜)ߠ) − ∗(ି)ߠ )ଶ௡௜ୀଵ ൯ଷଶ (5.6) 

଴ݖ  = Φିଵ(#{ߠ෠௕∗ <  (5.7) (ܤ/{෠ߠ

 

where ߠ෠(ି௜)∗  is the value of ߠ෠∗ when the ith observation is deleted from the original data and ߠ(ି)∗  is given by ߠ(ି)∗ = ଵ௡ ∑ ෠(ି௜)∗௡௜ୀଵߠ . Moreover, ߔ(. ) is the cumulative standard normal 

distribution function. All calculations were implemented in R statistical software.  

 

5.5 Results 

5.5.1 Uncertainty and approximated bias of the estimates 

The performance of the MLE (under lognormal, Weibull, and gamma distributional 

assumption), GROS, and KM methods was evaluated using the approximated bias and length 

of confidence intervals around the estimates. Since the distributions of the bootstrap 

estimates of the mean and standard deviation are skewed, we use the BCa method for an 

accurate calculation of confidence intervals. The results are presented in Table 5.2 and Table 

5.3. Overall, while the lengths of bootstrap confidence intervals provided by the rROS, 

GROS, and KM estimators are comparable, the length of confidence intervals of MLEs is 

strongly dependent on the distributional assumption. Table 5.2 clearly shows that the highest 

amount of uncertainty (i.e., largest confidence intervals) is attributed to the MLEs under 

lognormality assumption followed by those under Weibull and gamma assumptions.  

 

Regarding the bias, Table 5.3 shows that there is not a single estimator that universally 

outperforms the others. Noticeably, the MLE estimator under the lognormality assumption 

systematically overestimates bias. Moreover, the bias of the MLE estimator is sensitive to the 

distributional assumption, censoring percentage, and the type of the statistic one wishes to 

estimate while the rROS, GROS, and KM estimators have the same magnitude in bias. In the 

statistical literature, the bias of ߠ෠∗ can be accepted only if it tends to vanish as the sample 
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size increases (for example, see Liero & Zwanzig, 2011). This property is defined as 

asymptotic unbiasedness where the ߠ෠∗ approaches the true value ߠ, as the sample size n tends 

to ∞. In the following section, “impact of sample size on the uncertainty and approximated 

bias of the estimates”, we show that the bias can be negligible when the sample size is 

sufficiently large. 

 

Table 5.2 The length of bootstrap confidence intervals for the mean and standard deviation 
estimates obtained by different methodsa 

 

 
MLE 

(lognormal) 
MLE  

(Weibull) 
MLE 

(gamma) 
KM 

rROS 
(lognormal) 

GROS 
(gamma) 

1 5.1(9.6) 4.2(3.5) 4.2(4.0) 4.2(3.1) 4.2(3.1) 4.2(3.1) 
2 1.6(30.4) 0.8(1.7) 0.8(1.2) 0.8(0.9) 0.8(0.9) 0.8(0.9) 
3 263.9(*) 36.1(187.9) 38.8(90.5) 38.8(85.0) 38.8(84.8) 38.8(84.8) 
4 742.0(*) 43.8(275.0) 42.3(108.0) 42.3(107.1) 42.3(107.0) 42.3(106.9) 
5 617.4(*) 38.9(254.8) 34.3(87.1) 34.4(80.3) 34.4(80.1) 34.4(80.1) 
6 204.6(*) 20.9(156.6) 21.4(51.6) 21.5(50.3) 21.5(50.1) 21.5(50.1) 
7 216.3(*) 20.8(110.3) 15.5(35.8) 15.5(36.2) 15.4(36.2) 15.5(36.2) 
8 327.2(*) 20.8(190.3) 17.9(50.5) 17.9(44.1) 17.9(43.9) 17.9(43.9) 
9 330.5(*) 25.0(184.1) 21.0(56.2) 21.0(50.8) 21.0(50.6) 21.0(50.6) 

10 47.3(678.3) 27.8(59.9) 26.5(42.2) 26.0(34.8) 26.5(34.8) 26.7(34.6) 
11 0.8(0.9) 0.8(0.5) 0.8(0.7) 0.7(0.5) 0.9(0.4) 1.0(0.5) 
12 260.4(*) 10.7(140.8) 8.6(23.0) 8.6(21.3) 8.6(21.2) 8.6(21.2) 
13 315.1(*) 13.7(111.8) 9.0(25.7) 9.0(21.9) 9.0(21.7) 9.0(21.7) 
14 149.3(*) 11.0(98.0) 9.6(26.4) 9.6(24.4) 9.7(24.3) 9.7(24.3) 
15 15.2(*) 3.4(27.6) 3.2(8.3) 3.3(7.8) 3.2(7.7) 3.2(7.7) 
16 2.0(79.5) 1.0(4.0) 1.0(2.4) 1.0(2.2) 1.0(2.2) 1.0(2.2) 
17 4.0(923.2) 1.4(8.8) 1.3(3.4) 1.3(3.0) 1.3(3.0) 1.3(3.0) 
18 25.2(*) 4.2(43.8) 3.4(10.0) 3.4(8.4) 3.4(8.3) 3.4(8.3) 
19 4.0(704.3) 1.2(6.7) 1.1(2.8) 1.1(2.3) 1.1(2.3) 1.1(2.3) 
20 20.0(*) 2.4(42.3) 1.7(4.7) 1.7(4.3) 1.7(4.2) 1.7(4.2) 
21 138.0(*) 6.3(85.3) 2.8(8.8) 2.8(6.7) 2.8(6.7) 2.8(6.7) 
22 0.5(0.8) 0.5(0.5) 0.5(0.5) 0.3(0.4) 0.5(0.5) 0.6(0.5) 
23 77.9(*) 0.8(74.7) 0.4(1.4) 0.4(1.1) 0.4(1.0) 0.4(1.0) 

a Values in parentheses represent the length of confidence interval for the standard deviation estimates. The * 
represents values larger than 1000. The numbers in column 1 refer to the contaminants listed in Table 5.1 
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Table 5.3 Bias of the mean and standard deviation estimates obtained by different methodsa 

 

 
MLE 

(lognormal) 
MLE 

 (Weibull) 
MLE 

 (gamma) 
KM 

rROS 
(lognormal) 

GROS 
(gamma) 

1 0.41(2.69) 0.06(-0.28) 0.03(-0.17) 0.06(-0.12) 0.04(-0.11) 0.02(-0.08) 
2 0.07(0.87) 0.00(-0.12) 0.00(-0.18) 0.01(-0.11) 0.00(-0.11) 0.00(-0.10) 
3 30.85(*) -1.76(-14.47) 0.03(-30.61) 0.05(-9.64) 0.04(-9.73) 0.03(-9.73) 
4 65.94(*) -0.82(-7.12) 0.19(-36.93) 0.21(-11.48) 0.20(-11.60) 0.19(-11.60) 
5 56.75(*) -0.02(0.85) 0.09(-25.96) 0.10(-8.15) 0.09(-8.26) 0.08(-8.25) 
6 23.56(*) -0.54(-2.74) -0.11(-16.86) -0.09(-5.80) -0.11(-5.88) -0.12(-5.87) 
7 34.45(*) 0.84(11.93) -0.07(-6.58) -0.05(-1.88) -0.06(-1.94) -0.07(-1.94) 
8 20.76(*) -0.53(-1.51) -0.17(-14.36) -0.15(-4.93) -0.17(-5.01) -0.18(-5.00) 
9 35.51(*) 0.01(2.44) -0.18(-16.91) -0.16(-6.12) -0.17(-6.22) -0.18(-6.21) 

10 
7.47 

(91.81) 
0.03 

(5.01) 
-0.21 

(-1.79) 
1.12 

(-2.03) 
0.02 

(-1.56) 
-0.669 
(-1.11) 

11 0.05(0.04) -0.03(0.00) 0.00(-0.02) 0.23(-0.23) 0.01(-0.03) -0.13(0.12) 

12 
19.00 

(*) 
0.49 

(5.70) 
-0.10 

(-5.62) 
-0.069 
(-2.19) 

-0.08 
(-2.25) 

-0.11 
(-2.24) 

13 24.31(*) 0.81(8.98) 0.02(-5.16) 0.07(-1.70) 0.05(-1.77) 0.02(-1.76) 
14 17.97(*) 0.42(4.57) 0.04(-7.14) 0.09(-2.35) 0.06(-2.43) 0.03(-2.42) 
15 1.47(102.15) -0.10(-0.66) -0.04(-2.43) 0.01(-0.88) -0.02(-0.91) -0.05(-0.90) 
16 0.20(5.40) -0.01(-0.14) 0.01(-0.51) 0.05(-0.13) 0.02(-0.13) 0.00(-0.12) 
17 0.27(12.09) -0.05(-0.20) 0.00(-0.77) 0.04(-0.21) 0.00(-0.22) -0.01(-0.21) 
18 2.62(355.69) 0.06(1.31) 0.03(-2.17) 0.09(-0.68) 0.05(-0.71) 0.02(-0.70) 
19 0.60(23.18) 0.04(0.40) 0.00(-0.46) 0.05(-0.19) 0.01(-0.20) -0.01(-0.19) 

20 
0.77 

(132.41) 
-0.02 
(0.76) 

0.00 
(-0.82) 

0.04 
(-0.21) 

0.00 
(-0.23) 

-0.019 
(-0.22) 

21 4.73(*) 0.26(5.53) 0.00(-0.83) 0.06(-0.31) 0.01(-0.34) -0.01(-0.34) 
22 0.01(0.08) -0.06(0.04) -0.06(0.04) 0.35(-0.22) 0.02(-0.03) -0.20(0.11) 

23 
0.59 
(*) 

0.06 
(1.33) 

-0.01 
(-0.02) 

0.09 
(-0.06) 

0.01 
(-0.06) 

-0.029 
(-0.05) 

a Values in parentheses represent the length of confidence interval for the standard deviation estimates. The * 
represents values larger than 1000. The numbers in column 1 refer to the contaminants listed in Table 5.1 
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5.5.2 Impact of sample size on the uncertainty and approximated bias of the 
estimates 

To evaluate the asymptotic unbiasedness of different estimators, the non-parametric 

bootstrap method is repeated for all contaminant data except, instead of drawing samples 

with the same amount of observations as the original data, the sample size gradually 

increases. The confidence interval and bias are calculated for each sample size. As some 

examples, Figure 5.1 through 5.4 illustrate the bias and confidence interval versus sample 

size for four contaminants, acenaphtene, benzo(a)anthracene, naphthalene, and chrysene. The 

results for other contaminants are presented in Appendix V. 

 

Figure 5.1 and Figure 5.2 show the length of bootstrap confidence intervals around the mean 

and standard deviation estimates as a function of increasing sample size. For a better 

interpretation, the y-axis is represented in logarithmic scale. Also, the scale of y-axes can be 

different for the purpose of illustrating both small and large values. For all contaminants, as 

the sample size increases, the bootstrap confidence intervals becomes smaller and therefore, 

less uncertainty is associated with the estimates. Even so, the maximum likelihood estimates 

obtained under lognormality assumption have larger confidence interval lengths compared 

with other estimators even for sample sizes as large as 620. After maximum likelihood 

estimates based on lognormality, the largest uncertainty is generally attributed to the 

maximum likelihood estimates obtained under Weibull assumption. However, unlike the 

lognormal MLE, for some contaminants (e.g., chrysene), an increase in sample size results in 

confidence interval lengths comparable to those obtained by other estimators. We notice 

similar uncertainties of the mean and standard deviation estimates obtained by MLE under 

gamma assumption, rROS, GROS, and KM. 

 

Figure 5.3 and Figure 5.4 represent the approximated bias of different estimators of the mean 

and standard deviation as a function of increasing samples size for the four aforementioned 

contaminants. An increase in sample size does not substantially reduce the bias of the mean 

estimates although larger sample sizes impact favorably on reducing the bias of the standard 

deviation estimates. Note that the results of MLE under lognormal assumption are not 
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illustrated in Figure 5.3 and Figure 5.4 because, for all contaminants, no matter how much 

we increase the sample size, the MLE method under lognormal distribution provides the 

largest bias compared to other estimators. Related to the MLE method under Weibull and 

gamma assumptions, the approximated bias remains approximately unchanged as the sample 

size increases. In contrast, the rROS, GROS, and KM methods show to be asymptotically 

unbiased. Combining the results of bias and confidence interval length (Figure 5.1 through 

5.4), we observe that the MLE method under Weibull and gamma assumptions estimates the 

wrong values with small amount of uncertainty regardless of the sample size. The KM, 

rROS, and GROS methods generally provide estimates with small amounts of bias and 

uncertainty and thus are recommended in the present study.  
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a) chrysene                                                              b) naphthalene 

  

c) benzo (a) anthracene                                           d) acenaphtene 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Bootstrap confidence interval lengths around the mean estimate of a) chrysene, 
 b) naphthalene, c) benzo(a)anthracene, and d) acenaphtene concentration data 
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a) chrysene                                                              b) naphthalene 

  

c) benzo (a) anthracene                                           d) acenaphtene 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Bootstrap confidence interval lengths around the standard deviation estimate of 
 a) chrysene, b) naphthalene, c) benzo(a)anthracene, and d) acenaphtene concentration data 
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a) chrysene                                                              b) naphthalene 

  

c) benzo (a) anthracene                                           d) acenaphtene 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Approximated bias of the mean estimate of a) chrysene, b) naphthalene,  
c) benzo(a)anthracene, and d) acenaphtene concentration data 
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a) chrysene                                                              b) naphthalene 

  

c) benzo (a) anthracene                                           d) acenaphtene 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Approximated bias of the standard deviation estimate of a) chrysene, 
 b) naphthalene, c) benzo(a)anthracene, and d) acenaphtene concentration data 

 

5.6 Uncertainty estimation of the mean of concentration data 

Risk-based decisions require some estimate of concentration that can be either the mean or 

95th upper confidence level of the mean. In this section, we calculate the mean of the 

concentration data for the 23 contaminants under study using the MLE (under lognormal, 
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Weibull, and gamma distributional assumptions), rROS, GROS, and KM methods. We 

employ non-parametric bootstrapping followed by the percentile method to calculate the 

percentage uncertainty, ܷ%, around the mean estimates as  

 

 ܷ% = ݔܷ̅  (5.8) 

 

where ܷ is the absolute uncertainty expressed as half the 95% confidence interval, and ̅ݔ is 

the estimated mean. Table 5.4 displays the results of ̅ݔ ± ܷ% when different estimators are 

used. It can be clearly observed that using the MLE method under lognormality assumption 

results in large estimates of the mean and percentage uncertainty. For example, for 

contaminant no.23 (2,3,5-trimethylnaphthalene), the mean and percentage uncertainty 

obtained by MLE under lognormality are 0.50 and 354%, respectively, which are remarkably 

larger than those estimated by other methods. The only exceptions are contaminants nos. 1 

(As), 11 (Mo), and 22 (Cd), for which small amounts of uncertainty are achieved even when 

the lognormal MLE is used.  

 

The reason for this exceptional observation may lie in the small values of coefficient of 

variation (CV), ܸܥ = ݏ ⁄ݔ̅ , related to contaminants nos. 1, 11, and 22. Schmoyeri et al. 

(1996), Singh et al. (2006), and Shoari et al. (2015) noticed that when the CV is small, 

different statistical methods perform equally; however, when data distributions are 

characterized by large CV values, the estimators under the lognormality assumption can be 

misleading. We observe that the estimated CV for contaminant no. 1 is 0.5 and for 

contaminants nos. 11 and 22, it is 0.8; such small values of CV explain the reason for which 

comparable uncertainties are obtained. Note that we adopted the rROS method to estimate 

the CV values as Shoari et al. (2015) demonstrated the reasonable reliability of this method in 

estimating the mean and standard deviation. The CV for the remaining contaminants, where 

MLE (under lognormality) is distinguished because of the large uncertainty values, ranges 

between 1.51 and 3.86. 
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The other noticeable point is that the method of MLE assuming Weibull distribution results 

in large uncertainty values for some contaminants, making this estimator unreliable. The 

remaining estimators (i.e., MLE [under gamma assumption], rROS, GROS, and KM) provide 

comparable estimates of the mean and corresponding uncertainties. 

 

Table 5.4 The estimate of the mean and its associated uncertainty (%) for contaminant data 
when different estimators are useda 

 

MLE 
(lognormal) 

MLE 
(Weibull) 

MLE 
(gamma) 

KM 
rROS 

(lognormal) 
GROS 

(gamma) 
1 9.77±23% 9.45±21% 9.42±21% 9.45±21% 9.43±21% 7.47±21% 
2 0.45±128% 0.43±86% 0.43±81% 0.44±80% 0.43±80% 0.43±81% 
3 40.32±141% 15.87±86% 18.39±85% 18.40±85% 18.39±85% 18.38±85% 
4 71.92±167% 20.75±86% 22.54±86% 22.55±85% 22.54±85% 22.53±86% 
5 60.25±170% 17.55±80% 18.35±77% 18.37±77% 18.36±77% 18.35±77% 
6 28.56±195% 10.24±84% 11.16±91% 11.17±91% 11.16±91% 11.15±91% 
7 38.20±147% 11.56±67% 11.00±60% 11.01±60% 11.00±60% 10.99±60% 
8 24.75±176% 8.92±92% 9.73±87% 9.74±87% 9.73±87% 9.72±87% 
9 36.70±182% 10.49±85% 10.86±83% 10.88±83% 10.87±83% 10.85±83% 
10 39.31±60% 32.93±43% 32.89±41% 34.21±39% 33.08±41% 32.44±42% 
11 2.78±15% 2.70±16% 2.74±15% 2.95±11% 2.73±16% 2.58±20% 
12 19.02±244% 5.52±93% 5.20±82% 5.23±81% 5.22±81% 5.19±82% 
13 21.50±208% 5.73±83% 5.26±78% 5.30±77% 5.28±77% 5.26±78% 
14 17.33±201% 5.05±94% 4.95±86% 4.98±86% 4.97±86% 4.94±86% 
15 2.65±158% 1.49±88% 1.63±87% 1.67±85% 1.64±86% 1.62±88% 
16 0.80±100% 0.66±73% 0.70±69% 0.73±66% 0.70±68% 0.68±71% 
17 0.98±124% 0.78±81% 0.86±75% 0.89±71% 0.86±75% 0.84±76% 
18 3.27±200% 1.60±94% 1.68±84% 1.72±82% 1.69±83% 1.66±85% 
19 1.20±121% 0.78±73% 0.77±68% 0.81±65% 0.77±67% 0.75±70% 
20 1.38±176% 0.95±93% 1.02±76% 1.06±72% 1.02±75% 1.01±77% 
21 4.02±272% 1.82±112% 1.75±78% 1.80±76% 1.76±78% 1.74±78% 
22 0.94±25% 0.86±27% 0.86±27% 1.25±14% 0.93±29% 0.69±43% 
23 0.50±354% 0.29±127% 0.25±82% 0.32±68% 0.26±77% 0.24±85% 
a The numbers in column 1 refer to the contaminants listed in Table 5.1 The sample size and censoring 
percentage for each contaminant Table 5.1 
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5.7 Conclusions 

Previous studies employed simulated left-censored data to investigate the performance of the 

MLE, rROS, GROS, and KM estimators. In the present study, we applied the non-parametric 

bootstrap technique to real concentration data and investigated the performance of the 

aforementioned estimators in terms of the uncertainty and approximated bias. Uncertainty 

was evaluated as the length of 95% confidence interval, and the approximated bias was 

calculated with respect to the rROS estimates. Among different estimators, bootstrap results 

indicated that the MLE method provided estimates with the highest amount of uncertainty, 

which is strongly impacted by the distributional assumption. For the present study, the MLE 

estimates obtained under the lognormality assumption were generally characterized by the 

highest uncertainties. Regarding the approximated bias, none of the estimators universally 

provided the least biased estimates. 

 

We also investigated whether an increase in sample size could reduce the bias and 

uncertainty. The uncertainty of the estimates decreased as the sample size increased. Even so, 

the MLE estimates obtained under lognormality assumption were still characterized by the 

highest amounts of uncertainty. The bias provided by MLE relying on lognormal and 

Weibull assumptions occasionally improved as the sample size increased; however, the 

rROS, GROS, and KM estimators appeared to be asymptotically unbiased. Based on the 

bootstrap results, the present study concludes that the rROS, GROS, and KM methods 

provide estimates with small bias and uncertainty and thus are favored here. It is important to 

mention that the limitation of our adopted methodology is assumptions related to 

independently and identically distribute observations and representativeness. 
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6.1 Abstract 

In a typical data collection process for the purpose of characterizing contaminated sites, 

boreholes are usually drilled in different locations based on a sampling plan; and 

consequently, multiple samples are collected from each borehole. As a result, it is quite 

plausible that a certain degree of dependency or similarity exists among observations nested 

within a borehole. However, when classical regression models are employed, such 

dependencies are often ignored, resulting in biased estimates. In site characterization studies, 

further complication arises due to the presence of left-censored observations, those falling 

below the detection limit of measuring instruments. To overcome the above issues, this paper 

employs a mixed effects model that allows accounting for the within-borehole data 

dependency while accommodating left-censored concentrations. The benefits of the adopted 

methodology are explored by analyzing concentration data obtained from characterization 

study of a brownfield site located in Montreal, Canada. This paper illustrates that the 

estimated within-borehole correlation can be used to determine the optimal number of 

boreholes as well as the sample size to be collected from each borehole. Such correlation is 

underestimated when censored values are not accommodated in the model but substituted 

with a constant prior to data analysis. In addition, the adopted methodology provides an 

accurate insight into the vertical extent of contamination that can result in different 

compliance decisions when compared with classical approach.  
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6.2 Introduction 

Characterization of a contaminated site often involves collecting samples along boreholes 

drilled over the site and analyzing them for contaminant concentrations. The resultant 

concentration data have two main features. First, data have a nested structure; that is, 

multiple concentration observations are obtained from the same borehole. Secondly, 

concentration data frequently contain left-censored observations that are measurements 

falling below the detection limit (DL) of analytical instruments. Even with technical 

advances in chemical analysis protocols and laboratory instrumentations, there remains a 

threshold below which contaminants concentrations is not distinguished from the background 

noise. 

 

With respect to the first feature, it is quite plausible to speculate that observations obtained 

from the same borehole are correlated since they may share similar known or unknown 

attributes. With this data structure, contaminants concentration varies both within and 

between boreholes, these variance components should be taken into account. In 

environmental studies, however, the common practice overlooks the potential correlation 

between observations within a borehole, assuming that samples are collected from a single 

homogeneous population. Analysis of data sets characterized by a nested structure is best 

performed using mixed effects models, known also as multilevel models (Gbaguidi-Haore, 

Roussel, Reboux, Dalphinand & Piarroux, 2009; Hox, 2010). The peculiarity about these 

models is that they include both fixed effects and random effects. Modeling with the fixed 

effects allows examining the average relationship between a dependent variable 

(concentrations in this study) and predictor(s). This is equivalent to fitting a classical linear 

regression model. Inclusion of random effects, on the other hand, acknowledges the presence 

of some unobserved characteristics associated with each borehole and provides an estimation 

of the “between-borehole” contamination variability. Failure to recognize the nested structure 

of concentration data could result in misinterpretation in the analysis of data. In fact, fitting 

classical regression models to the data with dependent observations may result in an 

underestimation of standard errors and consequently, misleading conclusions about the 
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significance of the parameters whose effects are investigated (Pinheiro & Bates, 2006; Barr, 

Levy, Scheepers & Tily, 2013). 

 

With respect to the second feature, left-censored observations are commonly substituted with 

constants (e.g., DL/2) so that complete data sets are “fabricated” (Helsel, 2006) prior to any 

analysis. A number of studies that accommodated censored data in the regression models 

include Slymen, de Peyster & Donohoe (1994), Liu et al. (1997), Gardner & Vogel (2005), 

and Dien, Hirai, Miyazaki & Sakai (2016); however, the random effect parameter was not 

incorporated in these studies. Some studies in the fields of biostatistics, epidemiology, 

ecology, and transportation have fit mixed effects models to data without censoring (e.g., 

Guo, 2005; Jordan, Schimleck, Clark, Hall & Daniels, 2007; Bogner et al., 2010; Warne et 

al., 2012; Heydari, Miranda-Moreno & Fu, 2014; Lee & Koutrakis, 2014; Giri, 

Nejadhashemi, Zhang & Woznicki, 2015; Wu et al., 2015; Chen, Qin, Zeng & Li, 2016) and 

less frequently, to data subject to censoring (e.g., Thiébaut & Jacqmin-Gadda, 2004; Jin et 

al., 2011; Vaida & Liu, 2012; Bakke, Ulvestad, Thomassen, Woldbæk & Ellingsen, 2014). 

To our knowledge, the use of mixed effects models in site characterization studies involving 

left censored concentrations is rare if nonexistent. 

 

The general objective is to advance the use of mixed effects models for environmental data 

with left-censoring and to highlight how these models help developing better management 

practices for site characterization and remediation. The benefits of the adopted methodology 

are studied by fitting mixed effects models to censored concentration data of soil samples 

collected for the purpose of characterizing a brownfield site in Montreal (Canada). While 

accommodating censored values, mixed effects models estimate different variance 

components of contamination, i.e., within- and between-borehole variances. In addition, the 

relationship between contamination level and depth and the type of materials from which 

samples were collected is explored. Finally, practical implications for compliance with 

environmental standards and sample size determination are provided. 
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6.3 Site and data description 

The site under study is a brownfield site that covers an area of 830,000 m2 in Montreal, 

Canada. This site mainly consists of layers of backfill and waste material, crushed stone and 

natural soil. Several site characterization studies were conducted on this brownfield site 

between 1998 and 2009. Soil samples were collected at different depths from 242 boreholes 

dispersed over the site. Generally, one to four soil samples were analyzed for contaminant 

concentrations (14 inorganic compounds and 23 polycyclic aromatic hydrocarbons (PAH)). 

Concentration data contained some observations below the detection limits resulting in left-

censored data. For a more practical insight into the vertical profile of the contamination, four 

depth categories on the basis of the dominant material were defined as: 

• Depth I (from 0m to 1m) consists of  crushed stones, backfill material with some portions 

of waste; 

• Depth II (from 1m to 2m) consists of backfill and waste material; 

• Depth III (from 2m to 3m) consists of waste; 

• Depth IV (>3m) consists of natural soil. 

 

6.4 Methodology 

Employing simple linear regression and linear mixed effects models, this paper examined the 

extent of contamination at different depths and in different materials from which samples 

were collected. With the assumption that all observations including those coming from the 

same borehole are independent, simple linear regression model that includes only the fixed 

effects is fitted by 

 

௜௝ݕ  = ௝ߚ + ௜௝ߝ ݅ = 1,… ,ܯ, ݆ = 1,… ,ܰ (6.1) 

 

where ݕ௜௝ represents concentration measurement for borehole ݅ in material (or at depth) j; the β୨ represents fixed effects or the mean concentration in material (or at depth) j, and the ε୧୨ is 
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an independent error term that is normally distributed with mean zero and variance σଶ, N(0, σଶ). Also, M is the number of boreholes and N is the number of materials- or depth 

categories- defined earlier.  

 

The nested structure of characterization data violates the assumption of independence that 

underlies the simple linear regression technique. Under such circumstances, this paper adopts 

the methodology used by Vaida & Liu (2012) for left-censored HIV-1 viral load data in 

which a linear mixed effects model is defined as  

௜௝ݕ  = ௝ߚ + ܾ௜ + ௜௝ߝ ݅ = 1,… ,ܯ, ݆ = 1,… , ܰ (6.2) 

 ܾ௜~ܰ(0, ,(௕ଶߪ ,௜௝~ܰ(0ߝ (ଶߪ  

 

As in equation (6.1), ݕ௜௝ represents concentration measurements, ߚ௝ represents the fixed 

effects and ߝ௜௝ is the random error. The parameter ܾ௜ stands for random effects (here, 

borehole effects) with a mean of zero and variance of ߪ௕ଶ. Considering the case where some 

concentration measurements are left-censored, the observed concentrations ݕ௜௝ are presented 

as pairs of ൫ݍ௜௝,  ௜௝ is the censoringߜ ௜௝ represents the observed value andݍ ௜௝൯, whereߜ

indicator such that  

௜௝ݕ  = ൜ݍ௜௝ ݂ܫ ௜௝ߜ = 0< ܮܦ ݂ܫ ௜௝ߜ = 1  (6.3) 

 

The models used in this study were built using the package “lmec” (Vaida & Liu, 2009) in R 

that estimates the following quantities through the maximum likelihood or restricted 

maximum likelihood method. 

• Fixed effects parameter ߚ௝, which represents the mean contaminant concentration, for 

each depth category or material type, and its corresponding variance; 

• Random effects parameter or borehole effect 	ܾ௜, which represents the deviation of the 

mean contaminant concentration at each borehole from the mean contaminant 
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concentration of the population under study; the variance for 	ܾ௜, ߪ௕ଶ, provides an estimate 

of the “between-borehole” variability; 

• Random error ߝ௜௝ whose variance represents the “within-borehole” variability, ߪଶ. 

 

For details regarding the theory and computational methods of mixed effects models, 

interested readers are referred to Pinheiro & Bates (2006), Wu (2009), and West, Welch & 

Galecki (2014). To improve the normality of error terms, concentration observations are log-

transformed as in Bogner et al. (2010); Janssen (2012), and Vaida & Liu (2012), among 

others. Therefore, the fixed effects represent the mean concentration of a given contaminant 

in each material or at each depth in log-scale, i.e., the geometric mean (GM). Due to 

difficulties in interpreting the GM estimates, these were back-transformed into original scale 

(details are provided in section 6.6). To choose between models with and without random 

effects (i.e., simple linear regression versus linear mixed-effects regression), the Akaike 

Information Criteria (AIC) was used (Burnham & Anderson, 2003). The model with the 

lowest AIC value provides a superior fit. 

 

In addition to the characterization of the vertical distribution of contamination (in terms of 

the depth category and material), the mixed effects models provide insight regarding the data 

dependency through the intra-borehole correlation coefficient (IBC). The IBC is a measure 

describing the similarity of concentration observations nested in the same borehole and can 

be computed from 

ܥܤܫ  = ௕ଶߪ௕ଶߪ +  ଶ (6.4)ߪ

 

Values of IBC close to 0 indicate that observations are perfectly independent of each other 

and a simple regression analysis is sufficient. As IBC approaches 1, within-borehole 

dependency increases. To evaluate the role of censored values, mixed effects models were fit 

to data after left-censored concentrations were substituted with DL/2. This paper discusses 
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some examples that show how substitution of censored values provides biased IBC values, 

which would potentially alter the outcomes of site characterization.  

 

6.5 Results 

Table 6.1 and Table 6.2 report the results of the application of both simple linear regression 

and mixed effects models to cadmium, copper, lead, benzo(a)pyrene, and naphthalene 

concentration data that were identified as contamination indicators in a previous study 

conducted on this site by Dessau (2009). These tables display the estimates of variance 

components associated with random error and random effects error, which are indicated by 

the within-borehole (ߪଶ) and between-borehole variance (ߪ௕ଶ), respectively. Mixed effects 

model produces a much smaller estimate of the random error variance than the simple linear 

model because some variations are captured by the between-borehole variance. The estimates 

of IBC indicate that some level of correlation exists between the concentrations measured 

within a borehole. For a more comprehensive illustration of the range of IBC in our study, 

Figure 6.1 shows IBC for 14 inorganic and 23 PAH contaminants when material type is 

considered as fixed effects. While the IBC values in 79% of the contaminants are larger than 

0.3, we observe substantially large IBC values for Cd, Hg, Se, and 7,12-

dimethylbenz(a)anthracene. Due to data dependencies, the simple linear model should be 

abandoned as its underlying assumption (observations independency) is likely to be violated 

(Heck & Thomas, 2015).  

 

Simultaneously, mixed effects models assess the relationship between contaminants 

concentration and material type or depth from which soil samples were collected. Table 6.1 

and Table 6.2 show that the regression parameters (estimates of GM) are significant at ߙ =5%. The only exception occurs in cadmium concentration estimated in waste material 

(Table 6.1). The analyses indicate that both mixed effects and simple regression models 

provide comparable estimates of GM. However, model comparison between the mixed 

effects and simple linear regression models show that the mixed effects models provide an 

improved model fit (smaller AIC values) over simple linear regression. It’s worth mentioning 
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that mixed effects models have the advantage of accommodating missing data. In fact, in the 

data sets used in this study, while some materials, or depth categories, contain duplicate 

measurements, some others have no concentration measurements (missing data). If the model 

is correctly specified, the missing values do not bias the inference regarding the ߚ௝ estimates. 

This is not the case if the nested structure of characterization data is ignored, and inference 

related to each material, or depth category, is based only on available concentration 

measurements. 

 

Table 6.1 Linear regression versus mixed effects models when the material type is considered 
as fixed effectsa 

 

 Mixed effects model Simple linear regression 

Copper n=428 ,Censoring=18% 

Within borehole variance σଶ 0.97 1.18 

Between borehole variance	σୠଶ 0.21 - 

IBC 0.18 - 

GM (waste) 5.03 [4.71,5.34] 5.08 [4.77,5.39] 

GM (crushed stones) 2.95 [2.58,3.33] 2.92 [2.55,3.30] 

GM (backfill) 3.95 [3.81,4.08] 3.93 [3.80,4.07] 

GM (natural soil) 3.29 [3.03,3.54] 3.33 [3.08,3.58] 

AIC 1313 1318 

Lead n=434, Censoring=30% 

Within borehole variance σଶ 2.18 3.09 

Between borehole variance	σୠଶ 0.93 - 

IBC 0.30 - 

GM (waste) 5.24 [4.73,5.75] 5.44 [4.95,5.94] 

GM (crushed stones) 2.25 [1.63,2.88] 2.12 [1.48,2.76] 

GM (backfill) 3.36 [3.13,3.60] 3.35 [3.13,3.57] 

GM (natural soil) 2.03[1.59,2.46] 1.92 [1.50,2.35] 

AIC 1712 1732 

(Continued) 
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 Mixed effects model Simple linear regression 

Cadmium n=423, Censoring=67% 

Within borehole variance σଶ 0.59 2.00 

Between borehole variance	σୠଶ 1.90 - 

IBC 0.76 - 

GM (waste) 0.03 [-0.42, 0.48] 0.99 [0.51, 1.48] 

GM (crushed stones) -1.62 [-2.28, -0.96] -1.69 [-2.42, -0.96] 

GM (backfill) -0.95 [-1.21,-0.70] -0.85 [-1.05, -0.65] 

GM (natural soil) -1.58 [-2.01,-1.15] -1.87 [-2.36, -1.38] 

AIC 1407 1504 

Benzo(a)pyrene n=517,Censoring=51% 

Within borehole variance σଶ 2.81 4.37 

Between borehole variance	σୠଶ 1.63 - 

IBC 0.37 - 

GM (waste) -1.47 [-2.01,-0.92] -1.60 [-2.15,-1.05] 

GM (crushed stones) -4.35 [-5.44,-3.26] -4.42 [-5.60,-3.24] 

GM (backfill) -1.85 [-2.14,-1.56] -1.86 [-2.12,-1.59] 

GM (natural soil) -3.52 [-3.97,-3.06] -3.43 [-3.84,-3.02] 

AIC 2203 2240 

Naphthalene n=516, Censoring= 57% 

Within borehole variance ߪଶ 2.95 4.57 

Between borehole variance	ߪ௕ଶ 1.68 - 

IBC 0.36 - 
GM (waste) -1.72 [-2.28, -1.16] -1.74 [-2.31, -1.18] 

GM (crushed stones) -4.04 [-5.15,-2.93] -4.29 [-5.46,-3.11] 

GM (backfill) -2.44 [-2.74,-2.13] -2.40 [-2.68,-2.12] 

GM (natural soil) -3.77[-4.24,-3.30] -3.57 [-4.01,-3.14] 

AIC 2221 2258 
Note: GM=geometric mean, IBC=intra-borehole correlation. 
a values in parenthesis refer to 95% upper and lower confidence levels 
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Table 6.2 Linear versus mixed effects models when the depth category is considered as fixed 
effectsa 

 
 Mixed effects model Simple linear regression 

Copper n=428 ,Censoring=18% 
Within borehole variance σଶ 1.15 1.46 

Between borehole variance	σୠଶ 0.31 - 

IBC 0.21 - 

GM(Depth I)  3.66 [3.41, 3.92] 3.69 [3.43,3.94] 

GM(Depth II) 3.96 [3.74, 4.17] 3.93 [3.72,4.15] 

GM(Depth III) 4.07 [3.84, 4.30] 4.08 [3.85,4.31] 

GM(Depth IV) 3.73 [3.49, 3.96] 3.73 [3.51,3.96] 

AIC 1402 1411 
Lead n=434, Censoring=30% 

Within borehole variance σଶ 2.58 4.20 

Between borehole variance	σୠଶ 1.59 - 

IBC 0.38 - 

GM(Depth I)  3.28 [2.86,3.71] 3.28 [2.84,3.72] 

GM(Depth II) 3.39 [3.01,3.76] 3.32 [2.94,3.70] 

GM(Depth III) 3.44 [3.05,3.83] 3.50 [3.11,3.90] 

GM(Depth IV) 2.74 [2.33,3.15] 2.66 [2.25,3.07] 

AIC 1824 1864 

Cadmium n=423, Censoring=67% 

Within borehole variance σଶ 0.66 2.51 

Between borehole variance	σୠଶ 2.38 - 

IBC 0.78 - 

GM(Depth I)  -1.18 [-1.57, -0.79] -1.14 [-1.56, -0.72] 

GM(Depth II) -1.01 [-1.35, -0.68] -0.80 [-1.13, -0.46] 

GM(Depth III) -0.90 [-1.24, -0.55] -0.56 [-0.90, -0.21] 

GM(Depth IV) -1.45 [-1.84, -1.06] -1.54 [-1.94, -1.13] 

AIC 1475 1600 
(Continued) 
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 Mixed effects model Simple linear regression 

Benzo(a)pyrene n=517,Censoring=51% 
Within borehole variance σଶ 3.21 4.92 

Between borehole variance	σୠଶ 1.75 - 

IBC 0.35 - 

GM(Depth I)  -2.84 [-3.39, -2.29] -2.71 [-3.28,-2.15] 

GM(Depth II) -2.10 [-2.54, -1.66] -2.20 [-2.64,-1.76] 

GM(Depth III) -2.24 [-2.67, -1.81] -2.33 [-2.76,-1.90] 

GM(Depth IV) -2.34 [-2.72, -1.97] -2.40 [-2.74,-2.06] 

AIC 2264 2297 

Naphthalene n=516, Censoring= 57% 
Within borehole variance σଶ 3.25 4.86 

Between borehole variance	σୠଶ 1.66 - 

IBC 0.34 - 

GM(Depth I)  -3.13 [-3.71, -2.54] -3.18 [-3.77,-2.59] 

GM(Depth II) -2.46 [-2.91, -2.01] -2.52 [-2.96,-2.07] 

GM(Depth III) -2.65 [-3.09, -2.21 ] -2.65 [-3.09,-2.22] 

GM(Depth IV) -2.85 [-3.24, -2.47] -2.72 [-3.06,-2.37] 

AIC 2258 2286 

Note: GM=geometric mean, IBC=intra-borehole correlation. 
a values in parenthesis refer to 95% upper and lower confidence levels 
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      a)  

 
     b)  

 
 

Figure 6.1 Intra-borehole correlation for a) inorganic compounds and b) PAH contaminants 

 

The following discusses the results when mixed effects models were fitted to complete 

concentration data after left-censored observations were substituted with DL/2 (results are 
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reported in Table-A VI-1 of Appendix VI). Substitution of censored data results in 

underestimation of the fixed effects (or GM here) in cadmium, benzo(a)pyrene and 

naphthalene contaminant data for which the censoring percentage is relatively large, 67%, 

51% and 57% respectively. In addition, smaller estimates of the within-borehole variance and 

more noticeably of the between borehole variance are obtained for these contaminants. For 

example, the ߪଶ and 	ߪ௕ଶ for naphthalene (reported in Table 6.1) are 2.95 and 1.68, 

respectively, whereas those after the substitution (reported in Appendix VI) are reduced to 

1.45 and 0.50, respectively. Consequently, the estimate of IBC is reduced from 0.36 (in the 

case of accounting for censored data) to 0.26 (in the case of substituting censored data). As a 

result, substitution of censored data masks the true correlation between observations in the 

same boreholes as IBC values are generally underestimated. In the case of smaller censoring 

percentages, as for Cu and Pb, which have respectively 10% and 30% censoring, the impact 

of substitution is smaller. 

 

6.6 Implications for site characterization 

This section explores practical implications of mixed effects models in terms of compliance 

with environmental standards and sample size determination for site characterization studies. 

 

6.6.1 Compliance with a soil regulatory standard 

The 95% upper confidence level of the mean (95UCL) for contaminant data was calculated 

and then compared to the soil regulatory criteria reported in Schedule I of Land Protection 

and Rehabilitation Regulation (LPRR) published by “Ministère du Développement durable, 

de l’Environnement, de la Faune et des Parcs du Québec” (2003b). Although the estimates of 

fixed effects sufficiently explain the relationships between the material type– or depth 

category- and contamination level, estimates in log-scale are not very informative in 

environmental sciences. Therefore, the following equation was used to back-transform 

95UCL of fixed effects estimates into the original scale, though some bias is inevitable 

(Gurka, Edwards, Muller & Kupper, 2006). 
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௜௝௢ݕ = exp	(ܷܮܥ௟௢௚ + ଶߪ)0.5 +  ௕ଶ)) (6.5)ߪ

 

where ݕ௜௝௢  is the concentration on the original scale, ܷܮܥ௟௢௚	is the 95UCL of fixed effects 

estimates in log-scale, and other notations have been previously described. To highlight the 

benefits of employing mixed effects while accounting for left-censored data, the 95UCL was 

computed under the following modeling scenarios: 

 

Scenario 1- Censored observations are substituted with DL/2. The fixed effects parameter 

and nested structure of concentration data are discarded in the model; 

Scenario 2- Censored observations are substituted with DL/2. The fixed effects parameter of 

depth is introduced into the model, while nested structure of concentration data is ignored; 

Scenario 3- Censored observations are substituted with DL/2. The mixed effects model is 

fitted to completed data fabricated from substituting left-censored observations (i.e., the 

random effect of borehole is included in the model described in scenario 2); 

Scenario 4- Mixed effects model is fitted to data containing left-censored observations.  

 

In the first scenario, where concentration observations are aggregated together regardless of 

the depth, material and the borehole, the usual formulas to calculate a global mean and its 

95UCL of the complete data set are used. Figure 6.2a and Figure 6.2b illustrate examples of 

concentration variability among different material types and depth categories for Pb (n=434 

observation and 30% censoring percent). As follows, contamination levels differ between 

materials and depth categories and thus could be represented by separate estimates of the 

95UCL. This can be modeled by scenario 2 and the results of which are reported in the fourth 

column of Table 6.3. Even though the updated model gives information about the vertical 

distribution of contamination, it still does not account for variations between boreholes. In 

fact, boxplots of concentration data of Pb for boreholes (Figure 6.2c) indicate the importance 

of accounting for the boreholes effects as large between-borehole concentration variability is 

observed. Figure 6.2c underlines the need for including random effects (borehole effect) into 

the model (scenario 3). The 95UCL provided by fitting the mixed effects model to complete 

concentration data are reported in the fifth column of Table 6.3. In the presence of left-
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censored observations, mixed effects models are particularly attractive because it is 

conceptually straightforward to incorporate censored measurements in likelihood inference 

for mixed effects models; results of fitting mixed effects models to scenario 4 data are 

provided in the sixth column of Table 6.3.  

 

Including fixed effects of depth (as modeled in scenarios 2, 3, and 4) reveals that the vertical 

soil profile differs in 95UCL concentration, with depth categories II and III having the 

highest contamination levels. For example, for Cu, depth categories II and III exceed the 

regulatory criterion reported in Schedule I of the LPRR (i.e., 100 mg Cu/kg) and thus should 

be targeted for remedial actions. Of interest is that these depth categories (i.e., from 1 to 3m) 

are characterized by larger amounts of waste material. However, if only fixed effects were 

considered (scenario 2), all depths would have been categorized as contaminated and targeted 

for remedial actions. Including borehole effects improves the quality of the 95UCL estimates 

as small AIC values (reported in section 6.5) indicate that mixed effects models provide a 

better fit to contaminant data. 

 

With respect to the role of left-censored data in the model, Table 6.3 shows that substitution 

of left-censored observations may also lead to incorrect compliance decisions. For example, 

for benzo(a)pyrene, considering left-censored observations in mixed effects models indicates 

non-compliance with regulatory criterion listed in LPRR (1 mg B(a)P/kg) in depth categories 

II, III and IV. However, when censored observations are substituted with a constant, the same 

conclusion cannot be reached as the 95UCL values are underestimated and are all smaller 

than the criterion. 
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  a)                                                                                    b) 

   
 
   c) 

 
 

Figure 6.2 a) Boxplots of Pb concentrations for different materials and b) depth categories; 
 c) boxplots of Pb concentrations for different boreholes 
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Table 6.3 Comparison of the 95UCL of the mean concentration (mg/kg) at each depth 
category using conventional, simple linear and mixed effects models 

 

 
Contaminant 

 

Depth 
category 

Conventional methods Mixed-effect model 

95UCL of the 
global mean 

Simple 
linear 

regression 

Completed data 
after 

substitution 

Censored 
data 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Copper 

 

DepthI 

111.09 

102.63 79.09 80.91 

DepthII 127.41 105.74 108.42 

DepthIII 149.18 119.18 121.30 

DepthIV 105.06 84.30 86.29 

Lead 

 

DepthI 

185.65 

211.03 150.08 214.68 

DepthII 213.41 166.13 237.66 

DepthIII 267.03 177.82 251.37 

DepthIV 125.74 98.69 124.93 

Cadmium 

DepthI 

1.25 

1.29 1.39 2.08 

DepthII 1.41 1.43 2.30 

DepthIII 1.66 1.56 2.62 

DepthIV 1.05 1.20 1.57 

Benzo(a)pyrene 

 

DepthI 

0.64 

0.59 0.54 0.70 

DepthII 0.79 0.86 1.47 

DepthIII 0.70 0.75 1.27 

DepthIV 0.68 0.74 1.15 

Naphthalene 

 

DepthI 

0.43 

0.39 0.30 0.51 

DepthII 0.52 0.41 1.00 

DepthIII 0.48 0.37 0.83 

DepthIV 0.47 0.37 0.67 
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6.6.2 Sample size determination 

Another important implication of mixed effects models is the possibility of determining 

optimal sample sizes at each level of the nesting hierarchy. In other words, mixed effects 

models provide researchers tools to decide how many boreholes and how many samples from 

each borehole are adequate. The optimal sample size is that required to minimize the 

standard error of the estimated IBC. As reported by Donner (1986), the standard error of the 

estimated IBC is calculated by 

 

(ܥܤܫ)	ܧܵ  = (1 − 1)(ܥܤܫ + (ܰ − ඨ(ܥܤܫ(1 2ܰ(ܰ − ܯ)(1 − 1) (6.6) 

 

where ܯ is the number of clusters (i.e., boreholes) and ܰ is the number of individuals in a 

cluster (i.e., concentration observations obtained from a borehole). It is important to note that 

the formula discussed in this section is adopted from studies in the fields of epidemiology 

and social sciences (e.g., Scherbaum and Ferreter, 2009; van Breukelen and Candel, 2012) 

and adapted to the context of site characterization. Once an educated guess about the IBC can 

be made, from preliminary data for instance, the SE(IBC) can be plotted as a function of ܰ 

and ܯ values. Such a plot is illustrated in Figure 6.3. The results indicate that there is a 

relatively high level of dependence between observations within a borehole and assume that 

IBC is 0.39 (this is the average estimate of IBC for inorganic and PAHs). As can be seen in 

Figure 6.3, the estimated standard error decreases rapidly up to N=6 observations per 

borehole, after which negligible reduction in standard error is obtained (approximately 5%). 

Moreover, increasing the number of boreholes has a more substantial impact on decreasing 

the standard error than increasing the number of observations per borehole.  

 

To illustrate the impact of IBC on sample size, Figure 6.4 depicts SE(IBC) as a function of 

IBC and the number of observations per borehole while the number of boreholes is fixed 

 This figure clearly shows that if the correlation between observations in a borehole .(150=ܯ)

increases (i.e., larger IBC), each concentration observation provides little unique information. 
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Therefore, taking several concentration measurements from a given borehole becomes more 

redundant as IBC increases. As a result, drilling more boreholes would then be more 

informative than collecting and analyzing more soil samples from a given borehole.  

 

 
      

 
Figure 6.3 Standard error of IBC versus number of observations  

per borehole (N) for IBC=0.39 and different number of boreholes (M)  
 

 
  

 
Figure 6.4 Standard error of IBC versus number of observations  

per borehole (N) for M=150 boreholes and different IBC 
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6.7 Conclusions 

Using real data examples, this paper advances the application of mixed effects models in 

analyzing left-censored concentration data in the context of environmental site 

characterization. The adopted methodology was used to examine dependency in 

concentrations nested within boreholes and to estimate the between- and within-borehole 

variance. Management practices in terms of sample size determination have been ensued 

from the estimated variance components. In particular, this paper discussed how mixed 

effects models can help determining the optimal number of boreholes as well as 

concentration observations sampled from each borehole. In fact, when concentrations within 

the same borehole are highly correlated, taking and analyzing more samples from the same 

borehole is not as informative as drilling additional boreholes. Among other findings, the 

results showed that mixed effects models provided different vertical profiles of 

contamination as a function of depth and material type, compared to those obtained from 

classical models. It was also discussed how the substitution of censored observations can 

induce errors in the decision-making process regarding compliance with regulatory criteria. 

The analyses indicated that the substitution of left-censored concentrations with DL/2 would 

result in underestimated values of between-borehole variance. This impact was larger when 

the censoring percent was more than 50%.  

  



 

CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 
 

This dissertation explored the quantitative impact of the below DL concentration (left-

censored) data within the context of characterization of contaminated sites. This study sought 

to identify the statistical methods that can adequately analyze data with left-censored values. 

Concentration data resulting from characterization of two sites were used to illustrate how 

failing to account for left-censored values in analysis might affect the outcomes of a 

characterization study. The conclusions of this dissertation are organized according to the 

specific objectives of the study as defined in Section 1.1. 

 

Estimation of descriptive statistics 

 

The problem associated with the substitution of left-censored observations with arbitrary 

values, which is the most common way of handling censored concentration data, was first 

studied. Through an extensive simulation exercise we showed that the substitution approach 

results in biased estimates of descriptive statistics, which can potentially impact other 

statistical inference procedures that rely on these estimates (comparison of two or more soil 

populations, for example). Although substitution did not drastically affect the results in a 

number of simulation scenarios, these particular scenarios are hard to identify in real data as 

we do not have any knowledge about the underlying structure of data. For this reason, we do 

not recommend the substitution of censored observations even for data sets with small 

censoring percent.  

 

Parametric and non-parametric alternative estimation techniques, which are based on survival 

analysis methods, should be preferred rather than the substitution approach. Our simulations 

showed that the performance of estimation techniques depends on various factors such as 

sample size, censoring percent, data skewness. More importantly, it depends on a 

combination of the aforementioned factors. A clear illustration of this finding was observed 

in the case of highly skewed data where the MLE method, with the assumption that 

concentration data are lognormally distributed, produced inflated estimates. The same 

technique however resulted in better estimates when the sample size increased. The 
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importance of this finding is that environmental studies often justify the choice of the MLE 

method based on the lognormality assumption by referring to previous studies such as 

Shumway et al. (2002), Hewett & Ganser (2007), and Helsel (2012) among many others, 

ignoring the fact that this technique may overestimate the descriptive statistics if data are 

highly skewed. As a result, a given soil may erroneously be identified as contaminated, while 

in reality it is not. The robustness of parametric methods (i.e., MLE, rROS, and GROS) 

against departure from the assumed distribution is another issue that has not been scrutinized 

in environmental studies. Simulation results demonstrated that the MLE method based on 

gamma assumption, rROS, and GROS provide estimates with the smallest MSE even when 

the underlying distribution of data does not match the assumed distribution. The non-

parametric KM method also proved to be a reliable estimator when it was applied to censored 

data with less than 50% censoring. 

 

We also employed the bootstrapping technique to concentration data from a characterization 

study and quantified the uncertainty associated with the mean and standard deviation values 

estimated by each of the alternative parametric and non-parametric estimators. The 

conclusions derived from bootstrapping of real data were consistent with those obtained from 

simulations. As a matter of fact, the MLE method under the lognormality assumption 

provided estimates with the highest uncertainty. In contrast, the MLE method based on 

gamma distribution, rROS, GROS, and KM generally produced estimates with small 

uncertainty.  

 

Depending on the censored data percent and the data skewness, we suggest adopting one of 

the following approaches, as outlined in Figure 7.1.  

• When there is less than 50% censoring and data exhibits low skewness, performance of 

different estimators becomes comparable. In the case of highly skewed data, the methods 

of KM, rROS, GROS, and MLE based on gamma assumption are recommended. Note 

that when data are censored at a single DL, the method of KM is not suggested as the 

mean estimate would be equal to that obtained after substitution with DL. 
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• When >50% censoring is present and data is low skewed, the MLE, rROS, and GROS 

methods provide good estimates of descriptive statistics. However, when data skewness 

is in doubt, the MLE method under lognormality is not recommended; instead, a gamma 

distributional assumption is preferred.  

 

 

 

 

Figure 7.1 Recommended methods for estimating descriptive statistics 
of left-censored data 
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Accounting for dependency in left-censored concentration data  

 

In a site characterization study, multiple soil samples are taken from a borehole. This 

sampling method might induce dependencies in concentration observations that are nested 

within the same borehole. Additional complications are missing data (some soil samples do 

not undergo chemical analysis, for example) and censored observations. Typically, censored 

values are substituted and data dependencies are ignored; these actions can result in 

misleading inferences. Accommodating censored values, we used mixed effects models to 

account for data dependencies and to estimate between-borehole contamination variability. 

The estimated variability served to determine the optimal number of boreholes as well as the 

number of soil samples collected from each borehole. To our knowledge, this is the first 

instance of employing mixed effects models for left-censored concentration data originating 

from contaminated sites characterization. This dissertation also illustrated the inadequacy 

ensued from the substitution of censored values as this approach erroneously underestimated 

the contamination variability. In addition, the adopted methodology provided a useful insight 

to the vertical extent of contamination. It was noted that the highest contamination levels 

were found in soil layers at 1-3 m of depth, which interestingly corresponded to the layers 

that contained the highest amount of waste material.  

 

Overall, the substitution of censored observations is a flawed way of dealing with 

concentration data and thus should be avoided. Alternatively, the methods of MLE (assuming 

gamma distribution), rROS, GROS, and KM can provide more reliable estimates. 

Environmental policies should inform about the consequences of substitution and strongly 

encourage practitioners and researchers to employ alternative estimation techniques. 

Censored observations impact not only estimation of descriptive statistics, but also 

development of statistical models. In light of this study, we suggest that mixed effects models 

be considered as a statistical tool in characterization of contaminated sites due to their ability 

in quantifying the between-borehole contamination variability while accommodating 

censored data. The proposed methodology can be used to improve current sampling 
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strategies that only estimate the overall number of samples without specifying the number of 

required boreholes. 

 

Recommendations for future work 

 

The research presented in this thesis has raised several lines of research which should be 

pursued.  

• The literature on the distribution of environmental data claims that concentration data can 

be modeled by lognormal distribution. Environmental publications that rely on 

lognormality often justify their assumption by (i) referring to a study conducted by Ott 

(1990), who demonstrated that concentration data were well approximated by a 

lognormal distribution, assuming that data were the result of many independent random 

dilution, or (ii) citing previous papers that employed the lognormality assumption (the 

previous papers generally rely on still-earlier papers without actually using the data to 

support their assumption).  This is probably due to the complexity of implementation of 

distributional checking procedures that are tailored for left-censored data. In view of the 

fact that studies based on the lognormality assumption, including this research, did not 

necessarily report consistent results, identifying the actual distribution of concentration 

data in the presence of nondetects becomes quite relevant. We propose to employ a 

category of goodness-of-fit tests that compare the empirical cumulative distribution 

function (obtained in a non-parametric way) with its parametric counterpart. Since the 

shape of the distribution of environmental data is right-skewed, lognormal, Weibull, and 

gamma distributions are plausible candidates to model contaminants concentration data 

sets. Some simulations toward verifying the proposed goodness-of-fit test have been 

already done and are reported in Appendix II; 

• If field results obtained from phase II and III of site characterization meet or exceed 

generic remediation guidelines, a remediation strategy and/or a risk assessment strategy is 

required. Developing the remediation objectives can be performed through a guideline 

approach that can be adopted from published environmental guidelines. Alternatively, we 

can employ a risk-based assessment that includes developing site-specific remediation 



118 

objectives based on human health and/or ecological risk assessment. While this research 

mainly focused on exploring the impact of censored data within the guideline approach 

concept, it would be interesting to see how censored concentration data affect the 

outcomes of a risk-based site characterization; 

• Mixed effects models discussed in chapter 6 were employed to analyze concentration 

data of a contaminant. However, a site characterization study usually involves measuring 

concentration of more than one contaminant at each sampling location, and sometimes 

these contaminants are also correlated. Another future direction can focus on applying 

multivariate mixed effects models to censored concentration data in order to capture 

patterns of contamination across a site; 

• It is quite interesting to extend the methodological framework to account for spatial 

dependencies between concentrations while accommodating the censored ones. This 

should allow a better understanding of the extent of contamination at any location in the 

site. 

 



 

ORIGINALITY OF WORK 

 

This thesis contributes to the literature related to statistical analyses performed in site 

characterization through unification of the field and enhancing our understanding of 

comparative aspects of available methodological frameworks using both simulated and real 

data. In particular, first, we employed a large number of data scenarios including the 

percentage of censoring, skewness, and sample size in our simulation exercise. Such a 

comprehensive approach, which has been missing in literature, allowed us to conduct a more 

detailed and informative investigation of various methods. Doing so, we were able to address 

major contradictory findings of previous studies that ignored non-standard data conditions 

occurring frequently in real data sets. Second, we examined the performance of available 

methods using a bootstrapping technique based on real data. Third, we proposed and 

successfully applied a statistical method that not only accounts for left-censored 

concentrations in contaminated soil samples, but it also accommodates interdependency in 

data generated from sampling procedures. Neglecting the dependence structure in data, as an 

inherent feature of standard methods, results in biased estimates. To our knowledge, this is 

the first study to examine and address issues relating to the aforementioned tasks in the 

context of environmental site characterization studies. 

  





 

APPENDIX I 
 
 

AN OVERVIEW OF STATISTICAL METHODS FOR LEFT-CENSORED DATA 
 
 
Suppose one wishes to estimate the mean and standard deviation of a sample of n 
concentration observations, ܺ = ,ଵݔ} ,ଶݔ … ,  ௡}, from which ݇ are left-censored at DL. Thisݔ
section reviews key estimation methods for analysis of such data; the focus is mainly on 
those techniques that have been already discussed in the “literature review” chapter. The 
notations are generally adopted from Singh et al. (2006) and Helsel (2012). 
 
Substitution method 
 
The simplistic but most commonly practiced approach to estimate statistical parameters (e.g., 
mean and standard deviation) of left-censored data entails substituting censored observations 
with arbitrary constants, which are typically a fraction of DL such as DL itself, DL/2, DL/√2. 
For the sake of simplicity, this approach is referred to as the substitution method although it 
is not a statistical technique. Replacement of censored observations has the practical 
advantage of forming complete data sets that allow using standard data analysis methods. On 
the other hand, the obvious disadvantage of the substitution method is that data sets do not 
reflect sampling variability because all censored values are replaced with the same constant. 
 
Trimmed mean and Standard deviation 
 
Trimming consists of discarding 100p% of data in both lower and upper tails. Note that p 
must be chosen such that reasonable amount of observations remain after np observations 
from both tails are cut out. This technique is valid only if the underlying distribution of data 
is symmetric.  
 
Winsorized mean and standard deviation 
 
Gilbert (1987) proposed the winsorized mean and standard deviation estimates in the case 
that data distribution is symmetric. The winsorization procedure follows three steps: 
 
Step 1: After ordering the data, censored observations are substituted with the next smallest 
uncensored observations. 
Step 2: The same number of the largest observations is substituted with the next smallest 
value. For example, if three censored values (on the left tail of distribution) are substituted in 
step 1, three largest observations (on the right tail) should be substituted with the next 
smallest uncensored observations. 
Step 3: The usual estimation techniques are applied to the modified data set to estimate the 
mean and standard deviation. 
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Maximum likelihood estimator (MLE) 
 
The general idea of MLE is to determine the parameter(s) of an assumed distribution that 
most likely resulted in the sample data. Let ܺ be a sample of n concentration observations 
that are thought to come from a lognormal distribution, ݈݊(ݔ௜; ,ߤ	  When all observations .(ߪ
are detected, the likelihood of observing the sample data is the product of the probability 
density function (pdf) for each observation and thus is given by 
ܮ  =ෑ ߨ2ߪ1 exp ቈ−(ln(ݔ௜) − ଶߪଶ2(ߤ ቉௡

௜ୀଵ  (A I-1) 

 
The maximum likelihood estimates (̂ߤ and ߪො	) are those that maximize the function L. Taking 
the natural log of L and setting the partial derivative with respect to ߤ and ߪ to zero, ̂ߤ and ߪො 
can be found.  
 
In the presence of ݇ left-censored observations, specifying the likelihood of the observed 
data and maximizing the likelihood function becomes complicated. The likelihood function 
consists of a part related to uncensored data and another part based on censored observations. 
For the uncensored part, the likelihood function is constructed using the pdf for each 
uncensored value. For the censored part, however, each censored observation contributes to 
the likelihood function with the cumulative distribution function (cdf) evaluated at the DL, 
because we merely know that the value is less than the DL. The likelihood function is thus 
written as 
 

ܮ  =ෑቊ ߨ2ߪ1 exp ቈ−(ln(ݔ௜) − ଶߪଶ2(ߤ ቉ቋఋ೔ .௡
௜ୀଵ ቊΦ(ln(ܮܦ) − ߪߤ )ቋଵିஔ౟ (A I-2) 

 
where Φ is the cdf of the standard normal distribution and ߜ௜ indicates whether the 
observation is censored or not (If ߜ௜ = 1, the observation is detected and if ߜ௜ = 0, the 
observation is left-censored). The logarithm of the likelihood function is given as follows: 
 ln(ܮ) = −(݊ − ݇)ln	(2ߪߨ) − ଶ෍(௡ି௞ߪ12

௜ୀଵ ln(ݔ௜) − (ߤ + ݇ ݈݊ Φ(ln(ܮܦ) − ߪߤ ) (A I-3) 

The likelihood function is maximized using the iterative methods such as Newton-Raphson 
algorithm since analytical solution of this log-likelihood does not exist. The MLEs are 
asymptotically unbiased, have the minimum variance, and are asymptotically normally 
distributed. However, these properties are valid as long as sample size is large enough (the 
rule of thumb is >30) and the underlying distribution of data is correctly identified.  
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Expectation-Maximization (EM) algorithm  
 
Another way of maximizing the likelihood function is the iterative approach using the EM 
algorithm (Dempster, Laird & Rubin, 1977). It is an iterative sequence of estimating the 
censored observations from the current parameter estimates and then estimating the 
parameters from the actual and estimated observations. In the E-step, the conditional 
expectation of the complete data log-likelihood is computed. In the M-step, the parameters 
that maximize the complete data log-likelihood are estimated. The E-step and the M-step are 
alternately repeated until convergence is met. Following the notations in Singh & Nocerino 
(2002), let (̂ߤ௝, ,ߤ) ො௝ଶ) be the estimates ofߪ ,௝ାଵߤ̂) ଶ) at jth iteration, thenߪ ො௝ାଵଶߪ ) are obtained 
as  
௝ାଵߤ̂  = 1݊ ൥ ෍ ௜ݔ +෍ܧ௝( ௜ܺ| ௜ܺ ≤ ௞(ܮܦ

௜ୀଵ
௡

௜ୀ௞ାଵ ൩ (A I-4) 

ො௝ାଵଶߪ  = 1݊ − 1 ൥ ෍ ௜ݔ) − ௝)ଶߤ̂ +෍ܧ௝(( ௜ܺ − ௝௞ߤ̂
௜ୀଵ )ଶ| ௜ܺ ≤ ௡(ܮܦ

௜ୀ௞ାଵ ൩ (A I-5) 

 
where 
 

)௝ܧ  ௜ܺ| ௜ܺ ≤ (ܮܦ = ௝ߤ̂ − (ܼ)߮]ො௝ߪ Φ(ܼ)⁄ ] (A I-6) 

 ෍ܧ௝(( ௜ܺ − ௝௞ߤ̂
௜ୀଵ )ଶ| ௜ܺ ≤ (ܮܦ = ො௝ଶ(1ߪ − ܼ[߮(ܼ) Φ(ܼ)⁄ ]) (A I-7) 

 ܼ = ܮܦ − ௝ߤ̂ ⁄ො௝ߪ  (A I-8) 

 
The advantage of EM algorithm to Newton-Raphson optimization relies in its robustness to 
starting value, which can be the mean and standard deviation of the uncensored data.  
 
Cohen’s MLE  
 
To estimate the mean and standard deviation of normal data censored at a single DL, Cohen 
(1959) developed a series of equations: 
 

ߤ̂  = ௨௡ݔ − ,݃)ߣ ℎ)(ݔ௨௡ −  (A I-9) (ܮܦ

ොߪ  = ඥݏ௨௡ଶ + ,݃)ߣ ℎ)(ݔ௨௡ − ଶ (A I-10)(ܮܦ

 
where ݔ௨௡ and ݏ௨௡ଶ  are the estimates of mean and standard deviation based on uncensored 
part of the data. In these equation, ℎ and ݃ are defined as 
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 ℎ = ݇݊ = Censoring portion (A I-11)

 ݃ = ௨௡ݔ)௨௡ଶݏ − ଶ (A I-12)(ܮܦ

 
Cohen provided look-up tables of the function ߣ(݃, ℎ) that are restricted to ݃ =0.00	(0.05)1. Schneider & Weissfeld (1986) extended these tables to values of ݃ up to 1.48. 
Haas & Scheff (1990) developed the following power series expansion of the function ߣ that 
fits the table values within a 6% relative error: 
 

 

ln ,݃)ߣ ℎ) ≃ 0.182344 − 0.3756݃ + 1 + 0.10017݃ + −ݕ0.78079 0.00581݃ଶ − ଶݕ0.06642 − ݕ0.0234݃ + 0.000174݃ଷ+ 0.001663݃ଶݕ − ଶݕ0.00086݃ −  ଷݕ0.00653

(A I-13)

 

where ݕ = ݈݊ ௛ଵି௛. 

 
Bias corrected MLE 
 
Schneider & Weissfeld (1986) provided computational formulas for the bias-corrected MLEs 
of the ߤ and ߪ based on type II censored and normally distributed data. It is assumed that 
these correction formulas can be approximately valid for type I censored data, which are 
typically the case in environmental studies. These formulas are  
 

௨ߤ̂  = ௖ߤ̂ − ௨݊ܤො௖ߪ + 1 (A I-14) 

ො௨ߪ  = ො௖ߪ − ఙ݊ܤො௖ߪ + 1 (A I-15) 

 
where ̂ߤ௖ and ߪො௖ are the MLEs obtained by Cohen method, and ܤ௨ and ܤఙ are given as  
 

௨ܤ  = −݁ଶ.଺ଽଶିହ.ସଷଽ(௡ି௞)௡ାଵ  (A I-16) 

ఙܤ  = −൬0.312 + 0.859(݊ − ݇)݊ + 1 ൰ିଶ (A I-17) 
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Restricted MLE 
 
Persson & Rootzen (1977) proposed the restricted MLE, which is similar to the maximum 
likelihood of Cohen but is simpler to compute. Let ݕ௜ = ௜ݔ − ݅ ;ܮܦ = ݇ + 1, ݇ + 2,… , ݊ and ߠ = ܮܦ) −   The likelihood function can be simplified to .ߪ/(ߤ
 

ܮ  = [Φ(ܼ)]௞(2ߪߨଶ)ି(௡ି௞) ଶ⁄ exp൭− ൥ ෍ ௜ݕ) + ଶ௡ߪଶ/2(ߪܼ
௜ୀ௞ାଵ ൩൱ (A I-18) 

 
where Φ(. ) is the standard normal distribution function. The ݊ − ݇ uncensored observations 
can be described by a binomial distribution as 
 

 Pr(݊ − ݇ = (ݎ = {݊!Φ(−ߠ)}௥{Φ(ߠ)}௡ି௥/{ݎ! (݊ −  (A I-19) {!(ݎ

 
for ݎ = 0,… , ݊. The Φ(ߠ) can be equivalently defined by 1 − (݊ − ݇)/݊ for 0 < ݊ − ݇ < ݊, 

thus ߠ∗ = Φିଵ ቀ1 − ௡ି௞௡ ቁ = ݊) ௡ is the upper/(௡ି௞)ߣ ௡, where/(௡ି௞)ߣ − ݇)/݊th quantile of 

the standard normal distribution. Substituting ߠ∗ =  ௡ in the likelihood function and/(௡ି௞)ߣ
then maximizing it yields restricted MLEs as given below.  
ො௥ெ௅ாߪ  = 12 ቎ߣ(௡ି௞)/௡ 1(݊ − ݇) ෍ ௡	௜ݕ

௜ୀ௞ାଵ
+ ቐ൭ߣ(௡ି௞)/௡ 1(݊ − ݇) ෍ ௜௡ݕ

௜ୀ௞ାଵ ൱ଶ + 4(݊ − ݇) ෍ ௜ଶ௡ݕ
௜ୀ௞ାଵ ቑ቏ (A I-20) 

௥ெ௅ாߤ̂  = ܮܦ −  ො௥ெ௅ா (A I-21)ߪ௡/(௡ି௞)ߣ

 
The ̂ߤ௥ெ௅ா and ߪො௥ெ௅ா are biased and some correction factor are thus needed. In left-censored 

data, we have [ݔ]ܧ = ߤ + [ଶݏ]ܧ and ,ߪߙ ∼ ଶ[1ߪ + ߠߙ) − = ଶ)], whereߙ ఝ(ఏ)ଵି஍(ఏ) , and the 

bias corrected restricted MLEs are obtained by the following equations: 
ො∗௥ெ௅ாߪ  = [ 1(݊ − ݇) ෍ ௜ଶ௡ݔ

௜ୀ௞ାଵ − ൭ 1(݊ − ݇) ෍ ௜ଶ௡ݔ
௜ୀ௞ାଵ ൱ଶ − ௡(௡ି௞)ߣොߙ) − ොଶ௥ெ௅ா]ଵ/ଶ (A I-22)ߪ(ොଶߙ

௥ெ௅ா∗ߤ̂ = 1(݊ − ݇) ෍ ௜௡ݔ
௜ୀ௞ାଵ − ො௥ெ௅ா (A I-23)ߪොߙ
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where ߙො = ݊)/݊(௡/(௡ି௞)ߣ)߶ − ݇). For ݇ = 0 (i.e., censoring does not exist), the expressions 

for ̂ߤ∗௥ெ௅ா and ߪො∗௥ெ௅ா are simply ∑ݔ௜/݊ and ට∑௫೔మ௡ − (∑௫೔௡ )ଶ. 

 
Robust MLE (rMLE) 
 
The robust MLE (rMLE), proposed by Kroll & Stedinger (1996), is a hybrid of the MLE 
method with a regression on order statistics. Using the lognormality assumption, the mean 
and standard deviation in log-scale,	̂ߤ௟௡ and ߪො௟௡, are computed with the MLE method. These 
estimates are then employed to extrapolate censored values through  
 

௜ݔ  = exp	(̂ߤ௟௡ + ݅   ;((௜݌)ො௟௡Φିଵߪ = 1,2, … , ݇ (A I-24) 

 
where Φିଵ(݌௜) is the inverse cumulative normal distribution at the plotting position ݌௜. The 

plotting positions of ݇ censored values are calculated as 

 

௜݌  = ௞௡ (௜ିଷ ଼⁄௞ାଵ ସ⁄ );   ݅ = 1,2, … , ݇ (A I-25) 

 
Since individual extrapolated values for censored observations are transformed back in the 
original scale by exponentiation, transformation bias in avoided. However, as mentioned in 
Singh et al. (2006), this estimator is unstable in data sets with high censoring percent.  
 
Tobit regression 
 
The Tobit regression model (Tobin, 1958) is characterized by a regression equation as 
 

∗௜ݕ  = ߙ + ߚ௜ݔ +  ௜ (A I-26)ߝ

 
where ݕ௜∗ is the dependable variable, ݔ௜ is a vector of independent variable, ߙ and ߚ are 
vectors of regression parameters, and ߝ௜ is the error term that is assumed to be independently 
and normally distributed with mean 0 and variance ߪଶ. In environmental studies, dependable 
variable is typically contaminant concentration in a medium (air, water, soil, etc.) while some 
measurements are nondetects. The observable concentration variable ݕ௜ is related to ݕ௜∗ 
according to   
 

௜ݕ  = ൜			 ∗௜ݕ if ∗௜ݕ > ܮܦܮܦ otherwise  (A I-27) 

 
Let ߮(. ) and Φ(.) denote the normal density and cumulative distribution functions, 
respectively, the likelihood function for the Tobit model is given by  
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,ߚ)݈ ,ݕ|ଶߪ (ݔ = 	 ෑ ௬೔வ஽௅ߪ1 ߮ ൬ݕ௜ − ߙ − ߪߚ௜ݔ ൰ . ෑ 1−Φ(DL + ߙ + σߚ௜ݔ )௬೔ஸ஽௅  

(A I-28) 

 
The estimates of ߚ ,ߙ, and ߪଶ are obtained by fitting a Tobit line to data by maximum 
likelihood estimation. The disadvantage of this method relies in its vulnerability to violation 
of the following assumptions: that residual are normally distributed and the variance is 
constant across the range of predicted values (i.e., homoscedastic errors). To approximate 
error normality, in some cases data transformations such as log transformation can be 
helpful.  
 
Imputation methods  
 
The general idea behind this methodology is to employ a parametric model to impute values 
for the below DL observations such that complete data are formed and standard statistical 
methods can be used. Some of the commonly used imputation techniques are discussed in the 
following. The main advantage of this methodology is that, once nondetects are replaced by 
imputed values, graphical representation of data is straightforward and any standard 
statistical method can be used. The disadvantage of these techniques, however, is that the 
imputed values strongly depend on the goodness of the initial parametric estimates (such as 
MLEs), and thus these methods are highly sensitive to data skewness and outliers. Moreover, 
as sample size increases, the number of censored observations increases, and this generally 
has adverse effects on the performance of the imputation techniques.  
 
Robust Regression on Order Statistics 
 
The fully parametric regression on order statistics (ROS) fits a linear regression to 
uncensored observations (in original or lognormal scale) against their normal quantiles. The 
intercept and slope of the regression line estimate the mean and standard deviation of the data 
(or log-transformed data), respectively. If observations are log transformed, the mean and 
standard deviations estimates are in logarithmic scale and should be back transformed into 
the original scale. This retransformation procedure introduces bias in the estimates. To avoid 
transformation bias, Helsel & Gilliom (1986) presented the robust ROS (rROS), in which 
censored observations are imputed based on a parametric model, then combined with the 
uncensored observations to compute the summary statistics of data as if no censoring had 
occurred. Using the notations in Helsel (2012), the rROS method is performed in four steps 
as follows: 
Step1: Computation of plotting positions for both censored and uncensored observations: 
after ranking the data, the probability of exceeding jth DL is calculated using the proportion 
of observations that are at or above that DL. The general formula can be written as   
 

௝݁݌  = ௝ାଵ݁݌ + ௝ܣ௝ܣ + ௝ܤ ൣ1 −  ௝ାଵ൧ (A I-29)݁݌
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where ܣ௝ is the number of uncensored observations between the jth and j+1th DL, and ܤ௝ is 
the number of observations, censored and uncensored, below the jth DL. When j corresponds 
to the highest DL, in that case ݁݌௝ାଵ = 0 and ܣ௝ + ௝ܤ = ݊. The number of observations 
below the jth  DL is defined as  
௝ܥ  = ௝ܤ	 − ௝ିଵܤ −  ௝ିଵ (A I-30)ܣ

 
To plot a probability plot, we need to calculate plotting positions for uncensored observations 
as given by  
 

௜݀݌  = ൫1 − ௝൯݁݌ + ൤ ௜஺ೕାଵ൨ . ௝݁݌ൣ − ݅ ௝ାଵ൧;   for݁݌ = 1 to ܣ௝ (A I-31) 

 
and for censored observation as given by  

 

௜ܿ݌  = ൤ ௜஼ೕାଵ൨ . ൣ1 − ݅ ௝൧;   for݁݌ = 1 to ܥ௝ (A I-32) 

 
Step 2: Fitting a linear regression line: A regression line is fit to the probability plot, in which 
y-axis is uncensored data and x-axis is the normal quantiles of the uncensored plotting 
positions. 
Step 3: Extrapolation of censored concentrations: Using the estimates of the mean and 
standard deviation obtained in step 2 (i.e., the intercept and slope of the regression line) 
together with the normal quantiles of the censored plotting positions, we can extrapolate 
values for censored data. 
Step 4: Computation of summary statistics: The extrapolated values are combined with 
uncensored data and standard complete-data methods are used to estimate the summary 
statistics. 
 
Singh et al. (2002) noted that gamma distribution can adequately fit right skewed 
environmental data sets. Based on this conclusion, Singh et al. (2006) suggested using the 
ROS technique that relies on gamma assumption (GROS). The procedure for computing the 
GROS estimates follows the same steps of the rROS method with two exceptions: a) the log-
transformation of uncensored data is not required, and b) instead of normal quantiles, the 
gamma quantiles of plotting positions are employed. In the GROS method, the probability 
plot is constructed using the pairs (ݔ଴௜, ݅ ;(௜ݔ = ݇ + 1,… , ݊, where ݔ௜ represents ranked 
uncensored data and ݔ଴௜ is calculated by the following equation.  
 

଴௜ݔ  = ݅   ;෠/2ߠ଴௜ݖ = 1,2, … , ݊ (A I-33)
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where ߠ෠ is the estimate of the scale parameter computed by the MLE method (under gamma 
assumption) and the quantiles ݖ଴௜ are obtained by 
 

׬  ݂൫߯ଶࣄෝଶ ൯݀߯ଶࣄෝଶ = (݅ − 0.5)/݊௭బ೔଴ ;  ݅ = 1,2, … , ݊ (In the case of single DL) (A I-34)

׬  ݂൫߯ଶࣄෝଶ ൯݀߯ଶࣄෝଶ = ௜௭బ೔଴݌ ;    ݅ = 1,2, … , ݊  (In the case of multiple DLs) (A I-35)

 
In these equations ߯ଶࣄෝଶ  represents a chi-square random variable with 2kˆ degrees of freedom 
(df) and ݌௜ is the plotting position can be computed the formulas for ݀݌௜ and ܿ݌௜ as described 
earlier for the rROS method.  
 
Lynn’s method  
 
This is a maximum likelihood-based imputation approach. The steps for the Lynn’s method 
(Lynn, 2001) are described as follows: 
Step 1: The maximum likelihood method is used to obtain preliminary estimates of the mean 
and standard deviation, i.e., ̂ߤ	and ߪොଶ. 
Step 2: The ̂ߤ	and ߪොଶ are used to obtain midlevel estimates of the mean and standard 
deviation (ߤ∗	and ߪଶ∗) by drawing from the following random variables 
 

݊)~∗ଶߪ  − ොଶ/߯௡ିଵଶߪ(1  (A I-36) 

∗ߤ  ,ߤ̂)ܰ~ ݊∗ଶߪ ) (A I-37) 

 
where ݊ is total number of observations (censored and not). 
Step 3: Censored observations are substituted by the imputed nondetects that are random 
draws from the lower tail of ܰ(ߤ∗	,  .ଶ∗) with the restriction that they are smaller than DLߪ
Step 4: Combining the imputed values with uncensored ones, final sample estimates can be 
computed using standard techniques for complete data sets.  
 
Succop’s method 
 
The Succop’s method (Succop et al., 2004) is also a maximum likelihood-based imputation 
approach. Preliminary MLEs are served to construct the cumulative distribution function for 
each DL. The censored observations are then substituted with “the most probable value”, 
which corresponds to half of the percentile at which a laboratory DL falls. For example, if a 
DL is found at the 10th percentile of a lognormal distribution with ̂ߤ	and ߪොଶ, each censored 
observation is substituted with the concentration corresponding to the 5th percentile.  
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Lubin’s method 
 
The method proposed by Lubin et al. (2004) is as follows. Assuming lognormality of 
observations, a Tobit regression followed by bootstrapping is used to compute the sample’s 
statistical parameters. Then, for each censored observation, an imputed value is generated by 
randomly drawing from a lognormal distribution whose parameters are already estimated 
with maximum likelihood. This procedure is repeated M times (typically between 3 and 5) 
such that M completed data sets and thus M estimates are obtained. The estimates based on 
imputed samples are combined or averaged in order to avoid the bias due to a specific 
imputed value.  
 
Non-parametric Kaplan-Meier method 
 
The Kaplan-Meier (KM) method was originally developed and used to estimate the survival 
curve of right-censored data in medical science and reliability analysis. The survival curve 
defines the probability that the failure time of an event (e.g., death after use of a medicine) 
goes beyond a given time ݔ, that is ܵ(ݔ) = ܲ(ܺ >  To make the application feasible for .(ݔ
left-censored data, Helsel (1990) suggest “flipping” the data to construct right-censored data 
sets. A fixed constant (a value larger than the maximum uncensored observation) is chosen 
and each observation is subtracted from this constant. After calculations, the estimated 
probabilities can be transformed back in to the original scale. 
 
In the context of left-censored environmental data, the KM estimator estimates the 
cumulative distribution function, (ݔ)ܨ, which defines the probability that an observation is 
at, or below, a reported concentration. The cumulative distribution and survival function are 
complements of each other thus ܨ෠(ݔ) = 1 − መܵ(ݔ). Following Singh et al. (2006) notations, 
we describe how the KM method estimates the mean and standard deviation of data based on ܨ෠(ݔ).  
 
Let ݔଵ, ,ଶݔ … , ,ଵݕ ,௡ be ݊ concentration observationsݔ ,ଶݕ … ,  distinct uncensored ݌ ௣ beݕ
observations, ௝ܾ denote the number of observations at and below each detected concentration, 
and ௝݀ represent the number of uncensored concentrations equal to ݕ௝; ݆ = 1,2, … ,   .݌
The estimated cumulative function is defined by  
(ݔ)෠ܨ  = ݔ                   1 ≥  ௣ (A I-38)ݕ

෡ܨ	  (ݔ) = ∏ ௕ೕିௗೕ௕ೕ௣௝∋௬ೕவ௫ ଵݕ          ≤ ݔ ≤ ௣ିଵݕ (A I-39) 

(ݔ)෠ܨ  = ଵݔ                 (ଵݕ)ܨ ≤ ݔ ≤  ଵ (A I-40)ݕ

(ݔ)෠ܨ  = 0                      0 ≤ ݔ ≤  ଵ (A I-41)ݔ
 
The resultant ܨ෠(ݔ) is a step function that drops at each uncensored concentration and remains 
constant for censored values. The mean value is estimated as the area between ܨ෠(ݔ) and 1.0; 
mathematically it is 
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ߤ̂ = ෍ݕ௝[ܨ൫ݕ௝൯ − ௝ିଵ൯]௣ݕ൫ܨ
௝ୀଵ  (A I-42) 

 
An estimate of the standard error of the mean is given by 
 

(ߤ̂)݁ݏ  = ݊ − ݇݊ − ݇ − 1෍ ௝ܽଶ ௝݀ାଵ௝ܾାଵ( ௝ܾାଵ − ௝݀ାଵ)௣ିଵ
௝ୀଵ  (A I-43) 

 
where ݇ is the number of uncensored data and ௝ܽ is defined as  
 ௝ܽ = ∑ ௜ାଵݕ) − ௝௜ୀଵ(௜ݕ)ܨ(௜ݕ    for ݆ = 1,2, … , ݌ − 1 (A I-44) 

 
An estimate of the variance of censored data is computed from 
 

ොଶߪ  =෍(ݕ௝ − ௝൯ݕ൫ܨ]ଶ(ߤ̂ − ௝ିଵ൯]௣ݕ൫ܨ
௝ୀଵ  (A I-45) 

 
The principle advantage of KM is that it does not involve data transformation to obtain 
normality or require any distributional assumption about the shape of data. However, being a 
non-parametric method, it relies exclusively on data and cannot use a model to estimate 
probable values for the below DL observations. When all nondetects are censored at the same 
DL (single-censored data), Helsel (2010b) does not recommend KM to estimate the mean 
because that estimate would be equal to the mean estimated after substituting data with DL.  
 
A cautionary note on employing software platforms for KM computation 
 
Two most commonly employed Software platforms for computing KM are Minitab and 
NADA package in R. As mentioned in the previous section, KM estimates the mean by 
integrating the area delimited by the ܨ෠(ݔ) curve. Since this curve is a step function, the 
integration is computed by summing the area of horizontal rectangles having the length equal 
to the value of observation and width equal to the corresponding cumulative probability. The 
problem arises when the smallest observation of data is left-censored. In such situation, 
Gillespie et al. (2010) discusses that the left end of ܨ෠(ݔ) curve is “hanging”, making it 
impossible to calculate the area delimited by the plot (Figure-A I-1). Minitab and R programs 
address this problem differently. We illustrate their different approaches through an artificial 
data set, which was reported in supplementary materials of the Gillespie et al. (2010). This 
data set is <3, 4, 6, 8, <10, 12.  
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Figure-A I-1 The estimated cumulative distribution curve 
 
Minitab approach: As shown in Figure-A I-1, the F෠(x) cannot be estimated for observations 
smaller than 3. Since there is no information on how the plot would proceed for observations 
<3, Minitab software assumes that the probability of having observations less than 3 is zero. 
Mathematically, it can be represented as F෠(x) = 0 for 0 ≤ ݔ ≤  ,ଵ. Under this assumptionݔ
the censored observation is actually considered as an uncensored one leading to an 
overestimation of the mean. The shaded area of the plot in Figure-A I-2 illustrates the 
Minitab approach in estimating the mean.  
 
NADA package approach: NADA ignores the presence of the first censored value, i.e., xଵ. 
Therefore, the probability of having observations less than 3 equals that of the smallest 
uncensored observation. Mathematically, it is F෠(x) = F෠൫y୮൯. NADA computes the area under 
the curve up to the first uncensored observation (see shaded area in Figure-A I-3).  
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Figure-A I-2 The Minitab procedure for KM estimation of the mean; 
 the dotted line represents the position of the smallest observation 

 
 

 
 

Figure-A I-3 The NADA package procedure for KM estimation of the mean;  
the dotted line represents the position of the smallest observation 

 
As shown in Figure-A I-3, mean estimation through NADA package has an overestimation 
respect to that estimated by the Minitab Software. This overestimation is equal to the area of 
the ABCD rectangle in Figure-A I-3. Under the following conditions, such overestimation 
has more evident impact on the estimates: 
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a) When the low end of data contains a succession of censored values that increases the 
length of ABCD rectangle. In other words, the distance between the smallest censored and 
the smallest uncensored values becomes larger; 
b) When occurrence of having the smallest censored value(s) ahead of other observations is 
high and this increases the height of ABCD rectangle. That is, estimates of cumulative 
probabilities for these censored values are large. 
 
 
  



 

APPENDIX II 

ANDERSON-DARLING GOODNESS OF FIT TEST FOR LEFT-CENSORED 
ENVIRONMENTAL DATA 

 
 

Despite a rich literature about distributional checking procedures tailored for left-censored 
data, these are generally overlooked in environmental studies due to the complexity of 
implementation. The most commonly studied categories of procedures are described below. 
  
Graphical model selection procedures visually assess the appropriateness of a parametric 
model. As discussed earlier, probability plotting has been a common graphical procedure to 
assess the normality and lognormality of concentration data and to estimate their respective 
statistical parameters (e.g., Huybrechts et al., 2002 and Helsel, 2005). 
 
Likelihood-based information procedure compares the likelihood of fitting a given 
distribution penalizing on the number of parameters in the model. The commonly used ones 
in this category are the Akaike Information Criterion (AIC), and the Bayesian Information 
Criterion (BIC). For example, European Food Safety Authority (2010) used the AIC and BIC 
model selection criteria to assess the goodness of MLEs based on lognormal, Weibull, and 
gamma assumptions. They showed that concentration data of dinophysis toxins were 
generally well described by lognormal distribution. In another example of using the AIC, 
Singh, Bartolucci & Bae (2001) proposed that generalized log-logistic distribution was a 
better fit to environmental data when compared to its competitors such as lognormal, Weibull 
and gamma.  
 
Empirical cumulative distribution function-based (ECDF) procedure compares the 
ECDF with its parametric counterpart. The most relevant tests in this category include 
Hollander and Proschan (HP), Anderson-Darling (AD), Cramer-von Mises (CvM), and 
Kolmogorov-Smirnov (KS). These tests are explained in more detail in D’Agostino & 
Stephens (1986). Tate & Freeman (2000) applied HP test to censored droughts duration data 
and found out that either Weibull or exponential were adequately fit. In a study conducted by 
Zhao & Frey (2003), the distribution of urban air toxic emissions (benzene, formaldehyde, 
chromium, and arsenic) was evaluated by the KS test; however, censored observations were 
substituted with DL/2. The AD goodness of fit test was used for left-censored financial data 
to check whether power-law distribution could adequately represent the data (Coronel-Brizio 
& Hernández-Montoya, 2010). 
 
Goodness of fit based on the Anderson-Darling statistic 
 
A goodness of fit test is a statistical hypothesis test to assess whether a random sample of ܺ = ,ଵݔ} ,ଶݔ … ,  is a vector of ߠ where (ߠ|ݔ)ܨ	,௡} comes from a specified distributionݔ
distributional parameters. The null and alternative hypotheses are:  
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:଴ܪ  ܺ ∈  (ߠ|ݔ)ܨ
(A II-1) 

:௔ܪ  ܺ ∉  (ߠ|ݔ)ܨ
 
The AD test statistic for testing the ܪ଴ is based on measuring the distance between ECDF 
and cdf. Mathematically, the AD statistic takes the form  
 

 ݊න (ݔ)෠ܨ − 1](ߠ|ݔ)෠ܨଶ[(ߠ|ݔ)෠ܨ − ஶ[(ߠ|ݔ)෠ܨ
ିஶ  (A II-2) (ߠ|ݔ)෠ܨ݀

 
where ܨ෠(ݔ) is the Kaplan-Meier estimate of ECDF and ܨ෠(ߠ|ݔ) is the maximum likelihood 
estimate of cdf.  
 
Let ݔ(ଵ) < (ଶ)ݔ < ⋯ < (௡ି௥)ݔ < (௡ି௥ାଵ)ݔ < (௡ି௥ାଶ)ݔ < ⋯ <  ௡ be an ordered data set inݔ
which the n-r smallest observations are left-censored and the remaining r observations are 
uncensored. For convenience, assuming that ܼ(.) is the cdf of an assumed distribution 
evaluated at ݔ(.), we have ݖ(ଵ) < (ଶ)ݖ < ⋯ < (௡ି௥)ݖ < (௡ି௥ାଵ)ݖ < (௡ି௥ାଶ)ݖ < ⋯ <  .(௡)ݖ
D'Agostino and Stephens (1986) define the computing formula for the AD statistic for 
singly-censored data as 
ܦܣ  = − 1݊෍(2݅ − 1)൛lnൣ1 − ൧(௡ି௜ାଵ)ݖ − ln ൟ(௡ି௜ାଵ)ݖ − 2෍ln ௥ାଵ(௡ି௜ାଵ)ݖ

௜ୀଵ
௥ାଵ
௜ୀଵ − 1݊ ݎ)] − ݊)ଶ ln (௡ି௥ାଵ)ݖ − ଶݎ ln (௡ି௥ାଵ)ݖ + ݊ଶ(1 −  [(௡ି௥ାଵ)ݖ

 

(A II-3) 

 
where ݖ(௡ାଵି௜) = (௡ି௥ାଵ)ݖ ൯ for i=1,..,r+1 andߠห(௡ି௜ାଵ)ݔ൫ܨ =  .(ߠ|(௡ି௥ାଵ)ݔ)ܨ
 
If the AD statistic obtained exceeds a critical value at a significance level ߙ the null 
hypothesis is rejected. The main difficulty with this procedure is that the critical values are 
sensitive to a number of factors such as the model being fitted; therefore, a single Table of 
critical values does not exist. In this situation, a parametric bootstrap approach is useful to 
overcome this problem. Using a bootstrapping technique enables us to characterize the 
asymptotic null distribution of the test statistic AD so that we can estimate either a critical 
value or p-value of the test. 
 
Assessing the performance of AD statistic  
 
We study the behavior of goodness of fit based on the AD statistic applied for left-censored 
data sets. We employ simulations to investigate the distribution of p-values as a criterion for 
assessing the reliability of the AD test statistic in distinguishing the correct parametric 
family. Under the ܪ଴, p-values are expected to be uniformly distributed. Any strong 
deviation from this expected distribution indicates the inappropriateness of the statistical test. 
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Simulation scenarios 
 
In the goodness of fit hypothesis testing discussed here, (ߠ|ݔ)ܨ is referred to lognormal, 
Weibull and gamma distributions as these are candidate distributions to model right-skewed 
environmental data. The cdf for lognormal distribution with mean ߤ௟௡ and variance ߪ௟௡ଶ  in 
logarithmic scale is defined by 
,௟௡ߤ|ݔ)ܨ  ௟௡ଶߪ ) = Φ(݈ݔ݃݋ − ௟௡ଶߪ௟௡ඥߤ ) (A II-3) 

 
For Weibull distribution with shape (ߙ) and scale (ߚ) the cdf is given by  
 

,ߙ|ݔ)ܨ  (ߚ = 1 − ݁ି(௫ ఉ⁄ )ഀ (A II-4) 
 
The gamma distribution with shape	ߙ and rate ߚ has cdf  
 

,ߙ|ݔ)ܨ  (ߚ = (ߙ)ఈΓߚ1 ఈିଵ݁ି௫ݔ ఉൗ  (A II-5) 

 
where Γ(. ) is the gamma function. 
 
Random samples are generated from one of the above-mentioned distributions with 1=ߤ and ߪ takes any of values 0.5, 1.5, 3. Specifically, the generated samples are of size n=60 and 
200. Moreover, we allocate a fictional censoring point at 30th, 50th and 70th quantile of the 
data generating distributions so that the observations below the computed censoring point are 
attributed as censored. In this way, censored data sets with 30%, 50%, and 70% censoring 
percentage are obtained. Assuming that the distribution ܨ෠(ߠ|ݔ) is a good fit for data, 
equation A II-3 is used to calculate the AD statistic for the simulated data set. Consequently, 
we perform a parametric bootstrapping by drawing several bootstrap samples, ܺ௕∗, 
b=1,2,...,B, from the fitted distribution ܨ෠(ߠ|ݔ). Note that B is sufficiently large (1000 for 
example) and each bootstrap sample contains the same number of observations and the same 
censoring percentage as original data. For each bootstrap sample the AD statistic, ܦܣ௕∗, 
b=1,2,…1000, is computed in exactly the same way the AD was computed from the original 
data. The p-value is, approximately, the fraction of the number of times the ܦܣ௕∗ is larger 
than the AD. For each combination of data generating distribution, ߪ ,ߤ, n, and censoring 
percentage, N=1000 replications are simulated. In each replication, we compute the AD from 
the simulated data, ܦܣ∗ for the bootstrap samples, and consequently the corresponding p-
value. If the simulated data come from the same model stated in the ܪ଴, the distribution of 
obtained p-values should be uniform over the interval [0,1]. In contrast, if the simulated data 
arise from any alternative distributions, p-values distributions tend to cluster toward zero. 
Detailed simulation procedure is as follow. 
 
Step 1: Generate a random sample of n from one of these distributions: lognormal ܺ~ߤ)݊ܮ௟௡, ,ߙ)ܾܹ݅݁~ܺ ௟௡), Weibullߪ ,ߙ)݉ܩ~ܺ and gamma ,(ߚ  .with given μ and σ (ߚ
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Step 2:  Randomly censor data sets by imposing a single censoring point (i.e., DL) at 30th, 
50th, and 70th quantiles of data generating distributions. 
Step 3:  Estimate distributional parameter, ߠ, of the simulated data with a consistent 
estimator, ߠ෠. In the case of lognormal distribution, for example, ߠ෠ represents the estimates of ̂ߤ௟௡ and ߪො௟௡. 
Step 4: Obtain ݖ =  .for i=1,2,…,r+1 ,(෠ߠ|(௡ି௜ାଵ)ݔ)ܨ
Step 5: Evaluate the AD test statistic for the simulated data using the equation A II-3. 
Step 6: Carry out a parametric bootstrap to estimate the p-value of the test. The bootstrap 
estimate of the p-value is computed as follows. 
 
• Generate B=1000 bootstrap samples, ܺ௕∗,	b=1,2,…,B, of size n from the distribution in 

null hypothesis. Each bootstrap sample has the same sample size and censoring 
percentage as in step 1 and step 2; 

• Estimate the distributional parameters of each bootstrap sample, ߠ෠௕∗, b=1,2,…,B; 
• Compute the AD for each bootstrap sample, ܦܣ௕∗, b=1,2,…,B; 

• The estimated p-value is computed as p= 
#஺஽∗್ஹ஺஽஻  . 

 
Step 7: Repeat step 1-6 for N=1000 times. 
Step 8: Calculate the average of p-values and plot the histogram of p-values.  
 
Preliminary results 
 
As mentioned earlier, the p-values are uniformly distributed if the distribution of the 
simulated data conforms to that examined in null distribution. In our case, this can be seen in 
Figure-A II-1.a, where the null hypothesis tests whether the data follow a lognormal 
distribution and the simulated data are indeed generated from a lognormal distribution. In 
contrast, when data are generated from an alternative model (Weibull or gamma), the p-
values in Figure-A II-1.b and Figure-A II-1.c tend to cluster closer to zero, suggesting that 
the test more often rejects the null hypothesis.  
 
The histograms of the p-values give information about the type I error and type II error of the 
goodness of fit test based on the AD statistic. For a nominal significance level α=0.05, the 
probability of rejecting the null hypothesis when it is in fact true is define as the type I error; 
while the probability of falsely accepting the null hypothesis is represented by the type II 
error. From the latter, the power of a test, that is the probability of correctly rejecting the null 
hypothesis, can be estimated. For example, when data are generated from the lognormal 
distribution with ߤ = ߪ ,1 = 0.5, and 30% censoring, the simulations report 0.06 of the p-
values are actually less than the significance level (results highlighted in red in Figure-A II-
1.a). The closeness of this proportion to the nominal value confirms that the used goodness of 
fit test performs well. When data are generated from alternative distributions, Figure-A II-1.b 
and Figure-A II-1.c show that the test correctly rejects the null hypothesis more often (red 
bars highlighted in red). 
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       a)                                             b)                                              c) 

 
 

Figure-A II-1 Distribution of p-values when a) data come from the assumed distribution 
(lognormal), b) data do not come from the assumed distribution but from a Weibull c) data 

do not come from the assumed distribution but from a gamma 
 
Table-A II-1 summarizes the results in terms of proportion of rejection under the null and 
alternative hypotheses (at 0.05 significance level), for different censoring percentage and 
sample sizes. The former reflects the type I error (the fourth column), while the latter 
represents the power of the test (the fifth and sixth columns). When the null hypothesis tests 
whether the data arise from a lognormal distribution, the most salient aspects of the 
simulation outcomes are as follows: 
• When sample size is 60, the estimated type I error is slightly larger than the nominal level 

(α=0.05); 
• When sample size increases to 200, the power of the AD goodness of fit increases. On the 

other hand, the power of test decreases with increasing percentage of censoring. Indeed, 
when more that 50% of the data is censored, then it is almost impossible to distinguish 
between lognormal, Weibull, and gamma distributions; 

• For a fixed sample size, as σ increases (equivalently, as the degree of skewness 
increases), the power of the goodness of fit test in discriminating between lognormal and 
gamma distributions increases. However, this behavior is not observed when the interest 
lies in distinguishing between lognormal and Weibull distributions. 

 
Based on the preliminary results, we found that the goodness of fit test based on AD statistic 
exhibit a good performance only for large data sets. Another limitation to this methodology is 
that it is restricted to singly censored data sets in which censored values are ranked before the 
uncensored observations. 
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Table-A II-1 Simulation results for the null hypothesis of the lognormal distribution when 
data are generated from a lognormal, a Weibull, or a gamma distribution 

 

n Censoring % ࣌ X~lognormal X~Weibull X~Gamma 
60 30% 0.5 0.06 0.28 0.12 
60 30% 1.5 0.06 0.28 0.54 
60 30% 3 0.07 0.28 0.93 
60 50% 0.5 0.08 0.20 0.11 
60 50% 1.5 0.08 0.16 0.32 
60 50% 3 0.09 0.17 0.68 
60 70% 0.5 0.07 0.10 0.09 
60 70% 1.5 0.07 0.10 0.16 
60 70% 3 0.09 0.10 0.35 
200 30% 0.5 0.06 0.73 0.25 
200 30% 1.5 0.06 0.73 0.99 
200 30% 3 0.06 0.73 1.00 
200 50% 0.5 0.06 0.40 0.16 
200 50% 1.5 0.07 0.40 0.71 
200 50% 3 0.06 0.42 1.00 
200 70% 0.5 0.09 0.16 0.11 
200 70% 1.5 0.07 0.18 0.37 
200 70% 3 0.07 0.17 0.80 

 
 



 

APPENDIX III 

SUPPLEMENTARY MATERIAL OF ARTICLE 1 
 

 
The skewness of random variable ܺ is defined by 
 

ߛ  = ॱ ൤(ܺ − ߪߤ )ଷ൨ (A III-1) 

 
where ߤ is the mean and ߪ is the standard deviation. 
 
By expanding the previous formula, we obtain 
 

 
ॱ ൤(ܺ − ߪߤ )ଷ൨ = ॱ[ܺଷ] − 3ॱ[ܺ]ॱ[ܺଶ] + 2(ॱ[ܺ])ଷߪଷ 																							= (ଷ)ߤ − (ଶ)ߤ(ଵ)ߤ3 + ଷߪଷ((ଵ)ߤ)2  

(A III-2) 

 
where ߤ(ଵ),	ߤ(ଶ), and ߤ(ଷ) are the first, second, and third moments of ܺ. Using the moment 
generating function (MGF), we can find the above-mentioned moments. In fact, for ݎ =1,2,3, the ݎ௧௛ moment can be found by evaluating the ݎ௧௛ derivative of the MGF at zero.  
 
Suppose that ܺ follows the lognormal distribution with parameters ߤ௬ and ݏ௬ (mean and 
standard deviation in log-scale), the moments are given by  
(ଵ)ߤ  = exp(ߤ௬ +  ଶ௬) (A III-3)ݏ0.5

(ଶ)ߤ  = exp(2(ߤ௬ +  ଶ௬)) (A III-4)ݏ

(ଷ)ߤ  = exp(3ߤ௬ + 92  ଶ௬) (A III-5)ݏ

 
Suppose that ܺ follows the Weibull distribution with scale parameter ߣ and shape parameter ݇, the moments are given by  
 

(ଵ)ߤ  = Γ(1ߣ + 1݇) (A III-6) 

(ଶ)ߤ  = ଶΓ(1ߣ + 2݇) (A III-7) 

(ଷ)ߤ  = ଷΓ(1ߣ + 3݇) (A III-8) 

 
Suppose that ܺ follows the gamma distribution with shape parameter ߙ and rate parameter ߣ, 
the moments are given by  
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(ଵ)ߤ  =  (A III-9) ߣߙ

(ଶ)ߤ  = ଶߙ + ଶߣߙ  (A III-10)

(ଷ)ߤ  = ଷߙ + ଶߙ3 + ଷߣߙ2  (A III-11)

 
 



 

Table-A III-1 The MSE of the mean and standard deviation produced by rROS, GROS and MLE under different distributional 
assumptions and model misspecification in scenarios with 30% censoring 

 

  MSE of the mean estimates MSE of the standard deviation estimates 
True 
dist. 

Parameters 
ࣆ) = ૚) MLE 

(lognormal) 
MLE 

(Weibull) 
MLE 

(gamma) 
rROS 

(lognormal) 
GROS 

(gamma) 
MLE 

(lognormal) 
MLE 

(Weibull) 
MLE 

(gamma) 
rROS 

(lognormal) 
GROS 

(gamma) 

W
ei

bu
ll 

ߪ = 0.5 0.005 NA 0.004 0.005 0.005 0.006 NA 0.003 0.004 0.004 ߪ = 1.2 0.062 NA 0.024 0.024 0.025 1.874 NA 0.048 0.065 0.063 ߪ = 1.9 0.625 NA 0.062 0.062 0.062 168.92 NA 0.298 0.490 0.487 ߪ = 2.6 3.700 NA 0.108 0.109 0.108 * NA 1.022 1.556 1.554 ߪ = 3.3 23.983 NA 0.167 0.167 0.166 * NA 2.432 3.212 3.210 ߪ = 4 62.824 NA 0.248 0.249 0.248 * NA 4.494 6.513 6.511 

Percentage of error * - 2% 4% 5% * - 3% 49% 44% 

ga
m

m
a 

ߪ = 0.5 0.005 0.005 NA 0.005 NA 0.006 0.004 NA 0.004 NA ߪ = 1.2 0.089 0.025 NA 0.025 NA 3.545 0.073 NA 0.064 NA ߪ = 1.9 26.497 0.134 NA 0.065 NA * 3.534 NA 0.298 NA ߪ = 2.6 * 4.917 NA 0.116 NA * * NA 0.918 NA ߪ = 3.3 * * NA 0.185 NA * * NA 2.055 NA ߪ = 4 * * NA 0.264 NA * * NA 4.332 NA 

Percentage of error * * - 1% - * * - 15% - 

lo
gn

or
m

al
 

ߪ = 0.5 NA 0.005 0.004 NA 0.006 NA 0.006 0.005 NA 0.01 ߪ = 1.2 NA 0.021 0.022 NA 0.025 NA 0.106 0.110 NA 0.162 ߪ = 1.9 NA 0.046 0.074 NA 0.075 NA 0.574 0.689 NA 1.829 ߪ = 2.6 NA 0.060 0.101 NA 0.102 NA 1.584 1.826 NA 2.924 ߪ = 3.3 NA 0.088 0.169 NA 0.169 NA 3.311 3.800 NA 5.819 ߪ = 4 NA 0.101 0.190 NA 0.191 NA 5.698 6.465 NA 7.436 

Percentage of error - 3% 53% - 61% - 1% 11% - 91% 

 

 

(Continued)
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  MSE of the mean estimates MSE of the standard deviation estimates 
True 
dist. 

Parameters 
ࣆ) = ૚) MLE 

(lognormal) 
MLE 

(Weibull) 
MLE 

(gamma) 
rROS 

(lognormal) 
GROS 

(gamma) 
MLE 

(lognormal) 
MLE 

(Weibull) 
MLE 

(gamma) 
rROS 

(lognormal) 
GROS 

(gamma) 

M
ix

tu
re

 
W

ei
bu

ll 

ߪ = ߪ 0.350 0.380 0.341 0.326 0.326 0.226 0.207 0.225 0.238 0.217 1.00 = ߪ 0.187 0.218 0.235 0.228 0.151 0.336 0.282 0.301 0.302 0.249 1.38 = ߪ 0.557 0.572 0.575 0.505 3.694 0.425 0.396 0.403 0.419 0.276 1.88 = ߪ 1.550 1.560 1.394 1.174 91.813 0.512 0.500 0.501 0.541 0.332 2.43 = ߪ 4.619 4.626 2.952 2.419 * 0.610 0.606 0.604 0.645 0.602 3.00 = 3.58 1.088 0.778 0.729 0.732 0.732 * 4.239 5.221 7.769 7.763 

Percentage of error 10% 29% 22% 19% 27% * 9% 23% 47% 41% 

M
ix

tu
re

  
ga

m
m

a 

ߪ = ߪ 0.008 0.007 0.014 0.009 0.078 0.026 0.019 0.019 0.019 0.021 1.00 = ߪ 0.032 0.03 0.108 0.099 7.284 0.037 0.034 0.032 0.031 0.198 1.38 = ߪ 0.193 0.176 0.415 3.286 * 0.061 0.062 0.060 0.113 20.112 1.88 = ߪ 0.665 0.621 1.061 276.565 * 0.093 0.101 0.100 3.552 * 2.43 = ߪ 1.546 1.470 2.075 * * 0.136 0.151 0.150 116.169 * 3.00 = 3.58 * * 0.221 0.222 0.2 * * 3.52 3.502 3.627 

Percentage of error * * 6% 8% 12% * * 116% 3% 12% 

M
ix

tu
re

  
lo

gn
or

m
al

 

ߪ = ߪ 0.010 0.007 0.017 0.011 0.087 0.03 0.021 0.02 0.021 0.022 1.00 = ߪ 0.105 0.101 0.055 0.058 1.189 0.035 0.033 0.032 0.031 0.067 1.38 = ߪ 0.475 0.476 0.130 0.155 5.170 0.058 0.059 0.058 0.055 0.169 1.88 = ߪ 1.562 1.566 0.498 0.478 20.387 0.099 0.104 0.102 0.088 0.404 2.43 = ߪ 4.301 4.306 1.309 0.963 51.450 0.129 0.134 0.132 0.086 0.632 3.00 = 3.58 1.016 0.135 0.309 0.311 0.303 115.994 2.016 3.304 12.468 12.464 

Percentage of error 332% 3% 36% 38% 45% * 12% 40% 241% 248% 

NA : Not Applicable 

 

144 



 

Table-A III-2 The MSE of the mean and standard deviation produced by rROS, GROS and MLE under different distributional 
assumptions and model misspecification in scenarios with 70% censoring 

 

  MSE of the mean estimates MSE of the standard deviation estimates 
True 
dist. 

Parameters 
ࣆ) = ૚) MLE 

(lognormal) 
MLE 

(Weibull) 
MLE 

(gamma) 
rROS 

(lognormal) 
GROS 

(gamma) 
MLE 

(lognormal) 
MLE 

(Weibull) 
MLE 

(gamma) 
rROS 

(lognormal) 
GROS 

(gamma) 

W
ei

bu
ll 

ߪ = 0.5 0.011 NA 0.01 0.014 0.014 0.007 NA 0.006 0.010 0.008 ߪ = 1.2 0.041 NA 0.028 0.034 0.038 0.597 NA 0.065 0.077 0.074 ߪ = 1.9 0.169 NA 0.060 0.068 0.060 18.54 NA 0.333 0.490 0.472 ߪ = 2.6 0.746 NA 0.109 0.116 0.105 * NA 1.047 1.574 1.546 ߪ = 3.3 3.427 NA 0.175 0.181 0.171 * NA 2.602 3.571 3.532 ߪ = 4 13.431 NA 0.277 0.284 0.272 * NA 4.930 7.530 7.493 

Percentage of error * - 5% 22% 20% * - 10% 66% 50% 

ga
m

m
a 

ߪ = 0.5 0.008 0.009 NA 0.010 NA 0.007 0.005 NA 0.008 NA ߪ = 1.2 0.049 0.030 NA 0.041 NA 0.610 0.076 NA 0.073 NA ߪ = 1.9 0.970 0.079 NA 0.074 NA * 1.144 NA 0.319 NA ߪ = 2.6 * 0.478 NA 0.123 NA * 57.946 NA 1.026 NA ߪ = 3.3 * 13.875 NA 0.194 NA * * NA 2.122 NA ߪ = 4 * * NA 0.257 NA * * NA 3.964 NA 

Percentage of error * * - 16% - * * - 14% - 

lo
gn

or
m

al
 

ߪ = 0.5 NA 0.015 0.011 NA 0.028 NA 0.010 0.009 NA 0.020 ߪ = 1.2 NA 0.029 0.030 NA 0.054 NA 0.114 0.107 NA 0.170 ߪ = 1.9 NA 0.053 0.059 NA 0.074 NA 0.607 0.564 NA 0.879 ߪ = 2.6 NA 0.081 0.113 NA 0.121 NA 1.997 1.789 NA 3.337 ߪ = 3.3 NA 0.098 0.150 NA 0.153 NA 3.157 3.394 NA 5.367 ߪ = 4 NA 0.147 0.228 NA 0.230 NA 6.528 6.015 NA 8.399 

Percentage of error - 17% 36% - 95% - 8% 1% - 74% 

 

 

 

(Continued)
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  MSE of the mean estimates MSE of the standard deviation estimates 
True 
dist. 

Parameters 
ࣆ) = ૚) MLE 

(lognormal) 
MLE 

(Weibull) 
MLE 

(gamma) 
rROS 

(lognormal) 
GROS 

(gamma) 
MLE 

(lognormal) 
MLE 

(Weibull) 
MLE 

(gamma) 
rROS 

(lognormal) 
GROS 

(gamma) 

M
ix

tu
re

 
W

ei
bu

ll 

ߪ = ߪ 0.329 0.388 0.357 0.309 0.370 0.252 0.203 0.236 0.277 0.216 1.00 = ߪ 0.156 0.216 0.225 0.210 0.220 0.392 0.266 0.332 0.341 0.275 1.38 = ߪ 0.493 0.541 0.546 0.532 2.866 0.478 0.391 0.458 0.460 0.378 1.88 = ߪ 1.712 1.754 1.380 1.560 140.236 0.530 0.493 0.543 0.557 0.458 2.43 = ߪ 3.163 3.215 2.689 3.137 * 0.600 0.585 0.628 0.655 0.592 3.00 = 3.58 1.346 0.738 0.723 0.694 0.689 * 7.090 4.937 7.013 6.965 

Percentage of error 26% 31% 24% 10% 29% * 20% 12% 27% 15% 

M
ix

tu
re

  
ga

m
m

a 

ߪ = ߪ 0.012 0.024 0.012 0.008 0.032 0.074 0.075 0.05 0.050 0.06 1.00 = ߪ 0.102 0.127 0.042 0.059 0.306 0.134 0.168 0.097 0.104 0.129 1.38 = ߪ 0.291 0.295 0.156 0.268 184.978 0.090 0.169 0.100 0.103 0.420 1.88 = ߪ 0.740 0.662 0.682 51.947 * 0.086 0.111 0.102 0.716 * 2.43 = ߪ 1.763 1.653 1.427 * * 0.126 0.158 0.152 14.776 * 3.00 = 3.58 * 500.288 0.206 0.214 0.167 * * 2.223 3.262 3.417 

Percentage of error * * 12% 49% 14% * * 11% 93% 64% 

M
ix

tu
re

  
lo

gn
or

m
al

 

ߪ = ߪ 0.013 0.020 0.013 0.008 0.037 0.072 0.074 0.050 0.050 0.059 1.00 = ߪ 0.158 0.169 0.061 0.082 0.157 0.096 0.119 0.069 0.070 0.093 1.38 = ߪ 0.811 0.837 0.288 0.339 0.699 0.078 0.128 0.078 0.075 0.116 1.88 = ߪ 3.221 3.299 1.021 0.968 1.510 0.112 0.178 0.122 0.092 0.139 2.43 = ߪ 4.254 4.378 1.945 1.960 5.170 0.118 0.206 0.135 0.104 0.175 3.00 = 3.58 0.205 0.110 0.158 0.214 0.141 8.432 3.347 3.472 6.719 6.492 

Percentage of error 52% 0% 18% 79% 25% 172% 9% 12% 164% 140% 

NA : Not Applicable 
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 APPENDIX IV 

SUPPLEMENTARY MATERIAL OF ARTICLE 2 
 

 
Algorithm-A IV-1 R code for estimating the mean and standard deviation based on data 

generated from lognormal distribution with 50% censoring 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

library(NADA) 
library(fitdistrplus) 
library(xts) 
library(mixdist) 
library(car) 
n <-60          #sample size 
N <- 1000    #number of iterations 
b <- rep(0,N) 
mean.sub <- rep(0,N) 
sd.sub <- rep(0,N) 
mean.diff.sub <- rep(0,N) 
sd.diff.sub <-rep(0,N) 
mean.mle.L <- rep(0,N) 
sd.mle.L <-rep(0,N) 
mean.diff.mle.L <- rep(0,N) 
sd.diff.mle.L <- rep(0,N) 
mean.KM <-rep(0,N) 
sd.KM <-rep(0,N) 
mean.diff.KM <-rep(0,N) 
sd.diff.KM<-rep(0,N) 
mean.ROS <-rep(0,N) 
sd.ROS <-rep(0,N) 
mean.diff.ROS<-rep(0,N) 
sd.diff.ROS<-rep(0,N) 
mu <- 1 
sigma <- c(0.5,1.2,1.9,2.6,3.3,4) 
p <- c(0.2,0.4,0.6,0.8)    
lm <- length(mu) 
ls <- length(sigma) 
results <- matrix(NA,lm*ls,11) 
colnames(results)<- 
c("mu","sigma","PC","sub.mean","mle.LOG.mean","KM.mean","ROS.mean","sub.sd", 
"mle.LOG.sd","KM.sd","ROS.sd") 
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B.results <- matrix(NA,lm*ls,8) 
     colnames(B.results)<- 
c("B.sub.mean","B.mle.LOG.mean","B.KM.mean","B.ROS.mean", 
                      "B.sub.sd","B.mle.LOG.sd","B.KM.sd","bias.ROS.sd")  
                       
                      for(i in 1:lm){   
                      for (j in 1:ls){ 
                       
                      s<-(log(1+(sigma[j]^2/mu[i]^2)))^0.5  
                      m <- log(mu[i])-((s^2)*0.5)  
                      CP <- qlnorm(p,m,s)  #### computed censoring points #### 
                       
                      results2 <- matrix(NA,N,8) 
 
                      colnames(results2)<- c("subs mean","LOG MLE mean","KM mean","ROS 
mean","subs sd","log MLE sd", "KM sd","ROS sd") 
 
for (t in 1:N)                { 
  k <- j+(ls*(i-1))  
  y <- rlnorm(n,m,s) 
  c<-sample(CP,n,replace=TRUE) 
  my.data <- data.frame(y,c) 
  my.data$obs<-pmax(y,c) 
  my.data$cens <-ifelse(y<c,"TRUE","FALSE") 
  a<-my.data$cens 
  b[t]<-length(a[a=="TRUE"]) 
  mean(b) 
  newdata<-my.data[,3:4] 
  pc <- signif(mean(b)/n,digits=2)    

  #### Substitution-based  method  ####   

  data.sub <- ifelse(my.data$cens=="TRUE",my.data$c*0.5,my.data$obs) 
  mean.sub[t] <- mean(data.sub) 
  sd.sub [t] <- sd(data.sub) 
  mean.diff.sub [t]<- mean.sub[t] -mu[i] 
  sd.diff.sub[t] <- sd.sub[t]-sigma[j]     
 

  #### MLE Lognormal #### 
  MLE.L<-with(newdata,cenmle(newdata$obs,as.logical(newdata$cens))) 
  mean.mle.L[t] <- mean(MLE.L)[[1]] 
  sd.mle.L[t]<-sd(MLE.L) 
  mean.diff.mle.L [t]  <- mean.mle.L[t] - mu[i]
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  sd.diff.mle.L [t]  <- sd.mle.L[t] -sigma[j]  
  #### Kaplan-Meier #### 
  KM<-with(newdata,cenfit(newdata$obs,as.logical(newdata$cens))) 
  mean.KM[t]<-mean(KM)[[1]] 
  sd.KM[t]<-sd(KM) 
  mean.diff.KM [t]<-mean.KM[t]-mu[i] 
  sd.diff.KM[t]<-sd.KM[t]-sigma[j] 
    #### rROS #### 
  ROS<-with(newdata,cenros(newdata$obs,as.logical(newdata$cens))) 
  mean.ROS [t] <- mean(ROS) 
  sd.ROS [t]<- sd(ROS) 
  mean.diff.ROS [t]<-mean.ROS[t]-mu[i] 
  sd.diff.ROS[t]<-sd.ROS[t]-sigma[j] 
 results2[t,] <- 
c(mean.sub[t],mean.mle.L[t],mean.KM[t],mean.ROS[t],sd.sub[t],sd.mle.L[t],sd.KM[t],sd
.ROS[t])   
} 
 

bias.sub.mean <- mean(mean.diff.sub)  
bias.sub.sd <- mean(sd.diff.sub) 
var.sub.mean <- var(mean.diff.sub) 
var.sub.sd <- var(sd.diff.sub)   
MSE.sub.mean <- (bias.sub.mean^2)+var.sub.mean 
MSE.sub.sd <- (bias.sub.sd ^2) +var.sub.sd  
 

bias.LMLE.mean <- mean(mean.diff.mle.L)  
bias.LMLE.sd <- mean(sd.diff.mle.L) 
var.LMLE.mean <- var(mean.diff.mle.L) 
var.LMLE.sd <- var(sd.diff.mle.L)   
MSE.LMLE.mean <- (bias.LMLE.mean^2)+var.LMLE.mean 
MSE.LMLE.sd <- (bias.LMLE.sd ^2) +var.LMLE.sd   
 
bias.KM.mean<-mean(mean.diff.KM) 
bias.KM.sd <-mean(sd.diff.KM) 
var.KM.mean <- var(mean.diff.KM) 
var.KM.sd<-var(sd.diff.KM) 
MSE.KM.mean <- (bias.KM.mean^2)+var.KM.mean 
MSE.KM.sd <- (bias.KM.sd ^2) +var.KM.sd   
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The figures related to the supplementary material of article 2 (chapter 4) are illustrated 

below. 

 

       a)                                          b)                                             c) 

 

 

 
Figure-A IV-1 The MSEs of different methods in estimating the mean of lognormal 

distribution with μ=1,2,…,10 and a) σ=1.2, b) σ =2.6, c) σ=4 
 

 

 

 

bias.ROS.mean<-mean(mean.diff.ROS) 
bias.ROS.sd <-mean(sd.diff.ROS) 
var.ROS.mean <- var(mean.diff.ROS) 
var.ROS.sd<-var(sd.diff.ROS) 
MSE.ROS.mean <- (bias.ROS.mean^2)+var.ROS.mean 
MSE.ROS.sd <- (bias.ROS.sd ^2) +var.ROS.sd   
 
B.results [k,] <-
c(bias.sub.mean,bias.LMLE.mean,bias.KM.mean,bias.ROS.mean,bias.sub.sd,bias.LMLE
.sd,bias.KM.sd,bias.ROS.sd) 
  
results [k,] <-   
c(mu[i],sigma[j],pc,MSE.sub.mean,MSE.LMLE.mean,MSE.KM.mean,MSE.ROS.mean,
MSE.sub.sd,MSE.LMLE.sd,MSE.KM.sd,MSE.ROS.sd)  
 
                      } 
                      } 
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       a)                                              b)                                           c) 

 

 

 
Figure-A IV-2 The MSEs of different methods in estimating the standard deviation of 

lognormal distribution with μ=1,2,…,10 and a) σ=1.2, b) σ =2.6, c) σ=4 
 

             a)                                                                  b) 

 

 
Figure-A IV-3 The MSEs of the rROS method in estimating a) the mean and b) standard 

deviation for different combinations of μ and σ of lognormal distribution 
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             a)                                                                      b) 

 
 

Figure-A IV-4 The MSEs of the KM method in estimating a) the mean and b) standard 
deviation for different combinations of μ and σ of lognormal distribution 

 
 

           a)                                           b)                                             c) 

 
           d)                                          e)                                             f) 

 
 

 
 

Figure-A IV-5 The MSEs of different methods in estimating the mean of Weibull distribution 
with μ=1,2,…,10 and a) σ=0.5, b) σ=1.2, c) σ=1.9, d) σ=2.6, e) σ=3.3, (f) σ= 4 
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           a)                                           b)                                             c) 

 
          d)                                          e)                                              f) 

 
 

 
 

Figure-A IV-6 The MSEs of different methods in estimating the standard deviation of 
Weibull distribution with μ=1,2,…,10 and a) σ=0.5, b) σ=1.2, c) σ=1.9, d) σ=2.6, e) σ=3.3, 

and f) σ= 4 
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           a)                                           b)                                             c) 

 
          d)                                          e)                                               f) 

 
 

 

Figure-A IV-7 The MSEs of different methods in estimating the mean of gamma distribution 
with μ=1,2,…,10 and a) σ=0.5, b) σ=1.2, c) σ=1.9, d) σ=2.6, e) σ=3.3, and f) σ= 4 
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           a)                                           b)                                             c) 

 
          c)                                            d)                                             e) 

 
 

 
 

Figure-A IV-8 The MSEs of different methods in estimating the standard deviation of 
gamma distribution with μ=1,2,…,10 and a) σ=0.5, b) σ=1.2, c) σ=1.9, d) σ=2.6, e) σ=3.3, 

and f) σ= 4 
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SUPPLEMENTARY MATERIAL OF ARTICLE 3 
 
 

Figures related to the length of CI around the mean and standard deviation estimates are 
illustrated here. 
 

Pyrene                                                 1-Methylnaphthalene 

 
2-Methylnaphthalene                                 Benzo(a,h)anthracene 
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Hg                                                                                          As 

   

Sn 

 

 
 

Figure-A V-3 Bootstrap confidence interval lengths around the mean estimate 
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Figure-A V-4 Bootstrap confidence interval lengths around the standard deviation estimate 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



165 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures related to the approximated bias of the mean and standard deviation estimates are 
illustrated below. 
 

Pyrene                                                                                 1-Methyl naphthalene 
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Figure-A V-5 Bootstrap approximated bias of the mean estimate 
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Figure-A V-6 Bootstrap approximated bias of the standard deviation estimate  
 
  





 

APPENDIX VI 

SUPPLEMENTARY MATERIAL OF ARTICLE 4 
 
 

Table-A VI-1 The estimates of GM and 95% confidence intervals after fitting mixed-effects 
models to data after censored values are substituteda 

 
Inorganic contaminants 

 Copper 

censoring=18% 

Lead 

censoring=30% 

Cadmium 

censoring=67% 

Within borehole variance σଶ 0.93 1.71 0.30 

Between borehole variance	σୠଶ 0.19 0.72 0.62 

IBC 0.17 0.29 0.68 

GM (waste) 5.03 [4.73,5.33] 5.24 [4.80,5.69] 0.59 [0.31,0.88] 

GM (crushed stones) 2.99 [2.64,3.35] 2.53 [2.02,3.05] -0.57 [-0.83,-0.31] 

GM (backfill) 3.95 [3.82,4.09] 3.48 [3.28,3.68] -0.36 [-0.49,-0.23] 

GM (natural soil) 3.32 [3.08,3.56] 2.35 [1.99,2.70] -0.62 [-0.81,-0.43] 

Organic contaminants 

 Benzo(a)pyrene  Naphthalene  

censoring=51% censoring=57% 

Within borehole variance σଶ 1.55 1.45 

Between borehole variance	σୠଶ 0.64 0.50 

IBC 0.29 0.26 

GM (waste) -1.29 [-1.65,-0.92] -1.47 [-1.82,-1.12] 

GM (crushed stones) -2.77 [-3.32,-2.23] -2.54 [-3.06,-2.02] 

GM (backfill) -1.50 [-1.69,-1.31] -1.88 [-2.06,-1.70] 

GM (natural soil) -2.35 [-2.60,-2.09] -2.44 [-2.68,-2.20] 
a The material is considered as fixed effects in the model 
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