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NANOCOMPOSITES DE POLYMÈRES À MORPHOLOGIES CONTRÔLÉES 
POUR DES APPLICATIONS D’ISOLATION HAUTE TENSION 

Emna HELAL 

RÉSUMÉ 

Cette thèse rapporte différentes approches pour préparer des matériaux d’isolation nanostructurés qui 
bénéficient d’une dispersion contrôlée de nanoparticules dans l’objectif d’optimiser leurs propriétés. 
Ces approches se basent sur l’utilisation de matrices polymères multi-phases, telles que les 
copolymères à blocs et les mélanges de polymères, comme gabarit pour guider la dispersion des 
nanoparticules. Deux types de nanoparticules, organiquement modifiées, ont été utilisés: l’oxyde de 
zinc (ZnO) sous forme de sphères et l’argile Montmorillonite sous forme de plaquettes. En plus, un 
copolymère à blocs a été sélectionné comme gabarit, à savoir: le polystyrène-b-poly(éthylène-co-
butylène)-b-polystyrène (SEBS) constitué de deux blocs de polystyrène (PS) sous forme de domaines 
nanométriques et d’un bloc élastomère de poly(éthylène-co-butylène) (PEB). 

Des nanocomposites SEBS/argile et SEBS/ZnO ayant des morphologies variées ont été fabriqués. En 
particulier, l’orientation des nanodomaines du bloc PS et des plaquettes d’argile dans ces 
nanocomposites a été contrôlée en ayant recours à différentes méthodes de fabrication. Les 
morphologies obtenues varient de l’isotropie totale à l’orientation totale suivant une seule direction, 
en passant par des morphologies intermédiaires partiellement orientées. La distribution spatiale des 
deux types de nanoparticules ainsi que leurs affinités respectives aux blocs PS et PEB ont été 
également contrôlées par la présence ou non de groupements fonctionnels d’anhydride maléique 
(MA) greffés sur le bloc élastomère PEB. Les propriétés diélectriques, rhéologiques, thermiques et 
mécaniques de ces nanocomposites ont été caractérisées en corrélation avec leurs morphologies. 

Dans les nanocomposites SEBS/argile, l’incorporation des argiles a réduit la mobilité des chaînes du 
bloc PEB situées à l’interface polymère/nanoparticule. Une transition vitreuse, plus élevée que celle 
du bloc PEB, a été attribuée à ces chaînes de la zone interfaciale. De plus, l’orientation et la 
localisation des argiles ont affecté la mobilité de ces chaînes et en conséquence les propriétés 
d’ingénierie. Plus précisément, les nanocomposites SEBS/argile ayant une morphologie partiellement 
alignés ont assuré la combinaison optimale de résistance diélectrique et mécanique. 

Dans les nanocomposites SEBS/ZnO et en présence du MA, la dispersion des nanoparticules et leur 
affinité au bloc PEB ont été nettement améliorées. Par conséquence, un réseau entre les nanosphères 
de ZnO et les chaînes de polymère a été formé. Ce réseau a été associé à une amélioration de la 
conductivité thermique et une remarquable augmentation de la résistance à l’érosion de surface par 
décharges couronne; le volume érodé étant réduit de 90% à seulement 5 wt% de ZnO. Dans la 
dernière partie du projet, des nanocomposites SEBS/ZnO sélectionnés ont été mélangés avec du 
polyéthylène (PE) pour préparer des nanocomposites hybrides PE/SEBS/ZnO candidats pour 
l’isolation haute tension. La résistance à l’érosion de surface et la flexibilité mécanique des 
nanocomposites PE/SEBS/ZnO ont été améliorées par rapport aux nanocomposites de référence 
PE/ZnO. Cette augmentation a été associée à l'amélioration de la dispersion des nanoparticules de 
ZnO et à leur localisation sélective dans SEBS et à l’interface entre PE et SEBS. 

Mots clés: isolation haute tension, nanocomposite de polymère, nanodiélectrique, dispersion 
contrôlée de nanoparticules, copolymère à blocs, mélange de polymères… 





 

ADVANCED POLYMER NANOCOMPOSITES WITH TAILORED 
MORPHOLOGIES FOR HIGH VOLTAGE INSULATING SYSTEMS 

 
Emna HELAL 

 
ABSTRACT 

 
This thesis reports different approaches to prepare a new generation of nanostructured insulating 
materials featuring controlled nanoparticles dispersion, using block copolymers and polymer blends 
as template matrices. Two types of nanoparticles, both organically modified, were used: zinc oxide 
(ZnO) and Montmorillonite clay. In addition, polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene 
(SEBS) triblock copolymer, composed of two polystyrene (PS) endblocks in the form of well-ordered 
nanodomains and one poly(ethylene-co-butylene) (PEB) elastomer middle block, was selected as a 
template matrix. 

SEBS/clay and SEBS/ZnO nanocomposites featuring different configurations of PS domains and clay 
platelets, namely: isotropic, partially oriented and oriented morphologies were achieved by varying 
the processing techniques. Besides, the spatial distribution of clay platelets and ZnO nanospheres and 
their affinities to either PS block or PEB block were tuned by the presence or not of maleic anhydride 
(MA) graft attached to PEB block. In particular, the dispersion of both types of nanoparticles was 
considerably improved in the presence of MA. Dielectric, rheological, thermal and mechanical 
properties of these nanocomposites were characterized in correlation with their morphologies. 

In SEBS/clay nanocomposites, it was found that the incorporation of clay induced slower dynamics of 
PEB chains located in the interfacial region. A new interfacial glass transition (Tgi), higher than the 
glass transition (Tg) of bulk PEB, was attributed to these interfacial chains. Furthermore, the 
orientation and location of clay affected the interfacial dynamics: the highest Tgi temperatures were 
related to samples with lower alignment degree and preferential location of clay in PEB phase. 
Functional properties were also affected by the orientation. To be more specific, SEBS/clay 
nanocomposites with totally aligned clay platelets and PS domains were simultaneously the most 
efficient in improving the breakdown strength up to 45% and the less efficient in improving the 
mechanical strength. However, nanocomposites with partially oriented morphologies provided the 
best combination of dielectric breakdown strength and mechanical strength. 

In SEBS/ZnO nanocomposites, the improved dispersion and affinity to PEB block, achieved in the 
presence of MA, induced the formation of networks between ZnO nanoparticles and SEBS chains. 
This behavior was accompanied by an increase of thermal conductivity and excellent improvement of 
the resistance to surface erosion: eroded volume reduced by 90% at only 5wt% ZnO. In the last part 
of the project, selected SEBS/ZnO nanocomposites were mixed with polyethylene (PE) to prepare 
blend nanocomposites as new candidates for HV insulation. Although the overall dielectric 
performance of unfilled PE/SEBS blend was reduced compared to neat PE, PE/SEBS/ZnO blend 
nanocomposites featured higher resistance to surface erosion and mechanical flexibility compared to 
conventional PE/ZnO nanocomposites. This improvement was correlated with the improved 
dispersion of ZnO nanoparticles in PE/SEBS/ZnO compared to PE/ZnO nanocomposites and their 
selective localization in SEBS phase and potentially at the interfaces between PE and SEBS. 

Keywords: High voltage insulation, polymer nanocomposite, nanodielectric, tailored nanoparticles 
dispersion, block copolymer, polymer blend… 
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INTRODUCTION 

0.1 Context of the research 

Existing electrical insulating polymers currently used in high voltage (HV) apparatus are 

subjected constantly to increasing electrical and thermal stresses due to growing operating 

voltages and power ratings required by the current market demand and the emergence of new 

techniques suitable for long-distance electric power transmission such as high voltage direct 

current (HVDC) cables (Astrom & Lescale, 2006; Ghorbani, Jeroense, Olsson, & Saltzer, 

2014). For example, in the case of extruded HVDC cables, the maximum transmission 

voltage level is currently equal to 525 kV. By 2030, the objective is to increase this level up 

to 1 MV while maintaining the present cables geometry unchanged (Amir M Pourrahimi et 

al., 2016; Amir Masoud Pourrahimi et al., 2016). To meet these pressing requirements, there 

has been a critical need for the development of new reliable and cost-effective HV insulating 

materials with improved dielectric and thermal performance. The ensuing research, during 

the last decades, led to the introduction of nanocomposites as a new conceptual design for 

dielectric materials used in HV insulation. 

 

The new generation of nanocomposite dielectrics, known also as nanodielectrics (David & 

Fréchette, 2013; Michel F Fréchette, Trudeau, Alamdar, & Boily, 2004; Michel F Fréchette 

et al., 2010; Tanaka & Imai, 2013) featured several promising properties, albeit depending on 

the nanoparticles challenging dispersion, which unfortunately compromises their reliability 

and reproducibility (Balazs, Emrick, & Russell, 2006). In fact, inorganic nanoparticles 

typically form submicrometric and micrometric agglomerations, during nanocomposites 

processing, due to their incompatibility with the organic polymer hosts, which supress or 

reduce potential benefits associated with their nanoscopic dimensions. In addition to the 

agglomerations issue, the spatial distribution of nanoparticles as well as their orientation and 

selective location are considered as major challenges of morphology design that could affect 

drastically the functional properties of nanocomposites in general and those of 

nanodielectrics in specific, such as the breakdown strength, dielectric loss, electrical 
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conductivity, thermal conductivity and resistance to surface erosion, to name a few (David & 

Fréchette, 2013; Roy et al., 2005). Therefore, recently researchers began seeking the 

possibilities to design nanocomposites with prescribed morphologies that optimize their 

functional properties (Balazs et al., 2006; Richard A Vaia & Maguire, 2006). 

 

Several techniques have been tested to avoid nanoparticles agglomerations, through the 

mediation of the interaction between the nanoparticles and polymer chains, such as surface 

functionalization of nanoparticles (Balazs et al., 2006; Huang et al., 2013; D. Ma et al., 2005; 

Polizos, Tomer, Manias, & Randall, 2010; Virtanen et al., 2014), in situ synthesis of 

nanoparticles (Dirix, Bastiaansen, Caseri, & Smith, 1999) or in situ polymerization of the 

polymer matrix (Zapata et al., 2011). Besides, some attempts to orient nanoparticles and 

tailor their spatial distribution were also performed (Richard A Vaia & Maguire, 2006). The 

current findings are partially successful in solving the issue of agglomerations. However, 

they are far from governing all different aspects involved within the concept of tailored 

dispersion. Moreover, a large-scale production based on the current techniques is often 

inappropriate due to several factors including increased complexity and cost, limited yield, 

poor efficiency and/or potential drawbacks induced by some modifiers on the dielectric 

properties. 

 

A new approach is nowadays considered as a promising technique to overcome the hurdles 

related to the control of dispersion.  It consists in using template matrices in order to guide 

the dispersion, the spatial distribution as well as the orientation of nanoparticles (Balazs et 

al., 2006). In particular, the template can be a multiphase polymer system with controllable 

morphology, such as block copolymers or immiscible polymer blends, which offers various 

possibilities to disperse nanoparticles based on its architecture and the affinity of the studied 

nanoparticles to one phase or another. Block copolymers are composed of covalently bonded 

blocks that exhibit nanoscale dimensions and self-assemble in different morphologies 

depending on several factors including the molecular weight of the blocks, their affinity and 

the ratio between them (Helfand, 1975; Sarkar & Alexandridis, 2015). Immiscible polymer 
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blends are mixtures of at least two polymers which cannot be homogenized. They feature 

several characteristic morphologies as well, of microscale dimensions though. 

Owing to their ordered structures, these classes of materials might lead nanoparticles 

orientation, location and dispersion in the aim of optimizing the ultimate performance of the 

nanocomposites (Balazs et al., 2006; Carastan, Amurin, Craievich, do Carmo Gonçalves, & 

Demarquette, 2013; Carastan, Amurin, Craievich, Gonçalves, & Demarquette, 2014; Kao, 

Thorkelsson, Bai, Rancatore, & Xu, 2013; Park, Yoon, & Thomas, 2003; Sarkar & 

Alexandridis, 2015). Furthermore, they could exhibit useful physical properties depending on 

the choice of the blocks or constitutive phases of the blend. In particular, styrenic 

thermoplastic elastomers are block copolymers, composed of a combination of styrenic hard 

blocks and elastomeric soft blocks, which display excellent mechanical properties (Holden, 

Kricheldorf, & Quirk, 2004), electromechanical coupling (B. Kim et al., 2011) and good 

resistance to water treeing (Liu, Mhetar, & Freestone, 2011; Z. Ma, Jiang, Wang, & Yang, 

2010). Among styrenic thermoplastic elastomers, polystyrene-b-poly(ethylene-co-butylene)-

b-polystyrene  SEBS is an interesting candidate commercially available and widely used in 

several industries as a compatibilizer. It consists of two polystyrene PS endblocks dispersed 

in the form of cylinders, lamellae or spheres within a hydrogenated Polybutadiene midblock 

matrix, known as poly(ethylene-co-butylene) PEB. The latter has a structure equivalent to the 

structure of polyethylene PE in its amorphous form which ensures good compatibility with 

polyolefins (Agari, Ueda, & Nagai, 1993). 

0.2 Motivation and Objectives 

This PhD project is part of a bigger research project conducted in collaboration between 

École de Technologie Supérieure (ÉTS) and Hydro-Québec Research Institute (IREQ) and 

involving several graduate students, in the aim of producing novel nanodielectrics for HV 

insulation systems and tailoring their functional properties in correlation with their 

microstructures. Besides, a better understanding of the underlying structure-property 

relationships governing the dielectric and thermal performance of nanodielectrics is 

expected. Within this framework, the main goal of this thesis was to design advanced SEBS 
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block copolymer nanocomposites with tunable nanoparticles dispersion that take advantage 

from SEBS architecture as a template or guiding matrix (Carastan et al., 2013; Carastan et 

al., 2014). Two types of nanoparticles, respectively: clay nanoplatelets and Zinc oxide (ZnO) 

nanospheres featuring distinguished properties and shapes were used. The effects of their 

patterned arrangement in SEBS, going beyond single-particle dispersion limits, on the 

dielectric performance of the insulating matrix were evaluated. The resulting block 

copolymer nanocomposites were subsequently used as master batches and blended with 

polyethylene (PE), a polyolefin widely used in its crosslinked form as insulating material in 

the current state-of-the-art extruded HV cables. The dispersion and the selective location of 

the nanoparticles in these particular blends were emphasized. Ultimately, their dielectric 

properties were compared to those of PE as a reference insulating material.  

0.3 Industrial impact 

From an industrial point of view, the optimization of nanoparticles spatial distribution using a 

block copolymer template is expected to result in an optimized use of nanoparticles 

properties at lower loadings and to induce as a consequence an effective cost reduction. 

Hence, the method might be generalized to different types of nanoparticles and versatile 

processing techniques (solution casting, extrusion, injection…) to evaluate its scalability. 

Furthermore, the as-prepared nanocomposites are expected to exhibit good compatibility 

with polyolefins, good resistance to water treeing and excellent electromechanical coupling, 

which are intrinsic properties of the styrenic thermoplastic elastomer matrix. They might be 

used as final materials or as master batches to blend with polyolefins for larger spectra of 

dielectric applications including but not limited to HV insulation, capacitors and dielectric 

elastomer actuators. 

0.4 Approach and methodology 

This PhD project was divided in three main parts that are summarized in Figure 0-1.  

- SEBS/Clay nanocomposites: In addition to their reduced cost, nanoclays were 

selected due to their anisotropy and confirmed electron scattering effect especially 
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upon exfoliation and orientation (David et al., 2013; Tomer, Polizos, Randall, & 

Manias, 2011). Moreover, successful orientation and localization of these 

nanoplatelets in SEBS was recently reported (Carastan et al., 2013; Carastan et al., 

2014). In this step, the effect of nanoclays and PS domains orientations as well as the 

effect of nanoclays selective location on the dielectric performance of the 

nanocomposites were emphasized.  Different morphologies, i.e. isotropic vs. oriented 

vs. partially oriented, were obtained through the variation of the processing technique 

and the ratio between the blocks of SEBS. The location of nanoclays either in the 

hard PS block or soft PEB block was tuned through the presence or absence of maleic 

anhydride (MA) group grafted onto the rubber block. The latter exhibits good affinity 

to the functional groups attached to the nanoparticles surface. Afterward, changes in 

the dielectric and mechanical properties depending on the configuration were 

evaluated. Moreover, the interfacial dynamics were investigated as function of 

morphology. The results of this part led to the publication of two articles (Chapter 2 

and Chapter 3) and one conference paper. A third manuscript (submitted), related to 

this part, is also reported in Chapter 6.  

- SEBS/ZnO nanocomposites: In a second step, nanocomposites of SEBS were 

prepared with a different type of nanoparticles: functionalized ZnO nanospheres that 

are commercially available. ZnO nanoparticles were selected for their relatively high 

thermal conductivity and excellent UV light shielding capability as well as their 

confirmed ability to reduce space charge accumulation in polymer matrices, which is 

a key requirement for HVDC cables (Huang, Jiang, & Tanaka, 2011; Mazzanti & 

Marzinotto, 2013; Tian, Lei, Wang, & Wang, 2011, 2012). Only isotropic 

morphology was investigated in this part but nanoparticles distribution and selective 

location was modulated using the MA graft. The effect of morphology on the 

dielectric, electrical and thermal properties was emphasized at this step. A correlation 

with rheological properties was also established. The findings of this part were 

reported in one submitted article (Chapter 4) and two conference papers.  

- Blend of Polyethylene and SEBS/ZnO nanocomposites: In a third step, block 

copolymer nanocomposites containing ZnO nanoparticles studied in the previous step 
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were used as master batches and blended with polyethylene. These nanocomposites 

were selected due to their good potential for HV insulation and HVDC cables 

insulation in particular. The morphology of the resulting blend nanocomposites and 

the selective location of ZnO nanoparticles in this blend were investigated. The effect 

of the obtained morphologies on the dielectric and mechanical properties was 

evaluated. The main conclusions of this part were reported in one submitted article 

(Chapter 5) and two conference papers. 

 

The microstructures of all the fabricated nanocomposites were investigated by means of 

Scanning Electron Microscopy, Transmission Electron Microscopy and Atomic Force 

Microscopy. The morphology of the block copolymer and the arrangements of both the block 

copolymer domains and the nanoparticles were assessed by means of Small Angle X-Ray 

Scattering. Besides, the dielectric performance was evaluated by means of: dielectric 

broadband spectroscopy, AC breakdown strength, resistance to surface erosion by partial 

discharges, electrical conductivity and thermal conductivity measurements. Tensile 

properties and linear viscoelastic properties were evaluated in some cases as well, to achieve 

better understanding of the correlation between the microstructure and dielectric properties. 
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Figure 0-1: Main steps of the PhD project 

 

0.5 Organization of the PhD thesis 

This thesis is divided in 7 chapters. Following the introduction, a brief literature review 

regarding nanodielectrics and the concept of tailored nanoparticles dispersion is presented. 

Then, in each one of the next 5 chapters, an article related to a part of the above-mentioned 

parts of the project is presented.   Finally, in the last chapter, a general discussion is provided 

and followed by conclusions and recommendations for future work. 

 

In chapter 2, the paper untitled ‘’Styrenic block copolymer-based nanocomposites: 

implications of nanostructuration and nanofiller tailored dispersion on the dielectric 

properties’’ published in Polymer is presented. This article is based on results from the first 

part of the project regarding block copolymer nanocomposites containing clay nanoparticles. 

It emphasizes the effect of orientation of nanoparticles and morphology of the block 

copolymer on dielectric properties namely dielectric loss and short-term breakdown strength. 
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Chapter 3 presents the paper ‘’ Interfacial molecular dynamics of styrenic block copolymer-

based nanocomposites with controlled spatial distribution’’ published in Polymer as well. 

This article is also related to the first part of this project. It highlights a correlation between 

the studied nanocomposite morphologies and the interfacial dynamics at nanoclay-block 

copolymer interfaces. An extended range of complex morphologies is achieved through the 

variation of the blocks proportions and the processing techniques as well as the use of MA 

graft. 

 

In chapter 4, the paper untitled ‘’Thermoplastic elastomer nanocomposites with controlled 

nanoparticles dispersion for HV insulation systems: correlation between rheological, thermal, 

electrical and dielectric properties’’ submitted to European Polymer Journal is presented. 

This study summarizes the results of the second part of this project related to block 

copolymer nanocomposites containing Zinc Oxide nanoparticles. In particular, a correlation 

between the dielectric, electrical, thermal and rheological properties and the formation of a 

network between ZnO nanoparticles and the block copolymer chains is established. 

In chapter 5, the paper untitled ‘’Evaluation of polyethylene/thermoplastic elastomer/zinc 

oxide blend nanocomposites for high voltage insulation applications’’ submitted to Polymer 

is presented. This paper is based on the conclusions found in the third part of this project 

dealing with the use of block copolymer nanocomposites with controlled morphology as a 

master batch to blend with polyethylene. It focuses on the potential of these blend 

nanocomposites with tuned nanoparticles dispersion for HV insulation applications. 

 

In chapter 6, the study ‘’Tuning mechanical and dielectric strength of clay-containing 

thermoplastic elastomer nanocomposites’’ is reported. The manuscript is submitted to 

Polymer Engineering and Science. This work is also based on the findings of the first part of 

the project. It presents an evaluation of the dielectric breakdown strength and mechanical 

strength of the nanocomposites with different morphologies studied in chapter 3. 
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In addition to the main chapters, three annexes are also included at the end of the thesis. They 

provide supplementary information regarding the articles reported respectively in chapters 2, 

3 and 4. 

 

For more details regarding the fundamentals of dielectric spectroscopy and the physical 

properties of solid insulations, good reviews can be found respectively in references (Kremer 

& Schönhals, 2012; C. C. Ku & Liepins, 1987) and references (Blythe & Bloor, 2005; 

Dissado & Fothergill, 1992; C. C. Ku & Liepins, 1987). For block copolymers (including 

thermoplastic elastomers) and polymer blends, respectively references (Holden et al., 2004; 

Mai & Eisenberg, 2012) and reference (Paul & Bucknall, 2000) can be consulted.  

 





 

CHAPITRE 1 
 
 

NANOCOMPOSITES WITH TUNED MORPHOLOGY FOR HV INSULATION 

 

Polymer nanocomposites have shown promise recently for the development of advanced 

materials intended for use in a large spectrum of applications including dielectric applications 

and HV insulation. Their established and foreseen superior properties are often correlated 

with the formation of polymer/nanoparticle interfacial layers featuring distinct behavior 

compared to the bulk polymer host.  

 

In this chapter, the concept of polymer nanocomposites and nanodielectrics is reviewed, with 

a focus on the impact of the interfacial region. Besides, a summary of the most common 

types of nanoparticles investigated, during the last decades, in HV insulation is presented. 

The influence of several parameters such as the nanoparticles shape, size, orientation and 

quality of dispersion on the efficiency of their use in nanodielectrics is investigated as well. 

Then, the concept of controlled nanocomposites morphology is emphasized. In particular, the 

effect of tuning nanoparticles dispersion in polymer blends and block copolymers, used as 

template polymer matrices, on their dielectric performance is highlighted. Finally, a review 

of the polymers and nanoparticles studied in the present project is reported.  

1.1 Definition of nanocomposites and nanodielectrics 

1.1.1 Polymer nanocomposites definition 

Polymer nanocomposites are polymeric materials containing particles, with at least one 

dimension below 100 nm. Polymer nanocomposites differ from conventional 

microcomposites in two major aspects:  

- Particles size in the nanometer range: this feature results in significantly higher 

specific surface area, i.e. surface area per mass of a material, compared to similar 

masses of larger scale particles. To illustrate better the tremendous effect of 

CHAPTER 1 
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nanoparticles size on the specific surface area, one can compare the total surface area 

of a single solid cube of volume equal to 1 cm3 with the same volume made up of 1 

nanometer-sized cubes; each of them having a surface area equal to 6 nm2. The latter 

contains 1021 nanoscale cubes with a total surface area equal to 6000 m2 compared to 

only 6 cm2 for the single solid cube ("What is so special about the nanoscale? ,"). 

- Small fraction of fillers compared to conventional composites: This can be also 

considered a consequence of the nanometric size. In fact, when incorporated in a 

polymer matrix, the large surface area of nanoparticles constitutes an interaction zone 

that comes into contact with the surrounding polymer and favorably affects its 

properties. As the particle size decreases, the specific surface area increases and the 

interfacial region becomes more prominent for the same amount of particles, as 

illustrated in Figure 1-1. As a consequence, lower loading of nanoparticles is needed, 

compared to microparticles, to achieve equivalent or higher properties. 

 

 

Figure 1-1: Illustration of size effect on interfacial volume: increasing dominance of 
interfacial areas with decreasing filler sizes 

Taken from (Andritsch, Kochetov, Gebrekiros, Morshuis, & Smit, 2010) 

 

1.1.2 Definition of nanodielectrics 

A dielectric material is an electrical insulating material that has the ability to polarize in the 

presence of an electric field. When an electric field is applied, a dielectric responds by 

distorting slightly its charges from their equilibrium position and redistributing them in a 
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more organized form: positive charges are shifted toward the field and negative charges in 

the opposite direction. The resulting dipoles orient parallel to the electric field with opposite 

polarity and create an internal field that reduces the overall field within the dielectric. There 

are three basic groups of dielectrics: solid, fluid and gaseous dielectrics. In particular, 

electrically insulating polymers belong to the group of solid dielectrics. Comprehensive 

details regarding insulating polymers, their electrical properties and the polarization 

phenomena can be found in (Blythe & Bloor, 2005; Dissado & Fothergill, 1992; Kremer & 

Schönhals, 2012; C. C. Ku & Liepins, 1987). 

 

The term nanometric dielectric or nanodielectric for short was proposed for the first time in 

2001 by Fréchette et al. (M. F. Fréchette, Trudeau, Alamdari, & Boily, 2001) as a “multi-

component dielectric processing nanostructures, the presence of which lead to changes in one 

or several of its dielectric properties”. This notion includes nanostructured ceramics and 

polymer nanocomposites. In particular, in last decades, an important and growing fraction of 

nanodielectrics has been developed based on the second group, namely polymer 

nanocomposites (M. F. Fréchette et al., 2001). It is now well established that the addition of 

specific nanoparticles to regular insulating polymers used as solid dielectrics can improve 

their performance in different aspects. Hence, the as-developed nanodielectrics have gained 

attraction in different dielectric applications including HV insulation, high energy density 

capacitors and dielectric elastomer actuators (Camargo, Satyanarayana, & Wypych, 2009; 

David & Fréchette, 2013; Michel F Fréchette et al., 2010; Pleşa, Noţingher, Schlögl, 

Sumereder, & Muhr, 2016; Tanaka, Montanari, & Mulhaupt, 2004). However, it is worth 

noting that the extent of the achieved improvement is strongly dependent on the properties of 

the interfacial area, which is actually the case for all nanocomposites. The interface region 

depends not only on the nanoparticles size and specific surface area but also on their 

dispersion/spatial distribution and their compatibility with the polymer host. 

1.1.3 Theories and models regarding the interfacial region 

Few properties of composite materials, such as the mechanical modulus, can be roughly 

estimated from the inherent properties of the polymer matrix and the added particles 
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respectively, using basic approaches such as the rule of mixtures (Bartczak, Argon, Cohen, & 

Weinberg, 1999; Selvin, Kuruvilla, & Sabu, 2004; Zare & Garmabi, 2014). However, the 

majority of them, including electrical and thermal properties, are more difficult to predict 

because they depend strongly on polymer/particles interactions in addition to the usual 

factors. In nanocomposites, this phenomenon is even more pronounced due to the presence of 

an important interfacial region. In this context, it was repeatedly observed that effective 

properties of nanocomposites are often far from the predictions of basic models and that the 

achieved/potential enhancements are rather governed by the properties of the interfacial 

region (Heid, 2015; Lewis, 2005; Nelson & Hu, 2005; Rittigstein, Priestley, Broadbelt, & 

Torkelson, 2007; Smith, Liang, Landry, Nelson, & Schadler, 2008; Zare & Garmabi, 2014).  

Therefore, several models have been proposed to describe the interaction zone in 

nanocomposites, on the basis of chemical and electrical analysis (Heid, 2015; Kremer & 

Schönhals, 2012; Pitsa & Danikas, 2011; Ioana Preda, Castellon, Frechette, & Agnel, 2014; 

Tanaka, Kozako, Fuse, & Ohki, 2005; Zou, Fothergill, & Rowe, 2007), in order to 

understand their electrical and thermal properties. These models based on different 

approaches and assumptions can be more or less accurate in describing the experimental 

results, depending on the property and the system studied. But, overall there is a general 

consensus on the great role of the interface region. One basic theoretical model that was 

initially developed is the interlayer model treating the case of a matrix-inclusion system with 

an interfacial layer (Kremer & Schönhals, 2012). Later, several models have been proposed 

such as the multi-core model proposed by Tanaka et al. (Tanaka et al., 2005) which suggests 

that the interfacial zone is divided in several layers featuring different physical properties. 

These two models will be reviewed briefly in the following sections. 

1.1.3.1 Interlayer model 

A polymer composite with an interfacial layer between the filler and the matrix, as illustrated 

in Figure 1-2, can be modeled using the asymmetrical effective medium approach. The 

analytical solution, also known as the interlayer model, can be used to describe several 

macroscopic properties including the complex dielectric permittivity (Kremer & Schönhals, 

2012).  
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Figure 1-2: Polymer composite with an interfacial layer                                                 
between the filler and the matrix 

Taken from (Kremer & Schönhals, 2012) 
 

In the case of dielectrics and nanodielectrics, this model can be particularly interesting to 

describe the behavior of dielectrics and nanodielectrics containing water sensitive particles 

such as metal oxides. In fact, humidity absorption often leads to detrimental effects on the 

dielectric behavior of the polymer matrix. In particular, simultaneous increase of the 

dielectric constant and dielectric loss are commonly reported since water has relatively high 

dielectric constant and high electrical conductivity. The increase of the dielectric loss is 

dominant at low frequencies and attributed to quasi DC conductivity increase. This behavior 

is explained by the fact that absorbed water resides in the interfacial region leading to the 

formation of a conductive interlayer between the particles and the polymer matrix. In 

addition to the increase of conductivity and dielectric loss, this conductive interlayer gives 

rise to an interfacial loss process at low frequencies. Furthermore, in nanocomposites, water 

shells around the nanoparticles have higher probability to overlap with increasing 

concentrations as illustrated in Figure 1-3 due to the increased interfacial area and reduced 

interparticle distance, providing conduction paths for charge carriers (Kremer & Schönhals, 

2012; Zou et al., 2007).  
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Figure 1-3: Conductive water layer surrounding nanoparticles embedded                               
in a polymer matrix: (a) separate water layers (b) overlapping water shells 

Adapted from (Zou et al., 2007) 
 

1.1.3.2 Multi-core model 

According to this model, the interfacial layer is composed, on the basis of chemical and 

electrical analysis, of 3 different physical layers overlapped by an electric diffuse layer, as 

illustrated in Figure 1-4 (Tanaka et al., 2005). Each of these layers has a distinguished 

physical, chemical and/or electrical behavior, as following: 

- The bonded layer: this first layer is tightly bonded to the surface of nanoparticles by 

coupling agents.  

- The bound layer: this second layer consists of polymer chains strongly bound to the 

first layer and the surface of the nanoparticles. The thickness of the bound fraction, in 

the range from 2 to 9 nm, is increasing with the strength of polymer-nanoparticle 

interaction. The mobility of chains belonging to this region is particularly altered but 

the polymer conformation, local density and crystallinity are also subjected to 

changes, as compared to the bulk polymer. 

- The loose layer: this third layer is loosely interacting with the second layer but still 

affected chemically by its behavior and expected to exhibit different behavior from 

the bulk. Its thickness is up to several tens of nanometers. 
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- The diffuse electric layer: Charge injection from nanoparticles to polymer matrix 

often occurs resulting in the formation of charge distribution layer. This diffuse layer 

is superposed to the 3 physical layers explained above.   

Moreover, the overlapping of multiple interaction zones corresponding to several 

nanoparticles might result in collaborative effects and further complication of the 

resulting macroscopic behavior. Models treating this situation were also investigated 

(Ioana Preda et al., 2014). 

 

 

Figure 1-4: Multi-core model 
Taken from (Tanaka et al., 2005) 

 

1.1.4 Nanoparticles vs. Microparticles in polymer based insulations 

The performance of electrically insulating polymers is reflected by their resistance to 

electrical degradation when placed in operational conditions. This degradation is a complex 

phenomenon that depends on a multitude of interdependent parameters such as dielectric 

losses, electrical conductivity, resistance to space charge accumulation as well as the thermal 
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and mechanical properties (Blythe & Bloor, 2005; Dissado & Fothergill, 1992).  Although it 

is a long-term process, the susceptibility of polymers to electrical degradation might be 

reasonably evaluated by short-term measurements such as the short-term breakdown strength 

or mid-term measurements such as the resistance to surface erosion by partial discharges. 

Longer-term measurements such as voltage endurance and resistance to electrical treeing 

remain the most trustable tools but unfortunately time consuming (Tian et al., 2012). An 

exhaustive review of all the notions covered by the subject of electrical degradation of 

polymers might be found in (Blythe & Bloor, 2005; Dissado & Fothergill, 1992; C. C. Ku & 

Liepins, 1987). 

 

To overcome the limitations faced by the existing polymer insulating materials, both 

microparticles and nanoparticles with desired intrinsic properties were investigated. 

Chronologically, microparticles raised interest first. In most of the cases, they resulted in 

enhanced heat dissipation and resistance to surface erosion (M. Frechette et al., 2012; Huang 

et al., 2011; Iyer, Gorur, & Krivda, 2012; Kochetov, Andritsch, Morshuis, & Smit, 2010; 

Tanaka, Matsuo, & Uchida, 2008), unfortunately at the cost of reduced dielectric and 

mechanical strengths (Fleming, Ammala, Casey, & Lang, 2008; Z. Li, Okamoto, Ohki, & 

Tanaka, 2010). In fact, inorganic microparticles incorporated in a polymer matrix result in 

the formation of defects and voids of micrometric size in the regions surrounding the 

particles. These defects constitute zones of reduced mechanical strength and increased 

electrical stress in addition to the distortion of the electric field which arises from the 

mismatch in permittivities or conductivities between the polymer and the inorganic filler. 

The increase of the electrical stress in these weak zones leads to initiation and propagation of 

electrical trees, i.e. interconnected channels which are generally filled with gas, through the 

polymer matrix and early dielectric failure (Blythe & Bloor, 2005; Danikas & Tanaka, 2009; 

Dissado & Fothergill, 1992; C. C. Ku & Liepins, 1987; Z. Li et al., 2010). 

 

Progressively, nanoparticles replaced microparticles in composites in order to avoid the 

abovementioned issues. Given their excellent intrinsic properties, their nanoscale dimensions 

and their high interfacial area, nanoparticles were reported to improve the overall dielectric 
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performance without sacrificing a specific property (Andritsch, 2010; Camargo et al., 2009; 

Danikas & Tanaka, 2009; David & Fréchette, 2013; Michel F Fréchette et al., 2010; Heid, 

2015; Pleşa et al., 2016; Tanaka et al., 2004). In fact, when nanoparticles are well dispersed, 

the density and the size of defects are reduced. In addition, the distortion of the electric field 

caused by the difference in conductivities or permittivities between the polymer and the 

inorganic filler is less pronounced due to the small size of nanoparticles leading to more 

homogeneous electric field distribution over the nanocomposite. Furthermore, nanoparticles 

act as barriers resisting the penetration and propagation of electrical trees in the bulk of the 

polymer insulation by the formation of traps to charge carriers (Danikas & Tanaka, 2009; Z. 

Li et al., 2010; Tian et al., 2011, 2012). As a consequence, they induce higher breakdown 

strength, resistance to surface erosion and resistance to electrical treeing while reducing 

space charge accumulation and maintaining low dielectric losses (Andritsch, 2010; Danikas 

& Tanaka, 2009; David & Fréchette, 2013; Michel F Fréchette et al., 2010; Heid, 2015; Z. Li 

et al., 2010; Pleşa et al., 2016; Tanaka et al., 2004; Tiemblo et al., 2008). In this context, 

Danikas et al. (Danikas & Tanaka, 2009) suggested that, in the presence of nanoparticles 

impeding the flow of electrical charge carriers, three possible directions of electrical paths 

can be considered as shown in Figure 1-5: 

- Propagation of the electrical tree through the polymer without contacting the 

nanoparticles (Figure 1-5(a)).  

- Propagation of the electrical tree through the polymer contacting the nanoparticles but 

without penetrating them (Figure 1-5(b)). 

- Propagation of the electrical tree through the polymer contacting the nanoparticles 

and circumventing them; the tree structure will grow partially at the polymer-

nanoparticle interface (Figure 1-5(c)). 

In all these three cases, the electrical tree path is extended resulting in an increase of the time 

required to produce dielectric failure and ultimately an increase of the lifetime of the 

insulating material. 
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Figure 1-5: Effect of nanoparticles on the flow of electrical charge carriers in 
nanocomposites 

Replotted from (Danikas & Tanaka, 2009) 
 

1.1.5 Review of nanoparticles used in HV insulation systems 

Several nanoparticles, mostly of spherical shape, such as Alumina (Al2O3), Silica (SiO2), 

Zinc Oxide (ZnO) and Titanium Oxide (TiO2) were first studied as nanofillers for materials 

used in HV insulation systems. Later, an increasing interest has been given to anisotropic 

nanoparticles of 1D and 2D dimensions to achieve more advanced nanodielectrics, due to 

their outstanding properties compared to their isotropic pairs. In the following paragraphs, a 

review of the different types of nanoparticles that have been used in HV insulation is 

presented. Furthermore, a classification of these nanocharges considering their chemical 

nature, their geometry as well as their dielectric and thermal properties is adopted. 

1.1.5.1 Metal oxide nanoparticles 

Metal oxide nanoparticles have been extensively investigated in HV insulation materials. 

Being either insulating such as Al2O3, SiO2 and magnesium oxide (MgO) or semiconductive 

such as TiO2 and ZnO, these nanoparticles exhibit in general values of electrical conductivity 

higher than those of insulating polymers such as polyethylene. When added in low weight 

fractions (< 5wt%) to polymer matrices, some metal oxide nanoparticles, mainly  SiO2, MgO 

and ZnO were reported to improve the breakdown strength and voltage endurance and more 

recently to supress space charge accumulation in the insulation matrix. These effects are 

(a) (b) (c) 
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explained by the formation of trapping sites that reduce the mobility of charge carriers in the 

polymer matrix including electrons, holes and ionic species, which results in an overall 

reduction of the insulation conductivity (David & Fréchette, 2013; Fleming et al., 2008; 

Hayase et al., 2006; Ju et al., 2014; Amir M Pourrahimi et al., 2016; Amir Masoud 

Pourrahimi et al., 2016; Tian et al., 2011, 2012; Tian et al., 2015). For instance, Figure 1-6 

reports a summary of the achieved improvements of breakdown strength in various insulating 

polymer matrices induced by different concentrations of metal oxide nanoparticles (David & 

Fréchette, 2013).  

 

Before their use in nanocomposites, metal oxide nanoparticles are often coated or 

functionalized with different groups such as silane coupling agents in order to reduce their 

hydrophilic character and enable their proper distribution in hydrophobic insulating polymer 

matrices (Amir M Pourrahimi et al., 2016; Amir Masoud Pourrahimi et al., 2016). 

 

 

Figure 1-6: Relative impacts of selected nanoparticles on the                                            
breakdown strength of polymer insulation matrices 

Taken from (David & Fréchette, 2013) 
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1.1.5.2 Nitride and Carbide nanoparticles 

Several nitride and carbide nanoparticles such as silicon nitride (Si3N4), aluminium nitride 

(AlN), boron nitride (BN) and silicon carbide (SiC) have been investigated in HV insulation 

systems and HV accessories, particularly for their high thermal conductivities going up to 

few hundreds W.m-1.K-1 (Huang et al., 2011). Among them, BN presents the advantage of 

high thermal conductivity combined with low dielectric permittivity and excellent electrical 

resistivity and thermal stability. Due to these attractive properties, BN nanoparticles and 

nanoflakes have gained increasing interest recently (Golberg et al., 2010; Heid, 2015; Song et 

al., 2012; Zhi et al., 2009).  

1.1.5.3 Anisotropic nanoparticles 

Layered and elongated nanoparticles such as nanoclays (David et al., 2013; Tomer et al., 

2011; B Zazoum, E David, & Anh Dung Ngô, 2014), BN nanotubes and nanosheets (Golberg 

et al., 2010; Heid, 2015; Song et al., 2012; Terao et al., 2010; Zhi et al., 2009) as well as 

graphene oxide (GO) and graphene (Fabiani, Mancinelli, Vanga-Bouanga, Fréchette, & 

Castellon, 2016; MF Fréchette, Vanga-Bouanga, Fabiani, Castellon, & Diaham, 2015; Gaska, 

Xu, Gubanski, & Kádár, 2017; Ghosh et al., 2008) have been also investigated in HV 

insulation. These anisotropic nanoparticles usually feature outstanding properties in 

preferential directions depending on their shape. In particular, nanoclays were reported to 

induce a beneficial effect on breakdown strength in addition to their support to mechanical 

strength while BN anisotropic nanoparticles input was mainly on the thermal conductivity 

and resistance to surface erosion. Regarding graphene oxide and graphene, it was 

demonstrated recently that their incorporation in small quantities (<0.1 wt%) to polymer 

matrix reduces space charge accumulation (Y. J. Kim et al., 2013) in addition to 

improvements in mechanical and thermal properties. More details regarding improvements 

induced by anisotropic particles, mainly nanoclays and BN are discussed in the following 

sections regarding the effects of nanoparticles shape and orientation on properties of 

nanocomposites candidates for HV insulation.  
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1.1.6 Parameters affecting the role of nanoparticles in HV insulating materials 

Several parameters affect the efficiency of the role of nanoparticles in the ultimate functional 

properties of the nanocomposites: the size, the shape, the orientation and the state of 

dispersion (nanoscale dispersion vs. agglomerations). In the following sections, selected 

studies from the literature illustrate the effect of each parameter on several properties related 

to the performance of HV insulating materials. 

1.1.6.1 Effect of nanoparticles size 

As discussed previously, decrease of nanoparticles size induces an increase of the interfacial 

region fraction. In correlation with this effect, several dielectric properties such as the 

breakdown strength and resistance to surface erosion were reported to increase. An 

illustrative example was reported by Andritsch et al. (Andritsch et al., 2010) in their study of 

the dielectric behavior of epoxy nanocomposites containing BN nanoparticles with various 

diameters ranging from 70 nm to 5 μm. In particular, they observed an increase of the DC 

breakdown strength with decreasing nanoparticles size. The maximum strength was achieved 

at 10 wt % BN (70 nm) and corresponded to 40 % increase compared to the neat epoxy 

(Figure 1-7). A similar trend was reported by Yang et al. (W. Yang et al., 2012) as well. 

 

Figure 1-7: DC breakdown strength of BN/Epoxy                                                      
as function of filler size 

Taken from Andritsch et al. (Andritsch et al., 2010) 
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Regarding the resistance to surface erosion, multiple studies concluded that polymer matrices 

filled with nanoparticles feature higher resilience compared to matrices filled with the same 

concentrations of microparticles or even higher (M. Frechette et al., 2012; Iyer et al., 2012; 

Tanaka et al., 2008). For example, Iyer et al. (Iyer et al., 2012) found out that epoxy matrix 

filled with 5wt% silica nanoparticles perform slightly better than epoxy matrix containing 65 

wt% of silica microparticles. Taking into consideration that the degradation in the samples 

occurs exclusively through the polymer matrix which creates an erosion path growing 

between the particles of higher thermal stability, this behavior can be explained by the fact 

that nano-filled samples have longer erosion paths compared to micro-filled samples due to 

reduced interparticle distance and hence increased tortuosity. 

 

Thermal conductivity as well is affected by the size of particles. In this context, a recent 

study performed by Kochetov et al. (Kochetov et al., 2010) on epoxy composites filled with 

BN particles of different sizes from 70 nm to 5 μm has shown that thermal conductivity tends 

to increase with increasing nanoparticles loading  but features an optimum as function of BN 

size at 0.5 μm. This behavior is probable related to facilitated formation of a thermal network 

using submicron particles, as compared to either nanometric or micrometric particles. Few 

other studies reported size dependence of thermal conductivity on the filler size but no 

obvious trend was concluded (Reading, Vaughan, & Lewin, 2011).  

1.1.6.2 Effect of nanoparticles shape and orientation 

Some anisotropic nanoparticles such as nanotubes and nanoplatelets feature high aspect 

ratios and considerably larger interfacial areas compared to their isotropic pairs, in addition 

to the anisotropy of their intrinsic properties. Due to these features, the geometry and the 

orientation of nanoparticles incorporated in polymer insulations was found to affect their 

functional properties. 

 

In this context, Tomer et al. (Tomer et al., 2011) studied the effect of alignment of nanoclays 

on the dielectric properties of an 80/20 LLDPE/ LDPE polymer blend. Films with oriented 

nanoclays were prepared in a twin-screw extruder whereas films with random distribution of 
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nanoparticles were obtained by hot-pressing a stack of 4 oriented films sequentially rotated 

by п/4. The orientation of nanoparticles didn’t induce any particular effect on the low field 

dielectric response of the PE matrix. In fact, all the nanocomposites were found to exhibit 

similar losses that are approximately two orders of magnitude higher than the dielectric loss 

of unfilled PE. However, the group reported that the nanocomposites with randomly oriented 

fillers exhibit considerably higher losses when subjected to a high electric field (broader 

Displacement-Electric field D-E loop as reported in Figure 1-8(a)) as well as lower 

breakdown strength (Figure 1-8(b)), compared with nanocomposite containing oriented 

fillers.  They attributed these results to the fact that oriented-fillers samples are expected to 

provide more ordered trapping sites and more efficient scattering for the injected charge, 

limiting its ability to cross the sample to the opposite electrode. This scattering effect is 

reduced for randomly dispersed fillers, even when they are in the form of high aspect ratio 

particles such as nanoclays. 

 

 

Figure 1-8: Effect of the nanofillers alignment on: (a) the Displacement-Electric               
field (D-E) loops and (b) the breakdown strength of polyethylene 

Taken from (Tomer et al., 2011) 
 

In the same context of orientation effect, Terao et al. (Terao et al., 2010) studied the effect of 

the alignement of boron nitride nanotubes (BNNT) by electrospinning on the thermal 

conductivity of BNNT/Polyvinyl alcohol (PVA) nanocomposites. They observed that in a 

general trend, the increase of thermal conductivity induced by  BNNT incorporation is higher 

in the in-plane directions than along the thickness of the samples, regardless of the nanotubes 

(a) (b) 
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orientation as reported in Figure 1-9. Upon alignement of 10 wt% BNNT along one axis, the 

thermal conductivity value reaches 0.54 W.m-1.K-1 along the alignment axis and 0.27 W.m-

1.K-1 along the other in-plane direction compared to 0.16 W.m-1.K-1 for the neat PVA. 

However, the values of thermal conductivity for the bioriented sample and the isotropic 

sample are respectively equal to 0.38 and 0.26 W.m-1.K-1. This increase along the alignment 

direction was attributed to the contribution of high axial thermal conductivity of BNNTs. 

 

 

Figure 1-9: Thermal conductivity of BNNT/ PVA nanocomposite as                            
function of the orientation 

Taken from (Terao et al., 2010) 
 

Regarding the impact of nanoparticles geometry, a good illustration of the effect of 

nanoparticles shape on the dielectric behavior was reported in the work of Fabiani et al. 

(Fabiani, Montanari, & Testa, 2010). In this study, the dielectric response of Ethylene-vinyl-

acetate (EVA) polymer matrix containing two clay particles featuring different aspect ratios 

was investigated. It was found out that the dielectric loss and the electrical conductivity were 

higher in the sample containing the nanofiller with the highest aspect ratio. This behavior 

was attributed to favored formation of a conductive path between the absorbed water shells 

surrounding the particles.  
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1.1.6.3 Effect of nanoparticles dispersion 

The dispersion of nanoparticles is a key factor affecting the quality of the interfacial region 

and consequently the engineering properties. In the specific case of nanodielectrics, the 

thermal and dielectric properties are sensitive to the dispersion. Below, some illustrative 

examples from the literature regarding the effect of dispersion are provided. In particular, the 

engineering properties of samples containing agglomerated nanoparticles are compared to 

samples featuring improved dispersion, achieved either by specific processing techniques or 

by nanoparticles functionalization. For instance, Yang et al. (W. Yang et al., 2012) studied 

the dissipation factor and the short-term breakdown strength of an epoxy matrix containing 

respectively well dispersed nano ZnO particles vs. aggregated ZnO nanoparticles.  The 

improved dispersion was achieved by adding high shear mixing and ultrasonication steps to 

the fabrication process. The group reported that the highest breakdown strength and the 

lowest dielectric loss were achieved in the nanocomposite featuring well dispersed 

nanoparticles due to more efficient scattering of charge carriers and reduced interfacial 

polarization. In the same context, a recent study performed by Zazoum et al. (Bouchaib 

Zazoum, Frechette, & David, 2016) investigated the dielectric loss of low density 

polyethylene (LDPE) containing respectively untreated titanium dioxide (TiO2) nanoparticles 

and TiO2 treated with Polyhedral Oligomeric Silsesquioxane (POSS) molecules. The surface 

modification with POSS resulted in improved nanoscale dispersion of TiO2 nanoparticles that 

was confirmed by atomic force microscopy (AFM). As a result of this improved dispersion, a 

significant decrease of the dielectric loss was observed. Moreover, the dielectric strength of 

the interfacial relaxation observed in the untreated nanocomposite was reduced and the peak 

shifted toward lower frequencies indicating that most likely the effective electrical 

conductivity of the nanofillers was reduced after functionalization with POSS. As far as 

thermal conductivity and resistance to surface erosion are concerned, it was demonstrated 

that the dispersion quality might have an important impact as well. In recent publications by 

Heid et al. (Heid, Fréchette, & David, 2015, 2016), it was found out that 1 wt% of reactive 

POSS molecules incorporated in an epoxy matrix and evenly distributed at the nanoscale led 

to an increase of thermal conductivity by 20%. However, the sample containing non-reactive 
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POSS exhibited an increase of only 10%. Moreover, it was observed that the resistance to 

surface erosion of the sample containing reactive POSS was improved with increasing POSS 

loading while the opposite effect was observed in the sample containing non-reactive POSS 

due to the formation of agglomerations. 

1.2 Control of morphology: application to nanodielectrics 

As discussed in the previous sections, several parameters affect the performance of 

nanocomposites and specifically nanodielectrics, including the quality of dispersion and 

orientation. Recently, new approaches that might help improving the dispersion and more 

importantly controlling the selective localization and orientation of nanoparticles are being 

investigated. These approaches are based on the use of multi-phase polymer matrices as 

structure-guiding hosts to tailor nanoparticles dispersion, such as polymer blends and block 

copolymers which are self-assembled according to specific morphologies at micro and 

nanoscale respectively (Carastan et al., 2013; Carastan et al., 2014; Chipara, Artiaga, Lau, 

Chipara, & Hui, 2017; Kao et al., 2013; Yao Lin et al., 2005; Park et al., 2003; Sarkar & 

Alexandridis, 2015). In these multi-component systems, the control of dispersion and spatial 

distribution can be ensured based on the matrix ordered morphology and the affinity of the 

studied nanoparticles to one phase or another. In the last decades, several studies have 

investigated this approach for various applications including mainly microelectronics, 

polymer solar cells and optical sensors (As’habi et al., 2013; H. Choi et al., 2013; F. Li, Shi, 

Yuan, & Chen, 2013; Park et al., 2003; Sarkar & Alexandridis, 2015). However, only few of 

them addressed the field of dielectrics and more specifically HV electrical insulation. In the 

following sections, selected published studies on tailored dispersion of nanoparticles in block 

copolymers, polymer blends and polymer/block copolymer blends are presented with focus 

on dielectric applications.  

1.2.1 Block copolymer nanocomposites 

The control of nanoparticles dispersion in block copolymer hosts depends on few important 

criteria including the affinity between the selected nanoparticles and each phase of the block 
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copolymer, the nanostructure of the block copolymer as well as the geometry of the 

nanoparticles and the block copolymer nanodomains.  In particular, some combinations of 

respectively nanoparticle geometries and block copolymer morphologies offer larger 

interfacial area (Bockstaller, Mickiewicz, & Thomas, 2005). Besides, the size of the 

nanoparticles, in comparison to the characteristic length scales of the block copolymer 

domains, might affect their selective localization and the block copolymer ordered structure, 

taking into account the thermodynamic constraints (Sarkar & Alexandridis, 2015). 

 

Tailored dispersion of different nanoparticles, mainly of spherical shape, in block 

copolymers was reported in the literature (H. Choi et al., 2013; F. Li et al., 2013; T.-I. Yang 

& Kofinas, 2007). For instance, Li et al. (F. Li et al., 2013) studied the dispersion of ZnO 

nanoparticles in a poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-b-PEO) diblock 

copolymer matrix in comparison with ZnO dispersion in P3HT homopolymer matrix. The 

analysis of both types of nanocomposites processed in the same conditions by TEM revealed 

that fine and uniform dispersion of ZnO nanoparticles was achieved in the block copolymer 

while large clusters of ZnO nanoparticles were formed in P3HT matrix (Figure 1-10). 

Furthermore, the ZnO nanoparticles were preferentially located in the PEO nanometric 

domains. The group attributed this improved dispersion and selective localization to the 

favorable interaction between the oxygen atoms of the PEO backbone and ZnO 

nanoparticles.  

 

Figure 1-10: TEM images of: a) P3HT/ZnO nanocomposite                                              
and b) P3Ht-b-PEO/ZnO nanocomposite 
Taken from Li et al. (F. Li et al., 2013) 
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Recently, controlled dispersion of anisotropic nanoparticles in block copolymers has been 

investigated as well (Carastan et al., 2014; Chipara et al., 2017; Peponi et al., 2009). As an 

illustration, the recent study carried out by Carastan et al. (Carastan et al., 2014) investigated 

the dispersion of clay nanoplatelets in polystyrene-b-poly(ethylene-co-butylene)-b-

polystyrene  (SEBS) triblock copolymer. The studied block copolymer features an 

hexagonally packed cylindrical morphology and is composed of two PS endblocks in the 

form of cylinders surrounded by an elastomer PEB midblock. The group reported successful 

orientation of nanoclays and PS nanodomains achieved using tape extrusion technique. 

Besides, clay nanoplatelets structure, i.e. exfoliated vs. intercalated, and their location in 

either PS block or PEB block were tuned through a maleic anhydride (MA) graft attached to 

the PEB rubber block. 

 

In the field of dielectric applications, few block copolymers gained attraction either for their 

nanostructure or for their functional properties such as their good electromechanical coupling 

(B. Kim et al., 2011). As far as the nanostructure is concerned, it was demonstrated that the 

breakdown strength of a block copolymer is highly sensitive to its ordered nanostructure. For 

example, polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) block copolymer with 

highly oriented lamellar morphology featured great enhancement of breakdown strength 

compared to unordered films prepared by solvent casting (Samant et al., 2016). The 

enhancement was attributed to the fact that the multiple interfaces between the lamellae 

block components act as barriers to the flow of electric charge carriers. This behavior has an 

important potential to design nanodielectrics with high energy density for instance. Styrenic 

block copolymers, as part of the category thermoplastic elastomers, were among those 

recently investigated within the scope of actuation properties. The main objective of their use 

was the design of sophisticated, light-weight and shape-flexible high dielectric permittivity 

polymer nanocomposites intended for service in embedded capacitors, piezoelectric and 

pyroelectric sensors, microwave communication devices and/or dielectric elastomer actuators 

(Kofod et al., 2011; Mc Carthy, Risse, Katekomol, & Kofod, 2009; Mi, Li, Turng, Sun, & 

Gong, 2014; Saleem, Thunga, Kollosche, Kessler, & Laflamme, 2014; Stoyanov, Kollosche, 

Risse, McCarthy, & Kofod, 2011; T.-I. Yang & Kofinas, 2007). In general, the two main 
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approaches to achieve this type of nanocomposites, which are based on the use of either high 

dielectric permittivity ceramics or conductive particles (sub-percolation loadings), induce 

relatively high dielectric losses; a design limitation for the cited applications. Interestingly, 

through tailoring the size distribution of nanoparticles and their spatial distribution in block 

copolymers featuring highly periodic nanostructures, structural heterogeneities and 

agglomerations contributing to the increase of dielectric losses might be significantly reduced 

(T.-I. Yang & Kofinas, 2007). 

 

In HV electrical insulation, the use of styrenic block copolymers is mainly limited to their 

role as compatibilizers to improve nanoparticles dispersion (Liang & Tjong, 2006) or as 

water treeing retardant agents (Liu et al., 2011; Z. Ma et al., 2010). However, their potential 

as nanostructured template matrices is not fully exploited yet. 

 

1.2.2 Polymer blend nanocomposites 

Recently, a need to replace commercial cross-linked polyethylene (XLPE) cables, currently 

on the market, has progressively emerged due to their vulnerability to space charge 

accumulation induced by the crosslinking by-products, which makes XLPE non-recyclable 

and unsuitable for increased HV ratings and especially HVDC cables (Fu, Chen, Dissado, & 

Fothergill, 2007; Ghorbani et al., 2014; Amir M Pourrahimi et al., 2016; Amir Masoud 

Pourrahimi et al., 2016). Unfortunately, the crosslinking is required in current HV cable 

insulations to improve the mechanical and thermal stability of LDPE, which is the most 

common polymer insulation used in HV cables (Arora & Mosch, 2011). 

 

In this context, polymer blends have been investigated since the last decades in order to 

improve the performance of LDPE and ultimately avoid crosslinking. In this context, Hosier 

et al. (I. Hosier, Vaughan, & Swingler, 1997) studied the effect of the presence of a dispersed 

high density polyethylene (HDPE) phase on the breakdown strength of an LDPE matrix.  The 

prepared blends were subjected to thermal annealing at two different temperatures: 115 °C 

and at 124 °C. The group reported a clear improvement of the breakdown strength in blends 
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containing HDPE fractions above 7% and annealed at 115 °C, whereas, in those annealed at 

124 °C, a slight improvement occurred only above 17% of HDPE. Below these limits, both 

types of blends featured a reduction in the breakdown strength compared to the pure LDPE. 

These behaviors were correlated with changes in spherulite structures upon blending HDPE 

with LDPE. In particular, it was concluded that morphologies based upon small well 

distributed HDPE-rich inclusions achieved at 124 °C (compact spherulites which did not 

interpenetrate) lead to lower breakdown strength while space-filling spherulites, achieved at 

115 °C, cause the tree to adopt a more extended path or, in the extreme cases where they 

impinge, force the tree to penetrate the highly crystalline material leading to higher 

breakdown strength compared to the pure LDPE. 

 

To improve further the properties of LDPE/HDPE blends, incorporation of nanoparticles has 

been investigated as well. For example, Zazoum et al. (B Zazoum et al., 2014) investigated 

the effect of organically modified nanoclays on the dielectric properties of a blend containing 

80 wt% LDPE and 20 wt% HDPE. They observed that the incorporation of 5 wt% nanoclays 

in the blend induced a consistent increase of the breakdown strength equal to 17%. This 

improvement was extended further to 22% when polyethylene grafted maleic anhydride (PE-

MA) was used as compatibilizer. This behavior was correlated with microscopy results 

confirming the achievement of better intercalated/exfoliated nanoclays structure in the 

compatibilized blend nanocomposites.  

 

Recently, other alternatives have been investigated. In fact, high density polyethylene 

(HDPE) and especially Polypropylene (PP) feature better thermal and mechanical stability, 

compared to LDPE, due to their higher melting points (Arora & Mosch, 2011). Therefore, 

they might constitute potential candidates for recyclable HV insulation materials, considering 

the omitted need for crosslinking. However, these materials suffer from increased brittleness 

at low temperatures. To adapt better their properties to the purpose of recyclable HV 

insulations, blending was investigated again as one of the solutions. In particular, blends with 

thermoplastic elastomers such as ethylene-vinyl-acetate (EVA) and polyolefin elastomers 

were considered (I. Hosier, Vaughan, & Tseng, 2007; I. L. Hosier, Vaughan, & Swingler, 
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2010; Y. Zhou, He, Hu, Huang, & Jiang, 2015). It was found out that such blends feature 

considerably improved mechanical flexibility and occasionally improved electrical 

resistivity. Nevertheless, reduction of breakdown strength and increase of space charge 

accumulation, a key property for HVDC cable insulation, were unfortunately inevitable after 

blending.  To cope with these drawbacks while taking advantages from the blends properties, 

several nanoparticles have been added, among them: ZnO and BN (Dong, Han, & Han, 2012; 

Du, Xu, Li, & Li, 2016; D.-L. Zhang et al., 2017). For instance, Du et al. (Du et al., 2016) 

reported that the addition of ZnO nanoparticles to PP/Polyolefin elastomer (POE) blends 

results in suppression of space charge accumulation, encountered in the unfilled blend, while 

maintaining the excellent flexibility ensured by the POE phase. This reduction of space 

charge accumulation is due to increased trap level density and consequently reduced charge 

injection upon the addition of ZnO nanoparticles. The maintained mechanical flexibility of 

the blend is more likely related to the fact that the majority of ZnO nanoparticles migrated to 

PP phase during the processing and consequently didn’t affect the mechanical flexibility of 

POE phase. In the same line of research, another blend nanocomposite containing a 

thermoplastic elastomer was recently investigated by Zhang et al. (D.-L. Zhang et al., 2017). 

In this system, the main matrix is PP and the selected thermoplastic elastomer is polystyrene-

b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) while the nanoparticles are Boron 

Nitride nanosheets (BNNS), known for their excellent thermal conductivity and electrical 

insulation. The proportions of PP and SEBS in the blend are respectively equal to 35 and 65 

wt%. In this blend, BNNS were selectively located in SEBS phase. At 3wt% loading, these 

high aspect ratio nanoparticles simultaneously formed a thermal network inside the SEBS 

phase and induced a morphology change in the blend from dispersed SEBS phase to co-

continuity, leading to a “double percolation” phenomenon as described by the authors. This 

selective location of BNNS and specific configuration of the blend induced great 

enhancement of thermal conductivity in addition to reduction of space charge accumulation 

and increase of breakdown strength. Another example of a successful controlled dispersion in 

a conventional HV insulating material induced by blending has been reported by Peng et al. 

(Peng, Xu, Li, Zhang, & Zheng, 2016). In this work, an epoxy resin was blended with an 

amphiphilic triblock copolymer composed of a poly(POSS) midblock and two  
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polycaprolactone (PCL) endblocks. The PCL block is miscible with epoxy while the 

poly(POSS) midblock self-assembles in the form of non-spherical domains of size 20-50 nm 

well distributed within the epoxy matrix. This periodic organization allowed a consistent 

reduction of the dielectric permittivity compared to unfilled epoxy combined with an 

enhancement of the surface hydrophobicity. 

1.3 Review of the materials 

In this section, a review of the polymers and nanoparticles that were investigated in this 

project is presented. In particular, the choice of cost-effective nanoparticles is emphasized.  

1.3.1 Polyethylene 

Polyethylene (PE) is a polycrystalline polymer belonging to the family of polyolefins. It 

features a simple hydrocarbon structure and can be obtained with different molecular weights 

and branching degrees, with the highest branching occurring in low density polyethylene 

(LDPE). Moreover, its semi-crystalline structure with crystalline/amorphous interfaces 

provides traps that reduce charge carriers mobility and the overall electrical conductivity 

(Figure 1-11). Therefore, it is already considered as a nanodielectric, even without the 

incorporation of nanometric fillers (Ieda, 1984; Lewis, 2014). In HV insulating materials 

industry, PE is attractive due to its excellent electrical resistivity, high breakdown strength 

and good processability by melt compounding techniques. Currently, cross-linked low 

density polyethylene (XLPE) is the most widely used form of PE in HV cable insulation. The 

crosslinking is particularly important to improve the thermal and mechanical stability of 

LDPE at increased temperatures as mentioned previously (Arora & Mosch, 2011; Amir M 

Pourrahimi et al., 2016; Amir Masoud Pourrahimi et al., 2016). Unfortunately, it renders the 

insulating material unrecyclable and sensitive to space charge accumulation (Fu et al., 2007; 

Ghorbani et al., 2014). Compared to LDPE, high density polyethylene HDPE features higher 

thermal stability but has been less common in cable insulation due to its relatively high 

rigidity (Arora & Mosch, 2011). However, recently it has been investigated in several blends 

in the objective of designing insulating materials suitable for HV insulation without the need 
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of crosslinking (I. Hosier et al., 1997; I. Hosier et al., 2007; I. L. Hosier et al., 2010). In this 

project, HDPE was investigated in a blend with SEBS thermoplastic elastomer. 

 

 

Figure 1-11: Morphology of polyethylene: amorphous                                                  
and crystalline regions 

Taken from (Lewis, 2014) 
 

1.3.2 SEBS thermoplastic elastomer 

Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) is a triblock copolymer 

composed of two polystyrene (PS) endblocks and a poly(ethylene-co-butylene) (PEB) 

midblock that belongs to the family of styrenic thermoplastic elastomers. Its chemical 

formula is reported in Figure 1-12.  
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Figure 1-12: Schematic description of SEBS block copolymer: (a) without maleic anhydride 
(MA) ("Polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene,") and (b) with 
MA graft attached to PEB block ("Polystyrene-block-poly(ethylene-ran-butylene)-block-

polystyrene-graft-maleic anhydride,") 

 

Being a block copolymer, SEBS features self-assembled nanodomains that vary from 

lamellar to spherical depending mainly on the styrene fraction (Carastan et al., 2013; 

Carastan et al., 2014; Carastan, Demarquette, Vermogen, & Masenelli-Varlot, 2008). 

Moreover, it exhibits excellent mechanical properties combining both the thermoplastic and 

the elastomer behaviors (Balsamo et al., 2006; Holden et al., 2004). Besides, its 

hydrogenated polybutadiene midblock has a structure equivalent to the structure of PE in its 

amorphous form, which ensures a good compatibility with PE and polyolefins in general 

(Agari et al., 1993). Simultaneously, the relatively polar aromatic rings of PS block exhibit 

chemical affinity to several inorganic nanoparticles such as nanoclays and carbon nanotubes 

(CNT) (Carastan et al., 2014; Kuester, Barra, Ferreira Jr, Soares, & Demarquette, 2016). 

Therefore, SEBS and especially SEBS grafted maleic anhydride (MA) were recently widely 

used either as matrices or compatibilizers in blends with polyolefins to improve the 

dispersion of inorganic nanoparticles including nanoclays, metal oxides and CNT, and to 

compensate for toughness decrease induced by their incorporation in polymer matrices 

(Carastan et al., 2014; Kuester et al., 2016; Liang & Tjong, 2006).  

 

In dielectric applications, SEBS has been also investigated, as mentioned in previous 

sections, mainly as a water treeing retardant agent for cable insulation (Liu et al., 2011; Z. 

Ma et al., 2010) or as a dielectric elastomer actuator (Kofod et al., 2011; Mc Carthy et al., 

2009; Mi et al., 2014; Saleem et al., 2014; Stoyanov et al., 2011; T.-I. Yang & Kofinas, 

2007). In addition to these attractive functional properties, it started recently to gain 

(a) (b) 
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attraction, among other thermoplastic elastomers, in the design of recyclable 

polyolefin/thermoplastic elastomer blends suitable for HV insulation and especially for 

HVDC cable insulation (D.-L. Zhang et al., 2017).  

 

In this study, SEBS was investigated first as a template block copolymer matrix to evaluate 

the effect of controlled dispersion and spatial distribution of nanoparticles on the dielectric, 

electrical and thermal properties of nanodielectrics; an approach that has not yet been widely 

studied in this field. In particular, different grades of SEBS with various PS block fractions 

and subsequently various morphologies of the block copolymer were studied. In a second 

step, SEBS was investigated in a blend with HDPE where both its functional properties and 

nanoarchitecture are taken into account to design nanocomposites with improved dielectric 

performance intended for use in HV insulation. 

1.3.3 Zinc Oxide nanoparticles 

Zinc oxide (ZnO) is a large band gap semi-conductor material characterized by its nonlinear 

electrical conductivity (Hong, Schadler, Siegel, & Mårtensson, 2006; Varlow, Robertson, & 

Donnelly, 2007), relatively high thermal conductivity (around 60 W.m-1.K-1 compared to 0.33 

W.m-1.K-1 for LDPE and 2000 W.m-1.K-1 for diamond according to (Huang et al., 2011)) and 

ability to shield UV light that can be released during partial discharges for instance (S. Chen, 

Huang, Peng, Wang, & Cheng, 2010). Similar to other metal oxides, ZnO nanoparticles were 

studied in polymer nanocomposites for insulation applications, mainly PE based (Fleming et 

al., 2008; Amir M Pourrahimi et al., 2016; Amir Masoud Pourrahimi et al., 2016; Tian et al., 

2011, 2012; Tian et al., 2015). As mentioned in paragraph 1.1.5.1, the undertaken research 

into the properties of these nanocomposites demonstrated the ability of ZnO nanoparticles to 

relieve local electrical stress concentration and consequently to homogenize electric field 

distribution, which hinders the growth of electrical trees within the nanocomposite. Besides, 

they were reported to increase traps density in the insulating matrix leading to decrease of 

charge carriers’ mobility (Tian et al., 2011). In correlation with these features, significant 

reduction in space charge accumulation and improved resistance to surface erosion and 

electrical treeing were observed in ZnO-containing nanocomposites. 
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In addition to the functional properties, the geometry of ZnO nanoparticles can be tailored 

into a broad range of particle sizes and shapes using mainly chemical routes. Moreover, their 

surface can be modified to increase their hydrophobicity and ultimately improve their 

compatibility with organic polymer matrices. Both the processes of synthesis and surface 

functionalization of these nanoparticles are relatively simple and cost-effective (Amir M 

Pourrahimi et al., 2016). In this project, commercial ZnO nanoparticles of spherical shape 

and functionalized with an alkyl ammonium salt were used. 

1.3.4 Organically modified Montmorillonite Clay 

Smectite clays such as Montmorillonite are the inorganic particles most used in 

nanocomposites. They belong to the phyllosilicates family characterized by a 2:1 structure 

built of layers; each of them is composed of aluminium or magnesium hydroxide octahedral 

sheet sandwiched between two silicon oxide tetrahedral sheets, as illustrated in Figure 1-13. 

The layers are placed on the top of each other’s forming stacks. Besides, Van Der Waals and 

weak electrostatic interactions occur between them and result in the creation of interlayer 

spaces or galleries where exchangeable cations reside. The thickness of the constitutive 

layers is around 1 nm while the lateral dimensions may vary from 30 nm to several microns 

leading to high aspect ratio and large surface area that dominate the interactions of these 

particles with polymers (Anadão, 2012; Choudalakis & Gotsis, 2009; Nguyen & Baird, 2006; 

Powell & Beall, 2006).  
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Figure 1-13: Crystal structure of phyllosilicates 
Taken from Thomas el al. (Thomas & Zaikov, 2008) 

 

Layered clays are hydrophilic in their pristine state. Therefore, for non-polar polymer 

matrices, an organic treatment on the clay surface is needed to obtain satisfactory dispersion. 

The most commonly used organic treatment is based on quaternary ammonium salts, which 

can have a variety of chain lengths (Choudalakis & Gotsis, 2009; Powell & Beall, 2006). 

Depending on the polymer matrix, the selected organic modification and the processing 

method, two main types of clay structures can be obtained as illustrated in Figure 1-14: 

intercalated and exfoliated. In the case of untreated clays or inappropriate surface 

functionalization, the layers don’t separate and the clay particles remain in the initial form of 

stacks or tactoids. 
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Figure 1-14: Layered clay structures in nanocomposites 
Taken from (Tronto, Bordonal, Naal, & Valim, 2013) 

 

Nowadays, polymer clay nanocomposites are already used in many applications to enhance 

targeted properties such as mechanical strength, flame retardancy and gas-barrier properties 

(Nguyen & Baird, 2006). Besides, the existing processes to obtain organically modified clays 

are well developed and cost-effective. 

 

In dielectric applications, organically modified clays were also studied and reported to 

enhance the performance of polymer insulations by increasing their breakdown strength and 

resistance to electrical treeing. In fact, their high aspect ratio and surface area induce 

interfaces with increased scattering and tortuosity that oppose the flow of charge carriers 

(David et al., 2013; Tomer et al., 2011; B Zazoum et al., 2014). In particular, the orientation 

of clays was observed to increase the tortuosity effect and consequently to improve further 

the dielectric strength (Tomer et al., 2011; B Zazoum et al., 2014). However, this effect is 

still not well quantified/optimized. In this project, organically modified Montmorillonite clay 

treated with quaternary ammonium salt were used and the effect of their tailored distribution 

and alignment was emphasized. 
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Abstract  

In this work, the effect of controlling the morphology on the dielectric properties of triblock 

copolymers and their clay-containing nanocomposites was evaluated. Two different 

copolymers: polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) and SEBS 

grafted with maleic anhydride were used for that purpose. Morphologies with different 

degrees of intercalation, exfoliation and orientation were obtained and tested. At the highest 

state of dispersion, achieved at a clay loading equal to 5wt%, 50% of clay nanoplatelets were 

individually dispersed and located within the PEB soft domain of the block copolymer and a 

maximum of interfacial polarization and a minimum of dynamic mechanical damping factor 

were respectively exhibited. When the nanoclays were oriented, the dielectric loss due to 

nanoclays conductivity contribution was reduced up to 2 orders of magnitude at high 
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temperatures and low frequencies and the AC short-term breakdown strength increased up to 

45%. 

Keywords: block copolymer; tailored dispersion; dielectric properties… 

2.1 Introduction  

“Nanodielectrics” or nanocomposite dielectrics are a new generation of dielectric materials 

containing fillers that have at least one dimension less than 100 nm (Michel F Fréchette et al., 

2010). This class of materials is gaining a lot of interest aiming at developing dielectrics with 

distinct properties originating from the intrinsic properties of the nanofillers and mostly from 

the important interfacial region introduced due to the huge surface area of the nanofillers 

(Lewis, 2004; Roy et al., 2005). Several publications over the last decade proved the 

efficiency of nanofillers at improving several aspects related to the dielectric performance of 

insulating polymers in applications such as cable insulation (David & Fréchette, 2013; M. 

Fréchette, 2009), high energy storage capacitors (Dang, Yuan, Yao, & Liao, 2013) and 

dielectric elastomer actuators (McCarthy et al., 2012). In these studies, different types of 

nanofillers and polymers have been tested.  

 

In terms of nanofillers, nanoclays were the most common nanoparticles used due to their 

relatively low cost. More specifically, organically-modified nanoclays have been the 

nanoparticles of choice since their surface modification made them more compatible with 

organic polymer media (Carastan & Demarquette, 2007; Lei, Hoa, & Ton-That, 2006). These 

nanoparticles have proved their positive role in improving the mechanical properties of 

polymers and in few studies in improving their dielectric properties. In effect, it was 

demonstrated that nanoclay addition and orientation has an influence on the high field 

properties of polyolefins such as the short-term breakdown strength (David et al., 2013; Liao 

et al., 2013a; Liao, Li, Bai, Yang, & Gu, 2014; Tomer et al., 2011). In this context, David et 

al. (David et al., 2013) reported an increase up to 15% of the breakdown strength of low 

density polyethylene (LDPE) matrix filled with a low content of nanoclay equal to 3wt%. 

This improvement was combined with an increase of the dielectric loss by roughly two 

orders of magnitude. They attributed the increase of the breakdown strength to the exfoliated 
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structure of nanoclays and the high dielectric loss to the high conductivity along the clay 

nanoplatelets. Also, Tomer et al. (Tomer et al., 2011) reported an increase of the breakdown 

strength by 20% upon the alignment of nanoparticles in LDPE containing 6 wt% nanoclay 

whereas they observed a deterioration in the breakdown strength and consequently in the 

maximum recoverable energy when nanoclays are randomly oriented. The authors reported 

as well an increase of the dielectric loss by two orders of magnitude in both types of 

nanocomposites with either random or aligned nanoclays. 

 

In terms of polymers, styrenic block copolymers constitute interesting candidates which 

represent an important part of the current market of thermoplastic elastomers. In fact, these 

materials exhibit attractive mechanical properties due to their combination of a soft elastomer 

phase and a hard polystyrene phase. Furthermore, as block copolymers, this class of materials 

presents the advantage of being self-assembled at the nanoscale in unique morphologies such 

as lamellar, cylindrical and spherical hard domains distributed within the elastomer domains. 

The shape of these ordered structures depends on the chemical composition, molar mass of 

the blocks, affinity between the blocks and processing method (Mai & Eisenberg, 2012). In 

the field of nanocomposites, this ability to control their spatial organization makes styrenic 

block copolymers attractive as promising template matrices for selective dispersion of 

nanoparticles with competitive mechanical properties (Bockstaller, Lapetnikov, Margel, & 

Thomas, 2003; Bockstaller et al., 2005; Chiu, Kim, Kramer, & Pine, 2005).  In this context, a 

great number of recent publications were related to block copolymer-based nanocomposites 

with tailored dispersion of nanofillers. Among them, the studies performed by Carastan et al. 

(Carastan et al., 2014; Carastan, Vermogen, Masenelli‐Varlot, & Demarquette, 2010) show 

that selective dispersion and orientation of nanoclays were successfully achieved in a triblock 

copolymer. The published researches treated various applications such as polymer solar cells 

(H. Choi et al., 2013; F. Li et al., 2013) and block copolymer electrolytes (Hur & Bae, 2015). 

They demonstrated that the orientation as well as the location of nanoparticles seems to affect 

the resulting properties. To the best of our knowledge, only few of these studies addressed 

the field of dielectric applications (H. Chen, Hassan, Peddini, & Mauritz, 2011; Mc Carthy et 

al., 2009; Vo, Anastasiadis, & Giannelis, 2011) in spite of the fact that thermoplastic 
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elastomers could represent promising candidates for dielectric elastomer actuators (Mc 

Carthy et al., 2009) or styrenic block copolymer/polyolefin blends for high voltage insulation 

(Liu et al., 2011). 

 

In this paper, the dielectric properties of polystyrene-b-poly(ethylene-co-butylene)-b-

polystyrene (SEBS), an interesting thermoplastic elastomer widely used (Arevalillo, Muñoz, 

Santamaría, Fraga, & Barrio, 2008; Carastan et al., 2013; Carastan et al., 2008; S. Choi, Lee, 

& Han, 2004; Ganguly, Bhowmick, & Li, 2008; Jeong et al., 2003), and its nanocomposites 

containing clay nanoparticles were investigated as function of various parameters related at 

times to the nanofillers and other times to the SEBS structure. In this context, the effect of 

clay dispersion (intercalated vs. exfoliated), clay location (within the hard or soft phase), clay 

concentration and clay orientation were evaluated. Besides, the effect of SEBS morphology 

was studied. In particular, two types of SEBS structures, namely a hexagonal structure where 

polystyrene cylinders are distributed within the rubber phase and a lamellar structure formed 

by alternating polystyrene and rubber layers, were evaluated. The structures of SEBS 

nanocomposites studied were characterized by different tools such as TEM, SAXS and 

DMA. The complex dielectric permittivity and breakdown strength of these nanocomposites 

were also evaluated and correlated to the different structures. 

2.2 Materials and experimental characterization 

2.2.1 Experimental strategy 

In the nanocomposites studied in this paper, four microstructural aspects have been 

controlled, by varying the processing technique, in order to highlight their effects on the 

dielectric properties:  

- Dispersion and location of nanoclays: two different grades of SEBS, one of them 

modified with a maleic anhydride (MA) group grafted to its rubber phase and the 

other without any modification, were used in order to tailor the location and state of 

exfoliation of nanoclays. In the pure SEBS, intercalated nanoclays located within the 
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polystyrene (PS) domain were achieved while in the SEBS modified with maleic 

anhydride, exfoliated nanoclays located at the interface between the PS and the 

rubber domains were obtained. In fact, the grafted group has the greatest affinity to 

nanoclays and consequently attracts them to the interface (Carastan et al., 2014). 

- Amount of surface area of nanoparticles: three different nanoclay concentrations were 

studied: 2.5, 5 and 7.5%. 

- Orientation of nanoclays:  two different techniques were used to control the 

orientation of the PS domain and consequently the orientation of nanofillers: 

extrusion process vs. solution casting. In particular, oriented nanoclays have been 

obtained by extrusion while random nanoclay distribution has been achieved in the 

nanocomposites prepared by solution casting (Carastan et al., 2014).  

- Structures of SEBS: An oriented hexagonal structure, where oriented PS cylinders 

were dispersed within the rubber phase, was obtained by the extrusion process. 

Furthermore, the solution casting process was adapted to achieve respectively random 

hexagonal structure vs. random lamellar structure. The hexagonal structure was 

obtained when the solution casting process was accompanied by a specific thermal 

treatment while the lamellar structure was obtained when no thermal treatment was 

applied.  

The details of experimental procedures to reach those morphologies are explained in the 

following section. 

2.2.2 Materials and methods 

Two grades of triblock copolymer SEBS donated by Kraton were used: G1652 and FG1901. 

The G1652 contains 30 wt % of polystyrene PS endblocks dispersed in the form of cylinders 

within a hydrogenated polybutadiene PEB midblock matrix.  Its density is equal to 0.915 

g/cm3. The FG1901 has the same composition with a maleic anhydride MA group grafted to 

the PEB midblock. Following, the G1652 and the FG1901 will be respectively referred to as 

SEBS and SEBS_MA. Montmorillonite clay grade Cloisite 20A from Southern Clay 

(Gonzales, USA), modified with dimethyl di (hydrogenated tallow) quaternary ammonium 
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salt was used as nanofiller for the nanocomposites preparation. More details regarding the 

modification and size of clay particles are provided in Table 2-1. All the materials studied in 

this paper were used as received. 

Table 2-1: Properties of Cloisite 20A grade 

 
Grade 

Organic 
cationic 

modifier a 

Cation 
concentration 

(meq/100g clay) 

Weight loss 
at ignition 

(%) 

Typical dry 
particle size 

(d50) 

Basal 
spacing b 

(nm) 

Cloisite 
20A 

 

 
95 

 
38 

 
<10 μm 

 
2.39 

a where HT is hydrogenated tallow (~65% C18; ~30% C16; ~5% C14) 
b Values according to reference [18] 

 

The nanocomposites were prepared by either melt compounding or solution casting method. 

The second method was combined in some cases with a thermal treatment to tune the 

structure of SEBS. The samples prepared by melt mixing were obtained according to a 

previous study published by Carastan et al. (Carastan et al., 2014). In a typical procedure, 

nanoclay was mixed with SEBS in a twin screw extruder equipped with a sheet die, at a 

temperature of 220 °C and a speed of 100 rpm. Further details on the processing steps and 

characterization by SAXS and TEM are available in the cited reference (Carastan et al., 

2014). In the case of the solution casting process, the SEBS powder and the nanoparticles 

were mixed in toluene by magnetic stirring at 60 °C. The mixture was subsequently poured 

into a Petri dish and dried at room temperature for several days. The films obtained at this 

step had a random lamellar structure that will be confirmed in the characterization section. 

To obtain the random hexagonal structure, these samples were subsequently subjected to heat 

treatment to induce a microdomain transformation. This was performed in four steps: 20 min 

at 60 °C, 20 min at 100 °C, 20 min at 150 °C and 10 min at 200 °C. This transformation was 

enabled by the presence of toluene since the microdomain structure is strongly dependent on 

the solvent and annealing conditions (Hur & Bae, 2015). The progressive increase of 

temperature during the thermal treatment was applied to avoid the degradation of the 

polymer. 
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The morphology of the as-obtained nanocomposites was characterized by small angle X-ray 

scattering (SAXS) and transmission electron microscopy (TEM). The SAXS patterns were 

obtained using the synchrotron source of the National Synchrotron Light Laboratory (LNLS), 

Campinas, Brazil. The wavelength used in these measurements was 1.488 Å and the sample-

to-detector distance was either 950 mm or 1125 mm. The TEM was performed with a Carl 

Zeiss CEM 902 transmission electron microscope for the nanocomposite containing 5 wt% 

nanoclay and with a Hitachi HD2700 field emission scanning transmission electron 

microscope (FE-STEM) for the nanocomposites containing 2.5 and 7.5 wt% nanoclay. Prior 

to observations, ultrathin sections of few tens of nanometers were cryo-cut using an ultra-

microtome at -100 oC and deposited on copper grids. Some grids were also stained during 30 

minutes with ruthenium tetroxide RuO4 vapor in order to determine the block copolymer 

morphology and to evaluate the location of clay nanoparticles. 

 

Subsequently, the viscoelastic properties of all the nanocomposites were evaluated in order to 

confirm the different results obtained by microscopy and SAXS. In particular, the dynamic 

mechanical analysis (DMA) was done using a Q800 TA Instruments analyzer.  Tensile mode 

was selected and rectangular specimens of 20 mm × 6.5 mm x 1 mm were used. The 

measurements were performed from 20 °C to 140 °C. The test conditions were as follows: 

rate of heating equal to 3 °C/min, resonant frequency equal to 1 Hz and amplitude equal to 

0.2 mm. The tensile storage modulus (E’), loss modulus (E”) and damping factor (tan δ) were 

evaluated. 

 

Finally, in terms of dielectric properties, the complex dielectric permittivity of the 

nanocomposites was evaluated using a Novocontrol broadband spectrometer. Specimens of 

20 mm in diameter were placed between two parallel brass plated electrodes. Measurements 

swept through a frequency range from 10-2 Hz up to 3*105 Hz at a temperature range varying 

from 25 °C to 95 °C. The AC short-term breakdown strength of the samples was measured 

using ball-type electrodes of diameter 4 mm in a dielectric oil environment. The size of test 

specimens was approximately 3 cm x 3 cm. For each sample, 15 specimens were considered 

to calculate the dielectric strength using Weibull distribution, except for the extruded SEBS 
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nanocomposite containing 2.5 wt% nanoclay, where only 10 spots have been taken into 

account. A voltage ramp of 2 kV/s at a frequency of 60 Hz was applied until breakdown 

occurred. All measurements were done at a temperature equal to 23 °C. Since the thickness 

of the samples was not uniform, all the measurements were corrected to equal the breakdown 

strength of a 100 µm thick film using the power law relationship between the breakdown 

field and the film thickness in order to obtain comparable results (Takala et al., 2010).  

2.3 Results and discussion 

2.3.1 Morphology 

As mentioned above, four microstructural aspects of the nanocomposites were controlled: 

state of dispersion and location of nanoclays, amount of surface area of nanoparticles, 

orientation of nanoclays and structure of SEBS.  These four aspects are reviewed below: 

2.3.1.1 State of dispersion and location of nanoclay 

In the nanocomposites produced by extrusion, both intercalated and exfoliated nanoclay 

structures were obtained depending on the use of SEBS or SEBS_MA as the matrix: 

nanoclay particles were intercalated and located within PS cylinders when SEBS was used 

while they were partially exfoliated and located in the PEB block when SEBS_MA was the 

matrix. The exfoliated vs. intercalated nanoclay structures can be observed respectively in 

Figure 2-1(a) and Figure 2-1(b)-(d). More details regarding the location of nanoclays in 

SEBS phases are available in reference (Carastan et al., 2014) and in the supporting file 

(annex I).  
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Figure 2-1: TEM images of respectively: (a) SEBS_5wt% nanoclay, (b) SEBS_MA_2.5wt% 
nanoclay, (c) SEBS_MA_5wt% nanoclay and (d) SEBS_MA_7.5wt% nanoclay        

(Prepared by extrusion) 
 

DMA analysis was performed on the samples in order to confirm the difference in the state of 

clay dispersion, i.e. exfoliated vs. intercalated, as observed by TEM, between the 

nanocomposites prepared with SEBS and SEBS_MA. Plots of storage modulus E’, loss 

modulus E” and damping factor as functions of temperature are presented in Figure 2-2(a), 

Figure 2-2(b) and Figure 2-2(c) respectively. According to Figure 2-2(c), a relaxation peak 

around 104 oC was detected in tan δ curve for the pure SEBS. This peak corresponds to the 

glass transition temperature of the PS domains. The position of the damping peak was shifted 

by approximately 5 °C toward higher temperatures in the nanocomposites, indicating an 

increase of the PS glass transition temperature. Besides, the intensity of the damping peak 

decreased significantly in the nanocomposites.  Both the increase of PS glass transition 

temperature and the decrease of the damping peak could be attributed to the reduction of 

polymer chain mobility within PS phase due to the presence of nanoclays. In particular, the 

lowest peak measured in SEBS_MA_5% exfoliated nanocomposite may be considered as an 

indication of the efficient contribution of exfoliated clay nanoplatelets obtained in 

SEBS_MA compared to intercalated nanoplatelets obtained in pure SEBS in blocking the 

segmental chain movement of PS cylinders and consequently decreasing the degree of 

disorder within the PS domain. These DMA results confirm the TEM observation shown in 

Figure 2-1. 

 

 

(a) (b) (c) (d) 
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Figure 2-2: (a) Storage modulus E’, (b) Loss modulus E’’ and (c) Damping factor (tan δ)      
at 1 Hz of SEBS vs. SEBS_MA nanocomposites containing 5wt% nanoclay (prepared by 

extrusion) 
 

2.3.1.2 Amount of nanoparticle surface area 

In addition to the nanocomposites prepared with 5 wt% nanoclay, two other loadings have 

been considered to highlight the effect of the interfacial region on the dielectric properties: 

2.5 and 7.5 wt%. The quality of dispersion in these nanocomposites prepared by extrusion 

was assessed by image quantitative analysis involving TEM observations carried out at 

different scales following the procedure reported in Carastan et al. (Carastan et al., 2010) and 

Vermogen et al. (Vermogen et al., 2005). For that, a set of images taken at 3 magnifications 

was considered: 1 image at 20k, 4 images at 50k and 10 images at 100k. The thicknesses of 

(b) 

(c) 

(a) 
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all the tactoids present in each image were estimated using image J software. The number of 

the nanoplatelets contained in each tactoid was then deduced. Once this step completed, the 

tactoids were classified in 6 different classes ranging from individual nanoplatelets to large 

tactoids containing more than 50 nanoplatelets. The final proportions were deduced taking 

into account a ponderation factor of the covered area corresponding to each magnification.  

More details regarding the quantitative analysis procedure are available in the supporting file 

(annex I) and references (Carastan et al., 2010; Vermogen et al., 2005). 

 

Figure 2-3 shows the proportions of tactoid classes corresponding to the nanocomposites 

containing 2.5 wt% and 7.5 wt% of nanoparticles. The values corresponding to the 

nanocomposite containing 5 wt% of nanoparticles published in reference (Carastan et al., 

2014) are also reported for comparison. It can be seen from Figure 2-3 that the 5 wt% 

nanocomposite has the highest percentage of individual layers and the best state of 

exfoliation. Almost 50% of its clay tactoids are individually dispersed in form of 

nanoplatelets and 97% of its tactoids contain less than 5 nanoplatelets according to the 

quantitative analysis. However, in the case of the nanocomposites containing 2.5 wt% 

nanoclay, the majority of nanoparticles (56%) were dispersed in form of small tactoids 

containing 3 to 5 layers and in the case of the nanocomposite containing 7.5 wt% nanoclay, 

the majority of the tactoids (51.5%) contained from 5 to 15 layers. A rough relative estimate 

of the number of tactoids and consequently the amount of interfaces in the nanocomposites 

containing respectively 2.5, 5 and 7.5 wt% nanoclay is:  52 vs. 350 vs. 137. This estimate is 

calculated based on the assumption that 1wt% clay tactoids should contain 100 individual 

nanoplatelets for example. The number of tactoids is deduced from this assumption by the 

following equation:  =	∑ ∗
                                                    (2.1) 

Where: 
N: the assumed total number of nanoplatelets;  
xi: fraction of nanoplatelets in class i;  
Xi: average number of platelets in class i;  
X: total number of tactoids and consequently of interfaces.  
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Figure 2-3: TEM image quantitative analysis of oriented hexagonal SEBS/clay 
nanocomposites, prepared by extrusion, containing different nanoclay loadings: 2.5, 5       

and 7.5 wt% (values for the 5 wt% nanocomposite are reported according to                     
(Carastan et al., 2014)) 

 

Storage modulus, loss modulus and damping factor corresponding to SEBS_MA 

nanocomposites containing the 3 studied clay loadings are presented in Figure 2-4. In 

particular, Figure 2-4(c) shows that the highest glass transition temperature of the PS phase 

was exhibited by pure SEBS_MA (111 °C). However, all the nanocomposites have lower 

glass transition temperatures ranging from 107.5 °C for SEBS_MA_7.5% to 109 °C 

SEBS_MA_5%, which could be considered as a small difference. This remarkable increase 

of PS Tg in pure SEBS-MA could be related to the presence of MA. Furthermore, Figure 

2-4(b) shows a remarkable decrease of the molecular relaxation peak of SEBS in the vicinity 

of PS glass transition upon addition of nanoclay (indicated by the arrow), which results in a 

decrease of the damping peak intensity as observed in Figure 2-4(c) and previously in Figure 

2-2(c). Although the reduction of the damping peak occurred with increasing nanoclay 

loading, it can be seen that at 7.5 wt% nanoclay, only a slight additional decrease was 

induced compared to 5 wt% loading. This decrease is more likely attributed to the decrease 

of the loss modulus since no additional improvement of the storage modulus was observed at 

this loading (Figure 2-4(a)). This behavior may indicate that no further exfoliated 
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nanoparticles could be obtained at nanoclay loadings higher than 5 wt%. The present 

behavior is consistent with the result of quantitative analysis stating that the maximum 

exfoliation corresponds to 5 wt% nanoclay.  

  

 

Figure 2-4: (a) Storage modulus E’, (b) Loss modulus E’’ and (c) Damping factor (tan δ)       
at 1 Hz of SEBS_MA nanocomposites containing 2.5, 5 and 7.5 wt% nanoclay                

(prepared by extrusion) 
 

2.3.1.1 Nanoclay orientation 

In order to characterize the orientation of nanoclays and PS micro-domains in the samples, 

SAXS analyses were performed. The SAXS diffraction patterns revealed that PS cylinders 

and clay nanoparticles were oriented in the extrusion direction for the extruded samples (see 

supporting file annex I). The TEM images presented in Figure 2-1(b)-(d) corresponding to 

the exfoliated samples clearly show evidence of this alignment while the TEM image 

(a) (b) 

(c) 
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presented in Figure 2-1(a) and corresponding to the intercalated sample is not as conclusive. 

However, one should keep in mind that TEM images only probe a small area whereas SAXS 

present a more global analysis of the sample.  

 

In the case of samples obtained by solution casting, for both the annealed and unannealed 

samples, the SAXS patterns revealed only concentric circles indicative of isotropic samples 

presenting random orientation of both PS domains and clay tactoids (see supporting file 

annex I). 

2.3.1.2  SEBS morphology 

The structure of extruded nanocomposites was studied in reference (Carastan et al., 2014). 

The authors reported that a hexagonal cylindrical morphology was present in both pure SEBS 

and the nanocomposites. The case of samples prepared by solution will be treated in this 

section. Figure 2-5(a) and Figure 2-5(b) present the radial plots of scattering intensity as 

function of scattering vector q of respectively unannealed and annealed samples. In Figure 

2-5(a), corresponding to the unannealed samples, the relative q-position of Bragg peaks with 

the sequence 1:2:3 characteristic of lamellar structure was detected. This non-equilibrium 

morphology of alternating lamellae of PS and PEB domains was expected and attributed to 

the solvent effect since toluene dissolves better PS blocks compared to PEB blocks (Jeong et 

al., 2003), which favors the formation of PS lamellae and prevents their separation into 

cylindrical domains. In Figure 2-5(b) corresponding to annealed samples, the detected 

relative q-position of the peaks followed the sequence 1:√3:√7, characteristic of hexagonal 

structure. This thermally induced order-to-order transition from lamellar to a more stable 

hexagonal cylindrical structure was reported in the literature as well when the annealing is 

performed at temperatures considerably higher than the PS glass transition temperature 

(Jeong et al., 2003). Furthermore, upon the addition of nanoclay, the third peak was 

broadened or disappeared from the spectra of both annealed and unannealed samples. This 

fact may indicate that the presence of nanoclay resulted in less well ordered SEBS structures 

compared to pure SEBS samples. 
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Figure 2-5: Radial plot of peak intensities of SEBS vs.  SEBS_MA                          
nanocomposites containing 5 wt% nanoclay (prepared by solution):                                       

(a) unannealed samples and (b) annealed samples 
 

2.3.1.3 Stability of SEBS morphology 

The morphological stability of unannealed nanocomposites prepared by solution was checked 

by analysing the relative peak positions in radial SAXS plots as a function of time at a 

temperature high enough to induce transition from lamellar to cylindrical morphology, 

(b) 

(a) 
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selected equal to 200 °C in our case. This study was performed in order to determine whether 

the lamellar morphology in unannealed nanocomposites changed or not after pressing the 

samples at 200 °C, which was a necessary step to prepare specimens with comparable 

thicknesses for the dielectric breakdown measurements which will be discussed later.  The 

plots corresponding to pure SEBS and SEBS nanocomposite with 5 wt% nanoclay are 

presented in Figure 2-6(a) and Figure 2-6(b). They show respectively the relative peak 

positions of pure SEBS and SEBS_5% clay nanocomposites as functions of time. Peaks 

corresponding to the diffraction of clay particles are observed as well in Figure 2-6(b). It 

could be seen that the first and the second peaks relative to lamellar structure in the radial 

plots changed of positions while the third peak was transformed in two small peaks 

(indicated by two arrows in the figures), after 5 minutes in the pure SEBS and after 10 

minutes in the SEBS_5% clay nanocomposite. These new peaks correspond to the (√7, √9) 

peaks in radial plots of annealed samples presented in Figure 2-5(b). As a consequence, it 

could be concluded from this observation that a possible transition from lamellar to 

cylindrical morphology could have occurred during the molding process. It is also worth 

mentioning that the two small peaks are less apparent in the nanocomposite sample; which 

was also observed in the case of annealed nanocomposites (Figure 2-5(b)). Therefore, the 

initial morphologies of annealed and unannealed samples were also investigated by TEM. 

More details are provided in Table 2-2 and the supporting file reported in annex I. 
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Figure 2-6: Radial plots of SAXS peak intensities as function of time at 200 °C of: (a) 
unannealed pure SEBS and (b) unannealed SEBS_5wt% nanocomposite prepared                

by solution 
 

Table 2-2 presents a summary of all the morphologies studied in this work. In particular, 

nanocomposites of type I and II prepared by extrusion exhibit an oriented hexagonal 

structure where both PS cylinders and nanoclays were oriented in the direction of extrusion 

while nanocomposites of type III and IV, prepared by solution casting method, exhibit both 

an isotropic structure where PS domains are distributed randomly within a PEB matrix. In 

type III nanocomposites, the hexagonal structure was induced due to thermal treatment while 

in type IV, the lamellar structure was dominating according to SAXS plots presented in 

Figure 2-5(a). However, it is worth mentioning that both lamellar and hexagonal 

morphologies could co-exist in the unannealed nanocomposites as indicated by the TEM 

image corresponding to type IV presented in Table 2-2. In particular, the cylindrical 

morphology is observed surrounding the nanoclays which may indicate that these particles 

favor the transition from lamellar morphology to more stable hexagonal morphology despite 

the fact that the samples were not subjected to thermal treatment (more details are available 

in the supporting file (annex I)). This observation is also consistent with the assumption of 

less ordered structure and the absence of the third peak in radial SAXS plots presented in 

Figure 2-5 and Figure 2-6. 

(a) (b) 
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Table 2-2: Summary of SEBS/clay nanocomposites with different structures 
(Red, yellow and green domains in the sketches illustrate respectively nanoclays, PEB phase          

and PS phase, in some sketches the yellow domains are removed only for the sake of simplicity) 

 Processing 
method 

TEM  Morphology Sketch 

 
 
 
I 

  
Figure 6(d) in (Carastan et 
al., 2008) and Figure 3(b) in 
(Leice G. Amurin, Carastan, 
& Demarquette, 2012) 

- Hexagonal cylindrical SEBS 
structure  
- Oriented PS cylinders and 
nanoclays 
- Intercalated nanoclays 
crossing PS cylinders  

 
 
 
 
 

II 

 

 

 
 
- Hexagonal SEBS_MA 
structure  
- Oriented PS cylinders and 
nanoclays 
- Partially exfoliated nanoclays 
located within the PEB domain 
 

 
 

 
 

 
 
 
 

III 

 

 

 
- Hexagonal SEBS structure  
- Groups of PS cylinders 
dispersed randomly in PEB 
matrix 
- Nanoclays located within the 
PS cylinders or the PEB 
domain depending on the use 
of SEBS or SEBS_MA (see 
supporting file annex I) 

 
 
 

 
 

 
 
 
 
 

IV 

 

 

- Mostly lamellar SEBS 
structure (see supporting file 
annex I) 
- Localized cylindrical 
morphology surrounding 
nanoclay particles 
- PS domains randomly 
dispersed in PEB matrix 
- Nanoclays located within PS 
domain or PEB domain 
depending on the use of SEBS 
or SEBS_MA 
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For the sake of simplicity, in the following figures related to dielectric properties, all the 

nanocomposites will be designated as following: SEBS_W_X_Y_Z or 

SEBS_MA_W_X_Y_Z where W is the wt% of nanoclay, X is the type of dispersion, Y is the 

orientation and Z is the structure of SEBS, as indicated in Table 2-3. 

Table 2-3: Designation of the nanocomposites 

Symbol Parameter Abbreviation 

W Weight% 2.5, 5 or 7.5 wt% of nanoclays 

X Dispersion  exf (exfoliated), int (intercalated) 

Y Orientation ori (oriented), ran (random) 

Z SEBS structure hex (hexagonal), lam (lamellar) 

 

2.3.2 Dielectric properties  

The dielectric permittivity of an insulating material measures its ability to polarize in 

response to an applied electric field. It is expressed as follows (Kremer & Schönhals, 2012):  

 

)()()(ˆ ''' ωεωεωε i−=                                                      (2.2) 

Where: 

ω: Frequency; 

ɛ’: real part of the complex dielectric permittivity, which is related to the stored energy. It is 

also known as the dielectric constant; 

ɛ’’: imaginary part of dielectric permittivity, which is related to the dissipated energy.  It is 

also known as the dielectric loss. 

The complex dielectric permittivities of all SEBS/Clay nanocomposites were evaluated as 

function of the nanoclays' state of exfoliation and orientation as well as the block copolymer 

structure. It is worth mentioning that the measurements were performed perpendicular to the 

direction of orientation in the case of extruded samples as indicated in Figure 2-7. Figure 

2-8(a) and Figure 2-8(b) represent respectively the real and the imaginary part of the complex 
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permittivity measured at room temperature of intercalated SEBS/clay vs. exfoliated 

SEBS_MA/clay nanocomposites prepared by extrusion with different nanoclay loadings: 2.5, 

5 and 7.5 wt%. In all the nanocomposites, an increase of the dielectric constant accompanied 

with a simultaneous increase of the dielectric loss is observed at low frequencies. This 

increase is attributed to Maxwell/Wagner/Sillars polarization at the nanoclay/polymer 

interfaces (Kremer & Schönhals, 2012). In particular, the increase achieved in 

nanocomposites prepared from SEBS_MA matrix is more pronounced compared to the 

nanocomposites prepared from SEBS matrix indicating that more nanoclay/polymer 

interfaces are present in the first type of nanocomposites. Besides, a broad relaxation peak 

corresponding to the interfacial polarization appeared in the curves of nanocomposites with 

exfoliated structure in the frequency range 0.1 to 1 Hz. This is consistent with the fact that a 

better state of exfoliation is achieved when SEBS_MA is used. In order to highlight the effect 

of exfoliation vs. intercalation of nanoclays on the dielectric behavior, the dielectric 

permittivities of respectively pure SEBS, SEBS_5wt%_int_ori_hex and 

SEBS_MA_5wt%_exf_ori_hex nanocomposites were scanned as functions of frequency in 

the temperature range: 25 to 95 °C. In this temperature range, no relaxation was observed for 

the unfilled SEBS block copolymer (Figure 2-9(a) and Figure 2-9(b)) since the material is 

essentially non polar and therefore the relaxation process that can be seen in Figure 2-4 is not 

dielectrically active. However, the oriented SEBS_5% nanocomposite with intercalated 

structure exhibits a first relaxation mode below the Tg of PS phase which is attributed to the 

interfacial polarization. As the temperature increases, the increase of the dielectric constant at 

low frequencies is more evident (Figure 2-9 (c)) and the relaxation peak is shifted to higher 

frequencies (Figure 2-9(d)). In the graphs corresponding to the exfoliated nanocomposite 

(Figure 2-9(e) and Figure 2-9(f)), the interfacial phenomena is more important and 

corresponds to a clearer step in the dielectric constant curve and to more intense interfacial 

relaxation peak. The relaxation peaks in Figure 2-9(d) and Figure 2-9(f) are indicated by the 

arrows. Furthermore, the increase of dielectric loss observed at low frequencies and high 

temperatures due to nanoclays conduction contribution is one order of magnitude less in the 

nanocomposite with exfoliated structure compared to the nanocomposite with intercalated 

structure (Figure 2-9(d) vs. Figure 2-9(f)). This behavior could be explained by the fact that 
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the conductivity at the interfaces between intercalated clay nanoplatelets is higher than the 

conductivity at the interfaces between the polymer and exfoliated clay nanoplatelets.   

 

 

 

 

Figure 2-7: Orientation of electric field in dielectric spectroscopy and AC                        
short-term breakdown measurements: (a) anisotropic nanocomposites prepared                       

by extrusion and (b) isotropic nanocomposites prepared by solution casting 

 

 

 

 

 

 

 

 

 

(b) (a) 
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Figure 2-8: (a) Real and (b) imaginary parts of the complex                                          
permittivity at room temperature of oriented hexagonal SEBS                                                 

(type I) and SEBS_MA (type II) nanocomposites                                                                        
containing 2.5, 5 and 7.5 wt% nanoclay 

 

 

 

(b) 

(a) 
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Figure 2-9: Real and imaginary parts of the complex dielectric permittivity in the   
temperature range from 25 to 95 °C of: Pure SEBS (a) and (b), SEBS_5wt%_int_ori_hex   

(c) and (d) and SEBS_MA_5wt%_exf_ori_hex (e) and (f) 

(b) (a) 

(c) (d) 

(e) (f) 
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As far as the concentration of nanoclay is concerned, the nanocomposites containing 5 wt% 

nanoclay exhibit the highest permittivities compared to the pure SEBS, SEBS_MA and the 

nanocomposites containing 2.5 wt% and 7.5wt% nanoclay. The decline of the permittivity at 

7.5 wt% indicates that concentrations above 5wt% may result in poor dispersion of 

nanoclays. This behavior was observed also in DMA results (Figure 2-4). The same trend of 

increase of the dielectric constant was observed in the dielectric loss of the nanocomposites, 

which confirms that the increase observed in the dielectric constant is due to conduction 

phenomena along the nanoclay/polymer interfaces which leads to both an interfacial 

polarization peak and some low frequency dispersion. These experimental results are 

consistent with the results of quantitative image analysis stating that a higher amount of 

interface is achieved when a 5 wt% nanoclay loading is used. A similar behavior was 

reported in the studies done by Pirani et al. (Pirani, Krishnamachari, & Hashaikeh, 2014) and 

Lam et al. (Lam et al., 2005) who observed that the highest improvements in the mechanical 

properties of the polymer matrices were achieved at optimum nanoclay loadings. They 

attributed the decline of the properties above these optimum loadings to the deterioration of 

the dispersion quality.  

 

Figure 2-10(a) and Figure 2-10(b) show respectively the real and imaginary parts of the 

dielectric permittivities of random hexagonal SEBS nanocomposites vs. oriented hexagonal 

SEBS nanocomposites measured at room temperature. It can be seen that the orientation of 

nanoclays affects the dielectric response. In fact, both the real and imaginary parts of the 

dielectric permittivity of non-oriented nanocomposites are higher than the values 

corresponding to oriented nanocomposites. To illustrate better this increase, the complex 

dielectric permittivity of non-oriented hexagonal SEBS_5%_int_ran_hex nanocomposite as a 

function of increasing temperature from 25 °C to 95 °C, is presented in Figure 11. A more 

pronounced increase of the dielectric permittivity (Figure 2-11(a)) and the dielectric loss 

(Figure 2-11(b)) in the isotropic sample compared to the anisotropic sample (Figure 2-9(c) 

and Figure 2-9(d)) is observed at high temperatures. For instance, at 0.1 Hz and 95 °C, 

respectively the dielectric constant and the dielectric loss of the oriented vs. random sample 

were: 3.4 vs. 14.4 and 1.3 vs. 30.9. This difference of dielectric behavior between the 
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anisotropic nanocomposite and the isotropic nanocomposite at low frequencies and especially 

at high temperatures could be explained by the fact that the increase of the dielectric constant 

and the dielectric loss is essentially due to the conductivity of clay tactoids which is an 

anisotropic property. In fact, the conductivity along clay platelets is largely higher than 

across them (David et al., 2013). Hence, the alignment of nanoclays along the direction of 

extrusion in the oriented nanocomposites may result in a decreased conductivity along the 

thickness of the nanocomposites samples and consequently lower dielectric permittivities and 

dielectric losses compared to the isotropic samples when measurements are done 

perpendicularly to the preferred orientation direction.  
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Figure 2-10: Real (a) and Imaginary (b) parts of the complex                                    
permittivity at room temperature of oriented hexagonal vs. random                                     

hexagonal SEBS/clay nanocomposites 

(a) 

(b) 
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Figure 2-11:  Real (a) and imaginary (b) parts of the complex permittivity of 
SEBS_5wt%_int_ran_hex nanocomposite with random hexagonal structure in the 

temperature range from 25 to 95 °C 
 

In order to study the effect of SEBS structure on the dielectric response, the complex 

permittivity of unannealed mostly lamellar SEBS_5% clay nanocomposite prepared by 

solution method was evaluated and compared to its corresponding nanocomposite with 

random hexagonal morphology. Figure 2-12(a) and Figure 2-12(b) show respectively the real 

and the imaginary parts of dielectric permittivity of SEBS_5wt%_int_ran_lam 

nanocomposite in the temperature range 25 to 95 °C. The results indicate that the 

nanocomposite with dominant lamellar morphology exhibits largely higher dielectric loss 

compared to the nanocomposite with hexagonal structure (Figure 2-11(a) and Figure 

2-11(b)). For example, at 0.1 Hz and 95 °C, the values of dielectric constant were 14.4 vs. 

19.5 and the values of dielectric loss were 30.9 vs. 98.0 respectively in hexagonal vs. 

lamellar SEBS_5% clay nanocomposites. Prior to determining the origin of this difference, it 

is worth mentioning that both random hexagonal pure SEBS and random lamellar pure SEBS 

exhibit dielectric responses similar to the dielectric response of oriented cylindrical SEBS 

plotted in Figure 2-9(a) and Figure 2-9(b) (the results are not presented in this paper). As a 

consequence, the observed difference in the dielectric behavior of the nanocomposites is 

related to how the morphology of SEBS affects the orientation and dispersion of nanoclays. 

(b) (a) 
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One possible explanation is that the lamellar morphology may hinder the orientation of 

nanoclays more than cylindrical morphology. 

  

Figure 2-12: Real (a) and imaginary (b) parts of the complex permittivity of 
SEBS_5wt%_int_ran_lam nanocomposite with random lamellar structure in the               

temperature range from 25 to 95 °C 
 

2.3.3 AC short-term breakdown strength  

The breakdown strength is equal to the maximum electric field that an insulating material can 

withstand without breaking down ("IEEE Guide for the Statistical Analysis of Electrical 

Insulation Breakdown Data," 2005). In this paper, the retrieved AC breakdown data were 

treated by means of a two-parameter Weibull distribution to assess the evolution of the 

breakdown strength of the tested nanocomposites. The expression of the two-parameter 

Weibull distribution is shown in equation (2.3). More details regarding the use of Weibull 

distribution for dielectric strength estimation could be found in IEEE 930 standard ("IEEE 

Guide for the Statistical Analysis of Electrical Insulation Breakdown Data," 2005). 

 

 

 

(b) (a) 
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P                                                        (2.3) 

Where:  

P: is the cumulative probability of failure at an electric field less or equal to E;  

E0: is the scale parameter corresponding to the breakdown strength for which the cumulative 

failure probability is equal to 63.2%; 

β: is the shape parameter which measures the range of breakdown strengths. The larger β is 

the smaller is range for breakdown strengths. 

 

The Weibull plots of the experimental data corresponding to oriented SEBS/clay 

nanocomposites are displayed in Figure 2-13 while the Weibull parameters of all the 

nanocomposites are summarized in Table 2-4. The electric field was perpendicular to the 

direction of preferred orientation in the anisotropic samples, for breakdown measurements as 

well (Figure 2-7). The average thicknesses of the nanocomposites and the relative humidity 

were also reported since they may affect the measurements. Regarding the oriented samples, 

a tremendous increase of the breakdown strength was achieved by the addition of nanoclays 

within the pure SEBS. The maximum increase corresponds to the intercalated SEBS_5wt% 

nanocomposite by 45%. At 7.5wt% loading of nanoclay, the breakdown strength starts to 

decrease again. This behavior is analogous to the behavior seen in dielectric spectroscopy 

and dynamic mechanical analysis. 
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Figure 2-13: Weibull plot of breakdown strength of SEBS vs. SEBS/clay                 
nanocomposites with oriented hexagonal structure 

 

In the oriented samples with exfoliated nanoclay structure, prepared with SEBS_MA as a 

matrix, the breakdown strength starts to decrease from 5wt% loading of nanoclay after an 

initial increase by 35% corresponding to 2.5wt% nanoclay loading. This behavior could be 

explained by the fact that in the presence of a large amount of exfoliated nanoclay in 

SEBS_MA_5wt%_exf_ori_hex nanocomposite as demonstrated by image quantitative 

analysis, a network starts to form in some regions of the polymer and consequently reduces 

the breakdown voltage. Furthermore, the breakdown values of these 3 nanocomposites 

prepared from SEBS_MA are relatively lower than the rest of the nanocomposites due to 

probably lower Young’s modulus of SEBS_MA compared to pure SEBS induced by its less 

ordered structure. The increased relative humidity when the breakdown measurements were 

performed on these samples could also be responsible for this unexpected decrease.  

 

In terms of isotropic samples, it could be seen from Table 2-4 that the dielectric breakdown 

strengths of the random hexagonal samples, either pure SEBS or SEBS_5% nanocomposites 

are higher than the values measured for the oriented samples prepared by extrusion. 

However, the nanoclays didn’t induce any increase of the breakdown strength of the pure 
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matrix unlike the case of the oriented samples. Hence, it seems that the breakdown 

phenomena in these materials are mostly governed by the isotropic structure of SEBS. In the 

same context of the influence of SEBS structure, it could be also seen from Table 2-4 that the 

breakdown strength values of the samples with dominant lamellar morphology are higher 

than samples with cylindrical morphology. The presence of lamellar morphology could be 

responsible for this increase of the breakdown strength due to the mechanical strengthening 

of the structure. However, the breakdown measurements could be also overestimated after 

the thickness normalization. In fact, the lamellar samples are in average thicker compared to 

the rest of the samples and also compared to the normalization thickness used for correction. 

 

Table 2-4: Dielectric strengths of SEBS, SEBS_MA and their nanocomposites 

 
Nanocomposite 

 
Morphology 

 
E0 

(kV/mm) 

 
Β 

 
Average 
thickness 

(μm) 

 
Relative 
humidity 

(%) 

SEBS_0  
Intercalated  

Oriented 
Hexagonal 

(Type I in Table 2-2) 

88 7.3 108 22 

SEBS_2.5 123 5.9 96  22 

SEBS_5 127 5.6 98 22 

SEBS_7.5 120 3 129 22 

SEBS_MA_2.5 Exfoliated 
Oriented  

Hexagonal 
(Type II in Table 2-2) 

119 5.3 118 31 

SEBS_MA_5 109 6.3 97 31 

SEBS_MA_7.5 113 3.8 120 31 

SEBS_0 Intercalated  
Random  

Hexagonal  
(Type III in Table 

2-2) 

133 3.7 110 23 

SEBS_5 135 4.1 122 23 

SEBS_0 Intercalated  
Random  
Lamellar  

(Type VI in Table 
2-2) 

147 3.4 155 23 

SEBS_5 144 6.1 171 23 
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To conclude, the oriented nanoclays seem to be more efficient in scattering electrons 

transport and increasing the breakdown strength. The increase of the breakdown induced by 

these samples is the highest compared to the isotropic samples where nanoclays were 

randomly dispersed.  However, in terms of SEBS structure effect, the orientation of PS 

cylinders in SEBS is more likely to produce a negative effect which was not observed in the 

isotropic structure. This effect could be attributed to the reduction of Young’s modulus and 

stiffness along the thickness of the oriented samples. In fact, Wang et al. (Wang, Fujinami, 

Liu, Nakajima, & Nishi, 2010) estimated the Young’s modulus of respectively PS and PEB 

blocks of an SEBS grade similar to the one used in this study to be equal to: 133.3±26 MPa 

and 25.6±9.2 MPa. Hence, the orientation of PS cylinders could significantly decrease the 

modulus along the thickness of the samples which was proved to be a key parameter 

controlling the breakdown strength in dielectric elastomers (Kollosche & Kofod, 2010; 

Kollosche et al., 2009). More precisely, it was reported that a consistent reduction in Young’s 

modulus and stiffness could lead to electromechanical breakdown (Dissado & Fothergill, 

1992). This effect of mechanical strength is further confirmed by the observed increase of the 

breakdown strength in samples containing lamellar morphology which normally exhibits 

stronger equivalent Young’s modulus (compared to the cylindrical morphology) due to the 

arrangement of PS phase with high Young’s modulus in form of lamellae. 

2.3.4 Summary of results 

The main effects of structural changes in the morphology of SEBS/nanoclays on the complex 

dielectric permittivity and ac the breakdown strength are summarized in Table 2-5. 
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Table 2-5: Summary of different effects of SEBS/nanoclays morphology on the complex 
dielectric permittivity and breakdown strength 

Morphology Effect on dielectric properties 

 
 

Exfoliation vs. 
Intercalation 

- Higher interfacial polarization in the exfoliated 
structures 

- Relaxation peak in the dielectric loss of exfoliated 
structures 

- Less improvement of the breakdown strength in the 
exfoliated structure compared to intercalated structures. 

 
Concentration of 

nanoparticles 

- Highest dielectric constants and dielectric losses at 
5wt% in both intercalated and exfoliated structures 

- Highest breakdown strength at 5wt% in intercalated 
structure and at 2.5wt% in exfoliated structure 

 
 
 
 
 

Orientation 

Oriented nanoclays 
- Efficient scattering of electrons and increase of the 

breakdown strength by 45%  
- Reduced dielectric losses at high temperatures  
- Reduced breakdown strength of the pure SEBS due to 

reduction of  mechanical strength perpendicular to the 
direction of orientation of PS cylinders 

Random nanoclays 
- Negligible effect of random nanoclays on the 

breakdown strength 
- High dielectric losses at high temperatures  

 
Structure of SEBS 

- Slightly higher breakdown strength in the lamellar 
structure due to the improvement of the mechanical 
strength 

 

2.4 Conclusion 

The dielectric properties and breakdown strength of SEBS/clay nanocomposites have been 

shown to be closely dependent on several structural properties such as the nanoclays' state of 

exfoliation, concentration and orientation as well as the structure of SEBS block copolymer. 

In particular, the exfoliation of nanoclays was responsible for the appearance of a relaxation 

peak caused by the interfacial polarization. Besides, the nanoclay orientation resulted in a 

significant reduction of the dielectric loss and a maximum increase of the breakdown 

strength by 45% compared to negligible or no increase induced by random nanoclays in 

isotropic nanocomposites. In these last nanocomposites, a beneficial effect from the random 
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distribution of PS domains in improving the mechanical strength and consequently the 

breakdown strength of the structure was rather seen and responsible for the increase of the 

breakdown strength of pure SEBS, especially in its lamellar structure compared to oriented 

SEBS. In all of the samples, it was demonstrated that a nanoclay loading of 2.5 to 5 wt% is  

an optimum content in terms of dispersion, number of nanoscale interfaces and dielectric 

performance. Finally, the results achieved so far in this study could be enhanced by studying 

the variation of the breakdown strength and dielectric loss in special morphologies where it is 

possible to take advantage of the orientation of nanoclays without degrading the mechanical 

strength of the SEBS matrix itself. An oriented lamellar morphology, a bi-oriented 

morphology or an isotropic morphology of PS cylinders with aligned nanoclays could 

represent interesting candidates in this context.  
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Abstract 

The dielectric properties of nanocomposites of polystyrene-b-poly(ethylene-co-butylene)-b-

polystyrene (SEBS) triblock copolymers containing organically modified clay nanoparticles 

featuring controlled spatial orientation at the nanoscale: isotropic, totally oriented and 

partially oriented, have been investigated and correlated with the nanocomposite 

morphologies. A slow dielectric relaxation process attributed to elastomer chains with 

reduced mobility confined at nanoparticle/polymer interphase was observed in all the 

nanocomposites and was found to be dependent on the orientation of nanoclay and 

polystyrene (PS) domains, the location of clay tactoids as well as the PS block fraction. A 

dielectric “interfacial” glass transition temperature Tgi assigned to this characteristic 
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relaxation was estimated to occur at temperatures ranging between 6 °C and 35 °C depending 

on the nanocomposite, which is much higher than the bulk rubber phase glass transition 

temperature, normally lower than -40 °C for the studied block copolymers. Interestingly, the 

highest Tgi were associated with the nanocomposites featuring random or partial orientation 

and/or selective location of nanoparticles in the rubber phase. 

Keywords: block copolymer nanocomposite, nanoclay, interphase, confinement, orientation, 

controlled dispersion, selective location 

3.1 Introduction  

In nanocomposite materials, controlled orientation of certain anisotropic nanoparticles such 

as nanoclay (Carastan et al., 2014; E Helal et al., 2015) , carbon nanotubes (Goh, Ismail, & 

Ng, 2014) and recently boron nitride nanotubes and nanosheets (Z. Cui, Cao, Ma, Dobrynin, 

& Adamson, 2015; Terao et al., 2010) is very beneficial for a wide spectrum of applications 

requiring excellent mechanical, electrical and/or thermal properties. For example, in the case 

of mechanical reinforcement, the alignment of nanoclay was reported in several publications 

to induce an improved mechanical strength in the alignment direction (Galgali, Agarwal, & 

Lele, 2004). In the specific case of nanodielectrics, more efficient electron scattering and 

consequently higher breakdown strength perpendicular to the nanoparticles alignment 

direction were reported (David et al., 2013; Fillery et al., 2012; E Helal et al., 2015; Tomer et 

al., 2011). Simultaneously, nanoparticle alignment was shown to reduce dielectric losses in 

the direction perpendicular to the main plane of the aligned nanoparticles (E Helal et al., 

2015). This controlled orientation can be obtained using a wide range of techniques (Goh et 

al., 2014)  although spatial alignment of nanoparticles according to 2D and 3D patterns is 

still a challenging field of study (Richard A Vaia & Maguire, 2006). 

 

In applications requiring tuned spatial distribution of nanoparticles, the use of block 

copolymers can be really an asset due to the different nanoscale morphologies these materials 

present (Hamley, 2001; Helfand, 1975; Ohta & Kawasaki, 1990; Sarkar & Alexandridis, 

2015; Semenov, 1993). To probe the effect of tailored morphology and orientation of such 
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designed nanocomposites on their polymer-filler interactions and implicitly on their final 

performance, techniques such as broadband dielectric spectroscopy (BDS) are often required 

(Kremer & Schönhals, 2012). 

 

In fact, the performance of polymer nanocomposites in general is governed by the interphase 

region (Roy et al., 2005; Leszek A Utracki, 2010) which consists mainly of a bound layer 

where the motion of macromolecular chains is strongly restricted affecting several properties 

including dielectric and mechanical properties (Hernández, Carretero-González, Verdejo, 

Ezquerra, & López-Manchado, 2010; Qu et al., 2011; Leszek A Utracki, 2010; Vo et al., 

2011). The thickness and volume fraction of this interphase usually depend on the geometry 

of the nanoparticles and their compatibility with the polymer matrix (L. Chen et al., 2009; 

Klonos, Kyritsis, & Pissis, 2015; Yu Lin et al., 2015; Robertson & Rackaitis, 2011). It was 

estimated using both experimental techniques (L. Chen et al., 2009; Yu Lin et al., 2015) and 

molecular dynamics simulations (Gao, Liu, Zhang, & Cao, 2014; Ghanbari, Rahimi, & 

Dehghany, 2013). Furthermore, an additional glass transition corresponding to the interfacial 

polymer chains with restricted mobility was observed in some nanocomposites featuring 

strong attractive interfacial interactions (L. Chen et al., 2009; Y. Gao et al., 2014; Ghanbari 

et al., 2013; Hernández et al., 2010; Hernández, del Mar Bernal, Verdejo, Ezquerra, & 

López-Manchado, 2012; Holt et al., 2014; Klonos et al., 2015; Yu Lin et al., 2015; Robertson 

& Rackaitis, 2011; Tsagaropoulos & Eisenberg, 1995; Tsagaropoulos & Eisenburg, 1995; Vo 

et al., 2011) and predicted by modeling and simulations (Starr, Schroder, & Glotzer, 2002) as 

well, for relatively thick bound layers. 

 

The reduced mobility of polymer chains in the interphase region of homopolymer-based 

nanocomposites has been well investigated during the last years, especially the effect of 

interaction strength between nanoparticles and the polymer matrix. However, to the best of 

our knowledge, there is only little literature regarding the interphase region in block 

copolymer based nanocomposite systems and specifically the effect of the orientation of 

nanoparticles and block copolymer nanodomains on polymer dynamics in this interphase 

region. In fact, in the case of nanocomposites prepared from multicomponent polymer 
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matrices, an additional degree of complexity is added to the system as the nanofillers can 

interact differently with the constitutive components (Sarkar & Alexandridis, 2015; Vo et al., 

2011). These interactions are usually interdependent and hard to quantify separately. Few 

studies investigated the dielectric behavior of copolymers and its dependence on chemical 

and structural factors such as sulfonation (H. Chen et al., 2011) and compatibility with 

different nanofillers. In this context, Vo et al. (Vo et al., 2011) studied the dielectric behavior 

of styrene-butadiene rubber (SBR) random copolymer filled with three different 

nanoparticles: nanoclay, silica and carbon black. They reported a new relaxation mode for all 

three systems attributed to the segmental motion of rubber chains with reduced mobility at 

the polymer-nanoparticle interface. Moreover, they evaluated an interfacial glass transition 

temperature Tgi associated with this relaxation process. The highest Tgi was attributed to the 

SBR/clay system indicating stronger interaction and better compatibility compared to the two 

other fillers. 

 

In this work, we investigated polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene 

(SEBS) thermoplastic elastomer as the block copolymer matrix since it presents excellent 

features suitable for many applications, such as good mechanical properties (Balsamo et al., 

2006; Holden et al., 2004) , good resistance to water treeing (Liu et al., 2011; Z. Ma et al., 

2010) as well as good electromechanical coupling (B. Kim et al., 2011). It is a symmetric 

triblock copolymer composed of two polystyrene (PS) end-blocks of the same length at the 

extremities and a poly (ethylene-co-butylene) (PEB) rubber mid-block. Organically modified 

nanoclays, known for their beneficial effect on mechanical and dielectric properties of 

polymer nanocomposites including breakdown strength, resistance to surface erosion and 

reduction of space charge accumulation (David et al., 2013; Fillery et al., 2012; MF Fréchette 

et al., 2008; Galgali et al., 2004; E Helal et al., 2015; Tomer et al., 2011; Leszek A Utracki, 

2010), were added to the thermoplastic elastomer. Four sets of block copolymer 

nanocomposites containing three different weight fractions of PS phase (0.13, 0.20 and 0.30) 

were investigated in total. Depending on these ratios and using several fabrication processes, 

different morphologies were successfully prepared: isotropic vs. totally oriented vs. partially 

oriented polystyrene nanodomains and clay nanoparticles. Moreover, the degree of 
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exfoliation and location of clay particles inside PS or PEB domains were tailored using a 

specific SEBS grade with a maleic anhydride (MA) grafted on the PEB block.  

 

In a first step, the orientation of nanoclay and PS nanodomains in the different samples as 

well as the state of order of the block copolymer were fully characterized by SAXS and 

TEM. In a second step, the dielectric response was studied as a function of frequency and 

temperature in order to investigate the influence of the block copolymer tuned architecture on 

the polymer dynamics, which may affect implicitly the engineering properties such as 

dielectric losses, breakdown strength and mechanical stiffness, to name a few. The dielectric 

spectroscopy results were correlated to SAXS and TEM results in order to come up with a 

template of block copolymer nanodielectrics (M. F. Frechette, Trudeau, Alamdar, & Boily, 

2004) with controllable morphology and properties suitable for different dielectric 

applications. In particular, a slower dielectric relaxation mode compared to the main 

relaxation responsible for the bulk glass transition of the rubbery phase was observed in all 

nanocomposites and attributed to the segmental motion of rubber chains with reduced 

mobility located at the polymer-nanoparticle interphase. An interfacial glass transition Tgi 

associated with this new relaxation mode was estimated and used to quantify the interaction 

strength between the nanoparticles and the polymer chains depending on the configuration, 

the styrene block content and the location of the nanoparticles in one block or another. 

Besides, this new dielectric relaxation process, attributed to rubber chains located at the 

interfacial layer, was also observed in the dynamic mechanical responses of samples 

prepared from SEBS grade containing 30 wt% of PS block. Finally, the thickness of the 

interfacial layer was estimated in the range 7-10 nm.  

3.2 Materials and methods 

Four grades of symmetric triblock copolymer SEBS donated by Kraton were used: G1643, 

G1645, G1652 and FG1901. These grades contain different fractions of PS block ranging 

from 13 to 30 wt%. Besides, the FG1901 grade contains 1.4-2 wt% of maleic anhydride 

(MA) group attached to its elastomeric PEB block. All the grades contain 0% of diblocks. 

More details regarding the physical properties and morphologies of these polymers are 
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reported in Table 3-1. Montmorillonite clay grade Cloisite 20A purchased from Southern 

Clay (Gonzales, USA) and modified with dimethyl di(hydrogenated tallow) quaternary 

ammonium salt, was used as nanofiller for the nanocomposites preparation. More details 

regarding the physical properties of the polymers as well as the modification and size of clay 

particles were provided in the previous studies published by co-authors in the same context 

of research (Leice G Amurin, Carastan, & Demarquette, 2016; Carastan et al., 2014; De 

Sousa Jr, Amurin, Demarquette, & Carastan, 2014; E Helal et al., 2015). All the materials 

studied in this paper were used as received.  

Table 3-1: Properties of SEBS-13, SEBS-20 and SEBS-30 

Block 
copolymer 

Grade PS 
wt% 

MFI 
(g/10min) 

ρc 

(g/cm3) 
TOOTd (°C) TODTe 

(°C) 
SEBS-20 G1643 20 18a 0.9 always cylindrical > 200 

 
SEBS-13 

 
G1645 

 
13 

 
40b 

 
0.9 

between 150 and 
160 

(transition to 
spherical) 

 
190-
200 

SEBS-30 G1652 30 5b 0.91 always cylindrical >200 
SEBS-30-MA FG1901* 30 22b 0.91 always cylindrical >200 
a melt flow index measured at 230°C/2.16 Kg, ASTM D1238, provided by the supplier 
b melt flow index measured at 230°C/5 Kg, ASTM D1238, provided by the supplier 
c specific gravity, provided by the supplier 
d order to order transition (OOT) estimated from small amplitude oscillatory shear 
(SAOS) and small angle X-ray scattering (SAXS) measurements not presented in this 
manuscript. 
e order to disorder transition temperatures (ODT) estimated from small amplitude 
oscillatory shear (SAOS) and small angle X-ray scattering (SAXS) measurements not 
presented in this manuscript. 
* FG1901 grade contains 1.4-2 wt% of maleic anhydride (MA) 

 

The nanocomposites were prepared by solvent casting, sheet die extrusion or film blowing 

extrusion to achieve different morphologies. In the case of solvent casting process, the SEBS 

powder and the nanoparticles were mixed in toluene by magnetic stirring at 60 °C. The 

mixture was subsequently poured into a Petri dish and left in open air under the fume hood 
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for several days until complete evaporation of solvent. They were subsequently dried in a 

vacuum oven and annealed according to specific temperature profiles selected depending on 

the styrene content, in order to reach equilibrium morphologies (Hadjichristidis, Hirao, 

Tezuka, & Du Prez, 2011). For SEBS-13 and SEBS-20, the sequence: 10 minutes at 50 °C, 

30 minutes at 110 °C, 2 hours at 150 °C and 24 hours at 60 °C was used while for SEBS-30 

and SEBS-30-MA, the sequence 20 min at 60 °C, 20 min at 100 °C, 20 min at 150 °C and 10 

min at 200 °C was used as published in reference (E Helal et al., 2015). The samples 

prepared by sheet die extrusion were obtained according to references (Leice G Amurin et 

al., 2016; Carastan et al., 2014). In a typical procedure, clay nanoparticles were mixed with 

SEBS in a twin screw extruder equipped with a sheet die, at a temperature profile ranging 

from 160 to 190 °C for SEBS-20, equal to 150 °C for SEBS-13 and equal to 200 °C for 

SEBS-30 and SEBS-30-MA and a screw speed of 100 rpm. The films prepared from SEBS-

20 by film blowing extrusion were processed in a first step following the same procedure of 

sheet die extrusion. Subsequently, the samples were processed in a single screw extruder 

using the same temperature profile and a screw speed equal to 30 rpm. The latter was 

connected to an annular die with controllable air pressure inside the tube in order to induce 

lateral elongation and promote biaxial orientation of the block copolymer. In this study, the 

resulting films were inflated with air at two blow-up ratios: R1=1 and R3=3 in order to 

initiate respectively uniaxial and biaxial orientation directions. More details regarding this 

processing method are available in reference (De Sousa Jr et al., 2014) published by co-

authors. The sheet die extrusion and the film blowing extrusion processes are illustrated in 

Figure 3-1. 
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Figure 3-1: Illustrations showing: (a) sheet die extrusion, (b) film blowing with                 
ratio R1= 1 and (c) film blowing with ratio R3= 3 (Coordinate system used                           

as reference is indicated at the left of the figure) 
 

The samples prepared by solvent casting were used without any other treatment for further 

characterization. The samples prepared by sheet die extrusion and film blowing extrusion 

were pressed for 2 min at 150 °C for SEBS-13 and SEBS-20 and at 200 °C for SEBS-30 and 

SEBS-30-MA, under 10 tons before further characterization, in order to have films with 

comparable thicknesses. The average thickness of all the films was around 550 μm. Short 

time and relatively low temperatures were used to avoid possible changes in morphology or 

transition to disordered state (as what will be shown later in the manuscript). The list of 

samples and their nomenclature are presented in Table 3-2. 

 

 

 

 

 

 

 

 

(a) (b) (c) 
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Table 3-2: Nomenclature of nanocomposites 

Polymer Nanoparticles 
wt% 

Porcessing method Nomenclature 

SEBS-20 0 Sheet die extrusion SEBS-20-extrusion 
SEBS-20 5 Sheet die extrusion SEBS-20-20A-extrusion 
SEBS-20 0 Solvent casting SEBS-20-solution 
SEBS-20 5 Solvent casting SEBS-20-20A-solution 
SEBS-20 0 Film blowing ratio R1 SEBS-20-film blowing R1 
SEBS-20 5 Film blowing ratio R1 SEBS-20-20A-film blowing R1 
SEBS-20 0 Film blowing ratio R3 SEBS-20-film blowing R3 
SEBS-20 5 Film blowing ratio R3 SEBS-20-20A-film blowing R3 
SEBS-13 0 Sheet die extrusion SEBS-13-extrusion 
SEBS-13 5 Sheet die extrusion SEBS-13-20A-extrusion 
SEBS-13 0 Solvent casting SEBS-13-solution 
SEBS-13 5 Solvent casting SEBS-13-20A-solution 
SEBS-30 5 Sheet die extrusion SEBS-30-20A-extrusion 
SEBS-30 5 Solvent casting SEBS-30-20A-solution 

SEBS-30-MA 5 Sheet die extrusion SEBS-30-MA-20A-extrusion 

 

It is worth noting that the morphology and the dielectric response of the materials prepared 

from the SEBS-30 and SEBS-30-MA grades have been already reported in previous studies 

(Leice G Amurin et al., 2016; Carastan et al., 2014; E Helal et al., 2015). In particular, it was 

demonstrated, by TEM and XRD (Carastan et al., 2014), that in the presence of MA, clay 

particles are mostly exfoliated and located in the PEB phase while in its absence an 

intercalated clay structure is dominant and clay tactoids cross PS domains. At increasing clay 

loading up to 7.5wt%, both the average distance between (100) planes of the cylindrical 

structures and the diameter of PS cylinders increase (Leice G Amurin et al., 2016).  

 

In terms of dielectric properties, it was shown that the alignment of PS cylinders results in an 

initial decrease of the breakdown strength that was compensated by the improvement induced 

through the alignment of clay tactoids. The highest increase was equal to 45% compared to 

unfilled and aligned SEBS-30, at 5wt% loading of clay. In this manuscript, the frequency-

domain dielectric response of these samples will be investigated in terms of comparison.  
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3.3 Characterization 

The morphology of the as-obtained nanocomposites was characterized by small angle X-ray 

scattering (SAXS) and transmission electron microscopy (TEM). Subsequently, the dielectric 

properties and the dynamic mechanical properties were characterized by means of 

respectively broadband dielectric spectroscopy (BDS) and dynamic mechanical analysis 

(DMA). 

 

3.3.1   Small Angle X-ray Scattering 

The SAXS patterns were obtained using Bruker NanoSTAR with 1.5 kV CuKa radiation. 

The sample-to-detector distance was 650 nm. Besides, bidimensional detectors were used in 

order to evaluate potential anisotropic features in the samples. The data were analyzed using 

Fit2D software, without any background subtraction.  

3.3.2 Transmission Electron Microscopy 

The TEM was performed with a JEOL 2100F microscope. Prior to observations, ultrathin 

sections of few tens of nanometers were cryo-cut using an ultra-microtome operated at -100 

°C and deposited on copper grids. The grids were also stained during 30 minutes with 

ruthenium tetroxide RuO4 vapor in order to determine the block copolymer morphology and 

to evaluate the location of clay nanoparticles. 

3.3.3 Broadband dielectric spectroscopy 

In terms of dielectric properties, the complex dielectric permittivity of the nanocomposites 

was measured using a Novocontrol broadband spectrometer. Specimens of 20 mm in 

diameter were placed between two parallel brass plated electrodes. Measurements swept 

through a frequency range from 10-2 Hz up to 105 Hz at a temperature range varying from 25 

°C to 90 °C at 5 °C steps, under an rms excitation voltage of 1 V.  
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3.3.4 Dynamic mechanical analysis 

The measurements were performed using a TA Q800 Instrument operated in tensile mode. 

All the scans were done from -100 °C to 130 °C. The test conditions were as follows: rate of 

heating equal to 3 °C/min, resonant frequency equal to 1 Hz and strain amplitude equal to 

0.1%. The tensile storage modulus (E’), loss modulus (E”) and damping factor (tan δ) were 

evaluated. 

3.4 Results and discussion  

3.4.1  Morphology  

SAXS analysis was performed on every sample before and after pressing in order to check 

the type (cylindrical, spherical, lamellar…) and the stability of the morphology as well as the 

orientation of both PS domains and clay nanoparticles. The diffraction patterns, before and 

after pressing, were similar, indicating that the compression molding did not induce any 

significant change in the initial morphologies. In addition, SAXS patterns were recorded at 

different temperatures up to 140 °C in order to check for changes in the morphology and 

state of order that might be encountered during thermal annealing or dielectric spectroscopy 

scans, as those ones were carried out as a function of temperature. The relative plots 

indicating peak positions were integrated as well from the 2D patterns. In the following 

sections, the different samples are analyzed and classified depending on PS block and clay 

nanoparticles orientations in three different categories: totally isotropic, totally aligned and 

partially aligned morphologies. 

3.4.1.1 Totally isotropic morphologies 

Isotropic morphologies with totally random orientation of PS nanodomains and clay 

nanoparticles were obtained in all the samples prepared by solvent casting independently 

from the polystyrene block content (13, 20 or 30 wt%). Typical diffraction patterns 

corresponding to SEBS-13-solution and SEBS-20-solution materials are reported in Figure A 
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II-1 of the supporting file (annex II). The patterns feature concentric rings, in the 3 directions 

of measurement indicating isotropic orientation of both PS domains and nanoclay. In the case 

of the pure copolymer, the concentric rings are related to the scattering from PS domains 

while in the nanocomposite, this scattering is overlapped with more intense scattering from 

clay nanoparticles. Similar features were observed in nanocomposites prepared from SEBS-

30-solution (SAXS data available in Figure A I-4 of annex I relative to (E Helal et al., 

2015)). TEM micrographs corresponding to SEBS-30-20A-solution nanocomposite are 

reported in Figure A II-5 of the supporting file (Annex II). They confirm the isotropic 

distribution of clay tactoids and PS cylinders in samples prepared by solvent casting method.  

 

Figure 3-2 presents SAXS radial plots of scattering intensity as a function of scattering vector 

q corresponding to neat materials and nanocomposites prepared by solvent casting from 

SEBS-20 and SEBS-13 matrices. Results regarding samples prepared from SEBS-30 were 

already published in a previous study (E Helal et al., 2015). The profiles were integrated for 

5 different temperatures ranging from 25 °C to 140 °C. In Figure 3-2(a) and Figure 3-2(b) 

corresponding to respectively neat SEBS-20-solution and its nanocomposite, the relative q-

positions of Bragg peaks follow the sequence 1:√3:√7 characteristic of a hexagonally packed 

cylindrical structure. It can be seen that the intensity of the second peak increased slightly 

with increasing temperature, as indicated by the arrows, which infers a positive effect of 

thermal annealing in reaching equilibrium morphologies and consequently improving long-

range order (Hadjichristidis et al., 2011). In Figure 3-2(c), corresponding to the neat SEBS-

13-solution, the same features were observed. However, in the case of the nanocomposite 

(Figure 3-2(d)), the first peak was detected at the same position but the second peak was very 

weak or completely absent. In addition, no obvious improvement was observed with 

increasing temperature. These results indicate that the state of order is altered in the presence 

of clay nanoparticles and does not improve with annealing. In particular, this behavior might 

indicate improved dispersion and degree of intercalation that, in addition to random 

nanoparticles distribution, help to freeze the block copolymer structure even when subjected 

to thermal annealing and to reduce the mobility of polymer chains located at the interphase. 

A higher clay interlayer spacing, d, and consequently intercalation degree has been already 
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reported for nanocomposites prepared by solvent casting from SEBS-13 (d=3.59 nm) 

compared to nanocomposites prepared from SEBS-30 (d=3.09 nm), both containing Cloisite 

15A nanoparticles (Carastan et al., 2008). This observation will be correlated later with 

dielectric spectroscopy results. 

 

  

  

Figure 3-2: Scattering intensity as function of scattering vector q at different temperatures of: 
(a) SEBS-20-solution and (b) SEB-20-20A-solution nanocomposite, (c) SEBS-13-solution 

and (d) SEBS-13-20A-solution nanocomposite 
 

(b) (a) 

(c) (d) 
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3.4.1.2 Totally aligned morphologies 

Diffraction patterns corresponding to samples prepared by sheet die extrusion from SEBS-20, 

SEBS-30 and SEBS-30-MA are not shown in this manuscript since they exhibit totally 

aligned morphologies in the extrusion direction. Typical patterns were previously reported by 

co-authors in reference (Carastan et al., 2014) for SEBS-30 materials. TEM micrographs of 

SEBS-30-MA-20A-extrusion nanocomposites exhibiting aligned and mostly exfoliated clay 

layers are reported in Figure A II-6 of the supporting file (annex II). Aligned morphologies 

were not obtained in the case of SEBS-13-extrusion as this material has limited tendency to 

align due to the low fraction of PS block (Leice G Amurin et al., 2016). The case of SEBS-

13-extrusion will be treated in the following section within partially aligned morphologies. 

3.4.1.3 Partially aligned morphologies 

In addition to totally random morphologies and totally aligned morphologies, some 

intermediate configurations were successfully achieved depending on the content of styrene 

and the process used. More specifically, materials prepared from SEBS-20 by film blowing 

extrusion exhibit two distinct morphologies depending on the blowing ratio: R1=1 or R3=3. 

Figure 3-3 shows the diffraction patterns ((a)-(b)) and the TEM images ((c)-(e)) 

corresponding to SEBS-20-film blowing R1 and its nanocomposite SEBS-20-20A-film 

blowing R1. In particular, the sections examined by TEM were cut perpendicular to the flow 

direction (i.e. parallel to XZ plane indicated in Figure 3-1). Diffraction patterns 

corresponding to neat SEBS-20-R1, presented in Figure 3-3(a), show evidence of hexagonal 

packing of PS cylinders in the Y direction while in the X and Z directions, two sets of Bragg 

peaks can be observed indicating the alignment of the majority of PS cylinders parallel to Y 

axis (the initial direction of extrusion as indicated in Figure 3-1). Relative to nanocomposites, 

diffraction patterns corresponding to SEBS-20-20A-R1 (Figure 3-3(b)) show strong diffuse 

spots related to the scattering of nanoclay along the X and Y directions, which indicates 

dominant alignment of nanoclay parallel to the XY plane (the initial direction of the flow). 

The presence of maxima in the diffuse spots is characteristic of intercalated nanoclay 
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structure, which was confirmed by X-ray diffraction results reported by co-authors for 

similar samples (Leice G Amurin et al., 2016; Carastan et al., 2014). TEM images confirm 

preferential alignment of PS domains and nanoclay in the main direction of the flow (when 

PS domains appear as small well-defined circles as indicated by the full-line white rectangle 

in Figure 3-3(e)). Nevertheless, they reveal the appearance of additional directions of 

orientation for both PS cylinders and nanoclay, in less important fractions though. In some 

regions, a fraction of PS cylinders rotated across the thickness (as indicated by the white 

dotted rectangles in Figure 3-3(e)). However, the angle of orientation is in most of the cases 

lower than 90°, meaning that they do not succeed in orienting perfectly along the thickness. 

Besides, less strong scattering is also observed in the Z direction of the nanocomposite 

diffraction patterns (Figure 3-3(b)), which indicates orientation of some clay tactoids in the 

YZ plane (across the thickness of the sample). This observation is consistent with the TEM 

image of Figure 3-3(c) showing that some small clay nanoparticles (indicated by the arrows) 

are aligned perpendicular to the main orientation of bigger tactoids. This effect could be 

promoted by the presence of a normal force (parallel to Z axis) induced by the tubular die.  

However, the orientation of a small fraction of clay particles in directions other than the main 

flow direction was reported even for samples prepared by sheet die extrusion (Carastan et al., 

2014). Radial plots of scattering intensity as a function of scattering vector q of the neat 

material and the nanocomposite are presented in Figure A II-2 of the supporting file (annex 

II). The 1:√3:√7 sequence characteristic of hexagonal structure is observed in both the neat 

and the nanocomposite confirming the dominance of hexagonal cylindrical structure. 
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Figure 3-3: (a)-(b) 2D SAXS patterns of: (a) SEBS-20-film blowing R1 and (b) SEBS-20-
20A-film blowing R1,  (c)-(e) TEM images of SEBS 20-20A- film blowing R1 at 3 different 
magnifications showing  imperfect alignment of PS cylinders and clay tactoids: (d) zoom on 

the section defined by black square in (c), (e) the white square indicates regions featuring 
perfect alignment of PS cylinders in the extrusion direction while dotted white rectangles 
indicate other directions of alignment (PS domains were stained with RuO4 (dark phase)) 

 

Figure 3-4 shows SAXS diffraction patterns and TEM images of neat SEBS-20-film blowing 

R3 and its nanocomposite SEBS-20-20A- film blowing R3. The diffraction patterns, 

presented in Figure 3-4(a)-(b), reveal the existence of a less perfect hexagonal packing of PS 

cylinders along the Y axis, compared to SEBS-20- film blowing R1. Besides, Bragg peaks 

featured in the X and Z directions are wide and almost form concentric rings indicating 

deviation from the dominant alignment of cylinders along the Y direction (as observed in 

SEBS-20-R1) and formation of a network of isotropic PS cylinders parallel to the XY plane 

due to the high blowing ratio and consequently important lateral forces. This observation is 

further supported by the TEM images presented in Figure 3-4(c)-(d), showing that more PS 

(a) (b) 

(c) (d) (e) 
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domains are oriented in isotropic directions different from the initial flow direction. In Figure 

3-4(b), corresponding to the diffraction pattern of SEBS-20-20A-film blowing R3 

nanocomposite, similar features could be observed in the X and Y directions with more 

intense and narrow scattering indicating more perfect alignment of nanoclay parallel to the 

XY plane. However, by contrast to SEBS-20-20A-film blowing R1, no specific scattering 

related to the orientation of clay tactoids in the Z direction is detected. This fact is most likely 

due to the high lateral forces induced by the R3 blowing ratio that are able to overcome the 

normal forces applied by the tubular die. Only lateral movements of nanoclay should be 

possible; thus alignment in the initial direction of the flow is maintained. The radial plots 

corresponding to SEBS-20-film blowing R3 and its nanocomposite SEBS-20-20A-film 

blowing R3, presented in Figure A II-3 of the supporting file (annex II), exhibit again the 

sequence 1:√3:√7 characteristic of hexagonal structure. However, it is worth noting that the 

intensities of the peaks decreased, compared to R1 samples, which might indicate a lack of 

order due to the increased stretching induced by the high blowing ratio. Moreover, the effect 

of increasing temperatures in improving the intensities of the peaks is less obvious in these 

samples, which might indicate a permanent alteration in the block copolymer ordered state 

due to the important applied deformations. All these observations regarding lack of long 

range order and alteration of initial alignment in the extrusion direction are in a good 

agreement with previous results reported by co-authors in references (Leice G Amurin et al., 

2016; Carastan et al., 2013), stating that samples where initially aligned PS cylinders are 

subjected to high strain values in the transversal direction exhibit misalignment due to the 

rotation of PS domains that tend to align parallel to the deforming force direction. However, 

this rotation is incomplete due to the competition between the alignment of PS domains and 

copolymer molecules which don’t have enough time to relax. This stretching results as well 

in breakage of cylinders in shorter domains and reduced long range order. More details 

regarding these phenomena could be consulted in the cited references (Leice G Amurin et al., 

2016; Carastan et al., 2013).  
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Figure 3-4: (a)-(b) 2D SAXS patterns of: (a) SEBS-20-film blowing R3 and                                
(b) SEBS-20-20A- film blowing R3 nanocomposite, (c)-(d) TEM images                                   

of SEBS-20-film blowing R3 at different magnifications                                                                  
(PS domains (darker phase) were stained with RuO4) 

 

As it was mentioned before, the materials prepared from SEBS-13 matrix by sheet die 

extrusion do not exhibit totally aligned morphologies (Leice G Amurin et al., 2016). 

Therefore, their case will be discussed in this section. SAXS diffraction patterns and radial 

plots corresponding to these samples were integrated, in a similar trend to the previous 

samples, and reported in Figure A II-4 of the supporting file (annex II). 

 

In the diffraction patterns (Figure A II-4(a)-(b) of annex II), only the Z direction is reported 

for the case of the pure material, as the 3 directions were similar. In particular, concentric 

rings related to the scattering from the PS phase were observed in the 3 directions, for both 

the neat copolymer and the nanocomposite. This fact indicates that the majority of PS 

(a) (b) 

(c) (d) 
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domains were not able to orient by the applied shear forces during extrusion and remain 

randomly distributed due to the low polystyrene fraction. However, the scattering from the 

nanoclay features direction dependence (Figure A II-4(b) of annex II). In fact, 2 strong spots 

aligned parallel to Z direction corresponding to Bragg peaks associated with scattering from 

nanoclay were observed in the XZ and YZ planes. These signals indicate the alignment of 

nanoclays parallel to the extrusion direction. Since this alignment may potentially induce 

simultaneous orientation of a fraction of PS cylinders, a partially isotropic PS/partially 

oriented PS configuration will be rather considered for the case of SEBS-13-20A-extrusion 

nanocomposite. Radial plots (Figure A II-4(c)-(d) of annex II) reveal similar characteristics 

compared to the samples prepared by solvent casting in terms of dominance of hexagonally 

packed cylindrical morphology and evolution of order degree with increasing temperature 

and presence of nanoparticles. 

 

In Table 3-3, a summary of all the studied samples, a brief description of their morphologies, 

i.e. the orientation of clay tactoids and PS cylinders, as well as the corresponding illustrations 

of the morphologies are presented. The nomenclature of the samples is also updated to recall 

the concluded morphologies. In particular, the samples that are neither totally aligned nor 

random will be referred to as “partially oriented” to indicate the presence of more than one 

preferential orientation of PS cylinders or clay tactoids or both of them. The direction of the 

applied electric field that was used for dielectric spectroscopy measurements, discussed in 

the following section, is specified in one of the illustrations as well and remains valid for all 

the samples. 

 

It is worth noting that since the achieved orientations of PS cylinders and clay particles are 

dependent on the processing technique, the obtained morphologies are metastable and may 

change if the samples are subjected to additional processing steps. Therefore, a verification 

of the morphology is needed if further steps are required. For instance, some studied samples 

in this manuscript were hot pressed to obtain films of a precise thickness. To avoid potential 

modification of the morphology, the pressing time and temperature were limited as possible. 

The stability of the morphology after this step was checked by SAXS. 
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Table 3-3: Nomenclature, morphology description and morphology sketch of the 
nanocomposites 

 Nomenclature Morphology description Morphology sketch 

 SEBS-20-oriented 
SEBS-30-oriented 

SEBS-30-MA-oriented 

Uniaxially oriented PS cylinders 
in the flow direction along Y axis 

 

 
 

SEBS-20-20A-oriented 
SEBS-30-20A-oriented 

SEBS-30-MA-20A-
oriented 

Uniaxially oriented PS cylinders 
and nanoclay in the flow direction 

along Y axis 

 SEBS-13-isotropic 
SEBS-20-isotropic 
SEBS-30-isotropic 

 
Isotropic PS cylinders 

 

 

SEBS-13-20A-isotropic 
SEBS-20-20A-isotropic 
SEBS-30-20A-isotropic 

 
Isotropic PS cylinders and 

nanoclay 

  

SEBS-20-partially 
oriented R1 

Mainly oriented PS cylinders in 
the flow direction along Y axis 

Minor fraction oriented across the 
thickness along Z axis 

 

 
 

SEBS-20-20A- partially 
oriented R1 

Mainly oriented PS cylinders and 
nanoclay in the flow direction 

along Y axis 
Few PS  cylinders and nanoclay 

oriented across the thickness 
parallel to YZ plane 

SEBS-20- partially 
oriented R3 

Isotropic orientation of cylinders 
in the flow direction parallel to 

XY plane 

 

 

 
 

SEBS-20-20A- partially 
oriented R3 

Oriented nanoclay in the flow 
direction along Y axis 

Isotropic orientation of cylinders 
in the flow direction parallel to 

XY plane 
  

SEBS-13- partially 
oriented 

Partially isotropic PS cylinders 
Partially oriented PS cylinders in 
the flow direction along Y axis 

 

 

 

SEBS-13-20A- partially 
oriented 

Partially isotropic PS cylinders 
Partially oriented PS cylinders in 
the flow direction along Y axis 
Oriented nanoclay in the flow 

direction along Y axis 
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3.4.2 Dielectric properties 

The complex dielectric permittivity of an insulating material measures its response to an 

applied electric field either through polarization mechanisms or charge carrier fluctuations 

(Kremer & Schönhals, 2012). The corresponding equation is described in the supporting file 

(equation (A II.1) in annex II).  

 

In this manuscript, the dielectric response of the studied materials has been characterized as 

functions of frequency and temperature. To better understand the origin and the dynamics 

related to the relaxation modes observed in each material as well as to evaluate the 

contribution from charge fluctuations, depending on the orientation of PS cylinders and 

nanoclay, dielectric permittivity spectra of all nanocomposites were fitted according to 

equation (A II.2) (Kremer & Schönhals, 2012), described in annex II, which comprises a 

power law term to describe the contribution of charge fluctuations (A.K. Jonscher, 1983; 

Andrzej K Jonscher, 1996) and a sum of Havriliak-Negami (HN) functions to take into 

account the observed dipolar dielectric relaxation processes (Havriliak & Negami, 1967; 

Hernández et al., 2010; A.K. Jonscher, 1983; Vo et al., 2011). There are as many terms in the 

sum of HN functions as there are observed relaxations. Commercially available software was 

used to obtain the curve-resolved spectra. Both real and imaginary parts of the dielectric 

permittivity were considered for the fitting, computed based on nonlinear procedures. 

However, only curve resolved spectra of the imaginary part are reported in the manuscript. 

More details regarding the fitting procedure are available in the supporting file (annex II). 

 

It is worth noting that the fitting of the experimental data to equation (A II.2) was applied to 

the dielectric spectra of all nanocomposites in the temperature range from 40 °C to 90 °C, 

where no specific molecular relaxation processes are supposed to occur in the neat material 

as reported by previous studies (H. Chen et al., 2011; Kofod et al., 2011). In fact, the 

segmental relaxation associated with the bulk glass transition of the rubber phase is too fast 

and could not be observed within this temperature window while the relaxation associated 

with the glass transition of PS phase is too slow and could not be observed either. 
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Figure 3-5 shows the imaginary part of the dielectric permittivity of neat SEBS-20 (Figure 

3-5(a)) and its nanocomposites (Figure 3-5(b)-(e)), prepared by the three processing 

techniques mentioned previously, at different temperatures ranging from 30 °C to 90 °C. 

Only SEBS-20-partially oriented R3 was presented in Figure 3-5(a) as the other control 

samples, without clay, prepared by sheet die extrusion or solvent casting feature similar 

dielectric behavior. Moreover, for the sake of simplicity, the real part of the dielectric 

permittivity is not reported in this manuscript since relaxation phenomena are observable in 

both real and imaginary parts and the analysis of the imaginary part is more straightforward. 

Typical spectra of real part of the dielectric permittivity could be consulted in Figure A II-8 

of the supporting file (annex II).  

 

The real part of the dielectric permittivity of the neat SEBS is almost frequency independent 

and nearly equal to 2.35. At increasing temperatures, both the real and the imaginary parts of 

the dielectric permittivity of the neat copolymer remained equal to or slightly decreased 

below the value exhibited at room temperature (as it could be seen in the insert of Figure 

3-5(a) and Figure A II-8 (annex II)). This decrease is probably related to the decreased 

polymer density at increasing temperatures, which is linearly affecting the relative 

permittivity (Blythe & Bloor, 2005). In addition, the high frequency relaxation peak related 

to the glass transition of the rubber phase shifts towards higher frequencies with the 

temperature increase (not observed in the studied range) causing a decrease of the dielectric 

losses in the 103 to 105 Hz frequency window. 

 

In all the nanocomposites, both ɛ’ and ɛ’’ increased simultaneously compared to neat SEBS 

(Figure 3-5 of the manuscript, Figure A II-7 and Figure A II-8 of annex II), up to orders of 

magnitude, particularly at  low frequencies and high temperatures, indicating an important 

contribution originating from the inclusion of nanoclay  to the low frequency dispersion 

(A.K. Jonscher, 1983; Andrzej K Jonscher, 1996). In particular, a pronounced increase is 

observed in the isotropic samples featuring random clay tactoids distribution compared to the 

samples where clay particles are aligned perpendicular to the electric field (Figure 3-5(e) 

compared to Figure 3-5(b)-(d)). This behavior is most likely attributed to an anisotropic 
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nature of clay conductivity which might be considerably lower across the nanoplatelets 

thickness than along their surface and the interlayer spacing, covered by a diffuse ionic layer 

(David et al., 2013; Tokarský et al., 2016). Another possible contribution to this remarkable 

increase of permittivity could be attributed to the presence of a fraction of polar organic 

solvent that was trapped during the solvent casting process used for the preparation of the 

isotropic samples. 

 

It is worth noting that there is only little information regarding the experimental values of 

dielectric permittivity and electrical conductivity of nanoclay which strongly depends on the 

type of surface modification and the density of adsorbed cations (Uddin, 2008). The 

dielectric properties of an organically modified clay tactoid, similar to the one used in this 

study, were estimated through modeling by David et al. (David et al., 2013). In particular, the 

pure direct current conductivity of clay was estimated to be equal to 10-9 S/m. 

 

The fitting of the dielectric permittivity to equation (A II.2) confirmed that all the 

nanocomposites exhibit, in addition to the charge fluctuation term, two relaxation modes that 

were not observed in neat materials. Similar behavior was reported in the literature for clay 

nanocomposites in general (David & Fréchette, 2013; David et al., 2013; Tomer et al., 2011) 

and clay/rubber nanocomposites specifically (Hernández et al., 2010; Vo et al., 2011). The 

charge fluctuation term is few orders of magnitude higher in the isotropic nanocomposite. In 

particular, considering the case of pure electronic conductivity in the fitting process (n=0 in 

equation (A II.2) of annex II), the values of conductivity σ0 are in the range 10-9 to 10-11 S/m 

for the isotropic nanocomposite while they are in the range 10-12 to 10-14 S/m in the case of 

oriented and partially oriented nanocomposites. In terms of relaxations, the first peak is 

located at low frequencies and is often overshadowed by the low frequency dispersion. It is 

attributed to Maxwell-Wagner-Sillars (MWS) polarization and is at the origin of the step-like 

increase observed in the real part of dielectric permittivity at the lowest frequencies. The 

second relaxation process was observed at intermediate frequencies and is shifted to higher 

frequencies at increasing temperatures. It is at the origin of the second step-like increase 

observed in real permittivity at intermediate frequencies. This additional relaxation could be 
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probably due to a MWS process from water absorbed at nanoparticles surface for instance 

(David & Fréchette, 2013; Kremer & Schönhals, 2012) or to local segmental relaxation of 

rubber chains with reduced mobility located at polymer/clay interfaces, which is slower than 

the main segmental relaxation responsible for the bulk Tg of the elastomer (L. Chen et al., 

2009; Y. Gao et al., 2014; Ghanbari et al., 2013; Hernández et al., 2010; Hernández et al., 

2012; Holt et al., 2014; Klonos et al., 2015; Yu Lin et al., 2015; Qu et al., 2011; Robertson & 

Rackaitis, 2011; Tsagaropoulos & Eisenberg, 1995; Tsagaropoulos & Eisenburg, 1995; Vo et 

al., 2011). In the case of SEBS, the dynamic Tg of the PEB rubbery block is in the vicinity of 

-40 °C, depending on the polystyrene block fraction (Leice G Amurin et al., 2016; Saleem et 

al., 2014). An example of this fit is presented in Figure 3-5(f). It corresponds to the dielectric 

loss spectrum of SEBS-20-20A-partially oriented R3 nanocomposite at 75 °C (Different 

colors are used to denote the different contributions). 

 

Moisture absorption in nanocomposites was reported several times in literature, especially for 

epoxy-based nanocomposites containing polar groups and/or nanoparticles modified with 

functional groups of relatively low hydrophobicity (David & Fréchette, 2013; Glaskova & 

Aniskevich, 2009; I Preda et al., 2012). The absorbed water could form an interfacial 

conductive layer between the nanoparticles and the matrix material, which gives rise to an 

interfacial loss process (Kremer & Schönhals, 2012). In this study, the hypothesis of moisture 

absorption is discarded as SEBS is an apolar copolymer exhibiting very low water uptake and 

Cloisite 20A, the organically-modified clay used, features high hydrophobic character due to 

its dimethyl ditallow ammonium based modifier (Darie et al., 2014). It has also been reported 

that 24 hours of immersion in water was not found to have a significant impact on the 

dielectric response of HDPE containing 10wt% of organically-modified clay (David, 

Zazoum, Fréchette, & Rogti, 2015). 



101 

  

  

  

Figure 3-5: Imaginary part of the dielectric permittivity as a function of temperature of: (a) 
neat SEBS-20-partially oriented R3, (b) SEBS-20-20A-oriented, (c) SEBS-20-20A- partially 
oriented R1, (d) SEBS-20-20A-partially oriented R3, (e) SEBS-20-20A-isotropic and (f) an 

example of the fitting corresponding to SEBS-20-20A-partially oriented R3 at 75 °C 
(Different colors are used to denote the different contributions) 

(a) (b) 

(c) (d) 

(e) (f) 
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3.4.2.1 Effect of orientation on dielectric behavior 

In order to confirm the origin of the second relaxation process, i.e. glass transition of the 

interfacial rubbery chains with reduced mobility, and to evaluate the effect of PS cylinders 

and nanoclay orientations on it, the temperature dependence of the relaxation times relative 

to this process was analyzed. At each temperature, the relaxation time corresponding to the 

peak maximum frequency was determined from the HN fit according to equation (A II.3) 

(Kremer & Schönhals, 2012), described in the supporting file (annex II). 

 

Figure 3-6 presents the relaxation times relative to the relaxation process observed at 

intermediate frequencies as a function of inverse temperature for all the nanocomposites 

prepared from SEBS-20. The temperature dependence of the relaxation times is well 

described by the empirical Vogel-Fulcher-Tammann (VFT) equation (equation (A II.4) 

described in the supporting file (annex II)), which is usually used to fit the segmental 

relaxation process related to the bulk glass transition (Kremer & Schönhals, 2012). This 

behavior supports the hypothesis of molecular relaxation at the origin of the second peak 

observed at intermediate frequencies. The parameters of the VFT fit of each nanocomposite 

were computed and listed in Table 3-4. Besides, a dielectric “interfacial” glass transition 

temperature Tgi was associated to this relaxation mode in analogy with the glass transition 

temperature assigned to the segmental relaxation of the bulk rubber phase. This temperature 

was estimated by extrapolating the VFT fit to an extremely long relaxation time, 

conventionally chosen equal to 100 seconds (Kremer & Schönhals, 2012; Vo et al., 2011). 

The calculated temperatures are listed in Table 3-4 as well. In particular, the obtained values 

of the VFT parameters τ0, B and T0 related to this new relaxation mechanism governing the 

mobility of the interfacial chains are in the same range of those reported previously by 

several groups for different rubber based nanocomposites where a similar phenomenon was 

observed such as Vo et al. (Vo et al., 2011) for their SBR based nanocomposites, Lin et al. 

(Yu Lin et al., 2015) for their Poly(vinylacetate)/silica nanocomposites and Wu et al. (Wu, 

Tang, Guo, Zhang, & Jia, 2013) for their Butadiene-Styrene-Vinyl pyridine rubber/Graphene 

Oxide nanocomposites.  
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In addition, the kinetic fragility index F, which characterizes how rapidly the dynamics of a 

material slow down as it is cooled toward the glass transition temperature, was estimated 

according to equation (A II.5) (Angell, 1991; Böhmer, Ngai, Angell, & Plazek, 1993) 

described in the supporting file (annex II). Considering that the behavior of the relaxation 

time as function of temperature is described by the VFT equation, the derivative could be 

calculated for each sample. The calculated values of F are reported in Table 3-4 as well.  

 

It could be seen from Figure 3-6 that the sample with isotropic orientation features the 

highest relaxation times and consequently the slowest dynamics while the oriented 

nanocomposite exhibits faster dynamics. Interestingly, both partially oriented 

nanocomposites R1 and R3 exhibit even more reduced relaxation times especially toward the 

highest studied temperatures. This speed up of chain dynamics was reported in literature for 

rubber-based nanocomposites at increasing clay and graphene oxide nanoparticles loadings 

and it was attributed to suppression of cooperativity of polymer chains confined in the 

intercalated structures, when the confinement volume becomes comparable to that of the 

cooperative rearranging regions (Hernández et al., 2010; Schönhals, Goering, Schick, Frick, 

& Zorn, 2004; Wu et al., 2013). Moreover, at decreasing temperatures, the partially oriented 

samples feature increased dependence on temperature and converge to the behavior of the 

isotropic nanocomposite. This special behavior might be an indication of strong 

intermolecular coupling, i.e. the relaxation times diminish more rapidly with increasing 

temperatures (Bohmer, Angell, Richert, & Blumen, 1994; I Preda et al., 2013; Vilgis, 1993).  

The analysis of the calculated interfacial glass transition temperature Tgi reveals that the new 

relaxation process is located, depending on the nanocomposite configuration, in the 

temperature range between 26 and 35 °C; much higher than the bulk glass transition of PEB 

phase which will be studied by DMA analysis in a following section. Furthermore, this Tgi 

seems to depend as well on the orientation of both nanoclay and PS cylinders, as it was 

expected from the observed difference of the dependence of relaxation times on temperature. 

Overall, the oriented samples prepared by extrusion exhibit the lowest interfacial glass 

transition temperature, which might indicate that this controlled configuration helps 

decreasing the induced molecular chains confinement, and consequently the interaction 
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strength in the interphase region. In fact, the isotropic and the partially oriented samples 

exhibit characteristic Tgi up to 9 degrees higher, which is in good agreement with their 

morphology featuring more complex patterns and disorder.  Indeed, the calculated values of 

fragility index confirm that partially oriented and isotropic samples feature more fragile 

behavior and consequently higher intermolecular coupling and interaction strength at the 

interface. 

 

 

Figure 3-6: Temperature dependence of the relaxation times                                         
corresponding to SEBS-20 nanocomposites prepared by different                                        
processes: symbols correspond to relaxations times retrieved from                                                

the HN function and solid lines correspond to VFT fitting 

 

Table 3-4: VFT fitting parameters corresponding to SEBS-20 based nanocomposites 

Samples τ0 (s) T0 (K) B (K) Tgi (K) F 

SEBS-20-20A-partially oriented R1 4.24E-09 271 869 308 87.8 

SEBS-20-20A-partially oriented R3 7.33E-07 280 483 306 95.8 

SEBS-20-20A-oriented 1.05E-08 229 1620 299 43.7 

SEBS-20-20A-isotropic 6.00E-04 285 232 305 80.1 
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While Tgi is indicative of interaction strength, the dielectric strength of the related relaxation 

mechanism partially corresponds to the number of interacting dipoles involved in the 

relaxation process, according to the Debye-Fröhlich-Kirkwood theory (Fröhlich, 1949; 

Kirkwood, 1939; Kremer & Schönhals, 2012). Therefore, a weaker signal is expected to 

correspond to less interacting polymer compared to a stronger signal. However, it is difficult 

to compare quantitatively the signal strength among different samples due to some 

inaccuracies such as in sample thickness measurements. Thus, this parameter could be 

considered only qualitatively (Vo et al., 2011). Illustrative values of dielectric strength 

corresponding to each sample are reported in Table 3-5, at two temperatures: 60 °C and 80 

°C. It could be seen that the isotropic sample featured the highest dielectric strength values 

followed by the partially oriented samples in a second level while the oriented sample 

featured the lowest values. Hence, the amount of polymer chains with restricted mobility, 

located at the interphase, is larger in these samples featuring complex morphologies, which is 

consistent with the conclusions made earlier from Tgi results.  

Table 3-5: Dielectric strength of SEBS-20 based nanocomposites at 60 °C and 80 °C 

Samples Δɛ at 60 °C Δɛ at 80 °C 

SEBS-20-20A-partially oriented R1 0.369 0.379 

SEBS-20-20A-partially oriented R3 0.383 0.345 

SEBS-20-20A-oriented 0.295 0.273 

SEBS-20-20A-isotropic 0.540 0.528 

 

3.4.2.2 Effect of styrene content and diameter of PS cylinders  

In order to elucidate the effect of nanoclay interaction with each phase of the block 

copolymer on the polymer chain dynamics at the interphase region, comparisons were made 

between isotropic samples and oriented samples prepared from the different block copolymer 

matrices containing respectively 0.13, 0.2 and 0.3 polystyrene fractions. The dielectric 

spectra of the samples prepared from SEBS-30 are available in reference (E Helal et al., 

2015) while the results related to SEBS-13 based nanocomposites are reported in          
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Figure A II-7 of the supporting file (annex II). Examples of the fitting according to equation 

(A II.2) of the ESI file, for each type of nanocomposite are presented in Figure 3-7 (Different 

colors are used to denote the different contributions). In particular, nanocomposites prepared 

from SEBS-13 are well fitted by a power law term and two HN functions (similar to previous 

samples prepared from SEBS-20), such as the example reported in Figure 3-7(a), 

corresponding to SEBS-13-20A-isotropic. SEBS-30-20A nanocomposites, in comparison, are 

rather fitted by three HN functions in addition to a power law term (Figure 3-7(b)). The third 

relaxation peak has less dielectric strength than the two other peaks, i.e. the MWS peak and 

the interfacial glass transition peak, and is most likely attributed to PS/PEB interphase 

region, which starts to be more important with increasing PS content. 

 

  

Figure 3-7: Examples of fitting according to equation (A II.2) in annex II of respectively:            
(a) SEBS-13-20A-isotropic at 65 °C (ɛ” presented in log scale due to high contribution         

from charge fluctuation) and (b) SEBS-30-20A-oriented at 70 °C (Different colors               
are used to denote the different contributions) 

 

Relaxation times corresponding to the interfacial glass transition relaxation peak are plotted 

as a function of temperature in Figure 3-8. The results corresponding to nanocomposites 

prepared from SEBS-20 discussed earlier (Figure 3-6) are reported again for the sake of 

comparison. The VFT equations corresponding to each sample are plotted as well, while the 

VFT parameters are summarized in Table 3-6. In particular, SEBS-13 nanocomposites, 

featuring the lowest content of styrene, show similar values and dependence on orientation of 

their interfacial Tgi, compared to samples prepared from SEBS-20, while SEBS-30 

(b) (a) 
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nanocomposites, containing the highest fraction of styrene, show the lowest values and 

sensitivity to orientation featuring Tgi values in the range of 6 to 9 °C. The fragility index 

values confirm this observation as well. This fact might indicate that although clay 

nanoparticles exhibit more affinity to the aromatic rings in PS blocks (Carastan et al., 2014), 

they affect more the mobility of chains in the rubbery PEB phase, and consequently are 

located more in contact with this phase. This latter observation is consistent with TEM 

images reported in Figure 3-3(d)-(e), showing the presence of intercalated nanoclay that 

either cross PS cylinders or are located completely outside PS cylinders if they are relatively 

big. Another possible reason could be related to the cylinder diameter, which is reduced with 

decreasing PS block content, providing more space for the contact between the clay 

nanoparticles and the PEB blocks. In fact, the diameter of PS cylinders in SEBS-13 is 

estimated to be equal to 9.7 nm according to calculations based on SAXS results (not 

reported in the manuscript), while in SEBS-20 and SEBS-30, the estimated diameter is 

respectively equal to 12.5 nm, according to the TEM image reported in Figure 3-3(e), and 

13.5 nm according to a TEM image reported in reference (E Helal et al., 2015). As a 

consequence, in samples prepared from SEBS-30, the contact volume between clay 

nanoparticles and rubber chains might be reduced by the increased diameter of glassy PS 

rods, in a similar way in both oriented and isotropic samples, resulting in less sensitivity to 

orientation.  

 

From another point of view, it could be seen that the relaxation times corresponding to 

SEBS-13 and SEBS-30 nanocomposites are both smaller than those corresponding to SEBS-

20 nanocomposites. This behavior could be partially related to the bulk glass transition 

temperature of PEB phase, which might depend on its overall fraction in the block 

copolymer. In fact, the Tg of a specific block is usually different from the glass transition 

temperature of the corresponding homopolymer, and it depends on the interphase region 

between the blocks. In general, only when the compatibility between the blocks of a block 

copolymer is weak, a sharp interface is observed due to strong segregation and the Tg of each 

block is equal to the Tg of the corresponding homopolymers (Adhikari et al., 2003). 

However, in the case of SEBS, the pendant groups of the hard PS phase might be mixed to 
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the soft PEB phase forming an interphase region, as predicted from the small relaxation peak 

observed in SEBS-30 (Figure 3-7(b)). It will be shown later, by DMA measurements, that the 

Tg of each block increases with increasing fraction of that block in SEBS block copolymer.  

 

In general, it is expected that the block copolymer matrices featuring higher bulk Tg of their 

PEB phase exhibit higher interfacial glass transition temperature and slower dynamics at a 

given temperature above the Tgi, if other factors such as the orientation and the interaction of 

nanoparticles with the block copolymer phases are maintained unchanged. This behavior is 

partially achieved. In fact, SEBS-30 based nanocomposites exhibit the lowest bulk Tg of the 

PEB block as what will be shown later by DMA, and simultaneously the fastest interfacial 

dynamics and the lowest Tgi compared to materials prepared from SEBS-13 and SEBS-20. 

However, one should keep in mind that the motion of polymer chains at the interphase region 

does not depend only on the corresponding bulk Tg of the rubber phase, but it depends also 

on other parameters including the interaction of nanoparticles with each block and the 

orientation as concluded earlier. 

 

Figure 3-8: Temperature dependence of the relaxation times                                   
corresponding to SEBS-13 and SEBS-30 nanocomposites                                                       

prepared by different processes: symbols correspond to relaxation                                                
times retrieved from the HN function and solid lines correspond                                                           

to VFT fitting, plots corresponding to SEBS-20                                                             
nanocomposites are presented again for comparison 
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Table 3-6: VFT fitting parameters corresponding to SEBS-13 and SEBS-30 based 
nanocomposites 

Samples τ0 (s) T0 (K) B (K) Tgi (K) F 

SEBS-13-20A- partially oriented 6.80E-09 244 1280 299 55.4 

SEBS-13-20A-isotropic 7.16E-06 284 366 307 94.8 

SEBS-30-20A-oriented 5.70E-10 220 1530 279 53.3 

SEBS-30-20A-isotropic 2.59E-07 250 642 282 76.8 

 

3.4.2.3 Effect of nanoparticles location and intercalation degree 

To further understand the effect of the nanoparticles contact with one block or another on the 

observed interfacial peak, samples where nanoparticles are completely located in PEB phase 

are studied and compared to the previous results. The affinity of nanoparticles to PEB phase 

was increased by the attachment of maleic anhydride (MA) to it. MA exhibits great 

compatibility with the organic groups attached on the nanoparticles surface. Furthermore, 

this increased affinity results in more pronounced intercalation of the elastomer chains in 

clay galleries, disrupting the regular stacked layer structure of the organoclays and giving rise 

to mostly exfoliated structure, as reported in our previous study (E Helal et al., 2015) (TEM 

micrographs of SEBS-30-MA-20A nanocomposites exhibiting exfoliated structure are 

available in Figure A II-6 of the supporting file (annex II)). Hence, a higher fraction of 

elastomer chains is expected to be involved in this interphase region compared to the samples 

prepared without MA. The comparison of relaxation times between SEBS-30-20A and 

SEBS-30-MA-20A samples, plotted in Figure 3-9, shows that the presence of MA attached to 

the rubber phase affected remarkably the dynamics of the interphase region. In particular, 

relaxation times increased in the sample containing the MA graft, which indicates slower 

dynamics. This behavior is expected due to the selective location of clay in the rubber phase, 

which increases the amount of elastomer chains attached to the interface. In addition, the 

degree of clay exfoliation is improved in the presence of MA, which results in a larger 

number of interfaces and less efficient restriction of chains motion compared to intercalated 
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structures. Hence, the cooperativity of interfacial chains is higher, resulting in increased 

relaxation times (Wu et al., 2013). These hypotheses are in agreement with the increased 

estimated Tgi equal to 20 °C for SEBS-30-MA-20A, when compared to 6 °C for the sample 

prepared without MA. These values were extrapolated from the VFT fitting parameters 

reported in Table 3-7. The comparison of the dielectric strength values of the two 

nanocomposites reported in Table 3-8 supports the same conclusion as well. In fact, the 

dielectric strength of the sample containing MA is considerably higher than that of the 

nanocomposite without MA. 

Table 3-7: VFT fitting parameters corresponding to SEBS-30-MA-20A-oriented 
nanocomposite 

Samples τ0 (s) T0 (K) B (K) Tgi (K) F 

SEBS-30-MA-20A-oriented 7.91E-10 237 1430 293 58.7 

 

Table 3-8: Dielectric strength corresponding to SEBS-30-20A vs. SEBS-30-MA-20A 
nanocomposites prepared by extrusion 

Samples Δɛ at 60°C Δɛ at 80°C 

SEBS-30-20A-oriented 0.252 0.233 

SEBS-30-MA-20A-oriented 0.865 0.830 
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Figure 3-9: Temperature dependence of the relaxation times                                         
corresponding to SEBS-30-MA-20A-oriented nanocomposite:                                            
symbols correspond to relaxations times retrieved from the HN                                           

function and solid lines correspond to VFT fitting (plot                                                
corresponding to SEBS-30-20A-oriented nanocomposite                                                

is presented again for comparison) 

 

Overall, BDS data revealed the appearance of a new relaxation mode attributed to rubber 

chains with restricted mobility located at polymer/nanoparticle interfaces, in all the 

nanocomposites prepared from SEBS-13, SEBS-20, SEBS-30 and SEBS-MA-30 grades. A 

Tgi associated with this process is estimated to occur in the range 6 to 35 °C depending on the 

nanocomposite morphology. To confirm the molecular origin of this relaxation process, 

DMA was performed. Results will be discussed in the following section. 

3.4.3 Dynamic mechanical analysis 

Dielectric spectroscopy data discussed in this paper were mainly performed in the 

temperature range from 30 to 90 °C and analyzed as a function of frequency. In order to 

extend the study of relaxation phenomena to lower temperatures, to confirm the origin of the 

new relaxation peak observed in BDS and to evaluate the dependence of bulk glass transition 

temperatures of both PS and PEB blocks, respectively TgPEB and TgPS, on styrene fraction and 
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clay addition, dynamic mechanical analysis was carried out in a large temperature range from 

-100 °C to 130 °C. In fact, in this range, both TgPEB and TgPS are expected to appear as peaks 

in DMA tan δ graphs. Besides, any potential peak that will appear in addition will be 

certainly due to a molecular relaxation, by contrast to BDS spectra, where relaxation 

phenomena observed in hybrid materials could be due to either a molecular origin or 

separation of charges at inner dielectric boundary layers (MWS polarization).  

 

Figure 3-10 shows tan δ graphs corresponding to selected samples prepared from SEBS-30 

(graphs corresponding to samples from SEBS-13 and SEBS-20 are not reported). It is worth 

noting that the DMA measurements were conducted in the transverse direction for all the 

studied samples (perpendicular to the main direction of PS cylinders alignment). In general, 

all curves show evidence of two peaks which correspond to TgPEB (at low temperatures) and 

TgPS (at high temperature). The values of TgPEB and TgPS corresponding to each material are 

reported in Table 3-9, except TgPS corresponding to SEBS-13 samples where no clear peaks 

were observed up to 130 °C. In a general trend, the glass transition temperature of each 

block, either PS or PEB, and the height of its corresponding peak increases with increasing 

fraction of that block in SEBS. This behavior is due to the fact that more chains of the 

considered block are involved in the glass transition phenomena leading to a larger damping. 

Besides, the Tg temperature and the intensity of the peak depend on the orientation of PS 

cylinders. Indeed, TgPS of SEBS-20- partially oriented R1 material prepared by film blowing 

is 6 degrees higher than SEBS-20-oriented, 106 °C vs.100 °C. Simultaneously, the intensity 

of TgPS is reduced and that of TgPEB is considerably higher. This behavior might be due to the 

fact that these samples are not completely aligned in the extrusion direction which leads to an 

increasing fraction of PEB chains in the transverse direction, which is the direction of the 

test, as well as more hindrance of PS chains mobility.  

 

In the nanocomposites, the addition of clay results, in some cases, in the reduction of Tg peak 

height and the broadening of the peak, such as the peaks corresponding to TgPS in both SEBS-

30-20A-oriented and SEBS-30-MA-20A-oriented nanocomposites, as shown in Figure 3-10. 

These behaviors respectively indicate lower number of chains participating in the bulk glass 
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transition and wider distribution of chains mobility due to the restriction of motion imposed 

by clay nanoparticles. In addition, the glass transition temperatures of both blocks are either 

maintained or shifted to higher or lower temperatures. Shifts of bulk Tg to both higher and 

lower temperatures have been reported in the literature. The experimental results reported in 

the literature are in general not conclusive due to the complex nature of various polymers and 

nanocomposites that were investigated (Yu Lin et al., 2015; Rittigstein & Torkelson, 2006). 

Different reasons were suggested to explain the phenomena depending on the cases. In 

particular, the increase was mainly attributed to restriction of chain mobility at the interface 

(Yu Lin et al., 2015), while the decrease was attributed to different reasons such as a specific 

form of mechanical coupling between the filler, the bound layer and the bulk rubber (Arrighi, 

McEwen, Qian, & Prieto, 2003; Mélé, Marceau, Brown, de Puydt, & Albérola, 2002) , an 

increase of mobility (Hao, Böhning, & Schönhals, 2007) or an increase of free volume and 

decrease of molecular packing density (Hao, Böhning, Goering, & Schönhals, 2007).  

 

 

Figure 3-10: tan δ of different SEBS-30 materials (prepared by sheet die                     
extrusion) from -100 °C to 130 °C at 1 Hz 

 

 

Potential new 

peak 



114 

Table 3-9: Tgs of both PS and PEB blocks in different samples of SEBS                                    
based nanocomposites 

Sample TgPEB (°C) TgPS (°C) 

SEBS-13-partially oriented -23 - 

SEBS-13-20A-partially oriented -27 - 

SEBS-20-oriented -26 100 

SEBS-20-20A-oriented -26 100 

SEBS-20- partially oriented R1 -26 106 

SEBS-20-20A- partially oriented R1 -20 110 

SEBS-30-oriented -35 107 

SEBS-30-20A-oriented -34 105 

SEBS-30-MA-20A- oriented -33 104 

 

In addition to the bulk glass transitions of PS and PEB blocks, nanocomposites prepared 

from SEBS-30 seem to exhibit an additional low intensity peak occurring at intermediate 

temperatures between TgPEB and TgPS, which might correspond to the glass transition of 

interfacial rubber chains with reduced mobility (as indicated by the arrow in Figure 3-10). 

However, this peak is not well resolved and as a consequence, resort to curve fitting was 

necessary. Although, there is no theoretical expression to describe dynamic mechanical 

relaxations as a function of temperature, the use of some empirical equations which 

reproduce satisfactorily the asymmetry of tan δ peaks has been reported in the literature. One 

such is the exponentially modified Gaussian (EMG) which was used by Tsagarapoulos et al. 

(Tsagaropoulos & Eisenberg, 1995) and Cowie et al. (Cowie, Arrighi, Cameron, McEwan, & 

McEwen, 2001) to characterize Tg peaks and particularly peaks related to Tg of interfacial 

layers observed in several homopolymers containing relatively high fractions of fillers such 

as silica nanoparticles and cellulose tricarbanilate. Another model based on the three-

parameter asymmetric double sigmoid (ADS) equation was successfully used by Arrighi et 

al. (Arrighi et al., 2003) to characterize Tg of the interfacial layer observed in styrene 

butadiene rubber (SBR) containing silica nanoparticles.  
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In this study, we adopted a model based on ADS equation, similarly to reference (Arrighi et 

al., 2003), to describe both bulk Tg peaks and the new interfacial Tg peak. More details about 

this equation and its characteristic parameters are available in reference (Arrighi et al., 2003) 

and annex II (equation (A II.6)). The general model is composed of three ADS terms to 

describe the three peaks. An additional ADS term with a large asymmetry in the high 

temperature side was also considered to take into account the increasing baseline towards 

high temperatures. For consistency, the same parameters were taken for the baseline term in 

the neat SEBS-30-oriented and the nanocomposites. Examples of the fitting of both neat 

SEBS-30-oriented and SEBS-30-20A-oriented nanocomposites showing the resolved Tg 

peaks are reported in Figure 3-11. 

 

  

Figure 3-11: Fitted tan delta curves showing bulk Tgs of PS and PEB blocks as well as          
Tgi of the interfacial layer (an additional ADS term is considered for the increasing  

baseline):(a) SEBS-30-oriented and (b) SEBS-30-20A-oriented 

 

The peak corresponding to the glass transition of the interfacial layer, Tgi, in both 

nanocomposites, resulting from the curve-fitting process, is characterized by low intensity 

and a broad shape indicating a large distribution of chains mobility in the interfacial layer. 

Temperatures corresponding to Tgi peaks maxima are reported in Table 3-10. Taking the 

difference between these values and TgPEB values reported in Table 3-9, Tgi of the interfacial 

rubbery layer is estimated to occur 72 degrees higher than the bulk in the case of SEBS-30-

20A-oriented and 86 degrees higher than the bulk in the case of SEBS-30-MA-20A-oriented. 

(a) (b) 
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This result is consistent with many findings in the literature expecting the glass transition of 

tethered chains confined at the interface to occur 70 to 110 degrees higher than the bulk Tg 

(Tsagaropoulos & Eisenberg, 1995). It is worth noting that these values of Tgi determined 

from DMA data at 1 Hz are higher than those estimated earlier by BDS through the 

extrapolation of the VFT equation at very low relaxation times (100s): 38 °C vs. 6 °C for 

SEBS-30-20A-oriented and 53 °C vs. 20 °C for SEBS-MA-30-20A-oriented. However, the 

trend is maintained. Hence, to check the similarity of the results given by both BDS and 

DMA techniques, dielectric permittivity of SEBS-30-oriented and SEBS-30-20A-oriented 

materials were mapped in an extended temperature range [-100, 150 °C] and dielectric loss 

spectra were plotted as function of temperature at 1 Hz (Figure A II-9 and Figure A II-10 in 

annex II). At this frequency, the peak corresponding to TgPEB is observed at -45 °C, which is 

10 degrees higher than DMA and the peak corresponding to Tgi is observed at 40 °C, which 

is 2 degrees higher than the value obtained by DMA. This difference between the results 

given by the two methods is observed even when equivalent formalisms are used: electric 

modulus vs. mechanical modulus. Thus, it is rather due to experimental conditions such as 

different heating rates (Talja & Roos, 2001).  

 

The fraction of bound polymer chains participating in the interfacial glass transition, FBound, 

could be determined by dividing the area under Tgi peak by the sum of the areas of all Tg 

peaks. Values of integrated area under each peak and estimated bound fractions are reported 

in Table 3-10 as well. The bound fraction in SEBS-30-20A-oriented is around 7.5% while in 

SEBS-30-MA-20A-oriented, it is around 12%. This is expected as the higher degree of 

exfoliation in the latter nanocomposite results in more interfacial area. Taking into account 

data about the average particle size of clay nanoparticles in SEBS-30 nanocomposites, which 

were published previously by coauthors (Carastan et al., 2014), the thickness of interfacial 

layer around each particle could be estimated in a similar fashion to the work of Arrighi et al. 

(Arrighi et al., 2003). More details regarding this procedure could be consulted in annex II 

(equations (A II.7) to equation (A II.10)).  
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Table 3-10: Interfacial Tgi, bound fraction and interfacial layer thickness in SEBS-30 based 
nanocomposites 

Sample Tgi (°C) APEB APS AInt FBound T(nm) 

SEBS-30-20A-oriented 38 9.475 10.15 1.59 0.075 10.5  

SEBS-30-MA-20A-oriented 53 9.42 10.04 2.58 0.12 7.6 

 

The average tactoid thickness, average lateral dimensions and average number of clay layers 

per tactoid were determined based on the TEM quantitative analysis of clay dimensions in 

SEBS-30-20A and SEBS-30-MA-20A nanocomposites reported by Carastan et al. (Carastan 

et al., 2014). These values are listed in Table 3-11. 

Table 3-11: Average dimensions of clay tactoids based on TEM quantitative analysis 
published by Carastan et al. (Carastan et al., 2014) 

 Average 
thickness (nm) 

Average lateral 
size (nm) 

Average number 
of layers 

SEBS-30-20A-oriented 7.3 243.3 3 

SEBS-30-MA-20A-
oriented 

3 116.3 2 

 

To calculate the thickness of the interfacial layer in both nanocomposites, the clay tactoid 

was considered as a solid particle surrounded on both lateral sides with constrained rubber 

chains. Since the thickness of one tactoid is much smaller than its lateral dimension, the 

fraction of chains that could be constrained along the thickness was neglected. Then, the 

calculated interfacial layer thickness, t, was adjusted to take into account that some chains are 

rather confined in the interlayer spacing, considering that the thickness of 1 clay layer is 

equal to 0.94 nm (Carastan et al., 2014; Vermogen et al., 2005).These approximations are 

illustrated in Figure 3-12. With these approximations the calculated values of interfacial layer 

thickness are respectively equal to 7.6 nm for SEBS-30-MA-20A nanocomposite and 10.5 

nm for SEBS-30-20A. They are in agreement with findings from the literature which 

reported estimations of thickness of the interfacial layer. Whether evaluated experimentally 

(Arrighi et al., 2003; Yu Lin et al., 2015) or theoretically (Y. Gao et al., 2014; Ghanbari et 
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al., 2013; Heid, 2015), the values reported in the literature did not exceed few nanometers 

ranging from 2 to 10 nm in most of the reported studies. 

 

 

Figure 3-12: Scheme of the interfacial layer covering the lateral side of clay                 
particles: (a) First approximation: clay tactoid as a solid particle, (b) part                                   

of the interfacial layer is between clay galleries 
 

Hence, the fitting model based on ADS equation describes satisfactorily the bulk glass 

transitions of both PEB and PS blocks as well as the Tgi of interfacial chains with restricted 

mobility. It leads to an approximation of the interfacial layer thickness well in agreement 

with values reported in the literature. However, it is worth noting that an important 

hypothesis was assumed in the calculation of the interfacial layer thickness, which is the 

absence of an immobilized layer corresponding to polymer chains that are tightly bounded 

and don’t participate in neither bulk Tg nor interfacial Tgi (Tsagaropoulos & Eisenberg, 

1995). In fact, the total number of chains participating in glass transition phenomena in a 

nanocomposite is generally lower than the number of chains participating in the glass 

transition of the neat material. Thus, by comparing the total area under Tg peaks in 

respectively the nanocomposite and the pure material, the fraction of immobilized layer 

could be determined and excluded when calculating the thickness of the interfacial layer 

(Arrighi et al., 2003). The thickness of the immobilized layer was estimated in the literature 

to be in the range 0.5 to 2 nm (Arrighi et al., 2003). In our case, comparing the tan delta 

curves of the neat SEBS-30 and its corresponding nanocomposites, we could see that the 

total area is higher in the case of nanocomposites, which gives the impression that more 

chains are involved in the glass transition phenomena compared to the neat copolymer. This 

behavior is puzzling and for this reason comparison with neat and estimation of the 

immobilized fraction were not possible. As a consequence, the estimated thicknesses of the 

interfacial layer might be smaller in reality. Another behavior that requires more 

(a) (b) 
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investigation is the fact that the Tgi peak related to interfacial rubbery chains was not 

observed in SEBS-13 and SEBS-20 nanocomposites by DMA, by contrast to BDS. Only 

shifts of bulk Tg temperatures were obvious by this technique. However, for nanocomposites 

prepared from SEBS-30 and SEBS-30-MA, the new relaxation process was confirmed by 

both DMA and BDS. Furthermore, Tgi temperatures estimated by both techniques were in 

agreement. 

 

3.5 Concluding remarks 

In this study, nanocomposites of SEBS block copolymer with cylindrical morphology and 

organically modified clay nanoparticles have been successfully prepared with different 

configurations of PS cylinders and clay nanoparticles. In particular, isotropic vs. oriented vs. 

partially oriented morphologies have been successfully prepared by different processing 

techniques and confirmed by SAXS and TEM.  

 

In all the nanocomposites, a glassy interphase region was formed and gave rise to a new 

relaxation mode corresponding to the interfacial rubbery chains with restricted mobility. A 

dielectric “interfacial” glass transition Tgi, associated with this process, is estimated to occur 

at temperatures ranging from 6 up to 35 °C, depending on the orientation of both PS domains 

and clay nanoparticles, the fraction of polystyrene block as well as the location and the 

degree of exfoliation of clay nanoparticles, which was tuned through the use of maleic 

anhydride graft. The thickness of the interfacial layer was estimated through fitting of DMA 

data and was found to be in the range 7.5-10.6 nm for nanocomposites prepared from SEBS-

30 and SEBS-30-MA. 

 

Overall, the relaxation mode related to this interphase region was sensitive to the following 

key parameters:  

- Distribution of interfaces: oriented vs. isotropic vs. partially oriented; which affects the 

area and the volume of the “interphase region” as well as the mobility of polymer chains. In 

particular, samples featuring random or partially oriented morphologies were found to exhibit 
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higher interaction, dielectric strength and Tgi, up to 9 degrees higher, compared to their 

oriented counterparts. Besides, partially oriented samples prepared by film blowing extrusion 

featured the most “fragile” behavior and the fastest dynamics at temperatures above 

estimated Tgi, compared to oriented and isotropic samples. This behavior could be attributed 

to suppression of cooperativity of interfacial chains motion due to strong confinement in this 

configuration.  

- Ratio of PS/PEB, which affects the Tg of the bulk PEB block, the diameter of PS 

cylinders as well as the amount and the mobility of PEB chains located in the interphase 

region. In particular, the Tgi was found to decrease and to be less sensitive to orientation 

effects, with increasing styrene content, most likely due to reduced amount of rubber chains 

involved in the interphase region and increasing diameter of PS cylinders resulting in a 

similar trend of confinement in both oriented and non-oriented samples. 

- Location of clay nanoparticles either in PS or PEB blocks, which was modulated by the 

use of maleic anhydride attached to the rubber phase. In particular, in the presence of MA, 

clay particles were located exclusively within the elastomer block, resulting in increased 

amount of rubber chains involved in the interphase region and consequently higher dielectric 

strength associated to the relaxation process. Moreover, the degree of exfoliation of clay 

tactoids is improved, which induced slower dynamics compared to intercalated structures 

where strongly confined rubber chains exhibit reduced cooperativity and consequently 

reduced relaxation times. 

Finally, the charge fluctuation contribution to the dielectric loss was dependent as well on the 

morphology. In particular, the conduction loss was reduced by 2 to 4 orders of magnitude in 

the samples with controlled architecture, i.e. oriented and partially oriented, as clay 

nanoparticles were quasi-aligned perpendicular to the electric field in these configurations. 

Associated content 

Supporting electronic information (ESI) file (reported in annex II): 2D and 1D SAXS 

patterns, TEM micrographs and dielectric spectroscopy data related to the studied 

nanocomposites are available. The procedure of the estimation of the interfacial layer 

thickness is explained as well.  
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Abstract 

Thermoplastic elastomer nanocomposites based on respectively polystyrene-b-poly(ethylene-

co-butylene)-b-polystyrene (SEBS) and polystyrene-b-poly(ethylene-co-butylene)-b-

polystyrene grafted maleic anhydride (SEBS-MA) block copolymers and containing 

functionalized zinc oxide (ZnO) nanoparticles have been investigated as candidate materials 

for high voltage (HV) insulation systems. The dispersion of the organically modified ZnO 

nanoparticles has been successfully tuned through the MA graft and the block copolymer 

nanostructure. In particular, nanocomposites with signs of rheological percolation, indicating 

the formation of a network between individually dispersed nanoparticles and polymer chains, 

have been obtained at ZnO content as low as 5 wt% (0.9 vol%). This behavior resulted in an 

enhancement of the thermal conductivity and better control of the electrical conductivity 

while maintaining breakdown strength and dielectric losses in the same range of the unfilled 

insulating matrices. Furthermore, the resistance to surface erosion by partial discharges was 

significantly improved: in the presence of 5 wt% of individually dispersed ZnO 

nanoparticles, the eroded volume was reduced 10 times.  

CHAPTER 4 
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Keywords: thermoplastic elastomer, Zinc Oxide nanoparticles, nanodielectric, rheological 

percolation, HV insulation… 

4.1 Introduction  

Due to the immiscibility of their blocks that are covalently bonded, block copolymers can 

self-organize into spherical, cylindrical, lamellar or more complex ordered nanodomains, 

depending on several parameters such as the block copolymer composition, the chemical 

interaction between the blocks and the molecular weight (Mai & Eisenberg, 2012). Owing to 

this nanostructure, several block copolymers, including polystyrene-b-poly(ethylene-co-

butylene)-b-polystyrene  (SEBS) and polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene 

grafted maleic anhydride (SEBS-MA) thermoplastic elastomers, have recently attracted 

considerable attention as template matrices offering the possibility of nanoparticles dispersion 

control, in the aim of producing nanocomposites and master batches with tailored dispersion 

and interphase region. The expected high performance materials have a great potential in 

different applications including dielectric applications (Sarkar & Alexandridis, 2015). 

However, to the best of our knowledge, only few studies reported specific dielectric 

characterization of thermoplastic elastomeric block copolymer based nanocomposites (E Helal 

et al., 2015; Helal, Demarquette, David, & Fréchette, 2015; Kofod et al., 2011; Mc Carthy et 

al., 2009; Mi et al., 2014; Saleem et al., 2014), taking into consideration the possibility of 

tuned nanoparticles dispersion, in the aim of producing high performance nanodielectrics 

(Emna Helal et al., 2015; Sarkar & Alexandridis, 2015).  

 

In addition to the nanoarchitecture, thermoplastic elastomeric block copolymers can play a 

functional role in dielectric applications such as dielectric elastomer actuators and HV 

insulation materials. In fact, these materials exhibit good mechanical properties combining 

both elastomer and thermoplastic properties (Balsamo et al., 2006; Holden et al., 2004), good 

electromechanical coupling (B. Kim et al., 2011) as well as good resistance to moisture 

absorption (Liu et al., 2011; Z. Ma et al., 2010). Currently, the use of thermoplastic 

elastomeric block copolymers, in nanocomposites generally and  nanodielectrics specifically, 

is mainly limited to their role  as compatibilizers to improve the dispersion of nanoparticles 
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such as nanoclay, metal oxides and more recently carbon nanotubes (Liang & Tjong, 2006) in 

polyolefin matrices or as water treeing retardant agents in HV cables (Liu et al., 2011; Z. Ma 

et al., 2010). Recent studies have started investigating these materials in a more functional 

aspect. For instance, blends of polyolefins and thermoplastic elastomers have been evaluated 

as candidates for HV cable insulation and specifically for recyclable high voltage direct 

current (HVDC) cables in replacement to cross-linked Polyethylene (XLPE) cables (Han & 

Sengupta, 2014; Helal, Demarquette, David, & Fréchette, 2016; Helal, Demarquette, David, & 

Fréchette, 2014; I. Hosier et al., 2007; Y. Zhou et al., 2015). Preliminary results revealed that 

these blends feature improved mechanical flexibility, thermal properties, volume resistivity 

and resistance to surface erosion (Helal et al., 2016; I. Hosier et al., 2007; Y. Zhou et al., 

2015). However, they suffer from space charge accumulation, which is a bottle-neck 

especially in HVDC transmission (Hayase et al., 2006; Mizutani, 2000). This problem might 

be addressed by the incorporation of specific nanoparticles able to increase the density of 

charge traps and consequently decrease charge carriers mobility, in a similar trend to what has 

been reported for homopolymer nanocomposites (Fleming et al., 2008; Ju et al., 2014; Amir 

M Pourrahimi et al., 2016; Amir Masoud Pourrahimi et al., 2016; Tian et al., 2011, 2012; Tian 

et al., 2015). But, better understanding of the nanoparticles impact on the thermoplastic 

elastomer phase is required first. Therefore, exhaustive dielectric, thermal and electrical 

characterization of thermoplastic elastomer nanocomposites might be a crucial step to 

evaluate their potential as nanodielectrics and as master batches to be blended with industrial 

polyolefins for application in HV and HVDC insulation systems.  

 

An important property governing the performance of HV insulation systems is space charge 

distribution. In fact, accumulation of space charges in HV insulation materials subjected to 

high electric fields might lead to inhomogeneous distribution of the electric field and localized 

large electrical stresses, especially in DC transmission. To avoid the deterioration of the 

insulation in the regions suffering from elevated electrical stresses, large thicknesses of the 

insulating material are often required to reduce the magnitude of the peak stresses and to 

increase the breakdown voltage, which leads to expensive insulation systems and difficulty to 

dissipate heat. To reduce space charge accumulation, one approach is the use of non-linear 
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resistive fillers. At low loadings, these fillers were reported to increasing the charge trap 

density and consequently decrease charge carriers mobility and prohibit space charge 

accumulation in the bulk material (Fleming et al., 2008; Ju et al., 2014; Amir M Pourrahimi et 

al., 2016; Amir Masoud Pourrahimi et al., 2016; Tian et al., 2011, 2012; Tian et al., 2015). At 

higher loadings, an improvement of the non-linear feature of electrical conductivity is 

reported and leads to efficient reduction and homogenization of electrical stresses within the 

insulation (Hong, Schadler, Siegel, & Mårtensson, 2003; Hong et al., 2006; Varlow et al., 

2007). As the introduction of fillers may result in higher dielectric losses, an improvement of 

thermal conductivity is also desirable, through the choice of appropriate fillers, in order to 

increase the rate at which heat is dissipated in the system (Varlow et al., 2007). 

 

One type of nanoparticles that is of particular interest when dealing with HV insulation 

systems is Zinc Oxide (ZnO) nanoparticles. In fact, ZnO is a large band gap semiconductor 

characterized by nonlinear electrical conductivity (Hong et al., 2006; Varlow et al., 2007), 

relatively high thermal conductivity (Huang et al., 2011) and ability to absorb UV light 

released by partial discharges (S. Chen et al., 2010). It was studied in nanocomposites for 

insulation applications, mainly polyethylene based systems (S. Chen et al., 2010; Fleming et 

al., 2008; Hong et al., 2003; Amir M Pourrahimi et al., 2016; Amir Masoud Pourrahimi et al., 

2016; Tian et al., 2011, 2012; Tian et al., 2015). Its incorporation led to several beneficial 

properties including the ability to significantly decrease space charge accumulation (Fleming 

et al., 2008; Tian et al., 2011; Tian et al., 2015) as well as to improve resistance to electrical 

treeing (Tian et al., 2012), which are stringent requirements to be fulfilled by any potential 

candidate for HV insulation in order to ensure longer lifetime of the insulation. 

 

In this study, the morphology and rheological properties of nanocomposites of SEBS and 

SEBS grafted maleic anhydride (SEBS-MA) containing ZnO nanoparticles have been 

investigated. In particular, the dispersion of ZnO nanoparticles was tuned to obtain samples 

featuring agglomerations vs. samples featuring nanoscale dispersion and controlled 

interactions between polymer chains and nanoparticles at the interface. For that, 

functionalized nanoparticles exhibiting good affinity with maleic anhydride (MA) were used 
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in order to improve the dispersion and to initiate the process of selective localization in the 

phase exhibiting the highest affinity, which is the elastomer block. This tuned dispersion is 

expected to affect strongly the quality of the interphase region and consequently the 

engineering properties (David & Fréchette, 2013; Michel Fréchette et al., 2014; Lau, 

Vaughan, Chen, Hosier, & Holt, 2013; Sarkar & Alexandridis, 2015). Therefore, a 

correlation between the obtained morphologies and respectively the rheological, electrical, 

thermal and dielectric properties was established in a trial to evaluate the potential of 

thermoplastic elastomer nanocomposites for use in HV insulation systems and to predict their 

optimal performance.  

4.2 Experimental section 

4.2.1 Materials 

SEBS powder grade G1652, of density 0.915 g/cm3 and SEBS-MA pellets grade FG1901 

were purchased from Kraton. Both block copolymers contain 30 wt% of polystyrene (PS) 

endblocks dispersed in the form of nanodomains within a poly(ethylene-co-butylene) (PEB) 

midblock matrix. The maleic anhydride (MA) content is equal to 1-2 wt% in SEBS-MA and is 

grafted on the PEB elastomer block as illustrated in Figure 4-1. Zinc oxide nanoparticles were 

supplied in the form of 40 wt% colloidal suspension in ethanol from Sigma Aldrich. The 

particles are organically modified with an alkyl ammonium salt and have a particle size below 

130 nm in general and an average particle size around 35 nm. All the materials were used as 

received. 
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Figure 4-1: Schematic description of SEBS block copolymer with MA group                      
grafted to elastomer block ("Polystyrene-block-poly(ethylene-ran-butylene)-block-

polystyrene-graft-maleic anhydride,") 

 

4.2.2 Processing  

The nanocomposites were prepared by solution blending using toluene as a solvent. The 

suspension of nanoparticles was first mixed with toluene and disagglomerated using Sonic 

Ruptor 400 ultrasonicator for 8 minutes in continuous mode at 70% of the maximum power. 

The necessary amount of SEBS or SEBS-MA was subsequently added and dissolved in the 

mixture by means of magnetic stirring overnight. The solution was simultaneously heated at 

60 °C. Subsequently, the obtained mixture was poured into a Petri dish and kept under fume 

hood until complete evaporation of solvent. The nanocomposites were finally dried for at least 

48 hours at 60 °C under vacuum. The investigated nanoparticles loadings in the final samples 

were equal to: 1 wt%, 5 wt%, 10 wt% and 20 wt%. These concentrations were checked by 

means of thermal gravimetric analysis. All the samples were preheated for 10 minutes and 

pressed for 5 minutes at 200 °C under 10 MPa to obtain films with specific thicknesses 

suitable for further characterization. The samples prepared from SEBS and SEBS-MA will be 

referred to respectively as SEBS-X and SEBS-MA-X, where X is the weight fraction of ZnO 

nanoparticles in the nanocomposite. For example, SEBS-MA-5 corresponds to the 

nanocomposite made from SEBS-MA as a matrix and containing 5 wt% ZnO. 
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4.2.3 Characterization  

Cross-sections of different nanocomposites were observed to characterize the dispersion of 

nanoparticles either by Scanning Electron Microscopy (SEM) or Transmission Electron 

Microscopy (TEM). Hitachi S-3600N microscope was used for SEM micrographs. The 

samples were cryogenically fractured using a Leica Microtome and a Tungsten knife operated 

at -100 °C. A gold layer of thickness 20 nm was sputtered on the cross-section of the samples 

before imaging. A Jeol JEM-2100F microscope was used for TEM micrographs. Ultrathin 

sections of the samples were obtained using an ultramicrotome operated at -100 °C and placed 

on copper grids.  

 

The morphology of the block copolymer was characterized by Atomic Force Microscopy 

(AFM). The images were obtained using a Veeco atomic force microscope operated in 

tapping mode under ambient conditions at a scanning rate equal to 1 Hz. Samples for AFM 

imaging were prepared by spin coating of nanocomposites suspensions directly onto a glass 

substrate, allowing free evaporation of the solvent in open air. The obtained thin films were 

then subjected to the same thermal treatment applied to the free-standing films during vacuum 

drying and compression molding steps: 48 hours at 65 °C and 15 minutes at 200 °C. 

 

The interactions at the nanoparticle-polymer interfaces were studied by means of Fourier 

Transformed Infra-Red (FTIR) spectroscopy. The spectra were recorded in the transmission 

mode in the wavelengths range from 500 to 4000 cm-1 with spectral resolution of 4 cm-1, using 

a Nicolet 6700 Spectrometer. 

 

Rheological measurements were performed at 200 °C to characterize the evolution of dynamic 

moduli of the nanocomposites in the molten state. A strain-controlled rheometer MCR 501 

Anton Paar was used. Small amplitude oscillatory shear (SAOS) tests were performed in the 

linear viscoelastic regime under a strain equal to 0.5% in the frequency range from 10-2 to  

300 rad.s-1. 25 mm-diameter parallel plate geometry was used and 1 mm sample gap was 

used. 
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The complex dielectric permittivity of the different samples was measured at room 

temperature using a Novocontrol broadband spectrometer. Specimens of 20 mm in diameter 

were placed between parallel plated brass electrodes to form a plane-plane capacitor. 

Measurements swept through a frequency range from 10-2 Hz up to 105 Hz under an excitation 

voltage of 3V. Besides, temperature ranges between -100 °C and 120 °C were considered for 

selected samples. 

 

The AC short-term breakdown strength of the samples was measured in a dielectric oil 

environment using ball-type electrodes of 4-mm diameter. A ramp of 1 kV/s and a frequency 

of 60 Hz were applied until breakdown occurred. Samples of average thickness around 200 

µm were used for this test.  But, since the thickness of the samples was not strictly uniform, 

all the measurements were corrected to equal the breakdown strength of a 200 µm thick film 

using the power law relationship (equation (4.1)) between the breakdown field and the film 

thickness in order to obtain comparable results (Takala et al., 2010). The data were then 

retrieved considering a two-parameter Weibull distribution, by means of commercial software. 

4.0
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Where:  

d1: the real thickness of the sample; 

E1: the measured dielectric strength at d1; 

d2=200 µm: the thickness selected for normalization; 

E2: the estimated dielectric strength at the desired thickness d2. 

 

To evaluate the resistance of the fabricated materials to surface erosion, samples of average 

thickness equal to 500 µm were exposed to partial discharges for 30 hours, using a point-to-

plane geometry set-up operated in open air, as represented in Figure 4-2. A sinusoidal voltage 

of approximately 7 kVRMS and a frequency of 300 Hz were applied to the high-voltage rod 

electrode. The electrode tip is made from nickel-plated carbon steel and has a 1-mm radius.  

The samples were fixed to the ground plane electrode using Kapton tape and separated from 
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the tip by an air gap of 200 µm. Then, the eroded volume was evaluated by the use of a 

mechanical profilometer. Before mapping the samples with the profilometer, the samples were 

carefully cleaned in an ultrasonic bath, to remove the debris caused by partial discharges. 

 

Figure 4-2: Sketch of the set up for                                                                 
resistance to surface erosion test 

 

The thermal conductivity of the samples was evaluated using a DTC-25 guarded heat flow 

meter (TA instruments) in accordance with ASTM E1530 standard. Samples of 2 inches 

diameter and average thickness of 500 µm were subsequently placed between the upper 

heating plate and the lower cooling plate of the device. A pressure of 15 psi was applied on 

the upper plate to ensure good contact between the sample and the plates. The upper plate was 

heated to 45 °C while the lower plate was cooled to 15 °C, creating a ΔT over the sample and 

leading to a medium sample temperature of 25 °C. Samples have been allowed for thermal 

stabilization, which occurs usually within 2 to 3 hours, in the measuring chamber. A heat flux 

transducer attached to the lower plate measures the heat flow Q through the sample, from 

which the thermal conductivity can be deduced using equation (4.2). =                                                             (4.2) 

Where: 

A: surface of the sample; 

t: thickness of the sample; 

Q: heat flow; 

ΔT: temperature difference. 
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Finally, DC electrical conductivity of the nanocomposites was measured under ambient 

conditions, using a two-probe method. 40 mm diameter samples of thickness around 500 µm 

were used. Different electric fields ranging from 17 kV/cm to 170 kV/cm were applied using a 

High Voltage DC source. The charge and discharge currents were measured using a Keithley 

6487 Picoammeter. The data were collected for 600 s to reach quasi-steady state currents. The 

characteristic I-V curve corresponding to each nanocomposite was subsequently plotted. 

 

4.3 Results and discussion 

4.3.1 Dispersion and morphology 

The nanoparticles dispersion in both sets of nanocomposites, respectively SEBS-ZnO and 

SEBS-MA-ZnO, was first characterized by SEM. The SEM micrographs reported in Figure 

4-3 reveal that agglomerations are present in the case of SEBS-ZnO nanocomposites 

(indicated by the arrows in Figure 4-3(a)) while they are absent in the case of SEBS-MA-ZnO 

nanocomposites. To investigate further the dispersion in the latter case, TEM was performed 

on SEBS-MA-5 nanocomposite. The images reported in Figure 4-4 reveal homogeneous and 

quasi-individual dispersion of nanoparticles. Their size distribution was investigated by 

particle size analysis reported in annex III of the supporting file (Figure A III-1 and Figure A 

III-2). In particular, the size of more than 60% of the dispersed ZnO nanoparticles and their 

small agglomerations ranges between 20 nm and 60 nm, which is equal to or larger than the 

size of the SEBS block copolymer nanodomains estimated to be in the range 15-30 nm for 

both blocks according to reference (Leice G Amurin et al., 2016) and AFM images reported in 

Figure 4-7. AFM results will be discussed further later in the manuscript. Hence, it is difficult 

to locate the nanoparticles exclusively in one block, either PS or PEB. However, it is expected 

that the nanoparticles exhibit higher affinity to the PEB block due to favorable interaction 

between the surface of ZnO nanoparticles and the MA groups grafted onto the PEB block. To 

confirm this potential interaction, FTIR was performed. The spectra are reported in Figure 

4-5. 
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Figure 4-3: SEM micrographs of: (a) SEBS-5 (arrows indicate the                    
agglomerations) and (b) SEBS-MA-5 

 

 

Figure 4-4: TEM micrographs of SEBS-MA-5 nanocomposite 
 

Figure 4-5(a) shows the FTIR spectra of SEBS-MA based materials in the wavenumbers 

range from 1500 to 2000 cm-1. In particular, the spectrum of SEBS-MA shows absorption 

bands at respectively 1776, 1740 and 1713 cm-1 indicating the presence of carbonyl-

containing groups, mainly maleic anhydride and potentially maleic acid (Barra, Crespo, 

Bertolino, Soldi, & Pires, 1999; "Characteristic IR Absorption Frequencies of Organic 

Functional Groups," ; Xiong et al., 2013; X. Zhou, Yu, Lin, & Chen, 2013). In the spectra of 

the nanocomposites, the absorption bands at 1713 and 1776 cm-1 are still detected but the peak 

(a) (b) 

(a) (b) 
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intensity at 1713 cm-1 seems to be considerably reduced. This observation is rather confirmed 

if we consider a ratio between this absorption band and a reference band (not affected by the 

potential interaction between ZnO nanoparticles and MA) such as the one observed at 1583 

cm-1 and assigned to the vibrations of the benzene rings of PS block (G. Chen, Liu, Chen, & 

Qi, 2001; Gupta, Wang, Hanssen, Hsia, & Datla, 1995). In fact, the ratio decreases especially 

at large ZnO content. For instance, it drops down from approximately 2.3 for the neat SEBS-

MA to 1 for SEBS-MA-20 nanocomposite. Besides, the absorption band at 1713 cm-1 is 

slightly shifted to lower wavenumbers at increasing ZnO content. Simultaneously, the 

intensity of the absorption band at 1740 cm-1, which corresponds actually to the stretching 

vibration of ester carbonyls ("Characteristic IR Absorption Frequencies of Organic Functional 

Groups,"), seems to be increasing with increasing ZnO concentration, if we compare with the 

same reference, i.e. the absorption band at 1583 cm-1. It reaches 2 for SEBS-MA-20 

nanocomposite compared to 0.62 for the neat SEBS-MA. This behavior supports the 

hypothesis of formation of ester bonds upon the reaction between MA and hydroxyl groups on 

the surface of ZnO nanoparticles. Figure 4-5(b) shows the FTIR spectra of SEBS-MA based 

materials in the wavenumbers range from 3000 to 3800 cm-1. As indicated by the arrow, a 

broad absorption band appeared between 3200 and 3600 cm-1 in the spectra of all the 

nanocomposites. It most likely corresponds to stretching vibration of hydrogen-bonded 

hydroxyl groups. It is broad due to overlapping of several O-H stretching modes (Kuo & 

Chang, 2001). This behavior indicates the formation of hydrogen bonds as well after the 

reaction between MA and hydroxyl groups on the nanoparticles surfaces (Ndiaye et al., 2011; 

Sari, Moradian, Bastani, & Stribeck, 2012; Xiong et al., 2013; X. Zhou et al., 2013). In 

summary, in the nanocomposites studied in the present work, ZnO nanoparticles are 

organically modified with an alkyl ammonium salt which is one of the functional groups that 

are commonly used for the preparation of pre-intercalated clay layers. Although the used 

nanoparticles are spherical, this modification helps to improve the compatibility with the 

organic polymer matrix by decreasing the hydrophilic character of the nanoparticles. Besides, 

maleic anhydride graft attached to the PEB block can be considered as a second effective 

functional group which is able to bond with hydroxyl groups that partially cover the surface of 

the nanoparticles, forming ester and hydrogen bonds. The resulting complexes act as in-situ 
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formed cross-linked structures that improve further the dispersion, as seen in TEM 

micrographs (Figure 4-4), and affect drastically the rheological properties which will be 

discussed later in the manuscript. 

 

 

 

Figure 4-5: FTIR spectra of SEBS-MA-ZnO nanocomposites: (a) in                                       
the absorption range 1500-2000 cm-1 and (b) in the absorption                                            

range 3000-3800 cm-1 
 

1713

1740

1776

1583

(a) 

(b) 
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A scheme of the possible reaction mechanism is presented in Figure 4-6 (Ndiaye et al., 2011; 

Sari et al., 2012). The system studied in this manuscript is very similar to many clay 

containing-maleated polymer nanocomposites that feature an excellent exfoliation of clay due 

to simultaneous surface treatment by organic groups, which result in pre-intercalated clay 

layers, and strong interaction between MA and hydroxyl groups at the edge of clay layers 

improving the peeling mechanism and consequently the exfoliation of clay into individual 

layers (Iwasa, Ueda, Shibayama, & Fukatani, 2002; L.A. Utracki, 2004). 

 

 

Figure 4-6: Reaction scheme between maleic anhydride and the                                           
surface of the nanoparticles (R: alkyl ammonium salt) 

 

As a consequence of the good interaction with MA, ZnO nanoparticles tend to be individually 

dispersed and exhibit higher affinity to PEB phase to which the MA group is grafted. 

However, as the size of the nanoparticles is comparable to or greater than the size of the PEB 

domains, it is thermodynamically challenging to locate them inclusively in the rubber phase 

(Emna Helal et al., 2015; Sarkar & Alexandridis, 2015). Only the nanoparticles with the 

smallest size will potentially locate in the rubber phase. In order to reveal the obtained SEBS 

morphology and the possibility of selective location of nanoparticles, some TEM grids were 

treated with ruthenium tetroxide RuO4 to enhance contrast between the different phases. 

However, the staining was not successful as ZnO reacted with RuO4 (TEM micrographs of the 

treated samples can be consulted in Figure A III-3 of the supporting file (annex III)). Thus, 

AFM was carried out instead to overcome this problem. In general, lamellar morphology is 

expected when SEBS block copolymer is prepared from solvent blending using toluene 
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without annealing at elevated temperatures (E Helal et al., 2015). However, the compression 

molding at 200 °C and the addition of nanoparticles can distort the block copolymer 

morphology (Cano, Gutierrez, & Tercjak, 2013). Figure 4-7(b) shows AFM images 

corresponding to SEBS-MA-1 nanocomposite subjected to the same thermal treatment as the 

compression molded samples. A distorted “fingerprint” morphology is observed, where PS 

domains (bright phase) are mostly in the form of short cylinders (Ganguly & Bhowmick, 

2008; Seppala, 2012). This morphology is observed in the neat SEBS as well (Figure 4-7(a)), 

but with better long-range order. The nanoparticles appear as bright spots. The smallest ones 

are more in contact with the PEB block (dark phase) while the biggest ones do not selectively 

locate. This observation agrees well with TEM and FTIR results. 

 

 

Figure 4-7: AFM images of: (a) Neat SEBS-MA, (b) SEBS-MA-1 nanocomposite,          
(c) Zoom on the region indicated by the square in (b)                                                    

(showing the same magnification as (a)) 
 

4.3.2 Rheological properties 

SAOS results corresponding to respectively SEBS-ZnO and SEBS-MA-ZnO nanocomposites 

containing different nanoparticles concentrations are reported in Figure 4-8. The 

measurements were done in the linear regime in the frequency range from 10-2 to 300 rad.s-1. 

Besides, the low frequency range was extended down to 10-3 rad.s-1 for selected samples to 

evaluate further the non-terminal behavior. Plots corresponding to dynamic storage and loss 

(a) (b) (c) 
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moduli, G’ and G”, are reported in Figure 4-8(a)-(b) while those corresponding to the 

complex viscosity modulus |η*| are reported in Figure 4-8(c)-(d).  

By comparison with the linear viscoelastic response of unfilled SEBS and SEBS-MA, a 

substantial effect of ZnO nanoparticles was observed in both sets of nanocomposites. With 

increasing ZnO content, both storage modulus, G’, and loss modulus, G’’, of the 

nanocomposites were progressively enhanced and became less dependent on the angular 

frequency throughout the test range. The reduced dependence on frequency indicates that the 

nanocomposites gradually exhibit solid-like behavior which is attributed to the confinement 

of polymer chains and the formation of ZnO networks, due to good adhesion between the 

nanoparticles and the polymer matrix (Hong et al., 2006). This behavior was more prominent 

in SEBS-MA-ZnO nanocomposites compared to SEBS-ZnO nanocomposites. In fact, for 

SEBS-ZnO nanocomposites, a slight increase of both storage and loss moduli, was exhibited 

in the nanocomposites compared to the pure material due to the confinement of the polymer 

chains in the presence of the nanoparticles. In SEBS-MA-ZnO nanocomposites, the same 

behavior is exhibited but the degree of increase is higher than one order of magnitude, 

compared to the neat, for both moduli. This behavior is most likely due to the improved 

dispersion and affinity to PEB block which were more efficient in confining polymer chains. 

Moreover, a plateau in G’-ω curve in log-scale was approached for all the nanocomposites 

prepared from maleated SEBS, even at low ZnO content equal to 1 wt%. This plateau was 

more evident when extending the frequency range to 10-3 rad.s-1, as seen in Figure 4-8(a).  

The low frequency slope, calculated in the range 10-1 rad.s-1 to 10-2 rad.s-1, decreased from 

0.17 for neat SEBS-MA, which corresponds to hexagonally-packed cylindrical morphology 

that was probably improved during the SAOS test (Carastan et al., 2008), down to 0.03 for 

SEBS-MA-5 nanocomposite. Since the rheological measurements in the low frequency 

regime reflect the long range motion of polymer chains, this particular non-terminal behavior 

means that the long-range motion is hindered due to the formation of a network between the 

ZnO nanoparticles and the polymer chains, i.e. rheological percolation, resulting in 

incomplete relaxation of the chains(C. Gao et al., 2014; Q. Zhang & Archer, 2002). 

Moreover, the values of complex viscosity, |η*|, increased in the whole frequency range, as 

shown in Figure 4-8(c), along with a more pronounced shear-thinning behavior at higher 
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ZnO content. Comparing SEBS-MA-ZnO nanocomposites containing respectively 10 and 

20wt% nanoparticles, same values of G’, G’’ and |η*| can be observed. Hence, it seems that 

the rheological percolation occurs between 5wt% (0.9 vol%) and 10wt% (1.8 vol%). This 

range is below the predicted theoretical rheological percolation for spherical nanoparticles 

(Q. Zhang & Archer, 2002). This fact seems to support the hypothesis of good interaction 

between the nanoparticles and the rubber phase of the block copolymer which may result in 

lowering the threshold for rheological percolation. 

 

 

(a) 

(b) 
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Figure 4-8: SAOS measurements of SEBS-ZnO vs. SEBS-MA-ZnO                      
nanocomposites: (a)-(b) storage modulus G’ (●) and                                                             

loss modulus G” (■) and (c)-(d) complex viscosity modulus |η*| 
 

In order to investigate if the non-terminal behavior observed in SEBS-MA-ZnO 

nanocomposites is indeed due to the rheological percolation and not due to a change of SEBS 

block copolymer morphology during the SAOS test to body-centered cubic spherical 

morphology, which is also characterized by a zero-slope in G’-ω plot as a non-terminal 

(c) 

(d) 
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behavior (Carastan et al., 2008; Kossuth, Morse, & Bates, 1999), a time sweep test were 

performed. The time sweep test describes the evolution of viscoelastic moduli as function of 

time under a constant temperature, frequency and strain. In this test, a change of morphology 

will be manifested by a sudden change of the storage modulus (Carastan et al., 2008). In 

literature, changes of morphology in block copolymer nanocomposites have been reported, 

especially in the case where nanoparticles are selectively located in one phase and 

consequently increase its volume fraction (Cano et al., 2013; Carastan et al., 2008). Figure 

4-9 shows the evolution of the storage moduli of unfilled SEBS-MA and SEBS-MA-5 

nanocomposite for 8 hours at a fixed frequency equal to 0.05 rad.s-1. G’ of both samples 

remained constant over time which confirms that the morphology of the block copolymer 

didn’t change. Hence, the plateau observed in G’-ω plots of the nanocomposites, is rather due 

to rheological percolation. 

 

 

Figure 4-9: Time sweep test at 200 °C, 0.05 rad.s-1                                                     
and 0.5% strain 
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4.3.3 Low-field dielectric characterization 

4.3.3.1 Complex dielectric permittivity  

Figure 4-10 reports respectively the values of real and imaginary parts of the complex 

dielectric permittivity, ɛ’ and ɛ’’ respectively, of both SEBS-MA-ZnO and SEBS-ZnO 

nanocomposites sets, measured at room temperature. The comparison of dielectric response 

of both types of nanocomposites shows that the dielectric behavior is strongly affected by the 

presence of MA and the quality of ZnO dispersion. For the unfilled matrices, it can be seen 

that SEBS-MA has slightly higher real and imaginary permittivities compared to SEBS. This 

is most likely due to the presence of MA polar groups. Regarding the SEBS-MA 

nanocomposites, it can be seen from Figure 4-10(a) and Figure 4-10(b) that up to 10wt% 

loading, there is no significant increase of either the imaginary or the real part of the complex 

permittivity. This has been frequently observed in the case of well dispersed ceramic filled 

polymer nanocomposites (Praeger, Andritsch, Swingler, & Vaughan, 2014; I. Tsekmes, 

Kochetov, Morshuis, & Smit, 2014), particularly when functional groups creates covalent 

bonding between particles and matrix (Bouchaib Zazoum et al., 2016). The most popular 

explanation for this behavior is the interlayer theory suggesting an interlayer zone between 

the nanofiller and the matrix having different dielectric properties than both the matrix and 

the particles (for example a lower permittivity) (Heid, David, & Fréchette, 2016; I. A. 

Tsekmes, 2016). However, when hydrophilic filler, such as a metallic oxide, is used, the 

occurrence of a water layer also surrounding the particle is frequently observed which 

invariably leads to a strong relaxation peak usually within the 10-2 to 105 Hz frequency 

window (see discussion in the paragraph below). This was not observed in the case of SEBS-

MA nanocomposites for loadings below 20 wt%.  

 

The poor dispersion and the presence of agglomerations lead to much higher dielectric losses 

(and consequently permittivity) in the case of the SEBS-ZnO nanocomposites as it can be 

seen in Figure 4-10(c) and Figure 4-10(d). Due to the distribution of the agglomerate size, 

very broad relaxation mechanisms were observed from 5wt% loading. At a high 
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nanoparticles loading equal to 20wt%, a strong increase of dielectric losses was observed for 

both nanocomposites. In the case of the SEBS-MA-20, a clear and rather narrow interfacial 

relaxation peak appeared in the vicinity of 102-103 Hz suggesting a somewhat narrow 

distribution of filler size. On the other hand, SEBS-20 shows larger increase of its dielectric 

losses over the whole frequency range showing a very broad relaxation mechanism possibly 

resulting from the overlapping of several interfacial relaxation processes related to different 

agglomerate size and properties. Step-like increases related to these relaxation peaks were 

simultaneously observed in real permittivities of these samples, resulting in increased values 

of real permittivity, especially at low frequencies. The observed relaxation peaks might have 

different origins including the presence of a water layer absorbed at the interface between 

ZnO nanoparticles and polymer chains. In fact, water sorbed from the ambient atmosphere 

constitutes a conductive layer leading to an interfacial relaxation observed at intermediate 

frequencies (Kremer & Schönhals, 2012). This phenomenon was reported in the literature 

(Couderc, David, Frechette, & Medjdoub, 2013; David & Fréchette, 2013; Glaskova & 

Aniskevich, 2009; I. Hosier, Praeger, Vaughan, & Swingler, 2015; Kofod et al., 2011; Lau et 

al., 2013), for polymers filled with several types of hydrophilic nanofillers, among them metal 

oxides, which were demonstrated to effectively absorb humidity. The geometry and the 

fraction of this conductive layer depend strongly on the quality of the interface and 

consequently the quality of the dispersion. Thus, in materials suffering from the presence of 

agglomerations, different interfaces lead to different thicknesses of water layers that might co-

exist resulting in more than one relaxation peak, observed at distinguished frequencies and 

featuring different dielectric strengths (Kremer & Schönhals, 2012; Lau et al., 2013). 

However, in specific cases where nanoparticles are functionalized with an adequate surface 

modification, reduced or negligible effect of humidity was reported (David & Fréchette, 2013; 

David et al., 2015; Lau et al., 2013). Moisture absorption can also affect dipolar relaxation 

dynamics by enhancing the molecular mobility of its related dipoles and consequently shifting 

the corresponding peak to higher frequencies (Kofod et al., 2011). 
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Figure 4-10: Complex dielectric permittivity at room temperature of SEBS-MA-ZnO vs. 
SEBS-ZnO nanocomposites: (a) Real part of permittivity of SEBS-MA-ZnO 

nanocomposites, (b) Imaginary part of permittivity of SEBS-MA-ZnO nanocomposites,      
(c) Real part of permittivity of SEBS-ZnO nanocomposites and (d) Imaginary part of 

permittivity of SEBS-MA-ZnO nanocomposites 
 

To follow the evolution of the different observed relaxations, isothermal dielectric 

measurements were performed on unfilled materials and selected nanocomposites at 

temperatures ranging from 25 °C up to 120 °C. Dielectric loss spectra of unfilled matrices are 

reported in Figure 4-11(a) and Figure 4-11(b) while those of nanocomposites containing 5 

wt% ZnO are reported in Figure 4-11(c) and Figure 4-11(d) (Data corresponding to 

nanocomposites containing 1 wt% ZnO are reported in Figure A III-4 of the supporting file 

(annex III)). First, it can be seen that values of ε’’ of both neat materials increased at low 

frequencies and elevated temperatures due to increased charge carrier fluctuation leading to 

both direct conduction and most likely electrode polarization. Besides, no specific relaxation 

(a) (b) 

(c) (d) 
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process was detected even in the case of SEBS-MA, by contrast to some studies reporting 

relaxation related to dipolar fluctuations of MA polar groups (Böhning et al., 2005). As a 

consequence, unfilled SEBS and SEBS-MA don`t undergo any relaxation processes in the 

temperature range studied (Kofod et al., 2011). 

 

From Figure 4-11(c) and Figure 4-11(d), it can be seen that at elevated temperatures and low 

frequencies below 1 Hz, the dielectric loss of SEBS-MA-5 exhibits strong frequency 

dependence, especially at temperatures higher than 60 °C, and exceeds largely that of SEBS-

5 nanocomposite, which features only a broad relaxation peak in the intermediate frequency 

range shifting to higher frequencies with increasing temperatures. The large increase of ε” of 

SEBS-MA-5 nanocomposite at low frequencies indicates an important contribution from 

conductivity. The sample becomes even slightly conductive at temperatures higher than 60 

°C. An additional contribution from electrode polarization might also be present and overlap 

potential relaxation phenomena. The slope of the ε”-frequency curve in log-scale at elevated 

temperatures is between -0.9 and -0.86 for SEBS-MA-5 nanocomposite, which supports the 

assumption of presence of non-ohmic conduction (Kremer & Schönhals, 2012). This effect 

was also observed in the rest of SEBS-MA-ZnO nanocomposites and seems to reach its 

maximum at 5wt% ZnO. However, it was not observed in SEBS-ZnO nanocomposites even 

at 20 wt% ZnO.  

 

The improved dispersion, homogeneous distribution and reduced interparticle distance 

achieved in SEBS-MA-ZnO nanocomposites are most likely at the origin of this interesting 

behavior. Moreover, the formation of complexes upon the interaction of MA with functional 

groups on the surface of the nanoparticles as well as the established network between the 

nanoparticles and polymer chains, as confirmed by rheological properties, might modify the 

nature of the interfaces and charge carriers activity, which ultimately leads to a much lower 

percolation threshold, under favorable heating conditions. 
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Figure 4-11: Imaginary part of the dielectric permittivity as functions of frequency and 
temperature of: (a) Neat SEBS-MA, (b) Neat SEBS, (c) SEBS-MA-5 nanocomposite and     

(d) SEBS-5 nanocomposite 
 

To evaluate the increase of AC conductivity, the real part of the complex electrical 

conductivity, σ’, might be estimated using equation (4.3). It includes the contribution of 

direct conduction as well as contribution from dielectric losses associated with relaxation 

processes and electrode polarization.  ′ = ɛ                                                  (4.3) 

Where:  

σ’: real part of complex conductivity; 

ɛ0: vacuum permittivity; 

ɛ’’: imaginary part of complex permittivity at angular frequency ω. 

(a) (b) 

(c) (d) 
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In Table 4-1, values of σ', at respectively 25 °C and 100 °C, are reported for different 

nanocomposites. These values have been calculated at a relatively low frequency equal to  

10-1 Hz in order to compare them with values of dc conductivity that will be discussed later 

in the manuscript. It is worth mentioning that, in the case of the studied samples, an 

important increase of electrical conductivity is not expected, since the intrinsic electrical 

conductivity of semi-conductive ZnO nanoparticles is relatively low and doesn’t increase 

considerably with temperature. It can be seen that in the case of neat materials and SEBS-

ZnO nanocomposites, the increase of conductivity with increasing temperature from 25 °C to 

100 °C doesn’t exceed 1 order of magnitude generally. In the case of SEBS-MA-ZnO 

nanocomposites, the conductivity increases by 3-4 orders of magnitude. This effect seems to 

saturate at 5 wt%, which is in line with the rheological properties. 

 

Table 4-1: Values of real part of complex conductivity at 10-1 Hz 

 σ' at 25 °C (S.cm-1) σ' at 100 °C (S.cm-1) 

SEBS 3.0 x 10-18 3.6 x 10-17 

SEBS-1 3.6 x 10-18 1.2 x 10-16 

SEBS-5 2.3 x 10-17 4.4 x 10-17 

SEBS-20 3.2 x 10-16 4.5 x 10-16 

SEBS-MA 2.3 x 10-17 8.1 x 10-17 

SEBS-MA-1 3.6 x 10-18 1.9 x 10-15 

SEBS-MA-5 7.8 x 10-18 6.4 x 10-14 

SEBS-MA-20 3.0 x 10-17 1.7 x 10-14 

 

As observed in room temperature spectra reported in Figure 4-10, additional relaxation peaks 

in the intermediate frequencies range are detected in the dielectric loss spectra of some 

nanocomposites, especially at elevated ZnO loadings. In order to investigate these relaxation 

processes, isothermal measurements at higher temperatures were performed on both SEBS-

MA-20 and SEBS-20 nanocomposites. Their corresponding spectra of ε” are reported in 

Figure 4-12(a) and Figure 4-12(b). In particular, Figure 4-12(a) shows that SEBS-MA-20 

exhibits strong conduction at low frequencies eventually associated with a MWS peak, 
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similarly to what have been observed earlier in the spectrum of SEBS-MA-5 (Figure 

4-11(c)). In addition, a relaxation peak is observed initially around 103 Hz and shifted 

towards higher frequencies at elevated temperatures (indicated by an arrow). In SEBS-20, 

two peaks were observed initially at room temperature, at two different frequencies as 

indicated by the arrows in Figure 4-12(b). At increasing temperatures, both peaks were 

shifted to higher frequencies as well and seem to merge in one peak with higher asymmetry 

at the low-frequency side.  

 

These new relaxations observed in the materials containing high loadings of nanoparticles 

might be related to the presence of a conductive water layer adsorbed at the interface 

between the polymer and the metal oxide nanoparticles as mentioned earlier. Although it was 

reported in several studies that relaxation processes affected by moisture absorption exhibit a 

distinguished behavior consisting on the displacement of the peak maximum to lower 

frequencies starting from a certain temperature (Böhning et al., 2005; Couderc et al., 2013; 

David & Fréchette, 2013; Lau et al., 2013), a regular trend of the displacement of the peak 

towards higher frequencies was also reported in other studies (Ciuprina et al., 2010; David & 

Fréchette, 2013). In our case, the latter behavior is observed. Besides, it seems that the 

temperature dependence of the peak maximum frequency is stronger in SEBS-ZnO compared 

to SEBS-MA-ZnO.  

 

In order to confirm if the additional relaxations are corresponding to a conductive water layer 

adsorbed at the interface between the nanoparticles and polymer chains, nanocomposites 

containing 5 wt% and 20 wt% ZnO from both sets, were dried for 3 days at 65°C under 

vacuum before rescanning their dielectric spectra. In fact, if humidity absorption is at the 

origin of these relaxations, corresponding peaks are expected to shift to lower frequencies or 

completely disappear after drying (Böhning et al., 2005; Couderc et al., 2013; David & 

Fréchette, 2013; Kofod et al., 2011; Lau et al., 2013). In the case of SEBS-MA-ZnO 

nanocomposites, no change of the dielectric spectra was observed after drying, for both 

studied ZnO contents: 5 wt% and 20 wt% ZnO (Figure A III-5 and Figure A III-6 in annex 

III). However, in the case of SEBS-ZnO nanocomposites, some changes were observed after 
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drying (Figure A III-7 in annex III). In particular, peak maximum frequencies of the observed 

relaxations were not significantly affected but the dielectric losses increased mainly at low 

frequencies and a new relaxation process is observed at elevated temperatures. This behavior 

is in agreement with findings from the literature reporting that the effect of moisture is 

reduced on treated nanoparticles and that in the dry state, the dielectric losses might increase 

due the presence of coupling agents (David & Fréchette, 2013; David et al., 2015; Lau et al., 

2013). As a consequence, it was not possible to confirm a correlation between the relaxation 

processes observed at intermediate frequencies and the presence of water layer surrounding 

the nanoparticles, especially in the case of SEBS-MA-ZnO nanocomposites. Probably, 

additional drying is necessary to observe significant changes but overall it can be concluded 

that moisture absorption is not a major issue in the studied SEBS-ZnO and especially SEBS-

MA-ZnO samples. If the effect of moisture absorption is negligible, the observed relaxations 

might be caused by the co-existence of different types of interfaces: polymer-particle and 

particle-particle, especially at high nanoparticles loadings and in the presence of 

agglomerations, resulting in broad and multiple relaxations (Figure 4-12(b)). Another 

possible origin for the observed relaxations, especially at high loadings of nanoparticles, is 

the existence of an interphase region where polymer chains might feature restricted mobility 

(Michel Fréchette et al., 2014; Yu Lin et al., 2015; Tsagaropoulos & Eisenburg, 1995). In 

this case, further investigations are required to confirm these phenomena. 

  

Figure 4-12: Imaginary part of electric modulus as functions of frequency and temperature 
of: (a) SEBS-MA-20wt% ZnO nanocomposite and (b) SEBS-20wt% ZnO nanocomposite 

Double peak 

(a) (b) 
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In order to evaluate the dielectric losses of the nanocomposites compared to the pure 

materials and between themselves at operational conditions, values of the dissipation factor 

tan δ equal to the ratio ε’’/ε’, at a fixed frequency equal to 66 Hz (close to power frequencies) 

and different temperatures: 25, 40 and 60 °C were reported in Table 4-2 for the 5, 10 and 20 

wt% nanocomposites (1wt% nanocomposites did not show any significant increase of the 

dissipation factor). At a first glance, it can be seen that at this frequency, nanocomposites 

prepared from SEBS-MA don’t exhibit higher losses compared to nanocomposites prepared 

from SEBS despite the fact that they show stronger conductivity at low frequencies and 

elevated temperatures and that maleated SEBS features higher losses compared to 

unmaleated SEBS. Besides, both sets of nanocomposites, containing 1 wt% and 5wt% 

nanoparticles, have dielectric losses similar to (less than one order of magnitude increase) or 

lower than unfilled matrices even at 60 °C. At higher ZnO contents equal to 10wt% and 

20wt%, losses increase up to 2 orders of magnitude compared to unfilled materials. However, 

SEBS-MA-ZnO feature lower losses compared to SEBS-ZnO. For instance, the maximum 

dissipation factor for SEBS-20 nanocomposite in the studied temperature range is equal to 

4.57 x 10-2 compared to 3.78 x 10-3 for SEBS-MA-20. Overall, by controlling the dispersion 

of ZnO in SEBS-MA, it is possible to incorporate up to 20wt% ZnO while limiting the 

increase of the loss factor to less than 1 order of magnitude. At lower concentrations up to 

5wt% ZnO, no additional dielectric losses are induced.  

Table 4-2:  Dissipation factor (tan δ = ε’’/ ε’) at 66 Hz for different nanocomposites 

ZnO 

(wt%) 

25 °C 40 °C 60 °C 

SEBS SEBS-MA SEBS SEBS-MA SEBS SEBS-MA 

0 6.33 x 10-04 1.5 x 10-03 1.54 x 10-04 9.94 x 10-04 1.99 x 10-04 8.62 x 10-04 

5 3.34 x 10-03 1.04 x 10-03 1.28 x 10-03 7.6 x 10-04 1.34 x 10-03 2.03 x 10-03 

10 1.18 x 10-02 1.37 x 10-03 5.39 x 10-03 1.40 x 10-03 2.45 x 10-03 5.02 x 10-03 

20 4.57 x 10-02 3.78 x 10-03 3.23 x 10-02 2.56 x 10-03 3.13 x 10-02 3.51 x 10-03 
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4.3.4 High-field dielectric characterization 

In this section, several dielectric characterizations, performed to evaluate the dielectric 

performance at high electric fields, will be discussed.  

4.3.4.1 Short-term breakdown strength  

Figure 4-13(a) and Figure 4-13(b) present Weibull plots of breakdown strength 

corresponding respectively to SEBS-ZnO and SEBS-MA-ZnO sets of nanocomposites. In 

SEBS-ZnO set, the values of breakdown strength decrease progressively, when increased 

loadings of ZnO nanoparticles are incorporated, due to the presence of nanoparticles 

agglomerations which act as defect centers distorting the electric field around them. This 

behavior has been repeatedly reported in literature for ZnO contents equal to 5wt% or higher 

(S. Chen et al., 2010; Cheng, Guo, Wang, & Zhang, 2013; Hong et al., 2003; Tian et al., 

2012). In particular, an initial drop from 107 kV/mm down to approximately 86 kV/mm was 

observed in nanocomposites containing 5 wt% up to 10 wt% ZnO, both exhibiting similar 

performance. Then, a second drop down to 73 kV/mm was observed when ZnO content is 

increased up to 20 wt%. This second large decline is an indication that a network of 

agglomerated ZnO nanoparticles start to form at this loading, leading to increased tunneling 

current between the nanoparticles. This observation will be discussed later in correlation with 

dc electrical conductivity and thermal conductivity results showing consistent increase at 

20wt% ZnO loading. 

 

In SEBS-MA-ZnO nanocomposites set, a different behavior was observed. First of all, the 

breakdown strength of the maleated SEBS decreased to 93 kV/mm compared to 107kV/mm 

for non maleated SEBS. This drop is most likely due to lower stiffness in SEBS-MA 

(Kollosche & Kofod, 2010). Regarding the nanocomposites, it seems that the incorporation of 

nanoparticles has only marginal effect. In fact, the breakdown strength remained equal or 

slightly higher than the unfilled SEBS-MA even at ZnO loading as high as 20wt%. This 

behavior can be the sum of two opposite mechanisms, both resulting from nanoscale 

dispersion and homogeneous distribution of the nanoparticles, which compensate each other: 
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- Homogeneous distribution of particles and their nanosize results in large interfacial 

area and consequently large amounts of charge traps and efficient scattering of 

electrons, inducing an initial increase of the breakdown strength (Fleming et al., 2008; 

Smith et al., 2008; Tian et al., 2011, 2012). 

- Reduced interparticle distance due to improved dispersion, especially at high 

nanoparticles loadings, leads to easier tunneling. Moreover, mismatch of permittivity 

between the nanoparticles and the polymer matrix leads to local electric field 

distortion around them (Hayase et al., 2006). Both factors might induce a decrease of 

the breakdown strength that neutralizes the initial increase.  

 

Comparing both sets of nanocomposites, values of breakdown strength of nanocomposites 

prepared from SEBS-MA are higher than those prepared from SEBS due to the role of tuned 

dispersion in maintaining the breakdown strength in the same range of the SEBS-MA matrix. 

But, overall the dielectric strength of all the nanocomposites is lower than that of pure non 

maleated SEBS. The reduction varies from 30% in the worst case to 10% in the best case, 

which corresponds to SEBS-MA-5 nanocomposite. Also, it is worth noting that the shape 

factor β is relatively low in both sets of samples, even the unfilled ones, due to probably the 

complex morphology of the matrix, i.e. two blocks of different mechanical and dielectric 

strengths. 

 

Figure 4-13: Breakdown strength of: (a) SEBS-ZnO and (b) SEBS-MA-ZnO  
nanocomposites  

(a) (b) 
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4.3.4.1 Resistance to surface erosion by partial discharges 

Resistance to surface erosion by partial discharges is an important criterion to evaluate the 

aging of polymer insulation in operating conditions. In fact, when subjected to high electric 

fields, the insulation surface can be degraded and its effective thickness reduced. In this 

section, we evaluate the resistance to surface erosion of the studied nanocomposites, by 

estimating the eroded volume induced in each sample after being subjected to a specific 

electric field. The eroded volumes, calculated using mechanical profilometer data, 

corresponding to the samples exposed to a voltage equal to 7 kVrms for 30 hours are presented 

in Figure 4-14. In general, a decrease of the sample eroded volume can be associated with an 

increase in its resistance to electrical discharges. Comparing unfilled materials, the resistance 

to surface erosion of SEBS-MA is 10% lower than SEBS. Considering the nanocomposites, 

both SEBS-ZnO and SEBS-MA-ZnO sets exhibit excellent resistance to surface erosion by 

partial discharges compared to unfilled matrices, even at low ZnO content equal to 1wt%. 

This behavior has been commonly reported for nanocomposites and microcomposites 

containing fillers featuring good resistance to partial discharges (Brockschmidt, Pohlmann, 

Kempen, & Gröppel, 2011; S. Chen et al., 2010; Heid et al., 2015; Huang et al., 2014), 

specifically ZnO which is known for its effective shielding of ultraviolet radiation, emitted 

during the process of corona aging and playing an important role in the degradation of the 

polymer insulation (S. Chen et al., 2010). However, it is obvious from the reported results 

that SEBS-MA-ZnO nanocomposites exhibit better performance compared to SEBS-ZnO 

nanocomposites. For instance, the eroded volume was reduced by almost 60% upon addition 

of 1wt% nanoparticles to SEBS-MA compared to only 18% when the same amount of 

nanoparticles is incorporated in SEBS. This behavior is of particular interest. In fact, it 

demonstrates that the resistance to erosion by partial discharges cannot be explained only by 

the intrinsic shielding property of ZnO, as in this case one would expect similar performance 

for similar ZnO content (David & Fréchette, 2013). Thus, the superior performance of SEBS-

MA-ZnO is most likely related to the improved dispersion and interaction in SEBS-MA-ZnO 

nanocomposites which results in large interphase layer with a resistance higher than that of 

the unfilled matrix and consequently more homogeneous eroded surface and less erosion 
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depth (Mappings of the eroded area corresponding to different samples are available in 

Figure A III-8 in annex III). However, in SEBS-ZnO nanocomposites, the inhomogeneous 

distribution and the presence of agglomerations may cause local electric field enhancements, 

which lead to locally increased electrical and thermal stresses of the nanocomposite, resulting 

in intense erosion of the surrounding organic matrix. Results in agreement with these 

findings were reported in the literature. For instance, comparison of epoxy microcomposites 

and nanocomposites filled with Alumina showed higher resistance to erosion in the case of 

nanocomposites (Z. Li, Okamoto, Ohki, & Tanaka, 2011). Also, it was found that 

nanocomposites filled with high contents of agglomerated polyhedral oligomeric 

silsesquioxane (POSS) molecules exhibit lower resistance than nanocomposites filled with 

lower POSS loadings but featuring better dispersion (Heid et al., 2015; Heid, Fréchette, et al., 

2016).  

 

At 10 wt% and 20 wt% ZnO loadings, the eroded volume in respectively SEBS-MA-10 and 

SEBS-MA-20 was almost negligible and it was difficult to estimate it properly from the 

mapping data. Hence, it seems that the beneficial effect of ZnO nanoparticles saturates at 5 

wt% loading, which corresponds to rheological percolation and implicitly to the maximum 

interphase volume, as estimated from SAOS measurements earlier. At this loading, the 

eroded volume is reduced by 90%. 



155 

 

Figure 4-14: Resistance to surface erosion by partial discharges 

 

4.3.4.1 DC electrical conductivity: dependence on nanoparticles networks 

Non-linear electrical conductivity is an important property in polymer insulation systems in 

order to reduce space charge accumulation especially under DC electric field. In 

nanocomposites, the electrical conductivity behavior is often strongly dependent on the 

distribution of nanoparticles and the possibility of creating conductive pathways, in addition 

to the intrinsic conductivity of the nanoparticles. 

 

Figure 4-15 presents plots of current density vs. electric field for both sets of 

nanocomposites: SEBS-ZnO and SEBS-MA-ZnO (Figure 4-15(a)) as well as the evolution of 

DC electrical conductivity as function of ZnO loading and applied electric field (Figure 

4-15(b)). Since SEBS-MA-ZnO nanocomposites exhibit improved dispersion, homogenous 

nanoparticles distribution and consequently less contact between the nanoparticles, one 

would expect that these materials will show lower conductivity and will require higher 

electric fields to exhibit a non-linear I-V relationship compared to SEBS-ZnO 

nanocomposites (Hong et al., 2006). The data reveal that all the materials feature an 

improved non-linear behavior in the studied electric field range, especially at electric fields 
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higher than 50kV/cm (corresponding to a change of the slope), except the unfilled SEBS-MA 

and SEBS-MA-5 nanocomposite (Figure 4-15(a)). However, different dependences on ZnO 

content and electric field have been observed for each set: SEBS-ZnO vs. SEBS-MA-ZnO. In 

SEBS-ZnO nanocomposites, a non-linear behavior is observed starting from 5wt% ZnO 

content. Besides, a similar trend of current density increase as function of nanoparticles 

loadings is observed, independently from the applied electric field, which indicates that the 

resulting increase of conductivity observed in these samples is rather depending on the 

fraction of agglomerated nanoparticles networks that were progressively formed in the 

material at increasing loadings due to imperfect dispersion and inhomogeneous distribution. 

 

Regarding SEBS-MA-ZnO materials, it can be observed that the calculated slope for unfilled 

SEBS-MA is higher than 1 (all the slopes are calculated starting from 50 kV/cm), which 

corresponds to ohmic conduction. This behavior might be due to the presence of MA polar 

groups. At 5wt% ZnO loading, no non-linear electrical behavior was observed up to 170 

kV/cm.  The slope of the I-V plot is even lower than that of unfilled SEBS-MA, which might 

be explained by the presence of deep trapping sites that limit the current transport through the 

material (S. Chen et al., 2010; Amir M Pourrahimi et al., 2016; Amir Masoud Pourrahimi et 

al., 2016). Similar behavior was reported in the literature for nanocomposites containing low 

loadings of ZnO up to 5wt%. A significant decrease of conductivity was even observed in 

some cases (Fleming et al., 2008; Amir M Pourrahimi et al., 2016; Amir Masoud Pourrahimi 

et al., 2016). Besides, the increase of the current density of SEBS-MA-ZnO materials, at 

increasing ZnO wt%, seems to be more dependent on the electric field compared to SEBS-

ZnO nanocomposites. In particular, at low electric field (17 kV/cm), no increase of current 

density was observed up to 10 wt% ZnO. At higher electric fields such as 119 kV/cm and 

170 kV/cm, the current density starts increasing at 10 wt% ZnO. The improvement induced 

by increasing ZnO content from 5 wt% to 10wt% was significantly higher in SEBS-MA-ZnO 

nanocomposite compared to SEBS-ZnO nanocomposites. This behavior is most likely due to 

reduced interparticle distance enabling efficient electron tunneling activated at high electric 

fields (Hong et al., 2003). At increased ZnO loading from 10 wt% up to 20wt% ZnO, a jump 

of the current density of approximately two orders of magnitude was observed at low electric 
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fields in SEBS-MA-ZnO nanocomposites compared to 1 order of magnitude for SEBS-ZnO 

nanocomposite. However, at high electric fields, a similar trend of increase is observed which 

is expected due to the high concentration of nanoparticles. In a summary, the electrical 

conduction in SEBS-MA-ZnO nanocomposites is thought to be due to tunneling between 

ZnO nanoparticles. The slope of the current-voltage curve in log scale, which reflects the 

non-linearity, exhibits a maximum at 10 wt% ZnO (Figure 4-15(a)). This behavior might be 

correlated with the rheological percolation estimated between 5wt% and 10wt% from SAOS 

measurements discussed earlier. In SEBS-ZnO nanocomposites, the conduction is rather 

governed by the formation of paths of touching particles. At increasing ZnO concentrations, 

conduction paths extend through the entire sample, which is in line with increasing slope of 

non-linearity (Hong et al., 2003, 2006; Zohrevand, Ajji, & Mighri, 2014).  

 

DC electrical conductivity values reported in Figure 4-15(b) illustrate also the different 

behaviors exhibited by SEBS-ZnO and SEBS-MA-ZnO nanocomposites as functions of ZnO 

content and electric field, as discussed earlier. Besides, the values corresponding to neat 

SEBS-MA and SEBS-MA-5 nanocomposite are close to AC conductivity values reported in 

Table 4-1, despite the fact that they are measured at higher electric fields and under DC field. 

However, for the rest of the samples exhibiting stronger non-linearity, the measured values of 

DC conductivity are higher. 
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Figure 4-15: (a) current density vs. DC electric field plots of                                           
SEBS-MA-ZnO vs. SEBS-ZnO nanocomposites , (b) DC conductivity                                  

of SEBS-MA-ZnO vs. SEBS-ZnO nanocomposites as functions                                                        
of ZnO loading (wt%) and electric field 

 

50 kV/cm (a) 

(b) 
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4.3.5 Thermal conductivity 

Relatively high thermal conductivity is also a desirable property in insulating materials in 

order to facilitate heat dissipation and to avoid the deterioration of the insulation. In general, 

the medium to transport thermal energy in solid insulations is phonons, i.e. lattice vibrations 

(W. Cui et al., 2011; Heid et al., 2015; Heid, Fréchette, et al., 2016; Huang, Iizuka, Jiang, 

Ohki, & Tanaka, 2012). Hence, one would expect that in nanocomposites, the formation of 

organized networks of thermally conductive particles is necessary to achieve an improvement 

of the matrix thermal conductivity. In this section, we will evaluate the potential of controlled 

spatial distribution offered by the established network between ZnO nanoparticles and 

polymer chains in enhancing the thermal conductivity of the studied nanocomposites.  

 

Thermal conductivity values of both SEBS-ZnO and SEBS-MA-ZnO sets of nanocomposites 

are reported in Figure 4-16. The accuracy of the method used is within 5%. A distinct 

behavior has been observed in each set. In particular, in SEBS-ZnO nanocomposites, the 

thermal conductivity remained constant up to 10wt% ZnO content, and then increased by 

20% at 20 wt% ZnO. This abrupt increase indicates that thermal networks might start to form 

in a large scale only at this relatively high loading due to the presence of agglomerations in 

SEBS-ZnO nanocomposites and the spherical shape of the nanoparticles. This observation is 

consistent with the observed decline of breakdown in SEBS-20 nanocomposite. At ZnO 

contents lower than 20wt%, phonon scattering at nanoparticle-polymer and nanoparticle-

nanoparticle interfaces is dominant in SEBS-ZnO nanocomposites and impedes improvement 

of thermal conductivity (Huang et al., 2012).  

 

In SEBS-MA-ZnO samples, a higher conductivity of neat SEBS-MA, compared to SEBS, 

can be observed at first. This is most-likely related to a molecular rearrangement of the 

repetitive units of the copolymer in the presence of MA graft resulting in a denser and more 

organized thermal network (Murillo & López, 2015). It was demonstrated in several studies 

that controlling the chemistry of amorphous polymers at molecular level might reduce 

phonon scattering and consequently enhance the thermal transport (Z. Guo et al., 2014; T. 
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Zhang & Luo, 2016). Upon the incorporation of 5wt% ZnO nanoparticles, an increase of 

thermal conductivity by 10% compared to unfilled SEBS-MA and by more than 20% 

compared to unfilled SEBS is achieved. At higher contents of ZnO equal to 10wt% and 

20wt%, the thermal conductivity didn’t increase further and probably a slight decrease is 

even induced. This behavior infers that in SEBS-MA-ZnO nanocomposites, the formation of 

thermally conductive pathways starts at lower loadings of nanoparticles, compared to SEBS-

ZnO, most likely due to rheological percolation that was confirmed by SAOS. This is in 

agreement with the conclusions of recent studies suggesting that creating ordered structures 

at the nanoscale within an amorphous polymer matrix would improve the thermal 

conductivity of the polymer (Heid, Fréchette, et al., 2016). Simultaneously, phonon 

scattering has more chances to occur especially at elevated nanoparticles loadings, as a result 

of good dispersion and the presence of large number of interfaces. However, it is worth 

noting that the improved compatibility and adhesion at nanoparticle-polymer interfaces 

reduces significantly the impact of scattering (W. Cui et al., 2011; Heid et al., 2015; Heid, 

Fréchette, et al., 2016; Huang et al., 2012). 

 

 

Figure 4-16: Thermal conductivity of SEBS-ZnO vs. SEBS-MA-ZnO                       
nanocomposites 
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4.4 Concluding remarks 

In this study, the dispersion of ZnO nanoparticles within SEBS block copolymer was tailored 

through the use of MA graft attached to the rubber block. Although the nanoparticles were of 

spherical shape, rheological percolation was observed at low ZnO content between 5 wt% 

and 10 wt%. This network formed between the nanoparticles and polymer chains was 

accompanied by an improvement of thermal conductivity and excellent resistance to surface 

erosion, at lower ZnO contents not exceeding 5 wt%, compared to non-maleated SEBS-ZnO 

samples where the dispersion was not tailored. Simultaneously, a better control of the 

electrical conductivity as function of the electric field and nanoparticles loading was enabled, 

which might reduce efficiently the space charge accumulation either by increasing trapping 

sites density or improving the non-linearity feature of the conductivity. Besides, the dielectric 

losses and the breakdown strength of these samples with tuned dispersion were in similar 

range compared to unfilled SEBS and SEBS-MA at power frequencies and operational 

temperatures. Furthermore, moisture absorption was found to have a negligible effect on the 

dielectric response of these nanocomposites. This combination of properties makes SEBS-

MA-ZnO nanocomposites a promising candidate for HV insulation systems. These features 

were enabled at relatively low contents of nanoparticles by using a block copolymer matrix 

as a nanostructured template and MA as a functional graft, leading to rheological percolation. 

The correlation between rheological properties and electrical, thermal and dielectric 

properties brings the attention to viscoelastic properties as an efficient tool to evaluate the 

control of dispersion and predict the dielectric performance. Interestingly, this model might 

be applied to other types of nanoparticles with desirable properties such as magnesium oxide 

(MgO) for instance, which is reported to reduce significantly space charge accumulation. 

Application wise, it might be interesting to investigate the resulting thermoplastic elastomer 

nanocomposites as master batches to blend with polyolefins commonly used in HV insulation 

systems such as polyethylene and polypropylene, in order to improve their performance.  
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Associated content 

Supporting electronic information (ESI) file: Additional TEM micrographs, dielectric 

spectroscopy data and mappings of eroded area related to the studied nanocomposites are 

available online. 
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Abstract 

Blends of polyethylene (PE) with nanocomposites of polystyrene-b-poly(ethylene-co-

butylene)-b-polystyrene grafted maleic anhydride (SEBS-MA) thermoplastic elastomer filled 

with Zinc Oxide (ZnO) nanoparticles have been studied as potential candidates for 

applications in HV insulation systems including HVDC cables. In particular, the dielectric 

and mechanical properties of PE/SEBS-MA/ZnO blend nanocomposites have been evaluated 

and compared to those of PE/ZnO homopolymer nanocomposites prepared as a reference. 

PE/ZnO materials were characterized by homogeneous distribution of nanoparticles and 

presence of agglomerations attributed to insufficient compatibility between the metal oxide 

nanoparticles and the polyolefin matrix. However, nanoscale dispersion was achieved in 

SEBS-MA/ZnO and PE/SEBS-MA/ZnO nanocomposites due to improved compatibility 

between the nanoparticles and SEBS-MA. Besides, in PE/SEBS-MA/ZnO blend 

nanocomposites, ZnO nanoparticles remained exclusively confined in SEBS-MA or at the 

interface between PE and SEBS-MA. In terms of dielectric properties, the unfilled blend 

PE/SEBS-MA featured reduced breakdown strength and resistance to surface erosion by 

partial discharges in comparison with neat PE. However, upon addition of ZnO, PE/SEBS-

MA/ZnO presented higher performance when compared to PE/ZnO nanocomposites. At 1 

CHAPTER 5 
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wt% ZnO loading, the resistance to surface erosion of PE/SEBS-MA/ZnO increased by 45% 

higher than neat PE/SEBS-MA, 38% higher than unfilled PE and 30% higher than PE/ZnO 

nanocomposite containing the same ZnO loading. Besides, PE/SEBS-MA/ZnO blend 

nanocomposites exhibited dielectric losses lower than PE/ZnO nanocomposites at power 

frequencies and temperatures up to 80 °C. The breakdown strength of both sets of 

nanocomposites decreased compared to unfilled materials, at large loadings of nanoparticles. 

However, smaller reduction was observed in the case of PE/SEBS-MA/ZnO nanocomposites 

due to improved nanoparticles dispersion. Finally, PE/SEBS-MA/ZnO nanocomposites 

featured enhanced mechanical flexibility when compared to PE/ZnO nanocomposites. 

Keywords: thermoplastic elastomer, polymer blend nanocomposite, nanodielectrics, 

selective nanoparticles dispersion, HV insulation systems… 

 

5.1 Introduction 

Thermoplastic materials such as Polyethylene (PE) and Polypropylene (PP) are common 

materials used within high voltage insulation systems. Among them, low density polyethylene 

(LDPE) has been extensively used in cable insulation due to its excellent dielectric properties 

and attractive processability. However, LDPE has relatively poor thermal and mechanical 

stability at high temperatures which could be improved by crosslinking, for instance. 

Therefore, currently LDPE is mainly used in its cross-linked form (XLPE), which is 

unfortunately unrecyclable (Arora & Mosch, 2011) and vulnerable to space charge 

accumulation due to the presence of by-products from the crosslinking process (Fu et al., 

2007). 

 

High density polyethylene (HDPE) and especially PP feature better thermal and mechanical 

stability due to their higher melting points and might constitute potential candidates for 

recyclable high voltage (HV) insulation materials. But, they suffer from increased brittleness 

at low temperatures (Arora & Mosch, 2011). To adapt better the properties of HDPE and PP 

to the purpose of recyclable HV insulation, blending was investigated as one of the solutions. 

In particular, blends of HDPE with LDPE and/or thermoplastic elastomers were considered 
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(Helal et al., 2016; Helal et al., 2014; I. Hosier et al., 2007; I. L. Hosier et al., 2010; B 

Zazoum, David, & Ngô, 2013). Recently, blends of PP and thermoplastic elastomers have 

been investigated as well (Du et al., 2016; Hamzah, Jaafar, Jamil, & Kamarol, 2014; Y. Zhou 

et al., 2015). The blends have shown mainly an interesting improvement of the mechanical 

flexibility at the cost of a reduction in breakdown strength and resistance to surface erosion by 

partial discharges as well as increased space charge accumulation (Helal et al., 2016; Helal et 

al., 2014; B Zazoum et al., 2013; Y. Zhou et al., 2015). Addition of nanoparticles to these 

blends might be a powerful tool to compensate these drawbacks, in a similar trend to what has 

been reported in the case of PE based nanocomposites. In fact, it has been well established 

that the addition of nanoparticles, including metallic oxide nanoparticles such zinc oxide 

(ZnO) and magnesium oxide (MgO), to homopolymer induces a reduction in space charge 

accumulation as well as an increase of breakdown strength and resistance to surface erosion  

(David & Fréchette, 2013; Fabiani et al., 2016; Fleming et al., 2008; Michel F Fréchette et al., 

2010; M. Guo, Fréchette, David, & Demarquette, 2016; Hayase et al., 2006; Amir M 

Pourrahimi et al., 2016; Amir Masoud Pourrahimi et al., 2016; Smith et al., 2008; Tian et al., 

2011, 2012; Tian et al., 2015). In the case of HDPE and PP based blends, few studies have 

been reported regarding the effect of nanoparticles (Du et al., 2016; Hamzah et al., 2014; 

Helal et al., 2016; B Zazoum et al., 2013). Among them, the recent study published by Du et 

al. (Du et al., 2016), reporting that the addition of ZnO nanoparticles to PP/Polyolefin 

elastomer (POE) blends results in suppression of space charge accumulation while 

maintaining an excellent flexibility ensured by the POE phase. However, there is still work to 

be done in this area, especially in the case of HDPE. Therefore, in this study, a blend of HDPE 

with polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene grafted maleic anhydride 

(SEBS-MA) thermoplastic elastomer containing ZnO nanoparticles will be investigated. In 

fact, SEBS and SEBS-MA are often added in minor fractions to polymer matrices either as 

compatibilizers to improve the dispersion of nanoparticles including nanoclays, metal oxides 

and carbon nanotubes (Liang & Tjong, 2006), when a polyolefin matrix is used or as water 

treeing retardant agent in polymer insulating materials (Liu et al., 2011; Z. Ma et al., 2010). 

Besides, recently few studies have started exploring blends of polyolefins with SEBS or 

SEBS-MA, where the thermoplastic elastomer is acting as a structural phase of the blend 
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affecting its morphology and the spatial distribution of nanoparticles in it (Emna Helal et al., 

2015; Helal et al., 2016; Sarkar & Alexandridis, 2015). 

 

In this work, SEBS-MA/ZnO nanocomposites with excellent nanoparticles dispersion were 

initially fabricated by solvent blending following a method reported in a previous study 

(Emna Helal et al., 2015) then blended with HDPE using a melt compounding process (Helal 

et al., 2016). The morphology of the as-prepared PE/SEBS-MA/ZnO blend nanocomposites 

was studied through microscopy and characterization of the linear viscoelastic properties. 

Besides, measurements of complex dielectric permittivity, AC short-term breakdown strength 

and resistance to surface erosion by partial discharges were performed to evaluate the blend 

nanocomposites dielectric behavior, in comparison with reference PE/ZnO nanocomposites 

prepared by melt compounding. The mechanical properties of the nanocomposites have been 

also investigated, viz. the tensile strength and the elongation at break. 

 

5.2 Experimental 

5.2.1 Materials 

HDPE was purchased from Chevron Phillips in pellets form (grade HXM50100). Its density is 

equal to 0.948 g/cm3 and its melt flow index is equal to 10 g/10 min at 190 °C and under a 

load of 21.6 Kg. The grade FG1901 of SEBS block copolymer, which is grafted with maleic 

anhydride (MA), was supplied from Kraton in pellets form as well. Its density is equal to 

0.915 g/cm3. It is composed of two polystyrene (PS) endblocks in the form of nanometric 

cylinders dispersed within the poly(ethylene-co-butylene) (PEB) elastomer midblock. The PS 

block fraction is equal to 30wt% while the MA content is equal to 1-2 wt% and is attached to 

the PEB block. The ZnO nanoparticles were purchased from Sigma Aldrich in the form of 

40wt% colloidal suspension in ethanol. They are modified with an alkyl ammonium salt and 

feature an average particle size around 35 nm. All the materials were used as received. 
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5.2.2 Processing 

In a first step, SEBS-MA/ZnO nanocomposites were prepared by solvent casting method. In a 

second step, SEBS-MA/ZnO nanocomposites were blended with polyethylene by melt 

compounding to achieve PE/SEBS-MA/ZnO blend nanocomposites. Moreover, PE/ZnO 

nanocomposites were prepared by melt mixing using the same processing conditions, for the 

sake of comparison. Before further characterization, all the samples were hot pressed at 160 

°C to obtain thin films. The detailed fabrication procedure is published in previous studies 

(Emna Helal et al., 2015; Helal et al., 2016). The list and composition of the obtained films 

are summarized in Table 5-1. Note that mass fractions of PE and SEBS-MA in the obtained 

blends are equal. 

 

Table 5-1: Nomenclature and composition of PE/ZnO and PE/SEBS-MA/ZnO 
nanocomposites 

 PE (wt%) SEBS-MA (wt%) ZnO (wt%) 

PE 100 0 0 

PE/1 99 0 1 

PE/5 95 0 5 

PE/10 90 0 10 

PE/SEBS-MA 50 50 0 

PE/SEBS-MA/1 49.5 49.5 1 

PE/SEBS-MA/5 47.5 47.5 5 

PE/SEBS-MA/10 45 45 10 

 

5.2.3 Characterization  

Cross-sections of different nanocomposites were observed to characterize the dispersion of 

nanoparticles either by Scanning Electron Microscopy (SEM) or High Resolution Scanning 

Electron Microscopy (HRSEM). Hitachi S-3600N microscope was used for SEM images 
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while Hitachi SU-8230 microscope was used for HRSEM images. A Leica microtome 

equipped with a tungsten knife was used to fracture the samples in liquid nitrogen at -100 °C. 

In order to characterize the morphology of the prepared blends, some samples were immersed 

overnight in a large volume of toluene and stirred gently at room temperature, after fracturing, 

to extract the SEBS-MA component. Prior to observation, the cross-sections were coated with 

a 20 nm thick layer of gold to prevent charge accumulation. 

 

Rheological measurements were performed at 160 °C to characterize the linear viscoelastic 

properties of the nanocomposites in the molten state. In particular, small amplitude oscillatory 

shear (SAOS) tests were performed by means of Anton Paar MCR 501 strain-controlled 

rheometer equipped with 25 mm-diameter parallel plate geometry. The strain value was fixed 

to 0.5% while the angular frequency range swept from 0.01 to 300 rad.s-1. 

 

The complex dielectric permittivity of the materials was characterized at room temperature by 

means of a Novocontrol broadband spectrometer. In particular, 20-mm-diameter disks were 

prepared from the samples and placed between parallel plated brass electrodes to form a 

plane-plane capacitor. Then, measurements were performed in the frequency range from      

10-2 Hz up to 105 Hz. Besides, a temperature range between 25 °C and 100 °C was considered 

for selected samples. 

 

AC short-term breakdown strength tests were performed at ambient temperature using a Bauer 

DTA100 equipped with a pair of 4 mm-diameter ball-type electrodes. A constant AC voltage 

ramp of 2 kV.s-1 was progressively applied at a frequency equal to 60 Hz, until breakdown 

occurred. During the measurement, the samples were fixed between the two electrodes and 

immersed in Luminol TRi insulating fluid. 12 specimens of each material, of average 

thickness around 250 µm, were considered for a statistical analysis by means of two-

parameter Weibull distribution. However, the samples thickness was not strictly uniform. 

Thus, to reduce the errors related to thickness, all the measured breakdown strength fields 

were normalized to the average thickness of 250 µm using a power law equation reported in 
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reference (Takala et al., 2010). The normalized breakdown strengths were used for the 

statistical analysis. 

 

To evaluate the resistance of the fabricated materials to surface erosion, samples of average 

thickness equal to 500 µm were subjected to prolonged AC stress under electrical discharge 

conditions, using a point-to-plane geometry set-up operated in open air. The samples were 

fixed to the ground plane electrode using Kapton tape and separated from the tip of the rod 

electrode by an air gap of 200 µm. The radius of the rod electrode is equal to 1 mm. During 

the test, a sinusoidal AC voltage (7 kVRMS , 300 Hz) was applied to the rod electrode while the 

plane electrode was connected to ground. The erosion time was fixed to 40 hours which is 

equivalent to 200 hours at 60 Hz. Then, the eroded volume of each sample was evaluated by 

means of a mechanical profilometer (Dektak 150). 

 

More details regarding the procedures used for dielectric spectroscopy measurements, AC 

short-breakdown tests and resistance to surface erosion tests are available in previous studies 

(Emna Helal et al., 2015; Helal et al., 2016). 

 

The mechanical properties of all the nanocomposites were measured using STM Alliance 

machine equipped with 1 kN load cell and operated in the tensile mode according to ASTM 

D638-14 (Standard Test Method for Tensile Properties of Plastics, 2014). The stretching rate 

was selected equal to 10mm/min. Dog-bone shaped specimens were used with a gauge length 

of 9.53 mm, a width of narrow section equal to 3.15 mm and a thickness of 3.15 mm. 5 

specimens were tested for each material. All the specimen were prepared by injection molding 

using a melt temperature equal to 200 °C, a mold temperature equal to 60 °C and an injection 

pressure equal to 50 MPa.  
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5.3 Results and discussion 

5.3.1 Scanning electron microscopy (SEM) 

The dispersion of ZnO nanoparticles in the fabricated nanocomposites was first characterized 

by SEM at low magnifications. Samples not subjected to solvent extraction were considered 

at this step. Micrographs corresponding to untreated PE/ZnO nanocomposites containing 

different concentrations of nanoparticles are presented in Figure 5-1. It can be seen that at 

increasing content of nanoparticles, microscale agglomerations of increasing size are 

observed (as indicated by the arrows in Figure 5-1(c) and Figure 5-1(d)), which indicates 

poor dispersion of nanoparticles in polyethylene matrix. In micrographs corresponding to 

untreated PE/SEBS-MA/ZnO reported previously in (Helal et al., 2016), no agglomerations 

were observed. Besides, chemical analysis by energy dispersive X-ray spectroscopy (EDX), 

reported in the same study (Helal et al., 2016), revealed homogeneous distribution of Zinc 

element all over the sample. 
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Figure 5-1: SEM micrographs of PE/ZnO nanocomposites: (a) unfilled PE,                          
(b) PE/1, (c) PE/5 and (d) PE/10 

 

To study the morphology of PE/SEBS-MA/ZnO blend nanocomposites, samples treated by 

solvent extraction to dissolve SEBS-MA were considered. Micrographs corresponding to 

these samples are reported in Figure 5-2. Figure 5-2(a), corresponding to the unfilled blend, 

indicates the formation of a co-continuous morphology, characterized by a sponge shape. 

Interestingly, the incorporation of ZnO nanoparticles in the blend results in a considerable 

change of morphology (Figure 5-2(b)-(d)), even at nanoparticles concentration as low as 

1wt%. More specifically, the co-continuous morphology of the unfilled blend disappeared 

giving place to more droplet dispersion type morphology where SEBS-MA phase is in the 

form of elongated droplets. This switch of morphology is the result of the increase of SEBS-

MA viscosity during the melt processing, upon the addition of ZnO nanoparticles, which 

leads to breaking the threads. The viscosity increase hypothesis will be discussed in a 

following section of the manuscript, in correlation with SAOS measurements performed on 

PE/SEBS-MA/ZnO blends and reported in Figure 5-4 as well as SAOS measurements 
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corresponding to SEBS-MA/ZnO master batches and reported previously in (Helal, David, 

Fréchette, & Demarquette, under review; Emna Helal et al., 2015). 

 

Apart from the switch of morphology, SEM micrographs reported in Figure 5-2 doesn’t 

indicate any presence of agglomerations. This observation confirms that the dispersion of 

nanoparticles was considerably improved. However, the location of nanoparticles cannot be 

identified at this step. To determine their location, two methods were adopted: an analytical 

method based on the wetting coefficient theory as well as an experimental method based on 

HRSEM. 

 

 

Figure 5-2: SEM micrographs of samples treated by solvent extraction: (a) unfilled 
PE/SEBS-MA, (b) PE/SEBS-MA/1, (c) PE/SEBS-MA/5 and (d) PE/SEBS-MA/10 
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PE/SEBS-MA/5 nanocomposite was considered for HRSEM. Two specimens were 

investigated: one treated with toluene to dissolve the SEBS-MA phase and one untreated 

where both phases are present. The HRSEM micrographs are reported in Figure 5-3. In 

particular, micrographs corresponding to the untreated specimen and the treated specimen are 

reported respectively in Figure 5-3(a) and Figure 5-3(b). Besides, Figure 5-3(c) and Figure 

5-3(d) correspond to two zooms on respectively a PE region and an SEBS-MA region, 

selected from Figure 5-3(b).  From the SEM image corresponding to the untreated sample 

(Figure 5-3(a)), it is difficult to accurately distinguish the two phases of the blend, i.e. PE and 

SEBS-MA, due to insufficient contrast between the two polymers (which could be due to the 

fact that the examined section was not thin enough). However, a nanoscale dispersion and 

inhomogeneous distribution of the nanoparticles is observed (regions surrounded by yellow 

dotted lines in Figure 5-3(a) correspond to regions containing nanoparticles). The 

examination of the sample treated with toluene at low magnification shows the presence of 

islands which correspond normally to the extracted SEBS-MA domains. A zoom inside one 

of these domains (region surrounded by red dotted line in Figure 5-3(b)) shows multiple 

traces of nanoparticles (Figure 5-3(d)). However, no nanoparticles were observed outside the 

SEBS-MA region (region surrounded by blue continuous line in Figure 5-3(b) and presented 

in Figure 5-3(c)). Hence, it can be concluded that the nanoparticles are enclosed in SEBS-

MA phase and at the interface PE/SEBS-MA, due to the good affinity between the MA graft 

and the functional groups on the surface of ZnO nanoparticles.  
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Figure 5-3: HRSEM micrographs of PE/SEBS-MA/5 nanocomposite: (a) SEBS-MA              
not extracted, (b) SEBS-MA extracted, (c) Zoom inside PE region surrounded by blue 
continuous line in (b): poor ZnO phase, (d) Zoom inside SEBS-MA region surrounded        

by red dotted line in (b): poor ZnO phase, (d) Zoom inside SEBS-MA region                 
surrounded by red dotted line in (b): rich ZnO phase                                                        

(Colors are available in the online version) 
 

5.3.2 Thermodynamic prediction of ZnO nanoparticles localization: Wetting 

coefficient 

In order to support the conclusions made from HRSEM analyses regarding the localization of 

ZnO nanoparticles, a thermodynamic prediction was performed to estimate the ability of the 

nanoparticles to be wetted by the two components of the blend: PE and SEBS-MA. In fact, at 

thermodynamic equilibrium, nanoparticles in a polymer blend tend to locate in a position that 

minimizes the interfacial energy. This equilibrium position might be predicted by the 
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evaluation of the wetting coefficient Wa which is estimated according to equation (5.1), 

adapted from Young`s equation (Tadros, 2015; Trifkovic, Hedegaard, Sheikhzadeh, Huang, 

& Macosko, 2015; X. Zhao et al., 2013). In the case of the studied system, Wa is equivalent 

to the contact angle of the nanoparticle at the interface between PE and SEBS-MA 

(Vandebril, Vermant, & Moldenaers, 2010). = / //                                        (5.1) 

Where: 

Wa: wetting coefficient; γ1/2: interfacial tension between components 1 and 2.  

 

Wa values above 1 or below -1 mean that ZnO nanoparticles would preferentially locate in 

SEBS-MA or in PE, respectively. If the value of Wa is between -1 and 1, the difference 

between ZnO/PE and ZnO/SEBS-MA interfacial tensions is less than PE/SEBS-MA 

interfacial tension which induces the nanoparticles to localize at the interface in order to 

minimize the interfacial energy.  

 

The interfacial tension between two components could be determined experimentally or 

theoretically. The experimental method might be difficult and not accurate especially in the 

case of nanoparticle-polymer interfaces (Trifkovic et al., 2015). Therefore, to avoid this 

complication, the values of the interfacial tension used in this manuscript were derived 

according to Owens-Wendt mean equation (equation (5.2)), knowing the surface tension of 

each component (Owens & Wendt, 1969). The values of surface tension corresponding to 

PE, SEBS-MA and ZnO nanoparticles at the processing temperature 160 °C have been 

extrapolated from values reported in literature (Demarquette, Da Silva, Brandi, & Gouvêa, 

2000; Moreira & Demarquette, 2001; "Solid surface energy data (SFE) for common 

polymers," ; Švab, Musil, Šmit, & Makarovič, 2007; Torchinsky & Rosenman, 2009; 

Trifkovic et al., 2015; Wilkinson, Clemens, & Harding, 2004) and summarized in Table 5-2. 
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γ / = γ + γ − 2( γ γ + γ γ )                            (5.2) 

Where: γ1/2: interfacial tension between component 1 and 2; γ1: surface tension of component 1; γp
: polar component; γd
: dispersive component. 

 

Table 5-2: Total surface tension and Dispersive and Polar components for polymers           
and ZnO nanoparticles estimated at 160 °C 

 -dγ/dT 
(mJ.m-2.K-1) 

γ  
(mJ.m-2) 

γ d  

(mJ.m-2) 
γ p  

(mJ.m-2) 

PE (Demarquette et al., 
2000; Moreira & 

Demarquette, 2001; 
"Solid surface energy 

data (SFE) for common 
polymers," ; Trifkovic et 

al., 2015) 

 

 

0.057 

 

 

27.72 

 

 

27.72 

 

 

0 

SEBS-MA (Švab et al., 
2007; Wilkinson et al., 

2004)  

 

0.045 

 

30 

 

21.6 

 

8.4 

ZnO (Torchinsky & 
Rosenman, 2009)  

- 34 25 9 

 

The calculated values of interfacial tension between each two components and the estimated 

wetting coefficient are reported in Table 5-3. The estimated Wa indicates that the 

nanoparticles should be mainly localized in SEBS-MA phase and probably at the interface 

PE/SEBS-MA. This result is expected due to the interaction between the nanoparticles 

surface and the MA graft. It is also in line with the results of microscopy reported earlier. As 

a consequence, the theoretical method represents a straightforward tool to predict the 

localization of nanoparticles. However, it is worth mentioning that this theoretical prediction 

has several limitations. The major one is the difficulty to get accurate values of surface 

tension from the literature in the case of SEBS-MA block copolymer and ZnO nanoparticles, 
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which takes into account the exact physical properties and applied chemical modification, for 

instance. Also, in this study, the value of the temperature coefficient, dδ/dT, of SEBS-MA 

was assumed equal to that of SEBS. Besides, the values of surface tension calculated for ZnO 

nanoparticles in reference (Torchinsky & Rosenman, 2009) and used in this study, 

correspond to nanoparticles treated to decrease their surface tension and improve their 

compatibility with polymers. Unfortunately, their chemical modification differs from that 

applied to the nanoparticles used in this work. But, these values remain reliable since they are 

also close to those reported for several organically modified clays (Trifkovic et al., 2015) 

functionalized in a similar fashion to the nanoparticles used in this study, which are modified 

by an alkyl ammonium salt. In addition to errors related to surface tension values, in the 

general case, nanoparticles localization in a polymer blend is not only influenced by 

thermodynamic considerations, but also by kinetic effects. In fact, interplay between 

nanoparticle compatibility with each polymer phase, processing sequence and rheology is 

often involved (Trifkovic et al., 2015). 

 

Table 5-3: Estimated interfacial tension and wetting                                                    
coefficient values 

 Estimated values 

γZnO/PE (mJ.m-2) 9.07 

γZnO/SEBS-MA (mJ.m-2) 0.13 

γPE/SEBS-MA (mJ.m-2) 8.78 

Wa  1.01 

 

5.3.3 Rheological properties 

The morphology of PE/SEBS-MA blends and the improved quality of dispersion in 

PE/SEBS-MA/ZnO nanocomposites were studied by microscopy, as discussed earlier. 

However, this technique only gives insights at a local micro and nanoscale. A useful 

technique that might give information about the dispersion and morphology at a larger 

macroscale is rheology. In fact, by performing small amplitude oscillatory shear (SAOS) 
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tests for example, the variation of the viscoelastic properties of the polymer matrix in the 

molten state as function of the nanoparticles dispersion could be probed. Generally, many 

homopolymers such as polyethylene exhibit a terminal behavior distinguished by a high 

slope and drop of the elastic modulus, at low frequencies. However, in the presence of 

nanostructures such as nanoparticles or nanodomains of a block copolymer for example, this 

slope may decrease and the elastic modulus might increase due to confinement of polymer 

chains between the nanostructures. This effect is more obvious with increasing amount of 

nanoparticles. 

 

In Figure 5-4, plots of storage modulus G’ and complex viscosity modulus |η*| as function of 

angular frequency ω are reported, respectively in Figure 5-4(a) and Figure 5-4(b), for both 

PE/ZnO and PE/SEBS-MA/ZnO nanocomposites. The viscoelastic properties of unfilled 

SEBS-MA and SEBS-MA/ZnO master batch, used to prepare PE/SEBS-MA/5 

nanocomposite and referred to as MB5, are also reported for the sake of comparison. In the 

case of PE/ZnO nanocomposites, it can be seen that G’ and |η*| of PE remain roughly the 

same after the addition of the nanoparticles. This behavior is valid for ZnO concentrations up 

to 10wt% ZnO (only results corresponding to 5 wt% ZnO are reported in Figure 5-4) and 

indicates that the interaction between ZnO nanoparticles and PE chains is relatively weak. In 

the case of PE/SEBS-MA/ZnO materials, a different behavior is observed. First of all, it can 

be seen that G’ of unfilled PE/SEBS-MA blend increased compared to neat PE especially at 

low frequencies. This behavior is partially attributed to the characteristic non-terminal 

behavior of SEBS-MA as a block copolymer (Carastan et al., 2008) and also to the 

deformation of SEBS-MA domains in the blend (Graebling, Muller, & Palierne, 1993). 

Considering PE/SEBS-MA/ZnO nanocomposites, a consistent increase of G’ and |η*| 

compared to unfilled PE/SEBS-MA is exhibited in the whole frequency range and especially 

at low frequencies. Simultaneously, the slope of G’ vs. ω plot decreases at low frequencies. 

The same behavior is also featured by MB5 compared to unfilled SEBS-MA, with a higher 

improvement rate. Moreover, a plateau in G’ vs. ω plot is exhibited at low frequency 

indicating good nanoparticles dispersion and establishment of a network between ZnO 

nanoparticles and SEBS-MA block copolymer chains attributed to the interaction between 
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MA graft and functional groups on the surface of ZnO nanoparticles.  More details regarding 

this viscoelastic behavior of SEBS-MA/ZnO nanocomposites can be found in prior studies 

(Helal et al., under review; Emna Helal et al., 2015). The resulting efficient confinement of 

the macromolecular chains by the nanoparticles is at the origin of the increased dynamic 

viscosity of SEBS-MA and subsequently the blend in the whole ω range studied. This 

increase justifies the switch of morphology of PE/SEBS-MA/ZnO nanocomposites compared 

to unfilled PE/SEBS-MA reported in Figure 5-2, if we consider that the shear viscosity 

during the melt processing is well approximated by the dynamic viscosity, in respect with 

Cox-Merz approximation, which is valid for different polymer systems at relatively low 

shear rates (Dealy & Wang, 2013). In fact, although the value of the shear rate during the 

processing was not estimated quantitatively in this study, due to the different parameters that 

are involved in its estimation (Bousmina, Ait-Kadi, & Faisant, 1999), it is not expected to 

exceed few hundreds of reciprocal seconds (Bousmina et al., 1999; Kohlgrüber, 2008), which 

is in the range of the studied angular frequencies of the SAOS tests. 
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Figure 5-4: SAOS measurements of PE/ZnO vs. PE/SEBS-MA/ZnO                      
nanocomposites: (a) storage modulus G’ and (b) complex viscosity                               

modulus |η*| as function of angular frequency ω 
 

(b) 

(a) 
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5.3.4 Complex dielectric permittivity 

Complex dielectric permittivity of the studied nanocomposites has been characterized as 

functions of frequency and temperature. Data corresponding to room temperature 

measurements are reported in Figure 5-5. In particular, plots of imaginary permittivity ɛ’’ as 

function of frequency, corresponding to PE/ZnO and PE/SEBS-MA/ZnO nanocomposites are 

reported respectively in Figure 5-5(a) and Figure 5-5(b). Besides, plots of ɛ’’ as function of 

frequency corresponding to SEBS-MA/ZnO nanocomposites, used as master batches to 

prepare respectively PE/SEBS-MA/5 and PE/SEBS-MA/10 nanocomposites, are reported in 

Figure 5-5(c) for the sake of comparison. The master batches are referred to as MB5 and 

MB10 respectively. More details regarding the dielectric spectroscopy results of SEBS-

MA/ZnO nanocomposites are reported in (Helal et al., under review). 

 

All PE/ZnO nanocomposites show large relaxation peaks in the vicinity of 101-102 Hz, which 

correspond most likely to Maxwell-Wagner-Sillars (MWS) interfacial process. At increasing 

ZnO concentration, the peak is shifted to lower frequencies. This behavior is in part 

consistent with the MWS theory suggesting that, if the conductivity of the matrix is small and 

can be neglected, which is the case for both PE and SEBS-MA, an increase in the volume 

fraction of the fillers induces a slight increase of the relaxation time and consequently a 

decrease of the peak maximum frequency (David & Fréchette, 2013; Kremer & Schönhals, 

2012; Tsangaris, Kouloumbi, & Kyvelidis, 1996). However, this effect is too small to justify 

the observed experimental results. Instead, the formation of bigger agglomerates with lower 

effective conductivity, at increasing ZnO concentrations, is the likely explanation for this 

behavior. PE/SEBS-MA/ZnO nanocomposites exhibit an interfacial relaxation process as 

well, but less intense and at higher frequencies in the vicinity of 102-103 Hz. Similar to the 

behavior observed in PE/ZnO nanocomposites, the relaxation peak is shifted to lower 

frequencies at increasing ZnO content.  

 

The difference in frequencies windows corresponding to the relaxation phenomena observed 

respectively in PE/ZnO and PE/SEBS-MA/ZnO might be correlated with the location of 
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nanoparticles in either PE or SEBS-MA, since the MA graft attached to SEBS interacts with 

the surface of ZnO nanoparticles, modifying the properties of the interface (Helal et al., 

under review). In fact, MB5 and MB10 nanocomposites used as master batches exhibit 

relaxation peaks at around 103 Hz. Besides, the peak featured in PE/SEBS-MA/ZnO 

nanocomposites is more similar to SEBS-MA/ZnO nanocomposites in terms of dielectric 

strength and peak position indicating that ZnO nanoparticles are potentially located in SEBS-

MA phase. This observation supports the conclusions made earlier from the microscopy and 

thermodynamic study, which suggest that the nanoparticles stay confined inside SEBS-MA 

phase and probably at SEBS-MA/PE interfaces.  

 

As far as the insulation application is concerned, PE/SEBS-MA/ZnO nanocomposites feature 

the lowest losses at room temperature, as compared to both PE/ZnO nanocomposites and 

SEBS-MA/ZnO master batches as shown in Figure 5-5(c), especially at power frequencies. 

Moreover, the real permittivities of the nanocomposites remain low and close to those of 

unfilled PE and PE/SEBS-MA, all values in the range 2.2-2.4 (not reported in this 

manuscript).  
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Figure 5-5: Plots of imaginary permittivity ɛ’’ as function of frequency measured at room 
temperature corresponding to: (a) PE/ZnO nanocomposites, (b) PE/SEBS-MA/ZnO 

nanocomposites and (c) comparison with SEBS-MA/ZnO nanocomposites 
 

To investigate further the observed interfacial relaxation process and the effect of absorbed 

humidity on it, isothermal frequency sweeps of the complex dielectric permittivities of both 

PE/5 and PE/SEBS-MA/5 nanocomposites have been performed in the temperature range 

from 25 °C to 100 °C, before drying and immediately after drying them for 5 days in a 

vacuum oven at 65 °C. The results are reported in Figure 5-6. The comparison of the spectra 

recorded before (Figure 5-6(a)-(b)) and after drying (Figure 5-6(c)-(d)) reveals that there is a 

little effect of drying, which indicates that the quantity of absorbed humidity is negligible.  

This behavior is expected and has been already reported several times in the literature, when 

nanoparticles with adequate surface modification are used (David et al., 2015; Fleming et al., 

2008; Lau et al., 2013).  

(a) (b) 

(c) 
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Apart from the drying aspect, a drastic change in the dielectric behavior was observed 

between PE/ZnO and PE/SEBS/ZnO nanocomposites. For PE/5 nanocomposite, the 

relaxation peak was found to shift towards higher frequencies at increasing temperatures, 

which is the usual trend for nanocomposites for which the conductivity of the inclusion 

increases with temperature. This behavior is more obvious in the case of the dried sample 

since the release of absorbed water as the temperature increases in the case of the undried 

samples slightly counterbalance the increase of the inclusions conductivity. The PE/SEBS-

MA/5 nanocomposite (Figure 5-6(d)) exhibits a considerably reduced dielectric strength and 

broadness compared to PE/5 nanocomposite (Figure 5-6(c)) in the studied temperature range. 

This behavior is in line with the absence of agglomerations in PE/SEBS-MA/ZnO 

nanocomposites and the improved interaction with the nanoparticles which modifies the 

interphase properties. Similar results have been reported when improved compatibility 

between the nanoparticles and the polymer matrix is ensured (David & Fréchette, 2013; 

Smith et al., 2008; Bouchaib Zazoum, Eric David, & Anh Dung Ngô, 2014; Bouchaib 

Zazoum et al., 2016). However, it could be seen that at elevated temperatures starting from 

50 °C, a dominant contribution from charge fluctuations to the dielectric loss spectra, is 

observed for the PE/SEBS-MA/5 nanocomposite, especially for frequencies below 10 Hz, 

while being completely absent in the case of PE/5 nanocomposite. At 90 °C, the dielectric 

loss of PE/SEBS-MA/5 nanocomposite becomes even slightly higher than PE/5 

nanocomposite at power frequencies.  

 

Electrode polarization might be responsible of part of this increase. However, a considerable 

improvement of the nanocomposites conductivity by few orders of magnitude is the likely 

explanation. In fact, this behavior has been also observed in the dielectric spectra of SEBS-

MA/ZnO nanocomposites, as reported in (Helal et al., under review), and was attributed to 

the interaction of MA with functional groups on the surface of the nanoparticles that leads to 

an improved dispersion and the formation of a network between ZnO nanoparticles and the 

block copolymer chains. As a consequence, SEBS-MA/ZnO nanocomposites become slightly 

conductive at favorable heating conditions. Moreover, the increase of conductivity reaches a 
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threshold at about 5 wt% ZnO. This effect seems to be ultimately transferred to the 

PE/SEBS-MA blends leading to the observed behavior. 

 

  

  

Figure 5-6: Isothermal frequency sweeps of the imaginary permittivity ɛ’’ of  PE/5 and 
PE/SEBS-MA/5 nanocomposites at different temperatures between 25 °C and 100 °C, 

performed before and after drying: (a) undried PE/5, (b) undried PE/SEBS-MA/5, (c) PE/5 
dried and (d) PE/SEBS-MA/5 dried for 5 days at 65 °C. 

 

5.3.5 AC short-term breakdown strength 

After normalization to the thickness of 250 µm, the retrieved data corresponding to the AC 

short term breakdown tests were analyzed by means of a two-parameter Weibull distribution 

(a) (b) 

(c) (d) 
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to evaluate the breakdown strength of the studied nanocomposites. Commercial software was 

used for the analysis. 

 

The cumulative Weibull distribution function of breakdown strength is given by equation 

(5.3). More details regarding the use of Weibull distribution for dielectric strength estimation 

could be found in IEEE standard 930 ("IEEE Guide for the Statistical Analysis of Electrical 

Insulation Breakdown Data," 2005). 

β









−−=

0

exp1
E

E
P                                                   (5.3) 

Where:  

P: is the cumulative probability of failure at an electric field less or equal to E;  

E0: is the scale parameter corresponding to the breakdown strength for which the cumulative 

failure probability is equal to 63.2%; 

β: is the shape parameter which measures the scatter of the data. The larger β is the narrower 

is the range for breakdown strength. 

Weibull plots as well as scale and shape parameters values corresponding to PE/ZnO and 

PE/SEBS-MA/ZnO nanocomposites are reported respectively in Figure 5-7(a) and Figure 

5-7(b). In particular, the value of the breakdown strength of neat PE is equal to 162 kV/mm. 

Upon addition of nanoparticles up to 5 wt%, the breakdown strength decreased by about 

10%. At 10 wt % ZnO loading, a considerable decrease of breakdown by 34% was induced. 

This behavior might be explained by the presence of agglomerations, especially at large 

concentrations of nanoparticles, which result in local voids and defects where the electric 

field is enhanced. This negative effect is dominating the potential positive effect consisting of 

increasing charge traps density and more efficient electron scattering (Cheng et al., 2013; 

Tian et al., 2012).  The unfilled PE/SEBS-MA blend features a reduction of breakdown 

strength compared to neat PE by 10% as well, which is in line with its reduced mechanical 

strength (to be discussed later) and the presence of PE/SEBS-MA interfaces. Upon the 

addition of ZnO nanoparticles to the blend up to 5wt%, the breakdown strength of the blend 

was maintained or slightly reduced by 5%. This behavior might be correlated with the 
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improved compatibility and dispersion of nanoparticles inside SEBS-MA phase, which 

ensure a good balance between electron scattering and local electric field enhancements 

(Cheng et al., 2013; Smith et al., 2008; Tian et al., 2011, 2012). At this level of ZnO 

loadings, dielectric breakdown strength values of PE/ZnO and PE/SEBS-MA/ZnO 

nanocomposites are comparable and the initial drop induced by the thermoplastic elastomer 

phase was compensated by the improved role of ZnO dispersion. At 10wt% ZnO, the 

dielectric strength of PE/SEBS-MA/10 nanocomposite exhibits a drop by 15% compared to 

the unfilled blend but remains higher than PE/10 nanocomposite: 123 vs.107 kV/mm. Overall 

in both sets of nanocomposites, it seems that 5wt% ZnO is an optimum loading at which the 

breakdown of the nanocomposites reaches its maximum.  

 

 

Figure 5-7: Weibull probability plots of: (a) PE/ZnO nanocomposites and                                 
(b) PE/SEBS-MA/ZnO nanocomposites 

 

5.3.6 Resistance to surface erosion by partial discharges 

The resistance to surface erosion by partial discharges is an important property to evaluate 

the long-term dielectric performance of insulating materials under operational conditions, 

especially high electrical stresses. In general, a reduction in the eroded volume caused by 

corona discharges is equivalent to an improved resistance. In Figure 5-8, eroded volumes 

corresponding to PE/ZnO and PE/SEBS-MA/ZnO nanocomposites, subjected to a voltage 

equal to 7 kVRMS for 40 hours at 300 Hz, are reported. The relative evolution of the eroded 

(a) (b) 
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volume corresponding to each nanocomposite is calculated compared to the unfilled 

reference, either unfilled PE or unfilled PE/SEBS-MA. 

 

Comparing unfilled PE and PE/SEBS-MA, it could be seen that the blend exhibits again 

lower performance, with an increase of the eroded volume by approximatively 13% 

compared to neat PE. Upon the addition of ZnO nanoparticles, both sets of nanocomposites 

exhibit improved resistance. In a general trend, the eroded volumes decrease with increasing 

nanoparticles content. This is expected due to higher resistance of inorganic species to partial 

discharges compared to organic compounds (Brockschmidt et al., 2011; S. Chen et al., 2010; 

Heid et al., 2015). Moreover, Zinc oxide is well known by its shielding effect to UV light 

emitted during the process of partial discharges (S. Chen et al., 2010).  

 

Comparing both sets of nanocomposites, it can be observed that PE/SEBS-MA/ZnO 

nanocomposites feature the best resistance, despite the low performance of the unfilled blend. 

For example, the eroded volume of PE/SEBS-MA/1 is 45% less than unfilled PE/SEBS-MA, 

38% less than unfilled PE and 30% less than PE/1 nanocomposite. At higher loading equal to 

10wt%, the eroded volume of PE/SEBS-MA/10 is 82% less than PE/SEBS-MA, 79% less 

than PE and 24% less than PE/10. Since the comparison is made considering the same 

amount of nanoparticles, the observed difference between both sets of nanocomposites is 

most likely related to the dispersion and distribution of the nanoparticles. In fact, the 

improved nanoscale dispersion of ZnO nanoparticles in SEBS-MA results in reduced 

distortion of the electric field and highly improved resistance inside the SEBS-MA phase. 

Resistance to surface erosion measurements performed on SEBS-MA/ZnO samples and 

reported in (Helal et al., under review) support this conclusion. However, in PE/ZnO 

nanocomposites, the presence of agglomerations might lead to local field enhancements and 

severe erosion of the surrounding polymer (Heid et al., 2015; Heid, Fréchette, et al., 2016). In 

PE/SEBS-MA/ZnO blend nanocomposites, SEBS-MA/ZnO domains are distributed in form 

of droplets, as seen in Figure 5-2(b)-(d). These droplets featuring high resistance to erosion 

improve the performance of PE matrix and lead to an overall performance between that of 

PE/ZnO nanocomposites and that of SEBS-MA/ZnO nanocomposites used as master batch. 



189 

Hence, an improved control of the blend morphology in order to achieve co-continuity or 

more homogeneous distribution of SEBS-MA/ZnO islands might be beneficial to achieve 

higher performance. The shape of SEBS-MA/ZnO domains might be of importance as well. 

For instance, elongated domains could increase further the efficiency of SEBS-MA/ZnO 

phase in the blend.  

 

 

Figure 5-8: Resistance to surface erosion by partial discharges for                                         
PE/ZnO vs. PE/SEBS-MA/ZnO nanocomposites 

 

5.3.7 Mechanical properties 

Mechanical properties of both PE/ZnO and PE/SEBS-MA/ZnO nanocomposites have been 

characterized in tensile mode. Typical stress-strain curves corresponding to different samples 

are reported in Figure 5-9 while estimated values of elastic modulus E, elongation at break 

EB, ultimate tensile strength UTS and elongation at ultimate tensile strength EUTS are 

reported respectively in Figure 5-10(a)-(d). The reported stress-strain curves show that 

PE/ZnO and PE/SEBS-MA/ZnO feature different behaviors in terms of stiffness and 

flexibility. In particular, unfilled PE and its corresponding PE/ZnO nanocomposites exhibit 
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high rigidity. However, they fracture shortly after necking at relatively low strains. These 

results are in agreement with other studies reporting similar values of elongation for HDPE 

based materials (Bhattacharyya, Chen, & Zhu, 2014; H. Ku, Wang, Pattarachaiyakoop, & 

Trada, 2011; Kumar et al., 2016; J.-H. Lee, Jung, Hong, Rhee, & Advani, 2005).  It is worth 

noting that the absence of a large cold drawing region might be correlated with the used 

strain rate. In particular, reducing the strain rate may result in larger cold drawing regions 

and consequently larger values of elongation (Cai & Song, 2015). Unfilled PE/SEBS-MA 

blend exhibits a different behavior characterized by a reduced elastic modulus and an 

improved plasticity compared to PE, leading to a considerable improvement of toughness 

overall. Finally, PE/SEBS-MA/ZnO nanocomposites exhibit an intermediate behavior in 

terms of stiffness and elongation.  

 

 

Figure 5-9: Typical stress-strain curves of selected                                                                 
PE/ZnO vs. PE/SEBS-MA/ZnO materials 

 

Considering the values of elastic modulus E of the studied materials reported in Figure 

5-10(a), it could be seen that indeed blending PE with SEBS-MA reduces largely E from 385 

MPa to about 65 MPa. This behavior is expected due to the low stiffness of SEBS-MA. In 

PE/ZnO nanocomposites, the addition of increasing ZnO content up to 5wt% leads to an 
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initial small increase of E up to 400 MPa. However, at 10wt% ZnO, the modulus drops to 

about 370 MPa. The increase of stiffness with the addition of metal oxide nanoparticles is 

expected due to their high rigidity. However, at elevated concentrations, the formed 

agglomerations impede the load stress transfer from the polymer matrix to the nanoparticles 

leading to reduced strength (Pang et al., 2015). In PE/SEBS-MA based nanocomposites, the 

presence of ZnO nanoparticles results in considerable improvement of stiffness compared to 

the unfilled blend, up 95% at 5 wt% ZnO loading. This effect could be explained by the good 

dispersion of ZnO in SEBS-MA and the good adhesion at the interface which increase 

efficiently the stiffness of SEBS-MA phase and consequently the blend. This behavior 

compensates partially for the initial drop of stiffness caused by the thermoplastic elastomer. 

However, the stiffness of PE/SEBS-MA/ZnO nanocomposites remains in general 

considerably lower than PE/ZnO materials. UTS values corresponding to PE/SEBS-MA/ZnO 

are also lower than PE/ZnO materials, as shown in Figure 5-10(c). In both sets, the presence 

of ZnO nanoparticles induces small enhancements, mainly at 1wt% and 5wt% ZnO loadings. 

Overall, tensile strength values of PE/SEBS-MA/ZnO are in the range 20-25 MPa while 

those of PE/ZnO are in the range 40-45 MPa.  

 

In terms of flexibility, EB and EUTS, shown respectively in Figure 5-10(b) and Figure 

5-10(d), are largely improved in unfilled PE/SEBS-MA. Upon the addition of ZnO 

nanoparticles to PE/SEBS-MA, the flexibility is reduced, which is expected due to the rigid 

nature of the nanoparticles, but remains considerably high compared to PE/ZnO materials. In 

particular, PE/SEBS-MA/1 nanocomposite features a good balance of strength and ductility, 

ensuring an overall enhancement of toughness compared to PE.  
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Figure 5-10: Mechanical properties of PE/ZnO vs. PE/SEBS-MA/ZnO nanocomposites:     
(a) Elastic Young’s modulus E, (b) Elongation at break EB, (c) Ultimate tensile strength UTS 
and (d) Elongation at ultimate tensile strength EUTS (error bars stand for standard deviation) 
 

5.4 Concluding remarks 

In this study, the dielectric and mechanical properties of PE/SEBS-MA/ZnO nanocomposites 

have been evaluated, as potential candidates for HV insulation systems, in comparison with 

conventional PE/ZnO nanocomposites prepared by melt compounding. A correlation with the 

morphology and nanoparticles dispersion has been established as well. The main conclusions 

are the following:  

- The use of SEBS-MA/ZnO master batch and a short mixing time with PE allows 

maintaining a good dispersion of the nanoparticles and their selective localization 

(c) (d) 

(b) (a) 
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inside the SEBS-MA phase and potentially at the interfaces PE/SEBS-MA. The 

increase of SEBS-MA viscosity upon addition of ZnO nanoparticles results in a 

switch of morphology from co-continuity in the case of unfilled PE/SEBS-MA blend 

to elongated droplets, in the case of PE/SEBS-MA/ZnO nanocomposites. 

- The improved dispersion of nanoparticles in PE/SEBS-MA/ZnO compared to 

PE/ZnO results in better control of dielectric loss increase and breakdown strength 

decrease especially at elevated ZnO concentrations. Besides, the selective dispersion 

of ZnO in SEBS-MA droplets results in more efficient resistance to surface erosion 

by partial discharges inside the droplets and ultimately in the whole blend, compared 

to PE/ZnO nanocomposites where agglomerations are formed. This effect is more 

obvious at low concentrations of ZnO.  

- Due to the presence of the elastomer PEB block, the breaking elongation of unfilled 

PE/SEBS-MA is improved compared to PE while the tensile strength is reduced. The 

presence of ZnO nanoparticles results in a considerable decrease of the elongation 

while improving slightly the tensile strength. But overall, PE/SEBS-MA-ZnO 

nanocomposites show improved mechanical flexibility compared to PE/ZnO 

nanocomposites and higher toughness at low ZnO loading equal to 1wt%. 

Due to these improved electrical properties and mechanical flexibility, PE/SEBS-MA/ZnO 

nanocomposites have good potential for applications in HV insulation systems, specifically 

in HVDC cables as a replacement to XLPE. Therefore, the investigation of different fractions 

of PE and SEBS-MA in the blend as well as ZnO contents lower than 1 wt%, are 

recommended to optimize further the initial properties of the unfilled blend and to ensure a 

good trade-off between mechanical and dielectric/electrical properties in PE/SEBS-MA/ZnO 

blend nanocomposites.  
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Abstract 

In this study, the mechanical strength and the AC short term breakdown strength of 

polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS) thermoplastic elastomer 

clay-containing nanocomposites have been investigated as function of their morphologies. 

The SEBS/clay nanocomposites with tailored morphologies were prepared previously by 

different processing techniques. They featured different orientations of clay platelets as well 

as polystyrene (PS) block nanodomains, namely: isotropic, oriented and partially oriented 

morphologies. In unfilled SEBS matrices, the mechanical strength was mainly tuned by the 

orientation of PS block nanodomains. A good correlation between the dielectric breakdown 

strength and the mechanical stiffness was observed overall: the higher the mechanical 

strength was, the higher the breakdown strength was. In the nanocomposites, the orientation 

of clay platelets as well as the degree of order and the characteristic sizes of the block 

CHAPTER 6 
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copolymer domains were seen to affect strongly the breakdown strength behavior in addition 

to the mechanical strength. In particular, the partially oriented morphology achieved by film 

blowing extrusion exhibited the maximum increase of the breakdown strength by 25% with 

optimized mechanical stiffness evaluated between that of the oriented morphology as a lower 

limit and that of the isotropic morphology as an upper limit.  

Keywords: thermoplastic elastomer nanocomposite, tailored morphology, mechanical 

stiffness, dielectric breakdown strength 

 

6.1 Introduction 

Block copolymers are a special class of materials composed of immiscible polymer blocks 

that are usually self-organized in well-ordered nanodomains. The morphologies adopted by 

these nanodomains depend on several parameters such as the affinity between the blocks, 

their molecular weights and their relative proportions (Helfand, 1975; Sarkar & Alexandridis, 

2015). Besides, these morphologies can be easily tuned by different external forces that can 

be applied either during melt compounding or solvent casting fabrication processes (Leice G 

Amurin et al., 2016; Daniel, Hamley, & Mortensen, 2000; Liedel, Pester, Ruppel, Urban, & 

Böker, 2012; Mansky et al., 1998; Ruppel et al., 2013).  

 

Due to these features, block copolymers have been investigated recently as templated 

multiphase matrices to tailor nanoparticles dispersion in polymer nanocomposites (Balazs et 

al., 2006; Bockstaller et al., 2005; Kao et al., 2013; J. Y. Lee, Park, Yang, Cho, & Kim, 

2003; Park et al., 2003; Sarkar & Alexandridis, 2015). Currently, this approach is considered 

of high importance to develop techniques for designing an advanced generation of 

nanocomposites with prescribed morphologies and engineering properties. 

 

In this context, some recent studies investigated different morphologies of polystyrene-b-

poly(ethylene-co-butylene)-b-polystyrene (SEBS) triblock copolymers and their clay-

containing nanocomposites (Carastan et al., 2013; Carastan et al., 2014; De Sousa Jr et al., 
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2014; Helal et al., 2017; E Helal et al., 2015). SEBS belongs to the class of styrenic 

thermoplastic elastomers and features in addition to its ordered nanostructure, excellent 

combination of mechanical properties (Balsamo et al., 2006; Holden et al., 2004), good 

resistance to water treeing (Liu et al., 2011; Z. Ma et al., 2010), good electromechanical 

coupling (B. Kim et al., 2011) and high compatibility with polyolefins (Agari et al., 1993). 

As a block copolymer, SEBS is composed of two polystyrene (PS) blocks and one 

poly(ethylene-co-butylene) (PEB) elastomer midblock. It was widely used as a 

compatibilizer (Liang & Tjong, 2006) and as a dielectric elastomer actuator (Kofod et al., 

2011; Mc Carthy et al., 2009; Mi et al., 2014; Saleem et al., 2014; Stoyanov et al., 2011). 

 

The studies performed on SEBS and SEBS/clay nanocomposites demonstrated that different 

orientations of PS ordered nanodomains and clay nanoplatelets can be achieved by 

appropriate processing techniques (Leice G Amurin et al., 2016; Carastan et al., 2013; 

Carastan et al., 2014; De Sousa Jr et al., 2014; Helal et al., 2017; E Helal et al., 2015). For 

instance, isotropic lamellar or cylindrical morphologies were obtained by solvent casting 

process when adequate thermal annealing procedures were applied and appropriate fractions 

of PS blocks were present (E Helal et al., 2015). Furthermore, oriented morphologies where 

PS nanodomains and clay nanoplatelets are simultaneously aligned in the same direction 

were obtained by extensional and shear forces applied during a sheet die extrusion process 

(Leice G Amurin et al., 2016; Carastan et al., 2013; Carastan et al., 2014). In addition, more 

complex morphologies where PS domains and clay platelets have more than one preferential 

direction of alignment were achieved by film blowing extrusion. More details regarding these 

morphologies are available in the cited publications (De Sousa Jr et al., 2014; Helal et al., 

2017). The abovementioned changes in spatial distribution of PS domains and nanoclays 

were correlated with changes in the mobility of elastomer chains located in the interfacial 

region. An interfacial glass transition (Tgi), several tens of degrees higher than the glass 

transition of the bulk PEB block, was attributed to these interfacial chains. In particular, the 

lowest Tgi temperatures were attributed to nanocomposites with aligned morphologies 

indicating less mobility restriction in this configuration compared to the other morphologies 

(Helal et al., 2017).  
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The control of morphology ultimately resulted in changes in effective dielectric properties as 

well. This behavior is partially expected due to the observed changes in the interfacial region 

which usually governs the properties of nanocomposites. In particular, increase of the 

breakdown strength was observed when SEBS-30 matrix (30 wt% PS domains) was filled 

with clay content equal to 5 wt%. Moreover, the comparison between isotropic and oriented 

morphologies of this nanocomposite revealed that the maximum increase of breakdown 

strength was equal to 45% and corresponded to the nanocomposite featuring oriented 

morphology, with both clay platelets and PS domains simultaneously aligned perpendicularly 

to the applied electric field (E Helal et al., 2015). This effect is in agreement with findings 

from the literature reporting that the addition of nanoclay to polyolefin matrices, increases 

the dielectric breakdown strength and their alignment perpendicular to the applied electric 

field improves further the results by increasing the tortuosity of the paths taken by the charge 

carriers (David et al., 2013; Liao et al., 2013b; Liao et al., 2014; Tomer et al., 2011). 

However, the dielectric strength of oriented unfilled SEBS matrix was reduced, compared to 

isotropic unfilled SEBS, which unfortunately neutralizes the increase observed by the 

alignment of clay. 

 

This behavior is most likely related to the reduction of mechanical stiffness upon the 

alignment of PS nanodomains perpendicular to the electric field direction. In support to this 

hypothesis, few studies reported that the breakdown strength of SEBS was reduced with 

decreasing mechanical stiffness (Kollosche & Kofod, 2010; Kollosche et al., 2009). In fact, 

the electrodes attached to the specimen’s surface during the breakdown test exert a 

compressive force that might result in appreciable deformations at an applied voltage below 

the intrinsic breakdown voltage, especially in soft elastomeric materials, leading to reduced 

dielectric strength and failure. This phenomenon is well-known as electromechanical 

breakdown. Some empirical equations were already established to describe the correlation 

between mechanical stiffness and electromechanical breakdown strength in rubbery materials 

(Blythe & Bloor, 2005).  
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In the same research orientation, this work aims at evaluating and validating the correlation 

between the breakdown strength and the mechanical strength of clay-containing SEBS 

nanocomposites in dependence with their designed morphologies, mainly the spatial 

distribution of PS block nanodomains and clay nanoplatelets. To this end, two sets of SEBS 

block copolymers with different ratios of PS blocks: 13 wt% and 20 wt% as well as their 

nanocomposites were investigated. The morphologies of these nanocomposites were tuned 

by means of different processing techniques. 

6.2 Processing and characterization 

6.2.1 Materials 

Two grades of symmetric SEBS triblock copolymers donated by Kraton were used: 

G1643and G1645. These grades contain respectively 13 wt% and 20 wt% of PS blocks and 

are referred to in the manuscript respectively as SEBS-13 and SEBS-20. PS block 

nanodomains are ordered in the form of hexagonally packed cylinders within the 

poly(ethylene-co-butylene) (PEB) elastomer block. Montmorillonite clay grade Cloisite 20A 

purchased from Southern Clay (Gonzales, USA) and modified with dimethyl di 

(hydrogenated tallow) quaternary ammonium salt, was used as nanofiller for the 

nanocomposites preparation. In the rest of the manuscript, the abbreviation 20A will be used 

to design clay Cloisite 20A. All the materials studied in this paper were used as received. 

More details regarding the physical properties of the polymers as well as the modification 

and size of clay particles were provided in the previous studies published by co-authors 

(Leice G Amurin et al., 2016; Carastan et al., 2013; Carastan et al., 2014; De Sousa Jr et al., 

2014; Helal et al., 2017; E Helal et al., 2015).  

6.2.2 Processing 

The materials investigated in this study were prepared by different processing techniques to 

achieve different orientations of PS nanodomains and clay platelets. Three selected 

techniques were used: solvent casting, sheet die extrusion and film blowing extrusion at two 
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air inflation ratios R1 and R3. In all the nanocomposites, the content of nanoclay used was 5 

wt%. An illustrative scheme of the last two techniques based on extrusion is presented in 

Figure 6-1. Besides, a coordinate system that will be used to refer to test directions and 

related discussions is also presented. More details regarding the processing parameters 

corresponding to each technique and the procedure to obtain nanocomposite films are 

available in references (Leice G Amurin et al., 2016; Carastan et al., 2014; De Sousa Jr et al., 

2014; Helal et al., 2017). 

 

 

Figure 6-1: Cartoons illustrating: sheet-die extrusion (a), film blowing extrusion                     
using a tubular die with two different ratios: R1 (b) and R3 (c) (the coordinate system              

is used as a reference for the following characterizations and discussions) 
 

6.2.3 Summary of nanocomposite morphologies 

The obtained morphologies of the studied materials depend mainly on the external forces 

applied during the selected fabrication technique and also on the fraction of the PS block. In 

a summary, nanocomposites with isotropic morphologies were obtained from both SEBS-13 

and SEBS-20 grades when a solvent casting process was used. These materials are denoted 

isotropic. When a sheet die extrusion process was used, SEBS-20 based materials featuring 

PS cylinders and clay platelets simultaneously aligned parallel to the extrusion direction (Y 

direction according to Figure 6-1) were obtained. These materials are referred to as oriented. 

 

(c)(b)(a)
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The rest of the nanocomposites discussed in this manuscript feature more complex 

morphologies. In fact, the sheet die extrusion of SEBS-13 based materials induced the 

alignment of clay platelets parallel to (XY) plane and a fraction of PS nanodomains parallel 

to Y axis. However, another fraction of PS cylinders remained isotropic. The imperfect 

alignment of PS cylinders in SEBS-13 was attributed to the low fraction of PS block (Leice 

G Amurin et al., 2016). SEBS-20 based materials prepared by film blowing extrusion 

featured also complex morphologies depending on the air inflation ratio. At ratio R1, a major 

fraction of both PS domains and clay particles were aligned in the extrusion direction (Y 

axis) and a minor fraction was aligned across the thickness (parallel to Z axis). At ratio R3, 

clay platelets were oriented in the XY plane while PS domains were randomly distributed in 

the XY plane perpendicular to the thickness. This third class of materials is designated 

partially oriented. 

 

An exhaustive characterization of the as-described morphologies by small angle X-ray 

scattering (SAXS) and transmission electron microscopy (TEM) was reported in previous 

publications (Leice G Amurin et al., 2016; De Sousa Jr et al., 2014; Helal et al., 2017). The 

nomenclature of these nanocomposites and short descriptions of their morphologies are 

provided in Table 6-1. More details and illustrative schemes can be found in (Helal et al., 

2017) or Table 3-3 of this dissertation. 

 

 

 

 

 

 

 

 

 

 

 



202 

Table 6-1: Nomenclature and morphology description of SEBS-20 and SEBS-13 based 
nanocomposites 

 Nomenclature Morphology description 

 

 
 

SEBS-20-oriented 
SEBS-20-20A-oriented 

 

 
PS cylinders uniaxially 

oriented in the main 
flow direction along Y 

axis 

Clay platelets oriented in 
the main flow direction 

parallel to XY plane  

 
SEBS-13-isotropic 

SEBS-13-20A-isotropic 
SEBS-20-isotropic 

SEBS-20-20A-isotropic 

 
Isotropic PS cylinders 
Isotropic clay platelets 

 

 

 
SEBS-20-partially 

oriented R1 
SEBS-20-20A- partially 

oriented R1 

Major fraction of  PS cylinders oriented in the main 
flow direction along Y axis 

Major fraction of  clay platelets oriented parallel to 
XY plane 

Minor fraction of PS  cylinders and clay platelets 
oriented across the thickness parallel to XZ and YZ 

planes 

SEBS-20- partially 
oriented R3 

SEBS-20-20A- partially 
oriented R3 

 
PS cylinders randomly distributed in the plane XY    

Clay platelets oriented parallel to XY plane 
 

  
SEBS-13- partially 

oriented 
SEBS-13-20A- partially 

oriented 

 
Partially isotropic PS cylinders 

Partially oriented PS cylinders in the main flow 
direction along Y axis 

Clay platelets oriented parallel to XY plane 
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6.3 Characterization 

6.3.1 Mechanical properties 

The mechanical properties of the block copolymers and their nanocomposites were measured 

using STM Alliance machine equipped with 1kN load cell and pneumatic grippers. The 

elastic Young’s modulus and the elongation at break were evaluated in the tensile mode 

according to ASTM 412D (Standard Test Methods for Vulcanized Rubber and Thermoplastic 

Elastomers, 2016). The speed was selected equal to 50mm/min, lower than the speed 

recommended by the standard (500 mm/min) for more precision (Saleem et al., 2014). 5 

specimens at least were tested for each material. 

6.3.2 AC short-term breakdown strength 

The AC short-term breakdown strength of the samples was measured using ball-type 

electrodes of diameter 4 mm in a dielectric oil environment. For each sample, 12 specimens 

were considered to calculate the dielectric strength using Weibull distribution. A voltage 

ramp of 2 kV/s at a frequency of 60 Hz was applied until breakdown occurred. All 

measurements were done at room temperature. Since the thickness of the samples was not 

strictly uniform, all the measurements were corrected to equal the breakdown strength of a 

550 µm thick film using the power law relationship between the breakdown field and the film 

thickness in order to obtain comparable results (Takala et al., 2010) . 

6.4 Results and discussion 

6.4.1 Mechanical properties 

The stress-strain curves of SEBS-20 and SEBS-13 sets of materials are respectively plotted 

in Figure 6-2 and Figure 6-3. The Young’s modulus was evaluated by calculating the slope in 

the linear region up to 5% strain. The values are summarized in Figure 6-4. It is worth 

mentioning that the final objective is to evaluate the mechanical properties of the samples in 

the thickness direction (Z direction) in order to correlate them with the breakdown strength 
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measurements, where the electric field was applied parallel to the thickness as indicated by 

the arrows in the illustrative cartoon in Table 6-1. Since it was technically difficult to 

evaluate the mechanical properties by compression, tensile measurements were adopted and 

the directions of the tests were varied, depending on the orientation of PS cylinders and clay 

platelets, in order to mimic the maximum the mechanical behavior across the thickness.  

Nevertheless, the results will be discussed carefully as some differences from the real 

behavior may exist. 

 

For the samples prepared by solution, no specific recommendation for the test direction was 

needed as they are isotropic. For the extruded samples exhibiting specific orientation of PS 

cylinders and clay layers parallel to the Y axis, the tensile testing was performed in the 

transverse direction (parallel to X axis) which is equivalent to Z axis as far as the 

contribution of PS cylinders to the mechanical properties is concerned. 

 

For the samples prepared by film blowing extrusion at a ratio R1, the tests were performed in 

the XY plane with an angle of 45° to take into account the orientation of a small fraction of 

PS cylinders that deviate from aligning parallel to the Y axis. This direction will be referred 

to as diagonal (Figure 6-1 and Table 6-1) and is believed to be equivalent to Z axis as far as 

the contribution of PS cylinders to the mechanical properties is concerned, since a minor 

fraction of PS cylinders were oriented in the thickness direction. For the samples prepared by 

film blowing extrusion at a ratio R3, the tensile tests were performed in the diagonal 

direction as well.  Since the PS cylinders are randomly oriented in the XY plane, the 

mechanical properties in this direction are expected to be close to those of the isotropic 

sample. However, in the thickness direction, the mechanical properties should be equivalent 

to the case of oriented samples.  

 

As noticed, all the specified test directions for the anisotropic samples take into account the 

real contribution of PS cylinders orientation to the mechanical properties but do not 

correspond to the real contribution of clay layers which are oriented parallel to the XY plan 

in which the tensile tests are performed and perpendicular to the Z axis (thickness direction). 
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Thus, the real mechanical properties of these samples in the thickness direction, especially in 

the elastic region, might be lower than the measured values due to the reduced mechanical 

strength of the “intrastack phase” as reported by Mishnaevsky et al. (Dai & Mishnaevsky Jr, 

2013; Mishnaevsky Jr, 2012). However, since this imprecision is present in all the 

anisotropic samples, the evaluation of their relative performance compared to each other 

remains possible. 

 

Figure 6-2 shows that all SEBS-20 based materials present comparable elongations at break 

and ultimate strengths (including those prepared by film blowing extrusion and not reported 

in the Figure). The same conclusion can be made for SEBS-13 set of materials as well 

(Figure 6-3). In terms of stiffness, all the nanocomposites showed in general improved 

stiffness compared to their pure materials, as it can be seen in Figure 6-4. Hence, the effect of 

nanoclays is more obvious on the elastic deformation rather than plastic deformation. This 

stiffening effect is partially attributed to the relatively high Young’s modulus of clay platelets 

especially along their planes, as reported several times in the literature (Dai & Mishnaevsky 

Jr, 2013; Mishnaevsky Jr, 2012; Leszek A Utracki, 2010). Besides, the interfacial 

interactions have an important impact as well. In fact, the presence of clay platelets might 

prevent the molecules from orientation resulting in stiffness enhancement (Fang, Leng, & 

Gao, 2006; Helal et al., 2017; Vo et al., 2011). 

 

Considering the set of materials prepared from SEBS-20 and the data reported in Figure 6-2 

and Figure 6-4, it can be concluded that the oriented materials prepared by extrusion exhibit 

the lowest elastic moduli, respectively equal to 2.7MPa and 5.2MPa for the neat SEBS-20 

and the SEBS-20-20A-oriented nanocomposite. This is expected since perpendicular to PS 

cylinders orientation, the mechanical properties are rather governed by the soft PEB phase 

featuring lower stiffness (Leice G Amurin et al., 2016; Wang et al., 2010). The materials 

prepared by film blowing extrusion at a ratio R1 exhibit improved elastic moduli, 

respectively equal to 3.3MPa and 5.7MPa for the neat SEBS-20-partially oriented R1 and its 

corresponding nanocomposite. This improvement is attributed to the orientation of a fraction 

of PS cylinders parallel to the thickness. However, it is worth noting that SEBS-20- partially 
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oriented R1 seems to be relatively inhomogeneous in the test direction. In fact, although the 

majority of the tested specimens exhibit behavior close to the average behavior presented in 

Figure 6-2 and Figure 6-4, few specimens exhibit higher stiffness with Young’s modulus 

around 6.2 MPa (plots not presented in this manuscript). 

 

The samples prepared by solution and by film blowing extrusion at a ratio R3 exhibit the 

highest improvement in stiffness. Furthermore, their elastic moduli are similar, for both 

cases: unfilled matrices and nanocomposites. This behavior confirms the hypothesis of 

isotropic morphology in the XY plane of samples prepared with a ratio R3 concluded from 

SAXS and TEM data discussed in a previous publication ((Helal et al., 2017). As a 

consequence, in the Z direction, the mechanical behavior of these materials (partially 

oriented R3) is rather close to that of the oriented samples measured in the transverse 

direction. This assumption will be considered later in the discussion of the breakdown 

strength results. In a summary, parallel to the thickness (Z direction), SEBS-20 based 

materials could be classified corresponding to their stiffness as following: oriented~ partially 

oriented R3< partially oriented R1< isotropic. This trend supports also the potential role of 

the interfacial interactions in the stiffening effect. In fact, it was reported in (Helal et al., 

2017) that nanocomposites with isotropic and partially oriented morphologies exhibit more 

confinement in the interfacial region. 

 

According to Figure 6-3 and Figure 6-4, the set of samples prepared from SEBS-13 exhibit 

generally higher elongation at break but lower stiffness compared to the samples prepared 

from SEBS-20. This behavior is expected due to the reduction of PS block fraction exhibiting 

higher mechanical strength compared to PEB block. Moreover, extruded SEBS-13 based 

samples, both the neat and the nanocomposite, exhibit lower stiffness compared to isotropic 

materials prepared by solution. This behavior supports the conclusion that SEBS-13 materials 

prepared by extrusion exhibit both oriented PS domains and isotropic PS domains, despite 

the fact that SAXS diffraction patterns corresponding to these materials reported in (Helal et 

al., 2017) indicate only isotropic PS cylinders. 
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Figure 6-2: Characteristic stress-strain plots of SEBS-20 based materials 

 

Figure 6-3: Characteristic stress-strain plots of SEBS-13 based materials 



208 

 

Figure 6-4: Young’s modulus of respectively SEBS-20 and SEBS-13 sets of materials 
 

6.4.2 AC short-term Breakdown strength 

The data corresponding to the AC short-term breakdown tests were retrieved using 

commercial software. Two-parameter Weibull distribution (equation (6.1)) was used for the 

estimation of the breakdown strength. More details regarding the statistical analysis of 

breakdown measurements could be found in IEEE 930 standard ("IEEE Guide for the 

Statistical Analysis of Electrical Insulation Breakdown Data," 2005). 
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Where:  
P: is the cumulative probability of failure at an electric field less or equal to E;  
E0: is the scale parameter corresponding to the breakdown strength for which the cumulative 
failure probability is equal to 63.2%; 
β: is the shape parameter which measures the scatter of the data. The larger β is the narrower 
is the range for breakdown strength. 

Weibull plots, scale factor and shape factor related to SEBS-20 and SEBS-13 sets of 

materials are reported respectively in  

Figure 6-5 and Figure 6-6. An overall inspection of the results shows that all the 

nanocomposites exhibit higher dielectric strength compared to their unfilled parts and 

increased shape factors indicative of improved reliability. The highest increase of β is 

observed in samples prepared by solution as they are more homogeneous due to their 

isotropy.  

 

As far as unfilled materials are concerned, it could be seen that indeed the breakdown 

strength varied depending on the processing method and consequently on the morphology 

and mechanical properties of the block copolymer. In fact, oriented samples exhibit lower 

dielectric strength compared to the isotropic samples. Moreover, in the case of SEBS-20 set, 

SEBS-20- partially oriented R3 and SEBS-20-oriented exhibit comparable values around 56 

kV/mm while SEBS-20-isotropic and SEBS-20-partially oriented R1 exhibit higher values 

respectively around 60kV/mm and 62 kV/mm. This observation partially matches the trend 

observed for the mechanical properties but a higher breakdown was expected for the 

isotropic sample which exhibits the highest elastic modulus. This behavior might be due to 

the fact that SEBS-20-isotropic features less perfect order compared to SEBS-20-bioriented 

R1. In fact, the decrease of order may result in reduced number of nanoscaled interfaces 

between the blocks and induce less efficient trapping of charge carriers (Samant et al., 2016). 

SAXS data reported in (Helal et al., 2017) support this hypothesis. 
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Surprisingly, SEBS-13 set of materials shows similar behavior compared to SEBS-20 

materials with breakdown strength equal to 61kV/mm for the isotropic material prepared by 

solution and equal to 53kV/mm for the material prepared by extrusion. Although this 

behavior supports the hypothesis that the two samples prepared by different processing 

techniques do not exhibit the same PS orientation, it disagrees with the fact that these 

materials exhibit lower stiffness compared to SEBS-20 due to the reduced ratio of styrene 

and are consequently expected to exhibit lower dielectric strength. This unexpected high 

performance is probably due to the fact that the diameter of PS cylinders in SEBS-13, equal 

to 9.7 nm according to calculations based on SAXS results (not reported in this manuscript), 

is smaller than the diameter of PS cylinders in SEBS-20 estimated as 12.5 nm (Helal et al., 

2017), which induces larger and more nanosized interfacial area where the charge carriers 

could be trapped and subsequently compensates for the deterioration of stiffness in SEBS-13. 

However, this hypothesis needs further investigation to be confirmed.  

 

In terms of nanocomposites, the data reported in  

Figure 6-5 and Figure 6-6 shows that the lowest improvement in breakdown strength, 

compared to the unfilled matrices, corresponds to isotropic nanocomposites prepared by 

solution. It is in the range of 6 to 7%. The nanocomposites featuring clay platelets aligned 

parallel to XY plane, prepared either by sheet-die extrusion or film blowing extrusion at ratio 

R3, exhibit higher improvement up to 10.6% due to alignment of nanoparticles perpendicular 

to the electric field. Unfortunately, this improvement does not compensate for the decline of 

the breakdown strength of the matrix caused by the simultaneous alignment of PS cylinders 

perpendicular to the thickness. A similar behavior was reported in our previous study (E 

Helal et al., 2015) concerning SEBS-30 based nanocomposites. However, a higher increase 

of breakdown strength, up to 45%, was achieved in SEBS-30-20A oriented nanocomposite 

compared to unfilled SEBS-30 oriented, indicating more efficient role of clay platelets as 

barriers to the flow of charge carriers. This higher performance might be related to improved 

dispersion, degree of orientation and interaction with polymer chains at increasing fraction of 

PS block. In fact, clay platelets exhibit better interaction with the relatively polar aromatic 

rings of PS block (Carastan et al., 2014). Also, the difference in the thickness between the 
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samples used to perform the breakdown tests (average thickness in the range 100-170 µm for 

SEBS-30 based nanocomposites compared to 550 µm for SEBS-20 and SEBS-13 based 

nanocomposites) might partially contribute to the superior performance of SEBS-30 

nanocomposite. In fact, in solid insulations, the breakdown strength is often reported to 

increase with decreasing sample thickness. This film thickness effect has been attributed to 

potential changes in several parameters including the probability of defects, charge trapping 

and detrapping mechanism and material morphology (H. K. Kim & Shi, 2001; L. Zhao, Liu, 

Su, Pan, & Zhang, 2011). Hence, the reduced thickness of tested SEBS-30 materials might 

have resulted in more perfect packing and alignment of clay platelets and consequently 

higher improvement of breakdown strength compared to the unfilled material, as observed. 

 

SEBS-20-20A-partially oriented R1 nanocomposite exhibits the highest increase in dielectric 

strength by 25% compared to its unfilled peer SEBS-20-R1 and 37% compared to 

conventionally extruded matrix SEBS-20-oriented. This increase is attributed to synergetic 

effects including the improved elastic moduli of the matrix induced by the alignment of some 

cylinders in the thickness direction, the high state of order of the block copolymer compared 

to isotropic and R3 samples and simultaneously the alignment of major fraction of clay 

tactoids perpendicular to the electric field (Helal et al., 2017). 
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Figure 6-5: Breakdown strength of SEBS-20 based nanocomposites 

 

Figure 6-6: Breakdown strength of SEBS-13 based nanocomposites 
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6.4.3 Summary 

The comparison of the trends followed by the tensile strength and breakdown strength results 

reveal an important correlation between these two properties in the case of unfilled SEBS-20 

and SEBS-13 matrices. In fact, this correlation is a well-known behavior in soft elastomers 

and thermoplastic elastomers in general, due to the high possibility of deformation of soft 

materials under an applied electric field (Blythe & Bloor, 2005)  

 

In the studied materials, since the mechanical strength of thermoplastic PS domains is greater 

than that of the rubbery PEB domains, the control of their orientation induced different 

mechanical behaviors of unfilled SEBS-20 and SEBS-13 matrices as function of their 

morphologies. Subsequently, the dielectric breakdown strength followed the same trend of 

the mechanical stiffness (both estimated in the same direction). In particular, when PS 

cylinders are aligned parallel to the direction of the applied electric field, the lowest 

mechanical strength and dielectric breakdown strength were simultaneously observed. In the 

nanocomposites, in addition to its dependence on the mechanical stiffness, the breakdown 

strength was mainly governed by the orientation of clay platelets compared to the applied 

electric field. In particular, the alignment of clay perpendicular to the applied electric field is 

the desired configuration. In this context, isotropic nanocomposites exhibited the lowest 

improvement of breakdown strength, compared to their unfilled pairs, despite their high 

mechanical stiffness. However, the partially oriented R1 nanocomposite exhibited the best 

combination of mechanical and dielectric breakdown strengths due to adjusted alignment of 

respectively clay platelets and PS cylinders. Other factors such as the state of order in the 

block copolymer and the quality of the interfaces affected also the breakdown strength. 

 

6.5 Conclusion 

In this study, it was demonstrated that the mechanical strength and ultimately the breakdown 

strength of SEBS/clay thermoplastic elastomer nanocomposites can be tuned through the 

design of their morphologies, using different processing techniques. The investigated 
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nanocomposites featured different morphologies that were classified as oriented, partially 

oriented or isotropic depending on the alignment of both clay platelets and PS cylinders. In 

unfilled SEBS matrices, the mechanical stiffness and the breakdown strength were strongly 

correlated and dependent on the orientation of PS nanodomains. But, in the nanocomposites, 

this correlation is less strong. Instead, the spatial distribution of clay platelets was the main 

factor governing the extent of the achieved improvement of breakdown strength compared to 

the unfilled matrix.  

 

Overall, this control of morphology and functional properties is expected to increase the 

potential of these flexible nanocomposites in different dielectric applications including 

electrical insulation and dielectric elastomer actuators. 
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CHAPITRE 7 
 
 

DISCUSSION 

 

This thesis studied the design and processing of polymer nanocomposites with controlled 

morphologies, intended to serve as HV insulating materials. The parameters involved within 

the concept of controlled morphology are: state of dispersion (agglomerations vs. nanoscale 

dispersion), orientation and selective localization of the nanoparticles. To achieve this 

objective, this project was divided in three main parts as described in the introduction of this 

thesis. The work performed in these parts involved the investigation of two types of 

nanoparticles as well as a block copolymer and a blend of polyethylene with a block 

copolymer as template matrices. In the following, some of the challenges encountered in 

each part of the project are discussed. Besides, the achievement of the specific research 

objectives related to each part is evaluated.  

7.1 Nanocomposites with tailored morphologies 

The performance of insulating polymers used as HV insulating materials is affected by 

various physical properties including real and imaginary parts of dielectric permittivity, 

breakdown strength, resistance to partial discharges, thermal conductivity and mechanical 

strength. In polymer nanocomposites, it was observed that several engineering properties 

might be optimized by tailoring the nanocomposites morphologies. In this context, the 

analysis of the recent literature, discussed in chapter 1, has shown that specific approaches 

based on the use of multiphase polymer systems were developed to achieve tuned 

morphologies in nanocomposites. The multiphase materials, such as block copolymers and 

polymer blends, were used as template matrices and were able to induce different 

enhancements in the electrical, thermal and/or mechanical behavior depending on the 

targeted field. In particular, these approaches started gaining attraction in nanodielectrics. 

However, their application to the field of HV insulation is still limited.  

CHAPTER 7 



216 

In this thesis, these approaches were extended to polymer nanocomposites intended for use as 

HV insulating materials. Through chapter 2 to chapter 6, it was demonstrated that indeed 

these approaches have potential to improve the functional properties related to HV insulation. 

 

The first challenge encountered at the early steps of this project was the choice of the block 

copolymer and the nanoparticles. In particular, SEBS was chosen due to its ordered 

nanostructure as a block copolymer, interesting mechanical properties as a thermoplastic 

elastomer and good resistance to water treeing. In terms of nanoparticles, clay platelets and 

ZnO nanospheres were selected. Both of them exhibit different shapes and chemical natures 

but have in common benefits in HV insulation and low costs.  

 

The specific findings and challenges related to each part of the project are discussed in the 

next three sections.  

7.2 SEBS/Clay nanocomposites 

SEBS/clay nanocomposites with different morphologies were investigated, with stress on the 

effect of clay orientation, localization and degree of exfoliation on some key properties 

related to HV insulation; namely: dielectric losses, dielectric breakdown strength and 

mechanical strength. The control of localization and degree of exfoliation was ensured 

through the use of MA graft attached to the PEB block. In fact, the interaction between MA 

and hydroxyl groups at the edge of clay layers, which are already pre-intercalated due to the 

organic surface treatment, improves the peeling mechanism and consequently the exfoliation 

of clay into individual layers. Furthermore, this increased affinity favors the localization of 

clay platelets in the elastomer PEB block.  

 

In terms of orientation, the control was achieved by specific processing techniques. In this 

context, oriented nanocomposites exhibiting alignment of both clay platelets and PS 

nanodomains along the thickness of nanocomposites films were obtained by sheet die 

extrusion process while isotropic nanocomposites were achieved by solvent casting process. 

The alignment of clay platelets improved efficiently the resistance to dielectric failure and 
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reduced the dielectric losses compared to isotropic morphologies. However, the alignment of 

PS domains reduced the mechanical stiffness of the matrix and subsequently its dielectric 

breakdown strength. To overcome this undesirable effect, more complex configurations, 

allowing taking advantage from clay alignment without sacrificing the dielectric and 

mechanical strength of the matrix, were needed. In this context, the morphologies, untitled 

“partially oriented” were prepared using a different processing technique: film blowing 

extrusion. In this process, a tubular die is used instead of a sheet die and the nanocomposite 

film is inflated with air at tunable blow-up ratios. As a result, radial forces are applied instead 

of only lateral forces (applied in the main extrusion direction when a sheet-die extrusion 

process is used). The applied blow-up ratio determines the ratio between the final and initial 

diameters of the fabricated tube and ultimately affects the orientation of both clay platelets 

and PS cylinders. In the as-obtained nanocomposite films, an important fraction of clay 

platelets were aligned along the thickness (parallel to the main extrusion direction) while PS 

domains were either isotropic in the plane perpendicular to the thickness or having a fraction 

of them oriented across the thickness as well. For this reason, these morphologies were 

referred to as “partially oriented”. They succeeded in maintaining the mechanical strength of 

the matrix while improving the breakdown strength and limiting the dielectric losses, due to 

alignment of clay platelets.  

 

To validate the correlation between mechanical and dielectric strength for these soft 

SEBS/clay nanocomposites exhibiting different morphologies, the mechanical properties 

were evaluated. In breakdown measurements, the electric field was applied perpendicular to 

the samples thickness. Therefore, evaluation of the mechanical stiffness across the thickness 

would be favored for more accuracy. However, it was technically difficult to evaluate the 

mechanical properties across the thickness by compression. Therefore, tensile mode was 

adopted and the directions of the tests were selected carefully in order to simulate to the best 

the morphology across the thickness, as described in chapter 6. The results confirmed the 

correlation between mechanical and dielectric strengths. This was another challenge 

encountered in this part of the project.  
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In order to better understand the role of the interface in such nanocomposites, an attempt was 

made to establish a relationship between the studied morphologies and their corresponding 

interfacial molecular dynamics. For this purpose, relaxation processes observed in broadband 

dielectric spectra (BDS) and dynamic mechanical analysis (DMA) spectra were analyzed. 

The studied systems were rather complex, with the two blocks of SEBS exhibiting distinct 

segmental relaxations in addition to the potential interfacial relaxations. In particular, a 

relaxation process attributed to rubber chains with restricted mobility located in the interface 

region was identified. Furthermore, the spatial distribution of nanoparticles affected this 

relaxation process. In a summary, it was found out that the isotropic morphologies, partially 

oriented morphologies and morphologies with clay selectively located in the rubber block, 

result in more restriction and stronger fragile behavior. It is worth noting that this relaxation 

process was observed in BDS spectra of all the nanocomposites but only for selected 

materials in DMA spectra. This behavior requires further investigation.  

7.3 SEBS/ZnO nanocomposites 

In the second part of this project, tailored dispersion of ZnO nanospheres in SEBS block 

copolymer was investigated. In particular, nanoscale dispersion and interaction between these 

isotropic nanoparticles with polymer chains were the tuned aspects. The control was again 

enabled through the use of MA groups grafted to PEB elastomer block and exhibiting good 

affinity with the nanoparticles surface. In fact, the organic treatment of the surface of ZnO 

nanoparticles helped decreasing their hydrophilic character and consequently improving their 

compatibility with the polymer matrix. Simultaneously, MA reacted with the remaining 

hydroxyl groups that partially cover the surface of the nanoparticles, forming ester and 

hydrogen bonds. The resulting complexes act as in-situ formed cross-linked structures that 

improve the dispersion and affect drastically the rheological properties. In particular, the 

storage modulus of SEBS/ZnO nanocomposites prepared with MA, was nearly constant at 

low angular frequencies (a plateau was formed). This interesting behavior indicates the 

formation of networks between the nanoparticles and polymer chains. It was observed at ZnO 

concentrations starting from 5 wt%.  
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The formation of networks was correlated with improvements in thermal conductivity and 

resistance to surface erosion at lower content of nanoparticles compared to SEBS/ZnO 

nanocomposites prepared without the MA graft. Besides, at low frequencies, the dielectric 

losses, rather dominated by electrical conduction phenomena in this range, were remarkably 

increased with temperature. This intriguing behavior was not observed in SEBS/ZnO 

nanocomposites prepared without MA. It is also believed to be related to the specific spatial 

distribution of nanoparticles and the established networks which render the nanocomposites 

slightly conductive. However, further investigations are required to confirm it. From a 

practical point of view, the efficiency of these materials as HV insulations might be reduced 

if elevated operational temperatures are required. However, at room temperature and 

intermediate temperatures up to 70 °C, which are more common, the dielectric losses of 

SEBS/ZnO prepared with MA are lower than those prepared without MA due to the 

improved dispersion. 

 

Lastly, it is worth noting that although networks between polymer chains and ZnO 

nanoparticles were formed in the presence of MA, a total selective localization of the studied 

ZnO nanoparticles in the PEB block was unfortunately not possible because their dimensions 

were in the same range or slightly higher than the characteristic length scales of SEBS 

nanodomains, which imposes thermodynamic constraints. Hence, the use of ZnO 

nanoparticles of average diameter smaller than the dimensions of the PEB block could be 

interesting, since it facilitates the achievement of preferential localization and may improve 

further the observed property enhancements at even lower loadings of nanoparticles.  

7.4 PE/SEBS/ZnO blend nanocomposites 

The last part of this project aimed at producing materials with controlled morphology for 

practical use in HV insulation. In this context, blends of SEBS/ZnO nanocomposites with 

HDPE were investigated. The choice of ZnO-containing nanocomposites was justified by the 

confirmed role of ZnO nanoparticles in reducing space charge accumulation, which is a 

crucial property in HV cable insulations and especially HVDC cable insulations. The 

selective localization of nanoparticles in either PE or SEBS was the main parameter to 
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control at this step. It was confirmed by microscopy and by estimation of the wetting 

coefficient that ZnO nanoparticles were located in SEBS phase. This preferential localization 

was enabled by the high affinity of ZnO nanoparticles to the MA groups attached to the PEB 

block and by using short mixing time during melt compounding (to avoid migration of the 

nanoparticles to PE). 

 

The as-obtained PE/SEBS/ZnO blend nanocomposites exhibited lower dielectric losses as 

well as improved resistance to surface erosion and mechanical flexibility compared to 

conventional PE/ZnO nanocomposites. In this context, tensile measurements confirmed that 

the elongation at break increased for PE/SEBS/ZnO nanocomposites due to the presence of 

SEBS thermoplastic elastomer while PE/ZnO nanocomposites broke shortly after necking. It 

is also worth mentioning that the measured values of elongation at break for both 

PE/SEBS/ZnO and PE/ZnO nanocomposites might be extended further if the tensile test 

speed is decreased.  

 

Regarding the morphology of the blends, equal mass fractions of PE and SEBS were selected 

initially to achieve a co-continuous morphology. In the unfilled PE/SEBS blend, the 

achievement of a co-continuous morphology was confirmed by microscopy after solvent 

extraction of SEBS. However, the incorporation of ZnO in SEBS, in the presence of MA, 

induced an increase of viscosity and subsequently a switch of the blend morphology to 

droplets morphology where elongated domains of SEBS/ZnO constitute the dispersed phase. 

In the case of the studied blend nanocomposites, the co-continuous morphology is believed 

important to achieve a thermal conductivity path for instance and to increase further the 

efficiency of resistance to surface erosion. Moreover, it ensures the homogenous distribution 

of the nanoparticles in the matrix while maintaining the option of selective localization of the 

nanoparticles possible. Therefore, further investigation to optimize the morphology of 

PE/SEBS/ZnO blend nanocomposites would be interesting.  

 



 

CONCLUSION 

 

In this section, a summary of the main findings of this project is provided. Partial conclusions 

relative to each part of the project are presented in accordance with the order of their 

presentation in the thesis. At the end of the section, the general conclusion is stated. 

 

SEBS/clay nanocomposites 

In the first part of this project, SEBS/clay nanocomposites with different concentrations of 

clay particles up to 7.5 wt% and different fractions of PS block in SEBS respectively equal 

to: 13%, 20% and 30%, were investigated. Various morphologies were obtained by different 

processing techniques. In these morphologies, orientation and preferential localization of clay 

platelets were the main aspects of dispersion control. It was found that: 

• The control of orientation of clay platelets and PS nanodomains in SEBS block 

copolymer was enabled by the use of different processing techniques and different 

grades of SEBS block copolymer, one of them having an MA graft attached to its 

rubber block. The used processing techniques were: solvent casting, sheet-die 

extrusion and film blowing extrusion. They led to respectively: isotropic, totally 

oriented and partially oriented morphologies, as discussed in chapter 3.  

• In SEBS grade containing 30 wt% of PS block, 5 wt% clay platelets represented an 

optimum concentration in terms of dispersion and exfoliated clay fraction. This result 

was confirmed by TEM quantitative analysis. Moreover, this concentration coincided 

with the maximum improvement of the breakdown strength.  

• The orientation of clay platelets induced a significant decrease of the dielectric losses 

especially at low frequencies and significant increase of the breakdown strength up to 

45 % at 5 wt% clay. However, in the isotropic samples only a slight increase of the 

breakdown strength was achieved and significantly higher dielectric losses were 

exhibited.  

• The orientation of PS nanodomains which occurs simultaneously with clay 

orientation, when a sheet die extrusion process is used, led to a decrease of the 
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breakdown strength of the polymer matrix, due to reduction of the mechanical 

strength. This reduction unfortunately counterbalances the increase observed from the 

orientation of clay.  

• The partially oriented morphologies investigated in the purpose of limiting this 

negative effect, featured an optimized morphology were clay particles are mainly 

oriented along the thickness while a fraction of PS domains are randomly distributed 

along the thickness and another fraction oriented across the thickness. This 

morphology obtained by film blowing extrusion allowed avoiding the negative effect 

on breakdown strength and mechanical strength of the unfilled matrix encountered 

when aligning PS nanodomains while maintaining the advantages on breakdown 

strength and dielectric losses observed when clay platelets are aligned.  

• When clay platelets are incorporated, rubber chains located at the interface exhibited 

restricted mobility. This behavior was confirmed by Broadband Dielectric 

Spectroscopy (BDS) and Dynamic Mechanical Analysis (DMA) measurements that 

both show the appearance of a relaxation peak related to the dynamics of this 

interfacial layer. The interfacial glass transition temperature was estimated to occur in 

the range 6 to 35 °C while the Tg of the bulk elastomer block is around -30°C. The 

thickness of the interfacial layer region was estimated, by fitting of DMA data, to be 

in the range 7-10 nm.  

• The molecular dynamics of these interfacial chains were found to depend on the 

orientation of both PS nanodomains and clay nanoparticles, the fraction of PS block 

as well as the location and degree of exfoliation of clay platelets, which was tuned 

through the use of maleic anhydride graft. In particular, samples with lower degree of 

alignment, higher degree of clay exfoliation and preferential localization in rubber 

block, were found to exhibit higher interaction and higher interfacial glass transition 

temperatures.  This behavior was attributed to strong confinement of interfacial 

chains in these configurations. At increasing fraction of PS block, the interfacial glass 

transition temperature decreases and the effect of orientation was found to decrease.   

The main conclusions of this part are: the orientation and localization of clay platelets in 

SEBS block copolymer can be controlled by means of the processing technique and selection 
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of the appropriate grafts or functional groups that have high affinity to functional groups 

attached to the surface of nanoparticles. This control of orientation and selective 

localization allows the tuning of the dielectric losses, breakdown strength and mechanical 

strength.  

SEBS/ZnO nanocomposites 

In the second part of this project, SEBS/ZnO nanocomposites were investigated. ZnO 

nanoparticles have a spherical shape and were modified with alkyl ammonium salt. Due to 

the isotropy of the nanoparticles, no emphasis was given to orientation. Instead, the spatial 

distribution of the nanoparticles and their interaction with polymer chains were the key 

parameters to tailor, in this part. This control was enabled through the use of MA grafted to 

rubber block. It was found that: 

• The dispersion of ZnO nanoparticles in SEBS was improved in the presence of MA 

compared to the dispersion observed in SEBS without MA. This behavior is 

attributed to good interaction between MA and the surface of the nanoparticles.  

• In the presence of MA, nanocomposites exhibited a distinguished rheological 

behavior characterized by a plateau of the storage modulus at low frequencies. This 

behavior observed at low ZnO content starting from 5 wt% indicates the formation of 

a network between ZnO nanoparticles and polymer chains, i.e. rheological 

percolation. 

• This rheological percolation was accompanied by an improvement of thermal 

conductivity by 10% and excellent increase of resistance to surface erosion by partial 

discharges: the eroded volume was reduced by 90% at 5 wt% ZnO. Furthermore, the 

dielectric losses at low frequencies, which are dominated by electrical conduction 

phenomena in this range, increased remarkably as function of temperature. This 

behavior is also believed to be correlated with the established network.  

• At power frequencies and operational temperatures, the dielectric losses of 

nanocomposites with controlled dispersion were lower than the nanocomposites not 

featuring controlled dispersion (prepared without MA). Besides, no noticeable 
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decrease of the dielectric breakdown strength compared to the unfilled matrix was 

observed up to 20wt% ZnO loading.  

• DC electrical conductivity measurements have shown that SEBS/ZnO 

nanocomposites exhibit in general a non-linear feature attributed to the presence of 

ZnO. In the nanocomposites with controlled dispersion, a higher control of this non-

linearity as function of the electric field and ZnO content was possible. In addition, at 

5wt% ZnO and in the presence of MA, SEBS/ZnO nanocomposite exhibited electrical 

conductivity values lower than those of unfilled SEBS. This interesting behavior 

might be caused by the formation of trapping sites that block charge carriers from 

propagating and accumulating in the bulk of the material.  

The main conclusions of this part are: the establishment of a network between ZnO 

nanoparticles and SEBS block copolymer chains was enabled by the presence of MA 

groups attached to the elastomer block of SEBS. This morphology was accompanied by 

improvements of thermal conductivity and resistance to surface erosion as well as reduced 

dielectric losses at power frequencies and service temperatures. Besides, the breakdown 

strength was maintained in the same range as the unfilled matrix.  

 

PE/SEBS/ZnO blend nanocomposites 

In the last part of this project, blends of SEBS-MA/ZnO nanocomposites with HDPE were 

investigated. The choice of ZnO-containing nanocomposites was driven by the confirmed 

role of metal oxide nanoparticles in reducing space charge accumulation in polymer 

insulations. This property is a crucial requirement in the development of insulating materials 

suitable for high voltage direct current (HVDC) cables. In this immiscible blend of PE and 

SEBS, the selective localization of ZnO nanoparticles in either PE or SEBS was the main 

aspect of dispersion control that was highlighted. In particular, it was found out that:  

• Due to the affinity of ZnO nanoparticles surface to MA graft, nanoparticles remained 

exclusively in SEBS phase and and potentially at the interfaces PE/SEBS but didn’t 

migrate to PE. This behavior was predicted thermodynamically by the estimation of 
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the wetting coefficient and confirmed by high resolution scanning electron 

microscopy.  

• The blends contained equal mass fractions of PE and SEBS polymers. The unfilled 

PE/SEBS blend featured a co-continuous morphology. However, in the presence of 

ZnO nanoparticles, the blend switched to elongated droplets morphology where the 

dispersed phase is composed of SEBS/ZnO domains. The morphology switch was 

attributed to the increase of SEBS viscosity upon the incorporation of ZnO 

nanoparticles in the presence of MA.  

• PE/SEBS/ZnO blend nanocomposites featured improved nanoscale dispersion 

compared to PE/ZnO nanocomposites prepared by melt compounding which 

exhibited several agglomerations, especially at increasing ZnO content.  

• At power frequencies and operational temperatures, the dielectric losses of 

PE/SEBS/ZnO blend nanocomposites are lower than those related to PE/ZnO 

reference nanocomposites. Besides, in both types of nanocomposites, an interfacial 

relaxation process was observed. In the blend nanocomposites, the broadness and the 

dielectric strength of the relaxation process were reduced compared to PE/ZnO 

nanocomposites, thanks again to the improved dispersion.  

• The selective dispersion of ZnO in SEBS droplets induced more efficient resistance to 

surface erosion by partial discharges inside the droplets and ultimately in the whole 

blend, compared to PE/ZnO nanocomposites. This effect was more obvious at low 

concentrations of ZnO. In fact, elongated domains of SEBS/ZnO constitute an 

equivalent of micrometric particles featuring at the same time excellent resistance to 

surface erosion and good adhesion to PE matrix, due to the compatibility between the 

PEB rubber block and PE. In PE/ZnO nanocomposites, although the presence of the 

inorganic nanoparticles improved the resistance to surface erosion, the observed 

submicrometric and micrometric agglomerations exhibit poor adhesion to PE and act 

as week zones of high electrical stresses reducing the overall performance. 

• The presence of the elastomer PEB block allowed PE/SEBS/ZnO nanocomposites to 

exhibit improved elongation at break compared to neat PE and PE/ZnO 

nanocomposites, and higher toughness when low ZnO loading (1wt%) was used. 
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The main conclusions of this part are: blending HDPE with SEBS thermoplastic elastomer 

and selectively locating ZnO nanoparticles in SEBS phase led to improvements in dielectric 

and mechanical performances, namely: lower dielectric losses at utility frequencies, higher 

resistance to surface erosion by partial discharges and higher mechanical flexibility. As a 

consequence of these improvements, PE/SEBS/ZnO blend nanocomposites have good 

potential for HV insulation applications. 

 

General conclusion 

In this project, nanocomposites with tailored nanoparticles spatial distribution have been 

studied as candidates for HV insulation. Within the concept of controlled dispersion, several 

aspects have been tuned, namely: state of dispersion, interaction between the nanoparticles 

and polymer chains, orientation and selective localization of the nanoparticles. The control 

was achieved using template matrices, i.e. block copolymers and polymer blends, and 

appropriate grafts to increase the affinity of nanoparticles to a specific block of the block 

copolymer. It was demonstrated in several occasions that the control of one or more of the 

abovementioned aspects is accompanied by an enhancement of one or more engineering 

properties that affect the performance of HV insulating materials. These properties include: 

dielectric breakdown strength, resistance to surface erosion by partial discharges, dielectric 

losses, thermal conductivity and mechanical properties. In an attempt to correlate the 

observed behaviors with nano and microstructure, the interfacial molecular dynamics were 

investigated by means of broadband dielectric spectroscopy and dynamic mechanical 

analysis. Interestingly, it was found out that the orientation and preferential localization of 

nanoparticles affect indeed the mobility of chains and the thickness of the interfacial region. 

To conclude, the findings of this work helped paving the way to a new generation of 

nanodielectrics and HV insulating materials featuring controllable properties and gave few 

insights to better understand the structure-property relationships behind.  

 



 

RECOMMENDATIONS 

 

In this project, it was demonstrated that well-defined nano/microstructures, achieved by 

controlling the spatial distribution of nanoparticles in multi-phase polymer matrices, have 

high potential for designing novel HV insulating materials with superior performance. To 

improve, consolidate, extend and/or up-scale the findings of this work, many additional 

studies might be worth investigation. In the following, few suggestions for future work are 

presented. 

• SEBS/Clay nanocomposites 

As far as SEBS/clay nanocomposites are concerned, the observed effect of orientation and 

preferential localization of clay platelets on the molecular dynamics of elastomer chains 

located at nanoparticle/polymer interface might be further investigated by carrying out 

modulated DSC measurements. In particular, the interfacial glass transition might be 

evaluated and correlated with the results of dielectric spectroscopy and dynamic mechanical 

analysis reported in chapter 3. 

• SEBS/ZnO nanocomposites 

The measurements of DC electrical conductivity carried out on SEBS/ZnO nanocomposites 

containing MA graft demonstrated that at 5 wt% ZnO, the electrical conductivity of the 

nanocomposite was even slightly lower than that of unfilled SEBS. This behavior indicates 

the formation of traps that block the space charges at an early stage from propagating and 

accumulating in the bulk and consequently reduce the overall conductivity.  It is well in 

agreement with recent findings from the literature reporting a reduction in space charge 

accumulation and decrease of electrical conductivity of the insulating polymer matrix when 

low loadings of metal oxide nanoparticles (< 5 wt%) are incorporated. Thus, extending the 

study of the electrical conductivity of SEBS/ZnO nanocomposites to ZnO loadings below 

5wt% is important to evaluate the possibility of reducing space charge accumulation in the 

bulk of the material by increasing the number of trapping sites and blocking the mobility of 
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charges carriers at an early stage. In fact, the controlled dispersion achieved in these 

nanocomposites have the potential to favor this behavior at concentrations of ZnO 

nanoparticles even lower than those reported in the literature, generally up to 5 wt%. Besides, 

achieving successful selective localization by using ZnO nanoparticles of average size lower 

than characteristic dimensions of SEBS block, might improve further this desired behavior.  

• Polyolefin/SEBS nanocomposite blends 

In the last part of this project, blends of SEBS/ZnO nanocomposites with HDPE have been 

studied to evaluate their potential as new HV insulating materials recyclable and suitable for 

HVDC cables. Compared to conventional PE/ZnO nanocomposites, PE/SEBS/ZnO blend 

nanocomposites have shown their promise. Improving further the potential of these blends 

might be achieved by: 

- Studying and determining the proportions of both PE and SEBS that lead to co-

continuity in PE/SEBS/ZnO blend nanocomposites, taking into account the increase 

of viscosity of SEBS after the addition of ZnO nanoparticles. In fact, the co-

continuous morphology might improve further several properties such as thermal 

conductivity and resistance to surface erosion, by enabling the formation of 

particles networks all over the material.  

- PP is an interesting candidate for HVDC cable insulation that gained much 

attention recently. Application wise, the investigation of PP in blends with the 

studied SEBS nanocomposites is certainly beneficial to extend the potential of these 

materials in HV insulation and more specifically HVDC cables.  

 

• Investigation of other nanoparticles 

In the context of generalizing and up-scaling the approach of controlled dispersion for the 

development of new HV insulating materials, other nanoparticles featuring interesting 

properties might be considered. In particular, MgO as well as BN nanosheets and nanotubes 

constitute excellent candidates that have shown recently great improvements mainly in 
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thermal conductivity and suppression of space charge accumulation. The latter property is 

highly important in the development HVDC cable insulations.  

Combinations of nanoparticles of different properties and geometries might also open 

opportunities to more complex nanocomposites designs and potential synergetic effects. 

Besides, the synthesis of customized nanoparticles with a narrow size distribution and 

subjected to appropriate cleaning methods to remove residual impurities resulting from 

surface treatments would help controlling further the dielectric and electrical properties.  

• Other measurements and modeling 

To complement the reported characterizations and evaluate better the potential of the studied 

nanocomposites as candidates for HVDC cable insulations, space charge and DC short-term 

breakdown measurements could be of interest. Also, long-term measurements such as 

electrical treeing might give a better understanding of the influence of well-defined 

microstructures on the growth of electrical trees mean path. 

Theoretical modeling and simulation of the electrical and thermal properties of the studied 

nanocomposites, such as the dielectric permittivity and the thermal conductivity, is also 

worth investigation. The modeling is expected to help elucidating the role of the interface in 

correlation with the controlled morphology of the nanocomposites. Ultimately, an easier 

prediction of structure-property relationships is pursued. 
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1. Location of nanoclays 

The location of nanoparticles in PS or PEB phase of SEBS depends on the presence of maleic 

anhydride (MA) group. In fact, in the absence of MA, nanoclays have greater affinity to polar 

PS phase which is most likely due to interaction between aromatic ring of PS and the polar 

surface of clay layers (Carastan et al., 2014; Richard A. Vaia, Jandt, Kramer, & Giannelis, 

1996). However, in the presence of MA which is grafted to PEB phase, nanoclays tend to 

locate more in this phase since MA has greater affinity to nanoclays compared to PS due to 

its high polarity. This hypothesis was confirmed for the case of extruded samples and 

published in (Carastan et al., 2014). In this section, the case of isotropic samples prepared by 

solution will be treated. In particular, an annealed sample containing 5wt% nanoclays will be 

presented in Figure A I-1 and an unannealed sample containing 5wt% nanoclays will be 

presented in Figure A I-2. 

 

 

Figure A I-1: SEBS_5wt % nanoclays 
(Prepared by solution, annealed, stained for 30 minutes) 
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Figure A I-2: SEBS_MA_5wt % nanoclay (prepared by                                                 
solution, unannealed, stained for 30 minutes):                                                         
(a) lamellar structure, (b) localized cylindrical                                                         

structure where nanoclays are located 

(a)

(b)



234 

Figure A I-1 shows that:  

- In annealed samples, PS phase exhibits an hexagonal cylindrical packing.    

- Both nanoclays (indicated by arrows) and PS cylinders (black and dark grey circles) 

are randomly dispersed and not aligned.  

- The nanoclays are intercalated and located within PS cylinders. 

Figure A I-2 shows that:  

- In unannealed samples, both lamellar and hexagonal cylindrical structures co-exist.  

- Lamellar morphology is dominant (figure A I-2(a)). 

- Nanoclays are mostly located in the cylindrical morphology which may indicate that 

they facilitate the transition from lamellar to cylindrical morphology even without 

thermal treatment (figure A I-2(b)). 

- Both nanoclays (indicated by arrows) and PS domains (black and dark grey) are 

randomly dispersed and not aligned.  

- The nanoclays are exfoliated and located in PEB phase (grey) between PS domains 

(black or dark grey). 

 

2. Quantitative analysis procedure 

The quantitative analysis procedure adopted in this paper was published in references 

(Carastan et al., 2014; Carastan et al., 2010; Vermogen et al., 2005). In this section, the basic 

steps are summarized. For more details, the cited references could be consulted.  

The steps are as follows: 

- For each nanocomposite, 1 image at 20K, 4 images at 50 K and 10 images   at 100K 

magnifications are considered in order to have a good overview of clay tactoids size 

at different scales. Examples of typical images used for the analysis are presented in 

Figure A I-3.  

- For a considered magnification, the thicknesses of a fixed number of tactoids (30 per 

image) chosen randomly in each image were measured by imageJ software.  

- The number of layers in each tactoid is determined using the following equation:  
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=	 ( + − )
 

Where:  

N: number of layers; 

ttactoid: thickness of the tactoid; 

tlayer: estimated thickness of a single layer taken equal to 0.94 nm according to 

(Vermogen et al., 2005); 

d001: interlayer distance measured taken equal to 3.73 nm for SEBS-MA-2.5% and 

3.47 nm for SEBS-MA-7.5% nanocomposite. These values were measured by X-ray 

diffraction (XRD). 

 

- Each tactoid is then classified in one of 6 classes ranging from individual layers to 

large tactoids containing more than 50 layers depending on its estimated number of 

layers. An example of this classification is provided in Table A I-1. 

- The final proportions of each class were then calculated taking into account a 

ponderation factor of the covered area corresponding to each magnification. For 

example, an image taken at 100k has a coefficient of 1 while an image taken at 50k 

has a coefficient of 4. These final results were used to plot Figure 2-3 in the 

manuscript reported in Chapter 2. 

 

  

Figure A I-3: Typical TEM images considered for quantitative analysis (related to 
SEBS_MA_2.5% extruded nanocomposite) taken at: (a) 20 K, (b) 50 K and (c) 100 K 

 

(a) (b) (c) 
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Table A I-1: Proportions of tactoids in each class calculated from TEM images of 
SEBS_MA_2.5% extruded nanocomposite taken at 50 K  

Class Number of layers per tactoid Number of tactoids per class 
1 1 - 
2 2 to 3 - 
3 3 to 5 93 
4 Small tactoids (5 to 15) 27 
5 Middle size tactoids (15-50) - 
6 Large tactoids (>50) - 

Total number of analyzed tactoids in the 4 
images 

120 

 

3. SAXS analysis 

To evaluate the alignment of nanoclay and PS domains, we considered two types of 

characterization:  

- TEM: probes a small area but characterizes at the same time the state of exfoliation 

and the location of nanoclays. 

- SAXS: probes a larger area than TEM and characterizes both the alignment of PS 

domain and nanoclay. 

TEM images of extruded nanocomposites containing different loadings of nanoclay are 

reported in Figure A I-4(a)-(d) of the manuscript. They show evidence of nanoclay alignment 

except Figure 1(a) corresponding to the intercalated sample which is not as conclusive. 

The SAXS analysis is reported in this annex as follows: Figure A I-4(a) presents the 

diffraction pattern of pure extruded SEBS while Figure A I-4(b) shows the diffraction pattern 

of extruded SEBS-7.5wt% clay nanocomposite and Figure A I-4(c) shows the diffraction 

pattern of extruded SEBS-MA-7.5wt% clay nanocomposite. Figure A I-4(d) shows the 

diffraction pattern of isotropic SEBS-5wt% clay nanocomposite prepared by solution for 

comparison. Similar results were also obtained with different clay concentrations and 

reported in (Carastan et al., 2014). It is worth mentioning that the incident X-Ray beam was 

oriented perpendicular to the extrusion direction (parallel to Y direction indicated in Figure A 

I-5). 
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Figure A I-4: Two dimensional SAXS patterns of (a) extruded pure SEBS,                              
(b) extruded SEBS-7.5wt% clay nanocomposite, (c) extruded SEBS-MA-7.5wt%                       

clay nanocomposite and (d) SEBS-5wt% clay nanocomposite prepared                                   
by solution 
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 Figure A I-5: X: direction of extrusion and                                                                             
Y: direction of the incident X-Ray beam 

 

- The scattering patterns corresponding to the beam diffraction along the Y direction, 

shown in Figure A I-5(a), reveal a set of Bragg peaks corresponding to long order 

arrangement of PS cylinders in a two dimensional hexagonal packing and their 

alignment in a direction perpendicular to the Y direction (which is the direction of 

extrusion X as demonstrated in reference (Carastan et al., 2014)). 

- In addition to the scattering from aligned PS domains, two strong diffuse spots 

corresponding to Bragg peaks associated with scattering from clay particles are 

observed in the SAXS patterns of extruded SEBS-7.5wt% and SEBS-MA-7.5wt% 

clay nanocomposites presented in Figure A I-4(b) and Figure A I-4(c). These signals 

indicate the alignment of nanoclay in the same direction of PS   cylinders. The 

presence of maxima in the Figure A I-4(b) is characteristic of intercalated nanoclay 

while the absence of maxima in Figure A I-4(c) indicates scattering from exfoliated 

nanoclay. 

- The scattering patterns in Figure A I-4(d) which correspond to SEBS-5wt% clay 

nanocomposite prepared by solution casting reveal concentric rings indicating that 

both PS domains and nanoclays are randomly dispersed in samples prepared by 

solution casting. 

So far, these SAXS measurements clearly show the alignment of both PS domains and 

nanoclay in our extruded samples despite the fact that the TEM image presented in Figure 
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2-1(a) of the manuscript could have been misleading since it shows some randomly dispersed 

clay tactoids. In fact, one should keep in mind that TEM images only probe a small area 

whereas SAXS present a more global analysis of the sample. 
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1. 2D SAXS plots corresponding to SEBS-13 based nanocomposites prepared by 

solvent casting 

Figure A II-1 shows diffraction patterns of SEBS-13 and SEBS-20 block copolymers and 

their corresponding nanocomposites SEBS-13-20A and SEBS-20-20A, prepared by solvent 

casting. Both samples exhibit isotropic rings, in the 3 directions (only the Z direction is 

presented as all the 3 directions were identical), characteristic of an isotropic morphology. 

 

  

  

Figure A II-1.  2D SAXS diffraction patterns of: (a) SEBS-20-solution,                                     
(b) SEBS-20-20A-solution nanocomposite, (c) SEBS-13-solution and                                         

(d) SEBS-13-20A-solution nanocomposite (patterns corresponding                                        
to the Z direction, X and Y directions have similar features) 

 

(a) (b) 

(c) (d) 
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2. Scattering intensity as function of scattering vector q corresponding to SEBS-20- 

film blowing R1 and SEBS-20- film blowing R3 and their nanocomposites, prepared 

by film blowing extrusion 

 

Figure A II-2. Scattering intensity as function of scattering vector q at different     
temperatures  of: (a) SEBS-20- film blowing R1 and (b) SEBS-20-20A- film                   

blowing R1 nanocomposite 

 

 

Figure A II-3. Scattering intensity as function of scattering vector q at different    
temperatures  of: (a) SEBS-20-film blowing R3 and (b) SEBS-20-20A- film                           

blowing R3 nanocomposite 

 

 

 

(a) (b) 

(a) (b) 
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3. SAXS data corresponding to SEBS-13-extrusion and its nanocomposite SEBS-13-

20A-extrusion, prepared by sheet die extrusion 

 

  

  

Figure A II-4.  (a)-(b) 2D SAXS patterns of: (a) SEBS-13-extrusion (Z direction)                  
and (b) SEBS-13-20A-extrusion nanocomposite, (c)-(d) Scattering intensity as                     

function of scattering vector q at different temperatures  of: (c) SEBS-13-extrusion                       
and (d) SEB-13-20A-extrusion nanocomposite. Peak positions follow the 1:√3 :√7 

characteristic of hexagonal morphology 
 

 

 

 

 

(c) (d) 

(a) (b) 
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4. TEM micrographs of SEBS-30-20A-solution nanocomposite 

TEM images of SEBS-30-20A-solution nanocomposite without and with staining are 

reported in Figure A II-5 for the sake of comparison with samples exhibiting preferential 

alignment in the direction of extrusion such as SEBS-20-20A-R1 (TEM images in Figure 

3-3(c)-(e) of the manuscript). Comparison between the 2 figures shows that, indeed in Figure 

A II-5, clay tactoids and PS cylinders are randomly distributed and isotropic within the 

matrix (In Figure A II-5(d), clay particles are indicated by the arrows) whereas most of the 

clay particles are oriented in one direction in Figure 3-3 of the manuscript. 

  

  

 Figure A II-5. TEM of SEBS-30-20A-isotropic, (a) and (b) unstained,                                     
(c) and (d) samples stained for 30 min with RuO4                                                      

(dark phase corresponds to PS domains)  

 

(a) (b) 

(c) (d) 
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5. TEM micrographs of SEBS-30-MA-20A nanocomposites prepared by sheet die 

extrusion 

TEM micrographs reported in Figure A II-6 show the presence of mostly exfoliated and 

aligned clay particles in nanocomposites prepared by sheet die extrusion using SEBS-30-MA 

as a matrix.  

 

Figure A II-6. TEM micrographs of SEBS-30-MA-20A nanocomposites                           
prepared by sheet die extrusion with different clay loadings: (a) 2.5wt%                                     

and (b) 7.5wt% 

6. Complex dielectric permittivity and fitting equations 

6.1.Complex dielectric permittivity 

̂() = () − ()                                      ( A II.1) 

Where: 

ω: angular frequency; ̂: complex dielectric permittivity; 

ɛ’: real part of the complex dielectric permittivity, which is related to the stored energy. It is 

also known as the dielectric constant; 

ɛ’’: imaginary part of dielectric permittivity, which is related to the dissipated energy.  It is 

also known as the dielectric loss. 

 

(a) (b) 



247 

6.2.Fitting equation 

 																 ̂( ) = ( ) + ∑ ∆( ( ) ) +                               (A II.2) 

 

Where:  

ω: angular frequency; 

n: exponential factor, between 0 and 1 characterizing the nature of the charge hopping 

process (the case n=0 corresponds to pure electronic  conduction with b=σ0/ɛ0); 

τk: relaxation time related to relaxation process k; 

Δεk: difference between real permittivity values at very low and infinite frequencies. It is 

proportional to the area below the relaxation peak in ε” and known also as the dielectric 

strength; 

ε∞k: real permittivity at much higher frequencies than the relaxation frequency of the 

relaxation process k; 

αk: width parameter characteristic of the slope at the low frequency side of the relaxation 

peak; 

βk: asymmetry parameter. –αkβk gives the slope at the high frequency side of the relaxation 

peak; 

N: number of total observed relaxations in the studied range of frequencies and temperatures. 

6.3.Fitting procedure 

Commercially available software was used to obtain the curve-resolved spectra. Both real and 

imaginary parts of the dielectric permittivity were considered for the fitting, computed based on 

nonlinear procedures. The mean square deviation (MSD) was provided automatically by the software 

at each fitting step, as criteria for the goodness of fit.  It gives the mean value of quadratic deviations 

between observed and calculated ɛ’’ values. The objective is to find a combination of fitting 

parameters ensuring a minimum MSD value. For all the fits performed in this study, a fit is 

considered stable and accepted if the MSD is relatively stable to 10-4 over 3 iterations. Besides, all the 

MSD values were lower than 0.05. 

 

Power law term Havriliak-Negami (HN) term 
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6.4.Relaxation time corresponding to the peak maximum frequency 

= ∗ 	( ( ))	( ( ))                                              (A II.3) 

Where:  

τmax: relaxation time corresponding to the peak maximum frequency; 

τHN: relaxation time obtained from the HN fit (equation (A II.2)); 

α: width parameter obtained from the HN fit (equation (A II.2)); 

β: asymmetry parameter obtained from the HN fit (equation (A II.2)). 

6.5.Vogel Fulcher Tammann (VFT) equation 

( ) = exp	( )                                               (A II.4) 

Where:  

B: constant related to the apparent activation energy and cooperativity of underlying 

molecular motions; 

τ0: relaxation time at infinite temperature; 

T0: Vogel-Fulcher temperature, which is 30-70 K below the Tg in case of the main segmental 

relaxation α. 

 
6.6.Fragility index 

=	 ( )( ) |( = )                                          (A II.5) 

Where:  

F: fragility index; 

τ: the relaxation time expressed according to VFT equation (A II.4) (Considering the VFT 

equation for the relaxation time, the derivative could be calculated for each sample); 

Tg: glass transition temperature. 
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6.7.Imaginary part of complex dielectric permittivity corresponding to SEBS-13 

nanocomposites prepared by extrusion and solvent casting 

Figure A II-7 shows dielectric loss spectra corresponding to pure SEBS-13 and SEBS-13-

20A nanocomposites prepared by sheet die extrusion (clay oriented) and solvent casting 

(isotropic). In particular, remarkably higher losses are observed in the isotropic sample. 

Dielectric relaxation peaks could be observed in both samples and exhibit dependence on the 

morphology and orientation as reported in the manuscript.  

  

 

Figure A II-7. Imaginary part of the dielectric permittivity as function of temperature of: (a) 
neat SEBS-13-partially oriented and (b) SEBS-13-20A-partially oriented (sheet die 

extrusion) and (c) SEBS-13-20A-isotropic (solvent casting) 

 

(a) (b) 

(c) 
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6.8.Real part of complex dielectric permittivity corresponding to SEBS-13 

nanocomposites prepared by sheet die extrusion and solvent casting 

Figure A II-8 shows typical behaviors of the real part of dielectric permittivity as functions of 

frequency and temperature, of respectively neat SEBS, partially oriented nanocomposite and 

isotropic nanocomposite. In general, a relaxation peak in the dielectric loss spectrum leads to 

a step-like increase in the real part of permittivity since their frequency dependence is 

mathematically linked through the Kramers-Kronig relations. 

The real permittivity of the neat exhibits no dependence on frequency and decreases slightly 

with increasing temperature due to the decrease of density. The real permittivity of the 

partially oriented nanocomposite exhibits slight dependence on frequency and increases with 

increasing temperatures especially at low frequencies, due to most likely Maxwell-Wagner-

Sillars (MWS) interfacial polarization. The real permittivity of the isotropic sample exhibits 

stronger dependence on frequency and temperature. Step-like increases corresponding to 

relaxation phenomena are more obvious in this sample compared to the partially oriented 

sample.  

 

 

 

 

 

 

 

 



251 

  

 

Figure A II-8. Real part of the dielectric permittivity as functions of frequency and 
temperature: (a) neat SEBS-13- partially oriented and (b) SEBS-13-20A- partially oriented 

(sheet die extrusion) and (c) SEBS-13-20A-isotropic (solvent casting) 

6.9.Dielectric permittivity at extended range of temperature 

Dielectric measurements were carried out in an extended temperature range [-100°C, 150°C] 

for both SEBS-30-oriented and SEBS-30-20A-oriented in order to check the main glass 

transition of PEB phase and to correlate with DMA results. 3D maps of the imaginary part of 

the dielectric permittivity as functions of frequency and temperature are reported in Figure A 

II-9 while its evolution as a function of temperature and at a fixed frequency equal to 1 Hz 

are reported in Figure A II-10. The data show clearly the presence of a low temperature peak 

related to the glass transition of the PEB elastomer phase (αPEB). At 1 Hz, the peak maximum 

occurs at -45°C. The peak attributed to the segmental motion of interfacial rubber chains 

(αInt) is observed at intermediate temperatures, below the glass transition of PS phase. At 1 

(a) (b) 

(c) 
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Hz, this peak maximum is around 40°C. Besides, an additional peak is observed towards 

higher temperatures (α`). This peak is more obvious at increased frequencies (Figure A II-10, 

at 1 kHz). Since this peak is observed only in the spectrum of the nanocomposite, it is 

believed to correspond to MWS interfacial polarization as discussed in the manuscript. At 

low frequencies and high temperatures, a remarkable increase of dielectric loss is observed in 

the spectra of both: the pure and the nanocomposite. This phenomenon is due to electrode 

polarization (αEP) at the interface between the sample and the electrode.  

It is worth noting that in this studied range of temperature, it was not possible to observe 

clearly the peak related to the segmental relaxation of PS block. However, the low-

temperature wing of this peak might contribute to the observed spectra. 

 

 

Figure A II-9. Dielectric spectroscopy maps as function of frequencies and                     
temperatures of: (a) SEBS-30-oriented and (b) SEBS-30-20A-oriented  

Segmental 

relaxation of PEB 

block (αPEB) 

Segmental 

relaxation of PEB 

block (αPEB) 

New relaxation 

(αInt) 

(a) (b) 
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Figure A II-10. Imaginary part of the dielectric permittivity                                              
of SEBS-30-oriented vs. SEBS-30-20A-oriented as                                                    

function of temperature at 1 Hz 
 

7. Fitting of Dynamic Mechanical Analysis (DMA) results 

7.1.Three parameter asymmetric double sigmoid (ADS) equation 

(T) = A(1 + exp ) 1 − 1 + exp 	                          (A II.6) 

Where:  

Pi= peak I; 

T: temperature; 

A: height of the peak; 

μ, σ1, σ2: three mathematical parameters. When σ1=σ2, the function is symmetric about μ. 
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7.2.Estimation of the interfacial thickness 

The fraction of bound polymer chains participating in the interfacial glass transition, FBound, 

could be determined by dividing the area under the interfacial Tgi peak by the sum of the 

areas of all Tg peaks, as it could be seen in equation (A II.7). = /( + + )                                (A II.7) 

Where:  

Ai: area under the peak i. 

Subsequently, the total number of clay particles per nanocomposite volume unit, N, can be 
evaluated by equation (A II.8). 

 

 

Where: 

VClay total: fraction of clay particles in a volume unit of the composite which is equal to 0.0214 

(5wt% clay is equivalent to 2.14vol% in SEBS-30 considering that the density of Cloisite 

20A is equal to 1.77 g/cm3); 

VClay particle: the volume of one clay particle that could be determined knowing the average 

size of the tactoids. 

Moreover, the fraction of polymer chains in a volume unit of the composite is given by 

equation (A II.9). 

 

Where: 

VPolymer: volume of polymer chains per volume unit (only the volume of clay particles is 

excluded). 

The volume of chains with restricted mobility that participate in the interfacial glass Tgi is 

obtained either by multiplying the bound fraction obtained by the volume of polymer chains 

= 1 − 	 = 1 − 0.0214	                                (A II.9) 

N= 	 / 	                                            (A II.8) 
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in a volume unit or by multiplying the number of particles by the volume of the interfacial 

layer surrounding each particle according to equation (A II.10). 

 

 

Where:  

Vbound: volume of bound polymer chains in a volume unit; 

VClay particle+ t: volume of one clay particle and interfacial layer surrounding it; 

t: thickness of interfacial layer. 

Finally, the thickness of the interfacial layer, t, was deduced from equation (A II.10).  

 

=	 ∗ = 	 − 	 ∗               (A II.10) 
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1. Particle size analysis and size distribution of ZnO nanoparticles into SEBS-MA-5 

nanocomposite 

A TEM image of low magnification was selected to investigate the size distribution of ZnO 

nanoparticles/small agglomerations as dispersed in the nanocomposite. Initially, several 

processing steps were performed with ImageJ software to isolate the particles. Then, the 

particle size analysis was performed automatically as indicated in Figure A III-1. In 

particular, 504 particles were considered for the analysis and the particle size was determined 

based on Feret’s diameter (given directly by the software). Based on the analysis, ZnO 

particles/agglomerations were classified in 12 classes of dimensions ranging from 0 to 220 

nm as reported in Figure A III-2. This size distribution reveals that more than 60 % of ZnO 

particles/agglomerations, as dispersed in SEBS-MA, have sizes between 20 and 60 nm. This 

fact confirms the achievement of nanoscale dispersion.  
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Figure A III-1. Steps of particle size analysis: (a) TEM image                                         
considered for the analysis (related to SEBS-MA-5 nanocomposite,                                        

(b) cropped image, (c) particle domains isolated, (d) analyzed domains 

(a) (b) 

(c) (d) 
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Figure A III-2. Size distribution of ZnO nanoparticles/agglomerations in                   
SEBS-MA-5 nanocomposite based on particle size analysis 
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2. TEM images corresponding to SEBS-MA-5 nanocomposite (sample stained with 

RuO4) 

The TEM images corresponding to SEBS-MA-5 stained sample, reported in Figure A III-3, 

indicate the dominance of cylindrical morphology. Unfortunately, the location of 

nanoparticles is not clear due to a potential undesirable interaction between RuO4 with the 

zinc element. Many black spots, of size considerably larger than the average nanoparticles 

size, were observed throughout the treated sample in TEM micrographs. They correspond to 

the regions where ZnO reacted with the staining agent. 

 

Figure A III-3. TEM images corresponding to SEBS-MA-5 nanocomposite after staining 
with RuO4 (black spots correspond to regions where ZnO reacted with the staining agent) 
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3. Imaginary permittivity as functions of frequency and temperature of SEBS-1 and 

SEBS-MA-1 nanocomposites 

Dielectric loss spectra corresponding to SEBS-1 and SEBS-MA-1 nanocomposites are 

reported respectively in Figure A III-4(a) and Figure A III-4(b). The measurements were 

performed at different temperatures ranging from 25 to 105 °C. 

 

 

Figure A III-4. Imaginary permittivity, ɛ’’, as functions of frequency                                        
and temperature corresponding to: (a) SEBS-1 and                                                                 

(b) SEBS-MA-1 nanocomposites 

(a) 

(b) 



263 

4. Effect of drying on dielectric response of SEBS-MA-5 nanocomposite 

Dielectric loss spectra corresponding to SEBS-MA-5 nanocomposite before and after drying 

are reported respectively in Figure A III-5(a) and Figure A III-5(b). The measurements were 

performed at different temperatures ranging from 20 to 110 °C. Only a marginal effect could 

be observed. 

 

 

Figure A III-5. ɛ’’ of SEBS-MA-5 nanocomposite: (a) before drying                                       
and (b) after drying for 3 days at 65°C under vacuum 

 

(a) 

(b) 
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5. Effect of drying on the dielectric response of SEBS-MA-20 nanocomposite 

Dielectric loss spectra corresponding to SEBS-MA-20 nanocomposite before and after drying 

are reported respectively in Figure A III-6(a) and Figure A III-6(b). The measurements were 

performed at different temperatures ranging from 20 to 110 °C. Only a small effect could be 

observed at low temperatures (Figure A III-6(c)).  

 

Figure A III-6. ɛ’’ of SEBS-MA-20 nanocomposite: (a) before drying, (b) after                
drying for 3 days at 65°C under vacuum and (c) comparison at selected temperatures 

 

 

 

 

 

(a) (b) 

(c) 
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6. Effect of drying on the dielectric response of SEBS-20 nanocomposite 

Dielectric loss spectra corresponding to SEBS-20 nanocomposite before and after drying are 

reported respectively in Figure A III-7(a) and Figure A III-7(b). The measurements were 

performed at different temperatures ranging from 20 to 110 °C. Several changes were 

obseved, mainly the increase of dielectric losses at low frequencies after drying (Figure A 

III-7(c)). 

 

  

 

Figure A III-7. ɛ’’ of SEBS-20 nanocomposite: (a) before drying, (b) after drying for             
3 days at 65°C under vacuum and (c) comparison at selected temperatures  

 

(a) (b) 

(c) 
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7. Mapping of eroded area  

Mappings of the eroded area corresponding to neat materials and nanocomposites containing 

1wt% ZnO are reported in Figure A III-8. To evaluate the performance of SEBS-MA-ZnO 

compared to SEBS-ZnO in terms of resistance to erosion, the erosion depth (estimated from 

the mapping) might be considered as a quantitative parameter. For instance, the maximum 

depth of erosion in neat SEBS is around 177 µm (Figure A III-8(a)) while it is reduced to 128 

µm in SEBS-1 nanocomposite (Figure A III-8(c)). In unfilled SEBS-MA, the estimated 

erosion depth is equal to 145 µm (Figure A III-8(b)). It was reduced to only 38 µm in SEBS-

MA-1 nanocomposite (Figure A III-8(d)).  

  

  

Figure A III-8. Mapping of eroded area in different SEBS-ZnO vs. SEBS-MA-ZnO              
samples: (a) SEBS, (b) SEBS-MA, (c) SEBS-1 and (d) SEBS-MA-1 
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