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FLUX DE PUISSANCE OPTIMALE COMPTE TENU DE LA STABILITÉ EN 
TENSION AVEC FORTE PÉNÉTRATION DU VENT 

 
 

Majid BAVAFA 
 
 

RÉSUMÉ 
 
 
L'évaluation de la stabilité de la tension est l'un des problèmes majeurs dans le 
fonctionnement et le contrôle du système d'alimentation. L'une des raisons est le nombre 
important de chutes de tension qui surviennent fréquemment. L'objectif principal de cette 
thèse est de choisir un critère approprié pour l'évaluation de la stabilité de la tension dans une 
approche optimale du flux de puissance (OPF) en considérant la pire contingence possible, 
ou un état congestionné. La stabilité de la tension peut être affectée par de nombreux 
éléments et moyens de contrôle qui opèrent à différentes échelles de temps. En particulier, les 
rôles de la génération d'énergie éolienne, de la réponse à la demande (DR), du limiteur de 
surexcitation (OXL), du système de stockage d'énergie (ESS) et du changeur de prises 
(OLTC) sont significatifs. La modélisation appropriée de ces éléments et des moyens de 
contrôle ainsi que l'utilisation d’une approche OPF devraient être analysés dans des 
conditions de tension stable sur un long terme. 
 
Tout d'abord, un indice basé sur l'impédance (IB) est présenté dans cette thèse et permet 
d'évaluer le comportement instable du système d'alimentation intégré à des parcs éoliens avec 
générateur d'induction doublement alimenté (DFIG). Un modèle pour les limites de la courbe 
de capacité DFIG pouvant être intégré au circuit interne du générateur est présenté. D’autre 
part, le modèle OLTC a été ajouté à cet indice. L'indice utilise le concept du circuit à un seul 
port couplé. L'OPF avec une nouvelle contrainte sur l’indice d’impédance (IB) est 
implémenté pour démontrer la performance de ce dernier.  
 
Cette étude introduit également une approche du flux de puissance optimale stochastique 
(SOPF) multi-objectif en présence de génération d’énergie éolienne incertaine. Le SOPF 
multi-objectif étudie les coûts d'exploitation, la stabilité de la tension et les effets d'émission 
en tant que fonctions objectifs. L'effet du programme DR est considéré dans cette étude. La 
technique de fuzzification est utilisée afin de normaliser toutes les fonctions objectifs du 
SOPF multi-objectif. Un indice de stabilité de tension de ligne (LVSI) est présenté et 
comparé à d'autres. Le SOPF multi-objectif proposé est également réalisé avec différentes 
LVSI existantes en tant que fonctions objectifs. 
 
Suite à l'évaluation de la stabilité de la tension, le contrôle de la fréquence est également pris 
en compte dans le SOPF. Dans ce cas, le procédé de restauration de fréquence coopère avec 
la DR et la réserve tournante pour arrêter la baisse de fréquence dans les événements de 
contingence. Ce procédé est défini en trois niveaux. De plus, un indice L (EL) étendu est 
utilisé pour évaluer l'analyse de la stabilité de la tension. Plusieurs contraintes de fréquence et 
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de tension sont ajoutées dans l'approche SOPF. L'indice EL considère un modèle équivalent 
de générateur (GEM). En outre, les systèmes de stockage d'énergie (ESS) sont considérés 
dans cette approche SOPF. 
 
Ces approches sont analysées en détail, testées et validées sur plusieurs études de cas. Les 
résultats montrent que l'approche proposée fonctionne avec succès. 
 
 
 
Mots-clés : Flux de Puissance Optimale, Indice de Stabilité de la Tension, Réponse à la 
Demande, Parcs Éoliens. 
 



 

OPTIMAL POWER FLOW CONSIDERING VOLTAGE STABILITY WITH 
SIGNIFICANT WIND PENETRATION 

 
 

Majid BAVAFA 
 
 

ABSTRACT 
 
 

Voltage stability evaluation is one of the major issues in the power system operation and 
control. One reason is that there is an enormous number of voltage collapses which 
frequently occurs. The principal objective of this thesis is to choose appropriate criteria for 
voltage stability evaluation in optimal power flow (OPF) approach considering the worst 
contingency or the congested condition. Voltage stability can be affected by several elements 
and control ways which operate on different time scales. In particular, the role of wind power 
generation, demand response (DR), over excitation limiter (OXL), energy storage system 
(ESS) and on-load tap changer (OLTC) are significant. The proper modelling of these 
elements and control ways as well as using in an OPF approach should be analyzed in long-
term voltage stability. 
 
First, an impedance-based (IB) index is presented in this thesis that can evaluate unstable 
behavior of the power system with doubly-fed induction generator (DFIG) wind farms 
integration. A model for DFIG capability curve limits is presented that can be integrated to 
the internal circuit of the generator. Furthermore, the OLTC model was added to this index. 
The index uses the concept of coupled single-port circuit. The OPF with new IB-index 
constraint is implemented to show the performance of the index. 
 
This study also introduces a multi-objective stochastic optimal power flow (SOPF) approach 
with the presence of uncertain wind power generations. The multi-objective SOPF 
investigates the operating cost, voltage stability and emission effects as the objective 
functions. The effect of the DR program is considered in this study. The fuzzification 
technique is used to normalize all objective functions in the multi-objective SOPF. A line 
voltage stability index (LVSI) is presented and compared with other LVSIs. The proposed 
multi-objective SOPF is also carried out with different existing LVSIs as the objective 
functions. 
 
Following the voltage stability assessment, the frequency control is also considered in the 
SOPF. In this case, the frequency restoration scheme cooperates with DR and spinning 
reserve to stop a frequency drop in contingency events. This scheme is defined in three 
levels. Furthermore, an extended-L (EL) index is used to evaluate voltage stability analysis. 
Several frequency and voltage constraints are added in the SOPF approach. The EL-index 
considers a generator equivalent model (GEM). In addition, energy storage systems (ESSs) 
are considered in this SOPF approach. 
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Those approaches are analyzed in detail and they are tested and validated on several case 
studies. The results show that the proposed approaches operate successfully. 
 
 
 
Keywords: Optimal Power Flow, Voltage Stability Index, Demand Response, Wind Farms. 
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INTRODUCTION 

 

Nowadays, voltage stability assessment is an important issue in power systems due to a large 

number of blackouts in different countries. The main goal of an independent system operator 

(ISO) is to run the power system operation without any voltage stability collapse at low cost 

or high revenue. Many voltage stability indices (VSIs) have been presented that have a role 

to evaluate the voltage instability risk and to predict the voltage collapse point.  

 

In the recent decades, the electric power industry has changed from the monopoly which was 

controlled by a government to a free competition environment. Many regulations have been 

changed to be adaptable to this new environment in different areas. Thus, voltage stability 

assessment carried out by an ISO should be revised and reformulated. It is an undeniable fact 

that the power system should operate close to the limits of stable conditions, because of 

minimizing the total costs. Therefore, some factors will be come out which may trigger the 

long-term voltage instability such as a stressed power system, insufficient fast reactive power 

resources, on-line load tap changers (OLTCs) response and so on. Several elements have an 

impact on the voltage control which are OLTCs, generators, over excitation limiters (OXLs), 

static and switchable capacitor/reactor banks and static VAR control (SVC) (Canizares, 

2002). 

 

Voltage instability is a local and a nonlinear phenomenon. When a high voltage variation 

occurs, the power system may lose the loads in some areas or the elements such as 

transmission lines and generators (Cutsem et Vournas, 1998). The sequence of cascading 

events with voltage instability may result in a phenomenon which is named voltage collapse. 

The outcome of this phenomenon is a blackout or a low-voltage operation. Most reasons of 

voltage collapse are based on failing to provide reactive power demands (Canizares, 2002; 

Eremia et Shahidehpour, 2013): 

 

• Inability to provide reactive power by generators and SVC due to the reactive power  

limits; 
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• Increase of reactive power loss on the congested transmission lines; 

• Behavior of  OLTCs until hitting their limits; 

• Increase of active power loading; 

• Dynamics of load recovery; 

• Contingencies such as line tripping or generator outage. 

 

The voltage collapse events can cause extensive power system outages. Thus the number of 

power system outages worldwide, which are increasing yearly, should be reduced. Figure 0.1 

presents a summary of extensive power system outages over the recent half-century. Figure 

0.2 shows the approximate percent of extensive outages over the recent half-century based on 

different locations as the US & Canada, Europe, and the rest of the world 

(International)(Wikipedia, 2017). Whole outage costs are approximately calculated $75B 

annually in the US & Canada (McLinn, 2009). 

 

 
 

Figure 0.1 Number of extensive power system outages in worldwide 
 

An optimal power flow (OPF) approach was first developed in 1962 by Carpentier. There are 

different linear and nonlinear solution methods for this approach while linear methods are 

inaccurate and nonlinear methods are slow and fragile. It is important to get accurate 
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solutions because of solving the OPF periodically each five minutes. In spite of the 

introduction of the OPF more than a half-century, the OPF encounters inaccurate and fragile 

solutions which may enforce an extra cost in billions of dollars per year to ISO (Cain, 

O’Neill et Castillo, December, 2012). 

 

 
 

Figure 0.2 Percent of extensive power system outages in different locations 
 

Generally, the power flow (PF) analysis shows the behavior of elements in steady state 

conditions. This analysis can calculate whether power system elements can satisfy the limits 

in steady state conditions without any contingencies or not. Moreover, the OPF analysis can 

reach the losses at the minimum level by calculating all the values of voltages and currents 

(Andersson, 2004). Variations of unpredicted resources like wind power create a high 

amount of uncertainties. In this situation, stochastic OPF (SOPF) can reduce the risk of 

outages (Bienstock, Chertkov et Harnett, 2014). The SOPF approach provides an applicable 

model for uncertainties in the system.  

 

Motivation and Challenges 
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One of the challenges in power systems is a large number of voltage collapses which 

frequently occur. Therefore, voltage stability evaluation becomes crucial in power system 

operation and control.  Voltage stability can be affected by several elements and controllers 

which operate in different time scales. In particular, the role of wind power generation, 

demand response (DR), over excitation limiter (OXL), on-load tap changer (OLTC) and 

generator model are significant. The proper modelling of these elements and controllers as 

well as using an OPF approach should be analyzed for long-term voltage stability.  

 

VSIs can be mixed with OPF and they produce a problem which is named Voltage Stability 

Constrained OPF (VSC-OPF) (Avalos, Canizares et Anjos, 2008; Canizares et al., 2001; 

Lage, da Costa et Canizares, 2012; Milano, Canizares et Invernizzi, 2005; Rosehart, 

Canizares et Quintana, 2003a; 2003b; Venkatesh, Arunagiri et Gooi, 2003).  These traditional 

VSC-OPF approaches don’t consider the model of elements and efficient control ways like 

wind power generation, DR, OXL, OLTC and generator. Due to the dynamic behavior of 

power systems, using traditional VSI is not accurate and cannot predict the unstable 

operating point. Thus, the creation of new VSC-OPF approaches can be useful to improve the 

performance of ISOs.  

 

Research Objective 

 

The principal objective of this thesis is to choose an appropriate criteria for voltage stability 

evaluation in SOPF approach and to consider the worst contingency or the congested 

condition. Modeling of elements and control ways like a wind generator, DR, OXL and 

OLTC is considered in the OPF formulation. 

 

According to the literature review and simulations that will be described in detail, the 

following objectives are derived from the principal goal: 

 

• To evaluate and compare several important voltage stability indices; 

• To compare different VSC-OPF approaches and represent their drawbacks; 
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• To introduce a novel voltage stability index that can model OLTCs, capability curve 

limits of traditional generators and wind generators; 

• To develop a new formulation for VSC-OPF approaches with the novel voltage 

stability index; 

• To analyze SOPF approaches with the presence of uncertainties in wind power 

generation;  

• To investigate DR and load shedding (LS) program in SOPF approaches; 

• To add a frequency restoration scheme in VSC-SOPF formula and find the effects of 

DR and LS program; 

 

Methodology 

 

The following section describes the proposed methodology to achieve the research 

objectives. The methodology includes the following steps: 

 

• Comparison between different voltage stability indices such as L-index, minimum 

singular value and line voltage stability indices (LVSIs) is carried out.  Then, VSC-

OPF approaches with these indices is implemented in MATLAB and validated in 

several case studies. The approaches are optimized with different objective functions 

like minimization of the operating cost function. 

• Investigating the behavior of elements and control ways, such as DR, wind generator, 

OLTC and OXL in the long-term voltage stability simulation with PSAT. This step 

will help to define new voltage stability indices for better voltage instability detection. 

Then, implement the VSC-OPF approach with these new indices in MATLAB and 

PSAT. This approach will be performed in different test systems. 

• Implementing SOPF to model the uncertainties in wind power generation. A literature 

review is done to choose an appropriate technique to consider the uncertainties.  

• Appending frequency constraints in the VSC-SOPF. These constraints are extracted 

from a frequency restoration scheme with three levels. Cooperating the DR and LS 
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program and reserve is considered in this scheme. Due to the complexity and 

nonlinearity of the constraints, this approach is carried out in GAMS. 

 

Thesis Contributions 

 

The contributions of the thesis are described as follows: 

 

An improved impedance-based index for voltage stability analysis 

 

An improved impedance-based (IB) index is proposed in this thesis that models doubly-fed 

induction generator (DFIG) capability curve limits and OLTC behavior. These factors have 

significant roles in the long-term voltage stability studies. The proposed IB index can detect 

precisely the voltage collapse, especially after the occurrence of a given contingency due to 

the dynamic elements of the system. It can model the DFIG reactive power capability 

characteristics as a variable virtual impedance which is adaptable in the dynamic studies. 

Therefore, the model of DFIG reactive limits can be integrated to the internal circuit of the 

generator and it can be appended to impedance matching theory. An OLTC model is also 

added to this index. The OLTC can affect both Thevenin equivalent impedance and load 

impedance. Thus, the IB index equation is modified by considering those impedance 

variations on the OLTC model. The robustness of the proposed method has been investigated 

by including SVC and different load types in the power systems. 

 

 

A new VSC-OPF approach with proposed improved IB index 

 

A VSC-OPF approach is studied including an improved IB index. A new approach is 

compared with three existing VSC-OPF approaches in stressed and single line outage 

conditions. These VSC-OPF approaches are, namely, based on the L-index, the minimum 

singular value and the voltage collapse proximity indicator (VCPI). The proposed VSC-OPF 
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approach can reduce the operating cost and the number of voltage collapses. Thus, it can 

improve the performance of the electric utilities. 

 

A novel LVSI as a criterion for voltage stability detection 

 

This thesis proposes a LVSI which can detect precisely the voltage collapse in comparison 

with other LVSIs, especially after the occurrence of a given contingency due to the dynamic 

elements of the system. This index is based on the impedance theory which is a proper way 

to estimate the maximum power transferred to a load bus. The impedance seen at two buses 

of a transmission line can provide important information for the operation and control of the 

power system. 

 

A multi-objective SOPF approach with the presence of uncertain wind power 
generations 
 

The thesis also implements a multi-objective SOPF approach which consists of the operating 

cost, voltage stability and emission effects as the objective functions. The wind uncertainty is 

formulated as a scenario-based technique. DR program is considered in this study, which is 

one of the most efficient control ways to reduce the risk of voltage instability after a 

contingency occurrence or a stressed loading condition. In addition, the proposed approach 

uses the technique of fuzzification to normalize all objective functions and to find the optimal 

solution. A comprehensive comparison between different LVSIs as the objective function is 

given in the multi-objective SOPF. Also, the multi-objective SOPF with proposed LVSI is 

investigated under different scenarios. It can reduce the operating cost and increase the 

minimum voltage magnitude. Thus, it can improve the performance of the electric utilities.  

 

Frequency and Voltage Constrained SOPF Considering Wind Power and Demand 
Response Resources 
 

An approach for frequency and voltage control in SOPF with the presence of uncertain wind 

power generations and energy storage systems (ESSs) is proposed in this thesis. The 

proposed scenario-based SOPF utilizes a combined DR, ESS, LS and reserve to increase 
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reliability under various contingency occurrences. The objective function is the minimization 

of total operating cost and it considers costs for DR, LS, wind spillage and reserve resources. 

To solve frequency instability issue, it uses the reduced-order system frequency response 

(SFR) model and creates some extra constraints to be added to the SOPF. The frequency 

restoration scheme is defined in three levels. To keep a system safe from the viewpoint of 

voltage stability issue, it uses extended L-index (EL-index).  

 

Thesis Outline 

 

This thesis is organized as follows. Chapter 1 contains a literature review on the impact of 

different elements on voltage stability analysis and it also presents different VSIs, VSC-OPF 

and SOPF approaches. Chapter 2 describes a new VSC-OPF approach with proposed 

improved IB index. The index can model the great changes during a voltage collapse process 

such as line tripping, load tap changing and reactive power limits of DFIG and conventional 

generator. This index can also monitor online voltage stability. The proposed IB index can 

model the DFIG reactive power capability characteristics as a variable virtual impedance 

which is adaptable in the dynamic studies.  

 

An OLTC model is also added to this index. The OLTC can affect both TEI and load 

impedance. Thus, the IB index equation is modified by considering those impedance 

variations on the OLTC model. A new VSC-OPF is also carried out with the proposed IB 

index. The proposed VSC-OPF can reduce the operating cost and the number of voltage 

collapses. Thus, it can improve the performance of the electric utilities. 

 

In Chapter 3, a multi-objective SOPF approach with the presence of uncertain wind power 

generations is investigated. This chapter proposes a multi-objective SOPF problem 

considering wind uncertainty and DR. This multi-objective SOPF consists of the operating 

cost, voltage stability and emission effects as the objective functions. Furthermore, a new 

LVSI is presented that can detect precisely the voltage collapse in comparison with other 

LVSIs. Finally, a comprehensive comparison between different LVSIs as the objective 
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function is given in the multi-objective SOPF. Also, the multi-objective SOPF with proposed 

LVSI is investigated under different scenarios. It can reduce the operating cost and increase 

the minimum voltage magnitude. Thus, it can improve the performance of the electric 

utilities.  

 

Chapter 4 includes a frequency and voltage constrained SOPF considering wind power and 

demand response resources. The proposed scenario-based SOPF utilizes a combined DR, 

ESS, load shedding (LS) and reserve to increase reliability under various contingency 

occurrences. In the proposed frequency and voltage stability assessment, the objective 

function is the minimization of total operating costs and it considers costs for DR, LS, wind 

spillage and reserve resources. To solve frequency instability issues, this chapter uses the 

reduced-order system frequency response (SFR) model and creates some constraints to be 

added to the SOPF. To keep a system safe from the viewpoint of voltage stability issues, it 

uses the EL-index. The EL-index is one of the voltage stability indices that can predict 

voltage collapse accurately. Finally, a conclusion and future works are presented at the end of 

this document. 

 

 

 





 

 

CHAPTER 1 
 
 

LITERATURE REVIEW 

1.1 Basic principles of voltage stability 

 

This section contains a summary in subjects such as different types of stability, voltage 

stability evaluation methods, important operating points and QSS time domain simulation. 

 

1.1.1 Different types of stability and voltage stability 

 

The behavior of power system stability changes dynamically and all dynamic systems are 

based on complicated mathematical equations. From an economical viewpoint, a power 

system cannot be stable for any perturbations. When a perturbation appears, power system 

variables such as bus voltages, and machine rotor speeds, active and reactive power will 

change greatly. These variations activate all governors and voltage regulators to restore a 

power system to the equilibrium point. Even some elements may be disconnected from 

network to preserve the main system from cascading instability (Kundur et al., 2004).    

 

Power system stability can be categorized in several forms based on: 1) main variables of the 

power system; 2) extent of the perturbations; 3) time scales of simulation. Figure 1.1 shows 

the main types of the power system stability (Canizares, 2002). Long-term voltage stability 

includes slow dynamic elements such as OLTC, OXL, and some controlled loads. The time 

scale of this voltage stability is until several minutes. Different forms of instability may 

change from one form to another in the power system dynamically. To realize the instability 

forms, it needs to be familiar with dynamic operation behavior of power systems (Kundur et 

al., 2004). Long-term voltage stability can be divided into large-disturbance and small-

disturbance voltage stability. The small-disturbance voltage stability problem can be modeled 

with linearized power system equations with acceptable error. But it cannot disregard 

nonlinear behavior of some elements such as OLTC. Increasing the active and reactive power 
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in the inductive elements has a major effect on voltage reduction. Over excitation and under 

excitation limits of generators or synchronous compensators may intensify this process of 

voltage reduction when a fault causes and also when the reactive power is not sufficient. In 

addition, transferring the reactive power for long distance is improper. It has a negative effect 

on active and reactive power losses and it increases the risk of voltage collapse (Taylor, Balu 

et Maratukulam, 1994). 

 

 
 

Figure 1.1  Different types of power system stability 
 

When the short-term dynamics have diminished, the long-term dynamics (slow dynamics) 

will remaines and it should be considered. Long-term (LT) voltage instability is classified 

into three types of instability (Canizares, 2002; Cutsem et Vournas, 1998). LT1 is loss of 

equilibrium. This instability is the most common instability procedures; load restoration and 

OLTCs affect on this instability. LT2 is a lack of attraction towards a stable equilibrium. For 

instance, first LT1 occurs and then corrective actions are performed with a delay. Therefore, 

there is not enough time to restore the operating point. LT3 is a slow growth of the voltage 
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oscillation. This instability is less common; one example can be produced by the cascaded 

load restoration or incorrectly tuned OLTCs. 

 

1.1.2 Operating points and zones 

 

One of the methods for evaluation of voltage stability is continuation power flow (CPF) 

which produces some curves such as PV, PQ and QV curves. Different types of operating 

zones represented in Figure 1.2 are divided into the controllable zone and uncontrollable 

zone in the PV curve. Controllable zone (stable operating zone) is the upper part of the curve. 

All points of this zone have negative sensitivities. It can be defined as two sub-zones for 

better evaluation (optimal and critical zones). Uncontrollable zone (unstable operating zone) 

is the lower part of the curve. All points of this zone have positive sensitivities (Eremia et 

Shahidehpour, 2013). 

 

2V

2,maxV

2,minV

2,crV

2P

2,maxP  
 

Figure 1.2  Operating zones in a PV curve 
The range of these zones is dependent on different system topology and ISO regulations. For 

example, as reported by Western Electricity and Coordinating Council (WECC), a safety 

margin in case 1 (N-0, N-1 contingencies) and case 2 (N-2, N-3 contingencies) are 5% and 

2.5%, respectively (Al Dessi, Osman et Ibrahim, 2013). 
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1.1.3 Voltage stability evaluation methods 

 

Voltage stability evaluation methods are divided into two fundamental methods which are 

named static and dynamic methods. Static methods are based on PF equations and linearized 

differential-algebraic equations (DAEs); also they are considerably quicker than the dynamic 

methods. Some indices (local or global) are introduced in these methods which will be 

described in detail. The dynamic methods based on DAEs are divided into the integration and 

global methods.  

 

 
 

Figure 1.3  Voltage stability evaluation methods  
Adapted from Eremia and Shahidehpour (2013) 

 

The bifurcation theory assumes that variations of system parameters are slow and also it can 

evaluate the behavior of a system until reaching instability. The power system equations in 

the bifurcation analysis are defined as states and parameters. The states such as magnitudes 

and angles of bus voltage, and machine angles change very fast. The parameter changes 

slowly in the power system equations such as active power demands. How to choose states 

and parameters are significant in the power system modeling (Canizares, 2002). 
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Saddle node bifurcation is defined when PF solutions will change until vanishing the 

convergence. Therefore, there are no PF solutions at this point. Singularity induced 

bifurcations is defined when the singularity appears in the DAEs of a power system because 

of changing a state parameter gradually, and then the system immediately falls into instability 

by an infinite behavior. Voltage instability due to the reactive power limit of generator can be 

caused the singularity induced bifurcation (Gomez-Exposito, Conejo et Canizares, 2008; Ilić 

et Zaborszky, 2000). 

 

1.1.4 QSS time-domain simulation 

 

The QSS approach relies on the time-scale decomposition in the long-term dynamics. This 

approach is a well-known technique which can increase the computational efficiency and 

also it can be used in the real time voltage assessment. The QSS simulation analyses the 

long-term instability dynamics and ignores the short-term dynamics. In addition, it can 

change the value of step size for reaching the optimum time and accuracy (Van Cutsem et 

Vournas, 1996). The power system dynamics can be divided into continuous and discrete-

time parameters because the components (controllers and protecting devices) can be operated 

based on both continuous	and discrete-time	state vectors. Based on the above considerations, 

equations of Full Time Scale (FTS) simulation and QSS simulation are provided in Figure 

1.4. 

 

The algebraic function ݃ represents the network equations. The differential function ݂ relates 

to some components which can be divided into two sub-functions where ݔ௦ is the “slow” 

state vector, ݔ௙ is the “fast” state vector. The algebraic function ℎ shows the discrete events 

like as capacitor switching, OLTC and OXL operation. As seen in Figure 1.5, parameter ℎ is 

defined as the time step size of the algorithm (about 1s to 10s) and each dot shows a short-

term equilibrium point. 
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Figure 1.4  Equations of FTS and QSS simulations 
 

Some components like as OXLs, OLTCs and switched shunt elements can act as discrete 

dynamics, so vertical jumps (A to A’, B to B’) show this behavior. Horizontal jumps (A’ to 

B, B’ to C) can be obtained from the differential equations and the load self-restoration (Van 

Cutsem et Mailhot, 1997). The comparison between QSS and FTS simulations is presented in 

(Gear, 1971) that shows two curves are approximately same and cannot simply be 

distinguished. The extended QSS model presented in (Grenier, Lefebvre et Van Cutsem, 

2005) considers the long-term frequency dynamics. It is useful for the frequency analysis due 

to large disturbances and also it shows the interaction between frequency and voltage. 

 

1.2 Evaluation of main effects on voltage stability 

 

The voltage stability can be affected by several elements and control ways which operate on 

different time scales. In particular the role of OLTCs, loads and reactive power limits are 

significant. 
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Figure 1.5  QSS simulation mechanism 
 

1.2.1 Effect of reactive power limits on voltage stability  

 

One of the major impacts on voltage instability is the reactive power limits which are 

produced by the generators excitation limiters. The system will lose voltage control of 

generators when the reactive power limits become active (Canizares, 2002). Two examples 

of PV curves are provided in Figure 1.6(a), when these limits are on or off. In the case I, the 

reactive power limit decreases the stability margin because the distance between point B and 

the critical point is decreased. If the load increases in this situation, the point B will reach to 

the critical point and the voltage instability can be triggered easily. In the case II, the 

operating point becomes instantly unstable after considering the reactive power limit. As 

seen in Figure 1.6(b), when the limit is considered, the equilibrium point becomes in the 

lower part of the constrained PV curve which is unstable. A generator with no reactive power 

limit is considered as a PV bus, and then a PV bus will change into a PQ bus after involving 

to the reactive power limit. 
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Figure 1.6  Effect of reactive power limit (a) Case I, (b) Case II 

 

There are different models for the representation of reactive power limits of generators in the 

voltage stability and electricity market studies. One of the most common models is the 

consideration of the reactive power limits as a fixed value in an OPF approach, but this 

model is not very accurate due to the nonlinear characteristics of the constraints. Another 

model can be improved by applying a complete model of generator capability limits. This 

model considers the maximum currents of field and the maximum currents of stator in its 

formula. The following represents this model of maximum reactive power limits: 

 

ܳீଵ௠௔௫ = ඨ൬ ௧ܸ௢ܧ௙௠௔௫ௌܺ ൰ଶ − ௌܲଶ − ௧ܸ௢ଶௌܺ  (1.1) 

 ܳீଶ௠௔௫ = ට( ௧ܸ௢ܫ௔௠௔௫)ଶ − ௌܲଶ (1.2) 

 ܳீ௠௔௫ = ቊܳீଵ௠௔௫				݂݅	 ௌܲ < ௌܲಾ	ܳீଶ௠௔௫				݂݅	 ௌܲ > ௌܲಾ			 (1.3) 
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where ܳீଵ௠௔௫ and ܳீଶ௠௔௫ represent the reactive power limits for maximum field currents 

and maximum stator currents, respectively. 

 

Results in (Tamimi, Canizares et Vaez-Zadeh, 2010) show that the model in (1.1)-(1.3) acts 

better than fixed values of reactive power limit due to providing a improved voltage profile 

and less power losses. If we want to use other models, it is very important to understand, 

whether the improvement of voltage profile is more valuable rather than the increase of 

computational burden or not. Moreover, this model is appropriate model for cylindrical rotor 

and it can be used for salient pole rotor due to conservative consideration.  

 

1.2.2 Effect of OLTCs on voltage stability 

 

The OLTCs have an important role on voltage stability and they may trigger the instability 

process. The tap ratio can be changed via manual or automatic procedure. Some OLTCs 

operate accompany with an automatic voltage regulator (AVR) in power systems, so this 

action worsen the procedure of voltage instability. The behavior of OLTC equipped with 

AVR can be presented by two models (discrete or continuous). OLTCs generally operate 

after a pre-specified delay, and then the tap ratio keeps constant the load side voltage (Weedy 

et al., 2012).  

 

There are some ways to control the voltage stability by OLTCs which is known as corrective 

actions. These corrective actions used to control the restoration schemes after a contingency 

which have negative impacts on voltage stability problem. These are classified into groups 

below (Vournas et Karystianos, 2004): 1) Tap blocking behavior of an OLTC. One of the 

easiest methods is the tap blocking of an OLTC which ends to the continuation of the voltage 

instability. It has some disadvantages such as decreasing the voltage level in both the 

transmission and distribution system and producing the negative effect on other load 

restoration processes. Also, it is hard to prevent unnecessary tap blocking and it has a 

problem in finding which tap needs to be blocked. 2) Specific tap or voltage switching of an 
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OLTC. This method avoids the continuation of voltage reduction from a specific value. It can 

be limited by a specific tap ratio or a reference value of the voltage. These values can obtain 

from the highest probability of contingency or the operator experiences. 3) Tap reversing 

behavior of an OLTC. This way operates to control the voltage level in both the distribution 

and transmission sides. An OLTC wants to keep the voltage magnitude at an acceptable 

level. It causes to prevent the voltage collapse.  

 

The tap reversing behavior avoids the voltage reduction and operates more profitable than 

other corrective actions. Tap reversing behavior of an OLTC provides enough time for a 

system to employ other corrective actions. There are some methods to optimize an OLTC 

setting such as the gradient projection method which is based on maximizing the stability 

margin (Polak, 1971; Vournas et Karystianos, 2002). In (El-Sadek et al., 1999), a case study 

is analyzed as a Thevenin’s equivalent system which E is an equivalent Thevenin’s emf and ܸ is the load node voltage. Then a 
ୢ୉ୢ୚ criterion (El-Sadek et al., 1997) is introduced as an 

analytical factor to evaluate the behavior of OLTCs. Note that tap ratio does not change the 

maximum active and reactive power of a load. 

 

Furthermore, finding the critical OLTCs can help to improve the voltage stability problem. In 

(Thukaram et Parthasarathy, 1996; Thukaram et al., 2004), the linear programming method 

has been applied to solve two objective functions which are the minimization of the voltage 

deviations from desired values and the minimization of the sum square of L-indices. Thus, 

these methods can show the critical OLTCs which may lead to the voltage instability under 

the peak load conditions.  

 

1.2.3 Effect of load models on voltage stability  

 

Some elements can intensify the effects of load on voltage stability, such as OLTCs, voltage 

regulators, thermostats and motor slip adjustments. Restored loads consume more and more 

reactive power which it cuts down the voltage magnitudes. Moreover, different types of load 

models have impacts on the voltage stability problem (Lee et Lee, 1993; Pal, 1992; Zeng, 
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Berizzi et Marannino, 1997). It is beneficial for the electricity industry to develop dynamic 

load models instead of conventional load models. Note that only dynamic systems have the 

unstable behavior (Hatipoglu, 2014). (Pal, 1992) proposes an accurate load model with a 

constant MVA characteristic. The dynamic behavior of this model is indicated by a first-

order delay term. (Chowdhury et Taylor, 2000) compares between two methods of stability 

evaluation (QV curve obtained from the conventional PF approach and the dynamic 

simulation). This paper evaluates three worst outages which are stable in the dynamic 

simulation, but they are unstable by the PF approach and there is no operating point in the 

QV curve. Thus, the results of the PF approach are not reliable. Well-known curves such as 

PV and QV curves cannot consider the dynamic load characteristics, because they are not 

time-dependent. In (Lian et al., 2010), the authors propose a method to consider the dynamic 

load characteristics. It first converts a power system into an equivalent two-node system and 

then an approximated method is used to model the dynamic load with a polynomial form. 

Figure 1.7 represents that different types of load models have distinct operating points. It 

shows that constant impedance (Z), constant current (I) and constant power (P) load models 

have significant impacts on the voltage stability problem due to different intersections in the 

PV curve. 

 

(Regulski, 2012) investigates a voltage stability evaluation in different load characteristics. 

When a contingency occurs, some loads act quickly and reach to new operating points, while 

others act with delay. In the case of a constant power load, an operating point may be 

vanished; when it passes maximum active power limit. Thus, consideration of fixed value for 

the load model creates many errors in the voltage stability results. 

 

1.3 Methods of solving reactive power dispatch problem 

 

The reactive power dispatch (RPD) problem tries to keep the voltages in acceptable values. 

There are some control variables which are needed to optimize such as generator parameters, 

switchable VAR sources and OLTCs. As discussed in (Thukaram et Parthasarathy, 1996; 
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Thukaram et al., 2004), the authors use the linear programming method to solve this problem. 

The RPD problem can be solved by Genetic Algorithm (GA) which the RDP objective 

function is the minimization of the maximum of L-indices for all buses (Devaraj et Roselyn, 

2010). The hybrid differential evolution (HDE) is another heuristic method which solves the 

RDP optimization (Yang et al., 2012). This technique can obviously enhance the voltage 

stability of a system and reduce the line losses. Also, it can determine the optimal tap settings 

of OLTCs, the excitation settings of generators and the locations of the SVCs. 

 

In (Wang et al., 2011), a new enhanced particle swarm optimization (EPSO) is presented for 

solving a preventive control. The new EPSO has a difference with PSO in the selection of 

inertia weight. Moreover, a gravitational search algorithm (GSA) is introduced to solve the 

RPD problem in (Duman et al., 2012a). GSA is a new metaheuristic search algorithm and 

motivated by Newtonian gravitational law and law of motion (Rashedi, Nezamabadi-pour et 

Saryazdi, 2009). In this algorithm, a heavier mass has a higher pull and moves slower.  
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Figure 1.7  Different operating points with various load types in a PV curve 
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1.4 Analysis of main voltage stability indices 

One of the useful methods to evaluate the voltage instability risk is the calculations of 

voltage stability indices (VSIs). These indices usually calculate the stable operating point 

which is obtained from load flow feasibility (LFF). They are also identified as performance 

indices (PI) which are an interesting topic for the researchers in the power system operation. 

A threshold value (TH) as a measurement criteria is defined for each VSI (Chow, Fischl et 

Yan, 1990). When ܸܵݖ)ܫ, (௖ݖ ≤ ,ݖ)ܫܸܵ the voltage profile is adequate and when ,ܪܶ (௖ݖ ,ݖ)ܫܸܵ and ,ݖ ௖ is a reference value ofݖ the voltage profile is inadequate. Where ,ܪܶ<  ௖) isݖ

obtained from a group of variables that produces the operating point ݖ. Some of these VSIs 

are introduced in Table 1.1. 

 

 

 

 

Table 1.1  Different types of VSIs  
Adapted from Fischi (1989) and, Eremia and Shahidehpour (2013) 

 
Criterion of Index Formulation Explanation 

Maximum power 
transfer (Barbier et 
Barret, 1980) 

௜∈௅ݔܽ݉ ห ௅ܸ௜௖௥௜௧௜௖௔௟หห ௅ܸ௜ ห(ݑ) ≤  ܪܶ

where ห ௅ܸ௜ ห is the voltage magnitude at load bus ݅; ห ௅ܸ௜௖௥௜௧௜௖௔௟ห is the critical voltage magnitude at bus ݅ 
Critical voltages of load 
bus calculated based on 
maximum power transfer 
limit,  ܶܪ = 1.0 

 Maximum power 
transfer from OPF 
(Carpentier, 1984) 

௜∈௅ݔܽ݉ ൜ డொಸ೟೚೟డொಽ(௨)ቚ∗ൠ ≤  (Selected by operators)ܪܶ

where ܳ௧ீ௢௧ is the total reactive power generation, ܳ௅௜ is defined from optimal power flow (∗)  

A voltage collapse 
sensitivity index based on 
maximum power transfer 
criteria and computed from 
an optimal power flow 

Load flow feasibility 
(Jarjis et Galiana, 
1981) 

1ሼsin([ݑ௔], ሽ௞([ଵݑ] ≤ ௔ݑ ܪܶ = ଵݑܽ + (1 −  ଴ݑ(ܽ

where ݑ଴ is the base case input vector; ݑଵ is the 

closest input vector boundary of load flow region 

from ݑ଴; k is a positive integer;  

At boundary of load flow 

feasibility region ܶܪ = ∞ 
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Load flow 
(L-Index) (Kessel et 
Glavitsch, 1986) 

௜∈௅ݔܽ݉ ቤ1 − ∑ ௜௝ܸீܨ ௜௜∈ீܸ ௅௜ ቤ ≤  ܪܶ

where ห ௅ܸ௜ ห is the load bus voltage magnitude of 

bus ݅; and ܨ௜௝ is the elements of the matrix, [ܨ] =− ௅ܻ௅ିଵ ௅ܻீ 

At boundary of load flow 

feasibility region ܶܪ = 1.0 

Multiple Load flow 
(Tamura, Mori et 
Iwamoto, 1983)  

12෍ߛ௜௝௜,௝  

where ߛ௜௝ = ሽ[(௔ݔ)ܬ]ሼ݊݃݅ݏ − ௜௝|(௔ݔ)ܬ ௜௝ൟ|(஻஼ݔ)ܬ൛݊݃݅ݏ = ݆݅th element of the [ܬ] matrix, 

Maximum between ܽ and ܾ  load flow solutions is 

selected 

Necessary condition of 
sensitivity matrix for 
voltage stability of multiple 
load flow solutions 

Singular Value of 
Jacobian (Tiranuchit et 
Thomas, 1988) 

ଵఙ(௃) ≤  (Selected by operators)ܪܶ

where ߪ is a singular value of Jacobian matrix 

A index for characterizing 
proximity to instability 

Singular Value of 
Reduced Jacobian 
(Lof, Andersson et 
Hill, 1993) 

(ோܬ)௠௜௡ߪ	 ≤  (Selected by operators)ܪܶ

where 	ߪ௠௜௡(ܬோ) is minimum singular value of 

reduced matrix 

A suitable index for a large 
power system and it can 
detect voltage instability 
during increasing the load 

(continue the previous Table) 

Criterion of Index Formulation Explanation 

Ratio of smallest singular 
value for no-load and 
operating points (Eremia 
et Shahidehpour, 2013) 

	(ோܬ)଴௠௜௡ߪ	(ோܬ)௠௜௡ߪ ≤  ܪܶ

where 	ߪ଴௠௜௡(ܬோ) is minimum singular value 

of reduced matrix for no-load operating 
points 

A global index for determining 
exact initial operating point, ܶܪ = 1.0 

Maximum power transfer 
(VCPI) (Moghavvemi et 
Faruque, 1998)  

௉ೝ	௉ೝ(೘ೌೣ) ≤ ௉೗(೘ೌೣ)	௉೗ ,	ܪܶ ≤  ܪܶ

where ௥ܲ( ௟ܲ) is real power (loss)  transferred 

to the receiving end and ௥ܲ(௠௔௫) ( ௟ܲ(௠௔௫)) is 

maximum real power (loss) 

Indices with several advantages 
such as great accuracy, easy 
calculation, and recognition of 

weak lines, ܶܪ = 1.0 

Load flow 
(Extended  
L-Index) (Yang et al., 
2013) 

ቤ1 − ∑ ௝௜ᇱܨ ௜௜∈ఈಸܸீܧ ௝ ቤ ≤  ܪܶ

where modeling adds an equivalent internal 

impedance ௚ܼ௜ in front of a voltage phasor ீܧ௜, so it uses complete generator equivalent 

model (GEM) 

A suitable index for involving 
DG in power system and uses 
complete generator equivalent 

model (GEM),  ܶܪ = 1.0 

Maximum power transfer 
(LQP) (Mohamed, 
Jasmon et Yusoff, 1989) 

4ቆ ܸܺ௦ଶቇ ቆ ܸܺ௦ଶ ௦ܲଶ + ܳ௥ቇ ≤  ܪܶ

where subscripts of s and r shows sending 

Based on the single 
transmission line calculation , ܶܪ = 1.0 
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and receiving buses in the considered 
transmission line  

Maximum power transfer 

 Moghavvemi et) (௠௡ܮ)

Omar, 1998) 

4ܺܳ௥[ ௦ܸ sin(ߠ − ଶ[(ߜ ≤  X is line reactance; θ is line series impedance ܪܶ

angle and δ is angle difference between 

sending and receiving buses 

The calculation of this index is 

based on one single line 

between two buses , ܶܪ = 1.0 

Maximum power transfer 

(FVSI) (Musirin et 

Rahman, 2002) 

4ܼଶܳ௥௦ܸଶܺ ≤  ܪܶ

where subscripts of s and r shows sending 

and receiving buses in the considered 

transmission line 

Based on the single 

transmission line calculation 

and it is more compatible with 

the contingency ranking, ܶܪ =1.0 

Maximum power transfer 

(Nath et Pal, 2010) 

− డௌడ௒ ≤  (Selected by operators)	ܪܶ

where ܵ is the apparent power generation, ܻ 
is defined the admittance matrix  

Based on sensitivity method 
(the derivative of apparent 
power against the admittance). 

1.4.1 Evaluation of loading margin as global index 

 

The loading margin provides the global information, thus this margin can be considered as a 

global index. it can be calculated easily and does not need a specific system model 

(Canizares, 2002). Also, this margin has two disadvantages, first heavy computational 

burden. Because the critical point is usually far from the operating points. Second the initial 

condition is commonly hard to be defined for load increase. The loading margins can be 

classified into three types: 1) Reactive power loading margin (the active power is constant). 

2) Active power loading margin (the reactive power is constant). 3) Apparent loading margin 

(the power factor is constant). 

 

Increasing the load from the operating point to the critical point defines as the loading 

margin. There are two methods which can calculate the loading margin (Canizares, 2002). 

First direct methods calculate the singular bifurcation from a set of nonlinear system 

equations. It also has a high computational burden on the large power systems. Therefore, 

there are several drawbacks in the direct methods. Another method which is continuation 
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method is used for determining the closeness to the voltage collapse. The method is based on 

calculating the consecutive power flow solutions. 

 

1.4.2 Indices based on singular value method 

 

Indices based on the smallest singular value of the Jacobian and Reduced Jacobian matrices 

can be considered as global index. The concepts below are obtained from the smallest 

singular values ߪ௠௜௡(ܬ) of the Jacobian matrix (Lof, Andersson et Hill, 1993): 

 

 is a criterion which calculates the closeness of the operating point to the  (ܬ)௠௜௡ߪ •

critical point because of determining the singularity of the Jacobian matrix; 

• Right singular vector shows the sensitivities of the voltage magnitudes and the angles 

for changes in the power flow solutions; 

• Left singular vector shows the most sensitive directions of the power and the most 

serious perturbation for changes in the power flow solutions. 

 

Figure 1.8 shows the comparison between different behaviors of ߪ௠௜௡(ܬ) and ߪ௠௜௡(ܬோ). Both 

indices can determine the proximity to the voltage collapse. With the increasing reactive 

power loading, several jumps seen in the figure show the changes of the PV nodes into the 

PQ nodes due to reaching several generators to their maximum reactive power limits. It has 

an effect in increasing the risk of voltage instability. This is a desirable signal to know when 

the power system needs extra reactive power (Lof, Andersson et Hill, 1993).  

 

Albeit, the smallest singular value ߪ௠௜௡(ܬோ) provides the global information, it does not 

determine the exact initial operating point. Concluding, the index below is defined to detect 

better the voltage instability (Eremia et Shahidehpour, 2013): 
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minδ

Q

min ( )Jδ

min ( )RJδ

 
 

Figure 1.8  Comparison between ߪ௠௜௡(ܬோ) and ߪ௠௜௡(ܬ) (reactive load increase)  
Adapted from Lof, Andersson et al (1993) 

ܫܸܵ  =  (1.4) 	(ோܬ)଴௠௜௡ߪ	(ோܬ)௠௜௡ߪ

 

where ߪ଴௠௜௡(ܬோ) is the smallest singular value of reduced Jacobian for no-load points. The 

values of this performance index change from zero to one. If the system is located on the 

closeness of the voltage collapse, the values are close to zero and if the system is located far 

from the voltage collapse, the values become one. 

 

1.4.3 Line voltage stability indices (LVSIs) 

 

Several indices are introduced in this section and they are well-known as line voltage 

stability indices (LVSIs). Line stability Index (Lmn), Fast Voltage Stability Index (FVSI), 

Voltage Collapse Point Indicators (VCPI), and Line Stability Index (LQP) are the most 

important indices of this group. Generally, the calculation of these voltage stability indices is 

based on one single line between two buses. Therefore, the voltage stability limit is based on 

the theory of maximum power transfer between two buses.  
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Figure 1.9  A two-bus power system 
 

Voltage Collapse Proximity Indicator (VCPI) 
 
Voltage collapse proximity indicators (VCPI) are based on the theory of maximum power 

transfer between two buses (Moghavvemi et Faruque, 1998): 

(ଵ)ܫܲܥܸ  = ௥ܲ	௥ܲ(௠௔௫) (1.5) 

(ଶ)ܫܲܥܸ  = ܳ௥	ܳ௥(௠௔௫) (1.6) 

 

where ௥ܲ and ܳ௥ are active and reactive power transferred to the receiving end. ௥ܲ(௠௔௫) and ܳ௥(௠௔௫) are the maximum active and reactive power that can be transferred. 

(ଷ)ܫܲܥܸ  = ௟ܲ	௟ܲ(௠௔௫)	 (1.7) 

 

where ௟ܲ is active power losses in the line and ௟ܲ(௠௔௫) is the maximum possible active power 

losses. All values are calculated from the power flow calculations. The behavior of these 

indices is approximately linear in the cases with light loads. ܸܫܲܥ(ଷ) is more sensitive at 

higher load than ܸܫܲܥ(ଵ) in the proximity to the voltage collapse point (due to ܴܫଶ). The 

behavior of ܸܫܲܥ(ଵ) and ܸܫܲܥ(ଷ) is shown in Figure 1.10 when the power transfer through 
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the line increases gradually. These indices have several advantages such as greater accuracy, 

the easy calculation, and the recognition of weak lines.  

 

Line Stability Factor 
 
Line Stability Factor is defined as an index to monitor online the voltage evaluation based on 

the transmission line calculation. When the value of this factor reaches to 1.0, it shows that 

the system becomes unstable. This index is defined as (Mohamed, Jasmon et Yusoff, 1989): 

ܲܳܮ  = 4ቆ ܸܺ௦ଶቇ ቆ ܸܺ௦ଶ ௦ܲଶ + ܳ௥ቇ	 (1.8) 

 

where subscripts of ݏ and ݎ shows sending and receiving buses in the considered 

transmission line, respectively; ܺ is the line reactance.  

 

1

Pr

(1)VCPI

(3)VCPI

(max)rP  
 

Figure 1.10  Comparison between voltage collapse proximity indicators  
Adapted from Moghavvemi and Faruque (1998) 

 

Line Stability Index 
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Line Stability index ܮ௠௡ is used to evaluate the system stability and when the value of ܮ௠௡ 

reaches to 1.0, it shows that the system becomes unstable. The index equation is given as 

follows: 

௠௡ܮ  = 4ܺܳ௥[ ௦ܸ ߠ)݊݅ݏ −   (1.9)	ଶ[(ߜ

 

where ܺ∠ߠ  is the line reactance and ߜ is the angle difference between two buses. An 

advantage of this index is that can distinguish between weak and strong transmission lines. It 

also helps the ISO to find the voltage collapse in the vicinity of bifurcation point. Moreover, 

the computational burden is relatively low which is proper for large power system 

(Moghavvemi et Omar, 1998). 

 

Fast Voltage Stability Index (FVSI) 
 
FVSI is a criterion that shows both voltage stability situation and contingency ranking. This 

index is used to predict the system instability when the value of FVSI reaches to 1.0. The 

FVSI is defined as (Musirin et Rahman, 2002): 

ܫܸܵܨ  = 4ܼଶܳ௥௦ܸଶܺ 	 (1.10) 

 

The calculation process of this index like other LVSIs is based on the single transmission line 

calculation. Thus, they are more compatible with the contingency ranking. A disadvantage of 

these methods is that they cannot give any idea about the weak buses and only show the 

weak lines. 

 

(Cupelli, Doig Cardet et Monti, 2012) shows a comparison between these four indices based 

on accuracy, control adequacy and robustness to the load increase. Generally, all indices 

represent the linear behavior before reach to the voltage collapse. But they show a nonlinear 
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behavior during the voltage collapse. The values of Lmn and LQP indices increase more than 

one and they detect wrongly the voltage instability. Otherwise, the results show that the 

VCPI is the best index from the mentioned criteria and it is less dependent on the load 

dispatch. 

 

1.4.4 Indices based on L-Index 

 

An indicator L (L-Index) is introduced as a quantitative value to calculate the distance from 

the operating points to the stability limit (Kessel et Glavitsch, 1986). The system admittance 

matrix is defined by the load and generator buses as follows:  ൤ܫ௅ீܫ ൨ = ൤ ௅ܻ௅ ௅ܻீܻீ ௅ ܻீ ீ൨ ൤ ௅ீܸܸ ൨ (1.11) 

 

The voltages at the load buses can be shown as: 

 ௅ܸ = ܼ௅௅ܫ௅ − ܼ௅௅ ௅ܻீܸீ = ܼ௅௅ܫ௅ + ௅ீܸீܨ  (1.12) 

 

where ܼ௅௅ = ( ௅ܻ௅)ିଵ and ܨ௅ீ = −ܼ௅௅ ௅ܻீ. 

 

For a particular load bus ݆, we have 

 

௝ܸ = ෍ ௝ܼ௜ܫ௜௜∈ఈಽ + ෍ ௝௜ܨ ௜ܸ௜∈ఈಸ  (1.13) 

 

where ߙ௅ and ீߙ indicate the sets of load buses and generator buses. 
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Figure 1.11  Power system model with m PV bus and k Loads (L Index)  
Adapted from Yang, Caisheng et al. (2013) 

 

 

L index is defined as: ܮ௝ = ቤ1 − ∑ ௝௜ܨ ௜ܸ௜∈ఈಸܸ௝ ቤ (1.14) 

 

When the value of ܮ௝ becomes 1.0 or close to 1.0, it shows that the voltage at bus ݆ is near to 

its voltage stability limit. The contingencies affect on the L-Index due to changing the system 

state like new voltage profile. Calculation of the L-Index is simple, time-saving and it can be 

changed easily. The L-index has an accurate result when the loads gradually increase. 

 

(Salama, Saied et Abdel-Maksoud, 1999) describes a simplification method for calculation of 

L-Index, which reduces the computational burden. It suggests using the imaginary parts of 

the admittance matrix in the L-index formula. Thus, instead of using ܨ௅ீ = −( ௅ܻ௅)ିଵ ௅ܻீ, it is 

changed as follows: 

௅ீܨ  =  ௅ீ (1.15)ܤଵି(௅௅ܤ)−

 



33 

 

where ܤ௅௅ and ܤ௅ீ are the imaginary parts of sub-matrices of the admittance matrix. This 

simplification is useful for large power systems and it can increase the calculation speed, 

because the matrices with only imaginary part can be inverted quickly. The comparison 

between with/without simplification shows that the results are very close and acceptable. 

 

When the distance of generators and loads become closer or/and the PV generators have 

converted to the PQ nodes in case of the reactive power limits, the L-Index is not very 

accurate. (Yang et al., 2013) has proposed an extended L-Index that uses a complete 

generator equivalent model (GEM). This model adds an equivalent internal impedance ௚ܼ௜ in 

front of a voltage phasor ீܧ௜. The extended L-index is obtained as follows: 

௝ܮ  = ቤ1 − ∑ ௝௜ᇱܨ ௜௜∈ఈಸܸீܧ ௝ ቤ (1.16) 

In conclusion, the results shows that extended L-Index can predict better the voltage collapse 

than the L-Index. 
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Figure 1.12  Power system model with m PV bus and k Loads (Extended L Index)  
Adapted from Yang, Caisheng et al. (2013) 
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1.5 Different types of VSC-OPF approach 

 

In recent years, the computational tools have been expanded to simulate on-line dynamic 

stability problems by modifying the equivalent algebraic equations. Stability problems 

generally is solved with nonlinear programming methods (Gan, Thomas et Zimmerman, 

1998). The VSC-OPF solution should satisfy both technical and economic issues which can 

be the minimization of total costs (or the maximization of social welfare) and the 

consideration of voltage stability limits, respectively (Mo et al., 2007). Nowadays, ISOs have 

a noticeable problem with the voltage stability based on two reasons: (1) lack of detail 

regulations in the power flow analysis; (2) high use of stressed elements and transmission 

line in the restructured power system (Wu et al., 2007). A proper VSC-OPF approach has a 

strategy that model both pre- and post-contingencies. In order to solve VSC-OPF, at least one 

extra constraint should be included in the standard OPF model. Therefore, this inequality 

constraint can be allocated as a cost into the model. There is another model for the 

consideration of the voltage stability with OPF which is well known as a linear combination 

model. This model uses weighting factors to combine two or more objective functions. The 

linear combination model has some drawbacks. For example, assigning the proper values of 

these weighting factors is very hard. 

 

1.5.1 Power transfer constraint  

 

The power transfer constraint can be calculated offline based on 	ܰ − 1 contingency and it 

represents the transmission lines security limits. The security formula is obtained as below, 

and it adds an extra inequality constraint to the OPF approach. 

 ௜ܲ௝(ߜ, ܸ) ≤ ௜ܲ௝௠௔௫ (1.17) 

 

where	 ௜ܲ௝(ߜ, ܸ) indicates the active power in each transmission line between buses ݅ and ݆ 
(݅ ≠ ݆).  
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This constraint which indicates the system security limits in the auction model is not a 

beneficial model due to providing improper price signals and reducing available power 

system transmission capacity (Milano, Canizares et Invernizzi, 2005).  

 

1.5.2 Loading margin constraint  

 

In general, loading margin is defined as a criterion of the distance between the operating 

points to the critical point. The voltage stability formula can be generically written as: 

௣ߣ−௖ߣ  ≥ Δߣ௠௜௡ (1.18) 

 

where the subscripts ܿ and ݌ represent the critical and current operating points, respectively; Δߣ௠௜௡ indicates the minimum acceptable load margin and it is defined by the ISO. This 

voltage stability inequality constraint operates as a cost. This method has some 

disadvantages, for example the process of calculation ߣ௖ needs some computations and extra 

constraints. All constraints should be considered in both critical and current operating points. 

This model considers one value of loading margin for all buses, so there is no distinction 

between vulnerable and secure buses (Milano, Canizares et Invernizzi, 2005; Rosehart, 

Canizares et Quintana, 2003a; 2003b). 

 

1.5.3 Singular value constraint  

 

Minimum Singular Value (MSV) can estimate the closeness of the operating point to the 

critical point due to determining the singularity of the Jacobian matrix. The MSV can be 

considered as a constraint which be added to the OPF (Avalos, Canizares et Anjos, 2008; 

Canizares et al., 2001; Lage, da Costa et Canizares, 2012; Venkatesh, Arunagiri et Gooi, 

2003). The MSV constraint is defined as follows: 

,ߜ)௉ிܬ௠௜௡ሼߪ  ܸ, ܳீ, ܲீ )ሽ ≥  ௖ (1.19)ߪ
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where ܬ௉ி is the Jacobian of the power flow; and ߪ௖ is the critical singular value obtained from 

off-line voltage stability studies. For example, ߪ௖ can be obtained from the worst contingency. 

Generally, setting the value of ߪ௖ is very significant; an improper setting may produce an 

unfeasible OPF solution. The MSV operates nonlinearly and implicitly in the optimization 

process.  

 

The VSC-OPF with MSV constraint has a considerable computational burden that may make 

their applicability unsolvable. Moreover, MSV obtained from Tangent Vector (TV) can be 

used as a voltage stability criterion and it can be demonstrated explicitly in the main problem. 

Assigning a critical value for the voltage stability indices is very important and the results 

shows that these two indices are very conservative (Lage, da Costa et Canizares, 2012). Due 

to changing PV buses to PQ buses, Jacobian matrix varies during the optimization process.  

 

Although, Jacobian matrix should be considered constant in this model (Avalos, 2008). 

(Venkatesh, Arunagiri et Gooi, 2003) presents a new VSC-OPF approach, which increases the 

voltage stability margin (VSM) based on maximizing the MSV. The main objective function 

is to minimize the total cost which uses the linearized OPF approach with the fuzzy algorithm. 

The fuzzy algorithm is flexible in adding and changing the constraints, but the linearized OPF 

reduces the accuracy and it increases the gap between the real operating point and the 

calculated operating point. 

 

1.5.4 L-Index constraint 

 

Another VSC-OPF approach is L-Based VSC-OPF that uses the L-Index as a constraint for 

voltage stability evaluation. The formula of the additional L-index constraint can be 

generically restated as: 

,ߜ)௠௔௫ܮ  ܸ, ܳீ, ܲீ ) ≤  ௖ (1.20)ܮ
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where ܮ௠௔௫ represents the maximum value of L-Index; ܮ௖ represents the critical value of the 

L-Index which can be obtained from the worst contingency or different load dispatches. The 

method has some advantages such as easy calculation, the distinction between vulnerable and 

secure buses. The range of L index value is between 0 to 1 that provides a better 

understanding of the VSM.  

 

 

 

 

1.5.5 LVSI constraint  

 

 A LVSI can be used as an extra constraint to define a VSC-OPF approach. These types of 

indices are based on the theory of maximum power transfer between two buses. For instance,  

(Zabaiou, Dessaint et Kamwa, 2014) is implemented VCPI as a constraint. The extra 

constraint is formulated as: 

,ߜ)௠௔௫ܫܸܵܮ   ܸ, ܳீ, ܲீ ) ≤  ௟௜௠௜௧ (1.21)ܫܸܵܮ

 

where ܫܸܵܮ௟௜௠௜௧ is a desired limit value for stability limit and ܫܸܵܮ௠௔௫ is the maximum value 

of LVSI in all transmission lines. Using the LVSI has less computational burden than using 

the L-Index.  

 

1.6 Stochastic Optimal Power Flow (SOPF) 

 

One of the crucial issues in the optimal power flow (OPF) is the consideration of an 

applicable model for uncertainties in the system. When variations of unpredicted resource 

create a high amount of uncertainties, a power system may result in outage or even collapse. 

In this situation, stochastic OPF (SOPF) can reduce the risk of outages (Bienstock, Chertkov 

et Harnett, 2014). The types of wind power control are investigated in (Roald et al., 2016). 
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Another study (Condren, Gedra et Damrongkulkamjorn, 2006) considers uncertain security 

costs, interrupting consumption costs and generator ramping during a contingency event. A 

novel probabilistic DC OPF approach has been proposed in (Vrakopoulou et al., 2013) 

considering ܰ − 1 contingencies criterion. 

 

One of the famous techniques in uncertainty modeling is scenario-based technique that 

provides less operating cost for ISOs (Bouffard, Galiana et Conejo, 2005).  Dupacova et al. 

first proposed the scenario selection and reduction algorithms based on scenario’s probability 

(Dupačová, Gröwe-Kuska et Römisch, 2003). Also Papavasiliou and Oren present a criterion 

to select scenarios based on the expected cost (Papavasiliou et Oren, 2013). 

(Summers et al., 2014) proposes a scenario-based SOPF approach based on the convex 

approximations. This approach is a tradeoff between stable power systems while diminishing 

the conservative behavior. Stochastic formulations in OPF approach consist of a set of 

scenarios. Their probabilities of each scenario should be determined for uncertainty modeling 

of renewable energy sources (RESs). These scenarios can be obtained from statistical models 

like neural network (Kusiak et Zhang, 2010) and random forest (Breiman, 2001). 

 

The authors in (Pand et al., 2016) represent that the scenario-based technique is the most 

profitable technique in comparison with the other techniques like robust, interval and 

improved interval techniques. One of the challenges in the scenario-based technique is the 

scenarios selection and their probabilities. (Gröwe-Kuska et al., 2002) presents an 

appropriate algorithm for the scenario selection. This study is the pioneer of scenario 

reduction algorithms in the stochastic programs.  

 

As the number of scenarios is high, the scenario-reduction techniques have been 

demonstrated to reduce the computational burden. A comparison between these techniques 

has been presented in  (Dvorkin et al., 2014). A fast forward scenario selection technique is 

presented in (Morales et al., 2009). (Papavasiliou et Oren, 2013) proposes an importance 

sampling approach based on operating cost variation. In (Papavasiliou, Oren et Neill, 2011), 

a two-stage weighted scenario-based technique considering reserves and wind power is 



39 

 

presented. Another model to consider uncertainties in the OPF formulation is robust 

optimization technique (Warrington et al., 2013). The results in robust optimization 

technique can be conservative.  

 

 

 

1.6.1 Demand Response (DR) in SOPF 

 

The DR is defined in (Lee et al., 2013) as follows: 

 

“Changes in electric use by demand-side resources from their normal consumption patterns 

in response to changes in the price of electricity, or to incentive payments designed to induce 

lower electricity use at times of high wholesale market prices or when system reliability is 

jeopardized.” 

 

There are a lot of benefits to utilize DR, for instance DR can diminish the uncertainty of 

renewable energies. (Papavasiliou et Oren, 2012) claims some models for DR resources. In 

the central control model, DR dispatches will be managed by an ISO centrally. This model is 

impractical and its computational burden is heavy, especially for large systems. Several 

studies consider this model in the process of DR dispatches (Joskow et Tirole, 2006; 2007; 

Sioshansi, 2012; Sioshansi et Short, 2009).  

 

Authors in (Vrakopoulou, Mathieu et Andersson, 2014) demonstrate a scenario-based SOPF 

with utilization of uncertain DR which has been modelled as a virtual energy storage unit. 

Aggregations of DR resources is studied with a model of uncertain flexibility in (Mathieu et 

al., 2013). Generally, aggregation of DR resources can be utilized in ancillary services, 

security and stability in power systems. The effect of DR on distribution systems has been 

presented in (Lu et al., 2011; Steen et al., 2011; Vrettos et Andersson, 2013). These studies 

examine different types of DR controls like the centralized and decentralized controls on the 

distribution systems. Their results show that DR can decrease the stresses on the distribution 
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systems. The authors in (Rabiee et al., 2014) investigate a VSC-OPF approach considering 

DR and stochastic wind resources. They consider the loading margin as a voltage stability 

index.  

 

1.6.2 Energy Storage Systems (ESSs) in SOPF 

 

Energy storage systems (ESSs) have a vital role in power systems. ESSs usage provides 

several benefits for ISOs. It causes to reduce the losses and transmission congestion and to 

increase voltage and frequency stability (Delille et al., 2009; Rastler, 2010). ESSs have some 

advantages for consumers like less load shedding, improvement in reliability and power 

quality. Also, they can decrease the risk of uncertainty of RESs (Chu et Majumdar, 2012).  

 

Recently, several studies have been carried out to optimize the size of EESs in the system 

(Harsha et Dahleh, 2015; Kraning et al., 2011; Su et El Gamal, 2011). However, (Lin, 

Mathieu et Johnson, 2016) proposes a scheme to control ESSs and DR simultaneously. The 

authors in (Meyer-Huebner et al., 2016) consider an AC OPF approach with ESSs and a 

multi-terminal HVDC. (Chacra et al., 2005) presents the economic effects of ESS costs on a 

distribution substation. Another important issue on ESS is how to allocate them. (Atwa et El-

Saadany, 2011; Atwa et al., 2010) claims techniques to allocate an ESS in a distribution 

system with a large number of wind farms. 

 

ESSs first has been investigated in 1981 by (Yau et al., 1981). (Sjödin, Gayme et Topcu, 

2012) studies a risk mitigated OPF considering ESSs with high penetration of wind farm. 

ESSs can decrease the amount of operating reserves. As mentioned before, ESSs can reduce 

the fluctuations of wind power and it can act like load and generator in different hours.  

 

In (Pan et al., 2016), a new control scheme of ESSs is proposed that can minimize the 

operating costs. The OPF approach is solved with evolutionary programming (EP) algorithm. 

Atwa and El-Saadany (Atwa et El-Saadany, 2010) formulate an OPF approach to allocate 

ESSs in a distribution system. Gabash (Gabash et Li, 2012) investigates an OPF approach 
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with ESSs and wind farms. The simulations are carried out in two optimization horizons and 

they show that the longer horizon provides better economical and technical results.  

 

ISO manages the SOC to increase the performance of ESSs. In (Lin, Mathieu et Johnson, 

2016), a chance constraint DC-OPF is proposed that can dispatch ESSs in a power system. 

The SOC variation is considered via a redispatch reserve scheme in this approach. After the 

establishment of first pump storage power plant in Switzerland in 1882, many studies on 

ESSs have been done throughout the world. Peak-shaving is the most significant advantages 

of ESSs for ISOs (Wang et al., 2013).  

 

1.7 Conclusion 

 

A comprehensive SOPF approach is essential to formulate in modern power systems. A 

comprehensive SOPF consists of some extra constraints from voltage stability issues, DR 

program, OLTC, OXL, ESSs and wind power. For voltage stability issues, many voltage 

stability indices (VSIs) have been reviewed that have a role to evaluate the voltage instability 

risk and to predict the voltage collapse point. A comprehensive approach can help an ISO to 

reach its main goal which is to run the power system operation without any voltage stability 

collapse at low cost or high revenue. Furthermore DR program can help to reduce excessive 

load shedding. As the voltage stability can be affected by several elements which operate on 

different time scales, the role of OLTCs, OXL and ESSs were investigated in this section.  
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Abstract 

 
In this chapter, an improved voltage stability index that can evaluate unstable behavior of the 

power system with doubly-fed induction generator (DFIG) wind parks integration is 

presented. Accordingly, voltage stability constrained optimal power flow (VSC-OPF) is 

studied including an improved impedance-based (IB) index. In particular, the chapter has two 

main contributions. First, it proposes an IB index with consideration of DFIG capability 

curve limits and on-load tap changer (OLTC) behavior. These factors have significant roles 

in the long-term voltage stability studies.  

 

The proposed voltage stability index can detect precisely the voltage collapse, especially 

after the occurrence of a given contingency due to the dynamic elements of the system. In 

this chapter, a model is proposed for DFIG capability curve limits that can be integrated to 

the internal circuit of the generator. In particular, the proposed model can be appended to 

impedance matching theory. Furthermore, the OLTC model is added to this index. The index 

uses the concept of coupled single-port circuit. 

 

The second contribution proposes a VSC-OPF with an improved IB index that is also 

compared with three existing VSC-OPF methods in stressed and single line outage 

conditions. These VSC-OPF methods are, namely, based on the L-index, the minimum 

singular value and the voltage collapse proximity indicator (VCPI). These approaches are 
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tested and validated on modified WECC test system, IEEE 39-bus, IEEE 57-bus and Polish 

2746-bus systems. 

 

2.1 Introduction 

 

Nowadays, voltage stability assessment is an important issue in the power system due to 

blackouts in different countries (McLinn, 2009). The main goal of the power system operator 

is to run the power system without any voltage instability at the lowest cost. Voltage stability 

can be affected by several elements and controllers, which operate on different time scales 

(Canizares, 2002). In particular, the effects of wind generator (WG) are undeniable. The WG 

equipped with induction generator absorbs reactive power. As known, most reasons of 

voltage collapse are based on failing to provide reactive power demands. Therefore, the 

proper modelling of the WG and its reactive power limits should be adequately analyzed for 

voltage instability detection (Youssef, Azab et Amin, 2015). 

 

Doubly fed induction generators (DFIGs) are employed in the most newly installed WG in a 

modern power system. The wind penetration level has been increased in recent times. Many 

studies had been carried on DFIG reactive power capability curve (Engelhardt et al., 2011; 

Kayikci et Milanovic, 2007; Konopinski, Vijayan et Ajjarapu, 2009; Lund, Sørensen et Eek, 

2007; Meegahapola, Littler et Perera, 2013). The DFIG and converter systems can provide 

the reactive power capability curve. As an illustration, the authors in (Kayikci et Milanovic, 

2007) have investigated the reactive capability curve of DFIG in rotor-side converter (RSC) 

and the grid-side converter (GSC). In (Londero, Affonso et Vieira, 2015), the authors show 

the different types of reactive capability curves in fully rated converter (FRC), DFIG with 

RSC support and DFIG with RSC and GSC support. Those papers disregarded to propose a 

method to detect voltage instability. 

 

Most studies have investigated the WG on short-term voltage stability (Kayikci et Milanovic, 

2007; Meegahapola, Littler et Flynn, 2010), steady-state voltage stability analysis (Vittal, 
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Malley et Keane, 2010), low voltage ride through (LVRT) control scheme (Xie et al., 2013). 

The studies still lack a detailed model considering the DFIG reactive power capability 

characteristics in the long-term voltage stability assessment. They also ignored to consider 

the dynamic behavior of over excitation limiter (OEL) and on-load tap changer (OLTC). 

 

In order to detect voltage instability, different voltage stability indices have been proposed in 

the literature. The roles of these indices lie in the evaluation of voltage instability risk and the 

prediction of voltage collapse point. Some indices are minimum singular value (MSV) of the 

power flow Jacobian, MSV of the reduced Jacobian (Lof, Andersson et Hill, 1993) and L-

index (Kessel et Glavitsch, 1986). Also, there are several line stability indices that have a 

close relation with active power, reactive power and the voltage stability (Guo-yun, Luo-nan 

et Aihara, 2015). Such indices are namely: voltage collapse proximity indicator (VCPI) 

(Moghavvemi et Faruque, 1998; Zabaiou, Dessaint et Kamwa, 2014) and equivalent node 

voltage collapse index (ENVCI) (Wang, Li et Lu, 2009). The above-mentioned indices 

cannot consider the dynamic behavior of power system, especially in post-contingency 

conditions. 

 

One of the important indices in voltage stability studies is an index based on the impedance 

matching theorem. Different approaches were presented to calculate Thevenin equivalent 

impedance (TEI) such as least-squares technique (Vu et al., 1999), Tellegen’s theorem 

(Smon, Verbic et Gubina, 2006), adaptive algorithm (Corsi et Taranto, 2008) and recursive 

least-squares technique (V, Gutiérrez et Ramirez, 2014). The above-mentioned methods use 

two successive phasor measurements to compute TEI, (Abdelkader et Morrow, 2012) and 

(Abdelkader et Morrow, 2015) have implemented respectively three and five successive 

phasor measurements. The impedance calculation has been simplified in (Lee, 2015) by 

changing the impedance matrix of power system into two-bus equivalent system. 

 

A new concept called coupled single-port model was reported in (Yunfei et al., 2011). This 

concept helps calculating Thevenin parameters by decoupling the load and generator buses. 

However, this model suffers from several major drawbacks. Specifically, if the load 
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scenarios increase suddenly or randomly, this model behaves inaccurately. This drawback 

can be overcome by modified coupled single-port model (Jian-Hong et Chia-Chi, 2014). This 

method still cannot detect the voltage instability after the occurrence of a contingency. The 

comparison of different approaches for the calculation of Thevenin equivalent impedance has 

been carried out based on accuracy and number of phasor measurement units (PMUs) in 

(Haoyu et Fangxing, 2014). It shows that coupled single-port model is one of the worst 

models for the voltage stability detection in dynamic studies. Furthermore, this model has not 

been developed with high penetration of wind parks.  

 

Optimal Power Flow (OPF) with wind generation has become one of the most widely tools 

used in the power system planning, operation and electricity market (Jabr et Pal, 2009; Xie, 

Chiang et Li, 2011). However, these studies do not investigate voltage stability constrained 

optimal power flow (VSC-OPF) with consideration of wind generation. Also, traditional 

VSC-OPF methods have some disadvantages such as inaccuracy of the voltage instability 

detection (Avalos, Canizares et Anjos, 2008; Lage, da Costa et Canizares, 2012; Milano, 

Canizares et Invernizzi, 2005; Zabaiou, Dessaint et Kamwa, 2014). Due to dynamic behavior 

of the power system, VSC-OPF methods should use an appropriate index to properly predict 

the unstable operating point. 

 

This section attempts to overcome these aforementioned limitations and presents a 

comprehensive model to identify proper criteria for voltage stability evaluation and then to 

combine it with an OPF while considering the contingency. The main contributions of this 

chapter could be summarized as follows. 

 

1) This chapter proposes an impedance-based (IB) index that can model the great 

changes during a voltage collapse process such as line tripping, load tap changing and 

reactive power limits of DFIG and conventional generator. This index can also 

monitor online voltage stability. 
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2) The proposed IB index can model the DFIG reactive power capability characteristics 

as a variable virtual impedance which is adaptable in the dynamic studies. Therefore, 

the model of DFIG reactive limits can be integrated to the internal circuit of the 

generator and it can be appended to impedance matching theory.  

 

3) An OLTC model is also added to this index. The OLTC can affect both TEI and load 

impedance. Thus, the IB index equation is modified by considering those impedance 

variations on the OLTC model. The robustness of the proposed method has been 

investigated by including SVC and different load types in the power systems. 

 

4) A new VSC-OPF is carried out with the proposed IB index. The proposed VSC-OPF 

can reduce the operating cost and the number of voltage collapses. Thus, it can 

improve the performance of the electric utilities. 

  

The rest of the chapter is organized as follows. The chapter presents a detailed statement of 

background in section 2.2. The new IB voltage stability index is introduced in section 2.3. 

The VSC-OPF method that combines both the OPF and the proposed index is provided in 

section 2.4. The case studies and simulation results are presented in section 2.5, whereas 

Section 2.6 draws the conclusion and future works. 

 

 

 

 

 

2.2 Background 

 

2.2.1 Impedance matching theory and its application 
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An impedance matching is a proper way to estimate the maximum power transferred to a 

load bus. As known, the TEI is a criterion for the voltage stability assessment. The 

impedance matching can be determined as equation (2.1): 

 |Z୐|=หZୣ୯ห (2.1) 

 

where Z୐ and Zୣ୯ are respectively the load impedance and the TEI. 

 

The voltage of the Thevenin equivalent circuit can be defined as follows: 

 Eୣ୯ = V୐ + I୐Zୣ୯ (2.2) 

 

where ௅ܸ and ܫ௅ are the load voltage and load current, respectively. 

  

As mentioned before, there are many methods to calculate ܼ௘௤. One of these methods adopts 

coupled single-port model. In this model, the buses are first divided into generator buses, tie 

buses and load buses in the admittance matrix (ܻ), which is shown in equation (2.3): 

  

൥I୐0Iୋ൩ = ൥Y୐୐ Y୐୘ Y୐ୋY୘୐ Y୘୘ Y୘ୋYୋ୐ Yୋ୘ Yୋୋ൩ ൥V୐V୘Vୋ൩ (2.3) 

 

Then, the system equivalent impedance matrix (ܼ௅௅) can be expressed as (Yunfei et al., 

2011): V୐ = KVୋ − Z୐୐I୐      (2.4) 

 Z୐୐ = (Y୐୐ − Y୐୘Y୘୘ିଵY୘୐)ିଵ (2.5) 

 K = Z୐୐(Y୐୘Y୘୘ିଵY୘ୋ − Y୐ୋ) (2.6) 
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Equations (2.4)-(2.6) can be reformulated for load bus ݅ as follows (Yunfei et al., 2011): 

 V୐୧ = Eୣ୯,୧ − Z୐୐୧୧I୐୧ − ෍ Z୐୐୧୨I୐୨୬
୨ୀଵ,୧ஷ୨ = Eୣ୯,୧ − Z୐୐୧୧I୐୧ − Eୡ୭୳୮୪ୣୢ,୧ (2.7) 

 

where ܧ௘௤,௜ represents the equivalent voltage on the ݅th bus and ܧ௖௢௨௣௟௘ௗ,௜ denotes the 

coupling effects of other loads on ௅ܸ௜. 	ܼ௅௅ presents the system equivalent impedance and ܼ௅௅௜௜ is created by the diagonal elements of ܼ௅௅. 

 

The coupled impedance has been presented via the concept of coupled single-port circuit. 

The coupled impedance is determined as follows (Yunfei et al., 2011): 

 Zୡ୭୳୮୪ୣୢ,୧ = Eୡ୭୳୮୪ୣୢ,୧I୐୧ = ෍ Z୐୐୧୨ ൬I୐୨I୐୧൰୬
୨ୀଵ,୧ஷ୨  

(2.8) 

 

2.2.2 DFIG capability curve limits  

 

There are different models for the representation of the DFIG capability curve limit in the 

voltage stability studies. As mentioned before, it can be defined for the DFIG capability 

curve of the RSC and the GSC. The RSC capability is generally bound by the rotor current, 

rotor voltage and stator current limits. These constraints can change with the slip value of the 

generator. It is assumed GSC is a lossless converter and it has a unity power factor. Thus, the 

RSC capability curve is only considered in this chapter. 

 

The equation below represents reactive power limit by rotor current (Londero, Affonso et 

Vieira, 2015): 

 ܳௌ௠௔௫ = ට ூܵ௥೘ೌೣଶ − ௌܲଶ − | ௦ܸ|ଶܺ௠ + ௌܺ 
(2.9) 
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ூܵ௥೘ೌೣ = หܫ௥೘ೌೣห	. | ௦ܸ|	. ฬ ܺ௠ܺ௠ + ௌܺฬ (2.10) 

 

where ܳௌ௠௔௫ represents the reactive power limit of the stator, ூܵ௥೘ೌೣ is the maximum 

apparent power and ܫ௥೘ೌೣis the maximum rotor current. ௌܺ and ܺ௠ are respectively the stator 

leakage and magnetizing reactance. 

 

The maximum stator current can be constrained by thermal limit of stator coils. Thus, another 

limit of DFIG reactive power  is as follows (Anaya-Lara et al., 2009): 

 ܳௌ௠௔௫ = ට(หܫ௦೘ೌೣห	. | ௦ܸ|)ଶ − ௌܲଶ 
(2.11) 

 

where ܫ௦೘ೌೣ represents the maximum stator current. 

 

Since the rotor current limit is usually smaller than the rotor voltage limit, therefore the rotor 

voltage limit can be disregarded. 

 

 

2.2.3 VSC-OPF model 

 

The VSC-OPF solution should satisfy both technical and economic issues, which are the 

minimization of the total costs and the consideration of the voltage stability limits. In order to 

solve the VSC-OPF, at least one extra constraint should be included in the standard 

formalization of the OPF and also several supplementary constraints should be added for 

wind farm integration. The generated active power of wind farms are considered as a control 

variable. The limits in this case are related to the active power, reactive power, voltage, 

thermal, wind capacity and voltage stability. The costs are defined as linear and quadratic 

functions for wind and conventional generators, respectively. The first objective function and 

its limits are defined as follows: 
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	݊݅ܯ  ෍൫ீܥ೔ + ொ೔൯௜∈ఈಸܥ  (2.12) 

.ݏ ,ߜ)݂ .ݐ ܸ, ܳீ, ܲீ , ܳ௪, P௪) = 0 →		PF equation 

 ܲீ ೘೔೙ ≤ ܲீ ≤ ܲீ ೘ೌೣ →		Active power limit 

 ܳீ೘೔೙ ≤ ܳீ ≤ ܳீ೘ೌೣ →		Reactive power limit 

 V୫୧୬ ≤ V ≤ V୫ୟ୶	 →		Voltage limit 

 I୧୨(δ, V) ≤ I୧୨୫ୟ୶	 →		Thermal	limit 
௪,௠௜௡ܥ  ≤ ௪ܥ ≤  Wind capacity limit		௪,௠௔௫ →ܥ

୵ܥ௪,௠௜௡ݎ  ≤ ܳ௪ ≤  Wind reactive power  limit		୵ →ܥ௪,௠௔௫ݎ

௠௜௡ܫܸܵ  ≤ ܫܸܵ ≤  Voltage stability limit		௠௔௫ →ܫܸܵ

 

where ீߙ represents the sets of generator buses; ீܥ೔, ܥொ೔ are the cost functions of the 

generator ݅ for the generation of the active and the reactive power ($/ℎ). ܲீ ೘೔೙ and ܲீ ೘ೌೣ are 

the minimum and maximum active power generation limits (ܹܯ), ܳீ೘೔೙ and ܳீ೘ೌೣ are the 

minimum and maximum reactive power generation limits (ܴܣܸܯ), ܸܵܫ௠௜௡ and ܸܵܫ௠௔௫ are 

the minimum and maximum voltage stability index limits and ܫ௜௝(ߜ, ܸ) indicates the current 

in the transmission line between buses ݅ and ݆ (݅ ≠  ௪,௠௔௫ are the minimumܥ ௪,௠௜௡ andܥ .(݆

and maximum capacity limit of wind farm (ܹܯ), ݎ௪,௠௜௡ and ݎ௪,௠௔௫ are the minimum and 

maximum limit in the ratio of reactive power to capacity of the wind farm, ܳ௪ is the reactive 

power of wind farm (ܴܣܸܯ). 

 

As known, generated active power of the wind farm (P௪) depends on wind speed. Hence, P௪ 

can be calculated by multiplying the capacity limit by a generation coefficient between [0, 1]. 

For this chapter, there are other objective functions that will be introduced later like the 

minimization of the voltage stability index (݊݅ܯ	(ܫܸܵ)). where ܸܵܫ is one of the voltage 

stability indices. 
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2.3 Proposed impedance-Based index 

 

In this section, the IB voltage stability index is defined, which can precisely detect the 

voltage instability. The DFIG reactive power limit and OLTC behavior are chosen to modify 

the traditional IB index because of their effects on long-term voltage stability. The traditional 

IB index can be defined as follows: 

௜ܤܫ  = หܼ௘௤,௜ห|ܼ௅௜|  
(2.13) 

 

2.3.1 Model of DFIG reactive limit in improved IB index 

 

In the impedance matching theory, the DFIG reactive limit affects both load impedance and 

TEI. In this section, the DFIG reactive limit is modelled using a variable virtual impedance in 

the impedance matching equation.  

This constraint results in an increased TEI seen at the load bus. Hence, the additional 

impedance can be appended to this model. Note that due to DFIG and conventional generator 

reactive limits, it generally increases the risk of voltage instability. 

 

This model is compatible with different operation modes of DFIG, for example, power factor 

controlled and voltage controlled mode. To operate in the voltage controlled mode, the DFIG 

can be modelled as a PV bus, and then it can be considered as a PQ bus when it reaches the 

reactive power limit. In the power factor controlled mode, DFIG is considered with unit or 

specific power factor in normal conditions. However, the DFIG will start to control the 

reactive power when the terminal voltage drops below a set value in the abnormal conditions. 

Figure 2.1 shows the model of the DFIG reactive limit. As shown in Figure 2.1a, the base 

case of DFIG circuit can become a PV bus (in a voltage controlled mode) and a PQ bus (in a 

power factor controlled mode) before reaching a reactive limit. The DFIG will be a PQ bus, 

when reaching a reactive power limit as shown in Figure 2.1b, and the DFIG terminal voltage 
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decreases from ܸீ  to ܸீᇱ . In other words, an additional impedance ܼ஼ is defined in Figure 

2.1c to model the mentioned limit. Note that a new bus is added as a tie bus to the system. 

 

The modified multi-port system is depicted in Figure 2.1d, when the reactive power limits are 

considered for all DFIG generators and ܼ஼ is the virtual impedance of the model of the DFIG 

reactive limit. 

 

The new equation of the admittance matrix after adding the proposed model is as follows: 

 

൦ܫ௅00ீܫ ൪ = ൦ ௅ܻ௅ ௅்ܻ ௅ܻீ்ܻ ௅ ்ܻ ் ்ܻ ீܻீ ௅ ܻீ ் ܻீ ீ + ஼ܻ				 00	− ஼ܻ0								0 						− ஼ܻ 								 ஼ܻ ൪ ൦
௅்ܸܸܸீᇱܸீ ൪ (2.14) 

 

where Yେ is the diagonal matrix with (
ଵ୞ిభ , ଵ୞ిమ , … , ଵ୞ిౣ) values. 
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Figure 2.1  Modeling of the DFIG reactive limit (a) Base case (b) After DFIG reactive limit. 
(c) Modified system (d) Modified multi-port power system with considering proposed model 
 

Since the added bus acts as a tie bus, Equation (2.14) is simplified as: 

 

൥ܫ௅0ீܫ ൩ = ቎ ௅ܻ௅ ௅ܻᇱ் 0்ܻ ௅ᇱ ்ܻ ்ᇱ ்ܻ ீᇱ0 ܻீ ்ᇱ ஼ܻ ቏ ൥ ௅்ܸܸᇱܸீ ൩ (2.15) 

The additional impedance can be detailed from the following equation: 
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ܼ஼ = ܸீ − ܸீᇱீܫ  
(2.16) 

 

where ܸீ  and ܸீᇱ  respectively are the generator voltage before and after DFIG reactive limit 

action. 

  

The DFIG generator gives similar reactive power capability as a conventional generator. 

Thus, this model is applicable with the reactive power limit of conventional generators. 

 

2.3.2 OLTC model in improved IB index 

 

In order to present the effect of OLTC on the improved IB index, it is assumed that all LTCs 

have the same tap steps and time delay. As shown in Figure 2.2a and 2.2b, the effect of 

OLTC on element impedance is divided into two parts, namely, the OLTC impedance (்ܼ) 

and load impedance (ܼ௅). Consequently, the IB index equation can be modified.  

 

Figure 2.2c shows the multi-port system when the OLTC model is considered in the system. 

It is assumed that OLTC is installed on all loads. As shown, the TEI (ܼ௘௤) and the load 

impedance (ܼ௅) are modified. The modeling of OLTC can enhance the voltage stability 

detection. 
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Figure 2.2  Modeling of the OLTC (a) System with OLTC (b) Modified system  

(c) Modified multi-port power system with considering OLTC model 
 

2.4 Proposed VSC-OPF method 

 

Due to the dynamic behavior of power systems, the traditional VSC-OPF methods cannot 

accurately perform in the voltage instability evaluation during OLTC actions and DFIG 

limits, especially in post-contingency conditions. This chapter proposes a new VSC-OPF 

method that is more practical and realistic. The approach includes a detailed modeling of the 

DFIG and OLTC. In the proposed voltage stability assessment, the first step is to define the 

IB voltage stability index. Then, the VSC-OPF is performed including the IB constraint as a 

voltage stability constraint. This IB constraint is defined as follows: 
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Figure 2.3  Flowchart of the proposed VSC-OPF method 

,ߜ)௠௔௫ܤܫ  ܸ, ܳீ, ܲீ , ܳ௪, P௪) ≤  ௖ (2.16)ܤܫ

 

where ܤܫ௠௔௫ and  ܤܫ௖ represent the maximum and the critical value of the improved IB 

index, respectively. ܤܫ௠௔௫ can show the weakest transmission bus. A flowchart of the 

proposed VSC-OPF based on the improved IB index is depicted in Figure 2.3. 

2.5 Simulation result and discussion 

 

max( )cIB IB≤

maxIB
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In this section, both dynamic and static studies are performed to demonstrate the 

effectiveness of the proposed model. They are divided into two parts: voltage stability 

monitoring and VSC-OPF. Several case studies are selected to verify the results which are 

detailed as below. 

 

2.5.1 Voltage stability monitoring 

 

By applying the proposed model, several case studies such as modified WECC test system 

and IEEE 39-bus system are tested in PSAT (Milano, 2005). In order to evaluate the 

performance of this index, no under-voltage protection or load shedding is considered in this 

work.  

 

2.5.1.1 Modified WECC test system  

To analyze the effect of the proposed model on the voltage stability, a modified WECC test 

system is used which is a looped network system. This system shown in Figure 2.4 has an 

added bus with an OLTC transformer and it contains a wind park with DFIGs. The bus 

number is rearranged respectively as load buses, tie buses and generator buses, because of the 

coupled single-port model calculation. An automatic voltage regulator (AVR) and an OEL 

are installed on the conventional generator and loads will be increased until finding a voltage 

collapse in dynamic simulation. Note that a line transmission tripping is assumed between 

buses 4 and 7 (at ݐ =   .(ݏ5
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Figure 2.4 Modified WECC test system 

 

Tap ratio step (0.02), minimum and maximum tap ratio (between 0.8 to 1.2) and reference 

voltage (0.9 p.u.) are the parameters of the OLTC. The nominal wind speed is considered 15 

 and the Weibull distribution used to model the wind speed. The DFIG operates in the (ݏ/݉)

voltage controlled mode. The voltage magnitudes, tap changing, proposed IB index and 

virtual impedance are depicted in Figure 2.5a–d, respectively. 

 

Figure 2.5a shows the voltage variations after the occurrence of the contingency, where the 

system reaches the voltage instability point at 36.4 s. It is assumed that the short-term voltage 

stability evaluation is ignored. The process of restoration by the OLTC is represented in 

Figure 2.5b, which has a negative effect on voltage stability.  
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(a) 

(b) 

(c) 

(d) 
 

Figure 2.5 Voltage instability in modified WECC system (a) Voltage magnitude at buses 3 
and 4 (b) Tap changing in the OLTC (c) Comparison of IB indices at the load  

(d) Virtual impedance of proposed model 
The comparison between traditional and improved IB indices is evaluated in Figure 2.5c. The 

improved IB index with the modified coupled single-port model can predict the voltage 
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instability accurately, because the index value reaches 0.999 based on the impedance 

matching theory. As expected, when the improved IB index reaches 1, this operating point 

will be the collapse point. Otherwise, Figure 2.5c demonstrates that the traditional IB index 

(with coupled single-port model) reaches a value of 0.442 and it cannot detect the voltage 

collapse point. Therefore, the proposed IB index will improve by 55.7% the voltage 

instability detection in this case. The DFIG changes from PV bus to PQ bus; therefore, Z௖ has 

large variation because of the DFIG reactive limit (see Figure 2.5d). To show the robustness 

of the proposed method with different load models, ZIP and exponential recovery load model 

are used in this case. 

 

2.5.1.2 Modified IEEE 39-bus system 

The IEEE 39-bus system that is well known as New-England power system (Athay, Podmore 

et Virmani, 1979) is evaluated in this part. To investigate the performance of the proposed 

model, a bus with OLTC is added at bus 8 that is called bus number 40 and two wind parks 

with DFIGs has been added at buses 34 and 37. The nominal wind speed is considered 15 

 and the Weibull distribution used to model the wind speed. AVR and an OEL are also (ݏ/݉)

installed on the conventional generators. 

 

The loading factor of additional bus and other buses has been increased up to 1.3 p.u.  and 

1.6 p.u., respectively. A contingency is considered as a line transmission tripping between 

buses 8 and 9 (ݐ =  The voltage magnitudes, tap changing, the impedances of the .(ݏ5

proposed IB index and comparison between traditional and proposed model are presented in 

Figure 2.6a–d, respectively. The results show that extra bus connected to the OLTC (bus 40) 

is the weakest bus in this case. Because it has higher index value than other buses. Figure 

2.6c shows that the system is collapsing at 61.5 s. As observed, the proposed model can 

follow unstable behavior in this case study. 

By applying the proposed model, Figure 2.6c represents the load impedance and the TEI at 

bus 40. The curves of these two impedances cross each other at the collapse point. Thus, the 

results are accurate. The impact of the proposed model is presented in Figure 2.6d that 
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compares the curves of traditional and improved IB index. The traditional IB index reaches a 

value of 0.708 at the collapse point that shows an optimistic prediction of the voltage 

instability. Thus, the proposed IB index will improve by 29.1% the voltage instability 

detection in this case. 

 

To show the robustness of the proposed model, the application of a static var compensator 

(SVC) has been investigated in this part which is installed in bus 6. As known, SVC 

increases the voltage stability margin of power systems. Thus, the previous system is stable. 

To produce a collapse point, the active power of loads and generators will be increased by 

15%.  

 

The voltage magnitudes and comparison between traditional and improved index are 

presented in Figure 2.7a–b, respectively. Where the system reaches the voltage instability 

point at 39.6 s. As shown in Figure 2.7b, the proposed model can predict the voltage 

instability accurately. 

 

2.5.2 VSC-OPF 

 

By applying the proposed model for DFIG wind parks integration, the VSC-OPF is 

performed in these case studies:  IEEE 39-bus, IEEE 57-bus and Polish 2746-bus systems. 

All results in this section are carried out in MATPOWER (Zimmerman et C. Murillo-

Sánchez). The comparison has been done between IB-index, L-index, VCPI and MSV. The 

VSC-OPF can be carried out with different objective functions as follows:  
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(b) 

(c) 

(d) 
 

Figure 2.6 Voltage instability in modified IEEE 39-bus (a) Voltage magnitude at buses 3, 7 
and 40 (b) Tap changing in the OLTC (c) System and load impedances at bus 40  

(d) Comparison between traditional and proposed IB index 
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(b) 
 

Figure 2.7 Voltage instability in modified IEEE 39-bus with SVC (a) Voltage magnitude at 
buses 3, 7 and 40 (b) Comparison between proposed and traditional index 

 

CASE 1: minimize the cost function. 

CASE 2: minimize the cost function with the extra voltage stability constraint.  

CASE 3: minimize the index or maximize it, which depends on the type of index. 

 

2.5.2.1 IEEE 39-bus system  

The proposed VSC-OPF method that is OPF combined with improved IB index is presented 

in Table 2.1 in the stressed conditions. Loading factor of bus 8 and other buses has been 

increased to 1.3 p.u. and 1.6 p.u., respectively. A line transmission outage is assumed 

between buses 8 and 9 for single line outage conditions. Also, two wind parks with DFIGs 

have been added at buses 34 and 37. In case 2, the value of voltage stability constraint should 

be defined by independent system operator (ISO). This value is assumed equal to 0.56 for 

stressed conditions. Table 2.1 can also produce different scenarios with several objective 

functions and load profiles. Hence, ISO can identify the best strategy in these different 

scenarios. Where ்ܤܫ and ܤܫ௠௔௫ are total and maximum voltage stability index between all 

load buses, respectively, and FC is the fuel cost function. P୵ is generated active power of the 

wind farms. Based on different objective functions, generated wind active power can change 

in buses 34 and 37. 

 

Table 2.1  Proposed VSC-OPF results for stressed condition (IEEE 39-bus) 
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 Objective functions 

Case 1 Case 2 Case 3 ௪ܲ, MW 1393.6 1394.0 1386.2 ܤܫ௠௔௫ 0.572 0.56 0.558 ܥܨ 3.48 4.07 4.09 ்ܤܫ,$/h 108897.48 109562.30 124462.73 
 

In order to minimize the objective function in case 3, improved IB index should be obtained 

for all load buses. As illustrated in Figure 2.8, bus 8 has the maximum value of the index; 

therefore, it is the weakest bus. Thus, the improved IB index value of bus 8 was selected to 

be minimized. 

 

 

Figure 2.8 Improved IB index values in the IEEE 39-bus system 
 

2.5.2.2 IEEE 57-bus system  

To compare the proposed VSC-OPF method with other methods, the IEEE 57-bus system is 

selected to demonstrate the performance of the method. A line transmission outage is 

considered between buses 8 and 9 for the single line outage conditions. One wind park with 

DFIGs has been added at bus 12. Figure 2.9 shows a comparison between different variables 

in the cases 1, 2 and 3. The fuel cost is the highest in case 3 and it is approximately same in 

cases 1 and 2. However, case 2 has the lowest generated reactive power and active power 
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losses. This case can satisfy the economic and security issues. It is also seen from Figure 2.9 

that ISO can find the proper optimal solution from the three objective functions. 

 

 

 

 

 
Figure 2.9 Comparison between Different variables in IEEE 57-bus system (a) Generated 

reactive power (MVAR) (b) Active power losses (MW) (c) Maximum values of improved IB 
index (d) Fuel cost function (K$/h) 

 

The comparison between different VSC-OPF methods is presented in Table 2.2. The 

objective functions are as follows: minimize the maximum L-index value (min L୫ୟ୶), 

maximize the minimum singular value (max MSV), minimize total values of VCPI (min VCPI୘) and minimize the maximum IB-index value (min IB୫ୟ୶). As listed in Table 2.2, the 

proposed VSC-OPF (min IB୫ୟ୶) has the lowest fuel cost. However, min VCPI୘ achieves the 

lowest generated reactive power and active power losses. This result is due to the fact that 

VCPI is based on the theory of maximum power transfer between two buses. On the other 

hand, min VCPI୘ has the highest fuel cost. Accordingly, the proposed VSC-OPF has the 

highest performance between other methods. 

 

Table 2.2  Comparison between different VSC-OPF results for IEEE 57-bus system  
(single line outage condition) 
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min ࢞ࢇ࢓ࡸ max ࢂࡿࡹ min ࢀࡵࡼ࡯ࢂ min ࢞ࢇ࢓࡮ࡵ ௟ܲ௢௦௦, MW 37.02 36.97 15.99 29.59 ܳ௚௘௡, MVAR 341.4 342.6 269.2 318.2 ܤܫ௠௔௫ 0.304 0.310 0.298 0.298 ܥܨ 5.3347 5.252 5.497 5.398 ்ܤܫ,$/h 43793.96 43832.90 47265.84 43718.50 
 

2.5.2.3 Polish 2746-bus system 

To validate the proposed VSC-OPF method in the larger system, the Polish 2746-bus system 

is selected. Forty wind parks with specific reactive power limits have been added into this 

system. Figure 2.10 shows sorted values of IB indices for all load buses where bus 506 has 

the maximum value of the index (0.2512); therefore, it is the weakest bus. The improved IB 

index value of bus 506 is selected to be minimized.  

 

Table 2.3 shows the comparison between two scenarios with two critical values of the 

improved IB index. When VSC-OPF is applied, the generated power system is re-dispatched. 

The process of voltage stability improvement represents that the fuel cost increases, however 

the power system has a better voltage stability margin. The ISO can manage the active and 

reactive generated power. 

 
 

Figure 2.10 Sorted improved IB index values in the Polish 2746-bus system 

 

Table 2.3  Proposed VSC-OPF for Polish 2746-bus system 
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Scenarios Base Case 
(IB=0.2512) 

IB VSC-OPF 
(IB=0.2510) 

Objective Function [K$/h] 1307.88 1308.84 
 

2.6 Conclusion 

In this chapter, we propose the improved IB voltage stability index, which can detect 

precisely the voltage instability with high penetration of wind turbine. This index can model 

the DFIG reactive power limit and it uses the concept of coupled single-port circuit. A VSC-

OPF is carried out with the proposed index. The improved model is based on a variable 

virtual impedance and it is adaptable with DFIG reactive behavior. The chapter proposes also 

the modeling of the OLTC in the IB index, if it is available in the system. 

 

Several dynamic and static studies are proposed to demonstrate the effectiveness of the 

proposed model. They have been divided into two parts that are voltage stability monitoring 

and VSC-OPF. By applying the proposed model to voltage stability monitoring, the accurate 

voltage instability detection has been depicted in three case studies. In particular, the 

comparison between improved and traditional IB index represents the method performance. 

The proposed VSC-OPF also has been compared between improved IB-index, L-index, 

VCPI and MSV. The results reveal that the improved IB index has the lowest operating cost. 

The results can also produce different scenarios with several objective functions and load 

profiles. Hence, ISO can identify the proper strategy in these different scenarios. In future 

works, this VSC-OPF could consider the characteristics of an electricity market such as 

reactive power market. Therefore, it would be compatible with the electricity market 

regulations.
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Abstract 

 

In this chapter, a multi-objective stochastic optimal power flow (SOPF) problem with the 

presence of uncertain wind power generations is introduced. In particular, the chapter has 

two main contributions. First, it proposes a multi-objective SOPF which consists of the 

operating cost, voltage stability and emission effects as the objective functions. The wind 

uncertainty is formulated as a scenario-based technique. Demand response (DR) program is 

considered in this chapter, which is one of the most efficient control ways to reduce the risk 

of voltage instability after a contingency occurrence or a stressed loading condition. In 

addition, the proposed approach uses the technique of fuzzification to normalize all objective 

functions and to find the optimal solution. The second contribution proposes a line voltage 

stability index (LVSI). The proposed LVSI can detect precisely the voltage collapse in 

comparison with other LVSIs, especially after the occurrence of a given contingency due to 

the dynamic elements of the system. The proposed multi-objective SOPF is also carried out 

with different existing LVSIs as the objective functions. These approaches are tested and 

validated by the modified WECC test system, the IEEE 39-bus. 

 

 

 

Nomenclature 
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A. Sets 

 Ω஻ Set of buses, indexed by ܾ. ߗ஻ವೃ Set of buses cooperated in the DR program, indexed by ܾ஽ோ. Ωூ Set of generating units, indexed by ݅. ߗ௅ Set of transmission lines, indexed by ݈. ߗ௎ Set of scenarios, indexed by ߗ .ݑ௪ Set of wind farms, indexed by ݓ. 

 

B. Variables 

 ஽ோ௕,௨ Active/reactive power cooperated in the DR program at bus ܾ஽ோ underݍ/஽ோ௕,௨݌ .(MW) ݑ under scenario ݓ ஼௪,௨ Active power curtailment of wind farm݌ 

scenario ݑ (MW/MVAR). ݌௜,௨/ݍ௜,௨ Active/reactive power output of generator ݅ under scenario ݑ 

(MW/MVAR). ݍௐ௪,௨ Reactive power of wind farm ݓ under scenario ݑ (MVAR). 

௟ܵ,௨ Apparent power of line ݈ under scenario ݑ (VA). 

௕ܸ,௨/ߠ௕,௨ Voltage magnitude/angle at bus ܾ under scenario ݑ (V/rad). ܫܸܵܮ௟,௨ Line voltage stability index of line ݈ under scenario ݑ. 

 

C. Parameters 

ீܥ   Cost function of power output of generator ($/MW). ܥௐ Penalty function of wind power spillage ($/MW). ܥ஽ோ Cost function of DR program ($/MW). ீܧ  Emissions function of generator (ton/h). ܲ஽௕/ܳ஽௕ Active/reactive power of load at bus ܾ (MW). 
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ܲௐ௪,௨ Available active power of wind farm ݓ under scenario ݑ (MW). തܲ௜/ തܳ௜ Maximum active/reactive power output of generator ݅ (MW/MVAR). 

௜ܲ/ܳ௜ Minimum active/reactive power output of generator ݅ (MW/MVAR). ܳ௪ௐ/ܳ௪ௐ Min/maximum reactive power of wind farm ݓ (MVAR). ܲ஽ோ௕,௨/ܳ஽ோ௕,௨ Maximum active/reactive power cooperated in the DR program at bus ܾ஽ோ under scenario ݑ (MW/MVAR). ܵ௟̅ Maximum capacity of line ݈ (VA). തܸ௕/ ௕ܸ Maximum/min voltage magnitude at bus ܾ (V). 

௕ܻ௠/߶௕௠ Admittance magnitude/angle of line connecting nodes ܾ and ݉ (S/rad). ߱ଵିଷ Weighting factors of objective functions. ߨ௨ Probability of scenario ߙ .ݑ௜ Emission coefficient of generator ݅	(ton/h). ߚ௜ Emission coefficient of generator ݅ (ton/MWh). ߛ௜ Emission coefficient of generator ݅ (ton/MଶWଶh). ߦ௜  Emission coefficient of generator ݅ (ton/h). ߣ௜ Emission coefficient of generator ݅ (1/MW). 
 

3.1 Introduction 

 

Optimal power flow (OPF) has become one of the most widely tools used in the power 

system planning, operation and electricity market. There are different linear and nonlinear 

solution methods for the OPF. In spite of the introduction of the OPF more than a half-

century ago, the OPF encounters inaccurate and fragile solutions which may enforce an extra 

cost in billions of dollars per year to an independent system operator (ISO) (Cain, O’Neill et 

Castillo, December, 2012). Generally, OPF shows the behavior of elements in steady state 

conditions (Andersson, 2004). In recent years, several multi-objective OPF methods have 

been presented which are useful for an ISO (Duman et al., 2012b; Rezaei Adaryani et Karami, 

2013). 
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One type of multi-objective OPF methods considers voltage stability issues as the objective 

function. These methods employ voltage stability indices to detect voltage instability 

(Avalos, Canizares et Anjos, 2008; Canizares et al., 2001; Lage, da Costa et Canizares, 2012; 

Milano, Canizares et Invernizzi, 2005; Rosehart, Canizares et Quintana, 2003a; 2003b; 

Venkatesh, Arunagiri et Gooi, 2003; Zabaiou, Dessaint et Kamwa, 2014). The roles of these 

indices lie in the evaluation of voltage instability risk and the prediction of voltage collapse 

point. There are several papers on OPF including wind farm (WF) integration (Jabr et Pal, 

2009; Xie, Chiang et Li, 2011). Due to the increased number of WF, the effects of WF on 

voltage stability issues are undeniable. The WF equipped with an induction generator absorbs 

reactive power. As is known, most reasons of voltage collapse are based on failing to provide 

reactive power demands. Therefore, the consideration of the WF should be adequately 

analyzed for voltage instability detection (Youssef, Azab et Amin, 2015). Due to wind 

uncertainties, SOPF (Roald et al., 2016; Summers et al., 2014) was created to provide an 

appropriate model for wind uncertainties in the system so that it can reduce the risk of 

outages (Bienstock, Chertkov et Harnett, 2014). One of the famous techniques in uncertainty 

modeling is a scenario-based technique that provides less operating costs for ISOs (Bouffard, 

Galiana et Conejo, 2005). The authors in (Pand et al., 2016) also note that the scenario-based 

technique is one of the most profitable techniques. The scenario-based technique is applied in 

this section. 

 

Demand response (DR) is defined as demand variations of several voluntary customers due 

to increasing their profits or enhancing the system reliability by directions from an 

independent system operator (ISO) (Assessment of demand response and advanced metering, 

2012; Rabiee et al., 2014). Therefor DR is profitable due to increasing the stability limit and 

assessing the benefits of the unpredictable nature of renewable energies. 

Another type of multi-objective OPF methods regards the emission issues as the objective 

function. Due to increasing energy demands, the power plants release more emissions. Thus, 

more international attention has been given to control this pollution. To manage the effects of 

emissions on the electricity industry, some emission directives have been presented such as 

the Kyoto Protocol (Kyoto Protocol to the United Nations Framework Convention on 
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Climate Change, 1992), and the National Emissions Ceilings Directive (National Emission 

Ceilings for Certain Atmospheric Pollutants, Directive 2001/81/EC of the European 

Parliament and of the Council, 2001). There are several ways to reduce the emissions. In 

(Niknam et al., 2012), the authors propose an environmental dispatch which is one of the 

economical solutions to reach that objective. Carbon capture plants (CCPs) can be used to 

reduce the emissions, for example an economic dispatch (ED) has been performed with CCPs 

with the minimization of the total cost and emissions in (Lu et al., 2013). 

 

Since WF does not itself increase any emission levels, major emission reductions are found 

with high penetration of WF. Therefore, multi-objective SOPF considering  operating cost, 

emission and voltage stability impacts with WF integration and DR is very beneficial for the 

ISOs. In order to change a multi-objective function into a single-objective function, 

fuzzification (Chandrasekaran et Simon, 2012; Esmaili, 2013) is employed in this chapter to 

avoid the scaling problem which will be described in detail. This chapter also uses line 

voltage stability indices (LVSIs) to investigate voltage stability assessment, because they 

have an advantage in terms of their computational efficiency. Such indices are namely: fast 

voltage stability index (FVSI) (Musirin et Rahman, 2002), voltage collapse proximity 

indicator (VCPI) (Moghavvemi et Faruque, 1998), line stability index (Lmn) (Moghavvemi 

et Omar, 1998), LSZ (Jalboub et al., 2012) and line stability factor (LQP) (Mohamed, 

Jasmon et Yusoff, 1989). Generally, the calculation of these LVSIs is based on one single 

line between two buses. Therefore, the voltage stability limit is based on a theory of 

maximum power transfer between two buses. The studies still lack a multi-objective OPF 

with comparison of line voltage stability indices. 

 

This chapter attempts to overcome these aforementioned limitations and proposes a LVSI. It 

also carries out a multi-objective SOPF with WF integration and DR. The main contributions 

of this chapter could be summarized as follows. This chapter proposes a multi-objective 

SOPF problem considering wind uncertainty and DR. This multi-objective SOPF consists of 

the operating cost, voltage stability and emission effects as the objective functions. 

Furthermore, a new LVSI is presented that can detect precisely the voltage collapse in 
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comparison with other LVSIs, especially after the occurrence of a given contingency due to 

the dynamic elements of the system. Finally, a comprehensive comparison between different 

LVSIs as the objective function is given in the multi-objective SOPF. Also, the multi-

objective SOPF with proposed LVSI is investigated under different scenarios. It can reduce 

the operating cost and increase the minimum voltage magnitude. Thus, it can improve the 

performance of the electric utilities.  

 

The rest of the chapter is organized as follows. The chapter introduces a detailed formulation 

and constraints of multi-objective SOPF in section 3.2. A statement of background which 

consists of operating points and fuzzification in multi-objective SOPF is given in section 3.3 

and 3.4. The new LVSI is introduced in section 3.5. The case studies and simulation results 

are presented in section 3.6, whereas section 3.7 draws the conclusion. 

 

3.2 Multi-objective SOPF formulation and constraints 

 

Multi-objective SOPF satisfies technical, economic and environmental issues with high 

penetration of WF and DR. These issues are defined as the total costs, the voltage stability 

index and the emission as the objective functions. In order to solve multi-objective SOPF, all 

three objective functions are considered and several supplementary constraints should be 

added by WF uncertainty and DR. The multi-objective function and its constraints are 

defined as follows: 

 

	݊݅ܯ ෍ ௨ߨ ቎߱ଵ ቌ෍ ௜,௨൯௜∈ఆ಺݌൫ீܥ + ෍ ௐܥ ቀ݌஼௪,௨ቁ௜∈ఆೈ + ෍ ஽ோܥ ቀ݌஽ோ௕,௨ቁ௕∈ఆಳ ቍ௨∈ఆೆ + ߱ଶ ෍ ௜,௨൯௜∈ఆ಺݌൫ீܧ + ߱ଷ ෍ ௟,௨௜∈ఆಽܫܸܵܮ ቏ 
(3.1) 

 

௜ܲ ≤ ௜,௨݌ ≤ തܲ௜,     ∀ݑ ∈ ,௎ߗ ݅ ∈  ூߗ
 

(3.2) 
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ܳ௜ ≤ ௜,௨ݍ ≤ തܳ௜,     ∀ݑ ∈ ,௎ߗ ݅ ∈  ூߗ
 

(3.3) 

෍ ௜,௨௜∈ఆಳ݌ + ෍ (ܲௐ௪,௨௪∈ఆಳ − (஼௪,௨݌ − ௕ܸ,௨ ෍ ௠ܸ,௨ሼ௕,௠ሽ∈ఆಽ ௕ܻ௠ cos(ߠ௕,௨ − ௠,௨ߠ − ߶௕௠)= 	ܲ஽௕ + ݑ∀ ,஽ோ௕,௨݌ ∈ ,௎ߗ ܾ ∈  ஻ߗ
 

(3.4) 

෍ ௜,௨௜∈ఆಳݍ + ෍ ௐ௪,௨௪∈ఆಳݍ) ) − ௕ܸ,௨ ෍ ௠ܸ,௨ሼ௕,௠ሽ∈ఆಽ ௕ܻ௠ sin(ߠ௕,௨ − ௠,௨ߠ − ߶௕௠)= 	ܳ஽௕ + ݑ∀ ,஽ோ௕,௨ݍ ∈ ,௎ߗ ܾ ∈  ஻ߗ
 

(3.5) 

0 ≤ ஼௪,௨݌ ≤ ܲௐ௪,௨,     ∀ݑ ∈ ݓ,௎ߗ ∈  ௐߗ

 

(3.6) 

ܳ௪ௐ ≤ ௐ௪,௨ݍ ≤ ܳ௪ௐ,     ∀ݑ ∈ ݓ,௎ߗ ∈  ௐߗ

 

(3.7) 

−ܵ௟̅ ≤ ௟ܵ,௨ ≤ ܵ௟̅,     ∀ݑ ∈ ,௎ߗ ݈ ∈  ௅ߗ
 

(3.8) 

௕ܸ ≤ ௕ܸ,௨ ≤ തܸ௕,      ∀ݑ ∈ ,௎ߗ ܾ ∈  ஻ߗ
 

(3.9) 

0 ≤ ஽ோ௕,௨݌ ≤ 	ܲ஽ோ௕,௨ ≤ ܲ஽௕ ,     ∀ݑ ∈ ,௎ߗ ܾ ∈  ஻ߗ

 

(3.10) 

0 ≤ ஽ோ௕,௨ݍ ≤ 	ܳ஽ோ௕,௨ ≤ ܳ஽௕	,     ∀ݑ ∈ ,௎ߗ ܾ ∈  ஻ (3.11)ߗ

Constraints (3.2)-(3.3) show the limits of minimum and maximum active/reactive power 

output of the generator and (3.4)-(3.5) show the power balance of active/reactive power. 

Constraints (3.6)-(3.7) are the active/reactive power curtailment limits of the wind farm. 

Constraints (3.8)-(3.9) enforce the power flow and voltage angle limits, respectively. 

Constraints (3.10)-(3.11) enforce the limits of active/reactive power cooperated in the DR 

program. Cୋ൫p୧,୳൯ is defined as quadratic functions for conventional generators and C୛ ቀpେ୵,୳ቁ and Cୈୖ ቀpୈୖୠ,୳ቁ are considered as linear functions. ܫܸܵܮ௟,௨ is one of the line 

voltage stability indices. In this chapter, several line voltage stability indices and a proposed 

index are investigated. Such indices are namely: FVSI (Musirin et Rahman, 2002), VCPI 
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(Moghavvemi et Faruque, 1998), Lmn (Moghavvemi et Omar, 1998), LSZ (Jalboub et al., 

2012) and LQP (Mohamed, Jasmon et Yusoff, 1989). 

 

As mentioned in the literature review, due to increasing the emission, it is essential to 

manage the effects of emission on the electricity industry. An environmental dispatch is 

investigated in this chapter. There are different types of emission such as thermal emission, ܰ ௫ܱ and ܵ ௫ܱ. To model the emissions as a function, two considerable emissions (ܰ ௫ܱ and ܵ ௫ܱ) are looked at in this chapter. This function depends on the generated active power of 

conventional generators and it can be modeled as a quadratic and exponential function. Note 

that the emission of WF is assumed to be zero. The objective function is the minimization of 

the sum of emissions as follows (Niknam et al., 2012): 

௜,௨൯݌൫ீܧ  = ௜ߙ	 + ௜,௨ଶ݌௜ߛ+௜,௨݌௜ߚ + ݑ∀      (௜,௨݌௜ߣ)	௜expߦ ∈ ,௎ߗ ݅ ∈  ூ (3.12)ߗ

 

3.3 Operating points and zones 

Multi-objective SOPF can provide several operating curves depending on the active power 

output of the generators and demands for all scenarios. These curves present operating points 

limits in cost, voltage stability and emission. As shown in Figure 3.1a, PV curve consists of 

the controllable zone (stable operating zone) and the uncontrollable zone (unstable operating 

zone). The voltages of the power system should be controlled in the stable operating zones 

(Eremia et Shahidehpour, 2013). The controllable zone can be divided into two sub-zones 

which are the optimal zone and the critical zone. Note that the minimum boundary of the 

critical zone is the critical line, and so the boundaries of the optimal zone can be selected by 

an ISO. Voltage stability studies tend to maintain the voltage in the optimal zone, which is 

obtained from an optimum result of multi-objective SOPF. Figure 3.1b shows the emission 

limit for a generator which depends on the power output of the generators and it is modeled 

as a quadratic and exponential function. Figure 3.1c presents variations in cost by the power 

output of the generators and variations in the penalty cost by active power curtailment of the 

wind farm and it shows the optimal and critical zones from an ISO viewpoint. 
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3.4 Fuzzification of multi-objective SOPF 

In the fuzzy domain, multi-objective SOPF can be changed to single-objective SOPF. The 

scales in objective functions are different, so fuzzification can be essential to normalize the 

objective functions. In the first step, the membership functions for each objective should be 

defined. There are different forms of membership functions such as linear, triangular, 

Gaussian and so on. Among those forms, a linear membership function is appropriate for this 

study due to some reasons. A linear membership function is able to normalize the objective 

functions and bring them to the range [0,1]. Furthermore a linear membership function needs 

less computational burden. As the objective functions in (3.1) are continuous functions and 

they can change monotonically, this membership function can be rational. A linear 

membership function to fuzzify three objective functions is shown in Figure 3.2. The values 

of ܨ௜ௗ௘௔௟ and ܨ௡௔ௗ௜௥ are ideal and nadir values of each objective function. Note that these 

values can be obtained from the best and worst values of the single-objective function. The 

payoff table which is an organized way for finding ideal and nadir values is used in this study 

(see (Cohon, 2013) for details). In the fuzzy domain, μ௜ as a fuzzy membership function is 

used to linearize the objective functions. Fuzzy membership in Figure 3.2a and Figure 3.2b is 

used for the objective function that should be maximized and minimized, respectively. 
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Figure 3.1 Operating zones (a) PV curve for a load bus (b) Emission curve for a conventional 

generator (c) Cost curve for a conventional and wind generator 
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Figure 3.2 Fuzzy membership functions (a) Using for a SOPF objective function that should 
be maximized (b) Using for a SOPF objective function that should be minimized 

 

The linear membership function for Figure 3.2a can be obtained as follows: 

 μ௜ = 1 for  ܨ௜ ≤ ௡௔ௗ௜௥  μ௜ܨ = ௜ܨ) − ௜ௗ௘௔௟ܨ)(௡௔ௗ௜௥ܨ − ௡௔ௗ௜௥ܨ  ௡௔ௗ௜௥) forܨ < ௜ܨ < ௜ௗ௘௔௟ (3.13) μ௜ܨ = 0 for  ܨ௜ ≥   ௜ௗ௘௔௟ܨ

 

When the objective function value is less than ܨ௡௔ௗ௜௥, the value of fuzzy membership 

functions is considered one. If the objective function value is more than ܨ௜ௗ௘௔௟,  the value of 

fuzzy membership functions is considered zero in (3.13). Finally, the objective function is 

linearized and its values become between zero and one. The linear membership function for 

Figure 3.2b can be obtained as follows: 

 μ௜ = 0 for  ܨ௜ ≤ ௜ௗ௘௔௟  μ௜ܨ = ௜ܨ) − ௡௔ௗ௜௥ܨ)(௜ௗ௘௔௟ܨ − ௜ௗ௘௔௟ܨ  ௜ௗ௘௔௟) forܨ < ௜ܨ < ௡௔ௗ௜௥ (3.14) μ௜ܨ = 1 for  ܨ௜ ≥   ௡௔ௗ௜௥ܨ

 

A lower value of a membership function indicates a more favorable value. After the 

membership function calculation, the three-objective function in (3.1) can change into the 

single-objective function. It is clearly seen that choosing the weighting factors will be easy in 
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the fuzzy domain and they can be defined by ISO. The presented linear fuzzification method 

has a lesser computational burden than the Pareto-based methods (Cohon, 2013; Esmaili, 

2013). 

 

3.5 Line voltage stability index (LVSI) 

 

An impedance theory is a proper way to estimate the maximum power transferred to a load 

bus. It can be useful in voltage stability assessment. The impedance theory is also adopted in 

power system protection such as distance relay (Chilvers, Jenkins et Crossley, 2005). Thus, 

the impedance seen at two buses of a transmission line can provide important information for 

the operation and control of the power system. A transmission line in a sample power system 

is shown in Figure 3.3a. 
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bV

l lP jQ+

1bZ +

bI

D D
b bP jQ+

1 1bV +

1 1l lP jQ+ ++
1bI +

1 1 1l l lZ R jX+ + += +

bZ

1 1
D D

b bP jQ+ ++

 

bV
l lP jQ+

bI

eqV

bZ lZ 1bZ +

1bV +

 
 

Figure 3.3 IBLVSI model in a sample power system (a) Two buses of transmission line  
(b) Impedances are seen in the equivalent circuit 

 

First the impedances at the sending end and receiving end of the line are calculated in (17) 

and (18), respectively. Let us consider the simplified system shown in Figure 3.3b. Based on 

a theory of maximum power transfer between two buses, source impedance should be 
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matched with an impedance of the rest of the system.  In this study, a line stability index is 

introduced which is based on impedance matching theory and it is named an impedance-

based line voltage stability index (IBLVSI). 

 

The impedance seen at bus ܾ can be calculated as follows: 

௕ܫ  = ൬ ௟ܵ	௕ܸ൰∗ = ൬ ௟ܲ + ݆ܳ௟	௕ܸ ൰∗ (3.15) 

 ܼ௕ = ௕ܸܫ௕ = ௕ܸቀ ௟ܲ + ݆ܳ௟	௕ܸ ቁ∗ (3.16) 

 ܼ௕ = ቆ ௟ܲ + ݆ܳ௟௟ܲଶ + ܳ௟ଶቇ × | ௕ܸ|ଶ 
(3.17) 

 

The impedance seen at bus ܾ + 1 is defined in (3.18): 

 ܼ௕ାଵ = ቆ ௟ܲ + ݆ܳ௟௟ܲଶ + ܳ௟ଶቇ × | ௕ܸାଵ|ଶ 
(3.18) 

 

Finally, IBLVSI is proposed as follows: 

ܫܸܵܮܤܫ  = ห|ܼ௕| − |ܼ௕ାଵ + ܼ௟|ห (3.19) 

 

Equation (3.19) can find the operating point with the voltage instability based on the 

maximum power transferred theorem. In Figure 3.3b, ܼ௕ is considered as the impedance of 

the voltage source and ܼ௕ାଵ + ܼ௟ is considered as a load impedance. In the maximum power 

transferred theorem, when the source impedance is matched with an impedance of the rest of 

the system; the system will be unstable. 
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Figure 3.4 Flowchart of the proposed multi-objective SOPF approach 

Therefore, |ܼ௕| should be equal to |ܼ௕ାଵ + ܼ௟| in voltage instability conditions. It can be 

conquered that when the value of IBLVSI reaches zero, the system will be in a critical mode 

and it will be unstable. The application of the IBLVSI in voltage stability monitoring and 

multi-objective SOPF will be described in the results section. The step-by-step procedure for 

the proposed multi-objective SOPF is shown in Figure 3.4. 
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3.6 Simulation result and discussion 

 

In this section, simulations are performed to demonstrate the effectiveness of the proposed 

multi-objective SOPF. They are divided into two parts: first the voltage stability detection of 

the proposed LVSI and traditional LVSIs is evaluated in the power system with WF and then 

the results of the multi-objective SOPF have been presented. Case studies are selected to 

verify the results which are detailed as below. 

 

3.6.1 Voltage stability monitoring of LVSIs 

 

By applying the proposed model, the modified WECC test system and the IEEE 39-bus 

system are tested in PSAT (Milano, 2005). In order to evaluate the performance of this index, 

no under-voltage protection or load shedding is considered in this work. 

 

3.6.1.1 Modified WECC test system  

This system shown in Figure 3.5 has an added bus with an OLTC transformer and it contains 

a WF. An automatic voltage regulator (AVR) and an over-excitation limiter (OEL) are 

installed on the conventional generator and loads will be increased until finding a voltage 

collapse in dynamic simulation. Note that a line transmission tripping is assumed between 

buses 4 and 7 (at ݐ =   .(ݏ5
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Fig. 1.    

 
Figure 3.5 Modified WECC test system 

 

Tap ratio step (0.02), minimum and maximum tap ratio (from 0.8 to 1.2) and reference 

voltage (0.9 p.u.) are the parameters of the OLTC. The nominal wind speed is considered to 

be 15 (݉/ݏ) and the Weibull distribution is used to model the wind speed. The WF uses 

DFIG which operates in the voltage controlled mode. The voltage magnitude, tap changing 

and LVSI index comparison are depicted in Figure 3.6a–c, respectively. 

 

Figure 3.6a shows the voltage variations after the occurrence of the contingency where the 

system reaches the voltage instability point at 31.9 s. It is assumed that the short-term voltage 

stability evaluation is ignored. The process of restoration by the OLTC is represented in 

Figure 3.6b which has a negative effect on voltage stability. The comparison between 

different LVSIs is evaluated in Figure 3.6c. It shows that the IBLVSI can predict the voltage 

instability accurately because the index value reaches zero. Otherwise, Figure 3.6c 

demonstrates that the other LVSIs cannot detect the voltage collapse point. The values of 

Lmn, LQP, VCPI, FVSI and LSZ reach 0.28, 0.65, 0.718, 0.72 and 0.73 respectively. Note 
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that the values of these indices should reach one to detect voltage instability. To show the 

robustness of the index with different load models, ZIP and the exponential recovery load 

model are used in this case (see Figure 3.6). 

 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 3.6 Modified WECC 9-Bus (a) Voltage magnitude at buses 3 and 4 (b) Tap changing 

in the OLTC (c) Comparison of LVSIs 
The OLTC triggers the instability process in Figure 3.6b. The tap ratio keeps the voltage 

constant at load bus. The process of restoration by the OLTC continues until the voltage 

instability occurs. There are some methods to control the voltage stability by OLTC that is 
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well known as corrective actions, which are used to control the restoration actions after the 

occurrence of a contingency. They are 1) tap blocking behavior, 2) specific tap or voltage 

switching behavior and 3) tap reversing behavior. However, it assumes the worst possible 

condition where none of these corrective actions occur in Figure 3.6.  

 

In another case study, tap blocking behavior is investigated to show the robustness of the 

index. Figure 3.7 shows this case study in which the OLTC is blocked. It shows that load at 

bus 3 is increased by 35% and a voltage collapse is found in dynamic simulation. As seen in 

Figure 3.7a, the system is collapsed at 10.05 s. The values of Lmn, LQP, VCPI, FVSI and 

LSZ reach 1.6, 1.62, 0.82, 1.57 and 4.22 which cannot predict voltage collapse accurately 

(see Figure 3.7b). Otherwise, the IBLVSI detects voltage instability accurately with and 

without the OLTC influence. 

 

3.6.1.2 IEEE 39-bus system 

The IEEE 39-bus system that is well known as the New-England power system (Athay, 

Podmore et Virmani, 1979) is evaluated in this part. To investigate the performance of the 

LVSIs, two WFs with DFIGs have been added to buses 36 and 37. The loading factor of an 

additional bus and other buses has been increased up to 1.35 p.u.  and 1.65 p.u., respectively. 

A contingency is considered as a line transmission tripping between buses 8 and 9 (ݐ =  .(ݏ5

The voltage magnitudes, comparison between LVSIs and the behavior of IBLVSI are 

presented in Figure 3.8a–c, respectively. 
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(a) 

 
(b) 

 
Figure 3.7 Modified WECC 9-Bus with blocked OLTC (a) Voltage magnitude at buses 3 and 

4 (b) Comparison of LVSIs 

 

Figure 3.8 shows that the system is collapsing at 50.4 s. As observed, the values of Lmn, 

LQP, VCPI, FVSI and LSZ reach 0.3, 0.3, 0.947, 0.24 and 0.63 at the collapse point in 

Figure 3.8b which shows an optimistic prediction of the voltage instability. However, the 

IBLVSI will improve the voltage instability detection in this case as shown in Figure 3.8c. It 

can be obtained from the results that the IBLVSI can be calculated easily and that it is 

compatible for modern power systems with high penetration of wind. Thus, it has an accurate 

result in post-contingency situations. 
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Multi-objective SOPF considering WF integration and DR program is carried out in 

MATPOWER (Zimmerman et C. Murillo-Sánchez) using the IEEE 39-bus. All system data 

is given the IEEE 39-bus system that is provided from (Athay, Podmore et Virmani, 1979). It 

is assumed that two WFs are added at buses 36 and 37. The total wind generation capacity of 

each WF is considered to be 600 MW. The penalty factor of wind spillage and participation 

cost in the DR program are assumed to be 10 and 30, respectively. Wind power spillage is 

defined as the amount of wind power generation which is not utilized by power systems due 

to technical reasons. It is also assumed that loads at buses 7, 16, 18, 26 can participate in the 

DR program. To create congestion, the loading factor at bus 8 and other buses has been 

increased by 1.3 p.u. and 2.0 p.u., respectively. Note that 10 scenarios are selected to be 

considered in the optimization problem from (Pand et al., 2016) and these 10 scenarios can 

create a trade-off between calculation burden and cost accuracy. The wind data is given from 

NREL Western Wind dataset (Potter et al., 2008). 

 

In order to investigate multi-objective SOPF from the viewpoint of voltage stability, several 

indices are considered as the objective functions. Table 3.1 shows the results of different 

multi-objective SOPF under scenario #1. Two objective functions are considered for each 

LVSI. First, the maximum or minimum value of index and, second, the sum index value for 

all transmission lines.  

 

The proposed index considering ܫܸܵܮܤܫ௠௜௡ as the objective function provides better results 

than others. For instance, in comparison with ܸܫܲܥ௠௔௫; the proposed index improves total 

cost, emission and minimum voltage magnitude by 0.08%, 0.79% and 1.86%, respectively. 

Table 3.1 also shows the amount of active power cooperating in the DR program. The 

different objective functions can be compared from the aspect of appropriate deployment in 

the DR program. Note that the weighting factors of objective functions 1, 2 and 3 are 

assumed to be 0.1, 0.8 and 0.1, respectively. 



89 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 3.8 IEEE 39-bus system (a) Voltage magnitude at buses 3, 7 and 8 (b) Comparison of 

LVSIs (c) IBLVSI behavior 
 

Table 3.1  Multi-objective SOPF for different LVSIs under scenario #1 
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 DR Program 

(MW) 

Losses 

(MW) 

Emission 

(Ton/hr) 

Minimum 

voltage 

magnitude (pu) 

Cost 

($/hr) 

௠௔௫ 202.2 103.71 2.1530 0.861 101736 ෍ܫܲܥܸ ௟௟∈ఆಽܫܲܥܸ  325 102.07 2.1047 0.857 102961 

௠௔௫ 325.2 101.97 2.1108 0.852 102993 ෍݊݉ܮ ௟௟∈ఆಽ݊݉ܮ  323.1 101.98 2.1071 0.858 102949 

௠௔௫ 324.9 102.24 2.1063 0.854 102971 ෍ܫܸܵܨ ௟௟∈ఆಽܫܸܵܨ  323.2 101.98 2.1071 0.858 102943 

௠௔௫ 208.1 103.63 2.1457 0.859 101794 ෍ܼܵܮ ௟௟∈ఆಽܼܵܮ  324.8 101.32 2.1043 0.862 102956 

ܳܮ ௠ܲ௔௫ 325.3 101.97 2.1096 0.852 102987 ෍ ܳܮ ௟ܲ௟∈ఆಽ  323.9 102.09 2.1073 0.856 102960 

௠௜௡ 193.3 103.75 2.1362 0.877 101641 ෍ܫܸܵܮܤܫ ௟௟∈ఆಽܫܸܵܮܤܫ  192.7 103.71 2.1543 0.860 101658 

 

Two cases are investigated in Figure 3.9. In case 1, only total cost is considered as the single-

objective function. However, the multi-objective function is studied when ܫܸܵܮܤܫ௠௜௡ is 

given as the objective function of voltage issues in case 2.  
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(a) 

(b) 

 
(c) 

 
Figure 3.9 Single/multi-objective SOPF under scenario #1 (a) Comparison of active power 

schedule in case 1 & 2 (b) Comparison of voltage magnitude of buses in cases 1 & 2  
(c) Active power cooperating in DR program case 2 
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Figure 3.9a presents a comparison of active power dispatches in case 1 and case 2. Figure 

3.9b shows a comparison of the voltage magnitude of buses in cases 1 and 2. As seen in 

Figure 3.9b, the voltage magnitude of buses is increased in the multi-objective SOPF. To 

increase the voltage magnitude of buses and to decrease the total emission, selected loads 

participate in the DR program. Figure 3.9c shows the amount of active power cooperating in 

the DR program. Due to the topology of the system, maximum active power cooperated in 

the DR program is considered at bus 7. As seen in Figure 3.9b, bus 7 and buses near to this 

bus like buses 5, 6 and 8 are the weakest buses and they need to be improved from voltage 

stability issues. 

 

Table 3.2  Active power output of wind farms (MW) under different scenarios 
 

 Bus ࢛૚ ࢛૛ ࢛૜ ࢛૝ ࢛૞ ࢛૟ ࢛ૠ ࢛ૡ ࢛ ૢ࢛૚૙ ܲௐ௪,௨−  ஼௪,௨݌

 ଵݓ
181.

0 
138.

4 
183.

1 
165.

1 
229.

7 
146.

 ଶݓ 311.4 167.7 48.76 183.9 9
193.

1 
151.

9 
200.

9 
132.

6 
186.

8 
81.0

8 
196.0

8 
178.0

1 
107.2

1 
297.0

2 
 

Table 3.3  DR dispatches (MW) under different scenarios 
 

 

Bu

s  

 ૚૙࢛ ૢ࢛ ૡ࢛ ૠ࢛ ૟࢛ ૞࢛ ૝࢛ ૜࢛ ૛࢛ ૚࢛

 ଻ܤ 

137.2

4 

154.9

6 

139.0

1 

155.0

6 

138.7

2 

158.4

8 

139.2

2 

156.9

3 

156.3

4 

141.7

5 

 ஽ோ௕,௨݌

 ଶ଺ 0 50.25 7.30 50.01 5.59 57.01 7.77 55.12 52.48 20.18ܤ ଵ଼ 47.77 90.46 55.41 89.91 53.75 94.92 55.74 95.05 91.56 68.81ܤ ଵ଺ 8.37 55.83 17.84 54.93 15.31 60.23 18.14 61.55 56.57 30.40ܤ
 

 

Table 3.2 shows the active power output of two installed wind farms in the system. The 

active power output is changed based on 10 scenarios in the multi-objective SOPF. Table 3.3 

shows the DR dispatches under different scenarios. As mentioned before, it is also assumed 

that loads at buses 7, 16, 18, 26 can participate in the DR program. The active power 
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cooperated for the DR program is different at those buses. It shows that all variables are 

dependent on the scenarios. 

 

3.7 Conclusion 

In this chapter, we propose a multi-objective SOPF problem with the presence of uncertain 

wind power generations and DR, in which this multi-objective SOPF consists of the 

operating cost, voltage stability and emission effects as the objective functions. The wind 

uncertainty is formulated as a scenario-based technique. The DR program is considered in 

this chapter and it improves voltage drop after a stressed loading condition. To normalize 

each objective function, the fuzzification technique is used to find the optimal solution. 

Furthermore, a new LVSI is presented that can detect precisely the voltage collapse in 

comparison with other LVSIs, especially after the occurrence of a given contingency due to 

the dynamic elements of the system. These comparisons, based on voltage stability 

monitoring, are tested by the modified WECC test system, the IEEE 39-bus. A 

comprehensive comparison between different LVSIs as the objective function is given in the 

multi-objective SOPF. These approaches are validated by the IEEE 39-bus. The results 

demonstrate that multi-objective SOPF with proposed LVSI decreases the operating cost and 

improves the voltage drop. The results also show that the proposed algorithm can be 

implemented easily, and it is compatible with the other technical constraints of the system. 
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Abstract 

 

This chapter proposes an approach for frequency and voltage control in stochastic optimal 

power flow (SOPF) with the presence of uncertain wind power generations and energy 

storage systems (ESSs). The wind uncertainty is considered as a scenario-based model in 

SOPF approach. Demand response (DR) is one of the best efficient control ways to reduce 

operating costs. In particular, the proposed SOPF contains two main contributions. First, the 

frequency restoration scheme cooperates with DR and spinning reserve to stop frequency 

drop in contingency events. This scheme is defined in three levels. The second contribution 

utilizes an extended-L (EL) index to evaluate voltage stability analysis. A voltage constraint 

is defined from the EL-index in the SOPF approach. The EL-index considers a generator 

equivalent model (GEM). Active redispatch of generating units and DR deployment are 

employed to satisfy the frequency and voltage constraints in a new SOPF formulation with 

high penetration of wind energy. This method is analyzed in detail and it is tested on the 

IEEE RTS-96. The results show that the proposed approach operates successfully.
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Nomenclature 

 

A. Sets 

 .ݓ ௪ Set of wind farms, indexed byߙ .ݑ ௎ Set of scenarios, indexed byߙ ݐ Set of hours, indexed by ்ߙ .݈ ௅ Set of transmission lines, indexed byߙ .ூಷೃ Set of generating units that can provide fast instantaneous reserve, indexed by ݅ிோߙ .݅ ூ Set of generating units, indexed byߙ .ீܾ ஻ಸ Set of generator buses, indexed byߙ .஻ಽ Set of load buses, indexed by ܾ௅ߙ .஻ೄ೅ Set of buses equipped with storage, indexed by ܾௌ்ߙ .஻ವೃ Set of buses cooperated in the DR program, indexed by ܾ஽ோߙ .ܾ ஻ Set of buses, indexed byߙ 

 

B. Variables 

 ܿℎ௧,௕,௨ Charging rates of storage at bus ܾ under scenario ݑ during hour ݐ (MW). ݀݅ݏ௧,௕,௨ Discharging rates of storage at bus ܾ under scenario ݑ during hour ݐ (MW). ݈݁௧,௕,௨ Voltage stability index at bus ܾ under scenario ݑ during hour ݌ .ݐ஼௧,௪,௨ Active power curtailment of wind farm ݓ under scenario ݑ during hour ݐ 
(MW). ݌஽ோ௧,௕,௨/ݍ஽ோ௧,௕,௨ 

Active/reactive power cooperated in the DR program at bus ܾ under 

scenario ݑ during hour ݐ (MW/MVAR). ݌௅ௌ௧,௕,௨/ݍ௅ௌ௧,௕,௨ 

Active/reactive power cooperated in the LS program at the bus ܾ under 

scenario ݑ during hour ݐ (MW/MVAR). 
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 ݐ during hour ݑ ௧,௜,௨ Active/reactive power output of generator ݅ under scenarioݍ/௧,௜,௨݌
(MW/MVAR). ݍௐ௧,௪,௨ Reactive power of wind farm ݓ under scenario ݑ during hour ݐ (MVAR). ݎ௧,௜,௨ Spinning reserve of generator ݅ under scenario ݑ during hour ݐ (MW). ݎ௙௧,௜,௨ Fast instantaneous reserve of generator ݅ under scenario ݑ during hour ݐ 
(MW). ܵ௧,௟,௨ Apparent power of line ݈ under scenario ݑ during hour ݐ (VA). ܿ݋ݏ௧,௕,௨ Storage state of charge at bus ܾ under scenario ݑ during hour ݐ	(MWh). 

௧ܸ,௕,௨/ߠ௧,௕,௨ Voltage magnitude/angle at bus ܾ under scenario ݑ during hour ݐ (V/rad). 

 

C. Parameters 

ீܥ   Cost function of power output of generator ($/MW). ܥோ Cost function of spinning reserve ($/MW). ܥௐ Penalty function of wind power spillage ($/MW). ܥ஽ோ Cost function of DR program ($/MW). ܥ௅ௌ Cost function of LS program ($/MW). ܿℎതതത௕ Maximum charging rates of storage at bus ܾ (MW). ݀ଓݏതതതത௕ Maximum discharging rates of storage at bus ܾ (MW). ܦ Damping factor.  ܮܧௗ௘௦ Desired voltage stability index value. ܲ஽௧,௕/ܳ஽௧,௕ Active/reactive power of load at bus ܾ during hour ݐ (MW). ܲௐ௧,௪,௨ Available active power of wind farm ݓ under scenario ݑ during hour ݐ 
(MW/MVAR). തܲ௜/ തܳ௜ Maximum active/reactive power output of generator ݅ (MW/MVAR). 

௜ܲ/ܳ௜ Minimum active/reactive power output of generator ݅ (MW/MVAR). ܲ஽ோ௕/ܳ஽ோ௕ Maximum active/reactive power cooperated in the DR program at bus ܾ 

(MW/MVAR). 
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ܲி஽ଵ௧ Deficit power by frequency drop from 60 Hz to 59.2	Hz during hour (ݑ݌) ݐ. ܲி஽ଶ௧ Deficit power by frequency drop from 60 Hz to 59.5	Hz during hour (ݑ݌) ݐ. ܲி஽ଷ௧ Deficit power by frequency drop from 60 Hz to 59.7	Hz during hour (ݑ݌) ݐ. ܲீ௅௧ Magnitude of generation loss by the contingency during hour t (MW). ܳ௪ௐ/ܳ௪ௐ Min/maximum reactive power of wind farm ݓ during hour ݐ (MVAR). ܴ Generator’s speed-droop response. ܴܦ௜ Ramp down limit of generator ݅ (MW/h). ܴ ௜ܷ Ramp up limit of generator ݅ (MW/h). ܴܦ஽ோ௜ Ramp down limit of demand cooperated in the DR program at bus ܾ 

(MW/h). ܴܷ஽ோ௜ Ramp up limit of demand cooperated in the DR program at bus ܾ (MW/h). ܵ௟̅ Maximum capacity of line ݈ (VA). ܿ݋ݏതതതതത௕ Maximum state of charge (MWh). തܸ௕/ ௕ܸ Maximum/min voltage magnitude at bus ܾ (V). 

௕ܻ௠/߶௕௠ Admittance magnitude/angle of line connecting nodes ܾ and ݉ (S/rad). ߨ௨ Probability of scenario ߟ .ݑ௖௛ Charging efficiencies of storage. ߟௗ௜௦ Discharging efficiencies of storage. 

 

4.1 Introduction  

 

Nowadays most power systems operate close to their stability limits to minimize the 

operating costs. To reduce closeness to the voltage and frequency stability limit, demand 

response (DR) is profitable due to assessing the benefits of the unpredictable nature of 

renewable energies. DR  is defined as demand variations of several voluntary customers due 

to increasing their profits or enhancing the system reliability by directions from an 

independent system operator (ISO) (Assessment of demand response and advanced metering, 

2012). 
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Power system frequency acts as an important signal to understand the safe and secure 

dynamic behavior of power systems.  Frequency fluctuations could be very risky and even 

result in outages especially at low frequencies (Horta, Espinosa et Pati, 2015). To maintain 

the frequency in safe fluctuations, ISO needs to balance the load and generation. Primary 

frequency control has the important role to this balance by altering  the power output of 

generating units and demand of flexible loads (Rebours et al., 2007). After occurrence of 

contingency, under-frequency load shedding (UFLS) is traditionally utilized to raise the 

frequency during shortages of spinning reserve. It causes excessive load shedding that 

produces several economic and technical problems for power systems. However, deployment 

of DR can reduce the load shedding and it can improve stability and reliability of power 

systems (Chang-Chien et al., 2012; Goel, Qiuwei et Peng, 2006). 

 

One of the crucial issues in the optimal power flow (OPF) is the consideration of an 

applicable model for uncertainties in the system. When variations of unpredicted resource 

create a high amount of uncertainties a power system may result in outage or even collapse. 

In this situation stochastic OPF (SOPF) can reduce the risk of outages (Bienstock, Chertkov 

et Harnett, 2014). A SOPF with weighted-chance constraints is presented in (Roald et al., 

2016; Summers et al., 2014) while considering the uncertainty of wind power. The types of 

wind power control are investigated in (Roald et al., 2016). Another study (Condren, Gedra 

et Damrongkulkamjorn, 2006) considers uncertain security costs, interrupting consumption 

costs and generator ramping during a contingency event. (Vrakopoulou et al., 2012) 

represents uncertain reserve costs, but reserve is considered as a linear function of the 

generation-load mismatch to model behavior of the secondary frequency controller. One of 

the famous techniques in uncertainty modeling is a scenario-based technique that provides 

less operating costs for ISOs (Bouffard, Galiana et Conejo, 2005). The authors in (Pand et al., 

2016) also claim that the scenario-based technique is the most profitable technique in 

comparison with the other techniques like robust, interval and improved interval techniques. 
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One of the challenges in the scenario-based technique is the selection of scenarios and their 

probabilities. (Gröwe-Kuska et al., 2002) presents an appropriate algorithm for scenario 

selection. This study is a pioneer of scenario reduction algorithms in stochastic programs. In 

(Papavasiliou, Oren et Neill, 2011), a two-stage weighted scenario-based technique 

considering reserves and wind power is presented. Authors in (Vrakopoulou, Mathieu et 

Andersson, 2014) demonstrate a scenario-based SOPF with utilization of uncertain DR which 

has been modelled as a virtual energy storage unit. (Papavasiliou et Oren, 2012) presents a 

SOPF considering DR and wind power as certain and uncertain variables, respectively. 

Aggregations of DR resources are studied with a model of uncertain flexibility in (Mathieu et 

al., 2013). Generally, aggregation of DR resources can be utilized in ancillary services, 

security and stability in power systems. The effect of DR on distribution systems has been 

presented in (Lu et al., 2011; Steen et al., 2011; Vrettos et Andersson, 2013). These studies 

examine different types of DR controls like the centralized and decentralized controls on the 

distribution systems. Their results show that DR can decrease the stresses on the distribution 

systems. 

 

Different types of OPF considering voltage stability issues called voltage stability 

constrained OPF (VSC-OPF) are reported in (Avalos, Canizares et Anjos, 2008; Lage, da 

Costa et Canizares, 2012; Milano, Canizares et Invernizzi, 2005; Zabaiou, Dessaint et 

Kamwa, 2014). The VSC-OPF approaches detect the closeness of the system to the voltage 

collapse. Several indices have been proposed in the literature in order to evaluate voltage 

stability. For instance, minimum singular value (MSV) of the power flow Jacobian 

(Tiranuchit et Thomas, 1988), MSV of the reduced Jacobian (Lof, Andersson et Hill, 1993), 

L-index (Kessel et Glavitsch, 1986) and extended-L (EL) index (Yang et al., 2013). The EL-

index has been introduced recently and it has more advantages than other performance 

indices which have been presented with numerical results in (Yang et al., 2013). The authors 

in (Rabiee et al., 2014) investigate a VSC-OPF approach considering DR and stochastic wind 

resources. They consider the loading margin as a voltage stability index.  
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Due to the unpredictable nature of renewable energies, energy storage systems (ESSs) 

become more and more beneficial to decrease the energy variations. Atwa and El-Saadany 

(Atwa et El-Saadany, 2010) formulate an OPF approach to allocate ESSs in a distribution 

system. Gabash (Gabash et Li, 2012) investigates an OPF approach with ESSs and wind 

farms. The simulations are carried out in two optimization horizons and they show that the 

longer horizon provides better economical and technical results. 

  

The studies reviewed in this section still lack a complete SOPF approach considering both 

voltage and frequency control. This chapter presents a frequency and voltage constrained 

SOPF with the presence of uncertain wind power generations. The proposed scenario-based 

SOPF utilizes a combined DR, ESS, load shedding (LS) and reserve to increase reliability 

under various contingency occurrences. In the proposed frequency and voltage stability 

assessment, the objective function is the minimization of total operating costs and it 

considers costs for DR, LS, wind spillage and reserve resources. To solve frequency 

instability issues, this chapter uses the reduced-order system frequency response (SFR) 

model and creates some constraints to be added to the SOPF. To keep a system safe from the 

viewpoint of voltage stability issues, it uses the EL-index. The EL-index is one of the voltage 

stability indices that can predict voltage collapse accurately. 

 

The chapter is organized as follows: Section 4.2 presents a statement of background, whereas 

section 4.3 provides the formulation for proposed frequency and voltage constrained SOPF 

approach. In section 4.4, the simulation results are given to present the performance of the 

proposed approach with single and double contingencies. Finally, conclusions are presented 

in section 4.5. 
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4.2 Background review 

 

4.2.1 System frequency response model 

 

The reduced-order SFR model (Anderson et Mirheydar, 1990) has been used in this study for 

the estimation of frequency behavior of a large power system after a contingency occurrence. 

This SFR model disregards nonlinearities and it only considers crucial dynamics of the 

system. There are several effective factors in the frequency dynamics. For example, the 

inertia constant, damping factor and the generator’s speed-droop response may decrease the 

frequency trend after a contingency occurrence. Based on the reduced-order SFR model, the 

frequency response is obtained as follows (Anderson et Mirheydar, 1990; Chang-Chien et al., 

2012): 

 Δ߱ = ( ܴ × ߱௡ଶܦ × ܴ + )(௠ܭ 1 + ோܶݏݏଶ + ݏ௡߱ߞ2 + ߱௡ଶ)( ௗܲ) (4.1) 

 

where  

 ߱௡ଶ = ܦ × ܴ + ܪ௠2ܭ × ܴ × ோܶ 
(4.2) 

ߞ  = ܪ2) × ܴ + ܦ) × ܴ + ௠ܭ × (ுܨ × ோܶ2(ܦ × ܴ + (௠ܭ )߱௡ 
(4.3) 

 

where ܭ௠ gain factor, ܪ inertia constant, ோܶ reheat time constant, ܨு fraction of generated 

power by high pressure turbine, ܦ damping factor, ܴ generator’s speed-droop response, ௗܲ 

system disturbance and Δ߱ incremental speed. 

 

The contingency can be considered as the unit step function ( ௗܲ = ௉ೞ೟೐೛௦ ). After solving (4.1) 

in the time domain, the following equation is obtained. 
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dΔ߱(ݐ)݀ݐ = ܽ߱௡ × ܴ × ௦ܲ௧௘௣2 × ܴ + ௠ܭ (݁ି఍ఠ೙௧ sin(߱௥ݐ + ߮)) (4.4) 

 

where 

 ߱௥ = ߱௡ඥ1 −  ଶ (4.5)ߞ

 

ܽ = ඨ1 − 2 ோܶ߱ߞ௡ + ߱௡ଶ ோܶଶ1 − ଶߞ  
(4.6) 

 ߮ = ଵି݊ܽݐ ൬ ߱௥ ோܶ1 − ோܶ߱ߞ௡൰ − ଵ(ඥ1ି݊ܽݐ − ߞ−ଶߞ ) (4.7) 
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Figure 4.1 Three-level frequency response curves after contingencies 
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4.2.2 Frequency restoration scheme 

 

To maintain the frequency in safe fluctuations, ISO needs to balance the load and generation. 

This can be carried out with DR, LS and reserve to avoid frequency drops and excessive load 

shedding after contingency occurrence. When a contingency occurs the frequency will 

decrease due to frequency-sensitive loads. The frequency restoration scheme includes several 

frequency drop levels. These are divided into three-level frequency drop levels like in 

(Chang-Chien et al., 2012); level one (frequency below 59.2 Hz), level two (frequency 

between 59.2 Hz and 59.5 Hz) and level three (frequency between 59.5 Hz and 59.7 Hz), 
which are considered crucial frequency drop levels for severe, medium and small 

contingencies, respectively (see Figure 4.1). In this study, the safe frequency level is fixed at 

59.7 Hz. Coordination between DR and reserve will be beneficial for the system at these 

three levels of frequency restoration. 

 

Minimum system frequency ( ௠݂௜௡) can be obtained when (4.4) is zero. After simplification, ௠݂௜௡ is calculated as follows (Chang-Chien et al., 2012): 

 

௠݂௜௡ = ௢݂ − ܴ × ܲீ௅D × ܴ + ௠ܭ (1 + ܽ݁ି఍ఠ೙௧೥ sin(߱௥ݐ௭ + ߮)) (4.8) 

 

where ଴݂ is the pre-contingency frequency and ܲீ௅ is the magnitude of generation loss by the 

contingency defined by the contingency analysis. ݐ௭ is calculated as follows (Anderson et 

Mirheydar, 1990): 

௭ݐ  = 1߱௥ ଵି݊ܽݐ ൬ ߱௥ ோܶோܶ߱ߞ௥ − 1൰ 
(4.9) 

 

After calculation of ௠݂௜௡ by the contingency analysis in the SOPF approach, a three-level 

frequency restoration scheme is obtained to coordinate DR, LS and reserve as follows: 
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4.2.2.1 Level one (frequency below 59.2 ࢠࡴ)  

At this frequency restoration level, first minimum DR should be calculated to increase the 

frequency to 59.2 Hz. Minimum DR (ܲ஽ோଵ) and minimum LS (ܲ௅ௌଵ)  that is deployed in the 

system is as follows: 

 ܲ஽ோଵ + ܲ௅ௌଵ = ܮܩܲ −  (4.10) 1ܦܨܲ

 

where ܲி஽ଵ which is deficit power by the frequency drop from 60 Hz to 59.2	Hz obtained in ݑ݌: 

 

ܲி஽ଵ = (݂ி஽ଵ60 ) × ܦ) × ܴ + ܴ(௠ܭ × (1 + ܽ݁ି఍ఠ೙௧೥ sin(߱௥ݐ௭ + ߮))  ݑ݌

(4.11) 

 

In this frequency restoration level, ݂ி஽ଵ is defined equal to 	 ௡݂௢௠ − ௠݂௜௡ where ௠݂௜௡  and  ௡݂௢௠ are considered 59.2 Hz and 60 Hz, respectively. Then, next remedial action is carried 

out to return frequency back to 59.7 Hz based on availability of fast instantaneous reserve 

(FIR) and/or DR and/or LS. The formula of coordination between FIR, DR and LS is: 

 ܲ஽ோଶ + ܲ௅ௌଶ + ܴ௙ = ܲீ௅ − ܲ஽ோଵ − ܲ௅ௌଵ − ൬60 − 59.760 ൰ ܦ) + 1/ܴ) (4.12) 

 

In (4.12), where ܴ௙	is FIR and ܲ஽ோଶ is the second part of DR deployment in the frequency 

restoration scheme. If there are not enough DR and FIR resources, the second part of LS 

(P୐ୗଶ) will be deployed to complete the frequency restoration scheme. In the last step of 

frequency restoration, sustained instantaneous reserve (SIR) is applied to restore frequency 

back to 60 Hz as follows:  

 ܴ௦ = ܲீ௅ − (ܲ஽ோଵ + ܲ௅ௌଵ + ܲ஽ோଶ + ܲ௅ௌଶ + ܴ௙) (4.13) 
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4.2.2.2 Level two (frequency between 59.2 ࢠࡴ and 59.5 ࢠࡴ)  

At this level, minimum DR is obtained to increase the frequency to 59.7 Hz according to 

(4.10). Note that in (4.11) ௠݂௜௡  and  ௡݂௢௠ are considered 59.5 Hz and 60 Hz, respectively. 

Then, the procedure of frequency restoration will be the same as level one. FIR and/or DR 

and/or LS are carried out to return frequency back to 59.7 Hz and finally SIR is applied to 

restore frequency back to 60 Hz. 
 

4.2.2.3 Level three (frequency between 59.5 ࢠࡴ and 59.7  ࢠࡴ)  

As mentioned before, small contingencies can create the level three of frequency drops. In 

this level, the first part of FIR and/or DR and/or LS will be zero. Equation (4.12) is only 

considered at this level to restore frequency back to 59.7 Hz. Finally SIR is applied to 

increase frequency to 60 Hz. 
 

4.2.3 EL-Index calculation 

 
The EL-Index was proposed by Yang et al. (Yang et al., 2013). A comparison between this 

index and several other indices has been rigorously carried out in this thesis. The EL-index 

utilized as a voltage stability index can detect precisely the voltage instability. This index 

considers the generator equivalent model (GEM) in its formula. The L-index models a 

generator only as a voltage source. On the other hand, the EL-index models a generator as a 

voltage source (ீܧ) and an internal impedance ( ௚ܼ). ௚ܼ is stated as follows: 

 

௚ܼ = ீܧ − ௧ܸܫ௧  

= ௔݅ௗݎ)ൣ − ൫ݔ௤ᇱ − (௟൯݅௤ݔ + ௔݅௤ݎ)݆ + ௗᇱݔ) − ௟)݅ௗ)൧݅ௗݔ + ݆݅௤  

(4.14) 
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where ௧ܸ and ܫ௧ are the terminal voltage and current of the generator. ݎ௔ is the armature 

resistance, ݔ௟ is the leakage reactance. ݔௗᇱ  and ݔ௤ᇱ  are the transient reactance in direct and 

quadrature axis. The equation (4.14) has been achieved from the fourth-order generator 

model. The nodal admittance matrix can be obtained from the well-known Ohm’s law as 

follows: 

 ൤I୐Iୋ൨ = ൤Y୐୐ Y୐ୋYୋ୐ Yୋୋ൨ ൤V୐Vୋ൨ (4.15) 

 

Equation (4.15) can be expressed with consideration of GEM as follows: 

 

൥ܫ௅0ீܫ ൩ = ቎ ௅ܻ௅ ௅ܻீ ௅ܻீܻீ ௅ ܻீ ீ + ௚ܻ௚ − ௚ܻ௚0 − ௚ܻ௚ ௚ܻ௚ ቏ ൥ ௅ீܸܸீܧ൩ (4.16) 

 

where Y୥୥ is the diagonal matrix with (
ଵ୞ౝభ , ଵ୞ౝమ , … , ଵ୞ౝౣ) values.  

 

Then, the currents at load buses can be obtained from eliminating  ܸீ : 

௅ܫ  = ( ௅ܻ௅ − ௅ܻீ(ܻீ ீ + ௚ܻ௚)ିଵܻீ ௅) ௅ܸ + ௅ܻீ(ܻீ ீ + ௚ܻ௚)ିଵ ௚ܻ௚(4.17) ீܧ 

 

After some simplifications, (4.17) can be rewritten as: 

 ௅ܸ = ܼ௅௅ᇱ ௅ܫ + ௅ீᇱܨ  (4.18) ீܧ

 

where ܼ௅௅ᇱ = ( ௅ܻ௅ − ௅ܻீ(ܻீ ீ + ௚ܻ௚)ିଵܻீ ௅)ିଵ and ܨ௅ீᇱ = −ܼ௅௅ᇱ ( ௅ܻீ(ܻீ ீ + ௚ܻ௚)ିଵ ௚ܻ௚). 
 
As mentioned before, ீܧ௕ಸ	is the internal voltage source at generator bus ܾீ. Considering the 

critical operating point, the EL-index can be defined in (4.19) at load buses ܾ௅: 
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௕ಽܮܧ = ቤ1 − ∑ ௕ಽ௕ಸᇱܨ ௕ಸ௕ಸ∈ఈ್ಸܸீܧ ௕ಽ ቤ (4.19) 

 

The range of variation of the EL-index is [0,1]. If it reaches 1.0, it shows the closeness to the 

voltage instability condition. Thus, the maximum value EL-index value in the load buses is 

chosen to be employed by the proposed SOPF in the next section.  

 

4.3 Proposed frequency and voltage constrained SOPF 

The proposed SOPF guarantees to maintain frequency and voltage at a safe level. To reach 

the purposes, the frequency restoration scheme and EL-index are used as constraints in the 

SOPF. The objective function used in this study is the minimization of the operating cost 

function. These costs are obtained based on wind scenario cost corresponding to its 

probability. The objective function is stated as follows: 

 

	݊݅ܯ ෍ ௨ߨ ෍ ቎෍ൣீܥ൫݌௧,௜,௨൯ + ௧,௜,௨൯൧௜∈ఈ಺ݎோ൫ܥ + ෍ ௐܥ ቀ݌஼௧,௪,௨ቁ௜∈ఈೈ௧∈ఈ೅௨∈ఈೆ + ෍ ஽ோܥ ቀ݌஽ோ௧,௕,௨ቁ௕∈ఈಳವೃ + ෍ ௅ௌܥ ቀ݌௅ௌ௧,௕,௨ቁ௕∈ఈಳ ቏ 
 

(4.20) 

௜ܲ ≤ ௧,௜,௨݌ ≤ തܲ௜					∀ݐ ∈ ,்ߙ ݑ ∈ ,௎ߙ ݅ ∈  ூߙ
 

(4.21) 

ܳ௜ ≤ ௧,௜,௨ݍ ≤ തܳ௜					∀ݐ ∈ ,்ߙ ݑ ∈ ,௎ߙ ݅ ∈  ூߙ
 

(4.22) 

௜ܦܴ− ≤ ௧,௜,௨݌ − ௧ିଵ,௜,௨݌ ≤ ܴ ௜ܷ 		∀ݐ	 ∈ ,்ߙ ݑ ∈ ,௎ߙ ݅ ∈  ூߙ
 

(4.23) 

෍ ௧,௜,௨௜∈ఈಳ݌ + ෍ (ܲௐ௧,௪,௨௪∈ఈಳ − (஼௧,௪,௨݌ − ௧ܸ,௕,௨ (4.24) 
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෍ ௧ܸ,௠,௨ሼ௕,௠ሽ∈ఈಽ ௕ܻ௠ cos൫ߠ௧,௕,௨ − ௧,௠,௨ߠ − ߶௕௠൯
= 	ܲ஽௧,௕ + ஽ோ௧,௕,௨݌ + ௅ௌ௧,௕,௨݌ + ܿℎ௧,௕,௨ߟ௖௛ − ∋	ௗ௜௦ ∀tߟ௧,௕,௨ݏ݅݀ ,்ߙ ݑ ∈ ,௎ߙ ܾ ∈  ஻ߙ

 ෍ ௧,௜,௨௜∈ఈಳݍ + ෍ ௐ௧,௪,௨௪∈ఈಳݍ − ௧ܸ,௕,௨ 

෍ ௧ܸ,௠,௨ሼ௕,௠ሽ∈ఆಽ ௕ܻ௠ sin൫ߠ௧,௕,௨ − ௧,௠,௨ߠ − ߶௕௠൯= 	ܳ஽௧,௕ + ஽ோ௧,௕,௨ݍ + ௅ௌ௧,௕,௨ݍ + ∋	஻ௌ௧,௕,௨ ∀tݍ ,்ߙ ݑ ∈ ,௎ߙ ܾ ∈  ஻ߙ
 

(4.25) 

0 ≤ ஼௧,௪,௨݌ ≤ ܲௐ௧,௪,௨							∀t	∈ ,்ߙ ݑ ∈ ݓ,௎ߙ ∈  ௐߙ

 

(4.26) 

ܳ௪ௐ ≤ ௐ௧,௪,௨ݍ ≤ ܳ௪ௐ						∀t	∈ ,்ߙ ݑ ∈ ݓ,௎ߙ ∈ 	ௐߙ
 

(4.27) 

−ܵ௟̅ ≤ ܵ௧,௟,௨ ≤ ܵ௟̅          ∀t	∈ ,்ߙ ݑ ∈ ,௎ߙ ݈ ∈  ௅ߙ
 

(4.28) 

௕ܸ ≤ ௧ܸ,௕,௨ ≤ തܸ௕          ∀t	∈ ,்ߙ ݑ ∈ ,௎ߙ ܾ ∈  ஻ߙ
 

(4.29) 

ߨ− ≤ ௧,௕,௨ߠ ≤ ∋	t∀   ߨ ,்ߙ ݑ ∈ ,௎ߙ ܾ ∈  ஻ߙ
 

(4.30) 

Pୋ୐୲ ≤ ∑ ௧,௜,௨௜∈ఈ಺ݎ + ∑ ௙௧,௜,௨௜∈ఈ಺ݎ 	ݐ∀    ∈ ,்ߙ ݑ ∈ ,௎ߙ ݅ ∈  ூߙ
 

(4.31) 

௧,௜,௨ݎ + ௙௧,௜,௨ݎ ≤ തܲ௜ − 	ݐ∀   ௧,௜,௨݌ ∈ ,்ߙ ݑ ∈ ,௎ߙ ݅ ∈  ூߙ
 

(4.32) 

௧,௜,௨ݎ + ௙௧,௜,௨ݎ ≤ ܴ ௜ܷ   ∀ݐ	 ∈ ,்ߙ ݑ ∈ ,௎ߙ ݅ ∈  ூߙ
 

(4.33) 

0 ≤ ஽ோ௧,௕,௨݌ ≤ 	ܲ஽ோ௕ ≤ ܲ஽௧,௕   ∀t	∈ ,்ߙ ݑ ∈ ,௎ߙ ܾ ∈  ஻ವೃߙ

 

(4.34) 

0 ≤ ஽ோ௧,௕,௨ݍ ≤ 	ܳ஽ோ௕ ≤ ܳ஽௧,௕   ∀t	∈ ,்ߙ ݑ ∈ ,௎ߙ ܾ ∈  ஻ವೃ (4.35)ߙ



110 

 

 

஽ோ௜ܦܴ−  ≤ ஽ோ௧,௕,௨݌ − ஽ோ௧ିଵ,௕,௨݌ ≤ ܴܷ஽ோ௜    ∀t	∈ ,்ߙ ݑ ∈ ,௎ߙ ܾ ∈  ஻ವೃߙ
 

(4.36) 

௧,௕,௨ܿ݋ݏ = ௧ିଵ,௕,௨ܿ݋ݏ + ܿℎ௧,௕,௨∆ݐ − ∋	t∀      ݐ∆௧,௕,௨ݏ݅݀ ,்ߙ ݑ ∈ ,௎ߙ ܾ ∈  ஻ೄ೅ߙ
 

(4.37) 

௧,௕,௨ܿ݋ݏ ≤ ∋	തതതതത௕            ∀tܿ݋ݏ ,்ߙ ݑ ∈ ,௎ߙ ܾ ∈  ஻ೄ೅ߙ
 

(4.38) 

ܿℎ௧,௕,௨ ≤ ܿℎതതത௕               ∀t	∈ ,்ߙ ݑ ∈ ,௎ߙ ܾ ∈  ஻ೄ೅ߙ
 

(4.39) 

௧,௕,௨ݏ݅݀ ≤ ݀ଓݏതതതത௕            ∀t	∈ ,்ߙ ݑ ∈ ,௎ߙ ܾ ∈  ஻ೄ೅ߙ
 

(4.40) 

If  Pୋ୐୲ ≥ ܲி஽ଵ௧ ∑ ܲ஽௧,௕௕∈ఈಳ → Level one   
 

 

Then   ∑ pୈୖ୲,ୠ,୳ୠ∈஑ాీ౎ + ∑ r୤୲,୧,୳୧∈஑ా + ∑ p୐ୗ୲,ୠ,୳ୠ∈஑ా ≥ Pୋ୐୲ − ቀ଺଴ିହଽ.଻଺଴ ቁ ቀD +ଵୖቁ∑ ܲ஽௧,௕௕∈ఈಳ    ∀t	∈ ,்ߙ ݑ ∈ ,௎ߙ ݅ ∈ ,ூߙ ܾ ∈  ஻ߙ
 

(4.41) 

and  ∑ r୤୲,୧,୳୧∈஑ా /∑ ܲ஽௧,௕௕∈ఈಳ ≤ ܲி஽ଵ௧ − ቀ଺଴ିହଽ.଻଺଴ ቁ (D + 1/R)  ∀t	∈ ,்ߙ ݑ ∈ ,௎ߙ ݅ ∈ ,ூߙ ܾ ∈  ஻ߙ
 

(4.42) 

If  ܲி஽ଵ௧ ≥ Pୋ୐୲/∑ ܲ஽௧,௕௕∈ఈಳ ≥ ܲி஽ଶ௧ → Level two   
 

 

Then   ∑ pୈୖ୲,ୠ,୳ୠ∈஑ాీ౎ + ∑ r୤୲,୧,୳୧∈஑ా + ∑ p୐ୗ୲,ୠ,୳ୠ∈஑ా ≥ Pୋ୐୲ − ቀ଺଴ିହଽ.଻଺଴ ቁ (D +1/R)∑ ܲ஽௧,௕௕∈ఈಳ    ∀t	∈ ,்ߙ ݑ ∈ ,௎ߙ ݅ ∈ ,ூߙ ܾ ∈  ஻ߙ
 

(4.43) 

and  ∑ r୤୲,୧,୳୧∈஑ా /∑ ܲ஽௧,௕௕∈ఈಳ ≤ ܲி஽ଶ௧ − ቀ଺଴ିହଽ.଻଺଴ ቁ (D + 1/R)  ∀t	∈ ,்ߙ ݑ ∈ ,௎ߙ ݅ ∈ ,ூߙ ܾ ∈  ஻ߙ
 

(4.44) 
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If  ܲி஽ଶ௧ ≥ Pୋ୐୲/∑ ܲ஽௧,௕௕∈ఈಳ ≥ ܲி஽ଷ௧ → Level three   
 

 

Then   ∑ pୈୖ୲,ୠ,୳ୠ∈஑ాీ౎ + ∑ r୤୲,୧,୳୧∈஑ా + ∑ p୐ୗ୲,ୠ,୳ୠ∈஑ా ≥ Pୋ୐୲ − ቀ଺଴ିହଽ.଻଺଴ ቁ (D +1/R)∑ ܲ஽௧,௕௕∈ఈಳ    
 

(4.45) 

݈݁௧,௕,௨ ≤ ∋	ௗ௘௦            ∀tܮܧ ,்ߙ ݑ ∈ ,௎ߙ ܾ ∈  ஻ (4.46)ߙ

 

Constraints (4.21)-(4.22) show the min/maximum limits of active and reactive power output 

of generators. Constraint (4.23) shows the limits of minimum up and down ramp rate. 

Equations (4.24)-(4.25) are the active and reactive power balance. Constraints (4.26)-(4.30) 

enforce the active and reactive wind spillage value, power flow and voltage magnitude and 

angle limits, respectively. Constraints (4.31)-(4.33) are reserve limits. Constraints (4.34)-

(4.35) enforce min/maximum limits active and reactive DR deployment. Constraint (4.36) 

shows min/maximum limits of inc/decrement of DR deployment. Equation (4.37) is the 

charging and discharging balance in ESSs. Constraints (4.38)-(4.40) enforce maximum limits 

of the state of charge, rates of charge and discharge, respectively. 

 

In accordance with the frequency restoration scheme (level one), if the magnitude of 

generation loss by the contingency is bigger than the magnitude of generation loss by the 

frequency drop from 60 Hz to 59.2	Hz; DR will be allocated as seen in (4.41). Constraint 

(4.42) enforces the limit of FIR in case of availability. Constraints (4.41)-(4.42) have been 

obtained according to (4.10) and (4.12). Constraints (4.43)-(4.44) represent frequency 

restoration constraints at level two. Note that DR may not be deployed at level three in 

(4.45), if there is sufficient amount of FIR. Constraint (4.46) enforces the desired EL-index, 

which is set by an ISO. In the optimization problem, SIR is assumed spinning reserve (ݎ௧,௜,௨) 

for simplification. Note that (4.31) provides enough spinning reserve, so it does not need to 

consider another constraint for (4.13) to restore frequency back from 59.7 Hz to 60 Hz. 
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4.4 Numerical analysis 

 

In this section, the proposed SOPF approach has been tested on the IEEE RTS-96 (Grigg et 

al., 1999) which consists of three areas. The optimization problem is solved by using GAMS 

(GAMS - A User’s Guide). 19 wind farms have been added in this system. 10 scenarios are 

selected to be considered in the optimization problem based on reference (Pand et al., 2016). 

The two ESSs are installed at buses 121 and 325 (Pandžić et al., 2015). 

 

The costs of spinning reserve and FIR are assumed 0.1 and 0.3 cost of power output, 

respectively. The costs of the DR and LS programs are assumed to be 5 times and 50 times of 

the base-case locational marginal prices (LMP) of buses. It is assumed that loads at buses 

106, 118, 209, 305, 316, 320 can participate in the DR program and generators 12, 13, 14, 23, 

30, 31, 32, 44, 45, 46, 55, 76, 77, 78, 86 and 87 can provide FIR. The desired value of the 

EL-index is assumed to be 0.9. To provide the stress conditions the loading factor of the 

system has been increased to 1.6 p.u. By applying the proposed model in 24 hours, the results 

of the frequency and voltage constrained SOPF approach are presented for two sample 

contingencies. 

 

 
 

Figure 4.2 DR deployment of buses cooperated in DR program for three cases  
under all scenarios 
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Figure 4.3 Voltage magnitude of buses in area three for three cases under scenario #1 
 

4.4.1.1 Maximum single contingency 

The modified IEEE RTS-96 system with the occurrence of maximum single contingency is 

investigated in this section. The value of maximum single contingency is 400 MW, which is 

obtained from the outage of generating unit number 22 at bus 118. As an example, ܲி஽ଵ and ܲி஽ଶ  at hour three are obtained 613.13 MW and 383.21 MW respectively. Thus, the system 

activates the frequency restoration plan at level two (ܲீ௅ ≥ ܲி஽ଶ).  

In voltage stability analysis, maximum value of the EL-index will be more than the desired 

value due to this contingency occurrence and (46) should be satisfied. Figure 4.2 shows DR 

deployment for three cases in all scenarios at hour two. Cases are as follows: 

 

CASE 1: SOPF with frequency constraint. 

CASE 2: SOPF with voltage constraint. 

CASE 3: SOPF with both frequency and voltage constraints. 
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Figure 4.4 Spinning reserve and FIR under scenario #1 

 

 

 
Figure 4.5 Variation of DR deployment with 5% inc/decrement in wind power penetration  

at bus 106 
 

With this DR deployment seen in Figure 4.2, the system will be stable from the viewpoint of 

frequency and voltage due to the maximum single contingency occurrence. The results of this 

contingency show that there is no load shedding at hour two in all cases and scenarios. Figure 

4.3 presents voltage magnitude of buses in the area three for three cases in scenario one at 

hour two. It shows that the cases 2 and 3 provide a higher voltage profile than the case 1 due 

to the voltage constraint in (4.46). To show reserves variation in the three cases, Figure 4.4 

shows spinning reserve and FIR under scenario one during hour two. As is expected, FIR is 

employed in the cases 1 and 3 due to frequency constraints in (4.41)-(4.45). 
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To show the effect of the wind penetration level, this value is varied to 45% and 55%. Note 

that the wind penetration level of the base case is 50%. Figure 4.5 shows the variations of DR 

deployment at bus 106 with a change in the wind penetration level. The state of charge for 

two installed EESs at buses 121 and 325 is shown in Figure 4.6.  

 

 
 

Figure 4.6 State of charge in ESSs during 24 hours under scenario #1 

 

4.4.1.2 Double contingency 

To show the sensitivity of the proposed method to the contingencies, a double-contingency 

case is investigated in this section which are simultaneous outages of generating unit number 

22 at bus 118 and the line 59 between the buses 212 and 223.  

 

In this type of contingency, the results show that the system should activate the frequency 

restoration plan at level one (ܲீ௅ ≥ ܲி஽ଵ) during hour two. From the viewpoint of the 

voltage stability assessment, the system will be unstable due to this double contingency 

occurrence. 

 

It can be observed from Table 4.1 that DR and LS deployment will be considerably increased 

to maintain the system stable from frequency fluctuations and voltage instability.  
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Table 4.1  DR and LS deployment (MW) in double-contingency case 
 

Scenario ࢛,࢈,࢚ࡿࡸ࢖ ࢛,࢈,࢚ࡾࡰ࢖ 

Bus 10ݑ 9ݑ 8ݑ 7ݑ 6ݑ 5ݑ 4ݑ 3ݑ 2ݑ 1ݑ 212ݏ 210ݏ 320ݏ 209ݏ 118ݏ 106ݏ 

5.01 
4.41 
5.41 
4.76 

0 
6.28 
4.34 

10.62 
4.02 
7.18 

32.36 
15.67 

0 
72.93 

119.44 
70.86 
99.84 

0 
0 
0 

33.91 
0 

26.1 
0 
0 
0 
0 

115.41 
7.12 

0 

0 
0 
0 

41.8 
0 
0 
0 
0 
0 
0 

56.08 
12.79 
48.27 

0 
3.4 

11.12 
7.59 

137.58 
29.29 

0 

53.03 
72 

82.88 
19.37 
20.2 
43.6 
30.1 

170.69 
80.25 
79.24 

 

 
Table 4.2  Active and reactive power of wind farms in all scenarios 

 
Scenario ࢛,࢝,࢚ࢃࡼ  ࢛,࢝,࢚ࢃࢗ ࢛,࢝,࢚࡯࢖	−

Wind farm w1 w2 w3 w4 w1 w2 w3 w4 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 

47.14 
10.56 
67.81 
17.76 
63.5 

28.95 
60.8 
8.43 
6.1 
2.4 

118.41 
134.35 
108.85 
167.66 
119.39 
89.66 
132.70 
127.49 
140.98 
68.50 

231.69 
165.46 
284.61 
198.41 
271.52 
183.92 
204.78 
264.69 
203.24 
258.27 

219.03 
90.81 
166.68 
172.97 
253.32 
88.76 
268.82 
251.01 
154.04 
178.31 

9.3 
7.81 

14.68 
1.31 
15.8 

1 
-10.38 
6.75 
7.36 

14.37 

-69.87 
-75.97 
-71.3 

-42.54 
-34.67 
-70.01 
-33.32 
-59.43 
-68.75 
-70.8 

117.7 
63.33 
117.7 
32.15 
49.09 
-0.31 
58.48 
-87.1 
0.23 

117.7 

20.88 
108.73 

68.6 
-47.98 
-29.72 
95.84 
-32.52 
-17.38 
80.42 
88.38 
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Figure 4.7 Comparison between the costs in different cases in single and  
double contingency occurrence 

 

Table 4.2 presents active and reactive power dispatches of four wind farms in all scenarios. 

Comparison between the costs in different cases in single and double contingency occurrence 

has been carried out in Figure 4.7. As seen, the cost will be higher in case 3 due to enforcing 

the frequency and voltage constraints. 

 

4.5 Conclusion 

 

In this chapter, a new frequency and voltage constrained SOPF approach is proposed with the 

presence of uncertain wind power generations and energy storage systems (ESSs). The 

proposed approach is able to protect the system from frequency fluctuations and voltage 

instability after contingency occurrence. The wind uncertainty is considered as a scenario-

based model. The frequency restoration scheme cooperates with DR and reserve to stop 

frequency drops. This scheme consists of three levels based on severity of contingencies. The 

EL index is used as a voltage stability index to prevent voltage collapse after contingency 

occurrence. The EL-index considers GEM in its formula. Several constraints are added to the 

traditional SOPF due to obtaining the frequency and voltage stability. This approach is tested 

on the IEEE RTS-96. The results demonstrate that the cost increases when a system is stable 

from the viewpoint of voltage and frequency evaluation due to DR and LS deployment. 
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Consideration of both frequency and voltage constraints in one optimization problem can 

decrease DR and LS deployment rather than consideration of them in two independent 

problems. An ISO can find a trade-off between cost and stability issues with choosing the 

value of the contingency in the system. The results also show that the proposed approach can 

be implemented easily, and it is compatible with the other technical constraints of the system.



 

 

CONCLUSION 

 

Due to a large number of blackouts in different countries, the importance of voltage stability 

analysis is appearing more and more in the OPF approach. Modeling of elements and control 

ways like a wind generator, DR, OXL and OLTC can be helpful to control voltage stability in 

the OPF formulation. The main goal of an ISO is to run the power system operation without 

any voltage stability collapse at low cost or high revenue. The thesis reaches to this goal with 

a comprehensive SOPF approach with the presence of uncertain wind power generations. 

 

Among different types of voltage stability presented in Chapter 1, long term voltage stability 

is considered in this thesis. Main effects on long term voltage stability like reactive power 

limits, OLTCs and load models has been also evaluated in this chapter. Moreover, several 

VSIs have been presented that have a role to evaluate the voltage instability risk and to 

predict the voltage collapse point. Finally, a literature review of DR program and ESSs have 

been investigated in detail. 

 

In Chapter 2, an improved IB voltage stability index is presented which can predict 

accurately the voltage instability. The reactive power limit of DFIG has been modeled in this 

index as a variable virtual impedance. The IB index is considered as a constraint in a OPF 

approach to form a VSC-OPF approach. The OLTCs is also modeled in the IB index, if it is 

available in the system. The results have been divided into two parts that are voltage stability 

monitoring and VSC-OPF. First, the comparison between the improved and traditional IB 

index has been carried out after a contingency occurrence to monitor voltage stability. 

Second, the proposed VSC-OPF approach is compared with L-index, VCPI and MSV. The 

results reveal that the improved IB index has the lowest operating cost.  

 

A multi-objective SOPF approach with the presence of uncertain wind power generations and 

DR is presented in Chapter 3. The multi-objective SOPF have three objective functions, 

namely the operating cost, voltage stability and emission effects. A scenario-based technique 

is used to model the wind uncertainty. To obtain single objective function, the fuzzification 
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technique is applied. A new LVSI is with accurate voltage collapse detection is presented in 

this chapter. The comparisons between different LVSIs as the objective function are given in 

the multi-objective SOPF. The results demonstrate that multi-objective SOPF with proposed 

LVSI improves the voltage profile and reduces the costs.  

 

In Chapter 4, a new frequency and voltage constrained SOPF approach is proposed with the 

presence of uncertain wind power generations and ESSs. The frequency restoration scheme 

cooperates with DR and reserve to stop frequency drops. This scheme consists of three levels 

based on severity of contingencies. The EL index is used as a voltage stability index to 

prevent voltage collapse after contingency occurrence. The EL-index considers GEM in its 

formula. Several constraints are added to the traditional SOPF approach due to obtaining the 

frequency and voltage stability. The results demonstrate that consideration of both frequency 

and voltage constraints in one optimization problem can decrease DR and LS deployment 

rather than consideration of them in two independent problems. The results also show that 

the proposed approach can be implemented easily, and it is compatible with the other 

technical constraints of the system. 

 

Future Works 

 

The present research can be continued by some ideas are listed as follows: 

 

A new VSC-SOPF approach compatible with electricity market regulations 

 

The objective function in the presented VSC-SOPF is minimization of the operating costs. 

This objective function can be changed by the characteristics of an electricity market such as 

reactive power market. Therefore, it would be compatible with the electricity market 

regulations. In this approach, the loads and generators can have their own bids to participate 

in active and reactive power markets. 
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Multi-objective SOPF considering voltage stability, demand response and transmission 
switching 
  

Optimal transmission switching improves the stabilities and reduces the costs in power 

systems. It also affects on voltage profile, so formulating the multi-objective SOPF can be 

beneficial for ISOs. This formulation will be a mixed integer nonlinear program (MINLP) 

due to binary variables in transmission switching. This approach provides the voltage 

stability for power systems after N-1 contingency occurrence and it can also improve the 

social welfare. 

  

A new VSC-SOPF approach considering multi terminal DC (MTDC)  

 

Multi terminal DC (MTDC) systems can improve the voltage and frequency stabilities after a 

contingency occurrence. Also, MTDC is an appropriate option to integrate power systems to 

wind farms. To formulate this new SOPF approach, some constraints from MTDC should be 

added to the main VSC-SOPF problem. 





 

 

APPENDIX I 

IMPEDANCE MATCHING THEORY 

An impedance matching is a proper way to estimate the maximum power transferred for a 

load bus. As is known, Thevenin impedance is a criterion for the voltage stability assessment. 

The Thevenin equivalent circuit from a load bus viewpoint is shown in Figure-A I-1. The 

impedance matching can be determined as the formula below: 

 

 |ܼ௅|=หܼ௘௤ห (A I-1) 

 

where ܼ௅ and ܼ௘௤ are the impedance of the load and the Thevenin equivalent circuit, 

respectively.  

 

eq eq eqZ R jX= +
LV

LZ

LI

Eeq

 
 

Figure-A I-1 Thevenin equivalent circuit for a load bus 
 

The voltage of the Thevenin equivalent circuit can be defined as follows: 

 

 Eୣ୯ = V୐ + I୐Zୣ୯ (A I-2) 

where ௅ܸ and ܫ௅ are the load voltage and current, respectively.  
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The accurate calculation of this impedance is very complicated, so there are some methods to 

simplify the large network.  

 

The impedance matching in the R-X diagram is shown in Figure-A I-2. If load impedance 

(ܼ௅) locates inside of the circle with radius หܼ௘௤ห, the system will be unstable. To consider the 

circle of radius หܼ௘௤ห is not accurate due to the dynamic behavior of power systems. 

 

R+

jX+

R−

jX−

LZ

Zeq

 
 

Figure-A I-2 Mapping of stability in the R-X diagram 



 

 

APPENDIX II 

INPUT DATA FOR SOPF APPROACH  

Table-A II-I presents probability of each scenario. 10 scenarios are considered in this 

chapter. Table-A II-II shows the value of parameters used in the frequency restoration 

scheme.  

 
Table-A II-I 

Wind scenarios and their probabilities 
 

Scenario ߨ௨ ݑଵ 0.02 ݑଶ 0.16 ݑଷ 0.107273 ݑସ 0.241818 ݑହ 0.107273 ݑ଺ 0.15 ݑ଻ 0.086364 ݑ 0.000909 ଼ݑଽ 0.125455 ݑଵ଴ 0.000909 

 

Table-A II-II 
Parameters of frequency restoration scheme  

 
Parameter 4 0.95 0.5 8 0.28 0.19 

 ܴ ுܨ ோܶ ܦ ௠ܭ ܪ 





 

 

APPENDIX III 

IEEE RTS 96-BUS SYSTEM 

In this section, the proposed SOPF approach has been tested on the IEEE RTS-96 (Grigg et 

al., 1999) which consists of three areas. 19 wind farms have been added to this system. It also 

consists of 73 buses, 96 generators, 51 loads, and 120 transmission lines as seen in Figure-A 

III-1. 

 

 
 

Figure-A III-1 Modified IEEE RTS 96-bus system  
Taken from Pandžić, Wang et al. (2015) 





 

 

APPENDIX IV 

IEEE 39-BUS SYSTEM 

The IEEE 39-bus system is also named New-England Power System consists of ten 

generators. Generator 1 at bus 31 is assumed the slack bus. This system is presented in 

Figure-A IV-1. 

 

 
 

Figure-A IV-1 IEEE 39-bus (New-England) system  
Taken from Athay, Podomore et al. (1979) 





 

 

APPENDIX V 

IEEE 57-BUS SYSTEM 

The IEEE 57-bus system consists of 7 generators and 42 loads. This system shows a part of 

the American Electric Power System in 1965. This system is presented in Figure-A V-1. 

 

 
 

Figure-A V-1 IEEE 57-bus system 
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