
Online Incremental Learning from Scratch with Application to
Handwritten Gesture Recognition

by

Marta REŽNÁKOVÁ

MANUSCRIPT-BASED THESIS PRESENTED TO ÉCOLE DE

TECHNOLOGIE SUPÉRIEURE IN PARTIAL FULFILLMENT FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

Ph. D.

MONTREAL, "AUGUST 7, 2017"

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Marta Režnáková, 2017

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Mohamed Cheriet, Thesis Supervisor

Department of Automated Manufacturing Engineering, École de technologie supérieure

Mrs. Sylvie Ratté, Chair, Board of Examiners

Department of Software Engineering and IT, École de technologie supérieure

Mr. Christian Desrosiers, Member of the jury

Department of Software Engineering and IT, École de technologie supérieure

Mr. Jia Yuan Yu, External Examiner

Concordia Institute of Information System Engineering, Concordia University

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON "JUNE 5, 2017"

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

To be able to bring new ideas, to make research and to develop ones prototypes, a significant

help from others is at a great need. I find myself fortunate to be blessed with very supporting

adviser Mohamed Cheriet, team and colleagues from Synchromedia lab that have helped me

on my way through the few years of PhD studies.

Special thank you belongs to my colleague, friend and partner Lukas Tencer, who has supported

me mentally and intellectually and is one of the reasons this work has come to exist. This would

not be possible without the support of my family and their understanding of my responsibilities

and needs as an international student.

This thesis is based on research supported by the Natural Sciences and Engineering Research

Council (NSERC) and the Social Sciences and Humanities Research Council (SSHRC) of

Canada, as well the ÉTS scholarship program.

APPRENTISSAGE INCRÉMENTAL EN LIGNE AVEC APPLICATION À LA
RECONNAISSANCE DES GESTES MANUSCRITES

Marta REŽNÁKOVÁ

RÉSUMÉ

Ces dernières années, nous avons été témoins d’importante croissance de données traitées par

les ordinateurs à travers le monde dans le but d’extraire des connaissances utiles.

Pour une prise de décision rapide, l’arrivée de nouvelles données n’est pas limitée par le temps

et leurs caractéristiques peuvent aussi changer avec le temps. Les connaissances stockées dans

les machines doivent être mises à jour. Dans l’apprentissage automatique traditionnel, ceci

peut être fait par réapprentissage sur les nouvelles données. Cependant, avec la disponibilité

constante de volume élevé de données, le processus devient complexe, ce qui rend cette tâche

très difficile à réaliser. Des méthodes d’apprentissage en ligne ont été proposées non seulement

pour palier au problème de traitement de volume élevé de données, mais aussi pour rendre le

système agile et adaptable à la nature des données qui changent dans le temps. L’apprentissage

en ligne assure la simplicité de la mise à jour du modèle en découplant mise à jour à la fois

de l’ensemble du processus. Un tel processus d’apprentissage est souvent désigné comme

apprentissage incrémental, où l’ordinateur apprend par des petits incréments afin de construire

l’ensemble global des connaissances.

L’objectif de cette recherche est de contribuer à l’apprentissage incrémental en ligne pour

le problème de reconnaissance de formes et plus spécifiquement, la reconnaissance de sym-

boles manuscrits. Dans ce travail, nous nous concentrons sur les problèmes spécifiques de

l’apprentissage en ligne ayant un rapport avec le dilemme stabilité-plasticité (stability-plasticity)

tout en assurant un traitement rapide. Guidés par l’application et le but de la recherche, nous

appliquons nos solutions aux modèles Neuro-Floue (Neuro-Fuzzy). Le concept de modélisa-

tion Neuro-floue est basé sur la division de l’espace des classes inséparables superposées en

sous-problèmes régis par des règles floues, où le classement est assuré par un modèle linéaire

simple à utiliser ensuite pour obtenir un résultat combiné du modèle, à savoir, seulement une

partie linéaire. Chaque symbole manuscrit peut être représenté par un certain ensemble de

symboles d’une classe qui se ressemblent mais qui varient à l’interne. Ainsi, chaque classe

apparaît difficile à décrire par un modèle simple. En la divisant en un certain nombre de prob-

lèmes plus simples, la tâche de décrire la classe devient plus faisable, ce qui constitue notre

principale motivation pour choisir des modèles Neuro-Floue.

Pour contribuer au traitement en temps réel, tout en maintenant un taux de reconnaissance

élevé, nous avons développé la similarité incrémentale, une mesure de similarité utilisant

l’apprentissage incrémental et, surtout, des mises à jour simples. Notre solution a été appliquée

à un certain nombre de modèles qui a donné des résultats prometteurs.

VIII

Souvent, la distribution des classes n’est pas uniforme, c’est-à-dire qu’il y a des blocs d’occurr-

ences et de non-occurrences de certaines classes. Par conséquent, si une classe donnée n’est

pas utilisée pendant un certain temps, elle sera oubliée.

Puisque les modèles utilisés dans nos recherches utilisent les moindres carrés récursifs, nous

avons proposé la méthode ‘Mémoire élastique d’apprentissage’ (Elastic Memory Learning),

une méthode pour ce type d’optimisation qui a permis d’obtenir des résultats significativement

meilleurs.

L’utilisation d’hyper-paramètres tend à être une nécessité pour de nombreux modèles. Cepen-

dant, la fixation de ces paramètres est réalisée par la validation croisée (cross-validation).

Dans l’apprentissage en ligne, la validation croisée n’est pas possible, en particulier pour

l’apprentissage en temps réel. Dans notre recherche nous avons développé un nouveau modèle

qui, au lieu de fixer ses hyper-paramètres, les utilise comme des paramètres appris de manière

automatique selon les tendances changeantes des données. A partir de là, toute la structure du

modèle doit être auto-adaptée à chaque fois, ce qui donne notre proposition d’un modèle de

Neuro-Floue auto-organisé (SO-ARTIST).

Puisque l’apprentissage incrémental en ligne apprend à partir d’un point de données à la fois;

au début il n’y en a qu’un. Ceci est appelé démarrage à partir de zéro et conduit à une faible

généralisation du modèle au début du processus d’apprentissage, c’est-à-dire une variance

élevée. Dans notre travail, nous avons intégré un modèle basé sur la théorie Cinématique pour

générer des données synthétiques dans le pipeline d’apprentissage en ligne, ce qui a conduit à

une variance significativement plus faible au stade initial du processus d’apprentissage.

Au total, ce travail a contribué à un certain nombre de nouvelles méthodes dans le domaine

de l’apprentissage en ligne qui ont été publiés dans des Journaux internationaux et présentés

dans des conférences internationales. Le but principal de cette thèse a été atteint et tous les

objectifs ont été abordés. Nos résultats ont montré un impact significatif dans ce domaine.

Mots clés: apprentissage machine, apprentissage en ligne, apprentissage incrémental, classi-

fication, reconnaissance de formes, modélisation évolutive, systèmes Neuro-Flous, reconnais-

sance gestuelle manuscrite, SO-ARTIST, similarité incrémentielle, apprentissage de mémoire

élastique, génération de données synthétiques

ONLINE INCREMENTAL LEARNING FROM SCRATCH WITH APPLICATION TO
HANDWRITTEN GESTURE RECOGNITION

Marta REŽNÁKOVÁ

ABSTRACT

In recent years we have witnessed a significant growth of data to be processed by machines in

order to extract all the knowledge from those data. For agile decision making, the arrival of new

data is not bounded by time, and their characteristics may change over time. The knowledge

stored in machines needs to be kept up to date. In traditional machine learning, this can be

done by re-learning on new data. However, with the constant occurrence of high data volume,

the process becomes overloaded, and this kind of task becomes unfeasible. Online learning

methods have been proposed not only to help with the processing of high data volume, but

also to become more agile and adaptive towards the changing nature of data. Online learning

brings simplicity to the updates of the model by decoupling a single update from the whole

updating process. Such a learning process is often referred to as incremental learning, where

the machine learns by small increments to build the whole knowledge.

The aim of this research is to contribute to online incremental learning for pattern recognition

and more specifically, by handwritten symbol recognition. In this work, we focus on spe-

cific problems of online learning related to the stability-plasticity dilemma and fast processing.

Driven by the application and the focus of this research, we apply our solutions to Neuro-Fuzzy

models. The concept of Neuro-Fuzzy modeling is based on dividing the space of inseparable

and overlying classes into sub-problems governed by fuzzy rules, where the classification is

handled by a simple linear model and then used for a combined result of the model, i.e., only

a partially linear one. Each handwritten symbol can be represented by a number of sets of

symbols of one class that resemble each other but vary internally. Thus, each class appears

difficult to be described by a simple model. By dividing it into a number of simpler problems,

the task of describing the class is more feasible, which is our main motivation for choosing

Neuro-Fuzzy models.

To contribute to real-time processing, while at the same time maintaining a high recognition

rate, we developed Incremental Similarity, a similarity measure using incremental learning and,

most importantly, simple updates. Our solution has been applied to a number of models and

has shown superior results.

Often, the distribution of the classes is not uniform, i.e., there are blocks of occurrences and

non-occurrences of some classes. As a result, if any given class is not used for a period of

time, it will be forgotten. Since the models used in our research use Recursive Least Squares,

we proposed Elastic Memory Learning, a method for this kind of optimization and, we have

achieved significantly better results.

The use of hyper-parameters tends to be a necessity for many models. However, the fixing of

these parameters is performed by a cross-validation. In online learning, cross-validation is not

X

possible, especially for real-time learning. In our work we have developed a new model that

instead of fixing its hyper-parameters uses them as parameters that are learned in an automatic

way according to the changing trends in the data. From there, the whole structure of the model

needs to be self-adapted each time, which yields our proposal of a self-organized Neuro-Fuzzy

model (SO-ARTIST).

Since online incremental learning learns from one data point at a time, at the beginning there

is only one. This is referred to as starting from scratch and leads to low generalization of the

model at the beginning of the learning process, i.e., high variance. In our work we integrated

a model based on kinematic theory to generate synthetic data into the online learning pipeline,

and this has led to significantly lower variance at the initial stage of the learning process.

Altogether, this work has contributed a number of novel methods in the area of online learning

that have been published in international journals and presented at international conferences.

The main goal of this thesis has been fulfilled and all the objectives have been tackled. Our

results have shown significant impact in this area.

Keywords: machine learning, online learning, incremental learning, classification, pattern

recognition, evolving modeling, neuro-fuzzy systems, handwritten gesture recognition, SO-

ARTIST, incremental similarity, elastic memory learning, synthetic data generation

TABLE OF CONTENTS

Page

INTRODUCTION . 1

0.1 Context of the thesis . 1

0.2 Problem statement . 4

0.2.1 Dynamic changes in the environment, learning from scratch and

on the fly . 4

0.2.2 Accuracy vs. Processing time . 6

0.2.3 Forgetting . 6

0.2.4 Parameter-free modeling . 7

0.2.5 Missing data . 8

0.3 Contributions . 9

0.4 Outline of the thesis . 11

CHAPTER 1 LITERATURE REVIEW .. 13

1.1 Online learning methods . 13

1.1.1 Online linear methods . 13

1.1.1.1 Stochastic gradient descent . 16

1.1.1.2 Recursive Least Squares . 18

1.1.2 Online clustering methods . 19

1.1.2.1 Online k-means . 19

1.1.2.2 Adaptive Resonance Theory . 20

1.1.3 Online dimensionality reduction . 22

1.1.3.1 Incremental Principal Component Analysis . 23

1.1.4 Online kernel models . 25

1.1.4.1 Incremental Support Vector Machine . 25

1.1.5 Online ensemble models . 28

1.1.5.1 Online AdaBoost . 28

1.1.5.2 Evolving Neuro-Fuzzy models . 29

1.1.5.3 Online Random Forest . 32

CHAPTER 2 GENERAL METHODOLOGY . 35

2.1 Objective of the research . 35

2.1.1 Sub-objective 1: Develop online learning model tackling learning

on the fly and from scratch along with the accuracy vs. processing

time problem . 35

2.1.2 Sub-objective 2: Tackle forgetting of unused classes for online

learning models and apply . 36

2.1.3 Sub-objective 3: Develop online learning model able to work

without free parameters . 36

2.1.4 Sub-objective 4: Tackle the problem of missing data . 36

2.2 Methodology . 37

XII

Page

2.2.1 Incremental Similarity . 40

2.2.2 Elastic Memory Learning . 40

2.2.3 Self-Organized Incremental Model . 41

2.2.4 The problem of missing data . 43

CHAPTER 3 INCREMENTAL SIMILARITY FOR REAL-TIME ON-LINE

INCREMENTAL LEARNING SYSTEMS . 45

3.1 Abstract . 45

3.2 Introduction . 45

3.3 Related works . 47

3.4 Incremental similarity . 48

3.4.1 Euclidean and Mahalanobis distances . 49

3.4.2 Our novel Incremental Similarity measurement . 51

3.5 Models . 53

3.5.1 ETS . 53

3.5.2 ETS+ . 54

3.5.3 Incremental fuzzy model (IFM) . 54

3.5.4 ARTIST: ART-2A driven rule management in TS model 54

3.5.5 K-means . 55

3.6 Results . 55

3.7 Conclusion and discussion . 61

CHAPTER 4 ELASTIC MEMORY LEARNING FOR FUZZY INFERENCE

MODELS . 65

4.1 Abstract . 65

4.2 Introduction . 66

4.3 Related works . 67

4.4 Recursive Least Squares for TS fuzzy models . 70

4.5 EML: Elastic Memory Learning . 72

4.6 EML+ . 73

4.7 Results . 75

4.8 Conclusion and discussion . 80

CHAPTER 5 SO-ARTIST: SELF-ORGANIZED ART-2A INSPIRED CLUSTERING

FOR ONLINE TAKAGI-SUGENO FUZZY MODELS 83

5.1 Abstract . 83

5.2 Introduction . 83

5.3 Related works . 86

5.4 ARTIST: ART-2A driven generation of rules for TS fuzzy models 89

5.4.1 Rule organization . 90

5.4.2 Antecedent part . 92

5.4.2.1 Incremental similarity measurement . 94

XIII

Page

5.4.3 Consequent part . 94

5.4.3.1 Competitive Recursive Least Squares . 96

5.5 SO-ARTIST: Self-Organized ART-2A based management of rules for TS

fuzzy models . 96

5.5.1 Merging the rules . 98

5.5.1.1 Similarity measurement . 98

5.5.1.2 Rule distance measurement . 99

5.5.1.3 Merging membership parameters .100

5.5.1.4 Merging CCL parameters .101

5.5.1.5 Merging rule parameters .104

5.5.2 Splitting and discarding the rules .105

5.5.2.1 Dissimilarity, error and age measurement .106

5.5.2.2 Class distance measurement .109

5.5.2.3 Splitting membership parameters .110

5.5.2.4 Splitting consequent parameters .111

5.5.2.5 Splitting rule parameters .111

5.5.3 Self-Organized mechanism .112

5.5.3.1 Learning the learning rate .112

5.5.3.2 Learning the vigilance parameter .114

5.5.3.3 Merging process .116

5.5.3.4 Splitting process .117

5.5.3.5 Discarding process .118

5.5.3.6 Algorithm .118

5.6 Results .120

5.6.1 Self-Organization evaluation .120

5.6.1.1 Self-Organized framework evaluation .121

5.6.1.2 Evolution of Vigilance parameter and Learning rate122

5.6.2 Accuracy evaluation .126

5.6.3 Learning without forgetting .130

5.7 Conclusion and Discussion .132

CHAPTER 6 FORGETTING OF UNUSED CLASSES IN MISSING DATA

ENVIRONMENT USING AUTOMATICALLY GENERATED

DATA: APPLICATION TO ON-LINE HANDWRITTEN GESTURE

COMMAND RECOGNITION .135

6.1 Abstract .135

6.2 Introduction .136

6.3 Related works .140

6.4 Sigma-lognormal model .143

6.5 ARTIST .144

6.6 EML: Elastic Memory Learning .146

6.7 Framework for on-line real-time learning using synthetic data .149

XIV

Page

6.8 Experiments .151

6.8.1 Experimental setting .152

6.8.2 Results .153

6.9 Conclusion and Discussion .162

CHAPTER 7 GENERAL DISCUSSION .165

7.1 Incremental Similarity .165

7.2 Elastic Memory Learning .166

7.3 Self-Organized incremental model .166

7.4 The problem of missing data .167

CONCLUSION AND RECOMMENDATIONS .169

BIBLIOGRAPHY .176

LIST OF TABLES

Page

Table 3.1 Datasets . 56

Table 3.2 Digits A - whole dataset results, Evolving fuzzy models (%/sec/sec) 58

Table 3.3 Digits B - last 100 samples results, Evolving fuzzy models (ms/ms) 58

Table 3.4 Digits C - whole dataset results, K-means (%/sec) . 58

Table 3.5 Digits D - per one step results, K-means (ms/ms/ms) . 59

Table 3.6 Online handwritten symbols I A - whole dataset results, Evolving

fuzzy models (%/sec/sec) . 59

Table 3.7 Online handwritten symbols I B - the last 100 samples results,

Evolving fuzzy models (ms/ms) . 60

Table 3.8 Online handwritten symbols I C - whole dataset results, K-means

(%/sec) . 60

Table 3.9 Online handwritten symbols I D - per one step results, K-means

(ms/ms/ms) . 60

Table 3.10 Online handwritten symbols II A - whole dataset results, Evolving

fuzzy models (%/sec/sec) . 61

Table 3.11 Online handwritten symbols II B - the last 100 samples results,

Evolving fuzzy models (ms/ms) . 61

Table 3.12 Online handwritten symbols II C - whole dataset results, K-means

(%/sec) . 62

Table 3.13 Online handwritten symbols II D - per one step results, K-means

(ms/ms/ms) . 62

Table 4.1 Datasets . 76

Table 4.2 Comparison of forgetting for ARTIST. The recognition rate of the

forgotten class without learning/recognition rate of the rest of the

dataset (along with the forgotten class) with learning/recognition

rate on the last 100 samples with learning. The results are shown

in % of recognition rate. 77

XVI

Page

Table 4.3 Comparison of forgetting for ETS. The recognition rate of the

forgotten class without learning/recognition rate of the rest of the

dataset (along with the forgotten class) with learning/recognition

rate on the last 100 samples with learning. The results are shown

in % of recognition rate. 78

Table 4.4 Comparison of forgetting for ETS+. The recognition rate of the

forgotten class without learning/recognition rate of the rest of the

dataset (along with the forgotten class) with learning/- recognition

rate on the last 100 samples with learning. The results are shown in

% of recognition rate. 79

Table 4.5 Comparison of forgetting for IFM. The recognition rate of the

forgotten class without learning/recognition rate of the rest of the

dataset (along with the forgotten class) with learning/recognition

rate on the last 100 samples with learning. The results are shown

in % of recognition rate. 80

Table 5.1 Datasets .121

Table 5.2 Comparison of Self-Organized framework to grid-based search for

best parameters .122

Table 5.3 Evolution of Vigilance parameter and Learning rate .126

Table 5.4 Recognition rate for Online Learning models .129

Table 5.5 Recognition rate for SO-ARTIST and Offline Learning models.130

Table 6.1 Exploring the error rates on the first 100 original samples compared

with learning with original data vs. learning with synthetic data in

blocks vs. learning with synthetic data using the randomized buffer,

with emphasis on forgetting when not using EML (i.e. RLS) vs.

using EML. .156

LIST OF FIGURES

Page

Figure 0.1 Offline learning vs Online learning. In online learning the data is

processed as a sequence, whereas in offline learning in a bulk. In

new data occurs, they are treated as another data in a sequence for

online learning. In offline learning, new data need to be added to

the old data and the whole model needs to be retrained. 2

Figure 0.2 The problem of dynamic changes in the environment. In image

1 first samples are introduced to the system, where the online

model (blue decision boundaries) learns from scratch, however,

offline model (red decision boundary) need to wait to gather data

to create the decision boundary. As the data amount appear, the

online model adapts, but offline model is already set from image

4. In image 6 we note a miss-classification due to the static

decision boundary in offline model, however online model adjusts

its decision boundaries accordingly. In images 7-9 we see a new

class to appear, where the offline model cannot cope with this

new structure in the data, whereas the online model adapts to such

change. 5

Figure 0.3 The problem of forgetting. In the image 1 we can see a decision

boundary when starting from scratch. After some time, image 2,

one class is not used for a longer period of time and the decision

boundary, red, is shifting towards the forgotten class. As we

can see in the image 3, the new decision boundary, dashed, is

not changing dramatically and still causes confusion. The blue

decision boundaries are from a model that is immune to the

forgetting, making it fast to adapt to new examples while not being

confused. 7

Figure 0.4 The problem of missing data. At the beginning of the

learning/recognition process occurs the lack of data resulting into

high variance visible by the drop in recognition rate in the figure. 9

Figure 1.1 Adaptive Resonance Theory model. 22

Figure 1.2 Cosine distance of normalized weight vector Wj and input x. We

can see, that the further the input x is from the centroid Wj, as

compared to the vigilance ρ , the smaller is the projection of Wj
onto x, i.e. cosxWj, which represents their dot product. Then

the red line represents the projection of W onto a vector on the

XVIII

Page

boundary of the distances from it, resulting into the vigilance

parameter ρ . 23

Figure 2.1 Takagi-Sugeno Neuro-Fuzzy model. 39

Figure 2.2 Competitive learning. Points of different classes (colors) compete

within their rules to be used for the learning (red circled points). 41

Figure 2.3 Merging of the rules that are close enough and similar enough to

each other. 42

Figure 2.4 Splitting of the rule into dissimilar rules. 43

Figure 2.5 Discarding of the rules that are too small and old. 43

Figure 3.1 Recognition rate a), c) and e) for various Neuro-Fuzzy models, b),

d) and f) for k-means and various k, on Digits (a), b)), OHS-I (c),

d)) and OHS-II (e), f)) datasets. 62

Figure 3.2 Computational complexity a), c) and e) for various Neuro-Fuzzy

models, b), d) and f) for k-means and various k, on Digits (a), b)

), OHS-I (c), d)) and OHS-II (e), f)) datasets. 63

Figure 5.1 ARTIST . 93

Figure 5.2 SO-ARTIST .113

Figure 5.3 Recognition rate comparison of ARTIST and SO-ARTIST on

Handwritten Gestures I dataset .123

Figure 5.4 Recognition rate comparison of ARTIST and SO-ARTIST on

Mushrooms dataset .123

Figure 5.5 Recognition rate comparison of ARTIST and SO-ARTIST on

SatImage dataset .124

Figure 5.6 Recognition rate comparison of ARTIST and SO-ARTIST on

Digits dataset .124

Figure 5.7 Recognition rate comparison of ARTIST and SO-ARTIST on

Segments dataset .125

Figure 5.8 Evolution of ρ and λ parameters for Handwritten Gestures I

dataset .127

XIX

Page

Figure 5.9 Evolution of ρ and λ parameters for Mushrooms dataset127

Figure 5.10 Evolution of ρ and λ parameters for SatImage dataset .128

Figure 5.11 Evolution of ρ and λ parameters for Digits dataset .128

Figure 5.12 Evolution of ρ and λ parameters for Segment dataset .129

Figure 5.13 Recognition rate when forgetting one class. .131

Figure 5.14 Recognition rate when forgetting two classes .132

Figure 6.1 Simple handwritten gesture commands. The complete information

for the system contains coordinates, time of the acquisition and

direction of the gesture command. .138

Figure 6.2 Forgetting of unused classes. At first, all classes are learned at the

same rate, but gradually one class is left out of the learning process.139

Figure 6.3 Comparison of a) original data to b) data reconstructed by the

Sigma-lognormal model without any noise applied to it and c)

synthetic data generated by the Sigma-lognormal model from

duplicated data after adding some noise. The figure was produced

using Scriptstudio O’Reilly et al. (2009), a software package

that extracts lognormal parameters from a velocity profile and

reconstructs it minimizing the reconstruction errors. .145

Figure 6.4 ARTIST. This model is composed of fuzzy rules 6.2 that are

managed by an ART-2A network, but the inner functionality of

the rules is independent of it. First input I is processed by the ART-

2A network, where the network is responsible for managing the

rules of the model. It is normalized to xxx so that a cosine distance

can be obtained and compared to the existing rules. The choice

of the best rule is made and the resonance layer decides whether

to update the chosen rule or create a new one. From this point

a fuzzy network takes the control and calculates the antecedent

part, which is used as a weight β for consequent predictions. After

obtaining the consequent results, a prediction is made and used for

competitive update 6.10. .147

Figure 6.5 Framework for on-line learning from scratch using synthetic data.

X refers to an input sample that is fed to the model and recognized.

The information from the recognition process is then used for

XX

Page

the learning and new data are added to the model (the model is

evolving). The solid line refers to the processing of real samples,

where on the basis of recognition the system gives an output Y of a

predicted label. The dashed line refers to the additional processes

related to the generation of synthetic data. .151

Figure 6.6 Recognition rates for randomized buffer with EML using a

different number of synthetic samples. .156

Figure 6.7 Recognition rate when using only original data compared to the

one using 25 automatically generated samples for each original

sample with the use of the randomized buffer. The comparison

is done for a) learning without EML and b) learning with EML.157

Figure 6.8 Comparison of the recognition rate using original data, synthetic

data with block learning and synthetic data with the randomized

buffer, using 25 synthetic samples generated for each real sample.158

Figure 6.9 Comparison of the recognition rate using

our model (ARTIST+EML with randomized buffer) to baselines

(from sklearn library). .158

Figure 6.10 Comparison of different times to stop the generation of synthetic

samples, i.e. different number of original samples for which

synthetic samples are generated: a) without EML and b) with

EML. At the very right an error on last 100 samples is visualized

by stars to show the converged recognition rate of the system..159

Figure 6.11 Comparison of recognition rates with one skipped class and after

its introduction to the system. We compare the rates using only

original data to those using the randomized buffer with synthetic

samples when learning a) without EML and b) with EML. The

introduction of the skipped class occurs at the 151st original

sample. .160

Figure 6.12 Recognition rate for the forgetting scenario a) without EML, b)

with EML. Phase 1 learns and recognizes samples from all classes,

Phase 2 learns and recognizes samples from all classes except one,

phase 3 does not learn but recognizes the unused class from phase

2, and phase 4+ learn and recognize samples from all classes.161

Figure 6.13 Comparison of the recognition rates for the forgetting scenario

using different models. Phase 1 learns and recognizes samples

XXI

from all classes, phase 2 learns and recognizes samples from all

classes except one, phase 3 does not learn but recognizes the

unused class from phase 2, and phase 4+ learn and recognize

samples from all classes. .162

LIST OF ABREVIATIONS

AdaBoost Adaptive Boosting

ART Adaptive Resonance Theory

ART-2A Adaptive Resonance Theory for analog patterns

ARTIST ART-2A driven rule management in Takagi-Sugeno Fuzzy model

ASC Applied Soft Computing

CCL Competitive Consequent Learning

CI Confidence Interval

DNA Deoxyribonucleic acid (dataset of)

ED Euclidean Distance

EML Elastic Memory Learning

EML+ Elastic Memory Learning +

ETS École de Technologie Supérieure

ETS Evolving Takagi-Sugeno

ETS+ Evolving Takagi-Sugeno +

HS Handwritten Symbols

IFM Incremental Fuzzy Model

ICDAR International Conference on Document Analysis and Recognition

IEEE The Institute of Electrical and Electronics Engineers

IJCNN International Joint Conference on Neural Networks

XXIV

IL Incremental Learning

IS Incremental Similarity

ISSPA Information Science, Signal Processing and their Applications

JMLC International Journal of Machine Learning and Cybernetics

K-means machine learning model for clustering

K-NN K Nearest Neighbors

MD Mahalanobis Distance

MNIST Mixed National Institute of Standards and Technology database

MOA Massive Online Analysis

NSERC Natural Sciences and Engineering Research Council

GD Gradient Descent

OHS Online Handwritten Symbols

ORF Online Random Forest

PCA Principal Component Analysis

PCR Principal Component Regression

RLS Recursive Least Squares

RGPIN Discovery Grant Program

RR Recognition Rate

SGD Stochastic Gradient Descent

SI Satelite Images

XXV

SO-ARTIST Self-Organized ARTIST

SOM Self-Organized Maps

SOTA State-Of-The-Art

SSHRC Social Sciences and Humanities Research Council

SV Support Vector

SVD Singular Value Decomposition

SVM Support Vector Machines

TS Takagi-Sugeno

UCI University of California

USPS United States Postal Service (digits from)

VQ Vector Quantization

INTRODUCTION

In this chapter we introduce the online learning problem and its various settings that influence

the type of solution chosen. Further, we pose a number of problems and challenges of online

learning that as well serve as our motivation for our work.

0.1 Context of the thesis

Online learning is a part of machine learning that unlike offline learning performs the learning

and recognition steps simultaneously, at every iteration, see Figure 0.1. Thus, the recognition

is not delayed by the learning process to be finished. Many online learning algorithms are

based on incremental learning, however this implication is not mutual. Incremental learning is

based on recursive updates, where the model does not store the past data, but rather keeps a set

of parameters describing the processed data. Thus, most of the incremental learning methods

are parametric. However, there are semi-incremental methods that store some portion of the

data, either due to the nature of these models by being non-parametric or due to the proper

functionality. We will describe some of these methods in Chapter 1. Besides incremental

learning methods, there are online adaptive ones that do not rely on recursive updates, but

rather adapt the parameters to the environment.

When we approach a problem with online learning solution, we face stability-plasticity dilemma.

This tells us how much we want the model to rely on the old information and be more reserved

in the predictions, i.e. how much we want to avoid adapting to an unimportant impulses for

stability vs. being more flexible and adapting to the very new data, i.e. learning the important

impulses for plasticity. We can see a slight difference in incremental and adaptive methods. For

incremental learning the aim is to remember all the past data and converge to the true state of

the environment, and tend to aim more towards the stability (unless the parameters responsible

for the convergence are set otherwise). Adaptive methods do not necessarily rely on the past

2

Figure 0.1 Offline learning vs Online learning. In online learning the

data is processed as a sequence, whereas in offline learning in a bulk.

In new data occurs, they are treated as another data in a sequence for

online learning. In offline learning, new data need to be added to the

old data and the whole model needs to be retrained.

data, but rather adapt to the changes in a dynamic way expecting the state of the environment

to be more current, aiming rather for the plasticity part of the problem. Based on the learning

approach, we may divide the models into four groups from which in this work we will focus

on the first two.

• Online incremental learning. The learning and recognition are performed simultaneously

at each iteration. The model learns a set of parameters that describe the processed data.

While these models might seem to be more stable than plastic compared to adaptive ones,

one needs to pay attention to the parameters related to the stability-plasticity, e.g. the

learning rate. Once the data is processed it is not stored anymore. These models have the

advantage of low memory cost and fast processing, however they can lack the accuracy.

Usually, the more robust model is, the more computationally costly it is.

• Online adaptive learning. The learning and recognition are performed simultaneously at

each iteration. The model adapts to the current state of the environment rather than de-

scribing the expected value of the world by parameters. Thus, these models, if not treated

carefully, might lack stability while focusing on plasticity. Once the data is processed it is

3

not stored anymore. Similarly, these models have the advantage of low memory and pro-

cessing costs. However, besides the possibility of lower accuracy they might pay for the

adaptive nature of the learning and be prone to the low stability.

• Offline incremental learning. The learning and recognition are performed in two stages.

The learning is performed in a recursive manner, and the already processed data is lost.

The free parameters of the model are fixed by cross-validation. While these models are

preferred for their low memory and processing costs, they can lack in the accuracy as

they do not have access to the whole batch of data and might not see the true structures

within. However, in some cases, incremental learning can avoid falling into local minima,

especially when the data in the sequence are uniformly distributed. Since only after the

whole learning process is finished, the recognition takes a place, if new change in the

environment occurs the model needs to be updated.

• Offline batch learning. The learning and recognition are performed in two stages. During

the learning process all the data is available and used as a bunch to derive parameters.

Further free parameters are then fixed using cross-validation. These models tend to have

higher accuracy, but also higher memory and computational costs. They are not able to

perform recursive updates, and thus f new situation in the environment occurs they need to

be learned again, with both old and new data.

In pattern recognition we can find many applications of online learning. Especially with the

growth of data and the aim towards user-friendliness of the systems. Our main motivation from

the application point of view is recognition of handwritten gestures. Here, the gestures are not

given at the beginning, but they appear within a sequence of occurrences. Another interesting

application of online learning is the prediction of the internet data, whose size is not only big,

requiring processing with low computational cost, but they appear at very dense frequencies.

In Chapter 1 we will discuss various online learning methods that can be applied for various

4

problems, keeping in mind that each model fits best to only a certain class of applications, as

there is not one hammer for every nail.

0.2 Problem statement

In our work, we focus on online learning to deal with requirements of dynamic nature of the

environment. Such requirements include that the data is not known ahead and does not appear

at once, but in a sequence of occasions. Thus, we need to be able to accommodate such changes

and to be able to process data in a sequences rather than one bulk. Since the data is not known,

the system cannot be told by the teacher when the classes will appear and what form will

they take. Our knowledge of the problem is limited to the type of the application only. At

the same time, the system needs to be able to learn in a systematic way without forgetting

past knowledge, but also adequately adapting to the new state of the environment. In many

applications, the cost of the learning is important as well as the accuracy of the recognition and

the aim is to find the balance in these two. We address these problems in detail in the following

subsections.

0.2.1 Dynamic changes in the environment, learning from scratch and on the fly

In many applications, especially with the raise of the use of internet, the environment that the

machine intends to find description in is changing dynamically and many new data occur in

it, see Figure 0.2. To keep the predictions about the states of the environment up-to-date, it

is best to adapt to all these changes once they come to happen. One option is to wait for

sufficient amount of data and then use these along with the old data to retrain the model of

the environment. This is the approach of traditional offline models that require to learn the

whole model from the beginning. This requires significant amount of time for the delay of the

system to be used for predictions. A better option seems to be to update the model every time

there is a change in the state of the environment and to be able to accommodate new structures

5

of the data in the model. Many known offline models require, by definition, initialization of

the number of the structures in the data and use methods such as cross-validation to determine

these in case they are not known. This seems to be a problem for many online models, since

the number of the classes needs to be set ahead and thus there is no possibility for learning on

the fly.

Figure 0.2 The problem of dynamic changes in the environment. In image 1 first

samples are introduced to the system, where the online model (blue decision

boundaries) learns from scratch, however, offline model (red decision boundary)

need to wait to gather data to create the decision boundary. As the data amount

appear, the online model adapts, but offline model is already set from image 4. In

image 6 we note a miss-classification due to the static decision boundary in offline

model, however online model adjusts its decision boundaries accordingly. In images

7-9 we see a new class to appear, where the offline model cannot cope with this new

structure in the data, whereas the online model adapts to such change.

6

0.2.2 Accuracy vs. Processing time

For many applications, the use of online learning is purposed to be real-time, when the re-

sponse or the prediction of the system to the environment needs to be fast. Furthermore, the

use of incremental learning for offline learning is due to the saving of the processing time, when

classical batch learning is too slow. Thus, in online and also incremental learning models, the

machine needs to rely on simple updates that are fast, but also result into accurate predictions.

In parametric learning a distribution of the data is assumed, such that this distribution is de-

scribed by the parameters. Usually, an expected value, such as the mean is used accompanied

with a variance or a covariance. By comparing these two we can see, that in univariate dis-

tributions, the mean and variance ignore covariances among the data as well as the variances

for each dimension separately. There are methods, such as Naive Bayes, that take into account

the variances within each dimension, but still lack the covariances. In some application this

might not be an issue and the models based on univariate distributions can benefit from the

low computational cost. But in many other applications a covariances between variables carry

information that can be crucial for the whole learning and prediction process. On the other

hand, introducing covariance brings increased computational cost, which can be detrimental

for the real-time processing.

0.2.3 Forgetting

Since online learning relies on small updates and at each time step uses only sample of size one,

the system cannot look at the data as a whole. Thus, instead of extracting the statistics from

the whole sample, we assume that by these small updates we will converge to the expected

value. Usually we need to set a rate at which the system learns or adapts to the new input. This

rate tells us how agile the learning is. Setting this is an issue of stability-plasticity dilemma.

We need to be able to decide, whether we want to rely on all data already known, making

7

more stable decisions, or whether we want to be agile and flexible by adapting to the new state

of the environment. In other words, ideally we want to avoid learning an unimportant event

that brings only noise to the data, but at the same time be able to adapt to an important event.

This dilemma goes hand in hand with the problem of forgetting. In online learning, the data

stream continues and the old samples are usually not revisited. In multi-class problems, there

are two basic strategies how to transform two-class models into multi-class establishment, and

this is by keeping the true class as the positive class and either letting all the other classes as

negative classes (one vs all) or doing pairwise models by choosing always only one other class

as the negative class, and doing this for all possible combinations (one vs one). Either way,

if one class is not used for a longer period of time, it becomes sparse compared to the other

class/classes and basically is overrun by the negative examples, see Figure 0.3. This shifts the

decision boundary so that the positive class is not longer recognizable.

Figure 0.3 The problem of forgetting. In the image 1 we can see a decision

boundary when starting from scratch. After some time, image 2, one class is not used

for a longer period of time and the decision boundary, red, is shifting towards the

forgotten class. As we can see in the image 3, the new decision boundary, dashed, is

not changing dramatically and still causes confusion. The blue decision boundaries

are from a model that is immune to the forgetting, making it fast to adapt to new

examples while not being confused.

0.2.4 Parameter-free modeling

One of our motivations is to be able to build user-friendly model, that is capable of adapting

to new situations and to respond to them adequately, with as little human/users involvement

8

as possible. This results into the need of being able to adapt to data that has not been seen

ahead and our knowledge of the environment is restricted to the task the system is coping with.

For example, in handwritten gesture recognition all we know is that the data are going to be

handwritten gestures, but we do not know how they will look like, how many classes there

will be or when they will be added to the system. We cannot say for sure how fast the system

needs to learn, because we do not know how the environment will change in the future. We

cannot rely on cross-validation, because we cannot rely on previously learned model. Thus, it

is essential to avoid free/hyper parameters and let the model to adapt to the environment itself,

using only the knowledge that will not change in time (i.e. the application). Many models rely

on hyper parameters and the expertise of the teacher to be able to set these parameters. But this

does not fit to the nature of online learning, and thus models that are able to adapt themselves

are in need for many online learning based applications.

0.2.5 Missing data

So far, we have been focusing on the overall learning capabilities resulting in a stable system.

However, an important part of the process is also the initial state, where the system needs to

learn from very few examples, see Figure 0.4. Such setup can, and usually does, result in

over-fitting and a high variance. In offline learning setup we can discover the variance on the

testing/evaluation stage, after the model is trained. However, in online learning setup we do

not have the testing data, our testing data is all the data. Thus, we can see the over-fitting in a

poorer performance, when the model is not robust enough to predict the new example caused

by the low generalization abilities. Thus, at each time t, all the data until this time instance

are the training data and the next data point is the testing data point. In the learning on the fly

and learning from scratch setups, we usually have only one example per class to begin with,

and the classes are not initialized at the beginning, they appear during the learning/recognition

9

process. Therefore, when we learn from only one example, the next example which is not the

very same one, is not going to fit well to the model that the system has built for its class.

Figure 0.4 The problem of missing data. At the beginning of the

learning/recognition process occurs the lack of data resulting into

high variance visible by the drop in recognition rate in the figure.

0.3 Contributions

In this work we tackle several problems stated in previous sections. In general, we solve the

online learning problem that involves different aspects of this kind of machine learning. First

of all, in online learning, the data need to be processed in a sequence, and thus a model needs

to be able to perform simple and one-example based updates. We accomplish this goal by

proposing and developing few novel models successfully published in international journal

and conferences.

With our models we successfully tackle the learning on the fly restriction, when the classes

need to be added during the processing of the data. The models that we introduce do allow

addition of new classes on the fly as well as addition of new structures. This is important

aspect of the online learning in case when the classes are not known ahead and we simply

cannot initialize the model using knowledge we do not posses.

10

In our later work we tackle accuracy vs processing time problem. We successfully develop an

incremental similarity measurement that is capable of avoiding high computational cost while

remaining at high accuracy level. We apply this method to all our models and improved the

overall results.

Since in online learning the data are processed in a sequence, it is not easy to avoid the for-

getting of unused classes. In the stream, in real-time recognition, the classes do not occur

uniformly distributed and we cannot influence the distribution of the classes in the stream.

Thus, some classes can become very sparse in some periods of time, resulting into their for-

getting by the model. In our research we successfully develop a strategy for optimization that

is immune to forgetting and we apply this into our models as well as to other state of the art

models.

Another requirement that we will tackle is the problem of free parameters. These parameters

require expert fixing before the prediction process. In offline learning a cross-validation is used

for this purpose. However in online learning there is no room for cross-validation and the only

other options are to learn the parameters, avoid the parameters or assume the parameters. To

avoid the parameters require specific models that do not need too many parameters to store the

information extracted from the data. In our approach we choose both learning and avoiding

the parameters and we successfully develop a self-organized model. This model is capable of

organization of its structures based on the current and past data as well as adapt all necessary

parameters.

Lastly, one of our main goals was the learning from scratch which results from no initialization

requirement for online learning. Many techniques require this step such that the models can

start with already some knowledge and lead to accurate results. We successfully tackle this

requirement by introducing models that are capable of starting from scratch. At the same time,

we tackle the problem of high variance that results from this requirement, by introducing the

11

framework for generation of synthetic data. For this purpose we explore various aspects of

this approach, e.g. the length of the generation of the synthetic data and their volume. The

aim of this research is to find the best setting when the generation of synthetic data improves

the generalization ability of the model, but at the same time does not cause extra processing

expenses.

Our solutions are applied for various applications, using high amount of machine learning

benchmarks. The main application that we focus on in this work are the handwritten gestures.

We successfully use our models for this application and solve specific corresponding problems.

0.4 Outline of the thesis

In this work we discuss the online learning, problems that result from it and the solutions that

we bring to solve these problems. Thus this work is structured as follows:

• In Literature review we discuss the basic state of the art methods that solve the online

learning restriction. However, these models still do not solve all the problems that we have

posed in the Introduction, leading to the Methodology section. We describe each group of

methods and explain which problem still remains when using it. More detailed literature

review can be found in the chapters concerning the journal publications.

• General Methodology describes the methodology of our work, putting all our publications

together. At first we pose our specific objectives of this work that we follow in the method-

ology section in order to solve it. In the methodology section we describe our solutions on

a higher level such that the reader will get the main idea of our work and how we tackle the

objectives posed in this work. More detailed methodology is accessible in the following

chapters related to our journal publications.

12

• Journal publications are four chapters dedicated to our journal publications. Here we

describe our incremental similarity metric, the elastic memory learning for forgetting, the

self-organized model and the generation of synthetic data.

• In General Discussion we gather all the problems and objectives of our thesis with corre-

sponding solutions. We discuss the results of our work according to our objectives along

with the advantages and disadvantages of our works.

• Conclusion and Recommendations wraps up our work with the focus on each of our main

contributions and pose problems for future works.

CHAPTER 1

LITERATURE REVIEW

In this Chapter we briefly describe and discuss machine learning methods tackling online learn-

ing with the emphasis on problems stated in Section 0.2. The online learning is a special case

of machine learning when the learning and prediction occur at each iteration and the data are

thus processed in a sequence. In this chapter we divide online learning methods into five groups

according to their nature, and list a number of representative models for each.

1.1 Online learning methods

Similarly to all machine learning methods, online learning based ones can be viewed from

different aspects, not only by the way they learn (incremental vs. adaptive), but also by the

way they describe the data and the environment. To address these differences, we list few

models from selected groups of machine learning methods that are capable of online learning

and briefly explain their functionality.

1.1.1 Online linear methods

Linear models for classification as well as for regression expect linearity within the data, i.e.

the data are either linearly separable or the data can be modeled using a linear combination of

some parameter. In this section we will describe solutions for finding the parameters for both,

classification and regression.

In the case of linear regression, hypothesis expects the data to be modeled by a line, i.e. all

the data points lie roughly on a line. However, by inserting polynomial features we can break

this assumptions, allowing to model the data with polynomial curves and bringing more com-

plexity to the solution. The hypothesis for linear regression calculates a linear combination of

14

parameters given the model and data 1.1.

h(x|π1,π2, ...,πn) = π0 +π1x1 +π2x2 + ...+πnxn (1.1)

h(x|Π) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

π0

π1

π2

...

πn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

x1

x2

...

xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ΠT X (1.2)

Then, the cost function is usually a mean squared error between prediction and the actual state

1.3.

J(Π|X) = J(Π|x1,x2, ...xm) =
1

2m

m

∑
i=1

(
h(xi|Π)− yi)2 (1.3)

For the case of classification, the use of regression can be detrimental for various reasons. A

way to apply linear regression for classification problems is to model the two-class problem,

or a set of two-class problems. Each sub-problem than models both two classes as a line

or a polynomial and sets a threshold to determine the true class based on the output of the

hypothesis. In the case of multiple classes, and thus multiple two-class models, we can simply

choose the highest value to be the true class. Thus, the aim is to model true class to result into

1 and all the other classes to result into 0. Normally, a simple way how to set the threshold is to

set it to the middle value, 0.5. However, in case of outliers, the model, line or polynomial, will

be shifted towards these, making the threshold not straightforward to adjust. Also, the outputs

are not bounded within the interval [0,1].

Thus, in general, different hypothesis is used for classification problems, i.e. the logistic re-

gression. Here, a logit function is applied to the original hypothesis 1.4, transforming it so

15

that the output lies within the interval [0,1] and the model now represents a decision boundary

between the true and false class.

h(x|Π) =
1

1+ e−ΠT X
(1.4)

Then, to get the final decision, we apply the threshold θ to the hypothesis 1.5.

y =

⎧⎪⎨
⎪⎩

1 h(x|Π)> θ

0 othewrve
(1.5)

The cost function takes into account the miss-classification, such that in case of correct classi-

fication the cost will be 0 and in case of miss-classification the cost will go to infinity 1.6.

J(Π|X) =

⎧⎪⎨
⎪⎩
− logh(X |Π) y = 1

− log(1−h(X |Π)) y = 0

(1.6)

We can then rewrite the cost function as a cross-entropy 1.7.

J(Π|X) =−
m

∑
i=1

[
yi logh(X |Π)+(1− yt) log(1−h(X |Π))

]
(1.7)

To find the solution for parameters Π, we need to optimize the cost function. Given the cost

function, i.e. 1.3 for regression and 1.7 for classification, we want to find parameters Π that

minimize this cost function. In case of offline learning the cost function is optimized on the

whole sample X , i.e. in a batch mode. In online learning the optimization needs to be able

to perform recursive updates, such that it is capable of processing data as a stream. In the

following, we will describe two basic approaches for both linear and logistic regression, i.e.

Stochastic Gradient Descent (SGD) and Recursive Least Squares (RLS).

16

1.1.1.1 Stochastic gradient descent

To find the best parameters Π 1.9 we minimize the cost function J (Π|X) by putting its first

derivative to zero. In traditional gradient descent (GD) (Snyman, 2005), we optimize over all

X 1.8, obtaining an update 1.11 for the parameters Π 1.12.

X =
{

xxx1 xxx2 · · · xxxm
}
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1

x1
1 x2

1 · · · xm
1

x1
2 x2

2 · · · xm
2

...
...

. . .
...

x1
n x2

n · · · xm
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.8)

Π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

πππ0

πππ1

πππ2

...

πππn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.9)

Y =
{

y1 y2 · · · ym
}

(1.10)

∂J (Π|X)

∂Π
= X (h(X |Π)−Y)T (1.11)

Π = Π−α
∂J (Π|X)

∂Π
= Π−αX (h(X |Π)−Y)T (1.12)

In case of linear regression, we replace the hypothesis h(X |Π) using equation 1.1 and in case

of logistic regression using equation 1.4. To obtain the best parameters, we iteratively update

parameters Π, where each iteration optimizes over all data points X . We initialize the parame-

17

ters Π to small values, and the iteration stops when the cost function is below a threshold. The

parameter α denotes the increment used for updates and can be understood as a learning rate

set within the interval [0,1]. To determine this parameter along with the stop criterion and the

decision threshold , we use cross-validation.

For stochastic gradient descent (Bottou, 2010) we do not optimize over all data points X , but

for each data point separately, and incrementally update parameters Π. Thus, instead of X we

only use xi for i = 1...m, resulting into new updating formula 1.13.

Πi+1 = Πi −α
∂J
(
Πi|xxxi)

∂Πi
= Πi −αxxxi (h(xxxi|Πi

)− yi)T (1.13)

As for GD, α denotes the learning rate. The algorithm however slightly changes. Instead of

one update at each iteration, we perform m updates. We repeat these updates for a number of

iterations to result into the proper parameter vector Π.

The advantage of stochastic gradient descent over traditional gradient descent methods lies

in its small incremental updates. To obtain the derivative on data, when m is too big, the

complexity grows significantly. However, in the case of SGD, the m is not longer a part of the

dot product in the update, but rather an iteration limit. Also, in traditional GD, the algorithm

can fall in a local minima and since the cost function will grow in case of trying to explore

beyond the local minima, the algorithm will terminate resulting into a not best solutions. In

SGD, the updates are more ’chaotic’ since they are based on single data points, but this allows

it to avoid local minima increasing the chances of finding global minima.

For our application, SGD is an interesting solution for linear and logistic regression, however

still requires fixing some parameters (e.g. α), using cross-validation or using a knowledge

about data. In addition, to be able to perform real-time learning and recognition, we cannot

keep the data and allow iterations to find the best parameters, i.e. two loops of iterations - over

all data (inner loop) and until convergence it obtained (outer loop).

18

1.1.1.2 Recursive Least Squares

Another way for learning the parameters Π is by minimizing the squared cost function 1.14 re-

sulting into Recursive Least Squares optimization (Ljung, 1999). Here we define the equations

to derive the parameters Π 1.15 using Gain matrix C−1 1.18.

J (Π|X) = J
(
Π|xxx1,xxx2, ...,xxxm)= m

∑
i=1

(
h
(
xxxi|Π)− yi)2 (1.14)

Πt =
t

∑
i=1

xxxiyi

(
t

∑
i=1

xxxi (xxxi)T)−1

= MtC−1
t (1.15)

Mt =
t

∑
i=1

xxxiyi =
t−1

∑
i=1

xxxiyi + xxxtyt = Mt−1 + xxxtyt (1.16)

Ct =
t

∑
i=1

xxxi (xxxi)T =
t−1

∑
i=1

xxxi (xxxi)T + xxxt (xxxt)T =Ct−1 + xxxt (xxxt)T (1.17)

C−1
t =C−1

t−1 −
C−1

t−1xxxt (xxxt)T C−1
t−1

1+(xxxt)T C−1
t−1xxxt

(1.18)

Πt = MtC−1
t =

(
Mt−1 + xxxtyt)C−1

t =
(
Πt−1Ct−1 + xxxtyt)C−1

t = (1.19)

=
(

Πt−1

(
Ct − xxxt (xxxt)T)+ xxxtyt

)
C−1

t = Πt−1

(
C−1

t

(
Ct − xxxt (xxxt)T))+ (1.20)

+C−1
t xxxtyt = Πt−1

(
1−C−1

t xxxt (xxxt)T)+C−1
t xxxtyt = (1.21)

= Πt−1 −C−1
t xxxt (Πt−1xxxt − yt) (1.22)

Πt = Πt−1 +C−1
t xxxt (yt −Πt−1xxxt) (1.23)

19

Thus, as each new data point occurs, a new Gain matrix C−1
t is derived 1.18 and used for the

update of the parameters Π 1.23. This method does not need to iterate until convergence and

thus can be used for real-time learning and prediction. Further, in this work we will use this

method for optimizing parameters of linear models for Fuzzy rules, where these updates will

need to be fuzzyfied.

1.1.2 Online clustering methods

In previous subsection as well as in latter subsections we talk about supervised learning, where

we can use the true label to find the best parameters Π to model the data or the decision

boundary for linear and logistic regressions. In this subsection, we describe some unsupervised

approaches, where the labels are not known, thus we lack the teacher, and the aim is to find

structures within the data that we believe are the classes. Thus, clustering approaches are suited

for classification problems, since in regression, the dependent variable is continuous.

1.1.2.1 Online k-means

In k-means algorithm (MacQueen et al., 1967), the aim is to find k structures within the data.

These k structures are represented by a vector that is a mean of the data points belonging to

each structure - cluster 1.24, where i = 1...k is the index of the cluster defined by m data points.

μi =
1

m

m

∑
j=1

x j (1.24)

w = argmin
i

∥∥μi − x j∥∥2
(1.25)

K-means is based on iterative updates of cluster and parameters, composing of two steps which

are repeated until convergence of the squared error from equation 1.25. To initialize the first k

means, we randomly choose k data points from our data collection.

20

a. For each data point find the closest mean μw 1.25

b. Update each mean μi according to the assigned data points 1.24

In online version of k-means (Beringer et al., 2006) we try to obtain the means by doing

stochastic gradient descent and thus we change the cost function to 1.26 with an update ob-

tained from the partial derivative with respect to the means 1.27, where this update is added to

only one from all k means, with respect to the choice 1.25.

J
(
μi|x j)= 1

2

∥∥μi − x j∥∥2
(1.26)

∂J
(
μi|xi)

∂ μi
=
(
μi − x j) (1.27)

This results into an updating formula for i = 1 . . .k means 1.28.

μ t
i = μ t−1

i −α
∂J
(
μi|xi)

∂ μi
= μ t−1

i −α
(
μi − x j) (1.28)

Unlike in traditional k-means where each iteration all the data points are assigned and the

means are derived from the batch data, in online version the means are derived using small

updates in a sequential manner. Similarly to traditional k-means, this is repeated until conver-

gence. Thus, as in the case of stochastic gradient descent for linear and logistic regressions, it

is not as well suited for real-time processing.

1.1.2.2 Adaptive Resonance Theory

Adaptive Resonance Theory (ART) (Carpenter et al., 2010) is an incremental clustering method

using a three-layer (i.e. recognition and comparison layers and a reset module) competitive

neural network, see Figure 1.1. The number of neurons in the recognition layer equals the

21

number of dimensions in the feature space, and the number of neurons in the comparison layer

equals to the number of already known structures. The size of the comparison layer is incre-

mentally updated as well as the weights on the edges between the layers. In recognition layer,

each data point is recognized by all known structures and the strength of the recognition is

sent to the comparison layer. The weights on the edges between the recognition and compar-

ison layers are divided into bottom-up (recognition layer to comparison layer) and top-down

(comparison layer to recognition layer).

In ART, each data point is firstly sent to the recognition layer and matched to all known cat-

egories, from which the winning category is chosen. If the data point belongs to the winning

category, a resonance should occur, which is handled by the reset module. If there is a reso-

nance, an update is performed according to the winning category. If there is no resonance, the

search for the proper class continues, until a specified depth of the search is reached. If the

search for the correct category is not successful, it is a trigger for adding a new category to

the system, i.e. a new node to the comparison layer. Within the reset module, the resonance is

given by a threshold ρ known as the vigilance parameter from an interval [0,1].

To determine the similarity of the data point to the known categories, a cosine distance is

derived 1.29, see Figure 1.2. For this purpose, both input data and bottom-up weights w need

to be normalized, making the result of cosine distance within an interval [0,1]. The more

similar the data point is to the category i, the closer is the result to 1.

βi =

(
x j)T ·wi

‖x j‖‖wi‖ (1.29)

To update the weights w, a learning rate λ is used 1.30, denoting how significant the update is

to be. The learning rate varies within interval [0,1],where if set close to 0, the increment will be

less significant, and conversely in case that the learning rate is set closer to 1, the significance

22

of the new data point is higher and the weights move faster towards it.

wt
i =

(1−λ)wt−1
i +λx j∥∥(1−λ)wt−1
i +λx j

∥∥ (1.30)

Figure 1.1 Adaptive Resonance Theory model.

1.1.3 Online dimensionality reduction

The curse of dimensionality can be detrimental to the machine learning solution. While in

some cases, the problem lies in the number of dimensions being higher than the number of

data points, in other cases the high dimensionality can result into over-fitting, and thus high

variance as well as computational complexity of the learning and recognition processes. In

both cases, feature selection techniques are used, where a smaller number of features is chosen

to be the ones representative enough. One group of techniques dealing with feature selection

is dimensionality reduction techniques and in this section we describe Principal Component

Analysis, where the principal components are updated in an incremental manner.

23

Figure 1.2 Cosine distance of normalized weight vector Wj and

input x. We can see, that the further the input x is from the

centroid Wj, as compared to the vigilance ρ , the smaller is the

projection of Wj onto x, i.e. cosxWj, which represents their dot

product. Then the red line represents the projection of W onto a

vector on the boundary of the distances from it, resulting into the

vigilance parameter ρ .

1.1.3.1 Incremental Principal Component Analysis

Principal Component Analysis (Hotelling, 1933) is an unsupervised projection method aiming

to minimize the loss of information after mapping of the data X to a new space Z and maximize

the variance within the data. The Ware the principal components, that the data X is projected

onto, where after this projection the data Z are obtained such that on the first dimension of W

the data have the highest variance, on second principal component they have the second highest

24

variance, etc.

Z =W T X (1.31)

To center the data on the origin the mean normalization 1.32 is applied, where m is the mean

of the data X before the projection.

Z =W T (X −m) (1.32)

One way of obtaining Z is by using Singular Value Decomposition, which assumes to find

the matrix W such that it results into an uncorrelated Z. Thus, we aim to find eigenvectors

of covariance matrix S of the sample X . Having a matrix C of normalized eigenvectors of S,

where CTC = I, we can derive the decomposition of S 1.33 with D being a diagonal matrix of

eigenvalues λ .

S = SCCT = S (c1, ...,cd)CT = (λ1c1, ...,λdcd)CT =CDCT (1.33)

To obtain the matrix of eigenvalues we use equation 1.34.

D =CT SC (1.34)

From 1.31 and knowing that the covariance of Z is W T SW we can set W to C from 1.34.

To reduce the number of dimensions in the new data we pick the k top eigenvalues and associ-

ated eigenvectors, where the dimension of data is being reduced from d to k. The proportion of

variance kept within the reduced data can be derived as a fraction of the kept eigenvalues and

all eigenvalues from the data 1.35.

λ1 + ...+λk

λ1 + ...+λk + ...+λd
(1.35)

25

In online version of PCA (Li, 2004), an online version of SVD needs to be used. Here, the

eigenvectors and eigenvalues are updated in an incremental manner, so as to accommodate the

streamed nature of the data. One of the solutions is to firstly project the new data point onto

the subspace 1.36 to obtain the residual r from the reconstruction 1.37.

zt =
(
Wt)T (xt −m

)
(1.36)

r = x− (Wa+m) (1.37)

Then the residual r s used as an update for the eigenmatrix W .

1.1.4 Online kernel models

The kernel methods are based on projection of data to a new higher space, where they can be

linearly separable. The core of the models are Support Vector Machines (SVM), where the

kernels are used in the cost function, to avoid a dot product in the new space (i.e. the kernel

trick) and thus to use more complex decision boundaries than simple linear separators. In this

section we discuss the incremental version of SVM, where the support vectors are updated in

an incremental manner.

1.1.4.1 Incremental Support Vector Machine

Support Vector Machines (Chapelle et al., 1999) are used for classification problems, where a

linear decision boundary is placed between the positive class and the negative class. In case of

multi-class problem, there are two strategies: one vs all and one vs one. The former defines

k number of decision boundaries, where k is the number of classes. Each decision boundary

divides the samples from the corresponding class as positive examples from samples from all

the other classes as negative examples. In the latter one vs one case, there is one decision

26

boundary for each pair of classes, increasing the number of the separators significantly to

c(c−1)/2. Thus, one vs all approach is the most common one due to its lower complexity.

Unlike in traditional classification solutions, where the positive class results to 1 and the neg-

ative class to 0, in SVMs, the aim is to find such decision boundary, for which all data points

of the true class lie at a distance greater or equal than 1 and all negative examples at a distance

also greater or equal to1, but in an opposite direction, thus −1 1.38. All the data points lying

on the margin are then the support vectors, defining the decision boundary.

wT xt +w0

⎧⎪⎨
⎪⎩
≥+1 f or yt =+1

≤−1 f or yt =−1

(1.38)

The formula 1.38 can be rewritten as 1.39 for which we want to maximize the margin by

minimizing the ‖w‖ 1.40.

yt (wT xt +w0

)≥+1 (1.39)

min
1

2
‖w‖2 subject to yt (wT xt +w0

)≥+1 (1.40)

Using Lagrange multipliers α we obtain a cost function 1.41 that we want to minimize with

respect to w and maximize with respect to α i ≥ 0.

Lp =
1

2
‖w‖2 −

t

∑
i=1

α iyi (wT xi +w0

)
+

t

∑
i=1

α i (1.41)

27

We can solve the partial derivative of 1.41 to find w and plug this back into the equation to

obtain the dual 1.42 that we maximize with respect to α subject to ∑t
i=1 α iyi = 0 and α i ≥ 0.

Lp =−1

2

t

∑
i=1

s

∑
j=1

α iα jyiy j (xi)T x j +
t

∑
i=1

α i (1.42)

Lp =−1

2

t

∑
i=1

s

∑
j=1

α iα jyiy jK
(
xi,x j)+ t

∑
i=1

α i (1.43)

The dot product from 1.42 can be replaced by a kernel K
(
xi,x
)

1.43, e.g. polynomial, radial-

basis function, sigmoid, etc. After solving this we are left with only a number of α i > 0 and

corresponding data points xi. These are the support vectors that lie on the margin, thus their

distance from the decision boundary equals 1, where the decision boundary w is a weighted

sum of them 1.44.

w =
t

∑
i=1

α iyixi (1.44)

Using soft margin hyperplane as a decision boundary, we allow some data points to fall within

the margin at a distance ξ from the margin, ξ being a slack variable. The data points that lie

within the margin along with the data points that lie on the margin then become the support

vectors.

In incremental version of SVM we need to be able to update the support vectors to accom-

modate all known examples (Diehl et al., 2003; Tax, 2003). First, a new example xt is being

assigned to either not correctly classified, correctly classified within the margin and correctly

classified and far enough from the margin. If the new data point is classified correctly, the

model stays unchanged. However, if the new data point falls within the margin or is not cor-

rectly classified, the samples are updated and a new support vectors derived. Thus, unlike in

28

offline version where the support vectors are derived from the whole data set, here only some

data are used to derive the support vectors, i.e. only when there is a need for new SVs.

1.1.5 Online ensemble models

In this section we discuss some of the ensemble models that are widely used in many applica-

tions, and their online versions. Ensemble models are composed of number of classifiers, that

are often described as weak classifiers, since they are experts only on a subset of the whole

problem, and thus usually do not perform on the whole data as well as the complete ensem-

ble, or a mixture. From the methods we have chosen ones based on bagging, boosting and

fuzzy logic, where their structure and parameters are being updated in a sequence. Namely, we

describe Online AdaBoost based on online boosting, Evolving Fuzzy models based on fuzzy

logic and Online Random Forests based on bagging. All these methods tackle the ensemble

nature differently. In AdaBoost methods, new classifier is set to be an expert on samples that

previous classifiers are confused on. In Random Forests, each weak classifier is an expert on

a random subset of the data, with replacement. In Neuro-Fuzzy models, each classifier is an

expert on a fuzzy structure from which the data points are similar to each other in a specified

way.

1.1.5.1 Online AdaBoost

AdaBoost is based on a boosting, where the model is composed of a number of weak classi-

fiers (Freund et al., 1995). Each such weak classifier is an expert on a random subset of the

whole sample and derives a local inference. The final inference of the model is derived as a

weighted sum of all these local inferences. The weight is assigned based on the strength of the

weak classifier. AdaBoost stands for adaptive boosting. It is an implementation of boosting,

where the weighting can be assigned to classifiers, samples or features. The chosen entities are

weighted according to their importance. In case of classification, AdaBoost in general creates

a group of classifiers that are trained on weighted samples. These weights are derived based

29

on their miss-classification. Thus, if a sample is correctly classified by some weak classifier, it

will have only a half of the total weight oppositely to the miss-classified ones.

In online version of AdaBoost, the random sampling with replacement as well as adaptation

of the weights need to be performed in an online manner (Oza, 2005; Grabner et al., 2006).

To mimic the random sampling with replacement, a number from distribution Poisson(λ) is

drown, where by default λ=1. This number indicates the number of times that some example

is fed to the corresponding classifier. Parameter λ is updated according to the importance of

this data point, where if it is miss-classified, it is given half weight for λ and the remaining data

are given the other half of the weight. Thus, this weight is calculated from the total error of this

data point and each time it is fed to the classifier (which is Poisson(λ) times), this parameter is

adapting according to its meaningfulness. If some data point is fed to the classifier for example

three times, its weight is decreasing when it is not misleading and increasing oppositely. The

error of such data point is derived using a hard margin, which makes the original AdaBoost

a binary classifier. However, there are methods adapting it to multi-class problems. One of

the remaining hyper parameters is the number of weak classifiers, for which we need to have

some knowledge about the data. As well as for online bagging, it is not straightforward to

automatically add new classifiers without storing the past data, as the random sampling with

replacement would be broken.

1.1.5.2 Evolving Neuro-Fuzzy models

Neuro-fuzzy models are ensemble models, where the weak classifiers are rather local fuzzy

rules based on a fuzzy clusters within the data. Each such cluster i has a form of a rule R where

the inference y is a soft inference for every class j, known as the possibility of every class

within the area of expertise of the corresponding rule being the class j 1.45.

Ri : IF x IS Ai T HEN βi

{
y j

i

}
j=1...c

(1.45)

30

Each rule can be divided into two parts, an antecedent describing the similarity of example x to

prototype Ai that is given by rule Ri, i.e. IF xISAi and a consequent part describing the conse-

quence y j
i of the rule based on the similarity from antecedent part βi, i.e. T HEN βi

{
y j

i

}
j=1...c

.

The β is also referred as a firing degree of the rule that works as a weight for the consequent

part of the rule. There are two main groups of Neuro-Fuzzy models based on the type of

consequences they output, Mamdani and Takagi-Sugeno.

1.1.5.2.1 Mamdani model

In case of Mamdani models (Mamdani et al., 1975), the consequence of rules in a singleton

value stating the class of the data point based on its area of expertise 1.46.

Ri : IF x IS Ai T HEN βiBi (1.46)

The computational complexity of these models is thus lower than the next group of fuzzy

models, however their performance tends to be lower as well. Therefore it depends on the

application and the importance of the low computational cost compared to the performance in

terms of accuracy, precision, etc.

1.1.5.2.2 Takagi-Sugeno model

Unlike in Mamdani models, the consequence of Takagi-Sugeno models (Takagi et al., 1985) is

derived for each class, where the inference y is either singleton consequence or based on a linear

model 1.47. As well as for Mamdani, singleton consequences achieve lower computational

complexity, however lack the performance compared to the linear consequence. Thus, the

linear consequences 1.48 are used more widely and we focus on those in this work.

yi =

⎧⎪⎨
⎪⎩

si singleton

πT
i x+bi linear

(1.47)

31

Ri : IF xISAi T HEN βi

{(
π j

i

)T
x+b j

i

}
j=1...c

(1.48)

The π j
i is a vector of consequent parameters for rule i and class j with an offset bi, weighted

by a firing degree of this rule βi.

We can imagine these models as partially linear, where each class is defined by its correspond-

ing linear model, that is broken down by the clustering - the fuzzy rules, making this model

non-linear. Since the rules give inference about every class, they are suitable for applications,

where there tends to be variance within one class, i.e. there might be substructures within one

class. Such class can be then defined within a number of fuzzy rules, where each rule is an

expert on that specific subclass.

To derive the membership function, that serves as a similarity, often a distance metrics are

used and various models vary on this aspect, accompanied with a clustering approach for the

generation of rules.

In evolving Neuro-Fuzzy models, the rules are generated in an online or incremental manner,

and thus an incremental clustering is required. Along with this, recursive updates to the param-

eters of the membership function are necessary to be able to follow the trend in the data points

assigned to each specific rule. Lastly, the consequent part needs to be updated in an online

manned as well.

Since the antecedent part varies among all models, each evolving fuzzy model uses different

strategy for generating the rules and updating the membership function. We describe the fuzzy

methods in the Methodology section more closely. The consequent part is often solved by

using Recursive Least Squares that we have discussed previously in section 1.1.1.2.

These models are very powerful and capable of online learning, where we do not need to store

the past data and do not need to iterate until convergence. However, most of the state of the

art models require some setting of hyper-parameters, either by cross-validation or by obtaining

32

some knowledge about the data. Thus, in this thesis we push the capabilities of fuzzy models

further by adapting all the parameters to accomplish the objectives of this thesis (2.1).

1.1.5.3 Online Random Forest

Random Forests are based on bagging, where the model is an ensemble of a number of weak

classifiers (Breiman, 2001). Each such weak classifier is trained on a random subset of the data

and features, where the random subset is sampled with replacement from the whole data set.

Then, each weak classifier gives an inference, its opinion about the class, either hard or soft,

and these opinions are averaged over all the weak classifiers. Unlike in boosting, each weak

classifier has the same weight and does not take into account the miss-classified data.

In the case of Random Forests weak classifiers are decision trees. Decision trees lack from

the high variance, since they tend to over-fit. To tackle this, one option is to bring a noise into

the data, and in case of bagging it is in a form of not seeing the whole picture - the bootstrap

sampling. This makes the decision trees weak classifiers, suitable for the ensemble model

based on boosting. Thus, a Random Forest is an ensemble of decision trees.

In decision trees, the aim is to find the best features that lower the uniformity in the data -

improve the classification (in case of classification). Thus, each node performs a split on data

belonging to it based on the gain it will get after the splitting, while the root of the tree contains

all the possible data. The uniformity of the data within the node is most commonly measured

by the entropy 1.49. The aim is to achieve a low entropy. In case that there are uniformly

distributed classes within a node, i.e. no class is dominant, the entropy is 1 which means that

there is chaotic decision in such node. In case that there is only one class present, entropy is 0.

−∑
i

pi log pi (1.49)

To make a split, we compare all the possible splits on the features and find the best threshold

such that the information gain on the node is the highest possible 1.50. H (X) is the entropy

33

of the parent node to be split and H (Y |X) is the conditional entropy, the complete entropy for

both new nodes Y = {y1 = 1,y2 = 0}. Then the I (X ,Y) is the information gain explained by

the splitting of the node X , i.e. how much information we gain from the new split compared to

the information obtained within parent node X .

I(X ,Y) = H (X)−H (Y |X) (1.50)

In Random Forests, to fight the over-fitting nature of decision trees, the features for each split

are chosen by random, so only a specific number of features is chosen. This results into Ran-

domized trees, and making weaker trees compared to the original Decision trees, however with

higher generalization ability, and thus more suitable for boosting.

In Online Random Forests, the Randomized trees are replaced by Extremely randomized trees,

where not only the features are chosen by random for each split, but also the thresholds on

which the splits are performed (Leistner et al., 2009). Then, the simulation of bootstrap is

achieved by Poisson(λ) distribution similarly to Online Boosting, where the λ is often set

to 1. To be able to use Random Forest for sequence data, we need to be able to grow the

trees incrementally. Thus, besides the sampling, an online decision making about the split is

necessary. Thus, we need to decide when to make a split based not only on the information

gain, but also on the size of the node. The number of the trees needs to be set ahead, because

similarly to boosting, it is not as straightforward to grow new trees without the knowledge of

the past data. Although, since Online Random Forests need to have access to the past data in

order to make new splits and choose the features, adding of new trees in the case of need might

be simulated.

CHAPTER 2

GENERAL METHODOLOGY

2.1 Objective of the research

The main objective of the thesis is to develop and by experimental testing to confirm a system

based on online learning with the emphasis on learning from scratch, learning on the fly and

user-friendliness. To address particular problems raised in previous section, we set four sub-

objectives to be tackled in this work.

2.1.1 Sub-objective 1: Develop online learning model tackling learning on the fly and
from scratch along with the accuracy vs. processing time problem

Our problem of unknown data and user-friendliness results into unknown times of addition of

new classes to the system and no initialization of the system. We can call these problems as

learning on the fly and learning from scratch, that are important to address while we choose

the model for this work. At the same time, such a choice needs to address the processing time

vs. accuracy problem as well, in order to work in a real-time setting. Thus, we aim to build a

model capable of

• make predictions from restricted amount of labeled data,

• easily update in order to accommodate new classes,

• grow in order to adapt to handle the increasing knowledge of the world,

• make fast and simple updates.

Following all these condition the development of a suitable model for our task will then result

in a robust and flexible model suitable for the tasks when the environment can change while the

prediction capabilities of the model are in use and it is not preferable to learn the model from

36

the beginning every time such situation occurs. At the same time, such model will not require

initialization, and as such follow the user-friendly requirement, e.g. in the case of handwritten

gestures recognition, a user will not be obliged to sample multiple strokes in an uncomfortable

process, but will only set a new class. At the end, such model will be able to work in a real-time

setting, i.e. allowing real-time responses and predictions, when the application is required to

do so.

2.1.2 Sub-objective 2: Tackle forgetting of unused classes for online learning models
and apply

In online learning, the data that are processed in a sequence are not necessarily uniformly

distributed with respect to their classes. Thus, it is necessary to tackle the problem of forgetting

of unused classes that become sparse in the local models responsible for their detection. We

will develop a method that will be immune to the forgetting and be applicable to the whole

solution in our problem.

2.1.3 Sub-objective 3: Develop online learning model able to work without free param-
eters

The use of free/hyper parameters is very common for offline learning methods. However, in

online learning setting we cannot wait for cross-validation, which would mean to use batch

data to perform it. This is in very contrast with the nature of online learning. Another option is

to have an expert to set the free parameters based on the knowledge of the data. However, such

experts are not common as well as the data are not always known ahead. Thus, we will tackle

the problem of unknown data by finding a way to let the model adapt its free parameters based

on the evolution in the data and the state of the environment.

2.1.4 Sub-objective 4: Tackle the problem of missing data

In online learning, when the data are processed in a sequence, at the beginning there is no data

at all. Thus, the model starts with one example at a time. This results into low generalization

37

ability of the model accompanied by a high variance, when the new data points are not rec-

ognized well, because the model over-fits the old data. A solution for this problem is to get

more data. In this work we will find a suitable solution to generate more data for this period of

time where the small size of the data causes high variance. We will explore the setting of such

methods and its application to online learning such that the whole process will be still capable

of real-time performance.

2.2 Methodology

In this work, we focus on online incremental learning with specific requirements as stated in the

objectives. However there are two significant aspects of our work, i.e. online and incremental

learning. In many applications, incremental learning is used as an offline learning, mainly to

deal with the long processing time. The data is processes by a size-restricted blocks, often one

data point at a time, which brings simple updates to a use. Unlike in batch learning, where often

matrices are needed to be processed and plugged into formulas, incremental learning tends to

work rather with vectors. In many applications benefiting from incremental learning, the data is

known ahead, and thus the learning can be repeated until some convergence. Thus, even though

the data is not accessible all at once during one single processing, it can be re-accessed after the

processing, i.e. learning is finished. In online learning, the data is not known ahead, and thus

we cannot run the learning for several times. Many models of online learning do not need to

follow the incremental learning restriction, as they are allowed to store the already known data

in a memory and access them later for processing. Since there is only one single processing

altogether, they can access the data within a single and the only one learning process.

Our work is originally motivated by the handwritten gesture recognition for natural human-

computer interactions. Such an application requires real-time learning that is online, since the

data is unknown. To enable the real-time processing, as well as a possible deployment on

regular computers, we need to avoid storing and re-accessing the memory of past data. Hence,

incremental learning is a suitable solution for such problem. In online incremental learning

based models, the data point is accesses exactly one time, and that is the time of its introduction.

38

After it is processed, i.e. the model has adjusted its parameters to cope with similar data points,

it is forgotten and never accesses again. Unlike in offline incremental learning, the future data

is unknown and there are no further processing of the data, which yields a hardened task for

the model to adjust its parameters as if they would be after convergence, while bringing the

possibility of more dynamic model capable of adjusting to new and current situations. Contrary

to online learning that is not incremental, there is no storage of past data required, yielding a

not being able to look at a bigger picture in the sense of data, while at the same time avoiding

the high requirements for the memory.

In handwriting, the styles between writers vary which results into multiple sub-classes within

each class of symbols. For example in alphabet, one letter can be represented by lowercase or

uppercase, and even the font/writing styles bring dissimilarity inside of one class and similar-

ities for letters from different classes. By allowing more users to participate in the interaction

with the same platform we allow more styles for one class. If we were to build one model for

each class, we would end up with overlapping models, where the results for some data points

would be similar. Therefore, it is essential to use modeling that allows within-class variance

and can cope with such behavior.

The Neuro-Fuzzy models are based on dividing the feature space into a group of sub-problems,

where each such problem is handled by a fuzzy rule. Therefore, even though there is a partition,

it is not absolutely clear, as all data influences the learning of all the rules, which can be

compared to a soft margin, i.e. each data point belongs to each rule to some extent. Such a

modeling allows to use simple models for each rule, and in our work these are linear models.

The combined result of all rules can be then understood as a partially linear model, since the

combination of the results is nonlinear. In the case of regression, one can imagine a high

polynomial curve that can be segmented into a number of lines and then combined back into

a curve. Originally, such a polynomial curve would be described by a number of parameters

making the optimization problem hard, however by describing it by straight lines, the hard

problem is divided into a number of simpler problems. Neuro-Fuzzy models introduce an

interesting structure suitable for our main motivation, i.e. the handwritten symbol recognition,

39

where each symbol can be expresses by more users and therefore in more ways. This means

that one class of symbols can be handled by a number of rules and a number of classes can be

handled by one rule. This partition of classes within the rules then becomes fuzzy, where each

data point of certain class participates on the results for this class even though it is not within

the same rule, i.e. it is not highly similar. We can say, that there is a possibility that each class

belongs to each rule, i.e. within each rule all classes are possible to some extent.

In this work we focus on a group within the Neuro-Fuzzy models (Figure 2.1), i.e. the Evolving

Neuro-Fuzzy models, where the rules are created on the fly. Such a setup enables the learning

from scratch, which is very suitable for our aim of user-friendliness, where the users themselves

can set the symbols that they want to use. However, to be able to fully apply these models for

our specific setup, we need to adjust some structural parameters of the models.

Figure 2.1 Takagi-Sugeno Neuro-Fuzzy model.

40

In the search for the proper model we have developed a number of models that are contained in

the methodology section. All these models are able to answer specific objectives of this theses

and have gradually led to the accomplishment of all our objectives posed by this work.

We apply our solutions to various tasks, however from which handwritten gesture recognition

stands out the most. For this specific application we were able to bring solutions for our last

objective - the missing data, since this problem is bounded to the specific application.

2.2.1 Incremental Similarity

To avoid restricting the users in the number of classes they use along with the number of

users themselves, we need to apply solutions for the real-time processing without affecting the

ability to learn and recognize these classes. Thus we have developed a similarity measure that

is necessary for Neuro-Fuzzy models and the weight of the rules used in the combined result

of the model (Režnáková et al., 2016a). This similarity measure uses incremental updates and

is suitable for online learning. It keeps only a vectors in the memory which avoids the use of

matrices in the formula which yields the improved processing-time.

2.2.2 Elastic Memory Learning

Since the Evolving Neuro-Fuzzy models are transformed from offline Neuro-Fuzzy models,

the learning is prone to forgetting. In offline batch learning we do not need to worry about the

order of the samples, we simply access them all at once and can see the ’whole picture’. The

model is capable of processing the data several times until convergence and each time fix the

parameters for all the data at once. In online incremental learning this is not possible, since we

cannot access the past data and we cannot see the ’whole picture’. Thus, the performance of

the model may vary for different order of the data points. Usually when evaluating the model,

the data is randomly sorted for each test in the evaluation protocol. This results into uniform

distribution of the classes within the stream of the data, if there are not sparse classes. However

if such sparsity occurs, i.e. some class is not used for a specific time, the learning still continues

41

and overwrites the parameters of this class. This is the result of the collaborative learning in

fuzzy models, where each data point is used to adjust the parameters of each rule. In our main

application, the uniform distribution of classes is unlikely, and we need to change our learning

along with the evaluation protocol to cope with this problem. Therefore we have developed

the Elastic Memory Learning (Režnáková et al., 2016b) that uses a competitive learning where

each data point needs to prove its importance in order to be used for the learning of a specific

rule (Figure 2.2).

Figure 2.2 Competitive learning. Points of different classes

(colors) compete within their rules to be used for the learning (red

circled points).

2.2.3 Self-Organized Incremental Model

The evolving nature of the model results into rules being properly created for the data known

at a specific time with the knowledge from that time. However, the partition of the space can

become improper and the rules created at different conditions can overlap or even lie within

each other. Moreover, the number of the rules is not restricted which can lead to increased

42

processing time which is in contradiction with the real-time nature of our task. Thus it is im-

portant to use a model that is capable of re-organizing its structure in an automated way, where

each time all the rules will be proper for the specific conditions of that time. This led us to

the self-organized Neuro-Fuzzy model (Režnáková et al., 2015a), with the introduction of the

conditions and mechanisms for the merging (Figure 2.3), splitting (Figure 2.4) and discarding

(Figure 2.5) of the rules. This is also important for the stability-plasticity dilemma, where the

model remembers the past, but also adjusts to the new.

Figure 2.3 Merging of the rules that are close enough and similar

enough to each other.

By introducing the self-organized mechanism as well as by being in an online environment,

we cannot rely on the cross-validation to fix the parameters. Not only that we simply do not

have time to perform it which would result into not real-time processing, we do not have the

data anymore due to the incremental nature and our model is able to change itself at any time.

Neuro-Fuzzy models as well as their Evolving versions still use some hyper-parameters that

need to be fixed. One option is to simply fix them to some default value, however this is not

always that easy. Thus, we have avoided the use of hyper-parameters in the model by allowing

them to adjust based on the behavior of the data and keeping in mind the stability-plasticity

dilemma.

43

Figure 2.4 Splitting of the rule into dissimilar rules.

Figure 2.5 Discarding of the rules that are too small and old.

2.2.4 The problem of missing data

To be able to fully tackle all the problems stated in this work and fulfill all the objectives,

we needed to solve the generalization problem of online models when starting from scratch.

Learning from scratch opens the question if it is possible to learn from one or only a few exam-

ples properly, such that the model will be able to deal with the data to come. If we introduce

only a small group of examples, and these examples will most probably be very similar to each

44

other in our main application, the model is prone to over-fitting. Thus, the learning curve we

can usually see for online learning contains a drop at the beginning of the learning process.

One straight-forward solution is to introduce more data with some variation to increase the

generalization ability of the model. In our work we have applied the kinematic theory in order

to generate synthetic samples and integrate this process into the online learning process, while

taking into account the real-time processing (Režnáková et al., 2016c). This addition has led

to improved initial learning results, avoiding the drop and increasing the generalization. This

allows the model to be fully functional from the beginning with no restriction to wait for more

real data.

CHAPTER 3

INCREMENTAL SIMILARITY FOR REAL-TIME ON-LINE INCREMENTAL
LEARNING SYSTEMS

Marta Režnáková1, LukasTencer1, Mohamed Cheriet1

1 Synchromedia Lab, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

Paper published in Pattern Recognition Letters, April 2016.

3.1 Abstract

The expectation of higher accuracy in recognition systems brings the problem of higher com-

plexity. In this paper, we introduce a novel Incremental Similarity (IS) that maintains high

accuracy while preserving low complexity. We apply IS to on-line and incremental learning

tasks, where the need of low complexity is significant. Using IS enables the system to directly

compute with the samples themselves and update only few parameters in an incremental man-

ner. We empirically prove its efficiency on several evolving models and show, that by using

IS they achieve competitive results and outperform the baseline models. We also consider the

problem of incremental learning used to handle fast growing datasets. We present a very de-

tailed comparison for not only evolving models, but also for the well-known batch models,

showing the robustness of our proposal. We perform the evaluation on various classification

problems to show the wide application of evolving models and our proposed IS.

3.2 Introduction

In many areas of research, the growth of the amount of data is inevitable. This is very posi-

tive for machine learning and pattern recognition, where the lack of data often results in low

accuracy. However, the bigger the data is, the more time we need to process it and to train

our models. Furthermore, if new data arrives, all of them need to be re-processed so that all

the information is included. This may cause a delay in the usage of the system. Thus, in last

46

few years we have been noticing more attempts for incremental learning of the models aimed

at absorbing all the necessary information and at the same time lowering the burden of huge

datasets.

In incremental learning, the model is incrementally built (learned) each time new data arrives.

Once the information on this new data is stored, the original data is often discarded and thus

the system does not have access to the original data after. Thus, the model works faster than

offline batch techniques. However, beside all the benefits, there are also challenges that ask for

solutions and this paper aims to solve some of them described in the following.

• Processing time vs. accuracy challenge asks how far we want to go with the complexity of

our model in order to achieve better performance.

• At the beginning of the learning process, we can struggle with a lack of data, missing

important information regarding the variances within classes. This occurs especially when

incremental learning techniques are applied to real-time recognition and dynamic tasks, in

which the recognition does not wait for the whole learning process to be finished. Using

incremental techniques can make the process faster, however it should not be done to the

detriment of high recognition capabilities.

Incremental Similarity introduced in this paper allows to learn from scratch, where even a

small number of samples gives reasonable estimate of the class. At the same time, with the

increasing number of samples, the learning time is kept constant, learning only few non-matrix

parameters and describing the samples themselves.

In the following sections, we investigate through incremental learning (IL) modeling approaches

(Section 3.3), then give a detailed description of Incremental Similarity (IS) and learning of its

parameters (Section 3.4). We then apply IS to the baseline incremental and batch approaches

to develop new models (Section 3.5). At the end of this paper, we evaluate the performance of

these models for various applications (Sections 3.6 and 3.7).

47

3.3 Related works

In this paper we focus on a classification task, in which the aim is mainly to classify handwritten

symbols. We also focus on online incremental learning techniques, where the learning and

classification are done on one sample level and the model is learned by small increments.

This section briefly summarizes several groups of incremental or otherwise online techniques,

out of which some focus on the clustering part only and others use clustering as one of their

layers followed by other classification or regression layers.

There are many works that focus on online, incremental or adaptive learning. Usually, re-

searchers choose an offline method and adapt it to work in an online manner. There are several

attempts to transfer offline clustering methods, such as K-means or K-NN into incremental or

online learning based. From these we mention (Beringer et al., 2006) in which the authors pro-

pose online version of K-means, (Forster et al., 2010), (Yu et al., 2009) for incremental K-NN,

or (Lughofer, 2008b) for incremental vector quantization (VQ).

In many applications, SVM based methods are widely used. Thus, there have also been at-

tempts for incremental learning variations, such as in (Carozza et al., 2000), (Wang et al.,

2007), (Wang et al., 2008) for incremental and online SVM in regression and (Bordes, 2005),

(Tax, 2003) for online SVM.

There have been several attempts for incremental subspace methods, especially for images,

such as in (Li, 2004), (Ross et al., 2007), (Song et al., 2008) proposing incremental PCA and

(Yao et al., 2010) with online PCA.

In (Oza, 2005) the authors propose an online version for bagging and boosting algorithms,

coming up with AdaBoost (adaptive boosting). Another versions of AdaBoost has been pro-

posed in (Grabner et al., 2006) used for vision problems, (Saffari et al., 2010) and (Ditzler

et al., 2010) for multi-class online boosting.

48

In this paper we focus mostly on evolving or adaptive neuro-fuzzy models usually based on

Takagi-Sugeno fuzzy model (Takagi et al., 1985), or less on Mamdani model (Mamdani et al.,

1975). They vary in the clustering part that is essential for online purposes, as in offline, where

the division of the known space is easier and more straight-forward. In (Angelov et al., 2004)

the authors propose to solve the clustering part using Recursive Mountain Clustering for space

division and the creation of rules, which they combined with univariate normal distribution

(antecedent part) and Recursive Least Squares (consequent part). This research was updated in

(Almaksour et al., 2010) using Mahalanobis distance for antecedent part (similarity to rules -

clusters). In (Carse et al., 1996), (Gomez et al., 2002) the authors utilize genetic algorithms for

the rule control and generation. In (Kasabov, 2001) the authors solve the problem of evolution

of fuzzy rules by using connectionist systems. In (Režnáková et al., 2012) we proposed to use

incremental distance and clustering, followed by (Režnáková et al., 2013) where we proposed

to use ART-2A clustering (Carpenter et al., 1991b) for the rule generation and handling. In

(Lughofer, 2008a) authors propose to use incremental VQ for the space division.

To our knowledge, the works cited in (Angelov et al., 2004; Almaksour et al., 2010; Režnáková

et al., 2012, 2013) are closest to the proposition presented in our study. However, the extensive

comparison and empirical proofing was not performed in any of them.

3.4 Incremental similarity

To address some of the challenges of on-line learning, i.e. the complexity vs. precision, learn-

ing from scratch and learning on the fly, we introduce the Incremental Similarity (IS). We apply

this to a number of baseline models to figure as a similarity measure. The more similar is sam-

ple x to a group of samples in a set a, the higher value the similarity measure takes. Thus,

all the similarity measures in this work will be adjusted, if necessary, accordingly (3.1) with d

being the distance. This results in the range of similarities to be [0, 1], where 1 is the lowest

distance and highest similarity of sample x to the set a.

1

1+d
(3.1)

49

In this work we show the effectiveness of IS by a comparison to the Euclidean (ED) and the

Mahalanobis (MD) distances that we both explain later in this section. The baseline models

we apply all these similarity measures to, along with the detailed description of the struc-

tures within these models that the similarities are used at, are described in Section 3.5, namely

Takagi-Sugeno based (similarity measures are used for antecedent learning) and K-means (sim-

ilarity measures are used for distance from k means).

3.4.1 Euclidean and Mahalanobis distances

In this section, we describe two basic distance measurements ED and MD, taking into account

the nature of the membership function (the firing degree) – the more similar the sample is to

the baseline of the rule, the higher firing degree this rule has. Thus, we calculate the reversed

squared ED (3.2) and the reversed MD (3.3) as an opposite to the univariate and multivariate

distributions. Here μti is the mean at time ti for rule i, i.e. the number of samples already

introduced to the rule i and Sti is the covariance matrix at time ti for rule i.

βi =
1

1+
(
μμμ ti − xxx

)T (μμμ ti − xxx
) (3.2)

βi =
1

1+
(
μμμ ti − xxx

)T S−1
ti

(
μμμ ti − xxx

) (3.3)

The update of the parameters μti and S−1
ti can be derived from the univariate and multivariate

normal distributions. For univariate normal distribution we have the probability of samples

xxx1...xxxN , P(xxx1...xxxN) further referred as P.

P = ∏
i

1√
2πσ

exp

{
−1

2

(xxxi −μμμ)2

σ2

}
(3.4)

50

To find the parameter μ that minimizes the error we set the derivation of the logarithm of the

function to zero. This will lead to an updating formula for μ (3.7).

logP = ∑
i

[
−1

2
log2π − logσ − 1

2

(xxxi −μμμ)2

σ2

]
(3.5)

∂
∂ μμμ

logP = ∑
i

xxxi −μμμ
σ2

= 0 ⇒ ∑
i
[xxxi −μμμ] = 0 (3.6)

μμμ =
1

N ∑
i

xxxi (3.7)

Then the recursive formula can be derived as in (3.8), where ti is the time and it updates

according to (3.9).

μμμ ti =
1

ti

(
(ti −1)μμμ ti−1 + xxxti

)
; μμμ1 = xxx1 (3.8)

ti = ti +1 (3.9)

For multivariate normal distribution, the derivation of μti is similar to univariate distribution.

The covariance matrix update is derived as follows resulting into (3.15).

P = ∏
i

1

2π
d
2

|S|− 1
2 exp

{
−1

2
(xxxi −μμμ)S−1(xxxi −μμμ)T

}
(3.10)

logP = ∑
i

[
−d

2
log2π − 1

2
log |S|− 1

2
D
]

(3.11)

D = (xxxi −μμμ)S−1(xxxi −μμμ)T (3.12)

∂
∂S

logP = ∑
i

[
−1

2
S−1 +

1

2
(xxxi −μμμ)S−2(xxxi −μμμ)T

]
= 0 (3.13)

51

∑
i

[−S+(xxxi −μμμ)(xxxi −μμμ)T]= 0 (3.14)

S =
1

N ∑(xxxi −μμμ)(xxxi −μμμ)T (3.15)

To be able to recursively update directly the inverse matrix, we derive (3.19), where again ti is

the time and is updated according to (3.9).

S−1
ti =

1
ti−1

ti
Sti−1 +

1
ti
(xxxti −μμμ)(xxxti −μμμ)T (3.16)

=
1

ti−1
ti

Sti−1

[
1+ 1

ti−1 (xxxti −μμμ)T S−1
ti−1 (xxxti −μμμ)

] (3.17)

=
1

ti−1
ti

Sti−1

+
− t

(t−1)2 S−1
ti−1 (xxxti −μμμ)

[
S−1

ti−1 (xxxti −μμμ)
]T

[
1+ 1

ti−1 (xxxti −μμμ)T S−1
ti−1 (xxxti −μμμ)T

] (3.18)

S−1
ti =

ti
ti −1

S−1
ti−1 −

ti
ti −1

C (3.19)

C =
S−1

ti−1 (xxxti −μμμ)
(

S−1
ti−1 (xxxti −μμμ)

)T

ti −1+(xxxti −μμμ)T S−1
ti−1 (xxxti −μμμ)

(3.20)

3.4.2 Our novel Incremental Similarity measurement

In this paper, we propose the use of Incremental Similarity (IS) in several models, with a sat-

isfying trade-off between the computational cost and accuracy. The main reason for searching

for such trade-off is the real-time setting of many on-line and incremental learning systems.

Here, the computational cost is one of the crucial factors for the decision about the learning

and recognition model. In our work we focus on real-time on-line learning with starting from

scratch. Our method offers a simple updating formula that does not rely on covariance matrix

52

and at the same time is able to deliver high accuracy. Rather that the distance from mean and

covariances, it describes the distance from all points in the rule i (3.21).

βi =
1

1+ 1
ti ∑ti

j=1

(
xxx− xxx j

)2 (3.21)

In order to accommodate incremental learning into the model, we need to bring up a recursive

model for learning the membership function that can be easily derived from the original non-

recursive one. This is achieved by substituting xxx2, ∑ti
j=1 xxx j and ∑ti

j=1 xxx2
j using parameters αi, ηηη i

and γi (3.26), along with update formulas for these parameters in an incremental manner. Here,

none of the samples will be forgotten or changed, but in these parameters, the true values of past

samples are stored. Thus, every time new sample arrives to enrich the rule, updating formulas

are triggered so that for next sample with unknown competency for a rule, membership βi is

derived (3.25).

βi =
1

1+ 1
ti ∑ti

j=1

(
xxx2 −2xxxxxx j + xxx2

j

) (3.22)

=
1

1+ xxx2 − 1
ti

2xxx∑ti
j=1 xxx j +

1
ti ∑ti

j=1 xxx2
j

(3.23)

βi =
ti

ti + tixxx2 −2xxx∑ti
j=1 xxx j +∑ti

j=1 xxx2
j

(3.24)

βi =
ti

ti + tiαi −2xxxηηη i + γi
(3.25)

a) ti = ti−1 +1 c)ηηη i = ηηη i−1 + xxx ; ηηη0 = 0

b)αi = xxx2 d)γi = γi−1 +αi ; γ0 = 0

(3.26)

53

Using this novel technique we tackle the challenge of the lack of data at the beginning of the

learning process as well as the processing time vs. accuracy challenge. Since our proposed IS

is not dependent on a high number of samples to create relevant statistics (as would be the case

in Normal distributions), it can describe small amount of data better.

3.5 Models

In this section, we describe 4 TS fuzzy models and K-means that we combine with ED, MD and

IS. As we show in Section 3.6, the combination with IS leads to superior results compared to

the models solely. Each Neuro-Fuzzy model is composed of a number of fuzzy rules in a form

of IF x IS a T HEN b. Here, the x IS a is the antecedent part of the rule based on the similarity

or the firing degree of the rule, denoting how much x is similar to a, x being a single input

sample, a being a set of samples within the rule already known (not necessarily of one class)

and b being the consequence of the rule. In a classification part, each rule gives an opinion for

every class recorded in the system in a form of value within range [0, 1]. Then, these values are

weighted by the membership function and averaged. The winning class is assigned to the class

for which the weighted averaged opinion was the highest, i.e. the most confident. In the case

of K-means, we choose the class that is most present (according to labels) within each cluster.

More detailed description is given in Section 3.5.5.

3.5.1 ETS

In (Angelov et al., 2004) the authors introduce a novel evolving TS (ETS) fuzzy model. The

generation and management of rules is handled by Recursive mountain clustering, in which

each new sample is assigned a potential that is compared to updated potentials of known cen-

ters of rules (tops of the mountains). These centers are updated within the algorithm. These

updates are based on the samples, which are added to the centers or those which replace the

centers based on distance conditions. In addition, each time a new class is added to the system,

a new rule is created for it as well. In the original paper, the antecedent part is derived as

univariate normal density function, however it has been replaced by ED in current paper. For

54

the consequent part, authors propose to use local RLS, in which the optimization is handled for

each rule locally, rather than globally for whole system.

3.5.2 ETS+

In (Almaksour et al., 2010) the authors introduce the ETS+ model inspired by ETS. They

also use Recursive mountain clustering for rule management, however with some slight adjust-

ments. Similarly to ETS also in ETS+ is the addition of new rules influenced by the arrival

of new classes. Firstly the multivariate normal along with Couchy distributions were proposed

for handling the antecedent part, but MD yielded better results and is used for comparison in

this paper. Similarly to ETS, authors use local RLS for the consequent part.

3.5.3 Incremental fuzzy model (IFM)

In (Režnáková et al., 2012) the authors propose the use of IS for TS fuzzy models combined

with very simple clustering based on the performance of the winning rule for each sample.

Similarly to other approaches, it takes into account the arrival of new classes which influence

the creation of new rules. It is based on the belief that on one hand each rule can, and does

contain samples from more classes, but at the same time it should not be too confused in

distinguishing them using consequent learning. Consequent learning itself is also based on

local RLS.

3.5.4 ARTIST: ART-2A driven rule management in TS model

In (Režnáková et al., 2013), the authors propose to use the ART-2A neural network (Carpen-

ter et al., 1991b) for cluster management. The generation of new rules is left solely on the

incremental clustering without the influence of the arrival new classes. Similarities within the

antecedent part are understood as possibilities rather as probabilities. This means, that one

sample can be fully possible for all (giving 1 for every rule) or none of the rules (giving 0 for

55

all of them). Then, for the consequent part, Competitive Consequent Learning (CCL) is used

to avoid the class forgetting in incremental learning.

3.5.5 K-means

K-means clustering algorithm is based on k clusters (means) where the distance to each of them

is measured by the Euclidean formula. At each step, all points are assigned to the closest mean

and all means are recalculated. Then, the distance between the old and the new means is used

as a stop rule for the whole process. This process iterates until the stop criterion is met.

Since we focus on incremental learning techniques, we do not update the centroids at the end

of the assigning, but during this process. For this purpose we use the same updating formulas

as in Section 3.4 (ED, MD and IS). Thus, for the K-means combined with MD, on the top of

mean values μi we add the update of covariance matrices Si and parameters αi, ηiand γi for K-

means combined with IS. In our evaluation we put the main focus on determining the distance

and learning the distance parameters, not the latter phases of the method.

Since the original K-means is unsupervised clustering and our problems are supervised, we

need to change it in this manner. Thus, during the assignment of samples to clusters and the

recalculation of parameters, we also assign labels to each cluster. Then, we use a majority vote

to determine the winning label in the cluster. In results we will notice that in order to make this

method work precisely, many clusters are needed, as they must divide the space very carefully.

We also need to point out, that we use K-means only to demonstrate the differences between

distance measurements in this paper.

3.6 Results

In this section we show a detailed comparison of the distance measurements described in Sec-

tion 3 to show the potential of Incremental Similarity (IS) for incremental learning purposes

and as an interesting trade-off between using only mean and possibly variance and using co-

variance matrix. For the evaluation of our IS in comparison to different baseline metrics, we

56

use five datasets described in Table 3.11. In this section we show the results on only three of

all datasets, with the rest displayed online2.

Table 3.1 Datasets

classes # samples # dimensions

Digits 10 10992 16

OHS-I 17 13600 21

OHS-II 20 1923 50

Segment 7 2310 19

Mushrooms 2 8124 22

For each dataset, we display the results in 4 tables (A-D), first two for evolving fuzzy models

and last two for K-means. All the results are then composed of the following entities: table

A - accuracy for the whole dataset / time required to learn and recognize the whole dataset

/ time per one rule required to process the whole dataset; table B - average time required to

learn parameters for the last 100 instances / time required to derive distance for the last 100

instances; table C - accuracy for the whole dataset / time required to learn and recognize the

whole dataset; table D - average time required to learn parameters for one instance / time

required to derive distance for one instance during assignment to clusters / time required to

derive distance for one instance during classification.

For each dataset we separate the results for the Neuro-Fuzzy based models (tables A and B) and

K-means (tables C and D). For K-means we find the best parameters k for each combination

(based on accuracy) using by cross-validation within the interval <c, c+5, ..., 195, 200>, where

c represents the number of classes for each dataset. We select 2/3 of dataset as a learning base

and 1/3 as a testing base. The complete results are shown in Figures 3.1 (for accuracy) and 3.2

1 Digits, Mushrooms and Segments can be found at UCI Machine Learning Repository; Online Hand-

written Symbols I (OHS-I) can be found at http://www.synchromedia.ca/web/ets/gesturedataset; On-

line Handwritten Symbols II (OHS-II) can be found at http://www.irisa.fr/

2 Complete results are published at http://www.synchromedia.ca/

membres/marta/IncrementalSimilarityResults.html

57

(for processing time). Note, that whereas for accuracy, the best results are the highest ones, for

processing time the aim are the lowest values.

In Table 3.2 we can notice that most precise for the Digits dataset are models using the MD

achieving 91% recognition rate, followed by the ED achieving 88.9% and the IS with 87.7%

recognition rate. Out of all these models, ARTIST+MD seems to be the most accurate and

ETS+ED the fastest. As for the processing time, the most successful is the IS with 716.4/8.1

(sec) on average, followed by the ED with 739/8.4 (sec) and the MS with 957.9/10.35 (sec).

The best processing time is achieved by ETS+ED (total processing time) and ETS++IS (time

per rule).

We need to note, that these times, especially the time for processing the whole dataset, are

influenced by many factors, such as the number of rules with exponential influence on the

results, algorithms used for derivation of vector and matrix multiplications, etc.

In Table 3.3 we compare the processing time of parameters learning and distance derivation.

We can notice that processing times of derivation of the distances are similar, as the formulas

are comparably complex, especially for the ED and IS. However, for the updating formulas, the

best results are achieved with the IS. This is no surprise and we will encounter similar result for

K-means also. It is caused by the updating formulas themselves, where for the IS we simply

perform a summation while for the ED we multiply and divide. This situation can be improved

by making the updates simpler.

Table 3.4 shows the results for lowest, highest and best K-means for each distance for a fair

comparison. We can notice that in all cases, IS with K-means outperforms both other distances,

although its accuracy is comparable with the results for the K-means+ED. As for the processing

time, the lowest in general is achieved by the ED, followed by the IS and the MD.

In Table 3.5 it is noticeable that for the learning of parameters, K-means+IS achieves the best

processing time. However, we need to mention again, that although we used the well-known

recursive formula for updating mean for ED, it is not needed due to the usage of means at the

58

end of this learning process. If we use the same strategy as for the IS and at the end divide the

summed samples by their total amount, the learning time would be smaller than for the IS, as

that executes one more operation. Such a difference in updating will also change the formula

for deriving the distance itself (as we need to derive the mean vector as well). For the formula

updating used in this work, the ED achieves the best processing time, followed by the IS and

the MD.

Table 3.2 Digits A - whole dataset results, Evolving fuzzy models (%/sec/sec)

ED MD IS

ETS 85.4/45/4.9 87.1/55.2/5.4 85.2/49.5/4.8
ETS+ 84.9/49.2/4.8 87.1/56.4/5.4 86.0/50.4/4.1
IFM 91.0/768/9.6 93.9/1044/11.4 89.7/810/10.2

ARTIST 94.2/2094/14.4 95.9/2676/19.2 89.9/1956/13.4

Table 3.3 Digits B - last 100 samples results, Evolving fuzzy models (ms/ms)

ED MD IS

ETS 11.2/4.4 25.4/2.2 6.2/2.1
ETS+ 8.1/3.6 21.7/6.5 7.4/2.5
IFM 37.1/13.5 188.2/23.1 24.2/8.3
ARTIST 6.8/17.2 126.1/1.5 15.1/18.2

Table 3.4 Digits C - whole dataset results, K-means (%/sec)

k ED MD IS

10 (lowest) 72.9/9.6 29.9/49.2 73.1/13.4

185 (best ED) 97.2/86.4 91.8/294 97.2/314

190 (best IS) 97.0/93.6 92.6/309.6 97.3/312.1

195 (best MD) 97.1/97.8 93.1/348.6 97.3/302.4

200 (highest) 97.0/90.6 92.0/413.4 97.3/334.8

For the Online handwritten symbols I dataset (in Table 3.6), the most precise method proved to

be the IS, achieving 98% rate, followed by the ED achieving 97.98% rate and the MD achieving

97.3% rate. The lowest processing time is achieved with models using the ED with 812.7/21.3

59

Table 3.5 Digits D - per one step results, K-means (ms/ms/ms)

k ED MD IS

10 0.15/0.003/0.003 0.28/0.009/0.009 0.07/0.007/0.008

185 0.16/0.003/0.003 0.39/0.009/0.009 0.06/0.007/0.006

190 0.15/0.003/0.003 0.41/0.009/0.009 0.06/0.007/0.006

195 0.17/0.003/0.003 0.38/0.009/0.008 0.06/0.006/0.007

200 0.16/0.003/0.003 0.42/0.009/0.01 0.05/0.006/0.007

(sec), the IS with 927.85/22.8 (sec) and the MD with 1039.65/29.7 (sec). From all the above,

the combination judged the most accurate is the ETS+IS and the fastest are ETS+ED (for total

processing time) and IFM+ED also (for time per rule). Using our proposed setup we are able

to increase the precision and at the same time reduce the processing time.

In Table 3.7 we notice that the learning time of both the ED and the IS are comparable, with

the IS being slightly better, followed by the MD.

In Table 3.8 we notice, that similarly to the Digits dataset, also for Online symbols I, using

the IS leads to the best accuracy, closely followed by the ED and then by the MD. As for the

processing time, using ED achieves the best performance.

In Table 3.9 we can notice that in terms of parameter learning, the IS leads, followed by the ED

and the MD. As for the derivation of the distance itself, ED outperforms the others, followed

by the IS and then the MD.

Table 3.6 Online handwritten symbols I A - whole dataset results, Evolving fuzzy

models (%/sec/sec)

ED MD IS

ETS 97.8/342/20.4 97.8/543/31.8 98.0/468/25.6

ETS+ 98.2/448.8/26.4 97.9/555.6/32.4 98.4/464.4/25.2
IFM 97.9/1758/12.1 98.2/1986/16.2 98.1/2101/15.1

ARTIST 98.0/702/26.4 95.2/1074/38.4 98.0/678/25.2

60

Table 3.7 Online handwritten symbols I B - the last 100 samples results, Evolving

fuzzy models (ms/ms)

ED MD IS

ETS 39.1/15.2 110/11.3 28.1/9.2
ETS+ 35.5/14.7 101/25.1 29.4/9.1
IFM 41.5/14.6 198/25.2 33.2/9.2
ARTIST 6.1/25.2 81.1/17.4 16.1/16.1

Table 3.8 Online handwritten symbols I C - whole dataset results, K-means (%/sec)

k ED MD IS

17 (lowest) 54.8/13.8 45.4/97.8 51.1/52.8

185 (2nd MD) 90.1/138.6 89.4/889.2 91.0/576.6

190 (2nd ED) 90.5/133.8 89.1/906 92.1/547.2

195 (2nd IS) 90.5/141.6 88.7/824.4 92.1/552

200 (best) 91.2/132.6 90.1/707.4 92.3/487.8

For Online Handwritten symbols II (Table 3.10), the most accurate models are those using

the IS achieving 91.2% rate, followed by the ED with 91.15% rate and the MD with 91.0%

rate. From all of the above models, ARTIST+ED seems to be the most accurate. The best

performance time is achieved by the models using the ED with 207.75/3.2 (sec) followed by

the IS with 217.55/3.45 (sec) and the MD with 341.9/5.3 (sec). From the results, the best

processing time from all of the combinations is achieved by ETS+ED (for total processing

time) and both IFM+ED and IFM+IS (for time per rule).

Table 3.9 Online handwritten symbols I D - per one step results, K-means (ms/ms/ms)

k ED MD IS

17 0.21/0.005/0.005 0.93/0.014/0.012 0.12/0.009/0.009

185 0.26/0.004/0.003 1.41/0.015/0.015 0.1/0.008/0.008

190 0.25/0.004/0.004 1.37/0.014/0.015 0.11/0.008/0.008

195 0.25/0.004/0.004 1.39/0.015/0.015 0.11/0.008/0.008

200 0.24/0.004/0.003 1.44/0.015/0.014 0.11/0.008/0.009

61

For parameter learning for the Online symbols II dataset (in Table 3.11), the ED and the IS

achieve comparable results for average update on last 100 samples. The derivation of the

distance is the fastest for the IS, followed by the ED and the MD.

For Online symbols II, K-means achieves the best results using the IS, while the ED achieves

similarly good results, both followed by the MD (Table 3.12). As for the performance time,

the fastest proved to be the ED, followed by the MD performing comparably well as the IS.

In Table 3.13 we can notice that the IS leads on the learning performance time, followed by the

ED and the MD. As for the derivation time, the ED achieves the best results, closely followed

by the IS and then the MD.

Table 3.10 Online handwritten symbols II A - whole dataset results, Evolving fuzzy

models (%/sec/sec)

ED MD IS

ETS 91.2/69.6/3.6 91.1/123.6/6.1 91.4/81.2/4.2

ETS+ 90.9/86.4/4.2 91.0/138.6/6.6 91.3/87/4.2
IFM 90.4/228/1.8 90.4/355.2/3.2 91.1/228/1.8
ARTIST 92.1/447/3.1 91.6/750.3/5.4 91.1/474/3.6

Table 3.11 Online handwritten symbols II B - the last 100 samples results, Evolving

fuzzy models (ms/ms)

ED MD IS

ETS 39.5/15.1 101.2/11.5 27.4/10.1
ETS+ 33.6/14.9 149.1/26.5 14.4/8.1
IFM 17.1/14.8 197/23.1 24.1/7.2
ARTIST 6.9/23.7 144.1/12.9 29.1/21.3

3.7 Conclusion and discussion

In this paper we have presented a novel Incremental Similarity (IS) measurement for incremen-

tal learning models. We evaluated our technique using 5 baseline models and achieved better

62

Table 3.12 Online handwritten symbols II C - whole dataset results, K-means (%/sec)

k ED MD IS

21 (lowest) 61.8/1.8 52.7/2.4 62.6/2.1

180 (best IS) 87.4/6.3 82.7/14.4 87.8/16.8

195 (best MD) 86.9/7.2 84.0/16.2 87.6/18.9

200 (best ED) 87.9/7.2 83.8/14.4 87.6/17.8

Table 3.13 Online handwritten symbols II D - per one step results, K-means

(ms/ms/ms)

k ED MD IS

21 0.02/0.004/0.004 0.16/0.021/0.023 0.007/0.008/0.007

180 0.03/0.003/0.004 0.17/0.025/0.025 0.005/0.007/0.006

195 0.04/0.003/0.003 0.26/0.03/0.027 0.009/0.007/0.007

200 0.04/0.003/0.004 0.33/0.028/0.026 0.009/0.007/0.007

a) b) c)

d) e) f)

Figure 3.1 Recognition rate a), c) and e) for various Neuro-Fuzzy models, b), d) and f)

for k-means and various k, on Digits (a), b)), OHS-I (c), d)) and OHS-II (e), f))

datasets.

results compared to the baseline techniques. This evaluation was performed on 5 datasets that

varied in the number of classes, features and sample size. In all of the applications IS achieved

a good trade-off between high accuracy and low computational cost. In some rare cases when

our technique did not achieve the best accuracy, this slight reduction in accuracy was exchanged

for a significant reduction in processing speed.

63

a) b) c)

d) e) f)

Figure 3.2 Computational complexity a), c) and e) for various Neuro-Fuzzy models, b),

d) and f) for k-means and various k, on Digits (a), b)), OHS-I (c), d)) and OHS-II (e),

f)) datasets.

Generally we can say that IS achieves better results than the any of the baseline techniques.

This means, that not only is it highly accurate, but also it is adaptable to various distributions

of data. This is very intriguing for incremental learning in which data is unknown beforehand

and we cannot predict their distribution. In some specific cases for K-means method, the IS

is outperformed by the MD. In our opinion, this is caused by the nature of K-means, where it

iterates until it does not meet the stop criterion. Thus, the longer it takes to find the best means,

the higher performance time it results in.

In our future work we want to explore applications of IS to a wider range of models that do not

necessarily include fuzzy models only.

Acknowledgement

This work was supported by the Social Sciences and Humanities Research Council of Canada

(SSHRC) as well as the Natural Sciences and Engineering Research Council of Canada (NSERC).

CHAPTER 4

ELASTIC MEMORY LEARNING FOR FUZZY INFERENCE MODELS

Marta Režnáková1, LukasTencer1, Mohamed Cheriet1

1 Synchromedia Lab, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

Paper submitted for publication, October 2016.

4.1 Abstract

Abstract In this paper, we present a novel approach for solving the consequent part of Neuro-

Fuzzy modeling with an emphasis on the forgetting factor in the multi-class learning problem.

Our solution is based on Recursive Least Squares (RLS) for online and incremental learning

applications, where the data stream is not necessarily uniformly distributed over time. Such a

setup can lead to forgetting of specific classes that have not been used for a period of time. In

this work, we present a reasoned and detailed description of Elastic Memory Learning (EML)

and EML with the use of Confidence Interval (EML+) to avoid unnecessary treatment of the

forgetting factor. We present the experimental results and evaluation of our novel methods

in order to show their usefulness not only against forgetting of unused classes, but also for

dealing with the lowered recognition rate after all classes have been learned. We note that by

using EML, forgetting is significantly eliminated and the recognition rate is slightly affected

as well, while EML+ puts more emphasis on keeping the recognition rate higher than the

forgetting. Thus, this paper presents two methods that significantly eliminate the forgetting

factor for incremental learning with a different focus on its importance, i.e. high recognition

rate vs high immunity to forgetting; both of these methods perform significantly better than

RLS for these aspects.

66

4.2 Introduction

Neuro-Fuzzy models divide the feature space into a number of fuzzy rules that are responsible

for the local inferences (4.1). To derive the final inference of the model as a whole these local

inferences are weighted and combined into a global inference. The main components needed

to make an inference are the antecedent (IF x IS A) and consequent (T HEN {y j
i } j=1..c) parts.

In the case of online learning, these use sets of parameters learned from the data already known

to make a prediction about the data not yet known. In this work we focus on the consequent

part, which is responsible for the inference of each rule and the learning of its parameters. Each

time a new datum occurs, its fuzzy possibility (inference y j
i) for each class j within each rule i

is derived. This information is then used for the update/learning of the parameters. Therefore,

the learning of the consequent parameters is performed for all classes within each rule for each

data point. However, such an approach can result in forgetting of certain class. A class that

has not been used for a long period of time is surpassed by classes that are more frequent in

the learning process. In most benchmarks for online learning with balanced classes, the data

sets are shuffled so that such behavior is not noticeable, i.e. during the learning process all

classes occur with a similar frequency and no blocks are created. However, in a real-world

environment, this is not a universal behavior and especially in applications such as gesture-

based interaction in which certain classes/gestures are far more frequent than others. Moreover,

in cases with unbalanced classes, this behavior is usual even with the shuffled data. In our work

we focus on real-time incremental learning of handwritten gestures, and thus the forgetting

factor is very likely to be present in a real-world environment.

Ri : IF x IS A T HEN Yi = {y j
i } j=1..c (4.1)

In this paper, we introduce two techniques to deal with the forgetting of unused classes. Each

of these techniques, Elastic Memory Learning (EML) and EML+, is an extension of Recur-

sive Least Squares (RLS) with a different sensitivity towards the trade-off between immunity

from forgetting and the generally high recognition rate. From our previous experiments we

67

concluded that for some data sets high immunity from forgetting results in a slightly decreased

recognition rate when no forgetting occurs. This finding motivated our further research to find

a better balance for the solution for forgetting of unused classes and the generally high per-

formance. Both these methods focus on the consequent part and are applied to a number of

evolving neuro-fuzzy models. As will be seen in the results section, both solution perform

comparably, but with each being superior to the other in specific applications. Thus, we leave

the choice of method to be driven by the application.

In the next section we introduce the relevant works used for this research. In order to introduce

the reader to the whole work, we describe the RLS optimization that is often used for con-

sequent learning in incremental or online Takagi-Sugeno models in section 4.4. We use this

method as a baseline for TS models in this paper. Sections 4.5 and 4.6 are dedicated to our

novel models, EML and EML+. It is demonstrated in the results (section 4.7), that by using

our EML and EML+ both forgetting and the recovery recognition rate have been improved so

as to be able to compete with and even overcome the recognition rate using the original RLS.

In section 4.8, by way of conclusion, discuss our approaches and the specific results.

4.3 Related works

Many applications of machine learning need to process data in a sequence rather than a bulk

which has resulted into a wide spectrum of online learning based models (Gama (2010);

Moamar-Mouchaweh, Sayed; Lughofer (2012); Angelov, Plamen; Filev, Dimitar P.; Kasabov

(2010)). In this paper we focus on neuro-fuzzy modeling and its application on several tasks

within classification problems with an highlight in online handwritten symbols recognition.

Therefore in this section we introduce several techniques tackling online and incremental learn-

ing with a stronger focus on neuro-fuzzy modeling.

The online learning models can be separated into several groups by the framework they use.

Often, an inspiration for online models is offline models that have been successfully applied

to similar tasks. There have been a number of studies of online Bordes (2005); Tax (2003)

68

and incremental Carozza et al. (2000); Wang et al. (2007, 2008); Gua et al. (2015) Support

Vector Machines (SVM) in which the support vectors (SVs) are updated as the size of the data

increases. To add a new SV or change the former SVs, a set of conditions needs to be satisfied,

and such a decision is made for every new data point.

In order to adapt the boosting method to work in an online setting, a bootsrap is performed

using mostly Poisson distribution that guides the addition of each new data point into each

known weak classifier Oza (2005). In this work, an online version of boosting is proposed as

well. In it, a parameter is adapted on the basis of the error of the data point, and its weight is in-

dicated in the learning process. From this process, an AdaBoost (adaptive boosting) algorithm

is proposed. Other versions of AdaBoost have been proposed by Grabner et al. (2006) for vi-

sion problems, by Saffari et al. (2010) and Ditzler et al. (2010) for multi-class online boosting

and by Wen et al. (2015) for vehicle classification. Online Random forests were proposed in

Leistner et al. (2009). In the ensemble, the boosted decision trees are replaced by extremely

randomized trees and are grown in an incremental manner following the online boosting strat-

egy. A few conditions are added on the splitting of an existing leaf of a tree or the tree structure

in order to better understand the space they subsequently divide into small portions that are

easy to classify.

Incremental learning of the subspace was proposed in Kasabov et al. (2005) and applied to fea-

ture extraction, Li (2004) with an application on face recognition, Ross et al. (2007) for visual

tracking, Yao et al. (2010) for hand gesture recognition for incremental PCA, and incremental

Principal Component Regression (PCR) in Hall et al. (1998), compared to incremental fuzzy

models in Cernuda et al. (2012). In Cheng et al. (2016) the authors used temporal t-stochastic

neighbor embedding for incremental learning of silhouettes.

Other models that can be mentioned are online K-Means Beringer et al. (2006); incremental

K-NN Forster et al. (2010); Yu et al. (2009); Vector Quantization Lughofer (2008b); Adaptive

Resonance Theory proposed in Carpenter et al. (2010, 2017); ART-2A proposed in Carpenter

69

et al. (1991b) and Recursive Mountain Clustering Angelov, Plamen; Filev, Dimitar P.; Kasabov

(2010).

The main focus of this paper is on evolving or adaptive neuro-fuzzy models. They are com-

posed of a number of fuzzy rules that can be separated into two main parts, i.e. antecedent and

consequent. To derive a final decision, a similarity to the antecedent part is derived (the IF part

of the rule) and is followed by the consequence (the THEN part of the rule). These models

are usually dependent upon two basic models: the Takagi-Sugeno fuzzy model Takagi et al.

(1985) and the Mamdani model Mamdani et al. (1975).

The neuro-fuzzy models normally vary in the clustering part, which is used for deriving the

fuzzy rules of the model, i.e. the whole structure. Thus, several clustering methods have been

applied to the evolving neuro-fuzzy models, for example genetic algorithms in Carse et al.

(1996); Gomez et al. (2002); Kasabov (2001); the Recursive Mountain Clustering used in An-

gelov et al. (2004), Almaksour et al. (2010); connectionist systems in Kasabov (2001); incre-

mental clustering in Režnáková et al. (2012), ART-2A in Režnáková et al. (2013); VQ further

developed in Lughofer (2008a) and later expanded in Lughofer et al. (2011), where the authors

propose new elimination techniques for rule redundancies, including merging of the rules. In

Lughofer et al. (2015) the authors propose a new way for merging the rules. In Lughofer et al.

(2013b) the authors introduce a new perspective on the learning of the consequent part us-

ing the all-pairs approach. A study of the differences within models using different clustering

methods was done in Babuska (1998). A comprehensive survey of this topic was made by

Lughofer (2011, 2013).

In online learning, the optimization techniques need to be adapted accordingly to be able to

work with a stream of data instead of having to deal with the whole dataset at once. In this

study we focus on RLS optimization Ljung (1999); Angelov et al. (2008), which is a recursive

adaptation of Least Squares optimization. We use it as a baseline in our experimental setting

and apply our work, described later in this paper, to various evolving neuro-fuzzy models. This

optimization is linear, making the whole model only partially linear since the combination of

70

the rules is not linear. However, there are some studies on non-linear fuzzy modeling as well

Babuška et al. (2003); Tan et al. (2000). Many incremental online learning methods can be

easily applied using MOA (Massive Online Analysis, Bifet et al. (2010)).

4.4 Recursive Least Squares for TS fuzzy models

Each neuro-fuzzy model is composed of two main components, the antecedent part and the

consequent part. In this paper we focus on the consequent part because it is the main contrib-

utor to the learning process and the making of the inference. For this purpose, a set of local

parameters is used, Πi =
{

πππ j
i

}
j=1...c

; i = 1...r for r rules and c classes. The error to be mini-

mized is derived as a squared difference of an actual result βi,kxxxkΠi =
{

βi,kxxxkπππ j
i

}
j=1...c

and an

expected result Y
′
i,k =
{

a j}
j=1...c (4.2). Here, a j = 0 for the inactive class and a j = 1 for the

active class. βi,k is a scalar, the firing degree of rule i for sample xxxk at time k.

E =
t

∑
k=1

||βi,kxxxkΠi −Y
′
i,k||2 (4.2)

To minimize this error, Least Squares optimization is used, where the aim is to find parameters

Πi to fit all samples xxxk. To apply this to online learning, recursive updates are in need. Thus,

Πi,t and Ci,t are parameters and convariance matrix for rule i at time t. Here, k = 1...t are all the

updates form the beginning fo the leanring until the current time t. Then, parameters at time

t −1 are derived using all samples xxxk; k = 1...t −1.

Πi,t =
t

∑
k=1

βi,kxxxkY
′
i,k

(
t

∑
k=1

βi,kxxxkβi,kxxxT
k

)−1

= Mi,tC−1
i,t (4.3)

Mi,t =
t

∑
k=1

βi,kxxxkY
′
i,k =

t−1

∑
k=1

βi,kxxxkY
′
i,k +βi,txxxtYi,t = Mi,t−1 +βi,txxxtY

′
i,t (4.4)

71

Ci,t =
t

∑
k=1

βi,kxxxkβi,kxxxT
k =

t−1

∑
k=1

βi,kxxxkβi,kxxxT
k +βi,txxxtβi,txxxT

t =Ci,t−1 +βi,txxxtβi,txxxT
t (4.5)

From equations (4.3)-(4.5) we derive the final updating formula for the covariance matrix Ci,t

(4.6) for rule i at time t.

C−1
i,t =C−1

i,t−1 −
C−1

i,t−1βi,txxxtβi,txxxT
t C−1

i,t−1

1+βi,txxxT
t C−1

i,t−1βi,txxxt
(4.6)

From equation (4.7) the updating formula for parameters Πi,t is derived (4.8), where i is the

index of the corresponding rule and t is the time, which corresponds to the number of samples

already presented. Then, Πi,t−1 and C−1
i,t are the parameters and covariance matric from the

previous step and are used to derive the current result Πi,t−1βi,txxxt .

Πi,t = Mi,tC−1
i,t = Πi,t−1 −C−1

i,t βi,txxxt

(
Πi,t−1βi,txxxt −Y

′
i,t

)
(4.7)

Πi,t = Πi,t−1 +C−1
i,t−1βi,txxxt

(
Y

′
i,t −Πi,t−1βi,txxxt

)
(4.8)

Then, for each rule i and each class j there are local parameters πππ j
i,t with an updating formula

as shown in (4.9), given that local inference for the corresponding rule and class is given by

(4.10) and ε j
i,t being a correction parameter further described in section 4.5 bellow.

πππ j
i,t = πππ j

i,t−1 +C−1
i,t−1βi,txxxt

(
ε j

i,t −πππ j
i,t−1βi,txxxt

)
(4.9)

y j
i,t−1 = πππ j

i,t−1βi,txxxt (4.10)

72

The final inference for class j is then given by (4.11) and the decision is made by (4.12).

Y j
t =

r

∑
i=1

y j
i,t (4.11)

jwinner = argmax
j

Y j
t (4.12)

4.5 EML: Elastic Memory Learning

As described in the previous section, for consequent learning we use local RLS. Here, on

the basis of the result, each rule is updated by the weight of its firing degree to the sample.

Responsible for this update is a correction parameter ε j
i that is set to either 0 or 1, according

to the inference Y j
i , given rule i and class j. Setting this parameter to 0 leads to adjusting the

responsible parameters π at time t for input sample xt to infer 0, setting ε to 1 likewise, i.e. to

correct parameter π . Every time, the parameters for the true class are corrected to 1 and all the

others to 0.

However, this leads to a suspicion that if one class is unused for a long time, by updating its

parameters within each rule to 0 for each sample, the ability of each rule to recognize such an

unused class is forgotten. The correction to 0 is reasonable in cases when the responsible pa-

rameters π are very misleading and thus need to be corrected. However, parameters that do not

mislead and perform poorly, i.e. infer values close to 0, for the true class and at the same time

do not correspond to the true class are corrected unnecessarily. When such classes exist that

occur only rarely during some periods of time, which for online learning is possible scenario,

and infer low values for the other classes in the data stream, the values of their corresponding

parameters are being corrected. This happens with the very rare correction when parameter

ε is set to 1. When such a class reappears in the data stream, it has most likely already been

forgotten and will be misclassified.

73

To prevent this from occurring, the correction to 0 is performed only if necessary, i.e. when

results y j
i for such a class j are very misleading, considering that j∗ is the true class.

ε j
i,t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 j = j∗

0 y j
i,t > y j∗

i,t

πππ j
i,t−1βi,txxxt otherwise

(4.13)

We set the parameter ε j
i,t to 1 if class j is the desired one. Setting ε j

i,t to 0 triggers when the

parameters corresponding to the classes other than the true class result in an inference greater

than the inference for the true class. Lastly, ε j
i,t is set to π j

i,t−1βi,txt in all other cases, changing

the formula (4.9) to (4.14) and leaving parameters π j
i,t unchanged.

π j
i,t = π j

i,t−1 (4.14)

As has been demonstrated in Režnáková et al. (2013), this kind of a competitiveness in updat-

ing the consequent parameters leads to better results even if some of the classes are not used

for long periods of time; the model is prevented from forgetting them. This ability is very

important especially when the distribution of classes of incoming samples is not necessarily

uniform.

4.6 EML+

In EML, the correction learning, i.e. setting parameters to output 0, is performed only on pa-

rameters with higher inference than those of the winning class and their corresponding classes

are not the true class. However, this can affect the learning of classes whose parameters of

some rules result in reasonably high possibility, but at the same time are ignored by the correc-

tion learning since they are not the highest possibilities within their rules. In this section we

introduce Elastic Memory Learning+ (EML+) in which the correction learning is triggered by

74

the confidence interval (CI) of each rule rather than by only the top results(4.15). Thus, if the

inference y j
i of rule i and class j falls within the CI, the rule is confident enough that this class

can be the winning class, even though it is mistaken, then we should allow the model to update

the parameters. This equals saying that all such parameters that do not belong to the true class

result in misleading possibilities and, as such, they mismatch the classes and need to be treated

accordingly. From our point of view, such a treatment is the correction learning, whereby the

correction parameter ε j
i for rule i and class j is set to 0.

CI =±1.96

√√√√y jwinner

i

(
1− y jwinner

i

)
ti

(4.15)

In what follows we set the correction parameter εi,t for the parameters updating the formula

in (4.9) to the values shown in (4.16). Here, πππ j
i,t are parameters of rule i at time t for class j,

where i = 1..r, with r being the number of all rules, and j = 1...c, with c being the number of

all classes.

ε j
i,t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 j = j∗

0 j is inCI o f winner and j! = j∗

πππ j
i,t−1βi,txxxt otherwise

(4.16)

Parameters πππ j
i,t of the correct class j = j∗ are learned with respect to the expected result being

1 for the current sample xxxt , i.e. ε j
i,t = 1. Parameters πππ j

i,t of all the classes that are within

the confidence interval and at the same time do not belong to the correct class are learned

with respect to the expected result being 0 for the current sample, i.e. εi,t = 0. All the other

parameters belonging to classes whose parameters do not fall within the confidence interval

and are not the true class are ignored. This results in downsampling the majority class while

keeping only the samples crucial for learning the correct decision boundary.

75

We will see in the results section that such a treatment of parameters can avoid the lowered

recognition rate after the unused classes are re-incorporated into the learning process with a

similar frequency as the rest of the classes, while at the same time they can still be immune to

the forgetting of unused classes.

4.7 Results

In our setup we have applied our methods for consequent learning to a number of evolving

neuro-fuzzy models. In ARTIST Režnáková et al. (2013), an Adaptive Resonance Theory was

used for the generation of rules, while keeping the addition of a rule solely on the clustering

approach. In IFM Režnáková et al. (2012), incremental clustering based on the erroneous out-

puts of rules was used. Both of these models use incremental similarity as the firing degree.

In ETS Angelov et al. (2004) the authors applied Recursive Mountain Clustering for the gen-

eration of rules, while using univariate distribution for membership functions then combined

into the firing degree. In ETS+ Almaksour et al. (2010) the authors extended ETS by using

Mahalanobis distance as the firing degree. Both of these methods apply two ways of adding

new rules to the model, i.e. the result of clustering or addition of a new class to the system. All

of the models were altered to use RLS, EML and EML+.

When the distribution of classes among all the data is not uniform, neither is their arrival at the

learning process. Thus, the possibility arises of building blocks of not only adding one class

(which actually helps to learn such class), but also blocks of a forgotten class. Here, such a

class is not used for some time. In this section we explore the forgetting of one class within

fuzzy models using original RLS and our novel competitive techniques, EML and EML+. For

the evaluation we have used four models and the results are grouped accordingly. For the

evaluation we have used four models and the results are grouped accordingly. The results are

shown for 8 distinct datasets1, described in Table 4.1. Our main motivation is the recognition

1 Digits, Mushrooms, DNA, Segments, SatImage and USPS can be found at UCI Machine Learning

Repository;

Handwritten Gestures I can be found at http://www.synchromedia.ca/web/ets/gesturedataset;

Handwritten Gestures II can be found at http://www.irisa.fr/;

76

of handwritten gestures, corresponding to the HS I and HS II datasets, but in order to show the

performance on various applications.

For each database and for each model, three results are shown: the recognition rate of forgotten

class without learning (i.e. only the recognition, no incremental updates); recognition rate of

all the rest of the dataset (along with the forgotten class) with learning (i.e. with incremen-

tal updates); and the recognition rate on the last 100 samples with learning. The evaluation

benchmark is given for all the datasets differing in the number of samples used for each phase,

depending on the total number of samples per class. Each run contains four phases, of which

the results are shown for the last two phases:

a. learn all classes (50 - 300 samples per class)

b. forget one random class and learn all the rest of the classes (100 - 300 samples per class)

c. phase 3: check the recognition rate of the forgotten class, but do not update the parameters

so that we can check the true forgetting for all samples (100 - 300 samples per class)

d. phase 4: learn all classes (the rest of the dataset) while keeping updating the parameters.

Table 4.1 Datasets

Dataset # of classes # of dimensions # of samples

Digits 10 16 10992

HS I 17 20 13600

HS II 21 50 1923

Mush 2 22 8124

Segment 7 19 2310

DNA 3 180 2000

SI 6 36 4435

USPS 10 256 7291

Table 4.2 shows that both methods, EML and EML+, significantly improve the forgetting of

unused classes in most of the datasets. On average, EML improves the immunity for forgetting

77

from a recognition rate of ~30% to ~61.5%, while on average maintaining the further learning

from a ~88.3% to a ~89% recognition rate. Within individual results it can be noted that for

Mushrooms, DNA and Sat Images, the further recognition rate (phase 4) is slightly decreased.

Using EML+, the immunity for forgetting is improved to ~60%, while maintaining the recog-

nition rate in the last phase at ~90.6%. Although the variation between EML and EML+ results

is on average only slight, we can see that EML performs better at the forgetting phase, while

EML+ maintains the general learning at a higher level. We can also note, that EML outper-

forms EML+ for Digits, HS II and DNA datasets, while EML+ outperforms EML for HS I,

Mushrooms, Segment and USPS datasets. For Sat Images EML+ outperforms EML for phase

4 learning, but contrary for phase 3. This result is not expected from the theoretical point of

view but supports the no free lunch theorem H. et al. (1997).

Table 4.2 Comparison of forgetting for ARTIST. The recognition rate of the forgotten

class without learning/recognition rate of the rest of the dataset (along with the forgotten

class) with learning/recognition rate on the last 100 samples with learning. The results are

shown in % of recognition rate.

RLS EML EML+

Digits 19.9 / 80.4 / 82.0 60.03 / 88.4 / 89.6 65.0 / 85.1 / 85.0

HS I 37.7 / 97.9 / 97.7 92.9 / 98.7 / 99.3 98.7 / 99.2 / 99.6

HS II 51.6 / 95.8 / 96.7 79.6 / 96.0 / 96.8 85.3 / 95.7 / 96.3

Mush 64.5 / 92.9 / 92.7 73.1 / 91.0 / 90.5 69.0 / 94.5 / 97.8

Segment 37.1 / 73.1 / 72.8 53.4 / 75.3 / 75.8 73.3 / 85.0 / 85.0

DNA 0.0 / 90.8 / 95.1 8.25 / 90.0 / 96.5 2.3 / 89.9 / 96.0

SI 2.5 / 83.7 / 90.4 3.3 / 80.6 / 94.0 3.3 / 82.5 / 92.0

USPS 25.2 / 92.1 / 92.7 68.7 / 92.2 / 93.3 66.5 / 93.4 / 93.5

For the second model ETS (Table 4.3), on average RLS achieves ~50% recognition rate, while

raising the recognition rate to ~90% at phase 4. Using EML, the recognition rate at the phase

focusing on the forgetting factor increases to ~81.4% and in the final phase decreases to ~83%

on average. Although the results from the final phase show significant change, we can further

see that for the last 100 samples, the final learning improves to 85% recognition rate. This

result is still not satisfying, and we can note that the model achieves such results especially for

78

Mushrooms, DNA, Sat Images and USPS datasets. The EML+ for the ETS model achieves

~84.5% recognition rate in phase 3 and ~90% recognition rate in phase 4, on average. We can

note that, again, EML outperforms EML+ at the immunity for forgetting by a slight margin;

however, EML+ performs better in the last phase of the learning and maintains the recognition

rate of RLS. We can also note that EML tends to perform better for the Digits and Segment

datasets, while EML+ is superior for the HS I, HS II, Mushrooms, DNA, Sat Image and USPS

datasets.

Table 4.3 Comparison of forgetting for ETS. The recognition rate of the forgotten class

without learning/recognition rate of the rest of the dataset (along with the forgotten class)

with learning/recognition rate on the last 100 samples with learning. The results are

shown in % of recognition rate.

RLS EML EML+

Digits 40.5 / 83.9 / 84.7 81.2 / 86.2 / 84.2 71.7 / 82.1 / 79.0

HS I 24.1 / 97.4 / 98.4 90.9 / 93.2 / 94.6 88.1 / 98.6 / 98.7

HS II 73.2 / 95.1 / 95.5 91.6 / 93.0 / 92.7 89.2 / 94.9 / 95.3

Mush 65.8 / 94.7 / 94.7 70.4 / 84.8 / 94.5 85.3 / 94.5 / 97.5

Segment 40.9 / 85.2 / 85.6 70.4 / 85.1 / 85.4 82.7 / 84.7 / 83.9

DNA 69.5 / 90.7 / 94.2 77.1 / 79.6 / 80.0 83.4 / 91.0 / 93.8

SI 31.7 / 81.1 / 87.3 82.4 / 63.2 / 66.8 89.8 / 82.4 / 88.7

USPS 53.8 / 91.4 / 91.1 87.3 / 77.5 / 79.0 87.1 / 92.6 / 93.2

In Table 4.4 we apply our methods to the ETS+ model. Here, the baseline RLS method achieves

~53% recognition rate in phase 3 and ~90% recognition in phase 4, on average. With EML we

were able to improve the results from phase 3; the forgetting factor rose to ~75% recognition

rate, while the recognition rate achieved in phase 4 was ~83.5% on average. For the last 100

samples with learning, the model was able to improve to ~85% recognition rate on average.

We can see that the drop in phase 4 is generally significant for the HS I, DNA, Sat Images and

USPS datasets, although the compensation in phase 3 is very significant as well. Using EML+

we achieved ~81% recognition rate in phase 3 and maintained the original recognition rate at

~90% on average by using RLS. This shows that EML+ is more suitable for the ETS model on

the whole, for in both phases it tends to outperform EML.

79

Table 4.4 Comparison of forgetting for ETS+. The recognition rate of the forgotten

class without learning/recognition rate of the rest of the dataset (along with the forgotten

class) with learning/- recognition rate on the last 100 samples with learning. The results

are shown in % of recognition rate.

RLS EML EML+

Digits 20.5 / 84.9 / 84.7 79.8 / 85.4 / 87.3 87.2 / 86.1 / 90.0

HS I 72.4 / 96.8 / 98.3 78.6 / 84.0 / 84.2 87.5 / 98.2 / 99.0

HS II 78.0 / 95.2 / 96.7 83.6 / 91.6 / 93.1 80.8 / 95.5 / 96.0

Mush 64.8 / 94.2 / 93.9 80.0 / 93.1 / 93.9 82.7 / 94.2 / 95.3

Segment 48.0 / 84.4 / 83.4 53.8 / 80.0 / 82.3 57.5 / 79.7 / 84.5

DNA 75.1 / 91.2 / 93.3 75.7 / 84.6 / 86.6 83.3 / 88.9 / 90.0

SI 16.8 / 80.1 / 87.0 70.8 / 68.9 / 73.5 87.2 / 82.2 / 86.5

USPS 45.9 / 91.2 / 92.4 79.2 / 80.6 / 79.4 80.2 / 91.9 / 90.5

In our last set of results in Table 4.5, we can see that RLS achieves ~24% recognition rate

in phase 3 and ~91% recognition rate in phase 4, on average. Using EML we were able to

improve the results to ~53% recognition rate in phase 3 and ~94% recognition rate in phase

4, on average. For the majority of the datasets both results are superior when using our EML

compared to the original RLS. Our second method, EML+, achieves ~51% recognition rate in

phase 3 and ~93% recognition rate in phase 4, on average. It can be observed that EML tends

to slightly outperform EML+, especially for the Digits, Mushrooms and Segment datasets. For

DNA and Sat Images, the results are comparable; and for HS I, HS II and USPS, EML+ slightly

outperforms EML.

In most of our results, it can be noticed that when using the original RLS, the accuracy of

the forgotten class does not exceed 50%; and in some cases it is close to being completely

forgotten. With both our techniques, forgetting is significantly suppressed while the recognition

afterwards is comparable to or even better than for the original models. However, as mentioned

earlier, in some cases even when considering the improvement, the recognition rate of the

forgotten class is still not fully satisfying. This might be caused by the very low number of

samples that the forgotten class was learned on in previous phases. This needs to be investigated

in future research to improve the proposed framework further. Moreover, in a few cases even

80

Table 4.5 Comparison of forgetting for IFM. The recognition rate of the forgotten class

without learning/recognition rate of the rest of the dataset (along with the forgotten class)

with learning/recognition rate on the last 100 samples with learning. The results are

shown in % of recognition rate.

RLS EML EML+

Digits 17.6 / 88.7 / 86.8 60.3 / 92.2 / 92.4 58.7 / 91.1 / 91.6

HS I 0.3 / 97.7 / 98.5 58.9 / 99.0 / 99.0 69.4 / 99.0 / 99.2

HS II 38.0 / 95.4 / 95.7 74.8 / 95.7 / 96.9 75.1 / 96.1 / 96.8

Mush 74.9 / 95.9 / 96.9 77.0 / 96.5 / 97.8 76.9 / 95.9 / 96.8

Segment 15.5 / 84.7 / 87.0 58.2 / 94.0 / 94.6 21.6 / 88.4 / 93.2

DNA 37.3 / 91.1 / 94.6 51.9 / 92.2 / 93.1 59.8 / 91.8 / 93.4

SI 0.3 / 85.8 / 90.5 9.5 / 85.9 / 90.9 5.0 / 86.6 / 92.2

USPS 11.0 / 91.1 / 92.5 31.2 / 93.7 / 94.7 44.3 / 93.6 / 95.6

though the forgetting is suppressed significantly, the results are still low, leaving more room

for future work and research.

4.8 Conclusion and discussion

In this paper we have presented two novel methods (EML and EML+) to suppress the forgetting

of unused classes in an online incremental learning setup. Since the classes of data in a real-

time online stream are not necessarily uniformly distributed, they can create a block of absence.

During this absence, an unused class is not learned and the model is prone to forget it. Our

methods use competitive updates in traditional RLS that focus on the importance of the data

points in the stream during the learning process. This shrinks the blocks of absence of a class

while keeping the important information available for the learning process.

We compared our techniques using four baseline models and achieved better results than the

baseline techniques. We discuss several options for incremental learning, some of which have

been used for online or incremental handwriting recognition. As we wanted to show the us-

ability of the proposed models not only for handwriting recognition, but also for various other

problems, we chose to test a spectrum of datasets. We evaluated results on 8 datasets that

varied in the number of classes, features and sample sizes. In all of the applications our tech-

81

niques achieved a good trade-off between the immunity for forgetting of unused classes and

the general accuracy of the model.

From the results we can see that both of our methods are superior to the original RLS in regard

to the immunity to forgetting of the unused classes, and they both are capable of maintaining

the general accuracy of the models. The general accuracy is very important for the model to

be able to achieve good results even when there are no blocks of absence of classes, and our

methods do not influence the learning process of all the other classes. In some rare cases,

however, the general accuracy was lower than in the original models. We believe that this is

due to the nature of the data and the importance of each sample for the learning process. The

learning process of all classes is slightly slowed down compared to a case in which all classes

are learned at the same time. Especially in EML, the learning is more competitive than in

EML+. This follows our assumption, since by using more samples in EML+ we were able

to improve the general accuracy of the model. Further we point out that if we focus on the

last samples’ accuracy, the results improve as well. This corresponds to our theory that worse

results are caused by lack of data due to the competitive nature of the model. On the other

hand, the more competitive the learning is, the more it is, in general, immune to forgetting.

Again, there are some rare cases when this is not completely true; but since in both EML and

EML+ the learning is competitive, we can see that using such learning is superior to learning

all samples, as in RLS. We can note that in all cases our methods surpassed RLS and in the

vast majority of the results the improvement was very significant.

Given these findings we can state that our approaches outperform baseline techniques signif-

icantly in cases where some classes are used only on rare occasions compared to the rest of

the classes. This gain in performance is reduced when distribution over classes is more or less

uniform. However, this reduction is not critical and both methods lead to comparable or even

superior results when there are no blocks of absence of classes present. Nevertheless, the main

application of our models is on handwritten gestures recognition. Consequently, we might sup-

pose that the distribution of handwritten gestures of users in a real-world setting is not uniform

and that several gestures are used only on rare occasions.

82

In our future work we want to explore the problem of forgetting in cases where even though our

methods did indeed improve the original results, the accuracy during the forgetting phase was

still not acceptable. It might seem that for these datasets either the models or the competitive

learning process itself is not quite suitable. As a part of this research we want to investigate the

application of our EML and EML+ to optimization techniques other than RLS.

Acknowledgment

The authors thank NSERC RGPIN 138344 & 2014-04649 and SSHRC 412-2010-1007 of

Canada for their financial support.

CHAPTER 5

SO-ARTIST: SELF-ORGANIZED ART-2A INSPIRED CLUSTERING FOR ONLINE
TAKAGI-SUGENO FUZZY MODELS

Marta Režnáková1, LukasTencer1, Mohamed Cheriet1

1 Synchromedia Lab, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3

Paper published in Applied Soft Computing, June 2016.

5.1 Abstract

In this paper we introduce a novel online self-organized clustering method based on the ART-

2A network for Takagi-Sugeno fuzzy models. To accomplish the self-organization, we intro-

duce an automatic decision algorithm along with solutions for merging and splitting of rules as

well as the parameters they operate with, such as our novel incremental distance measurement

and competitive recursive least squares. We emphasize the leaning algorithm’s having an im-

pact for initial as well as long-term learning capabilities. We also emphasize the challenge for

online learning, where examples are incoming in real-time and thus are unknown before they

can be learned. Therefore, we solve parameter fixing by introducing a parameter free method.

We show the performance of our method on various machine learning benchmarks as a highly

accurate and low time-consuming method capable of adapting to different databases without

the need for fixing any of its parameters according to the database.

5.2 Introduction

Across many fields, such as machine learning, pattern recognition, and document analysis,

the need for online learning has become important though challenging. Often, new data are

available and to keep up to date the classical pre-learning methods (i.e. offline learning) require

long-term processes to perform recognition. On the one hand, incremental learning might seem

to be an option, where each new example is learned as an increment to a previously learned

84

model. However, we focus on online learning, where the model is learned incrementally or

adapted to actual situations, but at the same time achieves real-time performance. This means

that the whole learning process is linked to recognition, so the steps are performed at the same

time, in contrast to offline learning. In addition, we emphasize the no-database-knowledge

problem, where the model starts from scratch, not knowing the number of classes or their

appearance. Thus, this kind of learning needs to provide a strong recognition rate at the very

beginning of the recognition process as well as overall.

Our main motivation for this research is applications such as handwritten gesture (symbol)

recognition for interactive devices, where the user sets his own gestures and the system adapts

to his personal needs. In these cases, we do not have any information about the database or

its content. That information is collected over time as the user’s writing style evolves. The

recognition begins immediately after a few samples per class are introduced (generally 1-5),

and all classes can be introduced one after another during the process, forgotten in time or

recalled after not being used for a long time. These are some of the challenges of online

learning, where the distribution of classes is not given and the model has to be elastic enough

to cope with them.

In this paper we introduce a novel variant for online learning when knowledge of the database

is not required. The contributions in this paper are

• Self-organized clustering based on the ART-2A neural network (Carpenter et al. (1991b)),

where its parameters are learned automatically and online;

• Similarity, dissimilarity and error measurement for fuzzy rules;

• Merging and splitting of parameters for Incremental distance (antecedent part) and param-

eters for CCL/RLS (consequent part).

This work leverages on our previous work, ARTIST (Režnáková et al. (2013)), in which we

introduced the integration of the ART-2A network into the generation of fuzzy rules for a TS

85

fuzzy model. In this paper, we propose a novel method in which the rules are organized by

themselves and thus not solely by the ART-2A network. Along with automatic generation, we

introduce the merging, splitting and discarding of the rules. In addition, we introduce the auto-

matic learning of a vigilance parameter and a learning rate that for the ART network originally

need to be set by user. Thus, this paper presents a novel self-organized method in which the

learning starts from scratch with no knowledge of a dataset size or the number of classes, and

time classes are introduced. Classes can be added on the fly, with rule organization on the

fly, and in an automatic way. All these major features make this work’s base-line drastically

different from and complementary to the previous work, ARTIST.

We evaluate our proposed method on standard datasets in a comparison with our previous

model (ARTIST), in which the rules are generated automatically without any self-organization

by using fixed parameters. This comparison is performed in contrast to finding the best parame-

ters by using a grid method, showing that our method is capable of finding optimal parameters.

At the same time, by this comparison we show that our method is capable of finding the correct

organization (fuzzy rules distribution) as a supervised solution.

This paper is divided into 6 sections. In section 5.3 we show the state-of-the-art methods

for handling the TS fuzzy rules, self-organized clustering methods, and incremental real-time

models. Within section 5.4 we briefly summarize our previous model, ARTIST, which is based

on ART-2A based generation of rules for the Takagi-Sugeno (TS) fuzzy model, along with

incremental distance measurement and competitive consequent learning (CCL). In section 5.5

we explain our novel self-organized (SO) ARTIST in detail, focusing on our contributions.

We conclude this section with an algorithm summarizing the whole novel concept of online

learning when starting from scratch with no parameters to set according to the database used.

Finally, in section 5.6 we show the results of our novel method on several machine learning

datasets containing handwritten symbols, which are the main motivation of our research. We

end this paper with conclusion and possible future work.

86

5.3 Related works

In our work, we search for a sufficient online learning-based model in which the number of

classes is unknown. Thus, we search for models using online learning, when starting from

scratch and with no pre-definitions. Moreover, we assume no knowledge of the database,

because of the online nature of our problem. If a database is known, we can simply use offline

learning. Hence, such a task is very challenging, and in this section we briefly introduce several

attempts to solve this learning problem.

Generally, there are more methods for online or incremental learning (Gama (2010); Moamar-

Mouchaweh, Sayed; Lughofer (2012); Angelov, Plamen; Filev, Dimitar P.; Kasabov (2010)).

Often, authors turn an offline model into an online one using just a few adjustments. The

most common approaches are among kernel-based methods, subspace methods, tree structures

or bagging/boosting-based approaches. Diehl et al. (2003); Carozza et al. (2000) propose to

take the number of Support Vectors as not stable, making their generation incremental. Bordes

(2005); Tax (2003); Wang et al. (2007, 2008) update the SVs in an online manner, with incre-

mentally incoming samples in real time. There are several approaches for incremental Principal

Component Analysis (PCA), where the subspace is learned in an incremental manner; they in-

clude Kasabov et al. (2005) used for feature extraction, Li (2004) for face recognition, Ross

et al. (2007) for visual tracking, Yao et al. (2010) for hand gesture recognition, and incremental

Principal Component Regression (PCR) in Hall et al. (1998), compared to incremental fuzzy

models in Cernuda et al. (2012). Grabner et al. (2006); Oza (2005) propose an online version

of the AdaBoost algorithm. However, these methods are not naturally adjusted for multiclass

problems. Thus, Ditzler et al. (2010); Saffari et al. (2010) propose a multiclass solution for

AdaBoost-based methods. However, the number of classes is still required. Leistner et al.

(2009) transfer a Random Forest method introduced by Breiman (2001) into an online model;

the divisions of the space are created in an incremental manner on the basis of the conditions of

branches of the tree being updated online. The incremental decision trees were originally pro-

posed in Utgoff (1989). Reddy et al. (2009) adapt an action-reaction tree into an online model

to cope with samples incoming in an online manner. All these methods nonethless require

87

some knowledge about the database, in the sense of knowing the number of classes, number

of SVs, size of the database, or whether they are naturally designed for multiclass problems.

Hence, such methods are not capable of fully adaptive and automatic learning from scratch.

In our research, we focus on fuzzy models and their capabilities for such online learning.

There are two main streams for fuzzy models: Mamdani introduced by Mamdani et al. (1975)

and Takagi-Sugeno introduced by Takagi et al. (1985). Their differences are based on the

consequences they output. Babuška et al. (2003); Tan et al. (2000) explored the use of fuzzy

models for nonlinear problems. In fuzzy models, the clustering solution states how the rules are

treated. Thus, the methods can also vary according to this parameter. The work on this has been

done by Babuska (1998). There are several works using different approaches, such as Ahn et al.

(2010) for nonlinear dynamic fuzzy models and Cordón, Oscar; Herrera, Francisco; Hoffmann,

F.; Magdalena (2001); Cordon et al. (2004); Yuan et al. (1996) using genetic algorithms for

generation of the rules. However, these attempts lack the ability for online learning, where

not only the antecedent part (clustering), but also the consequent part (reasoning) need to be

adjusted accordingly.

For an online or incremental adaptation of fuzzy models, several works have made proposals.

A comprehensive survey on this topic was done by Lughofer (2011). Angelov et al. (2004);

Angelov (2008) introduced an incremental mountain clustering algorithm for generation of

rules for TS fuzzy models. Here, the densities of already existing rules are compared to new

possible rules for deciding the creation of a new rule. Almaksour et al. (2010) continued

this work using multivariate distributions for the antecedent part, achieving higher accuracy of

recognition. Carse et al. (1996); Gomez et al. (2002); Kasabov (2001) use a genetic algorithm

for the evolution of fuzzy rules. Lughofer (2008a) proposed using incremental vector quanti-

zation for the organization of rules. This work was later expanded in Lughofer et al. (2011),

where the authors propose new elimination techniques for rule redundancies, including merg-

ing of rules. However, they still expect a free parameter (threshold) to be used and adjusted.

In Lemos et al. (2013) the authors propose an evolving fuzzy system with dynamic organi-

zation of the rules based on threshold values. In Rong et al. (2010) the authors propose an

88

evolving fuzzy system by the addition and removal of fuzzy rules, but using threshold values

to determine these actions. Režnáková et al. (2012) proposed the use of incremental density

measurement for the antecedent part to achieve a recognition rate comparable to a multivariate

distribution, but to keep low computational cost. These methods use Recursive Least Square

(RLS, Ljung (1999); Angelov et al. (2008)) optimization to adjust the consequent parameters.

In our previous work Režnáková et al. (2013) we adjusted these calculations by using Com-

petitive Consequent Learning (CCL), avoiding the forgetting factor in incremental learning

approaches.

In this research we assume the clustering part as very crucial for fuzzy models, especially

when the learning is online and the rules are generated on the fly. Thus, we explore clus-

tering approaches that may be incorporated into fuzzy models. Carpenter et al. (2010); Gail

A. Carpenter, Stephen Grossberga (1991) introduced the Adaptive Resonance Theory (ART),

where the number of classes is unknown and starting from scratch is possible. However, this

strategy is applicable only for binary inputs. Thus, in Carpenter et al. (1991a,b) the authors

proposed an adaptation of the ART network to work for analog signals. The comparison of

the ART and ART-2A networks was done by Frank et al. (1998). There are several approaches

Anagnostopoulos et al. (2000); Glotin et al. (2009); Hsu et al. (2008) that adjust the ART

network for different situations. Other approaches towards online or incremental clustering

were proposed by Forster et al. (2010); Yu et al. (2009), introducing an incremental k Nearest

Neighbors (kNN). However, a certain number of neighbors need to be kept in order to derive

the distance among them. Thus, only a base is adjusted in considering incrementally incoming

samples. Zhang et al. (2004) proposed an online clustering using Singular Value Decomposi-

tion (SVD). Lughofer (2008b) proposed incremental Vector Quantization (VQ), Beringer et al.

(2006) proposed an incremental k-means algorithm and Lühr et al. (2009) introduced an incre-

mental graph-based clustering. Another interesting group is the Self-Organized Maps (SOM)

proposed by Caridakis et al. (2010); Kohonen (1990); Lin et al. (1991); Vesanto et al. (2000),

where the organization of clusters is automated, but with a fixed number of clusters. Then in

Deng et al. (2003) the authors proposed evolving SOM where the number of classes is not set

89

in advance, with clusters evolving in time. In many of these approaches, some of the conditions

that need to satisfied are not accomplished. Either the number of classes needs to be known,

some initialization is required, or storage of part of the dataset or parameter fixing is necessary.

Many incremental online learning methods can be easily applied using MOA (Massive Online

Analysis Bifet et al. (2010)).

As can be noticed, there are no methods capable of learning from scratch or adjusting auto-

matically without requirements for the knowledge of the database in any sense. Hence, in this

paper we introduce a novel method satisfying these requirements. In the next section we briefly

recall the ARTIST concept when using the ART-2A clustering method for generation of rules.

However, the vigilance and learning rate parameters still need to be set. Thus, we propose a

Self-Organized ARTIST that will solve this constraint and show the possibilities of a clustering

method for TS fuzzy models.

5.4 ARTIST: ART-2A driven generation of rules for TS fuzzy models

In this work, fuzzy rules are generated using the ART-2A incremental clustering method, in

which the knowledge of the number of classes is not required. The rules are those proposed by

Takagi et al. (1985). Here in (5.1) (Angelov et al. (2008)), the antecedent part is denoted as

IS and the consequent part by T HEN. The antecedent part describes similarity and is partially

responsible for the rule organization and generation. The consequent part is responsible for

the reasoning and inference of the model as well as for a decision about the erroneous of the

model.

Ri : i f xxx IS A T HEN y = xxxπππ +b (5.1)

The result y = xxxπππ + b in our solution is expressed as yi = βixxxT Πi, where βi is a firing degree

(membership function) of a rule Ri derived from the antecedent part, yi is the inference of Ri

for all classes; and Πi =
{

πππ j
i

}
j=1...c

is a set of the consequent parameters of Ri for each class

90

j. Then, the final result of the system is derived as a weighted average of inferences yi from

each rule (5.2), where r is the number of all rules.

Y =
1

∑r
i=1 βi

r

∑
i=1

βixxxT Πi ∼=
r

∑
i=1

βixxxT Πi (5.2)

The result of the system for one concrete class is represented as (5.3).

Y j =
r

∑
i=1

βixxxT πππ j
i (5.3)

j
′
= argmax

j
Y j (5.4)

To assign the winning class j
′
, the maximum of all results Y j is derived (5.4). If the winning

class j
′
does not equal the ground truth j∗, an error in decision will occur.

5.4.1 Rule organization

For the organization of rules, ARTIST uses the ART-2A network because of its capability of

incremental learning, no class or its number initialization and its readability. In the model,

the ART network is responsible only for the generation of rules, not for the firing degree or

for the reasoning. The rule generation is not influenced by the information about arrival of a

new class to the system, but is subsumed completely under the ART logic. Such an approach

is to prevent the creation of unimportant rules, since in fuzzy models all classes are partially

incorporated into all rules. Thus, if some rule is close enough to a new class, the latter can

represent it, and the system will not create confusion by forcibly making a new rule with the

same firing degree. This does not mean that the system will not create new rules for newly

appearing classes. It will do this for classes that do not overlap with others. We consider fuzzy

logic and see inferences of rules as possibilities. By not creating a separate overlapping rule

91

for a new class and keeping this class within the other rule, we stipulate that in that part of the

feature space close to the class and rule, both of these classes are possible. If we create a new

rule for a new class despite their sharing of the same or overlapping parts of the feature space,

the same effect occurs: in this part of the feature space both of the classes are possible. The

only difference is that in the second case, we will get this information from two rules, and one

of them can be seen as redundant.

This means that the rule generation is completely unsupervised and does not take the infor-

mation about the new class appearance into account. This is an issue especially for learning

on the fly approaches, where the classes are not introduced at the beginning of the learning

process but emerge randomly during the learning process. Further in our experiments, this is

the strategy we use for evaluation of our model and the appearance of the classes is random.

In the ART network, the system searches for a resonance or reset signal. Thus, the concept

consists of three layers: comparison layer, recognition layer and reset module. In the compari-

son layer, the incoming sample I is filtered using function f (·) (Carpenter et al. (1991b)); it is

normalized and compared to all known clusters using cosine distance; and a match is searched

for. Then, a choice is made by selecting the best match over all the committed nodes (clusters)

and compared to the vigilance parameter in the reset module (5.6). If the choice satisfies ρ ,

resonance occurs and the search is over. If choice does not satisfy ρ , reset is done, the chosen

node is set as uncommitted, a new search for resonance continues, and a new choice is selected

(Carpenter et al. (1991b)). If no resonance is possible, a new node (cluster) is added to the

system. After resonance or addition of a new node, competitive learning of the weight vector

ω takes place (5.7). For this to occur, a learning rate λ (free parameter) is used, which denotes

how much of the weight vector should be learned. There is only one global learning rate in the

system.

xxx =
f (I)

‖ f (I)‖ (5.5)

xxxT ωi > ρ (5.6)

92

ω =
λxxx+(1−λ)ω
‖λxxx+(1−λ)ω‖ (5.7)

The complete architecture of the system can be seen in Figure 5.1. Here, the firing degree βi

of a rule i is represented by an antecedent part explained in next subsection. This is followed

by the learning of the consequent parameters. There, the antecedent parts’ membership (firing

degree) influences the weight of the decision of the consequent part. More details on the ART-

2A network can be seen in Carpenter et al. (1991b).

5.4.2 Antecedent part

The antecedent part describes the properties of similar samples that distinguish them from

other groups of samples. In fuzzy models, these properties are linked to each rule by the term

sample x IS property A, where ’IS’ is the link and A is the property describing one rule. In the

example, we can see this link as car IS red for one rule and car IS blue for another rule.

Usually, the antecedent part is described as a Gaussian distribution, either univariate or mul-

tivariate. As properties we can see a feature vector, where each rule will then be assigned a

group of samples on the basis of the similarities among them. Applying univariate distribu-

tion, one can achieve low computational cost, using only variance scalar for update (in the case

of incremental learning) and calculation, rather than covariance matrix with high dimension,

in the case of many properties (features). However, multivariate distribution achieves higher

accuracy in recognition because it is better in predicting the similarities among samples.

In ARTIST, we use a density calculation (5.8) with a satisfying trade-off between computa-

tional cost and accuracy. Here, βi describes, how much sample xxx IS properties i, based on all

the other samples xxx j from rule i. Furthermore, in order to fulfill the fuzziness of the model,

membership functions are not normalized, so they stand as possibilities rather than probabilities

Režnáková et al. (2013).

93

Figure 5.1 ARTIST

βi =
1

1+∑ti
j=1

(
xxx− xxx j

)2 (5.8)

In order to accommodate incremental learning into the model, we need to introduce a recursive

model for learning the membership function, as described in the following subsection.

94

5.4.2.1 Incremental similarity measurement

For incremental learning, the recursive formula can be easily derived from the original one,

resulting in (5.9). By substituting xxx2, ∑ti
j=1 xxx j and ∑ti

j=1 xxx2
j using parameters αi, ηi and γi we

can produce recursive formula (5.10) with update formulas for these parameters (5.11) in an

incremental manner. Here, none of the samples will be forgotten or changed; but in these

parameters, the true values of past samples are stored. Thus, every time a new sample arrives

to enrich the rule, updating formulas are triggered so that for the next sample with an unknown

competency for a rule, membership βi is derived.

βi =
ti

ti + tixxx2 −2xxx∑ti
j=1 xxx j +∑ti

j=1 xxx2
j

(5.9)

βi =
ti

ti + tiαi −2xxxηηη i + γi
(5.10)

a) ti = ti−1 +1 c)ηηη i = ηηη i−1 + xxx ; ηηη0 = 0

b)αi = xxx2 d)γi = γi−1 +αi ; γ0 = 0

(5.11)

5.4.3 Consequent part

To enable rules that make an inference, we use a set of parameters that can also be seen as

weights for all characteristics from our input vector I augmented by a bias. To learn these

parameters, we follow the use of RLS (Recursive Least Squares), where the error we want to

optimize is a squared difference of an actual result βixxxiΠ and an expected result Yi (5.13). This

kind of optimization leads to resulting formulas for updating a covariance matrix Ci (5.17) and

a set of parameters Πi (5.22) for rule i. In our work we use local optimization of the consequent

95

parameters of fuzzy rules and thus local RLS (Angelov et al. (2008)).

xxxi =

⎛
⎝ 1

Ii

⎞
⎠ (5.12)

E =
t

∑
i=1

||βixxxiΠ−Yi||2 (5.13)

Πt =
t

∑
i=1

βixxxiYi

(
t

∑
i=1

βixxxiβixxxT
i

)−1

= MtC−1
t (5.14)

Mt =
t

∑
i=1

βixxxiYi =
t−1

∑
i=1

βixxxiYi +βtxxxtYt = Mt−1 +βtxxxtYt (5.15)

Ct =
t

∑
i=1

βixxxiβixxxT
i =

t−1

∑
i=1

βixxxiβixxxT
i +βtxxxtβtxxxT

t =Ct−1 +βtxxxtβtxxxT
t (5.16)

C−1
t =C−1

t−1 −
C−1

t−1βtxxxtβtxxxT
t C−1

t−1

1+βtxxxT
t C−1

t−1βtxxxt
(5.17)

Πt = MtC−1
t = (Mt−1 +βtxxxtYt)C−1

t = (Πt−1Ct−1 +βtxxxtYt)C−1
t = (5.18)

=
(
Πt−1

(
Ct −βtxxxtβtxxxT

t
)
+βtxxxtYt

)
C−1

t = Πt−1

(
C−1

t
(
Ct −βtxxxtβtxxxT

t
))

+ (5.19)

+C−1
t βtxxxtYt = Πt−1

(
1−C−1

t βtxxxtβtxxxT
t
)
+C−1

t βtxxxtYt = (5.20)

= Πt−1 −C−1
t βtxxxt (Πt−1βtxxxt −Yt) (5.21)

Πt = Πt−1 +C−1
t−1βtxxxt (Yt −Πt−1βtxxxt) (5.22)

96

5.4.3.1 Competitive Recursive Least Squares

For consequent learning we use RLS, where on the basis of result, each rule is updated by the

weight of its membership function to the sample, to either 0 or 1 for each class. This leads to a

suspicion that if one class is unused for a longer time, by updating its parameters within each

rule to 0 for each sample, the ability of each rule to recognize such an unused class is reduced.

To prevent this, we proposed a solution in which the update to 0 is performed only if necessary,

i.e. when results y j for such class j are very misleading, considering that j∗ is the true class

(5.23).

πππ j
i,t = πππ j

i,t−1 +C−1
i,t−1βi,txxxt

(
εi −πππ j

i,t−1βi,txxxt

)

εi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 j = j∗

0 yi, j > yi, j∗

πππ j
i,t−1βi,txxxt otherwise

(5.23)

As we can see in Režnáková et al. (2013), such competitiveness among updating consequent

parameters leads to better results even if some class is unused for a longer time, preventing

the model from forgetting it. This ability is very important especially when the distribution of

classes of incoming samples is not necessarily uniform.

5.5 SO-ARTIST: Self-Organized ART-2A based management of rules for TS fuzzy mod-
els

In this section we propose a novel method for organizing the fuzzy rules of the Takagi-Sugeno

fuzzy model. In our previous method (Režnáková et al. (2013)) we proposed the use of ART-2A

incremental clustering for this purpose, as described in section 5.4. However, such clustering

requires fixation of two parameters regarding the database used. At the same time, we have

empirically found that especially for incremental learning, some clusters are not generated

97

correctly, which means that they increase the error rate of the model. This is caused by an

insufficient number of examples, especially at the beginning of the learning process. Thus, we

propose a self-organized mechanism. To bring the division of a space that fits the requirements

for each situation at each time it is required to make an assumption about the state of the world.

In this section, we introduce novel solutions for rules merging and splitting. Each subsection

is divided into solutions for the antecedent, consequent and rule properties parts, as for fuzzy

models. Before each such subsection, we introduce the novel ideas behind decisions about

merging and splitting of the rules, such as decisions about similarities and, conversely, dis-

similarities between rules. Furthermore, we propose an automatic derivation of the vigilance

parameter and learning rate for each cluster from ART-based incremental clustering methods.

We end this section with a description of the complete mechanism behind the novel automatic

self-organization of rules, using automatically adapted parameters.

In Lughofer et al. (2011) the authors also propose a similarity measure in order to determine

the merging of rules. However, their strategy is based solely on cluster shapes and positions

and thus focuses on the antecedent part. They also expect the distributions of data to be Gaus-

sian, which is not so in our case. At the same time they compare their similarity measures with

a threshold value that is a free parameter. This work has been extended in Lughofer (2012),

where the decision about merging and splitting rules is done in a more parameter-free way,

but the authors focus only on the geometric nature of fuzzy rules. Unlike them, in this work

we present the combined and consequent nature of fuzzy rules for the merging process. The

authors of Lemos et al. (2013) also use merging of rules that are defined as Gaussian distribu-

tions. However, they also need a threshold value to compare with the similarity of the clusters,

whereas our method does not. As we will see in this section, our method focuses not only on

the antecedent part, but also on the consequent part, for we believe that redundancy of similar

rules does not only rely on their position, but also on their opinion. We find it very important to

look at this because if two rules are overlapping or close enough but output different informa-

tion, merging them will cause loss of the information since the merged rule will possibly output

uniform-like unsure results. This might not be the case of samples close to the center of the

98

merged rule, but would be for samples close to the borders. Moreover, considering the incre-

mental manner of the learning, it can happen that these rules will evolve into non-overlapping

clusters in the same way as they evolved into overlapping clusters.

5.5.1 Merging the rules

In our approach, merging the rules is driven by the similarities and distance between them. In

other words, the clusters are merged when they tend to perform very similar inferences and their

distance is within the range of the vigilance parameter of the ART network. This assumption

is based on the possible match of more clusters (see section 5.3); thus, more clusters that are

close enough to one sample are able to satisfy the vigilance parameter. This may occur, when

two clusters are close enough to each other to satisfy the vigilance parameter as well. This

assumption will follow through the whole self-organization, so that self-adapting vigilance

will not interfere with the division of the space.

Our novel similarity and rule distances are proposed in the next subsections, followed by our

proposition for merging membership parameters (antecedent part), CCL parameters (conse-

quent part) and rule parameters. The whole concept and intelligence behind our novel method

is explained in detail and summarized in section 5.5.3.

5.5.1.1 Similarity measurement

The similarity between rules is based on the distance between their results, similarly to Režnáková

et al. (2012). Since ideally these are normalized (0 for incorrect classes and 1 for correct class),

we can use cosine distance as in ART-2A clustering. However, since the fuzzy inferences de-

scribe possibilities and not probabilities, we normalize these results in order to achieve distance

of such range. Such a solution is correct even for comparison of two different vectors with

equal direction, since such results have the same meaning. In our assumptions, we express

the inferences as opinions about examples and their similarity to classes. Thus, when rule i

believes that example xxx is class c, it is similar, if not the same, as opinion of rule j that believes

99

example xxx is also class c. Hence, when the distribution of results for each class is the same,

only with a different magnitude, we assume these results to be similar.

For similarity itself we use a similarity matrix in which each field represents the distance of

results for two specific rules (5.25). Since such a matrix is symmetrical, we only need half

of it (excluding the diagonal entries equal to 1). Such distance varies between 0 and 1. The

closer the general inferences are, the higher the results they will achieve. In other words, the

similarity matrix is composed of values that indicate how similar the rules are to each other by

their opinions about the examples from all the classes.

in fi =
xxxT Πi

‖xxxT Πi‖ (5.24)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1(
in f2 · in f T

1

)
1(

in f3 · in f T
1

) (
in f3 · in f T

2

)
1

...
. . .

... 1(
in fr · in f T

1

) (
in fr · in f T

2

) · · · (
in fr · in f T

r−1

)
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.25)

5.5.1.2 Rule distance measurement

The distance between two clusters can be expressed as a cosine distance, using weighted vec-

tors ω for each rule, since these are used to determine the resonance and thus the vigilance

parameter. We assume that if two rules are close enough to each other to satisfy the vigilance

parameter, then a sample belonging to one of them might also belong to another, and even

more if the rules are similar. Conversely, if a sample matches one rule, it should not belong to

another rule that does not make a good assumption about this sample.

100

After representing the cosine distance between rules j and k (5.26), we get the inputs for our

matrix of distances between all clusters (5.27).

δ (J,K) = ωωωT
1 ·ωωω2 (5.26)⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

δ (2,1) 1

δ (3,1) δ (3,2) 1

δ (4,1) δ (4,2) δ (4,3) 1
...

. . .

δ (r,1) δ (r,2) δ (r,3) · · · δ (r,r−1) 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.27)

5.5.1.3 Merging membership parameters

Membership β is represented as a density measurement, where this density is updated in an

incremental manner. The density of merged clusters can be derived from the original formula

by taking all the samples from both clusters as if they were in one. Then on the basis of (5.28)

we can derive the final merging formulas for parameters α , γ and ηηη (5.33).

β1∧2 =
1

1+ 1
t1+t2

(
∑t1

j=1

(
xxx− xxx j

)2
+∑t2

k=1 (xxx− xxxk)
2
) (5.28)

β1∧2 = (5.29)

=
(t1 + t2)

(t1 + t2)+(t1 + t2)xxx2 −2xxx
(

∑t1
j=1 xxx j +∑t2

k=1 xxxk

)
+
(

∑t1
j=1 xxx2

j +∑t2
k=1 xxx2

k

) = (5.30)

=
(t1 + t2)

(t1 + t2)+(t1 + t2)(α1 +α2)−2xxx(ηηη1 +ηηη2)+(γ1 + γ2)
= (5.31)

=
t1∧2

t1∧2 + t1∧2α1∧2 −2xxxηηη1∧2 + γ1∧2
(5.32)

101

a) t1∧2 = t1 + t2 c)ηηη1∧2 = ηηη1 +ηηη2

b)α1∧2 = α1 +α2 d)γ1∧2 = γ1 + γ2

(5.33)

Furthermore, we remember these three parameters for each class contained in the assumed rule

(and not necessarily, but most probably, for every class). These parameters are used when split-

ting the antecedent part of the rule and thus need to be merged as well while the rules are being

merged. We define these as vectors tC,i, ηηηC,i and γC,i, whose dimensions equal the number of

classes absorbed by rule i. Thus, for example tC,i (j) is the number of samples inserted into rule

i belonging to the class j. When merging these parameters, for each dimension we perform the

same operations as in the formulas (5.33).

5.5.1.4 Merging CCL parameters

The merging of consequent parameters can be seen as solving the merged error of two recog-

nition modules, in our case two different rules. The final error can then be expressed as a sum

of these two error rates, as in (5.40). In this section, we propose the formulas for deriving a

merged gain matrix C and parameters Π that minimize errors of system E. Then, the error of

the first merged rule is E1 with minimizing parameters Πt1 (5.37).

E1 =
t1

∑
j=1

||β jxxx jΠt1 −Yj||2 (5.34)

∂
∂Πt1

E1 = 0 (5.35)

2
t1

∑
j=1

β jxxx j
(
β jxxx jΠt1 −Yj

)
= 2

(
t1

∑
j=1

β jxxx jβ jxxxT
j Πt1 −

t1

∑
j=1

β jxxx jYj

)
= 0 (5.36)

Πt1 =
t1

∑
j=1

β jxxx jYj

(
t1

∑
j=1

β jxxx jβ jxxxT
j

)−1

= Mt1C
−1
t1 (5.37)

102

The error of second merged rule is E2 with minimizing parameters Πt2 (5.39).

E2 =
t2

∑
k=1

||βkxxxkΠt2 −Yk||2 (5.38)

Πt2 =
t2

∑
k=1

βkxxxkYk

(
t2

∑
k=1

βkxxxkβkxxxT
k

)−1

= Mt2C
−1
t2 (5.39)

The merged error can be then expressed as a summation of both partial errors (5.40).

E1∧2 =
t1

∑
j=1

||β jxxx jΠt1 −Yj||2 +
t2

∑
k=1

||βkxxxkΠt2 −Yk||2 =
t

∑
i=1

||βixxxiΠt −Yi||2 (5.40)

∂
∂Πt

E1∧2 =
∂

∂Πt1
E1 +

∂
∂Πt2

E2 = 0 (5.41)

t1

∑
j=1

β jxxx jβ jxxx jΠt1 −
t1

∑
j=1

β jxxx jYj +
t2

∑
k=1

βkxxxkβkxxxkΠt2 −
t2

∑
k=1

βkxxxkYk = 0 (5.42)

Πt1

t1

∑
j=1

β jxxx jβ jxxx j +Πt2

t2

∑
k=1

βkxxxkβkxxxk −
t=t1+t2

∑
i=1

βixxxiYi = 0 (5.43)

As we notice from (5.37)(5.39) we can plug these solutions into (5.43). This allows us to derive

the formulas for merged matrix C and parameters Π.

We know that the merged error should equal the error of rule E when feeding it with all param-

eters. Thus, we can also derive the merged parameters by minimizing it for this case.

E =
t=t1+t2

∑
i=1

||βixxxiΠt −Yi||2 (5.44)

∂
∂Πt

E = 0 (5.45)

103

Πt

t=t1+t2

∑
i=1

βixxxiβixxxT
i −

t=t1+t2

∑
i=1

βixxxiYi = 0 (5.46)

By plugging this solution into (5.43), we derive the merged matrix C and parameters Πt (5.48)

and (5.50).

Ct =
t=t1+t2

∑
i=1

βixxxiβixxxT
i =

t1

∑
j=1

β jxxx jβ jxxxT
j +

t2

∑
k=1

βkxxxkβkxxxT
k (5.47)

Ct =Ct1 +Ct2 (5.48)

Πt

t=t1+t2

∑
i=1

βixxxiβixxxT
i =

t=t1+t2

∑
i=1

βixxxiYi = Πt1

t1

∑
j=1

β jxxx jβ jxxxT
j +Πt2

t2

∑
k=1

βkxxxkβkxxxT
k (5.49)

ΠtCt = Πt1Ct1 +Πt2Ct2 (5.50)

These merged consequent parameters can be further used in the same way as the original ones

from the previous rules. However, we need to remember that the model stores an inverted

matrix C, and as such needs to be updated. Thus, from formulas (5.48) for matrix C and (5.50)

for parameters Π, we derive the updating formulas for both of these properties, (5.52)(5.56)

where ϑ = (1..1)T , I is identity matrix and ψ are weights for each set of parameters.

C−1
t = (Ct1 +Ct2)

−1 =
(
Ct1Ct2

(
C−1

t1 +C−1
t2

))−1
(5.51)

C−1
t =

C−1
t1

C−1
t2

C−1
t1

+C−1
t2

C−1
t =

C−1
t1

C−1
t2

C−1
t1 (ϑ T ϑ)I

2ϑ T
((

C−1
t1

C−1
t1

+C−1
t1

C−1
t2

)
I
)

ϑ
+

C−1
t2

C−1
t1

C−1
t2 (ϑ T ϑ)I

2ϑ T
((

C−1
t1

C−1
t2

+C−1
t2

C−1
t2

)
I
)

ϑ

(5.52)

Π−1
t C−1

t = (Πt1Ct1 +Πt2Ct2)
−1 =

Π−1
t1 C−1

t1 Π−1
t2 C−1

t2

Π−1
t1 C−1

t1 +Π−1
t2 C−1

t2

(5.53)

104

Πt

C−1
t

=
Π−1

t1 C−1
t1 +Π−1

t2 C−1
t2

Π−1
t1 C−1

t1 Π−1
t2 C−1

t2

=

Πt1Πt2

(
Πt2C−1

t1
+Πt1C−1

t2
Πt1 Πt2

)
C−1

t1 C−1
t2

(5.54)

Πt =C−1
t

Πt2C
−1
t1 +Πt1C

−1
t2

C−1
t1 C−1

t2

=
Πt2C

−1
t1 +Πt1C

−1
t2

C−1
t1 +C−1

t2

(5.55)

Πt =
C−1

t2
C−1

t1
+C−1

t2

Πt1 +
C−1

t1
C−1

t1
+C−1

t2

Πt2 = ψ1Πt1 +ψ2Πt2

ψ1 =
ϑ TC−1

t2
ϑ

ϑ T
(

C−1
t1

+C−1
t2

)
ϑ

ψ2 =
ϑ TC−1

t1
ϑ

ϑ T
(

C−1
t1

+C−1
t2

)
ϑ

(5.56)

The formulas for merging consequent parameters then are (5.52) and (5.56) for merging the

gain matrix and the parameters themselves. We can notice that the gain matrices of both rules

function as weights of the parameters themselves.

In our solution, we use CCL. Despite the competitive learning process, we can merge such

parameters in the same way as the original consequent parameters (not using CCL). This is

because we merge only similar rules, where the similarity is given by the similarity in results.

When two results are similar enough, the learning process is similar as well, and thus merging

does not affect the competitiveness in CCL.

5.5.1.5 Merging rule parameters

For the organization of rules, to define their similarities and dissimilarities, we define these

parameters for rule i:

• ωi as learned weight vector for rules within the ART network;

• givi as general inference vector (average inference of rule i, more detailed description in

section 5.5.2.1);

• tgi as number of updates for similarity and dissimilarity measurements.

105

As mentioned above, when merging two rules we need to merge all parameters describing these

rules. Thus, we also need to merge vectors giv. This merging is performed equally for each

rule, considering the number of updates of each giv (5.57). As in rest of this section, we refer

to rules one and two as 1 and 2, using these references as indexes of parameters. The resulting

reference of merged rule (index) is then denoted as 1∧2.

giv1∧2 =
1

tg1∧2
(tg1giv1 + tg2giv2) (5.57)

tg1∧2 = tg1 + tg2 (5.58)

Furthermore, we also need to merge the weight vector ω for deriving the match function for the

ART network. We derive its merged value as a mean value of original weights of two clusters,

weighted by the number of samples introduced to each of them (5.59).

ωωω1∧2 =
1

t1∧2
(t1ωωω1 + t2ωωω2) (5.59)

5.5.2 Splitting and discarding the rules

For splitting and discarding the rules, we measure several factors, such as dissimilarity, erro-

neousness, age and distance of the classes. When performing splitting, we search for under-

performing rules whose samples of different classes are so far apart that they do not satisfy the

vigilance.

When discarding rules, we also search for underperforming and dissimilar rules. Moreover,

their underperformance (general error) needs to be at the peak of all rules. Furthermore, for a

rule to be discarded it needs to be unused (not updated) for a long time so that it is significantly

behind compared to the other rules. Since our model is based on fuzzy logic, and hence each

106

rule is updated by each class, when discarding a useless rule, because of these facts, we do not

need to worry about forgetting some of the classes. We admit that discarding rules is a very

subjective matter. However, from our experience and considering incremental learning, we can

see that especially at the beginning of the process with the lack of data, some rules are created

too hastily and are unimportant for further use.

More detailed insights into the splitting and discarding decisions are described in section 5.5.3.

Here, we focus on formulas for splitting parameters of the rules.

5.5.2.1 Dissimilarity, error and age measurement

As mentioned in section 5.5.1.1, when searching for similarity, we exclude the diagonal from

our similarity matrix. However, we cannot compare the same results (giving 1 as the answer).

Thus, we store a general inference vector describing the general average inference of the rule

that we can compare with actual inference of the same rule. Such a comparison describes how

much the results of one rule are similar to its previous results. We can translate this as if a

concrete rule is consistent in its results. Such information thus describes if the rule stands as

a good contribution to the overall results, stating similar results or, in other words, if a rule

makes sense.

The ideal general inference vector is a zero vector with 1 for the true class k. This is thus an

initial form of general inference vector givi,0, when no results have yet been presented to the

system and we know only the true class (5.60).

givi,0 = [a1 . . . ak−1, ak, ak+1 . . . aC] (5.60)

ak = 1; ai = 0; i = 1 . . .C; i �= k (5.61)

107

For such a vector, we cannot simply learn all the inferences, since they vary from one ground

truth to another. The inference for one ground truth (the true class) should not be similar to the

inference of a different ground truth. A correct rule needs to stand behind its opinion. It cannot

assign the same class to every sample in the system (unless there is only one known class). The

vector itself is learned, so each inference iv j
i (inference vector of rule i for class j) is presented

in the resulting general inference vector givi,(tgi+1) by its strength, the firing degree of the rule

(5.62). Vector iv is preprocessed, so that it ranges within [0,1] and is normalized so that it is

a unit vector. Here, tgi represents the total number of previous updates of vector giv, where

each dimension of this vector represents the total number of updates for one specific class.

Then, giv j
i is a single parameter describing the average weighted opinion of rule i for known

examples of class j. Thus, for one example of class j, only one dimension of parameters givi

and tgi is updated.

giv j

i,
(

tg j
i +1
) =
(

tg j
i giv j

i,tg j
i
+βiiv

j
i

)
tg j

i,tg j
i
+βi

(5.62)

tg j

i,
(

tg j
i +1
) = tg j

i,tg j
i
+βi (5.63)

i = 1 . . . r (5.64)

j = 1 . . . c (5.65)

However, the comparison of stored general inference to the complete actual inference vector is

not sufficient, since this gives only a current opinion about a current class, unlike the general

vector’s giving an opinion about every class. Thus, we compare these only considering the

current class, stating how much the opinion about class j is similar to the general opinion

about class j (5.66). These values are within the range [0,1], where 0 stands for absolutely

108

dissimilar inferences and 1 for absolutely similar ones.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
1−|giv j

1 −β1y j
1|
)
(

1−|giv j
2 −β2y j

2|
)

. . . (
1−|giv j

r −βry
j
r |
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.66)

As a second splitting or discarding condition, we consider an error rate weighted by the influ-

ence to overall result (5.68). Thus, if a rule makes an inference which is wrong, its influence

on the overall result should not be significant. This means that the clustering creates good

clusters and all parameters and rules can stay untouched. However, if the significance grows

high, this means that some rules are meant to describe the incoming example but are wrong,

and therefore their error should be weighted higher. We define the error as a confusion when

the true class is j∗. Here, t is the lifetime of rule i.

ei =
1− (y j∗ −max j=1...C, j �= j∗ y j)

2
(5.67)

ei,t+1 =
tiei,t +βi

1−(y j∗−max j=1...C, j �= j∗ y j)

2

ti +1
(5.68)

A third parameter, age, is considered for discarding the rules. We want to make sure that the

erroneous rule is both old and more unused than any other rule. Thus, we define the age of rule

i as a ratio between its lifetime t and the time it has not been updated nt. The more the rule has

not been updated compared to its lifetime, the higher its age is (5.69). A rule is considered old

if its age it higher than the sum of the ages of all the other rules. This condition is not easy to

109

accomplish; it can be done only if a rule is not updated for a long time.

agei =
nti
ti

(5.69)

5.5.2.2 Class distance measurement

For class distance measurement, we use a similar approach to that for rule distance. How-

ever, instead of comparison of vectors ωi representing each rule i, we take the mean values of

samples from rule i belonging to each class j (5.70). Such an entity is easily derivable from

parameters tC,i and ηC,i (section 5.5.1.3).

ρ(J,K) =
(

1
tC,J

ηC,J

)T ·
(

1
tC,K

ηC,K

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

ρ(2,1) 1

ρ(3,1) ρ(3,2) 1

ρ(4,1) ρ(4,2) ρ(4,3) 1
...

. . .

ρ(r,1) ρ(r,2) ρ(r,3) · · · ρ(r,r−1) 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.70)

This distance is then checked for satisfying the vigilance parameter and it is determined whether

or not a rule should be split. This measure is important because the vigilance parameter of the

ART network is adapted automatically. Then, for low vigilance, small number of clusters is

created. But with growing vigilance, these clusters are too big and, potentially, the classes are

too far apart. Hence, we need to split such a rule. Further studies on the quality of new rules

after splitting has been done in Lughofer (2012).

110

5.5.2.3 Splitting membership parameters

As mentioned in section 5.5.1.3, for splitting membership parameters (antecedent part), we

store separate parameters tC,i, ηηηC,i and γC,i that when merged follow formulas (5.33). Then,

when splitting a rule, after a decision about which classes (dimensions of the parameters) be-

long to separate clusters, we perform merging of these parameters according to this separation.

Here, n is the total number of samples within cluster i, n j is the total number of samples within

cluster i belonging to the class j and xxx j
k is a k-th sample within cluster i belonging to class j.

ti = n =
c

∑
j=1

n j =
c

∑
j=1

t j
C,i (5.71)

ηηη i =
n

∑
k=1

xxxk =
c

∑
j=1

t j
C,i

∑
k=1

xxx j
k =

c

∑
j=1

ηηη j
C,i (5.72)

γi =
n

∑
k=1

xxx2
k =

c

∑
j=1

t j
C,i

∑
k=1

(
xxx j

k

)2
=

c

∑
j=1

γ j
C,i (5.73)

Then, when splitting cluster i, we define two sets of classes, A and B, each of them belonging

to a new (split) cluster. Such a division then leads us to formulas (5.74), where the first cluster

is denoted by index 1 and the second cluster by index 2. When performing the splitting, we

also have to remember that parameters tC,i, ηηηC,i and γC,i need to be split, simply by dividing

them into two groups on the basis of sets A and B.

a) t1 = ∑ j∈A t j
C,i c)ηηη1 = ∑ j∈A ηηη j

C,i e)γ1 = ∑ j∈A γ j
C,i

b) t2 = ∑ j∈B t j
C,i d)ηηη2 = ∑ j∈B ηηη j

C,i f)γ2 = ∑ j∈B γ j
C,i

(5.74)

111

5.5.2.4 Splitting consequent parameters

Consequent parameters can be split by two sets of classes A and B. Since we expect that the

division is correct, the gain matrix C is initialized and only matrix Π is split. Such a splitting is

based on dividing this matrix by its columns, where each column represents a set of parameters

for one class (5.77). Similarly, as in the previous section, we denote the two new clusters by

indexes 1 and 2.

Πi =
{

πππ j
i

}
=
(

πππ1
i πππ2

i πππ3
i . . . πππc

i

)
(5.75)

j = 1 ...c (5.76)

a)πππ j
1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

πππ j
i j ∈ A⎛
⎜⎜⎜⎜⎜⎝

0

...

0

⎞
⎟⎟⎟⎟⎟⎠ j ∈ B

b)πππ j
2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

πππ j
i j ∈ B⎛
⎜⎜⎜⎜⎜⎝

0

...

0

⎞
⎟⎟⎟⎟⎟⎠ j ∈ A

(5.77)

Such an approach also follows the basic idea of CCL; and thus, we use this approach for

division of the CCL parameters as well.

5.5.2.5 Splitting rule parameters

As in section 5.5.1.5, we also need to treat splitting of parameters for all measurements to allow

the self-organization of our model. Since the vector ω is learned for all the samples, we inherit

it in both new clusters in the belief that with more samples, enriching both of these clusters,

they will move towards their true values. As for the general inference vector, we follow the

procedures from previous subsection within section on Splitting. Thus, when separating a

112

cluster on the basis of sets A ad B, knowing that gggiiivvviand tgi store information about each class

j, we assign them values as in (5.78).

a)giv j
1 =

⎧⎪⎨
⎪⎩

giv j
i j ∈ A

0 j ∈ B
c) tg j

1 =

⎧⎪⎨
⎪⎩

tg j
i j ∈ A

0 j ∈ B

b)giv j
2 =

⎧⎪⎨
⎪⎩

giv j
i j ∈ B

0 j ∈ A
d) tg j

2 =

⎧⎪⎨
⎪⎩

tg j
i j ∈ B

0 j ∈ A

(5.78)

5.5.3 Self-Organized mechanism

In this section we describe in detail the learning of parameters necessary for self-organized

clustering as well as the logic behind the automation of choices about rule organization. The

solution consists of learning the vigilance parameter, learning rate, and processes of merging,

splitting and discarding of rules. The assimilated vigilance parameter is used for resonance or

reset when generating rules. It needs to fit the requirements of the model since the organiza-

tion of rules might change. The learning rate represents the rate at which the vectors ωωω for

resonance and reset are learned for a new sample. Lastly, the self-organization processes are

required for sustaining the correct division of the space in order to correctly satisfy parameter

ρ (vigilance). The complete solution is then summarized within section 5.5.3.6. The complete

architecture of the system can be seen in Figure 5.2.

5.5.3.1 Learning the learning rate

In this section we introduce learning the learning rate for adapting a representative vector ωωω for

each rule, such that it is used for calculation of a distance between these rules. We can choose

either to adapt this parameter to new situations, risking forgetting the old ones, or to learn new

situations, risking too slow adaptation to them. In our approach we choose the learning strategy

113

Figure 5.2 SO-ARTIST

that, in our opinion, is more suitable and stable. The representative vector ω can be seen as a

centroid for a cluster; with each sample, it moves towards its ideal value for representing all

the samples stored in that cluster.

In our solution, we learn the learning rate on the basis of confusion (5.81), where its default

value is set to 0.5 (an average of its values). The learning rate is higher and learning faster

when the model is confused, and learning is slower when the system performs better. Ideally,

if the result of the true class Y j∗ equals 1 and a maximum result for any other than the true

class j∗ max j=1...C, j �= j∗ Y j equals zero, confusion is zero and we do not need to learn, since

114

the model is ideal. Conversely, if confusion is at its maximum, equaling 1, the model needs

to perform a jump. However, in real applications, Y j is not necessarily within the range [0,1].

This is caused by the optimization of consequent parameters (and even these do not necessarily

have the same range) and the involvement of firing degree. For this reason, we normalize the

inference vector in order to achieve range [0, 1], where the function N(·) is the normalization.

Y j =
r

∑
i=1

βixxxT Π j
i (5.79)

Ỹ = N(Y) (5.80)

λ =
1− (Ỹ j∗ −max j=1...C, j �= j∗ Ỹ j)

2
(5.81)

5.5.3.2 Learning the vigilance parameter

Assuming the vigilance parameter, in a way similar to that in section 5.5.3.1, we can choose to

learn it so that it will converge towards the correct value or be adapted to the correct value. As

for the learning rate, our choice is to learn this parameter, so that the system will converge to

the proper solution rather than make jumps. Our decision is based on the fact that the learning

of the model is incremental and the database can change back and forth. Such changes in

the database will in the case of adapting ρ locally lead towards the instability of the system.

Instead, we want it to be still partially driven towards previous solutions, still keeping in mind

the possibility that they are the correct ones.

For the adjustment of parameter ρ we use confusion as in the previous subsection. Thus, if a

system is confused, its learning rate will be faster and the vigilance parameter will be adjusted

more towards a new situation. Otherwise, it is kept in its comfort zone. The new possible

value for adjustment can be described as a bounding requirement of the system, the necessary

conditions for making the right decision.

115

If the system was in error and the winning rule i was mistaken but a resonance occurs, some-

thing has gone wrong. Hence, the vigilance parameter needs to increase towards the maximum

requirement, where the reset will occur (5.82).

ρ = λ

((
xxx

‖xxx‖
)T

ωωω i

)
+(1−λ)ρ (5.82)

On the other hand, if there is a reset, but the winning rule was not mistaken, the system should

have made a resonance. Thus, the vigilance parameter needs to be decreased towards the

minimum requirement for resonance (5.83).

ρ = λ

((
xxx

‖xxx‖
)T

ωωω i −0.1

)
+(1−λ)ρ (5.83)

The complete process is described in Algorithm 1.

Algorithm 1: Adaptation of vigilance parameter

Initialization: j
′
, j∗ //winning class and ground truth

y j
′

i , y j∗
i //inference of rule i for winning class j

′
and ground truth j∗

function increaseVigilance(j
′
, j∗)

if (resonance)&
(

ji �= j∗
)

&

(
y j

′

i �= y j∗
i

)
adjust ρ according to (5.82);

end
end

function decreaseVigilance(j
′
, j∗)

if (re ject)&

(
y j

′

i �= y j∗
i

)
adjust ρ according to (5.83);

end
end

116

5.5.3.3 Merging process

Given the similarity, inferences and distance matrices (5.25)(5.27), we want to decide which

rules to merge. We search for rule pairs [i, j] that satisfy the following requirements:

• distance between rules i and j (5.26)(5.27) is greater than the vigilance parameter ρ;

• similarity between rules i and j (5.25) is greater than the mean similarity between all the

rules;

• the opinion of rules i and j about the current sample x is the same (possibilities of classes

for this sample are in the same order).

However, during one merging sequence, we can find cases when rule i should be merged with

rule j, rule j should be merged with rule k and rule i is nor similar or close enough to rule k to

be merged. Hence, after each merging within one merging sequence, we update the inferences

to calculate the similarities and also update the merged set to recognize, which rules need to be

checked again for similarity. Such a procedure is necessary to avoid the merging of dissimilar

rules. See Algorithm 2.

Algorithm 2: Merging a set of similar and close enough rules

Initialization: S, D; //similarity and rule distance matrices
merged = {}; //set of merged rules for one sequence of merging

function mergeRules(S, D)
id = {[i, j]} //all rule pairs of matrices S and D satisfying vigilance and similarity
for id

if ((i ∈ merged) ||(j ∈ merged))&(i is similar to j)
merge rules i and j into rule i;
merged += [i, j];
discard rule j;
update inferences;

end
end

end

117

5.5.3.4 Splitting process

Unlike the situation of merging, when splitting one rule, we do not need to consider any colli-

sions. The split takes place when a rule is erroneous, dissimilar and its classes are too distant

from each other so that they do not satisfy the vigilance parameter. Thus, we search for a rule

i that satisfies the following requirements:

• dissimilarity measure (5.70) of rule i is less than the mean dissimilarity measure;

• rule i achieves an average error (5.66) that is greater than the average errors of the other

rules;

• there are inner classes whose inner rule distance (5.68) is less than the vigilance param-

eter ρ (notice that for this distance the closer two entities are, the greater is the distance

measured).

See Algorithm 3.

Algorithm 3: Splitting a rule with distant classes

Initialization: E, cD, dS; //erroneous vector, class-distance and dissimilarity matrices

if (ei = max(ei))&(ei > mean(ei))&(D < ρ)&(i isdissimilar)
id += i;

end

function splitRule(E, cD, dS)
id = { i} //all rules of vector E and matrices cD and dS satisfying vigilance and
achieving maxima error

for id
add new rule to the system;

split rule i;
update inferences;

end
end

118

5.5.3.5 Discarding process

Since we do not receive the database all at once, in incremental learning we face the possibility

of creating useless clusters. In our method we detect them by using the erroneous, age and

dissimilarity measurements. If a rule is discarded, as in the previous subsections, we need

to update the inferences to allow for further organization and updating of the model. See

Algorithm 4.

Algorithm 4: Discarding an unimportant rule

Initialization: E, A, dS; //erroneous, age and dissimilarity matrices

if (ei = max(ei))&(ei > mean(ei))&(i isold)
id += i;

end

function discardRule(E, A, dS)
id = { i} //all rules of vectors E, A and dS satisfying the condition for discarding
for id

remove rule i from the list of rules;

update inferences;

end
end

5.5.3.6 Algorithm

As in our previous work, we disconnect the addition of new classes from the necessity of

creating new rules for each such occasion. This prevents us from creating too many clusters

close to each other and confusing the system. As can be seen in Algorithm 5, we incorporate

the self-organization of rules only if a match is performed. However, the adaptation of the

vigilance parameter is present also when creating a new rule, because of the nature of its

adaptation.

119

Algorithm 5: SO-ARTIST: A Self-Organized online fuzzy model

Initialize: D, cD; //distance and class distance matrices
S, dS; //similarity and dissimilarity matrices
E, A; //erroneous and age vectors
c; //number of already known classes

function addClass()
for each rule i = 1...r

extend consequent parameters Πi by new parameters πinit = (0...0)T

extend givi by givc+1
i = 0

extend tgi bytgc+1
i = 0

set tc+1
C,i = 0, ηc+1

C,i = (0...0)T and γc+1
C,i = 0

end
end

function SO-ARTIST(x)
if newClass()

addClass();

activate(); (5.10)
else

activate(); (5.10)

j
′
= winningClass(); (5.4)

j∗ = trueClass();
end
if match() > ρ

updateAntecedent(); (5.11)

updateLearningRate(); (5.81)

updateART(); (5.7) //learn the ω vectors
increaseVigilance(j

′
, j∗); //Algorithm 1

splitRule (E, cD, dS); //Algorithm 3
discardRule (E, A, dS); //Algorithm 4
mergeRules (S, D); //Algorithm 2

else
addRule();

decreaseVigilance(j
′
, j∗); //Algorithm 1

end
updateSimilarityVectors(); (5.62) //learn similarities
updateCCL(); (17) //learn consequent part

end

120

5.6 Results

We evaluate our method on the datasets1 specified in Table 5.1. The evaluation benchmark

consists of both multiclass and two-class problems. In section 5.6.1 we evaluate the self-

organized structure of our new model in a comparison to the grid-based search for the best

parameters. Then we show the evolution of the vigilance parameter and learning rate by the

time new samples enrich the system. In section 5.6.2 we compare our method to the ETS

evolving fuzzy model Angelov et al. (2004) and online/offline baseline models. It should be

noted that all of the online models in our experiments performed initialization of all classes

before the learning process. Unlike these, SO-ARTIST (and also ARTIST) and ETS perform

this initialization on the fly, and the number or classes is unknown at the beginning of the

learning process. At the end, in section 5.6.3 we evaluate the capabilities of CCL on the

Handwritten Gestures I dataset. It will be seen that our method is capable of retrieving the best

parameters possible and achieving a comparable recognition rate with solutions where these

parameters are fixed.

5.6.1 Self-Organization evaluation

In this section, we compare the recognition rate for all datasets specified in Table 5.1. We can

see that in many cases the recognition rate of SO-ARTIST exceeds the recognition rate of the

baseline model ARTIST that has to fix its parameters. We assume that this phenomenon is

caused by the self-organization of the system as well as the adjustment to the local needs of

the state of the world. Each result is calculated as an average result from 10 randomly sorted

orders of samples from each dataset. The classes are added randomly and on the fly, often

causing learning from one example at the introduction of the class. This framework has been

1 Digits, DNA, Mushrooms, SatImage, Segments and USPS can be found at UCI Machine Learning

Repository;

Handwritten Gestures I can be found at http://www.synchromedia.ca/web/ets/gesturedataset;

Handwritten Gestures II can be found at http://www.irisa.fr/;

Gaussian mixtures are mixtures of two overlapping classes generated using Gaussian distributions;

The MNIST dataset in this paper is a random subset of 10000 samples from the original MNIST in

LeCun et al. (1998) (with a random number of samples per class).

121

Table 5.1 Datasets

Dataset # of classes # of dimensions # of samples

Digits 10 16 10992

DNA 3 180 2000

Gaussian Mixture I 2 2 800

Gaussian Mixture II 2 2 800

Gaussian Mixture III 2 50 1550

Handwritten Gestures I 17 20 13600

Handwritten Gestures II 21 50 1923

MNIST 10 784 10000

Mushrooms 2 22 8124

SatImage 6 36 4435

Segments 7 19 2310

USPS 10 256 7291

chosen in order to follow the online spirit of the learning process and the fact that the data is

unknown in advance.

5.6.1.1 Self-Organized framework evaluation

In this section we compare the performance of the self-organized framework of SO-ARTIST

to the one with fixed free parameters in ARTIST by using cross-validation. These results are

summarized in Table 5.2, which shows the overall recognition rate on each dataset using no

free parameters (SO-ARTIST) and using the best parameters (ARTIST). We will compare the

automatic and cross-validated choice of parameters later in section 5.6.1.2.

The recognition rate displayed in Figures 5.3-5.7 is derived as an average error on 500 samples

from range [500-i, i], where i is the sample to which the error is assigned. Then, the best

parameter is the one that has the model performing the best overall (red curve). We again

need to notice that the classes are not initialized at the beginning, and that their number or

any other information is unknown to the system at that stage. Then, the classes are added in a

random order and at a random time, and their introduction is accompanied by only one sample.

Also, the introduction of the classes to the systems is not the same for models SO-ARTIST

and ARTIST, but random. In the Figures, the pink curve displays the results of SO-ARTIST

122

and the blue curves display results of ARTIST using different vigilance parameters (ARTIST-n

uses vigilance 0.n: n = 1, ρ = 0.1).

From the results displayed in Figures 5.3-5.7 we can see that the automatic evolution of the

parameters is able to achieve comparable or even superior results (in the form of recognition

rate) compared to the model with parameters derived by grid-based cross-validation. For many

datasets, the wrong choice of parameters leads to unpleasant results (Figures 5.3, 5.6 and 5.12).

In all of these cases our model was able to achieve superior results to the baseline model using

the best parameters. Another reason for this behavior is the need of several ’best parameters’

for the evolution of the system, which is not possible for the baseline model.

Table 5.2 Comparison of Self-Organized framework to grid-based search for best

parameters

SO-ARTIST ARTIST

Digits 0.92 0.91

DNA 0.89 0.90

Gaussian mixture I 0.82 0.83

Gaussian mixture II 0.84 0.84

Gaussian mixture III 0.92 0.94

Handwritten Gestures I 0.99 0.98

Handwritten Gestures II 0.91 0.92

Mushrooms 0.95 0.93

SatImage 0.79 0.79

Segments 0.88 0.66

USPS 0.92 0.93

5.6.1.2 Evolution of Vigilance parameter and Learning rate

In this section we inspect the evolution of the vigilance parameter ρ and learning rate λ on

datasets from Table 5.1. We can see that the evolution converges towards the good solutions

from the grid-based search for fitting the parameters on a concrete dataset. For the SO-ARTIST

model, the default value of the vigilance parameter was set to 0.9 and the learning rate to 0.5

for all datasets. For the ARTIST model we searched only for the best vigilance parameter; and

123

Figure 5.3 Recognition rate comparison of ARTIST and SO-ARTIST on

Handwritten Gestures I dataset

Figure 5.4 Recognition rate comparison of ARTIST and SO-ARTIST on

Mushrooms dataset

leaving the exploration of the learning rate using grid-based strategy for future work, we set it

by default for 0.1. All the results can be seen in Table 5.3, where the values denote Vigilance

parameter / Learning rate.

124

Figure 5.5 Recognition rate comparison of ARTIST and SO-ARTIST on SatImage

dataset

Figure 5.6 Recognition rate comparison of ARTIST and SO-ARTIST on Digits

dataset

As can be seen, in some datasets (DNA, Gaussian Mixtures, etc.) the results for SO-ARTIST

are slightly worse than the results for ARTIST. It can also be seen that the learning rate for

the self-organized model is slightly different. Thus, its adaption to new samples vs. relying

on long-term information (from the nature of the ART network learning) is different: in the

125

Figure 5.7 Recognition rate comparison of ARTIST and SO-ARTIST on Segments

dataset

case of the higher learning rate for SO-ARTIST, it adapts more to the new information; and in

the case of lower learning rate, it relies more on the long-term (past) learned information. We

assume that this could be the explanation for the difference. We need to notice that considering

the default value to be right in the middle, the system tries to adjust it towards the better one.

However, the dataset size is small; and it is possible that more samples would lead to a more

appropriate value.

Moreover, the significant influence for the recognition rate is done by the vigilance parameter.

In most cases, self-adaptation of this parameter reaches a value close to the value from the

grid-based search. In the results for the Mushrooms dataset we can see a significant difference.

It should be noticed that for this dataset all the parameter settings led to results close to the

ones with fixed parameters. However, our new model achieves even better results. Thus, we

assume, that changing the value of this parameter both adds some influence and contributes to

the robustness of the model.

Figures 5.3-5.12 visualize the evolving values of the vigilance parameter (blue) and the learning

rate (pink) by time and its average values per 500 samples and the whole dataset. We can notice

that in some cases (Mushrooms, SatImage, Segments) these values change very often and seem

126

to be rather unstable. However, this is the result of their adaptation to the current nature of the

system and the current (incoming) sample.

Table 5.3 Evolution of Vigilance parameter and Learning rate

cross-

validation

(ρ / λ)

mean value (ρ
/ λ)

mode value (ρ
/ λ)

Digits 0.95 / 0.1 0.95 / 0.4 0.98 / 0.42

DNA 0.4 / 0.1 0.4 / 0.3 0.4 / 0.2

Gaussian mix-

ture I

0.8 / 0.1 0.89 / 0.24 0.9 / 0.2

Gaussian mix-

ture II

0.95 / 0.1 0.9 / 0.22 0.94 / 0.2

Gaussian mix-

ture III

0.4 / 0.1 0.15 / 0.12 0.15 / 0.1

Handwritten

Gestures I

0.99 / 0.1 0.96 / 0.2 0.97 / 0.2

Handwritten

Gestures II

0.9 / 0.1 0.93 / 0.19 0.93 / 0.19

Mushrooms 0.3 / 0.1 0.91 / 0.1 0.9 / 0.1

SatImage 0.8 / 0.1 0.8 / 0.4 0.9 / 0.4

Segments 0.95 / 0.1 0.96 / 0.4 0.96 / 0.42

USPS 0.8 / 0.1 0.8 / 0.35 0.8 / 0.3

5.6.2 Accuracy evaluation

In this section we evaluate our model SO-ARTIST in comparison to a group of baseline models

as well as the evolving fuzzy model ETS. We divide these models into two groups for com-

parison online (Table 5.4) and offline (Table 5.5). Except for ETS, all the other online models

needed initialization of classes or at least setting of their number. However, in the case of some

classifiers (e.g. AdaBoost) we had to specify a partial classifier for each dataset separately to

achieve good results. For our model SO-ARTIST and fuzzy ETS, the classes are learned on

the fly, and thus the system starts with no structure built in. In all the other online models, all

the classes are initialized at the beginning of the learning. However, we initialized them with

127

Figure 5.8 Evolution of ρ and λ parameters for Handwritten Gestures I dataset

Figure 5.9 Evolution of ρ and λ parameters for Mushrooms dataset

only one sample. Our model is also capable of competing with offline models that already have

the whole dataset in advance, and it can adapt to the known situation, unlike the online models

(despite the parameter settings).

From the results we can say that our model achieves high stable accuracy for all the used

datasets, unlike most of the other models. It can be observed that some models perform in

128

Figure 5.10 Evolution of ρ and λ parameters for SatImage dataset

Figure 5.11 Evolution of ρ and λ parameters for Digits dataset

a superior way for some datasets and in an inferior way for others. However, following the

no-free-lunch theorem, there is no classifier that applies to all data, and we can see this in

our results as well. In the case of our model, even though its performance in some cases is

not the best, it still holds a high place among the evaluated models. This we find to be very

important in online learning when the data is unknown and we simply cannot adapt to it before

the learning process. And it is for this situation that we have built our model.

129

Figure 5.12 Evolution of ρ and λ parameters for Segment dataset

Table 5.4 Recognition rate for Online Learning models

SO-

ARTIST

ETS IMNB I-

Perceptron

ISGD OPAC

Digits 0.92 0.86 0.1 0.79 0.79 0.81

DNA 0.89 0.88 0.9 0.86 0.85 0.88

Gaussian

mixture I

0.82 0.83 0.49 0.77 0.77 0.74

Gaussian

mixture II

0.84 0.85 0.49 0.79 0.79 0.76

Gaussian

mixture III

0.92 0.93 0.51 0.91 0.9 0.92

Handwritten

Gestures I

0.99 0.98 0.97 0.82 0.82 0.87

Handwritten

Gestures II

0.91 0.91 0.85 0.6 0.6 0.65

MNIST 0.81 0.77 0.11 0.79 0.8 0.82

Mushrooms 0.95 0.95 0.52 0.74 0.74 0.69

SatImage 0.79 0.75 0.64 0.7 0.72 0.68

Segments 0.88 0.84 0.73 0.49 0.49 0.51

USPS 0.92 0.88 0.84 0.85 0.85 0.88

130

Table 5.5 Recognition rate for SO-ARTIST and Offline Learning models

SO-

ARTIST

Naive

Bayes

CART Linear

SVM

AdaBoost

Digits 0.92 0.85 0.96 0.87 0.41

DNA 0.89 0.92 0.89 0.93 0.91

Gaussian

mixture I

0.82 0.83 0.75 0.83 0.8

Gaussian

mixture II

0.84 0.85 0.78 0.85 0.83

Gaussian

mixture III

0.92 0.95 0.67 0.94 0.87

Handwritten

Gestures I

0.99 0.99 0.98 0.99 0.64

Handwritten

Gestures II

0.91 0.92 0.88 0.95 0.82

MNIST 0.81 0.52 0.78 0.85 0.64

Mushrooms 0.95 0.9 0.99 0.87 0.99

SatImage 0.79 0.73 0.81 0.8 0.7

Segments 0.88 0.8 0.95 0.82 0.52

USPS 0.92 0.8 0.88 0.94 0.83

5.6.3 Learning without forgetting

In this section we show the influence of the self-organized nature of our method on the for-

getting factor of the system. We evaluate this factor in the Handwritten Gestures dataset for

one forgotten class and two forgotten classes. The recognition rate is derived as an average of

recognition on the last 500 samples.

Figure 5.13 shows the evaluation of the forgetting of one class. The graph is divided into

4 phases: A: all the classes are learned and the average recognition rate is displayed; B: a

random class is unused while the rest continues to be learned and the average recognition

rate is displayed; C: the recognition rate of forgotten class without learning is checked and

displayed; and D: the recognition rate on the rest of the dataset with learning is displayed.

Then, in Figure 5.14 we evaluate the forgetting of two classes. The graph is divided into 6

phases: A: all the classes are learned and the average recognition rate is displayed; B: two

131

random classes are unused while the rest continues to be learned and the average recognition

rate is displayed; C: the recognition rate of one of the two forgotten classes without learning

is checked and displayed; D: all the classes except the second forgotten one (that was not used

in phase C) are learned and the average recognition rate is displayed; E: the recognition rate of

the last forgotten class without learning is checked and displayed; and F: the recognition rate

on the rest of the dataset with learning is displayed.

We can see that by using CCL old information is preserved and forgetting significantly reduced.

This is caused by the nature of CCL, where the learning of consequences is focused only for

necessary situations and the parameters in clusters are not overwritten by block learning/miss-

ing of samples from some class. We can also notice that SO-ARTIST seems less resistant than

ARTIST to the block-forgetting of some class, although the difference is only slight.

In Figure 5.14 we see that the recognition rate of the forgotten classes seem significantly higher

than the recognition rate (RR) in the previous steps. However, the difference between stage B

and stage C is less than 0.5%, and we can assume they are almost the same. The reason for RR

being higher in phase B then in phase A is due to the online learning nature, as the learning

process still continues during the phase B, making fewer misclassifications than in phase A.

Figure 5.13 Recognition rate when forgetting one class

132

Figure 5.14 Recognition rate when forgetting two classes

5.7 Conclusion and Discussion

The proposed method is an adaptation of TS fuzzy models for online learning, resulting in a

novel, self-organized, completely automated system. SO-ARTIST does not require knowledge

of the database, such as the number of classes, time of their arrival, or any pre-learning process.

It is fully online, and thus in each instance the model is learned and no batch learning is used.

We have shown the building steps leading to SO-ARTIST, which consists mainly of merging

and splitting solutions, as well as the evolution of parameters ρ and λ .

The results reveal that our method is capable of finding the best parameters in an automatic

way. Using this strategy requires no knowledge about the size of the dataset or its properties.

The learning rate and vigilance parameter are derived on the basis of the actual state of the

world, slowly learning towards the best solution. We can notice slight differences between

the resulting parameters and the fixed ones found by the grid-based strategy. This difference is

caused by the adjustment to these actual situations. However, the values stabilize after a certain

period of learning. It is also noticeable that the whole model stabilizes after a certain period of

learning. This is because our datasets are randomly shuffled, and thus most of the classes and

133

differences between them are introduced at the beginning of the learning process in a random

order and density.

We have evaluated our model in comparison to online and offline baseline models. We can see

that unlike most of them, SO-ARTIST achieves stable results in all datasets and in almost all

cases the best results. This fact is very important for our goal, where the dataset is unknown

and one cannot fix the model in advance. All these methods (except ETS) needed initialization

of the classes at the beginning of the learning.

The ability of self-organization of rules adds to out model’s accuracy making it fit to the un-

known dataset. In our work, we expected to achieve comparable results to the grid-based

search for the best parameters, which we have accomplished. In most of the cases, our auto-

mated method outperformed the baseline model ARTIST using fixed parameters. This is due

to the adaptability of the model to concrete data as single situations rather than the whole set.

At the same time, we tested its accuracy against the forgetting factor, which was empirically

proven to be secured. However, the incremental nature of the learning still causes a slower

learning at the beginning of the process. This problem is one of the future focuses of our work.

In our future work we want to simplify the self-organized mechanism while keeping the accu-

racy of the whole system high. At the same time we want to make our model more efficient

in terms of accuracy and computational cost. For this purpose we want to explore more works

tackling merging and splitting strategies for fuzzy models. As we have stated in the previ-

ous sections, some of the works cited in this paper (Lughofer et al. (2011); Lughofer (2012);

Lemos et al. (2013)) compare the antecedent part for the purpose of merging/splitting more

significantly, as we do. Therefore we want to explore the possibilities of hybrid merge-split

operations in order to find the most appropriate fuzzy rules to merge, split or discard. These

studies’ measurement of the quality of rules after their merging or splitting is very appealing

and an interesting point of view that can further enhance our work. Furthermore, recent re-

search Lughofer et al. (2013a) suggests that the usage of all-pairs architecture outperforms the

multi-model architecture that we use in this work. Thus, we want to explore this modeling and

134

possibly incorporate it into our solutions. In this work we set default values for our parameters,

but without any cross-validation. We believe that there exists a way for their automatic setting

so that they will start to evolve before the beginning of the learning itself.

To conclude, our model has achieved automation and high accuracy using online self-organized

clustering on Takagi-Sugeno fuzzy model. The contributions of this paper, self-organization

of the rules, learning of all parameters for the generation of rules, competitive consequent

learning and incremental distance measurement, are shown to work well for the purpose of

online learning. In many cases we have outperformed our former model, ARTIST, which uses

fixed parameters. This shows that for online learning some level of re-organization is important.

Acknowledgement

This work was supported by the Social Sciences and Humanities Research Council of Canada

(SSHRC) as well as the Natural Sciences and Engineering Research Council of Canada (NSERC).

CHAPTER 6

FORGETTING OF UNUSED CLASSES IN MISSING DATA ENVIRONMENT USING
AUTOMATICALLY GENERATED DATA: APPLICATION TO ON-LINE

HANDWRITTEN GESTURE COMMAND RECOGNITION

Marta Režnáková1, LukasTencer1, Réjean Plamondon2, Mohamed Cheriet1

1 Synchromedia Lab, École de Technologie Supérieure,

1100 Notre-Dame Ouest, Montréal, Québec, Canada H3C 1K3
2 SCRIBENS Laboratory, École Polytechnique de Montréal,

2900 Edouard Montpetit Blvd, Montréal, Québec, Canada H3T 1J4

Paper submitted for publication, October 2016.

6.1 Abstract

In this paper we exploit the use of synthetic data for on-line handwritten gesture commands

recognition with an emphasis on the problem of forgetting unused classes. For on-line learning,

one of the most crucial moments of the processing is the initialization. In some applications the

data is available and these can be fed to the learning model. However, in applications such as

user-friendly handwritten gesture recognition, this scenario is not possible. Since from the user

perspective it is better to let the user define his own symbols, the learning model is lacking in

the amount of data at the initialization. Some strategies have been proposed to acquire synthetic

handwritten gesture commands and use these for on-line learning. In this paper we exploit this

technique further and focus on the forgetting of unused classes by applying a random buffer

and Elastic Memory Learning (EML) to avoid this from happening. In the experiments we

search for the proper amount of synthetic data produced for each sample as well as exploit the

most appropriate time to stop the generation of synthetic data for learning purposes. We also

investigate the influence of synthetic data on forgetting when using the proposed EML. We

base the generation of synthetic gesture commands on Kinematic Theory.

136

6.2 Introduction

Nowadays the market is overflowing with smart devices for personal or commercial uses, in-

cluding smartphones, tablets, smart boards, etc. When handling these devices, a very natural

method is to use a finger or pen. With these, users can perform simple gestures that are trans-

lated into commands. An example of such commands can be seen on Figure 6.1. It is important

to ensure simplicity for the user to learn these commands in order to easily handle the smart

device. Many applications tend to pre-define these gesture commands and force the user to

learn them, sometimes providing him with some help to learn how to use them. However, in

our work we avoid the pre-definition of gestures, letting the user choose the way to perform the

gesture commands on his device. For this reason, in our research we focus on learning from

scratch; at the beginning of the learning process no information regarding the database, such

as the number of classes or the shape of gesture commands, is defined in advance. Further, it

is allowed to add a new class any time during the learning process.

For these reasons we focus on on-line life-long learning with an emphasis on learning from

scratch. In on-line learning, each time instance, i.e. each time a new sample is added to

the system, both learning and recognition processes are performed, unlike traditional off-line

learning. In off-line learning, the whole learning database needs to be known and the model

that is learned from these data is then used for the recognition. On the contrary, in on-line

learning, the same data that are expected to be recognized are used for the learning of the

model. The advantage of such a learning strategy is the possibility of adapting to the dynamics

of the real data and not relying only on the data that were known in the past. In off-line learning,

if the situation changes, e.g. new classes need to be incorporated to the system, or more data

is available, the whole learning process needs to be repeated. This can lead into interruption

of the usage of the system. Opposedly, in on-line learning case, the model adapts to the new

situation by adjusting its parameters now handling all the known situations. It processes all the

known data as they come and does not need to postpone the training until there is enough of

it for re-training. By leveraging the knowledge from all the known data, it is better adjusted

to the current state of the world opposed to the off-line model that has not been re-trained yet.

137

Moreover, in many models solving on-line learning constraint, if a new class is introduced to

the system, the model is incrementally expanded to incorporate this new class into the model

on the line. A challenging constraint of on-line learning as compared to off-line, imposed by

the context of gesture commands, is its lower performance due to the missing data that have not

yet been revealed and that in the off-line scenario are known from the beginning. For example,

if we search for the best division within a data set, we usually achieve better results knowing

all the data rather than only a few. Moreover, in the sequential learning scenario and due to the

absence of information about future data, the “whole picture” of a situation can be missed. As

in our example, if we have only few data, it is much harder to find structures of these data, as

these can develop and reveal themselves with more data or with better data in the future.

Furthermore, learning from scratch brings up the learning from very small samples with the

expectation of high performance in recognition. If we let a user enter only a few samples or

perhaps only one sample for each new class, we also have to expect the user to use his device

afterwards. However, learning from one sample, if further samples vary within each class, is

very challenging. In our experiments we can notice a significant drop in the recognition rate

during the initial learning for each class. One of the solutions is to acquire more data. However,

we do not expect the user to give us these data, which would mean to force him to re-enter his

gesture commands several times in a line. Thus, we focus on the generation of synthetic data,

where these data resemble the original real data, but still vary.

As mentioned earlier in this section, it is not preferred to postpone the usage of the system by

learning to recognize the synthetic data. However, the generation of synthetic data and learning

them do require some processing time. Not only do we need to learn more samples after only

one sample has been input into the system, but we also need to generate these samples. Thus,

it is important to find a way to incorporate the synthetic data generation and learning processes

into the whole on-line learning process without postponing the recognition of the system or

learning from the real samples.

138

Figure 6.1 Simple handwritten gesture commands. The complete

information for the system contains coordinates, time of the

acquisition and direction of the gesture command.

In on-line learning problems when learning from scratch, there are few to no examples per class

introduced to the model at the beginning of the learning process. This leads to low bias, but

high variance, and thus over-fitting. However, more examples are expected to be introduced to

the model, which leads to a small recognition rate. The generation of synthetic data can help

to improve the initial learning by increasing the amount of data and thus helping the model

to generalize well. Yet, the challenge of on-line learning that can be affected by this is the

forgetting of unused classes. Usually, in the real world, the classes are not uniformly distributed

within the learning process. There are times when some classes of gesture commands are not

used for a longer period of time. Since in on-line learning we miss the “whole picture” of the

data, it is most likely that these unused classes will be partially or completely forgotten, as all

the other classes are continuously learned (see Figure 6.2). Moreover, using synthetic data can

amplify this solving of the problem of missing data and help in forgetting the past and unused

data. These unused data will be overwhelmed not by a few samples from other classes, but by

a large number of samples.

Thus, the challenges of this work are:

a. How to solve the learning from scratch and missing data? How to generate synthetic data?

139

b. What amount of synthetic data is necessary for solving problem 1?

c. How to avoid postponing the operation of the system?

d. How to prevent forgetting of unused classes?

Thus, the contributions of this paper, as a response to our problems are:

a. Using automatically generated data to support the initial learning,

b. Exploiting the necessities of synthetic data in on-line learning and finding the preferred

settings for on-line learning,

c. Proposing a framework for on-line real-time learning that avoid postponing usage of the

system,

d. Applying an EML original technique in order to avoid forgetting the unused classes and

exploiting the influence of the generation of synthetic data.

Figure 6.2 Forgetting of unused classes. At first, all classes are

learned at the same rate, but gradually one class is left out of the

learning process.

In this paper we discuss the on-line learning models, more specifically neuro-fuzzy models

and the models for generation of synthetic data in section 6.3. In section 6.4 we describe

the Sigma-lognormal model employed for generating synthetic data. Then, in section 6.5 we

describe ARTIST, the model selected for this work, followed by Elastic Memory Learning in

140

section 6.6. We describe our framework for on-line real-time learning with the simulation of

real-world usage of the system in section 6.7. Lastly we show the results in section 6.8 and

conclude this work in section 6.9.

6.3 Related works

In this section we briefly discuss works on on-line and incremental learning with special em-

phasis on neuro-fuzzy models. At the end we discuss approaches concerning the generation of

synthetic data and the use of such data in works already published.

To solve on-line learning problems, where learning and recognition occur at the same time

and at every time instance, many researchers have chosen to transform an off-line method into

an on-line one. From the most common approaches we make a brief survey of the following

groups. In Support Vector Machines (SVMs), the model is composed of support vectors (SVs)

that are learned in an off-line mode. In Diehl et al. (2003); Carozza et al. (2000) the authors

propose to incrementally generate these in order to adapt SVMs to an incremental learning

environment. Bordes (2005); Tax (2003); Wang et al. (2007) the authors choose to update

SVs in a sequential manner with every new sample. All these methods try to separate the the

classes of the input space, where for our application a multi-class classification approach is

needed. The main idea behind the on-line learning approaches is the sequential processing,

though needing an initialization. Thus, these methods are not capable of learning from scratch,

which is essential for our application. For methods with an incrementally learned subspace,

such as Incremental Principal Component Analysis (PCA), there are several applications, such

as classification problems for hand gesture recognition in Yao et al. (2010), visual tracking

in Ross et al. (2007), feature extraction in Kasabov et al. (2005) and face recognition in Li

(2004). These methods use subspace learning rather for the representation than the classifica-

tion itself. They do require some level on initialization, i.e. small sample of data, but can detect

a new class, which is interesting for our research. The Boosting and Bagging based method

relies on copies of one weak classifier that is trained on subsets of the data. There are several

works adapting such methods for on-line learning, where the weak classifiers as well as their

141

weights are updated accordingly for each sample. On-line Bagging and Boosting algorithms

were introduced in Grabner et al. (2006); Oza (2005) along with the Adaptive Boosting method

(AdaBoost) for two-class problems. This was adapted for multi-class problems in Ditzler et al.

(2010); Saffari et al. (2010). A boosting based on-line model was introduced in Leistner et al.

(2009) by choosing randomized decision trees as a weak classifier, turning this approach into

an On-line Random Forest (ORF). Incremental decision trees with some changes that have

been used in ORFs were introduced in Utgoff (1989). All the boosted methods require an ini-

tialization of classes, though in our work we need to be able to detect new classes on the fly.

Whereas some boosted methods can achieve real-time performance, other methods, such as

Random Forests, are more expensive, especially when using high number of trees. In Forster

et al. (2010); Yu et al. (2009) the authors propose to adapt k Nearest Neighbors for the incre-

mental learning with incremental adaptation of the important samples from which the nearest

neighbors are selected. It is an interesting idea to use only a subset of data to calculate the

nearest neighbors, making the model faster in the prediction phase. However, an initial subset

of data is needed in order to begin the on-line learning process. All these methods are capable

of learning in a sequential mode; however, they require initialization in the terms of the defini-

tion of classes. Thus, they are not applicable to learning from scratch and do not allow adding

classes on the fly without learning the whole model again from the beginning.

In this work we have chosen an evolving neuro-fuzzy model based on a fuzzy logic and thus

composed of a number of fuzzy rules. There are two main streams for fuzzy models, one was

introduced by Mamdani in Mamdani et al. (1975) and the other by Takagi-Sugeno in Takagi

et al. (1985). To adapt these models for on-line learning, the handling of the rules needs to be

solved in an on-line manner as well. The work on this topic was done in Babuska (1998), and

adapting fuzzy models for non-linear problems was done in Babuška et al. (2003); Tan et al.

(2000). In Ahn et al. (2010) the authors use dynamic clustering to handle the rules of fuzzy

model, and genetic algorithms for this purpose were used in Cordón, Oscar; Herrera, Francisco;

Hoffmann, F.; Magdalena (2001); Cordon et al. (2004); Yuan et al. (1996). However, these

models are not capable of on-line learning. The adaptation of fuzzy models for sequential data

142

streams is surveyed in Lughofer (2011). In Angelov et al. (2004); Angelov, Plamen; Filev,

Dimitar P.; Kasabov (2010) the authors introduce an incremental Mountain Clustering that can

be used for handling of the rules. Another work also based on incremental Mountain Clustering

is proposed in Almaksour et al. (2010). In Carse et al. (1996); Gomez et al. (2002); Kasabov

(2001) the authors use genetic algorithms for the evolution of the rules, in Lughofer (2008b,a)

the authors propose to use incremental Vector Quantization; in Režnáková et al. (2012) the

authors propose an incremental clustering for the fuzzy rules based on the local results of these

rules; in Režnáková et al. (2013) the authors propose to use ART-2A Carpenter et al. (1991b)

for the incremental generation of rules with the self-organized adaptation in Režnáková et al.

(2015a); in Tencer et al. (2015a) the authors propose transductive learning to improve the fuzzy

model inference. Most of these models still require some pre-definition, especially in terms of

classes; however, they are capable of on-line learning and some of them are capable of learning

from scratch. In this work we have chosen a model hereafter referred to as ARTIST Režnáková

et al. (2013), and we apply our framework and EML to it. Nevertheless, all our propositions

within this paper are applicable to any other of these models.

To address the generation of synthetic handwritten data, several models have been proposed.

In Schmidt et al. (1988) the authors propose to use behavioral models; in Neilson et al. (2005);

Tanaka et al. (2006) the authors use the minimization principles to generate synthetic hand-

written data; in Gangadhar et al. (2007) the authors use neural networks for this purpose; in

Tencer et al. (2015b) the authors propose to sample new data in order to enhance the perfor-

mance of the fuzzy modeling; and in Plamondon et al. (2006); Djioua et al. (2009) the authors

propose to use kinematic models to best describe the human hand movement and produce re-

liable synthetic handwritten data. The work in this paper is based on the Kinematic Theory

describing rapid human movements by the Sigma-lognormal model that was proposed and

further extended in Plamondon et al. (2014); Djioua et al. (2009); Plamondon et al. (2003)

and applied to handwritten gesture command recognition in Almaksour et al. (2011). We will

briefly describe this approach later in the paper.

143

In Almaksour et al. (2011); Plamondon et al. (2014) the authors propose to use the Sigma-

lognormal model to tackle the generation of synthetic samples for recognition of handwritten

gesture commands; however, they mainly use these only to boost the learning process for the

improvement of the performance. However their work lack the focus on the side effects of

using synthetic data as well as the application to the real-world problems.

Usually, on-line learning based models do not tackle the addition of classes on the fly, nor the

learning from scratch. Both these aspects result into the low generalization of on-line models

when having only a small number of data. There are works proposing the use of artificial

data, but only few that are specifically tailored for handwritten gestures, as it is in the case

of Sigma-lognormal model. To our knowledge there has not been a work tackling the way of

incorporating the synthetic data into the on-line learning process, nor the problem of forgetting

of unused classes that is a natural consequence of adding artificial data into the learning stream

in blocks, right after they are generated.

Thus, in this work we focus on the these aspects of the generation of synthetic samples and

their use for on-line learning, i.e. the non-forgetting of unused classes of gesture commands

and the influence of automatically generated samples on this aspect of on-line learning. We

also explore the parameters of the process of the generation of synthetic samples, i.e. the stop

criterion of the generation itself and the number of the synthetic samples to be generated. This

work is a significant extension of our previous work published in Režnáková et al. (2015b) in

which we introduced the randomized buffer to tackle the real-world use of an evolving system

with generation of synthetic samples.

6.4 Sigma-lognormal model

The Sigma-lognormal model is based on the Kinematic Theory of rapid human movements.

To be able to mimic the human movements and reliably generate synthetic data, it involves

describing the impulse responses of a neuromuscular network Plamondon et al. (2014). Each

original hand gesture command can be reconstructed as a number of curved vector strokes, with

144

each of these strokes composed of 6 parameters 6.1, with t0 referring to the time occurrence of

each neuromuscular command, D being the magnitude of this command, μ the logtime delay

and σ the logresponse time with which the neuromuscular system reacts; θs and θe refer to the

starting and the ending directions of the curvature.

ϑ = P [t0,D,μ,σ ,θs,θe] (6.1)

In the application for on-line learning, each time an original sample is introduced, Sigma-

lognormal model reconstructs it as precisely as possible, the system then duplicates it by

adding some noise Martin-Albo et al. (2014); Režnáková et al. (2015b) and translated back

into coordinates to generate synthetic samples. The noise is added to the vector ϑ in form

of ϑ = ϑ +[0,0,nμ ,nσ ,0,0], where nμ ∈ [−0.15μ,0.15μ], nσ ∈ [−0.15σ ,0.15σ]. Since we

want to generate samples as if they were created by the user, we have chosen these parameters

describing the neuromuscular timing. When a new gesture is obtained using updated vector,

a set of 20 geometrical features is applied, i.e. length of the gesture, curvature, etc. In Figure

6.3 we can see the original data as compared to the data reconstructed by the Sigma-lognormal

model without any noise as well as an example of a duplicated sample, a new specimen where

some noise has been applied to it. To generate additional 10 samples takes on average 12.96 s.

After this process, feature extraction is applied on these newly created synthetic data. In this

work, geometrical features have been used as defined in Režnáková et al. (2012), where the

authors used some geometrical features form Willems et al. (2008); Rubine (1991); Peura et al.

(1997). These synthetic samples are supplied further to the buffer where they are stored until

they can be used for the learning purposes (Figure 6.5). More information on the Kinematic

Theory and the Sigma-lognormal model can be found in Plamondon et al. (2014).

6.5 ARTIST

The ARTIST model applies the ART-2A incremental clustering for the handling of fuzzy rules

Režnáková et al. (2013); Carpenter et al. (1991b). Unlike many other evolving fuzzy models,

145

a) b) c)

a) b) c)

Figure 6.3 Comparison of a) original data to b) data reconstructed by

the Sigma-lognormal model without any noise applied to it and c)

synthetic data generated by the Sigma-lognormal model from

duplicated data after adding some noise. The figure was produced

using Scriptstudio O’Reilly et al. (2009), a software package that

extracts lognormal parameters from a velocity profile and reconstructs

it minimizing the reconstruction errors.

it does not take into account the addition of a new class to the system for the purpose of

generating rules, and thus it does not force creating a new cluster at each occasion. Since ART-

2A is unsupervised, classes can be added on the fly and the learning can start from scratch as

no pre-definition of classes is needed. The model itself is based on the Takagi-Sugeno fuzzy

modeling, where each rule is in the form of the IF T HEN condition 6.2. Such a rule is further

divided into antecedent and consequent parts, where IS is responsible for the antecedent and

T HEN is responsible for the consequent. The antecedent part denotes how similar a sample x

is to the samples of cluster A according to rule Ri and the consequent part then implies what

this rule thinks about this sample. Each rule then gives an opinion for such a sample and for

each class, denoting how much it thinks this sample belongs to each class.

Ri : i f xxx IS A T HEN y = xxxπππ +b (6.2)

The consequence y = xxxπππ + b is thus derived as yi = βixxxT Πi, where βi is the similarity of

sample x to the rule Ri, yi is the inference of Ri for all classes and Πi =
{

πππ j
i

}
j=1...c

is a set

146

of the consequent parameters of Ri for each class j. After the model obtains all the local

results from each rule, a weighted average of yi is derived 6.3, where the result for each class is

represented as 6.4, with r being the number of all rules. Then, the winning class j
′
is derived as

the maximum of all the results Y j 6.5. This inference is further compared to the ground truth

j∗ to decide whether an error has occurred.

Y =
1

∑r
i=1 βi

r

∑
i=1

βixxxT Πi ∼=
r

∑
i=1

βixxxT Πi (6.3)

Y j =
r

∑
i=1

βixxxT πππ j
i (6.4)

j
′
= argmax

j
Y j (6.5)

The whole architecture of the model is shown in Figure 6.4.

6.6 EML: Elastic Memory Learning

In ARTIST the local Recursive Least Squares (RLS) is used for the learning of consequent

parameters Πi. Each time a new sample is introduced to the model, all parameters for all

classes within all rules are learned accordingly. Thus, if one class is not used for a longer

period of time, samples from all the other classes can cause the parameters for such a class to

be overwritten (see Figure 6.2). This can later result in lower recognition of such now forgotten

classes by the rules and by the model itself. In Režnáková et al. (2013, 2015a) we proposed

using Elastic Memory Learning to prevent the forgetting of unused classes.

Generation of synthetic data can lead into the emphasis of forgetting of unused classes (see

Figure 6.2). To prevent this, in this work we have chosen to use EML for the RLS algorithm

used in neuro-fuzzy models for learning the consequent parameters Πi =
{

πππ j
i

}
j=1...c

; i = 1...r

147

Figure 6.4 ARTIST. This model is composed of fuzzy rules 6.2

that are managed by an ART-2A network, but the inner

functionality of the rules is independent of it. First input I is

processed by the ART-2A network, where the network is

responsible for managing the rules of the model. It is normalized

to xxx so that a cosine distance can be obtained and compared to the

existing rules. The choice of the best rule is made and the

resonance layer decides whether to update the chosen rule or

create a new one. From this point a fuzzy network takes the

control and calculates the antecedent part, which is used as a

weight β for consequent predictions. After obtaining the

consequent results, a prediction is made and used for competitive

update 6.10.

for r rules and c classes. By applying competitive updates to the consequent parameters, not

all the classes are updated for each sample, but only the important ones. This helps to under-

sample the classes that are presented to the system in a higher frequency as opposed to other

classes.

The aim of RLS is to minimize a squared difference between an actual result
{

βixxxπππ j
i

}
j=1...c

and an expected result Yi 6.6.

E =
t

∑
k=1

||βi,kxxxkΠi,k −Yi,k||2 (6.6)

Minimizing this error by sending its derivative to zero gives us formulas for updating a covari-

ance matrix Ci 6.7 and set of parameters Πi,t 6.8 for a rule i.

148

Πt =
t

∑
i=1

βixxxiYi

(
t

∑
i=1

βixxxiβixxxT
i

)−1

= MtC−1
t

Ct =
t

∑
i=1

βixxxiβixxxT
i =Ct−1 +βtxxxtβtxxxT

t

C−1
i,t =C−1

i,t−1 −
C−1

i,t−1βi,txxxtβi,txxxT
t C−1

i,t−1

1+βi,txxxT
t C−1

i,t−1βi,txxxt
(6.7)

Πt = MtC−1
t = (Mt−1 +βtxxxtYt)C−1

t = Πt−1

(
C−1

t
(
Ct −βtxxxtβtxxxT

t
))

+C−1
t βtxxxtYt

Πi,t = Πi,t−1 +C−1
i,t−1βi,txxxt (Yi,t −Πi,t−1βi,txxxt) (6.8)

Parameters Πi,t are composed of a number of local parameters πππ j
i,t for each class j, rule i at a

time t, with an updating formula as shown in 6.9. We define a correction parameter ε j
i that is

set to either 0 or 1, on the basis of the inference Y j
i , given rule i and class j that are set in the

updating formula for RLS 6.9 as an ideal result of the inference for sample xxx at time t using

parameters πππ j
i,t for rule i and class j. Thus, for the true class ε j

i = 0 and for all the other classes

ε j
i = 1.

πππ j
i,t = πππ j

i,t−1 +C−1
i,t−1βi,txxxt

(
ε j

i −πππ j
i,t−1βi,txxxt

)
(6.9)

In EML, the parameter ε j
i does not update the parameters for each sample, i.e. if a sample is

not of the class j, it does not necessarily update parameters for such a class to 0. As we stated

earlier, such an update can lead to forgetting the class j in cases when this class has not been

used for a longer period of time, and its parameters are constantly adjusted to output 0. Thus,

149

we set parameter ε j
i to update parameters πππ j

i,t only if the class j is the current true class or if

the local result of the rule i for class j is greater than the result of the true class j∗ 6.10.

ε j
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 j = j∗

0 y j
i > y j∗

i

πππ j
i,t−1βi,txxxt otherwise

(6.10)

Using synthetic data can indeed help to improve the initial recognition. However, it can also

lead to forgetting unused classes and magnifying its effect by the amount of synthetic samples

produced for each sample. Thus, in this work we want to investigate the effect of generating

synthetic samples on recognition, forgetting and EML and to find a balance in how many sam-

ples to generate to keep the initial recognition high, but at the same time to keep the forgetting

low.

In the results we separate the EML from ARTIST to show the sole influence of the EML on the

forgetting of unused classes.

6.7 Framework for on-line real-time learning using synthetic data

Since in on-line learning data are being introduced to the model sequentially, we need to adapt

the generation of synthetic data and their distribution to the model accordingly. Each time a new

sample is introduced to the model, a generation of these data starts. However, the processing

time of the generation of synthetic data is not negligible. We cannot afford to postpone the

usage of the system and let the user wait for the synthetic samples to be produced and finally

learned by the model. Thus, we propose a randomized buffer that allows the flow of the real

data, which are created by the user himself, without any interruption from the synthetic data

generation system. To randomize the buffer in our work is preferred over block learning since

block learning can cause the very same problems as setting the correction parameter ε j
i in our

learning to 0 for a class that has not been used for a long period of time (section 6.6). In other

150

words it can lead to forgetting of not only unused class but of all the classes except the current

one.

The processing of the sequential data is as follows (k is number of features, r is number of

rules, c is number of classes and n is number of samples):

a. Receive a real sample x, a sequence of 2D coordinates

b. Process the sample x

a. Apply feature extraction, i.e. a set of 20 geometrical features (O(k))

b. Recognize, i.e. classify x using ARTIST model (O(krc))

c. Send it to the model to be learned, i.e. process by ART-2A network and learn fuzzy

antecedent and consequent parameters (O(k2rc))

c. If the system is not busy with real data, generate synthetic data using Sigma-lognormal

model

a. Translate the reconstructed sample into vectors ϑ of lognormal strokes 6.2

b. Add a noise to these strokes, i.e. ϑ = ϑ +[0,0,nμ ,nσ ,0,0]

c. Translate duplicated sample (in form of ϑ) back to the coordinate system

d. Apply feature extraction, as in step 2a

e. Push new duplicated sample to the buffer

d. In the buffer

a. Randomly shuffle all the data (O(n))

b. While the system is not busy with the data, pop data to the model to be learned, i.e.

steps 2b-c (O(1))

e. Else, wait for the system to be ready

151

This process is further depicted in Figure 6.5.

Figure 6.5 Framework for on-line learning from scratch using

synthetic data. X refers to an input sample that is fed to the model and

recognized. The information from the recognition process is then used

for the learning and new data are added to the model (the model is

evolving). The solid line refers to the processing of real samples,

where on the basis of recognition the system gives an output Y of a

predicted label. The dashed line refers to the additional processes

related to the generation of synthetic data.

In the next section we can see that the combination of EML with Randomized buffer using syn-

thetic samples leads to increased performance, while preventing the forgetting issue of unused

classes. Moreover, we explore the settings of the online framework.

6.8 Experiments

In this section we show our experiments done on the Handwritten Gesture database1. In

our previous work we have proposed to use the EML in order to avoid the forgetting of un-

used classes. This issue especially arises in the environment of the generation of synthetic

data,where bulks of data of the same class are generated in a short time period. At the same

time, to avoid the unnecessary generation of synthetic data, we need to find the best setting

of the amount of synthetic data to be generated for each sample as well as the length of the

1 Handwritten Gestures dataset can be found at http://www.synchromedia.ca/web/ets/gesturedataset

152

generation itself. For this purpose we evaluate on a number of Scenarios, each dedicated to

a different setting as well as introducing a new class to model with more samples per already

learned class and the forgetting of unused classes, i.e. not being automatically produced at that

time. In the results we will see how using EML significantly improves the overall results and

empowers the generation of synthetic data for the initial learning and learning on the fly.

6.8.1 Experimental setting

In this work we use a dataset of handwritten gesture commands1 that contains 17 classes of

~1950 gesture commands per class. These data were acquired from 20 distinct writers captured

by Fujitsu-Siemens Stylistic ST5022 in InKML format. The data are stored in the form of 2D

coordinates; and for further processing of the data, we use the feature extraction techniques

specified in Režnáková et al. (2012). For each of our evaluations (i.e. every distinct run), the

order of the samples is different as well as the selected samples for each class (since we focus

on the initial learning where the number of samples per class is small). For each sample we

generate a different number of synthetic samples and compare the recognition and error rates

on these in order to find the best suited amount of automatically generated samples. In the

following we describe the 4 scenarios used in this work:

Scenario 1: Learning with classes added on the fly

In this scenario we let the system randomly add the classes on the fly, i.e. at random occur-

rences. For each sample that is introduced to the system, we generate a different number of

duplicated samples (varying from 1 to 50) and add these samples to the randomized buffer. We

compare our results to the learning with no synthetic data. Further, we use EML to prevent the

forgetting that is caused by blocks of data of the same class.

153

Scenario 2: Searching for the appropriate stop criterion

In on-line learning, the most crucial part of the process regarding the amount of data is the

initialization (i.e. beginning) or the introduction of a new class. Thus, we want to investigate

the stop criterion for the generation of synthetic samples, i.e. after what amount of original

samples it is reasonable to stop generating synthetic samples.

Scenario 3: Learning with focus on one class introduced later

In this setting we intentionally skip one random class at the beginning of the learning process

and introduce it later. We compare the results with no synthetic data added to the randomized

buffer with added synthetic data. As in the previous scenarios, we compare these results with

the model using EML to prevent forgetting.

Scenario 4: Exploiting the forgetting of an unused class

To investigate the forgetting of an unused class, we use the following benchmark:

a. Phase 1: learn all samples,

b. Phase 2: exclude one random class from the learning process and learn all the others,

c. Phase 3: recognize the unused class without any learning,

d. Phase 4: learn all classes.

We derive the recognition rate for all these phases. We focus mostly on phase 3, where we

investigate the recognition rate of the unused class to see how much it has been forgotten.

6.8.2 Results

We divide our results according to the 4 scenarios. In Figures 6.6, 6.7, 6.8, 6.10 and 6.11, the

learning curve is derived as 6.11, where the |errors|t1 is the number of errors from the beginning

154

of the learning until time t for which the recognition rate is being derived. At the beginning

of the learning, no error is detected because most of the classes are just being introduced.

Therefore the recognitionratet for very small t is high. When the curve drops, this means

that there have been more errors encountered; and the steeper the curve declines, the higher

the number of errors that have occurred. On the other hand, when the curve grows, it can be

understood as meaning that there have been fewer errors. The steeper the curve grows, the

fewer the number of errors occurring at times close to (but smaller than) t.

recognitionratet = 1− |errors|t1
t

(6.11)

In Figures 6.12 and 6.13 we derive the recognitionratephase as defined in 6.12, where tB and tE

are the times of the beginning and the end of each phase, i.e. each recognition rate is derived

as the cumulative recognition rate for the whole phase.

recognitionratephase = 1− |errors|tEtB
tE − tB

(6.12)

Scenario 1

In Table 6.1 we show the complete comparison of error rates using only original data (no

synthetic data), synthetic data with learning in blocks and synthetic data with the randomized

buffer for a different number of automatically generated samples. For each of these options

we additionally compare the results without and with EML. Thus, each table entry denotes

the combined result for the method used for the handling of synthetic data (rows) and the

number of automatically generated samples (columns: 1-50). Both of these combined entries

(separated by ’/’) correspond to the error rates using the ARTIST model. We want to show the

difference EML brings to the whole concept of ARTIST; thus, the first of the combined entries

denotes the result without EML (i.e. using the original RLS), and the second entry denotes the

results for ARTIST with EML. Then, the best result among all results for each column (i.e. the

155

number of automatically generated samples) is chosen and is shown in the table in bold. For

example, the entry for the second row, third column (0.362/0.312) denotes the combined result

for the learning using 10 synthetic samples generated for each sample, using block learning,

where the first entry is the result for ARTIST not using EML (0.362), and the second entry is

the result for ARTIST using EML (0.312). We can note that for 10 synthetic samples, the best

result is achieved by ARTIST using EML when the synthetic samples are added to the system

in blocks. We can also note that for the first row, all the results are identical. This is because

these results are derived using only original samples, and thus the number of synthetic samples

has no influence on them.

Then in Figure 6.6 we can see the complete results for recognition rates using EML and the

randomized buffer for a different number of automatically generated samples. From the results

we can see that using synthetic data can lead to forgetting, as there are blocks of data of the

same class. Especially at the beginning of the learning, all the other classes are vulnerable to

the forgetting problem becasue they are poorly represented. Using EML helps to solve this

problem; and in the combination with synthetic data, it outperforms using only original data as

well as synthetic data without EML.

As we can note from these and further results, using only EML tends to have problems in

the initial learning. This can be solved by using automatically generated data that increase

the number of samples that EML is choosing from. Further, EML prevents the forgetting that

automatically generated data blocks can cause. Both of these methods, in combination, lead

to superior results compared to the use of only original data, only synthetic data or only EML

with original data. We can also note, that in such settings and for the data used in this work,

the best choice for the number of automatically generated data is ~25. We choose this number

for the rest of our experiments.

In Figure 6.7 we compare the use of the randomized buffer using a selected number of automat-

ically generated data, with and without EML to the recognition rate when using only original

data for learning purposes.

156

Table 6.1 Exploring the error rates on the first 100 original samples compared with

learning with original data vs. learning with synthetic data in blocks vs. learning with

synthetic data using the randomized buffer, with emphasis on forgetting when not using

EML (i.e. RLS) vs. using EML.

RLS / EML 1 5 10 15 20 25

original

data

0.32/0.328 0.32/0.328 0.32/0.328 0.32/0.328 0.32/0.328 0.32/0.328

block

learning

0.29/0.346 0.3/0.328 0.362/0.312 0.328/0.346 0.366/0.282 0.374/0.26

randomized

buffer

0.284/0.378 0.3/0.356 0.354/0.326 0.344/0.33 0.374/0.29 0.354/0.254

RLS / EML 30 35 40 45 50

original data 0.32/0.328 0.32/0.328 0.32/0.328 0.32/0.328 0.32/0.328

block learn-

ing

0.33/0.262 0.364/0.31 0.362/0.35 0.374/0.292 0.37/0.272

randomized

buffer

0.312/0.292 0.322/0.306 0.328/0.318 0.352/0.294 0.384/0.26

Figure 6.6 Recognition rates for randomized buffer with EML

using a different number of synthetic samples.

157

a) b)

Figure 6.7 Recognition rate when using only original data compared to the one using 25

automatically generated samples for each original sample with the use of the randomized

buffer. The comparison is done for a) learning without EML and b) learning with EML.

As well in the previous figure, we can note that using the combination of EML and automat-

ically generated data helps to improve the recognition rate as well as prevent forgetting. We

can also note that after a certain number of original samples, using the automatically produced

data do not add any improvement. We investigate this amount further in scenario 2.

In Figure 6.8 we compare the recognition rates for using only original data to the rate when us-

ing automatically generated data learned in blocks (with the possible postponing of the system)

and using automatically generated data with the randomized buffer (with respect to real-world

use). All these models use our EML. From the Figure we can note that, again, using the combi-

nation of synthetic data and EML outperforms other settings. We can see for all cases that after

a certain number of samples, the performance does not vary as much as for the initial learning,

i.e. for learning at the introduction of classes when the lack of data is most significant.

On Figure 6.9 we can see the comparison of our model using EML and randomized buffer to a

number of baseline models that have been adapted to perform on-line learning. As we can see,

ARTIST highly outperforms all these models despite the fact, that they do need to initialize all

the classes ahead.

158

Figure 6.8 Comparison of the recognition rate using original

data, synthetic data with block learning and synthetic data with

the randomized buffer, using 25 synthetic samples generated for

each real sample.

Figure 6.9 Comparison of the recognition rate using our model

(ARTIST+EML with randomized buffer) to baselines (from

sklearn library).

159

Scenario 2

In this scenario we investigate the amount of original samples for which synthetic samples are

generated. Figure 6.10a) shows the results without our EML. For this setting, the amount of

250-300 original samples for 17 classes (~15-18 samples for each class) is sufficient to achieve

a recognition rate (accumulated by the latter samples only) of ~82% as compared to 80% and

lower for the smaller stop criterion. Figure 6.10b) shows the results using our EML. We can

notice that by using this strategy, top results of ~87% are achieved by the highest amounts of

synthetic samples. Thus, it seems that when using EML we need to prolong the generation or

synthetic samples, which is only natural as there are fewer samples being used for the learning,

i.e. only those that win the competition for the learning. However, the differences among these

results are only slight (less than 2%) and we can agree with previous results that the number

~300 is appropriate for the amount of original samples for which synthetic samples are to be

generated. This number not only results into top results, but is also not the highest one.

a) b)

Figure 6.10 Comparison of different times to stop the generation of synthetic samples,

i.e. different number of original samples for which synthetic samples are generated: a)

without EML and b) with EML. At the very right an error on last 100 samples is

visualized by stars to show the converged recognition rate of the system.

160

a) b)

Figure 6.11 Comparison of recognition rates with one skipped class and after its

introduction to the system. We compare the rates using only original data to those using

the randomized buffer with synthetic samples when learning a) without EML and b) with

EML. The introduction of the skipped class occurs at the 151st original sample.

Scenario 3

As with the previous scenarios, we allow the system to add classes on the fly except for one

randomly selected class. After this class is added back to the data stream, we can compare

the recognition rates for using only original data and using synthetic data, as shown in Figure

6.11. Unlike the previous scenarios, where the focus was on initial learning, here the focus is

on learning on the fly.

In the Figure 6.11 a slight narrowing of the learning curve can be noted after the introduction of

a new class, especially in the case without synthetic data. This is caused by a higher increase in

erroneous results, i.e. more occurrences of miss-classifications. Thus, using synthetic samples

indeed helps to improve the recognition rates in such scenarios.

Scenario 4

In this scenario we focus on phase 3, which is denoting the forgetting of the unused class that

was unused in phase 2 and later used again in phase 4. From Figure 6.12a) we can note that

using synthetic samples decreases the recognition rate for the unused class and magnifies the

161

forgetting rate. However, by using EML, as shown in Figure 6.12b), we are able to significantly

improve this. We can see that using synthetic data does not affect the forgetting significantly

anymore, while at the same time improves initial learning.

a) b)

Figure 6.12 Recognition rate for the forgetting scenario a) without EML, b) with EML.

Phase 1 learns and recognizes samples from all classes, Phase 2 learns and recognizes

samples from all classes except one, phase 3 does not learn but recognizes the unused

class from phase 2, and phase 4+ learn and recognize samples from all classes.

In Figure 6.13 we can note that ARTIST is less prone to the forgetting of unused classes (phase

3) as well as in comparison to other evolving models, ETS Angelov et al. (2004) and ETS+ Al-

maksour et al. (2010). This underlines the previous results and shows that even with increased

number of samples per class, the system can be immune to forgetting of unused classes. This

is very important for the sake of initial learning and the need of synthetic samples in situations

where such samples are not easy to come by.

It should be stated that all our experiments were performed using a specific tuning for noise

that was added to the synthetic data. We believe that this noise plays a significant role in the

whole process and needs to be further explored.

162

Figure 6.13 Comparison of the recognition rates for the

forgetting scenario using different models. Phase 1 learns and

recognizes samples from all classes, phase 2 learns and recognizes

samples from all classes except one, phase 3 does not learn but

recognizes the unused class from phase 2, and phase 4+ learn and

recognize samples from all classes.

6.9 Conclusion and Discussion

In this paper we focus on solving the problem of initial learning and learning on the fly. One

option as to how to increase performance when the number of samples is very low and often

close to 1, is to generate synthetic data. However, using blocks of data can lead to forgetting of

the unused classes, especially in the on-line learning environment where, for learning purposes,

not all data are available at once. Here we show that by using Elastic Memory Learning we

can avoid the forgetting of classes that are not being multiplied by synthetic data. We also

show that the generation of synthetic data is not required for the whole learning process and is

needed only for the initial learning period and for the introduction of a new class on the fly.

As we state in the section 6.2, we faced several problems concerning the on-line learning of

handwritten gesture commands. We successfully addressed these problems by

163

a. applying the Sigma-lognormal model for the reconstruction of real handwritten specimens

and then applying noise to the lognormal strokes thus obtained to generate duplicated

specimens;

b. showing in the results the advantages of using synthetic data for learning from scratch

(initial learning) and learning on the fly (randomly adding new classes);

c. proposing a randomized buffer to fit the behavior of real-time on-line learning and show-

ing its positive influence on the performance of the system;

d. applying our proposed Elastic Memory Learning to solve the forgetting problem in on-line

learning. In the results we show the significant improvement that EML brings to the whole

system by making use of synthetic data, a very powerful tool for the improvement of the

performance of on-line learning based systems when there are only a few real examples

for the learning process.

Our experiments show promising results for the solution of the most important and crucial

problems in on-line learning in the application for recognition of handwritten gesture com-

mands. However we still see a room for improvements, especially in terms of feature extrac-

tion. We believe that proper handling if 2D data along with synthetic data will result in better

performance.

Thus in our future work we will explore various feature extraction techniques for digital hand-

written strokes as well as other applications, such as the generation of synthetic data for other

handwriting applications, such as letter or digit recognition. At the same time we will explore

the different types of noise applied to the vector strokes of the Sigma-lognormal model. We

believe that this noise can influence EML and increase not only initial learning but also create

greater immunity to forgetting.

164

Acknowledgments

The authors thank NSERC RGPIN 138344 & 2014-04649 and SSHRC 412-2010-1007 of

Canada for their financial support.

CHAPTER 7

GENERAL DISCUSSION

The main objective of this thesis was to find a model capable of online incremental learning

with the emphasis on avoiding the use of hyper-parameters. The main motivation of such

restrictions was user-friendly online handwritten gesture recognition. Thus besides the online

incremental restriction we had to focus on real-time processing, learning from scratch and no

relying on the knowledge of the future data. We wanted the user to be able to define his/hers

own gestures at any point of the usage of the system. However, besides this application we have

shown the strengths of our solution also on other applications in a form of various datasets.

Further in this section we discuss our contributions following the scheme of our objectives and

articles.

7.1 Incremental Similarity

The main objective of the thesis was to find a system based on online learning with the emphasis

on learning from scratch, learning on the fly and user-friendliness. The Incremental Similarity

(IS) brings a trade-off between the computational cost and accuracy. The main reason for

searching for such trade-off is the real-time setting of many online and incremental learning

systems. Here, the computational cost is one of the crucial factors for the decision about the

learning and recognition model. In our work we have focused on real-time online learning

with starting from scratch. Our method offers a simple updating formula that does not rely

on covariance matrix and at the same time is able to deliver high accuracy. Rather than the

distance from the mean and corresponding covariances, it describes the distance from all points

in a specific structure, i.e. a cluster. Using this novel technique we were able to avoid the

covariance matrix, but still take into account the covariances in the data, while using simple

updates. However, using simpler description of the data slightly lowered the accuracy in some

cases compared to using full covariance matrix. Nevertheless, compared to both, using only

166

variance vs covariance matrix, the accuracy and the processing time has been brought to an

iinteresting trade-off.

7.2 Elastic Memory Learning

To tackle the problem of forgetting of unused classes we have developed an Elastic Memory

Learning. We have applied our solution on Recursive Least Squares, as this is the optimization

technique we have chosen n all of our approaches. During our experiments we have notices

that in cases that some class is not present in the data stream for a longer period of time, it

becomes under-sampled in the local model, and thus it is not easy to retrieve. It happens, that

in such occurrences, a decision boundary is shifted to recognize the negative class well, but not

the positive class. This results in a small recall of the positive class. Elastic Memory Learning

is based on a competitive choice of the learning, i.e. the parameters are learned only when

necessary. In other words, we under-sample the negative class and keep only the important

samples that bring the confusion to the system.

Such competitiveness in updating of the consequent parameters leads to better results even if

some of the classes is not used for a longer period of time, preventing the model from forget-

ting it. This ability is very important especially when the distribution of classes of incoming

examples is not necessarily uniform. However, we have also noticed, that such under-sampling

can contribute to a lowered performance, especially at the beginning of the learning. Since

the learning from scratch is a difficult task by itself and there is a need for more data, by

under-sampling we feed even less data to the model. We also need to state, that the lowered

performance is very slight.

7.3 Self-Organized incremental model

In our work we have developed a few models based on Takag-Sugeno neuro-fuzzy model. All

of these are capable on online incremental learning. However, our aim was to find a model that

will not need to rely on the knowledge of the data that should not be known ahead. Thus, we

167

have adapted on of our models, ARTIST to a self-adapting version. Here, all the structures,

i.e. the rules, are organized automatically in order to follow the adaptive nature of all the

parameters of ARTIST.

Both of these models are besides neuro-fuzzy modeling based on ART-2A neural network.

This network has two hyper-parameters, vigilance and learning rate. These are used to decide

about the creation of a new cluster, n our case fuzzy rule, for the former, and the ’speed’ of

adapting of the parameters used to derive the similarity to these clusters, for the latter. We have

developed a formulas to adapt these parameters based on the responses of the model to the data

and its predictions.

Since these parameters responsible for the creation of new rules, especially the vigilance pa-

rameter, it was necessary to find a way for the rules to re-organize. Thus we have developed

methods to allow the rules to merge, split and discard, based on the changing parameters and

the needs of the model to adapt.

All these solutions have contributed to the development of the self-organized model that does

not rely on the information of the unknown data and can adapt itself based on the dynamic

changes in the environment. However, all this has also contributes to the complexity of the

model and thus also the processing time.

7.4 The problem of missing data

As we have stated in the objectives of this thesis, in online learning the data are introduced in

a sequence. Thus, at the beginning of the learning the model lacks the amount of data which

results into a higher variance and over-fitting. This is caused by that the model is learned to

recognize specific examples rather than their expected and thus more general value. To be

able to increase the generalization power of the model at the beginning of the learning process

as well as after introducing new class, we generate new synthetic data so that the parameters

derived for each class are more representative and include some variance within the data.

168

In our work we have developed a framework to incorporate a generation of synthetic data to

the online process such that it does not create blocks of data of the same kind. At the same

time we have estimated the necessary amount of the synthetic samples to be generated and the

time span of their generation.

Using the synthetic data we were able to avoid the problem of generalization at the beginning

of the process, even more when in combination with our Elastic Memory Learning, that has

helped to handle the amount of the synthetic data to be used. However this solution is partially

restricted to the handwritten gesture recognition, since the synthetic data generation is used

solely for the handwriting.

CONCLUSION AND RECOMMENDATIONS

In this work we have presented original contributions to the state of the art in the field of online

learning. We were able to tackle all our posed problems within online learning as well as

address all the objectives that has raised from these problems. Our work has led to a number

of publications in international journals and conferences that have shown the usefulness of our

work.

To find the similarity metric that deals with the accuracy vs processing time problem is very

necessary for online learning, especially for real-time processing. Many approaches choose

either high performance in the sense of accuracy, precision, recall, etc. or the low compu-

tational cost. Usually, the higher performance results into higher complexity and oppositely

lower complexity results into lower performance. We were able to propose and develop Incre-

mental Similarity measure that we have applied to Neuro-Fuzzy models and shown that while

achieving lower complexity it retains the high performance. We have compared this metric on

a number of models and various data sets showing its applicability to various aspects of the

machine learning domain. While we see the success of our work and that we have successfully

accomplished our objective, we still see a room for improvement. We believe that in the future,

the science will move forward with the real-time processing either by introducing new methods

to handle this problem or by the computational capacity of machines.

The forgetting of unused classes is an important issue that has not been vastly tackled in the

state of the art. However it is a very natural occurrence and thus we have posed the objective

to tackle this problem. As we could see in previous chapters, we were able to successfully de-

velop a solution for Recursive Least Squares. We have applied our solution for various models

and evaluated it on various machine learning benchmarks, showing its immunity towards the

forgetting of unused classes. In many cases, we were able to almost completely eliminate the

forgetting aspect of the learning process. On the other hand, we can see a slight drop in the

170

performance when we continue the learning process using all the classes. We explain this by

the fact, that in our solution we do not learn from all the examples, but competitively choose

the proper ones, whereas in the original RLS all the data is used. Nevertheless, this drop is not

significant, and we can state that our solution achieves superior results.

In our work we were able to develop a self-organized model based on neuro-fuzzy modeling.

This model is capable of adding new rules to the ensemble and adding new classes to the

complete system. Moreover, as a part of self-organized mechanism it is capable of determining

the necessity for merging, splitting and discarding of the rules. This is a consequence of the

self-learning parameters that handle the rules and their generation. Since these are changing

in time, it is necessary to allow the model to change its organization, such that it is at its

best with the knowledge of all the data until that specific time. In the results we have shown

that our proposed self-organized model outperforms the model using free parameters that have

been fixed by cross-validation. Moreover, we have compared this model to a number of online

and offline state of the art models. We can see that our model either outperforms or sustains

comparably high performance on all listed data sets. We need to note, that the vast majority

of the listed models need some initialization and do not start from scratch, while at the same

time require cross-validation. Thus, the results of our model prove that by self-organization

the machine is capable to adapt dynamically to the current state of the environment, which as

a result leads to superior results. This is due to the fact that when using fixed parameters and

structure, this is not the best setup for all the dynamical changes in the learning process, but

only in general. Thus, in online learning we find it preferable to use dynamically structured

models in order to cope with dynamically changing environment.

To be able to cope with the high variance at the beginning that is caused by the lack of data, we

have proposed the generation of synthetic data. We have developed a framework for real-time

online processing with randomized buffer that leads to a significantly lower variance during

171

the initial stages of the data stream processing. However we have shown, that using synthetic

data can magnify the forgetting factor. Thus, we have applied our solution for this problem and

shown, that the combination of synthetic data with the competitive nature of EML is the proper

solution for the high variance and the low performance. In the results we have shown that

we can get close to the elimination of the lowered performance while avoiding the unwanted

forgetting of the other classes. Moreover, we have explored the length of the generation process

as well as the amount of synthetic examples to be generated, which has led to improved results

for this application.

We have applied our solutions to various tasks and shown their usefulness. The problems that

we have tackled are often ignored in online learning field, where the highest emphasis is given

to the sequential nature of the data. While this is an important aspect of online learning, by

ignoring all the other problems that we have raised, these models cannot properly cope with

the real-time setup, where the data are processed in their natural order and cannot be shuffled.

In conclusion, we have successfully approached the objectives of this thesis and incremented

the state of the art techniques for online learning. Online learning is very interesting field

within machine learning and its importance rises with the rise of the use of the internet, where

the data are created in a big amounts and the need of dynamic models rises as well. There is

a number of various applications that can benefit from online learning and the increase in the

variety of online models will help to tackle various problems specific for these applications. In

this work some problems of online learning have been listed, however with the increase in the

applications, new problems will need to be tackled. Online learning similarly to its own nature,

is a dynamic field that need to adapt to all the new situations in the state of the real world. We

believe that our research will help scientists in the future to develop solutions that will help the

society to go beyond all that we have ever thought.

172

Future work

Our work has mainly focused on the self-organized aspect of online learning applied to the

neuro-fuzzy models. We have also proposed the framework for synthetic generation of data that

has been applied on our online incremental model ARTIST. We believe that such framework

can be an interesting addition to the self-organized models. However, the kinematic model is

directly connected to human movements, and thus not applicable for other domains. To be able

to generate synthetic data is of a great interest especially in the case of learning from scratch

or cold-start learning.

One of the flaws that we see in our solution is the approximation needed for the update of some

parameters. This is caused by the choice of the optimization, RLS, and the application to the

self-organized model. We believe that a better choice of the optimization technique can lead

to a superior results. This choice can be also inspired by a change in the consequent learning,

that may lead to a simplified parameter learning.

To contribute to the computational cost of the system, an interesting proposal is to add a feature

selection mechanism to the model. One way is to choose the best features from the complete

set of features, where these best features are the ones that contribute to the right decision the

most.

The feature extraction is an open problem, where the pool of possible features from handwritten

data can always be increased. The higher choice of features can also complement our previous

proposal, the feature selection.

In our work we have used a feature vector representation of the input data. Especially in the

application of handwritten gestures, there are other interesting approaches of representing the

data, such as markov models or neural networks. Here, one gesture may be represented by

one model, where these models are added incrementally into an ensemble model. The models

173

themselves need to be able to update their parameters in an incremental manner as well, so that

they can change with the increasing number of data.

Another interesting task is to apply our solution along with proper data representation to a

general gesture recognition, where on the input we have gestures produced by a movement.

There are still and always will be many more challenges in the area of machine learning and of

online learning specifically, and we hope that our research has contributed to resolving them.

Summary of contributions

In this work we have shown our solutions for the problems posed in the Introduction and

followed the objectives resulting from them. As such, we were able to achieve number of

contributions to the state of the art. We list these contributions in the following:

• Incremental similarity for tackling the accuracy vs processing time problem,

• Elastic Memory Learning to tackle the forgetting of unused classes that in online learning

setup are not distributed uniformly in the data stream and thus can become sparse,

• Self-Organized model to enable learning from scratch, learning on the fly and online learn-

ing in general, where the structures of the model are organized in an automated way along

with the learning of all the parameters necessary for high performance,

• Framework for generating the synthetic data for online learning to tackle the problem of

high variance at the beginning of the learning process and every time a new class is added

to the system.

174

Articles in peer reviewed journals

[1] M. Režnáková, L. Tencer, R. Plamondon, M. Cheriet, Forgetting of unused classes in miss-

ing data environment using artificially generated data. Application to on-line handwritten

stroke recognition (under review), Pattern Recognition.

[2] M. Režnáková, L. Tencer, M. Cheriet, Elastic Memory Learning for Fuzzy Inference Mod-

els (under review), Applied Soft Computing.

[3] M. Režnáková, L. Tencer, M. Cheriet, Incremental Similarity for real-time on-line incre-

mental learning systems, Pattern Recognition Letters 74 (2016), pp. 61-37.

[4] M. Režnáková, L. Tencer, M. Cheriet, SO-ARTIST: Self-Organized ART- 2A inspired

clustering for online Takagi Sugeno fuzzy models, Applied Soft Computing 31 (2015),

pp. 132-152.

Articles in peer reviewed conference proceedings

[1] M. Režnáková, L. Tencer, R. Plamondon, M. Cheriet, The generation of synthetic hand-

written data for improving on-line learning, in: 17th Biennial Conference of the Interna-

tional Graphonomics Society, 2015.

[2] M. Režnáková, L. Tencer, M. Cheriet, ARTIST: ART-2A driven Generation of Fuzzy Rules

for Online Handwritten Gesture Recognition, in: Document Analysis and Recognition,

2013. ICDAR ’13. 12th International Conference on, 2013.

[3] M. Režnáková, L. Tencer, M. Cheriet, Online handwritten gesture recognition based on

Takagi-Sugeno fuzzy models, in: Information Science, Signal Processing and their Ap-

plications (ISSPA), 2012 11th International Conference on, 2012, pp. 1247-1252.

175

Conference Organization

IEEE 11th International Conference on Information Sciences, Signal Processing and their Ap-

plications (ISSPA ’12), volunteer.

Paper Reviewing

i ASC 2015-2016

ii IJCNN 2016

iii JMLC 2015

Research at Pandora Media

Currently I am a part of Pandora Media company that produces a radio application daily ac-

cessed by over 80 millions users. My work is focused on machine learning towards the discov-

ery of new artists and genres. My main focus is the use of deep learning techniques.

BIBLIOGRAPHY

Ahn, K. K., Pham, H. & Anh, H. (2010). Inverse double narx fuzzy modeling for system

identification. Ieee/asme transactions on mechatronics, 15(1), 136–148. doi: 10.1109/T-

MECH.2009.2020737.

Almaksour, A., Anquetil, E., Quiniou, S. & Cheriet, M. (2010). Evolving fuzzy classifiers:

Application to incremental learning of handwritten gesture recognition systems. 2010
20th international conference on pattern recognition, 4056–4059.

Almaksour, A., Anquetil, E., Plamondon, R. & O’Reilly, C. (2011). Synthetic handwritten

gesture generation using sigma-lognormal model for evolving handwriting classifiers.

15th biennial conference of the international graphonomics society.

Anagnostopoulos, G. C. et al. (2000). Hypersphere art and artmap for unsupervised and

supervised, incremental learning. Neural networks, 2000. ijcnn 2000, proceedings of
the ieee-inns-enns international joint conference on, 6, 59–64.

Angelov, P., Lughofer, E. & Zhou, X. (2008). Evolving fuzzy classifiers us-

ing different model architectures. Fuzzy sets and systems, 159(23), 3160–3182.

doi: http://dx.doi.org/10.1016/j.fss.2008.06.019.

Angelov, P. P. et al. (2004). An approach to online identification of takagi-sugeno fuzzy

models. Ieee transactions on systems, man, and cybernetics. part b, cybernetics : a
publication of the ieee systems, man, and cybernetics society, 34(1), 484–98.

Angelov, P. (2008). Evolving fuzzy-rule-based classifiers from data streams. Ieee transactions
on fuzzy systems, 16(6), 1462–1475. doi: 10.1109/TFUZZ.2008.925904.

Angelov, Plamen; Filev, Dimitar P.; Kasabov, N. (2010). Evolving Intelligent Systems:
Methodology and Applications. New York: John Wiley & Sons.

Babuska, R. (1998). Fuzzy Modeling for Control (ed. 1st). Norwell, MA, USA: Kluwer

Academic Publishers.

Babuška, R. et al. (2003). Neuro-fuzzy methods for nonlinear system identification. Annual
reviews in control, 27(1), 73–85.

Beringer, J. et al. (2006). Online clustering of parallel data streams. Data & knowledge
engineering, 58(2), 180–204.

Bifet, A., Holmes, G., Kirkby, R. & Pfahringer, B. (2010). MOA: Massive Online Analysis.

Journal of machine learning research, 11, 1601–1604.

Bordes, A. (2005). The Huller : A Simple and Efficient Online SVM. Machine learning:
Ecml 2005 16th european conference on machine learning, porto, portugal, october
3-7, 2005. proceedings, pp. 505–512.

178

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In Proceed-
ings of COMPSTAT’2010 (pp. 177–186). Springer.

Breiman, L. E. O. (2001). Random Forests. Machine learning, 45(1), 5–32.

Caridakis, G., Karpouzis, K., Drosopoulos, A. & Kollias, S. (2010). SOMM: Self orga-

nizing Markov map for gesture recognition. Pattern recognition letters, 31(1), 52–59.

doi: 10.1016/j.patrec.2009.09.009.

Carozza, M. et al. (2000). Towards an incremental SVM for regression. Neural networks,
2000. ijcnn 2000, proceedings of the ieee-inns-enns international joint conference on,

pp. 405–410.

Carpenter, G., Grossberg, S. & Rosen, D. (1991a). Fuzzy ART: Fast stable learning and

categorization of analog patterns by an adaptive resonance system. Neural networks,

4(6), 759–771.

Carpenter, G. et al. (2010). Adaptive Resonance Theory.

Carpenter, G. A., Stephen, G. & Rosen, D. B. (1991b). ART 2-A: An adaptive resonance

algorithm for rapid category learning and recognition. Neural networks, 4(4), 493–504.

Carpenter, G. A. et al. (2017). Adaptive resonance theory. Springer us.

Carse, B., Fogarty, T. C. & Munro, A. (1996). Evolving fuzzy rule based controllers us-

ing genetic algorithms. Fuzzy sets and systems, 80(3), 273–293. doi: 10.1016/0165-

0114(95)00196-4.

Cernuda, C., Lughofer, E., Suppan, L., Röder, T., Schmuck, R., Hintenaus, P., Märzinger,

W. & Kasberger, J. (2012). Evolving chemometric models for predicting dynamic

process parameters in viscose production. Analytica chimica acta, 725(0), 22–38.

doi: http://dx.doi.org/10.1016/j.aca.2012.03.012.

Chapelle, O., Haffner, P. & Vapnik, V. N. (1999). Support vector machines for histogram-based

image classification. Ieee transactions on neural networks, 10(5), 1055–1064.

Cheng, J., Liu, H., Wang, F., Li, H. & Zhu, C. (2016). Silhouette analysis for human action

recognition based on supervised temporal t-sne and incremental learning. Ieee transac-
tions on image processing, 24, 3203 - 3217.

Cordon, O., Gomide, F., Herrera, F., Hoffmann, F. & Magdalena, L. (2004). Ten years of

genetic fuzzy systems: current framework and new trends. Fuzzy sets and systems,

141(1), 5–31. doi: 10.1109/NAFIPS.2001.943725.

Cordón, Oscar; Herrera, Francisco; Hoffmann, F.; Magdalena, L. (2001). Genetic Fuzzy
Systems. World Scientific.

179

Deng, D. et al. (2003). On-line pattern analysis by evolving self-organizing maps. Neurocom-
puting, 51(0), 87–103.

Diehl, C. P. et al. (2003). SVM incremental learning, adaptation and optimization. Neu-
ral networks, 2003. proceedings of the international joint conference on, 4, 2685–2690

vol.4.

Ditzler, G., Muhlbaier, M. D. & Polikar, R. (2010). Incremental Learning of New Classes in

Unbalanced Datasets: Learn + + .UDNC. In Multiple Classifier Systems (pp. 33–42).

Djioua, M. et al. (2009). Studying the variability of handwriting patterns using the Kinematic

Theory. Human movement science, 28(5), 588–601.

Forster, K., Monteleone, S., Calatroni, A., Roggen, D. & Troster, G. (2010). Incremen-

tal kNN Classifier Exploiting Correct-Error Teacher for Activity Recognition. 2010
ninth international conference on machine learning and applications, pp. 445–450.

doi: 10.1109/ICMLA.2010.72.

Frank, T., Kraiss, K. F. & Kuhlen, T. (1998). Comparative analysis of fuzzy ART and ART-2A

network clustering performance. Ieee transactions on neural networks / a publication of
the ieee neural networks council, 9(3), 544–59. doi: 10.1109/72.668896.

Freund, Y. et al. (1995). A desicion-theoretic generalization of on-line learning and an appli-

cation to boosting. European conference on computational learning theory, pp. 23–37.

Gail A. Carpenter, Stephen Grossberga, J. H. R. (1991). ARTMAP: Supervised real-time

learning and classification of nonstationary data by a self-organizing neural network.

Neural networks, 4(5), 565–588.

Gama, J. a. (2010). Knowledge Discovery from Data Streams. Chapman and Hall/CRC.

doi: 10.1201/EBK1439826119.

Gangadhar, G., Joseph, D. & Chakravarthy, V. (2007). An oscillatory neuromotor model

of handwriting generation. International journal of document analysis and recognition
(ijdar), 10(2), 69–84. doi: 10.1007/s10032-007-0046-0.

Glotin, H., Warnier, P., Dandurand, F., Dufau, S., Lété, B., Touzet, C., Ziegler, J. C. & Grainger,

J. (2009). An Adaptive Resonance Theory account of the implicit learn-

ing of orthographic word forms. Journal of physiology, paris, 104(1-2), 19–26.

doi: 10.1016/j.jphysparis.2009.11.003.

Gomez, J. et al. (2002). Evolving Fuzzy Classifiers for Intrusion Detection. Proceedings of
the 2002 ieee workshop on information assurance., (June 2001).

Grabner, H. et al. (2006). On-line Boosting and Vision. Computer vision and pattern recogni-
tion, 2006 ieee computer society conference on, 1, 260–267.

180

Gua, B., Shenge, V. S., Wangf, Z., Hog, D., Osmanh, S. & Li, S. (2015). Incremental learning

for v-support vector regression. Neural networks, 67, 140-150.

H., W. D. et al. (1997). No free lunch theorems for optimization. Ieee transactions on evolu-
tionary computation 1.1, 67-82.

Hall, P. M., Marshall, D. & Martin, R. R. (1998). Incremental eigenanalysis for classification.

British machine vision conference i, (May), 286–295.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.

Journal of educational psychology, 24(6), 417.

Hsu, C.-C. et al. (2008). Incremental clustering of mixed data based on distance hierarchy.

Expert systems with applications, 35(3), 1177–1185.

Kasabov, N. (2001). Evolving fuzzy neural networks for supervised/unsupervised online

knowledge-based learning. Systems, man, and cybernetics, part b: Cybernetics, ieee
transactions on, 31(6), 902–918. doi: 10.1109/3477.969494.

Kasabov, N., Zhang, D. & Fang, P. S. (2005). Incremental Learning in Autonomous Systems :

Evolving Connectionist Systems for On-line Image and Speech Recognition. Proceed-
ings of ieee workshop on advanced robotics and its social impacts, pp. 120–125.

Kohonen, T. (1990). The self-organizing map. Proceedings of the ieee, 78(9), 1464–1480.

LeCun, Y. et al. (1998). The MNIST database of handwritten digits.

Leistner, C. et al. (2009). On-line Random Forests. Computer vision workshops (iccv work-
shops), 2009 ieee 12th international conference on, pp. 1393 – 1400.

Lemos, A., Caminhas, W. & Gomide, F. (2013). Adaptive fault detection and di-

agnosis using an evolving fuzzy classifier. Information sciences, 220(0), 64–85.

doi: http://dx.doi.org/10.1016/j.ins.2011.08.030.

Li, Y. (2004). On incremental and robust subspace learning. Pattern recognition, 37(7), 1509–

1518. doi: 10.1016/j.patcog.2003.11.010.

Lin, X., Soergel, D. & Marchionini, G. (1991). A self-organizing semantic map for information

retrieval. Sigir ’91 proceedings of the 14th annual international acm sigir conference on
research and development in information retrieval, pp. 262–269.

Liu, C.-L. (2007). Normalization-cooperated gradient feature extraction for handwritten char-

acter recognition. Ieee transactions on pattern analysis and machine intelligence, 29(8),

1465–1469.

Ljung, L. (1999). System Identification: Theory for the User. Upper Saddle River, New Jersey:

Prenntice Hall PTR, Prentic Hall Inc.

181

Lughofer, E. (2011). Evolving Fuzzy Systems: Methodologies, Advanced Concepts and Appli-
cations. Springer, Berlin Heidelberg.

Lughofer, E. et al. (2013a). Reliable All-Pairs Evolving Fuzzy Classifiers. Fuzzy systems, ieee
transactions on, 21(4), 625–641.

Lughofer, E. (2008a). FLEXFIS: a robust incremental learning approach for evolving Takagi-

Sugeno fuzzy models. Fuzzy systems, ieee transactions on, 16(6), 1393–1410.

Lughofer, E. (2008b). Extensions of vector quantization for incremental clustering. Pattern
recognition, 41(3), 995–1011. doi: 10.1016/j.patcog.2007.07.019.

Lughofer, E. (2012). A Dynamic Split-and-Merge Approach for Evolving Cluster Models.

Evolving systems, 3(3), 135–151. doi: 10.1007/s12530-012-9046-5.

Lughofer, E. (2013). On-line assurance of interpretability criteria in evolving fuzzy systems –

achievements, new concepts and open issues. Information sciences, 251, 22-46.

Lughofer, E., Bouchot, J.-L. & Shaker, A. (2011). On-line Elimination of Local Redundancies

in Evolving Fuzzy Systems. Evolving systems, 2(3), 165–187. doi: 10.1007/s12530-

011-9032-3.

Lughofer, E., Cernuda, C., Kindermann, S. & Pratama, M. (2015). Generalized smart evolving

fuzzy systems. Evolving systems, 6, 269–292.

Lughofer, E. et al. (2013b). Reliable all-pairs evolving fuzzy classifiers. Ieee transactions on
fuzzy systems, 21, 625 - 641.

Lühr, S. et al. (2009). Incremental clustering of dynamic data streams using connectivity based

representative points. Data & knowledge engineering, 68(1), 1–27.

MacQueen, J. et al. (1967). Some methods for classification and analysis of multivariate

observations. Proceedings of the fifth berkeley symposium on mathematical statistics
and probability, 1(14), 281–297.

Mamdani, E. et al. (1975). An experiment in linguistic synthesis with a fuzzy logic controller.

International journal of man-machine studies, 7(1), 1–13.

Martin-Albo, D., Plamondon, R. & Vidal, E. (2014). Training of on-line handwriting text

recognizers with synthetic text generated using the kinematic theory of rapid human

movements. Frontiers in handwriting recognition (icfhr), 2014 14th international con-
ference on, pp. 543–548.

Moamar-Mouchaweh, Sayed; Lughofer, E. (2012). Learning in Non-Stationary Environments:
Methods and Applications. New York: Springer.

Neilson, P. D. et al. (2005). An overview of adaptive model theory: solving the problems of

redundancy, resources, and nonlinear interactions in human movement control. Journal
of neural engineering, 2(3), S279.

182

O’Reilly, C. et al. (2009). Development of a Sigma–Lognormal representation for on-line

signatures. Pattern recognition, 42(12), 3324–3337.

Oza, N. C. (2005). Online bagging and boosting. Systems, man and cybernetics, 2005 ieee
international conference on, 3, 2340–2345. doi: 10.1109/ICSMC.2005.1571498.

Peura, M. et al. (1997). Efficiency of simple shape descriptors. Proceedings of the third
international workshop on visual form, 443, 451.

Plamondon, R., Feng, C. & Woch, A. (2003). A kinematic theory of rapid human movement.

Part IV: a formal mathematical proof and new insights. Biological cybernetics, 89(2),

126–138. doi: 10.1007/s00422-003-0407-9.

Plamondon, R., O’Reilly, C., Galbally, J., Almaksour, A. & Anquetil, E. (2014). Recent

developments in the study of rapid human movements with the kinematic theory: Appli-

cations to handwriting and signature synthesis. Pattern recognition letters, 35, 225–235.

doi: http://dx.doi.org/10.1016/j.patrec.2012.06.004.

Plamondon, R. et al. (2006). A multi-level representation paradigm for handwriting stroke

generation. Human movement science, 25(4–5), 586–607.

Reddy, K. K. et al. (2009). Incremental action recognition using feature-tree. Computer vision,
2009 ieee 12th international conference on, (Iccv), 1010–1017.

Režnáková, M., Tencer, L. & Cheriet, M. (2012). Online handwritten gesture recognition

based on Takagi-Sugeno fuzzy models. Information science, signal processing and their
applications (isspa), 2012 11th international conference on, pp. 1247–1252.

Režnáková, M., Tencer, L. & Cheriet, M. (2013). ARTIST: ART-2A driven Generation of

Fuzzy Rules for Online Handwritten Gesture Recognition. Document analysis and
recognition, 2013. icdar ’13. 12th international conference on.

Režnáková, M., Tencer, L. & Cheriet, M. (2015a). SO-ARTIST: Self-Organized ART-2A

inspired clustering for online Takagi–Sugeno fuzzy models. Applied soft computing, 31,

132–152. doi: http://dx.doi.org/10.1016/j.asoc.2015.02.022.

Režnáková, M., Tencer, L., Plamondon, R. & Cheriet, M. (2015b). The generation of syn-

thetic handwritten data for improving on-line learning. 17th biennial conference of the
international graphonomics society.

Režnáková, M., Tencer, L. & Cheriet, M. (2016a). Incremental Similarity for real-time on-line

incremental learning systems. Pattern recognition letters, 74, 61–67.

Režnáková, M., Tencer, L. & Cheriet, M. (2016b). Elastic Memory Learning for Fuzzy Infer-

ence Models (under review). Applied soft computing.

183

Režnáková, M., Tencer, L., Plamondon, R. & Cheriet, M. (2016c). Forgetting of unused

classes in missing data environment using artificially generated data. Application to on-

line handwritten stroke recognition (under review). Pattern recognition.

Rong, H.-J., Sundararajan, N., Huang, G.-B. & Zhao, G.-S. (2010). Extended sequential

adaptive fuzzy inference system for classification problems. Evolving systems, 2(2),

71–82. doi: 10.1007/s12530-010-9023-9.

Ross, D. a., Lim, J., Lin, R.-S. & Yang, M.-H. (2007). Incremental Learning for Ro-

bust Visual Tracking. International journal of computer vision, 77(1-3), 125–141.

doi: 10.1007/s11263-007-0075-7.

Rubine, D. H. (1991). The Automatic Recognition of Gestures.

Saffari, A., Godec, M., Pock, T., Leistner, C. & Bischof, H. (2010). Online multi-class

LPBoost. Computer vision and pattern recognition (cvpr), 2010 ieee conference on,

pp. 3570–3577. doi: 10.1109/CVPR.2010.5539937.

Schmidt, R. A. et al. (1988). Motor control and learning. Human kinetics.

Snyman, J. (2005). Practical mathematical optimization: an introduction to basic optimization
theory and classical and new gradient-based algorithms. Springer Science & Business

Media.

Song, F., Liu, H., Zhang, D. & Yang, J. (2008). A highly scalable incremen-

tal facial feature extraction method. Neurocomputing, 71(10-12), 1883–1888.

doi: 10.1016/j.neucom.2007.09.022.

Takagi, T. et al. (1985). Fuzzy identification of systems and its applications to modeling and

control. Systems, man and cybernetics, ieee transactions on, SMC-15(1), 116–132.

Tan, K., Jing, W. & David, L. (2000). T-S Fuzzy Model with Linear Rule Consequence

and PDC Controller : A Universal Framework for Nonlinear Control Systems. Fuzzy
systems, 2000. fuzz ieee 2000. the ninth ieee international conference on, pp. 549 – 554.

Tanaka, H., Krakauer, J. W. & Qian, N. (2006). An optimization principle for determining

movement duration. Journal of neurophysiology, 95(6), 3875–3886.

Tax, D. (2003). Online SVM learning: from classification to data description and back. Neural
networks for signal processing, 2003. nnsp’03. 2003 ieee 13th workshop on, pp. 499 –

508.

Tencer, L., Reznakova, M. & Cheriet, M. (2015a). TITS-FM: Transductive in-

cremental Takagi-Sugeno fuzzy models. Applied soft computing, 26, 531–544.

doi: 10.1016/j.asoc.2014.09.024.

184

Tencer, L., Režnáková, M. & Cheriet, M. (2015b). Universum Learning for Semi-Supervised

Signature Recognition from Spatio-Temporal Data. 17th biennial conference of the in-
ternational graphonomics society.

Utgoff, P. E. (1989). Incremental Induction of Decision Trees. Machine learning, 4(2), 161–

186.

Vesanto, J. et al. (2000). Clustering of the Self-Organizing Map. Neural networks, ieee
transactions on, 11(3), 586–600.

Wang, H., Pi, D. & Sun, Y. (2007). Online SVM regression algorithm-based adaptive inverse

control. Neurocomputing, 70(4-6), 952–959. doi: 10.1016/j.neucom.2006.10.021.

Wang, W., Men, C. & Lu, W. (2008). Online prediction model based on support vector

machine. Neurocomputing, 71(4-6), 550–558. doi: 10.1016/j.neucom.2007.07.020.

Wen, X., Shao, L., Xue, Y. & Fang, W. (2015). A rapid learning algorithm for vehicle classifi-

cation. Information sciences, 295, 395-406.

Willems, D. J. M. et al. (2008). Definitions for Features used in Online Pen Gesture Recogni-

tion Space-based Features. (5).

Yao, M., Qu, X., Gu, Q., Ruan, T. & Lou, Z. (2010). Online PCA with Adaptive Subspace

Method for Real-Time Hand Gesture Learning and Recognition. Wseas transactions on
computers, 9(6), 583–592.

Yu, C., Zhang, R., Huang, Y. & Xiong, H. (2009). High-dimensional kNN joins with incre-

mental updates. Geoinformatica, 14(1), 55–82. doi: 10.1007/s10707-009-0076-5.

Yuan, Y. et al. (1996). A genetic algorithm for generating fuzzy classification rules. Fuzzy sets
and systems, 84(1), 1–19.

Zhang, D. et al. (2004). Semantic, hierarchical, online clustering of web search results. Asia-
pacific web conference, pp. 69–78.

