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ESTIMATION DE MOUVEMENT PARALLÈLE AVEC CONTRAINTE DE DÉBIT
POUR LE CODAGE VIDÉO À HAUTE EFFICACITÉ

Esmaeil HOJATI NAJAFABADI

RÉSUMÉ

Ces dernières années, la demande pour les vidéos de haute qualité a augmenté et motivé

l’amélioration des technologies de compression vidéo. Le codage vidéo à haute efficacité

(HEVC) est le plus récent de telles avancées et permet de réduire le débit de moitié par rapport

à H.264/AVC pour la même qualité. Cette amélioration est accompagnée d’une complexité

de calculs beaucoup plus élevée au codeur, rendant difficile le déploiement de HEVC pour

des applications typiques. Utiliser des architectures hétérogènes est une approche reconnue

pour réduire le temps d’exécution des algorithmes complexes. Cependant, HEVC n’est pas

conçu pour être exécuté sur des architectures massivement parallèles. Cette recherche vise à

étudier la parallélisation à granularité fine de l’estimation de mouvement avec contrainte de

débit représentant la partie la plus complexe du codeur HEVC.

Dans ce projet, nous étudions les outils parallèles existants dans HEVC et dans la littérature

pour permettre des implémentations parallèles de HEVC. Les inconvénients des méthodes

existantes sont discutés. Nous proposons ensuite un cadre parallèle flexible et efficace en

deux étapes. La proposition fournit une très grande granularité de parallélisme adaptée aux

architectures hétérogènes. En outre, pour réduire la perte de performance débit-distorsion (RD)

causée par la rupture de la dépendance des données, nous proposons une approche d’estimation

de mouvement à prédicteurs multiples, dont une méthode à prédicteurs temporels multiples.

Nos résultats expérimentaux montrent que notre méthode permet d’améliorer le Bjøntegaard-

Delta Rate (BD-Rate) de 1.44% en moyenne comparée à la méthode parallèle de référence

rate-constrained motion estimation (RCME) avec un prédicteur et de 0.92% comparée à une

méthode compétitive de l’état de l’art utilisant la moyenne des prédicteurs. De plus, selon les

spécifications matérielles de l’unité de traitement graphique (GPU), une méthode de recherche

innovante est proposée pour exploiter la puissance des GPUs plus efficacement. Le temps

d’exécution du processus d’encodage entier est réduit de 40% comparé à l’algorithme RCME

le plus rapide.

Les résultats de cette recherche devraient conduire à une architecture améliorée pour les

encodeurs HEVC permettant d’exploiter la puissance de calcul des architectures multicoeurs

massivement parallèles pour augmenter la vitesse tout en préservant les performances RD.

Mots clés: Codage vidéo à haute efficacité (HEVC), codage vidéo parallèle, estimation de

mouvement parallèle, vidéo à haute qualité, codage vidéo hétérogène





MASSIVELY PARALLEL RATE-CONSTRAINED MOTION ESTIMATION FOR
HIGH EFFICIENCY VIDEO CODING

Esmaeil HOJATI NAJAFABADI

ABSTRACT

In recent years, the demand for high-quality video has increased and motivated video

compression technologies to improve. High Efficiency Video Coding (HEVC) is the newest

of such advances that intends to reduce the bit rate by half relative to H.264/MPEG-4 AVC

for the same quality. This improvement comes with much higher computational complexity at

the encoder; making it difficult to deploy HEVC in typical applications. Using heterogeneous

architectures is a recognized approach to reduce the execution time of complex algorithms.

However, HEVC is not well designed to be executed on massively parallel architectures. This

research aims to study the fine-grained parallelization of rate-constrained motion estimation

which is the most time-consuming part of the HEVC encoder.

In this project, we investigate the existing parallel tools in HEVC and the literature related

to parallel implementations of HEVC. We discuss the drawbacks of existing methods. Then,

we propose a two-stage parallel framework, which is flexible and efficient. The proposed

framework provides a high degree of parallelism suitable for heterogeneous architectures.

Furthermore, to reduce the rate-distortion (RD) performance loss caused by breaking data

dependencies, we propose a multi-predictor rate-constrained motion estimation approach and

a multiple temporal predictor method. According to the experimental results, our proposed

methods improve the Bjøntegaard-Delta Rate (BD-Rate) by an average of 1.44% compared

to the one predictor parallel rate-constrained motion estimation (RCME) method and 0.92%

compared to a leading state-of-the-art method which uses the average of predictors. Moreover,

according to the graphics processing unit (GPU) hardware specifications an innovative search

method is introduced to exploit the power of GPUs more efficiently. The execution time of the

whole encoding process is reduced 40% compared to the fastest RCME algorithm.

The results of this research are expected to lead to an improved architecture for HEVC encoders

that can exploit the computational power of massively parallel many-core architectures to

increase speed while preserving the RD performance.

Keywords: High Efficiency Video Coding (HEVC), Parallel Video Coding, Parallel Motion

Estimation, High Quality Video, Heterogeneous Video Coding
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INTRODUCTION

Problem statement and motivation

Current advances in display manufacturing will increase the usage of high-quality video like

high-definition (HD) and ultra-HD (4K UHD and 8K UHD). Video stream delivery at these

resolutions demands new and improved video coding technology beyond the capability of the

popular H.264/AVC standard (Wiegand et al., 2003).

To address the demand for new video codecs, the ITU-T Video Coding Experts Group (VCEG)

and ISO/IEC Moving Picture Experts Group (MPEG) made a collaborative group entitled the

Joint Collaborative Team on Video Coding (JCT-VC) in 2010. The goal was to design a

new video coding standard according to the new requirements. The outcome of this group

is HEVC/H.265 (Bross et al., 2013) that can reduce the bit rate by half relative to H.264/AVC

for the same perceived quality (Sullivan et al., 2012).

HEVC is based on the same hybrid architecture as its preceding standard. However,

numerous improvements have been made in the frame splitting, inter and intra-prediction

modes, transformation, in-loop filtering and entropy coding of the new design. The coding

improvement of HEVC is obtained at the expense of higher computational complexity in the

encoder structure. This means that coding a video sequence for real-time applications needs

more powerful hardware. In addition, a single processor with existing technologies is not able

to perform enough computations to meet the demand.

Parallel processing techniques have been used in many computationally intense problems. In

addition, it is apparent that hardware manufacturers intent to build multi-core processors to

provide more computation capability. Accordingly, using a powerful graphics processing unit

(GPU) along with a multi-core central processing unit (CPU) in smartphones and personal

computers is common. The aforementioned reasons and the high complexity of HEVC are
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the main reasons for using parallel processing in HEVC. Yet, several difficulties exist for

parallelization of an HEVC encoder. In subsequent sections, we explain these complications

and aim to increase parallelization of the most complex part of the encoder.

Using parallel processing techniques in HEVC for highly complex processes can be beneficial.

Accordingly, the need to take advantage of parallel processing architectures was recognized

during the development of HEVC, so it contains features that are friendly to parallel

implementation. The novel tools for supporting high-level parallelism include tiles and

wavefront parallel processing (WPP). However, in the future sections, it is demonstrated that

these tools only provide a low degree of parallelism. Conversely, algorithms need to have a

high degree of parallelism in order to exploit GPU and many-core architecture capabilities.

Furthermore, using the high-level parallelization tools will reduce the coding performance

of the encoder since they restrict some features of the encoder. These restrictions impact

the encoded video quality and the compression ratio. To cope with the aforementioned

problems, researches aim at proposing algorithms that provide a fine degree of parallelism

while preserving the performance of HEVC. According to many researches, inter-prediction

is the most complex step in the encoding process (Bossen et al., 2012),(Vanne et al., 2012).

Among the HEVC encoding steps, inter-prediction shows a great potential for providing a high

degree of parallelization because of its high computational complexity. Furthermore, it is well

suited for implementations on heterogeneous architectures because it can be considered as a

data parallelism problem. Therefore, we focus on the parallelization of the inter-prediction and

particularly of the rate-constrained motion estimation (RCME) algorithm in HEVC.

In this research, different aspects of inter-prediction parallelization will be investigated and

existing issues will be addressed using novel approaches. A major problem on the way to

parallelization is the unavailability of motion vector predictor (MVP) that prevents the RCME

to be performed in parallel. Furthermore, inter-prediction highly contributes to the improved
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performance of HEVC. Thus, a slight performance degradation in the coding algorithm will

result in a high rate-distortion (RD) performance degradation. Besides, the implementation

aspect of a parallel algorithm has to be considered. In addition to the HEVC encoder, the

proposed techniques and methods can be used in transcoding and transrating systems. The

results of this research will help designing new generations of encoders, transcoders and

transraters that can be employed in both real-time and non-real-time applications.

Objectives

Considering the aforementioned problem, we defined the main objective of this research

as providing an efficient parallel framework with a high degree of parallelism for the rate-

constrained motion estimation step of HEVC. This results in an appropriate parallel processing

technique for heterogeneous system to speedup the HEVC encoding. To accomplish that goal,

we determined the specific objectives and sub-objectives as follows:

• Develop an efficient HEVC parallel framework for many-core architectures with:

• Execution model for HEVC process with separated steps.

• Low memory transfer requirements.

• Parallel rate-constrained motion estimation.

• Fine-grained parallelization.

• Develop a parallel HEVC encoder software for heterogeneous hardware.

These objectives will be achieved by the approaches and ideas in Chapter 3. To achieve an

efficient HEVC parallel framework for many-core hardware, we addressed four sub-objectives.

First, to offload calculations on the GPU, the calculation process should be modified. However,

the HEVC steps are very dependent of each other; the execution model with separated steps is
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a required objective. Furthermore, one major drawback of using a co-processor is due to cost

of transferring the raw data to co-processor and transferring the results back to the processor.

This objective is addressed by reducing the transfered data and introducing the multi-predictor

candidates list.

A high degree of parallelism is an essential objective for efficiency of many-core architectures.

We have proposed the multi-predictor rate-constrained ME in order to provide such paralleliza-

tion. Furthermore, the multiple temporal predictor method will address the RD performance

loss caused by removing dependencies of motion estimation. Moreover, a nested diamond

search method specifically designed to perform motion estimation in GPU is introduced to

improve the implementation for heterogeneous hardware. This work has let to the publication

of two conference papers in prestigious international conferences (Hojati et al., 2017a,b).

Since the high complexity encoder is usually used by video providers, the industrial objective

is addressed by developing an HEVC encoder for heterogeneous hardware. The results of this

project will help video streaming providers to deliver high-quality video content with increased

speed. Reducing the encoding time allows video providers to produce and deploy high quality

and real-time applications, which enables them to extend the applications of HEVC. As a

result, we expect, besides the academic contribution achievements of this project, to benefit

video industries for entertainment and interactive video applications as the main areas of video

coding.

Thesis Structure

In this thesis, after a brief survey of the HEVC architecture in Chapter 1, we review

the literature of the parallel HEVC in Chapter 2. Furthermore, we especially investigate

publications on the parallel motion estimation field. In Chapter 3, the proposed methods

are explained which consist of multiple predictor rate-constrained motion estimation (MP-
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RCME), multiple temporal predictor rate-constrained motion estimation (MTP-RCME) and

nested diamond pattern (NDS). Afterwards, we will present our experimental results. Finally,

we conclude our work and provide recommendations.





CHAPTER 1

HEVC ENCODER OVERVIEW

In this chapter, we briefly explain the high efficiency video coding (HEVC) standard with

focus on parts that are important for our research. In the first section, the HEVC encoding

process is illustrated with a brief description of block structures and other key features of

HEVC. Afterward, the inter-prediction as the most time-consuming part of the encoder will be

explained in more details. Then, the rate distortion optimization (RDO) is described. Finally,

we describe the existing parallel tools in HEVC followed by an analysis of their strengths and

weaknesses. Moreover, a complete description of the HEVC standard is available in (Sullivan

et al., 2012), (Sze et al., 2014) and (Wien, 2015).

1.1 Encoder overview

Similar to H.264/MPEG-4 AVC, HEVC adopted a hybrid video coding architecture with

several enhancements in each part (Katsigiannis et al., 2013). The HEVC coding process is

based on removing redundant information in several stages. Figure 1.1 shows a simplified

cascade schematic of the HEVC encoder architecture. Each picture is partitioned into

rectangular block-shaped regions and the pixels of this block are coded by prediction mode and

residual signal. There are two possible prediction modes in HEVC, intra-prediction and inter-

prediction. Intra-prediction uses spatial information within the same frame to build the current

block content. On the other hand, inter-prediction will find the best match for the current

block in previously coded frames. Regardless of the prediction type, the difference between

the original block and its predicted block will be transformed by a linear spatial transform.

Subsequently, the resulting transform coefficients will be scaled and quantized. Finally, this

residual data plus prediction information are coded by the entropy coder to form the encoded

bit stream.

However, as it is depicted in fig. 1.2, a real encoder architecture is much more complex. The

encoder also performs the decoding process to generate the exact same results as on the decoder
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Figure 1.1 Simplified hybrid video encoder

side. Inverse scaling and inverse transform of the encoded data will reproduce the image and

then the residual signal can be calculated. Furthermore, a loop filter is used to smooth out the

artifacts induced by the block-wise processing of HEVC. The reconstructed picture is stored in

a buffer in order to be used for subsequent predictions. This architecture prevents any drifting

or aggregation error in the coding progress because the reconstructed picture is identical to the

picture on the decoder side.

Furthermore, there are several decisions in each step that have to be made by the encoder

in order to provide best rate-distortion performance. For instance, split blocks and prediction

parameters have a great influence on rate-distortion. This process is performed by an exhaustive

execution of RDO by evaluating all possible choices and selecting the best as the final choice.

In the following sections, we will explain the HEVC features more precisely.

1.1.1 Frame partitioning

The high-level segmentation of a picture in HEVC is achieved based on the slice concept.

Using the slices, the frame can be partitioned in such a way that each slice is independently

decodable from other slices (Sullivan et al., 2012). A slice may consist of a complete picture

or parts of it. Each slice contains an integer number of consecutive coding tree units (CTUs).

The main advantage of slices in HEVC can be mentioned as:

1. Error Robustness: Partitioning the picture into smaller independent parts allows to gain

error robustness. Therefore, in case of data losses, the decoder is able to discard the erroneous

stream parts and start decoding from a correct block. Furthermore, the slices are sent in separate

network packets, thus, the loss of a transport packet results in a loss of only one slice.
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Figure 1.2 Typical HEVC video encoder with embedded decoder elements shaded

in light gray. Adapted from (Sullivan et al., 2012, p. 1651)

2. Parallel Processing: To partition the picture into units that can be processed in parallel since

there is no inter-dependencies between slices.

Coding units (CUs) in a slice are processed in raster scan order such that each slice of a

picture is independently decodable. This is achieved by terminating the context-adaptive

binary arithmetic coding (CABAC) bitstream at the end of each slice and by breaking CTU

dependencies across slice boundaries. This prevents the encoder from using the spatial

information outside the slice boundaries. Thus, the coding efficiency usually decreases quite

substantially when increasing the number of slices used for a picture.

Additionally, each slice can be coded using different coding types among three slice types. The

first type is I slice in which all CUs of the slice are coded using only intra-prediction mode.

The second type is P slice. Inside a P slice, in addition to the coding types of I slice, some

CUs can be coded using inter-prediction with one motion-compensated prediction signal per
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prediction block (PB). The last slice type is called B slice that is similar to P slices with two

predictions per PB.

The tile is a partitioning mechanism similar to slices, which is based on a flexible subdivision of

the picture into rectangular regions of CTU. In addition, coding dependencies between CTUs

of different tiles are prohibited. Contrary to slices tiles provide better support for parallel

processing rather than error resilience (Zhou et al., 2012). Although, non-uniform tiles are

allowed in HEVC, typically each tile consists of an approximately equal numbers of CTUs

(Misra et al., 2013). In fig. 1.3, tiles and slices partitioning is illustrated.

7 8 9 20 21 22 23 24 31 32 33
4 5 6 15 16 17 18 19 28 29 30
1 2 3 10 11 12 13 14 25 26 27
Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6

Tile 7 Tile 8 Tile 9

12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11

Slice 1

Slice 2

Slice 3

Slice 4

Figure 1.3 Frame partitioned by Tiles (left) and Slices (right). Adapted from (Misra

et al., 2013)

Furthermore, using slices and tiles simultaneously is permitted but tiles must include complete

slices or slices must include complete tiles.

1.1.2 Block partitioning

In contrast to the fixed Macroblock (MB) size (16×16) in H.264/AVC, HEVC uses a more

adaptive quadtree structure called CTU. The quadtree structure consists of blocks and units

with a maximum size of 64× 64. A block includes a rectangular area of picture samples and
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a unit is formed by a luma block and two chroma blocks with related syntax information. For

instance, a CTU is formed by a luma coding tree block (CTB) and two chroma CTBs with

syntax determining further subdivisions. As a result of subdivisions, new units called CUs are

generated. The encoder can decide whether a CTB divides into one CU or more. In fig. 1.4 an

example of a coding tree is depicted.

1 2 3

4 5 6 7

8 9

10 11 12 13

64x64

32x32

16x16

8x8

1 2

3 4 5
6 7

8

9
10 11

12 13

Figure 1.4 Partitioning of a 64×64 CTU into CU of 8×8 to

32×32 luma samples. The partitioning described by a quadtree

(left). The numbers indicate the coding order of the CU

The CU can be divided into prediction units (PUs) and transform units (TUs) that perform

prediction and transformation respectively. CUs, PUs and TUs consist of associated luma and

chroma blocks called coding blocks (CBs), PBs and transform blocks (TBs) respectively.

It is clear that HEVC splitting is more adaptive relative to the approach used in H.264/AVC

and is notably useful for high resolution videos. Figure 1.5 shows an example of dividing a

picture into CBs and TBs using quadtree structure. The quadtree that is used for dividing a CB

into TBs has its root at the CB level and is called residual quad tree (RQT) since it is built over

the residual data.

As it can be seen, there are many possible ways to split a picture into units and blocks. The

encoder should perform heavy computations to use the full capabilities of the syntax. This

is mostly because the encoder should choose the most efficient coding tree structure and the
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Figure 1.5 Frame partitioning with the quadtree coding blocks

best way for the subdivision of a CB into PBs and TBs. The RDO process considers all the

encoding possibilities and compares them with regard to bit rate and picture quality. Since CB

is the root for PB partitioning and RQT configuration, it could be generally deduced that the

computational complexity of RDO increases monotonically with the depth of CB splitting (Ma

et al., 2013). It is obvious that CB depth can be limited to reduce the complexity but it will

decrease the coding efficiency because small CBs are efficient for regions of the picture with

complex details while large CBs provide better results for large homogeneous areas.

1.1.3 Block prediction

In HEVC, each coding block is the root for prediction blocks. The possible modes of splitting

a CB into PBs are shown in fig. 1.6. Furthermore, intra-prediction mode can use N×N and

2N×2N partitioning, while inter-prediction can use all partitionings. Here we explain intra-

prediction and inter-prediction briefly.

• Intra-prediction

Intra-prediction reduces the picture spatial redundancy. The available samples on the edge of

a block will be used to predict samples inside the block. There are 33 directional modes, 1
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NxN 2Nx2N 2NxN Nx2N

nRx2N nLx2N 2NxnU 2NxnD

Figure 1.6 The possible modes of partitioning a CB

into a PB. Intra CBs can apply only the N×N and

2N×2N

planar and 1 DC prediction modes in HEVC. The selected modes are encoded by deriving

most probable modes according to previously coded adjacent blocks.

• Inter-prediction

In order to remove temporal redundancy between the frames of a video, inter-prediction is used

in HEVC. Typically, in video sequences, only small differences between consecutive scene

content are observed and these differences are usually due to the movement of objects. Thus,

extensive parts of the scene can be efficiently represented by motion vectors and a prediction

error. The motion vectors determine what picture regions should be used from the reference

picture to predict the content of the current picture. The prediction error compensates the part

of the content that could not be obtained by the applied motion model. In HEVC, the process

of finding the best match with respect to rate-distortion cost is RCME. The goal of RCME is to

find the motion vector that jointly requires the minimum number of bits and produce minimum

distortion. Since the inter-prediction concept is crucial to this research, we explain this part

with more details in Section 1.2.
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1.1.4 In-loop filter, quantization and entropy coding

As illustrated in fig. 1.2, there are other important parts in the HEVC encoder which we will

explain briefly.

• In-loop filtering

Since hybrid video coding is a block-based process, appearance of visual artifacts in block

boundaries is inevitable. Loop filtering is a method to increase the reconstruction quality of

the picture especially at block edges. Since the filter is located in the loop, the enhancement

will affect the quality of the output pictures and reference pictures, which are accessible for

prediction of next pictures.

In HEVC, two sequential in-loop filters are considered. The first step is a deblocking filter

that is applied to prediction blocks and transform blocks’ edges. The second filter is a sample

adaptive offset (SAO) which can be calculated by sample value differences of a local area, or

by classifying all pixels of a region into multiple groups.

• Transformation and quantization

The prediction step will find the best content prediction of a block. However, the difference

between actual content and predicted value can generate significant distortion. This difference

is called residual signal and this residual has to be transmitted to the decoder in order to allow

the proper reconstruction of the original signal.

In HEVC, the residual signal of a picture is divided into square blocks called transform block,

each residual block is then input to a two-dimensional forward transform. The resulting

transform coefficients (coeff) are then processed by a quantizer (which performs division by a

quantization step size Qstep and then rounding) to get quantized transform coefficients. Using

this process, the number of bits required for residual coding will be significantly reduced.

• Entropy coding

Entropy coding is a lossless compression method that uses the statistical information to achieve

compression. For example, when compressing a picture, frequently used colors are each
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represented by a few bits, while infrequently used colors are each represented by more bits.

CABAC is used for entropy coding in HEVC. Entropy coding is the last stage of the video

encoding process, after the video signal has been condensed to a sequence of syntax elements.

Syntax elements include all required information to reconstruct the video sequence, for

instance quadtree structures, prediction information, etc. The simplified design of CABAC

includes the key elements of binarization, context modeling, and binary arithmetic coding.

In the binarization step, syntax elements will be mapped to binary symbols (bins). Context

modeling estimates the probability of each bin based on specific context from previously coded

bins. Lastly, binary arithmetic coding compresses the bins to bits considering the estimated

probability. The context modeling improves the compression ratio by building a statistical

model of previously coded bins, however, it forces a dependency on the encoding process.

Without knowing the state of the context, CABAC is not able to produce the correct compressed

bit stream.

1.2 Inter-prediction in HEVC

The inter prediction is performed on the PB and tries to find the best possible prediction in

an available reference picture. The corresponding PU includes the information of how inter

prediction is performed. Inter prediction is also called motion compensated prediction since

moved areas of the reference pictures are used for the prediction of the current PB. The resulting

displacement between the region in the reference picture and the current PB is inferred as the

motion vector. Since the encoded motion vectors are usually determined by the application

of a rate-distortion criterion, these vectors do not essentially represent the true motion of the

region but the most efficient representation in terms of rate-distortion. The process of finding

best motion vector is called RCME.

Furthermore, in order to achieve better prediction, motion vectors are applied in quarter-

sample accuracy for luma inter prediction. The same motion vectors are applied for chroma

components. The required subsamples are generated from integer pixels using interpolation

filters.
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In this section, first the motion vector representation is explained to illustrate the number of

bits required for signaling the motion vector. It can be seen that the data dependency in

rate-constrained motion estimation is due to motion vector representation. Next, subsample

interpolation filters are briefly described. Finally, the rate-constrained motion estimation is

explained.

1.2.1 Motion vector representation

The related motion vectors for motion compensation can be signaled in two ways. In the

first method, the motion information can be encoded, where the applicable motion vector is

made from a motion vector predictor (e.g., adjacent block motion vector) and a motion vector

difference. Using a predictor and the difference allows higher compression. The motion vector

predictor is chosen from candidates obtained from spatial and temporal neighborhoods of the

current block. This representation of motion vector is called advanced motion vector prediction

(AMVP). The motion vector difference can be expressed as follows:

mvd = mvp−mv (1.1)

where, mv is the motion vector, mvp is the motion vector predictor and mvd is the difference

between the two vectors. The mv is the final result of the RCME.

The motion vector predictor is derived from the other PUs by the MVP derivation process. The

result of the MVP derivation process is a vector set consisting of two motion vectors mvpA and

mvpB. The encoder selects one of these two and it is used as mvp in Eq. (1.1).

The derivation process starts with building a list of neighboring and temporal motion vectors.

This list is generated from the candidates that are illustrated in fig. 1.7 where A0, A1, B0, B1,

B2 are adjacent PU blocks and C1 and C0 are co-located and adjacent to co-located PU blocks

in the previous frame.
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Figure 1.7 MVPs derivation positions

from (a) temporal MVPs positions (b)

spatial MVPs positions

In order to derive a list of motion vector predictors for AMVP, mvpA is derived from A0 and

A1 locations and mvpB from B0, B1 and B2 locations, respectively in that order. A candidate

is used if inter-prediction is used for that PU. If fewer than two candidates are derived, a

temporal candidate will be used. Finally, if mvpA or mvpB are still not available, they will be

filled with motion vector (0,0). For instance, when all the PUs in the aforementioned locations

are encoded using intra-prediction there is no candidate available. Furthermore, we use the

following notation to perform this process:

{mvpA,mvpB}= Derive(PUA0,PUA1,PUB0,PUB1,PUB2,PUC0,PUC1) (1.2)

Second method for signaling motion information is called merge mode prediction. In this

mode, the motion information can be inferred by selection from a set of neighboring candidates,

without encoding a motion vector difference. After building the merge MVP candidates, there

is no need for motion estimation and the encoder just evaluates the RD cost of the current

block, using the exact prediction information of the merge MVPs.
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1.2.2 Subsample interpolation

To improve the motion estimation accuracy, the encoder can conduct fractional motion

estimation performed on interpolated samples. In that case, quarter-sample precision is used

for the MVs, and 7-tap or 8-tap filters are used for interpolation of fractional-sample positions

(Sullivan et al., 2012). The interpolated values for luma components can be calculated using

the coefficients presented in table 1.1.

Table 1.1 Luma interpolation filter coefficients

Phase Filter coefficients
1/4 [-1,4,-10,58,17,-5,1]/64

1/2 [-1,4,11,40,40,-11,4,-1]/64

In fig. 1.8, integer and fractional sample positions are shown, where fractional positions are

denoted by lowercase symbols. It is evident that the calculation of interpolated samples is

highly complex for large regions. As a result, fractional motion estimation on subsamples is

performed for a small region around the best integer motion vector.

1.2.3 Rate-constrained motion estimation

Rate-constrained motion estimation is a process to estimate the best prediction parameters

based jointly on distortion and rate. The HEVC standard is not explicitly determining how to

perform the motion estimation. Figure 1.9 shows the motion estimation of the current block

based on a reference frame.

Therefore, the motion estimation algorithm in the HEVC test Model implementation (HM1)

is formulated in this section. Since the calculation of the exact distortion and rate would be

extremely time-consuming for all motion vectors, an estimation of the cost is used.

In this estimated cost, the sum of the absolute differences (SAD) is used as distortion measure

for integer precision motion vectors. Also, the sum of the absolute transformed differences
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Figure 1.8 Integer and fractional sample positions for

luma interpolation. The green locations are integer

sample positions. Using the interpolation filters, the

yellow sub-samples are calculated. Finally, the blue

sub-samples are calculated vertically

(SATD) is used for fractional motion vectors. Moreover, the rate is chosen as the motion

vector difference cost. Thus, the prediction parameters that results in the minimum cost can be

estimated as follows:

PME= (mv∗,mvp∗) = arg min︸ ︷︷ ︸
∀mv∈MVsearch,∀mvp∈{mvpA,mvpB}

{D(mv)+λ ·R(mvp−mv)} (1.3)

where the two derived motion vector predictor candidates are denoted by mvpA and mvpB.

As mentioned before, these predictors are selected from neighboring PUs using Eq. (1.2). In

addition, MVsearch is a set of paired integers that determines the displacement motion vector mv.
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Figure 1.9 Motion estimation in a search range around

the co-located block in the reference picture

Furthermore, λ is the Lagrangian weighting factor, used to minimize the distortion measure D

and the required rate R jointly. The calculation of Eq. (1.3) can be performed by different

methods called search algorithms. The most straightforward search method is an exhaustive

fullsearch algorithm. However, more complex methods like Test Zone Search (TZS) can be

used to find a suboptimal result with less computations. Fullsearch and TZS are explained in

the following sections.

Furthermore, performing fractional motion estimation for the whole search range imposes a

great amount of calculations. In order to overcome this problem, first, the rate-constrained

motion estimation is performed for integer motion vectors, and then the fractional motion

vector is determined around the best integer motion vector. Therefore, Eq. (1.3) can be

calculated by integer motion estimation followed by fractional motion estimation. In the integer

motion estimation, the motion estimation is searching for the best motion vector in the original

pixels. However, the fractional motion estimation is pointing to the pixel that result from the

interpolation filter and should be calculated by the encoder.
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1.2.3.1 Fullsearch

Fullsearch is the most straightforward algorithm to perform RCME. This algorithm exhaus-

tively evaluates motion vectors of a rectangular area. In the Eq. (1.3), the MVsearch set covers a

square area, determined by the search range (SR) variable as:

MVsearch =
{
(x,y)

∣∣∣ |x|� SR, |y|� SR
}

(1.4)

The above equation is representing a rectangular search range. In addition, SR value can be

fixed (defined by users) or adaptively changed by the motion estimation algorithm. For each

MV in the MVsearch, the distortion is calculated by SAD.

Since performing fractional motion estimation for the whole search range imposes a great

amount of calculations, Eq. (1.3) is calculated by integer motion estimation followed by

fractional motion estimation using Eq. (1.5) and Eq. (1.6).

PIME= (imv∗,mvp∗) = arg min︸ ︷︷ ︸
∀imv∈MVsearch,

∀mvp∈{mvA,mvB}

{SAD(imv)+λi·R(mvp− imv)} (1.5)

PFME= (fmv∗,mv∗) = arg min︸ ︷︷ ︸
∀fmv∈{(imvx+x,imvy+y)},

x,y∈{0,± 1
4 ,± 1

2 ,± 3
4}

{SATD(fmv)+λf·R(mvp∗ − fmv)} (1.6)

where imv = (imvx, imvy). Moreover, λi and λ f are the Lagrangian factors for integer and

fractional RCME respectively.
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1.2.3.2 TZS a suboptimal search

Suboptimal approaches examine a reduced set of motion vectors (MVs) to decrease the

computational complexity but, as their name indicate, they may find suboptimal MVs. Among

those, the Test Zone Search (TZS) has been adopted in the HEVC test model implementation.

TZS has four different steps: motion vector prediction, initial search, raster search and

refinement search.

The motion vector prediction is the first step of TZS. It is used to predict the region near to the

best possible result. This will speed up the block search in the next steps by guiding the search

to a region where probably the best matching block is located. The motion vector prediction is

based on five predictors from the MVs of previously encoded blocks. The left, the upper, the

upper-right, the median and the co-located predictors are tested. The best predictor is chosen

as the one that results in the lowest RD cost (Jeong et al., 2015). This MV is the best motion

vector predictor and used as the center of initial search.

The second step is the initial search. In this step, a search on the positions based on a diamond

or square pattern is performed. These patterns are illustrated in fig. 1.10. The central point is

at the MV that was obtained at the prediction step. The expansion of search pattern continues

until reaching the maximum size of the search grid. The expansion is doubled in each iteration

and each iteration is illustrated with the same color in the fig. 1.10. The point with the minimum

cost is selected as the best matched point. Furthermore, the search iterations can be stop if no

block with a smaller cost is found after three expansion levels.

The raster search is the next step. This step is only executed if the distance between the best

block matching found in the initial step and the best block matching on the pattern is greater

than a sub-sampling step. The distance is calculated as the number of pixels between the best

block matching position and the center of the pattern. In the TZS algorithm, the sub-sample

step is called iRaster and it is equal to 5. The raster search, performs a sparse fullsearch over

the search area. The sub-sampling of iRaster is performed both horizontally and vertically. The

raster search pattern is illustrated in fig. 1.11.
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(a) Diamond pattern (b) Square pattern

Figure 1.10 TZS initial search patterns

The final step is the refinement around the best position obtained until now. the refinement

tries to find a better block match by checking a smaller region. The refinement uses the same

search pattern an in the initial search but updates the center of the search area to the best result

obtained in its last iteration. Thus, the maximum number of search points is not fixed. If

no block with smaller cost is found after two expansion levels, the refinement is finished. A

simplified flowchart for TZS algorithm is illustrated in fig. 1.12.

As we can anticipate, the number of iterations depends on different parameters such as

the selected initial search center and pixel values. Thus, different number of iterations are

performed for different PUs. For instance, a spatial area of a frame with complex motion

will require more iterations than a relatively still area. However, the overall complexity of the

algorithm is significantly less than fullsearch.
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Figure 1.11 Raster Scan with iRaster equals to 5
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Figure 1.12 TZS algorithm flowchart
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1.3 Rate-distortion optimization (RDO)

In this section, we present the formulation for HEVC RDO. The RDO has to find the best

compromise between low reconstructed distortion and low signaling rate among all possible

choices. The frame consists of CTUs; therefore, the encoder selects the best possible

parameters for each CTU to minimize the total cost of the frame calculated as:

Jψ = min
pi∈PCTU,∀i∈1..NCTU

{
NCTU

∑
i=1

JCTUi(pi)

}
(1.7)

Where Jψ is the minimum cost of the frame, NCTU is the number of CTUs in the frame and

PCTU is the set of all possible parameters of the CTU. Parameters are such as frame partitioning,

quadtrees and prediction modes for CTUs. Moreover, JCTUi is the cost of the ith CTU of

the frame when CTUs are numbered in raster scan order. The parameter set PCTU is very

large, thus, solving this optimization problem is very intensive and almost impossible due to

numerous possible coding parameter combinations.

In order to solve this problem, the RDO is performed for each CTU instead of the whole

frame. Since the parameters of one CTU affect the cost of succeeding CTUs, the parameters

of previously coded CTUs are required for optimizing the cost of current CTU. The minimum

cost of a frame can be then calculated by the collective costs of frame CTUs as:

Jψ ≈
NCTU

∑
i=1

min
pi∈PCTU

{JCTUi(pi) | p1, p2, ..., pi−1} (1.8)

According to Eq. (1.8), we can calculate the minimum cost of the frame by calculating

minimum cost of each CTU given the parameters of previous CTUs.

Furthermore, the cost of the frame’s ith CTU is obtained by summing the cost of its CUs. As

we illustrated previously in fig. 1.4, each CU can be split into four smaller sub-coding units

(Sub-CUs). Therefore, each CU can be considered as the root for the smaller Sub-CUs and

for each Sub-CU this assumption can be repeated. Thus, the calculation is performed using a
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recursive function starting with the smallest leaf of the quadtree. At each depth, we have to

decide if splitting into smaller Sub-CUs results lower cost or not.

For a CU leaf in the CTU quadtree, no further CU splitting is possible. The cost of a non-

splitting CU is denoted by J′CU and is calculated by Eq. (1.9).

J′CU(d, pd) = D(d, pd)+λ .R(d, pd), d = 0, ...,Depthmax −1, pd ∈ PCU (1.9)

where, d is the depth and pd is parameters at depth d. PCU is the set of possible parameters

for a CU and will be discussed shortly. The Lagrangian weighting factor λ in Eq. (1.9) is

determined by the type of distortion measure (D) used and the quantization parameter (QP).

Moreover, R is the required rate to reconstruct the complete CU. The value of R(d, pd) is the

bitrate of the CU if it is coded using pd .

Additionally, JCU(d, pd) is a function for the minimum CU cost in the depth d of quadtree

structure. For each depth, a cost from the sum of splitting Sub-CUs and a cost from non-

splitting CU are calculated. The minimum of these two costs is considered as the minimum

cost for the CU at that depth. This determines if a CU should be split to Sub-CU or not. Thus,

for each CU depth, the cost is calculated as follows:

JCU(d, pd) = min
pd ,pd+1,i∈PCU,∀i∈1..4,d=0,... ,Depthmax−1

{
J′CU(d, pd),

4

∑
i=1

JCU(i)(d +1, pd+1,i)

}
(1.10)

where the JCU(i) denotes the ith Sub-CU and pd+1,i is its parameters. Consequently, the problem

has been simplified to finding the minimum cost of CUs in all depths. Furthermore, to calculate

the cost of the quadtree (JCTU) in Eq. (1.8), we calculate the cost of a CU with the depth 0 as

the root of the CTU.
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As we mentioned earlier, PCU set has all the possible parameters that a CU can have. This set of

possible prediction modes is defined by the HEVC standard. In addition, this parameter set may

change by user request (e.g. disabling asymmetric prediction modes in the inter-prediction).

The complete set of PCU has the following elements:

PCU = {PIntra,PInter} ,
PInter = {P2N×2N,P2N×N,PN×2N,PN×N,P2N×uN,P2N×nD,PnL×2N,PnR×2N} ,
PIntra = {P2N×2N,P4×4}

(1.11)

Intra-prediction modes are outside the scope of this project and are not discussed further.

Considering the inter-prediction modes depicted in fig. 1.6; it is clear that the prediction unit

consists of prediction partition blocks. For each partition, the best prediction is found by the

RCME. When all of the elements in Eq. (1.11) are calculated, the best prediction mode is

determined by selecting the parameter with the lowest cost.

It is recognized that to satisfy the dependencies in each CTU, the RDO process has to start

from smaller CU sizes in z-scan order. The order of RDO validation in a CTU is illustrated

in fig. 1.13. In other words, the validation of a CU cost is not possible until the validation is

performed on its Sub-CUs. There is an exception for CUs in maximum depth since they are

not allowed to split further.

Figure 1.13 RDO processing order in CTU
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For more clarity, the RDO process of one CU is depicted in fig. 1.14. The calculations of

Sub-CUs are performed if the depth is less than the maximum depth. The inter-prediction is

performed for elements of PInter set and the prediction parameter with the minimum cost is

selected as the best inter-prediction mode. As well, the best intra-prediction mode is selected

between the PIntra set elements. Moreover, the cost of the Sub-CUs is already calculated

since the same RDO process is performed for Sub-CUs recursively. Lastly, the best prediction

parameters of the CU at this depth is selected between the possible modes and a split/non-split

decision is made.

 

Figure 1.14 RDO block diagram for a CU and possible Sub-CUs

Since the RDO process is not explicitly specified by the HEVC standard, the implementation

can use different approaches to make a different trade-off between the computational complex-

ity and the RD performance. For instance, the encoder can skip the calculation of some modes

to reduce the computational complexity but at a cost of reduced RD performance.
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1.4 Parallel tools in HEVC

As mentioned before, the HEVC standard has several high-level parallel tools that facilitate

parallel processing. Parallel methods from coarse to fine grain degree are as follows.

• Group of pictures (GOP) parallelization:

In this level of parallelization, several GOPs are processed in parallel. In video coding, a GOP

structure, specifies the order in which intra- and inter-frames are organized. The GOP is a

collection of successive frames. By definition, the decoder should be enabled to decode each

GOP separately, thus, there is no dependency between GOPs. This allows the encoding of

GOPs concurrently. This provides a degree of parallelism equal to number of GOPs which are

prossesd in parallel. For instance, to encode 40 frames in GOPs with 4 frame in each GOP the

degree of parallelism is 10. However, for this kind of parallelization the GOPs’ frames should

exist before encoding. As a result, it is not appropriate for low-delay encoding. Furthermore,

the encoding complexity of GOPs are not the same and it may cause an unbalanced core

workload. An example of GOP paralellization is illustrated in fig. 1.15.

GOP1 GOP2

frame 
0

frame 
1

frame 
2

frame 
3

frame 
4

frame 
5

frame 
6

frame 
7

Thread 1

Thread 2

frame 0 frame 1

frame 4 frame 5

...

...

Figure 1.15 GOP parallelization

• Frame parallelization:

The frame parallelism is the processing of a single GOP frames. The I-frames can be encoded
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independently because the encoder is allowed to only use intra-prediction in them. However,

the P- and B-frames use both inter- and intra-prediction. Thus, these frames are dependent on

their reference frames. Thus, the frames that are used as reference should be encoded before.

This will limit the parallelization scalability and it is limited by the number of concurrent

pictures that can be processed in parallel. Thus, the GOP structure and availability of the

reference frames has an impact on this type of parallelization. Moreover, the picture level

parallelism increases the encoding latency. In fig. 1.16 an example for frame parallelization of

a GOP with the IPBBP frame structure is illustrated. The dependencies between frames are

depicted by the arrows. The degree of parallelism (DOP) in frame parallelization is:

DOP = NFrames (1.12)

where, NFrames is the number of frames that are available and processed in parallel.
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Figure 1.16 Frame parallelization

• Tiles parallelization:

As it is illustrated in fig. 1.3, tiles are used to divide a picture horizontally and vertically into

multiple sub-pictures. Prediction dependencies are broken at tile boundaries and tiles can be

processed in parallel. In addition, entropy coding and reconstruction dependencies are not
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allowed across a tile boundary, the only exception is in-loop filtering that is permitted through

the boundaries. Tiles usually provide higher coding efficiency relative to slices since spatial

distances in tiles is reduced which leads to a better spatial correlation between samples inside

a tile. However, the coding efficiency loss typically increases with the number of tiles, due to

the breaking of dependencies and resetting CABAC context at the beginning of each tile. The

degree of parallelism for tiles is:

DOP = NTiles (1.13)

where, NTiles is the number of tiles in the frame that are independently processed in parallel.

• Slice parallelization:

As definition, a slice in a picture is an independently decodable part and the only potential

dependency is in-loop filtering across the edge of slices. However, slices can be used for

parallel processing. The use of multiple slices, however, reduces the coding efficiency

significantly due to the restrictions of prediction and entropy coding outside slice borders.

In addition, the overhead of a slice is not negligible and using several slices will reduce the

RD performance of the encoder. Thus, slice-level parallelism is only beneficial with a small

number of slices per picture.

• Block level parallelization:

Block-Level parallelization is fine grained. This technique is implemented in a pipeline manner

where one core is dedicated for prediction, one for entropy coding and so on. In this way,

blocks will be coded concurrently on different cores. The main difficulty of this technique is

imbalanced tasks, which requires an elaborate scheduling. The HEVC specification includes a

special tool called wavefront parallel processing (WPP) in which each CTU row of a picture

is assumed as a separate partition. In WPP mode, each CTU row is processed relative to its

above CTU row with a delay of two CTUs. In this way, no dependency between following

CTU rows are broken at the partition boundaries except the CABAC context variables at the

end of the row. To alleviate the RD performance loss because of CABAC initialization at the

start of each CTU row, the content of the adapted CABAC context variables are propagated.
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The propagation is from the second encoded CTU of the above CTU row to the first CTU of

the current row. Therefore, performance loss of WPP is negligible (Chi et al., 2012b). Using

WPP, parallel threads up to the number of CTU rows in a picture can work simultaneously.

Therefore, the degree of parallelism of WPP is limited to the height of frame and CTU.

DOP =
HeightFrame

HeightCTU

(1.14)

The main drawbacks of WPP are the limitation on the number of parallel threads and the

unbalanced processing time for different rows. WPP is illustrated in fig. 1.17.
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Figure 1.17 Wavefront parallel processing. Grayed blocks are

processed in parallel

Slice parallelization in HEVC is not considered an efficient parallelization tool compared to

tiles and WPP. The drawbacks and advantages of WPP and Tiles tools are summarized in

table 1.2.
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Table 1.2 HEVC high-level parallel tools comparison

WPP Advantages Satisfactory RD performance.

No boundary artifacts.

Drawbacks Low workload for start and end of the frame

(ramp-up and ramp-down).

Unbalanced workload and stall of rows below.

High synchronization overhead between rows.

Medium scalability.

Decoder support is required.

Tiles Advantages Number of partitions can be freely chosen

(However, limited by the RD penalty).

No synchronization between tiles required.

Region of interest can be defined.

No boundary artifacts.

Drawbacks Lower RD performance (entropy and prediction

dependencies inhibited outside the tile).

Boundary artifacts.

Medium scalability.

Decoder support is required.

1.5 Summarize

In this chapter, we explained the fundamentals of HEVC. The coding process of HEVC is

based on removing redundant information in several stages. We explained how the frame is

partitioned into smaller blocks. The PU is the smallest building block that is used to predict

a region of the frame based on an already encoded part of the image. In inter-prediction,

the best prediction is achieved by RCME. Furthermore, the RDO process determines the best

possible parameters. Moreover, the existing parallel tools in HEVC were discussed. Table 1.2

summarized existing tools with their drawbacks and advantages. In this chapter, we provided

also an overview of the HEVC standard to explain the parts related to our project. More

detailed description of the HEVC standard is available in (Sullivan et al., 2012), (Sze et al.,

2014) and (Wien, 2015). In Chapter 2, we focus on parallelization of HEVC and we present

the state-of-the-art approaches on this topic.





CHAPTER 2

LITERATURE REVIEW ON HEVC PARALLEL PROCESSING METHODS

In this chapter, we review the most important previous works on parallelization of video coding

standards. Although we consider different parts of HEVC, our focus is on parallel motion

estimation in HEVC publications. Since the principles of the RCME in H.264 and HEVC are

similar, we also consider the ideas for the previous video coding standard that are applicable

to HEVC. We can classify the parallel HEVC publications into different groups according to

their objective or the means of achieving that goal. In fig. 2.1, we categorize papers related

to parallel processing HEVC encoder based on the papers’ objectives. In this chapter, the

coarse-grained and fine-grained parallelization literature is investigated briefly. Parallel rate-

constrained motion estimation falls into the fine-grained category and is mentioned separately

since it is the basis of our project. Furthermore, in the discussion section, the shortcomings and

drawbacks of existing state-of-the-art methods are discussed. In the next chapter, we introduce

methods to improve them.
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Parallelization literature 

Coarse-grained 
parallelization 

High-level 
parallelism 

enhancement 
(WPP,Tiles) 

Encoder control process  
modification 

 (GOP,Mode decision,...) 
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parallelization 
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In-loop filtering, 
Transform, 
Entropy, ... 

Figure 2.1 Parallel video coding literature categorization
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2.1 Coarse-grained parallelization

In the approaches of this group, the main goal is to achieve speedup in the encoder by

improving HEVC high-level parallel tools like wavefront and tiles. In (Chi et al., 2012a),

a more efficient wavefront algorithm called overlapped wavefront (OWF) that improves the

performance of WPP is presented. The authors focused on the ramp-up and ramp-down

inefficiencies in the whole process. In the proposed OWF method, when a thread has finished

processing a CTU row in the current picture and no more rows are available, they start

processing the next picture instead of waiting for the current picture to finish. The OWF

puts a boundary on the maximum vertical CTU search range in the RCME stage to ensure

that its whole reference area is available. In fig. 2.2, OWF is illustrated. In this figure, the

gray rectangle shows the available reference region for the next frame. This region is the

only available search area for the next frame’s CTUs. To evaluate the results, they implement

a parallel HEVC decoder that supports multiple parallelization strategies. Using OWF on a

parallel platform with 12 cores (2 sockets 6 core each) performs 28% faster than WPP. The

same researchers, in (Chi et al., 2012b), implemented OWF on a decoder using TILE-Gx36

platform and achieved 116 fps 4K real-time decoding.
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Figure 2.2 Overlapped wavefront. Adapted from (Chi et al., 2012a)
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In (Chen et al., 2014), the authors proposed to use of OWF in a group of pictures (GOP) in

order to achieve higher speedup. They named this Inter-Frame Wavefront (IWF). In this paper,

they analyzed the WPP and came to the conclusion that there is no possible way to improve

parallelization of intra-prediction using a WPP-based algorithm, but inter-prediction is more

flexible for that goal. They used an IBBP coding structure as illustrated in fig. 2.3. In addition,

they limit the search of vertical motion vectors by four CTUs which caused a small 0.1%

Bjøntegaard-Delta Rate (BD-Rate) loss. The results are compared to a serial implementation

by the authors, and there is no comparison with other works.

I 
Frame

B 
Frame

B 
Frame

P 
Frame

Figure 2.3 Inter-frame wavefront.

Adapted from (Chen et al., 2014)

Dong et al. proposed a Dynamic Macroblock-level Scheduling (DMS) instead of a conven-

tional row based scheduling in WPP (Dong et al., 2013). The main motivation for their work

is to reduce the idle threads in a row based processing. Also, penalties for excessive number

of threads and synchronization between them is high. By using the DMS scheme they reduce

both the unbalance and synchronization delay among multiple threads. In DMS, the basic

scheduling unit is a MB and each thread can select any available MB to encode it. After a
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thread has finished processing a MB, if the MB on the right of it is available it has the highest

priority than any other available MB otherwise it will encode another MB on the row below.

The results show a 9% speedup compared to the row-based processing.

In (Zhang et al., 2014), the authors implemented a parallel HEVC encoder on a Tilera platform.

They improved memory localities based on the Tilera hardware. In addition, they reduced

the CTU size to 16×16 and 32×32 to alleviate the WPP scalability issues but this caused

up to 15% BD-Rate penalty for 16×16 CTU size. Furthermore, like IWF they used frame-

level parallelization to increase speed. Although they mentioned this implementation has

more degree of parallelization than simple WPP, they did not indicate the overall quality loss.

However, it can be inferred that it leads to more than 15% BD-Rate loss, which is completely

unacceptable for most applications.

In order to improve tiles’ performance, Blumenberg et al. proposed an algorithm which is

performed in two stages to define the vertical and horizontal tile boundaries in order to group

the highly correlated samples into the same tile partition (Blumenberg et al., 2013). The first

stage acquires the coordinates of the vertical boundaries, while the second one acquires the

horizontal boundaries’ coordinates. The variance of each CTU must be calculated and results

in a picture variance map. Based on this map, the tile boundaries are determined. Their results

show that the proposed algorithm is able to reduce the inherent coding efficiency losses of using

tiles when compared to the conventional uniformly spaced tile partitions. The improvement is

about 0.2% BD-Rate for this algorithm compared to uniform tiles.

In (Shafique et al., 2014), output quality and efficient core allocation is considered to determine

tiles size and position. In this method the position and size of each tile can be different. The tile

formation and mapping (TFM) technique first combines the neighboring samples at the corners

of the frame to generate a so-called master tile. Afterwards, it derives so-called secondary tiles

from the master tile to cover the complete video frame and assign them to cores for processing.

This will determine the number of encoding cores required for sustaining the HEVC’s encoding

workload such that the number of cores and power consumption is minimized.
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Some of the previous works introduce a parallel framework for the whole encoder process to

improve parallel processing. In (Heng et al., 2014) an HEVC UHD real-time encoder using

three workstations and a high-speed network is introduced. The encoding process is optimized

with data parallelism and uses GPU for motion estimation. The method utilizes temporal

parallelism for GOP and spatial parallelism of pictures through slicing. It consists of four

elements: image analyzer, encoders, bitstream controller and a network switch. There is one

PC for the image analyzing and bitstream control, two PCs (32 cores each) for encoding. The

purpose of the image analyzer is to handle a 4K video input and perform motion estimation

on them by GPU. Each encoder performs the encoding of a GOP. With multiple encoders

processing different GOPs (32 frames), temporal parallelization is realized. Using slices, all

dependencies are broken and slices can be processed in parallel. Results show about 15794x

speedup compared to HEVC test model HM 11.0 and 13x compared to x265 with a PSNR loss

of 0.49 dB and 0.03 dB respectively.

In (Ahn et al., 2013) a slice/tile load balancing algorithm based on a picture complexity

model is introduced. A model based on analyzing the standard sequences that estimates the

complexity of inter/intra/merge depending on size of block is built. Using this model, the

encoder can regulate size of the slice or tile according to complexity of CTUs inside that part.

The average speedup of this method is 12% for the slice and 3.8% for the tiles with around 2%

BD-Rate degradation.

In (Koziri et al., 2016), the authors focused on the problem of proper slice sizing to reduce

load imbalances among threads. Using existing ideas for H.264/AVC they have developed a

fast dynamic approach to decide on load distribution in the HEVC. They developed a heuristic

called TSLB (time-based slice load balancer) which assigns load based on the time complexity

of the previous frame. They achieved an improvement specially for the case of Low-Delay by

exploiting GOP structure. Based on their experimental results, the load imbalance is reduced

10% in many cases.
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In (Łuczak et al., 2012), a modified CTU processing order is proposed. By processing the CTU

in a diamond group of MBs, they achieved a higher degree of parallelization. The idea is to

modify the process starting point. Instead of starting the process from the upper left corner, it

starts from the center of the image and grows in a diamond shape. Since all MBs have already-

coded neighbors, each group of MBs can be processed at the same time. This algorithm grows

faster than WPP and allows better utilization of the multi-core hardware. Here we mention that

although this method yields about 4x parallel processing speedup, it requires extensive changes

to the standard and it is not HEVC-compliant. In addition, other features like entropy coding,

slices and tiles are not defined in this work.

2.2 Fine-grained parallelization

According to the previous section, coarse-grain parallelization methods are covering the CTU

row level and frame level parallelization of HEVC for all encoding steps. However, fine-

grained parallelization can be achieved when the parallel processing is performed at the CTU

level or on smaller blocks. Moreover, we divided the literature based on the process that is

performed on the block. The rate-constrained motion estimation process is discussed separately

from the other processes.

2.2.1 Intra-prediction, in-loop filter, transformation, entropy coder

In this section, we present some important parallel methods in the literature for intra-prediction,

in-loop filtering, transformation and entropy coder.

In (Zhao et al., 2013), fine granularity parallelism for HEVC intra coding is realized and the

degree of parallelizm is increased to the coding unit level. The authors used a directed acyclic

graph (DAG) to visualize the dependency relationship and parallel execution. Using, DAG

a model is built and dependencies are preserved. Similarly, in (Yan et al., 2014a) an intra-

prediction parallelization framework is proposed. In the proposed framework, the encoding
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starts by running parallel threads to perform intra-prediction, with each thread processing one

CTU row. Another thread starts entropy coding and processes CTUs in raster order.

Meher et al. introduced an enhanced architecture for the implementation of integer discrete

cosine transform (DCT) of different lengths (Meher et al., 2014). The authors show that an

efficient constant matrix multiplication scheme can be used to derive parallel architectures for

1-D integer DCT. Also, the proposed structure can be reusable for DCTs of lengths 4, 8, 16,

and 32 with a throughput of 32 DCT coefficients per cycle irrespective of the transform size.

The results show that the proposed architecture involves nearly 14% less area-delay product

(ADP) compared to the direct implementation of the reference algorithm.

In (de Souza et al., 2014), a method is proposed for the utilization of the maximum level of

parallelism in an HEVC deblocking filter. A highly optimized CPU parallel implementation

and a GPU implementation of the HEVC deblocking filter is the basis of their work. Also,

load-balancing between CPU and GPU is considered. Their main work is to optimize existing

techniques using SIMD and prevent diverging branches in the GPU implementation. They

achieve 9 to 17 times speedup relative to sequential implementation of deblocking filter.

Since the CABAC process is highly sequential, almost all of the papers on this part are based

on logic level hardware implementations like FPGA. For instance, in (Zhou et al., 2013) the

throughput of CABAC is increased by 31%~34% with the proposed pre-normalization, hybrid

path coverage (HPC), bypass bin splitting (BPBS) and state dual-transition (SDT) schemes.

For evaluation, they implement this CABAC entropy coder on silicon in a 65 nm video encoder

chip.

2.2.2 Parallel rate-constrained motion estimation

Since motion estimation (ME) is used in several video processing fields, there are many works

on the ME search algorithms. Furthermore, the main goal of these papers is to find the

appropriate matching block in a reference frame in order to find real motion vectors. However,

in video compression, the main goal is to find the motion vector with the least rate-distortion
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cost using RCME. Here, we review the parallel rate-constrained ME publications in the video

compression field.

Fast block motion estimation algorithms such as the Enhanced Predictive Zonal Search (EPZS)

(Tourapis, 2002) and the UMHexagonS (Chen et al., 2006) are not suitable for parallel

ME (Cheung et al., 2009). These algorithms employ spatiotemporal correlation by using

neighboring blocks in order to predict MVs; they thus increase data dependencies in ME. As a

result, fullsearch block matching is the most straightforward algorithm that is used for parallel

ME in the literature.

As an early attempt to perform parallel ME for heterogeneous architectures, Lee et al. proposed

a multi-pass method to unroll and rearrange the multiple nested loops (Lee et al., 2007). They

perform the integer ME with a two-pass process on the GPU. Furthermore, Chen & Hang

proposed a five-step algorithm to perform parallel ME on heterogeneous architectures for the

H.264 standard (Chen & Hang, 2008). This algorithm calculates motion vectors of the blocks

of an entire frame in parallel. The main advantage of this method is that the calculation of

the distortion values are computed in a bottom-up manner. Therefore, the distortion of bigger

blocks are calculated from smaller blocks. The process is as illustrated in fig. 2.4 and is as

follows:

1- Divide the MB into 4x4 blocks and calculate the SAD value of each 4x4 block in parallel

for all motion vectors inside the search range.

2- Merge these 4x4 block SADs to form the 4x8, 8x4, 8x8, 8x16, 16x8, and 16x16 block

SADs, respectively.

3- For each block size, determine the minimum SAD of all MVs. Select it as the integer-pixel

motion vector (IMV).

4- Calculate SAD of fractional pixel motion vectors, near the best IMV.

5- Determine the final MV value according to fractional-pixel motion vector (FMV).

The five-step algorithm is used as the base algorithm by other researches. However,

Chen & Hang ignored the effect of MVP on the cost of Eq. (1.3) and their proposed algorithm



43

Figure 2.4 Variable block bottom-up SAD calculation

selects the best motion vector only based on distortion. As mentioned afterwards by Rodríguez-

Sánchez et al. and Momcilovic et al., this algorithm is not suitable for real applications unless

serious improvement is applied (Rodríguez-Sánchez et al., 2012; Momcilovic et al., 2014b).

Therefore, spatial and temporal information is used to predict the MVP in most of the recent

works.

In Xue et al. (2017), a method named multilevel resolution motion estimation (MLRME) is

introduced. In this method, by combining the advantages of local fullsearch and downsampling

they have reduced the complexity of the fullsearch algorithm. In the search method, they used

zero as motion vector predictor. While their implementation is faster than fullsearch, they have

reported 10% increase in execution time compared to fast search. They mentioned two reasons

for this slowdown. First, complexity of the MLRME method is higher than the fast search.

Second, the heuristic search and early termination condition in the fast search help reducing

the search time. Furthermore, the experimental results showed 1.5% increase in BD-Rate.

In (Yu et al., 2012) and (Yan et al., 2014b), the authors introduced methods to infer the MVPs

of PUs inside a CTU. Since there is a dependency on spatial information, these works provide
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a method to perform parallelization at the PU level just for a CTU. Thus, the processing of

CTUs is performed in normal sequential order. Therefore, the parallelization degree of these

methods is limited.

However, temporal information can be used without adding any restriction to the algorithm. In

(Momcilovic et al., 2014a), using the zero MVP as predictor is investigated for H.264. They

show that by selecting the most probable predictor, performance can improve significantly

compared to (Chen & Hang, 2008). Furthermore, by investigation the co-located MV and zero

MVP for different search ranges they improve their proposed method.

Furthermore, using the previous frame motion vectors to predict MVPs of the current frame

has been investigated in (Rodríguez-Sánchez et al., 2012) and (Momcilovic et al., 2014b) for

the H.264 standard. Rodríguez-Sánchez et al. improved the previous method by using co-

located block motion vector as MVP of the current block. Further improvements on using

co-located motion information is achieved in (Yi et al., 2010), (Gao & Zhou, 2014) and (Ma

et al., 2014).They proposed co-located MB based motion estimation (CMME) and motion

vector extrapolation based approach (MVEA) respectively for the H.264 standard. In CMME,

motion information of the previous frame’s MB at the same coordinates is used to estimate

the MVP. This improves the PSNR by 0.8 dB compared to (Chen & Hang, 2008). Yi et al.,

estimated the MVP using overlapping MVs from previous frame (Yi et al., 2010).They achieve

slight RD performance improvement compared to their previous work using MVP zero. In

(Ma et al., 2014), a similar method is implemented by using the average of co-located motion

vectors of the previous frame as MVP of current PU. However, adapting these algorithms for

HEVC is challenging since the size of coding blocks in the HEVC is variable while in H.264

the MB size is fixed. Furthermore, the motion vector prediction derivation is different in HEVC

and may have different effects on RD performance.

In (Wang et al., 2013), RCME is divided into two stages. First, they calculate the variable

block PU sizes and store 3 best MVs based on SADs values. Next, the CPU performs mode

decision, RDO process, reconstructs the image, and copies the reconstructed image into the
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GPU for deblocking filter and interpolation for the next frame. In each step, one CTU row of

data is processed. This allows MVP derivation from top row.

Similarly, Wang et al., divided the RCME process into two steps. The first step is done before

the encoding of frame starts and the calculations in this step are done in GPU. In the second

step, the mode decision is performed in a sequential manner in the CPU (Wang et al., 2014).

The GPU acts as a co-processor and pre-calculates the values that are required by the CPU

in the RDO process. Their method is illustrated in fig. 2.5. Like (Momcilovic et al., 2014a),

fractional values are pre-calculated based on the zero MVP. However, SATD values are not

calculated by the GPU and CPU will calculate interpolated values if required. This framework

results in better RD performance compared to co-located methods. Similarly, in (Radicke

et al., 2014), the authors achieved an improved RD performance. In this work, a wavefront

architecture is utilized to improve speed. However, the authors mention 20% of the time

is wasted on the stall for transferring large amount of SAD value between CPU and GPU.

In Khemiri et al. (2017), the authors optimized SAD calculations on the GPU. Furthermore,

instead of using a sparse pattern like (Radicke et al., 2014), they used rectangular area like

fullsearch. However, even by performing several optimizations in their implementation, they

achieved only 23% time reduction with 0.4% BD-Rate increase.

A similar method with more GPU optimization is proposed in (Lin & Wu, 2016). The main

improvement is due to their design considering the GPU architecture. By using more fine-

grained kernels in the GPU, they have modified the proposed method of Chen & Hang to have

better GPU utilization. In addition, they use a method to determine the CU splitting in the

GPU and transfer the splitting flags to the CPU. This will reduce the complexity of RDO.

Their results shows an extra 23% time reduction compared to (Radicke et al., 2014). However,

the BD-Rate is increased by 4.6%.

In Kao et al. (2016), the authors tried to reduce the amount of data transfer between CPU and

GPU by reducing the search window. They propose to use a zero motion vector predictor to

find an approximate motion vector. Then, they will transfer the surrounding distortion values
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around this motion vector. The CPU has to search on a smaller area and perform the fractional

calculation when actual motion vector predictor is available. Their experimental results showed

3.1% increase in BD-Rate and achieved 9x speedup compared to fullsearch.

Calculate SAD
 of 4x4 blocks

Bottom-up bigger 
blocks SAD 
calculation

8x4, 
4x8,
 … , 

64x64

Search 
range 

 (-64,64)

Transfer the results 
to the CPU

Calculate SATD 
(4x4)

Accumulate SATD

8x4, 
4x8,
 … , 

64x64

Select a region for 
fractional ME 

GPU

Transfer the results 
to the CPU

Figure 2.5 Using GPU for distortion pre-calculation.

Adapted from (Wang et al., 2014)

2.3 Discussion

The maximum achievable degree of parallelism is limited to the high-level parallel tools

provided by HEVC. Considering the coarse-grained parallelization publications, it is noticeable

that these methods improve the parallelization performance of HEVC. However, these methods

cannot provide enough parallelization for many-core architectures. These methods are more

useful when combined with appropriate fine-grained methods to achieve a high degree of

parallelism and preserve RD performance. According to the papers presented in Section 2.2.2,
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we can categorize previous works on parallel rate-constrained motion estimation into two

categories.

In the first category, the MVP is completely ignored or is predicted. These methods will result

in a fine-grained parallelization with a significantly reduced RD performance. In the second

category, the GPU is just used to pre-calculate values and no assumption is made for the MVP.

These methods can achieve good RD performance, however, the speedup is limited, due to

high amount of data transfer between the CPU and the GPU. These problems are discussed in

detail in the following sections.

2.3.1 Reduced rate-distortion performance

In the first category, the MVP is unknown and the MV cost is completely ignored ((Lee et al.,

2007) and (Chen & Hang, 2008)). By removing the MV cost from Eq. (1.3), it becomes:

PME= (mv∗) = arg min︸ ︷︷ ︸
∀mv∈MV search

{D(mv)} (2.1)

Thus, the best MV is selected only based on the distortion. This will result in significant

RD performance reduction compared to Eq. (1.3). As it is reported in (Momcilovic et al.,

2014b), the BD-Rate of H.264 when ignoring MV cost is increased by 57% which is completely

unacceptable.

Moreover, using zero MVP showed significant improvement compared to ignoring the MV

cost (Momcilovic et al., 2014a). However, Momcilovic et al. mentioned that the performance

is highly dependent on the nature of the video sequence. For instance, assuming zero MVP for

a motionless sequence achieves high performance while for a sequence with high motions, it

will perform very poorly.

Instead of using zero MVP, using temporal information has the advantage of adapting to the

sequence motions. More advanced methods tried to predict the MVP based on a function
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((Rodríguez-Sánchez et al., 2012), (Momcilovic et al., 2014b), (Yi et al., 2010), (Gao & Zhou,

2014)). The previous frame is used for MVP prediction. Because of consistency in moving

objects in a video sequence, using temporal motion information can predict the motion of

current frame to some extent. However, in cases where the motion field of the current frame is

different or there is no certain consistency between successive frames, these algorithms will fail

(Momcilovic et al., 2014b). Furthermore, the efficiency of these algorithms is not investigated

for HEVC by other researchers.

Based on the discussion above, we conclude that temporal prediction could be used to obtain

high granularity parallelization. Furthermore, a single predictor would not provide good RD

performance. Therefore, in Section 3.4 we will propose a novel MTP-RCME method to

overcome the aforementioned problems.

2.3.2 Bandwidth limitation

In the second category, the GPU is used just for the pre-calculation of the distortion ((Wang

et al., 2014), (Wang et al., 2013), (Radicke et al., 2014)). This method can achieve the best RD

performance since the parallelization actually would not break any data dependencies. Using

the GPU as co-processor will increase the speed. The CPU uses these values and the actual

MVP in the RDO step to find the best solution. The main problem of using the GPU in this

manner is the high bandwidth required for transferring all the pre-calculated data. For example

in (Radicke et al., 2014), the stall of the CPU because of the transferring of the pre-calculated

data is 20% of the whole process. Moreover, the memory size that is required for storing

the pre-calculated values can be a serious problem when the number of concurrent CTUs is

increased. An encoder that uses a method in this category will require a bandwidth computed

as follows:

Bandwidth (bytes/sec) =
⌈FrameWidth

64

⌉
×
⌈FrameHeight

64

⌉
×

NPUsInCTU ×NReferenceFrames ×NFramesPerSecond×
(2×SearchRange)2 × sizeof(Int16)

(2.2)
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where, FrameWidth is the frame width in pixels, FrameHeight is the frame height, NPUsInCTU is

the total number of PUs in a CTU, NReferenceFrames is the number of reference frames used for

inter-prediction, NFramesPerSecond is the required number of frames to be encoded in a second

and SearchRange is the search area used for RCME. Moreover, we are assuming that pre-

calculated distortion values are 16-bit integer values. Therefore, assuming encoding a class A

video and 30 (fps) with typical encoding parameters:

FrameWidth = 2560, FrameHeight = 1600, NPUsInCTU = 425,

NReferenceFrames = 4, NFramesPerSecond = 30, SearchRange = 32
(2.3)

The required bandwidth to transfer all the calculated distortion values from the GPU to the CPU

is 390 GB/s. That is far beyond the maximum theoretical bandwidth of PCI-express(3.0)×16

which is 16 GB/s. This means it is not possible to use these methods for real-time encoding of

a typical video. Thus, on commodity hardware the bandwidth is the main bottleneck of these

methods.

Moreover, to achieve high RD performance in these methods, fractional ME has to be

calculated in the second step on the CPU in sequential order. In order to use the GPU for pre-

computations if the integer ME and the fractional ME is performed in the GPU it will reduce

the RD performance significantly. On the other hand, if to preserve the quality, fractional ME is

performed on the CPU, the high computation burden of fractional ME will fall on the CPU. In

conclusion, we see that the performance of this algorithm is high as long as the fractional ME is

executed on the CPU in sequential order. In Section 3.2 and Section 3.3, our proposed method

resolves the aforementioned bandwidth problem, while the RD performance is preserved when

an appropriate MVP list is used.





CHAPTER 3

PROPOSED PARALLEL ENCODING FRAMEWORK

According to the discussion presented in Section 2.3, several difficulties have to be addressed

in order to perform HEVC encoding on a massively parallel architecture. In this chapter, a

framework is proposed that resolves these problems.

First, the existing dependencies in HEVC are analyzed in detail to have a better understanding

of those dependencies. Using this analysis, a method is introduced which provides fine-grained

parallelization of HEVC encoding by performing RCME in two stages. Our method is similar

to the proposed by other works. However, we modify the usual two stages approach by

considering a multiple predictor rate-constrained motion estimation (MP-RCME) method to

reduce the RD loss. In the MP-RCME approach a list of MVP candidates is established for

which the optimal MV is computed along with the distortion and rate information. Moreover,

we introduce an algorithm with the possibility of performing fractional calculation in the

second stage of MP-RCME in the CPU. This method provides a trade-off control between

RD performance and speedup that is decided based on the video encoder application. Next,

a method is provided to extract the MVP candidates list based on the motion vectors of

previous frames. Furthermore, we introduce a nested diamond pattern (NDS) method as

a suboptimal motion estimation search method specially designed according to the GPU

architecture. Finally, we provide a complete framework using the introduced methods as a

fast parallel encoder for massively parallel architectures.

3.1 Dependency analysis

To achieve a better compression, an encoder can reuse the encoded information for each CTU.

For instance, to predict a CTU information, several inferences are made based on previously

coded CTUs in the left and top of the current CTU. This kind of inferences are not limited to

prediction and are performed on several blocks of the encoder.
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To analyze the dependencies, we should first determine the granularity of the encoding process.

For instance, for frame parallelism, the only dependency for the current encoding frame is the

availability of the frame part that is used as a reference frame. For CTU level parallelism, in

addition to mentioned dependency, the left, left-top, top and top-right CTUs should be already

encoded and their quadtree structure must be determined. The finest granularity is achieved

for PU level parallelism. Since we are aiming to provide the highest degree of parallelism, we

analyze the dependencies of encoding parallel PUs.

The dependencies that prevent parallel encoding of all PUs of a CTU can be divided into two

categories of hard and soft dependencies. We define a dependency as a hard dependency if the

process of next step is (almost) impossible until the calculation of previous step is finished.

However, a soft dependency can be ignored in order to process the next part in parallel with

the current part. Nonetheless, a reduction in the RD performance of the encoded video is

anticipated due to ignoring soft dependencies. Based on HEVC structure in Section 1.1, we

can determine the type of dependency.

In HEVC, CABAC is the block that is used for generating the final bitstream. Furthermore,

in order to generate a valid bitstream the CABAC entropy coding should be performed

sequentially. The entropy coder context is updated after coding each CU and is used to encode

the next CU. Thus, the state of CABAC cannot be estimated, since an incorrect estimation

can make the entire bitstream invalid. Moreover, it is not feasible to calculate all the possible

states because of extremely large state space. Also, as explained in Section 1.3, to find the

best parameter p in Eq. (1.9), entropy coding is performed. Consequently, entropy coder is one

of the main hard dependencies. In fig. 3.1, the hard dependencies between two consecutive

CU depths are depicted using directed acyclic graph (DAG). The entropy coder dependency is

presented by solid lines in this figure.

According to Section 1.1.2, the CTU structure is formed by smaller CUs. In the RDO process,

in order to decide between possible quadtree structures, to make a decision for split/no-split,

the cost of smaller CUs should be calculated first. This RDO dependency can be observed



53

from Eq. (1.10) and is explained in Section 1.3. This dependency is presented in dotted lines

in fig. 3.1 as a hard dependency.

Figure 3.1 RDO hard dependencies between CUs

for two consecutive depths

On the contrary, the prediction dependencies are soft dependency and if they are ignored, it

only causes RD performance loss. Considering the inter-prediction mode, the MVP of each

CU depends on top, left and top-left and top-right CUs as it is illustrated in fig. 3.2. The source

of this dependency is Eq. (1.1) and is because of the MVP derivation process as explained in

Section 1.2.1.

To investigate the MVP dependency in the RCME, we assume the dependency is removed and

the dependent value is substituted by a predicted value. Thus, Eq. (1.3) is modified as:

m̂v= arg min︸ ︷︷ ︸
∀mv∈MV search

{D(mv)+λ ·R(m̂vp−mv)} (3.1)

where m̂vp is an assumed MVP that is used instead of the actual MVP. This assumption, will

produce m̂v which is calculated after RCME. It is clear that:

m̂vp ∈ {mvpA,mvpB}→ m̂v = mv∗ (3.2)
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Figure 3.2 Inter-prediction soft

dependencies between CUs

It shows that using an incorrect MVP will cause an error in RCME result. Moreover, an exact

assumption of m̂vp will result in the exact mv∗. However, it is not possible to calculate the

exact error caused by an incorrect assumption. Therefore, using multiple predictors suggests

a solution that provides a way to eliminate this dependency. It should be noted that in this

project, we only consider inter-prediction dependencies as soft dependency. The other soft

dependencies in the HEVC (for instance the intra-prediction block) are assumed as hard

dependency and they are kept as they were and are not modified by our proposed methods.

3.2 Two stage multiple predictor rate-constrained motion estimation (MP-RCME)

According to the previous section, to keep hard dependencies, encoding is performed in a z-

scan order on the CTUs in a frame because the encoding of each CTU depends on all previously

coded CTUs. However, it is possible to perform RCME according to Eq. (3.1). To provide a

fine-grained parallel RCME, we have to separate the soft dependencies of RCME from the

rest of HEVC. In this section, we introduce a method to divide RCME into two steps; first

calculate RCME based on a list of assumed MVPs, and secondly choose the result based on
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actual MVP as the final value. The first step can be calculated in parallel, however, the second

step is performs the RDO process and is to perform in the normal sequential order.

The first stage estimates the prediction cost of a PU based on the most probable MVPs and

finds the best parameters based on this assumption. Thus, no actual MVP is required at this

time. By separating this part, we can calculate the main part of RCME based on a set of highly

probable MVPs. Afterwards, in the second stage, one MV is selected based on the RCME costs

when the actual MVP is available.

3.2.1 Parallel prediction using MP-RCME

The RCMEs of all the PUs could be calculated in parallel if we could determine the value of

MVPs. However, it is not possible unless the calculations are done sequentially. To eliminate

this problem we propose using multiple highly probable MVPs to estimate the cost.

The derivation of MVP from neighboring PU is not possible in parallel. Improper MVP

assumption will produce an incorrect rate that leads to incorrect MV selection. RCME in

Eq. (1.3) can be evaluated for an estimated MVP instead of the actual MVP. To reduce the RD

performance loss in case of missed prediction, we propose using an MVP candidates list. This

method is called multi-predictor rate-constrained ME. Using this concept, Eq. (1.3) is modified

as below:

m̂vi= arg min︸ ︷︷ ︸
∀mv∈MVsearch

{D(mv)+λ ·R(m̂vpi −mv)} (3.3)

where m̂vpi is the ith candidate from the MVP candidates list consisting of N probable

candidates:

m̂vpi ∈
{

m̂vp1, ...,m̂vpN
}

(3.4)

The resulting m̂vi from Eq. (3.3) is associated with the m̂vpi. Furthermore, the distortion of

the m̂vi is calculated. As a result, for each MVP candidate from the Eq. (3.4) a parameter is

produced as:

P̂MEi = (m̂vi,m̂vpi,D(m̂vi)) (3.5)
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Parameters in the Eq. (3.5) are the best rate-constrained motion vector and the corresponding

distortion when the m̂vpi is a candidate for the actual MVP. The final result is achieved by

producing Eq. (3.5) from calculation of Eq. (3.3) for each member of Eq. (3.4). The complete

set of prediction parameters is constructed as:

P̂ME =
{
̂PME1

, ..., ̂PMEN

}
(3.6)

Eq. (3.5) is analogous to the original RCME. However, it is calculated based on a predicted

MVP. Moreover, the P̂MEi is considered as one possible solution and to allow the next step to

decide if this is the best solution, we included the distortion value into this parameter. As we

explain in the next section, the final decision of MP-RCME has to be made in the RDO process.

Differing the decision of choosing the best parameter, allows the parallel calculation of all P̂ME

parameters of all PUs.

3.2.2 Best parameter selection

The second stage of our framework is to use the calculated prediction costs to choose the

best mode based on RD. This stage is added to the RDO process and is performed in sequential

order before the rest of the RDO. Moreover, we explained in Section 3.1 that it is not possible to

preform the RDO process in parallel. Thus, we should perform this stage at low computational

cost to minimize its effect on speedup. In this stage, the actual MVP is available. This value is

used to find the best MVP candidate which produces minimum cost.

In this stage of the algorithm, the actual values of MVP is determined as:

mvp ∈ {mvpA,mvpB} (3.7)

The mvpA and mvpB are determined by the MVP derivation process that was explained in

Section 1.2.1. The best parameter set, is determined by selecting a set producing the minimum
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RD cost. Using calculated values from the previous step, the cost can be calculated as:

JME(i,mvp) = D(m̂vi)+λ .R(mvp− m̂vi) (3.8)

where D(m̂vi) and m̂vi are values from previously calculated P̂MEi . Also, the mvp is recovered

from Eq. (3.7). The value of JME will determine the cost of m̂vi if it is calculated with the actual

mvp. However, m̂vi was calculated based on an assumed m̂vpi and the resulting cost might not

be the minimum. To find the minimum cost between all predictors, the following minimization

is performed:

PME= (mv∗,mvp∗) = arg min︸ ︷︷ ︸
i∈{1,...,N},mvp∈{mvpA,mvpB}

{JME(i,mvp)} (3.9)

After selection of the PME, the rest of the RDO process is performed as explained in Section 1.3.

3.2.3 Offloading MP-RCME to the GPU

As we explained, MP-RCME is providing a method to perform complex parts of RCME in

parallel. This method can be used, to offload the RCME part to any device capable of running

the parallel algorithm. However, the degree of parallelism for this algorithm is very high and

is more efficient for massively parallel architecture. In this section, we propose an algorithm

to use MP-RCME method to offload the calculation into GPU.

The process depicted in fig. 3.3 is for encoding a frame with the parallel RCME. In the first

step, the data is prepared and transferred to the GPU for distortion calculation. The original

image and reference images are transferred before the encoding starts.

Meanwhile, the MVPs candidates list is built in the CPU and is transferred to GPU for

performing a MP-RCME. The MVPs candidates list will be used and motion estimation

performed in parallel for all PUs.
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The final result will be a list of distortion and MV pairs. In the second stage, the calculated

pairs will be used in the CPU by the RDO process to make the final decisions.

Store (D,MV) 
values 

Transfer original 
frame, reference 
frames and MVP 

candidate list

Using actual MVPs to select 
(D,MV) pair that results 

minimum cost

CPU - sequential GPU - Parallel

Perform RDO 

Multi-predictor 
rate-constrained 

motion estimation

Figure 3.3 Proposed two stage MP-RCME framework

Furthermore, the maximum required bandwidth of this method can be calculated by the

following equation:

Bandwidth (bytes/sec) =
⌈FrameWidth

64

⌉
×
⌈FrameHeight

64

⌉
×

NPUsInCTU ×NReferenceFrames ×NFramesPerSecond×
NMVP ×3× sizeof(Int16)

(3.10)
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where NMVP is the number of MVP candidates described in Eq. (3.4) and the rest of parameters

are as explained for Eq. (2.2). To find the bandwidth improvement of our proposed method,

it is compared with the bandwidth for the state-of-the-art methods in Eq. (2.2). For instance,

let’s assume a list of 16 candidates has been used, while, other parameters are the same as for

Eq. (2.3). The required bandwidth is calculated as 4.5 GB/s and it is reduced 10x. Furthermore,

exhaustive fullsearch or suboptimal fast search methods can be used for RCME in the GPU as

it is explained in Section 3.5.

Moreover, the fractional motion estimation can be performed in GPU or it can be postponed to

be performed in CPU. The difference between these configurations is discussed in Section 3.3.

3.3 MP-RCME with postponed fractional calculation

As it is explained in Section 1.2.3, the RCME is performed at two precisions. First an integer

motion vector is calculated, then the motion vector is refined using fractional pel precision.

Even with fractional refinement around the integer motion vector, the computational cost of

this operation is high. The main reason is that the calculation of interpolated pixels based on

the integer pixel is computationally complex. This calculation requires filtering operations as

explained in Section 1.2.2. Moreover, the calculation of the cost for each of these fractional

positions is complex. In this section, we discuss the effects of performing fractional motion

estimation according to the MP-RCME algorithm. As mentioned, the MP-RCME process is

divided into two stages. Based on the place of the fractional refinement process, two types of

algorithm are presented.

It is possible to perform fractional prediction in the first stage after integer MP-RCME. This

configuration is depicted in fig. 3.4. The advantage is to perform all of the RCME process in

the GPU and as a result a higher speedup is possible. Since more work is performed by the

GPU, the RDO process in the CPU becomes less computationally complex. However, because

of assumed MVP, the RD performance will be reduced. Because of a possible incorrect MVP

assumption, integer MV is not the optimum result. However, postponing the fractional MV
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refinement allows the CPU to compensate that error because the actual MVP is available at

that time. Thus, CPU obtains a fractional MV with more accurate MV cost.

Sub-sample 
interpolation

Store (D,MV) 
values 

Transmit original 
frame, reference 

frames

Using actual MVPs to select 
(D,MV) pair that results 

minimum cost

Build multi-predictor 
MVP candidate list

CPU - sequential GPU - Parallel

Perform RDO 

Multi-predictor rate-
constrained motion 

estimation
Integer pel precision

Fractional motion 
vector refinement

Figure 3.4 MP-RCME with fractional refinement in the GPU

The other configuration is to perform postponed fractional refinement in the second stage. This

means, the integer MP-RCME is performed in first stage and the fractional is performed in the

RDO. This configuration is depicted in fig. 3.5. The benefit of this configuration is better RD

performance because the refinement cost can be calculated based on actual MVP. However, all

of the interpolation computations have to be performed in the CPU and sequentially, which is

undesirable.
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Figure 3.5 MP-RCME with fractional refinement in the CPU

Nevertheless, these two configurations provide different trade-off for RD performance and

complexity. The results, for both of these configurations are compared in Chapter 4.
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3.4 Multiple temporal predictor rate-constrained motion estimation (MTP-RCME)

As it was mentioned in Section 3.2.1, to perform the MP-RCME a list of highly probable MVP

candidates is essential. If the MVP candidates list is poorly selected, the RD performance will

be reduced significantly. In this section, the MTP-RCME method is introduced to perform the

MP-RCME based on temporal information. The MVP candidate list is generated in the first

part of MP-RCME, thus, it should have insignificant computational complexity.

In this method the MVs of previous frames are used as MVP for the current frame. As it is

mentioned in Section 1.1.2, the coding structure of HEVC is based on a quadtree. Thus, special

consideration is required to determine MVPs from MVs of previous frame. The structure of

CU in the current frame could be different from that of the previous frame, thus, the number of

MVPs that are inferred could be different.

In HEVC, after compression of a frame, MVs are stored in the decoded picture buffer (DPB)

to be used later. These MVs are stored in a 4x4 grid and for a CTU of size 64 there are 16 MVs

stored in the DPB. For each CTU in the new frame, it is possible to build a list of unique MVs

from the previous frame using values in the DPB as follows:

MTP = {mv0, ...,mvN} (3.11)

where MTP is the set of unique motion vectors extracted from previous frame at the co-located

CTU. As a result, the number of N is not fixed and it is less or equal to 16. Based on the

structure of the previous CTU frame, multiple temporal predictor (MTP) sets can represent

most probable independent MVP candidates.

Using Eq. (3.11) in the MP-RCME algorithm will provide a better RD performance because of

the list of highly probable MTP, while it has the advantage of low bandwidth requirements of

MP-RCME.
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3.5 Suboptimal parallel RCME on the GPU

As it was discussed in Section 2.2.2, to our knowledge, fullsearch is the only search algorithm

used in the literature for parallel RCME. The main reason is the higher performance of

GPU for data parallel algorithms. Moreover, fullsearch implementation in the GPU is

fairly straightforward and building bottom-up distortions is advantageous. Moreover, in the

fullsearch algorithm, the starting point of search (also referred as the search center) has less

importance because it can be compensated by increasing the search range.

Suboptimal search methods are significantly less complex compared to the fullsearch method.

However, the number of iterations depends on the selected search center and on the distortion

values, producing unequal number of iterations for different PUs.

The GPU architecture is not able to execute a parallel algorithm efficiently unless it is

implemented in a single instruction multiple data (SIMD) paradigm. We propose a suboptimal

search method similar to TZS to improve the GPU execution, by removing the different

execution paths for different PUs.

3.5.1 GPU architecture considerations

The GPU hardware is designed to execute parallel programs using the single instruction

multiple thread (SIMT) computing model. This model is similar to the well-known SIMD

computation, however, instead of single operation on different data, a single thread is executing

operations on the data. SIMT model executes the same copy of a parallel program (kernel) on

different data. The terminology for parallel GPU programming vastly differs for each vendor

and based on the framework. In our thesis, we use the Open Computing Language (OpenCL)

terminology. Each instance of a program is run by a workitem or thread. Workitems are

grouped into workgroups.

However, because of the scheduler architecture in the GPU, workitems are executed in clusters.

The number of workitems that are processed in a cluster is 32 for NVIDIA (a thread warp) and



64

is 64 for AMD (a thread wavefront). To use resources efficiently, the number of workitems in

a workgroup should be a multiple of the number of wavefront threads.

Furthermore, a wavefront executes workitems in parallel using the SIMT processing model

across the processing unit. Thus, the execution time is affected by divergences in the execution

flow. Branching, for example, is achieved by combining all execution paths into a unique

sequence of instructions. This implies that the total time to execute a multipath branch is

the sum of the execution time for each individual path. As a consequence, even if only

one workitem in a wavefront diverges, all the workitems in the wavefront will execute the

diverging branch. Thus, all the threads of a wavefront should follow exactly the same execution

path to achieve maximum execution efficiency. More detailed information about the graphics

processing unit (GPU) hardware architecture is provided in Appendix I.

Considering the GPU architecture, it is clear why TZS is not suitable for GPU. Based on the

mentioned concerns, a suboptimal search method is introduced in the following section.

3.5.2 Nested diamond search (NDS)

To achieve a high execution performance for parallel RCME, we have designed a specific

search method for the GPU architecture. The proposed NDS method is able to utilize the GPU

resources more efficiently.

Considering the constraints mentioned in Section 3.5.1, to map the TZS algorithm into an

efficient data-parallel model, we define a fixed search pattern with 64 MVs positions. This

search pattern is a modified diamond search pattern as depicted in fig. 3.6.

Using a fixed pattern, defines the base of the algorithm with a fixed number of threads. The

number 64 is a multiple of number of threads per wavefront. Thus, each pattern is fitted in one

wavefront (for AMD) or two warps (for NVIDIA). Thus, regardless of the hardware in use, the

algorithm will be executed efficiently in the GPU.
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Figure 3.6 Fixed search pattern with 64 MV positions

This pattern is concentrated in the center and surrounded by four embedded diamond patterns

with 8 pixels step. The best MV has usually a distance of less than 4 integer pixels with respect

to the predictor (Jeong et al., 2015). However, the evaluation of further positions is necessary

to prevent falling into a local minimum.

Furthermore, one wavefront performs block matching for all the positions of a PU in the NDS

pattern. Hence, each thread is calculating the distortion for one of the MVs in the NDS pattern.

After each iteration, if the termination condition is not met, the center is moved to the best

position with the lowest cost and another search iteration is performed by the same workgroup.

Moreover, each CU consists of several PUs but each PU might require a different number of

iterations. The algorithm requires special arrangements to prevent performance loss. Thus, we

split the CU into all the possible PUs and assign a workgroup to each PU. The structure of

workgroups and threads of a CTU is depicted in fig. 3.7.

To match the GPU’s data-parallel model, the RCME for each PU is defined by a data structure

containing the arguments for this process. The input information for each PU is depicted for

some instances in fig. 3.8. Each entry of the job structure contains the position and the size of

the PU.
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Figure 3.7 Execution path of PUs in NDS

For a CTU, these job structures are precomputed and stored into arrays. When asymmetric

mode partitioning (AMP) is not enabled, each CTU consists of 425 possible PUs and

accordingly a workgroup is assigned to each PU. Job scheduling and work mapping for a

CTU is illustrated in fig. 3.9. The GPU kernel for the NDS method is summarized in fig. 3.10.

To exploit even more the GPU’s processing capabilities, we also perform interpolation filtering

and fractional pel refinement after the integer motion estimation in the GPU. The reference
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frames are updated and interpolated in the GPU right after the reconstruction of each frame. A

separate GPU kernel is performing the interpolation filter.

The interpolation filter in the GPU is implemented as a separable filter. For each pixel, sixteen

subsamples are generated. The image is partitioned into one-pixel-wide columns with 256
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Figure 3.10 NDS GPU kernel algorithm

one-pixel rows, and interpolation of each column is done by one workgroup consisting of 256

workitems. Each workitem is calculating sixteen subsamples for each pixel.
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3.6 Parallel encoding framework for massively parallel architectures

In this section, we present the structure of our implemented parallel encoder in which our

methods are used.

To achieve a complete parallel encoder, we designed the offloading process in two separate

threads in the CPU. The main thread is performing the normal RDO process, while the

second thread is responsible for communication and offloading tasks to the GPU. Our proposed

framework combining all introduced methods is depicted in fig. 3.11.
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Figure 3.11 HEVC parallel encoding framework
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In the RDO thread, the encoder performs all of the encoding process, except the RCME.

Instead of RCME, our proposed MTP-RCME is performed in the GPU using NDS method.

The offloader thread is responsible for offloading CTU jobs to the GPU and communication

with the GPU.

When the MTP-RCME results of each CTU is ready, the offload thread reads them from the

GPU and stores them in a buffer. The communication between the two threads are performed

using this intermediate buffer.

The RDO thread is waiting until the results are available in the buffer. As soon as the results

are available, the RDO thread will start to performing RDO. Meanwhile, the offloading thread

is executing concurrently and offloading more CTUs to GPU regardless of the state of the RDO

thread.

Moreover, after the encoding of a frame is completed, the RDO thread will transfer the

reconstructed image to the GPU and enqueues it in the GPU interpolation kernel.

Using two separate threads, allows to minimize the effect of unbalanced execution time

between CPU and GPU. The buffer in the middle eliminates possible stalls. In the next chapter,

the results of our proposed methods are compared with state-of-the-art methods.



CHAPTER 4

EXPERIMENTAL RESULTS

To evaluate our proposed methods a comprehensive comparison is performed with the state-of-

the-art methods. In order to have a fair comparison, both execution speed and RD performance

is considered. In the next sections, the utilized metrics for the performance measurement and

the setup is explained. Afterwards, the final results achieved by our methods and similar state-

of-the-art methods are compared. Finally, the results are discussed and summarized.

4.1 Setup

The HEVC test Model (HM) implementation is provided in C++ to developers (HM1). This

implementation does not have parallel implementation. However, it is the comprehensive

implementation of the HEVC capabilities. The HEVC test Model (HM) is considered as the

anchor implementation for the HEVC and it is used by researchers in academic research. It

should be mentioned that HM is not an efficient implementation of the encoder but it can

be used as a tool for comparing various proposed algorithms. In addition, Visual Studio in

Windows is used as development environment. We have chosen the Visual Studio environment

for implementing our primary ideas because it provides a mature development environment.

For parallel framework, we decided to use OpenCL since it supports a vast range of GPUs.

During this research, we have utilized the servers from Calcul Quebec provided to us, to

examine several algorithms. However, the final results for comparing the algorithms are

achieved using a hardware with the specifications as shown in table 4.1.

Table 4.1 Hardware specification

CPU Intel Core i7 4770 @ 3.4 GHz

RAM 24.0 GB

OS Windows 7 Enterprise (64 bit)

GPU AMD Radeon R9 270
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In order to validate the proposed algorithms, we compare our methods against the state-of-the-

art solutions with the same level of parallelism. The most important metric for comparison

of video compression is RD performance. The image quality loss is usually measured by

the widely used peak signal-to-noise ratio (PSNR). However, comparing two methods and

interpreting the results for different rates and quality is difficult. To solve this problem, many

researchers in recent years have used two other metrics known as BD-PSNR and BD-Rate.

BD-PSNR is the PSNR average and BD-Rate is the rate average over the whole PSNR-rate

curve. The details on the calculation of these parameters are mentioned in Appendix II.

For validation of the new methods we use standard video sequences from the standard

document of ITU-T and ISO/IEC for HEVC (Bossen, 2013). Detailed information about

standard video sequences are presented in Appendix III. Furthermore, parameters of the

encoder are selected according to the table 4.2 and are fixed for the anchor method and the

proposed methods.

Table 4.2 HEVC encoder configuration

Quantization parameter (QP) {22, 27, 32, 37}

Number of reference frames 4

Search range 64

Prediction structure Low Delay P

Performance of an algorithm can be measured according to several aspects. For instance,

memory usage and execution time are typical measures. However, for video coding algorithms

the RD performance should also be considered as an important metric. The resulting RD of an

encoding process is affected by the complexity of the algorithm. For instance, enabling more

encoding features allows a better compression and RD performance.

Moreover, in many applications, the amount of memory usage is less important compared to

the accessing memory time. Thus, between alternative methods using different memories, the

faster algorithm is preferred if the memory is available to run the algorithm. As a result, for
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performance measurement of a parallel algorithm, the architecture specifications and memory

access complexity should be taken into account.

Considering the points mentioned, we realize that analyzing parallel algorithm is a combination

of algorithms and architecture. There are several possible methods to calculate the speedup

(Kumar et al., 1994). Nevertheless, speedup metric that is used in our project is achieved by

comparing execution time of the whole encoding process of anchor algorithm and the proposed

algorithm.

Speedup =
TAnchor

TProposed
(4.1)

It is noted that the RCME is the only part of the encoding process that is performed in parallel

and the rest of the encoding process is executed as the anchor version. Moreover, the results in

some of the literature are measured by the time reduction (TR). The TR is defined as:

TR =
TAnchor −TProposed

TAnchor
×100 (4.2)

The anchor algorithm is HM test model version 15.0 and the comparison is made with

algorithms from the state-of-the-art and our proposed methods. Our comparison consists

of methods based on two parameters. The first parameter is methods for resolving MVP

prediction. The second parameter is the search method. To have a comprehensive comparison,

all of the combinations of these parameters are compared. For the first parameter, the MVP

prediction methods of the literature and our proposed method are shown in table 4.3.

Table 4.3 MVP prediction methods

Method Number of MVPs MVP selection Literature

HM 1
original MVP derivation

Eq. (1.2)
(Sze et al., 2014)

Zero 1 mvp =(0,0)
(Chen & Hang, 2008)

(Momcilovic & Sousa, 2009)

AVG 1 mvp =
1

4

4

∑
i=1

mvi (Ma et al., 2014)

MTP Multiple Eq. (3.11) Proposed
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The zero method is corresponding to use a single Null mv (with the x component of 0 and the y

component of 0). The mvp in the AVG method is achieved by averaging co-located MVs from

the previous frame. The glsmtp is our proposed MP-RCME method in which a list of temporal

candidates are used (MTP-RCME) (Hojati et al., 2017a).

For the second parameter, the fullsearch method (FS) and suboptimal methods (TZS, NDS)

are compared. The fullsearch implementation is repeatedly used in the literature and we

implemented fullsearch on the GPU as mentioned in (Chen & Hang, 2008).

Moreover, there is no previous work in the literature on suboptimal search on the GPU. Thus,

we compare our proposed NDS method against the anchor TZS implementation in the HM

(Hojati et al., 2017b).

To compare the RD performance of methods, HM-FS is used as anchor since this results in the

best RD performance. In this method, the MVP prediction is exactly like HM and the RCME

search method is fullsearch. Also, to compare the TR, HM-TZS is used as anchor since this is

the fastest possible encoder configuration. In this method, MVP is exactly as HM and the TZS

search method is used.

Moreover, MTP-FS is defined as using proposed MTP method for MVP prediction and all of

the parallel RCME with fullsearch on the GPU. Similarly, in the MTP-NDS the proposed

NDS is used as search method. In MTP-FS-PF method, we use our proposed MTP and

perform integer fullsearch on GPU and fractional refinement on the CPU. Results of MTP-FS is

compared with MTP-FS-PF (postponed fractional calculation) to provide experimental results

for the possible trade-off mentioned in Section 3.3 (combined MTP-RCME with postponed

fractional calculation).
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4.2 Results

To investigate the RD performance of our proposed methods, first the BD-Rate results are

reported. To evaluate the effectiveness of MTP-RCME method, a comparison for FS is depicted

in table 4.4.

Table 4.4 Comparison of proposed MTP-RCME method with the state-of-the-art

methods in terms of RD performance loss

BD-Rate (%) compared to HM-FS
Class Sequence name Zero-FS AVG-FS MTP-FS

D (416×240)

BQSquare 1.72 1.41 0.39

BasketballPass 2.01 1.42 0.57

BlowingBubbles 1.78 1.65 0.28

RaceHorses 2.6 2.07 1.2

C (832×480)

BQMall 1.94 1.65 0.56

BasketballDrill 2.16 1.73 0.49

Flowervase 2.11 1.52 0.33

RaceHorses 2.97 2.28 1.48

E (1280×720)
FourPeople 2.15 1.67 0.62

Johnny 1.76 1.55 0.75

B (1920×1080)
Cactus 2.63 1.99 0.82

Kimono 2.25 1.72 1.26

ParkScene 2.61 1.93 1.2

A (2560×1600) PeopleOnStreet 2.98 2.49 1.21

Average 2.26 1.79 0.79

Moreover, the MTP-RCME is also effective when used with NDS search method. The results

of comparing NDS with HM-FS is presented in table 4.5.

Moreover, the TR of methods compared to the HM-TZS is depicted in table 4.6 and table 4.7.

As it was mentioned in Section 3.3, the calculation of fractional RCME can be performed in

either CPU or GPU. The presented results in table 4.4 and table 4.5 are for the configuration

with the fractional RCME performed in the GPU. Moreover, in table 4.8 and table 4.9, the RD



76

Table 4.5 Comparison of proposed NDS method with the state-of-the-art methods in

terms of RD performance loss

BD-Rate (%) compared to HM-FS
Class Sequence name Zero-NDS AVG-NDS MTP-NDS

D (416×240)

BQSquare 2.13 1.34 0.68

BasketballPass 2.24 1.82 0.98

BlowingBubbles 1.56 0.77 0.46

RaceHorses 3.84 3.52 2.15

C (832×480)

BQMall 3.28 2.76 1.74

BasketballDrill 3.14 2.59 1.6

Flowervase 2.08 1.49 0.64

RaceHorses 3.8 3.39 2.56

E (1280×720)
FourPeople 3.02 2.39 1.43

Johnny 2.64 2.24 1.57

B (1920×1080)
Cactus 2.66 2.01 1.29

Kimono 3.28 2.49 1.85

ParkScene 3.18 2.62 1.68

A (2560×1600) PeopleOnStreet 3.3 2.62 1.83

Average 2.87 2.29 1.46

performance and TR is compared when a postponed fractional RCME is performed in the CPU

compared to when all of the RCME process is performed in the GPU.
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Table 4.6 TR comparison of FS methods with HM-TZS

TR (%) compared to HM-TZS
Class Sequence name Zero-FS AVG-FS MTP-FS

D (416×240)

BQSquare 36.8 38.2 37.65

BasketballPass 37.7 37.3 37.6

BlowingBubbles 37.7 37.5 37.85

RaceHorses 36.2 36.8 36.6

C (832×480)

BQMall 41 40.7 41.05

BasketballDrill 42.1 41.7 41.8

Flowervase 37.9 39 38.35

RaceHorses 38.9 37.8 38.15

E (1280×720)
FourPeople 43.7 43.4 43.3

Johnny 44 43.7 44.25

B (1920×1080)
Cactus 43.7 42.7 43.1

Kimono 41.3 40.9 41.1

ParkScene 42.6 41.5 42.15

A (2560×1600) PeopleOnStreet 41.5 42.6 42.45

Average 40.4 40.3 40.4

Table 4.7 TR comparison of NDS proposed methods with HM-TZS

TR (%) compared to HM-TZS
Class Sequence name Zero-NDS AVG-NDS MTP-NDS

D (416×240)

BQSquare 37.1 37.6 37.4

BasketballPass 37.9 37.7 37.5

BlowingBubbles 38.2 37.7 37.6

RaceHorses 36.4 36.4 35.5

C (832×480)

BQMall 41.4 41.5 40.9

BasketballDrill 41.9 41.3 41.1

Flowervase 37.7 38.6 38.4

RaceHorses 38.5 37.5 37.6

E (1280×720)
FourPeople 43.2 43.6 43.1

Johnny 44.8 44.5 45.8

B (1920×1080)
Cactus 43.5 42.9 42.9

Kimono 41.3 41.4 41.7

ParkScene 42.8 42.1 42.5

A (2560×1600) PeopleOnStreet 42.3 42.1 42.3

Average 40.5 40.3 40.1
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Table 4.8 The BD-Rate improvement for performing the fractional refinement on the

CPU compared to performing on the GPU

BD-Rate (%) improvement
Class Sequence name Zero-FS AVG-FS MTP-FS

D (416×240)

BQSquare 0.19 0.18 0.27

BasketballPass 0.24 0.19 0.26

BlowingBubbles 0.17 0.29 0.27

RaceHorses 0.23 0.26 0.15

C (832×480)

BQMall 0.2 0.16 0.22

BasketballDrill 0.24 0.21 0.22

Flowervase 0.29 0.26 0.26

RaceHorses 0.25 0.29 0.27

E (1280×720)
FourPeople 0.24 0.26 0.24

Johnny 0.17 0.21 0.24

B (1920×1080)
Cactus 0.27 0.28 0.17

Kimono 0.26 0.18 0.3

ParkScene 0.23 0.23 0.24

A (2560×1600) PeopleOnStreet 0.32 0.49 0.16

Average 0.24 0.25 0.23

Table 4.9 The decrease of TR when performing fractional refinement in the CPU

compared to the GPU

TR (%) decrease
Class Sequence name Zero-FS AVG-FS MTP-FS

D (416×240)

BQSquare 4.21 4.02 4.33

BasketballPass 4.75 4.47 4.8

BlowingBubbles 4.95 6.11 6.61

RaceHorses 3.32 3.61 3.55

C (832×480)

BQMall 3.91 3.89 4.23

BasketballDrill 4.81 5 5.17

Flowervase 5.04 4.96 5.36

RaceHorses 3.22 3.21 3.46

E (1280×720)
FourPeople 4.57 4.47 4.86

Johnny 3.71 3.79 3.91

B (1920×1080)
Cactus 4.77 4.79 5.19

Kimono 5.34 5.34 5.64

ParkScene 5.11 5.14 5.59

A (2560×1600) PeopleOnStreet 5.39 5.24 5.73

Average 4.51 4.57 4.89
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4.3 Discussion

First, the results are investigated in terms of RD performance. In table 4.4 it is clear that, as

it was expected, the worse RD performance is achieved with the approach using a fixed single

MVP at zero. Thus, when RCME is performed for Zero-FS the BD-Rate is increased by an

average of 2.26%. Also, the RD performance loss is observed regardless of the search method,

as it is equal to 2.87% for Zero-NDS in table 4.5.

However, the RD performance loss is less severe by using an averaging method for MVP. The

BD-Rate improvement for AVG-FS has an average of 0.47% compared to Zero-FS. A similar

improvement is achieved when the average MVP is used for the NDS search. The BD-Rate has

improved by 0.58% for AVG-NDS method compared to the basic Zero-NDS method.

Moreover, the maximum improvement is achieved by our proposed MTP method for both

search methods. The average BD-Rate improvement of MTP-FS compared to Zero-FS is

1.47%. Moreover, BD-Rate has improved by an average of 1.41% when MTP-NDS method is

used compared to Zero-NDS.

As a result, regardless of the search methods, the proposed MTP-RCME method outperforms

the Zero MVP method by 1.44% and the AVG method by 0.92%.

Pondering into table 4.4 and table 4.5 shows the effectiveness of MTP-RCME method for all

video resolutions. The BD-Rate improvement is consistent for all of video classes.

In addition to RD performance, the TR of methods should be investigated. From, table 4.6

the average TR for Zero-FS is 40.4% compared to HM-TZS. The achieved TR is due to

the parallelization of the RCME part of the encoding process. In all of methods, the rest of

encoding process is performed in the CPU and sequentially. Subsequently, an average speedup

of 1.78 is achieved by our proposed methods when compared to the fastest implementation in

HM.
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Furthermore, the maximum possible TR for an encoder with parallel RCME is achieved by

our proposed methods. The bottleneck of the encoder is the rest of process performed in the

CPU. Thus, using high level parallel tools (e.g. WPP) will provide more TR when combined

with our parallel RCME methods. Moreover, the GPU load for FS methods is 79% while for

our proposed NDS it is reduced to 52%. This, means NDS provides better GPU utilization

compared to previous full search (FS) method.

Moreover, in table 4.8 the average of 0.25% in BD-Rate is providing a possibility for trade-off

based on the application. Thus from table 4.9, with 4.5% penalty in TR, the BD-Rate can be

improved by 0.25%.

The results confirm the effectiveness of our MTP method. It is observed that for all of the

configurations, the MTP method gains better RD performance compared to other methods.

Moreover, the TR for all of implemented methods are similar. This is because of the CPU

becoming the bottleneck of the whole encoding process.



CONCLUSION AND RECOMMENDATIONS

In this research, we presented our solution to the problem of parallelization of motion

estimation in HEVC. Generally, our problem is how we can provide a high degree of

parallelization in HEVC to reduce the execution time of HEVC. We saw that existing parallel

tools in HEVC are not suitable for this purpose. Furthermore, motion estimation is the

most time-consuming part of HEVC and parallelization of this part will permit more speedup

compared to other parts. With focus on parallel motion estimation methods in literature, we

looked at papers that present solutions for coarse and fine parallelization in the HEVC. Then,

the shortcomings of previous works had been discussed.

We proposed a two-stage multi-predictor parallel framework, which is flexible, efficient and

can provide a high degree of parallelism suitable for heterogeneous architectures. Furthermore,

to compensate for the RD performance loss in parallel framework caused by breaking

dependencies, we proposed a multiple temporal predictor rate-constrained motion estimation

approach. This approach is using the multiple predictor concept for a list of temporal

predictors. As we saw in the experimental results, this method can provide fine parallelism

and good RD performance simultaneously.

Moreover, we proposed a well-designed suboptimal search method suitable for the GPU

architecture. This method utilizes the GPU efficiently and can be used along the other proposed

methods. Finally, we presented experimental results for our implemented methods compared

with the state-of-the-art methods and the HM test model. We have published our results in two

conference papers showing that our methods achieve a high degree of parallelization while RD

performance is insignificantly affected (Hojati et al., 2017a,b).





APPENDIX I

GPU PROGRAMMING WITH OPENCL

OpenCL is a software system that lets programmers write a portable program capable of using

all resources available in some heterogeneous platform (Kowalik & Puźniakowski, 2012). An

heterogeneous platform may include multi-core CPUs, one or more GPUs and other compute

devices. In this section, we provide an overview on the concepts that are related to our work.

More detailed information is available in (Kowalik & Puźniakowski, 2012) and (Advanced

Micro Devices, 2011).

1. OpenCL framework

In principle, OpenCL can be used also for programing homogeneous systems such as Intel

multi-core processors, where one core can be a host and the others provide improved

performance by parallel processing.

The idea of parallel computation based on heterogeneity is a system with two or more distinct

types of processors. The ordinary CPU, called the host, is responsible for managing functions

of one or more highly parallel processors called the devices (for example GPU devices).

Devices are responsible for highly parallel processing that accelerates computation. These

systems are called heterogeneous because they consist of very different types of processors.

The fundamental advantage of OpenCL is its independence from the vendor hardware and

operating systems.

Massive parallelism in OpenCL computing is rooted in the concept of the kernel C function.

The kernel program is executed on a device (e.g. GPU). The name workitem, in more

traditional terminology, means a thread. This kernel code is executed at each point in a data

parallel problem domain.

Workgroups and workitems

A two-dimensional domain of workitems is shown in Figure-A I-1. Each small square is

a workgroup that may have, for example, 128 × 128 workitems. The significance of the

workgroup is that it executes together. Also, workitems within a group can communicate for

coordination.

OpenCL Execution Model

An OpenCL program runs on a host CPU that submits parallel work to compute devices. In a

data parallel case, all workitems execute one kernel (a C function). In the more general cases,

the OpenCL host program is a collection of kernels and other functions from the run time API
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Figure-A I-1 OpenCL 2-D workitems domain.

Adapted from (Kowalik & Puźniakowski, 2012)

library. The environment in which work items execute is called the context. It includes devices,

memories and command queues.

The most frequently used scientific and engineering computing algorithms contain data parallel

components. In data parallel computation, one kernel is run on multiple data sets. In this case,

OpenCL creates an ID for each work group running on a compute unit (CU) and also an ID for

each workitem running on a processing element (PE). The kernel will perform on a portion of

data according to the IDs.

Using OpenCL

The host is usually programed using C/C++ and OpenCL Runtime APIs. The devices run

kernels written in the OpenCL. To be able to use the OpenCL, all the elements should be

configured correctly. The OpenCL library should be properly installed and available for the

corresponding hardware vendor. OpenCL libraries are usually included in hardware drivers.

OpenCL application does not need any special compiler. The preferred language for writing

OpenCL applications is C or C++, but it is also possible to use this technology with any

language that supports linking to binary libraries. There are a number of wrapper libraries

for many other languages.

OpenCL programs are usually compiled by a compiler included in drivers during application

runtime. There is also the possibility to store a compiled program, but it will work only on the

hardware it was compiled for. This functionality is intended for caching programs to speedup

application startup time and for embedded solutions.
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languages. Adapted from

(Kowalik & Puźniakowski, 2012, p.31)

The first step in an OpenCL application is to determine which platforms are present. This

is performed by querying the platforms at the runtime. it is possible to have many different

OpenCL implementations installed on a single system. The application should select the

desired OpenCL platform by matching the platform vendor string to the vendor name, for

instance, “Advanced Micro Devices, Inc.”.

Compiling the Host Program

In order to compile the host program on an AMD-based system, the latest AMD Accelerated

Parallel Processing SDK (AMD APP SDK) must be installed. The SDK provides all the

necessary OpenCL runtime headers and libraries that are required by the host compiler. An

environmental variable named AMDAPPSDKROOT is set by the SDK installer. This is the

path of the directory in which the AMD APP SDK is installed. Moreover, in the install directory

the “include” and “lib” sub-folders, are the runtime headers and libraries respectively. Also,

two sub-directories are placed in the “lib”. One library targeted for 32-bit applications, and

another for 64-bit applications.

The aforementioned headers and libraries must be included in the project by selecting the

applicable setting for the targeted operating system, IDE, and compiler.

Compiling On Windows:

To compile an OpenCL application on Windows, we have used Visual Studio. According to

the settings below, all C++ files must be added to the project.
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• Project Properties → C/C++ → Additional Include Directories.

These must include $(AMDAPPSDKROOT)/include for OpenCL headers. Optionally, they

can include $(AMDAPPSDKSAMPLESROOT)/include for SDKUtil headers.

• Project Properties → Linker → Additional Library Directories

Include $(AMDAPPSDKROOT)/lib/x86 for OpenCL libraries for 32-bit and $(AMDAPPSD-

KROOT)/lib/x86_64 for 64-bit.

Moreover, we can include $(AMDAPPSDKSAMPLESROOT)/lib/x86 for SDKUtil libraries.

• Project Properties → Linker → Input → Additional Dependencies These should include

OpenCL.lib. Also, it can include SDKUtil.lib.

Compiling on Linux

On Linux, gcc or the Intel C compiler must be installed to compile OpenCL applications.

Compiling and linking are performed as explained below.

1. Compile all the C++ files (for instance, Template.cpp), and get the object files.

For 32-bit object files on a 32-bit or 64-bit object files on 64-bit system:

g++ -o Template.o -c Template.cpp -I $AMDAPPSDKROOT/include

For building 32-bit object files on a 64-bit system:

g++ -o Template.o -c Template.cpp -I $AMDAPPSDKROOT/include

2. Link all the generated object files to the OpenCL library and create an executable file.

For linking to a 64-bit library:

g++ -o Template Template.o -lOpenCL -L$AMDAPPSDKROOT/lib/x86_64

For linking to a 32-bit library:

g++ -o Template Template.o -lOpenCL -L$AMDAPPSDKROOT/lib/x86

AMD GCN hardware overview

A general OpenCL model for GPU device consists of compute units. Each compute unit

can have multiple processing elements (PE). A workitem is executed on a single processing

element. The processing elements within a compute unit will execute in lock-step using SIMD

execution. However, compute units can execute operations independently (see Figure-A I-3).

Different GPU compute devices might have different capabilities (e.g. different number of of

compute units). However, typically they have a similar design pattern.

As mentioned, AMD GPUs have multiple compute units. The number of compute units and

their structure varies with the device family, as well as device designations within a family.

Moreover, each of processing elements include ALUs. For the Northern Islands and Southern

Islands device families, the ALUs are organized in four processing elements with arrays of 16

ALUs. For each block of 16 workitems, one of these arrays executes a single instruction across

each lane. By repeating the instruction over four cycles a wavefront of 64-element vector is

executed.
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Compute Device Structure. Adapted from
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On the mentioned family devices, instunctions of a wavefront is executed on the PE arrays so

that each work-item issues instructions at once in a very-long-instruction-word (VLIW) packet.

The branch operation is controlled with instruction and Control Flow module of a processing

element.

Based on the aforementioned structure of GPU, all processing elements within a vector unit,

execute the same instruction in each cycle. For a typical instruction, 16 processing elements

execute the same instruction for 64 workitems over 4 cycles. A block of workitems that are

executed together is a wavefront. However, the size of wavefronts can differ on different GPU

compute devices according to the manufacturer design.

It is possible for different compute units to execute different instructions because compute units

operate independently of each other. Moreover, the different vector units within a compute unit

can execute different instructions.

Before discussing flow control, it is necessary to clarify the relationship of a wavefront to a

workgroup. If a user defines a workgroup, it consists of one or more wavefronts. A wavefront

is a hardware thread with its own program counter. It is capable of following control flow

independently of other wavefronts. A wavefront consists of 64 or fewer workitems. The

mapping is based on a linear workitem order. On a device with a wavefront size of 64,

workitems 0-63 map to wavefront 0, workitems 64-127 map to wavefront 1, etc. For optimum

hardware usage, an integer multiple of 64 workitems is recommended.
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Flow Control

Flow control, such as branching, is achieved by combining all necessary paths as a wavefront.

If workitems within a wavefront diverge, all paths are executed serially. For example, if a

workitem contains a branch with two paths, the wavefront first executes one path, then the

second path. The total time to execute the branch is the sum of each path time. An important

point is that even if only one workitem in a wavefront diverges, the rest of the workitems in

the wavefront execute the branch. The number of workitems that must be executed during a

branch is called the branch granularity. On AMD hardware, the branch granularity is the same

as the number of workitems in a wavefront.



APPENDIX II

PERFORMANCE MEASURES

Performance of an algorithm can be measured according to several aspects. For instance,

memory usage and execution time are typical measures. However, for video coding algorithms,

the RD performance should also be considered as an important metric. The resulting RD of an

encoding process is affected by the complexity of the algorithm (Bossen et al., 2012). In other

words, one algorithm is better than the other if it achieves a similar RD performance in less

execution time. In the following section, we explain the main metric for the RD performance

measurement.

1. Bjøntegaard Delta Measurements (BD)

It is very useful to have just one number to compare two rate-distortion curves for two

different methods of coding (Wien, 2015). To this end, a method is proposed in (Bjøntegaard,

2001, 2008) which has been used in the literature for comparing different video compression

methods. In this method, two metrics are proposed: The first one is BD-Rate which shows

the rate savings. The second one is BD-PSNR which shows the PSNR improvement of one

method over the other one.

To compute the mentioned metrics, in the original proposal, the performance of the two

encoding schemes need to be given at four different quantization settings. Then the curves

are achieved by interpolating these four points. After that, an integration is performed over

the difference of two curves. It should be noted that the calculation is done based on the

logarithmic rate to obtain the relative rate difference. The PSNR can be applied directly since

it is already in the logarithmic scale.

Figure-A II-1 shows the plots which are used for the BD measurements. The rate axis is

linear in these figures. To draw the complete curves an interpolation is used. To do the BD

calculations the rate axis is logarithmized. The interpolation is an advanced method based on

overlapping points. The vertical and horizontal differences are used to compute the BD–PSNR

and BD-Rate respectively (Bjøntegaard, 2008).

In the initial method, a 3-rd order polynomial was used for BD calculations by using the

four measurement points (Bjøntegaard, 2001). This method is more effective when used with

relatively small quantizer step sizes (e.g. with ΔQP of three between the four rate points).

This is because the rate-distortion curves are almost liner within a given rate range and can be

approximated by a polynomial. Although this is a good approximation for smaller quantization

steps, using logarithmic rate axis leads to better results for bigger quantization steps (Zhao

et al., 2008). Moreover, JCT-VC suggests to use a piece-wise cubic interpolation to compute
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Figure-A II-1 Rate-distortion plot used for computing

a) BD-PSNR and b) BD-Rate

the BD metrics (Wang et al., 2011). Consequently, the BD-Rate is commonly used in the

literature to compare the RD performance of different methods.



APPENDIX III

COMMON TEST SEQUENCES

Class (Resolution) Sequence name Frame count Frame rate Bit depth
A (2560x1600) PeopleOnStreet 150 30fps 8

B (1920x1080) Kimono 240 24fps 8

B (1920x1080) ParkScene 240 24fps 8

B (1920x1080) Cactus 500 50fps 8

C (832x480) RaceHorses 300 30fps 8

C (832x480) BQMall 600 60fps 8

C (832x480) PartyScene 500 50fps 8

C (832x480) BasketballDrill 500 50fps 8

D (416x240) RaceHorses 300 30fps 8

D (416x240) BQSquare 600 60fps 8

D (416x240) BlowingBubbles 500 50fps 8

D (416x240) BasketballPass 500 50fps 8

E (1280x720) FourPeople 600 60fps 8

E (1280x720) Johnny 600 60fps 8
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