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CARACTÉRISATION TISSULAIRE DES ARTÈRES CORONAIRES PAR
TOMOGRAPHIE EN COHÉRENCE OPTIQUE POUR LA MALADIE DE

KAWASAKI

Atefeh ABDOLMANAFI

RÉSUMÉ

La maladie de Kawasaki est une maladie infantile affectant les ganglions lymphatiques cu-

tanéomuqueux et caractérisé par de la fièvre, des éruptions cutanées, une conjonctivite non

exsudative bilatérale, des érythèmes des lèvres et de la muqueuse buccale et des mains et pieds

érythémateux enflés. La maladie de Kawasaki conduit à l’inflammation dans les parois des

artères de taille moyenne dans tout le corps. Bien qu’une forte dose de perfusion d’immunoglob-

ulines intraveineuses (IVIG) réduise le risque de complications coronariennes, environ 15% à

25% des enfants non traités présentent un risque d’anévrisme de l’artère coronaire. L’épaississe-

ment de l’intima, la disparition de la media, les calcifications lamellaires, la fibrose, les macrop-

hages et la néovascularisation sont les caractéristiques pathologiques les plus typiques des lé-

sions coronaires tardives de la maladie de Kawasaki. Dans les cas graves, ils peuvent entraîner

un infarctus du myocarde et engendrer une mort subite. Puisque la fonctionnalité des tissus

cardiaques dépend du flux sanguin coronaire vers le myocarde, l’évaluation intravasculaire des

tissus de l’artère coronaire est importante pour détecter les formations pathologiques provo-

quées par différentes complications de l’artère coronaire.

La visualisation in vivo des artères coronaires fournit une information très pertinente pour le

suivi et le traitement des artères coronaires. Cependant, l’acquisition d’images est particulière-

ment difficile chez les patients pédiatriques en raison de la petite taille des vaisseaux et de

la fréquence cardiaque élevée. La tomographie en cohérence optique (TCO) est une modal-

ité d’imagerie interférométrique en infrarouge permettant d’acquérir des images en coupe

transversale des tissus examinés à l’échelle micrométrique. La TCO a été développée pour

le diagnostic et le traitement de la maladie coronarienne dans la population adulte. Il a récem-

ment été utilisé en cardiologie pédiatrique pour l’imagerie des tissus de l’artère coronaire avec

des résultats d’innocuité appropriés dans ce groupe d’âge. Il a une haute résolution allant de

10 à 20 μm pour caractériser la structure interne des tissus tels que les couches de paroi des

vaisseaux et l’accumulation de plaque. La géométrie de la paroi interne des vaisseaux per-

met de détecter et d’évaluer les propriétés biophysiques et dynamiques de la paroi artérielle,

l’épaisseur des couches de l’artère coronaire et diverses anomalies des artères coronaires.

L’objectif principal de cette thèse est la caractérisation des tissus coronariens à partir d’images

TCO pour l’évaluation automatique des pathologies coronariennes. Les expériences sont réal-

isées sur des acquisitions intracoronaires de TCO chez des patients atteints de la maladie de

Kawasaki. Les objectifs spécifiques se détaillent comme suit: 1. Classification des couches de

l’artère coronaire pour reconnaître les caractéristiques de chaque couche, intima et media. 2.

Correction de mouvement comme une étape de la reconstruction 3D pour l’évaluation longitu-

dinale et transversale de différentes formations pathologiques et l’estimation de la rigidité de la
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paroi artérielle. 3. Identification des lésions de l’artère coronaire causées par KD sur les tissus

de l’artère coronaire pour évaluer la fonctionnalité des artères coronaires.

Premièrement, des caractéristiques qui décrivent les couches intima et média ont été extraites

automatiquement en utilisant un réseau neuronal convolutionnel. Les activations de la dernière

couche entièrement connectée sont utilisées pour entraîner un classifieur par forêts aléatoires

pour la tâche de classification. Ce travail contribue à évaluer l’épaisseur des couches de l’artère

coronaire à distinguer entre les segments normaux et pathologiques de l’artère coronaire. En

second lieu, un modèle de correction de mouvement d’images TCO intracoronaires est proposé

pour aligner les tranches 2D en 3D de la TCO. Notre algorithme est conçu pour la correction de

mouvement intra-tranche dans les images intravasculaires TCO en utilisant des informations

sur les tissus plutôt que sur le contour du lumen. Les caractéristiques sont extraites automa-

tiquement en appliquant un réseau de neurones convolutif et la similitude cosinus entre les

caractéristiques profondes est utilisée pour effectuer l’enregistrement. Pour la troisième con-

tribution, un classifieur a été entrainé à reconnaitre les différentes formations pathologiques des

artères coronaires causées par la maladie de Kawasaki. Spécifiquement, les complications de

l’artère coronaire les plus typiques telles que la fibrose, les macrophages, la néovascularisation

et les calcifications ainsi que les couches de l’artère coronaire (intima et média) sont détectées

en utilisant des caractéristiques extraites d’un réseau de neurones convolutifs préentraîné et un

vote par consensus pour la classification finale. Cette étude pourrait contribuer à mieux com-

prendre le mécanisme de formation des maladies coronariennes et pourrait prévenir de futures

complications chez les enfants et les jeunes adultes souffrant de la maladie de Kawasaki.

Mots-clés: Caractérisation tissulaire, Tomographie en Cohérence Optique (TCO), artère coro-

naire, réseau neuronal convolutionnel, maladie de Kawasaki, Forêt aléatoire, compensation du

mouvement
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ABSTRACT

Kawasaki Disease (KD), mucocutaneous lymph node syndrome, is an acute childhood vasculi-

tis syndrome, which is characterized by fever, rash, bilateral nonexudative conjunctivitis, ery-

thema of the lips and oral mucosa, and swollen erythematous hands and feet. KD is an inflam-

matory disease, which leads to inflammation in the walls of medium-sized arteries throughout

the body. Although a high dose of Intravenous Immune Globulin (IVIG) infusion reduces the

risk of coronary artery complications, about 15% to 25% of untreated children suffer a risk of

experiencing coronary artery aneurysms or ectasia. Intimal thickening, media disappearance,

lamellar calcifications, fibrosis, macrophage, and neovascularization are the most distinguished

pathological features of late coronary artery lesions in Kawasaki disease. In severe cases, they

can lead to myocardial infarction and sudden death. Since the functionality of the cardiac

tissues significantly depends on the coronary blood flow to the myocardium, intravascular as-

sessment of coronary artery tissues is significant to detect the pathological formations caused

by different coronary artery complications.

Although in vivo intravascular visualization of coronary arteries is significant to provide highly

valuable progressive information, it is a challenging task, especially in pediatric patients be-

cause of the small size of the vessels and high heart rate. OCT is an interferometric imaging

modality that maps the backscattered near-infrared (NIR) light to create cross-sectional im-

ages of the tissues under review in micrometer scale. OCT was developed for the diagnosis

and treatment guidance of coronary artery disease in the adult population. It has been recently

used in pediatric cardiology to image coronary artery tissues with appropriate safety results in

this age group. It has high resolution ranging from 10 to 20 μm to characterize the internal

structure of the tissues such as vessel wall layers and plaque accumulation. Inner vessel wall

geometry allows detecting and evaluating biophysical and dynamic properties of arterial wall,

the thickness of coronary artery layers, and various coronary artery abnormalities caused by

the disease.

This thesis is focused on developing an intra-coronary tissue characterization model using OCT

imaging to pave the way for evaluating the functionality of coronary artery tissues. The exper-

iments are performed on intracoronary OCT acquisitions from patients affected by Kawasaki

disease. Analysis of coronary artery tissues is a broad study field, which consists of three main

steps: 1. Classification of coronary artery layers to recognize characteristic attributes of each

layer, intima and, media. 2. Identification of coronary artery lesions caused by KD on coro-

nary artery tissues to assess the functionality of coronary arteries. 3. Motion correction as the

step of 3D reconstruction for longitudinal and transversal assessment of different pathological

formations and estimation of arterial wall stiffness.
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For the first contribution, we developed an automatic classification approach to characterize

coronary artery layers in pediatric patients using the images obtained from OCT system. The

goal of the study was to identify the features, which perfectly describe intima and media layers

using a Convolutional Neural Network (CNN). The activations of the last fully connected layer

are used to train Random Forest (RF) for the classification task. This work contributes to

evaluating the thickness of coronary artery layers to distinguish between normal and diseased

segments of the coronary artery.

A motion correction model of intracoronary OCT images is proposed for the second contribu-

tion. Our algorithm is designed for intra-slice motion correction in intravascular OCT images

using tissue information rather than the lumen outline. Features are extracted automatically by

applying a Convolutional Neural Network and the similarity between deep features is used to

perform registration. For the first time, deep learning is applied on intracoronary OCT images

for motion correction. This will contribute to evaluate the functionality of coronary arteries by

analyzing the volume variation and considering the motion of the vessel. Also, it is a robust

method to assess the pathological formations by finding the correlation between the tissues of

adjacent frames.

For the third contribution, we focused on developing a tissue characterization approach to clas-

sifying various pathological formations of coronary arteries caused by KD. Specifically, the

most distinguished coronary artery complications such as fibrosis, macrophage, neovascular-

ization, and calcification as well as coronary artery layers (intima, and media) are detected

using deep features extracted from pre-trained CNNs and majority voting from Random For-

est classification. This study contributes to preventing future complications in children and

young adults suffered from Kawasaki disease. Since mentioned pathological formations are

recognized as the most common intracoronary complications caused by coronary artery dis-

ease (CAD), this work is not limited to intracoronary tissue characterization in KD patients.

Keywords: Tissue characterization, Optical Coherence Tomography (OCT), Coronary artery,

Convolutional Neural Networks (CNNs), Kawasaki Disease (KD), Random Forest (RF), Mo-

tion correction
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INTRODUCTION

Kawasaki disease (KD) is an acute childhood disease characterized by six principal symptoms

such as fever that may last for five days, bilateral conjunctival congestion, changes of lips

and oral cavity, which they specifically appear as redding of lips, strawberry tongue, diffuse

injection of oral and pharyngeal mucosa; polymorphous exanthema, changes in the extremities,

which they appear as redding of palms and soles and indurative edema in acute phase of the

disease, and membranous desquamation from fingertips in convalescent phase; and cervical

lymphadenopathy (see Figure 0.1). Patients with five of the principal symptoms are diagnosed

as KD. If four of the principal symptoms are recognized in some patients and they are followed

by the coronary aneurysm or dilatation using echocardiography or coronary angiography, these

group of patients also are diagnosed as KD (Newburger et al., 2004; Group, 2005; Group et al.,

2010). There are other clinical symptoms, which are important to be considered during the

evaluation and follow up of the disease. These symptoms are categorized as cardiovascular

changes, gastrointestinal tract, changes in blood factors, urine, skin, respiratory, and joints as

well as neurological variations. The prevalence of the disease is about 180/100000 in children

and infants. Around 80% to 85% of children, who are affected by KD is at the age of 0 to 4

years old. It is more prevalent in male than the female with the ratio of 1.3-1.5 boys:1 girl.

KD is an acute febrile disease with histopathological features of self-limited vasculitis (Hauser

et al., 2004; Newburger et al., 2004). During the acute phase of the disease, as the initial ther-

apy, patients receive Intravenous Immunoglobulin (IVIG). For patients who are not responding

to initial IVIG therapy, additional IVIG treatment, steroid or combination of them is required.

In 15-25% of untreated children, there is a risk of aneurysmal development, which is a serious

complication of KD and may lead to coronary artery disease (CAD) and sudden death (New-

burger et al., 2004). Pathological analysis of coronary arteries in KD demonstrates arterial

inflammation followed by intimal hyperplasia, media disappearance, neovascularization, fibro-

sis, calcification, and macrophage accumulation (Newburger et al., 2004; Group et al., 2010).
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Figure 0.1 Symptoms of Kawasaki Disease (KD): rash, bilateral nonexudative

conjunctivitis, erythema of the lips and oral mucosa, and swollen erythematous

hands and feet.

Aneurysms can be filled in with the intimal fibrosis, which results in the development of arte-

rial wall stiffness while the lumen diameter is normal. In some cases, although the aneurysms

are treated and the lumen diameter is normal, but the coronary artery may represent less dis-

tensibility that can affect myocardial microcirculation (Hauser et al., 2004; Newburger et al.,

2004). Cardiac function depends strongly on the coronary blood flow to the myocardium and

subsequently the functionality of cardiac tissues.

In cross-sectional view, healthy coronary artery is characterized by three distinguished layers

(see Figure 0.2). Normal layers of arterial wall, intima, and media, are characterized by OCT

as signal-rich and signal-poor patterns respectively with the normal thickness of 61.7 ± 17.0

μm for intima and 61.4 ± 16.7 μm for media. Two types of intimal hyperplasia are visualized

in KD. Intimal hyperplasia with preserved media occurs when the three-layered structure of

the arterial wall is preserved, though intimal thickening is observed. In severe cases, intimal

thickening is followed by media destruction, which is known as intimal hyperplasia with media

disappearance. Neovascularization is also known as neointimal hyperplasia caused by the pro-

liferation of the smooth muscle cells from the media. Neointimal hyperplasia is visualized as
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Figure 0.2 Coronary artery structure in cross-sectional

view.

a signal-rich pattern followed by a dark appearance of the micro-vessels in OCT images. Cal-

cifications are characterized as a well-delineated signal-poor region with clear borders in OCT

images.The macrophage is the excessive absorption of glucose by inflammatory immune cells,

which can reside in arterial plaques. It is characterized as an underlying signal-poor region in

OCT images (Dionne et al., 2015). In vivo intravascular visualization of coronary arteries is

crucial as a part of follow up in patients with the history of coronary artery abnormalities to

assist the physicians by increasing the efficiency of treatments (Orenstein et al., 2012).

Various conventional cardiac imaging modalities such as echocardiography (ECG), computed

tomography (CT), X-ray angiography, cardiac magnetic resonance imaging (CMR) are used

to assess the functionality of coronary arteries. Although the mentioned imaging techniques

are used to characterize the size of aneurysms and luminal diameter of the coronary artery

segment affected by the disease, they are limited to provide information on the underlying
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coronary tissue layers. Also, they are restricted to reflect the histological reality of the re-

gressed aneurysmal coronary segments, which are inappropriately considered as normal coro-

nary segments (Orenstein et al., 2012; Newburger et al., 2004; Group et al., 2010; Dionne

et al., 2015). Catheter-based Intravascular Ultrasound (IVUS) has been used for many years

in interventional cardiology to evaluate coronary artery tissues by providing information on

coronary arterial wall and lumen (Rathod et al., 2015). IVUS imaging is restricted to be used

in pediatric cardiology due to its suboptimal spatial imaging resolution (100-150 μm), and

low pullback speed. In contrast, Optical Coherence Tomography (OCT) is a new intravascular

imaging modality with high spatial resolution, which is primarily used in adult cardiology for

treatment of coronary artery disease (Tearney et al., 2012; Yabushita et al., 2002). Consider-

ing high spatial resolution of OCT ranging from 10 to 20 μm to characterize coronary artery

tissues and demonstrating safety results in pediatric patients, it has been recently used in pedi-

atric cardiology to evaluate structural variations in coronary arteries in patients suffering from

Kawasaki disease and it has been demonstrated progressive diagnostic value among the con-

ventional imaging systems in this population (Ulrich et al., 2017; Dionne et al., 2015; Mitani

et al., 2009; Harris et al., 2014).

Since OCT is a new technology recently used in pediatric cardiology, and KD can be followed

by severe coronary artery complications in children and young adults, quantitative and qual-

itative characterization of different coronary artery tissues should be supported by automated

mathematical and technical algorithms based on the clinical knowledge reported by clinicians

regarding the histological and pathological features of the disease. Consequently, this thesis

aimed to develop an automated intracoronary tissue characterization model in patients with the

history of KD using OCT imaging.

The thesis is structured in four chapters (see Figure 0.3). The importance of using OCT system

to study and evaluate coronary arteries is explained in Chapter 1. The existing techniques in
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Figure 0.3 Thesis structure

the literature related to each objective are discussed in this chapter to demonstrate the signifi-

cant contributions of our research project.

In Chapter 2, the objectives are defined by investigating, observing, and understanding the

research problems as well as the clinical knowledge behind the tissues under review.

Chapter 3 is focused on the automatic classification of different coronary artery layers, namely

intima and media to distinguish between normal and diseased coronary artery segments by

characterizing the appropriate attributes of each layer of the arterial wall. Feature extraction

is performed using a Convolutional Neural Network (CNN) and the performance of different

classifiers are compared against each other to design an appropriate model of tissue classifi-

cation, which is a step of characterization of different pathological formations and structural

variations of diseased coronary artery segments.
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Although 2D cross-sectional OCT images of coronary arteries play a crucial role to estimate

tissue variations of coronary artery segments affected by KD, the accurate assessment of patho-

logical formations may obtain by considering the adjacent frames and analyzing the volume

variation of each tissue. Motion correction using 2D cross-sectional OCT images of coronary

arteries is performed in Chapter 4. This work may add incremental steps to our tissue char-

acterization model and also pave the way for evaluation of arterial wall stiffness caused by

pathological formations on the diseased segments of the arterial wall.

In Chapter 5, an intracoronary tissue characterization model is proposed to classify the most

significant intracoronary pathological formations caused by coronary artery disease as well as

coronary artery layers (intima, and media). The possible solutions of applying the state-of-

the-art pre-trained networks in the most efficient way for the application on OCT images is

discussed in this work. Also, this study demonstrates the application of deep feature learning

in pediatric cardiology to detect coronary artery complications caused by Kawasaki disease.



CHAPTER 1

LITERATURE REVIEW

Intravascular visualization of coronary arteries is promising to assess the functionality of coro-

nary artery tissues and evaluate different pathological formations due to various coronary artery

disease.

1.1 OCT imaging

Cardiovascular OCT is a catheter-based invasive imaging modality, which typically employs a

near-infrared light to provide cross-sectional images of the coronary artery at depth of several

millimeters relying on low-coherence interferometry. The unique characteristic of the OCT is

its high axial resolution of 10-15 μm, which is measured by the light wavelength and is decou-

pled from the lens dependent lateral resolution ranging from 20-40 μm (Ferrante et al., 2013).

The OCT system is composed of an optical imaging engine, computer signal acquisition, and

the imaging catheter as it is shown in Figure 1.1.

The probe is inserted into the coronary artery using an over-the-wire balloon catheter from

patient’s groin. A sequence of cross-sectional images of coronary artery segment is recorded

using the backscattered light from the arterial wall through each pullback (see Figure 1.2).

Considering the fact that light can be attenuated by blood before reaching the vessel wall, blood

clearance is required before starting the image acquisition (Bezerra et al., 2009; Boudoux,

2016; Drexler & Fujimoto, 2015).

1.1.1 Physical principles of the OCT system

A near-infrared spectrum of light with the wavelength between 1250 to 1350 nm is applied in

OCT system. Using longer wavelength, we could have deeper penetration depth through the

tissues under review; but in clinical purposes, the wavelength of the light source is selected

considering the characterization of tissue absorption and other determining factors depending
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Figure 1.1 Optical imaging engine and computer signal acquisition, B) OCT

imaging probe.

Figure 1.2 OCT pullback: A sequence of cross-sectional images of coronary

artery segment is recorded using the backscattered light from the arterial wall

through each pullback.

on the texture under review, such as the refractive index of the interface between the catheter

and the vessel wall. In common OCT systems, a wavelength of 1300 nm is employed. There-

fore, the penetration depth is restricted to 1 to 3 mm. Considering the high speed of light,
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3× 108 m/s, it is impossible to perform all the measurements directly and the backscattered

signal should be measured using interferometry method in this short period of time (Bezerra

et al., 2009). A low-coherence light beam emitted from a light source is received by a beam

splitter and is divided into two equal parts. One part passes through a reference mirror and

reflects back to the splitter, the other part moves toward the sample. According to the optical

characteristics of the sample, some portions of the incident light may be absorbed, deflected or

reflected because light velocity may have variable values moving across various media. The

reflected light from the sample reaches the splitter. Two reflected light beams with equal wave-

lengths and invariable phase difference interfere with each other and this is the cornerstone

of creating an image by OCT. Constructive interference occurs if two reflected waves are in

phase. For each particular area of the sample, one pixel is recorded by the detector using dark

and bright patterns (Hamdan et al., 2012). As a result of intracoronary pullbacks, raw data is

obtained from the OCT scanner. The amplitude scan (A-Scan) is the signal obtained from a

single axial scan. Brightness scan (B-Scan) is the cross-sectional image which is acquired as a

result of moving the beam over the sample (see Figure 1.3).

Figure 1.3 Image acquisition using OCT system.
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Attenuation compensation along the OCT A-Scan is performed to improve the contrast of the

intracoronary OCT images, enhance the visibility of the deep tissue structures, particularly

tissue borders, and ameliorate the shadow artifacts. The enhanced cross-sectional image is

acquired by polar reconstruction of the processed data (Foin et al., 2013).

Theory of the Michelson interferometer

Interferometry calculates the field of the light rather than its intensity (Fercher et al., 2003).

Considering the Michelson interferometer, the incident light is a polychromatic plane wave

with the following electric field:

Ei = S(k,ω)e(kz−ωt) (1.1)

Where s(k,ω) is the spectral distribution of the light source, k is wavenumber, and ω is the

angular frequency. For different media, we have various indexes of refraction which are related

to wavelength as below:

c/n(λ ) = λν (1.2)

The beam splitter is assumed to have the splitting ratio of 0.5. The incident light is split into a

reference beam ER(t) and the sample beam ES(t), they pass various distances between the two

arms of the interferometer and they return to the beam splitter. The electric field reflected back

from the reference mirror to the splitter is expressed by the following equation:

ER = Ei/
√

2rRei2kzR (1.3)

Where rR is the electric field reflectivity of the reference mirror, and zR is the position of

reference mirror from the beam splitter. The factor 2 in the exponential term is entered because

of the round-trip path length and 1/
√

2 is the normalization term. The reference reflectivity

power is defined as follows:

RR = ‖rR‖2 (1.4)
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Depending on the different penetration depth that light passes through the sample, we obtain

various backscattered light from the sample which is characterized by their field reflectivity as

follows:

Es = Ei/
√

2[rs(zs)� e(i2kzs)] (1.5)

If the reflections are assumed as a series of N discrete real delta-function reflections, then we

will have:

rs(zs) = ΣN
n=1rsnδ (zs − zsn) (1.6)

Equation (1.6) shows that each reflection is specified by its electric field reflectivity, rsn for n

reflections, and the path from the splitter, zsn for n reflections. The power reflectivity is defined

as follows:

Rsn = ‖rsn‖2 (1.7)

By replacing rs(zs) from equation (1.6) in equation (1.5), we obtain the electric field of the

sample as follows:

Es = Ei/
√

2[ΣN
n=1rsne(i2kzsn)] (1.8)

Finally, the reference beam and the sample beam interfere at the detector, which results in the

following equation:

I(k,ω) = ρ/2 < ‖ER +Es‖2 >= ρ/2 < (ER +Es)(ER +Es)
∗ > (1.9)

Where ρ is the response factor of the detector. By replacing ER and Es from equations (1.3),

and (1.5) and ignoring the temporal angular frequency, ω , in the above equation since the

frequency oscillates much faster than the response time of the detector:

I(k) = ρ/4[S(k)(RR +Rs1
+Rs2

+ ...)]

+ρ/4[S(k)ΣN
n=1

√
RRRsn(e

i2k(zR−zsn )+ e−i2k(zR−zsn)]

+ρ/4[S(k)ΣN
m=1

√
RsnRsm(e

i2k(zsn−zsm )+ e−i2k(zsn−zsm)]

(1.10)
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Gaussian-shaped light spectrum is one of the best choices of the light source to model the

OCT system. Using Gaussian light source with the central wavenumber of k0 and the spectral

bandwidth at half width of 1/e of its maximum (Δk), equation (1.10) can be simplified as

follows:

I(k) = ρ/4[S(k)(RR +Rs1
+Rs2

+ ...)]

+ρ/2[S(k)ΣN
n=1

√
RRRsncos(2k(zR − zsn))]

+ρ/4[S(k)ΣN
m=1

√
RsnRsmcos(2k(zsn − zsm))]

(1.11)

The first, second, and fourth terms of equation (1.11) are respectively called DC term, cross-

correlation term, and auto-correlation term. DC term is a constant offset of the detector current

and is independent of the path length. Cross-correlation term is the main component of the

detector current which is desired for OCT imaging, and the last term is obtained as a result of

the interference among various sample reflectors and leads to the artifacts of the OCT system.

The main artifacts of the OCT system will be discussed later in this section. Obviously, it is

understood from equation (1.11) that if a single reflector is considered, the auto-correlation

term will not appear in the response of the detector (Drexler & Fujimoto, 2008; Fercher et al.,

2003).

Time-Domain OCT and Frequency-Domain OCT

In Time-Domain OCT (TD-OCT), a fiber-optic coupler is applied as the light splitter. In this

system, an ambulant mirror is used as the reference arm. The reflected signals of the sample

and the mirror have interfered and the electric field amplitude will be measured. Using TD-

OCT in interventional cardiology has some limitations. The scanning process reduces the

image acquisition rate. On the other hand, soft balloon inflation is used to prevent coronary

blood circulation during the intervention process. Also, studying the proximal lesions and left

main coronary artery is restricted by using the TD-OCT (Hamdan et al., 2012). In Frequency

Domain OCT (FD-OCT), the mirror is fixed. Therefore, the reference distance will be constant

while the frequency of the light source varies during time. This new generation of OCT is
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fast to produce the images considering the fact that detections at different penetration depths

perform at the same time. There are two types of FD-OCT, Fourier-domain OCT, and swept-

source OCT, which are different on their procedure to derive data from the interferometer.

FD-OCT with the pullback speed of 20 mm/sec is 10-20 times faster than TD-OCT (Ferrante

et al., 2013).

OCT imaging artifacts

Image acquisition in realistic clinical imaging conditions leads to different OCT artifacts in-

cluding residual blood, which can reduce the tissue brightness, non-uniform rotational dis-

tortion as a result of changes in optical fiber rotational speed, sew-up artifact caused by fast

movements of imaging wire or artery, artifacts related to eccentric wire position, side branches

and large vessels (Bezerra et al., 2009; Herrero-Garibi et al., 2010). Figure 1.4 illustrates ten

common artifacts of the OCT imaging.

1.1.2 Clinical applications of OCT

At first, OCT was proved in retinal imaging and then it was developed for other medical

and surgical proficiencies including gastroenterology, dermatology, cardiology, and oncology.

Technological progress such as improvement of laser sources, development of beam transfer

instruments and image detection have caused extensive clinical uses of OCT (Drexler & Fu-

jimoto, 2008). Intravascular imaging modalities, such as OCT allow nowadays improving

diagnosis, treatment, follow-up, and even prevention of coronary artery disease in the adult

and children. At first, OCT is used in adult cardiology particularly to detect fibrosis, calcifi-

cation, neovascularization, and intimal hyperplasia, which are the most significant histological

lesions of coronary atherosclerotic disease in adults (Tearney et al., 2012; Yabushita et al.,

2002). OCT is also used as stent positioning guidance. Also, it is accurate to detect the re-

gressed aneurysmal coronary segments, which are considered as normal in X-ray angiography.

Considering the high spatial resolution of OCT, high image acquisition rate, the feasibility and

safety of OCT in pediatric population, it has been recently used in the pediatric cardiology to
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Figure 1.4 Common OCT artifacts have displayed in the cross-sectional image

of the coronary artery: Residual blood, eccentric wire position, saturation, sew-

up, bubble and fold-over artifacts are shown respectively from A to F.

evaluate structural variations of the coronary arterial wall in the segments of the artery, which

are affected by disease (Fujino et al., 2014; Kakimoto et al., 2014; Dionne et al., 2015).

Automated tissue characterization of diseased coronary artery segments is a challenging task

considering the small size of coronary arteries in children and infants, and the complications

caused by KD on coronary artery tissues. This chapter aims to review the recent studies related

to our research project to demonstrate the scientific contribution of our research considering

the strengths and limitations of the existing approaches.
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1.2 Review of the tissue segmentation and classification approaches

1.2.1 CA segmentation methods using IVUS imaging

Intravascular Ultrasound (IVUS) has been used for many years in interventional cardiology to

evaluate coronary artery tissues by providing information on coronary arterial wall and lumen

(Rathod et al., 2015). Many studies are focused on segmentation of coronary artery tissues

using IVUS imaging. The automated technique for detection of lumen and media-adventitia

borders for quantitative assessment of atherosclerosis in IVUS images was proposed by (Pa-

padogiorgaki et al., 2008) The technique is based on multilevel discrete wavelet using initial-

ized contours. (Mendizabal-Ruiz et al., 2013) proposed a computational method for detection

of the luminal border using IVUS images. The method is based on the minimization of a

probabilistic cost function considering the likelihood of the pixels belonging to the blood and

non-blood regions. Support Vector Machine (SVM) is used to perform the classification. A seg-

mentation approach based on the fast-marching method (FMM) in the context of intravascular

ultrasound (IVUS) imaging is developed by (Destrempes et al., 2014). Shape-driven approach

for segmentation of the arterial wall from intravascular ultrasound images in the rectangular

domain is proposed to detect luminal and media-adventitia borders (Unal et al., 2008).

1.2.2 Classification of CA tissues using OCT imaging

IVUS imaging is restricted to be used in pediatric cardiology due to its suboptimal spatial imag-

ing resolution (100-150 μm), and low pullback speed. OCT is recently used in pediatric car-

diology. It has high resolution ranging from 10 to 20 μm to characterize the internal structure

of tissues such as vessel wall layers and plaque accumulationFerrante et al. (2013). Automatic

lumen segmentation to assess the stenosis grading and characterization of the plaque types in

OCT images of coronary arteries have been performed by (Celi & Berti, 2014). (Yabushita

et al., 2002) have proposed a method of plaque characterization by correlating OCT images

with histology. Other studies focused on atherosclerosis plaque characterization using optical

properties of tissues (Levitz et al., 2004). The actual backscattering and attenuation coeffi-
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cients were measured by (Xu et al., 2008). The automatic quantification of optical attenuation

coefficients has been proposed by (Van Soest et al., 2010). (Ughi et al., 2013) have pro-

posed a classification method using texture features and attenuation coefficient to characterize

atherosclerosis tissues. Volumetric estimation of backscattered intensity and attenuation co-

efficient is performed by (Gargesha et al., 2015). SVM is used to classify between fibrosis,

calcification, and lipid. Identification and quantification of fibrous tissue based on Short-Time

Fourier Transform (STFT) using OCT imaging are proposed by (Macedo et al., 2016). (Gan

et al., 2016) developed a classification framework to detect normal myocardium, loose col-

lagen, adipose tissue, fibrotic myocardium, and dense collagen. Graph searching method is

applied to segment various tissue layers of the coronary artery. Combination of texture fea-

tures and optical properties of tissues are used to train Relevance Vector Machine (RVM) to

perform the classification task. A plaque tissue characterization technique based on intrinsic

morphological characteristics of the A-lines using OCT imaging is proposed by (Rico-Jimenez

et al., 2016) to classify superficial-lipid, fibrotic-lipid, fibrosis, and intimal thickening by ap-

plying Linear Discriminant Analysis (LDA).

To the best of our knowledge, these studies did not address the challenging task of classi-

fication of coronary artery layers, particularly in pediatric patients. There is no study

in the literature focused on characterization of all pathological formations caused by

coronary artery disease, which is a challenging task since the model should be able to

discriminate between various tissue formations as well as normal coronary tissue layers.

1.2.3 Application of CNNs in medical image analysis

The recent applications of CNNs in medical image analysis include pancreas segmentation us-

ing CT images of the abdomen (Roth et al., 2015), classification of pulmonary peri-fussural

nodules (Ciompi et al., 2015), and brain tumor segmentation (Havaei et al., 2016). The strength

of CNNs originates from its deep structure, which allows feature extraction from various ab-

straction layers (Szegedy et al., 2015; Simonyan & Zisserman, 2014; Zeiler & Fergus, 2014;

Eigen et al., 2013). Basically, all CNNs consist of a series of layers defined by a specific
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number of filters or kernels that mainly have the role of feature detector from a set of input

images. Sliding the filters on the input images and calculating the convolution of these filter

matrices and the input image matrix creates a set of convolved features or simply feature maps.

The exact meaning of learning a CNN is to train a CNN architecture by the values of these

convolutional operations (Hochreiter & Schmidhuber, 1997).

The transferability of the information preserved on pre-trained CNNs which is one of the most

significant characteristics of CNNs, has been demonstrated by the work of (Azizpour et al.,

2015). The recent studies show the significant applications of transfer learning in medical im-

age analysis to extract features from a new dataset using pre-trained CNNs or to use CNNs as

the classifier by fine-tuning a pre-trained network (van Ginneken et al., 2015; Bar et al., 2015;

Arevalo et al., 2015; Chen et al., 2015; Carneiro et al., 2015; Gao et al., 2016; Margeta et al.,

2015). (van Ginneken et al., 2015) have used the last layer of OverFeat pre-trained CNN as

feature extractor for pulmonary nodules detection in CT acquisition. Then, extracted features

have been used to train SVM for the classification task. Other studies used pre-trained CNNs as

feature extractors on various medical image datasets such as chest radiograph data in the work

of (Bar et al., 2015) and mammography images in the work of (Arevalo et al., 2015). Recently,

pre-trained networks have been also used for classification tasks. For instance, (Chen et al.,

2015) applied pre-trained CNNs on ImageNet dataset to detect the fetal abdominal standard

plane in ultrasound images by keeping the low-level representations extracted from natural im-

ages and modifying the parameters of the last layers based on the characteristics of ultrasound

images. The application of transfer learning using pre-trained CNNs in medical image analysis

has been shown in other studies (Carneiro et al., 2015; Gao et al., 2016; Margeta et al., 2015).

Also, it has been demonstrated in the work of (Tajbakhsh et al., 2016) that using pre-trained

CNNs with adequate fine-tuning works better than training a CNN from scratch in medical im-

age analysis applications. In their experiments, they considered different categories of medical

images in radiology, cardiology, and gastroenterology using different medical imaging systems

such as colonoscopy images for polyp detection, CT pulmonary angiography (CTPA) for PE
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diagnosis, and carotid intima-media thickness (CIMT) which is a noninvasive ultrasonography

method in cardiology.

Nevertheless, most of the studies are focused on fine-tuning the available pre-trained net-

works to perform the classification task. How to use pre-trained networks in an efficient

way to overcome the convergence issues, overfitting concerns, and long computational

time is not mentioned in the literature. Choosing a classifier with robust classification

performance, while it is trained on deep features is not reported in the literature. To the

best of our knowledge, the application of deep feature learning on intracoronary tissue

classification to detect pathological formations caused by coronary artery disease as well

as tissue layers is not proposed in previous studies.

1.3 Review of motion correction and 3D reconstruction techniques

Since the OCT probe moves freely in coronary artery pathway, cross-sectional images might

be misaligned. This is problematic to evaluate longitudinally each tissue and to design robust

model for clinical measurements. Since OCT is recently used in cardiology, motion correction

methods are mostly focused on intracoronary IVUS images and OCT retinal images.

Intravascular Ultrasound (IVUS) has been used for many years as an intracoronary imaging

modality in cardiology. Therefore, many of the motion correction and 3D reconstruction meth-

ods are focused on IVUS images. (Wahle et al., 1998) developed an image fusion technique to

create the 3D reconstruction of intracoronary IVUS images. (Cothren et al., 2000) proposed a

3D reconstruction technique by detecting the 3D trajectory of the IVUS transducer using the in-

formation of the angiographic images. It is demonstrated that the correct rotational orientation

of IVUS images on the angiogram is based on the function of time by applying best fit angle

function. To increase the accuracy of the 3D reconstruction, (Bourantas et al., 2005) extracted

the catheter path from biplane angiography. Also, the IVUS images and angiogram are visu-

alized simultaneously using ECG wave. (Zheng, 2009) focused on 3D reconstruction method

of intracoronary IVUS images by reconstructing the pullback path using snake algorithm. The
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precision of the 3D reconstruction method is increased by focusing on 3D axial position, spatial

orientation, and surface fitting. 3D artery is registered with intracoronary IVUS cross-sections

using distance mapping algorithm in the work of (Tu et al., 2011). Another study is focused on

3D reconstruction of IVUS images using the biplane angiography to detect the 3D centerline.

The IVUS frames are distributed along the reconstructed centerline in equivalent time intervals

(Ma et al., 2013). (Athanasiou et al., 2016) proposed a 3D reconstruction of intracoronary

IVUS images by estimating the lumen and the outer vessel wall borders using the approxima-

tion of the arterial centerline to evaluate plaque formations. (Karlas & Lee, 2015) proposed a

3D reconstruction method based on the fusion of IVUS and preoperative CT data. The align-

ment of the detected lumen borders is performed using the ellipse fitting technique and CT data

is used to detect the arterial shape. (Zhao et al., 2016) developed a 3D reconstruction method

using EM sensor to detect the catheter pose. Lumen contours are detected by applying a radial

scan method.

A motion correction algorithm based on A-scans was proposed for retinal OCT images by

(Kraus et al., 2012). They have also extended their method to 3D-OCT motion correction

using image registration and orthogonal raster scan patterns (Kraus et al., 2014). (Braaf

et al., 2013) proposed a method using the combination of inter-B-scan phase-resolved OCT

angiography with real-time eye tracking. (Lee et al., 2011) have devised an algorithm relying

on cross-correlation maximization for motion compensation of rodent cerebral cortex.(Wang

et al., 2015) are focused on motion tracking using speckle decorrelation of OCT signal by

evaluating the sensitivity of speckle motion tracking using the derivative of cross-correlation

coefficient.

Some other studies are focused on OCT images of coronary arteries. 3D reconstruction of

coronary artery images is performed by (Ellwein et al., 2011) using graph theory applied on

computed tomography (CT) and OCT data of a single patient after stent placement. (Athana-

siou et al., 2012) proposed a semi-automated 3D reconstruction method using OCT images and

biplane angiography.



20

Very few studies addressed the problem of non-rigid, intra-slice motion correction in in-

travascular OCT images using tissue information, rather than the lumen outline. Also,

the application of deep features for registration problem is not mentioned in the litera-

ture. Considering the physical principals of the imaging system, the motion correction

technique should be adapted to the artifacts, challenges, and the physical properties of

the imaging system as well as the attributes of the acquired images.

Research problems are defined based on the clinical demands, which are mentioned by expert

cardiologists. The main and specific research objectives are defined according to the research

problems. For each specific objective, the models are designed by considering the physics

of the imaging system, image properties, strengths and limitations of the related studies, and

possible improvements of the proposed techniques in the literature.



CHAPTER 2

RESEARCH OBJECTIVES

2.1 Problem statement and Research objectives

Considering the significant role of coronary arteries in the functionality of cardiac tissues,

coronary artery disease (CAD) is known as the main cause of myocardial infarction (MI) and

sudden death. Progression of pathological formations caused by coronary artery disease can

be followed by acute coronary syndrome (ACS). Therefore, the main goal of this research is

to design an intracoronary tissue characterization model using OCT imaging by finding

the appropriate feature extraction, classification, and motion correction techniques. To

achieve the main goal of this research, we defined three specific objectives. Each specific

objective is a complementary step of the main objective, which contributes to solving a set of

problems involved in this project.

Characterization of the normal coronary artery layers is significant to discriminate between

normal and diseased arterial segments. Therefore, for the first objective, we started with the

intracoronary OCT images with three-layered structure, which can be considered as a normal

coronary artery. In this objective, we aimed to find the features, which may describe arterial

wall layers accurately, and a robust classifier to discriminate between features extracted from

various coronary artery layers. Thus, the first objective is defined as: Feature extraction and

automatic classification of coronary artery layers (intima and media), which contributes

to:

- Identifying the features, which perfectly describe coronary artery tissues.

- Choosing a classifier, which has a high performance compared against other classifiers to

discriminate between different coronary artery layers.

- Analyzing the classification results at each step of the work to find the optimal classification

model.
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For each OCT pullback, intracoronary cross-sectional images might be misaligned, since the

probe moves freely along the catheter during the imaging process. This is problematic for vol-

umetric measurements of different tissues, which are significant for studying the progression

and regression of various pathological formations particularly to evaluate the aneurysmal re-

gions and stenotic segments of the arterial wall. Therefore, motion correction is a step of 3D

reconstruction of intracoronary OCT images. Since, the optimal features, which can properly

describe the arterial wall layers are determined in the first objective, they might be applied for

motion correction of intracoronary OCT images by finding the maximum similarity between

feature vectors extracted from the frames of an OCT pullback to perform registration. Thus,

the second objective is defined as Intra-slice motion correction using the similarity between

extracted features, which is the step of 3D reconstruction and contributes to:

- Applying deep learning on intracoronary OCT images for motion correction.

- Intra-slice motion correction in intravascular OCT images using tissue information rather

than the lumen outline.

- Using deep features as similarity measures.

We define the third objective to design an intracoronary tissue characterization model to detect

pathological formations caused by coronary artery disease. This is challenging considering the

artifacts of the imaging system, the characteristics of each coronary artery tissue, and similar

structures in different pathological formations. The classification foundation built in the first

objective is employed in this step of the work to propose an appropriate tissue characterization

model. Therefore, the third objective is defined as: Automatic characterization of intracoro-

nary pathological formations, which contributes to:

- Characterization of complex pathological formations in KD from OCT imaging, namely

intimal hyperplasia, media disappearance, neovascularization, fibrosis, calcification, and

macrophage accumulation.



23

- Evaluation of different pre-trained CNN models for OCT image analysis with a limited

labeled dataset.

- Assessment of the clinical usefulness of deep feature learning for OCT imaging in pediatric

cardiology.

Flowchart of Figure 2.1 demonstrates the correlation between the main research objective and

the three specific research objectives.

Figure 2.1 Main and specific research objectives

The detailed information of coronary artery structure and the OCT imaging system, as well as

the clinical features of pathological formations caused by KD, should be considered to take

into account all the possible aspects of the problems and build the optimal model related to

each specific objective.
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ABSTRACT

Kawasaki disease (KD) is an acute childhood disease complicated by coronary artery aneurysms,

intima thickening, thrombi, stenosis, lamellar calcifications, and disappearance of the medial

border. Automatic classification of the coronary artery layers (intima, media, and scar features)

is important for analyzing Optical Coherence Tomography (OCT) images recorded in pediatric

patients. OCT has been known as an intracoronary imaging modality using near-infrared light

which has recently been used to image the inner coronary artery tissues of pediatric patients,

providing high spatial resolution (ranging from 10 to 20 μm). This study aims to develop

a robust and fully automated tissue classification method by using the Convolutional Neural

Networks (CNNs) as feature extractor and comparing the predictions of three state-of-the-art

classifiers, CNN, Random Forest (RF), and Support Vector Machine (SVM). The results show

the robustness of CNN as the feature extractor and Random Forest as the classifier with classi-

fication rate up to 96%, especially to characterize the second layer of coronary arteries (media),

which is a very thin layer and it is challenging to be recognized and specified from other tissues.
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3.1 Introduction

3.1.1 Coronary artery structure

A normal arterial wall is composed of three layers. The first layer, the intima, is a transparent,

achromatic, and extremely elastic structure comprised of endothelial cells in direct contact with

circulating blood. It is characterized by a signal-rich pattern in OCT images, and a normal

intima has a reported thickness of 61.7 ± 17.0 μm. The next layer of the arterial wall, the

media, is homogeneous and composed of smooth muscle cells, lined by the inner and the outer

elastica layers which are composed of elastic fibers. The media is specified by a signal-poor

pattern in OCT images with a normal thickness of 61.4 ± 16.7 μm. Finally, the adventitia

is the outermost layer of the artery, surrounding the media and characterized by a signal-rich

layer in OCT images (Dionne et al., 2015; Ligthart et al., 2011).

One of the most important abnormalities resulting from Kawasaki disease is intimal hyperpla-

sia, which can be eccentric or concentric and is followed by a mean intima thickening of 390.8

± 166.0 μm. Mean media thickness in the case of the aneurysmal artery is 30.2 ± 56.9 μm.

Changes to the normal structure of the vessel wall as a consequence of severe intimal hyper-

plasia lead to a partial disappearance of the media. The composition of calcified nodules, white

thrombus, fibrosis, and macrophage accumulation are additional abnormalities (Dionne et al.,

2015).

3.1.2 Optical Coherence Tomography (OCT)

Most of the traditional cardiac imaging modalities, such as X-ray angiography and computed

tomography, are effective to visualize the outline of the lumen, where the contrast agent flows in

the coronary artery. However, they do not characterize the internal structure of the tissues, such

as the vessel wall layers and plaque accumulation (Preim & Bartz, 2007). The inner vessel wall

geometry and visualization of the morphology of both plaques and arterial wall layers allow for

detection and evaluation of the thickness of each layer of the coronary artery, various thrombi,
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and calcifications, enabling improvements to the process of diagnosis, treatment, and follow-

up the patients with coronary complications. Although intravascular ultrasound (IVUS) may

be used to assess the inner part of the vessels, its application is restricted due to its suboptimal

resolution of 100 - 150 μm (Ferrante et al., 2013).

Optical Coherence Tomography (OCT), an intracoronary imaging modality that uses near-

infrared light, has many clinical applications because of its high resolution (ranging from 10

to 20 μm). OCT is a promising method for quantifying all information about the inner parts

of the vessels by producing a sequence of cross-sectional images of coronary arteries with

the high resolution about 10 times higher than IVUS (Bezerra et al., 2009). At first, OCT

has been widely used in retinal imaging as one of the significant diagnostic technologies of

retinal diseases and glaucoma (Costa et al., 2006). Then, it has been developed for other

medical applications, specifically in cardiology (Zysk et al., 2007). The introduction of OCT

for intravascular imaging was found to be an interesting alternative for intravascular ultrasound

(IVUS) imaging.

3.1.3 Kawasaki Disease (KD)

Kawasaki disease is an acute childhood inflammatory disease characterized by fever, rash,

bilateral nonexudative conjunctivitis, erythema of the lips and oral mucosa, changes in the ex-

tremities, and cervical lymphadenopathy. While a high dose of Intravenous Immune Globulin

(IVIG) infusion decreases the occurrence of coronary abnormalities, about 15% to 25% of un-

treated children suffer a risk of experiencing coronary artery aneurysms or ectasia (Newburger

et al., 2004), which may be followed by intimal hyperplasia, thrombi, stenosis, lamellar calci-

fications, disappearance of the medial border, and significantly the stiffness of the arterial wall

(Orenstein et al., 2012).

In vivo intravascular visualization of coronary arteries and diagnostic assessment of coronary

artery abnormalities are feasible in children and may provide highly valuable progressive in-

formation (Dionne et al., 2015; Harris et al., 2014). In this work, we focused on the segments
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of coronary arteries of patients which are identified as normal by the cardiologist to extract

all attributes describing each coronary artery layer. This information can be used to distin-

guish the normal versus abnormal coronary arteries to detect intima hyperplasia, fibrous, and

calcification.

3.1.4 Related works

Considering intima hyperplasia, thrombi, stenosis, lamellar calcifications, and disappearance

of the medial border, tissue classification and specifically classification of the coronary artery

layers is very important to evaluate the thickness of the layers. Furthermore, intimal thickening

and disappearance of the media complicate the classification task. Therefore, manual segmen-

tation of the coronary artery layers is tedious, time-consuming, and particularly error-prone

from one observer to another.

Automatic lumen segmentation to assess the stenosis grading and characterization of the plaque

types in OCT images of coronary arteries have been performed by Celi et al. (Celi & Berti,

2014). Yabushita et al. have proposed a method of plaque characterization by correlating

OCT images with histology (Yabushita et al., 2002). Other studies focused on atherosclero-

sis plaque characterization using optical properties of tissues (Levitz et al., 2004). The actual

backscattering and attenuation coefficients were measured by Xu et al. (Xu et al., 2008). The

automatic quantification of optical attenuation coefficients has been proposed by Van Soest et

al. (Van Soest et al., 2010). Ughi et al. (Ughi et al., 2013) have proposed their classification

method using texture features and attenuation coefficients to characterize atherosclerosis tis-

sues. However, these studies did not address the challenging task of classification of coronary

artery layers.

Advances in machine learning and pattern classification have lead to significant advances in

automatic image recognition. For instance, Convolutional Neural Networks (CNNs) have been

demonstrated as very powerful techniques in the broad range of tasks and in various fields of

studies such as computer vision, language processing, image processing, and medical image
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analysis (Szegedy et al., 2015; Simonyan & Zisserman, 2014; Zeiler & Fergus, 2014; Eigen

et al., 2013). A wide range of image detection problem using CNNs can be traced back to

the 90’s, including lung nodule detection, micro-calcification, mass tissue detection on mam-

mography (Lo et al., 1993; Chan et al., 1995; Sahiner et al., 1996). Also, unsupervised deep

learning for multiple organ detection using 4D data is performed by (Shin et al., 2013).

The recent applications of CNNs in medical image analysis include pancreas segmentation

using CT images of the abdomen (Roth et al., 2015), classification of pulmonary peri-fussural

nodules (Ciompi et al., 2015), and brain tumor segmentation (Havaei et al., 2016). The strength

of CNNs originates from its deep structure which permits to extract the features from various

abstraction layers (Szegedy et al., 2015; Simonyan & Zisserman, 2014; Zeiler & Fergus, 2014;

Eigen et al., 2013). Basically, all CNNs consist of a series of layers defined by a specific

number of filters or kernels that mainly have the role of feature detectors from a set of input

images. Sliding the filters on the input images and calculating the convolution of these filter

matrices and input image matrix creates a set of convolved features or simply feature maps.

The exact meaning of learning a CNN is to train the CNN architecture by the values of these

convolutional operations (Hochreiter & Schmidhuber, 1997).

The transferability of the information preserved on pre-trained CNNs which is one of the most

significant characteristics of CNNs, has been demonstrated by the work of Azizpour et al.

(Azizpour et al., 2015). The recent studies show the significant applications of transfer learning

in medical imaging to extract features from a new dataset using pre-trained CNNs or to use

CNNs as the classifier by fine-tuning a pre-trained CNN (van Ginneken et al., 2015; Bar et al.,

2015; Arevalo et al., 2015; Chen et al., 2015; Carneiro et al., 2015; Gao et al., 2016; Margeta

et al., 2015). Van Ginneken et al. have used penultimate layer of OverFeat pre-trained CNN as

feature extractor for pulmonary nodules detection in CT acquisition. Then, extracted features

have been used in a SVM classifier (van Ginneken et al., 2015). Other studies used pre-trained

CNNs as feature extractors on various medical image datasets such as chest radiograph data in

the work of Bar et al. (Bar et al., 2015) and mammography images in the work of Arevalo et al.

(Arevalo et al., 2015). Recently, pre-trained CNNs have been also used for classification tasks.
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For instance, Chen et al. have applied pre-trained CNNs on ImageNet dataset to detect the

fetal abdominal standard plane in ultrasound images by keeping the low-level representations

extracted from natural images and modifying the parameters of the last layers based on the

characteristics of ultrasound images (Chen et al., 2015). The application of transfer learning

using pre-trained CNNs in medical image analysis has been shown in other studies (Carneiro

et al., 2015; Gao et al., 2016; Margeta et al., 2015). Also, it has been demonstrated in the work

of Tajbakhsh et al. that using pre-trained CNNs with adequate fine-tuning works better than

training a CNN from scratch in medical image analysis applications (Tajbakhsh et al., 2016).

In their experiments, they have considered different categories of medical images in radiology,

cardiology, and gastroenterology using different medical imaging systems such as colonoscopy

images for polyp detection, CT pulmonary angiography (CTPA) for PE diagnosis, and Carotid

intima-media thickness (CIMT) which is a noninvasive ultrasonography method in cardiology

(Tajbakhsh et al., 2016).

In this study, our main contribution is the automatic classification of coronary artery layers

in pediatric patients using the images obtained from OCT system. Our work contributes to

identifying the features, which perfectly describe both intima and media layers in OCT images

using a pre-trained CNN as feature extractor. We also determine if it is better to fine-tune a pre-

trained network and use it as the classifier or applying pre-trained CNNs as feature extractor

and using the activations of the last fully connected layer to train other classifiers in our appli-

cation. Finally, we analyze the performance of the classifiers using CNN features and compare

the results against tissue classification results of coronary arteries using texture analysis, which

is recently done by our group (Abdolmanafi et al., 2016).

3.2 Material and methods

3.2.1 Pre-processing

We started the pre-processing by automatic recognition and removal of the guide-wire from the

images. This step is applied to all the sequences obtained from all the patients. The images are
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subsequently converted to a planar representation by transformation from Cartesian coordinate

to Polar coordinate, where the vertical and horizontal axes correspond to radial distance and

polar angle, respectively. The approximate region of interest, which consists of the lumen,

the arterial wall layers, and the catheter, is extracted by applying active contour. Finally, the

catheter and unwanted red blood cells are removed from the images by finding the smallest

connected components. All the pre-processing steps are shown in Figures 3.1 and 3.2.

Figure 3.1 Pre-processing steps from left to right: original image, converting

to planar representation, and extracting the region of interest by removing all the

background.

3.2.2 Initial segmentation

Since OCT is a new imaging modality recently introduced in cardiology, to the best of our

knowledge, there is no ground-truth available in the literature. Manual segmentation to create

the ground-truth is tedious, time-consuming, and imprecise when the size of the tissues is very

small. Moreover, the impacts of the disease on these small tissues make them more compli-

cated to be recognized by trained operators. To improve the precision of our classification, we

developed an automated approach based on the work of Azarnoush et al. on the intravascular

images obtained from phantoms using OCT system (Azarnoush et al., 2012). This initial seg-

mentation is using peak information and image quantization to perform tissue segmentation to

create ground-truth. The segmentation results were validated by an expert cardiologist.
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Figure 3.2 Flowchart of the tissue classification algorithm. The process of

training, feature extraction, and classification using pre-trained CNN just as

feature generator is shown in step 1 and fine-tuning the network to use it as the

classifier as well as feature extractor to train Random Forest and SVM is

demonstrated in step2. Step 3 show our final decision to select the optimal

classification algorithm based on measured classification accuracy, sensitivity,

and specificity at each step of the work and for each classifier.
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For each frame of a sequence, we assess the image profile at different penetration depths by

scanning the images from 0 to 359 degrees along the radius in planar representation. It is

possible to recognize the number of layers present for each frame of a sequence by considering

the fact that passing the light from one tissue of the sample to another creates a peak in the

A-scan obtained from the backscattered light in the OCT system (Foin et al., 2013).

Accordingly, a single peak signifies that just the intima is present; media disappearance is

obvious in these parts of the images (see Figure 3.3a). Regardless of the level of noise, the

presence of two peaks would correspond to two layers (intima and media) and correspondingly

three borders (intima, intima-media, and media borders). In realistic laboratory conditions,

however, three other possibilities must be considered:

- If the two peaks lie close to one another, then both peaks correspond to one layer, the only

layer present in this case is intima (see Figure 3.3c).

- Considering the fact that the tissue surrounding the media (adventitia) is characterized by

a signal-rich pattern in OCT images. Therefore, passing from the media results in a high

peak value. A low value of the second peak also describes a case where just a single layer,

the intima, is present (see Figure 3.3b).

When there are more than two peaks, they could all belong to one layer (e.g., if peak values are

very close to each other), or they could belong to two different layers (see Figure 3.3d, Figure

3.3e, and Figure 3.3f).

To quantify what we mean by low peak values and how close peak values must be to one an-

other to be considered as belonging to the same layer, we apply image quantization to segment

each frame to 9 gray levels using 8 threshold values (see Figure 3.3), the first threshold for

each frame determines the minimum difference between two peak values to consider them as

belonging to one layer. Also, the peak values less than the first threshold value for each frame

is considered as noise. By mapping points that are recognized as intima, intima-media, and

media borders using peak values and image quantization to the real images, we can see the
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precision of the method as illustrated in Figure 3.3a, a single peak corresponds to the presence

of just intima. In Figure 3.3b, according to the thresholds obtained by image quantization, the

second peak value is too low to be considered as corresponding to any of the tissues. Corre-

spondingly, two borders are recognized in this part of the image (intima and intima-media). In

Figure 3.3c, there are two peaks, but the two peaks are very close to each other (the difference

between the peak values is less than the first threshold level). This is in agreement with the im-

age, which shows no media border. In Figure 3.3d, there are three peaks, but the last two peak

values are too low to be considered as corresponding to any of the tissues. In Figure 3.3e, the

first two peaks are not close to each other to be considered as belonging to the same layer, and

the second peak value is greater than the first threshold level. We have three borders of intima,

intima-media, and media. Considering the width of the first peak, intima thickening is obvious

in this part. In Figure 3.3f, an example of more than two peaks is depicted; the first two peaks

belong to the intima, the last two peak values are very low to be considered as corresponding

to any of the tissues.

3.2.3 Feature extraction and classification

Referring to the work of Tajbakhsh et al. (Tajbakhsh et al., 2016), it is already determined that

using pre-trained CNNs with proper fine-tuning works better in practice than the full training of

a CNN on scarcely available medical image datasets. In our application, we use the pre-trained

AlexNet model as feature generator by removing the top output layers (classification layers)

and using the activations of the last fully connected layer as training input for Random Forest

and Support Vector Machine (SVM). Also, we are interested to fine-tune the AlexNet model

by finding the optimal learning rates for the weights at each layer and prepare the network for

the classification task.

3.2.3.1 Convolutional Neural Networks (CNNs)

Generally, every Convolutional Neural Network architecture which is applicable in image pro-

cessing builds on four main operations: convolution, nonlinearity (ReLu), pooling or sub-
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Figure 3.3 Peak detection and image quantization. Red circles show the peaks

in the image profile; yellow, blue, and green are used to display intima,

intima-media, and media borders, respectively.

sampling, and classification. In CNN, each convolutional filter creates one feature map when

it moves through the whole image with a defined stride. Therefore, the size of the kernel deter-

mines the depth of the network. After every convolutional operation, a Rectified Linear Unit

(ReLU) has been applied. Since convolution is a linear operator, it is required to introduce

the non-linearity by storing non-negative values in the feature map and replacing the negative
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Figure 3.4 Initial segmentation of three consecutive frames of four different

patients. Yellow, blue, and green dots show intima, intima-media, and media

borders, respectively.

values with zero. The pooling or sub-sampling is used for dimensionality reduction by keeping

the most important information (Hochreiter & Schmidhuber, 1997; Hubel & Wiesel, 1959).

In detail, a CNN is trained by minimizing the cost function with respect to the weights at each

layer using stochastic gradient descent. The cost function is defined as follows:

L =−(1/|X |)Σ|X |
j ln(p(y j|X j)) (3.1)
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Where X is the size of the training set and ln(p(y j|X j) denotes the probability of jth image

to be classified correctly with the corresponding label y. for each layer of the network, the

weights are updated at each iteration i as follow:

Vi+1 = μVi − γiα∂L/∂W (3.2)

Wi+1 =Wi +Vi+1 (3.3)

Where μ is the momentum, α is the learning rate, γ is the scheduling rate which reduces the

learning rate at the end of iterations, and W is the weight at each iteration i for each layer

(Krizhevsky et al., 2012; Tajbakhsh et al., 2016). The training process starts with initialized

weights for each convolutional layer from a zero-mean Gaussian distribution and standard

deviation.

Pre-trained AlexNet model

For both feature extraction and classification using CNN, the pre-trained AlexNet model (Krizhevsky

et al., 2012) is used in our experiments. AlexNet is trained on 1.2 million images from the Im-

ageNet dataset, which are labeled with 1000 semantic classes. The network consists of 60

million parameters and 650000 neurons. It composed of eight learned layers, five convolu-

tional layers, and three fully-connected layers with a final 1000-way softmax with GPU imple-

mentation of convolutional operation to speed up the training process of such a huge network.

The architecture of the AlexNet used in our experiments is shown in Table 3.1. The model

is trained using stochastic gradient descent with the batch size of 128, momentum of 0.9, and

weight decay of 0.0005 to reduce the training error of the model (Krizhevsky et al., 2012).

Transfer learning and fine-tuning

In transfer learning, we use the same architecture as the pre-trained CNN. The last fully con-

nected layer (fc8 in this network), is designed based on the number of classes. Therefore, for

the first step, the last 3 layers of the pre-trained network (fc8, prob, and classification layer) are
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Table 3.1 AlexNet architecture consists of five convolutional layers, and three fully

connected layers.

Layer Layer type Input of each layer Output
conv1 convolution 227x227x3, stride [4 4], padding [0 0] 55x55x96

pool1 max pooling 55x55x96, stride [2 2], padding [0 0] 27x27x96

conv2 convolution 27x27x96, stride [1 1], padding [2 2] 27x27x256

pool2 max pooling 27x27x256, stride [2 2], padding [0 0] 13x13x256

conve3 convolution 13x13x256, stride [1 1], padding [1 1] 13x13x384

conv4 convolution 13x13x384, stride [1 1], padding [1 1] 13x13x384

conv5 convolution 13x13x384, stride [1 1], padding [1 1] 13x13x256

pooling5 max pooling 13x13x256, stride [2 2], padding [0 0] 6x6x256

fc6 fully connected 6x6x256 1x4096 feature vector

fc7 fully connected 1x4096 feature vector 1x4096 feature vector

fc8 fully connected 4096D feaure vector 1x1000

replaced by a set of layers, which are designed for multi-class classification to classify intima

and media. Accordingly, the number of neurons in the last fully connected layer is set based

on the number of classes in our dataset. The next step is fine-tuning; which means to initialize

the weights of each layer in our network by transferring the weights from the pre-trained CNN

and using the same structure of the pre-trained architecture.

Since low-level features are related to more general characteristics of the images such as edge

orientation detectors, or color blob detectors that should be applicable to many tasks and over-

fitting concerns of deep fine-tuning considering the small size of our dataset for each patient,

we prefer just to fine-tune the weights of the last few layers of the network. But, from another

perspective, our dataset is completely different from the original dataset of the pre-trained

CNN. Therefore, it is more reliable if we fine-tune the pre-trained network by continuing the

back-propagation and changing the network slightly. We started fine-tuning from the last fully

connected layer (the new fc8 that we replaced based on our classification task). The weights

of all other layers remain constant by forcing the learning rates to zero for those layers. The

parameters are selected based on grid searching for an extensive interval of values. We keep μ

and γ at 0.9 and 0.95 respectively and change the learning rate for the last fully connected layer

by setting the learning rate to 0.1. For the next steps, we continue fine-tuning by changing the
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learning rates of the last two layers, last three layers and so on, to reach the best performance

of the network to stop fine-tuning. Table 3.2 shows the learning rates for each step. We started

decreasing the learning rate to 0.01 from fc6 (first fully connected layer in the network). In this

way, the weights of the last layers, which are more dataset specific are changing faster than the

rest of the network.

Table 3.2 Learning rates at each step of fine-tuning the AlexNet model in our

experiments. μ and γ are fixed at 0.9 and 0.95 respectively at all the steps of

fine-tuning. We started fine-tuning from the last fully connected layer by setting

the learning rate to 0.1 for this layer and zero for other layers. We continue

changing the network slightly. We started decreasing the learning rates during

fine-tuning from fc6. So, the weights of the last layers which are more dataset

specific change faster than the rest of the network.

Layers Step 1 Step 2 Step 3 Step 4 Step 5 Step6 Step7 Step8
fc8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

fc7 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1

fc6 0.0 0.0 0.01 0.01 0.01 0.01 0.01 0.01

conv5 0.0 0.0 0.0 0.01 0.01 0.01 0.01 0.01

conv4 0.0 0.0 0.0 0.0 0.01 0.01 0.01 0.01

conv3 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.01

conv2 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01

conv1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01

3.2.3.2 Random Forest

Generating an ensemble of trees using random vectors, which control the growth of each tree

in the ensemble significantly increases the classification accuracy. Random Forest works effi-

ciently on large data sets, carries a very low risk of overfitting, and is a robust classifier for noisy

data. The trees are grown based on the CART methodology to maximum size without pruning.

Two important factors which affect the Random Forest accuracy are the strength, s, of each

tree and the correlation, ρ , between them. Generalization error for Random Forest classifier is

proportional to the ratio ρ/s2. Hence, the smaller this ratio, the better functioning of Random

Forest will be concluded. The correlation between trees is reduced by random selection of a
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subset of features at each node to split on (Criminisi & Shotton, 2013; Kuhn & Johnson, 2013).

To improve the performance of the classifier in our experiments, we started from 100 trees and

increase the number of trees to 1000. The optimal number of trees is chosen by considering

the Out Of Bag (OOB) error rate. By setting the number of trees to 241, the error rate is low,

almost close to the minimum error rate, and fewer number of trees reduces the computational

burden; so, classifier performance is faster. The number of randomly selected predictors (an-

other tuning parameter in Random Forest) is set to 7. Random Forest training and validation is

described in section 2.3.4.

3.2.3.3 Support Vector Machine (SVM)

SVM is robust against a large number of variables, large data sets, and noisy data, which are the

principal challenges of medical images (Wang & Xue, 2014). Non-linear decision boundary is

obtained using SVM by means of a kernel function. We employed two-class SVM classifier

with Gaussian Radial Basis Function (RBF) as the kernel using C-Support Vector Classifier

(C-SVC) available in the LIBSVM library (Chang & Lin, 2011). Using grid searching, we

found the optimal values of regularization and Gaussian kernel bandwidth parameters, C and

γ , which are set to 10 and 0.5 respectively. γ is related to the inverse of the RBF kernel extent.

Therefore, the smaller γ , the wider kernel will be resulted. The trade-off between the SVM

complexity and the number of non-separable samples is controlled by C. The larger C, the

higher training accuracy is obtained (Wang & Xue, 2014). SVM training and validation is

described in section 2.3.4.

3.2.4 Training and validation

A total of 26 sequences of intracoronary cross-sectional OCT images are obtained from patients

with the history of KD using the ILUMIEN OCT system (St. Jude Medical Inc., St. Paul,

Minnesota, USA) with the axial and lateral resolutions of 12-15 μm and 20-40 μm respectively.
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In the experiments, for each patient, the ROIs (intima and media) are extracted from each frame

of the sequence using the initial segmentation and they are labeled as one and two for intima

and media respectively. We have a total of 4800 ROIs adapted to the pre-trained network for

all the 26 patients (with an average of 180 ROIs per patient).

The experiments are performed separately for each patient and the classifiers retrained for each

sequence of images per patient. For each experiment, the ROIs are divided randomly into three

equal parts to create the training, validation, and test sets. To ensure that there is no correlation

between these three sets, 2/3 of the ROIs are randomly selected as the training set and the

remaining 1/3 is considered as the test set. To create the validation set, half of the training set

is randomly selected as the validation set and the remaining built the final training set. Then, the

accuracy is calculated on the validation set and the training process is stopped when the highest

accuracy on the validation set is obtained. By terminating the training process, the features are

extracted from the last fully connected layer just before the classification layer (fc7) of the fine-

tuned network. Extracted features are used to train Random Forest and SVM. Classification is

performed on the test set using CNN, Random Forest, and SVM (see Figure 3.2). We also apply

the pre-trained network as feature extractor without fine-tuning. The extracted features from

the layer fc7 of the network are used to train Random Forest and SVM. Then, the classification

of the layers is performed on the test set using Random Forest and SVM Figure 3.2.

In the first part of this work, we performed experiments for each patient, separately, as it is

reported in the literature because of the variety of textures in the coronary artery tissues from

patient to patient. We randomly selected different frames of the sequence for each patient to

ensure that consecutive frames are not chosen and our system does not become biased. To show

the generalization of our method, another experiment is performed with the same configuration

as the previous steps but with different selections of training, validation, and test sets. We train

our algorithm using the images obtained from various patients. To create the training set, we

select the OCT sequences from ten different patients. The remaining eighteen patients are split

into two equal sets to create the validation and test sets.
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Classification accuracy at each step of the work and for each ROI is calculated by comparing

the predicted labels and the ground-truth for both intima and media. By considering the intima

as the positive class, and media as the negative class, the sensitivity is measured as the true

positive rate for intima and specificity is calculated as the true negative rate for media.

3.3 Results and discussion

The results of fine-tuning at each step are shown in Table 3.3 as measured values of accuracy,

sensitivity, and specificity. Also, Figure 3.5 shows the accuracy of tissue classification for both

classes, intima, and media, for all 26 patients at each step of fine-tuning. The classification

rate up to 94% shows that the learning rates listed in Table 3.2 are selected properly. From

the sixth step of fine-tuning ( fc8 to third convolutional layer), the results are almost the same

compared to the steps seven and eight. Figure 3.5 also shows very close results for the last

three steps of fine-tuning. Therefore, it is reasonable to stop fine-tuning at step six ( fc8 to the

third convolutional layer).

Figure 3.5 Tissue classification accuracy for all 26 sequences of intravascular

OCT images at each step of fine-tuning the network from fc8 to the first

convolutional layer to find the optimal depth of fine-tuning.
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Table 3.3 Measured values of accuracy, sensitivity, and specificity to

find the optimal depth of fine-tuning based on the performance of the

network to classify intima and media at each step of fine-tuning.

Values are reported as means ± standard deviation for 26 sequences.

Depth of fine-tuning Accuracy Sensitivity Specificity
fc8 0.947±0.054 0.927±0.089 0.968±0.056

fc7-fc8 0.944±0.067 0.929±0.117 0.958±0.070

fc6-fc8 0.959±0.043 0.947±0.060 0.971±0.043

conv5-fc8 0.945±0.072 0.915±0.105 0.974±0.049

conv4-fc8 0.950±0.056 0.957±0.050 0.943±0.095

conv3-fc8 0.968±0.040 0.967±0.053 0.969±0.050

conv2-fc8 0.951±0.048 0.946±0.050 0.955±0.074

conv1-fc8 0.971±0.039 0.957±0.068 0.985±0.039

By fine-tuning the pre-trained network from the classification layer (fc8) to the third convo-

lutional layer, the classification of the coronary artery layers are performed using the deep

fine-tuned network, Random Forest, and SVM by applying the features extracted from fc7 (the

last fully connected layer just before the classification layer) for each patient separately. The

reported results in Table 3.4 and Figure 3.6 show the good performance of Random Forest and

CNN than SVM for classification of the layers.

Table 3.4 Measured values of accuracy, sensitivity, and

specificity to evaluate the performance of CNN, Random

Forest, and SVM to classify intima and media.Values are

reported as mean ± standard deviation for 26 sequences. In

this experiment, fine-tuning is performed from fc8 to the third

convolutional layer for CNN. Features are extracted from fc7

( the last fully connected layer just before the classification

layer) to train Random Forest and SVM.

Classifier Accuracy Sensitivity Specificity
CNN 0.97±0.04 0.97±0.05 0.97±0.05

Random Forest 0.96±0.04 0.97±0.05 0.96±0.07

SVM 0.94±0.07 0.94±0.07 0.95±0.11

For the next step of the work, CNN is used as the feature extractor for each sequence of images

per patient. Then, Random Forest and SVM are trained using the activations of the last fully
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Figure 3.6 Performance of CNN, Random Forest, and SVM based on

classification accuracy for each patient. Fine-tuning is performed from fc8 to the

third convolutional layer for CNN. Features are extracted from fc7 ( the last

fully connected layer just before the classification layer) to train Random Forest

and SVM.

connected layer just before the classification layer. The results demonstrate that using the pre-

trained CNN as a feature generator and employing the extracted CNN features to train Random

Forest compete against using CNN as the classifier even with deep fine-tuning the network (see

Table 3.5 and Figure 3.7).

Table 3.5 Measured values of accuracy, sensitivity, and

specificity.Values are reported as mean ± standard deviation

for 26 sequences. In this experiment, CNN is used as feature

extractor for our dataset. Features are extracted from fc7 ( the

last fully connected layer just before the classification layer)

to train Random Forest and SVM. The performances of

Random Forest and SVM are compared against the best

performance of the CNN as classifier in our experiments

when the network is fine-tuned from fc8 to the third

convolutional layer.

Classifier Accuracy Sensitivity Specificity
CNN 0.97±0.04 0.97±0.05 0.97±0.05

Random Forest 0.96±0.06 0.95±0.08 0.95±0.06

SVM 0.90±0.10 0.87±0.13 0.93±0.11
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Figure 3.7 Performance of CNN, Random Forest, and SVM based on

classification accuracy for each patient. CNN is used as feature extractor for our

dataset. Features are extracted from fc7 ( the last fully connected layer just

before the classification layer) to train Random Forest and SVM. The

performance of RF and SVM compared against the best performance of the

CNN as the classifier in our experiments when the network is fine-tuned from

fc8 to the third convolutional layer.

To show the generalization of our method, the training process is performed using different

OCT images obtained from various patients. Measured accuracy, sensitivity, and specificity

for this step of the work are shown in Table 3.6 and Table 3.7. Table 3.6 shows the tissue

classification results of fine-tuned CNN, Random Forest, and SVM. Table 3.7 represents the

tissue classification results of Random forest and SVM using the features generated from pre-

trained CNN without fine-tuning. The results in Table 3.6, and Table 3.7 show the capability

of our method to be generalized to other future cases.

In this study, to validate our results, the experiments are performed on 26 different sequences

of intracoronary OCT images obtained from various patients. Our findings show that although

CNNs are robust to be used as the classifier and using pre-trained CNNs significantly decreases

the computational burden, training time, and convergence issues. But, retraining the network

during fine-tuning requires a considerable amount of time. Overfitting concerns in deep fine-

tuning the network and finding proper learning rates for each layer are other issues of using
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Table 3.6 Measured values of accuracy, sensitivity, and

specificity to evaluate the performance of CNN, Random

Forest, and SVM to classify intima and media for the next

step of the work when our algorithm is trained on different

patients. In this experiment, fine-tuning is performed from

fc8 to the third convolutional layer for CNN. Features are

extracted from fc7 (the last fully connected layer just before

the classification layer) of the fine-tuned network to train

Random Forest and SVM.

Classifier Accuracy Sensitivity Specificity
CNN 0.92 0.85 0.99

Random Forest 0.92 0.90 0.94

SVM 0.92 0.88 0.96

Table 3.7 Measured values of accuracy, sensitivity, and

specificity for the next step of the work when our algorithm is

trained on different patients. In this experiment, CNN is used

as feature extractor for our dataset. Features are extracted

from fc7 (the last fully connected layer just before the

classification layer) to train Random Forest and SVM. The

performances of Random Forest and SVM are compared

against the best performance of the CNN as the classifier in

our experiments when the network is fine-tuned from fc8 to

the third convolutional layer.

Classifier Accuracy Sensitivity Specificity
CNN 0.92 0.85 0.99

Random Forest 0.88 0.98 0.78

SVM 0.83 0.94 0.71

CNNs as the classifier. Our results show that it is more efficient to use pre-trained CNNs as

feature generators for our application by removing the classification layer and using the acti-

vations of the last fully connected layer to train Random Forest. By comparing the results of

tissue classification using CNN features against our previous work (Abdolmanafi et al., 2016),

CNN features are substantially robust to describe the characteristics of objects of interest than

textural features. Also, comparing the tissue classification accuracy measured in our exper-

iments with the work of Ughi et al. (Ughi et al., 2013) show that using the same classifier



47

Figure 3.8 Classification results for one frame of five different patients. From

left to right for each patient: original image converted to planar representation,

initial segmentation, intima (red), and media (green).

(Random Forest) CNN features are more discriminant than optical properties and texture fea-

tures for tissue classification.

As the classifier, Random Forest works efficiently on large data sets, carries a very low risk

of overfitting, and training the model using Random Forest is considerably fast compared to

CNN. In our experiments, it takes 5 hours to fine-tune and retrain the pre-trained network.

Feature extraction using CNN takes 45 minutes, and training Random Forest takes 4 minutes.

Therefore, training the model using Random Forest for all 26 patients was 75 times faster
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than fine-tuning the pre-trained network exclusive of the time which has been spent to find the

optimal values for learning rates and depth of fine-tuning. The measured values of accuracy,

sensitivity, and specificity using Random Forest as the classifier also compete against the same

values obtained by deep fine-tuning the CNN and using that as the classifier.

3.4 Conclusion

The main contribution of this study is the classification of the coronary artery layers using

OCT imaging in pediatric patients. Fully automated tissue classification method is proposed

in this work by using a pre-trained CNN as feature extractor by removing the classification

layers and using the activations of the last fully connected layer to train Random Forest and

SVM. The results confirm the robustness of CNN features to describe the tissue characteristics

and Random Forest as the classifier considering the small size of the arteries in children and

infants, which is followed by very thin layers in the structure of coronary arteries, and OCT

artifacts. Considering the results obtained from different steps of this work, two major points

can be noted: 1. Training the algorithm on a specific patient and classify the layers. 2. Training

the algorithm on a set of patients and generalize it for future cases.

This will contribute to estimating intima-media thickening to evaluate the functionality of coro-

nary arteries in patients suffering from Kawasaki disease. The stiffness of the coronary artery

tissues (distensibility) as a result of calcium deposits and fibrous scarring, while the layers

have normal thickness, is another significant abnormality caused by KD. Future works will be

focused on detecting other abnormalities, evaluating distensibility, dynamic, and geometry of

the vessels using stationary OCT imaging.
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ABSTRACT

Intra-slice motion correction is an important step for analyzing volume variations and patholog-

ical formations from intravascular imaging. Optical Coherence Tomography (OCT) has been

recently introduced for intravascular imaging and assessment of coronary artery disease. 2D

cross-sectional OCT images of coronary arteries play a crucial role to characterize the internal

structure of the tissues. Adjacent images could be compounded, however, they might not fully

match due to motion, which is a major hurdle for analyzing longitudinally each tissue in 3D.

The aim of this study is to develop a robust tissue matching based motion correction approach

from a sequence of 2D intracoronary OCT images. Our motion correction technique is based

on the correlation between deep features obtained from Convolutional Neural Network (CNN)

for each frame of a sequence. The optimal transformation of each frame is obtained by maxi-

mizing the similarity between the tissues of reference and moving frames. The results show a

good alignment of the tissues after applying CNN features and determining the transformation

parameters.
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4.1 Introduction

Coronary arteries, which are responsible to deliver oxygenated blood to the heart muscles

can be affected by arterial stenosis and lead to myocardial infarction (Newburger et al., 2004;

Hauser et al., 2004). The functionality of the cardiac tissues significantly depends on the

coronary blood flow to the myocardium. Therefore, coronary artery disease (CAD) is the

main leading cause of myocardial infarction and sudden death (Newburger et al., 2004; Hauser

et al., 2004). Angiographic images allow to visualize the trajectory of the contrast agent but

they cannot provide any information on the underlying coronary tissue layers. Considering

the limitations of coronary angiography to evaluate coronary artery disease, catheter-based

Intravascular Ultrasound (IVUS) has been used for many years to evaluate coronary artery

tissue layers and pathological formations on different coronary artery layers (Rathod et al.,

2015). IVUS imaging is restricted by limited spatial image resolution (100-150 μm) to detect

the thickness of various pathological formations and low pullback speed. In contrast, Optical

Coherence Tomography (OCT) is another catheter-based imaging system, which plays a signif-

icant role in the development of medical imaging modalities with interesting advantages over

IVUS imaging modality (Rathod et al., 2015). OCT is an interferometric imaging modality

that maps the backscattered near-infrared (NIR) light to create cross-sectional images of the

tissues under review in micrometer scale (Zysk et al., 2007). The image-wire is inserted into

the coronary artery using an over-the-wire balloon catheter from patient’s groin. A sequence of

cross-sectional images of a coronary artery segment is recorded using the backscattered light

from the arterial wall through each pullback. Considering the fact that light can be attenuated

by blood before reaching the vessel wall, blood clearance is required before starting the image

acquisition (Bezerra et al., 2009; Drexler & Fujimoto, 2015). OCT has been developed for the

diagnosis and treatment guidance of coronary artery disease. It has the high resolution ranging

from 10 to 20 μm to characterize the internal structure of tissues such as vessel wall layers and

plaque accumulation (Ferrante et al., 2013). In the cross-sectional view, the normal coronary

artery has a three-layered structure. Intima is the first layer, which is composed of endothelial

collagen and is connected to lumen by a single layer of endothelial cells. The second layer, me-
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dia, consists of muscle cells and is determined by internal and external elastic lamina. Media

is enclosed by the outermost layer, adventitia (Regar et al., 2011).

Intravascular assessment of coronary artery tissues is a challenging task considering the patho-

logical formations due to various coronary artery complications, limitations and the possible

artifacts of the imaging system. 2D cross-sectional OCT images of coronary arteries play a

crucial role to estimate the thickness variations of arterial wall layers and evaluate the severity

of the disease by detecting the various scarring remodeling features (Dionne et al., 2015). But,

the accurate assessment of pathological formations is obtained by considering the information

of adjacent frames and analyzing the volume variation of each tissue using 3D reconstruc-

tion. This can be useful to evaluate the dynamics of coronary artery motion and distensibility

variation as a result of calcium deposits in a specific coronary artery segment. Volumetric

measurements of different tissues are significant for studying the progression and regression

of various pathological formations particularly to evaluate the aneurysmal regions and stenotic

segments of the arterial wall (Harris et al., 2014; Orenstein et al., 2012; Tearney et al., 2008).

3D assessment of the morphological tissues is problematic because they are highly affected by

motion artifacts resulted in the rotation and translation of the imaging catheter along the artery

during image acquisition. Generally, heart beating and respiration during OCT acquisition are

the main sources of both axial and longitudinal motions (Balocco et al., 2016). Furthermore,

when the vessel dimensions are changed during a cardiac cycle, it results in larger lumen area

in cross-sectional images (Balocco et al., 2016). The frequency-domain OCT with the pullback

speed of 20 mm/sec is 10 - 20 times faster than the previous generation of OCT (time-domain

OCT). Therefore, accelerated image acquisition within fewer numbers of cardiac cycles re-

duces motion artifacts but they cannot be entirely eliminated (Takarada et al., 2010).
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4.1.1 Related works

4.1.1.1 Motion correction

Since the OCT probe moves freely in coronary artery pathway, cross-sectional images might

be misaligned. This is problematic to evaluate longitudinally each tissue and to design robust

clinical measurements. Since OCT is recently used in cardiology, motion correction methods

are mostly focused on intracoronary IVUS images and OCT retinal images.

Intravascular Ultrasound (IVUS) has been used for many years as an intracoronary imaging

modality in cardiology. Therefore, many of the motion correction and 3D reconstruction meth-

ods are focused on IVUS images. (Wahle et al., 1998) developed an image fusion technique

to create the 3D reconstruction of intracoronary IVUS images. Cothren et al. proposed a 3D

reconstruction technique by detecting the 3D trajectory of the IVUS transducer using the infor-

mation of the angiographic images. It is demonstrated that the correct rotational orientation of

IVUS images on the angiogram is based on the function of time by applying best-fit angle func-

tion (Cothren et al., 2000). To increase the accuracy of the 3D reconstruction, Bourantas et al.

extracted the catheter path from biplane angiography. Also, the IVUS images and angiogram

are visualized simultaneously using ECG wave (Bourantas et al., 2005). Zheng et al. focused

on a 3D reconstruction method of intracoronary IVUS images by reconstructing the pullback

path using snake algorithm. The precision of the 3D reconstruction method is increased by

focusing on 3D axial position, spatial orientation, and surface fitting (Zheng, 2009). 3D artery

is registered with intracoronary IVUS cross-sections using distance mapping algorithm in the

work of (Tu et al., 2011). The other study is focused on a 3D reconstruction of IVUS images

using biplane angiography to detect the 3D centerline. The IVUS frames are distributed along

the reconstructed centerline in equivalent time intervals (Ma et al., 2013). Athanasiou et al.

proposed a 3D reconstruction of intracoronary IVUS images by estimating the lumen and the

outer vessel wall borders using the approximation of the arterial centerline to evaluate plaque

formations (Athanasiou et al., 2016). Karlas et al. proposed a 3D reconstruction method based

on the fusion of IVUS and preoperative CT data. The alignment of the detected lumen borders
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is performed using the ellipse fitting technique and CT data is used to detect the arterial shape

(Karlas & Lee, 2015). Zhao et al. developed a 3D reconstruction method using EM sensor to

detect the catheter pose. Lumen contours are detected by applying a radial scan method (Zhao

et al., 2016). Some studies are performed on OCT images of coronary arteries. 3D reconstruc-

tion of coronary artery images is performed by Ellwein et al. using graph theory applied on

computed tomography (CT) and OCT data of a single patient after stent placement (Ellwein

et al., 2011). (Athanasiou et al., 2012) proposed a semi-automated 3D reconstruction method

using OCT images and biplane angiography.

Nevertheless, very few studies addressed the problem of non-rigid, intra-slice motion correc-

tion in intravascular OCT images using tissue information, rather than the lumen outline. Also,

the physics of the imaging modality is important to be considered to find the proper solution

of motion correction. We looked at the problem from the perspective of tissue matching. As

much as we can align the tissues, we have the more accurate assessment of deformation and

pathological changes from one tissue to another. To solve the problem of motion correction

using OCT imaging, various considerations have been taken into account:

- Physical principals of the imaging system: Although there are some motion correction

methods, which are performed on IVUS images, considering the fact that the problem of

motion correction is defined differently regarding the functionality of the imaging systems,

we thought about the solution that might tackle our problem more accurately. High reso-

lution of OCT images is one of the characteristics of the OCT images that contributes to

have a better interpretation of different tissues and extract useful features compared against

IVUS images. Also, the maximum IVUS pullback speed is four times slower than the OCT

pullback speed. This can completely change the definition of the problem of motion correc-

tion for IVUS images and OCT images since the accelerated image acquisition within fewer

numbers of cardiac cycles reduces the motion artifacts. Therefore, we need to have more

accurate motion correction technique based on the advantages of the imaging modality (the

high resolution in this problem) to deal with very small variations in the rotation and trans-

lation of the catheter form one frame to another due to the accelerated image acquisition.
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- Transformation parameters: Translation and rotation should be considered in the problem

of motion correction since the position of the catheter is generally out of the center due to

the blood flow and high heart beat, particularly in infants and children. Also, movements

of the interventionist hand can cause a very small rotation of the catheter. Arterial wall as

a soft tissue has some deformations due to the cardiac motion, which should be considered

in the problem of motion correction. Therefore, the motion correction technique should be

sensitive to very small variations.

- Challenges: In challenging cases, there are some pullbacks with pathological tissues; in

some cases, the tissue borders are not clear and the shape of the arterial wall is not specific

and visible. Considering the fact that the application of the proposed motion correction tech-

nique should be generalized to all different OCT pullbacks, the solution for the problem of

motion correction of the intracoronary OCT images should be based on tissue information

rather than the lumen outline.

4.1.1.2 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) have been demonstrated very effective in different

study fields (Szegedy et al., 2015; Simonyan & Zisserman, 2014; Zeiler & Fergus, 2014; Eigen

et al., 2013). Recently, CNNs are widely used in the field of medical image analysis to per-

form segmentation and classification tasks (Roth et al., 2015; Ciompi et al., 2015; Havaei

et al., 2017). Considering the fact that it is rare to access sufficient data to train a network from

scratch, specifically in the field of medical image analysis, it is wise to transfer the preserved

knowledge of a pre-trained network to a new application. Transfer learning is one of the most

efficient characteristics of CNNs, which is demonstrated by the work of (Azizpour et al., 2015)

in the field of medical image analysis. Pre-trained networks have been used as feature gen-

erators (van Ginneken et al., 2015; Bar et al., 2015; Arevalo et al., 2015; Abdolmanafi et al.,

2017). Also, fine-tuned pre-trained networks have been used recently for classification tasks

for different applications in the field of medical image analysis (Chen et al., 2015). A tissue

classification model is introduced in our previous work using deep feature learning. Fine-tuned
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network can be used to generate features from each coronary artery layer to train random forest

for classification of various arterial wall layers (Abdolmanafi et al., 2017).

In this study, we demonstrate the application of deep features to solve the problem of motion

correction for intracoronary OCT images considering the physics of the imaging system, the

movement of the catheter during the image acquisition, and the challenges of the OCT imag-

ing. Our motion correction algorithm is designed to correct the rotation and translation of the

catheter as well as the arterial wall deformation through image acquisition by finding the best

transformation parameters that will maximize the similarity between deep features extracted

from the reference and moving frames at each transformation.

The originality of this approach is as follows:

- Application of deep learning on intracoronary OCT images for motion correction for the

first time.

- Intra-slice motion correction in intravascular OCT images using tissue information rather

than the lumen outline.

- Automatic feature extraction by applying a Convolutional Neural Network and using the

similarity between deep features to perform registration.

- This study is not limited to our application and it can be a key to evaluate different plaque

formations, and tissue deformations.

This study is organized as follows: We start with a brief explanation of data and pre-processing

steps in section 4.2.1. Then, we present the CNN feature learning process and introduce our

motion correction approach in section 4.2.2. The results using patient dataset are shown and

discussed in section 4.3. Finally, we conclude with the possible extension of this work in

section 4.4.
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4.2 Material and method

4.2.1 Data collection and pre-processing

Kawasaki Disease (KD), mucocutaneous lymph node syndrome, is an acute vasculitis syn-

drome in infants and young children, which is characterized by fever, rash, conjunctivitis, and

swollen erythematous hands and feet and leads to inflammation in the walls of medium-sized

arteries throughout the body. Coronary arteries are affected by arterial inflammation. Inti-

mal thickening is the most distinguished pathological feature of late coronary artery lesions

in Kawasaki disease. In severe cases, it can lead to localized stenosis, extensive intimal hy-

perplasia, and consequently disappearance of media (Newburger et al., 2004; Hauser et al.,

2004).

The experiments are performed on 26 retrospective cases comprising of pullbacks of intra-

coronary cross-sectional images obtained from different pediatric patients with KD using ILU-

MIEN OCT system (St. Jude Medical Inc., St. Paul, Minnesota, USA). The axial and lateral

resolutions of the OCT system are 12-15 μm and 20-40 μm respectively. FD-OCT is used

for image acquisition with the pullback speed of 20 mm/sec and frame rate of 100 frames/sec.

Each pullback consists of 270 frames of DICOM images per patient. Permission to conduct

this study on retrospective OCT studies was granted by the institutional review board.

The pre-processing is started by recognizing and removing the guide-wire automatically from

all the images per pullback. Then, the approximate region of interest (ROI) including the

lumen, arterial wall layers, and the catheter are recognized and extracted using active contour.

Active contour does not perform properly to remove the catheter and unwanted blood cells,

specifically when the catheter is located very close to the arterial wall. Therefore, for the last

step of the pre-processing, we removed the catheter and unwanted blood cells by applying the

smallest connected components approach (Figure 4.1).
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a) Original image b) Approximate ROI c) Catheter removal

Figure 4.1 Pre-processing steps: Original image is shown in (a), using active

contour the approximate ROI including lumen, catheter, intima, media, and

surrounding tissues are detected in (b). Then, catheter and unwanted blood cells are

removed using connected components approach as shown in (c).

4.2.2 Motion correction model

4.2.2.1 Deep feature extraction

As it is mentioned in the related works, pre-trained CNNs work efficiently as fixed feature

generators for OCT images by removing the uppermost fully connected layer (classification

layer) from the network architecture and using the activations of the last fully connected layer,

right before the classification layer, as deep features of the new images. The process of feature

extraction using CNNs is briefly explained in the diagram of Figure 4.2.

Figure 4.2 Feature Extraction Using Convolutional Neural Networks (CNNs):

Convolutional operation is performed by moving the filters with fixed stride through

the input image and computing the convolution between each filter matrix and input

image matrix. Non-linearity is introduced after each convolutional operation by

applying a Rectified Linear Unit (ReLU) since convolution is a linear operator.

Features are extracted from the fully connected layer right before the classification

layer.
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In this study, fine-tuned AlexNet is applied to generate the features for our dataset (Krizhevsky

et al., 2012). The AlexNet model is built on 60 million parameters and 650000 neurons and is

trained on 1.2 million images from ImageNet dataset. It consists of five convolutional layers

(conv1 to conv5) , three max pooling, and three fully connected layers (fc6, fc7, and fc8)

(Krizhevsky et al., 2012). The network architecture is shown in Figure 4.3. Each convolutional

filter or kernel has the role of feature detector of the images to create the feature maps by

sliding through the whole image with defined stride and computing the convolution of the filter

matrices and the input image matrix. The depth of the network is determined by the number of

kernels. It is also important to mention that each layer extracts the features from the output of

the previous layer (Hochreiter & Schmidhuber, 1997). The process of updating the weights at

each layer and for each iteration, i, is as follows:

Vi+1 = μVi − γiα∂L/∂W (4.1)

Wi+1 =Wi +Vi+1 (4.2)

Where μ is the momentum, α is the learning rate, γ is the scheduling rate which reduces the

learning rate at the end of the iterations (Krizhevsky et al., 2012; Abdolmanafi et al., 2017).

L is the cost function which is aimed to be minimized with respect to the weights, W, at each

layer and during the training process. In this work, we modified pre-trained AlexNet for our

application based on our previous study (Abdolmanafi et al., 2017). Since the pre-trained

network is applied as a fixed feature generator, we removed the last three layers (fc8, prob,

and classification layer), which are designed for the classification task. To start the inductive

transfer, we used the same architecture as the pre-trained network and the weights of each layer

are initialized by transferring the weights from the pre-trained network. To start fine-tuning,

two facts are considered: 1. There is a risk of overfitting by deep fine-tuning the network,

2.Deep features extracted from the upper layers are more dataset specific, which characterize

distinctive features of the images. Therefore, fine-tuning is started from the last fully connected

layer (fc7) using grid searching for an extensive interval of learning rates. After finding the

optimal learning rates, fine-tuning is performed by applying the learning rate of 0.1 for fc7
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and the learning rate values are decreased to 0.01 from the layer fc6. Fine-tuning is stopped

at the third convolutional layer since continuing the fine-tuning does not improve the network

performance. The learning rates of the first and the second convolutional layers are fixed at

zero to keep the weights constant. Also, μ and γ are fixed at 0.9 and 0.95 respectively for the

whole process of fine-tuning. Table 4.1 shows the learning rates of fine-tuned network. The

features are extracted from the last fully connected layer (fc7).

Figure 4.3 Architecture of AlexNet with five convolutional layers and three

fully connected layers.

4.2.2.2 Motion correction

The motion correction is formulated as a non-rigid registration problem when the first frame

is considered as the reference frame. The deep feature vector for the reference frame is ex-

tracted using the fine-tuned CNN as described in the previous section. In this step of the work,

the original images before applying the pre-processing are used to ensure that all the tissue

information is considered during feature extraction. To perform the motion correction, other



60

Table 4.1 Learning Rates at Each Step of Fine-tuning the AlexNet Model In Our

Experiments:μ and γ are fixed at 0.9 and 0.95 respectively at all the steps of fine-tuning.

Learning rates are modified from fc7 to the third convolutional layer (conv3)

Layers Learning Rates
fc7 0.10

fc6 0.01

Conv5 0.01

Conv4 0.01

Conv3 0.01

Conv2 0.00

Conv1 0.00

frames are considered as the moving frames. For the first step, by translating the images at

each value of ρ , ρ =
√

x2 + y2, deep feature vectors are extracted using CNN model and the

cosine similarity is computed as a dot product of the feature vectors of the fixed and moving

frames at each translation. To capture the rotation, at each rotational angle, the CNN features

are extracted and the cosine similarity between the extracted feature vectors from reference

and moving frames is computed. The same process is performed for scaling and shearing in

both x and y directions to find the optimal parameters to correct vessel wall deformation. The

final transformation matrix to map a pair of input coordinates P = (x,y) to a pair of output

coordinates P′ = (x′, y′) can be summarized in the following equation,

P′= MP (4.3)

Where M is the final transformation matrix, which is defined as follows,

M = Mshear ∗Mscale ∗Mrigid

=

⎡
⎢⎢⎢⎣

1 λy 0

λx 1 0

0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

vx 0 0

0 vy 0

0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

cosθ −sinθ tx

sinθ cosθ ty

0 0 1

⎤
⎥⎥⎥⎦

(4.4)

Where Mrigid , Mscale, and Mshear are rigid transformation, scaling, and shearing matrices re-

spectively. tx and ty are translation parameters along x and y axes respectively, θ is the angle
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of rotation in 2D, vx and vy are scaling parameters, λx and λy are shearing parameters along x

and y directions.

The objective function is defined based on the cosine similarity between the feature vectors of

reference and moving frames as follows,

argminψ f (ψ) = argminψ(1− cos(ψ)) (4.5)

cos(ψ) = (a.b)/ | a || b | (4.6)

Where ψ is the angle between the extracted feature vectors from reference and moving frames

(a and b respectively) at each transformation. Unlike other similarity measures, cosine similar-

ity is a measure of the direction-length correspondence between vectors, which is mostly used

in high dimensional space and large-scale studies.

Figure 4.4 Cosine similarity between the feature vectors of fixed and moving

frames: The calculations are preformed in a small interval of angles considering

that the probe can not have a huge movement during image acquisition using

OCT system.



62

Since we aimed to investigate the robustness of CNN features to be applied for motion cor-

rection, the optimal transformation parameters are solved using exhaustive search for all the

possible transformations. At each translation, rotation, and deformation, we look for the angle

which can maximize the cosine similarity of two feature vectors. Since using the OCT system,

large rotation of the probe is not possible physically, we bound our exhaustive search with the

small range of angles to make the process more accurate and also faster (see Figures 4.4 and

4.5). After obtaining the optimal transformation parameters, all the pre-processing steps are

performed on the moving frame. The 3D matrix is built based on the information of the refer-

ence frame and the moving frames after applying the optimal transformations. The number of

frames in each pullback is considered as the length of the z-axis.

Figure 4.5 Motion correction process for one frame of a sequence: The first

frame is considered as the reference frame, the second one is moving based on ρ
and θ . At each transformation the cosine similarity between the deep feature

vectors of both fixed and moving frames are computed. The process is

terminated when the maximum similarity between the feature vectors is reached.

4.2.2.3 Validation

Since OCT is a new imaging system which is recently used in cardiology, to the best of our

knowledge, there is no ground-truth available for OCT images. The motion correction of in-

tracoronary OCT images is visually validated by the expert cardiologist. Also, the quantitative

validations are performed in two steps:
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- The centerlines of the 3D models are compared against each other before and after

motion correction: For each sequence of images, the approximate center of the lumen for

each frame is calculated before and after motion correction. Then, the Euclidean distance

between the lumen center and the corresponding point on the fixed straight line centered

on the lumen of the reference frame (the first frame of each pullback) is calculated using

equation 4.7. The results are reported in Figure 4.6.

D(x,y) =
√

(x2 − x1)2 +(y2 − y1)2 (4.7)

Where D is the Euclidean distance between the points (x1,y1) and (x2,y2), which are re-

spectively the lumen center of each frame and the corresponding point on the fixed straight

line centered on the lumen of the reference frame.

- Intra-slice tissue alignment for each 3D model before and after motion correction: To

validate the alignment of tissues, we evaluated the alignment between the tissues of each

frame and the previous one by estimating the joint entropy of two consecutive frames before

and after motion correction (equation 4.8). The results are shown in Figure 4.7 for all 26

pullbacks.

H( f1, f2) =−Σ jΣkP( j,k)log2[P( j,k)] (4.8)

Where f1 and f2 are two consecutive frames with pixel values of j and k. P(j,k) is the

joint probability of appearing the pixel values j and k at corresponding pixels in the two

consecutive frames. Joint entropy is calculated for every two consecutive frames. Then,

the result is reported as mean±std of all the calculations for each volume before and after

motion correction.

4.3 Results and discussion

Motion correction is performed on 26 OCT pullbacks obtained from 26 different patients with

KD. The results that are shown in Figure 4.6 demonstrate the measured Euclidean distance be-

tween all the points along the centerline of the 3D model and the corresponding points on the
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Figure 4.6 Comparison of Euclidean distances between the centerline of the

3D model and the reference centerline before and after motion correction which

are shown in blue and red respectively. Error bars show the standard deviation.

Euclidean distance is reported as mean±std for each patient.

fixed straight line centered on the lumen of the first frame before and after motion correction.

For each patient, the mean value of all the measured Euclidean distances and standard devia-

tions are calculated. As it is illustrated in Figure 4.6, there is a considerable improvement of

measured values of Euclidean distance after motion correction. To ensure that all the aspects of

quantitative validation of motion correction are considered, the alignment of the corresponding

tissues are evaluated by estimating the joint entropy between the region of interests of every

two consecutive frames for each volume before and after motion correction. As it is illustrated

in Figure 4.7, the lower joint entropy after motion correction shows the higher dependency and

good alignment of the tissues between the frames for each patient.

The results of motion correction of intracoronary OCT images are visually illustrated in Fig-

ures 4.8, 4.9, and 4.10 for three different patients. The centerlines of the 3D models show a

good alignment of the frames since the centers of the frames are well aligned. Joint entropy

is estimated for every two consecutive frames, which demonstrates the robustness of the pro-

posed motion correction approach to align the tissues. The longitudinal cross-section of the 3D
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Figure 4.7 Intra-slice joint entropy to evaluate tissue matching before and after

motion correction which are shown in blue and red respectively for all 26

pullbacks. Error bars show the standard deviation. Joint entropy is reported as

mean±std for each patient.

a) b) c)

Figure 4.8 Patient 1: Motion correction of intracoronary OCT images: (a) shows the x-z

projection of centerlines in green and purple before and after motion correction

respectively compared against the fixed straight line centered on the lumen of the first

frame (black). Joint entropy between each frame and the previous one is calculated in (b)

for the whole sequence of frames before and after motion correction (blue and red

respectively). The Longitudinal Cross-section is shown in (c) to illustrate tissue matching

after motion correction.
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a) b) c)

Figure 4.9 Patient 2: Motion correction of intracoronary OCT images: (a) shows the x-z

projection of centerlines in green and purple before and after motion correction

respectively compared against the fixed straight line centered on the lumen of the first

frame (black). Joint entropy between each frame and the previous one is calculated in (b)

for the whole sequence of frames before and after motion correction (blue and red

respectively). The Longitudinal Cross-section is shown in (c) to illustrate tissue matching

after motion correction.

a) b) c)

Figure 4.10 Patient 3: Motion correction of intracoronary OCT images: (a) shows the

x-z projection of centerlines in green and purple before and after motion correction

respectively compared against the fixed straight line centered on the lumen of the first

frame (black). Joint entropy between each frame and the previous one is calculated in (b)

for the whole sequence of frames before and after motion correction (blue and red

respectively). The Longitudinal Cross-section is shown in (c) to illustrate tissue matching

after motion correction.

model after motion correction shows a good alignment of different coronary artery layers. The

parameters of transformation are changed slightly from one frame to the other as it is expected

based on very small movements of the catheter and probe along the artery.
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The proposed motion correction method is based on deep features extracted from fine-tuned

CNN and is aimed to find the best possible correspondence between tissues to facilitate the

3D assessment of tissues and pathological formations. The results show the susceptibility of

deep features to describe and characterize different coronary artery tissues while the images

obtained from young children with the very small size of blood vessels, high heart rate, and

lack of collaboration of the patient during the imaging process. Considering different artifacts

caused by the imaging system, which definitely leave some deteriorating effects on the image

quality, intravascular assessment of coronary artery tissues is a challenging task. In some

cases, the cross-section is positioned at a side branch that can cause fold-over artifact and can

complicate the tissue alignment process.

Our method overcomes the significant limitations of the proposed methods in the literature.

Also, considering the physics of the imaging modality and the possible artifacts, we proposed

a motion correction method, which is applicable to OCT images. First of all, tissue information

is more reliable than lumen and media-adventitia borders to perform the registration, since it

can be generalized to all challenging cases when the coronary artery is affected by the disease.

As an example, intimal hyperplasia with media disappearance is one of the significant coronary

artery complications caused by Kawasaki disease on the coronary arterial wall. Therefore, we

do not have any information regarding the media-adventitia border. Also, lumen shape can

be completely deformed by disease. In addition, the shadow of the catheter on arterial wall

causes loss of information in OCT imaging. As a result, even in the least challenging cases,

the lumen border does not appear in a complete circular shape. When the registration is based

on the geometry of the lumen border, the algorithm tries to find transformation parameters that

can match the lost part of the lumen border along each other. This sometimes causes large

rotational angles, which is not possible in the reality of OCT imaging, since the probe has

very small rotations during image acquisition. Also, the Gaussian filter that is used in some

techniques to detect the lumen border is not reliable enough, since it is not edge preserving. In

some studies, EM sensors are attached to the tip of the catheter to facilitate the accessibility

of spatial position of the catheter. But, using EM sensors can reduce the manipulability of the
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catheter. Using mutual information and joint entropy as objective functions for registration has

some limitations. Both measures have a low performance with increasing noise. In monomodal

image registration, both mutual information and joint entropy can be insensitive to intensity

variations between the images. Therefore, they are used for multimodal image registration.

From another perspective, deep features give us detailed information of the tissues, which are

more reliable than the distribution of pixel values to be considered for motion correction and

registration problem. The limitations of mentioned studies demonstrate the advantages of using

deep features and tissue information for the problem of motion correction in OCT imaging.

Analysis of coronary artery tissues is a broad study field, which consists of four main steps: 1.

Classification of coronary artery layers to recognize characteristic attributes of each layer. 2.

Characterizing the abnormalities caused by the disease on coronary artery tissues. 3. Measur-

ing the dimensions of the abnormal segments of the artery, which requires both longitudinal

and transversal assessment of different pathological formations. 4. Evaluating the functionality

of coronary arteries by estimating the stiffness of coronary artery tissues, which affects vascu-

lar elasticity and can reduce the vascular distensibility. This work is another complimentary

study of our framework for tissue analysis of coronary artery in pediatric cardiology, which is

open for any improvement.

4.4 Conclusion

In this study, a framework for motion correction of the OCT images is proposed. The main

contribution of this work is the application of deep features in solving the problem of motion

correction of intracoronary OCT images. This will contribute to evaluate the functionality of

coronary arteries by analyzing the volume variation and considering the motion of the vessel.

Also, it is a robust method to assess the pathological formations by finding the correlation

between the tissues of adjacent frames, which are recognized using deep features. Since there

is no technical method proposed in the literature for longitudinal assessment of the coronary

artery abnormalities caused by KD in pediatric patients, this study paves the way for identifying
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and precisely evaluating vascular wall abnormalities to prevent future complications in young

adults who suffered from KD.
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ABSTRACT

Kawasaki Disease (KD) or mucocutaneous lymph node syndrome is an acute childhood vas-

culitis syndrome. Intimal hyperplasia, media disappearance, lamellar calcifications, fibrosis,

macrophage, and neovascularization are the most distinguished pathological formations in

coronary artery lesions. In severe cases, they can lead to myocardial infarction and sudden

death. In-vivo intravascular imaging has been promising to assess the functionality of coronary

artery tissues. Optical Coherence Tomography (OCT) is an interferometric imaging modality,

which has been recently used in cardiology to characterize coronary artery tissues providing

safety results and high resolution ranging from 10 to 20 μm. In this study, we investigate

different deep learning models for robust tissue characterization to learn the various intracoro-

nary pathological formations caused by KD from OCT imaging. Our approach evaluates deep

features computed from three different pre-trained convolutional networks. Then, a majority

voting approach is applied to provide the final classification result. The results demonstrate

high values of accuracy, sensitivity, and specificity for each tissue (up to 0.99 ± 0.01). Hence,

deep learning models and especially, majority voting method are promising for automatic in-

terpretation of OCT images.
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5.1 Introduction

Kawasaki Disease (KD), mucocutaneous lymph node syndrome, is an acute childhood vasculi-

tis syndrome, which is the leading cause of coronary artery sequelae, complicated by coronary

artery aneurysms with subsequent intimal hyperplasia, media disappearance, neovasculariza-

tion, fibrosis, calcification, and macrophage accumulation (Newburger et al., 2004; Group

et al., 2010). In the normal three-layered structure of coronary artery using OCT imaging,

intima is characterized as a signal rich well-delineated layer and media appears as a homoge-

neous signal poor pattern specified by the internal and external elastic lamina. The outermost

layer is adventitia, which is characterized as a signal rich layer (Newburger et al., 2004; Oren-

stein et al., 2012; Dionne et al., 2015; Baim & Grossman, 1996). Intimal hyperplasia is the

most frequent complication caused by KD, which is thickening of the intima and can be fol-

lowed by media destruction since media becomes thinner and finally disappeared as a result of

plaque accumulation and vessel remodeling. Intimal thickening can disturb oxygen diffusion

and cause proliferation of vasa vasorum in inner layers of arterial wall, which is called neo-

vascularization. Presence of neovascularization may be a sign of plaque instability and rupture

and is characterized in OCT images as signal poor voids (Kitabata & Akasaka, 2013). Fibrosis

is scarring of the connective tissues, which may occur as a result of arterial inflammation and

is characterized as signal rich areas in OCT imaging. The macrophage may be accumulated

within a fibrous cap as a result of monocytes differentiation in confronting with arterial wall

inflammation. Macrophage is visualized as a confluent signal rich focal area in OCT imaging

(Baim & Grossman, 1996; Jang et al., 2002; Fujii et al., 2010; Taguchi et al., 2017; Swirski

et al., 2016). Vascular smooth muscle cells (VSMCs) regulate mineralization in intima and

media. Rising lipid content within arterial lesions and inflammatory mediators may transform

vascular smooth muscle cells into an osteoblast phenotype, resulting in intimal calcification.

Calcification may be extended within a fibrous cap, which is visualized as a signal poor area

with sharply delineated borders in OCT imaging (Baim & Grossman, 1996; Liu et al., 2015;

Madhavan et al., 2014).
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Cardiovascular Optical Coherence Tomography (OCT) is a catheter-based invasive imaging

modality, which typically employs a near-infrared light to provide cross-sectional images of

the coronary artery at depth of several millimeters relying on low-coherence interferometry.

The unique characteristic of OCT is its high axial resolution of 10-15 μm, which is measured

by the light wavelength and is decoupled from the lens dependent lateral resolution ranging

from 20-40 μm. The image-wire is inserted into the coronary artery using an over-the-wire

balloon catheter from patient’s groin. A sequence of cross-sectional images of coronary artery

segment is recorded using the backscattered light from the arterial wall through each pullback.

Considering the fact that light can be attenuated by blood before reaching the vessel wall, blood

clearance is required before starting the image acquisition (Bezerra et al., 2009; Boudoux,

2016; Drexler & Fujimoto, 2015).

5.1.1 Related works

5.1.1.1 Tissue characterization

Progression of pathological formations caused by coronary artery disease can be followed by

acute coronary syndrome (ACS). Therefore, it is significant to develop robust coronary artery

tissue characterization techniques to evaluate pathological formations (Kawasaki et al., 2002).

While conventional imaging techniques such as CT and MRI may be used for clinical as-

sessment of the coronary arteries, they are limited to providing useful information about the

underlying coronary artery tissue layers. Also, they are restricted to reflect the histological re-

ality of the regressed aneurysmal coronary segments, which are inappropriately considered as

normal coronary segments (Orenstein et al., 2012; Newburger et al., 2004; Group et al., 2010;

Dionne et al., 2015). Catheter-based Intravascular Ultrasound (IVUS) has been used for many

years in interventional cardiology to evaluate coronary artery tissues by providing information

on coronary arterial wall and lumen (Rathod et al., 2015). IVUS imaging is restricted to be

used in pediatric cardiology due to its suboptimal spatial imaging resolution (100-150 μm),
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and low pullback speed. Arterial plaque formations are structural abnormalities, which require

a high-resolution imaging modality to be detected (Orenstein et al., 2012; Jang et al., 2002).

Automated tissue analysis and plaque detection were focused on 2D intracoronary OCT images

in adult patients to visualize plaque formations. Combination of light backscattering and atten-

uation coefficients have been estimated from intracoronary time domain OCT for three different

atherosclerosis tissues, namely calcification, lipid pool, and fibrosis (Xu et al., 2008). Van et al.

detected fibrosis and calcification in coronary atherosclerosis by estimating the optical attenu-

ation coefficient. The estimated values were compared with histopathological features of each

tissue to determine the corresponding optical properties (Van Soest et al., 2010). (Ughi et al.,

2013) proposed a tissue classification method using support vector machine (SVM) with the

combination of texture features and optical attenuation coefficient extracted form atheroscle-

rotic tissues. Volumetric estimation of backscattered intensity and attenuation coefficient was

performed by (Gargesha et al., 2015). Classification approach using SVM was used to dis-

criminate between fibrosis, calcification, and lipid. Identification and quantification of fibrous

tissue based on Short-Time Fourier Transform (STFT) using OCT imaging were proposed by

(Macedo et al., 2016). Gan et al. developed a classification framework to detect normal my-

ocardium, loose collagen, adipose tissue, fibrotic myocardium, and dense collagen. Graph

searching method is applied to segment various tissue layers of the coronary artery. Combi-

nation of texture features and optical properties of tissues is used to train a relevance vector

machine (RVM) to perform the classification task (Gan et al., 2016). A plaque tissue charac-

terization technique based on intrinsic morphological characteristics of the A-lines using OCT

imaging is proposed by (Rico-Jimenez et al., 2016). to classify superficial-lipid, fibrotic-lipid,

fibrosis, and intimal thickening by applying Linear Discriminant Analysis (LDA).

5.1.1.2 Convolutional Neural Network (CNN) and transfer learning

Convolutional Neural Networks (CNNs) have gained a wide popularity in medical image anal-

ysis. Application of CNNs in medical image analysis was first demonstrated in the work of (Lo

et al., 1995) for lung nodule detection. This idea was extended to various applications in the
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field of medical imaging (Hochreiter & Schmidhuber, 1997; Eigen et al., 2013; Zeiler & Fer-

gus, 2014; Simonyan & Zisserman, 2014; Szegedy et al., 2015; Roth et al., 2015; Ciompi

et al., 2015; Havaei et al., 2016). More recently, CNNs have been introduced in coronary OCT

imaging to classify tissue layers between media and intima using SVM and Random Forest

classifiers (Abdolmanafi et al., 2017).

Transferability is defined as transferring the knowledge embedded in the pre-trained CNNs for

other applications, which is performed in two different ways: Using a pre-trained network as

feature generator and fine-tuning a pre-trained network to be used for classification of medical

images. Common networks, which are used as pre-trained models with applications in medical

image analysis are categorized into three groups. Simple networks with few convolutional

layers use kernels with large receptive fields in upper layers close to the input and smaller

kernels in deeper layers. The popular network in this group, which has a broad application

in medical image analysis is AlexNet and is introduced by (Krizhevsky et al., 2012; Litjens

et al., 2017). The second group of architectures is deep networks such as Vgg models. They

have the same configuration as simple networks with more convolutional layers and kernels

with smaller receptive fields (Simonyan & Zisserman, 2014; Litjens et al., 2017). The third

group of networks is categorized as complex building blocks with higher efficiency of the

training process compared to other groups of networks. GoogleNet was the first network in

this category, which is introduced by Szegedy et al. ResNet and Inception models are other

networks of this group. An improved version of GoogleNet, which is used recently in the field

of medical image analysis is Inception-v3 (Szegedy et al., 2016; Szegedy et al.; Litjens et al.,

2017). Vgg-16, VGG-M-128, and BVLC reference CaffeNet are used as feature extractors

to classify the knee osteoarthritis (OA) images by training SVM using deep features (Antony

et al., 2016). Kim et al. used the pre-trained network for the application of cytopathology

classification. It is demonstrated in their work that using a pre-trained network as feature

extractor outperforms the fine-tuning of the network (Kim et al., 2016). Esteva et al. fine-tuned

a version of Inception-v3 model to classify skin lesions. Gulshan et al. used the fine-tuned

network to evaluate the retinal fundus photographs from adults by detecting referable diabetic
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retinopathy. In these studies, it is demonstrated that the results of classification using fine-

tuned network competes against the human expert performance (Esteva et al., 2017; Gulshan

et al., 2016). Nevertheless, most of the studies are focused on fine-tuning the networks and

comparison of the results of fine-tuned networks with the results of other classifiers, which are

trained on deep features.

In this study, we focused on designing a tissue characterization model to detect pathological

formations in coronary artery tissues using OCT imaging. To find the optimal model to classify

calcification, fibrosis, neovascularization, macrophage, and coronary artery layers, intima, and

media, we performed four different experiments. Then, the optimal model is chosen by ap-

plying three different pre-trained networks as feature extractors. Random Forest is trained on

each set of deep features separately to perform classification. classification results of Random

Forest using three various set of deep features are combined using majority voting approach to

provide the final classification result. Hence, the contributions of this study are:

- Characterization of complex pathological formations in KD from OCT imaging, namely

intimal hyperplasia, media disappearance, neovascularization, fibrosis, calcification, and

macrophage accumulation.

- Evaluation of different pre-trained CNN models for OCT image analysis with a limited

labeled dataset.

- Assessment of the clinical usefulness of deep feature learning for OCT imaging in pediatric

cardiology.

This work is organized as follows. First, data collection and pre-processing are explained

in section 5.2.1. Second, Convolutional Neural Networks (CNNs) and pre-trained network

architectures are developed in section 5.2.2. The training of CNN and validation are presented

in Section 5.2.3. The results of the experiments are reported and they are discussed in section

5.3. Finally, this study is concluded in section 5.4.
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5.2 Material and method

5.2.1 Data collection and pre-processing

The experiments are performed on 33 pullbacks of intracoronary cross-sectional OCT images

of patients affected by KD. The images are acquired using the ILUMIEN OCT system (St. Jude

Medical Inc., St. Paul, Minnesota, USA) with the axial and lateral resolutions of 12-15 μm and

20-40 μm respectively. Image acquisition is performed using FD-OCT with pullback speed of

20 mm/sec and frame rate of 100 frames/sec. This study was approved by our institutional

review board. For the first step, the pre-processing is performed on all the frames of each se-

quence by automatic recognition and removal of the guide-wire. Then, the approximate region

of interests including the lumen, intima, media, calcification, neovascularization, macrophage,

fibrosis and surrounding tissues are detected for each pullback frame using active contour. The

catheter and unwanted blood cells are removed by applying the smallest connected components

approach (Figure 5.1). The images were converted to planar by transferring all the points from

Cartesian coordinates to planar representation in Polar coordinates to simplify the calculations.

a) Original image b) Approximate ROI c) Catheter removal

Figure 5.1 Pre-processing steps: (a) Original image, (b) ROI detection using active

contour, (c) Applying smallest connected components approach to remove catheter and

unwanted blood cells.
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5.2.2 Convolutional Neural Network (CNN)

CNNs are built on convolutional layers, which are responsible to extract features from the

local receptive field of the input image. Each convolutional layer consists of n sets of shared

weights between the nodes to find similar local features in the input channels, which are called

convolutional kernels. Each kernel creates a feature map when it slides through the whole

input image with a defined stride. Feature maps extracted from one convolutional layer will

be the input of the next layer (Litjens et al., 2017). It is standard to calculate the output of

a neuron by applying a hyperbolic tangent or logistic regression, which are both saturating

activation functions. Saturating nonlinearities are slower than non-saturating non-linearities

while stochastic gradient descent is used to minimize the cost function with respect to the

weights at each convolutional layer. Therefore, a non-saturating activation function, which

is called Rectified Linear Unit (ReLU) can accelerate the training process by keeping non-

negative values and replacing negative values by zero in the feature map. ReLU is defined as

follows:

f (x) = max(0,x) (5.1)

Where f is the output of each neuron as a function of its input x (Krizhevsky et al., 2012).

CNNs alternate between the convolutional and pooling layers to achieve computational effi-

ciency, since pooling layers are used for dimensionality reduction by aggregating the outputs

of neurons at one convolutional layer and reducing the size of the feature maps. Pooling layers

can keep the network invariant to small transformations, distortions, and translations in the

input image as well as control overfitting by reducing the number of parameters and compu-

tations. Max pooling is used in most of the CNN architectures, which choose the superior

invariant features in specified neighborhoods of a feature map (Krizhevsky et al., 2012).

CNNs are trained using back-propagation algorithm and stochastic gradient descent is com-

monly used to minimize the following cost function:

L =−(1/|X |)Σ|X |
j ln(p(y j|X j)) (5.2)
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Where X is the size of the training set and ln(p(y j|X j) denotes the probability of jth image

to be classified correctly with the corresponding label y. for each layer of the network, the

weights are updated at each iteration i as follows:

Vi+1 = μVi − γiα∂L/∂W (5.3)

Wi+1 =Wi +Vi+1 (5.4)

Where μ is the momentum, α is the learning rate, γ is the scheduling rate, which reduces

the learning rate at the end of iterations and W is the weight at each iteration i for each layer

(Krizhevsky et al., 2012; Abdolmanafi et al., 2017).

5.2.2.1 Pre-trained networks

Pre-trained networks are widely used as both feature extractor and classifier for different tasks.

Among the most common architectures, we selected three pre-trained networks with different

architectures. AlexNet is a simple and shallow network, which is popular for clinical applica-

tions. The network consists of five convolutional layers, and three fully connected layers, which

are followed by a final softmax with GPU implementation of the convolutional operation. The

model is trained on 1.2 million images from the ImageNet dataset, which are annotated and

categorized into 1000 semantic classes. The model uses 60 million parameters and consists

of 650000 neurons, which is trained using stochastic gradient descent with the batch size of

128, momentum of 0.9, and weight decay of 0.0005 to reduce the training error of the model

(Krizhevsky et al., 2012). The network architecture is shown in Figure 5.2.

Deeper models were designed by stacking convolutional layers to increase the depth of the net-

work. Instead of using a large receptive field, kernels with very small receptive field and fixed

size were applied in each convolutional layer. Every set of convolutional layers is followed by a

max pooling to reduce dimensionality, and every convolutional layer is followed by a ReLU to

introduce non-linearity. Vgg networks are trained on 1.2 million images of 1000 classes from

ImageNet. The batch size and momentum are set to 256, and 0.9 respectively. The learning rate
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Figure 5.2 AlexNet architecture consists of five convolutional layers, and three

fully connected layers.

was initialized to 0.01 and was decreased by the factor of 10 when the accuracy on validation

set stopped improving (Simonyan & Zisserman, 2014). Among deep network architectures

of Vgg, we selected Vgg-19 with 144 millions of parameters and deeper network architecture

consists of 16 convolutional layers, and three fully connected layers, which is shown in details

in Figure 5.3.

Complex building blocks (inception blocks) are introduced as models with the fewer numbers

of parameters and higher efficiency of the training process by replacing the fully connected

architectures with sparsely connected architectures. The network has been built from convolu-

tional building blocks called inception modules, which are stacked on top of each other. Each

inception module consists of combination of convolutional layers with kernel sizes of 1×1,

3×3, and 5×5, which their output filter banks concatenated into a single output vector that

will be the input of the next stage. 1×1 convolutions in each inception module is used for

dimensionality reduction before applying computationally expensive 3×3 and 5×5 convolu-
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Figure 5.3 Vgg-19 architecture consists of sixteen convolutional layers, and

three fully connected layers.

tions. Factorization of convolutions into smaller convolutions results in aggressive dimension

reduction inside the network, which leads to the fewer numbers of parameters and low com-

putational cost. Inception models are trained using stochastic gradient descent. Batch size is

chosen as 32 for 100 epochs and momentum with the decay of 0.9. Learning rate is initialized

by 0.045 and decayed every second epoch by the exponential rate of 0.94 (Szegedy et al., 2016;

Szegedy et al.). Pre-trained Inception-v3 is used in our experiments. The inception models are

updated in this version of the network to further boost ImageNet classification accuracy. The

last part of the network, which is used for fine-tuning in our experiments is shown in Figure

5.4.

5.2.3 Training and validation

In our experiments, the total of ∼5100 different tissues are extracted from OCT pullback im-

ages and are manually labeled as calcification, fibrosis, intima, macrophage, media, and neo-
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Figure 5.4 Last layers of Inception-v3 architecture

vascularization. To start the experiments, 66% of the ROIs are selected randomly as the training

set. To avoid any correlation between training, test, and validation sets, 50% of the remaining

ROIs are randomly selected as the validation set and test set is built on the last residual ROIs.

The experiments are performed in four different steps to find the optimal tissue characterization

framework.

5.2.3.1 Classification using fine-tuned networks

For each convolutional neural network, before starting the training process, the iterative weight

update is performed by random weight initialization at each layer of the network. Since the

number of labeled data is limited in our experiments, weight initialization can be performed

using the weights of the pre-trained networks. Therefore, iterative weight updates of equations

5.3 and 5.4 lead to a fast convergence to find the desirable local minimum for the cost function
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(equation 5.2). Considering the fact that number of nodes in the last fully connected layer de-

pends on the number of classes in each dataset, the first step before starting the fine-tuning is

to keep the same architecture as the pre-trained network architecture, remove the classification

layers and replace them by the layers, which are designed appropriately for our classification

task. The next step is to initialize the weights at each layer of the network with the weights

of the pre-trained network, which is called transfer learning. the iterative weight update can

be started using layer-wise fine-tuning by finding the optimal learning parameters at each con-

volutional and fully connected layer. Fine-tuning AlexNet for classification of coronary artery

layers (intima and media) is preformed by our group Abdolmanafi et al. (2017). Since, the

goal of this study is to develop a tissue characterization model to detect pathological forma-

tions (calcification, fibrosis, macrophage, and neovascularization) as well as the arterial wall

layers, the process of fine-tuning the pre-trained AlexNet is improved based on our new dataset.

the last three layers of the pre-trained network (fc8, prob, and classification layer) are replaced

by a set of layers which are designed for multi-class classification task to classify calcification,

fibrosis, macrophage, neovascularization, intima, and media. The depth of fine-tuning is in-

creased compared against our previous work since AlexNet is not a very deep model, low-level

features extracted from the first convolutional layers can improve the classification precision

while we are dealing with various tissue labels to perform the classification task. the values of

μ and γ are kept at 0.9 and 0.95 respectively and the learning rate for the last fully connected

layers (fc6, fc7, and fc8) is set to 0.1 to learn faster in the last layers and we started decreasing

the learning rates to 0.01 from the last convolutional layer (Conv3).

Since by adding convolutional layers with corresponding kernels, we will have access to de-

tailed image information, increasing the depth and width of the network can improve the quality

of the network architecture. To have a fair comparison among the performance of pre-trained

networks, we selected Vgg-19 from the category of very deep CNN architectures. As it is

explained in the previous section, Vgg-19 has almost the same configuration of the AlexNet

with more convolutional layers. Therefore, fine-tuning the Vgg-19 is performed using the

same strategy that is applied to AlexNet. We started fine-tuning by removing the classification
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layers (fc8, prob, and output) and replaced them by a set of layers, which are appropriate for

multi-class classification of various coronary artery tissues (calcification, fibrosis, macrophage,

neovascularization, intima, and media). We started fine-tuning from the last fully connected

layer (fc8) and increase the depth of fine-tuning gradually by evaluating the network perfor-

mance at each fine-tuning level. To find the optimal parameters at each level of fine-tuning, an

interval of values close to the optimal values of fine-tuned AlexNet is chosen. Then the optimal

parameters are determined by grid searching for the defined interval of values and evaluating

the performance of the network at each step. The best performance of the network obtained by

assigning fixed values of 0.8, and 0.85 to μ and γ respectively. The learning rate is determined

as 0.2 for the last fully connected layers (fc6, fc7, and fc8) and is decreased to 0.01 from the

last convolutional layer (Conv5-4).

complex building blocks are very deep network architectures, which uses the particular config-

uration of inception modules to reduce the number of parameters and consequently improve the

efficiency of the training procedure. We selected Inception-v3 from the category of complex

network architectures to perform our experiments. Considering the complexity of the Incep-

tion architectures, changing the network can interfere with computational gains. Therefore,

it is more difficult to adapt these types of networks to a new classification task. To fine-tune

the network, we removed the last layers of the network (predictions, predictions-softmax, and

ClassificationLayer-predictions), which aggregating the extracted features from the network

for classification task and added a new set of classification layers adapted to our data set to the

network graph. The new layers are connected to the transferred network graph and the learning

rate for the fully connected layer is set to 0.1.

At each step of fine-tuning for all networks, the accuracy is calculated on the validation set and

the training process is stopped when the highest accuracy on the validation set is obtained. By

terminating the training process, classification is performed on the test set using each fine-tuned

network separately.
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5.2.3.2 Training Random Forest using deep features generated by pre-trained networks

In this experiment, pre-trained networks are used as feature generators. The activations ex-

tracted from the last layer before classification layer is used to train Random Forest to classify

various coronary artery tissues. Using AlexNet, and Vgg-19, features are extracted from the

last fully connected layer right before the classification layer (fc7). Each feature vector rep-

resents 4096 attributes of the labeled tissue. Using Inception-v3, features are extracted from

the last depth concatenation layer (mixed10). Each feature vector represents 131072 attributes

of the labeled tissue. It is demonstrated in our previous work that Random Forest is a robust

classifier with quick training process and low risk of overfitting. It works based on generating

an ensemble of trees. The trees are grown based on the CART methodology to maximum size

without pruning. Generalization error for Random Forest classifier is proportional to the ratio

ρ/s2, which (s) and (ρ) are respectively defined as the strength of the trees and correlation

between them. the smaller this ratio results in the better performance of Random Forest Cri-

minisi & Shotton (2013); Kuhn & Johnson (2013). To find the optimal number of trees, The

performance of Random Forest is evaluated for 1000 of trees while it is trained on each set

of features extracted from each network separately. The OOB error rate is stopped decreasing

when the tree number is assigned to 250 using the features extracted from Inception-v3, and

Vgg-19, and 300 using the features extracted from AlexNet (see Figure 5.5). The fewer num-

ber of trees accelerates the training process by reducing the computational complexity. The

number of randomly selected predictors (mtry) is set to 7.

Training features extracted from each pre-trained network and used separately to train Random

Forest. Classification is performed on the test set using the test features extracted by each

pre-trained network.

5.2.3.3 Classification using majority voting

Inspired by the ensemble learning approaches, we applied weighted majority voting on the

classification results obtained by the second experiment. Classification is performed by Ran-



86

Figure 5.5 OOB error rate is calculated to find the obtimal number of trees to

train Random Forest model. The performance of Random Forest is evaluated by

calculating OOB errors while it is trained on each set of features extracted from

each network separately. The OOB error rate is calculated for 1000 of trees

dom Forest using the features extracted from AlexNet, Vgg-19, and Inception-v3. Using the

following equation, for weighted majority voting, weights are set to 1/3 for all the three sets of

classification results except those labels with three different tissue labels.

C(x) = argmaxi ∑
j

w jI(Cj(x) = i) (5.5)

Where C(x) is the classification label with the majority vote, i is the class label (it can be varying

from 1 to 6 for calcification, fibrosis, intima, macrophage, media, and neovascularization), w j

is the weight of jth tissue label and I is the indicator function. Thus, majority voting is applied

to search in all the classification labels for the most frequent label assigned to each tissue using

equation (5.6).

C(x) = mode{C1(x),C2(x),C3(x)} (5.6)

Where C1(x), C2(x), and C3(x) are Random Forest classification results using the features

extracted from AlexNet, Vgg-19, and Inception-v3 respectively. Since the mode of C1(x),
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C2(x), and C3(x) when C1(x) �=C2(x) �=C3(x) gives us the smallest tissue label as the majority

vote, we put more weight on the third group of predicted labels if C1(x) �= C2(x) �= C3(x)

considering the strength of deep Inception-v3 features. Therefore, the majority vote will be on

the class label with the highest probability of belonging to the true class label.

5.2.3.4 RF classification using deep feature fusion

To consider all possible ways to find the optimal tissue characterization framework, we com-

bined the features obtained from AlexNet, and Vgg-19 to train Random Forest. Classification

is performed on the test set and the results are compared against the previous experiments. The

features extracted from Inception-v3 is not used in this experiment since the size of the feature

matrix is huge to be combined with other feature matrices.

5.3 Results and discussion

For each experiment, the classification is performed to characterize six different coronary artery

tissues (calcification, fibrosis, macrophage, neovascularization, intima, and media). The results

obtained for each experiment as follows,

5.3.1 Classification using fine-tuned networks

For the first experiment, fine-tuning is performed on AlexNet, Vgg-19, and Inception-v3 from

different categories of simple architectures, very deep architectures, and complex networks re-

spectively. The optimal fine-tuning parameters are estimated and the networks are trained by

assigning the new learning parameters. Classification is performed by each network separately

and accuracy, sensitivity, and specificity are measured using the corresponding confusion ma-

trix for each network. The results are shown in Figures 5.6-5.8, and Tables 5.1-5.3.

The results of the experiments demonstrate the higher performance of Vgg-19 and Inception-

v3 compared against AlexNet, which was expected considering the deep structure of Vgg-19,

and Inception-v3 architectures. Although using pre-trained networks reduce the computational
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burden, which results in reducing the training time and convergence issues, but a considerable

amount of time is still required to find the optimal learning parameters and retrain the fine-

tuned networks (approximately two hours for each network). Also, there is a risk of overfitting

in deep fine-tuning a network. The following steps are proposed to find the optimal tissue

characterization model, which can overcome the mentioned issues in an efficient way.

Figure 5.6 Confusion matrix of intracoronary tissue classification using

fine-tuned AlexNet

Table 5.1 Measured sensitivity, specificity, and accuracy of tissue classification using

fine-tuned AlexNet

Tissue Accuracy Sensitivity Specificity
Calcification 0.95 0.92 0.99

Fibrosis 0.92 0.85 0.99

Intima 1.00 1.00 1.00

Macrophage 0.89 0.82 0.97

Media 1.00 0.99 1.00

Neovascularization 0.98 1.00 0.97
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Figure 5.7 Confusion matrix of intracoronary tissue classification using

fine-tuned Vgg-19

Table 5.2 Measured sensitivity, specificity, and accuracy of tissue classification using

fine-tuned Vgg-19

Tissue Accuracy Sensitivity Specificity
Calcification 0.95 0.92 0.99

Fibrosis 1.00 1.00 1.00

Intima 1.00 1.00 1.00

Macrophage 0.95 0.91 1.00

Media 1.00 1.00 1.00

Neovascularization 0.99 1.00 0.99

Table 5.3 Measured sensitivity, specificity, and accuracy of tissue classification using

fine-tuned Inception-v3

Tissue Accuracy Sensitivity Specificity
Calcification 1.00 1.00 1.00

Fibrosis 0.96 0.92 0.99

Intima 1.00 1.00 1.00

Macrophage 0.95 0.91 0.99

Media 1.00 1.00 1.00

Neovascularization 0.97 0.95 1.00
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Figure 5.8 Confusion matrix of intracoronary tissue classification using

fine-tuned Inception-v3

5.3.2 Training Random Forest using deep features generated by pre-trained networks

In this experiment, deep features are extracted from AlexNet, Vgg-19, and Inception-v3. By

applying each network separately as feature generator, the training features are extracted to

train Random Forest and the classification is performed on the test set. Features are extracted

from the last fully connected layer before the classification layer (fc7) in AlexNet, and Vgg-19

architectures, and the last depth concatenation layer (mixed10) in Inception-v3 architecture.

Accuracy, sensitivity, and specificity are measured using the corresponding confusion matrix

for each classification result, which are shown in Figures 5.9-5.11, and Tables 5.4-5.6.

Regardless of the time, which is spent to find the optimal learning parameters, the process of

feature extraction from all the three networks, and training the Random Forest using each set

of features takes approximately twice less time than retraining a network. Using pre-trained

networks as feature extractor overcomes the problems of fine-tuning, training time, and over-

fitting concerns. But, the classification performance is not as high as using CNNs as classifiers

(Figures 5.14-5.16). To solve this problem, the following two experiments are performed and

the results of all experiments compared with each other.



91

Figure 5.9 Confusion matrix of intracoronary tissue classification: Random

Forest is trained using the deep features extracted from AlexNet

Table 5.4 Measured sensitivity, specificity, and accuracy of tissue classification using

RF. Features are extracted from AlexNet.

Tissue Accuracy Sensitivity Specificity
Calcification 0.95 0.92 0.98

Fibrosis 0.95 0.92 0.99

Intima 0.99 1.00 1.00

Macrophage 0.80 0.64 0.95

Media 0.99 1.97 1.00

Neovascularization 0.92 1.89 0.95

Table 5.5 Measured sensitivity, specificity, and accuracy of tissue classification using

RF. Features are extracted from Vgg-19

Tissue Accuracy Sensitivity Specificity
Calcification 1.00 1.00 1.00

Fibrosis 0.92 0.85 0.99

Intima 0.98 0.97 0.99

Macrophage 0.91 0.82 1.00

Media 0.98 0.97 0.98

Neovascularization 0.97 0.95 1.00
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Figure 5.10 Confusion matrix of intracoronary tissue classification: Random

Forest is trained using the deep features extracted from Vgg-19

Figure 5.11 Confusion matrix of intracoronary tissue classification: Random

Forest is trained using the deep features extracted from Inception-v3

5.3.3 Majority voting

In this experiment, weighted majority voting is applied on Random Forest classification re-

sults using each set of features extracted from the three mentioned networks. The results are
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Table 5.6 Measured sensitivity, specificity, and accuracy of tissue classification using

RF. Features are extracted from Inception-v3

Tissue Accuracy Sensitivity Specificity
Calcification 0.90 0.83 0.97

Fibrosis 0.95 0.92 0.99

Intima 0.95 0.91 0.98

Macrophage 0.90 0.82 0.99

Media 0.96 0.94 0.98

Neovascularization 0.96 0.95 0.97

illustrated in Figure 5.12, and Table 5.7. The results show a good improvement of accuracy,

sensitivity, and specificity, which are calculated for the final classification using majority vot-

ing.

Figure 5.12 Confusion matrix of intracoronary tissue classification using

majority voting approach.

5.3.4 RF classification using deep feature fusion

In this experiment, we combined deep features extracted from AlexNet, and Vgg-19 to train

Random Forest. The results are shown in Figure 5.13 and Table 5.8. The results of the last two
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Table 5.7 Measured sensitivity, specificity, and accuracy of tissue classification using

majority voting approach.

Tissue Accuracy Sensitivity Specificity
Calcification 1.00 1.00 1.00

Fibrosis 1.00 1.00 1.00

Intima 0.99 0.98 1.00

Macrophage 0.95 0.91 1.00

Media 0.99 0.99 1.00

Neovascularization 1.00 1.00 1.00

experiments show that majority voting approach performs better than Random Forest classifi-

cation result while it is trained on the combination of features.

Figure 5.13 Confusion matrix of intracoronary tissue classification using RF:

Combination of features extracted from pre-trained AlexNet, and Vgg-19 are

used to train Random Forest.

To choose the optimal tissue characterization model considering all the experiments, and to

compare the results of the experiments against each other, the mean ± standard deviation of

the values of accuracy, sensitivity, and specificity obtained for all tissues performing each ex-

periment are calculated and the results are shown in Figures 5.14-5.16 and Table 5.9. Although

the combination of features can improve the classification results compared against using each



95

Figure 5.14 Accuracy is reported as the mean ± standard deviation of the

measured accuracies for all tissues in each experiment.

Figure 5.15 Sensitivity is reported as the mean ± standard deviation of the

measured sensitivities for all tissues in each experiment.

network separately as feature extractor, the results of majority voting approach are considerably

higher than the classification results using the combination of features (Figures 5.14-5.16).
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Figure 5.16 Specificity is reported as the mean ± standard deviation of the

measured specificities for all tissues in each experiment.

Table 5.8 Measured sensitivity, specificity, and accuracy of tissue classification:

Combination of features extracted from pre-trained AlexNet, and Vgg-19 are used to train

Random Forest.

Tissue Accuracy Sensitivity Specificity
Calcification 1.00 1.00 1.00

Fibrosis 0.96 0.92 1.00

Intima 1.00 1.00 1.00

Macrophage 0.90 0.82 0.98

Media 0.99 0.99 1.00

Neovascularization 0.91 0.84 0.98

In this study, the performance of pre-trained networks is discussed. Three different state-of-the-

art networks (AlexNet, Vgg-19, and Inception-v3) are used in four different experiments. The

experiments started with fine-tuning the networks and using them for tissue classification of

six different tissue labels (calcification, fibrosis, neovascularization, macrophage, intima, and

media). We started with fine-tuning the networks, which is the most common way of applying

pre-trained networks for various applications in the field of medical image analysis. Each ex-

periment is designed based on the limitations of the previous experiment to achieve the main

goal of this study, which defined as designing an accurate intracoronary tissue classification
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Table 5.9 Accuracy, sensitivity, and specificity obtained from each experiment. The

accuracy, sensitivity, and specificity are reported as the mean ± standard deviation of the

values of accuracy, sensitivity, and specificity obtained for all tissues performing each

experiment.

Tissue Accuracy Sensitivity Specificity
Fine-tuned AlexNet 0.96±0.04 0.92±0.08 0.99±0.01

Fine-tuned Vgg-19 0.98±0.02 0.97±0.03 1.00±0.00

Fine-tuned Inception-v3 0.98±0.02 0.96±0.04 1.00±0.00

RF(AlexNet features) 0.93±0.07 0.89±0.13 0.98±0.02

RF(VGG-19 features) 0.96±0.04 0.92±0.07 0.99±0.01

RF(Inception-v3 features) 0.94±0.03 0.90±0.06 0.98±0.01

Majority voting RF 0.99±0.01 0.98±0.02 1.00±0.00
RF(combination of features) 0.94±0.06 0.90±0.10 0.99±0.01

model using deep feature learning in an efficient procedure. The second experiment is per-

formed to avoid convergence issues in fine-tuning the networks, overfitting by deep fine-tuning

the networks, and training time. Deep features are very strong to describe arterial tissues and

Random Forest works efficiently on large datasets with a very low risk of overfitting. Also, the

training process is considerably fast using Random Forest. But, when pre-trained networks are

used as feature generators without fine-tuning, the classification results show lower accuracy,

sensitivity, and specificity compared against using fine-tuned networks as classifiers. Major-

ity voting on classification results of Random Forest classifiers can considerably improve the

results of the second experiment without adding a huge computational burden. The accuracy,

sensitivity, and specificity obtained from the third experiment (majority voting from Random

Forest classification) can compete against the classification performance of the fine-tuned net-

works.

By evaluating the results of all the experiments, it is more efficient if we use pre-trained net-

works as feature extractors and train Random Forest for each set of generated features to per-

form the classification. Then, majority voting method provides the final tissue classification

result. Figure 5.17 shows classification results for each coronary artery tissue.
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Figure 5.17 From left to right: The first image shows the original OCT image

in planar representation, manual segmentation for each tissue is illustrated in the

second image, and the third image is the classification result, which is shown for

intima in (a), media in (b), fibrosis in (c), neovascularization in (d), macrophage

in (e), and calcification in (f).
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5.4 Conclusion

The goal of this study was to propose a new approach for OCT imaging using deep feature

learning from different CNN models and to evaluate their performance on a complex multi-

class classification problem such as pathological formations in coronary artery tissues. The

most significant outcome is to be able to automatically differentiate between intracoronary

pathological formations observed from OCT imaging. This might be highly relevant for the

automatic assessment of coronary artery disease in KD. With the proper dataset and manual

annotation, this might be adapted for adult coronary artery diseases to fully assess the structural

information of the coronary artery. Majority voting from Random Forest classification using

deep features have been successful in classifying coronary artery tissues. The final tissue labels

were obtained with high accuracy, sensitivity, and specificity, which confirm the robustness

of our proposed technique considering the high variability of pathological formations, OCT

artifacts, and the small size of the arteries in pediatric patients, which is followed by very

thin layers in coronary artery structure. In this work, we have outlined the relevance of deep

features obtained using transfer learning for OCT imaging and the practical aspect of using

RF classification to obtain the final decision in a clinically acceptable computational time.

For future works, we will focus on detecting intimal hyperplasia by measuring the thickness

of intima, and severity of pathological formations by evaluating distensibility variations as a

result of calcification, and fibrous scarring.





CONCLUSION AND RECOMMENDATIONS

Progression of pathological formations caused by coronary artery disease can be followed by

the acute coronary syndrome. Therefore, it is significant to develop robust coronary artery

tissue characterization techniques to evaluate plaque formation. Interpretation of OCT images

is challenging and requires a strong expertise from the cardiologist. Moreover, manual seg-

mentation of coronary artery tissues is tedious, time-consuming, and particularly error-prone

from one observer to another. The artifacts of the imaging system, the small size of the arteries

in infants and children, the small available population with coronary artery disease (CAD) in

infants and children, and similar structure of pathological formations are the challenges that re-

sult in imprecise manual segmentation of tissues. Since detailed tissue information is required

to accurately discriminate among pathological formations, the main goal of this research was

to design an automatic intracoronary tissue characterization model to evaluate the functional-

ity of coronary artery tissues by detecting coronary artery layers, and pathological formations

caused by coronary artery disease.

The first contribution of this thesis illustrates the robustness of CNN features to describe tissue

characteristics, and Random Forest (RF) to classify between intima and media layers. Ran-

dom Forest (RF) works efficiently on large datasets, carries a very low risk of overfitting, and

training process is considerably fast compared against retraining a fine-tuned network for the

classification task.

The accurate assessment of pathological formations may obtain by considering the adjacent

frames and analyzing the volume variation of each tissue. For each OCT pullback, intra-

coronary cross-sectional images might be misaligned, since the probe moves freely along the

catheter during the imaging process. This is problematic for volumetric measurements of dif-

ferent tissues, which are significant for studying the progression and regression of various

pathological formations particularly to evaluate the aneurysmal regions and stenotic segments
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of the arterial wall. Since, the optimal features, which can properly describe the arterial wall

layers are determined in the first step of the work, they might be applied for motion correction

of intracoronary OCT images. Considering the physics of the imaging system, possible arti-

facts of the OCT imaging, and limitations of the proposed motion correction methods in the

literature, we designed a motion correction model by finding the maximum similarity between

deep features extracted from OCT pullback frames to perform registration. This will con-

tribute to evaluate the functionality of coronary artery tissues, and distensibility variations of

the arterial wall as well as the assessment of pathological formations by finding the correlation

between tissues of adjacent frames.

For the final step of this study, we proposed a new approach for OCT imaging using deep

feature learning from various CNN models. Majority voting from Random Forest classification

using deep features provided the final classification result to detect intima, media, fibrosis,

calcification, macrophage, and neovascularization. This work contributes to the automatic

characterization of intracoronary pathological formations observed form OCT imaging in KD

patients that can be adapted to assess the structural information of coronary artery in adult

patients.

OCT imaging is a new modality for pediatric cardiology, especially for KD patients. With

proper registration, OCT may complement coronary assessment by adding tissue layers not

visible on X-ray angiography and CT acquisitions. Since interpretation of OCT images is

highly challenging, even for a trained expert, an automatic tissue characterization model not

only have a significant impact on efficient clinical diagnosis in KD patients but also in adult

cardiology, where the coronary arteries are larger and more cases with the coronary artery

disease are available in this population. On the other hand, deep learning using CNN gained a

huge popularity in image recognition tasks but requires a large amount of annotated images and

they require a lot of computing resources (GPU). Therefore, transfer learning and fine-tuning of
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an existing network were found to be successful for OCT imaging. Specifically, if the networks

are used as feature generators to train a classifier such as Random Forest in our application.

The designed models are robust indicators of progression of pathological formations, which

can result in an efficient clinical diagnosis with a higher level of certainty than current methods

and early detection of intracoronary complications to enhance patient outcomes. Also, clinical

indices from OCT can now be computed in 3D (area, volume) to fully characterize coronary

vessel, tissue-by-tissue.

For future works, we will focus on detecting the intimal hyperplasia and media disappearance,

which are the most frequent finding in pediatric patients with KD. Since we designed the model

to detect coronary artery layers, intimal hyperplasia can be recognized by measuring the thick-

ness of coronary artery layers. The absence of media may be reported as media destruction as

a result of thickening the first coronary artery layer (media).

Volumetric measurements of different tissues are significant for studying the progression and

regression of various pathological formations particularly to evaluate the aneurysmal regions

and stenotic segments of the arterial wall. 3D assessment of the morphological tissues is

problematic because they are highly affected by motion artifacts resulted in the rotation and

translation of the imaging probe along the artery during image acquisition. Generating a 3D-

reconstruction from 2D cross-sectional OCT pullbacks including motion compensation may be

an incremental step.

Pathological analysis of coronary arteries in KD demonstrates that aneurysms can be filled in

with the intimal fibrosis, which results in the development of arterial wall stiffness. In some

cases, although the aneurysms are treated and the lumen diameter is normal, but the coronary

artery may represent less distensibility, that can affect myocardial microcirculation. To eval-

uate the functionality of arterial wall, decreased arterial distensibility should be estimated by

considering the characteristics of arterial wall elasticity.
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Moreover, this work may introduce a safe navigation system for coronary arteries. The first

step in any navigation system is to locate the target and to provide accurate information about

its surroundings. Stereoradiographic 3D-reconstruction from biplane angiography can pro-

vide a global representation of vascular structures and more importantly, vessel pulsatility in

real-time. Such information is important to estimate the stiffness of the artery. However, the

3D-reconstruction is limited and does not provide any insight about the inner tissue layers.

Consequently, intravascular imaging from coronary OCT images is appealing for characteriza-

tion of the biophysical properties of the inner tissue layers. Stationary-OCT is used to outline

the elasticity properties and estimate the stiffness of coronary artery tissues. In stationary-

OCT, using the same configuration of the OCT system, the probe is stabilized and a sequence

of time-varying cross-sectional images are recorded from the arterial wall motion during each

cardiac cycle. In stationary OCT imaging, the pullback path reveals both the axial change of

the arterial structure and the local variations of the vessel morphology as a result of cardiac

motion. Measuring the strain in response to the changes of the luminal pressure and estimating

the local differential motion of the vessel wall tissues can be helpful to evaluate the degree of

stiffness of the arterial wall and severity of the disease. Finally, a proper characterization of

the tissues in 3D may lead to a fully personalized model for the evaluation of coronary artery

diseases. This personalized model can be inputted to a biomechanical simulation of the arterial

wall geometry for a better understanding of pathologic formations in coronary arteries.
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