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RÉDUCTION DE LA COMPLEXITÉ DU CODAGE INTRA POUR LE CODAGE
VIDÉO À HAUTE EFFICACITÉ À L’AIDE DE LA MODÉLISATION DES COÛTS

RDO ET DE L’APPRENTISSAGE PAR RENFORCEMENT PROFOND

Mohammadreza JAMALI

RÉSUMÉ

La compression vidéo a retenu l’attention ces dernières années en raison de la popularité

croissante des applications vidéo à haute définition (HD) et ultra HD et de la puissance

de traitement accrue du matériel et des logiciels. Le codage vidéo à haute efficacité

(HEVC)/H.265 est la norme de codage la plus récente. Elle permet une amélioration

significative de l’efficacité de la compression par rapport aux normes antérieures et fournit

une réduction de débit de 50%, pour la même qualité, par rapport à la célèbre norme

H.264/advanced video coding (AVC) .

L’amélioration des performances de high efficiency video coding (HEVC) se fait au détriment

d’une complexité de calculs beaucoup plus élevée au niveau de l’encodeur, rendant difficile

le déploiement de HEVC dans des applications en temps réel. HEVC augmente le nombre

de modes de codage intra à 35, offrant une plus grande efficacité de codage que les autres

normes de codage vidéo tout en augmentant la complexité du codeur, principalement en raison

du processus de décision de mode par optimisation débit-distorsion (RDO). En outre, dans le

processus de fractionnement de trame, H.264/AVC utilise des macroblocs de 16× 16 pixels,

tandis que HEVC introduit des unités de codage arborescent (CTUs) avec une taille maximale

de 64×64. Le CTU peut être fractionné, de manière récursive et adaptative selon le contenu,

en unités de codage (CUs) possédant une structure en arbre quaternaire. Il en résulte un codage

efficace des régions d’arrière-plan et des objets avec diverses tailles et formes. En plus de la

complexité imposée par la décision de mode, le processus de partitionnement de trame entraîne

une complexité de calcul importante.

Au vu de cela, dans cette thèse, le codage HEVC intra est étudié et de multiples méthodes

sont proposées pour réduire sa complexité de calculs et son temps de codage. Les méthodes

proposées tournent autour de deux domaines de décision, celui du mode de codage et celui de

la taille des CUs.

La première méthode proposée est basée sur la prédiction du coût RDO par une métrique

basée sur la SATD de plus faible complexité. Grâce à la prédiction du coût RDO, les modes

non prometteurs sont écartés du traitement ultérieur; ce qui entraîne une économie de calculs

substantielle. Cette méthode permet une réduction de 30% du temps de traitement avec une

augmentation de 0,8% du Bjøntegaard delta rate (BD-Rate) par rapport au modèle de test

HEVC (HM), représentant ainsi un compromis souhaitable.
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Dans la deuxième contribution, une classification de mode lors du codage chromatique est

proposée pour réduire de façon adaptative les modes intra-chromatiques en fonction de la

texture du bloc. Par rapport au HM, la méthode proposée de décision de mode chroma fournit

une réduction de temps de 6% avec une augmentation de BD-Rate de 0,07%.

La troisième contribution de cette thèse est une méthode basée sur le gradient, utilisant

l’opérateur de Prewitt, pour éliminer les modes directionnels non pertinents de la liste

des candidats. La méthode proposée permet une réduction du temps de 11,4% avec une

augmentation de BD-Rate de 0,62% par rapport au HM.

Dans la quatrième méthode proposée, les modes les plus pertinents des blocs voisins sont

considérés pour exploiter la redondance spatiale à travers une trame. Une classification des

coûts de SATD est également proposée qui permet l’élimination de plusieurs modes candidats

avant le RDO. Nous montrons que ces deux approches, combinées à l’algorithme basé sur le

gradient, fournissent une réduction de temps de 35,6% avec une perte de BD-Rate de 1,07%.

Les méthodes de décision de mode proposées sont ensuite combinées, aboutissant à une

réduction du temps de codage de 47,3% avec une perte de qualité de 1,37% de BD-Rate par

rapport au HM.

La cinquième contribution de cette thèse est une méthode de codage intra rapide basée sur des

gradients globaux et directionnels pour terminer rapidement le fractionnement au niveau des

CUs et éviter d’effectuer le processus RDO à haute complexité pour les prochains niveaux de

CUs. Cette approche, combinée à la décision de mode, réduit le temps de codage de 52% en

moyenne, avec une faible perte de qualité de 1,50% de BD-Rate.

Dans la sixième contribution, une méthode basée sur la classification bayésienne est proposée

pour réduire la complexité du processus de fractionnement des CUs. Deux problèmes de

classification binaires sont considérés pour effectuer un fractionnement précoce et un arrêt

anticipé du fractionnement. Il est montré qu’en utilisant la méthode proposée, une réduction

de temps de 43,2% avec une perte de qualité de 1,07% de BD-Rate peut être obtenue.

La septième contribution est une méthode de décision de taille des CUs basée sur

l’apprentissage par renforcement, l’acquisition de caractéristiques actives et les réseaux

de neurones. Cette méthode effectue un fractionnement précoce et un arrêt anticipé du

fractionnement en considérant le codeur et le CU comme un système agent-environnement.

La méthode proposée fournit une réduction du temps de 51,3% avec une perte de BD-Rate

de 0,84% . De plus, la combinaison des méthodes de décision de mode proposées avec cette

nouvelle approche donne une réduction totale du temps de 62,4% pour une perte de BD-Rate

de 1,23% comparativement au HM.

Mots clés: H.265, HEVC, compression vidéo, codage intra, décision de mode, AVC,

décision de la taille des CUs, réduction de complexité



INTRA CODING COMPLEXITY REDUCTION IN HIGH EFFICIENCY VIDEO
CODING USING RDO COST MODELING AND DEEP REINFORCEMENT

LEARNING
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ABSTRACT

Video compression technology has gained much attention in recent years due to the ever-

increasing popularity of high-definition (HD) and ultra-HD video applications and increased

processing power of hardware and software. High efficiency video coding (HEVC)/H.265 is the

most recent video coding standard which achieves a significant improvement in compression

efficiency as compared to the other standards and provides a 50% bit rate reduction compared

to the well-known H.264/advanced video coding (AVC) with the same quality.

The performance improvement of HEVC is at the expense of much higher computational

complexity at the encoder, making it challenging to deploy HEVC in real-time applications.

In particular, HEVC increases the number of intra coding modes to 35, providing higher

coding efficiency than the other video coding standards while increasing encoder complexity,

which is mostly due to mode decision process by highly resource-demanding rate-distortion

optimization (RDO). In addition, in frame splitting process, H.264/AVC employs 16 × 16

macroblocks, while HEVC introduces coding tree units (CTUs) with a maximum size of

64× 64. The CTU may be split recursively and content-adaptively into coding units (CUs)

in a quadtree-based manner, resulting in an efficient coding of background regions and objects

with various sizes and shapes. In addition to the complexity imposed by mode decision, the

frame partitioning process results in a significant computational complexity.

In view of this, in this thesis, the HEVC intra coding is studied and multiple novel methods are

proposed to reduce its computational complexity and encoding time. The proposed methods

are revolving around two areas of mode decision and CU size decision.

The first proposed method is based on the prediction of the RDO cost by a low-complexity

SATD-based metric. Through predicting the RDO cost, the non-promising modes are discarded

from further processing giving rise to substantial computation saving. This method provides

a 30% time reduction with a 0.8% Bjøntegaard delta rate (BD-Rate) increase as compared to

HEVC test model (HM); leading to a desirable trade-off.

In the second contribution, a mode classification in chroma coding is proposed to adaptively

reduce chroma intra modes based on block texture. As compared to HM, the chroma mode

decision method provides a 6% time reduction with a 0.07% BD-Rate increase.
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The third contribution, in this thesis, is a gradient-based method, using the Prewitt operator, to

eliminate the non-relevant directional modes from the list of candidates. The proposed method

achieves a time reduction of 11.4% with a BD-Rate increase of 0.62% in comparison to HM.

In the fourth proposed method, the most relevant modes of the neighboring blocks are

considered to exploit the spatial redundancy across a frame. A classification of SATD costs

is also proposed which permits the elimination of several candidate modes prior to RDO. It

is shown that these two approaches, combined with the gradient-based algorithm, provide a

35.6% time reduction with a 1.07% BD-Rate loss.

The proposed mode decision methods are combined, resulting in a 47.3% encoding time

reduction with a quality loss of 1.37% BD-Rate as compared to the HM.

The fifth contribution, in this thesis, is a fast intra coding method based on global and

directional gradients to early terminate the CU splitting and avoid performing the high-

complexity RDO process for the next CU levels. This approach, combined with mode decision,

reduces the encoding time by 52% on average, with a small quality loss of 1.50% BD-Rate.

In the sixth contribution, a method based on the Bayesian classification is proposed to reduce

the complexity of CU splitting process. Two binary classification problems are considered for

early splitting and early splitting termination. It is shown that using the proposed method a

43.2% time reduction with a quality loss of 1.07% BD-Rate can be achieved.

The seventh contribution is a CU size decision method based on reinforcement learning, active

feature acquisition and neural networks. This method carries out early splitting and early

splitting termination by considering the encoder and CU as an agent-environment system. The

proposed method provides a 51.3% time reduction and a 0.84% BD-Rate loss. In addition,

combining the proposed mode decision methods with this novel approach gives a total time

reduction of 62.4% and a BD-Rate loss of 1.23% comparing to HM.

Keywords: H.265, high efficiency video coding (HEVC), video compression, intra video

coding, mode decision, advanced video coding (AVC), CU size decision,

complexity reduction
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CHAPTER 1

INTRODUCTION

The use of high quality video such as high-definition (HD) and beyond HD (4K × 2K and

8K × 4K) has created a demand for new video coding technologies beyond the capability

of the well-known H.264/advanced video coding (AVC) standard (Wiegand et al., 2003). In

view of this, ITU-T video coding experts group (VCEG) and ISO/IEC moving picture experts

group (MPEG) have established a joint group named the joint collaborative team on video

coding (JCT-VC) to design a new video coding standard, called high efficiency video coding

(HEVC)/H.265 (Sullivan et al., 2012) in order to improve the coding efficiency as compared to

the other video coding standards. It has been shown in (Ohm et al., 2012) that HEVC provides

a significant bit rate reduction, i.e., up to 50%, for the same subjective quality in comparison

to H.264/AVC.

The improved coding performance of HEVC is achieved through a highly flexible coding

structure using several advanced tools. For instance, in intra prediction, unlike the 9 modes

used in H.264/AVC, the number of modes increases to 35, including dc, planar and 33

directional modes. This allows HEVC encoder to make predictions more precisely, and thus, to

exploit the spatial correlation efficiently. In addition, HEVC provides a new content-adaptive

and recursive approach to split a frame into coding units (CUs) in a quadtree-based manner,

resulting in an improved coding efficiency. However, finding the best candidate among the

35 modes and the best splitting pattern requires a highly complex rate-distortion optimization

(RDO) process. In view of this, the computational complexity and encoding time significantly

increase; making the real-time coding challenging.

1.1 Problem Statement and Motivations

The coding efficiency improvement of HEVC comes along with higher computational com-

plexity in the structure of the codec, which limits HEVC utilization in low-delay real-time

applications. This complexity may be manageable at the decoder, yet quickly goes beyond
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the capability of the current hardware at the encoder. Thus, new algorithms are needed to

reduce the complexity of the encoder without sacrificing its coding performance, especially in

designing video encoders for rapidly developing portable devices.

In light of this, in this thesis, we aim at reducing the HEVC encoder’s computational

complexity while preserving its high compression efficiency. The computational complexity of

the encoder is studied and novel methods for complexity reduction are proposed. To this end,

the focus is on coding mode decision and CU size decision, since they represent the most time-

consuming modules of the encoder. The intra coding is selected because there is an all-intra

profile for HEVC that is expected to replace the current intra coding techniques. In addition to

all-intra profile, the intra coding is tested for all blocks even if a block is coded with an inter

mode. This is due to the fact that for every block the encoder chooses between inter mode

and intra mode. It is noted that the proposed methods may also be used in transcoding and

transrating systems. Accordingly, the results of this thesis will help designing new generations

of HEVC encoders, transcoders and transraters, especially in real-time applications.

1.2 Objectives

The objectives of this study are presented as follows:

• Computational complexity reduction of the HEVC intra encoder

• Design of fast encoding algorithms in HEVC intra coding

• Mathematical analysis and creation of predictive models based on experimental data for

mode decision

• RDO cost modeling and prediction to avoid running RDO process in an exhaustive manner

for all modes and all depths

• Formulation of the coding unit splitting problem as a learning problem to predict the

splitting pattern based on block’s features to do fast CU size decision
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• Implementation of the proposed methods into the HEVC test model (Il-Koo, 2014) (HM)

• Implementation of the proposed methods into the highly optimized x265 HEVC encoder to

transfer technology to industrial partner

• Publication of research results in reputable conferences and journals

The first objective is achieved by proposing techniques and methods for complexity reduction

in the most time-consuming modules of the encoder. For instance, in mode decision, new

algorithms are proposed to efficiently select the best mode among all candidates without losing

the quality. In addition, in CU splitting, new methods are developed to find the best splitting

pattern without performing exhaustive search for all coding levels. Since for every block the

encoder chooses between inter mode and intra mode, the intra procedure is performed for all

the blocks even if a block is coded in inter mode.

Since the high complexity encoder is usually run by the video providers and the decoder is in

the hand-held devices, the objectives of this thesis help the video manufacturers provide high

quality video content at a reasonable computational complexity. Reducing the complexity and

encoding time allows the video providers to produce and deploy high quality and real-time

applications with less hardware, which enables them to supply inexpensive video contents to

consumers. In view of this, video industries will benefit from contributions of this thesis in

both entertainment and interactive video applications as the main areas of video coding.

1.3 Contributions

In this thesis, several innovations are presented contributing to a significant complexity

reduction in HEVC intra coding, while maintaining quality. The contributions are listed as

follows:

• An RDO cost statistical modeling is developed for excluding non-promising candidate

modes from further processing by rate-distortion optimization. More specifically, a
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Gaussian modeling for the RDO cost is considered resulting in a very low-complexity and

high-quality intra mode decision. This is due to the fact that it can effectively identify the

smallest possible number of intra modes which need to be investigated by the rate-distortion

optimization.

• Candidate selection is performed based on the bivariate normal distribution for RDO costs

via considering correlation among these distributions.

• A chroma mode classification is carried out for fast chroma mode decision and a

performance analysis of different proposed fast chroma mode decision approaches is

conducted.

• Directional modes are selected by applying various gradient operators, and a performance

analysis of different gradient kernels are conducted. An enhanced gradient-based mode

decision is further proposed by assigning weights to three adjacent modes in order to

improve the accuracy of the method.

• The neighboring blocks’ best modes are used in a novel way to reduce the number of final

modes that should be considered by the RDO process for the current block.

• A sum of absolute transformed differences (SATD) cost classification approach is devel-

oped to exclude non-promising candidates from RDO computations.

• New features are proposed for CU early splitting and CU early splitting termination.

• A new fast intra coding method is proposed based on global and directional gradients to

early terminate the current CU splitting and avoid performing the high-complexity RDO

process for the next CU levels.

• The CU size decision problem is addressed with two Bayesian classifiers for early splitting

and early splitting termination.

• A new framework for CU size decision problem is proposed based on reinforcement

learning, active feature acquisition and neural networks.
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1.4 Thesis Structure

A brief overview of the HEVC video encoder is presented in chapter 2 in order to introduce

the context and background of the thesis. We focus mainly on intra coding as the main subject

of this study. The structure of the HEVC encoder is explained and it is shown how the new

encoder achieves very high compression ratios.

The state-of-the-art studies that have been carried out during and after the standardization

process of the HEVC are also presented. These studies have mostly focused on different

encoder modules and propose methods for decreasing the complexity, while preserving the

compression efficiency. These works may be categorized into two groups, namely, intra mode

decision and coding unit size decision, reviewed in chapter 3.

In chapter 4, we present the proposed mode decision methods. To lower the high computational

complexity of the HEVC encoder, in section 4.1, an RDO cost prediction method is developed

based on statistical models, which selects only promising candidates for RDO. In section 4.2,

a fast chroma mode decision, which results in an extra complexity reduction, is proposed

to reduce the number of RDO candidates by applying a mode classification. Section 4.3

introduces a gradient-based approach, to exclude non-promising directional candidates from

further processing. Section 4.4 discusses the SATD cost classification applied to the mode

decision. The results presented in chapter 4 have partly been presented in the following papers:

• (Jamali and Coulombe, 2018). "Fast HEVC Intra Mode Decision Based on RDO Cost

Prediction". Accepted in IEEE Transactions on Broadcasting.

• (Jamali and Coulombe, 2016a). "RDO Cost Modeling for Low-complexity HEVC

Intra Coding". In IEEE Canadian Conference on Electrical and Computer Engineering

(CCECE).

• (Jamali et al., 2015). "Fast HEVC Intra Mode Decision Based on Edge Detection and

SATD Costs Classification". In IEEE Data Compression Conference (DCC).
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In addition, the following patent has been filed, which describes the proposed mode decision

approach for complexity reduction in HEVC intra coding:

• (Jamali et al., 2014). "Method and System for Fast Mode Decision for High Efficiency

Video Coding". https://patents.google.com/patent/US20160127725A1/en.

In chapter 5, the proposed methods for CU size decision are presented. Section 5.1 presents

a method for fast CU size decision based on global and directional gradients and section 5.2

introduces a Bayesian problem for early splitting and early splitting termination. Finally, a

reinforcement learning-based approach is presented in section 5.3 for fast CU size decision.

Part of the results provided in this chapter have also been presented in:

• (Jamali and Coulombe, 2016b). "Coding Unit Splitting Early Termination for Fast

HEVC Intra Coding Based on Global and Directional Gradients". In IEEE Workshop on

Multimedia Signal Processing (MMSP).

In section 5.3.4, the experimental results are provided and finally the conclusion of the thesis

and discussion on the future directions of the research in HEVC complexity reduction are

presented.



CHAPTER 2

HEVC VIDEO ENCODER OVERVIEW

In this chapter, we give a review on HEVC video encoding while focusing on intra coding.

HEVC, similar to previous video coding standards, is a hybrid video coding scheme with

motion estimation and compensation for decreasing the temporal redundancy, and intra

prediction and transform for decreasing the spatial redundancy. Also the last step in the

encoding process is an entropy coding module for further compression. Although the main

functions in HEVC are similar to prior video coding standards, most of them have evolved

compared to those standards. The improvements are mainly in frame splitting into prediction

and transform blocks, inter and intra mode decision, in-loop filtering and entropy coding.

Before we describe the structure of the HEVC encoder, we give a brief review on general

hybrid video coding to better understand the context of the study.

2.1 Block-Based Hybrid Video Coding

The compression efficiency of video encoders has greatly improved during last three decades.

However, the main concepts of video coding are still the same. All main video coding standards

have been based on a same concept of block-based hybrid video coding (Richardson, 2010).

Hybrid video coding is based on redundancy removal in some consecutive steps. The term

hybrid means using both predictive coding and transform coding. Figure 2.1 shows a simplified

structure of a hybrid video encoder. Each frame is partitioned into some rectangular regions

called blocks which are coded by either inter or intra prediction. Inter prediction uses the

previous frames to find the best prediction for the current block while intra prediction uses the

information available in the current frame to make the prediction. The difference between the

current block and its prediction forms the residual block. A transform is applied to the residual

to remove spatial redundancy and to provide a more appropriate representation of the residual

block for quantization. The quantization step provides a trade-off between compression ratio
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and visual quality. Then entropy coding is used as the final step to achieve the maximum

possible compression.

Prediction Transform Quantization Entropy 
Coding

Frame 
PartitioningInput Output

Figure 2.1 General view of a hybrid video encoder.

2.2 HEVC Video Encoding

The architecture of HEVC is basically similar to the previous hybrid video coding standards

such as H.264/AVC. Figure 2.2 shows the structure of the HEVC encoder. The most important

difference between HEVC and H.264/AVC is how the splitting of a frame into blocks is

performed for achieving prediction and transform, which contributes to an improved coding

efficiency. While the main coding block in H.264/AVC is a macroblock with size of 16× 16,

HEVC uses a more adaptive quadtree structure based on a block called coding tree unit (CTU)

with maximum size of 64× 64. This quadtree structure comprises some blocks and units. A

block includes a rectangular area of samples and a unit is formed by a luma block and two

related chroma blocks with associated syntax information. For example, a CTU consists of

a luma coding tree block (CTB) and two chroma CTBs with syntax determining the further

subdivision. As a result of subdivision, new units called CU are generated. The CU is a unit

which is coded by inter or intra prediction. The CUs could be divided into prediction units

(PUs) and transform units (TUs) for performing prediction and transform. PUs inside a CU

can be predicted by different prediction modes. CUs, PUs and TUs consist of associated luma

and chroma blocks called coding blocks (CBs), prediction blocks (PBs) and transform blocks

(TBs) respectively. As it is obvious, this splitting is more adaptive relative to the approach used

in H.264/AVC and is especially useful for higher resolution videos like 4K×2K and 8K×4K.

Figure 2.3 shows an example of dividing a frame into CUs and PUs using quadtree structure

and fig. 2.4 shows the coding order of CUs inside a CTU. The quadtree that is used for dividing
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a CU into TUs has its root at the CU level and is called residual quad-tree (RQT) because it

operates on the residual. Also, all possible modes of splitting a CU into PUs are illustrated in

fig. 2.5.

Split Video 
Input into 

CTUs

Coder Control

Transform, 
Scaling & 

Quantization

Intra-Picture 
Estimation

Intra-Picture 
Prediction

Motion 
Compensation

Motion 
Estimation

Quantized 
Transform 

Coefficients
Scaling&Inverse 

Transform

Inter/Intra 
Selector

Filter Control 
Analysis

Deblocking 
& SAO

Decoded 
Picture Buffer

Intra Prediction 
Data

Filter Data

Motion 
Data

General 
Control 

Data

Header 
Formatting 
& CABAC 
Entropy 
Coder

Coded 
Bitstream

Figure 2.2 HEVC video encoder, (Hojati, 2018).

Figure 2.3 Frame splitting into CUs (red) and PUs (green) based on the quadtree

structure, BlowingBubbles.
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Figure 2.4 Partitioning of a 64×64 CTU into CUs and the coding order of CUs,

(Hojati, 2018).

NxN 2Nx2N 2NxN Nx2N

nRx2N nLx2N 2NxnU 2NxnD

Figure 2.5 All possible modes of partitioning a CU into PUs in HEVC. Intra CUs can

apply only the first two modes.

As it could be seen, there are many possibilities to split a picture into multiple units and blocks

and there are also many ways to combine the coding tools. Although this may not have a

significant impact on the decoder complexity, the encoder should perform heavy computations
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to leverage the full capabilities of the standard. This is mostly because the encoder should

choose the best coding tree structure and the best way for the subdivision of a CU into PUs

and TUs. This process can be performed by an exhaustive execution of RDO and is extremely

time consuming. The RDO process considers all the encoding possibilities and compares them

with regard to bit rate and picture quality. Since CU is the root for PU partitioning and the

RQT configuration, it could be generally deduced that the computational complexity of RDO

increases monotonically with the depth of the CU splitting (Ma et al., 2013). Limiting the CU

depth can reduce the complexity but decreases the coding efficiency because small CUs can

cope efficiently with the regions of the picture with complex texture while large CUs cannot

successfully cover these areas. The RDO problem is a very important one in complexity

analysis of HEVC and determining the best partitioning pattern of CTUs in a picture in a

reasonable time can dramatically decrease the complexity burden of the HEVC encoder.

2.3 HEVC Computational Complexity Analysis

In this section, we focus on the HEVC encoder from the complexity point of view and provide

some analyses on the most complex parts of the encoder; the parts that need more attention for

complexity reduction. Since the commonly used software for research and codec development

is the HM, this implementation is considered as a test bed for evaluating the standard and three

encoder configurations are used which are known as all-intra (AI), random access (RA) and

low delay (LD). In some studies LD is considered as two different configurations called LP (or

LD_P) and LB (LD_B). Considering the coding time as a measure of complexity, the first step

for analyzing the encoder complexity is calculating the overall coding time for different video

sequences and different encoder configurations. We have selected some papers that describe

our problem in the best manner and help understand which parts of the codec are most complex

and give guidelines to reduce this complexity.

A complexity and implementation analysis of the HEVC encoder and decoder is presented

in (Bossen et al., 2012). For complexity analysis, first they consider the overall time that the

encoder and the decoder consume for processing different sequences to show that real-time
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video coding is not easy to achieve with current implementation of HEVC. Tables 2.1 and 2.2

from this paper present some common sequences and the encoding time of HM for encoding

these sequences. All of the test sequences are 10 seconds long and two values of 27 and

32 are considered for quantization parameter (QP); AI27 means all-intra with the quantization

parameter (QP) equals to 27 and so on. These results are obtained using gcc 4.4.5 for compiling

and a cluster with Xeon-based servers (E5670) clocked at 2.93 GHz.

Table 2.1 Test sequences, (Bossen et al., 2012)

Sequence Resolution Frame Rate (Hz)
Kimono

1920×1080

24

ParkScene 24

Cactus 50

BasketballDrive 50

BQTerrace 60

BasketballDrill

832×480

50

BQMall 60

PartyScene 50

RaceHorses 30

Table 2.2 Encoding time for test sequences, times are in tens of seconds, (Bossen et al.,
2012)

Time (10s)
Sequence AI27 AI32 RA27 RA32 LB27 LB32
Kimono 393 357 1283 1123 2016 1739

ParkScene 462 395 1145 1000 1743 1501

Cactus 955 811 2590 2257 3635 3133

BasketballDrive 870 759 3155 2707 4417 3793

BQTerrace 1228 1043 2936 2485 4029 3315

BasketballDrill 194 166 606 515 826 700

BQMall 229 202 642 562 900 779

PartyScene 245 210 614 505 882 724

RaceHorses 120 104 481 396 686 570
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As can be seen from the tables even in only intra, the coding time can be more than 1000

times of the sequence length and this makes real-time coding very challenging. To overcome

this problem, we should know which modules of the encoder contribute the most to the

complexity. In this regard, (Bossen et al., 2012) analyzes different C++ classes of the HM

that relate to various parts of the codec. This analysis gives a sense on how much time

is spent in each module of HEVC. Table 2.3 illustrates the classes and the time spent in

each of them. This is shown for two AI and RA configurations. As it could be seen from

the table, in AI setting, a significant amount of time is spent in TComTrQuant class. This

class is responsible for rate distortion optimized quantization (RDOQ). TComPrediction and

TComPattern classes, both of them related to intra-picture prediction, account for 16%. For

the core entropy coder, TEncBinCABAC class is used which is comprised of TEncBinCABAC

and TEncBinCABACCounter classes and small amount of time is spent in them (about 2%).

However, more time is spent on scanning and context derivation that happened in TEncSbac.

Another important class for intra coding is TEncSearch. This class consumes 11.8% of encoder

time for AI configuration. This class is responsible for finding the best prediction signal for the

current block.

Table 2.3 Consumed time in encoder classes, (Bossen et al., 2012)

Time (%)
Function AI RA
TEncSearch 11.8 7.4

TComTrQuant 24.4 10.7

TComRdCost 9.8 38.8

TComInterpolationFilter 0.0 19.8

TComYUV 0.1 1.7

partialButterfly 8.7 4.0

TComDataCU 5.8 2.7

TEncSbac 8.4 3.5

TEncEntropy 1.2 0.6

TEncBinCABAC 2.2 0.9

TComPrediction 10.0 1.1

TComPattern 6.6 0.4

memcpy/memset 11.0 7.1
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Another good analysis of video coding complexity for HEVC is done in (Vanne et al., 2012).

The main focus of this paper is comparison of the HM and the joint model (JM) as HEVC

and H.264/AVC reference software respectively. It also presents an analysis of rate-distortion

complexity problem of HEVC. This work shows that HM (Main Profile) achieves bit rate

savings of 23%, 35%, 40% and 35% relative to JM (High Profile) in AI, RA, LB and LP

configurations respectively. As it is expected this higher coding efficiency comes with a

cost to the HEVC codec from the complexity point of view. The paper analyzes all of the

configurations for software complexity comparison and presents the complexity percentage

of each module at the encoder. Due to the large share of integer motion estimation (IME),

fractional motion estimation (FME) and mode decision (MD), the paper focuses more on

these stages and considers their internal functions. The high complexity of these modules

is attributed to interpolation (IPOL), SATD and sum of absolute differences (SAD) functions

in FME, FME/MD and IME respectively. Table 2.4 shows the average complexity contribution

of these modules and other parts like intra prediction (IP), transform/ quantization/ inverse

quantization/ inverse transform (T/Q/IQ/IT) and entropy coding (EC) over all the tested

sequences. Table 2.5 shows most complex functions at the encoder and their complexity shares

in AI, RA, LB and LP configurations. In AI setting only SATD is present for MD process

and in the other configurations these three functions are responsible for the majority of the

encoding complexity. As another result of the analysis, SAD share is about 65% of the IME

complexity while around 95% of the FME/MD complexity is because of IPOL and SATD.

Table 2.4 Average share of encoding complexity, (Vanne et al., 2012)

Encoding stage AI RA LB LP
IME 0% 16% 18% 17%

FME/MD 9% 55% 59% 49%

IP 24% 1% 1% 1%

T/Q/IQ/IT 41% 14% 11% 18%

EC 11% 4% 3% 5%

Misc. 15% 10% 8% 10%
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Table 2.5 Most complex functions at the encoder and their complexity shares, (Vanne

et al., 2012)

Function Al RA LB LP
Interpolation 0% 37% 38% 31%

SATD computation 9% 16% 18% 15%

SAD computation 0% 10% 12% 11%

Sum 9% 63% 68% 57%

2.4 HEVC Intra Coding

HEVC intra coding follows the same structure as previous hybrid video codecs (Lainema et al.,

2012). It is mainly based on spatial prediction and transform coding. However, it carries some

new features, such as an increased number of prediction modes and a new frame splitting

approach. The encoder uses spatial correlation in one frame to reduce the amount of data

for transmitting or storing the visual information. To this end, it chooses the best coding

unit depth, best transform unit tree and best mode for each prediction unit. An intra mode

determines the direction to predict a block. HEVC intra coding supports 35 prediction modes

for the luma component. There are 33 directional modes, allowing an efficient prediction of

different directional video contents, a dc mode for homogeneous regions, and a planar mode

to predict the smooth surfaces. Using the dc and planar modes let HEVC intra predict areas of

the image which do not follow an edge model. Figure 2.6 shows HEVC luma intra prediction

modes. In the early versions of the standard the number of modes which could be used to

predict a block was dependent on the size of PU and only a subset of modes could be selected.

Now, however, for all sizes of PU, all 35 modes are examined. The decision for coding a block

as intra is made at the CU level, but the intra mode is selected for each PU, and it is possible

for PUs in the same CU to have different intra modes. After the intra mode is selected, the

prediction is done for TUs inside the PU. This means that in determining the prediction signal,

the spatially neighboring TUs are used. For a TU with size N×N, there are 4N+1 samples for

prediction from the above, above-right, above-left, left and below-left TUs. Samples from the

below-left TU are not always available, and can only be used when they have been processed
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and decoded beforehand. As an example a prediction by mode 2 is shown in Figure 2.7 for a

4×4 block.

0: planar 1:dc

2

10

182634

Figure 2.6 HEVC intra prediction modes.

Although this increased number of modes results in an improved coding efficiency, it renders

the encoding process much more complex due to the increased number of RDO computations

required. To lower this high complexity, the HM uses a two-step approach to find the best

intra mode. The first step, rough mode decision (RMD), selects N candidates with the lowest

RMD costs to be processed by the second step, RDO, where the candidate with the lowest

RDO cost is selected as the best mode. Table 2.6 shows N for different PB sizes. Although this

approach reduces the computational complexity to some extent, the HM encoder still needs to

be improved substantially for real-time and fast encoding.

The RMD cost (CRMD) is computed as:

CRMD = SATDl +λp ×Rp, (2.1)
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Boundary  Pixels

Current Block

Directional mode 2

Figure 2.7 Intra prediction based on directional mode 2.

Table 2.6 Number of intra mode candidates, selected by the HM, for different PU sizes

PU size 64×64 32×32 16×16 8×8 4×4

N 3 3 3 8 8

where SATDl , as a measure of distortion, is the SATD between the original luma component

and its prediction block, Rp is the number of bits used for mode coding, and λp is the Lagrange

multiplier, which is determined based on the QP (Sze et al., 2014). The RDO cost (CRDO) for

the N selected candidates is computed using the following cost function:

CRDO = (SSEl +ωc ×SSEc)+λm ×Rm, (2.2)

where SSEl and SSEc are the sum of squared errors (SSE) between the original luma and

chroma components and their reconstructed blocks, ωc is the chroma weight (depending on the

QP), Rm is the number of bits for PU encoding and λm is the Lagrange multiplier. It should be
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mentioned that before RDO computations, a maximum of three most probable modes (MPMs)

are added to the candidates list based on the best modes of the neighboring blocks. The final

prediction mode is the candidate with the minimum RDO cost.

For chroma components, HEVC provides five intra modes, regardless of the block size, which

include planar, dc, vertical, horizontal and the best luma mode. If the best luma mode is one

of the first four modes, a diagonal mode (34) is used as the fifth mode. Using this concept of

derived mode results in an efficient signaling when chroma content follows the same structure

as the luma, and thus, the same intra mode, which is a very likely scenario. There is no

rough mode decision for chroma intra prediction, and to select the best mode among the

five candidates, the HM evaluates the RDO cost for all of them, which makes the chroma

component a complex module as well. In section 3.1, we review some works which propose

methods to reduce the encoding complexity by decreasing the number of modes to be processed

by RDO.



CHAPTER 3

LITERATURE REVIEW ON HEVC INTRA CODING

In this chapter, we give an overview of the state-of-the-art works on complexity reduction

for HEVC intra coding. In the last decade, many works have proposed different methods for

reducing the complexity of HEVC and H.264 intra coding. These methods propose decreasing

the number of modes processed by RDO (mode decision) (Ruiz et al., 2016; Marzuki et al.,

2016; Pakdaman et al., 2016; Tariq et al., 2016; Wang and Siu, 2013; Park and Jeong, 2015;

Gao et al., 2015; Zhang et al., 2015; Pan et al., 2005; Li et al., 2009), or avoiding exhaustive

search to find the optimal CU sizes inside a CTU (fast CU size decision) (Cho and Kim,

2013; Saurty et al., 2015; Shen et al., 2014; Fang et al., 2013; Min and Cheung, 2015), or

a combination of these techniques (Zhang et al., 2017a; Shang et al., 2016; Zhang and Ma,

2014; Song et al., 2017; Zhao et al., 2014, 2012; Zhang and Ma, 2013; BenHajyoussef et al.,

2017; Liu et al., 2016). In the following, we present the major works in these two categories

separately. Since many works combine the two techniques, we will see some overlaps in the

following sections.

3.1 Mode Decision Complexity Reduction

In this section, several works regarding mode decision optimization while focusing on intra

mode decision are presented. In intra mode decision, the goal of the researches have been

mainly reducing the number of modes that enter the RDO process.

For mode excluding, (Yan et al., 2012) have proposed a group-based intra mode decision

approach to accelerate the encoding process. The idea is based on a statistical analysis of the

modes generated by RMD. As mentioned before, RMD is a process that is performed before

rate distortion calculation to reduce the number of intra modes. It calculates a cost for each

prediction unit by applying Hadamard transform on residual between the original prediction

block and its prediction and then computes the SATD for the transform coefficients. In (Yan

et al., 2012), the output modes of the RMD are found to be adjacent together in most cases, and
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as a result, represent same direction. In addition, they reduce the number of candidate modes

for RDO by merging adjacent modes into some groups and also performing a pixel-based edge

detection. Early termination of block partitioning is another tool that is used in this work to

reduce the time consumed in the intra mode decision module. It has been shown that for blocks

with the size of 16×16, 32×32 and 64×64, only one mode from the RMD process is selected.

For blocks with the size of 4×4 and 8×8 selecting only one mode depends on the difference

between the two lowest RMD costs among the 35 modes. It has also been shown that the more

the adjacency of the modes generated by RMD is, the better the results become.

In (Ma et al., 2013), a low-complexity rate distortion optimization method for complexity

reduction has been proposed. This method is comprised of three stages: fast intra mode

decision, adaptive reference selection and CU splitting early termination. It is noted that this

method is applied to the most complex stages at the encoder. The method uses the directional

information from the neighboring blocks and the correlation between energy of prediction

residuals and CU splitting for intra and inter-prediction respectively to early terminate CU

splitting. The energy of prediction residuals is defined as:

E =
1

m×n

m

∑
i=0

n

∑
j=0

r2
i, j. (3.1)

In addition, the method employs the spatial and temporal correlations among the neighboring

frames and CUs to limit the number of reference frames. It has been shown that by using these

three techniques, it is possible to implement HEVC for complexity-constrained encoders.

Another work on intra mode decision by applying mode excluding has been presented

in (Zhang et al., 2012). This work claims that the RMD is not a perfect strategy for reducing

the number of intra modes, since it is the same for different blocks and does not consider their

variations. Accordingly, an adaptive approach for fast intra mode decision has been proposed.

In this work, based on statistical analysis, it has been shown that it is highly likely that the first

two candidates in RMD and especially the first one is selected by the RDO process as a final

optimum mode. It has also been observed that in blocks with highly complicated texture or
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blocks with smooth content, dc and planar modes have more chances of being selected as the

lowest cost mode.

There are some works on intra mode decision that have used texture characteristics to decide

which modes are the most probable ones to win the RDO race. Most of them have employed

edge detection algorithms based on gradient to determine the best matched modes for a

specific PU. In (Chen et al., 2013), a fast mode decision algorithm to lighten the computation

complexity in intra mode prediction has been proposed. The method is based on edge detection

and includes a sub-method for depth decision. The work takes the most probable modes from

the neighboring blocks to improve the accuracy of the intra mode prediction.

A method has been proposed in (da Silva et al., 2012) to use edge information of the current

prediction unit in addition to the modes of the neighboring PUs to reduce the number of modes

that are going to be tested by the rate distortion optimization process. The idea is based on

categorizing the edges into five groups namely horizontal, vertical, 45 degree, 135 degree

and one non-directional edge. The algorithm uses the pixel values to select one of these five

directions as a dominant edge for the prediction unit, and thus, limited modes are selected for

cost calculation which reduces the encoding time.

Another work on intra mode decision using gradient and edge concepts has been presented

in (Jiang et al., 2012). In this work, a gradient-based fast mode decision algorithm has been

proposed to reduce the computational complexity of the encoder. The gradient directions are

determined before the intra prediction, and for each PB, a gradient-mode histogram has been

obtained. Consequently, limited numbers of modes are selected for the final RMD and RDO

processes.

(Wang et al., 2014) have presented a fast intra coding algorithm. In this work, the number of

modes in RMD and RDO processes is reduced by taking into account the correlation among

neighboring blocks. A depth range prediction method has also been proposed by exploiting

the correlation between the neighboring CTUs. To this end, they define three prediction depth
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ranges:

R0 = [0,3], R1 = [0,2], R2 = [1,3] (3.2)

The depth range R1 is used for homogeneous regions and the depth range R2 is used for

inhomogeneous regions. Depth range R0 would be used if it is not possible to determine the

homogeneity of the block. The depth range of the current CTU, DRcurr, is defined as:

DRcurr =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1, Dle f t
max ≤ 1 & Dup

max ≤ 1

R2, Dle f t
max > 1 & Dup

max > 1

R0, other

(3.3)

where Dle f t
max and Dup

max are the maximum depths of the left and upper CTUs, respectively.

In (Ruiz et al., 2016), a novel algorithm has been presented based on the orientation detection,

which uses the local directional variance along some predefined lines. Based on this analysis,

orientations with the lowest directional variances are considered as dominant orientations, and

the number of intra mode candidates to be further processed by RDO is reduced accordingly.

The authors in (Marzuki et al., 2016) have proposed a context-adaptive fast intra coding

based on the best modes of the upper CU and neighboring PUs. The method includes early

termination approaches for RDO as well as RQT using adaptive thresholding.

In (Pakdaman et al., 2016), the authors have proposed a novel method based on the dual-tree

complex wavelet transform (CWT) to effectively determine edges leading to the selection of

the most appropriate candidates for intra mode decision. This approach considers only few

adjacent candidates for the best estimated mode selected by the edge analysis. It is noted that

CWT decomposes an image into various frequency sub-bands. The algorithm uses the energy

distribution in these sub-bands to exploit texture information and obtain the dominant direction

for each block.
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The authors in (Tariq et al., 2016) have proposed a method for intra coding complexity

reduction based on the following quadratic relation between the RDO cost and SAD:

RDcost = α1SAD2 +α2SAD+α3. (3.4)

Using this method, it is possible to avoid entropy coding, Hadamard transform, and distortion

computations for mode selection and thus save time and computations. The method also

formulates the distortion and rate as functions of SAD and QP, in order to avoid performing

the RDO process.

A method has been presented in (Wang and Siu, 2013) for fast intra HEVC coding based on

three optimized candidate sets including 1, 19 and 35 modes. Using the neighboring reference

samples, the encoder selects the optimal set for each PU. This results in an accelerated encoder

due to the reduced number of modes needed to be processed by RDO for the first two sets.

Further, the number of bits needed for mode signaling is reduced.

In (Park and Jeong, 2015), the PU has been converted from the pixel domain to the transform

domain, and the main directions have been determined in the latter. Based on these directions,

a short list of candidate modes is selected for the RDO process.

The authors in (Zhang et al., 2017a) have proposed a low-complexity HEVC intra coding

method based on both fast mode decision and early CU size determination. For the fast mode

decision, a gradient-based approach is used to reduce the number of candidate modes to be

processed by RMD and RDO. For the fast CU size decision, texture homogeneity along with

a support vector machine (SVM)-based approach are used to make early CU splitting and

early CU termination decisions. The SVM uses the depth differences, Hadamard cost and

rate-distortion (RD) cost as features.

In (Shang et al., 2016), a low-complexity intra HEVC encoder has been proposed based on a

fast PU mode decision (FPUMD) and a fast coding unit size decision (FCUSD). The FPUMD

reduces the number of intra mode candidates based on the correlation of the PU mode and RD
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cost of the different depth levels. The FCUSD for its part excludes unnecessary CU sizes from

further processing, using the depth of neighboring CUs and a RD cost threshold determined

from previous frames. To update the coding parameters, an online method is used leading to

an accurate decision for various sequences types.

In (Zhang and Ma, 2014), a method has been proposed for fast intra coding, and achieves

significant time reduction by using the Hadamard cost-based progressive rough mode search

(pRMS) and early CU splitting termination. Using pRMS, the algorithm selectively checks the

potential modes instead of traversing all candidates. This allows fewer modes to enter the RDO

process. Further, the early CU split termination excludes the lower depths if the estimated RD

cost (aggregated cost of the sub-CUs) is already larger than the RD cost of the current CU.

In (BenHajyoussef et al., 2017), a gradient-based pre-processing step has been proposed

to reduce the number of intra mode candidates. A gradient-based approach has also been

developed to make an early decision for CU splitting. This approach is based on texture

complexity and CU sizes.

In short, several works have proposed notable and novel ideas regarding intra mode decision

complexity reduction. However, they exhibit some shortcomings, which could be addressed

in a bid to design even faster HEVC intra encoders. In gradient-based approaches, gradients

could be computed at the CTU level, instead of at the PU level, and then reused for every

block inside the CTU. This makes it possible to use the same edge information at each depth

and to avoid repetitive calculations for each block. In addition, since the picture edges are not

perfectly aligned with intra modes, works in this area need to come up with a solid strategy

to relate the gradients at each pixel to directional intra modes. Relying only on the modes of

neighboring blocks as is the case in some works, may result in a domino effect, where a wrong

decision can propagate to other blocks and affect coding efficiency negatively. To avoid this

drawback, these kinds of algorithms need to be accompanied by other methods. Other works

aimed at reducing the number of modes for RDO process based on low-complexity measures

keep N best modes as a candidates list. Using a fixed number of candidates, they either waste
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computations by including modes with no potential to be the best mode or reduce the coding

efficiency by excluding the best mode. In addition, the methods which select an adaptive

number of candidates end up with limited time reduction or high quality loss due to imperfect

RDO candidates selection. In chapter 4, we have proposed our methods for intra mode decision

complexity reduction to improve other approaches in this area by addressing the shortcomings

noted.

3.2 Coding Unit Size Decision Complexity Reduction

It is known that HEVC introduces a new kind of picture partitioning in hybrid video coding;

the picture is partitioned into CUs, PUs and TUs in a very flexible manner to improve the

coding efficiency as much as possible. The structure of these three basic processing blocks

let the encoder do the encoding process optimally and improve the compression capability

significantly. Even though this highly flexible scheme has been successful in increasing the

coding performance, it imposes a huge amount of computations especially on the encoder.

These computations mostly come from the exhaustive rate distortion cost calculation for all

the combinations of the units, forcing the video coding community to find solutions to reduce

this complexity and alleviate the codec structure. Generally, in this area, researchers look for

methods which exclude some combinations of these blocks and try to avoid examining all

depths of the coding unit by early termination of the splitting process or early splitting of the

coding unit. In this section, a review of some of these works are presented.

In (Yu et al., 2012), a method for early termination of CU splitting has been proposed to

reduce the complexity. Although the method has been developed for inter coding, it may also

be used for intra coding. The method is based on the fact that for temporally stationary and

spatially homogeneous regions, the residuals are small and the use of large CUs is the efficient

way of partitioning. In addition, for early terminating the CU splitting, the characteristics of

prediction residuals have been used. This approach is based on computing the mean squared

errors (MSEs) between the prediction and the original block for the current CU level and

comparing it with an adaptive threshold. This comparison forces the CU splitting process to
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early terminate. It is noted that the threshold is set adaptively for each depth and an adjustable

factor tunes its impact on complexity reduction and coding efficiency. Although this method

is useful for homogeneous and stationary regions, it may lead to more computations in picture

areas with high spatially and temporally changes due to considering an additional threshold

parameter.

A method for fast CU size decision, using machine learning, has been presented in (Liu et al.,

2017). In this work, CU complexity classification (CC) is used to adaptively determine the size

of the current CU. To obtain the CC, the most important features related to the size of the CU are

extracted. Having the features at hand, the classification model of the CU is constructed using

SVM. The most important features they use are the block complexity, directional complexity

and difference complexity. The block complexity is represented by variance as follows:

var =
1

N2

N−1

∑
i=0

N−1

∑
j=0

(h(i, j)− h̄)2

h̄ =
1

N2

N−1

∑
i=0

N−1

∑
j=0

h(i, j),

(3.5)

where N is the block size and h(i, j) and h̄ are the pixel value and the mean pixel value of the

block, respectively. The directional complexity is represented by:

DCom =
1

N2

N−1

∑
i=0

N−1

∑
j=0

(Ghor(i, j)+Gver(i, j)+G45(i, j)+G135(i, j)), (3.6)

where G is the gradient computed in different directions. Finally, the sub-CU complexity

difference is defined as:

SCCD =
1

4

3

∑
i=0

(vari − var)2, (3.7)

where vari is the variance of a sub-CU and var is the average variance of four sub-CUs.

(Shen et al., 2014) have proposed a method for fast CU size decision which speeds up the

splitting process by reducing the number of candidate CU sizes. This method employs the

texture homogeneity to achieve adaptive thresholds for early determination of the CU size.
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In addition, a combination of texture property and sizes of the neighboring CUs are used to

develop a bypass strategy for CU size decision. To determine the block homogeneity, they use

the concept of mean absolute deviation (MAD) for the overall block and horizontal and vertical

directions as follows:

MAD =
1

u× v

u−1

∑
y=0

v−1

∑
x=0

|p(x,y)−m| (3.8)

MADH =
1

u× v

u−1

∑
y=0

v−1

∑
x=0

|p(x,y)−my| (3.9)

MADV =
1

u× v

u−1

∑
y=0

v−1

∑
x=0

|p(x,y)−mx|, (3.10)

where p(x,y) is the pixel value and m is the average pixel value of the CU. In addition, my is

the mean of pixel values at the yth row and mx is the mean of pixel values at the xth column.

Then, texture homogeneity of the CU is determined as follows:

⎧⎨
⎩homogeneous, if min(MADH ,MADV ,MAD)≤ T

complex, otherwise
(3.11)

where T is a threshold.

In (Lee and Jeong, 2017), a method has been proposed for fast CU size decision using statistical

information. This method uses the image complexity along with an adaptive depth prediction

process to early determine the size of the CU. The CU splitting is terminated early based on

the results of a Bayesian classification and a quadratic discrimination analysis.

In (Zhang et al., 2013), an approach for accelerating the CU depth decision has been proposed

to reduce the complexity of the encoding process. This approach is based on limiting the search

range by using the spatial and temporal correlation between the current block and adjacent

blocks as well as excluding some depths from the CU splitting tree.

(Kim et al., 2012) have proposed a method for early termination of CU splitting tree. This

method is based on the rate-distortion analysis of the prior skipped CUs and adjusts the



28

weighting factor of a previously proposed scheme FEN (fast encoder decision algorithm).

If the probability that the current CU is coded in the skip mode is very high, the weighting

factor may be increased. In addition, the method assumes that the current CU mode is affected

by neighboring and higher depth CUs. To demonstrate the effectiveness of the method for

complexity reduction, experiments are conducted for random access configuration and high

efficiency mode.

In order to reduce the complexity of CU splitting, a method has been proposed in (Shen et al.,

2012), which is based on Bayesian decision rule. The first step in this scheme is to divide the

current CUs into the two classes according to the decision of splitting or not splitting them. In

this classification problem, the current CU belongs to WN or WS classes if it is not split or split

into four equal sub-CUs, respectively. Taking into account the posteriori probabilities of the

classes for each CU and using the Bayesian rule, a structured classification problem has been

presented.

In (Zhang and Ma, 2014), a method for fast CU size decision has been proposed using the

Hadamard cost-based progressive rough mode search (pRMS) and early CU split termination.

By using pRMS, the algorithm selectively checks the potential modes instead of traversing all

candidates. This allows fewer modes to enter the high demanding rate distortion process. The

early CU split termination is considered at macro-level and excludes the lower depths if the

estimated rate distortion cost (aggregated costs of the sub-CUs) is already larger than the rate

distortion cost of the current CU.

A method on fast CU size decision has been proposed in (Ruiz-Coll et al., 2014), which is a fast

partitioning algorithm using machine learning. To this end, a new approach for accelerating

the CU partitioning decision has been developed based on trained data mining trees. In other

words, a decision tree using a low complexity attributes such as mean and variance of blocks

is constructed, which allows an early classification of the CU and avoids the RDO calculations

for the all sizes. As a result, the computations for selecting the best mode are run just for a few

CU sizes.
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In (Helle et al., 2017), a CU size decision method for inter coding based on reinforcement

learning (RL) is proposed. In this method, the encoding procedure is considered as a decision

process in time which can be well modeled by reinforcement learning. The method is based

on offline RL where the strategy is learned based on some training data and then it is applied

to the encoding process. (Kim and Ro, 2018) is yet another method for CU size decision using

machine learning. The method uses neural networks to predict the CU size and thus reduce the

computational complexity. In this method convolutional, pooling and fully connected layers

are used to well analyze the CU properties, and based on these properties, the network is able

to determine the size decision of the CU.

To summarize, it should be noted that the most successful algorithms are the ones predicting

the homogeneity of the block with more accuracy. This helps the algorithm to decide whether

the block should be split or not. The criteria that are used for this purpose include variance,

mean, energy of the residuals and neighboring CUs’ depth. The more accurate in finding

this homogeneity, the more successful the algorithm is. Similar to mode decision, the use

of the neighboring blocks for determining the current block’s depth has been considered in

some papers. The spatial and temporal neighboring blocks in addition to the blocks from other

depths are employed. In addition, the rate distortion costs of the current depth and previous

depths have been used to decide whether or not the block should be further split. It is noted

that in chapter 5, we have proposed new methods for CU size decision complexity reduction to

improve the state-of-the-art in this area.





CHAPTER 4

PROPOSED INTRA MODE DECISION METHODS

In this chapter, we introduce our proposed methods for complexity reduction in HEVC

intra coding mode decision. These methods intend to discard irrelevant modes from further

processing, adding highly likely neighboring modes, dodging RDO process and predicting

RDO cost based on the low-complexity RMD cost. We start by RDO cost prediction as

presented in the following section.

4.1 Mode Decision Based on RDO Cost Prediction

To reduce intra mode decision complexity, we add new modules to the encoder. Figure 4.1

shows the luma mode decision of the proposed method compared to the standard implementa-

tion of the encoder at the PU level, where it illustrates the mode decision steps. In this diagram,

NHM and NL are same as N in Table 2.6. The RMD process is replaced by a gradient analysis

step to select NL luma promising candidates. Since we apply gradient computations for each

CTU once and use the same information for all PUs inside the CTU, the process is much

faster than the original RMD. The gradient-based algorithm is explained in section 4.3. Then,

to exploit the spatial correlation, the same approach as HM is used to add three MPMs from

neighboring blocks. In the next step, a statistical model is proposed allowing the RDO cost

to be predicted without the need to perform the RDO process. Next, based on this model, a

reduced and adaptive number of candidates are selected to be processed by the high-complexity

and high-demanding RDO. The entire algorithm keeps KL promising candidates, which based

on their RDO cost prediction, have a high potential to be the best intra luma mode for the

current PU.

4.1.1 RDO Cost Modeling

A predictive model for RDO cost (CRDO, Eq. (2.2)) is developed in this section based on a low-

complexity measure to avoid the RDO process for non-promising candidates. Examples of
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Figure 4.1 Block diagram of luma mode decision at PU level for HM (left) and

proposed method (right). Arrows show the number of modes in each step.
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such low-complexity measures include, but are not limited to, the RMD cost (CRMD, Eq. (2.1))

which we use in this section. Figure 4.2 shows the correlation between the RMD cost and the

RDO cost for a sample sequence, block size and QP. For this example, the Pearson correlation

coefficient and the Spearman’s rank correlation coefficient are 0.90 and 0.96, respectively.

Similar results are observed for other sequences, block sizes and QPs. The Spearman’s

coefficient is more relevant to our RDO cost prediction goal since we are not looking for

a linear correlation between two variables (as Pearson coefficient does), but rather, for rank

correlation. That means if the relationship between the RMD cost and the RDO cost could be

described by a monotonic function (Spearman’s coefficient = 1), then the mode with the lowest

RMD cost would be the same one with the lowest RDO cost, and in that case, the entire RDO

process could be omitted.

Figure 4.2 Scatter plot for RMD cost and RDO cost, RaceHorses, 4×4 blocks, QP=32.

Since there is no monotonic function describing the relationship between the RMD cost and

the RDO cost, we propose a statistical model allowing the possible values of the RDO cost to

be predicted from the RMD cost. Based on our observations, for a PU with a given CRMD,
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or more specifically, with a given small range of CRMD values, the CRDO can be modeled

by some well-known probability distributions. We compare some distributions based on the

Bayesian information criterion (Bhat and Kumar, 2010) (BIC) to determine which of them

can best describe empirical data. They are: Beta, Birnbaum-Saunders, Exponential, Extreme

value, Gamma, Generalized extreme value, Generalized Pareto, Inverse Gaussian, Logistic,

Log-logistic, Lognormal, Nakagami, Normal, Rayleigh, Rician, t location-scale and Weibull.

As mentioned above, although we cannot predict a specific value for CRDO based on CRMD, we

can predict the probability distribution function (PDF) of its values, i.e., the likelihood of each

RDO cost value. Figure 4.3 shows the top four models best fitted to the empirical CRDO for a

small range of CRMD values for the RaceHorses sequence. We observe similar results for other

video sequences with different QP values and block sizes with varying averages and variances.

Having these models for all PU candidate modes allows us to omit non-promising candidates

based on their CRDO distribution, and to select an adaptive number of modes to go through the

RDO process. In most cases, the best fitted model is normal, and we provide numeric results

to support this claim.

Goodness of fit test

Although the data histograms are bell-shaped and similar to the normal probability curves,

we need a more formal method to show that the RDO costs come from normal distributions.

To this end, we need to perform a normality test. This allows us to determine if the costs

are well-modeled by a normal distribution. The normality test could be performed using the

descriptive statistics, hypothesis testing or Bayesian statistics approaches (Yazici and Yolacan,

2007). In descriptive statistics, a goodness of fit of a model is measured to determine how

well it describes the data and how the observed values are different from those predicted by the

model. To this end, tests such as Kolmogorov-Smirnov (KS), Anderson-Darling (AD) and Chi-

Square (CS) can be used. Among these, the latter is frequently referred to in the literature as

an accurate test that can effectively determine whether the expected data and observed data are

significantly different from one another (Yazici and Yolacan, 2007). The Chi-Square goodness-
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Figure 4.3 Best fitted distributions for CRDO, RaceHorses, 8×8 blocks, QP=32,

2903<CRMD<2945.

of-fit test uses parameters estimated from the data to validate that they come from a specified

probability distribution. It puts the data into different bins, and based on the observed and

expected population of these bins, it computes the Chi-Square test statistic as follows:

χ2 =
N

∑
i=1

(Oi −Ei)
2/Ei, (4.1)

where Oi and Ei are the observed and expected counts for each bin, respectively. This test

statistic is a Chi-Square random variable. Table 4.1 shows sample results for the mentioned

tests for the normal model. In this table, the p-value is the probability of finding the

observed, or more extreme, values when the null hypothesis (i.e., data comes from a normal

distribution) is true. If the p-value is greater than a significance level, the test decision or

h-value is zero, otherwise it is 1. A recommended significance level is 0.05, which works

well (Yazici and Yolacan, 2007). The test decision in our case is zero, which means that the

observed data is not statistically different from what is expected from a normal distribution.
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The same interpretation could be made for Kolmogorov-Smirnov and Anderson-Darling tests.

Similar results are observed for different sequences with various block sizes and QPs.

Table 4.1 Goodness of fit test results for the normal model, RaceHorses, 8×8 blocks,

QP=32

CS AD KS
Significance level 0.05 0.05 0.05

h-value 0 0 0

p-value 0.49 0.07 0.33

4.1.2 Candidates Selection

From the previous sub-section, we consider a normal model for the RDO cost of each candidate

mode. Figure 4.4 shows these models for a sample PU, where PL = 8. The RDO cost of each

candidate mode mi (1 � i � PL), with RMD cost of CRMDi , is represented by a random variable

Figure 4.4 Normal distributions for CRDO from a sample PU of size 8×8, RaceHorses.
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Xi which follows a normal distribution with the following parameters:

μi = fμ(CRMDi)

σi = fσ (CRMDi),
(4.2)

where μi and σi are piecewise constant functions of RMD cost and obtained using histograms

similar to the one depicted in fig. 4.3. In the coding phase for any candidate mode with a given

RMD cost, these parameters are obtained based on the available functions and so the RDO

cost distribution for the candidate mode is known. By using these distributions, we exclude

those candidates with a low chance of being the best PU mode. To select the KL promising

candidates, we consider the probability that a particular candidate is the one with the lowest

RDO cost. The probability that mode mi is the best RDO mode is P(Xi < Zi), where

Zi = min
1� j�PL

j �=i

Xj. (4.3)

Zi is a random variable representing the minimum of the other PL −1 random variables. Then

the following inequality is checked for all PL candidates:

P(Xi < Zi)> CL, i = 1 . . .PL, (4.4)

where CL is a confidence level. Those candidates which satisfy the condition are selected as

promising candidates, and the RDO process is run only for them. The above probability can be

written as follows:

P(Xi < Zi) =
∫ +∞

−∞
P(Xi = t)P(Zi > t)dt, (4.5)

where:

P(Zi > t) = P(∧PL
j=1
j �=i

Xj > t), (4.6)
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where ∧ is the ‘logical and’ symbol. Assuming the normal distributions are independent, we

have:

P(Zi > t) =
PL

∏
j=1
j �=i

P(Xj > t)

=
PL

∏
j=1
j �=i

(
1

2
erfc

(
t −μ j

σ j
√

2

))
.

(4.7)

The last equality is based on the complementary cumulative distribution functions for normal

distributions, where erfc is the following complementary error function:

erfc(t) = 1− erf(t)

=
2√
π

∫ ∞

t
e−s2

ds.
(4.8)

This gives us a mathematical formula that can be further expanded to have an analytical answer

to the problem. However, implementing such a case, even with the independency assumption,

is almost impractical.

To have a more practical and implementable solution, we break the problem into sub-problems

consisting of comparisons of two normal distributions. In this approach, the best RMD

mode (lowest CRMD) and any other mode which is likely to be the best RDO mode (lowest

CRDO) constitute the set of KL promising candidates. Considering the PL random variables

Xi ∼ N(μi,σ2
i ) associated with PL candidates, mode mi is selected for the RDO process if:

P(Xi < X1)> CL, (4.9)

where, without loss of generality, we assume the μis are sorted in increasing order (μi �
μ j, ∀ i < j) and mi is the mode associated with Xi. X1 has the lowest mean, and represents the

best RMD mode. Without considering dependency between these variables, we can evaluate
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this probability as follows:

Yi = Xi −X1

Yi ∼ N(μi −μ1,σ2
i +σ2

1 )

P(Xi < X1) = P(Yi < 0),

(4.10)

where P(Yi < 0) is a familiar normal random variable probability and is computed using erf

function mentioned in eq. (4.8).

To take into consideration the correlation between the normal random variables and to use the

already computed RDO costs, we adopt an iterative approach which combines the two steps of

candidates selection and rate-distortion optimization. Based on this approach, we carry out a

successive evaluation of the probability that a certain variable is less than the current best RDO

cost. Algorithm 4.1 shows the procedure for this. Using this algorithm, we obtain the number

of candidate modes, KL, and the best mode (mbest), which is the one with the lowest RDO

cost. Based on this algorithm, as soon as one random variable does not satisfy the condition on

line 6, we avoid checking this condition for other random variables with larger means because,

based on our experiments, computing the extra RDO costs reduces the speedup, and does not

improve the quality.

To compute the probability on line 6 of Algorithm 4.1, we show that the normal distributions

related to candidate modes are, two by two, bivariate normal and then we use the properties of

this joint distribution. To show a bivariate normal distribution for two random variables, many

analytical methods are proposed in the literature. However, no best method exists since the

results obtained by each of them are different under certain conditions. The most popular

methods used to assess multivariate and bivariate normality are Mardia’s, Henze-Zirkler’s

and Royston’s, as well as graphical approaches such as Chi-Square Q-Q, perspective and

contour plots (Korkmaz et al., 2014). Based on a comprehensive simulation study, presented

in (Mecklin and Mundfrom, 2005), on 13 statistical methods for testing the multivariate normal

distribution (MVN) with a Monte Carlo study, the authors suggested using Henze-Zirkler’s
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Algorithm 4.1 RDO best mode selection

Input: Xi ∼ N(μi,σ2
i ), μi = fμ(CRMDi) and

σi = fσ (CRMDi), 1 � i � PL, μi � μ j ∀ i < j
Output: KL, mbest

1 compute CRDO1

2 CRDObest =CRDO1

3 mbest = m1

4 KL = 1

5 for i = 2 to PL do
6 if P(Xi <CRDObest )> CL then
7 compute CRDOi

8 if CRDOi <CRDObest then
9 CRDObest =CRDOi

10 mbest = mi
11 end if
12 KL = i
13 else
14 break
15 end if
16 end for
17 return KL, mbest

and Royston’s tests because they show better results in terms of error control and power. We

therefore use these two tests to show that the RDO costs of the candidate modes, two by two,

follow a bivariate normal model. To this end, we apply functions for these tests (Trujillo-Ortiz

et al., 2007a,b) to vectors of RDO costs related to blocks with the RMD cost of CRMDi and

CRMD j ; hence, we have two vectors of RDO costs and it is a straightforward procedure to

show they are bivariate normal using the referenced functions. Sample results are presented

in Table 4.2 for these two tests. The significance level, the p-value and the test decision could

be interpreted here similarly to what appears in Table 4.1. Similar results are observed for

different sequences, with various block sizes and QPs.

Now, we consider the special property of a bivariate normal distribution which states that the

observed value of one variable leads to a conditional distribution for the other unobserved one.
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Table 4.2 Joint normality test results, RaceHorses, 8×8 blocks, QP=32

Henze-Zirkler Royston
Significance level 0.05 0.05

Test result MVN verified MVN verified

p-value 0.051 0.068

The conditional density function for the unobserved variable is:

fXj|Xi=xi(x j) =
fXj,Xi(x j,xi)

fXi(xi)
, (4.11)

where Xj and Xi are two random variables, among PL variables, associated with two modes m j

and mi ( j �= i). Substituting the joint normal and normal densities on the right, we have:

fXj|Xi=xi(x j) =
1

σ j
√

1−ρ2
√

2π
e
− (x j−(μ j+σ jρ(xi−μi)/σi))

2

2σ2
j (1−ρ2)

, (4.12)

where ρ is the correlation coefficient, and is obtained from training. Hence, this conditional

distribution is normal, with the following mean and variance:

μ j|Xi=xi = μ j +σ jρ(xi −μi)/σi

σ2
j|Xi=xi

= σ2
j (1−ρ2).

(4.13)

As can be seen, the conditional mean depends linearly on the observed value, while the

conditional variance does not depend on the observation. As a result of this analysis,

conditional densities are used for computing the probability on line 6 of Algorithm 4.1, which

once again, is a familiar normal random variable probability.

4.1.3 Experimental Results and Discussion

In this section, we present the results for RDO cost modeling to show the contribution of

this statistical method in the overall algorithm. To obtain the results, we use the HEVC

test model HM 15.0 and a PC equipped with an Intel R© CoreTM i7-4790 CPU @ 3.60 GHz
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and 32 GB of RAM. The configuration and profile are set to all-intra and Main profile,

respectively. We report the results, using the common test conditions recommended in (Bossen,

2013), compared to HM based on time reduction (TR), Bjøntegaard delta rate (Bjøntegaard,

2001) (BD-Rate) and Bjøntegaard delta peak signal-to-noise ratio (Bjøntegaard, 2001) (BD-

PSNR). These conditions include video sequences in different classes (A (2560×1600), B

(1920×1080), C (832×480), D (416×240) and E (1280×720)) to cover various applications

and resolutions. The results are averaged over four QPs: 22, 27, 32 and 37; they therefore

cover low and high bitrate scenarios. Time reduction is defined as:

TR(%) =
TProposed −THM

THM
×100%, (4.14)

where TProposed and THM are the total encoding time of the proposed encoder and HM encoder,

respectively. To calculate BD-Rate and BD-PSNR, we apply Bjøntegaard algorithm by using

the following combined PSNR (Sze et al., 2014):

PSNR =
6 ·PSNRY +PSNRU +PSNRV

8
. (4.15)

This assures us that we measure the impact of the proposed algorithms on the total quality.

To achieve preliminary results in this section and sections 4.2.2, 4.3.2, 4.4.3, 5.1.3 and 5.2.2,

we use the first hundred frames of the recommended sequences while for the final results in

sections 4.5 and 5.3.4, all frames of the sequences are used.

Table 4.3 shows the results while only RDO cost modeling and candidates selection are

implemented (see fig. 4.1). We observe that RDO cost modeling, one of our main contributions,

leads to a time reduction of nearly 30% with a BD-Rate increase of 0.8%; a trade-off which

is quite appealing. To derive the models (normal distributions), the RaceHorses sequence is

used as the training sequence, and hence, the average results are presented with and without

considering this sequence. This approach of presenting the results when a training sequence is

selected among the common test sequences was adopted in (Zhang et al., 2017a). Based on this

training, the confidence level (CL) on line 6 of the Algorithm 4.1 is set to 0.2, which represents
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a very good trade-off between complexity reduction and coding efficiency. Depending on the

application, CL can change to have a faster or higher quality encoder. Also, the correlation

coefficient ρ is computed based on the training data and is averagely 0.48. To obtain ρ ,

for blocks of a specific RMD cost (e.g. CRMDi), we associate a vector of RDO costs with

distributions Xi and similarly we have another vector of RDO costs with distributions Xj

associated to blocks with RMD cost of CRMD j . ρi j of these two distributions Xi and Xj is

obtained by computing the Pearson correlation coefficient between these two vectors.

Table 4.3 Experimental results while implementing RDO cost modeling compared to

HM, first hundred frames

Class Video sequence TR (%) BD-Rate (%) BD-PSNR (dB)

A

Traffic -29.2 1.16 -0.055

PeopleOnStreet -32.4 1.23 -0.060

Nebuta -31.7 0.37 -0.023

SteamLocomotive -30.9 0.39 -0.015

B

Cactus -29.6 0.74 -0.024

Kimono -30.2 1.49 -0.049

ParkScene -29.1 0.81 -0.031

BasketballDrive -31.1 0.92 -0.024

BQTerrace -30.0 0.45 -0.023

C

BQMall -30.1 0.72 -0.038

PartyScene -24.7 0.48 -0.032

RaceHorsesC -26.8 0.48 -0.027

BasketballDrill -30.9 0.53 -0.024

D

RaceHorses -28.4 0.77 -0.044

BasketballPass -29.9 0.77 -0.041

BlowingBubbles -27.0 0.57 -0.030

BQSquare -24.1 0.54 -0.039

E

FourPeople -31.6 1.19 -0.061

Johnny -31.3 1.30 -0.049

KristenAndSara -30.0 1.28 -0.060

Average (with training sequence) -29.4 0.80 -0.038
Average (without training sequence) -29.5 0.81 -0.037
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4.2 Fast Chroma Mode Decision

4.2.1 Proposed Method

For chroma mode decision, we propose a mode classification which categorizes five chroma

modes into two groups of promising and non-promising candidates, and excludes non-

promising ones from the RDO. However, we always add the best luma mode to the group

of promising candidates if it is not already included in the list. Figure 4.5 shows the chroma

mode decision of the proposed method. The following presents the proposed method in detail.

HEVC follows a 4:2:0 chroma sampling format, which means each CTU of size N×N includes

one luma CTB of size N ×N and two chroma CTBs of size N/2×N/2. Similarly, CUs, PUs

and TUs include one luma block (CB, PB, TB) of size N ×N and two chroma blocks of size

N/2×N/2. As we mentioned in section 2.4, for both chroma components, HEVC presents five

prediction modes, including the corresponding luma mode. Table 4.4 shows these five modes.

In this table, X indicates luma modes other than planar (0), dc (1), vertical (26) or horizontal

(10). Also, 34 indicates a diagonal mode.

Table 4.4 Chroma intra modes

Luma intra mode
0 26 10 1 X

Chroma mode (0) 34 0 0 0 0

Chroma mode (1) 26 34 26 26 26

Chroma mode (2) 10 10 34 10 10

Chroma mode (3) 1 1 1 34 1

Chroma mode (4) 0 26 10 1 X

To reduce chroma mode decision complexity, we propose a fast mode selection. Five different

selection methods are examined, which reduce the number of modes going through the RDO

process, and are compared to one another. These methods are as follows:

A) Using only the best luma mode
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Figure 4.5 Block diagram of chroma mode decision at PU level for HM (left) and

proposed method (right). Arrows show the number of modes in each step.

B) Using only the mode with the lowest SATD cost (SATD mode)

C) Using the mode with the lowest SATD cost and adding the best luma mode (SATD mode

+ luma mode)

D) Selecting a short list of candidate modes if their SATD costs are clearly separated by a

gap from other candidates’ costs (mode classification)

E) Selecting a short list of candidate modes by finding a gap and adding the best luma mode

if it is not already included (mode classification + luma mode)
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Figure 4.6 shows how these five methods select the chroma mode (CM), among five candidates,

which is the mode the encoder uses to obtain the residual for the current chroma PB. Method A

simply chooses the same mode as the selected luma mode (LM). For other methods, first SATD

costs of the five candidates are computed to form the set Ψ1 = {CM0,CM1,CM2,CM3,CM4}
which includes the candidates in increasing order of their SATD cost. SATD cost is obtained

based on the transformed distortion between the current PB and its predicted PB by applying

the associated candidate mode. By using method B, CM0 which is the candidate with the least

SATD cost is selected as the final chroma mode. In method C, the encoder selects the mode

with the least RDO cost between CM0 and LM. For methods D and E, a mode classification step

is proposed to select a subset of candidates for RDO process. Based on experimental results,

this idea proved to be a very good strategy for chroma components. In this approach, we look

for a manifest distance between SATD costs of two consecutive candidates from set Ψ1. Then,

based on this distance the candidates are categorized into two groups of promising and non-

promising and we exclude the non-promising ones from further processing. The distance is

defined as:

d = α × (Costmax −Costmin), (4.16)

where α is an adjustable parameter, trading off computational complexity and visual quality

and, for N candidates (N > 2), it is constrained to the following condition:

1

N −1
< α < 1. (4.17)

Algorithm 4.2 shows the procedure for mode classification which forms set Ψ2 from set Ψ1.

Line 5 of the algorithm removes candidate CM j from Ψ2. In addition, Table 4.5 shows the

number of chroma modes, MC, which are used in the RDO process to find the best mode.

MC is adaptive for the last two methods since when we are looking for a distance between
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Figure 4.6 Chroma mode decision methods.

Algorithm 4.2 Chroma mode classification

Input: Ψ1 = {CM0,CM1,CM2,CM3,CM4}
Output: Ψ2

1 Ψ2 = Ψ1

2 for i = 0 to 3 do
3 if (Cost(CMi+1)−Cost(CMi))> d then
4 for j = i+1 to 4 do
5 Ψ2 = Ψ2\{CM j}
6 end for
7 break
8 end if
9 end for

10 return Ψ2

SATD costs, the number of modes selected for the RDO process depends on the block context.

Experimental results for these five different methods are provided in section 4.2.2.
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Table 4.5 Number of selected chroma modes

Chroma method MC
A 1

B 1

C 2

D 1 � MC � 5

E 1 � MC � 5

4.2.2 Experimental Results and Discussion

In this section, we compare the five chroma mode decision approaches, presented in the

last section, based on quality and complexity reduction. The implementation conditions and

configuration are as it is mentioned in section 4.1.3. Table 4.6 shows the results in terms of

time reduction, BD-Rate and BD-PSNR for the entire encoder compared to the HM, while

implementing the proposed chroma methods instead of HM standard chroma implementation.

Based on these experiments, and considering the trade-off between complexity reduction and

coding efficiency, we believe the best results are achieved by using a combination of the

mode classification and the best mode of the luma component (method E), since this results

in significant speedup without noticeably affecting the rate-distortion performance. The results

show that there is almost no quality loss using this proposed chroma method. However, a

different method may be selected to achieve faster processing, with a penalty in terms of the

quality. To show the contribution of chroma mode decision in the overall mode decision,

Table 4.7 presents the results for all sequences using method E. The experiments also show

that chroma intra prediction is a complex component of the entire encoder, and that more

research is required in the area of intra chroma complexity reduction.



49

Table 4.6 Experimental results for the proposed chroma mode decision methods,

modified HM (chroma methods implemented) compared to standard HM

Video sequence Chroma method TR (%) BD-Rate (%) BD-PSNR (dB)

RaceHorses

A -12.6 1.75 -0.101

B -10.0 4.24 -0.246

C -7.6 0.21 -0.013

D (α = 1/2) -4.5 0.22 -0.013

E (α = 5/16) -6.9 0.11 -0.006

BasketballPass

A -12.0 2.15 -0.112

B -10.0 5.63 -0.290

C -10.0 0.19 -0.010

D (α = 1/2) -4.7 0.12 -0.006

E (α = 5/16) -6.2 0.03 -0.002

BlowingBubbles

A -9.9 1.36 -0.070

B -10.1 3.18 -0.165

C -8.0 0.21 -0.010

D (α = 1/2) -3.9 0.18 -0.009

E (α = 5/16) -6.2 0.05 -0.002
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Table 4.7 Experimental results while implementing fast chroma mode decision (method

E) compared to HM, first hundred frames

Class Video sequence TR (%) BD-Rate (%) BD-PSNR (dB)

A

Traffic -7.1 0.04 -0.002

PeopleOnStreet -6.6 0.04 -0.002

Nebuta -7.1 0.01 -0.001

SteamLocomotive -5.2 0.02 -0.001

B

Cactus -5.9 0.07 -0.002

Kimono -5.9 0.06 -0.002

ParkScene -5.5 0.06 -0.002

BasketballDrive -7.6 0.11 -0.003

BQTerrace -5.2 0.05 -0.003

C

BQMall -5.8 0.07 -0.004

PartyScene -5.8 0.09 -0.006

RaceHorsesC -5.7 0.05 -0.003

BasketballDrill -6.8 0.11 -0.005

D

RaceHorses -6.9 0.11 -0.006

BasketballPass -6.2 0.03 -0.002

BlowingBubbles -6.2 0.05 -0.002

BQSquare -5.8 0.08 -0.005

E

FourPeople -5.3 0.06 -0.003

Johnny -4.5 0.09 -0.004

KristenAndSara -5.3 0.12 -0.005

Average -6.0 0.07 -0.003
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4.3 Low Complexity Edge Detection for Mode Decision

4.3.1 Proposed Method

Although RMD is less complex than RDO, it still consumes a considerable amount of time, and

needs to be replaced by a less complex process. To this end, we apply a gradient-based edge

detection approach to determine the main directions in a block and exclude irrelevant angular

modes from further processing. A gradient-based approach is useful since intra coding uses

objects’ edges to find the best mode (direction) for forming the prediction block. However,

there are two problems with edge detection algorithms in intra mode decision. First, as the

objects’ edges are not exactly aligned with HEVC intra modes’ directions, an edge detection

algorithm with unique output cannot predict the intra mode ideally. Therefore, to use gradient-

based algorithms efficiently, we propose an enhanced gradient-based mode detector. For any

detected edge, we assign weights to a few adjacent modes to obtain an improved accuracy for

the method. As the second shortcoming of edge detection algorithms, they fail to predict the

final best intra mode for a given block. Nonetheless, they are very good for excluding irrelevant

directional modes. Considering this, and the fact that they are less complex than other methods

such as RMD, we consider edge detection as a mode excluding step of the luma mode decision

method.

In the standard implementation of HEVC, the coding process for PUs starts at the CTU level.

From there, the process tests all combinations of PUs and all modes for each of them at different

depths. Finally, the best depth, the best PU sizes and the best modes for each PU are selected

for the CTU. With this in mind, we determine gradients for each pixel at the CTU level. This

allows us to use the edge information for each pixel at any depth and prevent a repetition of

the calculations for each PU. Using the gradient, we are able to determine the directions with

maximum variation of pixel values. The picture edges are perpendicular to these directions,

and they show the dominant angular modes for intra prediction.
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To compute the gradient, we investigate Sobel, Scharr, Prewitt and Roberts cross as computa-

tionally light and popular operators used to compute the approximation of the gradient. Sobel

is an isotropic 3×3 image gradient operator which computes an approximation of the gradient

of the intensity function at each pixel of the image. Since the operation works by convolving

an integer-valued and small filter with the image, the computations are relatively inexpensive.

Horizontal and vertical kernels, which are used to calculate approximation of the directional

derivatives, can be expressed as follows:

Gx =

⎡
⎢⎢⎢⎣
−1 0 1

−2 0 2

−1 0 1

⎤
⎥⎥⎥⎦ Gy =

⎡
⎢⎢⎢⎣
−1 −2 −1

0 0 0

1 2 1

⎤
⎥⎥⎥⎦ . (4.18)

Another operator proposed in the literature for gradient computation is Scharr, which applies

different multipliers from Sobel, and its kernels are expressed as follows:

Gx =

⎡
⎢⎢⎢⎣

−3 0 3

−10 0 10

−3 0 3

⎤
⎥⎥⎥⎦ Gy =

⎡
⎢⎢⎢⎣
−3 −10 −3

0 0 0

3 10 3

⎤
⎥⎥⎥⎦ . (4.19)

Prewitt is yet another discrete differentiation operator used to approximately compute the

gradient of the intensity function of an image, which uses an integer-valued and small operator

to convolve with the image. As a result, this operator, like Sobel, is an inexpensive one in terms

of computations. The Prewitt operator uses the following 3×3 kernels:

Gx =

⎡
⎢⎢⎢⎣
−1 0 1

−1 0 1

−1 0 1

⎤
⎥⎥⎥⎦ Gy =

⎡
⎢⎢⎢⎣
−1 −1 −1

0 0 0

1 1 1

⎤
⎥⎥⎥⎦ . (4.20)
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In contrast to the above operators, Roberts cross approximates the gradient of an image by

using the following 2×2 kernels:

Gx =

⎡
⎣1 0

0 −1

⎤
⎦ Gy =

⎡
⎣ 0 1

−1 0

⎤
⎦ . (4.21)

Since the kernels are diagonal, variations are computed in a diagonal direction by this operator,

which is the most useful in terms of detecting diagonal edges. The most interesting aspect of

this operator is its simplicity, as its kernels include only two pixels for gradient computation,

while Sobel, Scharr and Prewitt engage six pixels.

To choose the most suitable operator, for our problem, we look for the related features such as

low complexity and accuracy. It needs to be faster, as compared to the RMD, and it needs to

exclude only those directional modes which are unlikely to be the best mode. To this end, in

section 4.3.2, we compare these operators based on their accuracy in order to include the best

mode in the candidates list; we also carry out a comparison based on the time reduction the

operators provide.

For all operators, and at each pixel, the gradient magnitude is computed using:

G =
√

G2
x +G2

y . (4.22)

In addition, the gradient components are used to calculate the gradient direction as follows:

Θ = atan

(
Gy

Gx

)
. (4.23)

To avoid the computationally expensive and inefficient square-root operation, it is advisable

to estimate the gradient magnitude by |Gx|+ |Gy| or max{|Gx|, |Gy|} (Ziou et al., 1998). We

use the former in this thesis. Moreover, we use Gy/Gx instead of atan(Gy/Gx) to avoid the
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resource-intensive Arctan operation. Using these estimations results in less time consumption,

while the quality is affected insignificantly.

As it is mentioned, the gradient magnitude and direction are computed for each pixel at the

CTU level, and this data is passed to all PUs inside the CTU. At the PU level, depending on

the gradient direction, a main mode is associated with each pixel. The main mode is defined

as the closest mode corresponding to the edge. This mode is achieved by comparing Gy/Gx

to predefined limits that are pre-calculated based on the specified angles for intra modes in the

HEVC standard. The high and low limits for each mode are shown in Table 4.8. To be more

accurate in finding modes that provide the best prediction, two adjacent modes are considered,

in addition to the main mode. This avoids considering only the main mode, as the edge is rarely

perfectly aligned with it. Therefore, we also give weights to modes adjacent to the main mode

based on the direction of the detected edge, as it is illustrated in fig. 4.7. The weights that are

given to each of these modes are calculated as follows:

Wmain = |Gx|+ |Gy|, (4.24)

WFP =

(
atan(LH)− atan

(
Gy

Gx

))
/(atan(LH)− atan(LL)), (4.25)

WF =

(
LH − Gy

Gx

)
/(LH −LL), (4.26)

Wadjacent1 = (1−WF)× (|Gx|+ |Gy|), (4.27)

Wadjacent2 = WF× (|Gx|+ |Gy|), (4.28)
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where Wmain, Wadjacent1 and Wadjacent2 indicate main mode and adjacent modes weights. LH

and LL are the high and low limits, respectively and WFP is the perfect form of the mode

weight factor which gives weights of 0.5 for two adjacent modes if the edge sits exactly on

a mode. However, as previously mentioned, computing the atan function is avoided, and

an approximation is used (WF). It should be noted that the horizontal mode (mode 10) is

considered as a special case, and the weight factor for this mode is defined as follows:

WF10 = 0.5

(
1+

40.73548

|Gy/Gx|

)
(4.29)

This is because for this mode, there is infinity for the low limit or high limit and the normal

formula cannot be applied in this situation. Following these computations, we accumulate the

weights of the modes by traversing all pixels of the PU, while each pixel increases the weight

of three modes. Finally, we obtain a histogram that indicates the accumulated weights of

directional modes for the whole PU, where we consider NL most powerful modes (see fig. 4.1)

as the best candidates selected by edge detection and exclude the remaining candidates from

further processing.

Figure 4.7 Detected edge and three related modes.
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Table 4.8 High and low limits of Gy/Gx for angular modes

Mode lowLimit highLimit Mode lowLimit highLimit
2 -1.15928 -1 18 0.86261 1.15928

3 -1.53711 -1.15928 19 0.65057 0.86261

4 -1.98666 -1.53711 20 0.50336 0.65057

5 -2.59240 -1.98666 21 0.38574 0.50336

6 -3.61354 -2.59240 22 0.27674 0.38574

7 -5.76314 -3.61354 23 0.17352 0.27674

8 -11.61240 -5.76314 24 0.08611 0.17352

9 -40.73548 -11.61240 25 0.02455 0.08611

10 −∞ -40.73548 26 -0.02455 0.02455

10 40.73548 ∞ 27 -0.08611 -0.02455

11 11.61240 40.73548 28 -0.17352 -0.08611

12 5.76314 11.61240 29 -0.27674 -0.17352

13 3.61354 5.76314 30 -0.38574 -0.27674

14 2.59240 3.61354 31 -0.50336 -0.38574

15 1.98666 2.59240 32 -0.65057 -0.50336

16 1.53711 1.98666 33 -0.86261 -0.65057

17 1.15928 1.53711 34 -1 -0.86261

4.3.2 Experimental Results and Discussion

In this section, we present the results achieved for fast mode decision based on edge detection

and gradient analysis. The implementation conditions and configuration are as mentioned in

section 4.1.3. First, we compare the four gradient operators, mentioned in the last section,

based on accuracy and complexity to select the best one for our method and then we provide

time reduction achieved by applying a gradient-based algorithm to the encoder. To this end,

Table 4.9 shows the error rate of each operator (i.e., the rate at which the best mode is excluded

from the candidates list) for the following two configurations:

A) Test model where RMD is replaced by a gradient operator and MPMs are not added;

B) Test model where RMD is replaced by a gradient operator (MPMs are added).

In addition, Table 4.10 shows the results of the entire algorithm, including the RDO cost

prediction and chroma mode decision approaches (discussed in sections 4.1 and 4.2) while
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Table 4.9 Error rate of gradient operators, Config. A and Config. B

Error (%)
Video sequence Kernel Config A Config B

RaceHorses

Sobel 24.7 11.9

Prewitt 24.9 11.8

Scharr 24.8 12.1

Roberts cross 27.1 13.1

BasketballPass

Sobel 26.6 7.9

Prewitt 27.3 8.2

Scharr 26.9 8.1

Roberts cross 29.3 8.8

BlowingBubbles

Sobel 23.7 11.5

Prewitt 23.9 11.7

Scharr 24.2 11.8

Roberts cross 27.5 13.6

different gradient kernels are implemented for three sequences with different video textures.

In the same way, Table 4.11 presents the results averaged over all sequences. Based on these

results, Prewitt provides the best trade-off between time reduction and bit-rate increment, and

is selected as our operator for the gradient analysis section. However, considering the time

reduction table and error table, the difference between theses operators is not very significant,

mostly because we apply the gradient analysis at the CTU level, and not at the PU level. This

allows us to compute the gradient just once for each pixel, and to use this information for each

PU which contains that pixel. To demonstrate the contribution of the gradient analysis in the

overall algorithm, results for all test sequences while only gradient analysis is implemented are

shown in Table 4.12. We observe that gradient analysis provides a time reduction of 11.4%

with a BD-Rate increase of 0.62%.
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Table 4.10 Experimental results of the proposed method, implementing different

gradient operators, compared to HM

Video sequence Kernel TR (%) BD-Rate (%)

RaceHorses

Sobel -44.3 1.25

Prewitt -46.0 1.20

Scharr -42.2 1.21

Roberts cross -46.1 1.29

BasketballPass

Sobel -47.1 1.70

Prewitt -47.4 1.66
Scharr -47.4 1.78

Roberts cross -46.2 1.71

BlowingBubbles

Sobel -43.1 1.06

Prewitt -43.7 1.05
Scharr -43.2 1.05

Roberts cross -43.2 1.15

Table 4.11 Average results over all recommended sequences (Bossen, 2013) of the

proposed method compared to HM using different gradient operators

Kernel TR (%) BD-Rate (%) BD-PSNR (dB)
Prewitt -47.2 1.36 -0.062

Sobel -47.1 1.38 -0.063

Scharr -47.0 1.40 0.064

Roberts cross -47.4 1.60 -0.073
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Table 4.12 Experimental results while implementing gradient analysis (Prewitt)

compared to HM, first hundred frames

Class Video Sequences TR (%) BD-Rate (%) BD-PSNR (dB)

A

Traffic -12.0 0.46 -0.021

PeopleOnStreet -11.5 0.64 -0.031

Nebuta -10.9 0.36 -0.022

SteamLocomotive -13.9 0.28 -0.011

B

Cactus -11.9 0.78 -0.026

Kimono -14.1 0.45 -0.015

ParkScene -11.4 0.40 -0.016

BasketballDrive -11.9 1.47 -0.037

BQTerrace -10.3 0.44 -0.021

C

BQMall -8.8 0.56 -0.029

PartyScene -9.7 0.51 -0.034

RaceHorsesC -11.1 0.35 -0.019

BasketballDrill -11.9 0.36 -0.016

D

RaceHorses -10.4 0.49 -0.028

BasketballPass -10.8 0.94 -0.051

BlowingBubbles -10.0 0.43 -0.023

BQSquare -9.1 0.77 -0.056

E

FourPeople -11.9 0.70 -0.036

Johnny -12.6 0.93 -0.036

KristenAndSara -12.9 1.06 -0.049

Average -11.4 0.62 -0.029
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4.4 Fast Mode Decision Based on SATD Cost Classification

In this section, we introduce a fast mode decision approach which is presented in (Jamali

et al., 2015). In addition, a system is designed based on this approach which is the subject

of a patent application (Jamali et al., 2014). This approach is based on an improved edge

detection, consideration of most relevant modes from neighboring blocks, and a classification

of SATD costs permitting the elimination of several candidate modes prior to rate distortion

optimization. At the first step, the edge detection is applied as described in section 4.3. Then,

we add DC and planar modes and also the most relevant modes to employ neighboring blocks

for mode decision. Next, we select N best modes and carry out a binary classification, based

on SATD costs, and eliminate less promising candidates. This step significantly reduces the

number of candidates to be processed by RDO, providing considerable time reduction. Finally,

in RDO dodging, to achieve further time savings, we bypass the RDO process completely when

the mode with the lowest SATD cost meets certain specific conditions. We integrate all these

steps in one general method which is illustrated as a block diagram in fig. 4.8. Following, we

describe each block in details.

Figure 4.8 Block diagram of the proposed SATD cost classification algorithm.

4.4.1 Most Relevant Modes of the Neighboring Blocks

In this section, we use the spatial correlation across a frame to reduce the number of likely

modes to be the best mode of the current block. To use the spatial correlation, the context
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in the current frame around the current block is exploited. This is in contrast to temporal

correlation where the context comes from other frames either before or after the current frame.

Spatial correlation is used in mode decision by considering the modes of the neighboring blocks

as potential candidates to be the best mode of the current block. We use this concept in our

method after edge detection to include the neighboring blocks’ modes to the list of candidates.

Combining edge detection by approaches introduced in this section makes sure that really

potential candidates are selected for further processing.

There are two improvement proposed here to enhance using neighboring blocks for intra mode

decision. Firstly, while previous works just consider two top and left blocks for this purpose,

in this work we consider five top, left, top-left, top-right and down-left blocks to increase the

accuracy. Secondly, in contrary to other works which consider the neighboring modes in any

case, we add the modes of the neighboring blocks to the set of potential modes just if they are

relevant. By relevancy, we mean if they satisfy some condition; i.e., if based on their direction,

they are likely to be the best mode of the current block. For example, if the mode of the top

block is vertical or near-vertical, then it is added to the list; otherwise, if it is horizontal or

near-horizontal, it is less likely to be the best mode of the current block and is not considered.

We do the same for the left block if its mode is horizontal or near-horizontal. Similarly, the

top-right, top-left and down-left blocks are processed in the same manner. For each of these

neighboring blocks, 2n+1 modes are considered, which we call most relevant modes (MRMs),

and if a neighboring block’s mode corresponds to one of these modes, then it is considered for

the further processing.

Figure 4.9 shows the concept of the most relevant modes of the neighboring blocks. For

example, for the top-left block with n = 2 the MRMs are modes 16, 17, 18, 19 and 20, and if

that block selects one of these modes, then the mode is considered as a candidate for the current

block. In MRM step, a minimum of zero and a maximum of five modes are added to the set

of potential candidates. In addition to the neighboring modes, DC and planar modes are added

after edge detection, since the edge detection algorithms do not consider the non-directional

modes. If the number of selected candidates after edge detection is N, then after adding the
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MRMs, DC and planar the set of potential candidates has M members (see fig. 4.8), where:

N +2 ≤ M ≤ N +7 (4.30)

Figure 4.9 Most relevant modes of the neighboring blocks.

4.4.2 Mode Ordering, Binary Classification and RDO Dodging

In this section, we propose a mode classification method for luma mode decision similar to the

method presented in section 4.2. Based on this method, we are looking for a dominant gap

among the SATD costs. If such a gap exists, the modes with SATD cost lower than the gap are

selected as the promising candidates and the other modes are excluded from further processing.

Based on our experiments with different video sequences, this approach leads to a high time

reduction while the quality loss is negligible. Thus after adding MRMs, we order the selected

M modes from the previous step based on the SATD costs, from the lowest cost to the highest

cost, and select the first N modes (see fig. 4.8). The modes are then classified into two classes:
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powerful contenders with lower costs and weak ones with higher costs. We keep the powerful

modes and pass them on to the next step and exclude the weak modes from further processing.

This classification could be based on different criteria, but we have found that if a dominant

distance exists among the SATD costs, we can efficiently remove the modes with higher costs

from the very time-consuming RDO process without affecting the rate-distortion performance.

In other words, it is wasteful to test candidates whose costs are much higher than others’. For

example, if two candidates have very low costs while the others have significantly higher costs,

it is often a waste of time to evaluate all candidates by the computationally expensive RDO, as

only the two low-cost candidates usually win. Figure 4.10 shows a detected gap among SATD

costs where Cmin is the lowest cost and Cmax is the highest cost. Finding such a gap is very

helpful, and significantly decreases the time consumption for mode decision in intra coding. It

reduces the number of modes to K, where K ≤ N (see fig. 4.8). K = N occurs when no gap is

found. This gap could be a fixed one or could be adaptive based on the block size, quantization

parameter, or minimum and maximum cost values or any other criterion. For obtaining results

in this section, we consider adaptivity based on block size, and the difference between the

maximum and minimum cost values. The gap is defined as follows:

g = α × (Cmax −Cmin), (4.31)

where α ≤ 1 is an empirical parameter, and is adjusted based on the block size (see

section 4.4.3).

Figure 4.10 A gap among SATD costs.
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Algorithm 4.3 illustrates how this method works. In this algorithm, Ψ is the set of selected

candidates before applying mode classification which is obtained using the following set:

S = {dc+ planar+MRMs+ selected modes based on edge detection}= {m1,m2, . . .mM}.

Then, SATD costs are computed for these M modes and Ψ is generated based on these costs:

Ψ = {N modes with lowest costs in S}= {m1,m2, . . .mN}.

At the end, promising modes form a set called P as follows:

P = {promising modes based on gap analysis}= {m1, . . .mK}.
While

P ⊆ Ψ and K ≤ N

P is the set of modes that are selected to be investigated by the RDO process.

Algorithm 4.3 Selecting the promising modes based on SATD cost classification

Input: Ψ (set of N best modes selected by edge detection and MRMs)
Output: P (set of K promising modes to be processed by RDO)

1 Sort the modes of Ψ from the lowest to the highest SATD cost and obtain Cmin and Cmax
2 P = Ψ
3 g = α × (Cmax −Cmin)
4 for i = 1 to N −1 do
5 if (SAT D(mi+1)−SAT D(mi))> g then
6 for j = i+1 to N do
7 P = P\m j
8 end for
9 break

10 end if
11 end for
12 return P

Before RDO process, another step is applied called RDO dodging, which again exploits the

modes from five neighboring blocks to bypass the RDO process under certain conditions. In

this approach, if the mode with the lowest SATD cost is one of the most relevant modes, then

it is highly likely to be the best intra mode for the current block. For instance, if the lowest

cost candidate for the current block is the vertical mode and the best mode of the above block



65

is also vertical, we choose this mode as the final decision, and RDO is omitted. To create the

set of most relevant modes at this step, we consider 2m+ 1 modes from neighboring blocks

similar to section 4.4.1. If the candidate with the lowest cost after ordering and classification

is one of these relevant modes, it is selected as the best mode; otherwise, all K candidates are

investigated by RDO and the candidate with lowest RDO cost is selected as the final best mode.

4.4.3 Experimental Results and Discussion

The proposed SATD cost classification and other modules shown in fig. 4.8 are implemented in

the HM 15.0. The implementation platform is an Intel R© i7-3770 CPU-3.40, 12 GB of RAM,

running Windows 7. We used the recommended sequences in (Bossen, 2013) to implement our

proposed algorithm. The HM is configured in All-Intra mode, and is executed for quantization

parameters of 22, 27, 32 and 37. The parameters of the algorithm are: N = 8 and α = 1/4 for

block sizes of 4×4 and 8×8 and N = 3 and α = 2/3 for block sizes of 16×16, 32×32 and

64×64. Also, n (section 4.4.1) and m (section 4.4.2) are set to 3 and 1 for selecting the most

relevant modes. Table 4.13 shows the results of experiments in terms of BD-Rate, BD-PSNRY

and time reduction (TR), in comparison to HM. Using Bjontegaard metrics, the table shows

the average differences in rate-distortion performance. The time reduction is calculated for

each QP, and the average over all QPs is presented in the table. According to the experimental

results, we achieve an average of 35.6% time reduction over all video sequences, and up to

39.2% in comparison with the anchor implementation. The main contributors to this time

reduction are a decrease in the number of modes for SATD calculations in the RMD step and

a decrease in the number of modes in the RDO process. The quality loss is, on average, a

1.07% increase in the BD-Rate, which only slightly affects the rate-distortion performance.

To justify this, fig. 4.11 shows the RD curves of the proposed algorithm versus HM for the

RaceHorses sequence. From this figure, we can see that both implementations have almost the

same rate-distortion performance.
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Table 4.13 Experimental results of the proposed method compared to HM, first hundred

frames

Class Video sequence TR (%) BD-Rate (%) BD-PSNRY (dB)

A

Traffic -35.4 0.95 -0.051

PeopleOnStreet -34.1 1 -0.057

Nebuta -34.1 0.53 -0.039

SteamLocomotive -37.8 0.48 -0.025

B

Cactus -36.1 1.34 -0.05

Kimono -39.2 0.79 -0.028

ParkScene -37.5 0.87 -0.039

BasketballDrive -38.4 2.17 -0.059

BQTerrace -35.2 0.79 -0.048

C

BQMall -34.3 1.15 -0.068

PartyScene -32.8 1.18 -0.092

RaceHorsesC -34.7 0.72 -0.047

BasketballDrill -33.1 0.8 -0.039

D

RaceHorses -34.1 0.99 -0.065

BasketballPass -36 1.45 -0.085

BlowingBubbles -33.7 1.01 -0.06

BQSquare -32.7 1.38 -0.123

E

Vidyo1 -36.8 1.31 -0.066

Vidyo3 -37.4 1.23 -0.069

Vidyo4 -37.7 1.33 -0.061

Average -35.6 1.07 0.059
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Figure 4.11 RD curve of the proposed method and HM, RaceHorses.
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4.5 Experimental Results and Discussion for Overall Mode Decision

In this section, we provide the results for our mode decision method which includes three steps

of RDO cost prediction, chroma mode decision and edge detection based on gradient analysis.

The results are obtained based on the system diagram shown in fig. 4.1. The implementation

conditions and configuration are as mentioned in section 4.1.3. Table 4.14 shows the overall

results of the proposed method for the first hundred frames of the recommended video

sequences. In addition, Table 4.15 shows the overall results for all frames of the sequences

to present the results under common test conditions (CTC) recommended in Bossen (2013).

We provide the results for all recommended sequences, using Prewitt as our selected gradient

operator and method E for fast chroma mode decision. Overall, the proposed method

provides a 47.3% time reduction with a very low BD-Rate increase of 1.37%. As mentioned,

parameters can be tuned to obtain a different trade-off between time reduction and BD-Rate.

Figures 4.12 and 4.13 show the rate-distortion curves of the proposed method versus HM for

the BasketballPass and PartyScene sequences. Based on these figures, the two curves are very

close, which shows that the proposed method leads to negligible quality loss, and is effective

for different bitrates. Similar curves are achieved for other sequences with different video

textures.

To compare our work to other methods, Table 4.16 provides results of state-of-the-art works

on mode decision. To have fair comparisons with the reference papers, this table includes

averages of different sets of sequences. Thus, based on these different sets of sequences, we

have different test conditions as follows:

A) Test condition includes sequences shown in Table 4.15 other than ParkScene, BQMall,

BasketballPass and Johnny, which are training sequences in (Zhang et al., 2017a) and

are not used to compute the average. In addition, we exclude RaceHorses as our training

sequence. Thus, this test condition includes 15 sequences. All frames are considered for

this test condition.
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Table 4.14 Experimental results of the overall proposed method compared to HM, first

hundred frames

Class Video sequence TR (%) BD-Rate (%) BD-PSNR (dB)

A

Traffic -49.1 1.44 -0.067

PeopleOnStreet -49.6 1.69 -0.082

Nebuta -48.0 0.68 -0.042

SteamLocomotive -49.1 0.60 -0.024

B

Cactus -47.5 1.46 -0.048

Kimono -49.6 1.55 -0.050

ParkScene -47.3 1.00 -0.038

BasketballDrive -49.7 2.36 -0.060

BQTerrace -47.9 0.88 -0.042

C

BQMall -46.6 1.26 -0.065

PartyScene -40.2 1.03 -0.068

RaceHorsesC -45.1 0.78 -0.044

BasketballDrill -48.2 0.88 -0.039

D

RaceHorses* -46.0 1.20 -0.069

BasketballPass -47.4 1.66 -0.088

BlowingBubbles -43.7 1.05 -0.055

BQSquare -39.6 1.33 -0.096

E

FourPeople -49.4 1.76 -0.090

Johnny -49.7 2.23 -0.085

KristenAndSara -49.3 2.21 -0.103

Average (with training sequence) -47.1 1.35 -0.063
Average (without training sequence) -47.2 1.36 -0.062

*indicates the training sequence

B) Test condition includes sequences shown in Table 4.15 other than Nebuta, SteamLocomo-

tive, BasketballDrive, BQTerrace, RaceHorsesC and BlowingBubbles and also Vidyo3 is

used instead of KristenAndSara to have the same sequences as (Gao et al., 2015). In

addition, we exclude RaceHorses as our training sequence. Thus, this test condition

includes 13 sequences. First hundred frames are considered for this test condition.

C) Test condition includes sequences shown in Table 4.15 (20 common test sequences as

those considered in (BenHajyoussef et al., 2017)). It should be noted that because this

reference does not provide separate results for different test sequences for their mode

decision approach and it is not possible to remove RaceHorses for comparison, we
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Table 4.15 Experimental results of the overall proposed method compared to HM (CTC

conditions)

Class Video sequence (frames) TR (%) BD-Rate (%) BD-PSNR (dB)

A

Traffic (150) -48.8 1.46 -0.068

PeopleOnStreet (150) -49.4 1.71 -0.084

Nebuta (300) -49.2 0.68 -0.041

SteamLocomotive (300) -48.9 0.70 -0.026

B

Cactus (500) -47.7 1.46 -0.048

Kimono (240) -49.5 1.54 -0.051

ParkScene (240) -47.4 1.02 -0.040

BasketballDrive (500) -49.1 2.37 -0.061

BQTerrace (600) -46.7 0.82 -0.035

C

BQMall (600) -47.0 1.48 -0.073

PartyScene (500) -41.1 1.02 -0.068

RaceHorsesC (300) -44.6 0.65 -0.035

BasketballDrill (500) -48.7 0.85 -0.039

D

RaceHorses* (300) -46.5 1.22 -0.065

BasketballPass (500) -46.8 1.71 -0.094

BlowingBubbles (500) -44.2 1.03 -0.061

BQSquare (600) -41.0 1.29 -0.085

E

FourPeople (600) -48.9 1.78 -0.091

Johnny (600) -49.9 2.22 -0.085

KristenAndSara (600) -49.5 2.21 -0.102

Average (with training sequence) -47.2 1.36 -0.063
Average (without training sequence) -47.3 1.37 -0.062

*indicates the training sequence

compare our results including this sequence to their results to have exactly the same

sequences as they use for computing the average. Considering the last two rows of

Table 4.15, the difference between the results including or excluding RaceHorses is

negligible. All frames are considered for this test condition.

D) Test condition includes sequences shown in Table 4.15 other than BasketballDrive,

BQMall and BasketballPass, which are not used in (Tariq et al., 2016). Similar to test

condition C and since they do not provide separate results for different sequences (in their

Top 1 Mode method), we include RaceHorses for comparison. Thus, this test condition

includes 17 sequences. All frames are considered for this test condition.
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Figure 4.12 RD curves of the proposed mode decision method and HM, BasketballPass.

Figure 4.13 RD curves of the proposed mode decision method and HM, PartyScene.

Table 4.17 shows the results of the proposed method for extra sequences of class E which are

not part of the common test conditions but are used to achieve some results in some works.

They are presented here to permit a thorough comparison with other works as presented in
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Table 4.16. In addition, Table 4.18 shows hit ratio of gradient analysis. It also shows the

hit ratios of RDO cost modeling and chroma mode decision along with the combination of

luma algorithms (gradient analysis and RDO cost modeling). The hit ratio is defined as the

percentage of times that the best mode selected by the proposed algorithm is same as the mode

selected by the HM.

Based on the comparison table, the proposed method offers a significantly higher time reduc-

tion compared to other state-of-the-art methods. It is nearly 10% faster than method presented

in (Tariq et al., 2016) with an improved BD-Rate. Methods presented in (BenHajyoussef et al.,

2017) and (Gao et al., 2015) offer less than 0.5% BD-Rate improvement but are 15% and

20% slower respectively. Although method presented in (Zhang et al., 2017a) offers a good

BD-Rate, their time reduction is too small to be of much use in real-time systems. As it is

increasingly difficult to maintain good BD-Rate as we increase the time reduction, the BD-Rate

offered by the proposed method is quite impressive considering the time reduction of nearly

50%. In comparison to (Gao et al., 2015), our method does not use the neighboring blocks as a

reference for mode decision since such an approach could result in a domino effect and lead to

degradation of the quality. Also, they use a method for reduction of RDO candidates which is

based on a heuristic idea of dominant directions and have a limited time reduction. In contrast,

our method is a solid algorithm based on various tests and statistical modeling. In (Tariq et al.,

2016), the RDO cost is formulated as a function of SAD and QP. The function is quadratic and

lets the encoder avoid performing RDO process by estimating RDO cost. While they describe

the RDO cost as a deterministic function of SAD, we consider RDO cost as a stochastic model

which is described in the form of probability distributions. Authors in (Zhang et al., 2017a)

use a gradient-based approach for mode decision. In the same way, a gradient-based mode

decision is proposed in (BenHajyoussef et al., 2017). To improve this approach, they also

propose an optimal mode selection based on the number of occurrences of each mode in the

PU. In comparison to these two works, our method adds two significant extra steps of RDO

cost prediction and chroma mode classification to achieve higher time reduction. It should be

noted that there are other proposed methods in (BenHajyoussef et al., 2017) and (Zhang et al.,
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2017a) which are related to fast CU size decision and are not related to fast mode decision. It

is important to note that the methods proposed in the current chapter can be combined with fast

CU size decision methods in order to achieve even higher complexity reduction. To this end,

in the next chapter, we propose our fast CU size decision method.

Table 4.16 Comparison of the proposed mode decision method with other MD methods

Test Condition Methods TR (%) BD-Rate (%)

A
Proposed method -47.2 1.30

Zhang et al. (2017a)(MD) -15.2 0.17

B
Proposed method -47.3 1.44

Gao et al. (2015) -27.2 1.02

C
Proposed method -47.2 1.36

BenHajyoussef et al. (2017)(MD) -31.8 0.9

D
Proposed method -47.2 1.27

Tariq et al. (2016) -38.0 1.37

Table 4.17 Experimental results of the overall mode decision method compared to HM

for class E sequences which are not part of CTC

Class Video sequence TR (%) BD-Rate (%) BD-PSNR (dB)

E

Vidyo1 -49.6 1.98 -0.087

Vidyo3 -50.2 1.49 -0.071

Vidyo4 -48.1 1.74 -0.070
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Table 4.18 Hit ratio (%) for different algorithms, RaceHorses (RH), BasketballPass

(BP), BlowingBubbles (BB)

Hit ratio (%)

QP 22 27 32 37 Average

RH

Gradient analysis (Prewitt) 71 73 75 77 74

RDO cost modeling 74 78 79 82 78

Chroma (method E) 73 79 83 87 80

Luma algorithms combined 60 64 72 74 67

BP

Gradient analysis (Prewitt) 67 69 70 72 69

RDO cost modeling 75 79 81 83 79

Chroma (method E) 78 82 88 90 84

Luma algorithms combined 57 60 69 70 64

BB

Gradient analysis (Prewitt) 72 74 77 79 76

RDO cost modeling 77 81 84 86 82

Chroma (method E) 77 82 87 90 84

Luma algorithms combined 62 67 74 77 70

Summary

In this chapter, we proposed some novel methods for complexity reduction in HEVC intra

coding mode decision. To this end, we added new modules to the encoder. First of all, an RDO

cost modeling predicts the RDO costs based on the low-complexity RMD cost using a statistical

method. We use goodness of fit tests to verify that RDO costs come from normal models which

makes it possible to estimate the RDO costs based on RMD cost. In addition, RMD process

is replaced by a gradient analysis step to select the most promising candidates. Using this

method, irrelevant modes are excluded from further processing by the high complexity rate-

distortion optimization. To this end, a gradient-based edge detection is proposed to determine

the main directions in a block and exclude irrelevant angular modes from further processing.

A gradient-based approach is useful since intra coding uses objects’ edges to find the best

mode (direction) for forming the prediction block. At this step, we compared four different

gradient operators together where Prewitt showed slightly better results compared to other

kernels. Then, to exploit the spatial correlation, we added highly likely neighboring modes to

increase the accuracy of mode decision. In the next step, RDO dodging removes most modes

which go through RDO process. In chroma mode decision, we proposed a mode classification
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to put the prediction modes into two groups of promising and non-promising candidates. RDO

process is eliminated for non-promising candidate modes which leads to high time reduction

and almost no quality loss in chroma mode decision. In summary, implementing all mode

decision methods, we got a 47.3% time reduction with a negligible quality loss of 1.37% of

BD-Rate.





CHAPTER 5

PROPOSED CODING UNIT SIZE DECISION METHODS

As mentioned in chapter 2, HEVC uses a quadtree structure based on the CTU to efficiently

encode video sequences with various kinds of visual textures. The CTU is the root of the tree

and is considered as the largest CU. It is set to 64×64 by default in the HM. Each CU, including

the CTU, is split recursively into four equal size CUs. This adaptive splitting approach is

especially useful for higher resolution videos (4K × 2K(4K),8K × 4K(8K), etc.). The depth

of the 64× 64 CU is 0 and the maximum depth is 3, i.e., the size of the smallest CU is 8× 8.

To perform the prediction with intra coding, for each CU a PU is associated, except for the

8×8 CU, which could be predicted as an 8×8 PU or four 4×4 PUs. In CU splitting, there is

an optimal tree for each block which leads to the best coding performance. However, finding

such tree requires an exhaustive search which results in a long encoding time. An example of

such tree is depicted in fig. 5.1. There are two general approaches to reduce the CU splitting

complexity and have a fast CU size decision. The first approach is early splitting which aims

at skipping mode decision at the current level and moving to the next depth without doing the

RDO computations at the current depth. The second approach is early splitting termination

which aims at terminating the CU splitting process and skipping mode decision at the next

levels. In this chapter, we are going to propose some methods to efficiently implement these

two approaches in the HEVC encoder.



78

Figure 5.1 An optimal tree for efficient CU size decision (Shan, 2016).

5.1 Early Splitting Termination Based on Global and Directional Gradients

To lower the complexity associated with CU size decision in intra coding, in this section, we

develop a method based on global and directional gradients to early terminate the CU splitting

procedure and prevent processing of unnecessary depths. The global and directional gradients

determine if the unit is predicted with high accuracy at the current level, and when that’s the

case, the CU is deemed to be non-split. In addition, this section shows the relevance of two

gradient-based features which will be used in our general learning framework presented in

section 5.3.

The general idea of CU early splitting termination is determining the splitting decision of the

current CU by means that are less complex than performing the RDO process for the next

depths. This is a binary classification problem in which C = {CS,CN} is the set of classes.

CS and CN are the classes of split and non-split CUs, respectively. A classification problem is

solved based on a feature vector F = { f1, f2, f3, . . .}, in which the features need to be relevant

and independent. Selecting relevant features can highly improve the CU classification process.
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The relevance between features and classes can be assessed using mutual information (MI),

defined as follows for two random variables F and C:

MI(F ;C) =
∫ ∫

p( f ,c)log
p( f ,c)

p( f )p(c)
d f dc, (5.1)

where p( f ,c) is the joint PDF of F and C. MI shows the shared information between F

and C, i.e., it represents the amount of uncertainty that is reduced for C when F is known.

Mathematically, the MI of n features as random variables and the selected class is expressed

as (Martinez-Enriquez et al., 2011):

MI(F1,F2, . . .Fn,C) = h(F1,F2, . . .Fn)−h(F1,F2, . . .Fn|C)

=
∫ ∫

pfc( f1, f2, . . . fn,c)log
pfc( f1, f2, . . . fn,c)

pf( f1, f2, . . . fn)pc(c)
dfdc,

(5.2)

where pf( f1, f2, . . . fn), pc(c) and pfc( f1, f2, . . . fn,c) are the joint PDF of the n features, the

PDF of the selected class and the joint PDF of the features and the selected class, respectively.

The function h shows the Shannon entropy. Since the encoder performs the intra prediction

by using the neighbouring pixels in different directions, the features which are based on the

CU’s edges and CU’s gradient increase the mutual information between features and classes.

Based on our extensive experiments with different video sequences, we select two gradient-

based features, which result in an excellent trade-off between computational complexity and

coding efficiency and are discussed in the next sub-sections.

5.1.1 Early Splitting Termination by Global Gradient

When a low degree of pixel variation is present at the current level, it is highly likely that

the CU is not split into four smaller CUs to perform prediction. The global gradient is an

appropriate measure for evaluating this variation. The mean of gradient amplitudes (MGA) is

given by:

MGA =
1

n ∑
i

∑
j
|GX(i, j)|+ |GY (i, j)|, (5.3)
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where the sum is over all n pixels across the CU. To compute the gradient components GX

and GY at each pixel, the Sobel operator is applied as a simple and low-complexity edge

detector with 3× 3 convolution masks. The sum of the absolute values of the vertical and

horizontal components is used as an approximation of the gradient amplitude to avoid a

resource-demanding square root operation. The CUs with larger MGA tend to split while those

with smaller MGA are predicted at the current level. Figure 5.2 shows the discrimination ability

of this feature. It should be noted that when the QP is higher, the CU selects larger sizes as

an optimum solution. From various experiments, we could observe that in the MGA graph, the

effect of QP to discriminate split and non-split regions performed well when assumed linear.

In view of this, to decide whether the CU splitting at the current level can be terminated, a

measure is proposed as:

f1 =
MGA

α
−QP, (5.4)

where α is a coefficient assigned for each block size. The CU is of the non-split class if

f1 < T h1 where the CU splitting process is terminated. Otherwise, we check whether the CU

could be effectively predicted by an angular mode which is the subject of the next sub-section.

5.1.2 Early Splitting Termination by Directional Gradient

If the global gradient of the CU is large, the CU cannot be predicted by the dc or planar modes at

the current depth, but it may still be predicted by an angular mode provided that the directional

gradient along the mode is small. To evaluate this gradient, the mean of directional gradient

amplitudes (MDGA) is given as:

MDGA =
1

n ∑
i

∑
j
(|GX(i, j)|+ |GY (i, j)|)× cos(θ(i, j)), (5.5)

where, again, the sum is over all n pixels across the CU, GX and GY are gradient components

and θ is the angle between the gradient at each pixel and the best angular mode of the current

CU. CUs with large MGA but small MDGA along the best angular mode can be effectively
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Figure 5.2 Split and non-split CUs using RDO and their MGA feature.

predicted at the current level. Figure 5.3 shows the discrimination ability of the MDGA. To use

the MDGA as a tool for classifying the CU, we need to first determine the best angular mode

of the CU. To that end, we utilize our low-complexity intra mode decision approach described

in section 4.4. Once the best angular mode is known, the MDGA could be computed along

this mode. Considering a linear effect of QP, as well as the block size, we have the following

measure as the second feature:

f2 =
MDGA

β
−QP, (5.6)

where β is a coefficient assigned for each block size. The CU is of the non-split class if

f2 < T h2, where the CU splitting process is terminated. Otherwise, the CU is split and the

entire algorithm is repeated for the four newborn CUs.

5.1.3 Experimental Results and Discussion

The proposed early splitting termination is implemented in the HM using a PC equipped with

an Intel CoreTM i7-4790 CPU @ 3.60 GHz and 32 GB of RAM. Test sequences recommended
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Figure 5.3 Split and non-split CUs using RDO and their MDGA feature.

in (Bossen, 2013) are used to conduct the experiments for the all-intra configuration and the

Main profile. Parameter α is set to 1, 0.9, 0.4 and 0.3 for block sizes of 8 × 8, 16 × 16,

32×32 and 64×64, respectively, and parameter β is set to 0.8, 0.7, 0.2 and 0.1 for the same

block sizes. We select the smaller parameters for larger block sizes since the larger blocks

tend to split more than the smaller blocks. T h1 and T h2 are set to -5 and 0, respectively.

By changing these thresholds, the proposed algorithm can provide an interesting trade-off

between computational complexity and coding efficiency, which makes it a very flexible

method for different applications. We obtain the results by combining the mode decision

approach described in section 4.4 and the CU size decision method presented in this section.

BD-Rate and BD-PSNR are used to compare our proposed method with the anchor HM by

setting QP to 22, 27, 32 and 37. The results are presented in Table 5.1 as the time reduction

(TR), BD-Rate and BD-PSNR compared to HM. To obtain the parameters, in our experiments,

we used the RaceHorses sequence as a training sequence, and as a result, this sequence is

excluded from the average results. As the table shows, our proposed method provides a 52%
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time reduction, with a 0.07 dB quality loss which is a very good trade-off for the negligible

quality loss.

Table 5.1 Experimental results of the early splitting termination method compared to

HM, first hundred frames

Class Video sequence TR (%) BD-Rate (%) BD-PSNR (dB)

A
Traffic -52.5 1.30 -0.061

PeopleOnStreet -47.8 1.29 -0.063

B

Cactus -50.8 1.49 -0.049

Kimono -59.1 0.85 -0.028

ParkScene -49.7 0.67 -0.026

BasketballDrive -62.2 2.35 -0.059

BQTerrace -50.1 0.87 -0.041

C

BQMall -49.6 1.75 -0.091

PartyScene -39.2 1.14 -0.076

RaceHorsesC -47.2 0.76 -0.043

BasketballDrill -48.4 1.39 -0.063

D

RaceHorses -41.7 1.15 -0.065

BasketballPass -54.1 2.07 -0.110

BlowingBubbles -40.5 1.00 -0.052

BQSquare -39.2 1.41 -0.103

E

Vidyo1 -63.8 2.07 -0.091

Vidyo3 -63.8 2.94 -0.141

Vidyo4 -64.3 2.19 -0.088

Average -51.9 1.50 0.070

5.2 Early Splitting and Early Splitting Termination Based on Bayesian Analysis

5.2.1 Proposed Method

In this section, we present our method for CU classification which uses two distortion-based

costs to classify a block into split and non-split classes. The first distortion is between the

original block and the predicted block and the second one is between the original block and

the reconstructed block. To this end, we select a classification approach based on Bayesian

classification because of its speed, low complexity and good accuracy for this problem.
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Bayesian classifiers let us do the classification phase as fast as possible which is the most

important measure to have an efficient and fast video encoder.

As mentioned before, to avoid the exhaustive search when finding the optimal CU splitting

tree, we need early splitting to prevent doing computations at the current level and early split

termination to terminate the process for the next levels. To apply these concepts of early

splitting and early splitting termination in the encoder, we define two binary classification

problems. Figure 5.4 shows the framework for these two problems. At the first step, based

on some low complexity features the block is decided to be split or not. For splitting blocks,

the computations at the current level are avoided and we go to the next level of the tree. For

the other class, some more complex and accurate features are extracted and based on them the

block is decided to be non-split so the splitting process is terminated and the encoder skips the

next levels of the tree, otherwise the standard approach of the encoder is applied.

Figure 5.4 Block diagram of the two binary classification problems.

Similar to section 5.1, C = {CS,CN} is the set of the classes while CS and CN are the classes

of split and non-split CUs, respectively and the classification algorithm uses the feature vector

F = { f1, f2, f3, . . .} to classify the coding units. The probability that a specific block belongs

to the class Ci is shown by P(Ci|F), i ∈ {S,N}. In Bayesian terminology, P(Ci|F) is regarded

as the a posteriori probability for two classes.
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In a classification problem, making a wrong decision results in misclassification loss. For

a Bayesian problem this loss is indicated by Bayesian risk. For this loss, we consider SSE

between the block under coding and the reconstructed block as the loss for the early splitting

termination problem and the bit rate for the fast split problem. We consider Li, j as loss of

making decision as class Ci while the right class is Cj. In the case of right decision there is no

loss, so Li,i = 0. Based on these losses, the conditional Bayesian risk is computed as follows:

BRC(CN |F) = LN,NP(CN |F)+LN,SP(CS|F) = LN,SP(CS|F)

BRC(CS|F) = LS,SP(CS|F)+LS,NP(CN |F) = LS,NP(CN |F)
(5.7)

If BRC(CS|F) < BRC(CN |F) the split class is chosen and otherwise the choice is the non-split

class. The a posteriori probabilities are computed based on the following Bayes’ rule:

P(Ci|F) =
p(F |Ci)P(Ci)

p(F)
, i ∈ {S,N}, (5.8)

where P(Ci) is the a priori probability and p(F |Ci) is a conditional PDF and they are computed

offline during the training phase. Thus, the decision function, based on minimization of

Bayesian risk, is given as follows:

ϕ(F) =

⎧⎨
⎩CN if

p(F |CS)
p(F |CN)

<
LS,NP(CN)
LN,SP(CS)

CS elsewhere
(5.9)

The Bayesian decision threshold on the right side of this equation is computed based on coding

unit size and the QP.

The selected features for these Bayesian problems are RMD cost and RDO cost. Each of

these two features are used for one of the mentioned binary classification problems to have one

dimensional feature vectors which could be easily modeled by well-known distributions. Based

on our experiments with different video sequences, these two features are selected because they

result in a very good trade-off between computational complexity and coding performance. As
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mentioned in chapter 2, RMD cost is based on SATD distortion between the block to code and

the predicted block, a lagrange multiplier and the number of bits for signaling the best intra

mode and is defined as follows:

f1 = DSATD +λ1 ×BMode. (5.10)

The second feature, RDO cost, is based on the SSE between the block to code and the

reconstructed block, a lagrange multiplier and the number of bits for the encoded block after

entropy coding and is defined as follows:

f2 = DSSE +λ2 ×BCoding. (5.11)

The lagrange multipliers in these two equations are computed using the QP. f1 is used for the

first classification problem as a low complex feature. f2 is more complex and more accurate

and is used for the second problem of early splitting termination. We need to note that if, based

on the first feature, the block is decided to be split, there is no need to compute the second

feature. To show that the proposed features have the ability of discrimination, we have run

the HEVC standard encoder for some video sequences with different QPs and different block

sizes. Among them the results for BlowingBubbles (416× 240) with QP equal to 22 and the

coding unit size of 8×8 are reported. This is considered as the training phase for the Bayesian

classifier which collects statistics for classes and features. Figures 5.5 and 5.6 show these

features histograms for split and non-split blocks.

Based on these figures, the proposed features have high ability for block classification while

involving low complexity to the encoder. The shown histograms are modeled as Gaussian

distributions and the model parameters like mean and variance are extracted in the training

phase. Then these parameters are used in the coding phase to classify the coding block based

on the extracted features. The overall classification algorithm is summarized in algorithm 5.1.

As it can be seen there is a recursive function that calls itself if the block needs to be split.
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Figure 5.5 Histograms of the first feature for split and non-split blocks.

Figure 5.6 Histograms of the second feature for split and non-split blocks.
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Algorithm 5.1 Classifying a coding unit into split or non-split

Input: Thresholds for ϕ based on QP and block sizes
Output: Suboptimal splitting tree

1 Start the process for largest block with depth=0 and size=64×64, depthMax=4
2 function codingUnitSplit(CodingUnit, depth)
3 if depth == depthMax then
4 return “best mode” and “RDO cost” based on mode decision
5 else
6 Compute feature f1

7 if ϕ f astsplit( f1) ==CN then
8 Compute feature f2

9 if ϕearlytermination( f2) ==CN then
10 return “best mode” and “RDO cost” based on mode decision (terminate splitting

process)
11 else if ϕearlytermination( f2) ==CS then
12 run normal HM (standard HEVC implementation) for mode decision
13 for 0 ≤ i ≤ 3 do
14 codingUnitSplit(sub_CodingUnit[i], depth+1)
15 end for
16 end if
17 else if ϕ f astsplit( f1) ==CS then
18 for 0 ≤ i ≤ 3 do
19 codingUnitSplit(sub_CodingUnit[i], depth+1)
20 end for
21 end if
22 end if
23 end function

5.2.2 Experimental Results and Discussion

In this section, we report results based on time reduction (TR), BD-PSNR and BD-Rate to

compare the method described above to HM. BlowingBubbles sequence is used as the training

sequence and is not used at the coding phase. The training is done for each QP and each

block size and the data gathered during training phase is used for coding with the same QP

and block size. The implementation platform is an Intel i7-3770 CPU-3.40, 12 GB of RAM,

running Windows 7. We use recommended sequences in (Bossen, 2013) to implement the

proposed method. HM is configured in All-Intra mode, and run for QPs of 22, 27, 32 and 37.

Table 5.2 shows the results of these experiments in comparison to HM. The time reduction is
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computed for each QP, and the average over all QPs is presented in the table. According to the

experimental results, we achieve an average of 43.2% time reduction over all video sequences.

The results for the training sequence are not included in the average. The main contributors

to this time reduction are avoiding doing rate distortion optimization for the split blocks and

terminating the process for the next levels of the coding tree for non-split blocks. The quality

loss is, on average, a 0.04 dB in BD-PSNR and a 1.07% increment in the BD-Rate, which only

slightly affects the rate-distortion performance. To justify this, fig. 5.7 shows the RD curves of

the algorithm versus HM for the BasketballPass sequence. From this figure, we can see that

both implementations have almost the same rate-distortion performance.

Table 5.2 Experimental results of the early splitting and early splitting termination

method compared to HM, first hundred frames

Class Video sequence TR (%) BD-Rate (%) BD-PSNR (dB)

A
Traffic -47 1.28 -0.06

PeopleOnStreet -46 1.40 -0.06

B

Cactus -41 1.01 -0.03

Kimono -54 1.88 -0.06

ParkScene -42 0.90 -0.03

BasketballDrive -50 1.49 -0.03

BQTerrace -37 0.54 -0.03

C

BQMall -43 0.71 -0.04

PartyScene -26 0.32 -0.02

RaceHorsesC -39 0.66 -0.04

BasketballDrill -42 1.08 -0.04

D

RaceHorses -33 0.81 -0.05

BasketballPass -42 0.78 -0.04

BlowingBubbles -32 0.37 -0.01

BQSquare -31 0.21 -0.02

E

Vidyo1 -55 1.81 -0.08

Vidyo3 -52 1.97 -0.09

Vidyo4 -55 1.57 -0.06

Average -43.2 1.07 0.04
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Figure 5.7 RD curve of the CU splitting method and HM, BasketballPass.

5.3 CU Size Decision Using Neural Network-Based Reinforcement Learning

In this section, we consider the CU size decision as a sequential decision making problem

and formulate it by reinforcement learning (RL). RL is a set of powerful machine learning

algorithms to find optimal solutions for complicated sequential problems. RL can be

categorized somewhere between supervised learning and unsupervised learning. It is a mature

field of study with more than fifty years of studies and in the last two decades, it has been highly

related to the theory of Markov decision processes (MDPs). In RL, in contrast to programming

where for each given state a proper action is determined a priori by the programmer, decisions

are made by the interaction with the system, so it makes it easier to design a system by not

requiring all the details in the design phase. It should be noted that the notations used in this

section are adopted from (Wiering and van Otterlo, 2012).

In an RL system, an agent is learning how to take actions in an environment to minimize

(maximize) a cost (reward) signal as a scalar feedback from the environment in the long

run. The agent behaves in discrete time where at time t it observes the environment state



91

as st and then takes action at which results in immediate cost (reward) of ct(rt) while the

environment goes to the next state of st+1. Figure 5.8 shows a configuration of an RL system.

The environment is modeled as a number of states and the agent takes actions from the set

of actions to control the environment. The objective of such system is to take actions which

result in maximization of a reward function or minimization of a cost function. To apply RL to

our problem of CU splitting, we need to describe the problem as a sequential decision making

problem where the CU is an MDP and the encoder is an agent sequentially taking coding

decisions. RL algorithms intend to solve an MDP without prior knowledge about the system.

The way that they approach the problem is by interaction and experiment with the environment

which results in getting some kind of feedback in terms of reward or cost. On the other hand, if

the dynamics of the environment and the cost function is known, dynamic programming (DP)

methods are the solution for the problem.

Agent

Environment

ct at

st

st+1

Figure 5.8 Reinforcement learning configuration (Sutton and Barto, 1998).

An MDP is defined as a tuple of (S,A,T,C) where S is a set of states, A is a set of actions,

C is a stochastic cost function and T is a stochastic function which determines the transitions

between the states. The sets of states and actions are defined as S = {s1,s2, ...,sNS} and A =

{a1,a2, ...,aNA}, respectively, where NS is the number of states and NA is the number of actions.

A state could be described by some features or a pure state description. In general, not all

actions are valid in all states. Usually, the agent has a limited number of actions in a given
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state. By taking an action a, the agent changes the state of the MDP form s to s′. This transition

between states is based on the transition function T which is defined as follows:

T : S×A×S → [0,1], (5.12)

which means if the agent takes action a in state s, the probability that the system goes to the

next state s′ is T (s,a,s′) = P(s′|s,a).

The cost function is another stochastic function which is defined as follows:

C : S×A×R→ [0,∞], (5.13)

which means if the agent takes action a in state s, the probability density function of cost c is

C(s,a,c) = p(c|s,a). C as the immediate cost of an action is a real feedback signal. Defining

the cost function is a challenging task in an RL system since it determines the goal of the

learning. If we know the functions T and C, then the model of the MDP is known. The actions

are taking place in a discrete order of time t = 1,2, ..., so st and st+1 are states at time t and

t +1. The policy is a function which outputs an action a for a given state s of the MDP such as

a = π(s). A policy could be either deterministic which is defined as π : S → A, or it could be

stochastic which is defined as π : S×A→ [0,1]. While the environment is modeled as MDP, the

policy is considered as a part of the agent and is used to control the MDP. Policies also could

be categorized as stationary where they are fixed or non-stationary where they change over

time. The goal of the policy (agent) in episodic tasks is to minimize the following expected

cost function:

E[
h

∑
t=1

ct ]. (5.14)

In episodic tasks, the agent behaves in some episodes, each of them starting from an initial state

and ending in a terminal state (goal state) where the process terminates. In contrast, continuing

tasks (infinite horizon tasks) run forever and the goal in these tasks is to minimize the following
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expected cost function:

E[
∞

∑
t=1

γ t−1ct ], (5.15)

where 0 ≤ γ < 1 is a discount factor to make future costs less important than the immediate

cost. Also, the discount factor makes sure that the expected cost is finite, even in the case of

infinite horizon.

State-Value and Action-Value Functions

To know how good it is to be in a state or how good it is to take an action in a given state,

value functions are defined for an MDP under a certain policy. The value of a state s while the

agent is following policy π is shown by state-value function V π(s) and indicates the expected

cost when starting from state s and then following policy π . This function is defined as

follows (Wiering and van Otterlo, 2012):

V π(s) = Eπ

{ ∞

∑
k=0

γ kct+k|st = s
}
, (5.16)

where Eπ is the expected value of the long-term cost if the agent follows policy π . Similarly, the

value of an action performed in a certain state is defined by state-action value function Qπ(s,a)

which indicates the expected return cost when starting from state s, taking action a and then

following policy π . This function is called Q-function and defined as follows (Wiering and van

Otterlo, 2012):

Qπ(s,a) = Eπ

{ ∞

∑
k=0

γ kct+k|st = s,at = a
}
. (5.17)

An MDP is solved when an optimal policy π* is found for it, where V π*
(s) ≤ V π(s) for all

policies π and all states s. Two general methods exist for solving MDPs. The first category is

model-based methods and is based on DP and the second category is model-free which uses

RL algorithms. In DP methods, the model of the MDP is known and it is used to compute

the value functions and policies for the MDP. In RL methods, the model is not known and

the agent tries to find the value functions and optimal policy of the MDP by interacting with

the environment. In this category, samples of state transitions and immediate costs are used to
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estimate the value functions. Since the model is not known, the environment has to be explored

to gain information, and as a result the agent should deal with the exploration-exploitation

trade-off.

Q-Learning (On-line Reinforcement Learning)

If the agent decides to update the estimates of the value functions after each interaction with

the environment, the algorithm being used is in the category of online RL. Q-learning is a

popular model-free method in this category which estimates the state-action value function

(Q-function) (Watkins and Dayan, 1992). It is based on the idea of estimation of the Q-value

of actions using the feedback in the form of cost and the current estimated Q-function. The

update rule of Q-learning is as follows:

Qk+1(st ,at) = Qk(st ,at)+α
(

ct + γ min
a

Qk(st+1,a)−Qk(st ,at)
)
, (5.18)

where γ is the discount factor and 0 ≤ α ≤ 1 is the learning rate which determines the effect of

new learned values in the estimation. In this method, the agent decides to take action at in the

state st , then the environment gives cost ct and goes to state st+1 and based on this observation

the Q-value of action at in the state st is updated. Q-learning can learn the optimal policy π*

regardless of the exploration policy which determines the selected action in each state. These

kinds of algorithms called off-policy methods.

Function Approximation

If S and A are discrete sets with few members, it is possible to represent the value functions

V and Q with the tabular form such as lookup tables. Otherwise, if the MDP is large with too

many states and actions (or continuous states and actions) two problems emerge. First a huge

memory is needed to store the value functions and second it would be very slow to learn the

value functions for all states and actions. As a solution, and to avoid these two problems, value
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functions are represented with function approximations as follows:

V̂π(s)≈Vπ(s), (5.19)

Q̂π(s,a)≈ Qπ(s,a). (5.20)

This makes it possible to generalize from observed states and actions to unobserved ones. Note

that for the approximation to be valid the data related to observed states and actions (training

data) should cover the range which is desired to be approximated. There are many function

approximation methods such as linear algorithms, decision trees and neural networks. In our

method to find a solution for CU size decision, we use neural networks as they are very capable

of approximating continuous functions within specific range.

Batch-mode Reinforcement Learning

In batch-mode reinforcement learning, the agent tries to find the best policy using a set (batch)

of transition samples. Batch-mode RL algorithms are popular mostly because of their two

important features. First, they are data efficient and second they have a stable learning behavior.

In batch-mode RL the agent receives a set of n transition samples F = {(st ,at ,ct ,st+1)|t =
1, ...,n} and then finds the best possible policy based on these samples. While in on-line

learning the performance agent and the learning agent are the same, in batch-mode RL they

are clearly separated with an additional agent for exploring. Here the learning agent is not

interacting directly with the environment, but receives data in the form of four-tuples and

extracts the best possible policy for the performance agent. Figure 5.9 shows these three agents

of a batch-mode RL.

Generally, the explorer uses its own strategy and the learner has no idea how the explorer

generates the training set. The samples could be collected by a purely random policy. The

learner uses the training set to design a policy for the performer.
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Explorer Learner Performer
(s,a,c,s’) Policy

Figure 5.9 Three agents of a batch-mode reinforcement learning system.

Fitted Q Iteration

Fitted Q iteration (FQI) is a successful and popular batch RL algorithm proposed in 2005 (Ernst

et al., 2005). This algorithm combines Q-learning and batch-mode RL to take advantage of the

benefits of both methods. It uses the n transition samples as the form of four-tuples (s,a,c,s′) in

the set F = {(s,a,c,s′)l|l = 1, ...,n}1 to estimate the state-action value function (Q-function).

Then the policy is derived based on this estimation. It starts by the estimation Q̂0(s,a) = q̄0

for all states and actions, where q̄0 is the initial value and is considered zero in (Ernst et al.,

2005). Then Q̂1(s,a) is estimated using Q̂0(s,a). Actually the exact Q1(s,a) is the conditional

expectation of the immediate cost as follows:

Q1(s,a) = E{ct |st = s,at = a} (5.21)

It means the expected cost of an action a in a given state s if the agent interacts with the

environment just one time. After this first estimation the following two steps are iterated

starting from i = 0 until a terminating condition is satisfied:

1- The set

T i+1 = {(s,a; q̄i+1
s,a )|q̄i+1

s,a = c+ γ min
a′∈A

Q̂i(s′,a′)} (5.22)

is generated based on the all transition samples provided by set F .

1(s,a,c,s′)l = (sl ,al ,cl ,s′l)
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Algorithm 5.2 Fitted Q iteration

Input: F = {(s,a,c,s′)l|l = 1, ...,n}
Output: Q̂N as an approximation of the value function QN

1 k = 0

2 initialize Q̂0 to zero everywhere on s and a
3 repeat
4 T = {(il,ol), l = 1, ...,n} where:

5 il = (sl,al),ol = cl + γmin
a′∈A

Q̂k(s′l,a
′)

6 derive Q̂k+1 from T using a supervised learning method

7 k = k+1

8 until k = N
9 return Q̂N

2- At this step, a supervised learning method is used to find Q̂i+1 as an approximation of Qi+1

based on the set T i+1.

Algorithm 5.2 shows all steps of the Fitted Q Iteration algorithm.

Having Q̂N(s,a), and by assuming a discrete action space, obtaining the approximated optimal

policy is straightforward as follows (Ernst et al., 2005):

π̂∗
N(s) = argmin

a∈A
Q̂N(s,a), (5.23)

and based on this policy the performance agent can take an action in a given state, although the

state has never been seen before.

Neural Fitted Q Iteration

Neural Fitted Q Iteration (NFQ) is an efficient algorithm for approximation of the Q-function

which uses multi-layer perceptron (MLP) (Riedmiller, 2005). Similar to FQI, it is based

on training the value function using the stored experiences in the form of four-tuples. An

acceptable policy can be derived, using the algorithm, by small number of interactions with the

environment. NFQ is a batch-mode RL method based on FQI which uses neural networks as the

supervised learning step to do the function approximation for value function. Neural networks



98

Algorithm 5.3 Neural fitted Q iteration

Input: F = {(s,a,c,s′)l|l = 1, ...,n}
Output: Q̂N as an approximation of the value function QN

1 k = 0

2 initialize Q̂0 to zero everywhere on s and a
3 repeat
4 T = {(il,ol), l = 1, ...,n} where:

5 il = (sl,al),ol = cl + γmin
a′∈A

Q̂k(s′l,a
′)

6 Rprop(T ) → Q̂k+1

7 k = k+1

8 until k = N
9 return Q̂N

are an excellent choice for this step as they are capable of approximating functions accurately

and also because of their high degree of generalization from training set. Value functions

are updated simultaneously using NFQ and the updates occur for all transition samples. As

a result and in contrast to online RL, previous updates are not damaged by the new ones.

As another advantage of NFQ and other fitted algorithms, one can apply easily a supervised

learning algorithm because the updates take place simultaneously for all training samples. In

NFQ, as a supervised learning algorithm, Rprop (Riedmiller and Braun, 1993) is used to do the

approximation. Algorithm 5.3 shows the main steps of NFQ.

5.3.1 Problem Formulation

In this section, we deploy a batch-mode RL to find an encoding policy for coding unit size

decision in the context of intra HEVC coding. If the system dynamics and the cost function

are available, based on DP theories an optimal policy π∗ exists for the system. However, in our

problem, we aim at finding a policy based on a finite set of observed sample transitions. Since

theoretically it is not possible to find an optimal policy based on this finite set of samples, our

objective is to find an approximation of such policy. Generally, in our method we consider S

to be mutli-dimensional and continuous and A to be a finite set of discrete actions. Also, we

assume model-free approach where we don’t make assumptions on the dynamics and transition



99

probabilities of the system. So we keep the prior knowledge as low as possible where it is

limited to the representation of the state as a feature vector. We discuss this state representation

and the cost function of the system in separate sections (sections 5.3.2 and 5.3.3).

As the first step of the proposed algorithm, there is an exploration phase where the encoder

runs and the data is collected. For the exploration policy, we choose a random policy where the

actions are chosen randomly to see the impact of good and bad actions. This phase operates as

the exploring agent in the batch-mode RL setting. An interesting point about fitted algorithms

is that they do not make assumptions on how the set of sample transitions are achieved. This

makes it easy to collect four-tuples in episodic task such as our problem as we can gather

these transitions over multiple independent episodes. Then, we choose neural networks and in

particular MLPs in our algorithm for approximating the Q-function because they are capable of

approximating nonlinear function very well. This NN step, as the learning agent, is the second

module of the algorithm. Finally, in the main phase the encoder behaves as the performing

agent by using the learned Q-function and takes actions based on the policy obtained in the

learning phase.

Algorithm 5.4 shows the steps of the proposed method for CU size decision in the form of

a fitted learning algorithm. Although it is usual to use the policy described in eq. (5.23) to

derive the action at each state, there is another approach which is easier for implementation

for obtaining the approximated optimal policy. In this approach, the set F is split based on

different actions resulting in multiple Fa for each action. Then a regression algorithm can

be applied to each of these subsets to derive the corresponding Q̂N
a (s). The policy is then to

compute all these Q-functions and select the action which its related Q̂N
a (s) is the minimum.

Based on this argument, in the algorithm, we apply the supervised learning (neural network)

separately for each action (since we have discrete number of actions). After all iterations are

done, a separate Q̂N
a is achieved for each action. For a given state, the performance agent

(encoder in our case) chooses the action with the lowest value of Q̂N
a as the selected action. In

the algorithm, NA is the total number of actions and nai is the number of four-tuples in Fai . In

addition, As′l is the set of valid actions in state s′l .
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Algorithm 5.4 Encoder training phase (learning agent) (inspired by (Gabel et al., 2011))

Input: F = {(s,a,c,s′)l|l = 1, ...,n}
Output: Q̂N

a as an approximation of the value function QN
a for all action a ∈ A

1 k = 0

2 initialize Q̂0
ai

to zero everywhere on s, i = 1 to NA
3 repeat
4 for i = 1 to NA do
5 Fai = {(s,a,c,s′) ∈ F |a = ai}
6 Tai = {(il,ol), l = 1, ...,nai} where:

7 il = sl,ol = cl + γ min
a′∈As′l

Q̂k
a′(s

′
l)

8 Function approximation based on NN

9 NN(Tai) → Q̂k+1
ai

10 end for
11 k = k+1

12 until k = N
13 return Q̂N

ai
, i = 1 to NA

5.3.2 State Representation and Action Space

Although RL algorithms provide a solid framework to solve many complicated problems, they

are still limited to low-dimensional state spaces. To apply RL methods to environments with

high dimensionality such as raw images, the state space should be mapped to a low-dimensional

feature space (Wiering and van Otterlo, 2012). In fact such mapping is part of the field

knowledge applied by the system designer to solve the problem. It should be noted that the

more prior field knowledge applied to a problem the more we are deviating from the basic idea

of RL, so the mapping should be as wide as possible while we keep the dimensionality low. If

the state space is n-dimensional the mapping is as follows:

φ : Rn → Rm,m � n (5.24)

where m is the dimension of the feature space. As a result, the collected data set would be:

Fφ = {(φ(s),a,c,φ(s′))|(s,a,c,s′) ∈ F}, (5.25)
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in which φ(s) = ( f1(s), f2(s), ..., fNF (s)), where NF is the number of features describing the

state.

To find the best mapping φ , we use our experiments, described in previous sections of this

thesis, to obtain the best state representation based on the most relevant features. In view of

this, the features we have selected for the problem of CU size decision are as follows:

- featureEarlySplitTermination: shows whether the CU splitting is early terminated.

- featureEarlySplitting: shows whether the CU is early splitted.

- featureStandardSplitting: shows whether the CU is splitted similar to the standard HEVC

implementation.

- featureRMDcostBlock: the RMD cost of the CU.

- featureRMDcostBlockComputed: shows whether the RMD cost is computed for the CU.

- featureRDOcostBlock: the RDO cost of the CU.

- featureRDOcostBlockComputed: shows whether the RDO cost is computed for the CU.

- featureMGA: the MGA of the CU as described in section 5.1.

- featureMDGA: the MDGA of the CU as described in section 5.1.

Using these features, we describe each state by a 9-dimensional feature vector. All the states are

categorized into two classes. Terminal states and non-terminal states. Terminal states are those

states where the encoding process is terminated for the CU and the episode ends. Terminal

states are three categories as follows:

- Early terminated (ET) state, is the state of a CU for which the encoding process is terminated

and the encoding of the lower depths is avoided. The featureEarlySplitTermination for this

state is 1.
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- Early split (ES) state, is the state of a CU for which the encoding process at the current depth

is interrupted and the encoder moves to the lower depth. The featureEarlySplitting for this state

is 1.

- Standard split (SS) state, is the state of a CU for which the encoding process at the current

depth is fully performed and the encoder moves to the lower depth to continue the encoding

process for the CTU. This CU is treated exactly as it is treated in the HM (the exhaustive

approach). The featureStandardSplitting for this state is 1.

Non-terminal states are those for which featureEarlySplitTermination, featureEarlySplitting

and featureStandardSplitting are zero and the encoding process of the corresponding CU has

not yet terminated.

Action Space

The action space A = {a1,a2, ...,aNA} contains NA discrete number of actions. In our problem,

there are in total five actions available for the encoder as the performance agent. Not all actions

are valid in all states. We define two kinds of action in our problem. First, there are information-

gathering actions (IGAs) which need to be taken just one time and gain some knowledge about

the state of the system. For the purpose of this work, we consider obtaining the value of a

feature as the desired knowledge. Second there are episode terminating actions (ETAs) which

lead to a terminal state and like IGAs are taken just one time in each episode.

The reason to define and apply IGAs is well understood by considering the problem of active

feature acquisition (Shim et al., 2017) in a prediction scenario. Expensive features, in terms of

computation, which are not much useful for an accurate prediction, should not be computed. In

view of this, the agent should somehow know that is it worth to compute a given feature which

increases the accuracy of prediction to some extent. This is a very important problem when

we are dealing with systems with features which need a lot of computation resources to be

computed. This problem is not usually considered in a traditional machine learning framework

where the features are assumed to be known a priori and without any cost (feature acquisition
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and prediction are assumed to be independent). To address this issue, we define IGAs so the

agent associates the cost of computing a feature with the cost of taking an action in the RL

context. This way, we incorporate the concept of active feature acquisition in our learning

problem. Following is the list of actions along with the states they are valid at:

- actEarlySplitTermination

This action early terminates the splitting procedure and removes the lower depths to be

processed. It is an ETA and it is valid when featureRDOcostBlockComputed=true.

- actEarlySplitting

This action early splits the CU into four blocks before completing the encoding process for the

current depth. It is and ETA and it is valid when featureRDOcostBlockComputed=false.

- actStandardSplitting

This action splits the CU, as standard procedure in HM, into four blocks. It is an ETA and it is

valid when featureRDOcostBlockComputed=true.

- actComputeRMDcostBlock

This action computes the RMD cost of the CU. It is an IGA and it is valid when featureRMD-

costBlockComputed=false.

- actComputeRDOcostBlock

This action computes the RDO cost of the CU. It is an IGA and it is valid when featureRDO-

costBlockComputed=false and featureRMDcostBlockComputed=true.

It should be noted that no action is valid in a terminal state because the episode ends in such

state.

5.3.3 Cost Function

We define the cost function in a way which reflects the main trade-off of an encoding system

between computational complexity and visual quality. Since we are aiming at designing a fast
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encoder with high visual quality, the time required by each action as well as the quality loss

in terms of rate-distortion by taking that action are considered as the costs for that action. The

following definition provides a combination of these two costs:

ca = crd +ηct , (5.26)

where crd is the rate-distortion cost and ct is the computational time we pay as a result of taking

an action. Since the rate-distortion cost itself is a combination of two terms, the exact definition

of the cost function is as follows:

ca = SSE+λR+ηct , (5.27)

where SSE is the quality loss and R is the additional rate we need to pay while the encoder

is deviating from optimal decisions made by an exhaustive search. To compute the ct , we

use the QueryPerformanceCounter function, which is a very useful Windows API to measure

time intervals and acquire high-resolution time stamps. This function is used to get the current

elapsed ticks, which could be used to measure time with a high resolution.

5.3.4 Experimental Results and Discussion

In this section, we present the results for the RL-based CU size decision. To obtain the results,

we use the HEVC test model HM and a PC equipped with an Intel R© CoreTM i7-4790 CPU @

3.60 GHz and 32 GB of RAM. The configuration and profile are set to all-intra and Main

profile, respectively. The results are based on the common test conditions recommended

in (Bossen, 2013), and are reported based on time reduction (TR), BD-Rate and BD-PSNR.

The results are averaged over four QPs: 22, 27, 32 and 37. The training phase is done based on

Algorithm 5.4. For Q-function approximation in line 9 of the algorithm, we use a multilayer

perceptron neural network. This network is a fully connected one which comprises one input

layer, two hidden layers and one output layer. The numbers of neurons in the first hidden layer
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and second hidden layer are 18 and 9, respectively. The activation functions for the hidden

layers are tanh and the activation function for the output layer is linear.

Table 5.3 shows the results for the proposed RL-based method. This method leads to a time

reduction of 51.3% with a BD-Rate increase of 0.84%. This trade-off is quite interesting. In

the exploring phase, the RaceHorses sequence is used as the training sequence, and hence, the

average results are presented with and without considering this sequence. To compare our work

to other methods, Table 5.4 and fig. 5.10 provide results of state-of-the-art works on coding unit

size decision.

Table 5.3 Experimental results while implementing RL-based CU size decision

compared to HM

Class Video sequence TR (%) BD-Rate (%) BD-PSNR (dB)

A

Traffic -54.5 1.21 -0.059

PeopleOnStreet -54.4 1.25 -0.060

Nebuta -52.9 0.21 -0.018

SteamLocomotive -52.8 0.22 -0.019

B

Cactus -49.6 0.85 -0.029

Kimono -59.4 1.68 -0.056

ParkScene -50.2 0.76 -0.032

BasketballDrive -57.1 1.33 -0.033

BQTerrace -46.9 0.42 -0.028

C

BQMall -51.8 0.61 -0.036

PartyScene -37.6 0.27 -0.021

RaceHorsesC -48.5 0.52 -0.038

BasketballDrill -50.3 0.90 -0.039

D

RaceHorses -43.6 0.65 -0.049

BasketballPass -50.3 0.65 -0.042

BlowingBubbles -42.9 0.27 -0.012

BQSquare -42.7 0.19 -0.020

E

FourPeople -61.1 1.61 -0.078

Johnny -58.3 1.73 -0.088

KristenAndSara -60.3 1.45 -0.063

Average (with training sequence) -51.3 0.84 -0.041
Average (without training sequence) -51.7 0.85 -0.041
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Table 5.4 Comparison of the proposed RL-based method to other CU size decision

methods

TR (%) BD-Rate (%)
Proposed method -51.3 0.84

BenHajyoussef et al. (2017) -31.0 0.70

Zhu et al. (2018) -39.8 0.47

Lee and Jeong (2017) -55.5 1.01

Zhang et al. (2017b) -50.3 1.41

Figure 5.10 Comparison of the proposed RL-based method to other CU size decision

methods.

We also report the results of the RL-based CU size decision when it is combined with the mode

decision methods (RDO cost modeling and chroma mode decision) to present the overall time

reduction we achieve in HEVC intra coding. Table 5.5 shows the results of this combination.

Based on these results, we obtain a 62.4% time reduction for the intra coding which results in a

very fast encoder. In addition, the quality loss is a 1.23% BD-Rate increment which negligibly

affects the final visual quality. Here, again, the average results are presented with and without
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RaceHorses as the training sequence. To compare our work to other methods, Table 5.6 and

fig. 5.11 provide results of state-of-the-art works which combine coding unit size decision and

mode decision.

Our method is specially useful for sequences where there are dominant modes for most CTUs.

This is the case in sequences such as SteamLocomotive where there is one large object in

a homogeneous background. In these sequences, the homogeneous areas are predicted by dc

mode and the object’s edge is predicted by directional modes. On the other hand, for sequences

such as PeopleOnStreet where there are many small objects in a frame, CTUs may contain

multiple objects. As a results there is no dominant mode for most CTUs and the exhaustive

search performs better for these sequences. Our method also works well for sequences such as

BQTerrace where there are long distinct edges in a frame which makes it easier to find the best

modes as well as the proper CU sizes.

Figure 5.11 Comparison of the proposed RL-based CU size decision method combined

with mode decision to other combined methods.
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Table 5.5 Experimental results while implementing RL-based CU size decision

combined with mode decision compared to HM

Class Video sequence TR (%) BD-Rate (%) BD-PSNR (dB)

A

Traffic -64.7 1.75 -0.090

PeopleOnStreet -65.4 1.82 -0.094

Nebuta -64.4 0.38 -0.031

SteamLocomotive -63.6 0.40 -0.028

B

Cactus -61.4 1.21 -0.044

Kimono -67.8 2.37 -0.084

ParkScene -61.5 1.15 -0.051

BasketballDrive -67.0 1.79 -0.047

BQTerrace -59.6 0.64 -0.042

C

BQMall -62.9 0.96 -0.058

PartyScene -51.5 0.53 -0.042

RaceHorsesC -59.8 0.76 -0.054

BasketballDrill -62.5 1.19 -0.055

D

RaceHorses -57.4 1.05 -0.076

BasketballPass -62.1 1.01 -0.065

BlowingBubbles -56.2 0.55 -0.030

BQSquare -54.8 0.47 -0.044

E

FourPeople -69.1 2.17 -0.113

Johnny -67.1 2.35 -0.117

KristenAndSara -68.2 2.07 -0.098

Average (with training sequence) -62.4 1.23 -0.063
Average (without training sequence) -62.6 1.24 -0.062

Table 5.6 Comparison of the proposed RL-based CU size decision method combined

with mode decision (MD) to other combined methods (CU size decision+MD)

TR (%) BD-Rate (%)
Proposed method -62.4 1.23

BenHajyoussef et al. (2017) -42.8 1.10

Zhu et al. (2018) -60.0 1.45

Zhang et al. (2017a) -53.9 0.70

Chen et al. (2018) -43.2 0.47

Summary

In this chapter, we proposed novel methods based on two general approaches to reduce the

CU splitting complexity and have a fast CU size decision. In the first approach, the CU is
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early split and the mode decision computations are excluded from the current level. In the

second approach, the CU splitting process is early terminated and all computations for the next

levels are omitted which results in a significant time reduction. In CU split early termination,

a method based on global and directional gradients is developed to prevent processing of

unnecessary depths. The global and directional gradients determine if the unit is predicted

with high accuracy at the current level, and when that’s the case, the CU is deemed to be non-

split. Then, we presented our method for CU classification based on Bayesian analysis which

uses two distortion-based costs to classify a block into split and non-split classes. Bayesian

classification is selected because of its speed, low complexity and good accuracy for this

problem. In last section of the chapter, we considered the CU size decision as a sequential

decision making problem and formulate it by reinforcement learning. To this end, we deployed

a batch-mode RL to find an encoding policy for coding unit size decision in the context of intra

HEVC coding. In our problem, we aim at finding a policy based on a finite set of observed

sample transitions. Also, we proposed new features for CU size decision in this framework

which are more relevant than features proposed in the literature. Combining this RL method

with our proposed mode decision, we got a 62.6% time reduction with a small quality loss of

1.24% of BD-Rate.





CONCLUSION

In this thesis, we presented an overview of the HEVC intra coding followed by our proposed

methods for encoding complexity reduction in two areas of mode decision and CU size

decision. In addition, we reviewed the HEVC video coding standard from the computational

complexity point of view and at the literature review we looked at some works that present

solutions to alleviate the HEVC complexity. Compared to other work on HEVC intra coding

complexity reduction, our contributions in this thesis are summarized as follows:

RDO cost modeling and prediction

By using this approach, we reduce the number of candidates in RDO process

as much as possible. RDO cost prediction prevents high-demanding rate-

distortion optimization for modes with no chance of being the best intra mode

of the prediction unit. This is based on statistical modeling of the RDO cost

using the low-complexity RMD cost.

Fast intra chroma mode decision

A chroma mode classification is proposed to avoid the RDO process for non-

promising candidates.

Low complexity edge detection for mode decision

The rough mode decision of the HEVC test model is replaced by gradient

analysis, based on the Prewitt operator, in order to decrease the number

of candidates by excluding non-relevant directional modes. This algorithm

improves the edge detection approaches by attributing three modes for each

detected edge.

SATD cost classification, most relevant modes and RDO dodging

A binary classification, based on a dominant distance among SATD costs,

and RDO dodging are proposed to reduce the number of candidate modes

entering the RDO process. In addition, we propose to enhance the schemes
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that exploit the spatial correlation among neighboring blocks by introducing

the concept of most relevant modes.

CU splitting early termination

This method is based on global and directional gradients. The global gradient

determines whether the CU is smooth enough to be predicted by dc or planar

modes at the current depth. The directional gradient is used for non-smooth

CUs and classifies a CU as a non-split CU when it could be predicted

efficiently by an angular mode at the current level; thus, the CU splitting

process is terminated. The proposed method benefits from some controllable

parameters, which allow a flexible trade-off between the compression rate

and the encoder complexity.

Early splitting and early splitting termination

In this approach, we use Bayesian classifiers to classify a CU into split

and non-split based on two distortion-based features. The solution includes

two binary classification problems for early splitting and early splitting

termination.

CU size decision using reinforcement learning

An RL-based method is proposed to eliminate the non-necessary CU levels

from RDO process. In this method, we use the concept of sequential feature

acquisition to determine whether a feature is worth to be computed for the

purpose of accurate classification.

Experimental results show that our contributions, combing mode decision methods and CU size

decision algorithms, provide a 62.4% time reduction and a 1.23% BD-Rate increase which

is a very solid trad-off between computational complexity and compression efficiency. Our

proposed methods are based on adjustable parameters which can be tuned to get the desired

compromise between computational complexity and coding efficiency; a characteristic which

makes the proposed methods attractive for various applications.
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As future work, we propose following research directions:

• There are only a few works on chroma complexity reduction. More research needs to be

done on this area to design fast HEVC video encoders.

• We have used RL for CU size decision while it can also be used in mode decision to select

the best candidate without running the RDO process. Also, in mode decision, generalized

gaussian model can be used to model the empirical data instead of normal model.

• In RL framework for CU size decision, other supervised learning methods can be used for

function approximation. Decision tree could be a choice in this area.

• Future research, in CU size decision, can introduce new features which are low in

computational complexity and also relevant to predict the optimal CU size. In addition,

promising classifiers such as convolutional neural networks can be used for both problems

of CU size decision and mode decision.

• There is a lack of a comparison measure in the area of complexity reduction. As a future

work, one can propose a metric that can fairly compare different methods considering the

trade-off between coding efficiency and time saving. In the state-of-the-art work, the results

are reported based on two metrics of BD-Rate and time reduction.

• And finally, the successful methods in HEVC complexity reduction which have been

proposed in last years can be applied to 360 video and 3D applications to address new

demands in these areas.
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