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TRAJECTOIRE 2D DE LA GLACE DANS UN ÉCOULEMENT 
AUTOUR D’UN PROFIL DE JOUKOWSKI 

 
Mahdi KAMOUSI ALAMDARI 

 

RÉSUMÉ 

Le givrage en vol et le dégivrage sont des problèmes important dans l'industrie de l'aviation et 
ont été étudié ces dernières décennies expérimentalement et numériquement. Au cours des 
dernières années, l'approche numérique a été privilégiée pour simuler la création de la glace et 
la trajectoire des pièces de glace en raison de son coût et de son efficacité temporelle. Cette 
étude vise à étudier l'influence des différents paramètres de la pièce de glace et du profil 
aérodynamique sur la probabilité d'ingestion de glace par un moteur monté à l'arrière d’un 
avion. Pour y parvenir, le profil d'écoulement de Joukowski et la trajectoire 2D d'une pièce de 
glace carrée dans ce champ d'écoulement seront étudiés. 

Le champ de vitesse autour d’un profil de Joukowski est simulé et sera utilisé pour calculer les 
forces aérodynamiques sur la pièce de glace carrée. Les trajectoires des particules de glace en 
forme de plaques carrées dans des champs d'écoulement uniformes sont comparées à la 
littérature pour valider l’approche numérique. Comme le dégivrage est associé à des 
incertitudes sur les conditions initiales, la méthode de Monte-Carlo est utilisée pour faire une 
étude statistique sur le phénomène étudié. La probabilité de collision de glace autour du profil 
aérodynamique est calculée pour étudier l'influence des paramètres aérodynamiques tels que 
l'épaisseur, la courbure et l'angle d'attaque ainsi que l'influence de la forme et de la masse de 
la glace sur la trajectoire de la glace. Le dégivrage est étudié séparément pour l’intrados et 
l’extrados du bord d'attaque. 

Les conditions initiales du dégivrage sont un facteur important dans les trajectoires de glace. 
Les résultats montrent que la probabilité d'ingestion de glace varie en fonction des paramètres 
de l'aile et de la pièce de glace. Les profils plus épais et plus incurvés imposent moins de risque 
d'ingestion de glace. L'angle d'attaque du profil aérodynamique a une influence différente sur 
la probabilité d’ingestion en fonction de l'emplacement du dégivrage. Les particules de glace 
rectangulaires et sphériques sont plus susceptibles de frapper le moteur que les morceaux de 
glace carrés. En outre, il est démontré que l'effet Magnus a une influence importante sur les 
trajectoires de la glace qui ne peut être ignorée dans les simulations. 

Mots clés : CFD, trajectoire de la glace, profil de Joukowski, ingestion de glace, givrage en 
vol, dégivrage  

 
 

 



 



2D ICE TRAJECTORY IN THE FLOW FIELD OF THE JOUKOWSKI 
AIRFOIL 

 
Mahdi KAMOUSI ALAMDARI 

 
ABSTRACT  

 

Inflight icing and ice shedding as an important problem in the aviation industry have been 
studying in recent decades both experimentally and numerically. In recent years, the numerical 
approach has been privileged to simulate ice accretion and ice piece trajectory due to its cost 
and time efficiency. This study aims to investigate the influence of the different characters of 
the ice piece and airfoil on the probability of ice ingestion by an aft-mounted engine. In this 
order, the flow field of the Joukowski airfoil and 2D trajectory of a square plate ice piece in 
this flow field will be simulated.  

Velocity field of Joukowski airfoil is simulated and used to compute aerodynamic forces on 
the square plate ice piece. Trajectories for square plate ice particles in uniform flow fields are 
compared with the literature to validate the developed code. As the ice shedding is associated 
with uncertainties regarding its initial conditions, Monte-Carlo method is used to have a 
statistical study on this phenomenon. Ice pass probability map around the airfoil is generated 
to investigate the influence of airfoils’ parameters such as thickness, camber and angle of attack 
as well as the influence of ice’s shape and mass on the trajectory of the ice piece. Ice shedding 
is investigated separately for upside and downside of the leading edge. 

Initial condition of ice shedding is found to be an important factor in ice trajectories. Results 
show that ice ingestion probability by engine changes for different set of parameters of airfoil 
and ice piece. Thicker and more curved airfoils impose less ice ingestion risk. Airfoil’s angle 
of attack has different influence on the probability map depending on the location of the ice 
shedding. Rectangular and sphere ice particles are more likely than square ice pieces to pass 
through the engine. Also it is shown that Magnus effect has an important influence on the ice 
trajectories which cannot be ignored in ice trajectory simulations. 

Key words: CFD, Ice trajectory, Joukowski airfoil, Ice ingestion, Inflight icing, Ice shedding
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INTRODUCTION 
 

 

Ice accretion on aircraft is one of the hazardous phenomena that can cause catastrophic 

accidents. This issue has been under investigation for several decades and especially in recent 

years to solve the problems related to icing and ice shading in the aviation industry. Although 

many empirical and computational methods have been implemented, but icing problem still 

remains as an important threat to aircraft safety and efficiency. Icing during the flight brings 

about degradation of the aircraft’s performance and shading of the accreted ice can damage the 

downstream components of an aircraft such as engines.  

In recent years, Computational Fluid Dynamic (CFD) has been considered as a privileged 

approach to study icing and ice shedding phenomenon. Due to the efficiency of this method 

regarding time and cost, CFD models have been widely used to predict the ice accretion on the 

component of the aircraft such as leading edges, control surfaces and engine nacelles. Also this 

numerical approach is used to study the trajectory of the ice particles shed from the geometry 

of the aircraft (Shimoi, 2010) (Suares, 2005). 

Ice trajectory simulations have been carried out to trace the path of the shed ices and compute 

the ice pass probability and their strike with the component of the aircraft. Studies concern 

both two-dimensional and three-dimensional movement of the ice mass. While in the majority 

of the 2D simulation, the ice piece has three Degrees of Freedom (DOF) of movement, in 3D 

simulations DOF vary from three to six. The flow fields used in the simulations can be uniform 

or non-uniform. The uniform flow field can be a representative of the wind tunnel flow and 

the non-uniform flow fields can be the flow field of airfoil, wing or an aircraft as a whole.  

The shape of the ice fragment plays an important role in ice trajectory results. Aerodynamic 

force and moment coefficients, which are mostly calculated through empirical methods, differ 

for each shape of the ice piece. Although the shape of shed ice pieces is random, simulations 

are conducted for some ice shapes such as square plates, rectangular plats, spheres, semi sphere 

and disk shape ice shapes (Shimoi, 2010).  
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The ice piece moves in a flow field due to the imposed forces and moments. Both aerodynamic 

and gravitational forces govern the acceleration of the ice mass. While the forces translate the 

ice piece in the flow filed, moments are in charge of the angular movement of the particle. In 

some research all the forces and moments are taken into account and some others have limited 

their studies by neglecting some of the aerodynamic forces such as Magnus effect, generated 

by the angular velocity of the ice piece. 

This research project will consider the trajectory of a square plate ice in a two-dimensional 

flow field. DOF for the ice piece will be three for two linear movements in the directions of 

the horizontal and vertical axis of the plane and an angular movement around the axis 

perpendicular to the plane of the 2D flow field. Lift and drag forces as well as the moment on 

the ice piece will be calculated using both the static aerodynamic coefficients and the 

aerodynamic coefficients generated by the angular velocity of the ice particle (Magnus effect).  

The flow fields used in this research project are uniform and non-uniform flow fields. The 

trajectories run in the uniform flow field will serve for validation of the simulation code and 

non-uniform flow field will be used to draw the results of the research. Joukowski airfoil is the 

geometry which the flow field around it will be simulated.  

Ice trajectory will be simulated in a 2D flow field using differential equation of the movement. 

The velocity and the position of the ice piece will be computed by integrating these differential 

equations in each time step of the trajectory. Aerodynamic and gravitational forces will be used 

to obtain the linear acceleration of the ice body and moment of inertia will be used to compute 

angular acceleration of the ice fragment. 

The random nature of the ice shedding makes the statistical study inevitable for this 

phenomenon (Suares, 2005), (Shimoi, 2010). The initial condition of the ice shedding is 

associated with uncertainties regarding ice piece’s shape, location, orientation and linear and 

initial angular velocities. A code developed for Monte-Carlo method will be integrated with 

the code of ice trajectory. This code generates a large number of initial conditions and plot the 

footprint of the ice pieces around the airfoil. Using this integrated code, the probability of the 

ice trajectory through the defined areas in the study plane will be possible. 
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This research will be presented in three chapters. First chapter will deal with the background 

of the icing problem and ice trajectory simulation. First comes an introduction for in-flight 

icing problems. The meteorological conditions in which the probability of in-flight icing is 

higher and the process of ice accretion on the components of the aircraft, in particular inside 

the engine, will be presented. The possible approaches to analyze icing problems and currently 

used de-icing systems in the aviation will be mentioned briefly. These sections will be followed 

by a literature review related to the ice trajectory simulation methods.  

Chapter two is dedicated to the methodology of the research project. it will offer the 

mathematical model, equations and coefficients used in the simulation code. In addition, the 

condition of the flow fields and properties of ice particles simulated in the research will be 

mentioned. In another section, the simulation tools used in the project will be described by 

illustrating the flow chart of the Matlab codes developed during the research. 

Chapter three contains the results of the research project. The results will be validated, verified 

and discussed for Joukowski airfoil, single trajectories and Monte-Carlo method. The figures 

generated by the simulation code will show the probability maps around the airfoil in different 

situations. This chapter will discuss the impact of the airfoil’s angle of attack, airfoil thickness 

and its camber on the trajectory of the ice piece. Also, the possibility of the ice ingestion by 

downstream engines will be verified when the ice piece has different shapes such as square, 

rectangular and sphere shape and different masses.





CHAPTER 1 
 

LITERATURE REVIEW 
 

1.1 In-flight icing and the engine of aircraft 
 

According to Bin and Yanpei (Bin and Yanpei, 2011), the source of the ice accreted on the 

propulsion system can be different, but usually, engine icing is caused by freezing of cloud 

droplets, or super cooled water droplets. Super cooled water droplets maintain their liquid state 

even at temperatures well below the freezing degree. When these droplets impinge on the 

aircraft’s engine during the flight, they can bring about anomalies such as non-recoverable or 

repeating surge, stall rollback or flameout, and may also cause the gas path ice blockage in 

core engine (Bin and Yanpei, 2011). 

The presence of high altitude ice crystals which exist in the deep convective clouds of strong 

tropical and sub-tropical storms is known to be the other causation of this problem. These ice 

crystals do not have good reflectivity for radar echoes, so it is difficult to prevent passage of 

aircraft through these clouds (Califf and Knezevici, 2014). According to Haggerty, 

McDonough et al. (Haggerty, McDonough et al., 2012), several aeronautic accidents which are 

attributed to engine icing, have occurred in flight conditions where super cooled liquid droplets 

were not present. In these cases, ice crystal particles in surrounding clouds are considered to 

have the main role in degradation of engine power. Since the mid-1990’s, more than 100 

documented engine power loss events are attributed to this phenomenon known as ice particle 

icing. The majority of accidents related to ice particle icing phenomenon, have occurred in the 

vicinity of tropical thunderstorms, particularly over the western tropical Pacific Ocean. It is 

hypothesized that ice particles accrete on warm surfaces inside the engine. These Ice masses 

deform the aerodynamic shape of the blades and may block the airflow passage inside the 

engine. Also, accreted ices can shed into the engine which is hazardous for downstream 

components. All these factors reduce performance of the engine dramatically (Haggerty, 

McDonough et al., 2012). 
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Veres, Jorgenson et al. (Veres, Jorgenson et al., 2012) estimate that ingested ice crystals into 

the engine will confront with higher temperatures in core part of the engine. This condition 

will melt a portion of the ice crystals. It will make a mixture of ice and water which 

consequently enhances the stickiness power of ice particles on the metal surfaces of the 

compressor components. Thus, the engine experiences airflow blockage on its stationary parts 

such as stator vanes (Veres, Jorgenson et al., 2012).  

According to Veres, Jorgenson et al. (Veres, Jorgenson et al. 2012), local wet-bulb temperature 

and minimum local melt ratio are two key parameters that play main roles to provide favorable 

condition for ice accretion. It is known that this favorable condition takes place when the local 

wet-bulb temperature is near and blow freezing and the local melt ratio is 10%. These criteria 

can be used to determine the possibility of icing due to ice crystals. The degree of ice blockage 

can be estimated by using an empirical model of ice growth rate and the impingement duration 

of ice crystals (Veres, Jorgenson et al. 2012). 

Liquid water content (LWC), total water content (TWC), flight Mach number, particle 

impingement angle and particle size are the factors that determine the sticking efficiency of ice 

crystals particles (Currie, Fuleki et al., 2014). A former research (Currie, Fuleki et al., 2014) 

suggests that the sticking efficiency remains finite at all particle impingement angles when 

TWC is more than 10 ݃/݉ଷ and the flight Mach number is low (0.25). At higher Mach 

numbers, smaller ice crystal particles stick more efficiently to engine components. 

Over the past decades, aircraft flight accidents related to icing has been reported all over the 

world. According to Cao, Wu et al. (Cao, Wu et al., 2015), in America, statistic data of flight 

accidents during 1973 to 1977 showed that 2.56% of the total flight accidents are due to the 

icing problem. During 1976 and 1988, flight accidents attributed to ice accretion reached up to 

542. American Safety Advisor statistic data concerning iced- aircraft flight accidents from 

1990 to 2000 indicates that 12% of all the flight accidents in adverse weather conditions 

occurred in icing condition and in-flight icing was the reason for 92% of the iced-induced 

accidents (Cao, Wu et al., 2015). 
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Since 1990, many of jet engine power loss incidents have been attributed to the icing problem, 

which have been occurred at altitude higher than 22,000 ft., the level which is recognized as 

the extreme upper limit for the existence of super cooled liquid water (Mason, Strapp et al., 

2006). Mason, Strapp et al estimate that at this level the hydrometeors are expected to exist in 

the form of ice particles which can be individual ice crystals or in larger size spanning from 

microns to centimeters. Previous to these events, it was believed that ice particles are harmless 

for the airframe and the engine due to the fact that frozen particles don’t stick to these 

components and bounce off from the surface. Recent engine power loss events since 1990, 

initiated deeper investigation of ice particles influence on jet engines. More than 240 icing 

related events have been documented worldwide since the 90s, which 62 of them are believed 

to be due to ice particle icing (Mason, Strapp et al., 2006).  

According to Mason, Strapp et al. (Mason, Strapp et al., 2006), documented icing incidents 

and accidents show that most of the ice crystal icing occurs during aircraft flights through 

convective clouds. Convective clouds have updraft cores that cause the movement of low-level 

air to higher altitudes in which the temperature drops and water vapor condense continuously. 

This phenomenon can increase the liquid water content (LWC) and/or ice water content (IWC) 

in a limited region. It is assumed that condensing vapor goes directly to the ice phase above 

the freezing level. The maximum level of IWC is about 9 g/m3 at 30,000 ft. and as the altitude 

increases above this level, IWC decreases. Previous observations show that Atlantic hurricane 

convection clouds are almost completely glaciated at -5°C which means rapid conversion of 

LWC to ice above the freezing level and no significant super cold LWC exist at temperature 

below -12°C (Mason, Strapp et al., 2006). 

The accreted ice on the aircraft’s surfaces can be in two general forms. These forms are called 

glaze ice and rime ice. As Borigo (Borigo, 2014) describes, glaze ice is a clean and hard ice 

that usually does not have an aerodynamic shape. When droplets do not freeze instantaneously 

and run downstream the result will be a glaze ice accretion. Because of its non-aerodynamic 

shape, it is more vulnerable to shedding. The creation of rime ice is very fast and as soon as 

droplets impinge with the surface, freezing occurs and ice traps some air which makes it milky 

and white. Rime ice has greater adhesion properties and lower density (Bin and Yanpei, 2011). 
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Rime ice usually grows in low temperature (-40°C to -10°C) at lower speeds and at low LWC 

conditions but glaze ice typically accretes at temperatures closer to freezing (-18°C to 0°C) at 

higher speeds and LWC (Borigo, 2014). 

An engine of aircraft should pass icing test to get its certification. An engine should be able to 

work steadily without any problem under a specific icing condition (Bin and Yanpei, 2011). 

These requirements are mentioned in FAR Section 33.68. This Section requires that each 

engine which is equipped with ice protection system should be able to sustain its power during 

flight phases without ice accretion on components and run steadily under icing condition at 

least for 30 minutes at ground idle setting and then demonstrate its takeoff thrust by being able 

to accelerate without any problem. This performance requirement is defined in appendix C of 

FAR part 25. Engine does not use its auto-recovery system during icing test, since it is a back-

up device for aircraft during the icing problem (Bin and Yanpei, 2011). 

Icing can be analyzed both experimentally and numerically. The experimental approach to 

analyze icing can be done during a real flight or in the wind tunnel. Both of these approaches 

are suitable to analyze a system, but they cannot be used in the design platform (Pellissier, 

2010). Testing an aircraft during a real flight would be very expensive and it can be used just 

after production of the aircraft. This method is time consuming and finding an icing condition 

in flight to examine the performance of the engine is very difficult. Inflight-testing is dangerous 

and difficult to run and  all the icing conditions outlined in aviation safety regulation such as 

the FAA’s FAR (Federal Airworthiness Regulations) Part 25 Appendix C or the EASA’s CS 

(Certification Specifications) Part 25 Appendix C cannot be reproduced (Pellissier, 2010). 

Using wind-tunnel can be a solution for problems associated with in flight testing but it has its 

own limitations. Icing test facilities utilize freezing super cooled droplets or ice shavers to 

simulate icing condition. There are differences between an artificial ice crystal produced in 

icing wind tunnel and a natural ice crystal which can be found at high altitude. Since the shape 

of the crystal is a key element to study the trajectory of ice particles, such inadequate simulation 

of ice crystals misleads the analyses of the icing dynamics (Nilamdeen, 2010). The number of 

icing wind tunnels is very limited and manufacturers own most of the wind tunnels, so there 

are few facilities in research domain that are accessible for researchers. The price of using 
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these wind tunnels is expensive and even ignoring the cost will not help much due to the fact 

that most of the good facilities that can produce icing condition are booked in advance for a 

long time. 

Beside the experimental methods, computational models are used to compute ice accretion, 

evaluate the performance degradation caused by icing, study and design anti-icing systems and 

evaluate their efficiency. According to Rios (Rios Pabon, 2012), the complicity of analyzing 

the ice crystal trajectory and the problems of experimental approach favor the use of 

computational methods. By using these methods ice shape and its trajectory can be simulated 

more efficiently. The time and money needed to run these analyzes are significantly less than 

experimental methods. 

 

1.2   Ice trajectory simulation 
 

A literature review was conducted to establish the state of the art in the fields related to ice 

shedding and ice piece trajectory simulation. This literature review concerned the ice trajectory 

simulation methods and the probabilistic methods for numerical studies on this phenomenon. 

Following is the results of a literature review which introduces works done in the ice trajectory 

simulation.The ice trajectory simulation as a numerical tool to investigate the inflight icing and 

ice shedding has been considered and developed in recent decades and there are not many 

available papers and data in the literature. Most of the works done to simulate the trajectories 

are in the field of wind engineering and to simulate the trajectories of the debris in the storms 

(Tachikawa, 1983), (Kordi, 2009), (Holmes, 2006). However, some researchers have applied 

this knowledge in the field of ice shedding problem and ice piece trajectories (Shimoi, 2010), 

(Suares, 2005).  

This research has been done with different considerations. Two general categories in the ice 

piece trajectory simulations are the trajectories which are simulated in 2D flow fields and the 

trajectories which are carried out in 3D flow fields. Moreover, the degree of freedom of the 

movement of the ice piece is confined in the research and can vary from 2 DOF to 6 DOF. 
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The flow fields in which ice trajectories are studied are divided to uniform and non-uniform 

flow fields. The trajectories in the uniform flow field are mostly used to validate the data of 

the simulations with the experimental data and results of the wind tunnel experiments. The 

non-uniform flow fields used in the simulations are the flow field of the aircraft’s geometry as 

a whole or the flow field of components of the aircraft such a wing.  

Tachikawa (Tachikawa, 1983) is a pioneer researcher in the field of the trajectory simulation. 

He has carried out several 2D experiments in the wind tunnel to determine the aerodynamic 

force coefficients on the different shape of the plates. He has measured the lift and drag forces 

and moments on the plate in a low-speed wind tunnel. Magnus effect is taken into account to 

simulate the trajectories and the results are compared with the experimental trajectories with 

different initial conditions for different plates. In his research he has shown that the initial 

orientation of the plate plays an important rule to determine the path of the plate. 

Holmes et al. (Holmes, 2006) has conducted plate type debris trajectory simulation in 2D 

uniform flow field experimentally and numerically. He has investigated the trajectory of three 

different square flat plate debris with different dimensions and density in the uniform 

horizontal flow fields with different velocities. The differential equations of movement are 

used to calculate the trajectory of the debris. He has used aerodynamic force coefficients which 

are a function of the angle of attack, to calculate the lift, drag and moment forces on the plate. 

The Magnus effect in the simulation of Holmes is only considered for lift force and he has 

compared the trajectories with and without Magnus effect. Holmes has compared their 

trajectories with experimental data of Texas Tech University.  In the article of Holmes there 

are some examples of trajectories for different plate pieces with different initial conditions for 

the angle of attack of the ice piece and its initial velocity to compare the influence of the initial 

conditions on the trajectories of the plate debris. 

Kordi and Kopp (Kordi, 2009) have simulated the trajectory of the square flat plate in 2D 

uniform flow field. They have used differential equations of motion to trace the movement of 

the ice particle. The aerodynamic coefficients generated by the angular velocity of the ice piece 

are added to the static coefficients to take into account the Magnus effect, in this order, the 
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equations of Iverson (Iverson, 1979) are used based on the ice piece’s tip speed and the speed 

of the tip of the auto rotational point. 

Suares (Suares, 2005) has performed a broad research on the trajectory simulation of ice pieces 

in uniform and non-uniform flow field. He has simulated the ice trajectory in 2D and 3D for 

uniform flow and flow fields of the airfoil and wing. The ice piece samples used in the 

trajectories are square plates, rectangular plates and semicircular shells and the research 

includes 3,4 and 6 degrees of freedom for the movement of the ice piece samples. Suares has 

developed codes in FORTRAN and MSC.Easy5 for ice trajectory simulation and by using 

Monte-Carlo method the strike possibility of the ice piece with downstream engines in different 

conditions has been studied. 

Chandrasekharan and Histion (Chandrasekharan, 2003) have simulated the trajectory of the ice 

pieces shed from the surface of the aircraft to analyze the probability of the ice ingestion by 

downstream engines when the minor modifications are made in the dimension of the fuselage. 

The VSAERO code has been utilized to compute the flow field and velocity field around the 

geometry of the Learjet 40 and Learjet 45 business jets. In the simulation, the lift and side 

forces on the ice particle have been dismissed and the movement of the ice fragment and its 

acceleration in the flow field is calculated only using the drag forces and gravitational forces. 

The project includes the simulations of disk and plate shape ice pieces. The disk ice particle 

has a diameter of four inches and a thickness of one inch and start its shedding from the radome 

of the aircraft. Two plate form ice pieces with dimensions of  3" × 1" × 1" and 1.5"×1.5" ×0.3" are used to simulate the ice shedding from the windshield of the aircraft. The obtained 

results show that the minor different in the length of two above mentioned aircraft does not 

have a significant influence on the ice ingestion risk of the downstream engines. 

A 4-DOF simulation model has been used by Kohlman and Winn (Kohlman, 2001) to simulate 

the square plate ice trajectories in the uniform flow field. Lift and drag forces are assumed to 

be the main forces on the ice fragment and experimental data have been used to calculate the 

aerodynamic coefficients. The forces generated by the rotation of the ice piece are taken into 

account by calculating the angular velocity, aerodynamic damping and moment of inertia for 
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the plate. The results of the simulations emphasize the importance of the initial orientation of 

the ice piece and the aerodynamic damping coefficient on the trajectory of the ice piece. 

Furthermore, the thickness of the ice piece influences the vertical displacement of the particle 

and its area alter the horizontal displacement. 

Shimoi (Shimoi, 2010) has studied the ice shedding and ice trajectory both experimentally and 

numerically. His 6-DOF model simulates the trajectory of square, rectangular plates, disks, 

upper surface horn and double horn ice pieces. The data base of Wichita state university (WSU) 

is used for the aerodynamic coefficients of ice particles and the flow field used in his research 

is obtained from a commercial Navier-Stock computer code. The trajectory of the different ice 

pieces is simulated in the flow field of a business jet with different angles of attack. The 

analyzes of the study shows the influence of the shedding location, initial orientation of the ice 

piece and the aircraft’s angle of attack on the trajectory of the ice fragment. Monte-Carlo 

simulation is implemented to determine the probability of the ice piece strike with downstream 

components of the aircraft and the ice ingestion possibility by aft-mounted engines. 

De Castro et al. (De Castro, 2003) have conducted a two-dimensional study on the 3-DOF 

trajectory of the square plate ice piece in a non-uniform flow field. The flow field used in the 

simulations belongs to a symmetric NACA airfoil. Monte-Carlo method has been used to 

statically analyze the trajectories of the ice piece due to the uncertainty of the initial conditions 

of the shedding. Initial angle of attack of the plate, angular velocity and the damping coefficient 

are the varying parameters of the initial conditions. The pass probability of the ice piece with 

the defined areas around the airfoil is presented as the result of the research.  

Baruzzi et al. (Baruzzi, 2007) have considered 6-DOF trajectories in their research to simulate 

the movement of the ice piece. FENSAP-ICE computer code has been used to determine forces 

and moments on the ice particle in each time step and consequently, to calculate linear and 

angular acceleration of the shed ice.  

The literature review conducted in this research emphasizes the importance of inflight icing, 

ice shedding and ice ingestion by engines in reducing the performance of the aircraft and 

engines. CFD models used in this field were introduced and their approaches to simulate the 
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ice trajectory were briefly reviewed. Although precious research and works have been carried 

out in this domain, farther researches are needed to fully understand the behavior of the ice 

pieces in uniform and non-uniform flow fields and aerodynamic coefficients for different ice 

shapes are remained to define more precisely.  

 

1.3 Contributions 
 

The contributions of the author in this research project are as follows: 

1. Developing a code for the flow field: A Matlab code was developed to simulate the 

Joukowski airfoil and its flow field. The potential flow function and potential velocity 

of the flow field are computed to have the velocity of the flow at each point of the 

plane. 

2. Improving the code of ice trajectory: The code of the 2D ice trajectory available in 

the university was improved to integrate with the code of Joukowski airfoil.    

3. Improving the Monte-Carlo code: The code of the Monte-Carlo simulation was 

improved to make it compatible with other codes of the research.  

4. Developing a code to calculate the probability of ice passing: A code is developed 

to estimate the pass probability of the ice piece through the defined areas around the 

airfoil.  

5. Studying ice trajectory in different conditions: As the main objective of the research, 

the influence of the airfoil’s geometry and its angle of attack as well as ice’s shape and 

mass on the trajectory of the ice piece are studied.  

 

 

 

 

 





CHAPTER 2 
 

MATHEMATICAL MODEL AND SIMULATION METHODOLOGY 
 

To simulate the ice trajectory in a flow field, the translational and angular movements of the 

ice piece generated by aerodynamic and gravitational forces on it should be calculated. The 

parameters acting in these calculations are the mass properties of the ice particle, the 

aerodynamic properties of the ice particle and the properties of the flow field. This chapter 

contains the mathematical models to calculate these physical properties of the ice trajectory 

simulation.  

 

2.1   Flow fields 
 

This section will introduce the flow fields used in the research project. The research is done to 

simulate 2D ice trajectories in uniform flow field and in the flow field of the Joukowski airfoil. 

To have the flow field around the Joukowski airfoil, the flow field around a circular cylinder 

is transformed using Joukowski transformation. The flow field around the circular cylinder is 

the result of the superposition of three basic flow fields. After presenting these basic flow 

fields, and their superposition, Joukowski transformation as a method of conformal mapping, 

will be the last part of this section. 

 

2.1.1 Flow field around the circular cylinder 

 
The flow field around a circular cylinder with circulation is fully understood (Pope, 1951). 

This knowledge about the circular circle can be transferred to an airfoil by using conformal 

mapping. By using such a transformation, the characteristics of the flow around the airfoil 

including pressure distribution and its lift can be defined (Pope, 1951). 
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To have the flow field around a circular cylinder, the first step is to simulate the circular 

cylinder and its flow filed by using the superposition of the three basic flows. This can be 

achieved by the superposition of the uniform, doublet and vortex flows (Kapania, 2008). The 

superposition of the doublet, uniform, and vortex flows yields a potential function and a stream 

function (Kapania, 2008). 

 

2.1.1.1 Uniform, doublet and vortex flow fields 

 
 Complex potential flow for uniform flow field in a complex plane  ݖ, when it has a velocity 

of ܷஶ and its direction makes an angle of ߙ with the horizontal axis is (Panton, 2005):   

௨௡௜௙௢௥௠ܨ  = ܷஶݖ ݁ି௜ఈ  (2.1) 

This equation describes the potential flow field in every point of the plane ݖ. The velocity 

function is the derivative of the potential flow function in every point in the complex ݖ plane. 

Following is the derivative of the uniform potential flow function with respect to ݖ : 

 ௨ܹ௡௜௙௢௥௠ = ݖ௨௡௜௙௢௥௠݀ܨ݀  =  ܷஶ ݁ି௜ఈ  (2.2) 

According to this equation, in the uniform flow field, the velocity of the flow is not a function 

of the location of the complex ݖ plane. This means that the velocity is constant in a uniform 

flow field and does not change from point to point.  

Doublet potential flow function is the superposition of the source and sink flow fields (Panton, 

2005). The complex potential flow function for a Doublet flow field in the distance of R from 

the center of the Doublet and the flow velocity of ܷஶis: 

஽௢௨௕௟௘௧ܨ  =  ܷஶܴଶݖ  ݁௜ఈ  (2.3) 
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Following the same method as potential uniform flow, doublet potential velocity function can 

be obtained by derivation of its potential flow function: 

 ஽ܹ௢௨௕௟௘௧ =  − ܷஶܴଶݖଶ  ݁௜ఈ  (2.4) 

According to this equation the velocity in a doublet flow field is a function of ݖ and is different 

in each point of ݖ plane.   

The steady cylinder without circulation does not generate any lift force. Generation of the lift 

is due to the circulation of the cylinder (Panton, 2005). The superposition of the uniform flow 

field and doublet flow field represents the flow field around a steady cylinder in uniform flow. 

To generate the lift force, vortex flow field is added to these two flow fields.  Complex potential 

function for Vortex flow field with a radius of ܴ is (Panton, 2005): 

௩௢௥௧௘௫ܨ  = ݇௩௢௥௧௘௫݅(2.5) (ݖܴ)݊ܮ 

In this equation ݇௩௢௥௧௘௫ is the vortex strength and is defined as following: 

 ݇௩௢௥௧௘௫ =  (2.6) ߨ2߁

 is the circulation, being the line integral of the velocity field over the closed curve of the ߁

cylinder. Circulation is a conceptual tool that relates the lift force of an object to the nature of 

the fluid flow around it (Kapania, 2008) and is equal to: 

߁  =  (2.7) (ߙ) ݊݅ݏ ஶܴܷߨ4

Angle ߙ is the angle of the free stream velocity with respect to the horizontal axis. Kutta-

Joukowski theorem is used to compute the lift force of a circular cylinder. This fundamental 

theorem of aerodynamics relates the lift per unit span of an airfoil to the velocity of the airfoil ܷஶ through the fluid, the fluid density ρ  and the circulation ߁. When ߁ is known, the lift per 

unit span ܮ becomes (Kapania, 2008): 
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ܮ  =  (2.8) ߁ஶܷߩ 

By derivation of the potential flow function of the vortex, the potential velocity function of the 

vortex flow field will be: 

 ௩ܹ௢௥௧௘௫ = ݅݇௩௢௥௧௘௫ݖ  (2.9) 

By defining three simple flow fields, in the next section, the superposition of these flow fields 

will be presented. 

 

2.1.1.2 Superposition of the flow fields 
 

The superposition method is used to compute a complex potential flow field by summing up 

some simple potential flow fields. To obtain the complex potential flow function around a 

circular cylinder in a uniform flow, potential functions of uniform, doublet and vortex flow 

fields are put together, by which potential flow function is: 

௓ܨ  = ௜ఈି݁ ݖܷ + ܷܴଶݖ  ݁௜ఈ + ݅݇௩௢௥௧௘௫(2.10) (ݖܴ)݊ܮ 

Also, superposition of the potential velocity functions of these three flow fields, yields the 

potential velocity function of the circular cylinder in a uniform flow field by which potential 

velocity function will be: 

 ௓ܹ =  ܷ ݁ି௜ఈ − ܷܽଶݖଶ  ݁௜ఈ + ݅݇௩௢௥௧௘௫ݖ  (2.11) 

In this section the potential flow field function and potential velocity function of the flow field 

around a circular cylinder in a uniform flow field were presented in detail. To have the flow 

field around an airfoil, the flow field around the circular cylinder can be transformed by using 

conformal mapping. In the next section using the conformal mapping to the circular cylinder 

flow field through Joukowski transformation, the flow field around the Joukowski airfoil will 

be computed. 
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2.1.1.3  Joukowski transformation 
 

By using conformal mapping, both geometry of the circular cylinder and its peripheral flow 

filed can be transformed. This function is possible because of the angle preserving feature of 

the conformal mapping. To use this function, airfoil shape, potential and velocity function of 

the flow field should be expressed in complex variables (Pope, 1951). The transformed 

circulation  ߁ of the airfoil and its consequent lift power is the same as the circulation and lift 

power of the original circular cylinder (Pope, 1951).  

One of the conformal mapping methods is the Joukowski transformation. This research has 

used Joukowski transformation to define a Joukowski airfoil and its pertaining flow field. The 

basic equation of the Joukowski transformation is: 

 ܼ = ߞ + ߞଶߣ  (2.12) 

By using this equation a circular cylinder and its pertaining flow filed in  plane ߞ can be 

transformed to an airfoil in plane ܼ . This circular cylinder should be well defined to get the 

desired results. Not every circular cylinder will be transformed in a proper Joukowski airfoil. 

In this regard the coordinate of the center of the circular cylinder plays an important rule (Pope, 

 the transformation parameter, depends on the radius and the origin of the circular ,ߣ .(1951

cylinder. This factor determines the resulting shape of the Joukowski airfoil. To have an airfoil 

which meets the desired aerodynamic properties, transformation parameter,  should be ,ߣ

properly employed (Pope, 1951). Figure 2.1 shows the original cylinder and resulted 

Joukowski airfoil. According to this figure, when ܺ and ܻ are the coordinates of the center of 

the cylinder, parameter ߣ is:  

ߣ  = ൬ ൰(ߚ)݊ܽݐܻ − |ܺ| (2.13) 

Where angle ߚ  can be found as following: 
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ߚ  =  (2.14) (ܴܻ) ݊݅ݏܿݎܽ

 

  

Figure 2.1 Joukowski transformation 

 
The other  important point in Joukowski transformation is that all points on the ݔ axis of the 

plane ߞ  will be transformed to the points on the horizontal axis in plane ܼ . These points are 

correspondents with leading and trailing edge of the airfoil. Since the rear stagnation point of 

the airfoil should be located on the trailing edge of the airfoil, a special care should be applied 

to these points. Stagnation points of a cylinder without circulation are on the ݔ axis of the ߞ 

plane. Such a flow filed is not a desired one, due to this fact that, because of symmetry, it will 

not generate any lift power. To have lift power, vortex should be added to the flow field which 

can be obtained by the circulation of the cylinder. Circulation moves down the stagnation 

points of the circular cylinder. To compensate for this effect, the circle should move upward, 

to establish the stagnation points on the horizontal axis of the plane ߞ  (Pope, 1951).  To have 

a reasonable airfoil the center of the original circle cannot be on the vertical axis of the plane 
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 ,Thus, these conditions require to define a special circle to transform to an airfoil (Pope. ߞ 

1951). 

The flow field around a circular cylinder was elaborated as the first step to define the flow field 

around the Joukowski airfoil. By presenting conformal mapping and Joukowski 

transformation, next section will discuss the parameters of the Joukowski transformation. 

 

2.1.2 Joukowski airfoil and its flow field 
 

In this research, a Matlab code was developed to simulate the Joukowski airfoil and its flow 

field in a two-dimensional plane. To develop this code, the equations and nomenclature of 

Panton (Panton, 2005) are used. It is tried to use identical nomenclature in the transcript of the 

Matlab code. 

To have a Joukowski airfoil with desired properties regarding its size and lift coefficient the 

parameters of the original circular cylinder should be defined properly. The main steps to 

design the Joukowski airfoil and its parameters will be presented in following sections.  

 

2.1.2.1 Parameters to design a Joukowski airfoil 
 

Radius and the center of the circle:  

The initial step for Joukowski transformation is defining a cylinder which is going to be 

transformed to the Joukowski airfoil. The main parameters of the cylinder, which have an 

important role in the shape of the produced airfoil, are the center of the cylinder and its radius. 

Other parameters are driven using these variables. Figure 2.1 from previous section will be 

used to define the parameters. 

According to figure 2.1, the center of the cylinder is point [ܺ, ܻ] in plane ߞ. The thickness of 

the Joukowski airfoil is governed by the value of ܺ (horizontal axis) and the camber of the 

Joukowski airfoil is controlled by the value of the ܻ (vertical axis). In our code the center of 
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the original cylinder is defined as a complex number ߞ଴. By entering the values of [ܺ, ܻ], the 

center of the circle ߞ଴ is defined in the complex plane ߞ as following: 

଴ߞ  = ܺ + ܻ݅ (2.15) 

The flow in the plane is from left to right, so the direction of the airfoil should be chosen in a 

way that corresponds with the flow direction. That is, the leading edge of the airfoil should be 

on the left side, to let the flow leave the airfoil in the trailing edge on the right side. Also, to 

have a desired flow field, the camber of the airfoil should be upward in a wing of an aircraft.  

The quadrant in which the origin of the cylinder is located should be well adapted to fulfill 

these conditions. By giving negative or positive values for ܺ and ܻ the location of the center 

of the cylinder will change. By using Joukowski transformation, to get desired results, the 

center of the cylinder should be in the second quadrant of the complex plane ߞ . In this case 

the leading edge of the produced airfoil is on the left and its camber is upward. 

Beside the sign of  ܺ  and ܻ  components of ߞ଴, their magnitudes and proportions with the radius 

of the cylinder are other key points to have a desired airfoil. By increasing the absolute value 

of the ܻ , the camber of the airfoil increases and vice versa. This parameter should be 

proportionally defined to have a smooth flow field in both up and down surfaces of the airfoil. 

The horizontal coordinate of the center of the cylinder which is the real part of the complex 

number ߞ଴ , defines the thickness of the airfoil. By increasing the absolute magnitude of the ܺ 

thicker Joukowski airfoil will be obtained and vice versa. To have a desired airfoil this value 

should be defined proportionally with the radius of the cylinder. 

The magnitude of ܺ and ܻ should be proportional to the radius of the cylinder. The radius of 

the cylinder should be selected according to our desired cord length for the Joukowski airfoil. 

Kutta condition: 

The Kutta condition is exposed to an airfoil to avoid separation of the flow from the surface of 

the airfoil (Kapania, 2008). To provide such a condition, for the generation of the lift power, 

two neighbouring particles which separate in the stagnation point of the leading edge should 
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meet each other in the stagnation point situated in the trailing edge. In general, it means that 

the fluid flowing over the upper and lower surfaces of the airfoil should meet at the trailing 

edge of the airfoil (Kapania, 2008). The Kutta condition is achieved because of the friction 

between the boundary of the airfoil and the fluid (Jahnson, 2013). Due to this fact that, in a 

reasonable airfoil for a wing the length of the upper surface is longer than the lower surface, 

to fulfill the Kutta condition, the flow particles in the upper flow have to travel more distance 

for a limited time, which means increasing the flow velocity. Based on Bernoulli’s principle, 

this increased velocity of the flow will decrease the pressure on the upper surface of the airfoil. 

Thus, unbalanced pressure in upper and lower surface of the airfoil will generate the lift power 

(Johnson, 2013). According to Kutta condition, the angle of attack of the airfoil must not 

exceed a critical angle known as the stall angle. As the angle of attack increases beyond this 

angle, the flow around the airfoil loses its smooth and continuous trajectory (Kapania, 2008). 

Angle of Attack and Lift Power: 

Angle ߙ is the angle between the chord of the airfoil and the stream lines of the free stream. 

This angle is called angle of attack (AOA) of the airfoil. For having ideal flow, Kutta condition 

is applied and there is circulation directly related to angle ߚ in equation 2.14. According to the 

Kutta-Joukowski theorem and figure 2.1, the circulation  Γ for a circular cylinder with ߙ angle 

of attack is (Panton, 2005): 

߁  = ߙ) ݊݅ݏ ܴܷ ߨ4 +  (2.16) (ߚ

The circulation of the cylinder will generate a lift power even with zero angle of attack. By 

ignoring Kutta condition for the Joukowski airfoil the circulation of the cylinder is computed 

only with the angle of ߙ and circulation will be: 

߁  =  (2.17) (ߙ) ݊݅ݏ ܴܷ ߨ4

In this equation, angle of ߚ  caused by the circulation of the cylinder is not included, and for a 

zero angle of attack (ߙ = 0°) , according to equation 2.8  the cylinder and transformed airfoil 

will not generate any lift power. 



24 
 :planes ࣀ and  ࢆ 

By choosing complex plane ܼ  for the airfoil as the physical and real plane, mesh grid should 

be defined in this plane. Complex plane ܼ  is defined as: 

 ܼ = ݔ +  (2.18) ݕ݅

As shown in Figure 2.1 the airfoil is in the physical complex plane ܼ and the circle is in 

complex plane ζ . The Joukowski equation 2.12 , transfers the circle in ζ plane to the Joukowski 

airfoil in ܼ  plane. The potential flow is defined around the circular cylinder which is in ߞ plane. 

Therefore, to have the ߞ plane, inverse Joukowski transformation is used. Following is the 

equation of the inverse Joukowski transformation (Panton, 2005): 

ߞ  =  12  ܼ ± ඨ൬12  ܼ൰ଶ − ଶమߣ = 12 (ܼ ± ඥܼଶ − ଶమߣ4 ) (2.19) 

Inverse Joukowski transformation transforms the mesh grid in the plane ܼ plane to a mesh grid 

in the plane ߞ . 

Potential Flow function and Velocity function: 

The potential flow function around the circular cylinder was presented in previous sections. 

This function is the product of the superposition of three basic flows around the circle. This 

flow field is in plane ߞ . For a circular cylinder which its center is located on ߞ଴, potential flow 

function is: 

఍ܨ  = ܷஶ(ߞ − ଴)݁ି௜ఈߞ + ܷஶܴଶ(ߞ − ଴) ݁௜ఈߞ + ݅݇௩௢௥௧௘௫ߞ))݊ܮ − ܴ(଴ߞ ) (2.20) 

In the same manner, the velocity function of the circular cylinder in plane ߞ will be: 

 ఍ܹ = ߞ఍݀ܨ݀   (2.21) 
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 ఍ܹ =  ܷஶ ݁ି௜ఈ − ܷஶܴଶ(ߞ − ଴)ଶߞ  ݁௜ఈ + ݅݇௩௢௥௧௘௫(ߞ −  ଴) (2.22)ߞ

By using these equations and Joukowski transformation, potential flow function and velocity 

function around the Joukowski airfoil is calculated. 

Leading and Trailing Edges:  

As indicated in Figure 2.1, leading edge and trailing edge of the airfoil are located on the ݔ 

axis in plane ܼ  and on ߦ axis in plane ߞ . For these points, the magnitudes of ݅ݕ and ݅ߟ  
(imaginary part of the complex number) are zero but the magnitude of ߦ ݀݊ܽ ݔ (real part of the 

complex number) remains to be calculated. According to Figure 2.1, trailing and leading edge 

in the plane ߞ   for the cylinder are: 

఍ܧܶ  = ߣ + 0݅ (2.23) 

఍ܧܮ  =  −(|ܺ| + ܴ ((ߚ)ݏ݋ܿ  + 0݅ (2.24) 

These leading and trailing edges are in plane ߞ , so Joukowski transformation should be used 

to find these points in the plane ܼ for the Joukowski airfoil. Trailing edge is always: 

௭ܧܶ  = ߣ + ߣଶߣ =  (2.25) ߣ2

For the leading edge, the equation is not simple like trailing edge and Joukowski transformation 

should be used to find this point on the airfoil. Velocity in these two points is calculated to 

verify the code and as expected, velocity in leading and trailing edge are zero.  

Minimum and Maximum Speed:  

The two other points which are important to spot on the plane are those that minimum and 

maximum speed occurs. As expected the maximum speed is on the upper side of the airfoil 

and near the surface of the airfoil and the minimum speed is located on the stagnation points.  
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2.2  Two dimensional ice particle trajectory simulation model 
 

The trajectory of the ice piece and its acceleration in the flow field are the results of the 

aerodynamic and gravitational forces on the ice piece. The aerodynamic forces give the 

acceleration to the mass of the ice piece (second law of Newton) which make the ice piece 

move in the plane of the flow field. To determine the force components on the ice piece relative 

velocity of the ice piece and its angle with the referencing axis should be known. The moment 

brings about the rotational movement of the ice piece which changes the ice piece’s angle of 

orientation, which is the key parameter to compute lift, drag and moment coefficients. These 

coefficients are used to compute the aerodynamic force components.  The mathematical 

method to compute all these aerodynamic coefficients, forces and the moment will be 

presented in this section. 

 

2.2.1 Relative velocity of the ice piece and its orientation 
 

To calculate the relative velocity of the ice piece with referencing the flow field, the velocity 

is decomposed to its vertical and horizontal components in a 2D flow field plane. Relative 

velocity components in horizontal and vertical axis are defined as following: 

௥௘௟௔௧௜௩௘ݑ  = ௙ܷ௟௢௪ − ௜௖௘ݑ  (2.26) 

௥௘௟௔௧௜௩௘ݓ  = ௙ܹ௟௢௪ − ௜௖௘ݓ  (2.27) 

Here, ௙ܷ௟௢௪ and ௙ܹ௟௢௪ are the velocity components of the flow stream and ݑ௜௖௘ ܽ݊݀ ݓ௜௖௘ are 

the velocity components of the ice piece. As in coordinate system, the positive direction for 

the horizontal axis is rightward and for vertical axis is upward, the signs of the velocity 

components will be positive in this direction and vice versa. These relative velocity 

components are used to compute the angle of the relative velocity, and the absolute value of 

the relative velocity is used to obtain the aerodynamic forces on the ice piece.   
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The  ߙ angle of the relative velocity is defined as the angle between the relative velocity and 

horizontal axis and is computed as following: 

ߙ  = ݊ܽݐܿݎܣ ൬ݓ௥௘௟௔௧௜௩௘ݑ௥௘௟௔௧௜௩௘ ൰ (2.28) 

 

Figure 2.2 (a) shows the coordinate system and also, the relative velocity with two positive 

components. The angle ߙ has a positive value and is in the first quadrant.  In Figure 2.2 (b) 

relative velocity with a negative angle is illustrated. The horizontal component is still positive 

but the vertical component is downward and negative. Angle ߙ is in forth quadrant and has a 

negative value. The sign of the angle ߙ is important to calculate the components of the forces 

on the ice piece in ݔ and ݖ direction. 

 

 

Figure 2.2 Angle of the relative velocity (α) 
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2.2.2 2D force components on the ice piece 
 

To compute the vertical and horizontal force components on the ice piece, first the lift and drag 

forces (aerodynamic forces) on the ice piece should be obtained. Drag force is aligned with the 

relative velocity and the lift force is perpendicular to the drag force. To have the force 

components in ݔ and ݖ directions, the sine and cosine of the ߙ  will be applied to the drag and 

lift forces. All these force components are presented in Figure 2.3. 

 

 

Figure 2.3 Aerodynamic force components on the ice piece 

 

According to figure 2.3 (a),  horizontal force (ܨ௫) and vertical force (ܨ௭) on the ice piece can 
be calculated as following: 

௫ܨ  = ௫݂஽ − ௫݂௅  (2.29) 
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௭ܨ  = ௭݂஽ + ௭݂௅  (2.30) 

In these equations  ௫݂஽ , ௫݂௅ are the horizontal components of the drag and lift forces and ௭݂஽, ௭݂௅ are the vertical components of the drag and lift forces. 

Lift (ܮ) and Drag (ܦ) forces on an ice piece with a reference area of ܵ and the relative 

velocity of ௥ܷ௘௟ in a flow with a density of ߩ are: 

ܮ  = ߩ0.5 ௥ܷ௘௟ଶ ௅ܥܵ  (2.31) 

ܦ  = ߩ0.5 ௥ܷ௘௟ଶ ஽ܥܵ  (2.32) 

By having the lift and drag forces, their horizontal and vertical components are: 

 ௫݂஽ = ܦ × ௫݂௅  ,ߙݏ݋ܿ = ܮ ×  ߙ݊݅ݏ 

 
(2.33) 

 

 ௭݂஽ = ܦ × ௭݂௅  ,ߙ݊݅ݏ = ܮ ×  ߙݏ݋ܿ

 

(2.34) 

Putting together all these equations gives: 

௫ܨ  = ߙݏ݋ܿܦ − ߙ݊݅ݏܮ = ߩ0.5 ௥ܷ௘௟ଶ ߙݏ݋஽ܿܥ) ܵ −  (2.35) (ߙ݊݅ݏ௅ܥ

௭ܨ  = ߙ݊݅ݏܦ + ߙݏ݋ܿܮ = ߩ0.5 ௥ܷ௘௟ଶ ߙ݊݅ݏ஽ܥ) ܵ +  (2.36) (ߙݏ݋௅ܿܥ

These last two equations are used in the Matlab code to compute the force components on the 

ice piece and the sign and magnitude of the ߙ governs the sign of the vertical and horizontal 

force components. In Figure 2.3 (b) sine of the ߙ is negative and its cosine is positive so force 

components are: 
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௫ܨ  = ௫݂஽ + ௫݂௅  (2.37) 

௭ܨ  = − ௭݂஽ + ௭݂௅  (2.38) 

For a square plate ice with a dimension of ݈ × ݈ × ݁, the moment force around the ݕ axis is: 

ܯ  = ߩ0.5 ௥ܷ௘௟ଶ ݈ଷܥெ  (2.39) 

In these equations, ܥ௅,  ெ are lift, drag and moment coefficients. By illustrating bothܥ ݀݊ܽ ஽ܥ

two cases for the angle of the relative velocity in figure 2.3, the accuracy of the calculation of 

the angle of the relative velocity ߙ is verified. This angle is very important to calculate the 

vertical and horizontal components of drag and lift forces and consequently the horizontal and 

vertical forces on the ice piece.  

The angle of the ice piece with the relative velocity ߛ (angle of attack) is used to determine lift, 

drag and moment coefficients. In the next section this angle will be discussed. 

 

2.2.3 Ice piece’s angle of attack ࢽ: 
 

Angle ߛ is the angle between the relative velocity and the ice piece. This angle is called the 

angle of attack of the ice piece. Figure 2.4 shows this angle in two cases when the angle of the 

relative velocity is positive and when this angle is negative. 

 

According to Figure 2.4 in both cases ߛ will be: 

ߛ  = ߠ +  (2.40) ߙ
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Figure 2.4 The angle between the relative velocity and the ice piece (ߛ) 

 

Angle ߠ is the angle between the plate and horizontal axis and angle ߙ is the angle of the 

relative velocity. Angle ߛ is a module of 180° and can have values from zero to 180 degrees 

and is used to calculate the pressure center of the plate ice piece (௖௟) and normal coefficient ܥே (Vedie, 2016). Next section is dedicated to the calculation of these two parameters and 

aerodynamic coefficients. 

 

2.2.4 Lift, drag and moment coefficients 
 

As discussed in the section 2.2.2 to have the lift, drag and moment forces on the ice piece, 

aerodynamic coefficients for these three forces are needed.  The static lift, drag and moment 

coefficients using the normal coefficient ܥே are as follows (Holmes, 2006): 

஽௦ܥ  = 0.1 + ேܥ  (2.41) (ߛ)݊݅ݏ
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௅௦ܥ  = ேܥ  (2.42)            (ߛ)ݏ݋ܿ

ெ௦ܥ  = ேܥ ቀ݈ܿቁ                (2.43) 

 

The distance between the pressure center location and the center of the plate ice piece is ܿ and ܥே is the normal coefficient. The ቀ௖௟ቁ parameter and normal coefficient ܥே are defined as a 

function of the angle of attack(ߛ): 

 

 ቀ݈ܿቁ =
ەۖۖ
۔ۖ
ۓۖ 0.3 − 0.22 ቀ 38ቁߛ                             ݂݅    0° ≤ ߛ ≤ 38°0.08 ߛ)൫2ݏ݋ܿ − 38°)൯               ݂݅ 38° ≤ ߛ ≤ 82.5°0                                                  ݂݅ 82.5° ≤ ߛ ≤ 97.5°−0.08 ൫2(142°ݏ݋ܿ − ൯(ߛ        ݂݅ 97.5° ≤ ߛ ≤ 142°−0.3 + 0.22 ൬180° − 38ߛ   ൰        ݂݅ 142° ≤ ߛ ≤ 180°

 (2.44) 

 

ேܥ  = ۔ۖەۖ
1.7ۓ ቀ 40°ቁߛ                      ݂݅    0° ≤ ߛ ≤ 40°1.15                          ݂݅    40° ≤ ߛ ≤ 140°1.7 ൬180° − 40°ߛ ൰    ݂݅    140° ≤ ߛ ≤ 180° (2.45) 

 

Figure 2.5 shows the static coefficients of the lift, drag and moment forces in different angles 

of attack for the ice piece. These coefficients are used in the equations of the forces and 

moment. To consider the forces caused by rotation of the ice piece three other coefficients 

should be added to these static coefficients. Angular velocity of the ice piece is used to 

determine these coefficients. 
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Figure 2.5 Lift, drag and moment coefficients 

 
By adding these coefficients to the static coefficients, Magnus effect is included in the 

trajectories. The Magnus effect is not considered in all research and there are several methods 

to calculate this value. In this research, coefficients of the Magnus effect will be added to the 

static aerodynamic coefficients. Next section is the presentation of the Magnus effect. 

 

2.2.5 Magnus effect 
 

To compute the trajectory of the ice piece, the rotation of the ice piece should be taken into 

account. The steady coefficients of the aerodynamic forces, treat the ice piece as a steady object 

in every time-step of the trajectory with different angles of attack, while in fact, the Magnus 

effect generated by rotational movement of the piece should be considered. To consider the 

effect of the angular velocity of the ice piece, the coefficient of the aerodynamic forces related 

to Magnus effect should be added.  

Magnus effect is not used in the majority of the research. In some references this effect is 

completely neglected and in some research Magnus effect is used only for the lift force 

(Holmes, 2006). The coefficients used in this research for Magnus effect are the same as used 
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by Kordi (Kordi, 2009). These Coefficients are introduced by Iversen (Iversen, 1979) and uses 

the ratio of the speed of the tip of the ice piece (ܵ) and the speed of the ice’s tip at the stable 

auto rotational point (ܵ଴) (Vedie, 2016). Based on  Iversen,  if the plate’s non-dimensional 

moment of inertia is greater than one (ܫ∗ = (ܮ௔௜௥݈ߩߨ) /ܫ32 > 1): 

 ܵ଴ = ቆ0.329 ݈݊ ൬݈݁ ൰ − 0.0246 ݈݊ ൬݈݁ ൰ଶቇ ቌ൬ 2ܴܣ + (4 + ଶ)଴.ହ൰(ܴܣ) ቆ2 − ൬ ܴܣܴܣ + 0.595൰଴.଻଺ቇቍଶ/ଷ
 (2.46) 

 

 Where: 

ܴܣ  =  (2.47) ܮ݈

݈ and ܮ are the length and width of the ice plate. The speed of the plate’s tip can be found as 

following: 

 ܵ = ݈߱2 ௥ܷ௘௟  (2.48) 

 

Where ߱ is the angular velocity of the ice piece and ܷ ௥௘௟ is the relative velocity of the ice piece 

and is equal to: 

 ௥ܷ௘௟ = ൫( ௙ܷ௟௢௪ − ௜௖௘)ଶݑ + ( ௙ܹ௟௢௪ −  ௜௖௘)ଶ൯଴.ହݓ
 (2.49) 

 

Using these parameters, aerodynamic coefficients generated by Magnus effect can be obtained.  

Rotational lift coefficient (ܥ௅ோ), rotational drag coefficient (ܥ஽ோ) and rotational moment 

coefficients are: 
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஽ோܥ  =
۔ۖۖەۖۖ
ۓ 0.66 ฬ ܵܵ଴ฬ                      ݂݅ ฬ ܵܵ଴ฬ  ≤ 0.4 0.12 + 0.36 ฬ ܵܵ଴ฬ                      ݂݅  0.4 <    ฬ ܵܵ଴ฬ ≤ 1.0 0.48                              ݂݅   ฬ ܵܵ଴ฬ > 1.0  (2.50) 

 

௅ோܥ  =
۔ۖۖەۖۖ
ۓ −1.575 + 0.2625 ܵܵ଴          ݂݅ ܵܵ଴ ≤ −0.21.05 ܵܵ଴                                 ݂݅ − 0.2 <  ܵܵ଴ ≤ 0.2  1.575 + 0.2625 ܵܵ଴                   ݂݅ ܵܵ଴ > 0.2  (2.51) 

 

ெோܥ  =
۔ۖۖەۖۖ
ۓ −0.12 ൬1 + ܵܵ଴൰                                 ݂݅ ܵܵ଴ <  −1.0−0.12 ൬ 1 − ฬ ܵܵ଴ฬ൰ ܵܵ଴               ݂݅ − 1.0 ≤ ܵܵ଴  ≤ 1.00.12 ൬1 − ܵܵ଴൰                                        ݂݅ ܵܵ଴  > 1.0  (2.52) 

 

These coefficients will be added to the static coefficients of the aerodynamic forces and 

moments in the trajectories which Magnus effect is included. 

 

2.2.6 2D lift, drag and moment coefficients 
 

In this research the trajectory of the square plate ice with a finite dimension of ݈ × ݈ × ݁ in a 

two-dimension flow field is studied. It is assumed that the movement of the ice piece as a three-

dimensional particle will be on a plane and the degree of freedom (DOF) for the movement of 

the ice particle is three. The ice piece can have two linear movements in two directions of ݔ and ݖ axes and an angular movement around the ݕ axis. Also the movement of the ice piece is 
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confined to the movements in a plane but the ice piece is considered as a 3D object. It means 

that 3D lift, drag and moment coefficients are used to compute the forces on the ice particle. 

The aerodynamic coefficients for a two-dimensional ice particle are different than those for 3D 

aerodynamic coefficients. A 2D dimensional ice piece has an infinite width, parallel to the ݕ 

axis. By considering such an ice piece, 2D lift, drag and moment coefficients should be used 

to compute the forces and moments on the rectangular ice piece. Figure 2.6 shows the graphs 

of the 2D and 3D aerodynamic coefficients. 

 

 

Figure 2.6 2D & 3D lift, drag and moment coefficients  
 

The relation between the static aerodynamic coefficients and normal coefficient for 2D plate 

is the same as for 3D coefficients and equations 2.41, 2.42 and 2.43 are used to obtain these 

values. The normal coefficients (ܥே) for 2D plate is introduced by Hoerner (Hoerner, 1965). 

Figure 2.7 shows the values of the normal coefficient for 2D plate in the function of the angle 

of attack of the plate. 
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Figure 2.7 Normal coefficient for 2D rectangular plate ice piece 
 

The Magnus effect for 2D plate is calculated as following (Hargreaves, 2014): 

 

௅ோܥ  =
ەۖۖ
ۖۖۖ
۔ۖ
ۖۖۖۖ
ۓ ௅ோ଴ܥ ൭൬ ܵܵ଴ + 1൰൱ − 1                                                    ݂݅ ܵܵ଴ ≤ −0.6

௅ோ଴ܥ ൬0.5 ൬ ܵܵ଴ + 0.6൰ − 0.6൰                       ݂݅ − 0.6 <  ܵܵ଴ ≤ ௅ோ଴ܥ3.5  0.1− ൬ ܵܵ଴൰                                                   ݂݅ − 0.1 <  ܵܵ଴ ≤ ௅ோ଴ܥ0.1− ൬0.5 ൬ ܵܵ଴ − 1൰ + 1൰                                ݂݅ − 0.1 <  ܵܵ଴ ≤ 0.6
௅ோ଴ܥ ൭൬ ܵܵ଴ − 0.6൰ + 0.6൱                                                ݂݅ ܵܵ଴ ≥ 0.6

 (2.53) 



38 
 

 

஽ோܥ  =
۔ۖۖەۖۖ
஽ோ଴ܥۓ ฬ ܵܵ଴ฬ + 0.6                                                         ݂݅ ฬ ܵܵ଴ฬ  ≤ ஽ோ଴ܥ 0.0769 0.35 ൬ฬ ܵܵ଴ฬ − 0.35൰ + 0.95        ݂݅  0.35 <    ฬ ܵܵ଴ฬ < ஽ோ଴                                                                             ݂݅   ฬܥ 1.0 ܵܵ଴ฬ ≥ 1.0  (2.54) 

 
 

 

 

 

ெோܥ =
۔ۖۖەۖۖ
ۓ 0.3(ܵ)݊݃݅ݏ ฬ ܵܵ଴ฬ − 0.04                                     ݂݅ ฬ ܵܵ଴ฬ  ≤ 0.40 ݂݅                                     0.08(ܵ)݊݃݅ݏ       0.40 < ฬ ܵܵ଴ฬ ≤ (ܵ)݊݃݅ݏ0.70 ൬−0.2667 ൬ฬ ܵܵ଴ฬ − 0.7൰ + 0.08൰      ݂݅ ฬ ܵܵ଴ฬ  > 0.70 (2.55) 

    
 ௅ோ଴ are the steady-state drag and  lift coefficients and are equal to 1.28 and 0.76ܥ ஽ோ଴ andܥ 

respectively. 

 

2.2.7 Coefficients for Sphere ice piece 
 

In order to investigate the influence of the ice shape on the trajectory of the ice piece, 

simulations for a sphere ice piece with the same mass as the square plate ice are conducted. 

Lift, drag and moment coefficients for a sphere ice piece used in the calculations are borrowed 

from Grace and Weber (Grace & Weber, 1978) and are as following: 

 

௅ܥ  = 0 (2.56) 

ெܥ  = 0 (2.57) 
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஽ܥ =

ەۖۖ
ۖۖۖ
۔ۖۖۖ
ۖۖۖ
ۖۖۖ
ۓ       316 + 24ܴ݁ + 1݁ − 12                                                                   ݂݅ ܴ݁ < 0.01 24ܴ݁(1 + 0.1315ܴ݁(଴.଼ଶି଴.଴ହ ୪୭୥భబ ோ௘))                                             ݂݅ ܴ݁ ≤ 20  24ܴ݁(1 + 0.1935ܴ݁଴.଺ଷ଴ହ)                                                                ݂݅ ܴ݁ ≤ 260       10(ଵ.଺ସଷହିଵ.ଵଶସଶ ୪୭୥భబ ோ௘  ା଴.ଵହହ଼ (୪୭୥భబ ோ௘)మ)                          ݂݅ ܴ݁ ≤ 150010൫ିଶ.ସହ଻ଵାଶ.ହହହ଼ ୪୭୥భబ ோ௘ି଴.ଽଶଽହ (୪୭୥భబ ோ௘)మା଴.ଵ଴ସଽ (୪୭୥భబ ோ௘)య൯  ݂ܴ݅݁ ≤ 1.2݁410(ିଵ.ଽଵ଼ଵା଴.଺ଷ଻଴ ୪୭୥భబ ோ௘ି଴.଴଺ଷ଺  (୪୭୥భబ ோ௘)మ)                              ݂݅ ܴ݁ ≤ 4.4݁4 10(ିସ.ଷଷଽ଴ାଵ.ହ଼଴ଽ ୪୭୥భబ ோ௘ି଴.ଵହସ଺(୪୭୥భబ ோ௘)మ                              ݂݅ ܴ݁ ≤ 3.38݁5 29.78 + 5.3 logଵ଴ ܴ݁                                                                       ݂݅ ܴ݁ ≤ 4݁5 0.1 logଵ଴ ܴ݁ − 0.49                                                                          ݂݅ ܴ݁ ≤ 1݁6 0.19 − 8݁4ܴ݁                                                                                          ݂݅ ܴ݁ > 1݁6

 (2.58) 

 
 ܴ݁ is the Reynolds number being equal to: 

 

 ܴ݁ = ఘೌ೔ೝ஽௎ೝ೐೗ఓೌ೔ೝ   (2.59) 

 

Where ߤ௔௜௥ is the air dynamic viscosity and ܦ is the diameter of the sphere ice particle. To 

calculate the force components on the sphere ice particle, equations 2.35 and 2.36 will be used. 

Reference area for the sphere in these equations is: 

 ܵ = ଶ4ܦߨ  (2.60) 

In the next section differential equations of the movement will be presented. 

 

 
2.2.8 2D differential equations of motion 

 
The ice trajectory is computed by integrating the differential movement equations. The 

aerodynamic forces of the flow accelerate the ice piece. The integration of the linear 

(translational) acceleration of the ice piece, computes the linear velocity of the ice piece and 
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the integration of the velocity of the ice piece computes the translational movement of the ice 

piece. On the other hand, the integration of the angular acceleration yields the angular velocity 

and consequently angular movement of the ice piece. 2D differential equations of the 

movement are as following (Holmes, 2006): 

 

 
ݐ݀ݔ݀ = ௜௖௘ݑ  (2.61) 

ݐ௜௖௘݀ݑ݀  = ௫݉௜௖௘ܨ  (2.62) 

ݐ݀ݖ݀  = ௜௖௘ݓ  (2.63) 

ݐ௜௖௘݀ݓ݀  = ௭݉௜௖௘ܨ − ݃ (2.64) 

 

 
ݐߠ݀݀ = ߱ (2.65) 

 
ݐ݀߱݀ = ௬௬ܫܯ  (2.66) 

 

For a square plate ice with a dimension of  ݈ × ݈ × ݁ moment of inertia is: 

 

௬௬ܫ  = ݉௜௖௘ ቆ ݈ଶ12 + ݁ଶ12ቇ (2.67) 

 

These equations are used to compute the acceleration, velocity and the movement of the ice 
piece in every time-step of the trajectory. 
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2.2.9 Ice piece samples and their properties 
 
In this research, the plate samples are similar to those found in the literature. The trajectories 

have been validated with the trajectories of Holmes (Holmes, 2006), Kordi (Kordi, 2009), 

Suares (Suares, 2005) and Shimoi (Shimoi, 2010), therefore the properties of their square plate 

pieces are used in the simulations of this research. The dimension and the density of the plates 

are needed to compute the forces and the moment on the plate. In the literature the dimension 

of the plate samples is clearly mentioned but in some cases the density of the ice pieces is not 

directly stated and their density will be extracted by using their other parameters. 

The dimension of the ice piece is defined by ݈, ݈ and ݁ which represent the length, width and 

thickness of the plate respectively. Figure 2.8 is an illustration of these values on the plate 

sample. 

 

 

Figure 2.8 Dimensions of square plate ice piece 

 
In some references the ice piece has been introduced by its Tachikava number (Tachikava, 

1983). Using the Tachikava number (ܭ)  and having the other known values, the density of 

the ice piece can be found by following equation: 

ܭ  = ௔௜௥ܷଶ݈ଶ2݉݃ߩ =  ௠ℎ݃ (2.68)ߩ௔௜௥ܷଶ2ߩ
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Table 2.1 has categorized the plate samples used in simulations. The dimensions are in 

millimeters and the unit of mass density is kilograms per cubic meter. This table introduces the 

general properties of the plate samples and more detailed properties of the trajectories will be 

mentioned in each simulation. 

 

Table 2.1 Properties of the square plate ice pieces used in the simulations 

Ice shape Reference Material Density (࢓/ࢍ࢑૜) Dimension(࢓࢓) 

Square flat 

plate 
Holmes 

Plastic 1163  40 × 40 × 2 

Basswood 570 75 × 75 × 9 

Plywood 847 75 × 75 × 3 

Square flat 

plate 
Kordi Plastic 1120 40 × 40 × 2 

Square flat 

plate 
Suares - 917 130 × 130 × 36 

Square flat 

plate 
Shimoi Polyethylene 941 152 × 152 × 10 

 

In the section of Monte-Carlo study, the impact of the ice shape on the trajectories and its pass 

possibility through defined areas is investigated. A sphere ice particle and a rectangular plate 

with following properties are used to compare with square plate ice particles. All three samples 

have the same mass but their dimension differs. 
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Figure 2.9 Dimensions of the sphere and rectangular ice particles 

 

Table 2.2 Contains the properties of the plate samples used in our Monte-Carlo simulations. 

Table 2.2 Properties of the ice particles used in Monte-Carlo simulations 

Ice shape Reference Density (࢓/ࢍ࢑૜) Dimension (࢓࢓) 

Square flat plate Suares 917 130 × 130 × 36 

Rectangular flat 

plate 
-  458.5 130 × 260 × 36 

Sphere  - 917 106 

 

 

2.3   Monte-Carlo statistical study 
 

Simulation of the ice piece trajectory starts with defining the initial conditions of the ice piece 

to the ice trajectory code. Ice piece shedding can happen with many different initial conditions 

which bring about different trajectories for each set of initial conditions. Monte-Carlo method 

is widely used in the domain of ice trajectory simulations to consider the uncertainties of the 

initial condition of the shedding (Suares, 2005), (Shimoi, 2010). 

The set of the initial condition for ice shedding can be the combination of several conditions. 

These variable parameters can be the size and the shape of the ice piece, the initial linear and 
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angular velocity of the ice piece, the location of the ice piece on the wing or in the flow field 

and the orientation of the ice piece with respect to the axis of the plane. In this research a code 

has been developed to run the ice trajectory simulation for a large number (60,000) of initial 

condition sets by using a random number generator.  

The variable parameters that are included in the research are the location of the ice piece, the 

initial linear and angular velocity and the orientation of the ice piece with respect to the 

horizontal axis. To generate this initial conditions for the velocity and the orientation of the ice 

piece, following equation is used (Shimoi, 2010): 

 ܲ = ௠ܲ௜௡ + ห ௥ܲ௔௡௚௘ห ×  (2.69) ݀݊ܽݎ

In this equation ௠ܲ௜௡ is the minimum value of the parameter, ௥ܲ௔௡௚௘ is the range of variation 

of the parameter and ݀݊ܽݎ is a uniform random number between zero and one. For the initial 

linear velocity of the ice piece, it is assumed that the ice piece can have three percent of the 

flow velocity either in the direction of the flow or opposite to its direction. Velocity 

components of the ice piece will be: 

௜௖௘బݑ  = −0.03 × ܷஶ + |2 × 0.03 × ܷஶ| ×  (2.70) ݀݊ܽݎ

௜௖௘బݓ  = −0.03 × ܷஶ + |2 × 0.03 × ܷஶ| ×  (2.71)  ݀݊ܽݎ

For the angular velocity a variation of 0.5 ݏ/݀ܽݎ either clockwise or counter clockwise is 

considered. According to equation 2.69 the random angular velocity for the initial condition of 

the trajectory can be achieved as following: 

 ߱଴ = −0.5 + |2 × 0.5| ×  (2.72) ݀݊ܽݎ

The orientation of the ice piece can change from −180° to +180°, therefore the random value 

for this parameter can be calculated as following: 
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଴ߠ  = −180 + |2 × 180| ×  (2.73) ݀݊ܽݎ

The combination of these parameters creates the initial condition set for each run of the ice 

trajectory simulation. Table 2.3 shows these variable parameters briefly.  

 

Table 2.3 Variation of initial parameters for square plate ice piece trajectories around the 
Joukowski airfoil 

Parameters Limits of variation 

Ice piece linear velocity ± 0.03 ܷஶ 

Ice piece angular velocity ± 0.5 ݏ/݀ܽݎ 

Ice piece orientation angle with 
horizon 

± 180° 

Location of ice piece 
40 locations on the upper side of the leading edge 

40 locations on the down side of the leading edge 

 

The location of the ice piece in a uniform flow does not have influence on the ice trajectory 

because the velocity vector is equal in all points of the plane. The flow field around an airfoil 

is not a uniform flow field and the velocity vector is different in each point of the plane, so the 

location of the ice piece at the moment of the shedding is considered as a variable for initial 

conditions of the trajectories. 

In the Monte-Carlo methodology, the uncertainty of the location of the ice piece is not 

considered as a random point on the plane and instead, the locations of the ice particle are 

defined on the airfoil’s geometry in which the ice shedding can occur. The number and the 

locations of the ice pieces are defined before running the Monte-Carlo simulation. As ice 

accretion is mostly built on the leading edge of the airfoil, this research has studied the 

trajectories initiated from this area on the airfoil. These locations are limited to 10% of the 

cord’s length of the airfoil starting from the stagnation point on the leading edge. The total 

number of random initial condition sets are divided between these locations of the ice pieces 

on the airfoil 
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As mentioned in table 2.3, Monte-Carlo simulations for Joukowski airfoil simulate ice 

shedding from 40 locations on the upside and 40 locations on the downside surface of the 

leading edge. To find these 40 locations following approach is used: 

௦௧௔௚௡௔௧௜௢௡ߠ  = ߨ  +  (2.56) ߚ

௡ߠ  = ௦௧௔௚௡௔௧௜௢௡ߠ ± (݊ − 1) (2.75) 

Here. ߠ௦௧௔௚௡௔௧௜௢௡ is the angle of the stagnation point on the original cylinder of the Joukowski 

airfoil and ߠ௡is the angle of other shedding locations on the cylinder which differ by one degree 

from each other (݊ is the number of the shedding location which is from one to 40). In equation 

2.75, plus sign is used for upper side of the stagnation point and minus sign is used for 

downside of the stagnation point. By using Joukowski transformation the locations of ice 

shedding can be found on the Joukowski airfoil.  

To compare the results of Monte-Carlo simulations, the mean trajectory ෤݃ is calculated using 

the following equation (Vedie, 2016): 

 ෤݃ = 1ܰ ෍ ,௜ݔ)݃ ே(ݐ
௜ୀଵ  (2.57) 

Principally, in this research, uniform random numbers are used to generate initial conditions 

for ice trajectories in Monte-Carlo simulations. In addition, normal random number 

distribution as another method to generate random numbers will be used to compare the results 

of these two different methods and their influences on the ice trajectories.   

To generate normal random numbers, the mean, standard deviation and variation for each 

parameter are defined.  Following is the general equation of the normal random numbers used 

in the Monte-Carlo simulation: 

 ௡ܲ = ߤ + ඥߪଶ ×  (2.77) ݊݀݊ܽݎ
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In this equation ௡ܲ  is a normal random parameter of the initial condition. ߤ is the mean value 

of the parameter and ߪଶ is the variation of the parameter and ߪ is the standard deviation of the 

parameter. Using this equation, initial normal values for the angle of the ice piece and its 

velocities are: 

௜௖௘బݑ  = 0 + ඥ0.03 × ܷஶ ×  (2.78) ݊݀݊ܽݎ

௜௖௘బݓ  = 0 + ඥ0.03 × ܷஶ ×  (2.79) ݊݀݊ܽݎ

 ߱଴ = 0 + √0.5 ×  (2.80) ݊݀݊ܽݎ

଴ߠ  = 0 + √180 ×  (2.81) ݊݀݊ܽݎ

 

The mean values for the initial angle and velocities of the ice piece are zero and the variations 

are as the same as uniform distribution. 

Figure 2.10 is an illustration of the general functions of the Matlab code for Monte-Carlo 

simulations. Since for some set of the initial conditions, the ice piece hits the airfoil itself, a 

function is developed to separate these trajectories from the matrix of the trajectories. Another 

function is developed for pass probability estimation of the objects downstream or around the 

airfoil and computes the pass probability of the ice piece around the airfoil and the results are 

plotted as a footprint map around the airfoil. 
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Figure 2.10 Diagram of the Matlab code for Monte-Carlo simulations 
 

Next chapter will discuss the results of the research for Joukowski airfoil, single trajectories 

and Monte-Carlo simulations.



CHAPTER 3 
 

RESULTS AND DISCUSSION  

 
By implementing the methodology of the research in the simulation codes, the results of the 

research project are obtained. In this chapter these results will be verified, validated and 

discussed in different sections for Joukowski airfoil, ice trajectory in horizontal uniform flow, 

ice trajectory in non-horizontal uniform flow, ice trajectory in the flow field of Joukowski 

airfoil and Monte-Carlo statistical study of the trajectories. 

 

3.1  Joukowski airfoil 
 
Following are the results for the Joukowski airfoil simulation code. The resulted figures will 

show how different parameters of the cylinder influence the shape of the Joukowski airfoil and 

its generated lift force. Also the results will compare the lift generation capability of the 

Joukowski airfoil with different angles of attack.  

 

3.1.1 Graphical result of the Joukowski code 
 

The code designed for the simulation of the Joukowski airfoil and its peripheral flow field 

generates four figures. Two of the figures plot the stream lines and velocity field around the 

circular cylinder and two other plot the stream lines and the velocity field around the Joukowski 

airfoil. Figure 3.1 shows these four figures for a sample cylinder and Joukowski airfoil 

generated by Joukowski code. These shapes are for a cylinder with a radius of 1 ݉ which its 

center is located at ߞ଴ = [−0.1, 0.04]. 
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Figure 3.1 Graphical results of the Joukowski airfoil Matlab code 

 

In the following subsections the results of the Joukowski code will be verified based on the 

mathematical equations of the Joukowski transformation to see if the code yields the expected 

results of the mathematical equations of the transformation.  
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3.1.2 Center of the circle in different quadrants 
 

As mentioned before in the section (2.1.2), the center of the cylinder plays a key rule to 

determine the shape of the transformed Joukowski airfoil. According to the sign of the real and 

imaginary part of this point, center of the cylinder is located in different quadrant of the plane ߞ. Figure 3.2 illustrates the resulted airfoils in different quadrants. 

 

 

 

Figure 3.2 Joukowski airfoil with center of the cylinder in different quadrants of plane  ߞ 
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As the flow is from left to right (as the coordinate system is from left to right) and the lift force 

should be upward for a wing, the center of the cylinder (ߞ଴) is defined in the second quadrant 

of the plane ߞ. In this case the leading edge of the airfoil is in front of the flow stream and its 

camber is upward. 

 

 

Figure 3.3 Comparison between the results of the Matlab code (left) and the results of 
Newman (right), up: Joukowski airfoil and stream lines, down: velocity field 
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To validate the code for Joukowski airfoil, graphical results are compared with those found in 

the literature. Figure 3.3 compares the obtained results with the result of Newman (Newman, 

2011). The results are identical by using the same parameters for the flow field and original 

cylinder (radius and center of the cylinder).  

 

3.1.3 Thickness of the airfoil and lift force 
 

One of the characteristics of the airfoil is its thickness. The thickness of the Joukowski airfoil 

is a function of the real part (ܺ) of the center of the cylinder (ߞ଴). By increasing the absolute  

magnitude of this parameter thicker airfoil are generated and vice versa. In figure 3.4 the lift 

forces of two Joukowski airfoils with different thicknesses are compared. Both the airfoils are 

moving with a velocity of 70 ݉/ݏ in the air and their angle of attack is 0°.   

 

 

Figure 3.4 Two Joukowski airfoils with different thicknesses: left: ߞ଴ = −0.1 + 0.04݅, right: ߞ଴ = −0.05 + 0.04݅, the radius of the circle for both airfoils is ܴ = 1 ݉. 
 

According to figure 3.4, the lift forces for both of the airfoils are equal. According to Kutta-

Joukowski theorem, the lift force is related to the circulation of the flow field around the airfoil. 
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As Kutta condition is exposed on the airfoils, the circulation around the airfoil is obtained using 

equation 2.16. 

 The flow velocity, cylinder radius and angle of attack ߙ is the same for both the airfoils, so 

remains to investigate the influence of the angle ߚ on the circulation around the airfoil. 

According to equation 2.14 angle ߚ is a function of the imaginary part of the ߞ଴ and the radius 

of the circle. As these two values for both these airfoils are equal, the circulation around them 

and their lift force will be of the same magnitude.  

Although based on the Kutta –Joukowski theorem, the thickness of the Joukowski airfoil does 

not have any influence on the lift force of the Joukowski airfoil, a proportional value for the 

real part of the ߞ଴ should be used. The ratio of the airfoil’s thickness influence the drag 

coefficient of the airfoil, therefore the thickness of the airfoil is important in the design of the 

airfoil.  In the next section the influence of the Joukowski airfoil’s camber on the lift force will 

be discussed. 

 

3.1.4 Camber of the airfoil and lift force 
 

Camber of the Joukowski airfoil is a function of the imaginary part (ܻ) of the center of the 

cylinder ߞ଴ . Increasing the value of the ܻ  will increase the camber of the airfoil and  decreasing 

these value results in more symmetric Joukowski airfoil. By presenting four Joukowski airfoils 

with different values for ܻ, the impact of the camber on the lift force of the airfoil is shown in 

figure 3.5.  The velocity of the airfoils is 70 ݉/ݏ and their cords are parallel to the airstream. 
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Figure 3.5 Four Joukowski airfoils with different cambers, up-left: ߞ଴ = −0.1 + 0.000001݅, 
up-right: ߞ଴ = −0.1 + 0.02݅, down-left: ߞ଴ = −0.1 + 0.04݅, down-right: ߞ଴ = −0.1 + 0.06݅, 

radius of the circles is ܴ = 1 ݉. 
 

Unlike the thickness of the Joukowski airfoil, its camber has a direct influence on generated 

lift force. The magnitude of the ܻ  (imagenary part of the ߞ଴) alters the angle ߚ which influences 

the circulation Γ. A symmetric Joukowski airfoil when its angle of attack is zero does not 

generate any lift force. To have a smooth flow field around the airfoil, without seperation of 

the fluid and with an acceptable drag to lift ratio, a proportional value for the vertical position 
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of the center of the cylinder should be selected. In the next section, lift force generation of the 

Joukowski airfoil with different angles of attacks will be elaborated. 

 

3.1.5 Airfoil’s angel of attack and lift force 
 

The lift force of an airfoil is directly a function of its angle of attack. An aircraft gains more 

upward lift force with increasing its angle of attack. In figure 2.1 this angle is indicated by ߙ.  

According to equation 2.16 , circulation around the airfoil is related to its angle of attack. By 

increasing the magnitude of the circulation, the airfoil will generate more lift force. Figure 3.5 

is the comparison of four Joukowski airfoils with different angles of attack. All these airfoils 

experience a flight with 70 ݉/ݏ velocity and the air has a density of 1.225 ݇݃/݉ଷ. 

The lift force is mentioned in each plot of the figure 3.6. It is observed that the lift force 

generation has direct relation with the angle of attack and lift force increases as the angle of 

attack increases. In the figures it can be seen that in an elevated angle of attack the velocity 

field around the airfoil is more unsymmetric and there is a velocity difference between the 

upside and downside of the airfoil. According to Bernoulli equation when the airfoil has 

positive angle of attack, there is less pressure on the upper side of the airfoil. The pressure 

difference between the two sides of the airfoil generates an upward force on the airfoil. when 

the angle of attack is negative, the velocity of the downside surface of the airfoil is greater, so 

force will be downward.  
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Figure 3.6 Joukowski airfoils with different angles of attack 

 

In the next section, the results for the simulation of the ice piece in a uniform flow field will 
be presented. 
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3.2   2D ice trajectory in horizontal uniform flow field 

 
In this section single ice trajectories in a horizontal uniform flow will be presented. The 

trajectory of the ice piece, as its position on the plane in each time step of the simulation, will 

be compared with those found in the literature.  The references used to validate the simulation 

code in this section (Holmes, 2006), (Kordi, 2009), have investigated the trajectory of the 

wind-borne plate-type debris in the uniform wind. Since the physical and mathematical models 

used in these researches are the same as the model of ice trajectory simulations, these 

references are used to study the trajectory of the ice piece in the uniform flow.  The validation 

of the trajectories will be divided in two sections. First the trajectories in which the Magnus 

effect is not included will be validated and later trajectories with Magnus effect will be 

considered. Plate samples, flow velocity, flow density and initial orientation of the plate will 

be different in each case studies. The properties of each validation case will be mentioned in 

pertaining figures. 

 

3.2.1 Trajectories without Magnus effect 
 

Holmes (Holmes, 2006) has conducted experimental and numerical trajectories to study the 

trajectory of the plate-type windborne debris in uniform wind. Holmes’s steady coefficients 

for lift, drag and moment are used in this research project.  The queasy-steady model to 

calculate the forces and moments on the plate ice is the same used in Holmes’s research. 

Holmes has published his result for trajectories with and without Magnus effect. This section 

will compare the trajectories with the trajectories of Holmes without Magnus effect. The plate 

samples simulated in these cases are of different sizes and materials. Although the density of 

the pieces is not directly mentioned in the test cases of Holmes but can be obtained using 

Tachikava number.  

Figure 3.7 illustrates the trajectories for a 40 × 40 × 2 ݉݉ square plastic plate with mass 

density of 1163 ݇݃/݉ଷ  in a horizontal uniform flow with a velocity of 9.2 ݉/ݏ . The initial 
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angle between the plate and the horizontal axes are 15 and 45 degrees. The air density is 1.24 ݇݃/݉ଷ and gravity acceleration is 9.81 ݉/ݏଶ. 

  

 

Figure 3.7 Comparison of trajectories between Holmes’s results and computed trajectories - 
square plastic plate (40 × 40 × 2 mm) with a density of 1163 kg/mଷ 

 

Holmes has also done experimental and numerical trajectory simulations on the square plate 

samples made of basswood. These trajectories are compared with the result of the research in 

figure 3.8. A 75 × 75 × 9 ݉݉ basswood square plate is released in three uniform airflow with 

different velocities. In all three cases the initial angle of the plate is 0 degree.  The flow velocity 

for each trajectory is written in each figure. The air density for all these cases is 1.24 ݇݃/݉ଷ . 

These trajectories are run without taking into account the Magnus effect. 
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Figure 3.8 Comparison of trajectories between Holmes’s results and computed trajectories - 
basswood square plate (75 × 75 × 9 ݉݉) 

 

Comparison of the trajectories of Holmes without Magnus effect and the result of the 

simulation code proves a good agreement between two simulations. The same numerical model 

to calculate the forces and moments on the square plate pieces and the same static coefficients 

for lift, drag and moment as Holmes are used in this research. The reason for slightly different 

result for the trajectories can be due to unclear values given in the literature. The air density is 

not given explicitly in Holmes’s article and the mass density of the plate sample is extracted 

by using Tachikava number. The Tachikava numbers are only given in one decimal numbers 
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which seem to be imprecise. In the next section other test cases which the Magnus effect is 

included will be validated.  

 

3.2.2 Trajectories with Magnus effect 
 

Pervious section compared the results for single square plate trajectories in horizontal uniform 

flow without Magnus effect. In these section simulation code is validated by comparing the 

results of the research with the results of Holmes (Holmes, 2006) and Kordi (Kordi, 2009) with 

Magnus effect.  

Comparison of two trajectories for basswood square plate samples with ܮ = ݈ = 75 ݉݉ and ݁ = 3 ݉݉ simulated with two different initial angle of attack  and two different velocities for 

the horizontal uniform airflow are presented in figure 3.9. Holmes has included the Magnus 

effect for these trajectories, so the simulations of the trajectories will be run both with static 

lift, drag and moment coefficients and the coefficients caused by auto rotation of the plate 

(Magnus effect). The auto rotational aerodynamic coefficients used in the research of Holmes 

are not the same as the Magnus coefficients used in this research. Although in these two cases 

trajectories are not very similar, but still there is a good agreement in general form of the 

trajectories between two references.  Notice the different parameters for initial angle of attack, 

the mass density and airflow velocity for each trajectory. 

The physical model used by Kordi (Kordi, 2009) to calculate the force components and 

moments on the square plate particles are the same as this research. Kordi has published her 

results taking into account the Magnus effect. Since the trajectories of this research uses the 

same coefficients for auto rotational forces and moment, it would be prudent to expect the 

same results for trajectories with the same parameters for the square plate particles and the 

same flow filed. 
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Figure 3.9  Comparison of trajectories between Holmes’s results and computed trajectories 
with Magnus effect- plywood square plate (75 × 75 × 3 ݉݉) with a density of 847 ݇݃/݉ଷ 

 

Figure 3.10 presents the trajectories for a square plastic plate with a dimension of ܮ = ݈ =40 ݉݉ and ݁ = 2 ݉݉. These square plastic plates which have 1120 ݇݃/݉ଷ  mass density 

experiences two trajectories in a horizontal uniform airflow with a velocity of 9.18 ݉/ݏ. The 

influence of the initial parameters such as the angle of attack, on the trajectories of the plate in 

the same flow fields are obvious in this figure. The influence of the initial parameters on the 

trajectories will be discussed in next sections.  
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.   

Figure 3.10  Comparison of the trajectories between Kordi’s results and computed trajectories 
with Magnus effect - square plastic plate (40 × 40 × 2 ݉݉) with a density of 1120 ݇݃/݉ଷ 

 
Three test cases in figure 3.11, simulate the trajectories for basswood square plate sample with 

a dimension of 75 × 75 × 9 ݉݉. In each case the horizontal uniform airflow has different 

velocities but the ice plate will begin its trajectory with the same initial angle of attack. Kordi 

has used the data of Tachikawa (Tachikawa, 1983) for ice pieces (the same as Holmes’s data). 

The parameters of each trajectory are mentioned under the figures. Each trajectory is associated 

with the comparison of its velocity development during the trajectory. Comparing the results 

confirms a good agreement between two numerical simulations and except for the first two 

cases, obtained trajectories are almost identical.  
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Figure 3.11  Comparison of trajectories and Velocities between Kordi’s results and computed 
trajectories with Magnus effect- basswood square plate (75 × 75 × 9 ݉݉) with a density of 575 ݇݃/݉ଷ 
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Based on the validation of the code results in previous sections it is safe to say that the Matlab 

code delivers correct results according to the numerical method to compute the relative 

velocity, angle of attack of the ice plate, static lift, drag and moment coefficient as well as the 

auto rotational coefficients of lift, drag and moment. These values are used to compute the 

force components and moments on the ice piece which make the ice piece move in a 2D 

horizontal uniform flow.  

All the validations presented in this section were related to trajectories in completely horizontal 

uniform flow fields due to this fact that trajectories available in the literature are conducted in 

horizontal uniform flow fields. The simulation code in this research is developed to make it 

able to simulate the trajectory of the ice piece in non-horizontal uniform flow fields. In the next 

section results for non-horizontal uniform flow field will be presented and verified. 

 

3.3 2D Ice trajectory in Non-horizontal uniform flow 

To obtain the velocity components of the flow field, the flow field is defined by a complex 

potential function. In this order, a function is added to the Matlab code to calculate the potential 

flow and the potential velocity in the uniform flow and trajectories of the square plate ice pieces 

in a non-horizontal uniform flow are simulated. Figure 3.12 shows two set of test cases with 

different angles of the flow with the horizontal axis.  
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Figure 3.12 Comparison of trajectories in Non-horizontal uniform flow field with different 
angles of the flow with the horizontal axis - Magnus effect included – up: plastic square plate 
(40 × 40 × 2 ݉݉) with a density of 1120 ݇݃/݉ଷ - down: basswood square plate (75 × 75 ×9 ݉݉) with a density of 575 ݇݃/݉ଷ, ߩ௔௜௥ = 1.24 ݇݃/݉ଷ. 
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Although the Matlab code used for both horizontal and non-horizontal uniform flow fields are 

the same, but to verify the code in non-horizontal flow field, several trajectories by trivial 

differences in the angle of the uniform flow filed are simulated. As can be seen in figure 3.12 

the trajectory of the ice piece changes logically by increasing and decreasing the angle of the 

uniform flow. The ice piece has more vertical displacement when the flow field has greater 

vertical velocity component and vice versa. 

In some cases, extreme changes in the trajectories occur as the angle of the uniform flow 

changes. This is due to this fact that initial conditions of the trajectory are important factors to 

determine the trajectory of the ice piece. In figure 3.12 (up) there is a big different between the 

trajectory for the flow with an angle of 1° and the flow with an angle of −1°. In this trajectory 

case, the initial angle of the ice piece is zero (parallel with the horizontal axis). When the flow 

is upward, the initial vertical component force of the flow field on the ice piece is positive 

(upward) but when the flow is downward the initial vertical force component of the flow is 

negative (downward). This initial condition brings about two completely different trajectories. 

In the trajectories of the figure 3.12 (down) the initial angle of the ice piece is 15° , so there is 

not a big gap between the trajectories of the flows with an angle of 1° and −1° .  

The validation of the code in the horizontal uniform flow field and its verification in non-

horizontal uniform flow field were presented. In the next section the trajectories of the square 

plate ice in the flow field of a Joukowski airfoil will be presented. 

 

3.4 2D ice trajectory in Joukowski airfoil’s flow field 
 

Suares (Suares, 2005) has conducted several 2D and 3D ice trajectory simulations in the 

uniform horizontal flow field and also in the flow field of airfoil. His mathematical approach 

to compute the trajectories is different than this research and he has used different lift, drag 

and moment coefficients in his force and moment calculations, Magnus effect has been 

neglected as a factor influencing the trajectory of the ice piece, therefore Magnus effect will 

not be included in the simulations of validation. For his flow field around the airfoil he has 
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used clean and iced NACA 23012 airfoil with a cord length of 7.3 ݂(݉ 2.22) ݐ with different 

angle of attack.  

The ice piece of Suares’s simulations is a 0.1303݉ × 0.1303݉ × 0.0365 ݉ square plate with 

a mass of 0.5715 ݇݃. The trajectory of this ice piece will be simulated when the airfoil has a 

velocity of  113 ݉/ݏ , flying 15000 ݂ݐ above sea level. For this altitude, 0.770 ݇݃/݉ଷ is used 

for the value of the air density. The initial angle of the ice piece with the positive direction of 

the ܺ ܽݏ݅ݔ is introduced by Suares which is 145.63°.  

In mathematical method of this research, for the calculation of aerodynamic forces, the angle 

of the ice piece is calculated with respect to the negative direction of ܺ axis, therefore  34.37° will be used for initial value of the ice piece angle with the horizontal axis.  

 

 

Figure 3.13 Comparison of the trajectories in a uniform flow field without Magnus effect – 
square plate ice piece with a dimension of 0.1303 ݉ × 0.1303 ݉ × 0.0365 ݉ and a mass of 
0.5715 kg. 
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Figure 3.13 is the comparison between resulted trajectory and the trajectory of Suares for 

square plate ice in the horizontal uniform flow field. A good agreement between two 

trajectories is shown despite this fact that the mathematical approach and the aerodynamic 

coefficients are different in two simulations.  

The flow fields used by Suares (Suares, 2005) to simulate trajectories around the airfoil and 

the flow field around the Joukowski airfoil are different due to different geometries of the 

airfoils. Same results are not expected from comparison between trajectories in these two flow 

fields. Size of the Joukowski airfoil is adjusted to resemble the airfoil used in the Suares’s 

research.  

In this set of simulations the cord of the Joukowski airfoil has 2.23 ݉ length. This Joukowski 

airfoil is generated from a cylinder with a radius of 0.615 ݉ which its center is located at ߞ଴ =−0.0615 + 0.0246݅. The dimension of the ice piece, its orientation, airflow velocity and its 

density is the same as the uniform flow field case.  

The trajectories around the Joukowski airfoil are compared with the trajectories of Suares for 

clean NACA 23012 airfoil with ܣܱܣ = 0°  and ܣܱܣ = 4°. The ice piece will start its trajectory 0.09 ݉ ahead and 0.122 ݉ above the leading edge of the airfoil (Suares, 2005).  

Figure 3.14 presents the comparison of simulated trajectories with those of Suares (Suares, 

2005) in the flow fields of the airfoils. As expected, results are not very similar trajectories for 

these two different flow fields but yet, it can be seen that the general behaviour of the ice pieces 

are somehow similar, especially in the case of 4° angle of attack of the airfoils.  

The difference between the trajectories may be due to this fact that the geometries of the two 

airfoils are different. For two different airfoils, airflow velocity and its direction at every given 

point in the plane are not the same. In such a condition initial parameters for two trajectories 

are not the same (which are very influential in the trajectory of the ice piece). Beside the 

different initial conditions, having different velocity components in the plane of the trajectory 

results in different forces on the ice pieces which leads to different trajectories. 
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Figure 3.14 Comparison of the trajectories in the flow field of two airfoils (Joukowski airfoil 
and NACA 23012) without Magnus effect- square plate ice piece with a dimension of 0.1303 ݉ × 0.1303 ݉ × 0.0365 ݉ and a mass of 0.5715 kg. 

 

Comparing the results of the research with the results of the Suares (Suares, 2005) in the 

uniform flow validated the Matlab code further. This comparison confirmed that the 
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calculation of the initial angle of the ice piece is correct in the code developed in the research. 

Although the Matlab code uses a different approach to calculate this angle, it yields similar 

results as Suares (Suares, 2005) when adjustment of this angle is done  to simulate the initial 

parameters of the ice piece of his simulations. 

Comparison of the trajectories in two different airflow fields pertaining to two different airfoils 

makes it necessary to investigate the impact of the geometry of the airfoil and its angle of attack 

on the trajectories of the ice piece. Next section will discuss the results of the trajectories when 

the Joukowski airfoils have different angle of attack, different thicknesses and different 

cambers. Also it will show how much important is the density of the air on the trajectories.  

 

3.4.1 Airfoil’s angle of attack and trajectories 
 

The test case of Suares (Suares, 2005) has been used to investigate the influence of the angle 

of attack of Joukowski airfoil on the trajectories of an ice piece. Five trajectory simulations 

were conducted with the exact same set of initial parameters and the same ice piece properties. 

The airflow velocity in all trajectory cases are the same but the angle of attack of the airfoil 

differs in each case.  

Figure 3.15 depicts these five trajectories and shows the behavior of the ice piece in different 

angles of attack. As the ice piece is located ahead and above the leading edge, it can be seen 

that with the AOA of 4° and 10° the ice piece has more acceleration along the vertical axis of 

the plane. With a negative AOA, ice piece initially is pushed downward, toward the airfoil but 

due to higher upward velocity component of the airflow around the airfoil, the aerodynamic 

forces make the ice piece change its direction and to follow the stream lines of the flow field 

around the airfoil.  
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Figure 3.15 Comparison of the trajectories in the flow field of Joukowski airfoil with different 
angles of attack for the airfoil- without Magnus effect - square plate ice piece with a dimension 
of 0.1303 ݉ × 0.1303 ݉ × 0.0365 ݉ and a mass of 0.5715 kg. 

 

These single trajectories are presented to further validate the simulation of the Matlab code 

and to examine if the trajectories in different AOA are as expected and logical. According to 

figure 3.15 the ice piece trajectories are proportional to the magnitude of horizontal and vertical 

components of the velocity vector in the plane. The influence of the AOA on the trajectories 

will be elaborated in the section of the Monte-Carlo method to see how the pass probability of 

an ice piece with an object can change due to the change of AOA of the airfoil. 
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3.4.2 Airfoil’s thickness and trajectories 

 

This section will show how the thickness of the airfoil can change the trajectory of the ice 

piece. Again the test set of Suares is used and the ice piece is located ahead and above the 

leading edge ( ܼ = −1.22 + 0.122݅) in airflow with a velocity of 113 ݉/ݏ . The dimension 

of ice piece and its density are mentioned in figure 3.16. By keeping all parameters same and 

varying only the thickness of the airfoil five different ice trajectories are achieved.  

 

 

Figure 3.16 Comparison of the trajectories in the flow field of Joukowski airfoils with different 
thicknesses without Magnus effect - square plate ice piece with a dimension of 0.1303 ݉ ×0.1303 ݉ × 0.0365 ݉ and a mass of 0.5715 kg. 
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Figure 3.16 illustrates five trajectories in different colors which correspond to the airfoils with 

the same color. The blue trajectory is for the flow field of blue airfoil which is the thickest 

airfoil. The thicker airfoil generates higher vertical velocity component around its geometry. 

This higher vertical velocity component results in higher vertical aerodynamic force on the ice 

piece and the ice piece reaches higher altitude. The blue ice trajectory satisfies the expectation 

completely and flies above all other trajectories which are for thinner airfoils. The green path 

gets less vertical force component and has the less final altitude in our simulation.  Three other 

trajectories place themselves between these two extreme trajectories.  

By having studied the behavior of the ice piece around the airfoils with different thicknesses, 

the impact of other changes of the airfoil’s geometry on the trajectory of the ice piece will be 

inspected. Next section presents the influence of the camber of the Joukowski airfoil on the 

trajectories. 

 

3.4.3 Airfoil’s camber and trajectories 
 

The same approach as the previous section will be followed to verify the simulations of the 

Matlab code when the Joukowski airfoil have different cambers. Test set of the simulation is 

the same as the previous section but this time varying parameter of the airfoil will be its camber 

instead of its thickness. Higher altitude travel of the ice piece is expected when it is released 

in the upper side flow field of the airfoil with greater camber. Air particles will have more 

vertical velocities arriving in the flow field of a more curved airfoil. These upward redirected 

flow particles will deliver more vertical aerodynamic forces to the ice piece. 

Figure 3.17 is dedicated to the trajectories of this simulation. Five selected Joukowski airfoil 

with different cambers generate five different flow fields and consequently result in different 

aerodynamic forces on the ice piece. Different colors pair trajectories with the corresponding 

airfoils. Green airfoil is the most curved airfoil and its trajectory is above all other four 

trajectories. Blue airfoil is a symmetric airfoil and thus its upward curve is less than other 

airfoils and its trajectory gains less altitude compared with other airfoils. Three other airfoils 
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are defined between these two airfoils and their trajectories follow the physical logic of the 

simulation. 

 

 

Figure 3.17 Comparison of the trajectories in the flow field of Joukowski airfoils with different 
cambers without Magnus effect - square plate ice piece with a dimension of 0.1303 ݉ ×0.1303 ݉ × 0.0365 ݉ and a mass of 0.5715 kg. 

 

Beside the geometry of the airfoil the properties of the flow (air) can play a rule to alter the 

trajectories of the ice piece. The influence of the flow’s properties will be discussing in next 

section. 

 

3.4.4 Flight altitude and trajectories 
 

The properties of the air flow change in different altitudes and different temperatures. The 

main factor acting on the aerodynamic forces on the ice piece is the density of the air. 

According to equations 2.35 and 2.36, air density has a direct influence on the force 

components. This means that in a flow filed with higher density, the ice piece will get more 
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aerodynamic forces and more acceleration. The air density decreases when altitude increases. 

Several trajectories are run for the same set of tests to see how much important is the magnitude 

of the air density on the trajectories of the ice piece. 

 

 

Figure 3.18 Comparison of the trajectories in the flow field of Joukowski airfoil in different 
altitudes (different air densities) - square plate ice piece with a dimension of 0.1303 ݉ ×0.1303 ݉ × 0.0365 ݉ and a mass of 0.5715 kg. 

 

Figure 3.18 shows the trajectories simulated for the same ice piece in the same flow field of a 

Joukowski airfoil in different altitudes. As shown the influence of the air density is not very 

significant but still can alter the trajectory of the ice piece. The blue trajectory belongs to the 

simulation at lowest altitude and has more vertical displacement. This ice piece travels more 

horizontal distance due to its higher horizontal speed. 

Although a considerable impact of the air density on the trajectories of the ice piece is not 

observed, simulations will be run with setting the air density for the 15000 ݂ݐ (Suares, 2005) 

to imitate the real condition of the inflight icing, which mostly happens in high altitude where 

the icing conditions exist. 
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3.5 Monte-Carlo simulations 
 

Previous sections presented the results of the research for single trajectories. The Matlab code 

of the research was validated by comparing the results for square plates, in horizontal uniform 

flow field with the available trajectories in the literature. Later, it was verified for non-

horizontal flow field and the flow field of Joukowski airfoil, with doing a comparative study 

on the trajectories in different flow field conditions.  

This section will present the result of Monte-Carlo simulations. The pass probability of the ice 

piece around the Joukowski airfoil with different geometry and angles of attack will be 

depicted as footprint maps. Also, it will be shown how the shape of the ice piece can alter this 

probability maps. In this order the simulation code will simulate the trajectories of square plate, 

rectangular plate and sphere ice shapes with the same mass. Each section will study the 

shedding of the ice pieces from the upside and downside surface of the leading edge, 

separately. 

The Joukowski airfoil used in this section is the same as section 3.4 and is generated from a 

cylinder with a radius of 0.615 ݉ which its center is located at ߞ଴ = −0.0615 + 0.0246݅. The 

chord of this asymmetric Joukowski airfoil is 2.23 ݉ in length and its maximum thickness is 13 % at 22% of the chord. The research will use this airfoil as the standard airfoil to compare 

with other geometries of the Joukowski airfoil. 

The locations of the ice shedding are defined as the 10% of the cord’s length starting from the 

stagnation point of the leading edge. The starting positions of the ice trajectories are uniformly 

divided to 40 different coordinates on the upside and downside surface of the airfoil. 

Probability map all around the airfoil in each case is plotted to  compare the footprint of the 

ice particle in different test cases. However, to compare the impact of each parameters on the 

trajectory of the ice pieces, the research is more concerned with the areas in which the down 

stream components of the aircraft such as engines are located. In this order, it is assumed that 

the engine behind the airfoil is located at 4 ݉ downstream of the leading edge on the horizontal 

axis and the vertical interval of the engine’s inlet is 1.5 ݉. In the figures, this area is presented 

by last two squares down stream, up and down of the horizontal axis. 
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3.5.1 Effect of the airfoil’s angle of attack on the probability map 
 

This section will compare the probability maps around the Joukowski airfoils with ܣܱܣ = ܣܱܣ ,0° = 4° and ܣܱܣ = 15°.  The  square plate ice piece has a dimension of 0.1303 m ×0.1303 m × 0.0365 m and a mass of 0.5715 kg. The airflow velocity is 113 ݉/ݏ and its 

density is 0.770 ݇݃/݉ଷ (flight altitude is 15000 ݂ݐ). The variation of the initial condition for 

Monte-Carlo simulation is presented in Table 2.1. The detailed properties of each simulation 

are mentioned in pertaining figures.  

Figure 3.19 compares the results of Monte-Carlo simulation for two Joukowski airfoil with 

different angles of attack. The airfoil in the left side of the figure has ܣܱܣ = 0° and the airfoil 

in the right side of the figure has ܣܱܣ = 4°. In this simulation the location of the ice shedding 

is upside surface of the leading edge.  

As shown there is an upward increasing shift in the probability map when the airfoil has a 

positive AOA and the probability of the ice ingestion by the engine behind the airfoil decreases 

when the angle of attack increases.  

Figure 3.20 depicts the result of the same simulation as previous case when the shedding occurs 

from the downside surface of the leading edge. Having the same upward increasing shift for 

the mean trajectory brings about greater probability for strike of the ice piece with an engine 

behind the airfoil. 

These changes in the probability map are more obvious when the simulation increase the angle 

of attack to 15°. The greater strike probability with an angine behind the airfoil is possible 

when the ice sheds from downside surface of the leading edge with ܣܱܣ = 15°. 
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Figure 3.19 Monte-Carlo simulations for square plate ice around the Joukowski airfoil with 
AOA=0° (left) and AOA= 4° (right), Ice particle 0.1303 × 0.1303 × 0.0365 ݉, ݉௜௖௘ ௔௜௥ߩ ,݃݇ 0.5715= = 0.770 ݇݃/݉ଷ, shedding is from the upside surface of the leading edge, 
Magnus effect included. 
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Figure 3.20 Monte-Carlo simulations for square plate ice around the Joukowski airfoil with 
AOA=0° (left) and AOA= 4° (right), Ice particle 0.1303 × 0.1303 × 0.0365 ݉, ݉௜௖௘ ௔௜௥ߩ ,݃݇ 0.5715= = 0.770 ݇݃/݉ଷ, shedding is from the downside surface of the leading edge, 
Magnus effect included.  
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Figure 3.21 Monte-Carlo simulations for square plate ice around the Joukowski airfoil with 
AOA=0° (left) and AOA=15° (right), Ice particle 0.1303 × 0.1303 × 0.0365 m, m୧ୡୣ =0.5715 kg, ρୟ୧୰ = 0.770 kg/mଷ, shedding is from the upside surface of the leading edge, 
Magnus effect included. 
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Figure 3.22 Monte-Carlo simulations for square plate ice around the Joukowski airfoil with 
AOA=0° (left) and AOA=15° (right), Ice particle is 0.1303 × 0.1303 × 0.0365 ݉ and ݉ ௜௖௘ ௔௜௥ߩ ,0.5715= = 0.770 ݇݃/݉ଷ, shedding is from the downside surface of the leading edge, 
Magnus effect included. 
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Figure 3.23 Comparison between the results of Suares for trajectories with different angles of 
attack of airfoils 

 

Z(
m

)
Z(

m
)



84 
 

Figure 3.23 compares the results of the research with those of Suares (Suares, 2005) for square plate 

ice in the flow field of the airfoils. The parameters of the airfoils, flow fields and ice pieces are the 

same as section 3.4. The figure compares Monte-Carlo simulations with the results of Suares for 

clean NACA 23012 airfoil with ܣܱܣ = 0° and ܣܱܣ = 4°. The ice piece starts its trajectory 0.09 ݉ ahead and 0.122 ݉ above the leading edge of the airfoil. The pass probability of ice is 

computed at the engine inlet plane 4.45 ݉ downstream of the leading edge. The pass 

probability on this plane is calculated for intervals with 0.0762 ݉ width.  

The varying initial parameters of the Monte-Carlo simulation in the research of Suares (Suares, 

2005) are lift and drag coefficients, length and thickness of the ice particle and the initial 

orientation of the ice piece (between 0 and 90 degrees). The initial varying parameters used in 

this thesis are presented in section 2.3. The different flow fields and  initial conditions have led 

to different results.  

The result shows that parameters used in the research brings about more diverse trajectories 

regarding their vertical displacement. In the other word, initial linear and angular velocity of 

the ice piece  and its angle of orientation is much more influential than the lift and drag 

coefficients and the dimension of the ice piece. Although Suares (Suares, 2005) has used the 

initial angle of the ice piece as an initial parameter in Monte-Carlo simulation but this variation 

is limited up to 90 degrees while in this research it can vary up to 180 degrees. 

In this figure upper plot shows the pass probability when the airfoil’s angle of attack is zero 

and the other plot shows the result of the airfoil with ܣܱܣ = 4°. Although the result of two 

researches are different but both of them have upward shift in the case of ܣܱܣ = 4° which 

means, in this case, the ice particles have more upward vertical movement.  

 

3.5.2 Effect of the thickness of the airfoil on the probability map 
 

This section will present the investigation of the effect of the airfoil’s thickness on the 

probability map of ice trajectory. Simulations will compare an airfoil with t/c = 13 % at 22 % 

of the cord and another airfoil with t/c = 6.5 % at 22% of the cord. These two airfoils are 

generated from two cylinders with the same radius but different coordinates for the center of 
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the cylinders. The center of the thicker airfoil is at ߞ଴ = −0.0615 + 0.0246݅ and the other is 

located at ߞ଴ = −0.03075 + 0.0246݅. The  square plate ice piece has a dimension of 0.1303 m × 0.1303 m × 0.0365 m and a mass of 0.5715 kg. The airflow velocity is 113 ݉/ݏ 

and its density is 0.770 ݇݃/݉ଷ (flight altitude is 15000 ݂ݐ).  

Figure 3.24 shows the results of Monte-Carlo simulation for ice shedding from the upper side 

of the leading edge. The angle of attack in these sets of simulations are zero. According to this 

figure a downward shift for higher pass probability of the ice piece is resulted in narrower 

airfoil. The ice pieces tend to have less vertical movement in the flow field of the narrower 

airfoil. The ice ingestion probability by an engine behind the airfoil in this simulation has 

increased by 0.9%.  

Comparing the mean trajectory for these two airfoils shows conflicting results. It can be seen 

that the mean trajectory has greater vertical movement in the airfoil with 6.5% of thickness. 

This is due to this fact that greater percentage of ice samples in thicker airfoil go below the 

airfoil. In thicker airfoil 16.4% of the ice samples go downward and in the narrower airfoil this 

percentage is 13.3.  

Figure 3.25 shows the results when the shedding happens from the down side surface of the 

leading edge. Again results show closer trajectories to the horizontal axis of the plane. The ice 

ingestion probability with the engine behind the airfoil has increased (0.2%) but it is not as 

significant as the previous case when the ice shedding is from the upper surface of the leading 

edge. Studying the effect of the airfoil’s thickness shows a trivial different between two 

different airfoils with different thicknesses. However, as a general conclusion, the flow filed 

around a thicker airfoil has greater vertical velocity component which pulls the ice particles 

more vertically.  
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Figure 3.24 Monte-Carlo simulations for square plate ice around the Joukowski airfoil with 
thickness t/c= 13% (left) and thickness t/c=6.5% (right), Ice particle is 0.1303 × 0.1303 ×0.0365 ݉ and ݉௜௖௘ = ௔௜௥ߩ ,0.5715 = 0.770 ݇݃/݉ଷ, shedding is from the upside surface of 
the leading edge, Magnus effect included. 
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Figure 3.25 Monte-Carlo simulations for square plate ice around the Joukowski airfoil with 
thickness t/c= 13% (left) and thickness t/c=6.5% (right), Ice particle is 0.1303 × 0.1303 ×0.0365 m and m୧ୡୣ = 0.5715, ρୟ୧୰ = 0.770 kg/mଷ, shedding is from the downside surface of 
the leading edge, Magnus effect included. 
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3.5.3 Effect of the camber of the airfoil on the probability map 
 

In section 3.4.3 the impact of the airfoil’s camber on a single trajectory was inspected. In this 

section the results obtained from Monte-Carlo simulations for two airfoils with different 

cambers will be presented. In this order resulted figures will compare a curved airfoil with a 

symmetric airfoil. The  square plate ice piece has a dimension of 0.1303 m × 0.1303 m ×0.0365 m and a mass of 0.5715 kg. The airflow velocity is 113 ݉/ݏ and its density is 0.770 ݇݃/݉ଷ (flight altitude is 15000 ݂ݐ). 

The curved airfoil is generated from a cylinder with ܴ = 0.615 ݉ and ߞ଴ = −0.0615 +0.246݅. The symmetric airfoil has the same radius but its center is located on ߞ଴ = −0.0615 +0.000001݅. The thickness for both airfoils is 13% at 22% of the airfoil’s cord and the angle of 

attack for both cases is zero degree. 

Based on the results of the section 3.4.3 for single trajectory a higher vertical displacement in 

the flow filed of a curved airfoil is expected. By comparing the results in figure 3.26 and 3.27 

the same results for Monte-Carlo statistical method are obtained. 

Figure 3.26 shows the probability map of two airfoils with different cambers when the ice 

shedding occurs from the upper surface of the leading edge. The probability map shows a 

greater percentage of ice pass probability in the areas closer to the horizontal axis. The ice 

ingestion by an engine behind the airfoil is 0.9% more likely in the flow field of a symmetric 

airfoil. 

Figure 3.27 is an illustration for the results of ice trajectories when the ice pieces shed from 

the downside surface of the leading edge. In this case majority of the ice samples travel in the 

flow field, below the airfoil. as the camber of the symmetric airfoil is downward in the 

downside of the airfoil more downward vertical velocity component in this airfoil are resulted. 

Comparing the probability maps in this figure confirms that the ice samples tend to go farther 

from the horizontal axis when are shed from the downside surface of the symmetric airfoil 

which decreases the ice ingestion probability by an engine behind the airfoil. However, this 

effect is not significant and ice ingestion possibility decreases just by 0.4%. 
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Figure 3.26 Monte-Carlo simulations for square plate ice around the curved (left) and 
symmetric (right) Joukowski airfoil, Ice particle is 0.1303 × 0.1303 × 0.0365 ݉ and ݉௜௖௘ ௔௜௥ߩ ,0.5715= = 0.770 ݇݃/݉ଷ, shedding is from the upside surface of the leading edge, 
Magnus effect included. 
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Figure 3.27 Monte-Carlo simulations for square plate ice around the curved (left) and 
symmetric (right) Joukowski airfoil, Ice particle is 0.1303 × 0.1303 × 0.0365 ݉ and ݉௜௖௘ ௔௜௥ߩ ,0.5715= = 0.770 ݇݃/݉ଷ, shedding is from the downside surface of the leading edge, 
Magnus effect included. 
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3.5.4 Effect of the ice piece’s size on the probability map 
 

In previous three sections, the effect of the airfoil’s geometry as well as its angle of attack on 

the ice pass probability map were studied. Next three sections will show how the shape and 

mass of the ice piece and Magnus effect can change the percentages in the probability map. 

Figure 3.28 and 3.29 compare the results between Monte-Carlo simulations for two different 

ice pieces. These two ice pieces differ in mass and volume. The graphs on the left side of the 

figure are the results of a square plate with a dimension of 0.1303 ݉ × 0.1303 ݉ × 0.0365 ݉ 

and a mass of 0.5715 kg and the right side of the figure shows results for a square plate with 

half of this dimension and mass. The airflow velocity is 113 ݉/ݏ and its density is 0.770 ݇݃/݉ଷ (flight altitude is 15000 ݂ݐ). 

According to figure 3.28 smaller ice particles shed from the upper surface of the leading edge 

have less vertical displacement in the same flow field. The pass probability in the regions near 

to the horizontal axis has raised. The strike probability with the engines behind the airfoil has 

increased by 1.2 %. The mean trajectory has a significant downward shift in the case of smaller 

ice piece. 

Figure 3.29 shows the same comparison but for ice pieces shed from downside surface of the 

leading edge. The same differences in the force components on the ice piece cause less upward 

movement of the smaller ice piece. The smaller ice pieces lose their altitude more rapidly which 

brings about their divergence from the horizontal axis of the plane. The ice ingestion 

probability by an engine behind the airfoil drops by 0.8%. The comparison of the mean 

trajectory shows a downward shift for the smaller ice piece. 
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Figure 3.28 Monte-Carlo simulations for different square plate ices around the Joukowski 
airfoil, left: Ice particle 0.1303 × 0.1303 × 0.0365 ݉ and ݉௜௖௘ = 0.5715, right: Ice particle 6.5 × 6.5 × 1.8 ݉݉ and ݉௜௖௘ = ௔௜௥ߩ ,0.2857 = 0.770 ݇݃/݉ଷ, shedding is from the upside 
surface of the leading edge, Magnus effect included. 
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Figure 3.29 Monte-Carlo simulations for different square plate ices around the Joukowski 
airfoil, left: Ice particle 0.1303 × 0.1303 × 0.0365 ݉ and ݉௜௖௘ = 0.5715, right: Ice particle 0.065 × 0.065 × 0.018 ݉ and ݉௜௖௘ = ௔௜௥ߩ ,0.2857 = 0.770 ݇݃/݉ଷ, shedding is from the 
downside surface of the leading edge, Magnus effect included. 
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3.5.5 Effect of the Magnus coefficients on the probability map 
 

This section is dedicated to compare the ice pass probability maps of the square plate ice piece 

around the Joukowski airfoil with and without the Magnus effect. As there is not a complete 

agreement in the literature to include this coefficient on the calculation of the force components 

on the ice piece, results will show how influential is this effect on the ice trajectory simulation 

models. 

Figure 3.30 compares the results for ice trajectory simulations with and without Magnus effect 

when the ice pieces are shed from the upside surface of the leading edge. The plot for the 

trajectories without Magnus effect shows that trajectories tend to be more concentrated. It can 

be seen that 64.9% of the trajectories exit from the study plane through the same altitude 

interval between ݖ = 1.5 ݉ and ݖ = 2.25 ݉.  

Trajectories which are not influenced by Magnus effect are 4.7% less probable to be ingested 

by an engine behind the airfoil on the horizontal axis. On the other hand, although without 

Magnus effect, the ice pieces are less seen near the horizontal axis but the mean trajectory has 

a downward shift in this case. 

Figure 3.31 presents the results for this simulation when the shed ices are located on the 

downside surface of the leading edge. Again in this case, trajectories have more diverse 

altitudes in their trajectories when Magnus effect is included. When the Magnus effect is not 

included 86.7% of the trajectories leave the study plane, having an altitude between ݖ =−1.5 ݉ and ݖ = −3 ݉, while this percentage for cases with Magnus effect is  60.9 %. 

Although the mean trajectory has an upward shift toward the horizontal axis, the strike 

probability of the ice piece with an engine located behind the airfoil has decreased without 

Magnus effect. While this probability for trajectories with Magnus effect is 1.6 %, any ice 

piece samples in our simulation has not been ingested by the engine when Magnus effect is not 

included. 
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Figure 3.30 Monte-Carlo simulations for square plate ice around the Joukowski airfoil with 
(left) and without (right) Magnus effect, Ice particle 0.1303 × 0.1303 × 0.0365 ݉, ݉௜௖௘ ௔௜௥ߩ ,݃݇ 0.5715= = 0.770 ݇݃/݉ଷ, shedding is from the upside surface of the leading edge. 
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Figure 3.31 Monte-Carlo simulations for square plate ice around the Joukowski airfoil with 
(left) and without (right) Magnus effect, Ice particle 0.1303 × 0.1303 × 0.0365 ݉, ݉௜௖௘ ௔௜௥ߩ ,݃݇ 0.5715= = 0.770 ݇݃/݉ଷ, Shedding is from the downside surface of the leading edge 
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3.5.6 Effect of the ice shape on the probability map 
 

The other significant parameter to influence the trajectory of the ice piece is its shape. Each 

shape of ice has its own aerodynamic coefficients which result in different induced forces and 

accelerations. Chapter two presented the aerodynamic coefficients for rectangular and sphere 

ice pieces in chapter three as well as the main ice shape of the research which is a square plate. 

This section will compare the results of Monte-Carlo simulation for these different ice shapes. 

The properties of the ice pieces are presented in table 2.2. 

Figure 3.32 depicts the result of Monte-Carlo simulation for a sphere ice piece. As in this case 

higher percentage of the ice samples hit the airfoil itself, the initial number of samples is raised 

to 80,000. The other different parameter in this case is the initial velocity of the ice piece. The 

acceleration of the sphere ice piece is significantly less than the other two ice shapes used in 

the research due to smaller aerodynamic forces. The range of variation for an initial velocity 

of the sphere ice piece is reduced to being more proportional to its final velocity during its 

trajectory. In this order 0.01 of the free stream’s velocity is used instead of 0.03 of this velocity 

for the initial velocity of the ice particle.  

The probability map on the left side of the figure presents the trajectories initiated from the 

upper surface of the airfoil. As mentioned in the section 2.5.7 sphere ice piece is moved by 

drag force and aerodynamic coefficients for lift and moment for this shape of the ice piece are 

zero. It can be seen that the sphere ice pieces cannot reach high altitude in their trajectory and 

tend to fall down vertically due to small induced drag forces. The ice ingestion by an engine 

located behind the airfoil is 48.6%.  

The left side of the figure 3.32 illustrates the result for the sphere ice pieces when are shed 

from the downside surface of the leading edge. A huge number of the trajectories hit the airfoil 

and only 6675 (out of 80,000) ice samples remain in the Monte-Carlo simulation. 10.9% of the 

ice samples have trajectories above the airfoil which follow almost the same trajectories as the 

case when shedding is from the upper surface of the leading edge and impose ingestion risk by 

an engine behind the airfoil. The ices below the airfoil have more downward vertical movement 

which are significantly less probable to be ingested by an engine behind the airfoil. 
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Figure 3.32 Monte-Carlo simulations for sphere ice piece around the Joukowski airfoil,  
shedding from upside (left) and downside (right) surface of the leading edge, Ice particle ܦ =0.106 ݉, ݉௜௖௘ = ௔௜௥ߩ ,݃݇ 0.5715 = 0.770 ݇݃/݉ଷ 
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In the section 2.2.7 aerodynamic coefficients for the rectangular ice piece were introduced. 

Using those relations, Monte-Carlo simulation is run for rectangular ice piece. 

The  square plate ice piece has a dimension of 0.1303 m × 0.1303 m × 0.0365 m and a mass 

of 0.5715 kg. The rectangular plate ice piece has a dimension of 0.1303 × 0.2606 × 0.0365 ݉ 

with half of the mass density of the square plate ice piece. This means that despite different ice 

dimensions, both the samples have the same mass. The air free stream velocity is 113 ݉/ݏ and 

its density is 0.770 ݇݃/݉ଷ.    

Figure 3.33 compares the pass probability map of the square and rectangular ice piece when 

the trajectories are initiated from the upper side of the leading edge. As shown in the figure, 

although the mean trajectories in both cases (square and rectangular) are almost the same but 

rectangular ice particle are more probable to strike an engine behind the airfoil (25.8 %). 

Figure 3.34 shows the results for rectangular and square ice pieces when the ices are shed from 

the downside surface of the leading edge. Although rectangular samples have more downward 

vertical displacement but higher percentage of these ice pieces are prone to be ingested by an 

engine behind the airfoil. Comparison between the mean trajectories for both ice shapes does 

not show substantial differences.  
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Figure 3.33 Monte-Carlo simulations for square (left) and rectangular ice piece (right) around 
the Joukowski airfoil,  shedding is from upside surface of the leading edge, rectangular ice; 0.130 × 0.260 × 0.036 ݉, ݉ ௜௖௘ = ௔௜௥ߩ ,݃݇ 0.5715 = 0.770 ݇݃/݉ଷ, Magnus effect included 
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Figure 3.34 Monte-Carlo simulations for square (left) and rectangular ice piece (right) around 
the Joukowski airfoil, shedding is from downside surface of the leading edge, rectangular 
ice 0.13 × 0.26 × 0.036 ݉, ݉௜௖௘ = ௔௜௥ߩ ,݃݇ 0.5715 = 0.770 ݇݃/݉ଷ, with Magnus effect 
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Figure 3.35 shows the results of the research and result of the Suares (Suares, 2005) for 

rectangular ice particles. As mentioned in the section 3.5.1 the initial uncertainties used for 

Monte-Carlo simulation are different in two researches which yield two different results. Again 

the result of the Suares (Suares, 2005) shows the concentration of ice pieces in a small area in 

the plane of the engine which can be because of similar initial parameters.   

 

 

Figure 3.35 Comparison with the results of Suares for trajectories of rectangular ice plate 
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Figure 3.36 Comparison of the Monte-Carlo simulations for square and rectangular ice plates 
 

Figure 3.36 compares the ice pass probability of the square and rectangular ice pieces in the 

plane of the engine’s inlet. Rectangular ice pieces are more probable to be seen near the 

horizontal axis which increases the risk of ice ingestion by engines. This result can be seen in 

the probability map in the figure 3.33. Although the ice shedding position in two simulations 

are different but in both of them ice ingestion risk is higher in the case of rectangular ice shape. 

 

3.5.7 Effect of the normal random initial conditions on the probability map 

 
In previous sections the effect of different parameters on the ice trajectory and ice ingestion 

probability by the engine behind the airfoil were studied. In all these sections, the random 

numbers generated for Monte-Carlo simulation were obtained by uniform distribution. Most 

of the research related to ice trajectory simulations have used uniform random numbers to 

generate random initial parameters for the ice trajectory (Shimoi, 2010), (Suares, 2005). As 
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introduced in the chapter of methodology, random numbers can be generated by normal 

distribution too. Following is the comparison of these two methods and their effect on the 

probability map of ice trajectory around the airfoil.  

Figure 3.37 shows the results for Monte-Carlo simulations with uniform random numbers and 

Monte-Carlo simulation with normal random numbers. The ice shedding is from the upper 

surface of the airfoil. As can be seen in Monte-Carlo simulation with normal random numbers, 

ice pieces are more concentrated in an area.  This means that initial conditions in uniform 

distribution are more different than normal distribution which lead to more divers trajectories. 

Although there is a significant difference between two probability maps but the ice ingestion 

risk by the engine is estimated only 0.5% less using normal random numbers. 

Figure 3.38 shows the ice trajectory probability maps when the shedding occurs from downside 

surface of the airfoil. The same difference can be observed in this figure as figure 3.37. The 

concentration of the ice pieces means more similar initial conditions when the Monte-Carlo 

simulation uses normal random numbers. The ice ingestion probability by the engine is 

estimated only 0.3% more using normal random numbers. 
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Figure 3.37 Comparison of Monte-Carlo simulations with uniform and normal random 
numbers , shedding is from upside surface of the leading edge, Ice particle 0.1303 × 0.1303 ×0.0365 ݉, ݉௜௖௘ = ௔௜௥ߩ ,݃݇ 0.5715 = 0.770 ݇݃/݉ଷ, Magnus effect included 
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Figure 3.38 Comparison of Monte-Carlo simulations with uniform and normal random 
numbers , shedding is from downside surface of the leading edge, Ice particle 0.1303 ×0.1303 × 0.0365 ݉, ݉௜௖௘ = ௔௜௥ߩ ,݃݇ 0.5715 = 0.770 ݇݃/݉ଷ, Magnus effect included 
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Using normal random numbers needs to determine the mean number for normal distribution. 

For initial linear and angular velocities mean number can be zero. The initial angle of the ice 

piece can be any angle between zero and 180, therefore, using a mean number for this 

parameter seems to be unrealistic. In figure 3.37 and 3.38 mean number for the angle of the ice 

piece is zero.  

Figure 3.39 and 3.40 show the results for Monte-Carlo simulation when the random number 

for initial angle of the ice piece is generated using uniform distribution and the initial velocities 

are generated using normal distribution. These results are compared with the simulations which 

use only uniform distribution for all initial parameters. 

The results show more divers trajectories when the initial angle of the ice piece is obtained by 

uniform distribution. These results are compared with the simulations which use completely 

uniform random numbers for initial conditions. It can be seen that the probability maps are 

similar in two cases and ice ingestion risk does not change significantly. These simulations 

show again that initial angle of ice piece plays the most important rule in the trajectory of the 

ice piece and divers initial angle brings about more divers trajectories.  
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Figure 3.39 Comparison of Monte-Carlo simulations with uniform and normal random 
numbers, shedding is from upside surface of the leading edge, Ice particle 0.1303 × 0.1303 ×0.0365 ݉, ݉௜௖௘ = ௔௜௥ߩ ,݃݇ 0.5715 = 0.770 ݇݃/݉ଷ, Magnus effect included 
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Figure 3.40 Comparison of Monte-Carlo simulation with uniform and normal random numbers 
, shedding is from downside surface of the leading edge, Ice particle 0.1303 × 0.1303 ×0.0365 ݉, ݉௜௖௘ = ௔௜௥ߩ ,݃݇ 0.5715 = 0.770 ݇݃/݉ଷ, Magnus effect included 
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This chapter was dedicated to the results obtained during the research project. Results for 

Joukowski airfoil simulation, single two-dimensional ice piece trajectory and finally the results 

of Monte-Carlo simulations were presented.  In the next section the results of the research will 

be reviewed and conclusions will be presented.    



CONCLUSIONS AND RECOMMENDATIONS 

 

Inflight icing and ice shedding threat the flight safety by reducing the performance of the 

aircraft and by damaging its components. Ice ingestion by aft-mounted engines can damage its 

internal moving parts or may cause blockage of the airstream inside the compressor of the 

engine. In this thesis ice piece trajectory was simulated in 2D uniform and un-uniform flow 

fields. Trajectories in uniform flows were performed to validate the Matlab code of the thesis. 

Three references were used to compare the simulated trajectories of different square plate ice 

piece in uniform flows with different velocities and densities. The results of the validations 

were satisfying and a good agreement were obtained by comparing the results of the thesis 

with Holmes (Holmes, 2006), Kordi (Kordi, 2009) and Suares (Suares, 2005). These 

validations were presented and discussed in chapter three.  

The main goal of this thesis was simulating the trajectory of the square ice piece in the flow 

field of the airfoil of the wing of an aircraft. In addition, the influence of the geometry of the 

airfoil and ice piece on the probability map around the airfoil were studied. In this order and 

to have the flow field of the airfoil, Joukowski airfoil and its flow field was simulated using 

potential flow equations. The Matlab code developed for Joukowski airfoil was integrated with 

the code of 2D trajectory to simulate the trajectory of ice pieces in an un-uniform flow field of 

the airfoil. In the literature there is no ice piece trajectory simulation in the flow field of the 

Joukowski airfoil, therefore the code of the ice trajectory in Joukowski airfoil’s flow field were 

verified by conducting several comparative trajectories. Also the results were compared with 

the results of Suares (Suares, 2005) for NACA 23012. The results of this verification are 

presented and discussed in chapter three. The results show that developed code generates 

expected trajectories by different initial conditions and in different flow fields.  

Simulation of single ice trajectories with different initial conditions confirms the importance 

of initial conditions of the shed ice in the trajectory. Initial conditions of the ice piece studied 

in this thesis are initial orientation of the ice piece, its initial linear and angular velocities and 

the location of ice shedding. Uncertainties about the initial conditions were studied using 

Monte-Carlo statistical method. The ice trajectory code was integrated with a developed code 
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for Monte-Carlo method to simulate ice trajectories with 60000 different initial conditions. The 

code uses a uniform random number generator to generate different values for the initial 

conditions of ice shedding. 

The results of Monte-Carlo simulations were depicted as ice pass probability maps around the 

airfoil. These figures are presented in chapter three and show the percentage of pass 

possibilities through defined areas around the Joukowski airfoil. Also the mean trajectories of 

each simulation were presented to compare the trajectories with different airfoils and ice 

pieces. Although the main ice shape for this project was square plate ice piece, trajectories for 

rectangular and sphere ice pieces were simulated to be compared with the trajectories of square 

plate ice pieces. 

The results of Monte-Carlo simulations were used to study the risk of ice ingestion by an aft-

mounted engine. The probability of ice ingestion changes in the simulations with different 

geometries for the airfoil and ice piece. The results of the Monte-Carlo simulation can be 

summarized as following: 

• Effect of airfoil’s angle of attack: Ingestion risk by an aft-mounted engine decrease 

by increasing the angle of attack of the airfoil (AOA) to 4° and 15° degrees when ice 

shedding occurs from upside surface of the leading edge. Shed ice pieces from 

downside surface of the leading edge are less ingested by the engine when AOA is 4° 

but are more likely to be ingested by the engine when AOA is 15°. 

• Effect of airfoil’s thickness: Ice pieces shed from thinner airfoil are more probable to 

go inside the aft-mounted engine. This higher possibility of ice ingestion was shown 

for ice shedding from both sides of the leading edge.  

• Effect of airfoil’s camber: Ice pieces shed from upside surface of a symmetric airfoil 

are more likely to be ingested by the engine. In the case of the downside surface of 

leading edge, the probability of ice ingestion is slightly less. 

• Effect of ice piece’s shape: Rectangular and sphere ice pieces are more hazardous for 

aft-mounted engines of an aircraft than square plate ice pieces.  
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• Effect of ice piece’s size: While bigger ice pieces shed from upside surface of the 

leading edge are less probable to be ingested by the engine, bigger ice pieces shed from 

the downside surface of the leading edge are more likely to go inside the engine. 

• Effect of Magnus effect: Results confirm that Magnus effect has considerable 

influence on the ice trajectories. Trajectories with Manus effect in the simulations, 

have more diverse vertical movement, and trajectories without Magnus effect are more 

concentrated on the plane of study. 

These results are obtained from developed Matlab code for 2D square plate ice piece 

trajectories in the flow field of Joukowski airfoil. Further works in future are required to 

develop this Matlab code. following are recommendations to enhance the capability and 

performance of the code: 

• Developing the code to 3D ice trajectory simulation. 

• Enhancing the capability of the code to simulate the flow fields of different airfoils. 

• Introducing the aerodynamic coefficients of other ice shapes than square, rectangular 

and sphere to the code. 

• Using additional initial conditions for Monte-Carlo simulations such as varying 

aerodynamic coefficients. 
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