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COMMANDE NON LINÉAIRE D’UN GROUPE DES MANIPULATEURS MOBILES
TRANSPORTANT UN OBJECT RIGIDE EN COORDINATION

Abdelkrim BRAHMI

RÉSUMÉ

Cette thèse de doctorat propose et valide expérimentalement des stratégies de commande non-

linéaire pour un groupe de robots manipulateurs mobiles transportant un objet rigide en co-

ordination, assurant le suivi de trajectoires dans l’espace cartésien en présence de paramètres

d’incertitude et de perturbations indésirables.

L’objectif de la création des robots, au début des années soixante, était de décharger l’homme

de certains travaux fastidieux tels que : la manutention, et les tâches répétitives qui sont sou-

vent fatigantes ou même parfois infaisables manuellement. Suite à cette situation, plusieurs

sortes de manipulateurs ont été créées. Naturellement, le besoin de robots ayant à la fois des

capacités de locomotion et de manipulation a conduit à la réalisation de manipulateurs mobiles.

Des exemples courants de manipulateurs mobiles, plus ou moins automatisés, sont les grues

montées sur camions, les bras de satellites, les sous-marins d’exploration des fonds marins ou

encore les véhicules d’exploration extra planétaires.

Certaines opérations nécessitant la manipulation d’un objet lourd sont difficilement réalisables

par un manipulateur mobile unique. Ces opérations nécessitent de faire la coordination de

plusieurs manipulateurs mobiles pour manipuler ou transporter un objet lourd en commun. Par

conséquent, cela rend le système robotique plus complexe, car la complexité de conception

de tel contrôleur augmente considérablement. Le problème de la commande du système mé-

canique formant un mécanisme de chaîne cinématique fermé réside dans le fait qu’il impose un

ensemble de contraintes cinématiques sur la coordination de la position et de la vitesse du ma-

nipulateur mobile. Par conséquent, il y aura une réduction des degrés de liberté pour l’ensemble

du système. En outre, les forces internes de l’objet produit par tous les manipulateurs mobiles

devraient être contrôlées.

Dans ce travail, le sujet abordé concerne la commande non linéaire d’un groupe de manipula-

teurs mobiles transportant un objet en coordination. Ce travail de thèse a porté sur le développe-

ment d’une technique de contrôle cohérente pour un groupe de robots manipulateurs mobiles

exécutant une tâche de transport en coordination. Différents contrôleurs non linéaires ont été

simulés et appliqués expérimentalement à un groupe de manipulateurs mobiles transportant un

objet rigide en coordination. Pour atteindre tous les objectifs de cette thèse, en première étape,

une plate-forme expérimentale a été développée et montée dans le laboratoire du GREPCI-

ETS pour mettre en œuvre et valider les différentes lois de contrôle développées. Ensuite,

différentes commandes adaptatives de la position et de la force interne ont été appliquées, ces

lois de commande assurent que la trajectoire désirée puisse être suivie de manière optimale en

présence des paramètres incertitudes et des perturbations externes.



VIII

Mots-clés: groupe de robots manipulateurs mobiles, la commande adaptative, coordination,

espace Cartésien, force interne



NONLINEAR CONTROL OF MULTIPLE MOBILE MANIPULATOR ROBOTS
TRANSPORTING A RIGID OBJECT IN COORDINATION

Abdelkrim BRAHMI

ABSTRACT

This doctoral thesis proposes and validates experimentally nonlinear control strategies for a

group of mobile manipulator robots transporting a rigid object in coordination. This developed

approach ensures trajectory tracking in Cartesian space in the presence of parameter uncer-

tainty and undesirable disturbances.

The objective of the creation of robots in the early sixties was to relieve man of certain hard jobs

such as: handling a heavy object, and repetitive tasks which are often tiring or even sometimes

infeasible manually. Following this situation, several types of manipulator robots were created.

Naturally, the need for robots having both locomotion and manipulation capabilities has led to

the creation of the mobile manipulators. Typical examples of mobile manipulators, more or

less automated, are the cranes mounted on trucks , the satellite arms, the deep-sea exploration

submarines, or extra-planetary exploration vehicles.

Some operations requiring the handling of a heavy object are difficult to achieve by a single

mobile manipulator. These operations require a coordination of several mobile manipulators

to move or transport a heavy object in common. However, this complicates the robotic system

as its control design complexity increases greatly. The problem of controlling the mechanical

system forming a closed kinematic chain mechanism lies in the fact that it imposes a set of

kinematic constraints on the coordination of the position and velocity of the mobile manipu-

lator. Therefore, there is a reduction in the degrees of freedom for the entire system. Further,

the internal forces of the object produced by all mobile manipulators should be controlled.

This thesis work was focused on developing a consistent control technique for a group of mo-

bile manipulator robots executing a task in coordination. Different nonlinear controllers were

simulated and experimentally applied to multiple mobile manipulator system transporting a

rigid object in coordination. To achieve all objectives of this thesis, as a first step, an experi-

mental platform was developed and mounted in the laboratory of GREPCI-ETS to implement

and validate the different designed control laws. In the second step, several adaptive coordi-

nated motion/force tracking control laws were applied, ensuring that the desired trajectory can

excellently tracked under uncertainties parameters and disturbances

Keywords: group of mobile manipulator robots, adaptive control, Cartesian space, internal

force, coordination.
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INTRODUCTION

Robotics as it is known today is an interdisciplinary science encompassing vast fields of re-

search: vision, planning, motion / control, locomotion, design, and so on. The objective of the

creation of robots in the early sixties was to relieve man of some tedious work such as: han-

dling, repetitive tasks that are often tiring or even sometimes infeasible manually. Following

this situation, several kinds of manipulators were created (Siciliano and Khatib (2016)).

Historically, the first more manufactured robots were the manipulator arms, which are widely

used in industry. These robotic systems have the ability to act on the environment through

the realization of manipulation tasks such as the grasping of objects, the assembly of pieces,

etc. They are nevertheless very limited in their operational workspace and in the type of work

that can be done. This is why mobile platforms, characterized by their ability to evolve in

larger size environments, have appeared. These mobile platforms were first developed for

navigation, maintenance or surveillance operations, in particular in hostile environments, by

equipping them with various sensors (cameras, gas detectors, radioactivity detectors, etc.). For

missions in a hostile, spatial environment, or simply those requiring combined locomotion

and manipulation capabilities, these platforms had to be equipped with a manipulator arm to

become mobile manipulators. The well known examples of mobile manipulators, more or less

automated, are the truck-mounted cranes, satellite arms, submarines exploring the seabed or

extra-planetary exploration vehicles. Basically, the exploitation of such systems relies on the

implementation of a series of sequences:

a. A transport phase, where only the degrees of mobility of the platform are used, in order

to bring the manipulator arm to the manipulation site;

b. A manipulation phase during which the base remains fixed, and where only the degrees

of mobility of the arm are used;
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c. A phase of coordination or transporting an object where both the degrees of mobility of

the platforms and the degrees of mobility of the arm are used.

Some tasks requiring the handling of a heavy object are difficult to achieve by only one mobile

manipulator. Multiple mobile manipulators can complete tasks in coordination which are diffi-

cult or impossible for a single robot. However, one of the most important problems remains the

cooperation, planning and coordination of movements within a control / command architecture

in a multi-robot context. The study of multi-robot systems has become a major concern in the

field of robotic research, because whatever the capabilities of a single robot, it remains spa-

tially limited. However, this significantly complicates the robotic system as its control design

complexity increases greatly. The problem of controlling the mechanical system forming a

closed kinematic chain mechanism lies in the fact that it imposes a set of kinematic constraints

on the coordination of the position and velocity of the mobile manipulator. Therefore, there

is a reduction in the degrees of freedom for the entire system. Further, the internal forces of

the object produced by all mobile manipulators must be controlled. Few research works have

been proposed to solve the control problem of these robotic systems, which have high degrees

of freedom and are tightly interconnected because all their manipulators are in contact with the

object.

The aim of this thesis is to propose and validate experimentally a nonlinear control approach

for a group of manipulator arms mounted on mobile platforms transporting a rigid object in

coordination. The idea is to develop a nonlinear control law (decentralized, adaptive, by sliding

mode or control by virtual decomposition,...) ensuring stability of the interconnected robotic

systems.

The organization of this thesis is given as follows: Chapter 1 presents the research objectives,

the literature review, the methodology objectives and the originality of the work. Subsequently,

Chapters 2, 3, 4, 5, and 6 present the main results of the work in the form of papers, submitted
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for (Chapters 2, 5 and 6) or accepted and published (Chapters 3 and 4). The main contributions

of this works are summarized as follows:

The first chapter of this thesis outlines the problem of research. First, the identification and

justification of the research problem are detailed in this chapter, where the problematic that

validates the present work is presented. A state-of-the-art of the existing literature in this area

of research is given. Then, the objectives of this work, general and more specific, are declared.

Finally, an overview of the methodology used is given.

In chapter 2, a model of the complete system is given, this model was used in the numerical

simulation and experimental validation. In this chapter, a general formulation and stability

analysis of the different approach of control developed and implemented in this thesis are

given to help understand the chapters based on the papers published or submitted.

Chapter 3 presents an experimental validation of a novel adaptive control based on the virtual

decomposition approach applied for formation control of virtual leader-follower mobile robots

formation. In this work, we propose a kinematic control law based on the choice of a potential

function, combined with an adaptive dynamic control scheme based on virtual decomposition

control (VDC) for the leader-follower formation. The leader is a virtual robot represented by

its dynamic model and is considered as a leader, and the followers are real robots.

Chapter 4 presents a numerical simulation and an experimental validation of a novel adaptive

control based on the virtual decomposition approach applied for multiple mobile manipulator

robots transporting rigid object in coordination. In this work, all parameters of the robotic

system were considered uncertain and were estimated by using the virtual decomposition ap-

proach. The global asymptotic stability of the entire system was proved by the principle of the

virtual stability of each subsystem.
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Chapter 5 presents a numerical simulation and an experimental validation of a novel adap-

tive control based on the Lyapunov technique applied for multiple mobile manipulator robots

cooperatively handling a common rigid object in coordination. In this work, the parameter

uncertainties are estimated using the virtual decomposition approach and the controller was

developed based on the appropriate choice of Lyapunov function. The global stability of the

system was proved based on the Lyapunov approach.

Chapter 6 presents a real time coordinated adaptive control based on the virtual decomposi-

tion approach combined with the backstepping approach. It was applied for multiple mobile

manipulator robots handling rigid object. In this work, the parameter uncertainties are esti-

mated using the virtual decomposition approach and the controller was developed based on the

backstepping control. The stability of the entire system was proved by choosing an appropriate

Lyapunov function and by using the virtual work method.

Chapter 7 presents an adaptive coordinated control based on the sliding mode approach applied

for multiple mobile manipulator robots transporting a rigid object. In this work, we were

designed an adaptive control in which the parameters uncertainties and the perturbations were

estimated by using the adaptive update techniques. The proposed control schemes ensure a

good tracking errors of the system under which these errors converge to zero and the tracking

error of the internal force stays bounded. All through this work, the designed control law and

the global stability analysis were carried out based on the appropriate choice of the candidate

Lyapunov function.



CHAPTER 1

RESEARCH PROBLEM

The objective of the creation of robots in the early sixties was to relieve human of some tedious

work such as: manipulation and repetitive tasks which are often tiring or even sometimes

infeasible manually. Following this situation, several kinds of robots were created. For some

tasks the use of a single robot is impossible which necessitates the coordination of multiple

robots to execute correctly these tasks.

In order to control and coordinate a multi-agent systems, various architectures and approaches

have been developed (Wen et al. (2014), Wen et al. (2016), Aranda et al. (2015)). Many con-

tributed works on multi-agent formation control have been performed using mobile robots

(Panagou et al. (2016), Yu and Liu (2016a), Khan et al. (2016)), helicopter (Shaw et al.

(2007)), underwater vehicles (Yin et al. (2016), Li et al. (2016)) and quadcopters (Vargas-

Jacob et al. (2016), Kang and Ahn (2016)). The multiple mobile manipulators are one of

the most important categories of these robotic systems. The coordinated control of multi-

ple mobile manipulators has attracted the attention of many researchers (Tanner et al. (2003),

Chinelato and de Siqueira Martins-Filho (2013), Khatib et al. (1996b) and Sugar and Kumar

(2002)). Interest in these systems is due to the greater capability of mobile manipulators in per-

forming more complex tasks requiring skills that cannot be accomplished by a single mobile

manipulator, which significantly complicates the robotic system, and greatly increases its con-

trol design complexity. The problem with controlling a mechanical system forming a closed

kinematic chain mechanism is that it imposes a set of kinematic constraints on the coordination

of the position and velocity of the mobile manipulator, thus leading to a reduction in the degrees

of freedom of the entire system. Although the object internal forces produced by all mobile

manipulators must be controlled, few works have been proposed to solve this control problem

for this category of robotic systems, which have high degrees of freedom and are tightly in-

terconnected because all manipulators are in contact with the object. The aim of the proposed
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nonlinear approaches is to be able to control multiple mobile manipulator robots transporting

a rigid object in coordination under parameters uncertainties and disturbances.

1.1 Literature review

Most research works in this field of the robotic system have thus far focused on the three main

coordination mechanisms involved: motion planning, the leader-follower control approach and

centralized/decentralized control.

1.1.1 Motion planning

Motion planning is one of the fundamental problems in robotics, this approach has been cov-

ered in some studies from the perspective of a group of MMRs (which is another fundamental

problem in robotics, especially in multi-robot systems), where several robots perform the task

of transporting an object in cooperation, in a known or unknown environment.

These studies include those presented in (LaValle (2006), Latombe (2012), Khatib (1985)).

Morn Benewitz in (Bennewitz et al. (2001)) proposed a planning technique based on a "hill-

climb" coast algorithm to optimize the robot trajectory. Another structure for planning optimal

trajectories was introduced in (Desai and Kumar (1997)) for two mobile manipulators pushing a

common object to a desired location. The authors in (Yamamoto and Fukuda (2002), Guozheng

et al. (2002)) proposed a control method for multiple mobile manipulators holding a common

object. The measures of kinematic and dynamic manipulability are given, taking into account

collision avoidance. However, the dynamics of the object are ignored. In Guozheng et al.

(2002) the authors have proposed a real-time trajectory planning approach for multiple mobile

robots. In this approach, the robot considers only the problem of collision with the robot that

has a higher priority.

In Furuno et al. (2003), a trajectory planning method for a group of mobile manipulator robots

in cooperation, which takes into consideration the dynamic characteristics of mobile manipu-

lators and the object to be grasped, was proposed. The dynamics are composed of equations
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of the motion of mobile manipulators, the movements of the object, the non-holonomic con-

straints of mobile platforms and the geometric constraints between the end-effectors and the

object. In Sun and Gong (2004b), Zhu and Yang (2003), a planning approach based on ge-

netic algorithms was proposed. A navigation approach of non-holonomic mobile robots in a

dynamic environment was proposed in Gakuhari et al. (2004). In this study, the information

about the environment and the robots are fed back into the system in real time. The global

motion planning is executed cyclically.

These approaches are mainly used in the case where the environment is known, which means

that the robots have prior knowledge of the environment. Planning motion in an unknown

environment for a group of mobile robots is rarely reported in the literature. Khatib (1986)

proposed a novel motion planning approach based on the artificial potential field (APF) method

applied for an unknown environment. It has been used successfully in trajectory planning for

mobile robots and manipulator robots. However, some of the researchers have applied the

APF in motion planning for a group of mobile robots in an unknown environment such as in

(Zheng and Zhao (2006)).

However, none of the previous works has studied this problem of motion planning in the case

of high degree of freedom mobile manipulators tightly interconnected and performing tasks in

coordination in the presence of dynamic obstacles. In fact, there is relatively little research on

motion planning in an unknown dynamic environment, even for a single mobile manipulator.

Only a few researchers have examined the avoidance of local obstacles by a mobile manipulator

as those given in (Mbede et al. (2004), Brock et al. (2002), Tan and Xi (2001)) and (Ogren et al.

(2000b), Ogren et al. (2000a)).

Vannoy and Jung in (Vannoy and Xiao (2007a)) discussed the problem of motion planning

for a pair of mobile manipulators moving a common object, thus forming a closed chain in

an unknown dynamic environment. They presented a new approach to planning the high-

dimensional movements of the robot team in real time with a dynamic "leader-helpers" archi-

tecture where the leader is selected according to the situations using a "Switch" selector. This
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approach was based on the Real Time Adaptive Motion Planning (RAMP) paradigm introduced

in (Vannoy and Xiao (2007b)) and (Vannoy and Xiao (2006)), in order to plan the leader’s

movement. In Bolandi and Ehyaei (2011), Hekmatfar et al. (2014) the authors were interested

in the problem of trajectory planning for two MMs transporting a payload in presence of obsta-

cles. This work represents a control strategy to successfully complete the cooperative transport

of the object while avoiding obstacles. In addition to what was discussed above, many other

research works have been proposed such as (Desai and Kumar (1997), Furuno et al. (2003),

Tzafestas et al. (1998), Iwamura et al. (2000)).

1.1.2 The leader-follower approach

The leader-follower architecture is the second approach used for the coordination of multiple

mobile manipulators. In this approach, a single or a group of MMRs is designated as a leader

trying to follow a desired trajectory, while the other group members follow the leaders. This

control approach was addressed in (Chen and Li (2006), Hirata et al. (2004a), Tang et al.

(2009)). In Fujii et al. (2007), the authors introduced the notion of virtual leader, in which

every follower considers the rest of the team (leader and other followers) as constituting the

virtual leader. The trajectory of the follower robot converges towards the trajectory of the leader

if: Each follower is controlled by the desired trajectory of his virtual leader (as a reference)

once the trajectory of the virtual leader is estimated accurately and as long as each follower

estimates the trajectory of his virtual leader with precision all the followers finally estimate the

real trajectory of the leader.

All that has been seen in the literature on the problem of the cooperation of multiple mobile

manipulators carrying an object was studied under the assumption that the manipulators are

rigidly attached to the object, that is to say that no relative movement exists between the object

and the end-effectors. But in this study (Fujii et al. (2007)), the authors used a "lead-followers"

control algorithm under constraint that the manipulators do not hold the object rigidly, but there

is a slip effect because of the effector used, this phenomenon is known as "Loose handling" or

free handling, using a hook effector.
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In Li et al. (2007) and (Li et al. (2009), the authors propose a method that can be applied for

tasks requiring a relative motion between the handled object and the effector of the manipu-

lators such as assembly of parts or in an operation of welding where the object is held rigidly

(closed) on one side by a manipulator and on the other side there will be movement between

the object and the end-effector of the second manipulator. In Kosuge and Oosumi (1996) and

Kosuge et al. (1999), a leader-follower approach was applied for mobile robots transporting a

single object. In these works, sub-groups consisting of the real leader and the other followers

were represented by a "virtual leader". The followers estimate the position of the virtual-leader

online, then move according to this estimated position. Then this idea was extended and im-

plemented to control a group of mobile manipulators (Kume et al. (2007)). Differently with

what was used in (Kosuge and Oosumi (1996), Kosuge et al. (1999)), in this work the force

was estimated by using the robot dynamics where they consider that the robot parameters are

accurately identified. In Hirata et al. (2004b), a leader–follower approach of multiple mobile

manipulators handling a rigid object was proposed. In this algorithm, the representative point

of each robot was controlled as a caster-like dynamics in three-dimensional space.

1.1.3 Hybrid centralized/decentralized control

In this approach the position and the internal force are controlled in a given direction of the

workspace. The first one is the centralized control, in which the robotic system is regarded as

one system and the controller is designed for the full system. The second one is the decen-

tralized control, in which the robotic system is decomposed into several subsystems forming

the full system, then controllers for each subsystem are designed separately and no coupling is

considered. In Tanner et al. (2003) and Tanner et al. (1998), modelling and centralized coordi-

nating control were applied for a group of mobile manipulator robots transporting a deformable

object in presence of obstacles. In Chinelato and de Siqueira Martins-Filho (2013), modelling

and control law were developed for two mobile manipulators robots to execute performed tasks,

where subtasks were simulated including transport and manipulations tasks.
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Khatib et al. (1996b) and Khatib et al. (1996a) proposed an extension of the four methods de-

veloped initially for a manipulator arms mounted on a fixed-base including : 1) the formulation

of the operational space is focused on robot motion tasks and force control, 2) Of a macro /

mini structure to increase the mechanical bandwidth of the robotic system; 3) the augmented

object model for manipulating objects in a multiple arm robot systems; and 4) the model of

a virtual link for the characterization and control of internal forces in a multi-arm system to

manipulator arm mounted on holonomic bases, with a novel command for decentralized co-

operation tasks.The authors in (Sugar and Kumar (2002)) addressed the coordinated feedback

control applied to a small team of collaborative mobile manipulators performing tasks, such

as grasping a large flexible object and transporting it in a two-dimensional environment in the

presence of obstacles. Under the assumption that each mobile manipulator is equipped with a

specific effector, that allows it to exercise controlled forces in the plane. In other words, the

effector can only push the object.

(Kosuge et al. (1999), Kosuge and Oosumi (1996), Hirata et al. (1999)) proposed a control

algorithm based on the geometric constraints between the contact points and the point repre-

senting the object which reduces the effect of sensor noise. Then this algorithm was extended

to a decentralized control algorithm and applied for multiple mobile robots moving a rigid ob-

ject in coordination. Based on what was done in Kosuge and Oosumi (1996),Kosuge et al.

(1999), Kume et al. (2007) proposed a decentralized control law, in which they introduced the

notion without a torque / force sensor. In Shao et al. (2015) a distributed control combined with

observer state was designed for multi-agent robotic systems. In Sayyaadi and Babaee (2014) a

decentralized approach based input-output linearisation method is proposed to design an inde-

pendent controller for each robot, each robot has a three degrees of freedom manipulator arm

mounted on platform mobile. A partially and fully decentralized controller applied to coop-

erating control of load manipulation by a team of mobile manipulators robots were proposed

in Petitti et al. (2016). This approach was numerically simulated in presence of sensor noise.

In Dai and Liu (2016) the authors proposed a distributed coordination/cooperation control for

interconnected mobile manipulators with time delays, the decoupled dynamics is considered in
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which the task and the null space of the mobile manipulators were designed to achieve different

missions.

Most of these proposed approaches of control explained above have been designed under the

assumption that the geometric relations between the robots are known with precision. But, in

practice it is difficult to know these geometrical relations between the robots precisely, espe-

cially when the robots manipulate an unknown common object. There may be errors in the

position / orientation of each mobile robot detected by a navigation system due to slippage

between the wheels and the ground. Even if the geometric relationships between the robots

are measured, these geometric relationships could not be more precise because of the errors

included in the orientation/position information of each robot. To overcome these problems,

a coordinated motion control algorithm of multiple mobile robots, which is robust against po-

sitioning errors, was designed by Kume et al. (2001). In this paper, the authors propose a

decentralized control law of several mobile manipulators manipulating a single object in coor-

dination without using the geometrical relations between them. The proposed control algorithm

is experimentally applied to three manipulator arms mounted on holonomic platform mobile.

In Farivarnejad et al. (2016), a decentralized control approach based on sliding mode control

was applied for multiple robots, differently from the previous cited works. In this paper, the au-

thors assumed that the controllers do not require knowledge of the load dynamics and geometry

of the handling load.

1.2 Research objectives and methodology

As discussed above, all studies based on the classical methods such as the Lagrangian or the

Newton/Euler approaches, require a good knowledge of the parameters of the system. In prac-

tical terms, this is not true, and the resulting model is generally uncertain. The parameters’

uncertainties, the high nonlinearity, and the interconnected kinematics and dynamics coupling

of these categories of robotic systems greatly complicate the control problem and make it diffi-

cult to solve by using only the known classical approaches explained earlier. A group of many
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mobile manipulators holding an object in coordination is one of the most important in these

classes of robotic systems. Many research works in this area were proposed and developed,

such as in (Chen (2015), Zhao et al. (2016), Liu et al. (2016), Li and Ge (2013)). This is due

to the fact that such robotic systems have been implemented in most modern manufacturing

applications. To overcome this serious problem of uncertainties, the adaptive control of robotic

systems with high degrees of freedom has been receiving increasing attention in recent years.

Some researchers have proposed an adaptive control approach (Karray and Feki (2014)), and

others have proposed and intelligent adaptive control based on a neural networks scheme (Liu

et al. (2014), Liu and Zhang (2013),Liu et al. (2013), Li and Su (2013)) and a fuzzy logic

approach (Mai and Wang (2014), Wang et al. (2014), Li et al. (2013)).

The main objective of this project is to develop a nonlinear adaptive coordinated control for a

group of mobile manipulator robots transporting a rigid object. Differently to what was done in

the literature, in this work, the developed decentralized adaptive controls are not based on the

full dynamic of the interconnected robotic systems. The robotic systems with high number of

degrees of freedom were decomposed into many simple subsystems. This decomposition sim-

plified the control and the adaptation of the parameters and made them very easy. To achieve

this main objective, two identical mobile manipulator robots were used. The mechanical part

and the electronic hardware were developed in the first part of this project, then all the devel-

oped control laws were implemented in real time.

1.2.1 Development of an experimental platform

To achieve our objective, two identical mobile manipulator robots were developed, the me-

chanical part was mounted in the GRÉPCI/ÉTS laboratory as illustrated in Figure 1 b. For the

electronic part, the platform of each mobile manipulator has four wheels, where only the two

front wheels are actuated by two HN-GH12-2217Y DC motors (DC-12V-200RPM 30:1), and

the angular positions were given using encoder sensors (E4P-100-079-D-H-T-B). All joints of

the manipulator arm were actuated by Dynamixel motors (MX-64T). As low level control an

Atmega 32 micro-controller is used is shown in Figure 1.1 a. All developed nonlinear control
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schemes were implemented in real time using of Mathworks� Real-Time Workshop (RTW).

A Zigbee technology communication system was used between the mobile manipulator robots

and the application program implemented in Simulink Mathworks�.

Figure 1.1 Experimental platform

1.2.2 Development of the nonlinear control laws

Different control approaches were studied. The uncertainties, the high nonlinearity, and the

tight kinematics and dynamics coupling characterizing such systems greatly complicate the

control problem and make it difficult to solve using the classical approaches explained ear-

lier. To solve this serious problem many adaptive coordinated control laws were proposed and

implemented in real time. These approaches can be summarized as follows:

a. An adaptive coordinated control applied to leader-follower formation of mobile robots

was developed. A kinematic control law of the formation was developed based on the

choice of potential function, and combined with the virtual decomposition approach to

ensure a good formation tracking and parameters adaptation;

b. An adaptive decentralized control based on the virtual decomposition was developed and

applied to a 7 DoF manipulator robot named ANAT robot (Brahmi et al. (2013b)), and

then this approach was applied for mobile manipulators (Brahmi et al. (2016b)). The
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proposed approach was extended and applied to a group of mobile manipulator robots

handling a rigid object in coordination (chapter 4);

c. A novel decentralized adaptive control based on the approach proposed in chapter 4 was

applied to tracking control of mobile manipulators (Brahmi et al. (2016b)) and then ex-

tended to multiple mobile manipulators transporting a rigid object. In this work, the

stability analysis and the control law were designed based on the appropriate choice of

Laypunov function where the virtual decomposition approach was used to simplify the

parameters’ adaptation of the robotic systems (chapter 5);

d. An adaptive backstepping control was developed and implemented for the tracking con-

trol of mobile manipulators (Brahmi et al. (2016a), Brahmi et al. (2017)) and then this

approach was extended and applied to control a group of mobile manipulators moving an

object in coordination. In this work the virtual decomposition approach was combined

with the backstepping method to ensure the stability and tracking control (chapter 6);

e. Finally, an adaptive coordinated control based on the sliding mode approach combined to

the potential field function was designed and applied to a group of mobile manipulator

robots transporting a rigid object in coordination (chapter 7). This novel adaptive coordi-

nated control scheme ensures a good position/force trajectory tracking, under parameters

uncertainties and disturbances. This proposed control law can also minimize greatly the

chattering phenomena when the sliding surface is close to zero which is not possible with

the conventional sliding mode.

1.3 Originality of the research and contribution

This research focuses on the development of nonlinear control laws to ensure the stability of

tracking error dynamics for multiple mobile manipulator robots transporting a rigid object in

coordination. Following the literature review, although several studies deal with the control

of multiple mobile manipulators executing tasks in coordination, few of them take a precise

look on the high nonlinearity and uncertainties of the parameters where the majority of them
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consider that the dynamic model of the interconnected system is known. In practical terms, this

is difficult, and the resulting model is generally uncertain. To solve this problem of modelling

and dynamic control in the presence of uncertainty, some researchers have proposed an adaptive

control approach based on the complete dynamic of the robotic system. In this project, we

propose different adaptive decentralized approaches. In contrast with what appears in the cited

works, this thesis enriches the knowledge in the field through the following contributions:

a. By using the virtual decomposition approach, several major advantages are obtained, with

the main ones being that:

• The whole dynamics of the system can easily be found based on the individual dynam-

ics of each subsystem, even in the presence of a change in the system configuration.

In this case, adding a new robot or removing a faulty one from the system does not

require a recalculation of the full dynamics of the system;

• the schemes render the system control design very flexible and greatly facilitate the

calculation of the dynamic system, with respect to changes in the system configura-

tion;

• They render the adaptation of the uncertain parameters very simple and systematic.

b. The global stability of the complete system is proven based on the appropriate choice of

Lyapunov functions using the virtual stability of each subsystem, based on the principle of

virtual work. Contrary to the original VDC stability analysis, in this works, all parameters

are estimated and considered completely unknown, with unknown limits;

c. To solve the problem of parameter adaptation and modelling of systems using standard

approaches; Firstly, a VDC approach based on an appropriate choice of Lyapunov func-

tion was proposed, then this approach (VDC) was combined with backstepping control to

ensure a good workspace position tracking;

d. We designed an adaptive coordinated control based on the sliding mode approach in which

the parameters uncertainties and the perturbation are estimated by the adaptive update
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techniques. The proposed control ensures good tracking errors of the system under which

these errors converge to zero and the tracking error of the internal force stays bounded;

in addition, this controller limits perfectly the chattering phenomena when the sliding

surface is close to zero;

e. To achieve our objective an experimental platform was developed in which all designed

control laws were implemented.



CHAPTER 2

MODELLING SYSTEM AND APPROACH OF CONTROL

The dynamic model of a mechanical system establishes the relationship between the forces

applied to the system and its coordinates, velocities and generalized accelerations. Depending

on the application, this model may take different forms. The first is called explicit and one

of the most explicit formalism used is the Lagrangian formalism. The model can also take

an implicit form. This is the case of the Newton-Euler formalism which, furthermore, takes a

recursive form. The explicit form permits the study of the properties of the model of a system

and can be obtained in a systematic method. The second form is rather adapted to the real

time calculations of the quantities describing the evolution of the system with time. We are

interested here in two formalisms, Lagrange, which, in addition to describing the dynamics

of the system in the form of simple (non-recursive) equations, is very general and permits,

for example, non-holonomic links, and to the virtual decomposition approach that is based on

the Newton-Euler method, which makes it possible to simplify the modelling of systems with

many degrees of freedom.

2.1 Modelling system

We recall that the general equation of the dynamics of a mechanical system is given by:

d
dt

(
∂L(q, q̇, t)

∂ q̇i

)
−
(

∂L(q, q̇, t)
∂qi

)
= Qi, (1 ≤ i ≤ n) (2.1)

This result is the expression of the principle of the virtual powers, expressed in terms of the

kinetic energy L(q, q̇, t) of the system.

Qi is called the power coefficient for the generalized real force associated with the parameter

qi. It is a force when qi is a displacement and a torque when qi is an angle. qi, q̇i, q̈i ∈ R
n are

respectively the generalized coordinates vector, the joint velocity and the acceleration.
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Wheeled mobile manipulators are nonholonomic systems and therefore incompletely parame-

terized. The dynamic expression given in (2.1) can be rewritten as:

d
dt

(
∂L(q, q̇, t)

∂ q̇i

)
−
(

∂L(q, q̇, t)
∂qi

)
= Qi + J(q) fi, (2.2)

where f is the constraint force corresponding to holonomic and nonholonomic constraints and

J is the jacobian matrix. The dynamic model of the the i-th mobile manipulator robot based on

(2.2) can be obtained as follow:

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +Gi(qi) = Eiτi + Jie(qi) fi, (2.3)

where Mi(qi) ∈ R
n×n is the inertia matrix, Ci(qi, q̇i) ∈ R

n×n represents the Centripetal and

Coriolis terms, Gi(qi) ∈ R
n is the vector of gravity, qi =

[
qiv qia

]T ∈ R
n with qiv ∈ R

nv and

qia ∈ R
na are the generalized coordinates vector of the platform and the manipulator arm re-

spectively, τi ∈ R
k the input torques and Ei ∈ R

n×k is input transformation matrix. fi is the

constraints forces corresponding to holonomic and nonholonomic constraints and JT
ie ∈ R

n×n

is the Jacobian matrix and are represented as:

Mi =

⎡
⎣Miv Miva

Miav Mia

⎤
⎦, Ci =

⎡
⎣Civ Civa

Ciav Cia

⎤
⎦, Gi =

⎡
⎣Giv

Gia

⎤
⎦, Jie =

⎡
⎣Ai 0

Jiv Jia

⎤
⎦, Ei =

⎡
⎣Eiv 0

0 Eia

⎤
⎦,

fi =

⎡
⎣ fiv

fie

⎤
⎦ and τi =

⎡
⎣τiv

τia

⎤
⎦.

2.1.1 Elimination of Lagrange multipliers

As defined above the mobile manipulator robot is subjected to nonholonomic constraints, in

which the m independent velocity constraints are presented by the given expression:

Ai(qiv)q̇iv = 0 (2.4)



19

where Ai is the constraint matrix of the mobile platform. Define a matrix Ri(qiv) ∈ R
nv×(n−m),

for which RT
i (qiv)Ri(qiv) is a full rank matrix to be a basis of the null space of Ai(qiv), we

obtain the following result:

RT
i (qiv)AT

i (qiv) = 0 (2.5)

where m is the number of the non integrable and independent velocity constraints on the mobile

platform.

There is an auxiliary input vector ϑiv ∈ R
(nv−m) that satisfies:

q̇iv = Riϑiv (2.6)

q̈iv = Riϑ̇iv + Ṙiϑiv (2.7)

Let us define the vector ηi =
[
ϑiv qia

]T ∈ R
n−m, based on (2.6) and (2.7) the dynamics ex-

pression of the i-th mobile manipulator (2.3) can be given as follows:

M1
i (ηi)η̈i +C1

i (ηi, η̇i)η̇i +G1
i (ηi)+ p1

i = E1
i τi + JT

ie fie (2.8)

where, M1
i =

⎡
⎣RT

i MivRi RT
i Miva

MiavRi Mia

⎤
⎦, G1

i =

⎡
⎣RT

i Giv

Gia

⎤
⎦, C1

i =

⎡
⎣RT

i MivṘi +RT
i CivRi RT

i Civa

MiavṘi +CiavRi Cia

⎤
⎦,

Jie =

⎡
⎣ 0 0

JivRi Jia

⎤
⎦, p1

i =

⎡
⎣RT

i piv

pia

⎤
⎦ , and E1

i =

⎡
⎣RT

i Eiv 0

0 Eia

⎤
⎦.

The dynamics expression of the N mobile manipulator robots from (2.8) can be written as:

Mη̈ +Cη̇ +G+P = Eτ + JT
e Fe (2.9)

where M = diag(M1
1 , ..,M

1
N) ∈ R

N(n−m)×N(n−m), C = diag(C1
1 , ..,C

1
N) ∈ R

N(n−m)×N(n−m), G =

[G1T
1 , ..,G1T

N ]T ∈R
N(n−m), Fe = [ f T

1e, .., f T
Ne]

T ∈R
(n−m)N , JT

e = diag(JT
1e, ..,J

T
Ne)∈R

N(n−m)×N(n−m),

P= [p1T
1 , .., p1T

N ]T ∈R
N(n−m), η = [η1T

1 , ..,η1T
N ]T ∈R

N(n−m), and Eτ = [(E1τ1)
T , ..,(ENτN)

T ]T ∈
R

N(n−m).
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2.1.2 Dynamics of the handled object

The object is considered rigid and it was tightly handled and transported by N mobile ma-

nipulator robots in coordination. The dynamics of movement of the object in space can be

expressed as follows:

Mo(xo)V̇o +CoVo +Go = Fo (2.10)

where xo ∈ R
no denotes the coordinates of the objects center of gravity and Vo ∈ R

no denotes

its linear/angular velocity. Mo ∈ R
no×no is the inertia matrix, Co ∈ R

no×no is defined as the

Centrifugal and Coriolis terms, Go ∈ R
no is the vector of gravity and Fo ∈ R

no represent the

vector of forces applied to the object.

From the configuration of the robotic system including the N mobile manipulator robots and

the handled object, the relationship between the object force Fo ∈ R
no and the end-effector

forces Fe ∈ R
N(n−m) is given by:

Fo =−Jo(xo)
T Fe (2.11)

where Jo(xo) is the Jacobian matrix relating the two forces Fe and Fo. Furthermore, the end-

effector force Fe can be decomposed into two orthogonal components: the first one denotes

the internal force where the second contributes to the movement of the handled object. This

representation is given by the following form:

Fe =−Jo(xo)
T+Fo −FI (2.12)

where Jo(xo)
T+ is the pseudo-inverse of Jo(xo)

T and is given by Jo(JT
o Jo)

−1. FI =
[
FT

1I , ....,F
T
NI
]T ∈

R
N(n−m) are defined as the internal forces in the null space of JT

o . These internal forces are also

parametrized by the Lagrangian multiplier vector λI as follows:

FI = ρT λI (2.13)
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where ρ is the Jacobian matrix for internal force, and verifies the following property:

JT
o ρT = 0 (2.14)

2.1.3 Dynamics of the entire robotic system

Before calculating the dynamics of the complete interconnected robotic system, a brief kine-

matic description will be given in this subsection. Let us define Vie ∈R
(n−m) as a linear/angular

velocity of the i-th mobile manipulator robot. Then this velocity is related to the joint velocity

coordinate η̇i ∈ R
(n−m) by the Jacobian matrix Jie ∈ R

(n−m)×(n−m)as:

Vie = Jie(ηi)η̇i (2.15)

and the relationship between the i-th end-effector velocity Vie ∈ R
(n−m) and the velocity of the

object Vo is given by the following:

Vie = Jio(xio)Vo (2.16)

From (2.15), the joint velocity of the N mobile manipulators η̇ ∈ R
N(n−m) is related to the

linear/angular velocity of the end-effectors Ve ∈ R
N(n−m) by the following expression:

Ve = Je(η)η̇ (2.17)

Ve = Jo(xo)Vo (2.18)

where Je = blockdiag(J1e, ...,JNe) ∈ R
N(n−m)×N(n−m) and Jo =

[
JT

1o, ....,J
T
No
]T ∈ R

N(n−m)×no .

Assuming that the object is rigidly handled by the N mobile manipulator robots so all the robots

are acting on this object at the same time, based on (2.17) and (2.18), the joint velocity can be

given as:

η̇ = ℑVo (2.19)
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where ℑ = J−1
e (η)Jo(xo). Differentiating (2.19) with respect to time, we obtain:

η̈ = ℑV̇o + ℑ̇Vo (2.20)

multiplying both side of (2.12) by JT
e we obtain:

JT
e Fe =−ℑT Fo − JT

o FI (2.21)

Based on (2.19) and (2.20) the dynamics of the N mobile manipulator robots coupled with the

dynamic model of the handled object (2.10), using (2.21), can be expressed in the Cartesian

space by the following:

MeV̇o +CeVo +Ge +Pe =U + JT
o Fe (2.22)

where Me = ℑT Mℑ, Ce = ℑT (Mℑ̇+Cℑ), Ge = ℑT G, Pe = ℑT P and U = ℑT Eτ . Based on

(2.11) the force applied to the grasped object can be calculated from (2.22) as follows:

Fo =U − (MeV̇o +CeVo +Ge +Pe
)

(2.23)

Substituting the object dynamics (2.10) into (2.23), the dynamics of the robotic system (2.23)

can be written as:

MV̇o +CVo +G+Pe =U (2.24)

where M = Mo +Me, C = Co +Ce and G = Go +Ge. The obtained dynamics (2.24) has the

following important properties, that are often used in the control design and in the stability

analysis of the robotic systems.

Property 2.1: The matrix M is symmetric, positive definite and are bounded, There λminI ≤
M≤ λmaxI, where λmin and λmax are defined as the minimum and the maximum eigenvalues of

M and I is the identity matrix.

Property 2.2: The matrix Ṁ−2C is skew symmetric, that verifies, xT (Ṁ−2C)x = 0 for any

vector x ∈ R
(no).
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Property 2.3: All Jacobian matrices are uniformly continuous and uniformly bounded if the

position trajectories Xe and xo are uniformly continuous and uniformly bounded.

2.2 Approach of control

The virtual decomposition control (VDC) approach was used in this thesis to control and to

simplify the estimation of the uncertainty parameters of the system. In this chapter, a general

formulation of this approach will be given.

2.2.1 Virtual decomposition approach

2.2.1.1 General formulation

The VDC approach consists in breaking down the complete robotic system into a graph com-

prised of several objects and open chains. An object is a rigid body and an open chain consists

of a series of rigid links connected one-by-one by a hinge, and having a certain degrees of

freedom. The dynamic coupling between the subsystems can be represented by the flow of

virtual power (FVP) at the cutting point; this is the principle of virtual decomposition. The

principal use of the VDC approach is to resolve the problem of adaptation and modelling of

systems with several degrees of freedom using classical approaches, which makes control of

the robotic system more flexible when its configuration changes. In this case, adding a new

robot or removing a faulty one from the robotics system does not require a recalculation of

the full dynamics of the system. Before giving the rationale behind the virtual decomposition

approach, we start by giving a brief formulation of the kinematics and dynamics modelling of

the robot under consideration. The decomposition is illustrated in figure 2.1 (Zhu (2010)).

2.2.1.2 Kinematics

The kinematics model is obtained based on the modified Denavit-Hartenberg parameters for

the decomposition illustrated in figure 2.2,
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Figure 2.1 A interconnected robotic system

Taken from Zhu (2010)

The homogeneous transformation matrices can be used to calculate the force/moment trans-

formations between successive frames Bi , identified as BiUBi+1
for i = 1, ..,n and is given as

follows:

BiUBi+1
=

⎡
⎣ BiRBi+1

03×3

(BirBi×) BiRBi+1

⎤
⎦ (2.25)

where BiRBi+1
∈R

3×3 is the rotation matrix between frame Bi and the frame Bi+1, (BirBi+1
×) ∈

R
3×3 is a skew symmetric matrix built from the vector (BirBi+1

) ∈ R
3 linking the origins of
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Figure 2.2 A serial manipulator robot

Taken from Zhu (2010)

frame Bi and the frame Bi+1 assumed to be located at centre of mass, expressed in the coordi-

nates of frame Bi+1 and is given by the following expression:

(BirBi×) =

⎡
⎢⎢⎢⎣

0 −BirBi+1
(3) BirBi+1

(2)

BirBi+1
(3) 0 −BirBi+1

(1)

−BirBi+1
(2) BirBi+1

(1) 0

⎤
⎥⎥⎥⎦ (2.26)

where BirBi+1
( j) is defined as the j-th element of the BirBi+1

vector.

Let us define the velocity vector by the following vector:

Vn =
[
q̇1 ... q̇n V T

B1
... V T

Bn

]T
(2.27)

where q̇i is the joint velocity, and the VBi ∈R
6 vectors represents the velocity of each frame Bi.

The following relates the velocity propagation along the structure:

VBi+1
= Zq̇i+1 +

Bi UT
Bi+1

VBi (2.28)
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where the vector Z is defined as Z =
[
0 0 1 0 0 0

]T
for prismatic axes and as Z =[

0 0 0 0 0 1

]T
, for revolute axes.

In general, we can write the system in matrix form by using the virtual decomposition Jacobian

matrix:

Vn = Jnq̇ (2.29)

where q̇ =
[
q̇1 ... q̇n

]T
, and the Jacobian is defined by:

Jn =

⎡
⎣In×n

Ξ

⎤
⎦ (2.30)

with,

Ξ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Z 06 · · · 06

B1UT
B2

Z Z · · · 06

...
... · · · ...

B1UT
Bn

Z · · · Bn−1UT
Bn

Z

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.31)

2.2.1.3 Dynamics and control of the i-th link

The dynamics of the i-th rigid body is given in the linear form by the following equation:

F∗
Bi
= MBiV̇Bi +CBiVBi +GBi = YBiθBi

(2.32)

where MBi ∈R
6×6 is the matrix of inertial terms, CBi ∈R

6×6 represents the matrix of Centrifu-

gal/Coriolis terms, GBi ∈ R
6 is the vector related to the gravity that are given by:

MBi =

⎡
⎣ mBiI3 −mBi(

BirBiA×)

mBi(
BirBiA×) IBi −mBi(

BirBiA×)2

⎤
⎦, GBi =

⎡
⎣ mBi .

BiRIg

mBi(
BirBiA×)g

⎤
⎦, and
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CBi(wBi×) =

⎡
⎣ mBi(wBi×) −mBi(wBi×)(BirBiA×)

mBi(wBi×)(BirBiA×) (wBi×)IBi + IBi(wBi×)−mBi(
BirBiA×)(wBi×)(BirBiA×)

⎤
⎦

where mBi is the mass of the link, I3 ∈R
3×3 is an identity matrix, IBi =

Bi RIIo(t)IRBi is defined

as a time varying moment of inertia matrix, Io(t)∈R
3×3 is called the moment of inertia matrix,

BiRI ∈ R
3×3 is the rotation matrix between frame Bi and the inertial frame, (BirBiA×) ∈ R

3×3

is a skew symmetric matrix built from the vector (BirBiA) ∈ R
3 linking the origins of frame Bi

and the frame A assumed to be located at centre of mass, expressed in the coordinates of frame

Bi, g= [0,0,9.81]T , θBi ∈ R
13 is the parameters vector, and finally YBi ∈ R

6×13 is the dynamic

regressor matrix built from the vectors VBi ,wBi ,qi and their derivatives, defined in Appendix I.

The vector of resulting forces/moments acting on the rigid body is computed by an iterative

process as follows.

FBn = F∗
Bn

FBn−1
= F∗

Bn−1
+Bn−1 UBnF∗

Bn

.

.

.

FB1
= F∗

B1
+B1 UB2

F∗
B2
+ ...+B1 UBnF∗

Bn

(2.33)

The dynamics of the i-th rigid body based on its required velocity V r
Bi
∈ R

6 is expressed in the

linear form by the following equation:

F∗r
Bi

= MBiV̇
r
Bi
+CBiV

r
Bi
+GBi = YBiθBi

(2.34)

Since the physical parameters of the i-th rigid body are assumed to be unknown and should be

estimated, then the vector θ̂Bi ∈ R
13 is used and its equation of control becomes:

F∗r
Bi

= YBi θ̂Bi +KBi(V
r
Bi
−VBi) (2.35)
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where, ˙̂θBi = ρBiY
T
Bi

SBi is the parameters adaptation function, and is chosen to ensure system

stability, SBi = (V r
Bi
−VBi) and ρBi ∈ R

13×13 is diagonal positive definite matrix. The vector of

resulting forces / moments acting on the i-th rigid body is given by an iterative process. We

begin by computing the vector of forces in the different cutting points:

Fr
Bn

= YBn θ̂Bn +KBn(V
r
Bn
−VBn)

FBn−1
= YBn−1

θ̂Bn−1
+KBn−1

(V r
Bn−1

−VBn−1
)+Bn−1 UBnFr

Bn

.

FBi = YBi θ̂Bi +KBi(V
r
Bi
−VBi)+

Bi UBi+1
Fr

Bi+1

.

FB1
= YB1

θ̂B1
+KB1

(V r
B1
−VB1

)+B1 UB2
Fr

B2
+ ...+B1 UBnFr

Bn

(2.36)

2.2.1.4 Dynamics and control of the actuator

The dynamics of the i-th actuator can be expressed by the following dynamics:

τai = Jmai q̈i +ξ (qi, q̇i) (2.37)

where ξ (qi, q̇i) represents the friction and gravitation force / torque terms and Jmai is the mo-

ment of inertia of the motor driving this joint. According to the property of linearity in the

parameters, these dynamics can be written in linear form as:

τai = Yaiθai (2.38)

where, θai ∈R
4 are the column vectors of the dynamic parameters of the motor driving the i-th

joint and Yai ∈ R
4 are the dynamic regressor (row) vectors, also defined in the Appendix II.

The dynamics of the i-th joint actuator based on its required velocity qr
i is expressed in the

linear form by the following equation:

Jmai q̈
r
i +ξ (qr

i , q̇
r
i ) = Yaiθai (2.39)
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Since the physical parameters of the i-th actuator are unknown and need to be estimated, then

the vector θ̂ai is used and its equation of control is given by the following expression:

τr
ai = Yaiθ̂ai +Kai(q̇r

i − q̇i) (2.40)

where ˙̂θai = ρaiyT
aiSai is the parameters adaptation function, and is chosen to ensure system

stability; Sai = q̇r
i − q̇i, and ρai, Kai are positive gains. Yai is the dynamic regressor (row)

vectors, defined in Appendix I and given with more details in (Zhu et al. (1997), Zhu (2010)).

Finally, the input control torque at the i-th articulation is calculated from the desired torque τr
i

obtained from (2.40), and the required force at cutting point Bi, identified Fr
Bi

as:

τi = τr
ai +ZT Fr

BI (2.41)

with Z = [0 0 0 0 0 1]T for the revolute joints and Z = [0 0 1 0 0 0]T for the prismatic

joints.

2.2.2 Virtual stability analysis

The global stability of the system’s VDC is proven through the virtual stability of each subsys-

tem based on the virtual work approach. It will be proven that each of the i-th links combined

with its control equations and each joint combined with its control equations qualifies to be

virtually stable. Consequently, the entire robotics system is stable virtually .

2.2.2.1 Virtual stability of the i-th link

Let us consider the non-negative Lyapunov candidate function as:

vi =
1
2
(Vr

Bi
−VBi)

TMBi(V
r
Bi
−VBi)+

1
2

13

∑
γ=1

(
θiγ − θ̂iγ

)2
/ρiγ (2.42)

where θiγ , θ̂iγ denotes the γ-th element of θiγ and θ̂iγ respectively. ρiγ > 0 is a parameter

update gain. Then from the dynamics of the i-th link (2.32), (2.33), and by using its equation
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of control in appendix (AII-16), (AII-5) and the update control law given after (AII-16), the

first derivative of (2.42) along time can be given by the following expression:

v̇i ≤−(V r
Bi
−VBi)

T KBi(V
r
Bi
−VBi)+(V r

Bi
−VBi)

T (F∗r
Bi

−F∗
Bi
) (2.43)

2.2.2.2 Virtual stability of the i-th actuator

Let us define the positive Lyapunov candidate function as follows:

vai =
1
2

Jmai(q̇
r
i − q̇i)

2 +
1
2

4

∑
i=1

(
θaiγ − θ̂aiγ

)2
/ρaiγ (2.44)

where θaiγ , θ̂aiγ denote the γ-th element of θaiγ and θ̂aiγ respectively. ρaiγ > 0 is a parameter

update gain. Then from the dynamics of the i-th actuator (2.37), (2.39), and by using its

equation of control (2.40) and the update control law given after (2.40), the first derivative of

(2.44) along time is given by:

v̇ai =−(q̇r
i − q̇i)Jmai(q̈

r
i − q̈i)−

4

∑
γ=1

(
θaiγ − θ̂aiγ

) ˙̂θai

ρaiγ
(2.45)

v̇ai ≤−Kai(q̇r
i − q̇i)

2 +(q̇r
i − q̇i)(τr

ai − τai) (2.46)

2.2.2.3 Stability of the entire system

Using the same method given above, a definite positive Lyapunov candidate function is chosen

as:

v =
n

∑
i=1

vi +
n

∑
i=1

vai (2.47)

Based on (2.45), (2.46) and (Appendix II) the time derivative of v is given as follow:

v̇ai ≤−
n

∑
i=1

(V r
Bi
−VBi)

T KBi(V
r
Bi
−VBi)−

n

∑
i=1

Kai(q̇r
i − q̇i)

2 (2.48)
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The details of the proof is given in Appendix II, and the reader can also found more details in

(Zhu (2010)).

2.3 Adaptive backstepping approach

The backstepping technique was combined with the virtual decomposition approach and used

to control a robotic system with n-DoF. This approach was used to control the links where the

actuators are controlled based on the virtual decomposition approach.

2.3.1 Controller design

A general formulation is given in this section where more details are given in Chapter 6. Let

US define the error variables for the robotic system at the cutting points as follows:

⎧⎨
⎩eBi

1 = Z(qi −qd
i )

eBi
2 = (VBi −αBi)

(2.49)

where αBi is a virtual input, to guaranty the stability of the system, this virtual input control

can be chosen as follows:

αBi = Zq̇d
i −KBi

1 eBi
1 −Bi UT

Bi−1
VBi−1

(2.50)

The control law of the i-th rigid body (link) (2.34) based on the virtual input (2.50) and the

linear parametrization form is given by the following expression:

F∗r
Bi

= MBiα̇Bi +CBiαBi +GBi − eBi
1 −KBi

2 eBi
2 (2.51)

Nevertheless, since the physical parameters of the i-th rigid body (link) are supposed to be

unknown but constant and need to be estimated, then the estimated vector of parameters θ̂Bi is
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used and the required force/moment of the i-th link is chosen as follows:

F∗r
Bi

= YBi θ̂Bi − eBi
1 −KBi

2 eBi
2 −KBi

3 sign(eBi
2 ) (2.52)

where, ˙̂θBi = ρBiY
T
Bi

SBi is the adaptation function that can ensure convergence and stability of

the system, SBi =V d
Bi
−VBi and ρBi , KBi

1 , KBi
2 and KBi

3 are a positive controller gains. The vector

of resulting forces/moments acting at the different rigid body is calculated by using an iterative

process (Zhu (2010)) as in (2.36). Subsequently the vector of forces at the different cutting

point is obtained as follows:

Fr
Bn

= F∗r
Bn

Fr
Bn−1

= F∗r
Bn−1

+Bn−1 UBnF∗r
Bn

.

Fr
Bi
= F∗r

Bi
+Bi UBi+1

F∗r
Bi+1

.

Fr
B1

= F∗r
B1

+B1 UB2
F∗r

B2
+ ...+B1 UBnF∗r

Bn

(2.53)

The control equation of the i-th actuator (2.39) based on the required velocity is given as fol-

lows:

τr
ai = Yaiθ̂ai +Kai(q̇r

i − q̇i) (2.54)

where ˙̂θai = ρaiyT
aiSai is the parameters adaptation function, and chosen to ensure the system

stability; Sai = q̇r
i − q̇i, and ρai,Kai are positive gains. Yai is the dynamic regressor (row) vectors,

defined in Appendix I (Zhu et al. (1997),Zhu (2010)). Finally, the i-th input joint control torque

τi is calculated based on the suitable torque obtained from (2.54) and the required force at the

i-th cutting point F∗r
Bi

, is obtained as:

τi = τr
ai +ZT Fr

Bi
(2.55)
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2.3.2 Stability analysis

Consider the i-th rigid body dynamics (2.32) and the joint actuator dynamics (2.37), under

the control design (2.52) and (2.54). The stability of the entire system is proved based on the

virtual stability of each subsystem explained above. The control objective is satisfied and the

error tracking states are asymptotically stable.

2.3.2.1 Stability of i-th link

Consider the non-negative Lyapunov candidate function:

vi =
1
2

eBiT
1 eBi

1 +
1
2

eBiT
2 MBie

Bi
2 +

1
2

13

∑
γ=1

(
θiγ − θ̂iγ

)2
/ρiγ (2.56)

Then based on the dynamics of the i-th link (2.32), (2.33), its equation of control (2.50), (2.52)

and the update control law given after (AII-5). By knowing that eBiT
2 sign(eBi

2 ) =
∥∥∥eBi

2

∥∥∥, the first

time derivative of (2.56) is given by:

v̇i =−eBiT
1 KBi

1 eBi
1 − eBiT

2 KBi
2 eBi

2 −KBi
3

∥∥∥eBi
2

∥∥∥+(V r
Bi
−VBi)

T (F∗r
Bi

−F∗
Bi
) (2.57)

2.3.2.2 Stability of i-th actuator

For the actuator the same method based on the virtual decomposition approach explained pre-

viously will be used to prove the stability of the dynamics of the i-th actuator. Let define the

positive Lyapunov candidate function as follow:

vai =
1
2

Jmai(q̇
r
i − q̇i)

2 +
1
2

4

∑
i=1

(
θaiγ − θ̂aiγ

)2
/ρaiγ (2.58)

where θaiγ , θ̂aiγ denotes the γ-th element of θai and θ̂ai respectively. ρaiγ > 0 is a parameter

update gain. Then based on the dynamics of the i-th actuator (2.37), its equation of control
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(2.54) and the update control law given after (2.54) , the time derivative of (2.58) is given by:

v̇ai =−(q̇r
i − q̇i)Jmai(q̈

r
i − q̈i)−

4

∑
γ=1

(
θaiγ − θ̂aiγ

) ˙̂θai

ρaiγ
(2.59)

v̇ai ≤−Kai(q̇r
i − q̇i)

2 +(q̇r
i − q̇i)(τr

ai − τai) (2.60)

2.3.2.3 Stability of the entire system

Based on the Lyapunov functions of the i-th link and the i-th actuator, then the non negative

Lyapunov function of the entire system is chosen as follows:

v =
n

∑
i=1

vi +
n

∑
i=1

vai (2.61)

Using the principle of the virtual decomposition approach (Zhu (2010)), the definition of the

virtual power and the choice of the parameter function adaptation as in (2.40) and (2.54), details

are given also in Appendix II; it is straightforward to prove that v̇ is always decreasing and is

given as follows;

v̇ =
n

∑
i=1

v̇i +
n

∑
i=1

v̇ai (2.62)

v̇ ≤−
n

∑
i=1

(
eBiT

1 KBi
1 eBi

1 + eBiT
2 KBi

2 eBi
2 +KBi

3

∥∥∥eBi
2

∥∥∥+Kai(q̇r
i − q̇i)

2
)

(2.63)

This approach was developed and applied to a group of mobile manipulator robots transporting

a rigid object in coordination, more details are given in chapter 6.

2.4 Adaptive sliding mode control

2.4.1 Control design

Based on (2.19) and (2.20), the dynamics of the N mobile manipulator robots coupled with the

dynamic model of the handled object (2.10), using (2.21) can be expressed in Cartesian space
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by the following:

MeV̇e +CeVe +Ge +Pe =U − JT+
o Fo −FI (2.64)

where Me = J+T
e MJ+e , Ce = J+T

e (MJ̇+e +CJ+e ), Ge = J+T
e G,Pe = J+T

e P and U = J+T
e Eτ . Sub-

stituting the object dynamic (2.10) into (2.18) and using (2.12) and (2.21), the dynamics of the

robotic system (2.64) can be given in suitable form for control as follows:

MV̇e +CVe +P+G =U −ρT λI (2.65)

where M = Me + J+T
o MJ+o , C = Ce + J+T

o (MoJ̇+o +CoJ+o ), G = Ge + J+T
o G and P = J+T

o P.

This dynamics satisfies the properties 2.1 and 2.2, that are used in the control stability and in

the prove of stability.

Assumption 2.1: The desired trajectory of the object and the end-effector defined as xod,Xed

and its derivatives up to third order are assumed to be bounded and uniformly continuous. The

desired internal force is assumed also to be bounded and uniformly continuous.

Let define the errors as: e = Xe −Xed and e f = λI −λId , then the required internal force and

velocity based on their desired values and the errors are given by the following expressions:

λIr = λId −Kλ e f (2.66)

Ver =Ved −Kpe (2.67)

Then the sliding surface is computed as:

s =Ve −Ver = ė+Kpe (2.68)

where Kλ ,Kp are diagonal positive definite gains matrices and Ved , λId are the desired end-

effector velocity and internal force respectively.
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Based on Assumption 2.1, the dynamic expression (2.65) can be written as follow:

Mṡ =−Amψm +U −Cs− JT
e ρT λI (2.69)

where Am =
[
M C G P

]T
, and ψm =

[
V̇e Ve 1 1

]T
.

Assumption 2.2: There exist some finite positive constants, ai ≥ 0, 1 ≤ i ≤ 4 and finite

positive constants a5 ≥ 0 such that ∀Xe ∈ R
6N , ∀Ve ∈ R

6N , ‖M‖ ≤ a1, ‖C‖ ≤ a2 + a3‖Ve‖,

‖G‖ ≤ a4 and ‖P‖ ≤ a5. Since ai ≥ 0 are considered unknown, then the adaptive laws are

developed to estimate the unknown upper bounds. Let consider the following control law:

U =−
5

∑
i=1

sâiψ2
i

‖s‖ψi +δi
−Kss− Ksign(s)

H(s)
+ρT λIr (2.70)

where δi is a time varying positive function that converges to zeros as t → ∞ and that satisfies:

limt→∞
∫ t

0 δi(r)dr = αi < ∞, with αi is a finite constant (Wang et al. (2004)) and H(s) is given

by the following expression:

H(s) = β +(1−β )h(|s| ,0,sq) (2.71)

where sq is an upper limit positive constant, 0 < β < 1 and h(x,a,b) is referred to be a p-time

differential bump function that satisfies the following properties (Do (2008),Do (2010)):

- h(x,0,b) = 0, if x = 0;

- h(x,0,b) = 1, if x ≥ b;

- 0 < h(x,0,b)< 1, if 0 < x < b;

- h(x,0,b) is p-time differentiable with respect to x;

-
∂h(x,0,b)

∂x > 0 if x ∈ (0,b).
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Let h(x,a,b) be defined as follows:

h(x,a,b) =
∫ x

0 g(σ)g(b−σ)dσ∫ b
0 g(σ)g(b−σ)dσ

where g is such that: g(z) = 0 if z ≤ 0 and g(z) = zl if z ≥ 0, and l is a positive constant integer.

Remark 2.1: The term −Ksign(s)
H(s) is added to the proposed control law compared with the

controller proposed in (Wang et al. (2004); Li et al. (2008)). Thus, more robust control perfor-

mance can be obtained and fast convergence when the system states are closed to the surface

s = 0 can be ensured.

Note that the term H(s) added to the control law (2.70) does not affect the stability of the

control because H(s) is always strictly positive. From the definition of the potential function

(2.71), one can see that if |s| increases, H(s) approaches β , and therefore, K
H(s) converges to

K
β ,which is greater than K. This means that K

H(s) increases in reaching phase, and consequently,

the attraction of the sliding surface will be faster. On the other hand, if |s| decreases, then H(s)

approaches one, and K
H(s) converges to K. This means that, when the system approaches the

sliding surface, K
H(s) progressively decreases, which minimize sorely the chattering. Conse-

quently, the proposed law let the controller to dynamically adjust to the changes in the switch-

ing function by making K
H(s) vary between K and K

β .

Remark 2.2: If β is chosen to be equal to one, the reaching law of (2.70) becomes identical to

that of conventional sliding mode control. Therefore, the conventional reaching law becomes

a particular case of the proposed approach.

2.4.2 Stability analysis

The chosen Lyapunov candidate function can be given as follows:

V =
1

2
sT Ms+

1

2
ÃT

mΓ−1
a Ãm (2.72)
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where Ãm = Am − Âm, Am = [a1 a2 a3 a4 a5]
T , Âm denoted the estimate constants of Am,

Γa = diag(γ1, ..,γ5) and γi ≥ 0 are constants. The first time derivative of (2.71) is given by:

V̇ = sT Mṡ+
1

2
sT Ṁs+ ÃT

mΓ−1
a

˙̃Am (2.73)

Based on the assumption 2.2 , the dynamics model (2.70) and the closed loop (2.66), then

(2.73) can be simplified as follow:

V̇ ≤ sT (‖M‖‖V̇e‖+‖C‖‖Ve‖+‖G‖+‖P‖+U −ρT λI)+ ÃT
mΓ−1

a
˙̂Am (2.74)

Based on the control law (2.70) under the assumption 2.2, the first time derivative (2.74) can

simplified as follows: Using the control law (2.70) under the assumption 2.2, the first derivative

(2.74) can be written as follows

V̇ ≤−sT Kss−K‖s‖+
5

∑
i=1

‖s‖aiψi

−
5

∑
i=1

‖s‖2âiψ2
i

‖s‖ψi +δi
−

5

∑
i=1

ãiγ−1
i

˙̂ai (2.75)

Consider the update law as:

˙̂ai = γi

( ‖s‖2ψ2
i

‖s‖ψi +δi
− γ

′
i âi

)
(2.76)

with γi ≥ 0; γ ′
i ≥ 0 and δi ≥ 0 verifying the following expressions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞
0 γ ′

i (r)dr = αiγ ′ < ∞

∫ ∞
0 δi(r)dr = αiδ < ∞

(2.77)

Substituting the update law (2.76) into (2.75) with some simplifications,it is straightforward to

obtain the following:

V̇ ≤−λmin(Ks‖s‖2)+σ (2.78)
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where σ = ∑5
i=1 aiδi +∑5

i=1
1
4γ ′

i a
2
i → 0 as t → ∞, from above, s converges to a small set con-

taining the origin when t → ∞. All details are given in chapter 7.

To complete the proof of the stability, substituting the control law (2.70) and (2.66) into the

reduced order dynamic expression (2.65) yields:

ρT (λIr −λI) = Amψm +
5

∑
i=1

sâiψ2
i

‖s‖ψi +δi
+

Ksign(s)
H(s)

+Kss

ρT e f = (Kλ + I)−1μ (2.79)

with μ = Amψm + ∑5
i=1

sâiψ2
i

‖s‖ψi+δi
+ Ksign(s)

H(s) + Kss, All terms on the right hand of (2.79) are

bounded, therefore the internal force tracking error are bounded and can be adjusted by tuning

the feedback gain Kλ .

This approach of control was applied to control a group of two mobile manipulator robots

transporting a rigid object in coordination. Numerical simulation and experimental results are

given in chapter 7, more details about the stability analysis can be also found in this chapter.
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Abstract

In this paper, the problem of leader-follower formation control taking into account the mea-

surement of the velocities of the leader and followers, as well as the dynamic uncertainties in

the robots’ models was considered. As a solution, this paper proposes a kinematic control law

based on the choice of potential function, combined with an adaptive dynamic control scheme

based on virtual decomposition control (VDC) to estimate the nonlinearity and the dynamic un-

certainties in the robots model, for the leader-follower formation. A virtual robot represented

by its dynamic model is considered as a leader. This leader is able to move along a predefined

trajectory. The follower robots are separated by a predefined distance range from the leader,

with a desired relative bearing angle region compared to the leader. The proposed scheme is

validated experimentally on real-time robots. The obtained results show the effectiveness of

the proposed controller.

Keywords: Leader-follower formation, potential function, virtual decomposition control.
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3.1 Introduction

The idea of using a group of mobile robots in one environment is attracting a large number of

robotics researchers, particularly in the area of control. The interest in this area of investigation

is justified since the space and variety of tasks that can be explored by a group of mobile robots

are broader, when compared to those explorable by a single robot. Technological advances

in communications systems have greatly contributed to the results that have been obtained

thus far. Typical applications include space exploration, formation maintenance, transport of

objects, rescue and navigation. To date, the bulk of the research carried out in this area has

focused on two mechanisms of coordination: centralized and decentralized control. In the

first approach, as its name suggests, the control of multi-mobile robots is centralized over

the physical structure of the robot, and is located at a central unit that manages and ensures

the execution of the task. The central unit has a global information environment, which is

an important asset for decision support and the coordination of actions. For this scheme, the

central unit also constitutes the main limitation of this approach, because the group of mobile

robots depends entirely on this unit, which means that a faulty central supervisor implies a

complete shutdown. In the decentralized approach, the resources (sensors, computation units,

etc.) are distributed over all the elements of the group. Each robot then uses its own individual

resources and control unit, and may communicate its information to other robots. With this

decentralization, the functional faults are better managed, and the failure of a single robot does

not mean the complete cessation of the group. In order to control and coordinate a multi agents

system, various architectures and approaches have been developed (Wen et al. (2014, 2016);

Aranda et al. (2015)). Many contributed works on multi-agent formation control have been

performed using mobile robots (Panagou et al. (2016); Yu and Liu (2016a); Khan et al. (2016)),

helicopter (Shaw et al. (2007)), underwater vehicles (Yin et al. (2016); Li et al. (2016)) and

quadcopters (Vargas-Jacob et al. (2016); Kang and Ahn (2016)). The conventional formation

control approaches include virtual structure approach (Lewis and Tan (1997); Ren and Beard

(2004); Mehrjerdi et al. (2011)), leader-follower approach (Qian et al. (2015); Dai and Lee

(2012); Xiao et al. (2016); Li and Xiao (2005); Fujimori et al. (2014)) and behaviour-based
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approach (Lawton et al. (2003); Li and Yang (2003)). The virtual structure approach considers

the group of mobile robots as a single rigid object. The desired trajectory is assigned to the

whole virtual structure, rather than to each robot of the formation. However, it is easy to

maintain such a formation and control the behavior of the entire group. In the leader-follower

strategy, one or some robots of the formation are designed as leaders, while others are assigned

as followers. The leader moves along the desired trajectory and the followers maintain desired

relative positions with respect to the leader. There is no explicit feedback from the follower

to the leader, which represents an inherent disadvantage of this approach. In the behaviour-

based approach, several desired behaviors are considered for each robot, but the final action

or the group behavior is obtained by weighting the relative importance of each behavior. The

main disadvantage of this approach is that its mathematical analysis is complex, which makes

it difficult to ensure precise formation control. Therefore, the convergence of the group to

a desired configuration cannot be guaranteed. The authors in (Das et al. (2002)) propose a

leader-follower control based on an input-output linearization approach. It is assumed that the

velocity of the leader is measured, and to overcome this problem, an estimator using robust

filtering techniques was proposed in (Ghommam et al. (2013)). While this method is robust to

perturbations, it does however suffer from slow convergence of the estimated velocity to the

real value. During the last years, many contributed works based on the consensus theory, have

been developed; consensus approach has been simulated and applied to achieve the formation

of multiple mobile robots. In (Jadbabaie et al. (2003)) a formal mathematical analysis for

consensus was presented. Some research on the consensus problem was extended to the case

of directed topology as in Wen et al. (2014); Yu and Wang (2012). A consensus analysis and

design control of multiple non-holonomic mobile based on the virtual leader-follower strategy

was proposed in (Peng et al. (2015)). However, these cited works focus on the kinematics of all

mobile robots and consider that the robot systems are linear. In practice, the robots have a non-

holonomic constraint and are nonlinear. The approach proposed in this paper has the following

advantages. In this paper, the formation problem is formulated as follows: a formation of three

mobile robots is used, with two of them being real mobile robots named EtsRob, and considered

as followers. The third one is replaced by a dynamic model of the robot and is considered as a
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leader. The leader mobile robot is firstly considered as capable of moving along a predefined

trajectory, and then the follower robots are separated by a predefined distance range from the

leader, with a desired relative bearing angle region compared to the leader. Motivated by the

previous observations, the main contributions of this paper are:

a. Most existing techniques employ more complicated controllers and focus on providing

the solution to the leader-follower formation problem, convergence to an absolute desired

distance, and a fixed desired relative bearing angle (Desai et al. (1998); Lawton et al.

(2003)). It is worth noting that there are just a few of the proposed approaches in which

the convergence of this formation to the desired distance range and desired relative bear-

ing angle region are discussed. As examples, a circular formation control of multiple

nonholonomic vehicle was studied and numerically simulated in (Ceccarelli et al. (2008);

Yu and Liu (2017, 2016b)) to show the effectiveness of the developed control and the

convergence of the circular formation motion. In Zheng et al. (2015) a bearing-based

target enclosing problem using a group of mobile robots was proposed. In this work,

the authors developed a control scheme for multiple mobiles robots to enclose a target

with only relative bearing measurement, and assume that the position information is not

available. Therefore, in our paper, a simple controller is developed and implemented;

b. Each follower must maintain a desired distance range and a given bearing region from

the leader, and that there is no interaction or information exchange among the followers

but the inter-collision problem between them is ensured by only the leader robot. The

advantage of this strategy can be summarized as;

• this approach uses minimum information compared to the other methods that solve

the problem of inter-collision by using more sophisticated sensors for measurement

and communication;

• Compared to the cited works, since the leader is a virtual robot we do not have the

problem of a failure of the leader robot and the failure of a follower robot does not

mean the complete cessation of the group.
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c. To guarantee collision avoidance and position tracking, we include a potential function,

based on the p-time differential bump function introduced in (Do (2010)) as a kinematic

control. This kinematic control is combined with an adaptive dynamic control based on

the virtual decomposition approach (VDC) (Zhu (2010); Brahmi et al. (2013b,a)), and

used to move the follower robots into the desired region;

d. Since the parameters of the follower robots are considered uncertain, the controllers’ de-

sign is based on kinematic and dynamic models with unknown parameters. The proposed

virtual decomposition approach helps simplify the problem of the parameters’ adaptation

of the complete systems since the problem is converted into an estimation problem for

each subsystem.

Finally, the formation tracking control problem is resolved and implemented in real time on

the leader mobile robot and two identical mobile robots called EtsRob.

The rest of the paper is organized as follows. Section 3.2 presents the modelling of the mo-

bile robot, while section 3.3 presents the leader-follower formation formulation. Section 3.4

explains the control design, and experimental results are given in section 3.5 to illustrate the

effectiveness of the proposed approach. Finally, a conclusion is given in section 3.6.

3.2 Modeling of the mobile robot

In this section, the kinematics and the dynamics of the i-th mobile robot are briefly described

(Das et al. (2002); Ghommam et al. (2010)) using the VDC approach (Zhu (2010)).

3.2.1 Kinematics Model

Figure 3.1 illustrates a nonholonomic mobile robot. The frame (X,Y) is the world frame and

(XB,YB) is the body frame.

L is the distance between the left and the right wheels, R is the radius of the wheel, and CG

is the centre of gravity, where the body frame is located. The kinematic equations of the i-th
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Figure 3.1 Nonholonomic mobile robots

mobile robot are given as follows (Das et al. (2002); Ghommam et al. (2011)):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋi = vi cos(φi)

ẏi = visin(φi)

φ̇i = wi,

(3.1)

where vi and wi are the linear and angular velocities of the i-th robot of the group, i ∈
{

l, f
}

(respectively the leader and follower mobile robot) and Pi =
[
xi yi φi

]T
denote its position

and orientation, respectively. The right and left wheel angular velocities and are obtained by

the following expressions: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q̇iR = 1
R

(
vi +

L
2 wi
)

q̇iL = 1
R

(
vi − L

2 wi
) (3.2)

The mobile robot is subjected to the nonholonomic constraints expressed by the following

equation:

ẏi cos(φi)− ẋi sin(φi) = 0 (3.3)
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Defining the augmented velocity vector, VB =
[
Vio ViR ViL

]T
, and is given as follows:

VB = J Vio (3.4)

where J is the VDC Jacobian matrix of the mobile robot, Vio =
[
ẋi ẏi 0 0 0 φ̇i

]T
is the

velocity vector of the platform, ViR and ViL are the right and the left velocities of the mobile

platform respectively.

3.2.2 Dynamic Model

In this section, the dynamic model of the i-th mobile robot is briefly described using the VDC

approach (Zhu (2010)). The decomposition of the i-th mobile robot is illustrated in Figure 3.2.

Figure 3.2 The virtual decomposition of the i-th mobile robot

The dynamics of the platform considered as a rigid object the right and the left wheels, based

on the velocity vectors Vio,ViR and ViL, is expressed by the following equation:

Fi j = Mi jV̇i j +Ci jVi j +Gi j = Yi jθi j (3.5)
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where Mi j ∈ R
6×6 is the matrix of inertial terms, Ci j ∈ R

6×6 the matrix of centrifugal/Coriolis

terms, Gi j ∈ R
6 the vector related to gravity, Fi j ∈ R

6 the required forces, θi j ∈ R
13 the pa-

rameters vector, Yi j ∈ R
6×13 the dynamic regressor matrix and j ∈

{
o,R,L

}
, as given in (Zhu

(2010)). The vector of resulting forces/moments acting on the i-th rigid body is given by an

iterative process. We begin by computing the vector of forces in the different cutting points, as

shown in Figure 3.2:

Fiw = F∗
iw; w = R,L

Fio = F∗
io +

L

∑
w=R

iwUioF∗
iw + fn (3.6)

where fn are the generalized constraint forces for the nonholonomic constraints that can be

given by:

fn = AT λn (3.7)

where A is the kinematic-constraint matrix, λn the Lagrangian multiplier, and iwUio is computed

by using the transformation matrix of force/moment vectors from frame B to frame A, defined

by:

AUB =

⎡
⎢⎢⎢⎣

ARB 03×3

S(ArAB)
ARB

ARB

⎤
⎥⎥⎥⎦ (3.8)

where ARB is the rotation matrix between frames A and B, and S(ArAB) is a skew symmetric

matrix built from the vector ArAB linking the origins of frames A and B, expressed in the coor-

dinates of frame A. From (3.5) and (3.6), the forward dynamic model of the i-th mobile robot

can be written as follows:

Fio = JT MivV̇B + JTCivVB + JT Giv + fn (3.9)

where Miv = diag(Mio,MiR,MiL) is the matrix of inertial terms, Civ = diag(Cio,CiR,CiL) the

matrix of centrifugal/Coriolis terms, and Giv =
[
GT

io,G
T
iR,G

T
iL

]T
the vector related to gravity.
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Using (3.4), this dynamic (3.9) can be given by the following formula:

Fio = MiV̇io +CiVio +Gi + fn (3.10)

where Mi = JT MivJ ,Ci = JT MivJ̇+ JTCivJ ,Gi = JT Giv and Vio is defined in (3.4).

Then, the system represented by the dynamic (3.10) is transformed into general form, which is

used in the control.

The objective is to eliminate the term of constraint fn = AT λn, using (3.1-3.2) and the right and

left wheels’ angular velocities q̇iR and q̇iR that are obtained by the following expression:

Vio = S(q)q̇i (3.11)

where q̇i = [q̇iR, q̇iL]
T are the generalized coordinate right/left angular velocities and S(q) is in

the null space of the kinematic constraint matrix A(q). Therefore, we obtain:

ST (q)AT (q) = 0 (3.12)

Substituting (3.11), and its first derivative in the dynamic (3.10), and then multiplying both

sides of the resulting equation by ST (q), then using the (3.12), the reduced dynamic model is

given by:

τic = M̄iq̈i + C̄iq̇i + Ḡi (3.13)

with τic = ST Fio, M̄i = ST MiS, C̄i = ST (MiṠ+CiS), and Ḡi = ST Gi.

The dynamics of the w-th wheel actuator based on its angular velocity q̇iw is expressed in linear

form by the following equation:

τ∗aiw = Jaiwq̈iw +ξ (qiw, q̇iw) = Yaiwθaiw (3.14)
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where ξ (qiw, q̇iw) represents the friction and gravitation force/torque terms, Jaiw is the moment

of inertia of the motor driving this joint, w ∈
{

R,L
}

(the right and the left wheels), and τ∗aiw is

the actuator torque.

Finally, the input control torque at the i-th mobile wheel actuator is calculated from the torque

τ∗aiw obtained in (3.14) and the force at cutting point Bi, identified Fio, as:

τi = τ∗ai + τic (3.15)

where τ∗ai = [τaiR,τaiL]
T .

3.3 Leader-Follower formation formulation

The leader-follower control problem can be divided into two different strategies; the first strat-

egy is called the l −ψ control problem, where the formation is based on knowledge of the

separation distance and bearing between two robots in the group, and in the second control

strategy, called the l − l control problem, another robot is added to the first configuration on

which the l−ψ scheme resides, based on knowledge of the three separation distances between

the robots and the two relative bearings between the leader and the two follower robots. In this

work, the leader-follower problem is examined based on (Das et al. (2002); Ghommam et al.

(2013)), with a few modifications brought in: the leader mobile robot moves along a reference

trajectory and the follower mobile robots are separated at a predefined distance from the leader

at a relative bearing angle from the leader.

We consider a basic leader-follower configuration (Figure 3.3) called the l − ψ formation

scheme, in which mobile robot R f , follows a leader robot Rl with distance separation ll f and a

relative bearing angle ψl f . As in (Das et al. (2002); Ghommam et al. (2011)), these two values

are obtained as follows:

⎧⎨
⎩ll f =

√(
xl − x f −dcos(φ f )

)2
+
(
yl − y f −dsin(φ f )

)2

ψl f = π +ϕl f −φl,
(3.16)
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Figure 3.3 l −ψ Formation scheme

where d is the distance between the front and the center of gravity of the robot, and ϕl f is given

by

ϕl f = tan−1

(
(yl − y f −dsin(φ f )

(xl − x f −dcos(φ f )

)
(3.17)

Let el f = [ll f ,ψl f ]
T , from the derivative of (3.16) and (3.17) with respect to time, the kinematics

of the formation is obtained as follows (Das et al. (2002),Ghommam et al. (2011)):

ėl f = Fu f +Hul (3.18a)

ψ̇ l f = wl −w f (3.18b)

where u f = [v f ,w f ]
T and ul = [vl,wl]

T are the input vectors of the follower and the leader

robot, respectively. F =

⎡
⎣cos(βl f ) dsin(βl f )

− sin(βl f )
ll f

dsin(βl f )
ll f

⎤
⎦, H =

⎡
⎣−cos(ψl f ) 0

sin(ψl f )
ll f

−1

⎤
⎦. The angle βl f is

defined as the sum of the difference between the robot’s heading and the bearing angle, i.e.:

βl f = ψl f +(φl −φ f ) (3.19)
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The objective is to design u f such that el f converges to the desired distance/bearing of the

leader robot while guaranteeing that ll f and ψl f are confined within a defined range: i.e.,

lmin
l f � ll f � lmax

l f and ψmin
l f � ψl f � ψmax

l f . In this paper, a leader-follower formation control

using a potential function is proposed to solve the l −ψ scheme problem, as explained in the

following section.

3.4 Control design

Before starting the leader-follower formation control design, let us consider the following as-

sumption and definitions, which will be used in the control design:

Assumption 3.4.1: The velocities of of the leader and the followers’ are considered available

for feedback, which are assumed to be bounded.

Definition 3.4.1: A scalar function h(x,a,b) is referred to as a p-time differential bump func-

tion if the following properties are verified (Do (2008)):

- h(x,a,b) = 0, if x ≤ a

- h(x,a,b) = 1, if x ≥ b

- 0 < h(x,a,b)< 1, if a < x < b

- h(x,a,b) is p-time differentiable with respect to x.

-
∂h(x,a,b)

∂x > 0 if x ∈ (a,b).

Let h(x,a,b) be defined as follows:

h(x,a,b) =
∫ x

a g(σ −a)g(b−σ)dσ∫ b
a g(σ −a)g(b−σ)dσ

(3.20)

where g is such that: g(z) = 0 if z≤ 0 and g(z) = zp if z≥ 0. and p is a positive constant integer.

These functions are used in the case of limited communication between multiple mobile robots

in the formation control.
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Definition 3.4.2: To guarantee collision avoidance and position tracking, we need to define the

potential function Vx(x,a,b) such that:

Vx(x,a,b)→ ∞ as x → a (and x → b) (3.21)

when x = (b−a)
2 , Vx gets the only minimum value. Interested readers are referred to (Do (2010))

for the particular potential function Vel f (el f ,el f ,el f ) satisfying these properties. In this paper,

the potential function is chosen as follows:

Vel f =

⎡
⎢⎢⎢⎣

Vll f (ll f , ll f , ll f )

Vψl f (ψl f ,ψl f ,ψl f )

⎤
⎥⎥⎥⎦

Vel f =

⎡
⎢⎢⎢⎣

−1
π Ln

(
cos
(

π
2

(
1−2h(ll f , ll f , ll f )

)))

−1
π Ln

(
cos
(

π
2

(
1−2h(ψl f ,ψl f ,ψl f )

)))
⎤
⎥⎥⎥⎦ (3.22)

where el f = [ll f ,ψl f ]
T = [lmin

l f ,ψmin
l f ]T , el f = [ll f ,ψl f ]

T = [lmax
l f ,ψmax

l f ]T are defined in the pre-

vious section, and h(el f ,el f ,el f ) is defined in Definition 3.4.1. The first derivative of Vel f with

to respect to h is calculated as follows:

∂Vel f

∂h
=

⎡
⎢⎢⎢⎣

−tan
(

π
2

(
1−2h(ll f , ll f , ll f

))

−tan
(

π
2

(
1−2h(ψl f ,ψl f ,ψl f

))
⎤
⎥⎥⎥⎦ (3.23)
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3.4.1 Kinematic control design

Before presenting the controller design, we consider the formation scheme and formation setup

shown in Figure 3.3. We want to confine ll f and ψl f within a range such that:

lmin
l f ≤ ll f ≤ lmax

l f , ψmin
l f ≤ ψl f ≤ ψmax

l f (3.24)

where lmin
l f , lmax

l f are the minimum and the maximum distances between the leader and the fol-

lower, and ψmin
l f ,ψmax

l f are the minimum and maximum relative bearing angles compared to the

leader.

Based on the kinematic of the formation (3.18a), and the choice of potential function (3.22-

3.23), the proposed controller, which ensures convergence and stability of the formation, is

designed as follows:

u f = F−1
(

ėd
l f −Hul

)
(3.25)

with

ėd
l f =−Kl f

∂Vel f

∂h
(3.26)

where Kl f ∈ R
2×2 is a diagonal positive gain matrix, ul is the linear/angular velocity of the

leader, and Vel f = [Vll f ,Vψl f ]
T is the potential field function defined in Definition 2.4.2.

The potential function Vel f and the dynamics ėl f described by (3.22) and (3.26) respectively

indicate that when el f > el f , then ėl f > 0 and the robots are attractive, and when el f < el f ,

then ėl f < 0, and the robots are repulsive, and when
(el f−el f )

2 , that is, ėl f = 0, the force between

the robots reaches an equilibrium, and Vel f is minimized. Equation (3.26) acts in (3.18a) as a

potential field control, such that the closed loops dynamics become:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ėd
l f =−Kl f

∂Vel f
∂h

φl f = wl −w f

(3.27)
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Proposition 3.4.1: Let us suppose that vl > 0 and |wl| < wlmax under Assumption 3.4.1, the

kinematic control, based on the choice of the potential function (3.25-3.27), stabilizes the sys-

tem dynamics (3.18a-3.18b) and ensures that all the following objective formation controls are

satisfied, in the sense that:

lmin
l f ≤ ll f = ld

l f ≤ lmax
l f , ψmin

l f ≤ ψl f = ψd
l f ≤ ψmax

l f

Proof: Consider the Lyapunov candidate function:

V =Vll f +Vψl f (3.28)

From the first derivative of this function with respect to time, we obtain:

V̇ =
∂Vll f

∂h
∂h
∂ ll f

∂ ll f

∂ t
+

∂Vψl f

∂h
∂h

∂ψl f

∂ψl f

∂ t
(3.29)

Substituting (3.26) in (3.29), the following relation can be obtained:

V̇ =−
(

∂h
∂el f

)T

Kl f

(∂Vel f

∂h

)2

(3.30)

From the properties of the function h(el f ,el f ,el f )=
[
h(ll f , ll f , ll f ) h(ψl f ,ψl f ,ψl f )

]T
we know

that ∂h
∂el f

> 0. Considering the properties of the potential function Vel f , under proposition 3.4.1

and (3.25), we have: u f min � u f 
 ul when the robot is repulsive and ul � u f 
 u f max when

the robot is attractive, where [u f min,u f max]
T are the minimum and the maximum linear/angular

velocities of the follower, respectively. The first time derivative of (3.28) is V̇ ≤ 0 and, V̇ = 0

for el f →
(el f−el f )

2 , which implies that ll f → (lmax
l f −lmin

l f )

2 and ψl f → (ψmax
l f −ψmin

l f )

2 . This proves

that ll f ,ψl f stay within the ranges defined above. Consequently, the closed-loop system is

asymptotically stable. To complete the stability study, the stability of the internal dynamics of

the formation should be ensured. The internal dynamics is computed from its expression in

(3.18a). The expression of w f is the second element of the vector of the follower velocity u f .
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This expression is then substituted into (3.18b) to obtain:

ėφ =−vl

d
sin(eφ )+Γ

(
wl, ll f , l̇l f , ψ̇l f ,eφ

)
(3.31)

with Γ=− 1
d

[
l̇l f sin

(
eφ +ψl f

)
+ ψ̇l f sin

(
eφ +ψl f

)]
+wl

(
1− ll f

d cos
(
eφ +ψl f

))
and eφ = φl−

φ f is the angular error between the leader and the follower. To analyse the stability of the in-

ternal dynamics, we need to show that the orientation error is bounded. The nominal system

with (Γ = 0) is given by:

ėφ =−vl

d
sin(eφ ) (3.32)

If the linear velocity of the leader mobile robot vl > 0 and
∥∥eφ
∥∥< π , then the internal dynamics

of the system is (locally) exponentially stable. Since the angular velocity of the leader wl is

bounded, we can show that ‖Γ‖ ≤ α . Using stability theory and the condition
∣∣eφ (0)

∣∣ < επ

gives (Das et al. (2002)); ∥∥eφ
∥∥< ρ, ∀t ≥ t1 (3.33)

for some finite time t1 and a positive number ρ . As shown in (Ghommam et al. (2013)), there

exists a Lyapunov function Veφ ∈ [0,∞)×T where T =
{

eφ ∈ R
∥∥eφ
∥∥< c

}
,c > 0, such that

V̇eφ ≤ 0.

3.4.2 Dynamic control design

An adaptive dynamic control scheme based on the virtual decomposition approach is combined

with the kinematic control developed above and used to move each follower to the desired dis-

tance range and relative bearing angle region. Firstly, the desired linear and angular velocities

of the followers (vd
f ,w

d
f ) are calculated from the kinematic control (3.25), (3.2), and then the

required velocity V r
f = [ẋd

f , ẏ
d
f ,0,0,0,w

d
f ]

T of the mobile platform and that of the two wheels

are computed as follows:

q̇r
f w = q̇d

f w +λ f

(
q̇d

f w − q̇ f w

)
(3.34)
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where q̇d
f w are the desired right and left wheel angular velocities of the follower robots, λ f

is a positive constant, w ∈ {R,L} the right and left wheels, and f are the follower mobile

robots. Since the physical parameters of the platform (object) and the wheels are unknown, the

dynamic of the platform (3.5) based on the estimated parameters θ̂ f j ∈ R
13 and the required

velocity V r
f j ∈ R

6, can then be written as:

F∗r
f j = Yf jθ̂ f j +Kf j

(
V r

f j −Vf j
)

(3.35)

where ˙̂θ f j =−ρ f jY T
f js f j is the adaptation function, and is chosen to ensure system stability, as

in (Zhu (2010)), s f j = V r
f j −Vf j, ρ f j ∈ R

13×13 is a diagonal positive matrix and j ∈ {o,R,L}
are the platform (object), the right and left wheels. The vector of the resulting forces/moments

acting on the i-th rigid body is given by an iterative process. We begin by computing the vector

of the required forces at the different cutting points:

Fr
f w = F∗r

f w; w = R,L

Fr
f o = F∗r

f o +
L

∑
w=R

f wUf oF∗r
f w (3.36)

where f wUf o is defined in (3.8).

The dynamics of the wheel actuators based on their desired velocity q̇d
f = [q̇d

f R, q̇
d
f L]

T is ex-

pressed in linear form, and since the physical parameters of the actuators are unknown and

need to be estimated, the vector θ̂a f = [θ̂a f R, θ̂a f L]
T ∈ R

8 is then used, and its dynamics be-

comes:

τ∗r
a f = Ya f θ̂a f +Ka f

(
q̇d

f − q̇ f

)
(3.37)

where Ya f = diag(Ya f R,Ya f L), τ∗r
a f = [τ∗r

a f R,τ
∗r
a f L]

T and θ̂a f = [θ̂a f R, θ̂a f L]
T , in which ˙̂θa f =

−ρa fY T
a f sa f is the adaptation function, and is chosen to ensure system stability (Zhu (2010)),

sa f = q̇d
f − q̇ f , ρa f = [ρa f R,ρa f L]

T and Ka f are positive constant gains.

Finally, the input control torque at the follower mobile robot actuator is calculated based on the
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desired torque obtained from (3.37) and the force at the cutting point Bi, identified Fr
f o, as:

τ f = τ∗r
a f + τ f c (3.38)

where τ f c = ST Fr
f o and ST is defined in (3.11).

Proposition 3.4.2: Assuming that the follower velocities are bounded, consider the mobile

robot dynamics (3.6) and the wheels’ actuator dynamics (3.14), under the control design (3.38).

Then, the systems’ states are bounded, in particular, the control objective as in proposition 3.4.1

is satisfied and the error tracking states are asymptotically stable (Zhu (2010)), in the sense that:

lim
t→∞

∥∥∥xd
f − x f

∥∥∥= 0, lim
t→∞

∥∥∥yd
f − y f

∥∥∥= 0

lim
t→∞

∥∥∥φ d
f −φ f

∥∥∥= 0

The virtual decomposition approach ensures that these objectives are achieved, and the reader

can find the proof of stability in (Zhu (2010); Brahmi et al. (2013b)). In contrast with existing

works, the current work presents the following advantages. Firstly, we include a potential func-

tion, based on the p-time differential bump function introduced in (Do (2010)) as a kinematic

control of the formation. Secondly, since the parameters of the follower robots are considered

uncertain, this kinematic control is combined with an adaptive dynamic control scheme based

on the VDC to move the follower robots into the desired region.

3.5 Experimental results

Figure 3.4 shows the complete system design of the two control levels, the trajectory generation

and the coordination of the group of mobile robots used in our experimental tests. In this

section, we discuss the results of the control of different coordinated trajectories of one leader

mobile robot and two mobile robots named Ets_Rob, as illustrated in Figure 3.4. A Zigbee

technology communication device is used between the application program with 115200 baud

rate, implemented in Mathworks� Simulink, and the mobile robots. The mobile robots used
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Figure 3.4 Control design for group

in the experimental setup have four wheels, with only the two front wheels being DC-motor

actuated. The two wheels of the mobile platform are actuated by two HN-GH12-2217Y DC-

motors (DC-12V-200RPM 30:1) and the angular positions are given using encoder sensors

(E4P-100-079-D-H-T-B). Specific wheels are used to minimize slips and kinematic errors of

the robot. Firstly, a second order filter is used to compute the right and left velocity, then the

linear and angular velocities are computed using the kinematic property of the mobile robot

(3.1-3.2). The distance between the followers and the leader is calculated using (3.16). The

controls gains of the controller are chosen to be Ka f = diag(5),Ko f = diag(2),Kf w = diag(2),

ρo f = 0.7,ρa f w = 0.8. The sampling time is set at 0.005 seconds. In the first test, sinusoidal

trajectories are discussed. In this scenario, the leader mobile robot moves along the X-axis with

a sinusoidal trajectory along the Y-axis. The starting point is Pi = [xl,yl,φl]
T = [0,1.05,0.69]T

and the arrival point is Pf = [xl,yl,φl]
T = [4.05,1.05,0.69]T . The two other robots follow the

leader at a desired distance and desired relative bearing angle. The two robots are initially

placed as follows: Pf 1 = [x f ,y f ,φ f ]
T = [0,0.5,0]T . Pf 2 = [x f ,y f ,φ f ]

T = [0,1.5,0]T . The
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desired distance and relative bearing angle for each follower robot are chosen as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 ≤ ld
l f 1 ≤ 1.4 (m), 4 ≤ ψd

l f 1 ≤ 4.2 (rad)

0.8 ≤ ld
l f 2 ≤ 1.1 (m), 1.6 ≤ ψd

l f 2 ≤ 1.8 (rad)

(3.39)

As can be seen from the experimental results in Figures 3.5-3.6, the trajectory tracking objec-

tive for the desired distance range and the relative bearing angle region for a group of mobile

robot is achieved. Figure 3.5 shows that the two followers presented with red and green lines

Figure 3.5 Trajectory tracking of the leader-follower formation

placed initially in arbitrary position follow their desired generated trajectory in less than 10 sec-

onds. The good convergence to the desired distance range and the relative bearing angle region

is clearly presented in Figure 3.6. In the second test, a linear trajectory is applied with a pas-

sage in a known corridor position, which shows the reconfiguration of the formation, thereby

avoiding any collision. In this scenario, the leader mobile robot moves along the X-axis. The
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Figure 3.6 Desired and real distances and relative bearing of the

two follower robots

starting point is Pi = [xl,yl,φl]
T = [2,2,0]T and it arrives at Pf = [xl,yl,φl]

T = [10,2,0]T . The

two other robots follow the leader, with a desired distance range and a desired relative bearing

angle region outside of the corridor, and with another desired distance and relative bearing an-

gle inside the corridor. The two robots are initially placed as follows:

Pf 1 = [x f ,y f ,φ f ]
T = [1.5,1,0]T . Pf 2 = [x f ,y f ,φ f ]

T = [1.5,3,0]T . The desired distance range

and relative bearing angle region for each follower robot outside of the corridor are chosen as

follows: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.2 ≤ ld
l f 1 ≤ 1.4 (m), 3.8 ≤ ψd

l f 1 ≤ 4 (rad)

1 ≤ ld
l f 2 ≤ 1.2 (m), 1.8 ≤ ψd

l f 2 ≤ 2.1 (rad)

(3.40)
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And inside the corridor, these desired values are given as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 ≤ ld
l f 1 ≤ 1.2 (m), 3.09 ≤ ψd

l f 1 ≤ 3.19 (rad)

0.5 ≤ ld
l f 2 ≤ 0.7 (m), 3.09 ≤ ψd

l f 2 ≤ 3.19 (rad)

(3.41)

In this scenario, a known environment is considered, where the position of the corridor is pre-

defined for the leader mobile robot. Outside of the corridor, the leader moves along a linear

predefined trajectory and the followers move at a predefined desired distance and relative bear-

ing angle from the leader (3.40). Inside the corridor, the leader maintains the same predefined

trajectory and the followers move at the other predefined desired distance and relative bear-

ing angle (3.41). This change of configuration inside/outside of the corridor is chosen such as

to avoid any collision with the corridor and between the follower mobile robots. As can be

seen from the experimental results in Figures 3.7-3.8, the trajectory tracking objective for the

desired distance range and relative bearing angle region of the two followers is achieved.

Figure 3.7 Trajectory tracking of the leader-follower formation
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Figure 3.8 Desired and real distances and relative bearing:

a) follower 1 and b) follower 2

For this second experiment, we tested the rapidity of followers to follow the leader. It was

decided to change the configuration just before entering inside the corridor forcing the two

followers to react faster to avoid a collision with the walls of the corridor. But when they

exit the corridor, the most secured way for followers is to follow a reasonable curve as it is

illustrated in Figure 3.7.

Figure 3.8 shows a good trajectory tracking and change of configuration of the leader-follower

formation outside and inside the corridor.

3.6 Conclusion

In this paper, a combination of the Lyapunov technique, based on the choice of the appropri-

ate potential field function and the virtual decomposition adaptive control approach, has been

presented and applied to the leader-follower formation control problem. A multi-level archi-

tecture control based on adaptive and PI controllers was designed to have the leader mobile

robot move along a predefined trajectory, with the other mobile robots following it at a desired
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distance range and a relative bearing angle region within a leader-follower scheme. A high

level controller uses the potential function technique as the kinematic control of the formation;

this kinematic control is combined with an adaptive control law based on a virtual decompo-

sition approach to move the formation into the desired region. A low level PI controller for

the left and right motors is implemented. The obtained real-time results show the effectiveness

of the proposed control algorithm, and prove that all the control objectives set in this paper

are achieved successfully. In a future work, the leader mobile robot will be replaced by a real

mobile robot, and the non-availability of the leader and follower velocity measurements will

be considered.
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Abstract

This paper presents an adaptive coordinated control scheme for multiple mobile manipulator

robots (MMR) moving a rigid object in coordination. The dynamic parameters of the object

handled and of the mobile manipulators are considered unknown but constant. The control law

and the adaptation of uncertain parameters are designed using the virtual decomposition (VDC)

approach. This control approach was originally applied to multiple manipulator robot systems.

The proposed control design ensures that the position error in the workspace converges to

zero, and that the external force error is bounded. The global stability of the system using

VDC is proven through the virtual stability of each subsystem. Numerical simulations and an

experimental validation are carried out for two mobile manipulators transporting an object, and

are compared with the results obtained using the computed torque approach in order to show

the effectiveness of the proposed controller.

Keywords: Adaptive control, coordinated control, virtual decomposition control, multi-mobile

manipulator.
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4.1 Introduction

The need for robots capable of locomotion and manipulation has led to the design of mobile

manipulator robot (MMR) platforms. Typical examples of MMR include satellite arms, under-

water robots in seabed exploration, and vehicles used in extra-planetary exploration. However,

the most popular mobile manipulators are semi-automated cranes mounted on trucks. Some

operations requiring the handling of heavy objects are very difficult for single mobile manip-

ulators, and require the use and coordination of multiple mobile manipulators, which signifi-

cantly complicates the robotic system, and greatly increases its control design complexity. The

problem with controlling a mechanical system forming a closed kinematic chain mechanism is

that it imposes a set of kinematic constraints on the coordination of the position and velocity

of the mobile manipulator, thus leading to a reduction in the degrees of freedom of the entire

system. Although the object internal forces produced by all mobile manipulators must be con-

trolled, few works have been proposed to solve this control problem for the robotic systems,

which have high degrees of freedom and are tightly interconnected because all manipulators

are in contact with the object. Most research works in this field have thus far focused on the

three main coordination mechanisms involved: decentralized control, the leader-follower con-

trol approach and motion planning. In (Kume et al. (2007)), a motion coordination control not

involving the use of a torque/force sensor is proposed and applied to a multi-holonomic mobile

manipulator. To reduce the effect of the sensor noise at the end-effector, a control scheme using

constraints between the contact points and the point representing the handled object was pro-

posed in (Kosuge and Oosumi (1996); Hirata et al. (1999); Kosuge et al. (1999)). The authors

then extended and applied this approach on multiple omnidirectional mobile robots manipulat-

ing a rigid object in coordination. A further extension of the method applied to manipulators

with bases attached to a holonomic mobile manipulator, engaged in novel decentralized coop-

eration tasks, was proposed in (Khatib et al. (1996b); Park and Khatib (2008)).

In another approach, a single or a group of MMR is designated as a leader capable of moving

a desired trajectory, while the other group members follow this leader. Many papers, including

(Chen and Li (2006); Hirata et al. (2004c); Tang et al. (2009); Fujii et al. (2007)), have cov-
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ered this approach. Finally, the third approach deals with the motion planning strategy, which

is another fundamental problem in robotics, especially in multi-robot systems. This approach

has been covered in a limited number of research works in the case of multiple mobile manip-

ulator robots, where several robots execute the task of transporting an object in coordination,

in a known/unknown environment. These studies include those presented in (Desai and Kumar

(1997); Pajak et al. (2004); Sun and Gong (2004b); LaValle (2006); Latombe (2012); Furuno

et al. (2003); Zhu and Yang (2003)). In (Desai and Kumar (1997)), an optimal trajectory was

proposed for two mobile manipulators pushing a common object to a desired location; the

authors in (Pajak et al. (2004)) proposed a control method for multiple mobile manipulators

holding a common object. Here, the measures of kinematic and dynamic manipulability were

given, taking into account collision avoidance, but the dynamics of the object was however

ignored. In (Sun and Gong (2004b); LaValle (2006)), a planning approach based on genetic

algorithms was proposed.

Over the past few years, increased attention has been paid to the adaptive control of robotic

systems with high degrees of freedom, with many research works developed based on the ap-

proach, including those in (Chen (2015); Zhao et al. (2016); Liu et al. (2016); Andaluz et al.

(2012); Yan et al. (2014); Karray and Feki (2014)). This is due to the fact that this type of

robotic system can be implemented in complex applications with unknown parameters. The

kinematics and dynamics of these systems are characterized by uncertainty, high nonlinearity,

and tight coupling, which in turn renders the control problem very complicated and difficult

to solve using the classical approaches developed and explained above. One of the categories

of complex robotic systems involves multiple-mobile manipulator systems holding an object.

The constraints imposed on a system forming a closed kinematic chain will often cause the

degrees of freedom of motion to be less than the number of actuators. In this case, not only

the motions, but also the internal forces, need to be controlled. To overcome these problems, a

novel adaptive control based on the virtual decomposition approach is proposed in this work.

All previous studies based on Lagrangian or Newton/Euler approaches require knowledge of

the exact parameters of the system. In practice, this is difficult, and using them, the model
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obtained is usually uncertain. To overcome the problem of dynamic modelling and control,

some researchers have proposed an adaptive control based on neural network control (Liu et al.

(2014); Liu and Zhang (2013); Liu et al. (2013)) and fuzzy logic approaches (Mai and Wang

(2014); Yoshimura (2015); Baklouti et al. (2016)). For instance, non-model-based techniques

have been developed for a different type of mobile manipulator robot with dynamic parameter

uncertainties. Another problem with existing approaches is that with them, the dynamics of

the whole system are complicated. Any change in the structure of the group requires a new

dynamic modeling (removal of a faulty robot or addition of a new robot to the system). Fi-

nally, for these types of tightly coupled systems with a high degree of freedom, adapting the

parameters using methods based on full dynamics is very complicated due to the huge number

of parameters involved.

Based on the preceding observations, in this paper, we intend to extend the work proposed

in (Brahmi et al. (2016a)) by using the adaptive decentralized control of a single mobile ma-

nipulator robot based on virtual decomposition control (VDC) (Zhu et al. (1997); Al-Shuka

et al. (2014); Zhu (2010); Ochoa Luna et al. (2015)) originally designed for fixed-base robotic

systems with high degrees of freedom. Furthermore, diverging from what is seen in the avail-

able works in the literature, we propose an adaptive coordinated control based on the VDC

approach. The main contributions of this paper are summarized as follows.

a. Most approaches cited previously are fundamentally based on the Lagrangian formulation

in calculating the dynamic model of robotic systems in closed form. It is known that the

complexity of the dynamic expression obtained is proportional to the fourth power of the

number of degrees of freedom of the robotic systems (Hollerbach (1980); Craig (2005)).

This fact challenges both the numerical simulation and real-time control of robots with

high degrees of freedom. To overcome this difficulty, an adaptive decentralized approach

based on an extension of the virtual decomposition control (VDC) is proposed in this

paper;
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b. To overcome the problem of adaptation and modeling of systems using classical ap-

proaches, a VDC approach is implemented, which makes the control system more flexible

in meeting changes to its configuration. In this case, adding a new robot or removing a

faulty one from the system does not require a recalculation of the full dynamics of the

system.

c. Using the VDC approach means that changing the dynamics of a subsystem only affects

the respective local equations associated with that subsystem, while the equations associ-

ated with the rest of the system remain unchanged;

d. The global stability of the system’s VDC is proven through the virtual stability of each

subsystem. Contrary to the original VDC stability, in this paper, all parameters are con-

sidered completely unknown, in addition to there being no known limit for the estimated

parameters;

• The whole dynamics of the system can easily be found based on the individual dy-

namics of each subsystem (rigid object and open chains);

• The schemes render the system control design very flexible and greatly facilitate the

calculation of the dynamic system, with respect to changes in the system configura-

tion, and

• They greatly simplify the adaptation of the physical parameters, which they make

systematic.

The rest of the paper is organized as follows. Section 4.2 presents the modeling of the sys-

tem, while section 4.3 presents the problem control statement. Section 4.4 explains the control

design. Simulation results are given in section 4.5. Section 4.6 presents an experimental vali-

dation of the developed approach. Finally, a conclusion is given in section 4.7.
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4.2 Modelling system and description

Figure 4.1 shows the N (MMR) handling a common rigid object, with Pie being the posi-

tion/orientation vector of the i-th MMR effector and the position/orientation vector of the ob-

ject. Before presenting the developed adaptive control law based on the virtual decomposition

approach, we will briefly formulate the kinematic and dynamic modeling of the i-th mobile

manipulator robot and the handled object.

Figure 4.1 Multiple MMR handling a rigid object

The VDC approach consists in breaking down the robotic system into a graph comprised of

several objects and open chains. An object is a rigid body and an open chain consists of a

series of rigid links connected one-by-one by a hinge, and having a certain degree of freedom.

The dynamic coupling between the subsystems can be represented by the flow of virtual power

(FVP) at the cutting point; this is the principle of virtual work (Zhu et al. (1997); Al-Shuka

et al. (2014); Zhu (2010)). The decomposition is illustrated in Figure 4.2 as follows:
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Figure 4.2 Virtual decomposition of the robotic system

4.2.1 Kinematics and dynamics of the object

4.2.1.1 Kinematics and dynamics of the object

Since the frames o and Tic for all i ∈ {1,N} are rigidly attached, it follows that:

Vc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1c

.

.

.

VNc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= oUT

Tc
ΓT oV = Jo

oV (4.1)

where oV = [vT
o wT

o ]
T with vo and wo being the linear and angular velocities of the center of

gravity of the object, respectively. Vc =
[
V T

1c . . . V T
Nc

]T
are the velocities at the contact

points between the end-effectors and the object , Tic , i ∈ {1,N} and Jo is the Jacobian matrix

given as follows:

oUTc = diag[oUT1c , ...,
oUTic , ...,

oUTNc ] ∈ R
6N×6N and Γ = [I6, ..., I6]

T ∈ R
6×6N

where I6 is the 6× 6 identity matrix, and the transformation matrix of force/moment and lin-
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ear/angular velocity vectors from frame B to frame A is defined by:

AUB =

⎡
⎢⎢⎢⎣

ARB 03×3

S(ArAB)
ARB

ARB

⎤
⎥⎥⎥⎦ (4.2)

where ARB is the rotation matrix between frames A and B, and S(ArAB) is a skew symmet-

ric matrix built from the vector ArAB linking the origins of frames A and B, expressed in the

coordinates of frame A.

4.2.1.2 Dynamics model of the object

The object handled by N mobile manipulators is rigid. The equation of motion of the effort

based on the linear parameterization form is given by the following equation:

oF = Mo
oV̇ +Co

oV +Go

= Yoθo

(4.3)

where, vo and wo being respectively the linear and angular velocities of the object.oF ∈R
6 is the

vector of forces applied on the object, Mo ∈R
6×6 is the mass matrix, Co ∈R

6×6 represents the

centrifugal and Coriolis matrix and Go ∈R
6 is the vector of gravity, Yo ∈R

6×13 is the dynamic

regressor matrix and θo ∈ R
13 is known parameter vector, defined in (Zhu et al. (1997); Al-

Shuka et al. (2014); Zhu (2010)).

The net force/moment vector is given by:

oF∗ =
N
∑

i=1

oUT
Tic

TicF

= ΓoUTc
TcF

(4.4)

where, TcF =
[

T1cFT . . . TNcFT
]T

denotes the force/moment vectors in frame Tic at the

contact (cutting) point for i ∈ {1,N}. By introducing the internal force vector Fint ∈R
6×(N−1),
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the force/moment vectors at the contact point Tic can be computed from (4.4) as:

TcF = TcUo

[
Φm Φ f

]⎡⎣oF∗

Fint

⎤
⎦ (4.5)

where TcUo =
oU−1

Tc
and the matrices Φm ∈ R

6N×6 and Φ f ∈ R
6N×(6N−6) are governed by:

⎧⎨
⎩ΓΦm = I6

ΓΦ f = 0
(4.6)

Note that the matrix
[
Φm Φ f

]
is of full rank. There exists a matrix Ω that verifies:

⎡
⎣Γ

Ω

⎤
⎦=

[
Φm Φ f

]−1
(4.7)

Therefore, the internal force coordinates can be calculated from (4.5) based on the force/mo-

ment at the N end-effectors as follows:

Fint = ΩoUTc
TcF (4.8)

4.2.2 Kinematics and dynamics of the i-th mobile manipulator

Figure 4.3 shows the i-th holonomic manipulator arm mounted on a nonholonomic mobile plat-

form where the manipulator has p-DOF, the mobile platform has m-DOF, and the full robotic

system has n=m+p-DOF.

4.2.2.1 Kinematics of the i-th mobile manipulator

The augmented linear/angular velocities vector of each frame Bi j is defined as

ViB = [q̇i j,Viv,V T
BiwR

,V T
BiwL

,V T
Bi1
, ...,V T

Bim
]T , where q̇i j = [q̇iwR, q̇iwL, q̇i1..., q̇im] are the right/left

wheels velocities and the j-th joint velocities of the manipulator arm, VBi j ∈ R
6 is the linear
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Figure 4.3 Virtual decomposition of the i-th MMR

and angular velocity vector of the corresponding frame Bi j,and Viv ∈ R
6 is the linear/angular

velocity vector of the mobile platform of the i-th mobile manipulator robot.

In general, we can write the system in matrix form by using the Jacobian matrix:

⎧⎨
⎩ViB = Jinq̇i j

Vic = Jiqq̇i j

(4.9)

where Vic is the velocity at the contact points attached to the object and Jin,Jiq are the Jacobian

matrices.

4.2.2.2 Dynamics of the i-th mobile manipulator

The dynamics of the j-th rigid body of the i-th manipulator arm based on the linear parameter-

ization form is given by the following equation:

∗FBi j = MBi jV̇Bi j +CBi jVBi j +GBi j

= YBi jθBi j

(4.10)

where MBi j is the matrix of inertial term, CBi j is the matrix of centrifugal/Coriolis term, GBi j is

the vector related to the gravity, YBi j ∈ R
6×13 is the dynamic regressor matrix and θBi j ∈ R

13
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is known parameter vector, defined in (Zhu et al. (1997); Al-Shuka et al. (2014); Zhu (2010)),

and j = wR,wL,1, ..,m represents the right/left wheels and the m joints of the arm manipulator.

The dynamics of the mobile platform (object) based on the linear parametrization form is given

by the following equation:

F∗
iv = MivV̇iv +CivViv +Giv

= Yivθiv

(4.11)

where Miv is the matrix of inertial term, Civ is the matrix of centrifugal/Coriolis term, Giv is

the vector related to the gravity, Yiv ∈ R
6×13 is the dynamic regressor matrix and θiv ∈ R

13 is

known parameter vector, defined in appendix I.

The vector of resulting forces/moments acting on the rigid body is computed by an iterative

process as follows:

FBim = F∗
Bim

+ BimUTie
TieF

FBim−1
= F∗

Bim−1
+ Bim−1UBimFBim

.

.

Fiv = F∗
iv =

ivUTiwRFTiwR +
ivUTiwLFTiwL +

ivUBi1FBi1

FBiwR = F∗
BiwR

+ BiwRUTiwRFTiwR

FBiwL = F∗
BiwL

+ BiwLUTiwLFTiwL

(4.12)

The dynamics of the j-th joint actuator of the manipulator arm and that of the right/left driving

motors of the platform are expressed based on the linear parameterization form by the following

equation:

τ∗ai j
= Jmi j q̈i j +ξi j(t)

= Yai jθai j

(4.13)

where, Jmi j denotes the moment of inertia of j-th joint motor, ξi j(t) ∈ R denotes the friction

force/torque, j = wR,wL,1, ..,m is defined in (4.10) and Yai j ∈ R
1×4 is the dynamic regressor

matrix and θai j ∈ R
4 is known parameter vector, defined in (Zhu et al. (1997); Al-Shuka et al.

(2014); Zhu (2010)).
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Finally, from (4.10) and (4.13), the dynamics of the i-th mobile manipulator robot can be

written as follows:

τai j
= τ∗ai j

+ zT FBi j
(4.14)

with, Z = [0 0 0 0 0 1]T for the revolute joints and Z = [0 0 1 0 0 0]T for the prismatic joints.

4.3 Control problem statement

To simplify the control formulation, the following assumptions are made:

Assumption 3.1:The desired object trajectory is assumed to be smooth, and there exists ε1 , ε2

and ε3 such that ∥∥∥∥∂Xd
o

∂x

∥∥∥∥≤ ε1,

∥∥∥∥∂ 2Xd
o

∂x2

∥∥∥∥≤ ε2,

∥∥∥∥∂ 3Xd
o

∂x3

∥∥∥∥≤ ε3,

Assumption 4.2:The object is rigid, and all end-effectors are attached rigidly to it. As a result,

there is no relative motion between the end-effector and the object.

Assumption 4.3: The parameters of the object and the mobile manipulators are unknown, but

constant.

Assumption 4.4: All the joint velocities of the mobile manipulator robots are available for

feedback as well as for the measurement of external forces.

The control objective is to generate a set of torque inputs such that the position tracking error of

the transported object in the workspace converges asymptotically to zero. Formally speaking,

the control problem is to design the control input:

U = f
(
Vc,V̇c,Xo,

oV
)

such that the following limits hold:

− lim
t→∞

∥∥∥Xo −Xd
o

∥∥∥= 0, lim
t→∞

∥∥∥oV − oV d
∥∥∥= 0
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− lim
t→∞

∥∥∥Fd
int −Fint

∥∥∥= bounded.

where, Xd
o ∈ R

6,oV d ∈ R
6 are the desired position and velocity of the object generated in the

workspace, and Fd
int ∈R

6N and Fint ∈R
6N are the desired and measured internal forces/moment

coordinates.

4.4 Control design

4.4.1 Methodology

The overall control system is designed using the following steps:

• The required velocities of the object oV r ∈ R
6 as well as the velocities of the end-effector

are first computed, and then the required velocity of the n fixed body frames illustrated in

Figure 4.2, are calculated;

• The VDC approach is used to simplify the problem of adaptation of the parameters of

the complete systems, with this problem converted into a problem of estimation of the

parameters of each subsystem. From the velocities computed in the first step, the estimated

parameters are calculated;

• The control law of each mobile manipulator is finally designed.

4.4.2 Design

Step 1. The required velocity oV r ∈ R
6 of the object is calculated based on the desired object

velocity oV d ∈ R
6 :

oV r = oV r +Kλ eo (4.15)

where eo = Xd
o −Xo is the position/orientation error vector and Kλ is a scalar.

constant. The desired velocity at the contact point of the N mobile manipulators with the object
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cV r ∈ R
6 is calculated from the required velocity of the object oV r ∈ R

6:

V r
c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V r
1c

.

.

.

V r
Nc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= oUT

Tc
(ΓT oV r +ΩT Kf (F̃d

int − F̃int)) (4.16)

where Γ,Ω are defined in (4.6),(4.7), Kf is a diagonal positive definite matrix, and F̃d
int , F̃int are

the filtered internal force/moment coordinates, which are obtained as:

⎧⎨
⎩

˙̃Fd
int = λ f (Fd

int − F̃d
int)

˙̃Fint = λ f (Fint − F̃ int)
(4.17)

with λ f being a diagonal positive definite matrix.

Step 2. In this step, the goal is to virtually decompose (Zhu et al. (1997)) the robotic system

into several parts and open chain elements. Each part is a rigid body, and an open chain consists

of a series of rigid links connected one-by-one.

Assumption 4.4.1: In this paper, the manipulators are operating away from any singularity.

The required velocity in any frame is given by:

⎧⎨
⎩V r

ic = Jiqq̇r
i j

V r
iB = Jinq̇r

i j

(4.18)

with V r
iB = [q̇r

i j,V
r
iv,V

rT
BiwR

,V rT
BiwL

,V rT
Bi1

, ...,V rT
Bim

]T , Jiq,Jin being the Jacobian matrix, and q̇r
i j =

[q̇r
iwR, q̇

r
iwL, q̇

r
i1..., q̇

r
im]

T being the required joint angular velocities.

The dynamics of the object (4.3) based on its required velocity oV r ∈ R
6 and their estimated

parameter is expressed in linear form by the following equation:

oF∗r = Yoθ̂o +Ko(
oV r −o V ) (4.19)
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where oF∗r ∈R
6 is the required object force, ˙̂θo = ρoYoso ∈R

13 is the adaptation function, and

is chosen to ensure system stability, so = (oV r −o V ), ρo, Ko are positive gains, and Yo ∈R
6×13

is the dynamic regressor matrix, defined in (Zhu et al. (1997); Al-Shuka et al. (2014); Zhu

(2010)).

The required force/moment vectors at the N end-effectors are computed from (4.10) as:

TcFr = TeUo

[
Φm Φ f

]⎡⎣oF∗r

Fd
int

⎤
⎦ (4.20)

The control equation of the j-th rigid body of the i-th manipulator (4.10), based on its required

velocity and its estimated parameters, is given in linear form by the following equation:

F∗r
Bi j

= YBi j θ̂Bi j +KBi j(V
r
Bi j

−VBi j) (4.21)

where ˙̂θBi j = ρBi jYBi j sBi j ∈ R
13 is the adaptation function, and is chosen to ensure system sta-

bility; sBi j = (V r
Bi j

−VBi j), ρBi j , KBi j are positive gains, and is the dynamic regressor matrix,

defined in (Zhu et al. (1997); Al-Shuka et al. (2014); Zhu (2010)).

The vector of resulting forces/moments acting on the j-th rigid body is given by an iterative

process (Al-Shuka et al. (2014)). We begin by computing the vector of forces at the different

cutting points:

Fr
Bim

= Fr∗
Bim

+ BimUTie
TicFr

Fr
Bim−1

= Fr∗
Bim−1

+ Bim−1UBimFr
Bim

.

.

Fr
iv = Fr∗

iv = ivUTiwRFr
TiwR

+ ivUTiwLFr
TiwL

+ ivUBi1Fr
Bi1

Fr
BiwR

= Fr∗
BiwR

+ BiwRUTiwRFr
TiwR

Fr
BiwL

= Fr∗
BiwL

+ BiwLUTiwLFr
TiwL

. (4.22)
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The control equation of the j-th joint actuator of the manipulator arm and the mobile platform

driving motor (4.13) are expressed by the following expression:

τr∗
ai j

= Yai j θ̂ai j +Kai j(q̇
r
i j − q̇i j) (4.23)

where ˙̂θai j = ρai jY
T
ai j

sai j is the adaptation function, and is chosen to ensure system stability;

sai j = (q̇r
i j − q̇i j),ρai j , Kai j are positive gains, and Yai j is the dynamic regressor (row) vectors,

defined in (Zhu et al. (1997); Al-Shuka et al. (2014); Zhu (2010)) and j = wR,wL,1, ...,m.

Finally, from (4.21),(4.22) and (4.23), the control equation of the i-th mobile manipulator mo-

bile robot can be written as follows:

τai j = τr∗
ai j

+ zT Fr
Bi j

(4.24)

with j = wR,wL,1, ...,m and z defined in (4.10). The block diagram in Figure 4.4 shows the

different control law calculation and implementation steps.

4.4.3 Stability analysis

Consider the j-th rigid dynamics (4.10-4.12) and the joint actuator dynamics (4.13), under the

control design (4.21-4.23). The control objective is satisfied and the error tracking states are

asymptotically stable.

Remark 4.1: The global stability of the system using the VDC approach is proven through the

virtual stability of each subsystem (Brahmi et al. (2016a); Al-Shuka et al. (2014)).

Proof: To prove the stability, we consider the following Lyapunov function:

V =
N

∑
i=1

(
n

∑
j=1

Vi j +
n

∑
j=1

Vai j +Viv

)
+Vob +Vf (4.25)

where Vi j,Vai j ,Vip,Vob and Vf are non-negative Lyapunov candidate functions related to the j-th

rigid link, the j-th joint, the mobile platform of the i-th mobile manipulator robot, the handled
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Figure 4.4 Adaptive coordinated control of N MMRs

object and the internal force, respectively. These Lyapunov candidate functions are chosen as

follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vi j =
1
2

(
V r

Bi j
−VBi j

)T
MBi j

(
V r

Bi j
−VBi j

)
+ 1

2

13

∑
k=1

(
θBi jk−θ̂Bi jk

)2

ρBi jk

Vai j =
1
2Jmi j

(
q̇r

i j − q̇i j

)2
+ 1

2

4

∑
k=1

(
θai jk−θ̂ai jk

)2

ρai jk

Viv =
1
2 (V

r
iv −Viv)

T Miv (V r
iv −Viv)+

1
2

13

∑
k=1

(θivk−θ̂ivk)
2

ρivk

Vob =
1
2 (

oV r −o V )T Mo (
oV r −o V )+ 1

2

13

∑
k=1

(θok−θ̂ok)
2

ρok

Vf =
1
2

(
F̃d

int − F̃int

)T Kf λ−1
f

(
F̃d

int − F̃int

)

(4.26)
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The first derivative of the Lyapunov candidate function (4.25) is given as follows:

V̇ =
N

∑
i=1

(
n

∑
j=1

V̇i j +
n

∑
j=1

V̇ai j +V̇iv

)
+V̇ob +V̇f (4.27)

By using the definition of the virtual power and the choice of the parameter function adaptation

as in (4.20),(4.21) and (4.23), it is straightforward to prove that V̇ is always decreasing, and is

given as follows:

V̇ =−
N
∑

i=1

(
n
∑
j=1

(
V r

Bi j
−VBi j

)T
KBi j

(
V r

Bi j
−VBi j

)
+(V r

iv −Viv)
T Kiv (V r

iv −Viv)

)

−Kai j

(
q̇r

i j − q̇i j

)2 − (oV r −o V )T Ko (
oV r −o V )− (F̃d

int − F̃int

) (4.28)

The stability analysis shows that V̇ is always decreasing, and that the system is asymptotically

stable in the sense of Lyapunov. Using Barbalat’s lemma (Spong et al. (2006)) we prove that

the error tracking states are asymptotically stable. The reader can find the detailed proof of

stability in (Zhu et al. (1997); Al-Shuka et al. (2014); Zhu (2010)).

4.5 Simulation results

The block diagram in Fig. 4.5 shows the different control law development and simulation

steps. Numerical simulations are carried out on two identical 6DoF MMRs handling a rigid

object in coordination, as illustrated in Fig. 4.6, The desired trajectory of the center of gravity

of the object is generated in the Cartesian space. The object displacement is along the X-axis,

with a sinusoidal trajectory along the Y-axis, and no rotation along the Z-axis. In this case,

there is no displacement along the Z-axis, and no rotation along the X-axis and the Y-axis. The

starting point is Po = (xo,yo,zo,βo) = (2,0.5,1,0) and the final point is Pf = (xo,yo,zo,βo) =

(5,0.5,1,0) . The controls gains of the controller are chosen to be KBi j = 25,Kai j = 15,Ko =

50,Kλ = 5,ρo = 0.7,ρfflBi j = 0.8 and ρai j = 0.8. The trajectory tracking is presented in Figure

4.7 and Figure 4.8. A good position and orientation tracking can be observed. The convergence
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Figure 4.5 Adaptive control of N MMRs transporting a rigid object

of the error to zero along the XYZ positions and the moment along the Z-axis are presented in

Figure 4.8.

4.6 Experimental validation

In this section, the proposed control scheme is implemented in real time on two identical mo-

bile manipulator robots named Mob_ETS located in the GREPCI laboratory. In this exper-

imental test, a Zigbee technology communication is used between the application program

implemented in Matlab R© Simulink and the mobile manipulator robots. The adaptive control

developed and simulated in the previous section is implemented and compared to the computed

torque approach in real time using Real-Time Workshop (RTW) by Mathworks R©. Since the

external end-effector force is unavailable for measurement, we use an end-effector observer

proposed in (Alcocer et al. (2003)) to estimate it in this section. Figure 4.9 shows the complete

structure design of the control. The two wheels of the j-th mobile manipulator robot platform



84

Figure 4.6 Two identical 6DoF mobile manipulators

Figure 4.7 Desired and real trajectories of the object

are actuated by two DC motors, HN-GH12-2217Y (DC-12V-200RPM 30:1), and its angular

positions are given by using encoder sensors (E4P-100-079-D-H-T-B). All the joints of the

manipulator arm are actuated by a Dynamixel motor (MX-64T).
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Figure 4.8 Error in X-axis, in Y- axis, in Z-axis and in orientation

The desired trajectory of the center of gravity of the object is generated in the Cartesian

space. The object displacement is along the X-axis, with a sinusoidal trajectory along the

Y-axis. The starting point is Po = (xo,yo,zo,βo) = (0.1,−0.1,0.42,0) and the final point is

Pf = (xo,yo,zo,βo) = (3,−0.1,0.47,0) . The control gains of the controller are chosen to be

KBi j = 2.5,Kai j = 1.5,Ko = 5,Kλ = 5,ρo = 0.7,ρBi j = 0.8 and ρai j = 0.8 .The sampling time

is set to 0.015 seconds.

The trajectory tracking is presented in Figure 4.10 and Figure 4.11. A good position and

orientation tracking can be observed. The convergence of the errors to zero along the XYZ

positions and the moment along the Z-axis are presented in Figure 4.11, and the convergence

of the parameters of the first mobile manipulator during the adaptive control is illustrated in

Figure 4.12 as an example, where Figure 4.12(a) represents the convergence of all estimated

parameters of the first manipulator robot θ̂B1 j with j = wR,wL,1, ..,m and Figure 4.12(b-c)

shows the convergence of the parameters of only two links θ̂B1 j ,θ̂B2 j of this manipulator mobile

robot. To show the effectiveness of the control strategy tested above, the computed

torque is used for the same mobile manipulators. Figures 4.13-4.14 show the experimental

results for the computed torque approach using the same desired trajectories. For purposes

of comparison, the multi-mobile manipulators handling the object are controlled by applying

the computed torque method, using the same desired trajectory. The tracking of the position
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Figure 4.9 Real-time setup

and orientation in the workspace is shown in Figure 4.13, and errors along the XYZ positions

and the moment along the Z-axis are presented in Figure 4.14. According to the experimental

results shown in Figure 4.15, the resulting tracking errors of the proposed control strategy

(dashed line) are smaller than those found using the computed torque method (solid line). This

illustrates the effectiveness of the adaptive coordinated approach developed in this paper.
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Figure 4.10 Desired and real trajectories of the object

Figure 4.11 Error in X-axis, in Y- axis, in Z-axis and in orientation

4.7 Conclusions

In this paper, a coordinated control scheme for multiple mobile manipulator robots transport-

ing a rigid object in coordination has been presented. The desired trajectory of the object is

generated in the workspace and the parameters of the handling object and that of the mobile

manipulators are estimated online using the virtual decomposition approach. In this study,

the external forces are considered available. The control law is designed based on the virtual

decomposition approach, and the global stability of the system is proven through the virtual

stability of each subsystem. The proposed control design ensures that the workspace position
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Figure 4.12 Parameter convergence of: a) the MMR 1, b) the link 1

of the MMR 1, c) the link 2 of the MMR 1

Figure 4.13 Desired and real trajectories of the object

error converges to zero asymptotically. This controller is tested and is compared with the com-

puted torque approach. The simulation and experimental results show the effectiveness of the

proposed control and illustrate the validation of the theoretical development.
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Figure 4.14 Error in X-axis, in Y- axis, in Z-axis and in orientation

Figure 4.15 Errors: adaptive control (dashed red line), computed

torque (solid blue line)
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Abstract

This paper presents a nonlinear control scheme for multiple mobile manipulator robots (MMR)

moving a rigid object in coordination. The dynamic parameters of the handled object and

the mobile manipulators are estimated online using the virtual decomposition approach. The

control law is designed based on an appropriate choice of the Lyapunov function candidate.

The proposed control design ensures that the position error in the workspace converges to

zero, and the external force error is bounded. Numerical simulations and an experimental

validation are carried out for two mobile manipulators transporting an object in order to show

the effectiveness of the proposed controller.

Keywords: Mobile manipulator; Virtual decomposition approach; Coordination; Nonlinear

control.

5.1 Introduction

The need for robots capable of locomotion and manipulation has led to the design of mobile

manipulator robot (MMR) platforms. Typical examples of MMR include satellite arms, un-
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derwater robots used in seabed exploration, and vehicles used in extra-planetary exploration.

The most popular mobile manipulators, which are somewhat automated, are cranes mounted

on trucks. Some operations requiring the handling of heavy objects become very difficult

for single mobile manipulators, and require cooperation among multiple mobile manipulators.

However, this significantly complicates the robotic system as its control design complexity in-

creases greatly. The problem of controlling the mechanical system forming a closed kinematic

chain mechanism lies in the fact that it imposes a set of kinematic constraints on the coordina-

tion of the position and velocity of the mobile manipulator. Therefore, there is a reduction in

the degrees of freedom for the entire system. Further, the internal forces of the object produced

by all mobile manipulators must be controlled. Few works have been proposed to solve the

control problem of these robotic systems, which have high degrees of freedom and are tightly

interconnected because all their manipulators are in contact with the object.

5.1.1 Previous works

Most research works in this area have thus far focused on three major mechanisms of coordina-

tion: decentralized control, the leader-follower control approach, and motion planning. In the

first approach, the position and the internal force of the object are controlled in a given direction

of the workspace. Khatib (Khatib et al. (1996b); Park and Khatib (2008)) proposed an exten-

sion of a method developed for manipulators with bases fixed to holonomic mobile manipula-

tor robots, with a new command for decentralized cooperation tasks. In (Kosuge and Oosumi

(1996); Hirata et al. (1999); Kosuge et al. (1999)), the authors proposed a control algorithm

using geometric constraints between the contact points and the point representing the object,

reducing the effect of sensor noise. They then extended and implemented this algorithm on

multiple omnidirectional mobile robots handling a single object in coordination. A motion co-

ordination control proposed by (Kume et al. (2007)) is applied to a group of holonomic mobile

manipulators transporting an object in coordination without using torque/force sensors.

The leader-follower architecture is the second approach used for the coordination of multiple

mobile manipulators. In this approach, a single or a group of MMRs is designated as a leader
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trying to follow a desired trajectory, while the other group members follow the leaders. This

control approach was addressed in (Chen and Li (2006); Hirata et al. (2004c)), and (Tang et al.

(2009)). In (Fujii et al. (2007)), the authors introduced the notion of virtual leader, in which

every follower considers the rest of the team (leader and other followers) as constituting the

virtual leader.

Finally, the motion planning approach has been covered in a few studies from the perspective of

a group of MMRs (which is another fundamental problem in robotics, especially in multi-robot

systems), where several robots perform the task of transporting an object in cooperation, in a

known or unknown environment. These studies include those presented in (LaValle (2006);

Latombe (2012)). Another structure for planning optimal trajectories was introduced in (De-

sai and Kumar (1997)) for two mobile manipulators pushing a common object to a desired

location. The authors in (Yamamoto and Fukuda (2002)) proposed a control method for mul-

tiple mobile manipulators holding a common object. The measures of kinematic and dynamic

manipulability are given, taking into account collision avoidance. However, the dynamics of

the object are ignored. In (Furuno et al. (2003)), a trajectory planning method for mobile

manipulator groups in cooperation, which takes into consideration the dynamic characteris-

tics of mobile manipulators and the object to be grasped, was proposed. The dynamics are

composed of equations of the motion of mobile manipulators, the movements of the object,

the non-holonomic constraints of mobile platforms and the geometric constraints between the

end-effectors and the object. In (Sun and Gong (2004b); Zhu and Yang (2003)), a planning

approach based on genetic algorithms was proposed. The adaptive control of robotic systems

with high degrees of freedom has been receiving increasing attention in recent years. Many

contributions in this area have been developed, such as in (Chen (2015); Zhao et al. (2016);

Liu et al. (2016)). This is due to the fact that such robotic systems have been implemented

in most modern manufacturing applications. The uncertainties, the high nonlinearity, and the

tight kinematics and dynamics coupling of these systems greatly complicate the control prob-

lem and make it difficult to solve by using the classical approaches explained previously. A

system formed of many mobile manipulators holding an object, is one of the most important in
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these class of robotic systems. The constraints, imposed by the kinematic closed-chains sys-

tem, make the motion degrees of freedom often less than the number of actuators. In this case,

not only the motion needs to be controlled but the internal forces as well. To overcome these

problems, a novel adaptive control based on the virtual decomposition approach is proposed in

this work.

5.1.2 Main contribution

All previous studies based on Lagrangian or Newton/Euler approaches require knowledge of

the exact parameters of the system. In practice, this is difficult, and the obtained model is

usually uncertain. To overcome the problem of dynamic modeling and dynamic control, some

researchers have proposed adaptive control based on neural network control (Liu et al. (2014);

Liu and Zhang (2013); Liu et al. (2013)) and fuzzy logic approaches (Mai and Wang (2014)).

For instance, non-model-based techniques have been developed for a different type of mo-

bile manipulator robot with uncertain parameters. Another problem is that the dynamics of

the whole system are complicated. Any change in the structure of the group requires a new

dynamics modelling (removal of a faulty robot or addition of a new robot to the system). Fi-

nally, for these types of systems with a large degree of freedom, and which are tightly coupled,

adapting the parameters using methods based on full dynamics is very complicated due to the

huge number of parameters involved. To overcome these problems, we propose in this paper

an adaptive decentralized approach based on an extension of the virtual decomposition con-

trol (VDC) methodology presented in Zhu et al. (1997); Al-Shuka et al. (2014), originally

designed for fixed-base robotic systems with large degrees of freedom. This approach will be

used in this paper for a group of holonomic mobile manipulators moving without considering

the slipping effect. Some of the many advantages of this approach are: 1) the whole dynamics

of the system can easily be found based on the individual dynamics of each subsystem; 2) it

makes the system control design very flexible and the calculation of the dynamic system, with

respect to the changes in the system configuration, very easy, and 3) it makes the adaptation
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of the physical parameters very simple and systematic. Contrary to what was done in previous

works, our contributions in this paper present the following characteristics:

a. The use of the VDC approach to overcome the problem of adaptation and modelling of

systems using classical approaches, which makes the system more control-flexible when

its configuration changes. In this case, adding a new robot or removing a faulty one from

the system does not require a recalculation of the full dynamics of the system;

b. Using the VDC approach means that changing the dynamics of a subsystem only affects

the respective local equations associated with that subsystem, while keeping the equations

associated with the rest of the system unchanged;

c. The global stability of the system’s VDC is proven through the virtual stability of each

subsystem. Contrary to the original VDC stability and control, in this paper, the stability

analysis and the control law are designed based on an appropriate choice of a candidate

Lyapunov function of the entire system.

The rest of the paper is organized as follows. Section 5.2 presents the modelling of the system,

while section 5.3 presents the problem control statement. Section 5.4 explains the control

design, and simulation results are given in section 5.5. Section 5.6 presents an experimental

validation of the proposed approach. Finally, the conclusion is given in section 5.7.

5.2 System modelling

Figure 5.1 shows the N MMR handling a common rigid object, with Pie being the position/ori-

entation vector of the i-th MMR effector and Xo the position/orientation vector of the object.

This section will briefly describe the kinematics and dynamic models of the i-th MMR, the

dynamic model for handling the object, and then provide the dynamics of the entire system.
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Figure 5.1 Multiple MMR handling a rigid object

5.2.1 Kinematics

The relationship between the effector velocity Vie ∈ R
6 of the i-th mobile manipulator and the

object velocity Vo ∈ R
6 is given by:

Vie = JT
ioVo (5.1)

where Jio ∈ R
6×6 is the Jacobian matrix from the center of gravity of the object to the i-th

mobile manipulator end-effector.

5.2.2 The i-th mobile manipulator dynamics

The dynamic model of the i-th mobile manipulator without an object is given in the joint space

by the following equation:

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +Gi(qi) =Ui +AT
i fi (5.2)
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where Mi(q) ∈ R
n×n is the mass matrix; Ci(qi, q̇i) ∈ R

n×n represents the Coriolis and centrifu-

gal terms; Gi(qi) ∈ R
n is the vector of gravity; qi, q̇i, q̈i ∈ R

n are respectively the coordinate

generalized vector, the joint velocity, and the acceleration, and Ui ∈R
nis the input control vec-

tor; Ai ∈ R
n×m is the Jacobian matrix and fi ∈ R

m is the constraint force corresponding to the

holonomic constraints. The mobile platform is subject to the holonomic constraints.

Remark 5.1: In this paper, the mobile manipulator robot is considered as a fully actuated arm

mounted on the holonomic mobile platform.

In the presence of the object, the dynamic equation of the i-th mobile manipulator in the

workspace is given by:

iMV̇ie +
iCVie +

iG = iU +Fie (5.3)

where iM ∈R
6×6is the mass matrix, iC ∈R

6×6 represents the Coriolis and centrifugal terms,iG∈
R

6 is the vector of gravity, and Fie ∈R
6 is the external end-effector force caused by the handling

of the object. This force is assumed to be measurable.

5.2.3 Dynamics of the object

The object handled by N mobile manipulators is rigid. To find the dynamic model that charac-

terizes this manipulated object, the Newton Euler method is used. The equation of motion of

the effort is given by:

Mo(Xo)V̇o +Co(Xo, Ẋo)Vo +Go(Xo) = Fo (5.4)

where Vo =
[
vT

o wT
o

]T
with vo ∈R

3 and wo ∈R
3 being the linear and angular velocities of the

object, respectively; Fo ∈R
6 is the vector of forces applied to the object, Mo ∈R

6×6 is the mass

matrix, Co ∈ R
6×6 represents the centrifugal and Coriolis matrix and Go ∈ R

6 is the vector of

gravity.
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5.2.4 Total dynamics

From the general form of the i-th mobile manipulator (5.3), the dynamics of N MMRs is given

by

MV̇e +CVe +G =U +Fe (5.5)

with:

Ve =
[
V T

1e V T
2e .. V T

Ne

]T
, M = blockdiag

[
1M .. NM

]
, Fe =

[
FT

1e ... FT
Ne

]T

C = blockdiag
[

1C .. NC
]
, G =

[
1GT .. NGT

]T
,U =

[
1UT .. NUT

]T
.

The dynamic given in (5.5) has the following properties:

Property 5.1: The matrix M is symmetric positive definite.

Property 5.2: The matrix S = Ṁ − 2C is skew symmetric, that is, for any vector x, we have

xT (Ṁ−2C)x = 0.

The end-effector forces Fe are related to the object force as follows:

Fo =−Jo(Xo)Fe (5.6)

where Jo ∈R
6×6N is the Jacobian matrix relating the two forces. Furthermore, the end-effector

force Fe is divided into two orthogonal components: the first contributes to the movement of

the object and the second gives the internal force. This representation is given in (Jean and Fu

(1993)), and has the following form:

Fe =−(Jo(Xo))
+Fo −FI (5.7)

where (Jo)
+ is the pseudo-inverse of (Jo) given by (Jo)

+ = JT
o (JoJT

o )
−1 and FI =

[
1FT

I .. NFT
I

]T ∈
R

6N are the internal forces in the null space of (Jo). From (Kume et al. (2007)), FI can be pa-

rameterized by the Lagrangian multiplier vector λI as follows:

FI =
(

I − (Jo(Xo)
T )+Jo(Xo)

T
)

λI = ρT λI (5.8)
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where ρT is the Jacobian matrix for the internal force, and is restricted to:

Jo(Xo)ρT = 0 (5.9)

To simplify the control formulation, the following assumptions are made:

Assumption 5.1: The desired trajectory is assumed to be smooth, and there exists ε1, ε2 and

ε3 such that: ∥∥∥∥dXd
o

dx

∥∥∥∥≤ ε1,

∥∥∥∥d2Xd
o

dx2

∥∥∥∥≤ ε1,

∥∥∥∥d3Xd
o

dx3

∥∥∥∥≤ ε3

Assumption 5.2: The object is rigid and all end-effectors are rigidly attached to it. As a result,

there is no relative motion between the end-effector and the object.

Assumption 5.3:The parameters of the object and the mobile manipulators are unknown, but

constant.

Assumption 5.4:All the velocities of the joints of the mobile manipulator robots are available

for feedback as well as for the measurement of external forces.

5.3 Control problem statement

The control objective is to generate a set of torque inputs such that the position tracking error of

the transported object in the workspace converges asymptotically to zero. Formally, the control

problem is to design the control input:

U = f (Ve,V̇e,Xo,Vo) (5.10)

such that the following limits hold:

limt→∞
∥∥Xo −Xd

o
∥∥= 0, limt→∞

∥∥Vo −V d
o
∥∥= 0

limt→∞
∥∥Fie −Fd

ie

∥∥= bounded
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where, Xd
o ∈ R

6, V d
o ∈ R

6 are the desired position and velocity of the object generated in the

workspace Fd
ie ∈ R

6 and Fie ∈ R
6 are the desired and measured internal forces.

5.4 Control design

5.4.1 Methodology

The overall control system is designed using the following steps:

• The required velocities of the object V r
o ∈ R

6 as well as the velocities of the end-effector

V r
ie ∈ R

6 are first computed, and then the required velocity iV r
B ∈ R

6n of the n body-fixed

frames iB j illustrated in Figure 5.2 is calculated;

• The VDC approach is used to simplify the problem of adaptation of the parameters of the

complete systems, where this problem is converted into a problem of estimation of the

parameters of each subsystem. From the velocities computed in the first step, the estimated

parameters are calculated;

• The control law of each mobile manipulator is finally designed.

5.4.2 Design

Step 1: The required velocity V r
o ∈ R

6 of the object is calculated based on the desired object

velocity V d
o ∈ R

6: ⎧⎨
⎩V r

o =V d
o +Kλ eo

so =V r
o −Vo

(5.11)

where eo = Xd
o −Xo is the position/orientation errors vector, Kλ is a scalar constant and so ∈R

6

is the sliding surface.

The desired velocity of the end-effector of each mobile manipulator V d
ie ∈R

6 is calculated from
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the desired velocity of the object V d
o ∈ R

6:

V d
ie = JT

ioV d
o (5.12)

The derivative of the position error of the i-th end-effector is given by:

ėi =V d
ie −Vie (5.13)

Introducing the object velocity, (5.13) can be rewritten as:

ėi = JT
io(V

d
o −Vo) = JT

ioėo (5.14)

Finally, the required velocity of the i-th end-effector is obtained based on (5.13), (5.14) and

(5.1) as follows:

V r
ie =V d

ie +Kλ JT
ioeo (5.15)

Step 2: In this step, the goal is to virtually decompose (Zhu (2010)) the robotic system into

several parts and open chains elements. Each part is a rigid body, and an open chain consists

of a series of rigid links connected one by one. This decomposition is illustrated in Figure 5.2.

The transformation matrix of force/moment vectors from frame B to frame A is defined by:

AUB =

⎡
⎣ ARB 03×3

S(ArAB)
ARB

ARB

⎤
⎦ (5.16)

where ARB ∈ R
3×3 is the rotation matrix between frames A and B, and S(ArAB) ∈ R

3×3 is a

skew symmetric matrix built from the vector ArAB ∈ R
3×3 linking the origins of frames A and

B, expressed in the coordinates of frame A.

Assumption 5.1: In this paper, the manipulators are operating away from any singularity.
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Figure 5.2 Virtual decomposition of N MMR handling a rigid object

The required velocity in any frame is given by:

iV r
B = JiV r

ie (5.17)

with iV r
B =
[

iV rT
B1

... iV rT
Bn

]T
and Ji ∈ R

6n×n being the Jacobian matrix. The dynamics of the

object based on its required velocity are expressed in linear form by the following equation:

F∗r
o = MoV̇ r

o +CoV r
o +Go = Yoθo (5.18)

with F∗r
o ∈ R

3 being the required object force, θo ∈ R
13 the vector of parameters, and Yo ∈

R
6×13 the dynamic regressor matrix.

The dynamics of the j-th rigid body of the i-th manipulator are given in linear form by the

following equation:

iF∗r
B j

= iMB j
˙iV

r
B j
+ iCB j

iV r
B j
+i GB j =

iYB j
iθB j (5.19)
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with iMB j ∈ R
6×6 being the matrix of inertial terms, iCB j ∈ R

6×6 the matrix of centrifugal/-

Coriolis terms, iGB j ∈ R
6 the vector related to gravity, iθB j ∈ R

13 the parameters’ vector, and

finally, iYB j ∈ R
6×13 the dynamic regressor matrix.

The vector of resulting forces/moments acting on the j-th rigid body is given by an iterative

process (Zhu (2010)). We begin by computing the vector of forces at the different cutting

points:

iFr
Bn

= iF∗r
Bn

iFr
Bn−1

= iF∗r
Bn−1

+ Bn−1UBn
iF∗r

Bn
...

iFr
B1

= iF∗r
B1

+B1 UB2
iF∗r

B2
+ ...+ Bn−1UBn

iF∗r
Bn

(5.20)

The general form is given by the following expression:

iFr
Bk

= iF∗r
Bk

+
n−1

∑
j=k+1

B jUB j+1

iF∗r
B j+1

(5.21)

with: k = 1, ..,n−1.

Remark 5.2: The general form (5.21) clearly shows the advantages of using the VDC approach

as compared to those based on the classical approach, such as in (Chen (2015); Zhao et al.

(2016); Liu et al. (2016)), where, firstly, the whole dynamics of the system can easily be found

based on the individual dynamics of each subsystem; secondly, the adaptation of the physical

parameters is very simple and systematic, as mentioned in (Zhu et al. (1997)).

The control equation of the i-th mobile manipulator can be expressed based on the control

equation of rigid body (5.19) and the forces in the different frames (5.20) by the following

relation:

iMV̇ r
ie +

i CV r
ie +

i G = iQiθ (5.22)

where iM = JT
i

iMBJi,
iC = JT

i
iMBJ̇i + JT

i
iCBJi,

iG = JT
i

iGB and Ji ∈ R
6n×6 is the Jacobian

matrix. Also, iMB = Blockdiag(iMB1
, ...,i MBn),

iCB = Blockdiag(iCB1
, ...,iCBn) and iGB =

[iGT
B1
, ...,i GT

Bn
]T
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The control equation for the N mobile manipulator robots is designed as:

MV̇ r
e +CV r

e +G = Qθ (5.23)

with: M = Blockdiag(1M, ...,N M), G = [1GT , ...,N GT ]T , C = Blockdiag(1C, ...,N C), and V r
e =

[V rT
1e , ...,V

rT
Ne ]

T .

Since the physical parameters of the i-th mobile manipulator are unknown, using the estimate

parameters of iθ denoted iθ̂ , and adding the object, relation (5.23) is rewritten as:

iM̂V̇ r
ie +

i ĈV r
ie +

i Ĝ = iQiθ̂ (5.24)

We define the parameter estimation error as Δθ = iθ̂ −i θ From (5.13-5.16), we have:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V r
ie =V d

ie +Kλ ei

V̇ r
ie = V̇ d

ie +Kλ ėi

si =V r
ie −Vie = ėi +Kλ ei

(5.25)

where si ∈ R
6 is the sliding surface.

The control law of the i-th mobile manipulators is given by:

iU =i Ur
p −i Ur

f (5.26)

where iUr
p and iUr

f are, respectively, the position and the force control laws. iUr
p is given by:

iUr
p =

iQiθ̂ +i Γsi (5.27)

and the update law that is used to prove the global stability of the system is given by:

i ˙̂θ = iΓ−T
θ

iQT si (5.28)
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where iΓθ and iΓ are constant symmetric positive definite matrices, iθ̂ = [iθ̂ T
B1
, ...,i θ̂ T

Bn
]T ∈R

13n

being the estimate vector of the parameters.

Furthermore, iUr
f is given by:

iUr
f = Fr

ie =−(Jo(Xo))
+F∗r

o −i Kp(
iFd

I −i FI) (5.29)

where iKp is a constant symmetric positive definite matrix.

Expressing (5.24) for the N mobile manipulator robots gives:

M̂V̇ r
e +ĈV r

e + Ĝ = Qθ̂ (5.30)

The position control law of the entire system based on (5.27) is computed as follows:

Ur
p = Qθ̂ +Γs (5.31)

with: Γ = Blockdiag(1Γ, ..,N Γ) , Q = Blockdiag(1Q, ..,N Q)

θ̂ = [1θ̂ T , ...,N θ̂ T ]T and s = [sT
1 , ...,s

T
N ]

T .

Furthermore, Ur
f is the force control law, and is given by:

Ur
f = Fr

e (5.32)

with: Fr
e = [FrT

1e , ...,F
rT
1e ]T

Finally, the control law of the entire system is given as follows:

U =Ur
p −Ur

f

U = Qθ̂ +Γs−Fr
e (5.33)

The block diagram in Fig. 5.3 shows the different control law calculation and implementation

steps.
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Figure 5.3 Adaptive control of N MMRs transporting a rigid object

5.4.3 Stability analysis

Remark 5.3: The global stability of the system using the VDC approach is proven through

the virtual stability of each subsystem (Zhu et al. (1997); Zhu (2010)). Contrary to the origi-

nal VDC stability and control, in this subsection, the stability analysis is proven based on an

appropriate choice of a candidate Lyapunov function of the entire system.

To show the stability of the global system, we calculate the dynamic error of estimation param-

eters from equation (5.30) and (5.23) as follows:

M̃V̇ r
e +C̃V r

e + G̃ = QΔθ (5.34)
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where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M̃ = M̂−M

C̃ = Ĉ−C

G̃ = Ĝ−G

and Δθ = θ̂ −θ . Defining ΔFe = Fr
e −Fe, it follows from (5.4),(5.6) and (5.18) that

JoΔFe =−(Moṡo +Coso) (5.35)

with so =V r
o −Vo.

To prove the stability, we consider the following Lyapunov function

V =
1

2
sT Ms+

1

2
Δθ T Γθ Δθ +

1

2
sT

o Moso (5.36)

with Γθ = Blockdiag(1Γθ , ..,
N Γθ ).

The time derivative along the solution of relations (5.36) gives the following:

V̇ = sT Mṡ+ 1
2sT Ṁs+Δθ̇ T Γθ Δθ

+sT
o Moṡo +

1
2sT

o Ṁoso

(5.37)

From (5.25), we know that, s = V r
e −Ve ⇒ ṡ = V̇ r

e − V̇e, and therefore, using the property 5.2,

(5.37) gives:

V̇ = sT (MV̇ r
e −MV̇e)+Δθ̇ T Γθ Δθ + sT

o Moṡo

+sT (1
2(Ṁ−2C)+C)s + sT

o (
1
2(Ṁo −2Co)+Co)so

(5.38)

Using (5.35), property 5.2 and the dynamics of the N MMRs (5.5), (5.38) gives:

V̇ = sT (−U −Fe +CVe +G+MV̇ r
e
)
+ sTCs

+Δθ̇ T Γθ Δθ − sT
o JoΔFe

(5.39)
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Further, a simple calculation using the control law (5.33), the control equation of the N MMRs

(5.23), the equations (5.34,5.35) and the relation s = JT
o so yields:

V̇ =−sT Γs− sT QΔθ +Δθ̇Γθ Δθ (5.40)

Substituting the update control law (5.28), the relation (5.40) gives the following:

V̇ =−sT Γs ≤ 0 (5.41)

The system, including the trajectory is uniformly bounded, and as a result, V is a nonincreasing

function, and therefore, s and Δθ are also bounded. Taking the time derivative (5.41) yields

V̈ = −2sT Γṡ since s and ṡ are bounded. This implies that V̈ is bounded, and consequently, V̇

is uniformly continuous. Since the desired trajectory is uniformly continuous, it implies that si

and ei are uniformly continuous as well. Thus, according to Barbalat’s lemma, limt→∞ V̇ = 0

and therefore, limt→∞ ei = 0.

5.5 Simulation results

Numerical simulations are carried out on two identical 6DoF MMRs handling a rigid object in

coordination, as illustrated in Figure 5.4, and the parameters of both MMR and the object are

given in Table 5.1 The desired trajectory of the center of gravity of the object is generated in

Table 5.1 System parameters

Parameters
Object mo = 1kg, Io = 1kg.m2

Articulation: 1,2,3,4 (revolute) m1,2,3,4 = 1kg, I1,2,3,4 = 1kg.m2, L1,2 = 1m, L3,4 = 0.5m,

Platform mv = 6kg, I = 19kg.m2 d = 1m, r = 1m

the Cartesian space. Two examples of desired trajectories are used in these numerical simula-

tions.In the first one, the object displacement is along the X-axis, the Y-axis and rotation along

the Z-axis. In this case, there is no displacement along the Z-axis, and no rotation along the
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Figure 5.4 Two identical 6Dof mobile manipulators

X- and the Y-axes. The starting point is Po = (xo,yo,zo,β ) = (1,0,1,0) and the final point is

Pf = (xo,yo,zo,β ) = (2,−0.5,1, 3π
2 ) .

In the second one, the object displacement is along the X-axis, with a sinusoidal trajectory

along the Y-axis, the starting point is Po = (xo,yo,zo,β ) = (2,0.5,1,0) and the final point is

Pf = (xo,yo,zo,β ) = (5,0.7,1,0) . The controls gains of the controller are chosen as iΓ =

diag[250,250,250,250], Kp = diag(125) and Kλ = 5 the desired internal force vector Fd
I is

parameterized by the Lagrangian multiplier vector λ d
I =

[
λ d

Ix λ d
Iy λ d

Iz

]T
=
[
5 0 0

]T
. The

trajectory tracking are presented in Figure 5.5 and Figure 5.9. The simulation results in the

Cartesian space are presented in Figure 5.6 and Figure 5.10. We can observe a good position

and orientation tracking. The tracking of the internal forces along the XYZ positions and the

moment along the Z-axis are presented in Figure 5.8 and Figure 5.12. As can be seen from

the simulation results (Figure 5.7 and Figure 5.11), the objective of the trajectory tracking for

a group of MMR, carrying a rigid object, is successfully realized.
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H

Figure 5.5 Desired and real trajectories of the object

H

Figure 5.6 Trajectory tracking in Cartesian space: X-axis,Y- axis,

Z-axis and orientation
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Figure 5.7 Positions errors

Figure 5.8 Desired and measured internal forces: (a) MMR 1,

(b) MMR 2

In order to show the effect of the internal force control, two tests are performed on the second

trajectory. In the first test, the position control is considered without taking into account the

internal force. In the second test, the internal force control is introduced. Figure 5.9 shows

that the position control is satisfactory in both cases. This confirms that the internal force does

not affect the position of the object. However, as shown in Figure 5.13 a, the position control,

without internal force control, does not ensure that the object will be properly handled. To

move the object safely, the tracking of the internal force should be ensured, as shown in Figure

5.13b.
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Figure 5.9 Trajectory of the object

Figure 5.10 Trajectory tracking in Cartesian space:

X-axis,Y-axis, Z-axis and orientation

5.6 Experimental results

In this section, the proposed control scheme is implemented in real time on two identical mo-

bile manipulator robots named Mob_ ETS. In this experimental test, a Zigbee technology com-

munication is used between the application program implemented in Simulink Matlab� and

the mobile manipulator robots. The adaptive control developed and simulated in the previ-
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Figure 5.11 Positions errors

Figure 5.12 Desired and measured internal forces: (a) MMR 1,

(b) MMR 2

ous section is implemented in real time using Real-Time Workshop (RTW) by Mathworks�.

Since the external end-effector force is unavailable for measurement, in this section, we use an
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Figure 5.13 Desired and measured internal forces

end-effector observer proposed in Alcocer et al. (2003) for its estimation. Fig. 5.14 shows the

complete structure design of the control.

The two wheels of the j-th mobile manipulator robot platform are actuated by two HN-GH12-

2217Y DC motors (DC-12V-200RPM 30:1), and the angular positions are given using encoder

sensors (E4P-100-079-D-H-T-B). All joints of the manipulator arm are actuated by Dynamixel

motors (MX-64T).

The desired trajectory of the center of gravity of the object is generated in the Cartesian

space. The object displacement is along the X-axis, with a sinusoidal trajectory along the

Y-axis, The starting point Po = (xo,yo,zo,β ) = (0,−0.1,0.42,0) is and the final point is Pf =

(xo,yo,zo,β ) = (3,−0.1,0.47,0). The control gains of the controller are chosen to be iΓ =

diag[50,50,50,50], Kp = diag(12) and Kλ = 0.5 and the desired internal force vector Fd
I is

parametrized by the Lagrangian multiplier vector λ d
I =

[
λ d

Ix λ d
Iy λ d

Iz

]T
=
[
1 0 0

]T
. The

sampling time is set at 0.015 second. The trajectory tracking is presented in Figure 5.15. The

experimental results in the Cartesian space are presented in Figure 5.16. We can observe that

there is a good position and orientation tracking. The results illustrated in Figures 5.16– 5.17

prove the effectiveness of the approach developed and simulated in the last section.
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Figure 5.14 Real-time setup

Figure 5.15 Desired and real trajectories of the object
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Figure 5.16 Trajectory tracking in Cartesian space:X-axis, Y-

axis, Z-axis and orientation

Figure 5.17 a) Error in X-axis, b) error in Y- axis, c) error in

Z-axis and d) error in orientation

5.7 Conclusion

In this paper, a coordinated control scheme for multiple mobile manipulator robots transport-

ing a rigid object in coordination has been presented. The desired trajectory of the object is

generated in the workspace and the parameters of the handling object and the mobile manipu-

lators are estimated online using the virtual decomposition approach. In this study, the external

forces are considered available. The control law is designed based on an appropriate choice of
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a Lyapunov function candidate, and the asymptotic stability is proved. The proposed control

design ensures that the workspace position error converges to zero asymptotically and that the

error of the internal force is bounded. The numerical simulation results show the effectiveness

of the proposed control. The developed approach has been implemented in real time to show

the validation of the theoretical development.
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Abstract

This paper presents an adaptive backstepping control scheme applied to a group of mobile

manipulator robots transporting a rigid object in coordination. All the dynamic parameters of

the robotic systems include the handled object and the mobile manipulators are assumed to be

unknown but constant. The problem of uncertain parameter is resolved by using the virtual

decomposition approach (VDC). This approach was originally applied to multiple manipulator

robot systems. In this paper, the VDC approach is combined with backstepping control to

ensure a good position tracking. The controller developed in this work ensures that the position

error in the workspace converges to zero, and that the internal force error is bounded. The

global stability of the entire system is proven based on the appropriate choice of Lyapunov

function using virtual stability of each subsystem, based on the principle of the virtual work.

An experimental validation is carried out for two mobile manipulators moving a rigid object in

order to show the effectiveness of the proposed approach.

Keywords: Backstepping Control; Adaptive Control; Virtual decomposition Approach; Mul-

tiple mobile manipulator robots.



120

6.1 Introduction

The importance of having robots capable of locomotion and manipulation has fostered the

design of the robot manipulator fixed on mobile platforms named mobile manipulator mo-

bile (MMR). The most commonly knowns MMR include satellite arms, underwater robots

in seabed exploration, and vehicles used in extra-planetary exploration. Cranes mounted on

trucks are a typical example of mobile manipulator robots that are more or less automated.

Notwithstanding their abilities of manipulation and locomotion, some tasks such as handling

of heavy objects become unachievable by a single mobile manipulator robot, and require the

cooperation of multiple mobile manipulator robots. This will render the control and design

of the robotic system more complex. The complexity of the control of the mechanical system

forming a closed kinematic chain mechanism resides in the fact that it imposes a set of kine-

matic constraints to coordinate the position and the velocity of the mobile manipulator. Hence

the degree of freedom of the complete system is reduced. Further, the internal forces of the ob-

ject produced by all mobile manipulators must be controlled. A restricted number of research

works has been proposed to solve the problem of control of this category of robotic system

which have a high degree of freedom and that are closely interconnected since all the mobile

manipulator robot are rigidly attached to the object. The majority of published researches in

this area have until now focused on three principal mechanisms of coordination: the decentral-

ized control, the follower approach control leader and motion planning.

6.1.1 Previous Works

In the first approach, the complete system is considered to be in fact multiple subsystems, which

simplifies the control design for each separate subsystem (Yan et al. (2014)). As an example

of decentralized control applied to a group of holonomic mobile manipulators, in (Yohei et al.

(2007)), a motion coordination control which does not use a torque/force sensor was proposed.

In (Kosuge and Oosumi (1996); Hirata et al. (1999); Y. et al. (1999)) a control law based on

the constraints at the contact points between the end-effectors of all mobile manipulators and

the point representing the manipulated object was proposed in order to reduce the sensor noise
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effect. A novel decentralized cooperative control, originally used to control a robot manipulator

with a fixed base, and subsequently applied to control holonomic mobile manipulators, was

proposed in (Khatib et al. (1996b); Park and Khatib (2008)), have been produced in this area.

In (Shao et al. (2015)) a distributed control combined with observer state were designed for

multi-agent robotic system.

In the second approach, one or several MMR are named as a leader capable of tracking a

desired trajectory, while other members of the group follow leaders. This approach uses a

very strong controller, and each robot in the group should be equipped with very sophisticated

sensors in order to ensure adequate information exchange. Many contribution papers, such as

(Chen and Li (2006); Z.-D. and K. (2004); Tang et al. (2009); Fujii et al. (2007); Du and Li

(2012)) were proposed.

Finally, the third approach tackles the fact that the motion planning strategy to adopt is a

critical problem in robotics, precisely in multi-robot systems as in (Mehrez et al. (2016)). Few

research works have employed this approach, which is applied to multiple mobile manipulator

robots in cooperation, with several robots transporting a single object in coordination, in a

known/unknown environment. These studies include those presented in (Desai and Kumar

(1997); Yamamoto and Fukuda (2002)). In (Desai and Kumar (1997)), an optimal trajectory

was developed for two mobile manipulators pushing a common object to a known location.

The authors in (Yamamoto and Fukuda (2002)) proposed a control law for multiple mobile

manipulators moving a common object. Measurements of the dynamic manipulability and

kinematic are given by taking into consideration collision avoidance. However, the dynamics

of the object is ignored. In (Sun and Gong (2004a); LaValle (2006)), a planning approach

based on genetic algorithms was proposed.

A multiple mobile manipulator system transporting an object is a typical example of this cate-

gory of complex robotic systems. As result of the constraints imposed on the system forming

a closed kinematic chain, the degrees of freedom of motion are often less than the number of

actuators. In this case, it is not only the motion that needs to be controlled; the internal forces
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should as well. To overcome these problems, a novel adaptive coordinated backstepping con-

trol based on the virtual decomposition approach applied to multiple mobile manipulators is

proposed in this work.

6.1.2 Main contribution

All previous studies based on Lagrangian or Newton/Euler approaches require that the param-

eters of the system be well known. In practical terms, this is difficult, and the resulting model

is generally uncertain. To solve the problem of modelling and dynamic control in the presence

of uncertainty, some researchers have proposed an adaptive control approach (Karray and Feki

(2014)). In (Abdelhedi and Derbel (2017)) an adaptive second order sliding mode control has

been developed seeking to resolve the challenging problems of real systems reflected by the

presence of these types of systems with a large degree of freedom, adapting the parameters

using methods based on the full dynamics is very complicated due to the huge number of pa-

rameters involved. Others have proposed and intelligent adaptive control based on a neural

networks scheme (Liu et al. (2014); Liu and Zhang (2013); Liu et al. (2013)) and a fuzzy logic

approach (Mai and Wang (2014)). For instance, non-model-based techniques have been devel-

oped for a different type of mobile manipulator robot with dynamic parameter uncertainties.

Another problem is that the dynamics of the whole system are complicated. Any change in the

structure of the group requires a new dynamics modelling (removal of a faulty robot or addition

of a new robot to the system).

Finally, some researchers proposed a different approaches of control applied to mobile manip-

ulator robot to track a predefined trajectory. In (Fareh et al. (2017)), the author proposed a

distributed controller applied to a 3Dof manipulator arm mounted on a nonholonomic mobile

platform where the robot is decomposed into two subsystems including the mobile platform

and the robot arm. A kinematic control was combined with the distributed control to control

the robot. In (Karray and Feki (2017)), the author treat a tracking problem of mobile manipula-

tor in which a feedback control was applied based on the fuzzy proportional-derivative control

to generate a necessary torques. The author used a controller based on the dynamic models of
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the manipulator and DC motors but in practice these dynamics are unknown. Differently to the

cited works, a system comprised of many mobile manipulators holding an object constitutes

one of the most important classes of robotic systems. The uncertainties, the high nonlinearity,

and the tight kinematics and dynamics coupling characterising such systems greatly complicate

the control problem and make it difficult to solve using the classical approaches explained ear-

lier. To overcome these problems, we propose in this paper an adaptive decentralized approach

based on an extension of the virtual decomposition control (VDC) methodology presented by

(Zhu et al. (1997); Al-Shuka et al. (2014); Zhu (2010); C.O. et al. (2015)); this approach was

originally designed for fixed-platform robotic systems with large degrees of freedom. It is

simulated and implemented in real time to control a group of manipulator robots attached to

a mobile platform, which are more complex than the manipulator robots. The difficulty with

this category of robotic systems resides in the fact that not only must the coordination between

robots in the system be controlled, but the coordination between the locomotion and manipu-

lation of each manipulator mobile robot needs to be controlled independently. In contrast with

what appears in the cited works, this paper enriches the body of knowledge in the field through

the following contributions:

a. The proposed control schemes present several major advantages, with the main ones being

that:

• The individual dynamics of each subsystem make it much easier to obtain the dynam-

ics of the whole system, whatever its degree of freedom;

• They provide greater flexibility to the design of the control law, in addition to greatly

simplifying the calculation of the dynamics system, even in the presence of a change

in the system configuration, and;

• They render the adaptation of the uncertain parameters very simple and systematic.

b. To solve the problem of parameter adaptation and modelling of systems using standard

approaches, a VDC approach based on sliding mode control was previously proposed,
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as explained earlier. In this paper, this approach (VDC) is combined with backstepping

control to ensure a good workspace position tracking;

c. Finally, the global stability of the complete system is proven based on the appropriate

choice of Lyapunov functions using the virtual stability of each subsystem, based on the

principle of the virtual work. Contrary to the original VDC stability, in this paper, all

parameters are estimated and considered completely unknown, with no known limit.

The rest of the paper is organized as follows. Section 6.2 presents the modelling of the system,

while section 6.3 explains the control design. Simulation results are given in section 6.4. Sec-

tion 6.5 presents an experimental validation of the developed approach. Finally, a conclusion

is given in section 6.6.

6.2 Modeling and System Description

Figure 6.1 shows the holonomic manipulator arm mounted on nonholonomic mobile platform.

where the manipulator has p-DOF, the mobile platform has m-DOF and the full robotic system

has n=m+p-DOF. Figure 6.1 shows the MMR with Pie being the position/orientation vector of

the j-th MMR end-effector.

Before presenting the adaptive backstepping control law developed based on the virtual de-

composition approach, we start by stating a brief formulation of the kinematic and dynamic

modelling of the i-th mobile manipulator robot and the handled object. In the VDC approach,

the robotic system is decomposed into a graph consisting of multiple objects and open chains.

An object is a rigid body, and open chains consist of a series of rigid links connected one by

one by a hinge, and having certain degrees of freedom. The dynamic coupling between the

subsystems can be represented by the flow of virtual power (FVP) at the cutting point. This

refers to the principle of virtual work (Zhu et al. (1997); Al-Shuka et al. (2014); Zhu (2010)).

This decomposition is illustrated in Figure 6.2.
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Figure 6.1 Multiple MMR handling a rigid object

Figure 6.2 Virtual decomposition of the MMR
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6.2.1 Kinematics and dynamics of the object

6.2.1.1 Kinematics model of the object

Since the frame o and Tie for all i ∈ {1,N} are rigidly attached, it follows that:

Ve =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V1e

.

.

.

VNe

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= oUT

Te
ΓT oV = Jo

oV (6.1)

where, oV = [vT
o wT

o ]
T with vo and wo being the linear and angular velocities of the centre of

gravity of the object respectively. Ve =
[
V T

1e . . . V T
Ne

]T
are the velocities at the contact

points between the end-effectors and the object , Tie , i ∈ {1,N} and Jo is the jacobian matrix

given as follows:

oUTe = diag[oUT1e , ...,
oUTie , ...,

oUTNe ] ∈ R
6N×6N

Γ = [I6, ..., I6]
T ∈ R

6×6N

with, I6 is the 6× 6 identity matrix and the transformation matrix of force/moment and lin-

ear/angular velocity vectors from frame B to frame A is defined by:

AUB =

⎡
⎢⎢⎢⎣

ARB 03×3

S(ArAB)
ARB

ARB

⎤
⎥⎥⎥⎦ (6.2)

where ARB is the rotation matrix between frames A and B, and S(ArAB) is a skew symmet-

ric matrix built from the vector ArAB linking the origins of frames A and B, expressed in the

coordinates of frame A.
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6.2.1.2 Dynamics model of the object

The object handled by N mobiles manipulators is rigid. The equation of motion of the effort

based on the linear parametrization form is given by the following equation:

oF = Mo(Xo)
oV̇ +Co(Xo, Ẋo)

oV +Go(Xo) (6.3)

where, vo and wo being respectively the linear and angular velocities of the object.oF ∈ R
6 is

the vector of forces applied on the object, Mo ∈R
6×6 is the mass matrix, Co ∈R

6×6 represents

the centrifugal and Coriolis matrix and Go ∈ R
6 is the vector of gravity.

The net force/moment vector is given by:

oF∗ =
N

∑
i=1

oUT
Tie

TieF = ΓoUTe
TeF (6.4)

where, TeF =
[

T1eFT . . . TNeFT
]T

denote the force/moment vectors in frame Tie at the

contact (cutting) point for i ∈ {1,N}. By introducing the internal force vector Fint ∈ R
6×N−1 ,

the force/moment vectors at the contact point Tie can be computed from (6.4) as:

TeF = TeUo

[
Φm Φ f

]⎡⎣oF∗

Fint

⎤
⎦ (6.5)

where TeUo =
oU−1

Te
and the matrices Φm ∈ R

6N×6 and Φ f ∈ R
6N×(6N−6) are governed by:

⎧⎨
⎩ΓΦm = I6

ΓΦ f = 0
(6.6)

Note that the matrix
[
Φm Φ f

]
is of full rank. There exists a matrix Ω that verifies:

⎡
⎣Γ

Ω

⎤
⎦=

[
Φm Φ f

]−1
(6.7)
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Therefore, the internal force coordinates can be calculated from (6.5) based on the force/mo-

ment at the N end-effectors as follows:

Fint = ΩoUTe
TeF (6.8)

6.2.2 Kinematics and Dynamics of the i-th Mobile Manipulator

Figure 6.3 shows the i-th holonomic manipulator arm attached to nonholonomic mobile plat-

form where the manipulator has p-DOF, the mobile platform has m-DOF and the full robotic

system has n=m+p-DOF.

Figure 6.3 Virtual decomposition of the i-th MMR

6.2.2.1 Kinematics of the i-th mobile manipulator

The augmented linear/angular velocities vector of each frame BiwR is defined as:

ViB = [q̇i j,Viv,V T
BiwR

,V T
BiwL

,V T
Bi1
, ...,V T

Bim
]T .

where, q̇i j = [q̇iwR, q̇iwL, q̇i1..., q̇im] is the right/left wheels velocities and the j-th joint velocities
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of the manipulator arm, VBi j ∈ R
6 the linear and angular velocity vector of the corresponding

frame Bi j , Viv ∈ R
6 is the linear/angular velocity vector of the mobile platform of the i-th

mobile manipulator robot. In general, we can write the system in matrix form by using the

Jacobian matrix: ⎧⎨
⎩ViB = Jinq̇i j

Vie = Jiqq̇i j

(6.9)

where Vie is the velocity at the contact points attached to the object and Jin,Jiq are the jacobian

matrices.

6.2.2.2 Dynamics of the i-th mobile manipulator

The dynamics of the j-th rigid body of the i-th manipulator arm is given by the following

equation:

F∗
Bi j

= MBi jV̇Bi j +CBi jVBi j +GBi j (6.10)

with, MBi j being the matrix of inertial term, CBi j the matrix of centrifugal/Coriolis term, GBi j

the vector related to the gravity and j = wR,wL,1, ..,m represents the right/left wheels and the

m joints of the arm manipulator. The dynamics of the mobile platform (object) is given by the

following expression:

F∗
iv = MivV̇iv +CivViv +Giv (6.11)

with, Miv being the matrix of inertial term, Civ the matrix of centrifugal/Coriolis term, Giv the

vector related to the gravity. The vector of resulting forces / moments acting on the rigid body
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is computed by an iterative process as follows:

FBim = F∗
Bim

+ BimUTie
TieF

FBim−1
= F∗

Bim−1
+ Bim−1UBimFBim

.

.

Fiv = F∗
iv =

ivUTiwRFTiwR +
ivUTiwLFTiwL +

ivUBi1FBi1

FBiwR = F∗
BiwR

+ BiwRUTiwRFTiwR

FBiwL = F∗
BiwL

+ BiwLUTiwLFTiwL

(6.12)

The dynamics of the j-th joint actuator of the manipulator arm and that of the right/left driving

motors of the platform are expressed based on the linear parameterization form by the following

equation:

τ∗ai j
= Jmi j q̈i j + kc

i jsign(q̇i j)

= Yai jθai j

(6.13)

where, Jmi j denotes the moment of inertia of j− th joint motor, kc
i j ∈ R denotes the Coulomb

friction coefficient, Yai j ∈ R
1×4 is the dynamic regressor matrix and θai j ∈ R

4 is known param-

eter vector, defined in (Zhu et al. (1997); Al-Shuka et al. (2014); Zhu (2010)) and is defined in

(6.10),

Finally, from (6.10) and (6.13) the dynamics of the i-th mobile manipulator robot can be written

as follows:

τai j
= τ∗ai j

+ zT FBi j
(6.14)

with, z = [0 0 0 0 0 1]T for the revolute joints and z = [0 0 1 0 0 0]T for the prismatic joints.
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6.3 Control Design

6.3.1 Control problem statement

Before developing the design control, we introduce some assumptions to simplify the control

formulation as follows:

Assumption 6.1: The desired object trajectory is assumed to be smooth, and there exists ε1 ,

ε2 and ε3 such that ∥∥∥∥∂Xd
o

∂x

∥∥∥∥≤ ε1,

∥∥∥∥∂ 2Xd
o

∂x2

∥∥∥∥≤ ε2,

∥∥∥∥∂ 3Xd
o

∂x3

∥∥∥∥≤ ε3,

Assumption 6.2: The object is rigid and all end-effectors are attached rigidly to it. As a result,

there is no relative motion between the end-effector and the object.

Assumption 6.3: The parameters of the object and the mobile manipulators are unknown but

constant.

Assumption 6.4: All the joints velocities of the mobile manipulator robots are available for

feedback as well as for the measurement of external forces.

The control objective is to generate a set of torque inputs such that the position’s tracking

error of the transported object in the workspace converges asymptotically to zero. Formally

speaking, the control problem is to design the control input:

U = f
(
Ve,V̇e,Xo,

oV
)

such that the following limits hold:

lim
t→∞

∥∥∥Xo −Xd
o

∥∥∥= 0, lim
t→∞

∥∥∥oV − oV d
∥∥∥= 0

lim
t→∞

∥∥∥Fd
int −Fint

∥∥∥= bounded.
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where, Xd
o ∈ R

6,oV d ∈ R
6 are the desired position and velocity of the object generated in the

workspace, Fd
int ∈ R

6N and Fint ∈ R
6Nare the desired and measured internal forces/moment

coordinates.

6.3.2 Design

The parameters adaptation of the complete systems are obtained using the VDC approach,

where this problem of adaptation is converted into a problem of estimation of the parameters

of each subsystem. The different steps used in the design of the controller are discussed below.

Step 1: The goal in this step is to virtually decompose (Zhu et al. (1997); Al-Shuka et al.

(2014); Zhu (2010)) and (Brahmi et al. (2013b)), the robotic system into several parts and

open chain elements. Each part is a rigid body and open chain consists of a series of rigid links

connected one by one. This decomposition is illustrated in Figure 6.2

Step 2: The desired velocities at contact point between the N end-effectors of the mobile

manipulators Ve
d ∈ R

6N and the object oV d ∈ R
6 are calculated from the desired velocity of

the object :

Ve
d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V d
1e

.

.

.

V d
Ne

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= oUT

Te

(
ΓT oV d +ΩT Kf

(
F̃d

int − F̃int

))
(6.15)

where Γ,Ω are defined in (6.6)-(6.7), Kf is a diagonal positive definite matrix, ˜Fd
int ,

˜Fint are the

filtered internal force/moment coordinates which are obtained as:

⎧⎨
⎩

˙̃Fd
int = λ f

(
Fd

int − F̃d
int
)

˙̃Fint = λ f
(
Fint − F̃int

) (6.16)

with λ f being a diagonal positive definite matrix.
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The required velocity in any frame Bi j is given by:

⎧⎨
⎩V d

ie = Jiqq̇d
i j

V d
iB = Jinq̇d

i j

(6.17)

with V d
iB = [q̇d

i j,V
d
iv ,V

dT
BiwR

,V dT
BiwL

,V dT
Bi1

, ...,V dT
Bim

]T , q̇d
i j = [q̇d

iwR, q̇
d
iwL, q̇

d
i1, .., q̇

d
im]

T , are the desired

joint angular velocities and Jiq,Jin being the Jacobian matrix.

Step 3: In this step, the control design of the object is developed. The backstepping technique

is used and can be presented as follows. Define the error variables for the object as follows:

⎧⎨
⎩eo

1 =
(
Xo −Xd

o
)

eo
2 = (oV −αo)

(6.18)

where αo is the virtual input, to ensure the stability, this virtual input control is chosen as

follows:

αo =
oV d −Ko

1 eo
1 (6.19)

The control law of the object (6.3) based on the virtual input (6.19) and the linear parametriza-

tion form is given by the following expressions:

oF∗r = Moα̇o +Coαo +Go − eo
1 −Ko

2 eo
2

= Yoθo − eo
1 −Ko

2 eo
2

(6.20)

with,oF∗r ∈ R
6 being the required object force, Yo ∈ R

6×13 is the dynamic regressor matrix

and θo ∈ R
13 is known parameter vector, defined in (Zhu et al. (1997); Al-Shuka et al. (2014);

Zhu (2010)). The physical parameters of the object are considered unknown and need to be

estimated, in which the estimated vector θ̂o is used and the required force/moment is obtained

as follows:

oF∗r = Yoθ̂o − eo
1 −Ko

2 eo
2 −Ko

3 sign(eo
2) (6.21)

with ˙̂θo = ρYoso is the adaptation function, and is chosen to ensure system stability, so =(oV d −o V
)
, ρ , Ko

2 , Ko
3 are positive gains and Yo is the dynamic regressor matrix, defined in
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(Zhu et al. (1997); Al-Shuka et al. (2014); Zhu (2010)). The required force/moment vectors at

the N end-effectors are computed from (6.20)-(6.21) based on (6.5) as follows:

TeFr = TeUo

[
Φm Φ f

]⎡⎣oF∗r

Fd
int

⎤
⎦ (6.22)

Step 4: In this step, the control design of the i-th mobile manipulator is developed. The

backstepping technique is used and can be presented as follows: Define error variables for the

i-th mobile manipulator robot at the different cutting points as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eBi j
1 = z

(
qi j −qd

i j

)
and eiv

1 =
(
xiv − xd

iv
)

eBi j
2 =

(
VBi j −αBi j

)
and eiv

2 = (Viv −αiv)

(6.23)

where αBi j ,αiv are a virtual inputs, to ensure the stability, these virtual inputs control are chosen

as follows: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αBi j = zq̇d
i j −KBi j

1 eBi j
1 −Bi j UT

Bi j
VBi j ,

αBiv = V̇ d
iv −Kiv

1 eiv
1 −

wL
∑

j=wR

ivUT
Bi j

VBi j

(6.24)

The control law of the j-th rigid body (6.10)-(6.11) based the virtual inputs (6.24) and the linear

parametrization form is given by the following expressions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F∗r
Bi j

= MBi j α̇Bi j +CBi jαBi j +GBi j − eBi j
1 −KBi j

2 eBi j
2

= YBi jθBi j − eBi j
1 −KBi j

2 eBi j
2

F∗r
iv = Mivα̇iv +Civαiv +Giv − eiv

1 −Kiv
2 eiv

2

= Yivθiv − eiv
1 −Kiv

2 eiv
2 ,

(6.25)

However, since the physical parameters of the j-th rigid body and the mobile platform are

assumed unknown and need to be estimated, then the estimated vectors θ̂Bi j , θ̂iv are used and
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the required force/moment is obtained as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F∗r
Bi j

= YBi j θ̂Bi j − eBi j
1 −KBi j

2 eBi j
2 −KBi j

3 sign(eBi j
2 )

F∗r
iv = Yivθ̂iv − eiv

1 −Kiv
2 eiv

2 −Kiv
3 sign(eiv

2 )

(6.26)

where, ˙̂θBi j = ρBi jY
T
Bi j

sBi j ,
˙̂θiv = ρivY T

iv siv are the adaptation functions, and are chosen to ensure

system stability, sBi j =(V d
Bi j

−VBi j),siv =(V d
iv −Viv), and ρBi j ,ρiv,K

Bi j
2 ,Kiv

2 ,K
Bi j
3 ,Kiv

3 are positive

gains. The vector of resulting forces/moments acting on the j-th rigid body is given by an

iterative process (Zhu et al. (1997); Al-Shuka et al. (2014); Zhu (2010)) as in (6.12). We begin

by computing the vector of forces at the different cutting points:

Fr
Bim

= F∗r
Bim

+ BimUTie
TieFr

Fr
Bim−1

= F∗r
Bim−1

+ Bim−1UBimF∗r
Bim

.

.

Fr
iv = F∗r

iv = ivUTiwRFr
TiwR

+ ivUTiwLFr
TiwL

+ ivUBi1Fr
Bi1

Fr
BiwR

= F∗r
BiwR

+ BiwRUTiwRFr
TiwR

Fr
BiwL

= F∗r
BiwL

+ BiwLUTiwLFr
TiwL

(6.27)

The control equation of the j-th joint actuators of the mobile manipulator (6.14) based on its

required velocity is expressed by the following expression:

τ∗r
ai j

= Jmi j q̈
d
i j +ξ

(
qd

i j, q̇
d
i j

)
= Yai jθai j (6.28)

where,θai j ∈ R
4 is the parameters’ vector of the j-th joint actuator, and Yai j ∈ R

1×4 is the dy-

namic regressor (row) vector, defined in (Zhu et al. (1997); Al-Shuka et al. (2014); Zhu (2010)).

Since the physical parameters of the j-th actuator are unknown and need to be estimated, then
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the estimated vector θ̂ai j is used and the dynamic (6.19) becomes:

τ∗r
ai j

= Yai j θ̂ai j +Kai j

(
q̇d

i j − q̇i j

)
(6.29)

where, ˙̂θai j = ρai jY
T
ai j

sai j is the law adaptation function, and is chosen to ensure system stability,

sai j =
(

q̇d
i j − q̇i j

)
, and ρai j , Kai j are positive gains.

Step 5: Finally, the j-th input control torque at the i-th mobile manipulator’s joint is calculated

based on the desired torque obtained from (6.29) τ∗r
ai j

and the required force at cutting point Bi j,

FBr
i j

identified as:

τi j = τ∗r
ai j

+ZT Fr
i j (6.30)

Figure 6.4 Adaptive coordinated control of N MMRs

Lemma 1: Consider the j-th rigid dynamics (6.10, 6.12) and the joint actuator dynamics (6.13),

under the control design (6.21, 6.26, and 6.29) and the boundedness of the estimated parame-

ters. The control objective is satisfied and the error tracking states are asymptotically stable.
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Proof : Consider the Lyapunov function candidate:

V =Vo +
N

∑
i=1

(
n

∑
j=1

Vi j +
n

∑
j=1

Vai j +Vip

)
+Vf (6.31)

where Vo,Vi j,Vai j ,Vip,Vf are non-negative Lyapunov candidate functions related to the object,

the j-th rigid link, the j-th joint , the mobile platform of the i-th mobile manipulator and the

internal force respectively. These Lyapunov candidate functions are chosen as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Vo =
1
2eoT

1 eo
1 +

1
2eoT

2 Moeo
2 +

1
2

13

∑
k=1

(θok−θ̂ok)
2

ρok

Vi j =
N
∑
j=1

⎛
⎜⎜⎜⎜⎜⎝

1
2eBi jT

1 eBi j
1 + 1

2eBi jT
2 MBi je

Bi j
2

+1
2

13

∑
k=1

(
θBi jk−θ̂Bi jk

)2

ρBi jk

⎞
⎟⎟⎟⎟⎟⎠

Vai j =
N
∑
j=1

⎛
⎜⎜⎜⎜⎜⎝

1
2Jmi j

(
q̇d

i j − q̇i j

)2

+1
2

13

∑
k=1

(
θai j−θ̂ai j

)2

ρai j

⎞
⎟⎟⎟⎟⎟⎠

Vip =
1
2eiv

1 eiv
1 + 1

2eiv
2 Miveiv

2 + 1
2

13

∑
k=1

(θivk−θ̂ivk)
2

2

Vf =
1
2

(
F̃d

int − F̃int
)T Kf λ−1

f

(
F̃d

int − F̃int
)

(6.32)

where θok, θ̂ok,θBi jk , θ̂Bi jk ,θai jk , θ̂ai jk ,θivk and θ̂ivk are the k-th elements of the corresponding

vector parameters. By knowing that, eoT
2 sign(eo

2)= ‖eo
2‖, eivT

2 sign(eiv
2 )= ‖eiv

2 ‖ and eBi jT
2 sign(eBi j

2 )=

‖eBi j
2 ‖ , using the definition of the virtual power and the choice of the parameter function adap-

tation as in (6.21) and (6.26); it is straightforward to prove that V̇ is always decreasing and is

given as follows:
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V̇ =−(eoT
1 Ko

1 eo
1 + eoT

2 Ko
2 eo

2 +Ko
3‖eo

2‖)−
N
∑
j=1

⎡
⎢⎢⎢⎢⎢⎢⎣

n
∑

i=1

⎡
⎣eBi jT

1 KBi j
1 eBi j

1 + eBi jT
2 KBi j

2 eBi j
2 +KBi j

3 ‖eBi j
2

+Kai j

(
q̇d

i j − q̇i j

)2

⎤
⎦

+(eivT
1 Kiv

1 eiv
1 + eivT

2 Kiv
2 eiv

2 +Kiv
3 ‖eiv

2 )

⎤
⎥⎥⎥⎥⎥⎥⎦

−
(

F̃d
int − F̃int

)T
Kf

(
F̃d

int − F̃int

)
(6.33)

The stability analysis shows that V̇ is always decreasing and the system is asymptotically stable

in the sense of Lyapunov.Using Barbalat’s lemma (Spong et al. (2006)) we prove that the error

tracking states are asymptotically stable. The reader can found the detailed proof stability in

(Zhu et al. (1997); Al-Shuka et al. (2014); Zhu (2010)).

6.4 Experimental Results

The developed control scheme is tested experimentally in real time on two identical mobile

manipulator robots named Mob-ETS localised in GREPCI laboratory. Figure 6.5 shows the

complete structure design of the control. In this experimental test, a Zigbee technology

communication is used between the mobile manipulator robots and the application program

implemented in Simulink Matlab R©. The adaptive backstepping control studied in the previ-

ous sections is implemented and compared with an existing control based on the computed

torque approach in real time using Real-Time Workshop (RTW) of Mathworks R©. Since the

external end-effector force is unavailable for measurement, an end-effector observer proposed

in (Alcocera et al. (2004)) is used to estimate it. The two wheels of the j-th mobile manip-

ulator robot platform are actuated by two HN-GH12-2217Y DC motors (DC-12V-200RPM

30:1), and the angular positions are given using encoder sensors (E4P-100-079-D-H-T-B). All

joints of the manipulator arm are actuated by Dynamixel motors (MX-64T). The control strat-

egy was tested on 5-DOF mobile manipulator robot to track a desired trajectory in Cartesian

space presented in Figure 6.6. The desired trajectory of the center of gravity of the object is

generated in the Cartesian space. Two experimental tests of desired trajectories are used in this
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Figure 6.5 Real-time setup

implementation. In the first one, the object displacement is along the X-Y and the Z-axes with

no rotation along these axes. The starting point is Pe = (xo,yo,zo,βo) = (0.1,−0.1,0.42,0) the

final point is Pe = (xo,yo,zo,βo) = (3,5,0.47,0), without end-effector orientation along X, Y

or Z-axis. In the second one, the object displacement is along the X-axis, with a sinusoidal

trajectory along the Y-axis, with the same starting and arrival points as in the first example.

The trajectory tracking in the Cartesian space is presented in Figure 6.6 and Figure 6.7(a-b-c).

It can be seen a good position tracking from Figure 6.7(a-b-c). This good tracking is confirmed

by the related errors between the desired values and the real ones shown in Figure 6.7(d-e-f).
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Figure 6.6 Desired and real trajectory of the object

Figure 6.7 Tracking trajectory of x-position, (b) Tracking

trajectory of y-position (c) Tracking trajectory of z-position, (d)

Tracking error of x-position, (e) Tracking error of y-position (f)

Tracking error of z- position

In the scenario 2, more complicate trajectory is used to show the effectiveness of the proposed

adaptive control where object displacement is along the X-axis, with a sinusoidal trajectory

along the Y-axis, with the same starting and arrival points as in the first example.

The trajectory tracking in the Cartesian space is showed in Figure 6.8 and Figure 6.9(a-b-c). It

can be seen clearly a excellent position tracking from Figure 6.9(a-b-c). This good tracking is
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proved and confirmed by the related errors between the desired values and the real ones shown

in Figure 6.9(d-e-f).

Figure 6.8 Desired and real trajectory of the object

Figure 6.9 Tracking trajectory of x-position, (b) Tracking

trajectory of y-position (c) Tracking trajectory of z-position, (d)

Tracking error of x-position, (e) Tracking error of y-position (f)

Tracking error of z- position

To show the performance of the developed adaptive backstepping control strategy, the com-

puted torque (Slotine et al. (1991); Papadopoulos and Poulakakis (2000)) is implemented also

for the same mobile manipulators. Figures 6.10-6.12 shows the obtained experimental results

for the computed torque approach using the same second desired trajectory.
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For comparison purposes, the robotic system is controlled by applying the computed torque

method using the same second desired trajectory. The tracking of the position and orienta-

tion in the workspace is shown in Figure 6.10 and errors along the XYZ positions and the

moment along the Z-axis are presented in Figure 6.11. Analysing the obtained experimental

results showed in Figure 6.12, we can confirm that the resulting tracking errors of the proposed

control strategy in this paper (dashed line) are smaller than those found using the computed

torque method (solid line). This illustrates the performance and effectiveness of the adaptive

backstepping control developed in this work.

Figure 6.10 Desired and real trajectory of the object

6.5 Conclusion

In this paper, a novel adaptive coordinated backstepping control based on the virtual decom-

position strategy was presented to control N mobile manipulator robots handling a rigid object

in coordination to track desired trajectories generated in Cartesian space. The global stability

of the complete system is proven based on the appropriate choice of Lyapunov functions using

the virtual stability of each subsystem. The experimental results show the effectiveness of this

proposed approach of control, where the tracking error of the desired trajectory in workspace

converges to zero.
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Figure 6.11 (a) Tracking trajectory of x-position, (b) Tracking

trajectory of y-position (c) Tracking trajectory of z-position, (d)

Tracking error of x-position, (e) Tracking error of y-position (f)

Tracking error of z- position

Figure 6.12 Errors: adaptive Backstepping control (dashed red line),

computed torque (solid blue line)
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Abstract

This paper proposes an adaptive control for several mobile manipulator robots transporting a

rigid object cooperatively under unknown parameters and disturbances. First, a global dynamic

is developed for multiple mobile manipulators in coordination. It contains the dynamics of mo-

bile manipulators, the dynamics of the object, and the geometric constraint between the end

effector and the object. Next, we design an adaptive coordinated control based on a sliding

mode approach in which the parameter uncertainties and the disturbance are estimated by an

adaptive coordinated control technique. The proposed control ensures good tracking errors un-

der which the errors converge to zero and the tracking error of the internal force stays bounded.

Throughout this paper, the designed control law and a global stability analysis are carried out

based on the appropriate choice of the candidate Lyapunov function. A numerical simulation

and experimental validation are performed for two mobile manipulators transporting a rigid

object to show the effectiveness of the developed control law.

Keywords: adaptive control; Multiple manipulator mobile robots; Coordinated control; Slid-

ing mode approach.
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7.1 Introduction

In recent years, mobile manipulators have attracted many researchers because of their com-

bined manipulation and locomotion ability (Yamamoto and Yun (1996),Tanner et al. (2003),

Furuno et al. (2003) and Andaluz et al. (2012)). In this paper, we consider a robotic manipula-

tor attached to a nonholonomic mobile platform, which is used in large numbers of applications

in modern factories. However, the difficulty with this category of robotic systems resides in

the fact that the interaction motion between the manipulator, the mobile platform and the non-

holonomic constraints must be considered in the control design. Some tasks, such as transport-

ing heavy objects, are unachievable by only one mobile manipulator, and require cooperation

among multiple mobile manipulators. This makes the design control of the robotic system

more complex. The control of the mechanical system forming a closed kinematic chain mech-

anism is challenging to the extent that it imposes a set of kinematic constraints in coordinating

the position and the velocity of the mobile manipulator. Multiple mobile manipulator systems

transporting an object represent an excellent example of this category of complex robotic sys-

tems . As results of the constraints imposed on the system forming closed chain, is that the

motion degrees of freedom is often less than the number of actuators. In this case, both the

motion and the internal forces must be controlled. A limited number of research works have

been proposed to solve the problem of controlling this class of robotic systems that have a

high degree of freedom and are tightly interconnected. Many research works can be found

in the literature to achieve the control of multiple mobile manipulators executing a tasks in

coordination or cooperation under the hypothesis of known dynamics. As examples, in (Ko-

suge and Oosumi (1996),Hirata et al. (1999),Y. et al. (1999) and Papadopoulos and Poulakakis

(2000)) several mobile manipulators carry a heavy and rigid object in cooperation in order

to reduce the weight carried by each manipulator. In (Khatib et al. (1996a), Khatib et al.

(1996b) and Park and Khatib (2008)), the authors propose an extension of four methods ini-

tially developed for manipulators attached on a fixed platform, and apply it to the control of

mobile manipulator systems with a novel decentralized cooperative control . To date, most

published research in this area has focused on three principal approaches of coordination: de-
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centralized control (Kosuge and Oosumi (1996),Y. et al. (1999),Yohei et al. (2007),Zhijun et al.

(2014) and Yan et al. (2014)), the follower-leader approach (Chen and Li (2006),Hirata et al.

(2004c),Tang et al. (2009) and Fujii et al. (2007)) and the motion planing (Desai and Kumar

(1997), Yamamoto and Fukuda (2002),Sun and Gong (2004a), LaValle (2006) and Latombe

(2012)). However, these works rarely consider the parametric uncertainties of the robotics sys-

tems considered. In practice, the dynamic model of the resulting systems is generally uncer-

tain. To solve the problem of modelling and dynamic control in the presence of uncertainties,

some researchers have proposed intelligent adaptive approaches that are based on the neural

network scheme (Liu et al. (2014), Liu and Zhang (2013) and Liu et al. (2013)), and fuzzy

logic approach (Mai and Wang (2014), Zhijun et al. (2013) and Zhijun and Weidong (2008)).

Motivated by the above observations, we develop an adaptive control to cope with coordinated

multiple mobile manipulators in this paper. Based on what was accomplished in our previous

work focused on the coordinate robot manipulators (Brahmi et al. (2016a)), we propose an

novel adaptive control based on the sliding mode approach applied for multiple mobile manip-

ulator robots handling rigid object cooperatively in the presence of parameters uncertainties.

A global dynamics of an interconnected system including the dynamics of mobile manipula-

tors, the dynamics of the object and the geometric constraint between the end effector and the

handled object is developed for multiple mobile manipulator executing a task in coordination.

Thereafter, we design a coordinated adaptive control in which the parameters uncertainties

and the perturbations are estimated by the adaptive control techniques. The proposed con-

trol have two more important advantages: firstly, this controller ensures good tracking errors

of the system under which these errors converge to zero and the tracking error of the internal

force remains bounded under parameters uncertainties and disturbance. Secondly, the modified

reaching law limits significantly the chartering. All through this paper, the designed control law

and the global stability analysis are carried out based on the appropriate choice of the candidate

Lyapunov function. The main contributions of this paper are summarized as follows:

a. An adaptive coordinated control based on the sliding mode approach is simulated and

then applied in real time to group of mobile manipulator robots transporting a rigid ob-
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ject. This controller ensures a good tracking of the desired trajectory/internal force under

uncertainty of parameters and disturbance;

b. Contrary to the conventional sliding mode approach, in this paper, a novel reaching law

based on the potential function is introduced to minimize the chatter;

c. The control design and the stability analysis are carried out based on the appropriate

choice of the Lyapunov candidate function.

The rest of the paper is organized as follows. The systems modelling and description are

explained in section 7.2. The main results of the adaptive control are described in section

7.3 and numerical simulation is presented in section 7.4. Experimental validation is given in

section 7.5 and, finally, conclusion is given in section 7.6.

7.2 Modelling and System Description

Figure 7.1 shows the N manipulator robots mounted on nonholonomic mobile platforms. This

section will briefly describe the kinematics and the dynamics models of the i-th MMR, the

dynamic model for the handling object and then provides the dynamics of the entire system.

We see that the different coordinate frames have been given for system modelling. With Pei

being the position/orientation vector of the i-th MMR effector, XoYoZo is the handled object

frame and XYZ is the inertial reference frame.

7.2.1 The Multiple Mobile Manipulator Dynamics

The dynamics of the i-th mobile manipulator in the articulated space is given by the following

expression:

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +Gi(qi)+ pi = Eiτi + JT
i fi (7.1)

where Mi(q)∈R
n×n is the inertia matrix, Ci(qi, q̇i)∈R

n×n represent the Centrifugal and Corio-

lis terms, Gi(qi)∈R
n is the vector of gravity, qi =

[
qiv qia

]T ∈R
n with qiv ∈R

nv and qia ∈R
na

are the coordinate generalized vector of the platform and the manipulator arm respectively, pi
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Figure 7.1 Multiple MMR handling a rigid object

is the external disturbance, τi ∈R
k the input torques and Ei ∈R

n×k is input transformation ma-

trix. fi is the vector of constraints forces corresponding to the holonomic and nonholonomic

constraints and JT
i ∈ R

n×n is the Jacobian matrix and are represented as:

Mi =

⎡
⎣Miv Miva

Miav Mia

⎤
⎦, Ci =

⎡
⎣Civ Civa

Ciav Cia

⎤
⎦, Gi =

⎡
⎣Giv

Gia

⎤
⎦, pi =

⎡
⎣piv

pia

⎤
⎦, Jie =

⎡
⎣Ai 0

Jiv Jia

⎤
⎦,

Ei =

⎡
⎣Eiv 0

0 Eia

⎤
⎦, fi =

⎡
⎣ fiv

fie

⎤
⎦ and τi =

⎡
⎣τiv

τia

⎤
⎦.

As previously mentioned, the platform is subjected to non-holonomic constraints, in which the

m independent velocity constraints are given as follows:

Ai(qiv)q̇iv = 0 (7.2)

where Ai(qv) is the constraint matrix of the mobile platform. If we use a full rank matrix

Ri(qiv) ∈ R
nv×(n−m) as the basis for the null space of Ai(qiv), we will obtain:

RT
i (qiv)AT

i (qiv) = 0 (7.3)
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There exists an auxiliary input vector ϑiv ∈ R
nv−m that satisfies:

q̇iv = Ri(qiv)ϑ̇iv (7.4)

where m is the number of the non integrable and independent velocity constraints on the mobile

platform. Let us define the vector ηi =
[
ϑiv qia

]T ∈ R
n−m, based on (7.4). The dynamics

expression of the i-th mobile manipulator (7.1) can be given as follows:

M1
i (ηi)η̈i +C1

i (ηi, η̇i)η̇i +G1
i (ηi)+ p1

i = E1
i τi + JT

ie fie (7.5)

where, M1
i =

⎡
⎣RT

i MivRi RT
i Miva

MiavRi Mia

⎤
⎦, G1

i =

⎡
⎣RT

i Giv

Gia

⎤
⎦, C1

i =

⎡
⎣RT

i MivṘi +RT
i CivRi RT

i Civa

MiavṘi +CiavRi Cia

⎤
⎦,

Jie =

⎡
⎣ 0 0

JivRi Jia

⎤
⎦, p1

i =

⎡
⎣RT

i piv

pia

⎤
⎦ , and E1

i =

⎡
⎣RT

i Eiv 0

0 Eia

⎤
⎦.

The dynamics of the N mobile manipulator robots from (7.5) can be written as:

Mη̈ +Cη̇ +G+P = Eτ + JT
e Fe (7.6)

where M = diag(M1
1 , ..,M

1
N) ∈ R

N(n−m)×N(n−m), C = diag(C1
1 , ..,C

1
N) ∈ R

N(n−m)×N(n−m), G =

[G1T
1 , ..,G1T

N ]T ∈ R
N(n−m), Fe = [ f T

1e, .., f T
Ne]

T , JT
e = diag(JT

1e, ..,J
T
Ne) ∈ R

N(n−m)×N(n−m), P =

[p1T
1 , .., p1T

N ]T ∈ R
N(n−m), η = [η1T

1 , ..,η1T
N ]T ∈ R

N(n−m), and Eτ = [(E1τ1)
T , ..,(ENτN)

T ]T ∈
R

N(n−m).

7.2.2 Dynamics of Object

The object is rigidly handled by the N mobile manipulator robots. The coordinate center of

gravity of object is denoted xo ∈ R
no and its linear/angular velocity is denoted Vo ∈ R

no . The

dynamic expression is given by:

Mo(xo)V̇o +Co(xo,Vo)Vo +Go(xo) = Fo (7.7)
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where Mo ∈ R
no×no is the inertia matrix, Co ∈ R

no×no represent the Centrifugal and Coriolis

terms, Go ∈ R
no is the vector of gravity and Fo ∈ R

no is the vector of force applied to the

object.

Remark 7.1: As in (Li et al. (2008)), in this paper, the degrees of freedom for each mobile

manipulator robot are equal to the dimension of the task space coordinate of the object, that is,

no = n−m, or that the mobile manipulator robot is non-redundant. The relationship between

the end effector forces Fe ∈ R
N(n−m) and the object force Fo ∈ R

no is given by:

Fo =−Jo(xo)
T Fe (7.8)

The end effector force is decomposed into two orthogonal components: the first gives the

internal force while the second contributes to the movement of the object. This representation

is explained in (Li and Ge (2013)), and has the following form:

Fe =−Jo(xo)
T+Fo −FI (7.9)

where Jo(xo)
T+ is the pseudo-inverse of Jo(xo)

T ∈ R
no×N(n−m) given by Jo(JT

o Jo)
−1 and FI =

[FT
1I , ..,F

T
NI]

T ∈ R
N(n−m) are the internal forces in the null space of JT

o . These internal forces

can be parametrized by the Lagrangian multiplier vector λI as follows:

FI = ρT λI (7.10)

where ρ ∈ R
no×N(n−m) is the Jacobian matrix for the internal force, and satisfies the following

property:

JT
o ρT = 0 (7.11)

multiplying both side of (7.9) by JT
e we obtain:

JT
e Fe =−ℑT Fo − JT

e FI (7.12)
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where ℑT = JT
e Jo(xo)

T+.

7.2.3 Total Dynamics

Let Vie ∈ R
(n−m) denotes the linear/angular velocity of the i-th end effector. Then η̇i ∈ R

(n−m)

is related to Vie by the Jacobian matrix Jie ∈ R
(n−m)×(n−m) as:

Vie = Jie(ηie)η̇ie (7.13)

and the relationship between Vo and Vie is given by:

Vie = Jio(xo)Vo (7.14)

From (7.13), the joint velocity of the N mobile manipulators is related to the linear/angular

velocity of the end-effectors Ve by the following expression:

Ve = Je(η)η̇ (7.15)

The relationship between the end effector velocity of the N mobile manipulator robots (7.15)

and the object based on (7.14) is given by:

Ve = Jo(xo)Vo (7.16)

where Je = blockdiag(Jie) ∈ R
N(n−m)×N(n−m) and Jo = [JT

1o, ..,J
T
No]

T ∈ R
N(n−m)×no .

Assuming that all the robots acting on the object at the same time, yields:

Vo = J+o (xo)Ve (7.17)

Differentiating (7.17) with respect to time we obtain:

V̇o = J+o (xo)V̇e +
d(J+o (xo))

dt
Ve (7.18)



153

Using (7.15) and (7.16), the dynamic model of the N mobile manipulator robots (7.6) coupled

with the grasped object dynamics (7.7), based on (7.12), is given by:

MeV̇e +CeVe +Ge +P =U − JT+
o Fo −FI (7.19)

where Me = J+T
e MJ+e , Ce = J+T

e (MJ̇+e +CJ+e ), Ge = J+T
e G and U = J+T

e Eτ .

Substituting the object dynamics (7.7) into (7.18) and using (7.10) and (7.17), the dynamics of

the robotic systems (7.19) can be written as:

MV̇e +CVe +G+P =U −ρT λI (7.20)

where M= Me + J+T
o MoJ+o , G= Ge + J+T

o Go and C=Ce + J+T
o (MoJ̇+o +CoJ+o ).

The dynamic (7.20) has the following properties, that can be used in the control design and in

the stability analysis.

Property 7.1: The matrix M is symmetric, positive definite and is bounded, i.e λminI ≤M ≤
λmaxI, with λmin, λmax denote the minimum and maximum eigenvalues of M and I is the identity

matrix.

Property 7.2: The matrix Ṁ−2C is skew-symmetric, that is, xT (Ṁ−2C)x = 0 for any vector

x ∈ R
(n−m).

Property 7.3: All Jacobian matrices are uniformly continuous and uniformly bounded if Xe

and xo are uniformly continuous and uniformly bounded, respectively.

7.3 Control Design

Given an object desired trajectory xod and a desired internal force FId , since the system is

tightly coupled we can compute the corresponding desired end effector’s position and velocity

trajectories Xed , Ved from (7.16). Therefore, the control objective is to determine a control law
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such that the following limits hold:

lim
t→∞

(‖xo − xod‖) = 0, lim
t→∞

(‖Vo −Vod‖) = 0

lim
t→∞

‖FI −FId‖= bounded

where, xod ∈R
no , Vod ∈R

no are the desired position and velocity of the object generated in the

workspace, FId ∈ R
no and FI ∈ R

no are the desired and measured internal forces.

Assumption 7.1: The desired reference trajectory xod , Xed and their derivatives up to the third

order are assumed to be bounded and uniformly continuous. The desired internal force is also

bounded and uniformly continuous.

Let e = Xe −Xed , e f = λI −λId , then the required internal force and velocity are given by

λIr = λId −Kλ e f (7.21)

Ver =Ved −Kpe (7.22)

s =Ve −Ver = ė+Kpe (7.23)

with Kλ is a diagonal positive definite matrix, λId is the internal force control, Kp is a positive

definite gains matrix and Ved is the desired velocity.

7.3.1 Coordinated Control

The control law can be given as:

U = AT
mψm −Ksign(s)−Kss+ JT

e ρT λIr (7.24)

where Am = [M C G P]T , ψm = [V̇er Ver 1 1]T , Ks, K are positive gains matrices and sign(s) is

the signium function. Based on the terms given in the assumption 7.1, the dynamics expression
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(7.20) can be given by the following:

Mṡ =−AT
mψm +U − JT

e ρT λI −Cs (7.25)

Considering the Lyapunov candidate function as follows:

V =
1

2
sT
Ms (7.26)

The first time derivative of V is given by:

V̇ = sT
Mṡ+

1

2
sT
Ṁs (7.27)

V̇ = sT (−AT
mψm +U − JT

e ρT λI) (7.28)

Considering the control law (7.24), using (7.17) under the properties 7.1, 7.2 and 7.3, the time

derivative of (7.26) can be written as:

V̇ =−sT Kss−K|s|
≤ −λmin(Ks)‖s‖2 ≤ 0

(7.29)

Based on assumption 7.1, V is a nonincreasing function, and therefore, s is also bounded.

Taking the second derivative of V yields V̈ =−2sT Ksṡ since s and ṡ are bounded, which implies

that V̈ is bounded, and consequently, V̇ is uniformly continuous. As the referenced trajectory

is uniformly continuous, it implies that s and e are uniformly continuous likewise. Thereby,

according to Barbalat’s lemma limt→∞ V̇ = 0 and consequently limt→∞ e = 0.

Remark 7.2: This proposed control law of relation (7.24) requires a well-known of the dy-

namics of the robotic system and disturbances. In practice, the dynamics is uncertain and the

disturbances are unknown, making the implementation of the above control law very complex

and undesirable. Therefore, we propose an adaptive coordinated control scheme, as outlined in

the next subsection.
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7.3.2 Adaptive Coordinated Control

Assumption 7.2: There exist some finite positive constants, ai ≥ 0, 1 ≤ i ≤ 4 and a finite

positive constant a5 ≥ 0 such that ∀Xe ∈ R
n, ∀Ve ∈ R

n, ‖M‖ ≤ a1, ‖C‖ ≤ a2 +a3‖Ve‖, ‖G‖ ≤
a4 and sup≥0‖P‖ ≤ a5. Since ai ≥ 0 are considered unknown, the adaptive laws are then

developed to estimate the unknown upper bounds. Let us consider the following control law:

U =−
5

∑
i=1

sâiψ2
i

‖s‖ψi +δi
−Kss− Ksign(s)

H(s)
+ρT λIr (7.30)

where δi is a time-varying positive function, and converges to zeros as t → ∞ and that satisfies:

limt→∞
∫ t

0 δi(r)dr = αi < ∞, with αi is a finite constant (Wang et al. (2004)) and H(s) is given

by the following expression:

H(s) = β +(1−β )h(|s| ,0,sq) (7.31)

where sq is an upper limit positive constant, 0 < β < 1 and h(x,a,b) is referred to be a p-time

differential bump function that satisfies the following properties (Do (2008),Do (2010)):

- h(x,0,b) = 0, if x ≤ 0;

- h(x,0,b) = 1, if x ≥ b;

- 0 < h(x,0,b)< 1, if 0 < x < b;

- h(x,0,b) is p-time differentiable with respect to x;

-
∂h(x,0,b)

∂x > 0 if x ∈ (0,b).

Let h(x,a,b) be defined as follows:

h(x,a,b) =
∫ x

0 g(σ)g(b−σ)dσ∫ b
0 g(σ)g(b−σ)dσ

where g is such that: g(z) = 0 if z ≤ 0 and g(z) = zl if z ≥ 0, and l is a positive constant integer.



157

Remark 7.3: The term −Ksign(s)
H(s) is added to the proposed control law, unlike the controller

proposed in (Wang et al. (2004)) and (Li et al. (2008)). Thus, a more robust control perfor-

mance and fast convergence can be obtained when the system states are close to the surface

s = 0.

From the definition of the potential function (7.31), one can see that if |s| increases, H(s)

approaches β , and therefore, K
H(s) converges to K

β , which is greater than K. This means that

K
H(s) increases in reaching phase, and consequently, the attraction of the sliding surface will be

faster. On the other hand, if |s| decreases, then H(s) approaches one, and K
H(s) converges to

K. This means that, when the system approaches the sliding surface, K
H(s) decreases progres-

sively, which significantly minimizes the chattering. Consequently, the proposed law lets the

controller to dynamically adjust to the changes in the switching function by making K
H(s) vary

between K and K
β .

Remark 7.4: If h(|s| ,0,sq) is chosen to be equal to an exponential function, then the reaching

law of (7.30) becomes identical to the ERL proposed in (Fallaha et al. (2011)). Therefore, the

exponential reaching law becomes a particular case of the proposed approach.

Remark 7.5: In the case of β = 1, the reaching law of (7.30) becomes exactly the same control

given in (7.24). Therefore, the conventional reaching law can be considered as a particular case

of the proposed approach.

7.3.2.1 Stability analysis

The chosen Lyapunov candidate function can be given as:

V =
1

2
sT
Ms+

1

2
ÃT

mΓ−1
a Ãm (7.32)
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where Ãm = Am − Âm, Am = [a1 a2 a3 a4 a5]
T , Âm denotes the estimated constants of Am,

Γa = diag(γ1, ..,γ5) and γi ≥ 0 are constants. The first time derivative of (7.32) is given by:

V̇ = sT
Mṡ+

1

2
sT
Ṁs+ ÃT

mΓ−1
a

˙̃Am (7.33)

Based on Assumption 7.2 , the dynamics model (7.20) and the closed loop (7.25), (7.33) can

be simplified as follow:

V̇ ≤ sT (‖M‖‖V̇e‖+‖C‖‖Ve‖+‖G‖+‖P‖+U −ρT λI)+ ÃT
mΓ−1

a
˙̂Am (7.34)

Using the control law (7.30) under Assumption 7.2, the first derivative (7.34) can be written as

follows:

V̇ ≤−sT Kss−K‖s‖+
5

∑
i=1

‖s‖aiψi

−
5

∑
i=1

‖s‖2âiψ2
i

‖s‖ψi +δi
−

5

∑
i=1

ãiγ−1
i

˙̂ai (7.35)

Considering the update law as:

˙̂ai = γi

( ‖s‖2ψ2
i

‖s‖ψi +δi
− γ

′
i âi

)
(7.36)

with γi ≥ 0; γ ′
i ≥ 0 and δi ≥ 0 verifying the following expressions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞
0 γ ′

i (r)dr = αiγ ′ < ∞

∫ ∞
0 δi(r)dr = αiδ < ∞

(7.37)

Substituting the update law (7.36) into (7.35) with some simplifications, we obtain:

V̇ ≤−sT Kss−K‖s‖+
5

∑
i=1

‖s‖aiψ2
i δi

‖s‖ψi +δi
−

5

∑
i=1

ãiγ
′
i âi (7.38)
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V̇ ≤−sT Kss−K‖s‖+
5

∑
i=1

aiδi −
5

∑
i=1

ãiγ
′
i âi (7.39)

≤−sT Kss−K‖s‖−
5

∑
i=1

âiδi −
5

∑
i=1

ãiγ
′
i (ai − ãi)

≤−sT Kss−K‖s‖+
5

∑
i=1

aiδi −
5

∑
i=1

γ
′
i ãiai +

5

∑
i=1

γ
′
i ã

2
i

≤−sT Kss−K‖s‖+
5

∑
i=1

aiδi −
5

∑
i=1

1

4
γ
′
i a

2
i

+
5

∑
i=1

1

4
γ
′
i a

2
i −

5

∑
i=1

γ
′
i (

1

2
ai − ãi)

2

≤−sT Kss−K‖s‖+
5

∑
i=1

aiδi +
5

∑
i=1

1

4
γ
′
i a

2
i

≤−λmin(Ks)‖s‖2 +σ (7.40)

Since σ =∑5
i=1 aiδi+∑5

i=1
1
4γ ′

i a
2
i → 0 as t →∞, from above, s converge to a small set containing

the origin when t → ∞.

Integrating both side of the inequality (7.38) we obtain:

V (t)−V (0)≤
∫ t

0
(−sT Kss−K‖s‖)dr+

∫ t

0
(σ)dr (7.41)

Since ai is constant and by using (7.35), the above equation (7.41) can be rewritten as:

V (t)−V (0)≤
∫ t

0
(−sT Kss−K‖s‖)dr

+
5

∑
i=1

ai

∫ t

0
δidr+

5

∑
i=1

1

4
a2

i

∫ t

0
γ
′
i dr

V (t)−V (0)<−
∫ t

0
(sT Kss+K‖s‖)dr

+
5

∑
i=1

aiαiδ +
5

∑
i=1

1

4
a2

i αiγ ′ (7.42)
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Therefore V is bounded, consequently implies that s ∈ Lm
∞. From (7.42) we obtain:

∫ t

0
(sT Kss+K‖s‖)dr <V (0)−V (t)+AT

mαδ +AT
mαiγ ′Am (7.43)

Consequently s ∈ Ln−m
2 . From (7.22) and (7.23), it can be proved that e, ė ∈ Ln−m

∞ . As e, ė ∈ L∞

was established, under Assumption 7.1, we can conclude that Xe, Ve, Ver, V̇er ∈ Ln−m
∞ and

ẋo ∈ Lno
∞ . Therefore, all terms on the right hand side of (7.25) are bounded, which implies that ṡ

and η̈ are also bounded. As results, we have s → 0 as t → ∞. Finally, it follows that eo, ėo → 0

as t → ∞.

To complete the proof of stability, substituting the control law (7.30) and (7.21) into the reduced

order dynamic expression (7.20) yields:

ρT (λIr −λI) = Amψm +
5

∑
i=1

sâiψ2
i

‖s‖ψi +δi
+

Ksign(s)
H(s)

+Kss

ρT e f = (Kλ + I)−1μ (7.44)

with μ = Amψm +∑5
i=1

sâiψ2
i

‖s‖ψi+δi
+ Ksign(s)

H(s) +Kss. All terms on the right hand side of (7.44) are

bounded, therefore, the internal force tracking error are bounded, and can be adjusted by tuning

the feedback gain Kλ

7.4 Simulation results

The numerical simulation is performed on two identical 4 DoF MMRs manipulating a rigid

object in coordination. The block diagram in Fig 7.2 shows the different control law calculation

and implementation steps. The parameters of the two robots and the object are summarized in

Table 7.1.

The desired trajectory of the center of gravity of the object is given in the workspace where the

trajectories of the two mobile manipulator robots are obtained by using the inverse kinematic

of the robotic system (7.15). The desired trajectory for the object and the desired internal force
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Figure 7.2 Adaptive control of N MMRs transporting a rigid object

Table 7.1 System parameters .

Parameters
Object mo = 1kg, Io = 1kg.m2

Articulations:1,2,3,4 (rotoid) m1,2,3,4 = 1kg, I1,2,3,4 = 1kg.m2,

L1,2 = 1m, L3,4 = 0.5m,

Platform mv = 6kg, I = 19kg.m2 d = 1m, r = 1m

are chosen as:

ẋod =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos(sin(t)+π/2)

sin(sin(t)+π/2)

0.0

cos(t)+0.01cos(t)

⎤
⎥⎥⎥⎥⎥⎥⎦
,λId =

⎡
⎢⎢⎢⎣

5

0.0

0.0

⎤
⎥⎥⎥⎦

The control gains of the controller are chosen as: γ ′
i = 0.8,Kp = 50,Kλ = 25,Ks = 50, β = 0.1

and K = 10.

The workspace trajectory tracking is shown in Figure 7.3 and the simulation results in the

Cartesian space is presented in Figure 7.4. From the two figures, we can observe a good track-

ing trajectory, and this result is confirmed by the result given in Figure 7.5 where the tracking

error is acceptable. As can seen from the obtained results, the objective of the trajectory track-

ing of the handled object is successfully achieved.
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Figure 7.3 Desired and real trajectories of the object

Figure 7.4 Trajectory tracking in Cartesian space:X-axis, Y- axis,

Z-axis and orientation

To illustrate the advantages of our novel reaching proposed control law (7.30), we firstly com-

pared this approach with a control law proposed in (Wang et al. (2004)), as well as with the

conventional sliding mode. For comparison, the multi-mobile manipulators handling the object

are controlled by applying the control law method proposed in (Wang et al. (2004)) using the

same desired trajectory. The position tracking and orientation in the workspace are shown in

Figure 7.6 and errors along the XYZ positions and the moment along the Z-axis are presented

in Figure 7.7. According to the obtained results showed in Figure 7.7, the resulting tracking
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Figure 7.5 Error in X-axis, error in Y- axis, error in Z-axis and

error in orientation

errors of the proposed control strategy (solid line) are smaller than those found using the con-

trol law method in (Wang et al. (2004)) (dashed line). This illustrates the effectiveness of the

adaptive coordinated approach developed in this paper.

Figure 7.6 Desired and real trajectories of the object

For the second comparison, Figure 7.8. present the sliding surface obtained by the proposed

control law and those obtained by the conventional sliding mode, as explained in the design
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Figure 7.7 Errors: approach given in Wang (2004)(dashed blue line),

proposed control law (solid red line)

control section. The results obtained in Figure 7.8-(a-b-c-d) compared to those in Figure 7.8-

(e-f-g-h) clearly show that the proposed control law minimize the chattering when the sliding

surface is close to zero.

Figure 7.8 Sliding surfaces results: (a,b,c,d) with the proposed law;

(e,f,g,h) with conventional sliding law



165

To validate the results obtained, the proposed controller was implemented in real time. In this

test, two physical mobile manipulator robots were used to move a rigid object in coordination.

7.5 Experimental validation

In this section, the proposed control scheme is experimentally tested on two identical mobile

manipulator robots named Mob_ETS. In this real-time implementation, a Zigbee communi-

cation is installed between the application program developed in Simulink Matlab� and the

mobile manipulator robots. The robust adaptive control developed in the previous section is

implemented in real-time by using Real Time Workshop (RTW) of Mathworks�. Figure 7.9

shows the entire structure design of the control and the hardware implementation. The two

front wheels of the i-th mobile manipulator robot platform are actuated by two HN-GH12-

2217Y DC motors (DC-12V-200RPM 30:1), and the angular positions are measured by using

encoder sensors ( E4P-100-079-D-H-T-B) where all joints of the manipulator arm are actuated

by Dynamixel motors (MX-64T). The desired trajectory of the center of gravity of the object is

generated in the workspace. In this experimental test, an example of the object trajectory is ex-

amined to show the effectiveness of the developed adaptive control law. In this case study, the

object displacement is along X-, Y- and Z-axes. The starting point is Ps = [xo, yo, zo, βo]
T =

[0.1, −0.1, 0.42, 0]T and the final point is Pf = [xo, yo, zo, βo]
T = [4, 0, 0.48, 0]T . The control

law gains and those of the update law are chosen to be γ ′
i = 0.8,Kp = 7.5,Kλ = 1.5,Ks = 15,

β = 0.1 and K = 5. The desired internal force vector FId is parameterized by the Lagrangian

multiplier vector λId = [λIdx , λIdy , λIdz ]
T = [1, 0, 0]T . The sampling time is set at 0.015 second.

The trajectory tracking is presented in Figure 7.10. The experimental results in the Cartesian

space are presented in Figure 7.11. We can observe that there is a good position and orientation

tracking. The results illustrated in Figures. 7.10-7.11, prove the effectiveness of the approach

developed and simulated in the last section.
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Figure 7.9 Real-time setup

7.6 Conclusion

In this paper, an adaptive coordinated control scheme for multiple mobile manipulator robots

transporting a rigid object in coordination has been presented. The desired trajectory of the
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Figure 7.10 Desired and real trajectories of the object

Figure 7.11 Trajectory tracking in Cartesian space:X-axis, Y- axis,

Z-axis and orientation

object is generated in the workspace and the parameters of the handling object and the mobile

manipulators are estimated on-line based on the adaptive update technique. The control law

is designed based on the sliding mode approach combined with a potential function to reduce

or limit the chatter phenomenon. An appropriate choice of a Lyapunov function candidate

is used to prove the stability of the system. The proposed control design ensures that the

workspace position error converges to zero asymptotically and that the error of the internal
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force is bounded. The numerical simulation results show the effectiveness of the proposed

control. The developed approach was implemented in real time to show the validity of the

theoretical development.



CONCLUSION AND RECOMMENDATIONS

This thesis work was focused on developing a consistent control technique for a group of

mobile manipulator robots executing a task in coordination. Different nonlinear controllers

were simulated and experimentally applied to multiple mobile manipulator transporting a rigid

object in coordination. To achieve all of the objectives of this thesis, as a first step, an experi-

mental platform was developed and mounted in the laboratory of GREPCI-ETS to implement

and validate the different designed control laws. In the second step, several adaptive coordi-

nated motion/force tracking control were applied, ensuring that the desired trajectory can be

tracked under parameter uncertainties and disturbances. The main results in this project can be

summarized as follows:

• An adaptive coordinated control based on the virtual decomposition approach was mod-

ified and applied to an interconnected robotic systems; this approach was initially devel-

oped for manipulator arm mounted on fixed platform. In this work, this technique was

combined with different nonlinear approaches such as the Lyapunov technique, the back-

stepping method and the potential function in the case of mobile robot formation control.

All these proposed control schemes ensure a good tracking of the desired motion/force

trajectory under unknown parameters of the mobile manipulators and the handled object.

These parameters were firstly estimated by using the virtual decomposition approach, then

by using the Lyapunov update function technique. The overall stability of the entire system

was proved based on the virtual stability of each subsystem, the virtual work notions and

the appropriate choice of the Lyapunov candidate function.

• An novel adaptive coordinate control based on the sliding mode approach combined with

potential function was simulated numerically and implemented experimentally on the ex-

perimental platform developed in the laboratory, as explained above. Potential function

was added to reduce or limit the chattering phenomenon. The proposed control law en-
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sures that the workspace position error converges to zero asymptotically and that the error

of the internal force is bounded. Stability of the robotic systems was proved by using the

Lyapunov technique.

Finally, we can conclude that the developed control strategies guarantee a good desired mo-

tion/force tracking , compensate the parametric uncertainties of the interconnected robotic sys-

tem and suppress the bounded disturbances.

Some limitations and problems can be raised in this thesis and can be considered as future

work, since all the developed control schemes suppose that the environment is known and

do not consider the presence of any obstacle. As recommendation for future work, we will

consider more complex and unknown environment with static and dynamic obstacles. In this

case an algorithm of obstacle avoidance should be combined with the proposed controller to

give the robotic system more robustness. By considering these environments, the developed

controllers will not be applied only in laboratory but will also be implemented on real industrial

processes.



APPENDIX I

Elements in the regressor matrix YB and the parameters vector θB: Non-zero elements in the

regressor matrix YB ∈ R6x13 for the link linear parametrization:

YB(1,1) =
d
dt
(Bvr)(1)+

B v(5)Bvr(3)−B v(6)Bvr(2)+
B g(1) (AI-1)

YB(1,2) =−Bv(5)Bvr(5)−B v(6)Bvr(6)) (AI-2)

YB(1,3) =− d
dt
(Bvr)(6)+

B v(5)Bvr(4) (AI-3)

YB(1,4) =
d
dt
(Bvr)(5)+

B v(6)Bvr(4) (AI-4)

YB(2,1) =
d
dt
(Bvr)(2)+

B v(6)Bvr(1)−B v(4)Bvr(3)+
B g(2) (AI-5)

YB(2,2) =
d
dt
(Bvr)(6)+

B v(4)Bvr(5) (AI-6)

YB(2,3) =−Bv(4)Bvr(4)−B v(6)Bvr(5)) (AI-7)

YB(2,4) =− d
dt
(Bvr)(4)+

B v(6)Bvr(5) (AI-8)

YB(3,1) =
d
dt
(Bvr)(3)+

B v(4)Bvr(2)−B v(5)Bvr(1)+
B g(3) (AI-9)

YB(3,2) =− d
dt
(Bvr)(5)+

B v(4)Bvr(6) (AI-10)

YB(3,3) =
d
dt
(Bvr)(4)+

B v(5)Bvr(6) (AI-11)

YB(3,4) =−Bv(4)Bvr(4)−B v(6)Bvr(5)) (AI-12)

YB(4,3) = YB(3,1) (AI-13)

YB(4,4) =−YB(2,1) (AI-14)

YB(4,6) = YB(3,3) (AI-15)

YB(4,7) =−YB(2,4) (AI-16)
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YB(4,8) = YB(3,2) (AI-17)

YB(4,9) =−YB(2,2) (AI-18)

YB(4,10) =B v(6)Bvr(6)−B v(5)Bvr(5)) (AI-19)

YB(4,11) =
d
dt
(Bvr)(4)+

B v(5)Bvr(6)−B v(6)Bvr(5) (AI-20)

YB(4,12) =−Bv(6)Bvr(5) (AI-21)

YB(4,13) =B v(5)Bvr(6) (AI-22)

YB(5,2) =−YB(3,1) (AI-23)

YB(5,4) = YB(1,1) (AI-24)

YB(5,5) =−YB(3,2) (AI-25)

YB(5,7) = YB(1,4) (AI-26)

YB(5,8) =−YB(3,3) (AI-27)

YB(5,9) =
B v(4)Bvr(4)−B v(6)Bvr(6)) (AI-28)

YB(5,10) = YB(1,3) (AI-29)

YB(5,11) =B v(6)Bvr(4) (AI-30)

YB(5,12) =
d
dt
(Bvr)(5)+

B v(6)Bvr(4)−B v(4)Bvr(6) (AI-31)

YB(5,13) =−Bv(4)Bvr(6) (AI-32)

YB(6,2) = YB(2,1) (AI-33)

YB(6,3) =−YB(1,1) (AI-34)

YB(6,5) = YB(2,2) (AI-35)

YB(6,6) =−YB(1,3) (AI-36)
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YB(6,8) =
B v(5)Bvr(5)−B v(4)Bvr(4)) (AI-37)

YB(6,9) = YB(2,4) (AI-38)

YB(6,10) =−YB(1,4) (AI-39)

YB(6,11) =−Bv(5)Bvr(4) (AI-40)

YB(6,12) =B v(4)Bvr(5) (AI-41)

YB(6,13) =
d
dt
(Bvr)(6)+

B v(4)Bvr(5)−B v(5)Bvr(4) (AI-42)

The vector of parameters θB ∈ R13 is given as follows:

θB(1) = mB (AI-43)

θB(2) = mB
Brmx (AI-44)

θB(3) = mB
Brmy (AI-45)

θB(4) = mB
Brmz (AI-46)

θB(5) = mB
Br2

mx (AI-47)

θB(6) = mB
Br2

my (AI-48)

θB(7) = mB
Br2

mz (AI-49)

θB(8) = mB
Brmx

Brmy − IBxy (AI-50)

θB(9) = mB
Brmx

Brmz − IBxz (AI-51)

θB(10) = mB
Brmy

Brmz − IByz (AI-52)

θB(11) = IBxx (AI-53)

θB(12) = IByy (AI-54)

θB(13) = IBzz (AI-55)
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The following Yai vector and parameters vector θai are defined:

Yai =
[
q̈ai sign(q̇ai) q̇ai 1

]
(AI-56)

θai =
[
Jmai kcai) kvai cai

]
(AI-57)



APPENDIX II

1. Dynamic and control of the link

The dynamics of the i-th rigid body is given in the linear form by the following equation:

F∗
Bi
= MBiV̇Bi +CBiVBi +GBi = YBiθBi

(AII-1)

where MBi ∈ R
6×6 is the matrix of inertial terms, CBi ∈ R

6×6 represent the matrix of centrifu-

gal/Coriolis terms, GBi ∈ R
6 is the vector related to the gravity.

The vector of resulting forces/moments acting on the rigid body is computed by an iterative

process as follows.

FBn = F∗
Bn

FBn−1
= F∗

Bn−1
+Bn−1 UBnFBn

.

.

.

FB1
= F∗

B1
+B1 UB2

F∗
B2
+ ...+B1 UBnFBn

(AII-2)

The dynamics of the i-th rigid body based on its required velocity V r
Bi
∈ R

6 is expressed in the

linear form by the following equation:

F∗r
Bi

= MBiV̇
r
Bi
+CBiV

r
Bi
+GBi = YBiθBi

(AII-3)

Since the physical parameters of the i-th rigid body are assumed to be unknown and should to

be estimated, then the vector θ̂Bi ∈ R
13 is used and its equation of control becomes:

F∗r
Bi

= YBi θ̂Bi +KBi(V
r
Bi
−VBi) (AII-4)

where, ˙̂θBi = ρBiY
T
Bi

SBi is the parameters adaptation function, and is chosen to ensure system

stability, SBi = (V r
Bi
−VBi) and ρBi ∈ R

13×13 is diagonal positive matrix.
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Let us consider the non-negative Laypunov candidate function as:

vi =
1
2
(Vr

Bi
−VBi)

TMBi(V
r
Bi
−VBi)+

1
2

13

∑
γ=1

(
θiγ − θ̂iγ

)2
/ρiγ (AII-5)

where θiγ , θ̂iγ denotes the γ-th element of θiγ and θ̂iγ respectively. ρiγ > 0 is a parameter

update gain. Then based on dynamic of the i-th link (A II.1), (A II.2), its equation of control

(A II.3),(A II-4) and the update control law given after (A II-4) , the first derivative along time

is given by:

v̇i ≤−(V r
Bi
−VBi)

T KBi(V
r
Bi
−VBi)+(V r

Bi
−VBi)

T (F∗r
Bi

−F∗
Bi
) (AII-6)

Proof: Subtracting (A II-1) from (A II-4) gives:

F∗r
Bi

−F∗
Bi
= MBi(V̇

r
Bi
−V̇Bi)+CBi(V

r
Bi
−VBi)+KBi(V

r
Bi
−VBi)−YBi(θBi − θ̂Bi) (AII-7)

Based on (A II-7) the time derivative of (A II-5) is given by the following expression:

v̇i = (V r
Bi
−VBi)MBi(V̇

r
Bi
−V̇Bi)−

13

∑
γ=1

(θBiγ − θ̂Biγ )
˙̂θiγ

ρiγ
(AII-8)

=−(V r
Bi
−VBi

)
KBi

(
V r

Bi
−VBi

)
+
(
V r

Bi
−VBi

)T (F∗r
Bi

−F∗
Bi

)

+
13

∑
γ=1

(
θBiγ − θ̂Biγ

)[
yiγ(t)T (V r

Bi
−VBi

)− ˙̂θiγ

ρiγ

]
(AII-9)

Based on the update law we can prove that (Zhu (2010))

(
θBiγ − θ̂Biγ

)[
yiγ(t)T (V r

Bi
−VBi

)− ˙̂θiγ

ρiγ

]
≤ 0 (AII-10)

To complete the prove of the stability, we can also prove that the following equality is given as

follows: (
V r

Bi
−VBi

)T (F∗r
Bi

−F∗
Bi

)
=
(
V r

Bi
−VBi

)T (Fr
Bi
−FBi

)
−(V r

Bi
−VBi

)T BiUTi+1

(
Fr

Ti+1
−FTi+1

)
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=
(
V r

Bi
−VBi

)T (Fr
Bi
−FBi

)−(V r
Ti+1

−VTi+1

)T (
Fr

Ti+1
−FTi+1

)
= pBi − pTi+1

(AII-11)

where pBi , pTi denote the virtual power flows at the cutting points (Figure 2.2).

Substituting (A II-11) into (A II-6) yields:

v̇i =−(V r
Bi
−VBi

)
KBi

(
V r

Bi
−VBi

)
+ pBi − pTi+1

(AII-12)

2. Dynamic and control of the actuator

The dynamics of the i-th actuator can be expressed by the following dynamic:

τai = Jmai q̈i +ξ (qi, q̇i) (AII-13)

where ξ (qi, q̇i) represents the friction and gravitation force / torque terms and Jmai is the mo-

ment of inertia of the motor driving this joint. According to the property of linearity in the

parameters, this dynamic can be written in linear form as:

τai = Yaiθai (AII-14)

where, θai ∈R
4 are the column vectors of the dynamic parameters of the motor driving the i-th

joint and Yai ∈ R
4 are the dynamic regressor (row) vectors, also defined in the Appendix I.

The dynamics of the i-th joint actuator based on its required velocity qr
i is expressed in the

linear form by the following equation:

Jmai q̈
r
i +ξ (qr

i , q̇
r
i ) = Yaiθai (AII-15)

Since the physical parameters of the i-th actuator are unknown and need to be estimated, then

the vector θ̂ai is used and its dynamic becomes:

τr
ai = Yaiθ̂ai +Kai(q̇r

i − q̇i) (AII-16)



178

where ˙̂θai = ρaiyT
aiSai is the parameters adaptation function, and chosen to ensure system sta-

bility; Sai = q̇r
i − q̇i, and ρai,Kai are positive gains. Yai is the dynamic regressor (row) vectors,

defined in Appendix I (Zhu et al. (1997),Zhu (2010)).

Finally, the input control torque at the i-th articulation is calculated from the desired torque

obtained from (AII-16) τr
i and the required force at cutting point Bi, identified Fr

Bi
as:

τi = τr
ai +ZT Fr

BI (AII-17)

with Z = [0 0 0 0 0 1]T for the revolute joints and Z = [0 0 1 0 0 0]T for the prismatic joints. Let

define the positive Laypunov candidate function as follow:

vai =
1
2

Jmai(q̇
r
i − q̇i)

2 +
1
2

4

∑
i=1

(
θaiγ − θ̂aiγ

)2
/ρaiγ (AII-18)

where θaiγ , θ̂aiγ denotes the γ-th element of θaiγ and θ̂aiγ respectively. ρaiγ > 0 is a parameter

update gain. Then based on dynamic of the i-th actuator (AII-13), (AII-15), its equation of

control (AII-16) and the update control law given after (AII-16) , the first derivative along time

is given by:

v̇ai =−(q̇r
i − q̇i)Jmai(q̈

r
i − q̈i)−

4

∑
γ=1

(
θaiγ − θ̂aiγ

) ˙̂θai

ρaiγ
(AII-19)

v̇ai ≤−Kai(q̇r
i − q̇i)

2 +(q̇r
i − q̇i)(τr

ai − τai) (AII-20)

Proof: Subtracting (A II-13) from (A II-16) using the definition of Yai and θai from Appendix

I yields:

τr
ai − τai = Jmai (q̈

r
i − q̈i)+(ξ (qr

i , q̇
r
i )−ξ (qi, q̇i))

+Kai (q̇r
i − q̇i)−Yai(t)

(
θai − θ̂ai

)
(AII-21)

Based on the (A II-21) the time derivative of (A II-18) is obtained as follows:

v̇ai = (q̇r
i − q̇i)Jmai (q̈

r
i − q̈i)−

4

∑
γ=1

(
θaiγ − θ̂aiγ

) ˙̂θaiγ

ρaiγ
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=−Kai (q̇r
i − q̇i)

2 − kci [sign(q̇r
i )− sign(q̇i)] (q̇r

i − q̇i)

+
4

∑
γ=1

(
θaiγ − θ̂aiγ

)[
yaiγ(t)−

˙̂θaiγ

ρaiγ

]
+(q̇r

i − q̇i)(τr
ai − τai) (AII-22)

From the update law given after (A II-16)and based on what was explained in (Zhu (2010)), it

follows that: (
θaiγ − θ̂aiγ

)[
yaiγ(t)−

˙̂θaiγ

ρaiγ

]
≤ 0 (AII-23)

we have also, the following relationship:

− kci [sign(q̇r
i )− sign(q̇i)] (q̇r

i − q̇i)≤ 0 (AII-24)

Substituting (A II-17) into (A II-13) yields:

(q̇r
i − q̇i)(τr

ai − τai) =−(q̇r
i − q̇i)ZT (Fr

Bi
−FBi

)
(AII-25)

To complete the prove of the stability, we can also prove that the following equality is given as

follows:

−(q̇r
i − q̇i)ZT (Fr

Bi
−FBi

)
=
[(

V r
Bi
−VBi

)−Ti UT
Bi

(
V r

Ti
−VTi

)](
Fr

Bi
−FBi

)

=−(V r
Bi
−VBi

)(
Fr

Bi
−FBi

)
+
(
V r

Ti
−VTi

)Ti UT
Bi

(
Fr

Bi
−FBi

)
=−pBi + pTi (AII-26)

where pBi , pTi denote the virtual power flows at the cutting points (Figure2.2).

Substituting (A II-26) into (A II-20) yields:

v̇ai ≤−Kai(q̇r
i − q̇i)

2 − pBi + pTi (AII-27)

3. Stability of the entire system
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Using the same procedure explained above, the non-negative Lyapunov candidate function of

the complete system can be chosen as follows:

v =
n

∑
i=1

vi +
n

∑
i=1

vai (AII-28)

From (A II-12) and (A II-27) the first time derivative of (A II-28) is given by:

v̇ =−
n

∑
i=1

(
V r

Bi
−VBi

)T KBi

(
V r

Bi
−VBi

)− n

∑
i=1

Kai (q̇r
i − q̇i)

2 (AII-29)

Since the two virtual power flows of a common frame at a common cutting points take the same

magnitude with opposite signs, then these virtual power flows are washed-out in (A II-29).
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