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LABORATORY CHARACTERIZATION OF BITUMEN TREATED FULL DEPTH 

RECLAMATION MATERIALS 

 
Apparao GANDI 

 
RÉSUMÉ 

 

À la suite du vieillissement du réseau d'infrastructures routières, les interventions visant à 
rétablir l'état de la chaussée, à accroître le confort de conduite de l'utilisateur et / ou à 
améliorer la sécurité routière sont très courantes au Canada. Depuis les années 1970, les 
traitements de réadaptation, par opposition aux nouvelles constructions, gagnent du terrain. 
En raison de la crise économique, l'augmentation du coût des matériaux comme les granulats 
vierges, les liants, etc., et le désir de préserver un réseau routier efficace et durable ont ravivé 
le recyclage du revêtement existant comme une des options principales. En particulier, le 
recyclage à froid en place de l’enrobé seulement (CIR) et de l’enrobé et d’une partie de la 
couche granulaire (FDR) des chaussées sont des alternatives prometteuses pour la 
réhabilitation des routes.  

Bien que des matériaux d'enrobés recyclés à froid avec des matériaux stabilisés au bitume 
aient été appliqués avec succès, il subsiste certains problèmes critiques dans cette 
technologie. L'un des domaines où un travail important est nécessaire est la compréhension et 
la modélisation du comportement de ces matériaux à jeune âge. Ces deux matériaux, la 
plupart du temps lorsqu'ils sont traités avec une émulsion de bitume, ont des caractéristiques 
évolutives dans le temps, qui sont principalement liées à leur teneur en eau. La conception du 
mélange pour les matériaux CIR et FDR a été principalement basée sur la procédure de 
conception de mélange Marshall qui est empirique et qui rend difficile son utilisation dans 
d'autres applications.  

L'objectif principal de ce projet de recherche est d'améliorer les performances à court terme 
et à long terme des matériaux d'enrobés recyclés à froid traités avec une émulsion de bitume 
ou avec de la mousse de bitume. Pour ce faire, la température de cure a été variée, et il a été 
démontré que les basses températures ont un impact négatif sur le comportement mécanique 
des enrobés recyclés à froid (CRM). Les performances ont été évaluées de différentes 
manières, dont le module complexe qui a permis l’évaluation du comportement 
viscoélastique de ces matériaux. Les essais de module complexe ont entre autre été effectué 
avec une pression de confinement ce qui a permis de voir que le comportement des CRM se 
situe entre un granulat et un matériau bitumineux à jeune âge. Finalement, il a été possible de 
définir la combinaison optimale d’émulsion et de mousse de bitume en les faisant varier afin 
d’améliorer la performance mécanique des CRM. 

Les résultats de la recherche contribueront à une meilleure compréhension de la méthode de 
conception du mélange basée sur la presse à cisaillement giratoire et des propriétés 
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rhéologiques des matériaux d'asphalte recyclés à froid avec de l’émulsion de bitume ou de la 
mousse de bitume.  

Keywords: Matériaux bitumineux recyclés à froid, conception du mélange, cure, émulsion et 
mousse de bitume, et module dynamique. 
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ABSTRACT 

 

Because of an aging road infrastructure network, interventions to restore the pavement 
condition, increase the user’s riding comfort, and/or improve the road safety are very 
common in Canada. Since the 1970s, rehabilitation treatments as opposed to new 
constructions have been gaining momentum. Because of the economic crisis, increased cost 
of materials like virgin aggregate, binder, etc., and a strong desire to preserve effective and 
sustainable roadway system have fueled the popularity of recycling existing pavement as a 
primary option. Particularly, Cold In-place Recycling (CIR) and Full-Depth Reclamation 
(FDR) of asphalt pavements are promising alternatives for road rehabilitation. 

Although Cold Recycled bituminous Materials with bitumen-stabilized materials have been 
successfully applied, there are still some critical problems existing in this technology. One of 
the areas where much work is needed is in the understanding and the modeling of the 
behavior of those materials at younger age. Those two materials, mostly when treated with 
asphalt emulsion, have evolutive characteristics with time, which is mostly linked to their 
water content. The mix design for CIR and FDR materials has been mostly based on 
Marshall mix design procedure which is empirical that makes it difficult to use in further 
application.  

The main objective of this research project is to enhance the short term and long-term 
performance of Cold Recycled bituminous Materials (CRM) treated with asphalt emulsion 
and/or with foamed asphalt. To that end, the curing temperature of CRM was varied, and it 
showed that cold temperature do have a negative impact on their mechanical performances. 
Those performances were evaluated with different tests, including complex modulus 
measurement that enabled us to describe their viscoelastic behavior. Complex modulus tests 
were also performed at young age with different confining pressure, which showed that that 
the behavior is between bituminous and granular material. Finally, it was possible to define 
the optimum binder combination by testing different double coating combinations of 
emulsion and/or foam in order to increase the CRM’s performances.   

The results from the research will contribute to a better understanding of the mix design 
method based on the Superpave gyratory compactor, and rheological properties of the Cold 
Recycled bituminous Materials with foamed asphalt and emulsified asphalt.  

 Keywords: Cold Recycled bituminous Materials, Mix design, Curing, foamed asphalt, 
emulsified asphalt and Complex modulus. 
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INTRODUCTION 

 

Because of an aging road infrastructure network, interventions to restore the pavement 

condition, enhance the user’s riding comfort, and/or improve the road safety are very 

common in Canada. Since the 1970s, rehabilitation treatments as opposed to new 

constructions have been gaining momentum. Because of the economic crisis, increased cost 

of materials like virgin aggregate, binder, etc., and a strong desire to preserve effective and 

sustainable roadway system have fueled a reviving of recycling existing pavement as a 

primary option. 

 

In other words, when the roadway network was rapidly expanding, the initial construction 

cost was the most important issue, with little or no attention being paid to the ongoing 

maintenance costs. Since funding for preventive maintenance, preservation, rehabilitation, 

and reconstruction of roadways will have to compete with other demands on the public purse, 

innovation is required in order to do more with less. Asphalt recycling is one way of 

increasing the effectiveness of existing budgets in order to maintain, preserve, rehabilitate 

and reconstruct more miles (kilometers) of roadway for each dollar spent (ARRA, 2001). 

 

There are several methods to recycle asphalt pavements. All over the world, the experience 

and the choice of technology for In-place recycling varies broadly. Particularly, different 

methods of recycling and reclamations are applicable to different types, levels, and severity 

of distresses, and hence different periods in the pavement life as shown in Figure 0.1. 

Typically, Hot In-place Recycling (HIR) is used when the majority of the pavement 

distresses are minimal and limited to the upper few inches of the surface of the roadway with 

no evidence of structural problems (i.e., longitudinal cracking in wheel path, alligator 

cracking, and edge cracking). Cold In-place Recycling (CIR) is used when there is a higher 

number, type, and severity of non-load-related distresses that may extend farther down from 

the surface. CIR with an overlay can be used to address some load-related distresses. Full 

Depth Reclamation (FDR) is an in-place rehabilitation process that can be used for 

reconstruction, lane widening, minor profile improvements, and increased structural capacity 
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by addressing the full range of pavement distresses. The anticipated depths of the distresses, 

combined with the overall existing asphalt pavement thickness, are used to identify the type 

of in-place recycling process (es); that can be expected to extend the life of the pavement 

most economically. Mainly CIR and FDR with the addition of Bitumen Stabilized Materials 

(BSM) like foamed or emulsified asphalt. 

 

 

Figure 0.1-1 Pavement condition and type of In-place recycling 
Taken from the Stroup-Gardiner (2011) 

 

CIR is a Cold In-Place Recycling method, in which only the existing bituminous materials 

are recycled which is considered as 100% RAP. In this method bitumen is added, as an 

emulsion or foam, and makes a good base material that needs to be covered with a layer of 

Hot Mix Asphalt (HMA) or a surface treatment.  CIR can be accomplished as full depth 

reclamation or partial depth recycling. In partial depth recycling a portion of asphalt (Base) 

layer in the pavement, normally it is performed at the depth of 50mm to 100mm (2 to  4in), 

and it is more frequently used to create a base course, in most cases low-to-medium traffic 

volume highways (ARRA, 2001; Kandhal & Mallick, 1998). On the other hand, in FDR, 

both asphalt layer and part of the granular base are recycled (50% RAP and 50% virgin 

aggregate) at the same time and reconstructed with or without the addition of bitumen. FDR 

materials also need to be covered with a layer of HMA or surface treatment. It is usually 

done for depth between 100 mm to 300 mm (4 to 12 in.) (ARRA, 2001; Epps & Allen, 1990). 
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A typical view of CIR and FDR construction process as illustrated in Figure 0.2. CIR and 

FDR together hereafter referred to as Cold Recycled bituminous Materials (CRM) in this 

thesis.  

 

 

Figure 0.1-2 Cold recycled bituminous materials process 
(a) Cold in-place recycling process (CIR), (b) Full-depth reclamation process (FDR) 

(c) Surface treatment with hot mix asphalt for CIR and FDR process 
Taken from Bitume Quebec (2018) 

 
 

The behavior of Bitumen-Stabilized Materials (BSMs) is uniquely different from all other 

materials used to construct road pavements. Unlike asphalt, where the bitumen as a 

continuum binds all the aggregate particles together, the bitumen in a BSM is dispersed 

selectively amongst only the finer particles, regardless of whether bitumen emulsion or 

foamed bitumen is used as the stabilizing agent (Jenkins, 2012). Firstly, Bitumen Emulsion 

can be defined as, it is comprises bitumen emulsified in water. The bitumen is dispersed in 

the water in the form of an oil-in-water type bitumen emulsion. An emulsifying agent holds 

the bitumen in suspension. The emulsifying agent determines the charge of the bitumen 

emulsion. Cationic bitumen emulsions have a positive charge and anionic bitumen emulsion 
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have a negative charge. Secondly, foamed bitumen is produced by injecting water into hot 

bitumen, resulting in spontaneous foaming. The physical properties of the bitumen are 

temporarily altered when the injected water, on contact with the hot bitumen, is turned into 

vapor, which is trapped in thousands of tiny bitumen bubbles. Particularly, CIR and FDR of 

asphalt pavements are famous design alternatives for road rehabilitation. These techniques 

has shown huge potential saving money and material, and allowing a convenient way of 

fixing proper grade and cross slope to highway. However, even if many successful projects 

were completed with these techniques, there are still some problems are not addressed by the 

researchers on the subject.  

 

The mix designs are performed to determine the desirable amount of the different materials 

used in the composition of the Cold Recycled bituminous Materials (CRM) and to ensure that 

these materials meet the desired quality requirements. As far as, the method of Cold recycled 

asphalt mixture design based on the Hveem stabilometer, Marshall stability test results, air 

voids, resilient modulus test, most of the times based on experiences, sometimes field trials, 

and visual condition of samples to establish the optimum binder content. A standard national 

method is not available. However, A review of practice in the North America, Epps et al. 

(1990) showed that the Marshall mix procedure was used in over 60% of the agencies that 

used mix design procedures. Other agencies used the Hveem resilient modulus and indirect 

tensile test. However, 25% of the agencies did not use a formal design procedure at all, rather 

relying on field workability and experience for determining the binder content. There is also 

research underway to adopt Superpave technology to CIR mixtures (Emery, 1993; Tia, 

Castedo, Wood, & Iida, 1983).  Furthermore, in 2014, as reported by task group (TG6) of 

RILEM TC-237 SIB (Tebaldi et al., 2014) ˝Currently a universally accepted specimen 

preparation procedure for cold-recycled mixtures is not available, therefore universities, 

research centres and road administration agencies are developing specific methods based on 

their laboratory tests and field experiences˝. The CIR pavement design process involves 

testing of representative specimens of foamed and emulsified treated materials as means to 

evaluate pavement performance over time. To adequately acquire representative specimens, 

it is necessary to condition the materials in a process called Curing  (K. J. Jenkins & Moloto, 
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2008). Although curing procedures have been adopted in many countries, the curing 

protocols are varied and an accepted procedure is currently not available. The lack of 

representation is due to complex process of curing simulation, like type and content for 

composition materials, climatic conditions, mechanical properties of the materials, etc. (K. J. 

Jenkins & Moloto, 2008). Finally, all the various mix design methods provide an approach 

for selecting the type and the percentage of asphalt binder; however, the methods of 

compaction, curing and testing differ. 

 

At early stages, the behavior of FDR materials is similar to a granular material, but after the 

curing phase ends, the behavior is close to a HMA. Therefore, it has been suggested that the 

FDR materials treated with asphalt binder like emulsion or foam, have a time dependent 

behavior (Pérez, Medina, & del Val, 2013). Hence, they can be considered, at some point, to 

be in between a purely granular material and a HMA. Due to time dependent behavior 

inherent to CRM’s, Carter et al. (2013) acknowledged the challenge related to measuring the 

stiffness of CRM, given the variation that occurs depending on the considered curing 

protocol. Stiffness values of FDR mixes can be determined through a resilient (MR) or a 

dynamic modulus test. Santagata et al. (Santagata, Chiappinelli, Riviera, & Baglieri, 2010b) 

investigated the short term stiffness of FDR mixes by using a triaxle cell. A very limited 

amount of research has been done on the influence of confining pressure on CRM’s with 

dynamic modulus. Due to a lack of research results in CRM’s, the current mechanistic-

empirical pavement design guide (M-E PDG) and design method treat CIR mixtures the 

same as HMA base course. However, they significantly vary in terms of stress-strain 

behavior where that of CIR materials is influenced by stabilizing agents and the quality of 

RAP materials. Todd and Richard (Thomas & May, 2007) reported that the dynamic 

modulus of Full-Depth Reclamation with emulsified asphalt (FDR-emulsion) was influenced 

by the mix composition, quantity of RAP, and binder type. 

 

However, a review of research studies on cold recycled bituminous materials reveals that, 

this may be attributed the fact that the mix design procedure for CIR and FDR materials has 

been mostly based on Marshall mix design procedure which is empirical, which makes it 
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difficult to use in further application. It should be noted that, much research has been 

undertaken to better understanding the emulsion and foaming technologies on cold recycled 

bituminous materials separately. Furthermore, based on previous research on cold recycled 

materials, the early stage strength development, the impact of the mixing, compaction and 

curing temperature on the mechanical properties, double coating of cold recycled bituminous 

materials and modeling of these materials has not been completely studied. This manuscript 

based PhD thesis aims to address those problems. 

 

 



 

 

CHAPTER 1 
 
 

RESEARCH PROBLEM AND OBJECTIVES 

1.1 Research Problem 

In Québec, over the past twenty years, Cold In-place Recycling (CIR) and Full-Depth 

Reclamation (FDR) have been reliable rehabilitation techniques; restoring pavement 

condition at affordable cost with a lower footprint on the environment. Lot of research is 

being undertaken on many aspects of pavement maintenance and rehabilitation in order to 

increase their lifespan. However, limited amount of research exists in the literature even 

though many successful projects were completed with CIR and FDR. This may be attributed 

to the fact that the mix design procedure for CIR and FDR has been mostly experience based 

which makes it difficult to use these materials. In addition, to decrease the environmental 

impact, a major advantage of Cold Recycled bituminous Materials (CRM) over hot recycling 

asphalt techniques is the possibility to reuse higher percentages of Recycled Asphalt 

Pavement (RAP). In hot in-plant recycling of asphalt mixtures, a maximum of 40% RAP is 

generally accepted in the base layers, and this amount is reduced to 15% or even prohibited 

in the surface layers. In CRM, the usage of RAP can be as high as 100%, but this generally 

results in a loss of mechanical properties and durability (Stimilli, Ferrotti, Graziani, & 

Canestrari, 2013). Therefore, it is necessary to study and determine the correct mixture 

proportion for CRM through a mix design procedure, which consider RAP percentage is the 

most important parameter. 

 

CIR is a cold recycling method in which only the existing bituminous materials are recycled.  

In this method, bitumen is added in the form of an emulsified asphalt or foamed asphalt to 

serve as a good base material that is covered with a layer of Hot Mix Asphalt (HMA) or a 

surface treatment. On the other hand, in FDR, both asphalt layer and part of the granular base 

are recycled at the same time and reconstructed with or without the addition of bitumen. As 

with CIR, FDR materials need to be covered. It should be noted that CIR and FDR 
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characteristics change over time. For instance, the stability of these materials is low at 

younger age and it increases with time. Different knowledge gaps exist, and one of the areas 

where much work is needed is in understanding and modeling the behavior of these materials 

at young age. These materials, when treated with asphalt emulsion, have evolving 

characteristics with time, which is linked, partially, to their water content. Considering the 

time dependency of the behavior of CRM, it is important to study the impact of curing 

conditions on CRM. 

 

In addition to time, in most countries, there is a low-temperature limit to lay down HMA 

because if it is too cold, it becomes impossible to get proper compaction. All over the world, 

various studies have been done to understand the compaction behavior of hot mix asphalt 

materials. However, limited research is available on low-temperature compaction of CRM. 

The compaction of CRM with emulsified asphalt or foamed asphalt is a very important factor 

to get good mechanical characteristics. It helps to position the particles of the material and 

redistribute the binder from separate globules to continuous films (Needham, 1996). The 

compaction quality has an impact on air voids of the CRM (Kassem, 2008; Lauter, 1998; 

Pellinen & Witczak, 1998). Not only the quantity, but the level of uniformity of the air voids 

distribution considerably affects the behavior of the mixture (Xu, Chang, Gallivan, & Horan, 

2012 Castillo and Caro 2013). However, too much compaction can also be detrimental. Quick 

and Guthrie (2011) stated that the severity level of compaction impacts strength development 

in emulsified asphalt mixture. Compaction can contribute to the initial damage of the 

emulsified asphalt, but also worsen the curing period within these mixtures. Subsequently, it is 

needed to understand the influence of curing temperature and compaction on the mechanical 

properties of FDR materials treated with emulsified asphalt and foamed asphalt respectively. 

 

Furthermore, FDR with emulsified asphalt (EA) and FDR with foamed asphalt (FA) 

technologies are now fully consolidated in practice and witness of numerous studies (Y. Kim 

& Lee, 2006), and developments over the years. Very little information is available in the 

literature and in practice on the combined usage of these two techniques. It is believed that 

with emulsified asphalt, most particles are well coated, which is not the case with foamed 
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asphalt. However, foamed asphalt does work as a binding agent in CRM. As of now, there 

have been no precise mix design specifications to understand the double coating (combined) 

technology. Consequently, this can achieved through using the proper approach to develop the 

mix design and validate the possibility of using both emulsified asphalt and/or foamed asphalt 

on FDR materials to have better mechanical characteristics. Another aspect of these materials 

that needs to be studied is their rheological behavior (complex modulus). 

 

1.2 Objectives 

The main objective of this research project is to enhance the short term and long-term 

performance of the Cold Recycled bituminous Materials with asphalt emulsion and/or with 

foamed asphalt.  

 

The specific objectives of the study are listed below: 

• to evaluate the impact of the addition of four different percentages of RAP (50%, 75%, 

85%, and 100%), on the rheological behavior of the cold recycled emulsified asphalt 

materials;  

• to establish a performance testing protocol for Cold Recycled bituminous Materials based 

on the age of the mixture (at the early age of the mix); 

• to determine the influence of confinement pressure on the complex modulus of FDR 

mixtures; 

• to evaluate the effect of compaction and curing temperature and duration, on the degree 

of compaction and on the Marshall stability and indirect tensile strength (ITS) of CRM; 

• to compare the behavior of Cold Recycled bituminous Materials treated with foamed 

asphalt (CRM-foam) and Cold Recycled bituminous Materials treated with emulsified 

asphalt (CRM-emulsion); 

• to determine the mix design procedure for double coating full depth reclamation 

materials with the addition of four different combinations of the binders (foam and 

emulsion); 
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• to evaluate the complex modulus of the double coated full depth reclamation materials 

with the addition of four different combinations of the binders (foam and emulsion). 

 

1.3 Outline of the Thesis 

This Ph.D. thesis is manuscript based, which means that most chapters are published or 

submitted papers. The outline of this dissertation is as follow: 

chapter 1 - Introduction of research problem and objectives; 

chapter 2 - Literature Review; 

chapter 3 - presents the first published article of this Ph.D. program. The article is titled: 

Rheological behavior of cold recycled asphalt materials with different contents of recycled 

asphalt pavements; 

chapter 4 - presents the second paper that covers the study of the use of confining pressure 

when measuring the complex modulus of full-depth reclamation materials; 

chapter 5 - presents the third article of this Ph.D. program. The article is titled: study of the 

impact of the compaction and curing temperature on the behavior of cold bituminous 

recycled materials; 

chapter 6 - presents the fourth paper of this Ph.D. program. The article is titled: effect of 

binder type on full depth reclamation material behaviour; 

conclusions and Recommendations. 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 2 
 
 

LITERATURE REVIEW 

2.1 Introduction 

The literature review comprised of many areas of Cold In-place Recycling (CIR) 

rehabilitation technique, starting from the Reclaimed Asphalt Pavement (RAP) i.e., basic 

material handling in recycling. This chapter also explains the viscoelastic behavior of 

bitumen, current practices for cement based treated materials with cold asphalt mixtures, 

influences of curing time and moisture content on rheological properties of the cold mixtures 

and mix design procedures for cold mixes using bitumen stabilized materials based on 

gyratory compacter, and impacts of air voids on characteristics of asphalt mixtures. It 

includes mechanical behavior and performance evaluation of CIR and FDR mixtures using 

bitumen stabilized materials. 

 

2.2 Reclaimed Asphalt Pavement (RAP) 

Asphalt recycling is not a new concept. The technique was initially developed in 1915, but it 

started gaining popularity since 1975 because it offers reduced costs; geometric preservation; 

and conservation of aggregates, binders, and energy (Epps & Allen, 1990). 

 

Sullivan (1996) provided an executive summary of the state of the practice of recycled HMA 

in 1996. The report reveals that about 45 million tons of recycled asphalt pavement (RAP) 

are generated each year and 80% of the RAP is reused in highway applications. This makes 

RAP the most recycled product in the United States, both in tonnage (73 million tons) and in 

percentage of product recycled (80% of RAP is recycled) (Beyond Roads, 2014). Asphalt 

rehabilitation projects produce about 100 million tons of RAP per year from millings, 

presenting a major solid waste concern (Alam, Abdelrahman, & Schram, 2010). 
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There are two common sources of reclaimed asphalt: reclaimed asphalt concrete (RAP) and 

recycled asphalt shingles (RAS). RAP comes in the form of lumps and millings. RAS can be 

obtained as construction waste or manufactured ends. Any of these materials can be crushed 

and blended, with or without the addition of virgin aggregate, to create blends. Reclaimed 

asphalt is used as a source of two materials: aggregate and bitumen (Widger. A., 2012). Old 

asphalt materials can be recycled using cold, warm or hot production methods, and the 

addition of new binder, asphalt mixture, water or mineral aggregate in the old asphalt can be 

performed either in the plant or on site. Recycled asphalt can be used for wearing courses, 

base courses or road bases. Cold and warm methods are mainly intended for roads with low 

or medium traffic volumes, while hot recycling is also suitable for roads with high traffic 

volumes (Jacobson, 2002).  

 

From the sustainability point of view, recycling reuses the existing aggregates and RAP 

binder, thus reducing the need for new materials and the energy it takes to produce them. In 

addition, recycling can reduce transportation costs and expenses associated with landfilling 

or storage of the milled material. There are additional environmental and societal benefits of 

reusing existing resources that are difficult to quantify (McDaniel, Kowalski, & Shah, 2012). 

 

2.2.1 RAP Content in Bituminous Mixtures 

Under the current economy, there is an increased interest in using higher amounts of RAP in 

more applications. As a result, some states are considering expanding and revising their 

specifications regarding RAP usage. Recently, for example, the Indiana DOT began to allow 

the use of RAP in surface mixes. The initial allowance for RAP in surface courses permitted 

the use of 15% RAP in surface courses on roadways with a design traffic level of less than 

3,000,000 equivalent standard axle loads (ESALs). In 2010, the specifications were expanded 

to allow up to 15% by weight of the total mixture for higher traffic categories (over 

3,000,000 ESALs). Finally, in the 2012 specifications, the allowable RAP content is 

expressed in terms of binder replacement (percent of recycled binder as a percentage of total 

binder in the mix); up to 40% of the total binder can now come from recycled materials 
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(RAP and shingles) for traffic volumes below 3,000,000 ESALs and 15% for traffic volumes 

greater than 3,000,000 (McDaniel et al., 2012).  

 

Federal Highway Administration (FHWA) was conducted the survey in 2011; the majority of 

State highway agencies (more than 40) allow more than 30 percent RAP in the typical hot 

mix asphalt (HMA) mixture. Considering the cost of pavement materials, it was found that 

the incorporation of RAP into HMA pavement provides a saving ranging from 14 to 34 

percent when the RAP content varied between 20 to 50 percent (Kandhal & Mallick, 1998).  

 

According to Federation of Canadian Municipalities (FCM), (2005), the maximum amount of 

RAP permitted in hot mix asphalt (HMA) varies somewhat from province to province in 

Canada. All provinces except Nova Scotia and Prince Edward Island permit RAP to be use in 

HMA, provided that testing is completed to ensure the quality (penetration/viscosity, or 

performance grading for Superpave mixture or the asphalt cement) and uniformity of the 

RAP source and that the reclaimed hot mix (RHM) meets all specification requirement for 

asphalt concrete. Ontario (Ontario Provincial Standards Specifications (OPSS) 1150) limits 

the amount of RAP in surface course HMA to 15 percent maximum with 30 percent in 

conventional binder course mixes and up to 50 percent in certain situations subject to 

confirmatory testing. Newfoundland allows 10 percent RAP in leveling course only, whereas 

Québec accepts up to 15 percent RAP in RHM. Alberta and New Brunswick permit higher 

RAP addition levels (30 percent and 40 percent (±5 percent), respectively). British Columbia, 

Saskatchewan and Manitoba do not limit the amount of RAP that can be added to HMA. 

 

According to the FHWA RAP Expert Task Group (n.d.) the following table 2.1 provides a 

list of the locations of high RAP field projects in HMA, the percent RAP used in each project 

and the dates of construction held in United States of America (USA). In cold and warm 

recycling, the proportion of recycled asphalt may be up to 100%, while in heated plant 

recycling the proportion may be 10-40% (Jacobson, 2002). 
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Table 2.1 High RAP field projects 

 
Location  % RAP Date of Construction 

North Carolina 40% September 20017 

South Carolina 30 and 50% October 2007 

Wisconsin 25% November 2007 

Florida 45% December 2007 

Kansas 30 to 40% May 2008 

Delaware 35% Summer 2008 

Minnesota (MnROAD) 30% 2008 

Illinois 10 to 50% allowed 2008 

 

 

2.2.2 Performance of RAP in Bituminous Mixtures 

Many studies are available on performance evaluation with conventional asphalt mixes (mix 

without RAP). Some studies indicates the performance of pavements with properly prepared 

recycled asphalt in terms of fatigue, rutting, thermal resistance and durability proved to be 

satisfactory (Imad L., Elseifi. Mostafa, 2007). Some researchers found that recycled mixes 

have good resistance to moisture damage at low RAP percentages whereas there is no 

significant increase in resistance to moisture damage with increase in RAP percentage in mix 

(Huang, Shu, & Vukosavljevic, 2011) and some studies state that resistance to moisture 

damage significantly decreases with presence of RAP (Huang et al., 2011). Some researchers 

found that presence of RAP increases the stiffness of the mix (Aravind & Das, 2007) and 

decreases in some studies(Huang et al., 2011). Similarly fatigue life increases (Aravind & 

Das, 2007) and decreases (Rebbechi & Green, 2005) and vary according to the temperature 

(Puttagunta, Oloo, & Bergan, 1997) Tensile strength increases (Puttagunta et al. 1997 & 

Watson et al. 2008) or similar to virgin mixes (Huang et al., 2011). Some researcher’s state 

that based on the laboratory testing work carried out on virgin mixes and mixes with 20 % 

RAP, it was found that addition of RAP improves all the properties of the bituminous mixes. 
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This indicates that mixes with 20% RAP would perform better than the virgin mixes under 

similar conditions (Pradyumna, Mittal, & Jain, 2013). 

 

2.2.3 Uses of RAP in bituminous mixtures  

From an environmental perspective, it is essential that construction materials, such as RAP, 

be recycled where possible. The use of RAP will serve as a supplement to natural aggregates 

in order to conserve natural resources and keep asphaltic concrete out of landfills (Kandhal & 

Mallick, 1998). To accomplish this, almost all agencies allow the use of reclaimed pavement 

materials in some form.   

 

2.3 Mix Design for Cold Recycling Mixtures – A Review 

All over the world increase in use of Bitumen Stabilized Material(s) (BSM) mixtures in road 

construction and rehabilitation has created a need for sound guidelines to be established for 

the laboratory mix design procedures for Cold Recycled bituminous Mixtures (CRM). 

 

2.3.1 Role of Bitumen Stabilized Materials in CRM 

From the early 1960s, Bowering (1970); Martin (1976); Acott (1979); Lee (1981); Ruckel et 

al. (1983) studied the expanded (foamed) asphalt mixtures using virgin materials. Since then, 

foamed asphalt has begun to be implemented in the FDR process of old asphalt pavement. 

Other researchers, Hicks (1988); Wood (1982); Al (1983); T. & Wood (1983);  v W. & 

Wood (1983); and Al (1985) have been researched the design procedure and the performance 

of FDR foam. Maccarrone et al. (1994) introduced a FDR-foam process called FOAMSTAB 

with advantages such as a cost effective, good fatigue property and rapid curing. In 2002, 

foamed asphalt was used as a stabilizing agent in full depth reclamation of Route 8 in 

Belgrade (Marquis, Bradbury, & Colson, 2003). However, there have been limited CIR 

projects were constructed using foamed asphalt as a stabilizing agent. 
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In the 1990s, due to the advancement of CIR methods and equipment, the CIR technique has 

been implemented more frequently using a foamed asphalt process. However, there is 

currently no nationally accepted method for CIR-emulsion mix design process (ARRA, 

2001) and CIR-foam projects (Y. Kim & Lee, 2012). AIPCR and PIARC (2002) published a 

draft report on CIR of pavements with emulsion (CIR emulsion) or foamed bitumen (CIR 

foam). However, this report was not intended as a specification; it rather provided 

information on the applications in different countries. The western United States uses 

emulsified recycling agents proposed by the Pacific Coast User-Producer Group, among 

other types of binders according to AASHTO method T-59 as shown in Table 2.2 (Pacific 

Coast User-Producer Conference, 1989). Cutbacks and soft asphalt cements are used by some 

agencies (L. E. Wood, White, & Nelson, 1988). The type and amount of diluent should be 

known by the engineer before any of these liquid asphalts is used (Epps & Allen, 1990).  

 

The amount of BSM places a major role in mix design for CRM, generally the percent of 

binder for CIR ranges from 0.5% to 3.0% emulsion, with 0.5% to 1.8% suggested by Oregon 

(Allen, 1988; Allen, Nelson, Thirston, Wilson, & Boyle, 1986)  and 1.2 to 1.5 percent in 

Pennsylvania (Jester, 1987) as starting points for mixture design. Similarly, quantities in the 

range from 0.5 to 1.5 percent are used for the partial-depth operations, whereas qualities in 

the range from 1.5 to 3 percent are used for the full-depth operations (Epps & Allen, 1990). 

Another researcher states that, the typical emulsion content for standard CIR ranges from 1.5 

to 2.2 percent (Croteau & Lee, 1997), 0.5 to 2.5 percent (Murphy & Emery, 1996),  and 1.0 

to 3.0 percent for CIR-foam (Kim, Lee, & Heitzman, 2007). 

 

The addition of virgin aggregate recycled pavement appears to be a widespread standard 

practice. The reasons cited by different agencies (Epps & Allen, 1990) for adding virgin 

aggregate include providing additional thickness, correcting gradation (The Asphalt Institute, 

1983), and providing for acceptance of additional binder or increase the stability of the 

recycled mix (Recycling Manual, 1982), sometimes may be to modify RAP characteristics 

(Widger. A., 2012). The amount of new aggregate ranges from 15 to 50 percent ( Jester, R., 

1987, Wood et al. 1988) and 27 to 28 percent for CRM (Yao, Li, Xie, Dan, & Yang, 2011). It 
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has been shown that, for CIR processes, the addition of 20 to 25 percent virgin aggregate 

decreases porosity and improves stability (Murphy & Emery, 1996). Scholz et al. (1990) 

states that new aggregate typically not used on Oregon projects and not directly considered in 

the Oregon method of mixture design. The addition of new aggregates may not be necessary 

in some projects(Jahren & Chen, 2007) in other hand, based on the screening results of the 

RAP, new aggregates need to be added to CRM (Yao et al., 2011). 

 

Table 2.2 Emulsified recycling agents of the Pacific Coast User-Producer Group  
(According to AASHTO method T-59) 

 
Test ID Test ERA 5 ERA 25 ERA 75 CMS-2RA HFE-200 
T-59 Viscosity at 

77⁰F 
15-100 15-100 15-100 - - 

T-59 Viscosity at 
77⁰F 

- - - 50-450 50 min 

T-59 Sieve 0.1 
max 

0.1 max 0.1 max 0.1 max 0.1 max 

T-59 One-day 
storage 
stability (%) 

1 max 1 max 1 max 1 max 1 max 

T-59 Residue at 
500⁰F (%) 

60 min 60 min 60 min 60 min 60 min 

T-59 Oil Distillate 
(%) 

- - - 5-15 0-7 

T-59 Charge + Pass + Pass + Pass + Pass - Pass 
 Residue 

Tests 
 

T-202 Viscosity at 
60⁰C 

200-
800 

1,000-
4,000 

1,000-
4,000 

- - 

T-49 Pen - - - 100-250 200-350 
ASTM 
D4124 

Saturate (%) 30 max 30 max 30 max - - 

T-50 Float Sec 
140⁰F 

- - - - 1200 min 

T-44 Solubility 
(%) 

97.5 
min 

97.5 
min 

97.5 
min 

97.5 min 97.5 min 

T-240 RFTO Ratio 2.5 
max 

2.5 max 2.5 max - - 
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2.3.2 Emerging Mix Design for CRM 

The method of mixture design based on the Hveem stabilometer, Marshall stability test 

results, air voids, resilient modulus test, most of the times based on experiences, sometimes 

field trials, and visual condition of samples to establish the optimum binder content. A 

standard national method is not available; however, certain basic steps are normally included 

in the mix design process. These include (Epps & Allen, 1990):    

 

Various steps involved in Mix design: 

• Obtaining representative field samples from the pavement or from stockpiles of 

reclaimed materials; 

• Processing of field samples for use in mix design; 

• Evaluation of RAP: Asphalt content, Asphalt physical properties (Penetration, viscosity), 

Aggregate gradation; 

• Selection of amount and gradation of new aggregate;  

• Estimate the asphalt demand; 

• Selection of type and amount of recycling agent; 

• Mixture, compaction, and testing of trail mixture, Initial cure properties, Final cure 

properties, Water sensitivity; 

• Establishment job mix formula; 

• Adjustment in filed. 

 

Similarly, Figure 2.1 shows the key steps in the mix design of an asphalt mixture (Mallick & 

Tahar, 2013). Recently, many mix design methods have emerged in an effort to improve the 

CIR process as a viable method for pavement rehabilitation.  

 

Methods proposed by different agencies and groups that appear to have the most developed 

mix design procedures for CIR (Epps & Allen, 1990): 

• California Test 378; 
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• Chevron USA, INC. Mix Design Method; 

• Corps of Engineers; 

• Nevada; 

• Oregon Mix Design; 

• New Mexico; 

• Pennsylvania Mix Design Method. 

 

 

Figure 2-1 key steps in the asphalt mix design  

Taken from (Mallick & Tahar, 2013) 



20 

 

•  Purdue; 

• Texas; 

• Indiana (Tia et al., 1983); 

• The United Kingdom (Stock, A. F., 1987);  

• Ontario (Emery, 1993);  

• Israel (Cohen, Sidess, & Zoltan, 1989). 

 

Appendix I summaries the mix design procedures, and the sampling and testing techniques 

used by some of these organizations (Oqueli, 1997). The methods are generally very similar. 

All but one uses the Marshall and Hveem tests. Some use kneading or gyratory compaction, 

while others use the Marshall method. The main differences are in the addition of new 

aggregate, and in curing time and temperatures. 

 

The Asphalt Institute has recommended the modified Marshall Mix Design procedure for the 

design of CIR mixes (ASTM D - 1559). Such a design initially involves obtaining samples of 

the candidate pavement to determine the gradation of the aggregate, the asphalt content, and 

the penetration and viscosity of the asphalt binder (Kearney & Huffman, 1999). American 

Association of State Highway and Transportation Officials/the Associated General 

Contractors of America/American Road and Transportation Builders Association (AASHTO-

AGC-ARTBA) Joint Committee Task Force 38 Report (AASHTO Task Force No.38, 1998) 

contain modified mix design procedures for both Marshall (ASTM D- 1559 or AASHTO T-

245) and Hveem (ASTM D-1560 and D-1561 or AASHTO T-246 and T-247) test methods. 

There is also research underway to adopt Superpave technology to CIR mixtures (ARRA, 

2001). 

 

CIR mix design serves as an initial job mix formula, the same as in hot mix asphalt (HMA) 

construction. Adjustments are generally required for workability, coating, and stability 

(ARRA, 2001). Most mix design methods for CIR mixes involve the application of asphalt 

emulsions, emulsified recycling agents or cutbacks as the recycling additive although foamed 
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asphalt and chemical recycling additives have also been used (Acott, 1979b; Mallick & 

Tahar, 2013). 

 

Three basic theories have been proposed for designing CIR mixes with these recycling 

additives (AASHTO Task Force No.38, 1998). The first theory assumes that the RAP will act 

as a black aggregate and the mix design consists of determining a recycling additive content 

to coat the aggregate. The second theory evaluates the physical and chemical characteristics 

of the recovered asphalt binder and adds a recycling agent to restore the asphalt binder to its 

original consistency. The assumption is that complete softening of the old asphalt binder 

occurs. The third and most prevalent theory is a combination of the first two, where some 

softening of the old asphalt binder occurs. This theory is referred to as the effective asphalt 

theory, where the recycling additive and the softened aged asphalt binder form an effective 

asphalt layer. The degree of softening is related to the properties of the old asphalt binder, 

recycling additive, and environmental conditions. Because the degree of softening is difficult 

to quantify, it is recommended that mechanical tests on the CIR mix be a part of all mix 

designs (Engelbrecht, Roberts, & Kennedy, 1985; Y. Kim, Lee, & Heitzman, 2008). 

 

2.4 Curing Mechanism of CRM 

This section is explores some of the few critical findings relative to the curing as published 

by various researchers around the globe. Due to the vast amount of challenges on curing of 

bitumen stabilized material (BSM)‘s, focus has been applied to aspects that are widely 

accepted as important parameters to investigate when addressing curing. 

 

The Cold In-place Recycling (CIR) pavement design process involves testing of 

representative specimens of foamed and emulsified treated materials as means to evaluate 

pavement performance over time. To adequately acquire representative specimens, it is 

necessary to condition the materials in a process called Curing (K. J. Jenkins & Moloto, 

2008). The Asphalt Institute (1997) reported that inadequate curing can produce high 

retained moisture contents that would increase the possibility of asphalt stripping and slow 
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the rate of strength development after an HMA overlay is placed. The curing process can be 

fairly rapid in favorable weather conditions, but high humidity, low temperature, or rainfall 

soon after CIR placement can increase the curing period significantly. 

 

The Association Mondiale de la Route (AIPCR) and World Road Association (PIARC) 

(2002) recommend that the application of the HMA overlay should be delayed until the 

residual water has largely evaporated. This duration should not only depend on the climatic 

conditions following CIR construction, but also on the traffic level that the CIR layer could 

support after the completion of pavement construction. Figure 2.2 represent the moisture 

condition of CIR pavement after surfacing.   

 

 

Figure 2-2 Cold in-place recycling pavements in the field 

 Taken from Kim et al (2011) 

 

Although curing procedures have been adopted in many countries, the curing protocols are 

varied and an accepted procedure is currently not available.  

 

The lack of representation is due to complex process of curing simulation, as emphasized by 

the following challenges (K. J. Jenkins & Moloto, 2008): 

 

The complex composition and types of cold mixes to be conditioned in terms of: 

• binder type and content; 

• active filler type and content; 



23 

• aggregate grading and type (porosity, parent rock, petrography); 

• binder dispersion within the mix; 

• moisture content after compaction; 

• voids in the mix and particle orientation (linked to compaction method); 

• climate in the area of application (temperature, evaporation and relative humidity 

conditions); 

• mechanical properties; 

• time duration since construction that is being simulated; 

• service environment: Traffic effects and position of cold mix layer in the pavement 

structure.  

 

2.4.1 Overview on Curing Procedures of CRM 

Following recent research, a certain time period is necessary to allow the recycled mixture to 

cure and build up some internal cohesion before being covered with a wearing course 

(AASHTO Task Force No.38, 1998; ARRA, 2001; Bergeson & Barnes, 1998). As a result, 

curing is a process whereby bitumen stabilized materials gain strength over time 

accompanied by a reduction in the moisture content. Current practices for accelerated 

laboratory curing are extremely vast and tend to vary significantly between diverse 

institutions.  

 

In the aim to address the problem, Marais & Tait (1989) recognized that the material 

properties of emulsion mixes changed seasonally with significant variation in the first 6 

months to 2 years. Another researcher Leech (1994) conducted different studies by Chevron 

Research Company in California concluded that full curing of cold bituminous mixtures on 

site may occur between 2 and 24 months depending on the weather conditions. Similarly, a 

time period of 14 days is typically specified by Croteau & Lee (1997); Committee & No. 

(1998); Kandhal & Mallick (1998). 
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The most significant contributions relative to accelerated curing were made by Lee (1981) 

when he highlighted the following key points: 

 

a) A recommendation that due to the effect of curing on the strength development of foamed 

mixes, mix design of foamed mixes should be locally based, using information obtained 

from trial sections; 

b) Both curing temperature and the presence or absence of a mould during curing have a 

direct impact on moisture content of the specimen, which invariable affects mix behavior, 

particularly the Marshall Stability values. 

 

Lee highlighted the importance of moisture considerations when selecting a curing 

procedure. Most researchers and mix designers in the period up to the year 2000 had ignored 

the importance of moisture content of cold mix during curing simulations. Residual moisture 

contents of less than 0.5% after oven curing at 60ºC were common. Lee’s findings mainly 

highlighted the need to link laboratory curing procedure with a mix property. Consequently, 

the effects of curing are material property dependent. 

 

The 1999 to 2004 era marked an improvement towards curing procedures. The noticeable 

curing improvements were mainly driven by CIPR projects including the South African 

Bitumen Association (Sabita), Germany, USA and Europe. Following Lee’s findings, an 

improvement towards curing temperatures of cold recycled mixes followed, with 

temperatures of 60ºC being considered too high. The 60ºC curing temperature is above the 

softening point temperature of the base binder and may cause visual redistribution and 

dispersion of the bitumen. 

  

Subsequently, the most noticeable improvement followed when a target moisture content 

equivalent to field equilibrium moisture content (EMC) of the cold mix after curing for a 

specified period was established (KJ Jenkins, 2000). A summary of the revised curing 

protocols is presented in Table 2.3.  
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The influence of active fillers was incorporated in the (SABITA, 1999) guideline where 

stipulations were made for non-elevated temperature curing. In the case of using cement for 

emulsion mixes, a 7 day cure at ambient temperature was proposed whilst for no cement 

mixes a 28 day ambient temperature cure was suggested. In Europe, both Brown & Needham 

(2000) particularly investigated the influence of cement in emulsion mixes. Findings from 

their research concluded that, although cement dramatically increases mix stiffness, it does 

not necessarily repel moisture from the mix.  

 

In 2003, Thanaya (2003) conducted laboratory curing of the cold mix was carried out in an 

oven set at 40°C. Full curing conditions were achieved when the specimens, following 

repeated weighing, maintained a constant mass at 40°C. Typically, full curing conditions 

were achieved within 18–21 days for samples with air void values in the range 8–9%.  
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Table 2.3 Amended Curing Procedures for Cold Mixes from 1999 to 2004 
 

Curing Method Equivalent Field Cure Reference 

24 hrs @ ambient + 48 hrs @ 
40ºC (OMC<8%) 

45 hrs @ 60ºC (OMC>8%) 

Emulsion mixes, medium term 
(1 year field cure?) 

 

(SABITA, 1999) 

7 days @ ambient & 28 days 
@ ambient 

Emulsion + cement 
Emulsion + no cement 

(SABITA, 1999) 

24hrs @ ambient in mould + 3 
days @ 40ºC (sealed)  

6 months field cure (foam) (Asphalt Academy, 2003) 

24 hrs @ 40ºC (sealed) + 48 
hrs @ 40ºC ambient 

(unsealed) 

Medium term cure (foam and 
emulsion) 

(Robroch S., 2002) 

6 hrs @ 60°C (hot summer 
day) +24 hrs @ 25°C (cool 

summer night) 

short-term and long-term 
curing, respectively 

(K. W. Lee, Brayton, & 
Harrington, 2003) 

24 hrs @ ambient 25ºC 
(unsealed) + 48 hrs @ 40ºC 
(sealed) 

Long term foamed mix cure (1 
to 2 years) 

(Houston & Long, 2004) 

24 hrs @ ambient (unsealed) + 
48 hrs @ 40ºC 

(sealed) + 3 hrs cooling @ 
ambient (unsealed) 

Medium term cure (foam and 
emulsion) 

(Wirtgen, 2004) 
 

20 hrs @ 30ºC (unsealed) + 
2x24 hrs @ 40ºC 

(sealed – change bag midway) 

Medium term cure (foam and 
emulsion) 

Stellenbosch University 
(2004) 

 

 

 As observed in Table 2.3, almost curing temperatures of 40ºC were commonly used as 

means to retain field moisture conditions at the end of curing. Low moisture content may be 

a criterion to evaluate the curing of the mixture. However, such a criterion may be 

misleading because the moisture content is increased by rain. The material may have built up 

adequate internal cohesion, but rainfalls may have maintained the moisture content at a high 

level, incorrectly suggesting that the mixture has not sufficiently cured. As a rule of thumb, 

whenever a complete core can be extracted from the mat relatively easily, the material has 

built up enough internal cohesion to be covered (AASHTO Task Force No.38, 1998; ARRA, 
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2001; Kandhal & Mallick, 1998). Kim et al. (2008) prepared the same CIR-foam specimens 

for simple performance test and cured in the oven at 40°C for three days. The cured 

specimens were allowed to cool to a room temperature for 24 hours before testing. According 

to the test method LC 26-002, an acceptable mix, by Transport Quebec’s standards, has a dry 

Marshall stability of at least 8,000N and a retained stability of at least 60 percent. In this 

study, all mixes meet those requirements after 2 days of curing except the CIR without 

cement. The CIR mix without cement was still not acceptable after 5 days. However, the 

FDR mixes with foamed asphalt failed to meet the requirements at five days, except for the 

mix with cement (Lachance, Carter, & Tate, 2012). 

 

2.4.2 Recent Developments in Curing Procedure of CRM with Emulsion 

Following recent trends in various curing procedures, the need for unified curing procedure 

method became increasingly apparent. Sebaaly et al. (2004) recommended that the design 

process should evaluate the early stability of the designed CIR-emulsion mixture by using 

Hveem stability and resilient modulus.  

 

They evaluated the CIR-emulsion mixtures at three different curing stages: (1) initial curing; 

(2) final curing; and (3) long-term curing as follows:  

• initial curing: Specimens are cured in the mold at 25°C for 15 h; 

• final curing: Specimens are extruded out of the mold and are cured in an oven at 60°C for 

three days; 

• long-term curing: Specimens are extruded out of the mold and cured in an oven at 60°C 

for 30 days. 

 

There exists some variation in the curing temperature and curing time adopted for CIR-

emulsion mix design processes in the laboratory (K. W. Lee, Brayton, & Huston, 2002). 

Cross (2003) adopted two stages of curing for CIR-emulsion mixtures: (1) an initial curing 

stage; and (2) a final curing stage. Initially, samples were cured for 0 h, 0.5 h, 1 h, and 2 h 

after mixing. After the initial curing time, they were compacted by using a Superpave 
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gyratory compactor. The compacted specimens were then extracted from the mold and cured 

in a 60°C oven for 48 h. As mentioned in Table 2.4., Lee et al. (2003) recommended curing 

periods of 6 and 24 h to simulate short-term and long-term curing, respectively. Curing 

temperatures of 60°C and 25°C were adopted to represent typical pavement temperatures 

during a hot summer day and a cool summer night, respectively. Because only the surface of 

CIR pavement is directly exposed to air in the field, Batista & Antunes (2003) covered all but 

the tops of some CIR-emulsion specimens with a plastic film to allow water to evaporate 

through the top surface only. They reported that water content evolution in the field would be 

between laboratory specimens with and without plastic films. They obtained cores from the 

site after one year of traffic loading and tested them for resilient modulus. The resilient 

modulus of CIR-emulsion specimens cured at room temperature for four months (two months 

with a lateral filmstrip and two months without it) exhibited resilient modulus between 2,000 

MPa and 2,500 MPa, which were similar to those of the cores. The specimens cured in the 

oven at 60°C for three days, however, had lower resilient modulus than the cores. On the 

basis of the limited laboratory test results, Carter et al. (2007) concluded that accelerated 

curing at 60°C in an oven for 24 hours seems to be sufficient to achieve a consistent Marshall 

stability. CIR materials show good rutting and thermal cracking resistance when cured in the 

oven at 60°C for 48 hours. They reported that overall performance of suggested accelerated 

curing procedure showed increase in mechanical properties of about 10 to 15 percent. Carter 

et al. (2008) recognized that for less than 6 hours of air cure for CIR-emulsion samples with 

cement, the ruts are too deep. If those results were representative of field results, this would 

mean that a minimum of 6 hours curing period would be needed before opening it to traffic. 

Feisthauer et al. (2013) reported that the all specimens were oven cured at 38°C for 24 hours. 

They did this way in order to lose water and thus achieve the early-life field like conditions 

after the curing and hardening process subsequent to placement and compaction. 

  

Finally, the curing process can be fairly rapid in favorable weather conditions, but high 

humidity, low temperature, or rainfall soon after CIR placement can increase the curing 

period significantly(Y. Kim, Im, & Lee, 2011). As mentioned earlier the curing duration 

should not only depend on the climatic conditions following CIR construction, but also on 
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the traffic level that the CIR layer could support after the completion of pavement 

construction. 

 

2.4.3 Need for accelerated curing  

According to Serfass et al. (2004), in the field, the cold mixes reach their mature level of 

properties only after a period of time. In temperate climate and under medium traffic, at least 

one complete cycle of seasons is necessary for the mix to attain such stable condition. The 

curing time may be longer if the climate is cooler or more humid, the traffic lighter - and 

conversely. Evaluating cured cold mixes in the laboratory is clearly necessary, but 

reproducing exactly field curing conditions is too complicated and, above all, time-

consuming. An accelerated curing method is necessary.  

 

The requirements are: 

• The curing procedure(s) should be as short as possible; 

• It must produce materials in a state as close as possible to their in-place mature state; 

• It must not cause any significant ageing of the bituminous binder; 

• The laboratory equipment should not be too sophisticated. 

 

Mechanisms of curing relate to well defined factors governing curing of bitumen stabilized 

materials(K. J. Jenkins & Moloto, 2008). As noted in this portion of literature review, most 

factors driving curing are usually material specific and environmentally linked.  
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3.1 Abstract 

In Quebec, for more than 20 years, cold in-place recycling (CIR) and full-depth reclamation 

(FDR) have been reliable rehabilitation techniques; restoring pavement condition at an 

affordable cost with a lower footprint on the environment. Experience reveals that CIR and 

FDR interventions effectively address the issues of reflective cracking and respect Quebec’s 

Ministry of transportation rutting threshold values. However, despite their commendable 

performance in the field, the cold recycled emulsified asphalt materials (CRM) has yet to be 

adequately characterized with respect to their rheological properties. This study was 

undertaken to evaluate the rheological behavior of the CRM with four different combinations 

of RAP (50, 75, 85, and 100%). The scope of work for this study consisted of preparing the 

laboratory compacted CRM specimens, determining the complex modulus (E*) of compacted 

specimens at various testing temperatures and loading frequencies, analyzing the 

experimental data with the help of 2S2P1D (2S: two springs, 2P: two parabolic elements, 1D: 

one dashpot) model and finally, validating the results with pavement design. It was 

concluded that 100% RAP mixture exhibits extremely high stiffness value at high frequency 

and low temperature. The results revealed that all four mixtures respect the time–temperature 

superposition principle with respect to the complex modulus. From a pavement design 

perspective, the moduli measured in this study do have a big impact. However, since 
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different pavement structure are achieved with those different materials, the stiffest material, 

the CIR, ended up giving the least performant structure. 

 

3.2 Introduction 

When road networks were rapidly expanding, the initial construction cost was the most 

important issue, with little or no attention being paid to the ongoing maintenance costs. Since 

funding for preventive maintenance, preservation, rehabilitation, and reconstruction of 

roadways will have to compete with other demands on the public purse, innovation is 

required in order to do more with less. Asphalt recycling is one way of increasing the 

effectiveness of existing budgets in order to maintain, preserve, rehabilitate and reconstruct 

more miles of roadway for each dollar spent (ARRA, 2001).There are several methods to 

recycle asphalt pavements. All over the world, the experience and the choice of technology 

for In-place recycling vary broadly, mainly Cold in-place recycling (CIR), and Full-depth 

reclamation (FDR) with the addition of Bitumen Stabilized Materials (BSM) like foamed or 

emulsified asphalt. Because of the oil crisis of 1973, increased cost of materials like virgin 

aggregate, asphalt, etc., and a strong desire to preserve effective and sustainable roadway 

system have fueled a reviving of recycling existing pavement as a primary option. 

 

CIR is a recycling method in which only the existing bituminous materials are recycled.  In 

this method, bitumen is added as an emulsion or foamed, and makes a good base material 

that needs to be covered with a layer of hot mix asphalt (HMA) or a surface treatment.  

 

CIR is normally performed at a depth of 50mm to 100mm, and it is more frequently used to 

create a base course, in most cases low-to-medium traffic volume highways (Carter, 

Feisthauer, Lacroix, & Perraton, 2010; Kandhal & Mallick, 1998; Salomon & Newcomb, 

2000). On the other hand, in FDR, both asphalt layer and part of the granular base are 

recycled at the same time and reconstructed with or without the addition of bitumen. As with 

CIR, FDR materials need to be covered. It is usually done for depth between 100 mm to 300 

mm (ARRA, 2001; Kandhal & Mallick, 1998). CIR and FDR do not have the same 
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mechanical properties because of the different percentages of the constituents in the mix 

design.  A classification was defined by The Bureau de Normalisation du Québec(BNQ) for 

the different mixes according to the amount of aggregate, reclaimed asphalt pavement (RAP), 

and cement as illustrated in the (Figure 3.1) (Carter et al., 2010).With that classification, CIR 

materials are called MR7, and FDR materials are identified as MR5. In this study, the 

Quebec classification for the Cold Recycled emulsified asphalt Materials (CRM) is used. 

 

 

Figure 3-1 Classification of recycled asphalt 
 materials in Quebec  

Taken from Carter et al. (2010) 
 

The structural performance of flexible pavement is significantly influenced by the modulus 

of the asphalt mix layers. Generally, the modulus is affected by the mixture characteristics, 

the rate of loading frequencies, and pavement temperature. It is also an important constituent 

in the mechanistic-empirical pavement design (Witczak & Fonseca, 1996).At early stages, 

the behavior of FDR materials is similar to a granular material, but after the curing phase 

ends, the behavior is close to a Hot Mix Asphalt (HMA). Therefore, it has been suggested 

that the FDR materials treated with asphalt binders like emulsion or foam have a time-

dependent behavior (Pérez et al., 2013). Hence they can be considered, at some point, to be 

in between a purely granular material and an HMA. In fact, the binder plays a major role in 

its structural stability, but the level of air voids are close to the one found in a granular 

material, around 14 percent (Carter et al., 2008). In addition, Carter et al. (2008) noticed 
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during their study that when a low amplitude compression (2.5 ߤdef) was applied to a CIR 

sample, the latter neither compressed nor bounced back into place, in other words, the 

material did not show purely elastic behavior.  

 

In addition, to decrease the environmental impact, a major advantage of CRM over hot 

recycling asphalt techniques is the possibility to reuse higher percentages of RAP. In hot-

recycling asphalt mixtures, a maximum of 40% RAP is generally accepted in the base layers, 

and this amount is reduced to 15% or even prohibited in the surface layers. In CRM, the 

usage of RAP can be as high as 100%, but this generally results in a loss of mechanical 

properties and durability (Stimilli et al., 2013). Carter et al. (2013) studied and modeled the 

complex modulus results, related to FDR (50 percent of RAP) and CIR mixes with respect to 

the 2S2P1D (2S: two Springs, 2P: two Parabolic elements, 1D: one Dashpot) model. Results 

obtained from the modeling fit on a single curve in the Cole-Cole plan, as predicted. The 

tested mixes were cured 2 weeks at room temperature (before coring) and an additional two 

weeks after coring. At 10⁰C, with respect to higher frequencies, dynamic modulus values 

were slightly above 10,000 MPa. Also, values of 4415, 3920  and 5565 MPa were obtained 

for three different FDR materials, respectively that were tested at 21⁰C and a frequency of 10 

Hz after a curing period of 72 hours at 40⁰C (May, 2008; T. Thomas & Kadrmas, 2003). 

Stimilli et al. (2013) mentioned that the values of the complex modulus norm measured at 

medium and high reduced frequencies (medium and low temperatures) showed that cold 

recycled materials stiffness was considerably lower compared with the conventional hot mix 

asphalt concrete, reflecting their higher air voids content. Gandi et al. (2015) stated that 

influence of confining pressure on the complex modulus of the FDR mixtures was mainly on 

the elastic component. Twagira et al. (2006), studied the flexural dynamic modulus tests were 

performed on bituminous materials containing 75 percent of RAP. This bending test on an 

asphalt beam gave a modulus of around 1,500 MPa at 20oC and 10 Hz. Godenzoni et al., 

(2015) investigated the cold-recycled mixtures, treated with 2% cement and 3.0% bituminous 

emulsion and different RAP (0%, 50%, and 80%) contents respectively. They concluded that, 

the complex modulus values, highlighted that mixtures containing RAP exhibited an asphalt-
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like behavior (i.e. frequency-dependent and thermo-dependent), whereas the frequency- and 

thermo-dependence of the mixture containing only virgin aggregate was almost negligible. 

 

3.3 Complex Modulus (E*)  

The complex modulus (E*) test is performed to determine the linear viscoelastic (LVE) 

behavior of asphalt mixtures at various temperatures and different frequencies with respect to 

a changing phase angle (߮) (Carter & Perraton, 2002; Di Benedetto & De La Roche, 1998). 

Hence, an asphalt base material, HMA or CRM treated with foam or emulsion, for example, 

with proven linear viscoelastic behavior, can be characterised by both the phase angle and the 

corresponding complex modulus. By definition, the complex modulus is the proportionality 

coefficient between the sinusoidal complex amplitude of the stress, for a given frequency ߱, 

and the sinusoidal amplitude of the strain ߝ (Carter & Perraton, 2002). 

 

The complex modulus is measured through a direct tension-compression test performed in a 

loading cell. It has the advantage of being a homogenous test, in other words, the loading 

applied to the tested sample, results in a uniform distribution of the stress through the entire 

material and therefore rheological properties can be deducted by measuring the strain. The 

results obtained from the test are analysed through the 2S2P1D model (Di Benedetto, Olard, 

Sauzéat, & Delaporte, 2004). It is extensively used to model the LVE unidimensional or 

tridimensional behavior of bituminous materials which includes binders, mastics, and mixes 

(Mangiafico et al., 2014; Olard & Di Benedetto, 2003; Tapsoba, Sauzéat, Di Benedetto, Baaj, 

& Ech, 2013). The 2S2P1D analytical expression of the Complex Young’s Modulus, at a 

specific temperature, as expressed by (Equation 3.1): 

 

(ɷ߬߱݅)∗ܧ                      = ଴ܧ    +  ா ି  ாబଵ  ା ఋ(௜ɷఠఛ)షೖ   ା  (௜ɷఠఛ)ష೓  ା  (௜ɷఠఉఛ)షభ                    (3.1)    

Where, 

 

• ݅ : complex number defined by ݅2  =  -1; 

• ɷ : The angular frequency, ɷ =  2π݂ (f is the frequency); 
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• h, k: Parameters (constants) parabolic elements of the model (0 < k < h < 1); 

• δ  :        dimensionless constant; 

• E0 :  the static modulus when (ω→ 0); 

• E∞ : the glassy modulus when (ω→∞) ; 

• β:  Parameter linked with , the Newtonian viscosity of the dashpot,           = (Eஶ − E଴)ߚτ When ω→ 0. 

• τ୉ and τ୴are characteristic time values, which are the only parameters dependent on the 

temperature, and have a similar evolution as expressed in (Equation 3.2): 

 

                                                      τ୉(ܶ)  =   ்ܽ(ܶ)   ×    τ଴୉                                                    (3.2) 

 

Where, aTref (T) is the shift factor at temperature T and τ୉ = τ଴୉ at reference temperature Tref. 

Seven constants (E00, E0, δ, k, h, β and τ଴୉) are required to completely characterise the linear 

viscoelastic properties of the tested material at a given temperature. The evolutions of τ୉ 

were approximated by the William-Landel-Ferry (WLF) model (Ferry, 1980) (Equation 3.3). τ଴୉  was determined at the chosen reference temperature Tref. When the temperature effect is 

considered, the number of constants becomes nine, including the two WLF constants (C1 and 

C2 calculated at the reference temperature). 

                                                       log(்ܽ)  =   ି ஼భ൫் ି ்ೝ೐೑൯஼మ  ା ்ି்ೝ೐೑                                                     (3.3) 

 

If the material has linear viscoelastic behavior, as anticipated, all the results fit on a single 

curve in the Cole-Cole plan of the model. Also, for a given temperature, known as the 

reference temperature, with considerations to the principle of time and temperature 

equivalency, master curves are obtained from the test results and highlight the evolution of 

the dynamic modulus with respect to a constant reference temperature and a changing 

frequency. 
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3.4 Pavement design in Quebec  

In Québec, flexible pavement design is mainly done with the CHAUSSÉE 2 program, which 

is a modified version of the American Association of State Highway and Transportation 

Officials (AASHTO) 1993 method (Carter et al., 2008). This program uses AASHTO 

structural design equations, but frost protection variables were added in order to have a 

pavement that will resist the particular climatic conditions of Québec. 

 

In CHAUSSÉE 2, default values of structural coefficients for commonly used pavement 

materials can be used. Those structural coefficients were back calculated from Falling 

Weight Deflectometer (FWD) results obtained in the field. The only two treated recycled 

materials that are available are the MR5 (50% of RAP, 50% of VA) (FDR) with or without 

cement, and the CIR with emulsion and cement. MR5 is a cold recycled material containing 

50 percent of milled asphalt and 50 percent of reused aggregate base. 

 

In most cases, MR7 (100% of RAP) (CIR) is a 100 mm thick base layer covered with 50 mm 

of normal HMA. There is no real structural calculation done in order to evaluate the traffic 

that new structure will withstand; it’s more of an experience based design than a calculated 

design. 

 

3.5 Objectives 

The main objectives of the present study are:  

• to evaluate the rheological behavior of the cold recycled emulsified asphalt materials 

(CRM) with four different percentages of RAP (50%, 75%, 85%, and 100%); 

• to evaluate the impact of the measured modulus on pavement design. 

 

3.6 Scope  

The scope of work for this study consisted of preparing the laboratory compacted CRM 

specimens, determining the complex modulus (E*) of compacted specimens at various 



38 

 

testing temperatures and loading frequencies, analyzing the experimental data with the help 

of 2S2P1D model and finally validation with AASHTO Pavement design in Quebec province 

conditions. 

 

3.7 Test Plan  

The samples of CRM tested in this research were prepared in the laboratory using RAP, 

virgin aggregates (VA), asphalt emulsion, Portland cement, and water. To study the different 

combinations of cold recycled emulsified asphalt materials, the following four mixes were 

studied: MR5 (50% of RAP, 50% of VA); MR6 – 75% (75% of RAP, 25% of VA); MR6 – 

85% (85% of RAP, 15% of VA); and MR7 (100% of RAP). 

 

The RAP (0-10mm size) used in the laboratory study was obtained from a stockpile in the 

Montreal area and contained around 3 percent of binder measured in accordance with ASTM 

D6307-10, (2010). The RAP was homogenized and separated to ensure that all mixes had a 

similar gradation. The virgin aggregate was an MG20, which is the nominal maximum 

aggregate size (NMAS) of 20 mm, commonly used as a base material in the construction of 

flexible pavements in Quebec. The mix design was done in according to MTQ’s method LC 

26-002 (MTQ, 2001). Samples were compacted using a Superpave Gyratory Compactor 

(SGC) with the target air void content of 13 percent ±1 percent. After compaction, specimens 

were extracted from the mould and cured for 10 days at 38 ± 2°C. At the end of the curing 

phase, samples of 75 mm diameter were cored in the thickness of the specimen’s 

perpendicular to the top surface of the compaction, and saw cut to a length of 120 mm (if 

required). The gradations and other properties of the mixes used in the tests are summarized 

in (Table 3.1). Asphalt content is kept constant while ensuring an almost constant RAP 

gradation across all the samples.  

 

3.8 Complex Modulus Testing 

The main objective of this research was to investigate and compare the four different 

percentages of RAP with CRM. The complex modulus was evaluated using haversine 



39 

compression loading (stress controlled), with a servo-hydraulic testing system (MTS 810, 

TestStar II) having a maximum load capacity of 100 kN. The testing setup was equipped with 

three extensometers, placed 120⁰ apart (Figure 3.2), with a measuring base of 50 mm and 

temperature sensors to monitor strain and temperature variations. 

 

 

Figure 3-2 Complex modulus test setup 

 

The tests were performed at six different temperatures and (-25⁰C,-15⁰C,-5⁰C, 5⁰C, 15⁰C, 

and 25⁰C in that order) and at each temperature, a frequency sweep of six different 

frequencies starting with the slowest one (0.01, 0.03, 0.10, 0.30, 1.00, and 3.00 Hz) was 

done. For each loading frequency and temperature, the stress level was selected in order to 

obtain steady-state strain amplitude ranging from 30 to 50 microstrain in compression only. 

The number of cycles used for the calculation of the modulus and the phase angle changes 

according to the frequency. A conditioning period of 6 hours was applied before loading after 

each temperature change. 
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Table 3.1 Mix Gradation and mix properties 

 
 % of Passing sieve 

Sieve Size (mm) MR 7 MR6-85% MR6-75% MR5 

     

20 100 100 100 95 

14 100 98 97 89 

10 99 96 94 74 

5 70 67 66 48 

2.5 48 46 45 29 

1.25 33 32 31 23 

0.630 20 20 20 12 

0.315 9.8 11 11 6.4 

0.16 4.8 6.2 7.0 3.7 

0.080 3.2 4.2 5.0 2.3 

 

% of residual binder in RAP 3.0 

Asphalt Emulsion CSS1P (AC 

%) 

67.4 

Type of Compaction Superpave gyratory Compaction 

Curing Condition (days) 10 days at 38 ± 2°C  

Added AC (%) 1.8 1.8 1.8 1.8 

PCC (%) 1 1 1 1 

Water content 

(%) 

5 6.5 6.5 6.5 

Total AC (%) 4.8 4.3 4.0 3.3 

Gmm 2.531 2.484 2.491 2.535 

Gsb 2.167 2.213 2.260 2.311 

Va (%) 14.4 10.9 9.3 8.9 
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Note: Gmm=maximum theoretical specific gravity of mix; Gsb= bulk specific gravity of 

mix; Va= Air voids of the mix; AC=Asphalt Content; PCC=Portland Cement Content; 

CSS1P= Cationic Slow Setting 1 with Polymer. 

 

3.9 Results and Analysis 

This study is aimed at determining the influence of RAP content on the complex modulus of 

cold recycled emulsion treated asphalt materials with cement. This study was conducted in 

laboratory prepared samples with 6 different temperatures and 6 different frequencies as 

mentioned before.The results obtained from the laboratory investigation are analysed through 

the 2S2P1D rheological model.  

 

3.9.1 Master curve of the tested asphalt mixtures 

The complex modulus test results can be plotted a master curve. The master curves were 

plotted as a function of the equivalent frequency based on the assumption that the asphalt 

mixtures exhibit the Time–Temperature Superposition Principle (TTSP). Initially, the 

reference temperature is selected (Tref = 5⁰C), and then the data at different temperatures are 

shifted with respect to time in order to obtain a single smooth master curve. The shift factor 

at temperature T, named ்ܽ(ܶ), used for the construction of the master curve can be 

determined by means of Equation 3.3. However, both the master curve and the shift factor ்ܽ(ܶ) are needed for a complete depiction of the rate and temperature effects (Singh, 2011). 

In Figure 3.3, the master curves (complex modulus norm as a function of a frequency) of the 

four mixtures at a reference temperature (Tref = 5⁰C) are shown.  

 

In Figure 3.3, the top right portion of the |E*| master curves at higher frequency approaches 

asymptotically to a maximum value which describes a maximum stiffness value obtained 

with the MR7 asphalt mixtures. On the other hand, the bottom left apportion of the |E*| 

master curves at lower frequency approaches a minimum value, which describes a minimum 

stiffness value, corresponding to the MR5 asphalt mixtures. In addition to this, at a lower 
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frequency and higher temperature, the other two (MR6 - 75% and MR6 - 85%) mixtures 

exhibit the maximum stiffness value. The higher stiffness of MR7 at high frequency and low 

temperature may be due to the fact that it contains more RAP binder than the other mixes. 

This needs to be studied in more details since that mixture does not contain the maximum 

total binder content. At lower frequencies and higher temperatures, the stiffness value 

differences between MR7 and MR6 mixtures significantly increases, which possibly depends 

on the aggregate skeleton. Since the MR5 asphalt mixture has a slightly different gradation 

than the other mixes, the gradation could explain the difference in modulus value. 

 

 

Figure 3-3 |E*| Master curves of the tested asphalt mixtures at Tref = 5⁰C 

 

 

3.10 The Cole-Cole plane and Black Space diagram with 2S2P1D model 

The 2S2P1D model is generally used to describe the behavior of the asphalt mixtures as well 

as the binder behavior (Olard & Di Benedetto, 2003). The complex modulus tests were 

performed on different asphalt mixtures at various temperatures and frequencies to determine 

the modeling parameters (E0, E∞, k, h, β, δ, C1, and C2) included in the 2S2P1D model that 

characterize the asphalt mixture response in the linear viscoelastic domain. The modeling 
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parameters are presented in Table 3.2. These parameters are determined by obtaining the 

best-fit curve for the measured complex modulus values plotted in the Cole – Cole and Black 

space diagrams of the 2S2P1D models are shown in Figure 3.4 and Figure 3.5 respectively. 

The k, h, δ and β parameters are related to the binder rheology (Di Benedetto, Partl, 

Francken, & Saint André, 2001; Godenzoni, Graziani, & Perraton, 2016). These parameters 

are nearly same for all CRM’s except β, which means RAP percentage could modify the 

binder rheology. Regarding the other parameters, E0 is the static modulus (E when ω →0), 

and E∞ is the glassy modulus (E when ω→∞), which is associated with the air void content 

and aggregate skeleton (Nguyen, Pouget, Di Benedetto, & Sauzéat, 2009). It can be 

considered that the RAP percentage had an impact on the glassy modulus, which is 

moderately higher for MR7. This may be due to higher air voids content and higher RAP 

binder content than the remaining three CRM’s. 

 

 

Figure 3-4 Complex module tested asphalt mixtures represented in  
the Cole-Cole diagram 

 

Figure 3.5 shows black space diagram of 2S2P1D model, the complex modulus norm in 

function of the phase angle (φ). As observed from the experimental data, the phase angle 
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alternated between 2.86° (low temperature/high frequency) to 22.9° (high temperature/low 

frequency). Phase angle is the loss coefficient of the material. The larger the phase angle, the 

more energy is absorbed by the material. So, the material has high φ value would be very 

viscoelastic and inclined to absorb more energy in cyclic loading, whereas, with less φ 

values, it absorbs less energy. Although for all tested CRM mixtures the value of both E0 and 

φ are well below those commonly measured on HMA (Di Benedetto, Partl, Francken, & 

Saint André, 2001; Godenzoni, Graziani, & Perraton, 2016). It can be seen that the 

combination of MR7 and MR5 have higher φ value, than the MR6 - 75% and MR6 - 85% 

asphalt mixtures. This can be considered that the MR7 and MR5 asphalt mixtures are more 

viscoelastic materials and in addition to this RAP percentages do have more impact on elastic 

response than on viscous response. 

 

Table 3.2 Parameters of the 2S2P1D model for the corresponding  
mixtures (Tref = 5⁰C) 

 
Mixture E0 (MPa) E∞ (MPa) k h δ β C1 C2 

MR7 100 12625 0.14 0.41 4.0 1500 52.55 325.95 

MR6-85% 300 7900 0.14 0.41 4.0 2000 40.15 308.01 

MR6-75% 320 7900 0.14 0.42 3.8 1000 41.86 322.52 

MR5 80 8600 0.18 0.45 4.0 2000 13.88 96.69 
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Figure 3-5 |E*| tested asphalt mixtures represented Black space diagram  
with 2S2P1D model 

 

3.11 Pavement design 

For this part of the study, the program CHAUSSÉE 2 (based on AASHTO 1993) from 

Transport Québec was used. The goal of this design was to evaluate what kind of traffic 

increase can be achieved by using CIR. The hypothetical section is located in Montreal and 

the initial structure is shown in Table 3.3. 

 

With this design, the structure can, according to CHAUSSÉE 2, survive to another 260,000 

Equivalent Single Axle Loads (ESALs), compared to the 1,300,000 ESALs for the original 

design. This was done by applying a factor of 0.6 to the modulus of the HMA layer to take 

into account the degradation. Unfortunately, with this design, the pavement is still severely 

cracked and is far from giving a smooth ride. The rehabilitation technique must, at least, 

eliminate the cracks and, if possible, add structural capacity to the pavement. 
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Table 3.3 Initial Pavement Design used for Residual Life Assessment 

 
Material Thickness (mm) Mr (MPa) 

Cracked Hot Mix Asphalt (HMA) 150 1366 

Granular Base (MG 20) 400 198 

Soil (GM) ∞ 87 

 

The usual rehabilitation with CIR is done with 100 mm of CIR covered with 25 or 50 mm of 

HMA. For this pavement design, 50 mm of HMA was used. This means that the structure 

will have a GM soil, a 400 mm granular base, 50 mm of cracked HMA, 100 mm of CIR and 

50 mm of new HMA. For the other sections, the recycling thicknesses were chosen according 

to the percentage of RAP, and 50mm of HMA was added as a surface layer for every section. 

For example, for the 85% RAP section, the total 150mm of cracked HMA, which is the 85% 

RAP, was mixed with 26mm of granular base (15%). 

 

The structural coefficients for the four different materials were calculated from the measured 

complex modulus modelled with 2S2P1D at 20oC and 10 Hz. With those results, it was 

possible to do a pavement design with each material. As shown in Figure 3.6, the impact of 

the modulus, when the pavement design is done with AASHTO, is important. Even if the 

CIR has the highest modulus, it ended up being the least productive choice because cracked 

HMA is still present in the pavement. A more complete analysis from a pavement point of 

view is needed, but with the results obtained here, the best option is the MR6-85%, followed 

by the MR6-75%, then the MR5 and finally the MR7 (CIR). 

 



 

 

 

Figure 3-6 AASHTO pavement design with the four different CRM 

 

3.12 Conclusions 

The Linear viscoelastic behavior of cold recycled emulsified asphalt mixtures with various 

percentages of RAP has been analyzed in this study. Complex modulus testing was done on 

MR5, MR6 - 75%, MR6 - 85%, and MR7 asphalt mixtures with six temperatures and six 

frequencies respectively. The experimental results considered good since they fit on a single 

curve on a Cole-Cole plane with 2S2P1D model(Figure 4) as well as on a single master curve 

plotted at a reference temperature (5°C) using a shifting procedure.  

 

It was observed that MR7 asphalt mixture exhibits high stiffness value at high frequency and 

low temperature. This can be explained in part by its high total binder content. On the other 

hand, at lower frequencies and higher temperatures, the stiffness value approaches a limiting 

value which possibly depends on the aggregate skeleton. 

 

The results revealed that all four mixtures respect the time-temperature superposition 

principle with respect to the complex modulus. From a consideration of Cole-Cole plane 
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(Figure 3.4), the RAP percentage had an impact on the glassy modulus is moderately higher 

for MR7, may be due to higher air voids content and different aggregate gradation than the 

remaining three CRM’s. 

 

However, Black space diagram (Figure 3.5) reveals that the combination of MR7 and MR5 

have higher Phase angle (φ) value than the MR6 mixtures. From this consideration, it can be 

said that the MR7 and MR5 mixtures have higher viscous components than the MR6. This 

could lead to the conclusion that, contrary to what is found in the literature, the amounts of 

RAP do not have a strong influence on the phase angle, but more work is needed to support 

this statement.  

 

From a pavement design standpoint, the moduli measured in this study do have a big impact. 

However, since different pavement structure are achieved with those different materials, the 

stiffest material, the CIR, ended up giving the least performant structure. A life cycle cost 

analysis would be needed to help choose the optimum structure and material. Additional 

work is needed to do on this aspect. 
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4.1 Abstract 

In Québec, for more than twenty years, Cold In-place Recycling (CIR) and Full-Depth 

Reclamation (FDR) have been reliable rehabilitation techniques; restoring pavement 

condition at an affordable cost and a lower footprint on the environment. Experience reveals 

that CIR and FDR interventions effectively address the issues of reflective cracking and 

respect Québec’s Ministry of Transportation rutting threshold values. However, despite their 

commendable performance in the field, Cold Recycled Mixtures (CRM) have yet to be 

adequately characterised with respect to their rheological properties. In this regard, the study 

of the mechanical behaviour of a FDR mixture treated with emulsion and containing 50 

percent of Reclaimed Asphalt Pavement (RAP) and 50 percent of virgin aggregates were 

carried out. With respect to the influence of curing on FDR mixtures, samples were subjected 

to the Indirect Tensile Strength test considering five different curing protocols. Rheological 

properties were investigated through a complex modulus test conducted at different confining 

pressures. Because of limited test results, it was concluded that, a longer curing period would 

produce higher tensile strength and a significant increase in the resistance to moisture 

damage. The confining pressure shows significant influence on the complex modulus of FDR 

mixtures. 
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4.2 Introduction 

As a result of an aging road network infrastructure, interventions to restore the pavement 

condition carried out in order to increase the user’s riding comfort and/or the road safety 

requirements are very common in Canada. Since the 1970s, rehabilitation treatments as 

opposed to new constructions have been gaining momentum. In fact, increasing prices of 

asphalt based materials and reduced public resources to fund infrastructure projects drove the 

evolution of rehabilitation technics in terms of acceptancy, effectiveness and practical 

understanding in the pavement industry. In addition, lately, growing concerns over human 

impacts on the environment adds another dimension to rehabilitation considerations. In this 

regard, rehabilitating structurally unsound flexible pavements through full depth reclamation 

(FDR) treatment has been a cost effective technic, used in Québec since the 80s. With respect 

to sustainable development aspects, FDR produces a lower footprint on the environment as 

the amount of virgin aggregate required is lower than in a reconstruction intervention and the 

levels of greenhouse gas and energy consumption are substantially reduced. Finally, in terms 

of effectiveness, FDR interventions have been able to address reflective cracking while 

rutting performance has been satisfactory as per Québec’s Ministry of Transportation 

threshold values (Bergeron, 2005). 

 

The intervention is performed through what is typically known as the recycling train. The old 

pavement and a predetermined depth of the granular foundation are milled, corrected to 

desired grading, mixed with a binder, usually foam or emulsion, and compacted before traffic 

starts circulating on the rehabilitated pavement structure. To achieve a satisfactory stiffness, 

moisture content in the FDR mixes needs to be evacuated from their structure, this process is 

known as the curing phase. Once the curing period is completed, a hot mix asphalt (HMA) 

layer or surface overlay is placed on top of the compacted FDR material due to their high 

water sensitivity and protect it from the traffic loads. 

 

However, despite all the benefits of FDR interventions, satisfactory research is yet to be done 

with regards to gaining further comprehension of their rheology. In fact poor understanding 
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of the mechanical behavior of this type of material has been a source of reluctance to use 

them as road base materials (Depatie, J. Bilodeau, G., and Gold, 2012). Rheology is the 

science that studies behavior laws of material by linking their stress and strain for a specified 

temperature and loading frequency. As of today, attempts to characterize the stiffness of FDR 

materials through a triaxial test, by measuring the resilient modulus (MR), or through a 

complex modulus (E*) test have been undertaken. 

 

4.3 Background 

4.3.1 Mechanical behavior of FDR materials 

At early stages, the behavior of FDR materials is similar to a granular material, but after the 

curing phase ends, the behavior is close to a HMA. Therefore, it has been suggested that the 

FDR materials treated with asphalt binder like emulsion or foam, have a time dependent 

behavior (Pérez et al., 2013). Hence, they can be considered, at some point, to be in between 

a purely granular material and a HMA. In fact binder plays a major role in its structural 

stability, but the level of air voids are close to the one found in a granular material, around 

14%  (A Carter et al., 2008). In addition, Carter et al. (2008) noticed during their study that 

when a low amplitude compression (2.5 ߤdef) was applied to a Cold-In-Place Recycled 

(CIR) sample, the latter neither compressed nor bounced back into place, in other words, the 

material did not show a pure elastic behavior. 

 

It has been widely covered that hot mix asphalt (HMA) is a viscoelastic material subjected to 

temperature and frequency sensitivity (Carter & Perraton, 2002). Whereas, granular material 

have an elasto-plastic response to loading, independent of temperature or loading frequency. 

So far, many findings concluded that FDR materials stabilised with a binder like foam or 

emulsion have a viscoelastic behavior (Carter et al., 2013; Pérez et al., 2013) after curing. 

Locander, (2009), explained that granular and FDR materials have a distinctive behavior due 

to the presence of binder, and coating FDR’s aggregates. In fact, for a similar level of stress 

and an adequate compaction, FDR materials (without binder) have a stiffness comparable to 
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a granular material. Hence, it can be inferred that FDR materials with binder should have 

higher stiffness due to more cohesion, resulting from the binder effect (Depatie, J. Bilodeau, 

G., and Gold, 2012). Jenkins et al. concluded that, in comparison to an equivalent granular 

material, inclusion of binder (foam), in cold recycled mixes (CRM), resulted in greater 

cohesion. Santagata et al. (Santagata et al., 2010b) reported that when properly designed, 

CRM, in the long-term, can achieve stiffness values comparable to those obtained for a HMA 

mixture. Therefore, Perez et al. (Pérez et al., 2013)  explained that treating FDR materials, 

which are stabilized with a binder, as a granular material is unrealistic. Also, there is a 

persistent gap between predicted life to observation in the field with respect to FDR layers in 

flexible pavement structures. 

 

Due to a time dependent behavior, inherent to CRM materials, Carter et al.(Carter et al., 

2013) acknowledged the challenge related to measuring the stiffness of CRM, given the 

variation that occurs depending on the considered curing protocol. Stiffness values of FDR 

mixes can be determined through a resilient or a dynamic modulus test. Santagata et al., 

(2010b) investigated the short term stiffness of FDR mixes by using a triaxle cell. 

Considering short term curing protocol (1 to 2.5 hours at respectively 20, 40 and 60⁰C) MR 

values obtained through the study are indicated in Table 4.1. 

 

Carter et al., (2013) studied and modeled the complex modulus results, related to FDR and 

CIR mixes with respect to the 2S2P1D model. Results obtained from the modeling fit on a 

single curve in the Cole-Cole plan, as predicted. The tested mixes were cured 2 weeks at 

room temperature (before coring) and an additional two weeks after coring. At 10⁰C, with 

respect to higher frequencies, dynamic modulus values were slightly above 10,000 Mpa. 

Also, values of respectively 4415, 3920  and 5565 MPa were obtained for three different 

FDR materials tested at 21⁰C for a frequency of 10 Hz after a curing period of 72 hours at 

40⁰C (May, 2008; Thomas & Kadrmas, 2003).  
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Table 4.1 Curing Procedures for FDR Mixes 
Taken from Santagata et al. (2010b) 

 
Temperature 

(⁰C) 
Curing protocol 

MR range 

(MPa) 

20 Short term 177.6 to 625.0 

40 Short term 172.4 to 631.2 

60 Short term 163.7 to 427.7 

 

 

4.3.2 Effect of confinement on FDR mixes stiffness 

The complex modulus test is performed within low strain and stress values in order to 

preserve the linear viscoelastic behavior of the material. However, measuring asphalt based 

material stiffness, whether hot or cold mixes, at low stress and strain does not allow the 

properties of the granular structure to be taken into account to a full extent (Kim, 2008). With 

regards to HMA mixes, as an attempt to address these limitations, during his study Kim Y. 

(2008) conducted dynamic modulus testing on HMA samples and simultaneously 

considering low and high levels of deviatoric stress for different levels of confinement. He 

assumed that confinement (138 to 206 kPa) with high levels of vertical stress (up to 552 kPa) 

would mobilise the internal friction angle. However, results indicated that no improvement 

with respect to rutting resistance. In their study Shu and Huang (Shu & Huang, 2008) 

evaluated the dynamic modulus of  HMA sample by applying frequencies ranging from 0.1 

to 25 Hz, three different temperatures 10, 25 and 54⁰C and three different confining 

pressures which are 0, 103.5 and 207 kPa respectively. In their findings, it is shown that for 

low temperatures, where the binder is very stiff, aggregates were tightly bonded and the 

effect of confining pressures was noticed to be minimal. Whereas for higher temperatures, as 

the binder softened hence inducing less cohesion among the aggregates, the confining 

pressure effect was much more significant, resulting in higher stiffness than predicted. 
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A very limited amount of research has been done on the influence of confining pressure on 

FDR mixtures. However,  Yan et al.,(2014) performed dynamic modulus testing on Asphalt 

Emulsion Cold Recycled Mixtures (AECRM) and found a frequency and temperature 

sensitivity on the dynamic modulus, as mentioned earlier, but none from the three confining 

pressures considered during the testing (0, 100 and 200 kPa). 

 

4.4 FDR mixes stiffness evaluation test 

4.4.1 Complex Modulus E* 

It is possible to model a linear viscoelastic material by analyzing the evolution of its complex 

modulus (E*) with respect to a changing phase angle (߮) (Carter et al., 2008; Di Benedetto & 

De La Roche, 1998). Hence, an asphalt base material, HMA or FDR treated with foam or 

emulsion, for example, with a proven linear viscoelastic behavior, can be characterized by 

both the phase angle and the corresponding complex modulus. By definition, the complex 

modulus is the proportionality coefficient between the sinusoidal complex amplitude of the 

stress, for a given frequency ߱, and the sinusoidal amplitude of the strain ߝ (equation 4.1) (Di 

Benedetto & De La Roche, 1998). 

 

(߱)∗ܧ  = ଴ߝ଴ߪ ݁௜ఝ(ఠ) =  ௜ఝ(ఠ)    (4.1)݁|∗ܧ|

 

The complex modulus can be written as a vector (equation 4.2), representing the elastic 

component of the complex modulus E1 and the viscous component of the complex modulus 

E2. Derived from that expression, the dynamic modulus is the norm |ܧ∗| of the complex 

modulus (equation 4.3).  

 

∗ܧ  = ଵܧ +  ଶ    (4.2)ܧ݅

 

|∗ܧ|  = ൫ܧଵଶ + ଶଶ൯ଵܧ ଶൗ
   (4.3) 
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The complex modulus is measured through a direct tension compression test performed in a 

loading cell. It has the advantage of being a homogenous test, in other words, the loading, 

applied to the tested sample, results in a uniform distribution of the stress through the entire 

material and therefore rheological properties can be deduced by measuring the strain. The 

results obtained from the test are analysed through the 2S2P1D (2S: two springs, 2P: two 

parabolic elements, 1D: one dashpot) model. If the material has linear viscoelastic behavior, 

as anticipated, all the results fit on a single curve in the Cole-Cole plan. Also, for a given 

temperature, known as the reference temperature, with considerations to the principle of time 

and temperature equivalency, master curves are deduced from the test results and highlight 

the evolution of the dynamic modulus with respect to a constant reference temperature and a 

changing frequency.  

 

4.4.2 Resilient modulus (MR) 

Resilient modulus (MR) evaluation is usually applied to granular materials, but is also used to 

characterise the asphalt based materials. Characterizing granular materials is difficult, as a 

result, Robert, et al., observed that granular materials are simply considered as homogeneous 

and isotropic. Generally speaking, the use of resilient modulus only applies if the loading 

conditions remain in the elastic domain (St-Laurent, 2014). Therefore, with respect to 

characterizing granular or asphalt based materials, with their MR, unrecoverable portion of 

the strain (ߝp) resulting from loading is negligible in comparison to the recoverable one (ߝR). 

For that reason, the elastic analysis is limited to two parameters which are MR and the 

resilient Poisson coefficient (ߥR). The resilient modulus is expressed as a ratio of the 

deviatoric stress ߪௗ and the resulting recoverable strain (equation 4.4). 

 

ோܯ  = ௥ߝௗߪ  (4.4) 

Materials composing the pavement structure have their respective MR. According to St-

Laurent, (2014), the MR variations results from the intrinsic characteristics of each material 
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such as the level of compaction, the water content and the applied stress. With respect to 

asphalt based materials in particular, the MR value is subjected to temperature and loading 

duration sensitivity. The MR test is conducted within a triaxial cell and various modeling 

approaches apply with respect to the mechanical behavior of each material (St-Laurent, 

2014). A summary of the typical models, considered by Québec’s Ministry of Transportation 

design approach is indicated in Table 4.2. 

 

Table 4.2 Typical models for pavement materials  
Taken from St-Laurent (2014) 

 
Name of 

the model 
Equation Explanation 

Asphalt 

based 

materials 

Mୖ = 10(୏ଵି୏ଶ୘ేయ) + Kସ 

«+ Kସ» only if height of the 

layer >150 mm 

The resilient modulus is expressed as a 

function of temperature T, and K1 to 

K4 are MR modeling constants. 

K-theta 
Mୖ = Kଵθ୏ଶ  

Where θ = σଵ + σଶ + σଷ 

The resilient modulus is expressed as a 

function of the total confining stress θ.  

 

 

Based on the values suggested by Québec Ministry of Transportation in their pavement 

design software, Chaussée 2, theoretical resilient modulus of a FDR layer can be plotted as a 

function of the total stress θ considering regression coefficient K1=16.9, and K2= 0.6. As 

indicated on Figure 4.1. The total stress on the sample has an impact on the resilient response 

of the material. 

 

4.5 Objectives 

Considering the time dependency of FDR mixes, the objectives of this study were to obtain a 

better understanding of the impact of curing on FDR samples and evaluating their rheological 

properties.  

 

Specifically: 
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• to evaluate the impact of curing condition on the ITS values and moisture sensitivity of 

FDR mixtures.  

• to determine the influence of confinement pressure on the complex modulus of the FDR 

mixtures. 

 

 

Figure 4-1 Theoretical Resilient Modulus Values of a Full Depth Reclamation Layer 

 

 

4.6 Methodology 

4.6.1 Methodology 

Fabricating the samples in the laboratory, which resemble an actual FDR layer in the field, is 

difficult due to the significant material variability within road sections. The samples of FDR 

tested in this study were prepared in the laboratory using RAP, virgin aggregates, bituminous 

emulsion, Portland cement and water. The Reclaimed Asphalt Pavement (RAP) used in the 

laboratory study was obtained from a RAP stockpile in the Montreal area, Canada, had a 

maximum size of 14 mm and contained around 4.76 percent of binder measured in 

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160 180

R
es

il
ie

n
t 

M
od

u
lu

s 
(M

P
a)

Total stress - θ  (kPa)

Resilent modulus values



60 

 

accordance with ASTM D6307-10, (2010). The RAP was homogenized and separated to 

ensure that all mixes have a similar gradation. The virgin aggregate was a MG20 which is the 

0 mm to 20 mm aggregate normally used in Quebec as a base material for highways. The 

gradations of RAP, virgin aggregate (MG20) as well as the FDR mix gradations are shown in 

Figure 4.2.  

 

 

Figure 4-2 Particle size distribution of the Reclaimed Asphalt Pavement (RAP), virgin 
aggregate (MG-20), and the Full Depth Reclamation (MR-5) mix 

 

The FDR mixtures tested in this study were made of 50 percent of RAP and 50 percent of 

virgin aggregate (MG20). Cationic Slow-Setting with Polymer asphalt emulsion (CSS1P) 

was employed. The base asphalt content of the emulsion was 69.2%. The cement used as 

active additive was Portland cement type 10. For emulsified cold recycled mixtures, 1.0% 

cement (by dry mass of RAP and MG20 mixtures) and 2.6% of binder was added in the 

blend. The emulsion mixtures used a pre-mix water method. The pre-mix optimum water 

content was 6.5% for the weight of the total dry mass including cement. Pre-mix water has 

several advantages, including higher levels of RAP and virgin aggregate coating, better 

lubrication of the mixture during compaction, and accelerating the reaction of cement 
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hydration (Yan, Ni, Yang, & Li, 2010). The percentage of asphalt emulsion and optimum 

water content matched field levels in order to represent the FDR mixtures placed in the field 

status. 

 

4.6.2 Specimen Preparation 

The Mix design was done in according to MTQ’s method LC 26-002, Méthode de 

formulation à froid des matériaux recyclés stabilisés à l’émulsion (MTQ, 2001). For each 

mix, 30 replicates were compacted for five different curing periods at two different curing 

conditions (wet and dry respectively for indirect tensile testing). For complex modulus 

testing, six replicates were compacted for each mix in two different conditions (with and 

without confinement, respectively). Before mixing and compaction, virgin aggregates and 

RAP were dried at 110 and 60°C, respectively. The dry virgin aggregate and RAP blend was 

preliminarily mixed with cement. Afterwards, each blend was thoroughly mixed, eventually 

adding water and emulsion. After mixing by hand for no more than two minutes, a visual 

evaluation was made to check for homogeneity and to verify that emulsion did not break. The 

loose mix was compacted into specimens having 100 and 150 mm diameter, for Indirect 

Tensile Strength (ITS) and complex modulus testing respectively, using a Superpave 

Gyratory Compactor (SGC) with a constant pressure of 600 kPa, a gyration speed of 30 rpm 

and a constant angle of inclination of 1.25 degrees. For each sample, the weight of the loose 

mixture, about 1.2 and 5.7 kg (for ITS and complex modulus, respectively). And it was 

adjusted to attain an air void content of  13 percent ±1 percent and a specimen height of 63.5 

± 2.0 mm for ITS, and 140 mm for complex modulus according to LC 26-003, Détermination 

de l’aptitude au compactage des enrobés à chaud à la presse à cisaillement giratoire (MTQ, 

2014). After compaction, specimens were sufficiently stable to allow immediate extrusion. 

Once the specimens were compacted, they were cured for 2 days at 60 ± 2⁰C before being 

cored for complex modulus testing. Samples of 80 mm diameter were cored in the thickness 

of the specimen’s perpendicular to the top surface of the compaction, and saw cut to a length 

of 140 mm (if required) as shown in Figure 4.3.  
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(a)                                                                        (b) 

Figure 4-3 Original Gyratory Specimen (a) and  
Cored Specimen of 140 mm x 80 mm (b) 

 

The curing protocol was fixed and controlled to study the evolution of the material properties 

as a physical consequence. A summary of the curing periods is presented in Table 4.3. 

Compacted specimens were initially cured in a climatic chamber at 25°C for 24 hours to 

allow water to evaporate, followed by curing in the oven at different temperatures as per 

curing protocol. Prior to testing the cored specimens were kept in a sand box at room 

temperature. 

 

Table 4.3 Curing Procedures for Full Depth Reclamation (FDR) Mixtures 

 

Protocol Number 
Curing Period 

Indirect Tensile Strength Complex Modulus 

1 1 day at 25⁰C 

2 days at 60⁰C ± 2⁰C 

2 1 day at 25⁰C and 1 day at 33⁰C ± 2⁰C 

3 1 day at 25⁰C and 2 days at 33⁰C ± 2⁰C 

4 16 hrs. at 25⁰C and 2 days at 60⁰C ±  2⁰C 

5 3 days at 60⁰C ± 2⁰C 
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4.7 Experimental Method 

4.7.1 Indirect Tensile Strength test 

Asphalt materials may be sensitive to the presence of water in the finished pavement. Water 

will cause the binder to not adhere to the aggregate. Since the binder is the glue that holds the 

pavement together, rapid failure of the pavement can be expected if the binder cannot adhere 

to the aggregate. This is often referred to as stripping. The stripping resistance of asphalt 

mixtures is evaluated by the decrease in the loss of the ITS according to AASHTO T283 test 

procedure. In this test, specimens are subjected to compressive load at a constant rate of 

51mm/min acting parallel to and along the vertical diametrical plane of the specimen through 

two opposite loading strips. This type of loading develops a tensile stress which acts 

perpendicular to the direction of applied load and along the vertical diametrical plane, and 

the specimen usually fails by splitting along with the loaded plane (Behiry, 2013; Nejad, 

Azarhoosh, Hamedi, & Azarhoosh, 2012) as shown in Figure 4.4. The recorded maximum 

compressive strength is divided by appropriate geometrical factors to obtain the ITS using 

the following equation 4.5 (AASHTO, 2003). 

 

ܵܶܫ  = 2000 × ߨܲ × ܪ ×  (4.5) ܦ

Where,  

ITS : Indirect Tensile Strength (kPa); 

P : Maximum load (N); 

D : Diameter of the specimen (mm); and  

H : Average height of the specimen (mm) 

 

The level and the extent of moisture damage, also called moisture susceptibility, depends on 

environmental, construction, and pavement design factors; internal structure distribution and 

the quality and type of materials used in the asphalt mixture (Behiry, 2013). Moisture 

susceptibility of the compacted specimens is evaluated by Tensile Strength Ratio (TSR) 
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which is calculated by dividing the average conditioned ITS result by the average 

unconditioned dry ITS result (Behiry, 2013). 

 

 

Figure 4-4 Indirect Tensile Test Loading 

 

 
4.7.2 Complex modulus test 

For testing the complex modulus, the cured specimen was installed in the testing machine at 

an age of 16 days due to a deficiency with the apparatus. As per Figure 4.5, the testing was 

performed with a MTS810 press, with a compression loading only for a target strain of 50 

µdef.  The testing setup was equipped with extensometers and temperature sensors to 

monitor strain and temperature variations. The process was carried out in two phases at 

ambient temperature 23 ± 1⁰C. The two phases consisted of testing the material with respect 

to two different frequencies of 0.03 and 1 Hz. During each loading condition described, 

confining pressure of 0, 20, 50, 75, 100 and 115 kPa were applied on the sample.  

Confinement pressures were assumed based upon a Boussinesq’s stress distribution model 

from the middle of the FDR layer (depth of 0.150 m), as achieving constant confinement 
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pressure above 115 kPa was not possible with the testing apparatus. The model pavement 

structure consisted of a HMA layer of 50 mm and a FDR layer of 200 mm, a tire pressure of 

552 kPa, an axle load of 80 kN (20 kN/tire), and a contact area radius of 0.107 m the 

horizontal stress variation was plotted as a function of depth (Figure 4.6). 

 

 

Figure 4-5 Complex Modulus Test with Confinement Pressure Cell 
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Figure 4-6 Horizontal stress distribution based on Boussinesq’s theory 
 

4.8 Results and discussions 

4.8.1 Indirect tensile strength 

All the full depth reclamation emulsified asphalt material with 50 percent RAP and 50 

percent virgin aggregate (MG20) specimens for ITS test was tested at five different curing 

periods as shown in table 4.3. Figure 4.7 shows plot of curing protocols against ITS for dry 

and wet conditioned FDR emulsion mixtures, respectively. Results show that, ITS did not 

increase during the initial or younger stage of curing period, but dramatically increased 

during a later stage of curing and reached optimum values of ITS, generally when the 

moisture content of the materials reduced. Additionally, the ITS-dry increased significantly 

with time, at the same time the ITS-wet shows the unnoticeable changes, particularly in the 

last two curing protocols. 

 

There are no universally accepted standard TSR values (Niazi & Jalili, 2009). TSR is used to 

predict the moisture susceptibility of the mixtures. According to previous investigations a 

TSR of 0.8 or above has typically been utilized as a minimum acceptable value for HMA. 

Mixtures with TSR less than 0.8 are moisture susceptible and mixtures with ratios greater 

than 0.8 are relatively resistant to moisture damage (Niazi & Jalili, 2009). 

As shown in Figure 4.8, the first three curing protocols were initially cured for one day at 

25°C to allow water to evaporate. The TSR testing protocol does not permit this initial curing 

time, so the last two curing protocols were developed for comparison to the TSR results. 

 

4.9 Complex modulus 

Complex modulus testing was carried out for six horizontal stress conditions and two testing 

frequencies (Tables 4.4 and Table 4.5).  The influence of confinement pressure on dynamic 

modulus is shown in Figure 4.9. 
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Figure 4-7 Influence of Curing Protocol on Indirect Tensile Strength (ITS) 

 

 
Figure 4-8 Tensile Strength Ratio values of the five curing periods 
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Initially, the complex modulus was evaluated considering 0 kPa confinement pressure and 

yielded dynamic modulus of 397.6 and 708.4 MPa at 0.03 and 1 Hz, respectively. In contrast, 

at the excessively high confining pressure of 115 kPa, the dynamic modulus values were 

802.6 and 1229.2 MPa, respectively at 0.03 and 1 Hz testing frequencies.  For all confining 

pressures evaluated, the FDR mixes showed increasing modulus with increasing confining 

pressure. The highest confining pressure (115 kPa) was selected because it was the maximum 

pressure that could be maintained at a constant level in the setup. 

Also, as observed with HMA samples, frequency had an impact on the stiffness of the 

studied samples. In fact, dynamic modulus values tested at 0.03 Hz were lower than those 

tested at 1 Hz for each of the six horizontal stress conditions. Finally, observations on the 

curves plotted on Figure 4.9 indicated a distinctive rate of increase of the dynamic modulus 

before and after 50 kPa of confining pressure. The results show a low rate of increase until 

the confining pressure exceeds 50 kPa, after which the dynamic modulus increases 

significantly (around 40 percent). This may be due to the fact that confinement pressure 

below 50 kPa does not provide enhanced interlocking among the aggregates in the structure, 

but simply reduces the level of voids. 

 

Table 4.4 Complex Modulus (E*) Results for Testing Frequency of 0.03 Hz 

 
Confinement 

Pressure (kPa) 
|E*| ࣐ E1 E2 
MPa Degree MPa MPa 

0 398 19.5 375 133 

20 426 18.2 404 133 

50 482 21.0 450 173 

75 596 17.7 568 181 

100 717 16.8 686 207 

115 804 15.2 775 211 
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Table 4.5 Complex Modulus (E*) Results for Testing Frequency of 1 Hz 

 
Confinement 

Pressure (kPa) 
|E*| ࣐ E1 E2 
MPa Degree MPa MPa 

0 708 19.4 668 235 

20 720 19.4 679 239 

50 742 18.1 705 231 

75 916 16.7 877 263 

100 1067 15.3 1029 281 

115 1229 13.8 1194 293 

 

 

 

 

Figure 4-9 Influence of Confinement on the Dynamic Modulus at 23°C ± 1°C 

 

With respect to better understanding the influence of confining pressure on the viscoelastic 

behaviour of the FDR material, the impact of confinement on the elastic component (E1) and 

the viscous component (E2) of the complex modulus was analysed separately. 
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Figure 4.10 indicates that confinement has a greater impact on the elastic component than on 

the viscous component. Therefore, better interlocking among the aggregates structure 

provided by confining pressure has more influence on the elastic behaviour of FDR mixtures. 

On the other hand, for complex modulus, Figure 4.10 represents that with an increase in 

confinement, the phase angle decreases except for 50 kPa at 0.03 Hz, which may have be due 

to a poor signal input. The observed trend, with respect to the phase angle, highlights that 

confinement mobilises to a greater extent the elastic behaviour of the sample. 

Finally, based upon laboratory results from the LCMB and Chaussées 2, the maximum 

dynamic modulus at 115 kPa for FDR@115 kPa confinement pressure was compared with 

other dynamic modulus of typical mixtures used in pavement design by Québec Ministry of 

Transportation (Figure 4.11). The typical asphalt based mixtures are made of a mix of virgin 

aggregates and PG 64-28. They consist of ESG-10, ESG-14 and GB-20, which are surface 

layer, surface or base layer, and base layer respectively in pavement structures.  The results 

shown in Figure 4.11 are very different to what is actually used in Chaussée 2 for pavement 

design in Quebec. 

 



71 

 

Figure 4-10 Influence of confinement on the E* components and the phase angle 

 

In Table 4.6, you can see a pavement designed with Chaussée 2 that can withstand 

30,000,000 Equivalent Single Axle Loads (ESALs).  If instead of the default value for FDR 

modulus, using the value obtained from this study, the pavement can now survive 44 million 

ESALs if we consider the 0.03 Hz value, and 81 million ESALs with the 1 Hz value. This 

shows that it is particularly important to correctly estimate the modulus of any materials used 

in a pavement. 
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Figure 4-11 Comparison of dynamic modulus of pavement materials at 23°C ± 1°C 

 

 

 

 

 

 

Table 4.6 Pavement Design with Full Depth Reclamation 
 with default values for modulus 

 

Material 
Thickness 

(mm) 
Modulus 

(MPa) 
HMA 155 3101 
FDR + Emulsion + 1,5% cement 250 635 
FDR (not treated) 150 84 
MG 20 150 110 
MG 112 950 74 
CH (subgrade) - 20 
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4.10 Conclusions 

This paper presents a comprehensive study on use of confining pressure when measuring the 

complex modulus and impact of curing period on ITS of FDR materials. 

 Based upon the test results, the following conclusions can be made: 

• the performance of the FDR mixtures (50 percent of RAP and 50 percent of virgin 

aggregate) was evaluated based on the ITS test for five various curing periods.  The 

curing protocol presented in this paper clearly indicated that curing period influences the 

ITS values and moisture damage; 

• the ITS test results indicated that a longer curing period would produce the highest tensile 

strength and a significant increase in the resistance to moisture damage; 

• however, ITS values are significantly affected by the bitumen emulsion content, which 

was around 2 percent of emulsified asphalt results in optimum ITS; 

• the notable influence of confining pressure on the complex modulus of the FDR mixtures 

was mainly on the elastic component. 

 

More work is needed to develop criteria for different confining pressures, frequencies 

with various temperatures, and different pavement conditions. With more results, it will 

be possible to use the true value of complex modulus for FDR materials in pavement 

design, which should result in more designs that are accurate. 
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5.1 Abstract 

In most countries, there is a low temperature limit to lay down hot asphalt mixes because 

if it’s too cold, it becomes impossible to get proper compaction. For cold recycled 

bituminous mixture (CRM), there is little information on the effect of the low 

temperature on their behavior. The goal of this study is to evaluate, in laboratory, the 

impact of the compaction and curing temperature on the behavior of CRM. To do so, 

CRM containing 50% Reclaimed Asphalt Pavement (RAP) and 50% natural aggregates 

treated with foamed asphalt or bituminous emulsion were mixed and cured at different 

temperature between 0°C and 23°C for up to 10 days before being tested in indirect 

tension. The results show that for all mixes, a cure at lower temperature means lower 

tensile strength, but the decrease is more noticeable for emulsion treated materials than 

for foamed treated. The analysis of the results also showed that the decrease in 

mechanical performance remains important even after a second cure at higher 

temperature. 
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5.2 Introduction 

 In most countries, there is a low-temperature limit to lay down hot mix asphalt (HMA) 

because if it is too cold, it becomes impossible to get proper compaction. All over the world, 

various studies have been done to understand the compaction behavior of hot mix asphalt 

materials. However, limited research is available on low-temperature compaction of cold 

recycled bituminous mixtures (CRM).  

 

Cold recycling of bituminous materials is a sustainable technology to pavement 

rehabilitation. It is the reuse of different percentage of Reclaimed Asphalt Pavement (RAP) 

that is mixed with virgin or recycled aggregates, in different layers of pavement. In order to 

increase the strength of those mixes, different binders can be used. The most common one 

are bituminous emulsion and foamed asphalt. 

 

The choice between foamed asphalt and bituminous emulsion is, in many regions, based on 

cost and availability. However, it has been shown that both binders can give similar results 

(Carter et al., 2013), even if the method in which the binder glue the particles together differs 

greatly.  

 

The compaction of CRM with bituminous emulsion or foamed asphalt is a very important 

factor to get good mechanical characteristics. It helps to position the particles of the material 

and redistribute the binder from separate globules to continuous films (Needham, 1996). The 

compaction quality has an impact on air voids of the CRM (Kassem, 2008; Lauter, 1998; 

Pellinen & Witczak, 1998). Not only the quantity, but the level of uniformity of the air voids 

distribution considerably affects the behavior of the mixture (Xu et al., 2012; Castillo & Caro 

2013). However, too much compaction can also be detrimental. Quick and Guthrie (2011) 

stated that the severity level of compaction impacts strength development in emulsified 

asphalt mixture. Compaction can contribute to the initial damage of the emulsified asphalt 

but also worsen the curing period within these mixtures.  
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5.3 CRM compaction  

Compaction can lead water to disperse from the asphalt bitumen and impact the mix curing 

time and cohesion (Asphalt Institute, 1997). Barbod & Shalaby (2014) studied the emulsified 

asphalt mixtures in cold regions and concluded that laboratory prepared specimens at low 

(5°C) temperature resembles the lower dry density compare to the emulsified aggregate at 

24°C which is due to the impact of compaction temperature. For foamed asphalt, it has been 

shown that a compaction temperature between 13°C and 23°C is optimal and mixing below 

that will lead to poor quality mixes (Bowering & Martin 1976).   

 

5.4 Curing Process of CRM  

Generally, the curing procedure of cold recycled asphalt materials has a significant impact on 

the final behavior of the mix. Due to that, curing has been considered as important parameter 

in the asphalt industry.  

 

Various definitions for the curing procedure of cold recycled asphalt materials can be found 

in the literature (Wirtgen 2010; Tebaldi et al. 2014). Jenkins (2000) defines the cure of CRM 

as the process in which the water is discharged of the specimen. The Asphalt Institute (1997) 

mentioned that insufficient curing may increase the chance of  asphalt stripping along with a 

reduction of the rate of strength development when a hot mix asphalt (HMA) overlay is 

constructed. The curing process can be fairly fast in convenient weather conditions, however, 

it can be significantly impacted with relatively high humidity, lower temperatures, or rainfall 

occurred after Cold In-place recycling placement (Y. Kim et al., 2011).     

 

The World Road Association (PIARC 2002) mentioned that the residual moisture has to be 

significantly evaporated prior to the application of the hot mix asphalt overlay. This period 

should not only depend on the weather conditions resulting cold in-place recycling 

construction, but also on the level of traffic. It’s during this period that the material cures and 

forms some internal structure before being covered with a HMA layer as a wearing course 

(AASHTO Task Force No.38, 1998; ARRA, 2001; Bergeson & Barnes, 1998). Even though 
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different curing protocols have been adopted in most countries, a universally accepted curing 

procedure is presently not available.  

 

Marais & Tait (1989) recognized that the cold recycled emulsified asphalt mixture properties 

changed seasonally with considerable variation in the initial six months to two years. Another 

researcher, Leech (1994), concluded that full curing of cold recycled asphalt mixtures on 

construction site may happen between two months and 24 months purely depending on the 

climatic conditions.   However, a time period of 14 days is usually identified as an acceptable 

cure duration (Croteau & Lee (1997); Kandhal and Mallick (1998)). 

 

The lack of consensus in curing method (duration and temperature) can be seen in the 

different protocols that can be found in the literature. For example, SABITA (1999) used 

curing of 24 hours at room temperature, 48 hours at 40ºC with optimum moisture content 

(OMC) and 45 hours at 60ºC. Robroch S. (2002) worked with 24 hours at 40ºC (sealed) and 

48 hours at 40ºC (Unsealed). Asphalt Academy (2003) conducted research at 24 hours at 

ambient temperatures in mould and 3 days at 40ºC with sealed specimens. Lee et al. (2003) 

used 6 hours @ 60°C to represent hot summer day and 24 hours at 25°C to represent cool 

summer night. Carter et al. (2007) used 24 hours at 60°C to accelerate curing, and the mix 

performances after that short period were satisfactory. Finally, Wirtgen (2004) performed 

curing protocol at 24 hours at ambient temperatures unsealed and 48 hours at 40ºC sealed, 

and Gandi et al. (2017) studied laboratory prepared specimens that were cured for 10 days at 

38°C. 

 

Some curing methodologies include periods in which the specimens are sealed. This is done 

to represent field conditions. Batista & Antunes (2003) sealed their specimens with a plastic 

film, except for the surface; in order to let the water evaporates.  They mentioned that 

moisture content progression in the field would be in between the laboratory prepared CRM 

emulsified asphalt specimens with plastic film and without plastic films. The change in 

moisture content is greatly influenced by the temperature. Part of the water will evaporate, 

and the lower the temperature, the slower this process is. Bocci et al. (2011) studied the 
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temperature influence on three curing protocols (28 days at 40°C, 63 days at 20°C and 56 

days 5°C) on the indirect tensile stiffness modulus (ITSM) tests development of the mixture 

as illustrated in Figure 5.1. They concluded that curing at 40°C and 20°C resulted in higher 

modulus, whereas at lower temperatures, like 5°C, the curing process is slower. 

 

 

 

Figure 5-1 Development of Stiffness modulus with curing  
temperature and time  

Taken from Bocci et al. (2011) 
 

5.5 Objective  

The main objective of this study is to evaluate the impact of the mixing, compaction and 

curing temperature on the mechanical properties of CRM. The specific objectives of this 

study are to evaluate the difference between the evolution of Marshall stability and indirect 

tensile strength (ITS) according to time and temperature, and also to compare the behavior 

of foamed asphalt treated CRM (CRM-foam) with bituminous emulsion treated CRM 

(CRM-emulsion).  
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5.6 Materials and Methods  

In order to reach the objectives, a single mix design of CRM was chosen. A 0-10mm mix of 

50% Reclaimed Asphalt Pavement (RAP) with 50% virgin aggregates was prepared in 

laboratory with the same gradation for each mixes. The mix design used is shown in Table 

5.1. 

 

Table 5.1 Mix Design of CRM with Foamed Asphalt or Bituminous Emulsion 

 

 CRM Foam 

Mixes 

CRM Emulsion Mixes 

Aggregates 
50% RAP (4,1% Bitumen) 

50% Virgin Aggregates 

Cement 1.0% 

Total Water1 3.3% 5.0% 

Added Residual 

Bitumen1 
3.0% 2.0% 

               1% of the weight of the dried aggregates 
 

 

As it can be seen in Table 5.1, 1.0% of cement was used in all the mixes. Depending on the 

binder used, foam or emulsion, different amount of water and total added residual bitumen 

was used. For the emulsion mix, a CSS1 bituminous emulsion containing 62% bitumen was 

used. The total water shown in Table 5.1 includes the water that comes from the emulsion. 

The mix design for both binders (CRM-foam and CRM-emulsion) was done according to 

Quebec’s method LC26-002 which is based on Marshall stability. Basically the amount of 

water and residual bitumen is a compromised between dry Marshall Stability, retained 

stability and air voids. 

 

For the foam mixes, before making the mix design, the foamed asphalt design had to be 

done. Different water content and bitumen temperature (160, 170 and 180°C) were tested, 
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and the optimum foam in regard to the expansion and the half-life was obtained at 160°C 

with 3.15% water. 

 

The aggregates and the RAP was oven dried and pre-mixed beforehand. Water was added to 

the mixture 24 hours before mixing to ensure absorption by the solid particles. Then the 

aggregate-RAP mix was stored for 24 hours at different temperature, as shown in Table 5.2.  

 

Table 5.2 Testing Methodology 

 

 Duration Temperatures 

Storage of RAP-Aggregates 

and mixing accessories 
24 hours 

Variable (0, 5, 10, and 

23oC) 

Mixing < 5 minutes 

Compaction (Marshall 75 

blows on each sides) 
15-30 minutes 

Demoulding 3 minutes 

Cure 
Variable (0-15 min, 1 and 3 

Hours, 1, 3, 7 and 14 days) 

Tests  

(Marshall stability and ITS) 
5 minutes 23oC 

 

 

The chosen temperatures are 0, 5, 10 and 23°C. 23°C was the lab temperature when those 

experiments were performed, and the other temperatures represent possible field 

temperatures found in Canada. As shown on Figure 5.2, for more than 50% of the year, the 

air average air temperatures in Montreal and Vancouver are below 10°C, which is why 

those temperatures were selected. The relative humidity was not controlled during the cure 

or the tests. The measured relative humidity in the laboratory during this experiment was 

between 57% and 63%. 
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The mixing of the materials was done with a mechanical mixer, and the mixer’s bowl as 

well as the beater was stored at the same temperature than the RAP mixtures. Just like it 

would be done in the field, the emulsion and the foam were not at those low temperatures. 

As mentioned before, the foam was produced at 160°C, and the emulsion was stored at 

40°C as recommended by the supplier.  

 

Once mixed, the specimens were compacted with a Marshall hammer with 75 blows on 

each side. The same energy was used for all the specimens, which can results in different air 

voids, and like it was done for mixing, the Marshall mould were stored at the same 

temperature as the RAP-Aggregates mixture. 

 

For the specimen to be tested during the first 15 minutes, the demoulding was done right 

after the compaction. For all the other specimens, the demoulding was done after 1 hour. 

The demoulding right after compaction resulted in the breakage of many specimens that did 

not have enough cohesion. 

 

Figure 5-2 Average Monthly air Temperature in Montreal and Vancouver  
Taken from WeatherNetwork (2017) 

 

Once the different cure completed, the specimens were left 1 hour at room temperature to be 

tested in Marshall Stability or in indirect tensile strength (ITS), with the exception of the 0-
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15 minutes specimens which were tested right away. It’s important to note that during 

compaction, the temperature of the specimen increases. Therefore, for the 1 and 3 hours 

cure, the specimen did not have time to stabilize at the cure temperature before being tested.  

 

Marshall Stability was used for this research project because it’s the specified method for 

CRM characterization according to Quebec’s standard. Since ITS is used by many agencies 

and research center to evaluate CRM mechanical behavior, it was decided to use this method 

also.  

 

Both tests were performed at the same loading rate (51 mm/min) and on the same apparatus 

(Figure 5.3), but with a different loading setup.  For ITS, a small loading strip curved for 100 

mm samples was used at top and bottom, and for the Marshall stability, the usual Marshall 

breaking head was used.Those two tests give mechanical properties of CRM. The results of 

the tests can be associated with the cohesion of the materials, but not with their durability. 

 

 

Figure 5-3 Indirect Tensile Strength (ITS) and Marshall Stability Test Apparatus 
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5.7 Results 

For every mixes, a minimum of three specimens were prepared for ITS tests and three more 

for dry Marshall Stability. However, many specimens were broken during demoulding or 

handling, which resulted in having two specimens for most of the tests. The results shown 

are the averages of those two or three when a third specimen was available. If the difference 

between two mechanical results were above 10%, new specimens were mixed, cured and 

tested. According to Fu et al. (2010), higher variability in the results are expected at cure 

temperature below 15 to 25°C. 

 

The Marshall dry stability results for different cure duration and conditioning temperature 

for foamed asphalt and bituminous emulsion treated CRM are presented in Figure 5.4. As it 

can be seen, the results at 23°C, for both types of CRM mixes (CRM-foam and CRM-

emulsion), are similar. This shows, as mentioned in the literature, that both binders give 

similar properties in ideal conditions. However, it can be seen that the low mixing and cure 

temperature has a greater impact on CRM-emulsion mixes than on CRM-foam mixes. For 

example, at 14 days, the Marshall stability of the CRM-emulsion mix cured at 0°C is about 

20% of the Marshall stability of the CRM-foam mix, which is about the same difference 

that we got between a cure at 0°C and 23°C for the emulsion mix. In addition, it should be 

noted that there are no Marshall stability in the first three hours for the emulsion mixes at 

0°C. This is because the cohesion was too low to take the specimens out of the mould; all 

those specimens broke during demoulding.  
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Figure 5-4 Average results of dry Marshall Stability after different curing time and 
temperature for all CRM mixes 

 

Another aspect that is interesting is the rate of increase of the Marshall stability, which can 

be related to the rate of increase of the cohesion. The temperature has a very limited effect 

on the rate of cohesion increase for CRM-foam mixes, but it has a major impact for the 

CRM-emulsion mixes. At 23°C, the rate is about the same for both types of CRM mixes, 

but at lower temperature, the cohesion increases at a much slower rate with emulsion.  

 

The results of the ITS is shown on Figure 5.5. On the left side (Figure 5.5a), we can see 

that, just like the results for the Marshall stability, there is a big difference between the 

results at low temperature than the results at room temperature for the emulsion mixes. 
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Figure 5-5 Average dry ITS results of after different curing time and temperature  
for all CRM mixes (a. Emulsion mixes, and b. foam mixes) 

 

However, in the case of ITS results for the foam mixes (Figure 5.5b), the trend in the results 

is different. For the Marshall stability, the temperature seems to have little influence on the 

results. For ITS, a clear difference is seen according to temperature. For example, at 14 

days, there is barely over 10% of difference between the Marshall stability at 0°C and 23°C, 

but there’s a 50% difference for ITS. More tests are needed, but it seems that ITS is more 

sensitive to the difference in the behavior of those materials.  

 

Contrary to the Marshall stability, the rate of increase in the cohesion, which is related to 

ITS this time, is affected by the temperature for both CRM-foam mixes and CRM-emulsion 

mixes. However, the effect is greater for CRM-emulsion mixes. 

 

On Figure 5.6, we can see the relation between ITS and water loss. This presentation of the 

results shows that the cohesion increase follows a linear trend at every temperature tested, 

but that this rate diminishes with the temperature. The rate of the cohesion increase is 

represented by the slope of the best fit curves (all R2 > 0,8). 
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Figure 5-6 Average dry ITS results of after different curing time and temperature for all 
CRM mixes Vs water loss (a. Emulsion mixes, and b. foam mixes) 

 

Another aspect of bituminous mixes, CRM or hot mix asphalt, that has a big impact on the 

mechanical performances, is the air voids. By mixing and compacting the specimens at 

different temperature but with the same energy, it was suspected that the air voids may be 

different according to the temperature. The air voids, calculated from the dry bulk density 

and the maximum density are shown in Figure 5.7. 

 

 

Figure 5-7 Air Voids according to the mixing and  
compaction temperature 



90 

 

According to Quebec’s specifications, the maximum acceptable air voids content in CRM is 

18%. Even if the results respect the limit, the variation of the air voids is high for a given 

temperature. The error bars on the figures represent one standard deviation. However, at 

least two trends are visible here. First, globally, the air voids of the emulsion mixes are 

higher than for the foam mixes. This is expected because of the higher water content in 

those mixes. During compaction, water serves as a lubricant, but it also creates voids. 

Lower water content can results in higher cohesion and mechanical properties, but it can 

also results in an incomplete coating, which can in turn results in poor retained stability, or 

high moisture sensitivity. Second, the air voids at low temperatures are lower than at room 

temperature. This can be explained by the black rock effect. At 23°C, the bitumen of the 

RAP does not seem sticky, but with the pressure applied during compaction, it restrains 

movement of the particles since it increases the friction in the mix. At lower temperature, 

the same bitumen is stiffer, less sticky, so it does not increase the friction. It could be 

hypothesized that in fact at 0°C for instance, the bitumen on the RAP particles makes them 

somewhat rounded, which results in easier compaction. 

 

Lower air voids should mean higher ITS value and higher Marshall stability. This can lead 

us to think that if the specimens were compacted at equivalent air voids and not with 

equivalent energy, the ITS and the Marshall stability results would be even lower for the 

tested temperature below 23°C. The fact that the measured mechanical performances are 

lower at lower temperature must be due to the repartition of the bitumen in the mix. For 

foamed asphalt, when the hot bitumen droplets come into contact with the cold aggregates, 

the temperature of the bitumen reduces very rapidly, which increases it’s viscosity, and 

reduces its capacity to adhere properly to the fines. So instead of having homogeneous 

mastic around the aggregates, we can postulate that there are clusters of bitumen separated 

by fines particles, which creates weaker plane in the mix.  

 

For the bituminous emulsion, the reduction in temperature has a direct impact on the 

coalescence of the bitumen droplets. In fact, at temperatures below 8 to 10°C, the 

flocculation of the bitumen droplets happens really fast when the emulsion comes in contact 
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with the cold aggregates, but the coalescence is limited, and even impossible in some cases 

(Audeon, 1993). This could explain why very little cohesion, if any, was measured at short 

time for low temperature. Low temperature destabilizes the emulsion, just like a quick 

change in pH does. James (2006) mentions that solvent can be added to emulsion to 

accelerate coalescence at low temperature. This means that the manufacturer could design 

an emulsion that breaks normally at low temperature, but that emulsion would break too 

rapidly at normal temperature. 

 

5.7.1 Effect of an increase in the curing temperature 

The obtained results clearly shows that a reduction in mixing and curing temperature has a 

negative impact on the mechanical properties measured with ITS and Marshall stability for 

CRM-foam and CRM-emulsion mixes. The results do not, however, show if this decrease in 

performance is permanent or not. In order to study that aspects, the new specimens were 

prepared with the same exact methodology, but with an added curing protocol after the 

initial 14 days. Once the 14 days at the various curing temperature was reached, the 

specimens were left for another 14 days at 23°C before being tested in ITS. Results are 

shown on Figure 8. On Figure 8, the ITS results obtained at 28 days is divided by the ITS 

results obtained at 14 days 23°C in order to better evaluate the change during this new 

curing period. 

 

As it can be seen, for CRM-foam (Figure 5.8b), with an additional 14 days at 23°C, the ITS 

value increase significantly, but they still do not reach the values obtained after only 14 

days at 23°C. However, a longer curing period at that temperature should results in higher 

ITS value. 

 

For the CRM-emulsion at 0°C, the additional curing period did not have a significant effect 

(Figure 5.8a). In this case, it seems that the cohesion measured through ITS at 14 days is the 

maximum that this mix will reach. 



92 

 

 

Figure 5-8 Average dry ITS results of after different curing time and temperature for all 
CRM mixes with an additional 14 days at 23°C cure (a. Emulsion mixes, and b. foam mixes) 

 

5.8 Conclusion  

The objective of this research was to evaluate the effect of cold temperature mixing and 

curing of cold recycled materials treated with foamed asphalt and bituminous emulsion. The 

CRM tested were made of 50% RAP and 50% virgin aggregates and they were mixed and 

cure at 0, 5, 10 and 23°C for up to 28 days before being tested in Marshall stability and ITS.  

Globally, it has been shown that low temperature for mixing and curing of CRM mixes do 

have a major impact on their mechanical performances.  

 

More specifically, the main conclusions that are drawn from this study: 

• Marshall and ITS results are related, but ITS results are less variable and more sensitive 

to mixing, compaction and curing temperature; 

• CRM-foam and CRM-emulsion have similar Marshall stability and ITS when made and 

cure at room temperature; 

• CRM-foam is less sensitive to low temperature cure than CRM-emulsion. This can be 

explained in part because of the lower water content of CRM-foam mixes compared with 

CRM-emulsion mixes, and also because of the curing mechanisms of both mixes type; 

• mixing and compaction at 0, 5 and 10°C enables better compaction, so lower air voids, 
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than at 23°C. This shows that at low temperature, RAP has more a black rock behaviour 

than at room temperature; 

• An additional curing period at 23°C does have a significant impact for low CRM-

emulsion specimens that sustained initial low temperature cure. This additional cure does 

however help with CRM-foam mixes. 

 

In order to better understand the results obtained here, new tests should be done. The 

measurement of the complex modulus on the CRM at different mixing, compaction and 

curing temperatures would help to better grasp the impact of the lower temperature. Also, it 

would be helpful to test at longer curing period, and to test the moisture sensitivity. 

 
This research did not receive any specific grant from funding agencies in the public, 
commercial, or not-for-profit sectors. 
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6.1 Abstract 

The present study aims to evaluate the potential use of both foamed asphalt and emulsified 

asphalt on Full Depth Reclamation (FDR) mixtures to have better performance with four 

different types of FDR mixtures. Different combinations of adding procedures were tested to 

find the optimum mix design procedure. The scope of work for this research consisted of 

determining the optimal mixing procedure according to moisture sensitivity tests, complex 

modulus (E*) at different loading frequencies and temperatures. It was concluded that the 

better performance can be achieved with double coating practices. In particular, mixing 

procedure shown that the first coating the coarse aggregate with foamed asphalt and second 

coating the fine aggregate with emulsified asphalt ensures the best results in terms of the 

performance based tests. The complex modulus showed that using both binders it was 

possible to produce a mixture with higher modulus than mixtures characterized by a single 

coating.  

 

6.2 Introduction 

Full Depth Reclamation (FDR) is a popular rehabilitation technique for flexible pavements, 

in which the old asphalt pavement and predetermined portion of granular base are recycled at 

the same time to lay down a new single layer (ARRA, 2001; Carter et al., 2010; Gandi et al., 
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2015). The FDR is a cost effective and environmentally sustainable approach for 

construction of pavements compared to conventional Hot Mix Asphalt (HMA) (ARRA, 

2001; Epps & Allen, 1990). FDR can be done with two different techniques, which are FDR 

with emulsified asphalt (EA) and FDR with foamed asphalt (FA).  Over the years, both the 

technologies are fully consolidated in practice and witness of numerous studies (Y. Kim & 

Lee, 2006), and developments. In the framework of this study, preliminary tests were carried 

out on combined usage of FDR-EA and FDR-FA techniques. It is believed that with 

emulsified asphalt, most particles are well coated, which is not the case with foamed asphalt. 

However, foamed asphalt does work as a binding agent in Cold recycled asphalt materials. 

As of now, there have been no precise mix design specifications to understand the double 

coating (combined) technology. Therefore, this can achieved through using the proper 

approach to develop the mix design and validate the probability of using EA and FA together 

on FDR mixtures to have superior mechanical characteristics.  

 

Double coating is an innovative technology that consists in splitting the production process 

into two parts (coarse and fine aggregates) in order to obtain the optimal combination in term 

of aggregates coating and rupture time. The present study was done in two steps. The first 

step of the study focus on the determination of the laboratory optimum mix design procedure 

by varying each of the components involved: emulsified asphalt, foamed asphalt, an 

emulsion/emulsion double coating mixture, emulsion/foam double coating mixture and 

aggregates gradation curve (Gandi, Bensalem, Bressi, Carter, & Bueche, 2016). Moreover, in 

the second step, this is a part of the validation effort to assess the consistency of the 

developed optimum mix design procedure. The Complex modulus tests were conducted on 

FDR mixtures (50% of Reclaimed Asphalt Pavement (RAP) and 50% of Virgin Aggregates) 

of four different combinations of the binders like FDR emulsified asphalt mixture (Mix-A), 

FDR foamed asphalt mixture (Mix-B), FDR emulsified asphalt – emulsified asphalt double 

coating mixture (Mix-C), and FDR emulsified asphalt - foamed asphalt double coating 

mixture (Mix-D). The results obtained from the complex modulus test were analyzed to 

characterize the double-coated FDR materials. 
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6.3 Background 

6.3.1 Bitumen stabilized Cold recycled asphalt mixtures 

All over the world, bitumen stabilized material(s) (BSM) as emulsified asphalt and foamed 

asphalt mixtures usage is eventually increase in road construction and rehabilitation. 

However, it has created a need for sound guidelines to be established for the laboratory mix 

design procedures for FDR materials. Typical normally contains water (25% to 60%), 

bitumen (40% to 75%), and emulsifier (0,1% to 2,5%), depending on the specific type of 

emulsified asphalt and the necessary viscosity (James, 2006). The role of EA in cold in-place 

recycling method delivers a robust binding through the recycled asphalt pavement material. 

In the last two decades, various researchers have been studied on the emulsified asphalt 

technologies for road rehabilitation and construction, in addition to substantial developments 

were succeeded on that (James, 2006). For instance the performance of the final mix is 

increases by adding the polymers to the emulsion (Chavez-Valencia et al., 2007).  

 

Foamed asphalt is a process in which water is injecting in to the expansion chamber 

containing hot bitumen at 170°C to 180°C, resulting in spontaneous foaming, produces the 

foamed or expanded asphalt (Muthen, 1998). From the early 1960s, Bowering (1970) 

(Bowering, 1970); Bowering (1976) (Bowering & Martin, 1976); Acott (1979) (Acott, 

1979a); Lee (1981) (Lee, 1981); Ruckel et al. (1983) (Ruckel et al., 1983) have been studied 

the foamed asphalt mixtures using virgin materials. Subsequently, foamed asphalt has begun 

to be implementing in the FDR process of aged asphalt pavements. Further, Wood (1982) ( v 

W. & Wood, 1982); AI (1983) (The Asphalt Institute, 1983); and Hicks (1988) (Hicks, 1988) 

have been researched the design procedure and the performance of FDR foamed asphalt. 

Maccarrone et al. (1994) (Maccarrone, S., Holleran G., Leonard, D. J. and Hey, 1994) was 

introduced a FDR-foamed asphalt process called FOAMSTAB with benefits such as a rapid 

curing, better fatigue performance and cost effective. In 2002, in full depth reclamation, the 

foamed asphalt has been used as a stabilizing agent for Route 8 in Belgrade (Marquis et al., 
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2003). However, there have been very few projects were constructed with foamed asphalt as 

a stabilizing agent. 

 

According to literature, FDR-EA and FDR-FA techniques signify an effective solution for 

old asphalt pavements; however, detailed comparison between the two gives in depth 

advantages and disadvantages of each technique and helps in understanding one of objective 

of the present study. Primarily, it is very important to understand that these two technologies 

have the different form of distribution of binder. Essentially, the EA acts as a lubricant in the 

process of the compaction stage and, prior to it start breaking, the coarse aggregates and fine 

aggregates are totally being covered by the binder (K. J. Jenkins, Robroch, Henderson, 

Wilkinson, & Molenaar, 2004). On the other hand, the fine aggregates mainly covered by the 

foamed asphalt mixture. The breaking clearly visible in emulsified asphalt is uniformly 

distributed in the FDR mixtures. On the other hand, irregular black spots appeared in foamed 

asphalt mixtures. 

 

As mentioned by recent studies (Y. Kim et al., 2011), Given the same compaction effort, cold 

recycled emulsified asphalt specimens showed lesser density than cold recycled foamed 

asphalt specimens. Both Indirect tensile strength and Marshall Stability of cold recycled 

emulsified asphalt specimens were about same as those of cold recycled foamed asphalt 

specimens (Kim & Lee, 2010). With respect to curing, EA mixtures have lower dynamic 

modulus than the FA mixtures; it could be due to the inferior moisture content. In addition, 

ITS results are affecting by the RAP percentage and type of bitumen grade (He & Wong, 

2008). 

 

6.3.2 State of the art on Full Depth Reclamation material mechanical properties 

Until now, numerous studies concluded that, at early periods, the FDR materials behaviour is 

seems to be like granular material, nevertheless, when the curing is done the FDR materials 

behaviour is close to HMA. As a result, it is considered that FDR-EA and FDR-FA materials 

have a time-dependent behaviour (Pérez et al., 2013). Locander (2009), explained that 
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granular and FDR materials have a distinctive behaviour due to the presence of the binder, 

and coating FDR’s aggregates. Molenaar (K. J. Jenkins, Van de Ven, de Groot, & Molenaar, 

2002) concluded that, in comparison to an equivalent granular material, the inclusion of 

binder (foamed asphalt) in cold recycled mixes resulted in greater cohesion. Jenkins stated 

that, Foamed bitumen mixtures with 2% binder content perform similarly to granular 

materials. Whereas, with less than 4% binder content foamed bitumen mixtures shows stress 

dependent behaviour(K. J. Jenkins & Van de Ven, 2001). Santagata, Chiappinelli, Riviera, 

and Baglieri (Santagata et al., 2010b) reported that when properly designed CRM, in the 

long-term, can achieve stiffness values comparable to those obtained for an HMA mixture. 

Therefore, Pérez (Pérez et al., 2013) explained that treating FDR materials, which are 

stabilised with a binder, as a granular material is unrealistic. Moreover, there is a persistent 

gap between the predicted life as a result of pavement design simulation and the observation 

in the field with respect to FDR layers in flexible pavement structures. 

 

Cizkova and Suda (2017) studied the mechanical behaviour of cold recycled asphalt mixtures 

with foamed asphalt and emulsified asphalt. They concluded that the CRMs are sensitive to 

thermo-mechanical behaviour. However, these materials are less dependent on temperature 

and frequency than traditional HMA mixtures. Particularly, at lower temperatures and higher 

frequencies, these materials shows elastic behaviour. Carter, Bueche, and Perraton (2013) 

investigated complex modulus of cold recycled asphalt materials treated with EA and FA. 

Based on laboratory test results they concluded that, for full depth reclaimed asphalt 

materials, at higher temperature and lower frequency foamed asphalt treated mixtures are 

higher modulus values then emulsified asphalt treated mixtures. Godenzoni, Graziani, and 

Bocci (Godenzoni et al., 2015) studied the cold recycled emulsified asphalt materials with 

different percentages of RAP (0%, 50% and 80%) contents. They concluded based on the 

complex modulus test results reveled that the cold recycled emulsified asphalt materials with 

RAP showed as asphalt-like behaviour than without RAP mixtures. Godenzoni, Graziani, and 

Perraton (Carlotta Godenzoni et al., 2016) studied the Linear Viscoelastic region (LVE) 

response of cold recycled asphalt mixtures treated with foamed asphalt. They revealed based 

on results that the values of the phase angle and stiffness modulus are lower than the 
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traditional hot mix asphalt mixtures. Gandi et al., (2017b) investigated the complex modulus 

of cold recycled materials treated with emulsified with different RAP contents. Figure 6.1 

represents the cole - cole diagram of the 2S2P1D model of the respected mixtures. They 

concluded that at lower frequency and higher temperature of 100 percentage of RAP shows 

high stiffness values. 

 

 

Figure 6-1 Complex modulus of Cole–Cole diagram with 2S2P1D model 
Taken from Gandi et al. (2016) 

 

Despite the recent efforts employed for the investigation of the FDR mechanical behavior, 

few studies have been conducted on combined usage of FDR-EA and FDR-FA techniques 

(Double Coating). The present study was undertaken to provide additional information on the 

rheological properties of FDR materials using both emulsified asphalt and foamed asphalt. 

That emulsified asphalt allows an appropriate coating of the aggregates while foamed asphalt 

does not reach the same efficiency as a binding agent, thus a mix of both techniques could 

result in higher level quality mixes (Gandi, et al., 2016; MTQ, 2001). 
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6.4 Objectives 

The objectives of the present study were to: 

a) Determine the mix design procedure for double coating full depth reclamation materials 

with the addition of four different combinations of the binders. 

 

b) To evaluate the complex modulus of the double coated full depth reclamation materials 

with the addition of four different combinations of the binders. 

 

6.5 Experimental Plan 

6.5.1 Materials 

In this study, the Full Depth Reclamation (FDR) samples like 50 percent of Reclaimed 

Asphalt Pavement (RAP) and 50 percent of Virgin Aggregate (MG20) were fabricated in the 

laboratory with VA, RAP, Emulsified Asphalt (EA), Foamed Asphalt (FA), water and 

Portland cement. The RAP used in this research was acquired from a stockpile in the 

Montreal city. The RAP was homogenized to confirm that all representative samples have 

likely similar gradation. The VA was the nominal maximum aggregate size (NMAS) of 20 

mm (MG20), which is aggregate usually used in Quebec as a base material for highway 

construction. The FDR asphalt mix gradation is according to TG 2 (TG 2, 2009) as shown in 

Table 1. Intended for the mixes with emulsified asphalt, two different types of binders (CSS-

1S and CSS-1P) were employed as mentioned as shown in Table 6.1. Foamed Asphalt was 

produced in the laboratory based foaming plant as showed in Figure 6.2. The Foamed asphalt 

was produced by combing small amount of water with hot bitumen under air varying 

pressure (Table 6.1). The FDR mix gradation and other properties of the mixtures used in the 

experiments are presented in (Table 6.1). 
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6.5.2 Mix design 

The compaction ability of the double coating mixture emulsion/foam was studied performing 

four series of tests, which are directly related to four types of mixtures: FDR emulsified 

asphalt mixture (Mix-A), FDR foamed asphalt mixture (Mix-B), FDR emulsified asphalt - 

emulsified asphalt double coating mixture (Mix-C), and FDR emulsified asphalt - foamed 

asphalt double coating mixture (Mix-D). The latter has been compared to the first three 

reference mixes with Mix-D. Furthermore, the addition of coarse aggregates and fine 

aggregates to the Foamed Asphalt and/or Emulsified Asphalt in the mix design has been 

distributed in two parts. To test the Indirect Tensile Strength (ITS) and Marshall Stability 10 

replicates were compacted for each mix. 
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Table 6.1 Full Depth Reclamation mixture gradation and its properties 

 
 Percent of Passing sieve 

Sieve Size 
(mm) 

Requirements FDR mix gradation 

28 80-100 100 
20 - 95 
14 50-90 89 
10 52-75 74 
5 25-55 48.5 

2.5 - 29.1 
1.25 - 23.9 
0.630 - 12.2 
0.315 5-20 6.4 
0.16 - 3.7 
0.080 3-10 2.3 

 
% of residual binder in RAP 

(According to ASTM D6307-
10(ASTM D6307-10, 2010)) 

6.38 

AC of Emulsified Asphalt CSS-1S 
(%) 

65.2 

AC of Emulsified Asphalt CSS-1P 
(%) 

61.6 

Compaction 
Marshall and Superpave gyratory 

Compaction 
Curing Time (days) 10 days at 38 ± 2°C 

PCC (%) 1.0 
Water content (%) 6.5 
Targeted Air Voids Va (%) 13 ± 1 
 
Foamed Asphalt Production 
Bitumen Grade PG 58-28 
Water Content (%) 3.25 
Expansion ratio 15 
Half-life 12 seconds at 170°C temperature. 

Note: Va= Air voids of the mixture; AC=Asphalt Content; PCC=Portland Cement Content;  
CSS-1S = Cationic Slow-Setting with soft bitumen emulsion; CSS1P= Cationic Slow  
Setting 1 with Polymer; PG= Penetration Grade. 
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Figure 6-2 Writgen laboratory foaming Plant 

 

 
6.5.2.1 Single coating and double coating of emulsified asphalt mixtures 

Single coating of emulsified asphalt mix design has been done with respect to Quebec 

standard LC 26-002 (MTQ, 2001). The pre-mix optimum water content was fixed at 6.5% by 

weight on the dry aggregates, including cement. The rate of pre-mix water can lead to several 

advantages, such as higher RAP content, virgin aggregate coating, increased lubrication 

during compaction, and accelerating the cement hydration process (Yan et al., 2010). The 

exact dosages of water and cement are added to aggregates and thoroughly mixed for one 

minute. Then, CSS-1S emulsified asphalt is poured according to proportions, and the mix is 

blended for one more minute. 

 

The same process is applied to double coating emulsified asphalt mixes, but the entire mixing 

process is split in to two phases. Initially, the 0/5 aggregate fraction is mixed with Portland 

cement and water and for one minute. Then, half portion of the first emulsified asphalt (CSS-

1S) is added and mixed again for one minute. Before performing the second coating, the 

emulsified asphalt needs to break first. After that, the second aggregate fraction (5/20) and 

second emulsified asphalt (CSS-1P) is poured and mixed well for one minute duration. 
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6.5.2.2 Double coating of emulsified and foamed asphalt mixtures 

Double coating of emulsified asphalt and foamed asphalt mixtures mix design is follows the 

similar process as mentioned in section 6.5.2.1, even though it has two separate stages in the 

mixing procedure. The initial aggregate fraction is mixed with 50% of water content and the 

necessary amount of emulsified asphalt (CSS-1P) for one minute. Then, immediately after 

the emulsified asphalt breaks, the mixture and the second fraction of aggregate are added 

directly into the laboratory foam mixer. Afterwards, the remaining 50% of water content and 

1% of cement are poured, whereas foamed asphalt was added according to mix design 

proportions. 

 

6.5.3 Sample Preparation  

To determine the mix design of FDR materials in this study, a Marshall compactor was used 

to produce specimens at targeted percentage of air voids, applying 50 blows on each face. 

The following curing process was performed at one day at ambient temperature with mould 

and one day at 38± 2°C in demolded state. In particular, curing humidity was not controlled, 

even though laboratory relative humidity resulted being always around 50%. The air voids of 

all FDR mixtures were measured and presented in Table 6.2. 

 

Table 6.2 Percentage of air voids of FDR Mixtures 

 
S.No. Mix Type Percentage of Air voids (%) 

1 Mix A 10,62 

2 Mix B 11,36 

3 Mix C 11,64 

4 Mix D 12,24 

 

 

 In addition to that, to evaluate the rheological characteristics of the double coated full depth 

reclamation materials with the complex modulus test, cylindrical specimens were produced 
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by means of a gyratory compactor fixing the targeted air voids content. Specimens were 

immediately demolded after compaction and cured for 10 days at 38 ± 2°C. At the end of the 

curing process, samples of 75 mm x 120 mm prepared with the help of coring and sawing. 

 

6.6 Testing 

 

6.6.1 Marshall Stability Test 

Marshall Stability and flow test results along with density and other parameters are normally 

utilized to compare and evaluate the laboratory mix designs of asphalt mixtures. In addition, 

it evaluates the properties of conditioning such as with water (ASTM D6927-15, 2015). For 

Marshall Stability and flow, the cured specimens are tested with laboratory Marshall testing 

equipment at room temperature, and it reaches failure under a constant load (Figure 6.3). The 

maximum load linked to failure is named Marshall Stability, which needs to be corrected 

according to the sample height.  

 

 

 

Figure 6-3 Compacted Marshall Specimens and Marshall Testing setup 
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6.6.2 Indirect Tensile Strength Test 

The Indirect Tensile Strength (ITS) test values can be used to evaluate the moisture damage 

and quality of asphalt mixtures (ASTM D6931-17, 2017) (Figure 6.4).  The ITS test was 

performed at room temperature. The following equation 6.1 is used to obtained the ITS 

value, which is calculated dividing the maximum compressive strength by the specimen’s 

geometrical properties (ASTM D6931-17, 2017): 

 

 St = 2000 × Pπ × t × D    (6.1) 

Where,  

St : Indirect Tensile Strength, kPa; 

P : Maximum load, N; 

D : Specimen diameter, mm, and  

t : Specimen height immediately before test, mm.  

 

 

Figure 6-4 Indirect Tensile Strength 
Test loading 
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6.6.3 Complex Modulus Test 

The structural performance of flexible pavement is significantly influenced by the 

rheological properties of the asphalt mix layers. Therefore, the rheological analysis aims at 

defining the constitutive laws of road materials in order to associate their specific mechanical 

properties with the performance of road materials in exercise and the expectations of the 

pavement service life.  

 

During the pavement design phase of road structure, it is necessary to consider that the 

temperatures are normally between 0°C and 60°C while the loads from vehicular traffic have 

a short time application but not sufficiently short to induce purely elastic behavior in the 

bituminous material. FDR materials, containing bitumen, should be studied referring to 

models and principles used in the rheological analysis of the viscoelastic material. This 

means that the application of a constant effort (σ) produces both an instantaneous 

deformation and a deferred deformation that grows during the entire period of the load 

application, i.e. elastic and viscous contributions coexist. An identical behavior is observed 

when the load is removed. The elastic deformation returns instantly, followed by a delayed 

recovery delayed while a rate of irreversible deformation due to viscous flows represent a 

plastic deformation. In the Linear Viscoelstic region (LVE) only the first two components are 

taken into account. Therefore, the complex modulus for asphalt concrete is defined by the 

following Equation 6.2: 

  

|∗ܧ|                                                  = ᇱଶܧ√ +  ଶ                                                              (6.2)′′ܧ

 

Where: ܧᇱᇱ= loss modulus, viscous contribution [Pa] ܧᇱ= storage modulus, elastic contribution [Pa] 

 

The phase angle (δ) represents the distributions of the elastic and viscous contributions 

(Equation 6.3):  
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ߜ                                                 = ݃ݐܿݎܽ ቀாᇲᇲாᇲ ቁ                                                                    (6.3) 

 

The rheological properties become important input parameter to implement mechanistic-

empirical pavement design models (Witczak & Fonseca, 1996). The complex modulus and 

phase angle depend on the mixture characteristics, the loading frequencies, and pavement 

temperature profile. Clearly, a lack or  fragmentary information regarding the rheological 

behavior of FDR has become a source of reluctance to use this type of alternative as 

pavement base materials (Depatie, Bilodeau, & Gold, 2012). As of today, attempts to 

characterize the stiffness of FDR materials through a tri-axial test, by measuring the resilient 

modulus (MR), or through a complex modulus (E*) test have been undertaken. 

 

The experimental results obtained from the complex modulus test are analysed through the 

2S2P1D (2S: two Springs, 2P: two Parabolic elements, 1D: one Dashpot) model and 

graphical representation of the model is in Figure 6.5 (Hervé Di Benedetto et al., 2004).  

 

 

Figure 6-5 The graphical representation of the 2S2P1D model  
Taken from Di Benedetto et al. (2004) 

 

It is extensively used to model the LVE unidimensional or tridimensional behavior of 

bituminous materials which includes binders, mastics and mixes (Olard & Di Benedetto, 

2003). The 2S2P1D analytical expression of the Complex Young’s Modulus, at a specific 

temperature, as expressed by Equation (6.4): 
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(ɷ߬߱݅)∗ܧ                                       = ଴ܧ    +  ா ି  ாబ ଵ  ା ఋ(௜ɷఠఛ)షೖ   ା  (௜ɷఠఛ)ష೓  ା  (௜ɷఠఉఛ)షభ              (6.4) 

 

The temperature (τ) change is dependent by means of the shift factor at temperature (T) as 

presented in the equation (6.5):  

 

                                                  τ ୉ (ܶ)  =   ்ܽ(ܶ)   ×    τ ଴୉                                                  (6.5) 

 

Where aTref (T) is the shift factor at temperature T and τ ୉ = τ ଴୉ at reference temperature 

Tref. Seven constants (E00, E0, δ, k, h, β and τ ଴୉) are required to completely characterise 

the linear viscoelastic properties of the tested material at a given temperature. The evolutions 

of τ ୉ were approximated by the William-Landel-Ferry (WLF) model (Ferry, 1980) 

(Equation 6.6). τ ଴୉ was determined at the chosen reference temperature Tref. When the 

temperature effect is considered, the number of constants becomes nine, including the two 

WLF constants (C1 and C2 calculated at the reference temperature). 

 

                                                           log(்ܽ)  =   ି ஼భ ൫் ି ்ೝ೐೑൯஼మ  ା ்ି்ೝ೐೑                                                (6.6) 

 

All the experimental and analytical results fit on a single curve in the Cole-Cole plan of the 

model, if the material has linear viscoelastic behaviour. Furthermore, for reference 

temperature, with considerations to the principle of time and temperature equivalency, master 

curves are deducted from the test results and highlight the evolution of the dynamic modulus 

with regard to a constant reference temperature and a changing frequency. 

 

Coefficient of evolution C*CE is introduced, in order to compare objectively the experimental 

results of complex modulus of mixtures with different binders. The calculation of the RAP 

coefficient of evolution (C*RCE) was proposed by Di Benedetto (Delaporte, Di Benedetto, 

Chaverot, & Gauthier, 2007). It is defined as the ratio between the complex modulus of a 

specific mix at the equivalent frequency (fe) and complex modulus of a reference mixture at 

the same frequency (fe) as mentioned in equation (6.7). 
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)ோ஼ா∗ܥ                          ௘݂)  =   ா∗೘೔ೣ ா∗ೝ೐೑ష೘೔ೣ =  ோ஼ா|݁௜஍ோ஼ா                                               (6.7)∗ܥ| 

 ோ஼ா is a complex number, as shown in equation (6.7). It is standard is the ratio of the∗ܥ 

norms of the complex modulus of the recycled mixture to the one of the reference as 

calculated by equation (6.8). Its phase angle is the difference between the phase angle of the 

recycled mixture and the one of the reference as determined by equation (6.9).  

|ோ஼ா∗ܥ|   =   ฬ ா∗೘೔ೣ ா∗ೝ೐೑ష೘೔ೣฬ                                         (6.8) 

 

         Φோா஼ = Φா∗೘೔ೣ − Φா∗ೝ೐೑ష೘೔ೣ                                                         (6.9) 

 

It is important to note that the |ܥ∗ோ஼ா| value is calculated in the reference mixture. The 

complex modulus was measured with a servo-hydraulic testing system (MTS 810). The axial 

strain was measured on the center portion of the testing specimen with the help of three 

50 mm extensometers, placed 120° apart as shown in figure 6.6. Each sample was subjected 

to haversine compression loading (stress controlled) along the axial direction. Experiments 

were performed under strain control with target amplitude of 50 µdef. The test was 

performed at eight temperature (-25⁰C to 45⁰C) and five frequencies (0.03 to 3.00 Hz). After 

each temperature change, 6 hours of conditioning period has been applied.   

 

 



114 

 

 

 
Figure 6-6 Complex Modulus Test setup and MTS Machine 

Taken from Gandi et al. (2017b) 
 

6.7 Results and discussion 

6.7.1 Marshall Stability 

Figure 6.7 is presented the test results of all mixtures starting form Mix-A to Mix-D in dry 

condition and wet condition. According to Ministry of transportation Quebec, minimum of 8 

kN of Marshall Stability required (MTQ, 2001), which is satisfied by all the mixtures. As 

anticipated, the Marshall Stability of Mix - A and Mix - B are relatively lower than Mix - C 

and Mix – D.  Furthermore, in saturated conditions, all formulations showed almost the same 

resistance value. 
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Figure 6-7 Marshall Stability of FDR materials 

 

Overall, Marshall Moisture susceptibility results were not satisfactory enough. Figure 6.8 

shows that double coating mixes are the most influenced by the presence of water. At 

contrary, Mix-A has the lowest stability loss (11.35%), due to the optimal coating action 

provided by the single film of emulsified asphalt. On the other hand, higher moisture 

sensitivity was obtained by foamed asphalt mixtures, probably due to the tendency of foamed 

asphalt to merge mainly with the fine fraction, leading to a lower coating. However, it was 

expected Mix-D to reach lower moisture sensitivity than Mix-B (single foamed asphalt). 

 

 

 

Figure 6-8 Loss of stability of FDR Materials 
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6.7.2 Indirect Tensile Strength 

Figure 6.9 shows both ITS-Dry and ITS-wet experimental results. As for Marshall Stability 

values, no particular gain in strength is visible among the four formulations, especially 

between single and double coating. The Mix - B and the Mix - D shows good results. The 

Mix - B is very similar to the latter. 

 

 

Figure 6-9 Indirect Tensile strength test results of FDR Materials 

 

ITS moisture sensitivity results are more comprehensible, if compared to the Marshall Test 

ones. As expected, double coating FDR mixtures are the most performant, with Mix-D 

reaching the highest value (81%) (Figure 6.10). Since moisture susceptibility is considered 

one the important parameters in this study, it is fundamental that double coating mixtures 

respect the Wirtgen reference criterion. Such good results for Mix-C and Mix-D indicate a 

good and suitable coating of aggregates and demonstrate the effectiveness of the formulation 

used for the double coating. In particular, for detailed mixing procedure refer Gandi et al. 

(Apparao Gandi, Bensalem, et al., 2016). They concluded that the first coating the coarse 

aggregate with foamed asphalt and second coating the fine aggregate with emulsified asphalt 

ensures the best results in terms of the performance based tests. For an approach to optimize 

the double coating mix design procedure please refer to Appendix II. 
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Figure 6-10 Various tensile strength ratios of FDR materials 

 

6.7.3 Complex Modulus 

As mentioned before, complex modulus test was performed on samples in a range of eight 

different temperatures and five different frequencies. The 2S2P1D rheological model was 

used as a tool to analyze results obtained from the laboratory investigation. 

 

6.7.3.1 The Cole-Cole diagram and Black space diagram with 2S2P1D model 

The 2S2P1D model is generally used to explain both behaviors of the asphalt mixtures and 

binder (Olard & Di Benedetto, 2003). The complex modulus tests were carried out on four 

different asphalt mixtures (Mix-A through Mix-D) at eight temperatures and five 

frequencies; this allows to determine accurately the modeling parameters (E0, E∞, k, h, β, δ, 

C1, and C2) to be employed in the 2S2P1D model to characterize the linear viscoelastic 

response of the asphalt mixture. The modeling parameters are listed in Table 6.3 at a 

reference temperature. Such parameters are determined by the best-fitting curve for all the 

measured complex modulus data plotted in the Cole – Cole and Black space diagrams of the 

2S2P1D models. Figure 6.11 and Figure 6.12 represent the Cole – Cole and Black space 

diagrams respectively. The binder rheology is represented by the k, h, δ and β parameters (C 

Godenzoni et al., 2015). These parameters are nearly same for single and double-coated 

mixtures separately, which means a double coating of the asphalt mixtures could lead to a 
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change in the binder rheology. For what concerns the other parameters, E0 is the static 

modulus (E when ω →0),  and E∞ is the glassy modulus (E when ω→∞), which is normally 

related to the air void content and aggregate skeleton (Nguyen et al., 2009). However, it 

should be noted that the targeted percentage of air voids and the aggregate gradation is the 

same for all mixtures. Our results show that the binder type affected the glassy modulus, 

which is moderately higher for mixtures treated with foamed asphalt (Mix-B and Mix-D). 

 

Figure 6.12 illustrates the black space diagram of 2S2P1D model, in which the complex 

modulus norm is linked to the phase angle (φ). As the experimental data suggest, the phase 

angle, which is the loss coefficient of the material, varies between 3.85° (low 

temperature/high frequency) and 33.18° (high temperature/low frequency). In general, if the 

material has high φ values, it is supposed to be highly viscoelastic and to absorb more cyclic 

loading energy as a consequence; on contrary, with less φ value it absorbs less energy. 

However, values of both E0 and φ for all tested cold recycled asphalt mixtures are below 

those normally measured on HMA (C Godenzoni et al., 2015). Figure 6.12 shows that phase 

angle is significantly attenuated at higher temperatures with respect to Mix-B. It can be seen 

that the Mix-B has relatively high φ values than the other mixtures. This can suggest that the 

Mix-B is more viscoelastic and in addition to this, double coating does have higher impact on 

elastic response rather than on viscous behaviour. 

 

 

Table 6.3 Parameters of the 2S2P1D model for the FDR Mixtures (Tref = 5⁰C) 

 

Mixture E0 (MPa) E∞ (MPa) k h δ β C1 C2 
Mix - A 80 8750 0.18 0.5 4.8 1000 16.24 108.38 
Mix - B 41 9600 0.17 0.5 3.6 375 21.56 150.15 
Mix - C 26 3800 0.16 0.5 2.5 1200 20 136.88 
Mix - D 75 7500 0.16 0.4 3.0 1200 19.08 137.01 
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Figure 6-11 Complex modulus master curve in Cole & Cole axes 

 

 
 

Figure 6-12 Complex modulus master curve in Black space diagram 

 

 

6.7.3.2 Master curves of the tested FDR asphalt mixtures 

An optimal tool to understand the complex modulus test results is to plot them as a master 

curve. If the hypothesis that the asphalt mixture satisfies the Time-Temperature 
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Superposition Principle (TTSP) is assumed, the master curve can be plotted as a function of 

an equivalent frequency. Initially, the reference temperature is selected (Tref = 5⁰C), and then, 

all data at different temperatures need to be shifted with respect to time in order to obtain a 

single smooth master curve. The build-up of the master curve requires the determination of 

the shift factors for each testing temperature T, named ்ܽ(ܶ), that can be done by means of 

Equation 6.6. However, to achieve a complete understanding of the rate and temperature 

effects, both the master curve and the shift factor ்ܽ(ܶ) are needed (Singh, 2011). Figure 

6.13 illustrates the master curves (complex modulus norm as a function of a frequency of the 

material) of the four mixtures at the reference temperature Tref = 5⁰C.  

 

In Figure 6.13, the top right portion of the |E*| master curves at a higher frequency or low 

temperatures approach asymptotically to a maximum value which describes a maximum 

stiffness value of the corresponding asphalt mixtures (Mix-A and Mix-B). At the bottom left 

quarter of the graph, which means at lower frequencies or high temperatures, |E*| master 

curves approach a minimum value which describes the minimum stiffness value of the 

corresponding asphalt mixture (Mix-C). In addition to this, at the lower frequency and higher 

temperature, the other two mixtures (Mix-A and Mix-D) represent the maximum stiffness 

value. In particular, FDR asphalt mixtures treated with foamed asphalt are representing high 

stiffness values at lower frequencies which are characterized by an improved cohesion with 

respect to unbound granular materials. It should be noted that Mix-C showed relatively lower 

stiffness at both lower frequency - higher temperature and high frequency - low temperature. 

A hypothesis could be the less cohesion presents in between double coated emulsified asphalt 

materials (Mix-C). 
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Figure 6-13 Master curves of the norm of complex modulus 

 

 

 

Figure 6-14 Master Curves and Shift factors of  
complex modulus norm at (Tref = 5⁰C) 
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Figure 6.14 represents the shift factors for the norm of the complex modulus at 5⁰C. Both the 

master curve and the shift factor ்ܽ(ܶ) are needed for a complete depiction of the rate and 

temperature effects (Singh, 2011). From Figure 6.14, Mix-A has higher thermal susceptibility 

in the entire temperature domain. In addition to this, the double-coated mixtures (Mix-C and 

Mix-D) have lower thermal susceptibility. In other words, double-coated asphalt mixtures 

could be less sensitive to temperature. This aspect needs further research and other laboratory 

tests. 

 

6.8 Conclusions 

The present study was carried out to determine the mix design procedure for double coating 

FDR materials and evaluate its rheological characteristics of  four different combinations of 

the binders like FDR EA mixture (Mix-A), FDR FA mixture (Mix-B), FDR EA-EA double 

coating mixture (Mix-C), and FDR EA-FA double coating mixture (Mix-D).  

 

The following conclusions can be drawn based on the results. 

 

• Prior to mechanical testing, two-stage mixing procedure was done to produce specimens 

with uniform binder percent and same volumetric properties. This new two-stage mixing 

technique is primarily based on pre-coating a portion of the aggregate with the suitable 

quantity of optimum binder content. Based on the ITS and Marshall stability test the Mix-

D results indicated better performance. Nonetheless, with respect to moisture content 

remain to be made some developments; 

• this indicates that mixes containing high content of bitumen in the form of EA or 

separating the fine aggregates and coarse aggregates are appears to be better solutions to 

deal with the inadequate coating. Enhancing the aggregates coating, should effect in a 

lower water sensitive asphalt mixture. Furthermore, these developments in the mix design 

and including production process could increase resistance, which is already enhanced 

with respect to the conventional formulations. If the mixing procedure is optimized 

taking into account results for Tensile Strength Ratio (Figure 6.10), the first coating 
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should be performed on coarse aggregates with foamed asphalt, whereas fine aggregates 

should be coated by emulsified asphalt afterwards. An adequate time gap between the 

two coatings is one minute. However, to reach better performance further investigations 

are needed; 

• the laboratory based complex modulus experimental results are considered satisfactory 

since they respect the 2S2P1D rheological model. As well as a master curves are plotted 

using a shifting procedure at a reference temperature of 5°C. FDR single coated (Mix-A 

and Mix-B) and FDR double-coated (Mix-C and Mix-D) asphalt mixes are satisfies the 

Time - Temperature Superposition Principle (TTSP); 

• the results confirm that for the study of FDR it is necessary to refer to models and 

principles used in the rheological analysis of viscoelastic material. It should be noted that, 

the binder type had an influence on the glassy modulus that is moderately higher for 

mixtures treated with foamed asphalt (Mix-B and Mix-D). In addition to this, Mix-C 

showed relatively lower values of complex modulus over all the range of temperatures 

and frequencies tested. This may be due to the less cohesion that characterizes the FDR 

emulsion-emulsion double coating mixture (Mix-C); 

• the hypothesis is that the residual water trapped in the mixture, after the first emulsion 

coating step, reduces the adhesion of the bitumen once the second coating step takes 

place. This may result in a non-homogeneous distribution of the bitumen film thickness, 

and consequently the formation of weaker points that decrease the mechanical 

performance of the mixture. Indeed, it should be considered that the bitumen film 

thickness has an important influence on the rheology. In this case, it means that the time-

span between the first and second coating should be handled in a way to remove or 

evacuate the residual moisture. Therefore, additional work is needed to study and apply a 

possible solution during the mixing phase;  

• the results revealed also that, FDR double coated foam – emulsion asphalt mixture (Mix-

D) increases stiffness approximately 49.32 % when comparing with the FDR double 

coated emulsion – emulsion asphalt mixture (Mix-C). In this case, the problem of the 

residual moisture is overpassed because foam technology application (first step of 

coating) reduces significantly the amount of total water in the whole process. From the 
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shift factors point of view, double coated mixtures could be reflected in a lower thermal 

susceptibility; 

• after having solved the limits developed during this research, it will be required to 

validate the results obtained in the laboratory when the mixtures are produced in the 

Central mixing plant as well. 
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CONCLUSION 

 

This doctoral research program is based on the laboratory experimental and analytical 

investigations of mechanical behaviour of cold recycled asphalt materials (CRM). Due to its 

complexity, there are still some critical problems existing in this technology that require 

research and investigation. During this doctoral program, a research including a large 

experimental campaign on the characterization of bitumen treated full depth reclamation 

materials (FDR) was performed to solve relevant research problems. Various aspects 

involved in CRM characterization was investigated analytically and experimentally. The 

materials used, the scope and all the detailed experimental program and analysis are 

presented in four different papers, which are presented in this manuscript-based Ph.D. thesis. 

 

The results of this research program have significantly contributed to the increase of 

knowledge in the field of cold recycled asphalt materials. For instance, we now have a better 

understanding of the role of each component of the mixtures on its mechanical behaviour. 

We also have a better knowledge on the effect of the binder on the FDR materials and also a 

better understanding on how to optimize the mix design with emulsified asphalt and/or 

foamed asphalt.  

 

More specifically, the principal aspects studied in this research program are the rheological 

behavior of cold recycled asphalt materials with different contents of recycled asphalt 

pavements, and the effect of confining pressure on the complex modulus. The impact of the 

compaction and curing temperature on the behavior of cold bituminous recycled materials, 

and the optimization of the binder type by the use of double coating was also studied. Here is 

a summary of the principal findings of this project. 

 

For CRM, the environmental conditions during mixing and during curing are very important. 

Because of this, we studied the effect of low temperature. It is possible to state that low 

mixing, compaction and curing temperatures have highly influenced the final mechanical 

properties of the mixes. Nevertheless, other conclusions can be deducted: 
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• Results from Marshall and ITS tests show the same general trend, even if ITS results are 

more sensitive to low temperatures with lower variability; 

• Mixes produced with foamed asphalt or bituminous emulsion showed similar results (of 

both ITS and Marshall) if produced at room temperature; 

• In general, foamed asphalt mixes are less problematic at low temperatures. This can be 

caused by the lower water content in the mix and the respective different cohesion 

development kinetic; 

• Compactability is globally improved by low temperatures, probably because of RAP, 

which is closer to a black rock behaviour when used at “cold” temperatures; 

• An additional curing period at 23°C for all mixes did not have a strong impact on 

bituminous emulsion mixes; on the other hand, foamed asphalt mixes were able to 

recover part of the residual strength; 

Then, the linear viscoelastic behavior of cold recycled emulsified asphalt mixtures with 

various percentages of RAP has been analyzed. Complex modulus testing was done on MR5, 

MR6 - 75%, MR6 - 85%, and MR7 asphalt mixtures with six temperatures and six 

frequencies respectively. It was observed that MR7 asphalt mixture exhibits high stiffness 

value at high frequency and low temperature. This can be explained in part by its high total 

binder content. On the other hand, at lower frequencies and higher temperatures, the stiffness 

value approaches a limiting value which possibly depends on the aggregate skeleton. Also, 

the combination of MR7 and MR5 have higher phase angle value than MR6 mixtures. From 

this consideration, it can be said that the MR7 and MR5 mixtures have higher viscous 

components than the MR6. This could lead to the conclusion that, contrary to what is found 

in the literature, the amounts of RAP do not have a strong influence on the phase angle, but 

more work is needed to support this statement.  

 

From a pavement design standpoint, the moduli measured in this study do have a big impact. 

However, since different pavement structure are achieved with those different materials, the 

stiffest material, the CIR, ended up the least performant structure.  
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In order to see if CRM behaves more like granular materials or cohesive materials at young 

age, a comprehensive study on use of confining pressure was performed.  Based upon the test 

results, it was found that confining pressure has an influence on the complex modulus of the 

FDR mixtures, mainly on the elastic component. Different cure length were also tested, and it 

was clearly shown that the curing period influences the ITS values and moisture damage. 

Basically, a longer cure means more durable materials. 

 

In order to increase the moisture damage resistance of CRM, a study was carried out to 

optimize the binder type, which was done with the use of a combination of emulsion and 

foam (double coating). Prior to mechanical testing, two-stage mixing procedure was done to 

produce specimens with uniform binder percent and same volumetric properties. This new 

two-stage mixing technique is primarily based on pre-coating a portion of the aggregate with 

the suitable quantity of optimum binder content. Based on the ITS and Marshall stability test 

the, the CRM mix with foam and emulsion results in better performance.  
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RECOMMENDATIONS  

 

Based on the observations from this study, the following recommendations are made for 

future studies. 

 

• More work is needed to develop criteria for different confining pressures, frequencies 

with various temperatures, and different pavement conditions;  

• With more results, it will be possible to use the true value of complex modulus for FDR 

materials in pavement design, which should result in more accurate designs; 

• The study on the effect conferred by low temperatures to CRM could be improved by 

performing complex modulus tests. In addition to this, results should cover a wider gap of 

curing time, and consider water susceptibility together with dry conditions; 

• The laboratory experimental outcomes characterize a first promising step concerning a 

new type of production process for the cold mix asphalt materials. This is the case for the 

two-phase mixing process with coarse aggregates separated which is currently not 

adequate enough for cold in place recycling but can be used for central plant recycling 

unit;  

• After having solved the limits developed during this research, it will be necessary to 

validate the results obtained in the laboratory when the mixtures are produced in the 

central mixing plant; 

• It is recommended that future studies include a life cycle cost analysis to help choose the 

FDR optimum structure and material.  
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APPENDIX I  

REVIEW OF MIX DESIGN PROCEDURES FOR COLD RECYCLED  
ASPHALT MATERIALS 

Recently, many mix design methods have emerged in an effort to improve the CIR process as 

a viable method for pavement rehabilitation. Methods proposed by different agencies and 

groups that appear to have the most developed mix design procedures for CIR (Epps & 

Allen, 1990): 

• California Test 378. 

• Chevron USA, INC. Mix Design Method 

• Corps of Engineers 

• Nevada 

• Oregon Mix Design 

• New Mexico 

• Pennsylvania Mix Design Method 

• Purdue 

• Texas 

• Indiana (Tia et al., 1983) 

• The United Kingdom (Stock, A. F., 1987)  

• Ontario (Emery, 1993)  

• Israel (Cohen et al., 1989), 
 

Table - A I-1 summaries the mix design procedures, and the sampling and testing techniques 

used by some of these organizations(Oqueli, 1997). The methods are generally very similar. 

All but one uses the Marshall and Hveem tests. Kneading or gyratory compaction is used by 

some, while others use the Marshall method. The main differences are in the addition of new 

aggregate, and in curing time and temperatures. 
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Table - A I-1 Summary of mix design and testing procedures, performed or studied by different organizations  
Taken from Oqueli (1997) 

 

ORGANISATION SAMPLING 

DETERMINATION 

OF RAP 

PROPERTIES 

ADDITION OF 

NEW 

AGGREGATE 

DETERMINATION 

OF EMULSION 

REQUIREMENT 

MIXING COMPACTION CURING TESTING 

STATE OF 
CALIFORNIA 

 

• Pavement 
cores. 

• Large 
pieces 
crushed in 
the 
laboratory 

• Bitumen content 
by Abson recovery 
test. 

• Aggregate grading. 
• Viscosity from 

Abson recovered 
bitumen 

• None  • Done by means of the 
surface area of 
aggregate. 

• Mixing is done 
by adding 2% 
water and 
different 
emulsion 
contents 

• By kneading 
compactor at 
60°C. 

• Mixed 
specimens 
are cured 
loose at 
60°C for 16 
hours 

• Hveem 
stability at 
60°C. 

• Air void 
determinatio
n. 

• Specific 
gravity  

STATE OF 
PENNSYLVANIA 

• Pavement 
cores. 

• Bags from 
stockpile 

• Bitumen content 
by Abson recovery 
test. 

• Aggregate grading. 
• Viscosity at 60°C. 
• Penetration at 

25°C. 

• Up to 50% • Determined by total 
bitumen needed by 
the RAP aggregate 
after extraction, and 
calculated by means 
of the aggregate 
surface area. 

• Mixing is done 
by hand. 

• Emulsion 
content kept at 
2.5% by weight 
and heated to 
60°C. 

• 3% of MC is 
used with 
increments of 
1%. 

• Compactions at 
23°C using a 
Marshall 
hammer 
applying 75 
blows per face. 

• Loose 
curing at 
41°C for 45 
minutes. 

• Mould 
curing at 
23°C for 15 
to 24hrs. 

• Extruded 
specimens 
cured at 
40°C for 3 
days. 

• Resilient 
modulus at 
25°C. 

• Marshall 
Stability and 
flow. 

• Bilk specific 
gravity. 

• Vacuum 
saturation 
and soaking 
at 25°C to 
determine 
modulus. 
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STATE OF 
OREGON 

• Field 
samples 
reduced to 
100% 
passing the 
25mm 
sieve. 

• Bitumen content 
by Abson recovery 
test. 

• Aggregate grading. 
• Absolute viscosity 

at 60°C. 
• Penetration at 

25°C 
• RAP grading. 

• Not 
Mentioned 

• Estimated usinf 
absolute viscosity 
and penetration 
charts from previous 
charts from previous 
projects or by 
established formula 

• Hand mixed 
with preheated 
emulsion at 
60°C for 1hr. 

• Water content 
of 0.5%,1.0% 
and 1.5% are 
used 

• kneading 
compaction  at 
60°C applying 
50 blows. 

• Re-compaction 
using kneading 
compaction  at 
60°C applying 
50 blows 

• Loose 
curing at 
60°C for 1 
hr. 

• Mould 
curing at 
60°C for 
overnight. 

• Further 
Mould 
curing at 
60°C for 
24hrs. 

• Extruded 
specimens 
cured at 
room 
temperatur
e for  
72 hrs. 

• Hveem 
stability. 

• Resilient 
modulus. 

PURDUE 
UNIVERSITY 

INDIANA 
 

• Not Stated • Bitumen content. 
• Clean aggregate 

grading. 
 

• New 
aggregate 
added 
depending on 
Clean 
aggregate 
grading. 

• Optimum emulsion 
content determined 
by a gyratory 
compactor machine 

• Mechanically 
mixed for 2 
minutes and 
half a minute 
hand mixing 

• By gyratory 
compactor 
using of 20 
revolutions at 
1400kPa and 60 
revolutions at 
1400kPa. 

• Mould 
curing for 
24 hrs. at 
room 
temperatur
e or 60°C. 

• Unit weight 
•  Resilient 

modulus 
• Hveem R-

value 
• Marshall 

stability and 
flow. 
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CHEVRON USA 
INC. 

• Crushed 
material to 
produce 
laboratory 
specimens.  

• Bitumen content. 
• Aggregate grading. 
• Viscosity at 60°C. 

or Penetration at 
25°C. 

• Viscosity at 
135°C. 

• New 
aggregate 
added if 
required. 

Determined by either:  
• Centrifuge kerosene 

equivalent or, 
• Aggregate surface 

area formula 
 

• Mixed at 
different 
recycling agent 
contents. 

• By kneading 
compactor at 
applying 10 to 
50 blows per 
face and 175 kN 
plunger method 
at 73°C. 

• Mould 
curing at 
23°C for 
24hrs. 

• Final 
Mould 
curing at 
23°C for  
72 hrs 

• Water 
soaked 
curing 
under 
vacuum 
saturation 
at 100mm 
mercury. 

After final 
curing:  

• Hveem 
resistance 
and 
cohesiometer
. 

• Resilient 
modulus. 

• 4 days 
vacuum 
desiccation at 
10-20mm 
mercury 

ONTARIO • Representat
ive sample 
from 
millings or 
from 

• coring. 

• Moisture content. 
• Bitumen content. 
• Aggregate grading. 
• Penetration. 

• New 
aggregate 
added if 
required. 

• Emulsion content is 

determined from 

plots of density, air 

voids, stability at 22° 

and 60°C against the 

percentages of 

     emulsion used. 

• Mixing is done 
with five 
different 
emulsion 
contents 
heated at 60°C 
at 
estimated field 

• Moisture 
content. 

• Compaction 
using Marshall 
hammer 
applying 
50 blows per 
face 
after loose 
curing. 
 

• Re-compaction 
applying 25 

• blows per face 

• Loose 
curing at 
60°C for one 
hour. 

• Mould 
curing 
overnight at 
60 °C. 

• Mould 
curing on 
their side for 
24 hrs. at 
60°C. 

•  

• Marshall 
stability and 
flow at 22°C 
and at 60°C. 
Bulk relative 
density. 

ASPHALT 

INSTITUTE 

• Obtained 
randomly 
from the 
field. 

• Bitumen content. 
• Aggregate grading. 

 

• New 
aggregate 
only  added  
to correct 
RAP grading.  

• Emulsion content 
determined by means 
of an aggregate 
surface area formula 
presented in the 
asphalt Institute 
Manual No. 21. 

•  Determined by the agency using the method. 

 
  



 



 

APPENDIX II  

AN APPROACH TO OPTIMIZE THE DOUBLE COATING  
MIX DESIGN PROCEDURE 

 

As showed in Chapter 6, the FDR emulsion-foam double coating mixture (Mix - D) shows a 

satisfactory value of ITS moisture sensitivity. Aiming to increase this value and to determine 

the optimal mixing procedure for the double coating, three parameters were tested as follows:  

 

• The order of the aggregate sizes addition during the mixing phase. The FDR material 

was divided in: coarse parts, from 5 mm to 14 mm, and fines parts, from 0 mm until 2.5 

mm. Two combinations were tested using: 1) the coarse aggregates in the first part of the 

mix and the fines in the second, 2) the fine aggregates in the first part of the mix and the 

coarse grains in the second; 

• The type of binder for the first and second coatings. The following binders were used: 

emulsion and foamed bitumen;  

• Rupture time: it was used a time span of 1 and 2 minutes.  

Considering the above mentioned parameters, eight different combinations representing eight 

different procedures for the double coating were carried out. For each combination, 48 

samples were compacted with the Marshall hammer (8 Combinations x 2 curing conditions 

(wet and dry) x 3 ITS Tests). The specimens were compacted to test the dry and wet ITS. 

Table - A II-1 shows each combination and their results. 
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Table – A II-1 The double coated FDR materials with eight different Combinations. 

Combination Double Coating procedure Avg. ITSDry  
(kPa) 

Avg. ITSWet 
(kPa) 

TSR (%) 

1 
1 coating: CAFa 
2 coating: FAEa 

Rt: 1 min. 
334.66 324.57 97 

2 
1coating: CAFa 
2 coating: FAEa  

Rt: 2 min. 

283.18 276.29 98 

3 
1 coating: FAFa 
2 coating: CAEa              

Rt: 1 min. 
389.19 329.11 85 

4 

 

1 coating: FAFa 
2 coating: CAEa              

Rt: 2 min. 
372.72 278.57 75 

5 
1 coating: CAEa  
2 coating: FAFa 

Rt: 1 min. 
388.03 336.94 87 

6 
1 coating: CAEa  
2 coating: FAFa 

Rt: 2 min. 
377.08 348.67 92 

7 
1 coating: FAEa  
2 coating: CAFa 

Rt: 1 min. 
378.74 305.41 81 

8 
1 coating: FAEa  
2 coating: CAFa 

Rt: 2 min. 
427.10 271.92 64 

 

Note: CAFa= Coarse Aggregate with Foamed Asphalt; FAEa= Fine Aggregate with 

Emulsified Asphalt; FAFa= Fine Aggregate with Foamed Asphalt; CAEa = Coarse Aggregate 

with Emulsified Asphalt; Rt= Rupture time. 

 

In order to achieve the optimal mixing recipe for the double coating, it is necessary to 

understand which factors are significant and which are negligible. A variable or factor is any 

parameter that has, in reality or all likelihood, an influence on the studied phenomenon. The 

factors are considered as the possible causes of the response. To determine which parameters 
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have a stronger influence on the results a sensitivity analysis was conducted using a multiple 

regression analysis, i.e. considering all the factors at the same time. When several variables 

are treated at the same time, they are expressed in different units, and it is thus convenient to 

convert them to a common scale to proceed with the model implementation. For this reason, 

the variables were standardized so that the coefficients are not dependent on the 

measurement unit(Ayyub & McCuen, 2011). The following parameters were investigated: 

 

• x1= order of the aggregates addition in the procedure (fines or coarse) 

• x2= order of addition of the type of binder in the procedure (emulsion or foam) 

• x3 = time span between the first and the second phase of the mix  

A linear model with interactions was developed. In Table – A II-2 is summarized all the 

coefficients of the model considered for the sensitivity analysis. 

Figure AII-1 represents the distribution of the measurements in the experimental domain 

investigated. The points highlighted in Figure - A II-1 correspond to the combinations tested 

and reported in Table AII-1. 

Table - A II-2 Summary of coefficients used in model. 

Coefficient notation Type of coefficient Coefficient meaning 

x0 Constant factor term Constant 

x1 

Main effects 

Order of aggregates 

x2 Order of binders 

x3 Time span 

x12 

Two-way interaction effects 

Order of aggregated/order of binders 

x13 Order of aggregates/Time span 

x23 Order of aggregates/Time span 

x123 Three-way interaction effect Order of aggregated/order of binders/Time span 
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Figure - A II-1 Distribution of measurement points in experimental domain 

To calculate the coefficients of the model that describes the phenomenon in the specified 

validity range, it is possible to use the least square fit algorithm (Equation AII-1). Dividing 

the coefficients for the constant term (x଴) allows the relative effects to be obtained (Equation 

A II-2): 

 x = (ZᇱZ)ିଵ ∙ Z′y (A II-1) 

x௜∗ = x୧x଴ (A II-2) 

Where: 

y = vector (n x 1) of the observation of the dependent variable (measurements of ITS or TRS) 

Z = model matrix (n x (k+1)) 

x = vector ((k+1) x 1) of unknown coefficients of the model 

ε = vector (n x 1) of stochastic errors  

 

Figure A II-2 to A II-4 compares the relative effects obtained from Equation A II-2. For the 

dry results the most important parameters are the order of the addition of the aggregates and 
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the order of the binder type. The time span between the two coatings (x3) is not relevant. The 

sign of the effect x1 (aggregates order) is negative, that means that if small aggregates are 

used in the first mixing phase (first coating) the ITS will increase and vice versa. The sign of 

the effect x2 (type of binder) is negative, that means that the best results are obtained using 

the emulsion during the first coating. The two-way interaction terms are not negligible (x12; 

x13, x23), that means that the factors have a mutual influence.  

 

Analyzing the results for the dry specimens, it is possible to conclude that the optimal 

procedure to first coat the fine aggregates with emulsion and afterwards coat the coarse 

aggregates with foam bitumen.  

 

On the other hand, as can be seen in Figure - A II-3, for wet results x1 is positive which 

means that using coarse aggregates in the first mixing phase the ITS is higher. The time span 

between the two coatings (x3) becomes important for the water resistance and its effect is 

negative, which means that increasing the rupture time between the coatings the ITS 

decreases. The order of the type of coating (x2) is less relevant in this case. The interaction 

terms are not negligible (x12; x13, x23), that means that the factors have a mutual influence and 

that the factors are not independent from each other. 

 

Analyzing the results for the wet specimens it is possible to conclude that the optimal 

procedure is to first coat the coarse grains with the emulsion and afterwards coat the fines 

with the foam bitumen. Contrary to what happens with the dry specimens, for the wet ones 

the rupture time is important. Finally, as it can be seen from Figures - A II-3 and A II-4, 

treating separately the results, the definition of the optimal recipe is not unique. Indeed, it 

depends of the type of criterion used (wet or dry ITS). 
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Figure - A II-2 Relative effects in case of ITS dry 
 

 

Figure - A II-3 Relative effects in case of ITS wet 

 

 

Figure - A II-4 Relative effects for the ratio between the ITS dry and ITS wet 

 

As shown in the Figure - A II-4, analyzing the results for the ratio between the results 

characterizing dry and wet specimens, it is possible to conclude that the optimal procedure is 
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to first coat the coarse part with foam and afterwards coat the fines with the emulsion. The 

appropriate time span between the coatings is one minute. In this case the interactions results 

less significant and could be ignored (with the exception of x13). 
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