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FOREWORD

This Ph.D. dissertation presents my research work carried out between 2013 and 2018 at École

de technologie supérieure, under the supervision of professor Christian Desrosiers. The main

objective of this research is to develop methods based on machine learning for human brain

fingerprinting, an important step toward a fully-personalized analysis of brain characteristics.

This work resulted in a total of 3 journal papers, and 6 conference/workshop papers, published

or under peer review, for which I am the first author. In addition, abstracts and posters based on

this work were presented at leading venues. This dissertation focuses on the content of the three

journal papers, presented in Chapters 2, 3 and 4. Other publications are listed in Appendix II.

The Introduction section presents background information on human brain fingerprinting, as

well as the main problem statement, motivations and objectives of this research. A review of

relevant literature and key concepts follows in Chapter 1. After presenting the three journal

papers (Chapters 2 to 4), Chapter 5 draws a brief summary of contributions and highlights

some recommendations for further research.
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MÉTHODES BASÉES SUR LES DONNÉES POUR CARACTÉRISER LES
DIFFÉRENCES INDIVIDUELLES DANS L’IRM CÉRÉBRALE

Kuldeep KUMAR

RÉSUMÉ

Comprendre la structure et la fonction du cerveau humain est un problème de taille, essentiel

au développement de traitements efficaces pour les maladies neurologiques comme la maladie

d’Alzheimer et la maladie de Parkinson. Alors que la plupart des études font des inférences

au niveau de groupes d’individus, les chercheurs ont établi que la structure et la fonction du

cerveau varient d’un individu à un autre. Motivés par cette observation, plusieurs travaux

récents se sont consacrés au développement de caractérisations compactes de cerveaux indi-

viduels, appelées empreintes du cerveau. Jusqu’à présent, ces études se sont principalement

concentrées sur des empreintes à base d’une seule modalité, en particulier, utilisant la con-

nectivité fonctionnelle. Cependant, plusieurs aspects importants n’ont pas été abordés dans

ces études. Premièrement, le potentiel des empreintes cérébrales basées sur la connectivité

structurelle n’a pas été exploré à fond. Ceci est en partie dû aux défis découlant des données de

tractographie, y compris l’absence d’un étalon de comparaison et la variabilité des faisceaux de

fibres. Deuxièmement, en raison des difficultés liées à la combinaison de plusieurs modalités

dans un modèle unique, le développement d’une empreinte cérébrale multimodale demeure à

ce jour un problème non-résolu. Cependant, puisque chaque modalité capture des propriétés

uniques du cerveau, la combinaison de plusieurs modalités pourrait fournir une information

plus riche et plus discriminante. Cette thèse aborde ces défis à travers trois contributions dis-

tinctes.

La première contribution consiste en des approches efficaces, basées sur l’apprentissage de

dictionnaires par noyaux et les aprioris de parcimonie, pour la segmentation des fibres de la

matière blanche et la caractérisation de leur variabilité inter-sujet. Le principe général des

approches proposées est d’apprendre un dictionnaire compact de fibres capable de décrire

l’ensemble des données, et d’encoder les faisceaux comme une combinaison parcimonieuse

de plusieurs prototypes du dictionnaire. Ces approches permettent d’assigner des fibres à plus

d’un faisceau, ce qui les rend mieux adaptées aux scénarios où les fibres ne sont pas clairement

séparées, les faisceaux se chevauchent, ou lorsqu’il existe une variabilité inter-individuelle im-

portante. De plus, ces approches n’exigent pas une représentation explicite des fibres et peuvent

être adaptées à n’importe quelle représentation de fibres ou mesure de distance / similarité. Des

expériences sur un jeu de données étiquetées et des données du Human Connectome Project

(HCP) mettent en évidence la capacité de ces approches à regrouper les fibres en faisceaux

plausibles, et illustrent les avantages de l’utilisation d’aprioris de parcimonie.

La deuxième contribution est une nouvelle empreinte cérébrale, appelée Fiberprint, la pre-

mière à capturer la géométrie des fibres de matière blanche dans les individus. Cette empreinte

utilise les approches d’apprentissage de dictionnaire provenant de la première contribution pour

représenter les fibres de sujets dans un espace commun correspondant aux faisceaux proémi-
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nents. Des empreintes cérébrales compactes sont générées en appliquant une fonction de re-

groupement pour chaque faisceau, encodant les propriétés uniques des fibres telles que leur

densité le long des faisceaux. Dans une analyse à grande échelle utilisant les données de 861

sujets du HCP, l’empreinte proposée est capable d’identifier des exemplaires du même individu

ou des sujets génétiquement liés en utilisant un nombre limité de fibres.

Enfin, la troisième contribution de cette thèse est une première méthode automatique pour

générer des empreintes cérébrales à partir de données multimodales. L’idée de base de cette

méthode est de représenter chaque image comme un ensemble de caractéristiques locales, et

d’utiliser ces caractéristiques multimodales pour représenter des sujets dans un sous-espace

de basse dimension appelé variété. Des expériences utilisant l’IRM pondérée T1/T2, l’IRM

de diffusion et l’IRM fonctionnelle au repos de 945 sujets du HCP démontrent l’avantage de

combiner plusieurs modalités, les empreintes multimodales étant plus discriminantes que celles

générées par les modalités individuelles. Les résultats mettent également en évidence le lien

entre la similarité des empreintes et la proximité génétique, les jumeaux monozygotes ayant

des empreintes plus similaires que les jumeaux dizygotes ou non-jumeaux.

Le travail présenté dans cette thèse peut être bénéfique à diverses études en neuroscience. Ainsi,

les approches de segmentation présentées dans la thèse fournissent un moyen flexible et effi-

cace pour analyser des courbes 3D comme celles provenant de la tractographie, et conviennent

aux analyses à grande échelle de la connectivité structurelle. Fiberprint, qui est la première

empreinte cérébrale caractérisant la géométrie des fibres de la matière blanche, offre une tech-

nique puissante pour explorer les différences individuelles en termes de connectivité de la

matière blanche et leurs relations avec la génétique. En incluant des informations sur la mi-

crostructure le long de faisceaux, l’empreinte proposée pourrait également être utilisée pour

définir de nouveaux biomarqueurs pouvant détecter et suivre la progression de maladies neu-

rologiques comme la maladie de Parkinson. Enfin, l’empreinte cérébrale multimodale issue

de cette recherche complémente les efforts en cours pour analyser les caractéristiques indi-

viduelles du cerveau en permettant de comparer et de contraster la contribution de différentes

modalités d’imagerie. Elle peut ainsi mener à de nouvelles connaissances sur la variabilité de

la structure et de la fonction du cerveau, ce qui pourrait aider au développement de stratégies

de traitement personnalisées.

Mots clés: Empreintes cérébrales, Différences individuelles, IRM, Données de jumeaux,

HCP, Représentation parcimonieuse, Apprentissage de dictionnaire, Méthodes à

noyaux, Fibres de matière blanche, Imagerie multi-modale, Variété



DATA-DRIVEN METHODS FOR CHARACTERIZING INDIVIDUAL
DIFFERENCES IN BRAIN MRI

Kuldeep KUMAR

ABSTRACT

Understanding the structure and function of the human brain is an outstanding problem that

is critical to the development of efficient treatments for neurological diseases like Alzheimer’s

and Parkinson’s. While most studies make group level inferences, researchers have estab-

lished that structure and function show variability across individuals. Motivated by these, re-

cent studies have focused on defining compact characterizations of individual brains, called

brain fingerprints. So far, these studies have mostly focused on single modalities, with func-

tional connectivity based fingerprints gaining considerable research interest. However, there

are certain aspects which have not been addressed. First, the potential of fingerprints based

on structural connectivity has not been fully explored. This is in part due to the challenges

arising from fiber tracking data, including lack of gold standard and bundle variability. Sec-

ond, due to the challenges of combining multiple modalities in a single framework, defining

a multi-modal brain fingerprint remains to this day an elusive task. Yet, since each modality

captures unique properties of the brain, combining multiple modalities could provide a richer,

more discriminative information. This thesis addresses these challenges through three distinct

contributions.

The first contribution consists of efficient approaches, based on kernel dictionary learning and

sparsity priors, for segmenting white matter fibers and characterizing their inter-subject vari-

ability. The general principle of the proposed approaches is to learn a compact dictionary of

training streamlines capable of describing the whole dataset, and to encode bundles as a sparse

combination of multiple dictionary prototypes. These approaches allow streamlines to be as-

signed to more than one bundle, making them more suitable for scenarios where streamlines are

not clearly separated, bundles overlap, or when there is important inter-individual variability.

Additionally, they do not require an explicit representation of the streamlines and can extend

to any streamline representation or distance/similarity measure. Experiments on a labeled set

and data from HCP highlight the ability of our approaches to group streamlines into plausible

bundles, and illustrate the benefits of employing sparsity priors.

The second contribution is a novel brain fingerprint, called Fiberprint, which is the first to cap-

ture white matter fiber geometry in individual subjects. This fingerprint leverages the sparse

dictionary learning approaches of the first contribution to map streamlines of subjects to a com-

mon space representing prominent bundles. Compact fingerprints are generated by applying a

pooling function for each bundle, encoding unique properties of streamlines such as their den-

sity along bundles. In a large-scale analysis using data from 861 HCP subjects, the proposed

Fiberprint is shown capable of identifying exemplars from the same individual or genetically-

related subjects, with only a small number of streamlines.
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Lastly, the third contribution of this thesis is a first data-driven framework to generate brain

fingerprints from multi-modal data. The key idea is to represent each image as a bag of lo-

cal features, and use these multi-modal features to map subjects in a low-dimension subspace

called manifold. Experiments using the T1/T2-weighted MRI, diffusion MRI, and resting state

fMRI data of 945 HCP subjects demonstrate the benefit of combining multiple modalities,

with multi-modal fingerprints more discriminative than those generated from individual modal-

ities. Results also highlight the link between fingerprint similarity and genetic proximity, with

monozygotic twins having more similar fingerprints than dizygotic or non-twin siblings.

The work described in this thesis can be of benefit to various neuroscience studies. The seg-

mentation approaches presented in the thesis provide a flexible and efficient way to analyze

3D curves like tractography streamlines, and is suitable for large-scale analyses of structural

connectivity. The proposed Fiberprint, which is the first brain fingerprint characterizing white

matter fiber geometry, offers a powerful technique to explore individual differences in terms

of white matter connectivity and its relationship to genetics. By including along-tract infor-

mation on microstructure, it could also be used to define novel biomarkers for detecting and

tracking the progression of neurological diseases like Parkinson’s. Finally, the multi-modal

brain fingerprint stemming from this research complements ongoing efforts to analyze indi-

vidual brains characteristics by allowing to compare and contrast the contribution of different

imaging modalities. It can thus lead to new insights on the variability of both brain structure

and function, which could help the development of personalized treatment strategies.

Keywords: Brain fingerprinting, Individual differences, MRI, HCP twin data, Sparse coding,

Kernel dictionary learning, White matter fibers, Multi-modal, Manifold
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INTRODUCTION

“The greatest challenge to any thinker is

stating the problem in a way that will

allow a solution”

Bertrand Russell

The human brain is one of the most remarkable and complex structures known to man. Un-

derstanding the functional and structural properties of this organ is an outstanding research

challenge that can have a significant impact on the advancement of science and the well-being

of the population. Among many other benefits, a better understanding of the brain would be

a major step toward the effective treatment of neuro-degenerative diseases like Alzheimer’s.

According to the World Alzheimer Report 2016, such diseases present a global healthcare cri-

sis, with an estimated 47 million people suffering dementia worldwide and costing over $800

billion per year.

Researchers have established that brain structure (Mangin et al., 2004), function (Barch et al.,

2013; Gordon et al., 2017a; Mueller et al., 2013) and white matter architecture (Bürgel et al.,

2006; de Schotten et al., 2011) show variability across individuals (Gordon et al., 2017b).

While most brain studies focus on group level inferences, recent advances in imaging hardware,

as well as initiatives in precision medicine, have spawned considerable interest in the analysis

of individual brains differences, a topic known as brain fingerprinting. Such analyses can help

assess and optimize personalized treatment strategies, thereby reducing healthcare costs.

0.1 Problem statement and motivation

Fingerprinting studies are motivated by the fact that brain characteristics are largely determined

by genetic factors that are often unique to individuals (Thompson et al., 2013). Various neuro-

logical disorders like Parkinson’s (Geevarghese et al., 2015) and Autism (Goldman et al., 2013)

have also been linked to specific brain abnormalities that are difficult to describe at the popu-
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lation level. With the rapid improvements in MRI acquisition hardware and analysis tools, and

thanks to large brain-related initiatives like the Human Connectome Project (HCP) (Van Essen

et al., 2013) and UK Biobank (Sudlow et al., 2015), researchers are better poised to study in-

dividual subjects in addition to groups (Dubois and Adolphs, 2016; Gordon et al., 2017c), thus

taking a step towards precision medicine (Hampel et al., 2017) and precision psychiatry (Finn

and Constable, 2016).

The importance of characterizing individual differences in brain MRI is evident from the re-

cent surge in studies on this topic. For example, Yeh et al. (Yeh et al., 2016a) built a lo-

cal connectome fingerprint using dMRI data and applied this fingerprint to the analysis of

genetically-related subjects. Finn et al. (Finn et al., 2015) considered the correlation between

time courses of atlas-defined nodes to generate a functional connectivity profile and used this

profile to identify individuals across scan sessions, both for task and rest conditions. Liu et

al. (Liu et al., 2018) use dynamic brain connectivity patterns for identifying individuals and

predicting higher cognitive functions. Moreover, Miranda et al. (Miranda-Dominguez et al.,

2014) proposed a linear model to describe the activity of brain regions in resting-state fMRI

as a weighted sum of its functional neighboring regions. Their functional fingerprint, derived

from the model’s coefficients, has the ability to predict individuals using a limited number of

non-sequential frames. Various morphometry-based fingerprints have also been proposed for

structural MRI modalities like T1- or T2-weighted images. For example, Wachinger et al.

(Wachinger et al., 2015a) quantify the shape of cortical and subcortical structures via the spec-

trum of the Laplace-Beltrami operator. The resulting representation, called Brainprint, is used

for subject identification and analyzing potential genetic influences on brain morphology.

So far, studies on characterizing individual differences have focused on single modalities, with

functional connectivity based approaches gaining considerable research interest (Finn and Con-

stable, 2016; Poldrack et al., 2015; Gordon et al., 2017c). While applications to understand-

ing individual differences in behavior, personality, and clinical utility have been investigated

(Dubois and Adolphs, 2016), various aspects of this research area remain uncharted. First, the
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potential of fingerprints based on structural connectivity has not been fully explored. This is

in part due to the challenges arising from fiber tracking data, including lack of gold standard,

bundle variability, differences in fiber length, and variability in fiber tracking output. Since

white matter organization is an important factor underlying neurological function and disease,

there is thus a critical need for novel tools characterizing the individual differences in structural

connectivity.

Second, due to the complexity of combining multiple modalities in a single framework, defin-

ing a multi-modal brain fingerprint remains to this day an elusive task. Recent morphometry-

based approaches, such as Brainprint (Wachinger et al., 2015a), could potentially be extended

to other modalities like diffusion MRI. However, this requires solving non-trivial problems

such as the cross-modality alignment of images with different resolutions, the segmentation

and correspondence of neuroanatomical structures, etc. Computational efficiency is another

important issue when dealing with large-scale, multi-subject and multi-modal datasets like

HCP. Nonetheless, since each modality captures unique properties of the brain, combining

multiple modalities could provide a richer, more discriminative information.

0.2 Research objectives and contributions

Following the challenges and limitations highlighted above, the objective of this research is to

develop data-driven methods for characterizing individual differences in brain MRI. To-

ward this goal, we propose a framework based on kernel sparse dictionary learning for the

unsupervised clustering and segmentation of tractography streamlines. This framework en-

ables to compare streamlines of different length and capture the complexity and variability of

streamline bundles. We then use this framework to define a brain fingerprint, called Fiberprint,

which characterizes white matter fiber geometry in individual subjects. Finally, we present

a powerful approach using a bag-of-features image representation and manifold embedding

to derive multi-modal brain fingerprints. The main contributions of this thesis can be further

detailed as follows:
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1) Kernel sparse dictionary learning for white matter fiber segmentation: Existing

streamline clustering approaches assume crisp streamline-to-bundle membership. Due

to lack of gold standard, variations in fiber tracking output, and different streamline

lengths, this can be challenging in scenarios where streamlines are not clearly separated,

bundles overlap, or when there is important inter-individual variability. Moreover, in

various pattern recognition and neuroimaging applications, sparsity priors have shown

robustness to variations due to noise or other factors. Based on this idea, the first contri-

bution proposes novel frameworks based on kernel dictionary learning and sparsity priors

for white matter fiber segmentation. The general idea of these approaches is to learn a

compact dictionary of training streamlines capable of describing the whole dataset and

to encode bundles as a sparse combination of multiple dictionary prototypes. Kernel

dictionary learning allows capturing the non-linear relationship between streamlines and

bundles, without the requirement for explicit embedding. The proposed methods allow

streamlines to be assigned to more than one bundle, making it more suitable for above-

mentioned scenarios. By exploiting group sparsity and manifold regularization, these

methods provide robustness to the input number of clusters and allows incorporating

anatomical constraints in the clustering.

The findings related to this contribution are presented in the following papers:

• Kumar Kuldeep, Siddiqi Kaleem, Desrosiers Christian. “White matter fiber anal-

ysis using kernel dictionary learning and sparsity priors”. Pattern Recognition,

Elsevier. Submitted.

• Kumar Kuldeep, Gori Pietro, Charlier Benjamin, Durrleman Stanley, Colliot Olivier,

Desrosiers Christian. “White matter fiber segmentation using functional varifolds”.

International Workshop on Mathematical Foundations of Computational Anatomy,

MICCAI 2017. Graphs in Biomedical Image Analysis, Computational Anatomy

and Imaging Genetics. Springer, Cham. 92-100.
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• Kumar Kuldeep, Desrosiers Christian. “A sparse coding approach for the efficient

representation and segmentation of white matter fibers”. IEEE 13th International

Symposium on Biomedical Imaging (ISBI), 2016. (pp. 915-919).

• Kumar Kuldeep, Desrosiers Christian, Siddiqi Kaleem. “Brain Fiber Cluster-

ing Using Non-negative Kernelized Matching Pursuit”. International Workshop on

Machine Learning in Medical Imaging, MICCAI 2015. (pp. 144-152). Springer,

Cham.

• Kumar Kuldeep, Desrosiers Christian. “Group Sparse Kernelized Dictionary Learn-

ing for the Clustering of White Matter Fibers”. Workshop on Sparsity Techniques

in Medical Imaging, MICCAI 2014.

2) Brain fingerprint modeling white matter fiber geometry: Most fingerprint studies

in the literature analyze individual brain differences from functional or structural MRI.

While recent works have also investigated diffusion MRI for this task, they have done

so at the level of single voxels, not brain fibers. Considering fibers instead of voxels

provides additional information on white matter organization and structural connectiv-

ity. The second contribution of this thesis is a brain fingerprint called Fiberprint, which

is the first to characterize white matter fiber geometry. To achieve this goal, we exploit

the concept of feature pooling that plays a key role in numerous pattern recognition tech-

niques like deep learning. Leveraging the sparse dictionary learning framework proposed

in the first contribution, we map streamlines of subjects to a common space representing

prominent bundles and generate compact fingerprints by applying a pooling function for

each bundle. Obtained fingerprints encode unique properties of streamlines along dic-

tionary bundles, such as their density. A large-scale analysis using data from 861 HCP

subjects is conducted to measure the impact on the fingerprint of various parameters,

including pooling function, dictionary size, sparsity and fiber tracking method/parame-

ters. Furthermore, zygosity and siblingship information from the HCP dataset is used
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to analyze the relationship between genetic proximity and fingerprint similarity across

different bundles.

The second contribution resulted in the following paper and poster:

• Kumar Kuldeep, Desrosiers Christian, Siddiqi Kaleem, Colliot Olivier, Toews

Matthew. “Fiberprint: A subject fingerprint based on sparse code pooling for white

matter fiber analysis”. NeuroImage. 158: 242-259. 2017.

• Kumar Kuldeep, Desrosiers Christian, Siddiqi Kaleem, Colliot Olivier, Toews

Matthew. “Fiberprint: Identifying subjects and twins using fiber geometry based

brain fingerprint”. Medical Imaging meets NIPS, NIPS 2017 (poster).

3) Multi-modal brain fingerprint using bag-of-features and manifold approximation:

Current fingerprints encode brain characteristics from a single MRI modality. However,

different modalities capture unique properties of the brain, and combining them can pro-

vide a richer information on individual differences. The third contribution of this thesis

proposes a first data-driven framework, based on a bag-of-features representation and

manifold approximation, to generate brain fingerprints from multi-modal data. In this

framework, images are represented as a bag of local features, and manifold approxima-

tion is employed to map subjects in a common low-dimensional subspace. Experiments

using the T1/T2-weighted MRI, diffusion MRI, and resting state fMRI data of 945 HCP

subjects demonstrate the benefit of combining multiple modalities, and highlight the link

between fingerprint similarity and genetic proximity.

The findings led to the following contributions:

• Kumar Kuldeep, Toews Matthew, Chauvin Laurent, Colliot Olivier, Desrosiers

Christian. “Multi-modal brain fingerprinting: a manifold approximation based

framework”. NeuroImage, Elsevier. Under review

• Kumar Kuldeep, Chauvin Laurent, Toews Matthew, Colliot Olivier, Desrosiers

Christian. “Multi-modal analysis of genetically-related subjects using SIFT de-
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scriptors in brain MRI”. Workshop on Computational Diffusion MRI, MICCAI

2017. Book Series: Mathematics and Visualization. (pp. 219-228). Springer.

• Kumar Kuldeep, Chauvin Laurent, Toews Matthew, Colliot Olivier, Desrosiers

Christian. “Multi-modal brain fingerprinting: a bag of features and manifold ap-

proximation based twin analysis”. Montreal Artificial Intelligence & Neuroscience

(MAIN 2017, poster).

• Kumar Kuldeep, Chauvin Laurent, Toews Matthew, Colliot Olivier, Desrosiers

Christian. “Analysis of genetically related subjects using multi-modal brain finger-

prints”. 1st Symposium on Applications of Artificial Intelligence in Medicine (IAM

2018). (Best poster award)

The full list of publications that resulted from this research can be found in Appendix I.

0.3 Thesis outline

The work presented in this thesis is organized as follows (Figure 0.1). In Chapter 1, we

present basic concepts of magnetic resonance imaging and give a review of relevant works on

the genetic basis of brain structure and function, individual-based approaches for neurological

disorders, characterizing individual differences using brain MRI, and other concepts relevant

to the thesis: streamline clustering, sparse coding in neuroimaging, and multi-modal studies in

neuroimaging. Chapter 2 then introduces the proposed streamline segmentation approaches,

based on kernel dictionary learning and sparsity priors. The work presented in this chapter cor-

responds to the paper “White matter fiber analysis using kernel dictionary learning and sparsity

priors”, which was submitted to the Pattern Recognition journal. Following this, Chapter 3

presents our Fiberprint framework that combines kernel dictionary learning and sparse code

pooling to generate compact characterizations of white matter fiber geometry in individual sub-

jects. This chapter corresponds to the paper entitled “Fiberprint: a subject fingerprint based on

sparse code pooling for white matter fiber analysis”, published in the NeuroImage journal. In
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Figure 0.1 Sketch of the chapters of the thesis.

Chapter 4, we introduce our multi-modal brain fingerprinting framework, analyzing the con-

tribution of various MRI modalities and their combinations in characterization of individual

differences. The content of this Chapter corresponds to the paper “Multi-modal brain finger-

printing: a manifold approximation based framework”, submitted to the NeuroImage journal.

Chapter 5 summarizes the main contributions of this dissertation and discusses its limitations

as well as possible extensions. Finally, Appendix I provides a complete list of papers resulting

from this Ph.D. study, and Appendix II provides link to codes.



CHAPTER 1

LITERATURE REVIEW

“If I have seen further it is by standing

on the shoulders of giants”

Isaac Newton

1.1 Basics of the human brain

The human brain is one of the most complex structures known to man. It exerts centralized

control over other organs of the body and is responsible for cognition, perception, emotion,

thought, memory, and behavior. It makes us who we are (Seung, 2012).

Figure 1.1 Diagram of a neuron (Source: https://en.wikipedia.org/wiki/Neuron)

The fundamental unit of the brain is the neuron (Fig. 1.1), a specialized cell that transmits

nerve impulses and is vital to brain function. It is estimated that a typical healthy human

brain contains around 100 billion neurons (Herculano-Houzel, 2009), linked to one another via

trillions of tiny contacts called synapse. This intricate wiring of the brain is responsible for

receiving and processing signals encoding the various functions of the brain.



10

Figure 1.2 Left: Coronal slice of a healthy human brain with tissue types (Source:

http://elearningbiology.weebly.com); Right: Functional areas of human brain (Source:

https://en.wikipedia.org/wiki/Human_brain)

Anatomically, the human brain is made of three main tissue classes: gray matter, white matter,

and cerebrospinal fluid (CSF, filling ventricles). Figure 1.2 (left) shows a typical coronal slice

of human brain, highlighting tissue classes. Gray matter contains the cell bodies, dendrites,

and axon terminals, and has a pinkish gray color in the living brain (hence the name). White

matter is made of axons, which connect different parts of the brain to each other. Lastly, the

CSF occupies the ventricular system around and inside the brain, acting as a cushion for the

cortex.

The cerebral cortex of the brain can also be divided into different functional areas (Fig. 1.2,

right). The frontal areas play an important role in reasoning, planning, language, memory,

and motor control. The occipital lobe, rearmost part of the cortex, processes visual stimuli.

Similarly, major functional areas and their functions can be inferred from the figure. A detailed

description of functional areas can be found in (Damasio, 1995; Gray, 1878; Standring, 2015).

1.2 Imaging the brain: basics of MRI

As shown in Figure 1.3, the brain can be analyzed at different spatial and temporal scales

(Frackowiak and Markram, 2015). Magnetic resonance imaging (MRI) provides a non-invasive

approach to study the structure and function of the human brain at a macroscale, with a typical
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Figure 1.3 Illustration of brain as a multi-scale (spatial and temporal) organ. (Source:

(Frackowiak and Markram, 2015))

spatial resolution of millimeters and temporal resolution of seconds (Lauterbur et al., 1973).

The underlying principle of MRI is nuclear magnetic resonance (NMR) (Bloch, 1946; Purcell

et al., 1946), a physical phenomenon in which nuclei (e.g., hydrogen atoms) in a magnetic field

absorb and re-emit electromagnetic radiation. NMR-based imaging involves the alignment of

the magnetic nuclear spins in a constant magnetic field and the perturbation of this alignment
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by an electromagnetic pulse (Fig. 1.4). After the withdrawal of the pulse, excited nuclei return

to their equilibrium state and emit a radio-frequency (RF) signal. This signal is measured by

a receiving coil and processed to form an image. The contrast between different tissues is

determined by the rate at which excited nuclei return to the equilibrium state. A more detailed

description of MRI acquisition and applications can be found in (Jacobs et al., 2007; Pooley,

2005).

Figure 1.4 Illustration of the basic principle of MRI. (Source: (Source: (Hassibi et al.,
2009))

1.2.1 sMRI: imaging the anatomy

Structural MRI (sMRI) is used to obtain describe, both qualitatively and quantitatively, the

shape, size, and integrity of gray and white matter structures in the brain. Different types

of sMRI images, such as T1-weighted (T1w) and T2-weighted (T2w), can be generated by

changing pulse sequence parameters corresponding to repetition time (TR) and echo time (TE).

T1w images are obtained with a short TR and short TE, and emphasize the contrast between

gray and white matter. Converesly, T2w images result from a long TR and long TE, and offer

a high contrast between brain tissue and CSF. This type of images is often used to visualize

fluids in brain tissues, for instance, resulting from cerebral edema.
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sMRI modalities play a key role in standard processing pipelines for tasks like image regis-

tration, skull stripping and tissue segmentation. They are also essential to a wide range of

applications, for instance, related to guided surgery, detecting and grading brain tumors, or the

diagnosis and progression assessment of neuro-degenerative diseases.

1.2.2 dMRI: imaging white matter architecture

Diffusion magnetic resonance imaging (dMRI) (Basser et al., 1994; Le Bihan and Breton,

1985; Le Bihan et al., 1986; Pierpaoli and Basser, 1996) uses the diffusion of water molecules

to generate contrast in MR images. It is based on the basic principle of Brownian motion

of these molecules, in which their random motion is restricted upon encountering white mat-

ter fibers (tubular structures). Since directional information about diffusion is needed, dMRI

commonly requires acquisitions along multiple directions.

DMRI is typically used for non-invasive inference of the underlying white matter structure at a

macroscale. Compared to sMRI, it also provides information about the underlying microscopic

structure and may indicate early pathologic changes (e.g., dMRI is more sensitive to early

changes after a stroke than T1/T2-weighted MRI). The analysis of dMRI data often requires

various processing steps (Garyfallidis et al., 2014; Sotiropoulos et al., 2013) including noise

removal, signal reconstruction (Assemlal et al., 2011; Ning et al., 2015), tractography (Côté

et al., 2013; Neher et al., 2015), parcellation-based connectome (Sotiropoulos and Zalesky,

2017), and streamline clustering (O’Donnell et al., 2013). Additional details on dMRI and its

analysis can be found in (Descoteaux, 2008, 2015; Hagmann et al., 2006; Jbabdi et al., 2015;

Wedeen et al., 2005).

1.2.3 fMRI: imaging brain activity

Functional magnetic resonance imaging (fMRI) is a non-invasive imaging technique which is

widely used to probe brain function (Logothetis, 2008; Pike, 2012). It relies on the fact that

cerebral blood flow and neuronal activation are coupled. Hence, the primary form of fMRI uses
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the blood-oxygen-level-dependent (BOLD) contrast (Ogawa et al., 1990), and depicts changes

in deoxyhemoglobin concentration consequent to task-induced or spontaneous modulation of

neural metabolism. fMRI can localize activity to within millimeters and provides temporal

resolution of the order of seconds.

There are two paradigms for studying the function of the brain: resting state fMRI (rfMRI) and

task fMRI (tfMRI). Resting state fMRI is used to evaluate regional interactions that occur when

a subject is not performing an explicit task (Biswal, 2012; Smith et al., 2013a). It is a popular

tool to explore functional organization and how this organization is altered in neurological

diseases (Lee et al., 2013). Conversely, task fMRI (Le Bihan et al., 1995) infers brain activity

when a subject performs a particular task compared to another moment when that task is not

executed. Task fMRI serves for the study of cognitive behaviors related to motor, sensory,

cognitive and emotional functions (Huettel, 2012; Liu, 2012; Barch et al., 2013). A review of

perspectives and applications of fMRI in cognitive neuroscience are provided in (Bandettini,

2012; Poldrack, 2012; Uğurbil, 2012).

1.3 Individual differences in neuroimaging

To date, most brain MRI studies have been concerned primarily with evincing population-

level characteristics (Dubois and Adolphs, 2016). However, recent studies demonstrate that,

despite having gross similarities, the brains of different individuals are unique (Barch et al.,

2013; Gordon et al., 2017b; Seung, 2012). This has motivated researchers to explore the po-

tential of building a science of individual differences (Dubois and Adolphs, 2016), and to

address the specific challenges of interpreting inter-subject and intra-subject variability (Zilles

and Amunts, 2013).

Numerous studies have established that individual differences in brain exist in terms of struc-

ture (Durrleman, 2010; Mangin et al., 2004), function (Barch et al., 2013; Gordon et al., 2017a;

Mueller et al., 2013), and white matter architecture (Bürgel et al., 2006; de Schotten et al.,
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2011) (see Fig. 1.5). This discovery raises important questions, which are being explored by

researchers and form the basis of this thesis:

• What is the source of these individual differences?

• Do individual differences impact neurological disorders?

• Can we understand these individual differences using brain MRI?

The following subsections present key research aiming at answering these questions, in par-

ticular, with respect to genetic basis of individual differences, individual differences in brain

disorders, and brain fingerprinting.

1.3.1 Genetic basis of individual differences

Studies suggest that an individual’s brain architecture is determined predominantly by genetic

and environmental influences (Thompson et al., 2013; Gu and Kanai, 2014), the main source of

evidence coming from twin studies. Monozygotic (MZ) and dizygotic (DZ) twins share 100%

and 50% of their genes, respectively, and typically live in the same environment. Phenotype

differences between MZ twins thus reveal environmental or gene-environment interplay effects,

while differences between DZ twins are also driven by genetics (Peper et al., 2007).

While the specific genes involved in brain structure or function are largely unknown, heritabil-

ity studies show that genetic effects vary regionally within the brain (Elliott et al., 2017). For

instance, the study in (Kochunov et al., 2014) showed genetic effects on fractional anisotropy

(FA), a measure of white matter microstructure. In (Kohannim et al., 2012), FA is used to

predict white matter integrity from multiple common genetic variants. Significant advances

toward understanding the relationship between genetics and brain characteristics are expected

with the creation of large initiatives like ENIGMA consortium (Thompson et al., 2014) and

UK Bio-bank (Sudlow et al., 2015). These advancements will provide new insights into the

genetic basis of individual differences and their impact on neurological disorders.
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Figure 1.5 Illustration of individual differences in structure, function, and white matter

architecture. Top left: folding patterns of the cortex surface (structure) (Source:

(Durrleman, 2010)); Right: resting state fMRI based functional areas (Source: (Wang

et al., 2015)); Bottom left: corticospinal tract bundles (green and red represent, a low and

a high membership of a streamline to the bundle, respectively.) (Source: (Kumar et al.,
2017c))

1.3.2 Individual differences in brain disorders

Various neurological disorders like Parkinson’s (Geevarghese et al., 2015) and autism (Gold-

man et al., 2013) have been linked to specific brain abnormalities that are difficult to describe

at the population level. Taking into account multiple factors that contribute to a specific dis-

ease, including genetic, biomarker, phenotypic and psycho-social characteristics, can therefore

improve our understanding of disease onset and progression, as well as response to treatment.

Moreover, considering an individual’s specific makeup, instead of using a “one-size-fits-all”

approach, can also optimize the effectiveness of disease prevention or treatment, and minimize

side effects for patients less likely to respond to a particular therapeutic (Bu et al., 2016; Reitz,

2016; Zou et al., 2016).
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The study in (Reitz, 2016) indicates that considering Alzheimer’s as a homogeneous disease is

one of the major reasons for the failure to identify effective treatments for this disease, and that

better preventive or therapeutic interventions can be developed by employing a more personal-

ized approach. Likewise, Bu et al. (Bu et al., 2016) argue that personalized approaches based

on multi-dimensional information can help achieve minimal side effects and maximal benefits

in patients suffering from Parkinson’s disease (PD). Neuroimaging studies on the single-subject

prediction of brain disorders, including schizophrenia, depressive disorders, autism spectrum

disease (ASD) and attention-deficit hyperactivity disorder (ADHD), highlight the need for

individual-based approaches for better clinical diagnostic/prognostic adoption (Arbabshirani

et al., 2017; Calhoun et al., 2017). Also, psychiatric disorders like bipolar disorder (BD) and

major depression (MD) cannot be fully disambiguated at group level as they have considerable

overlap in clinical observations (Frangou et al., 2017).

1.3.3 Brain fingerprinting

The importance of quantifying and interpreting individual differences, for a fully-personalized

investigation of brain structure and function, has been recognized for many years (Barch et al.,

2013; Bürgel et al., 2006; de Schotten et al., 2011; Mueller et al., 2013; Mangin et al., 2004).

However, this has only been made possible recently with technological advances such as higher

field strength, faster acquisition, and substantially improved resolution Dubois and Adolphs

(2016); Glasser et al. (2013). With these improvements in MRI acquisition and analysis

tools, and thanks to large brain-related initiatives like the Human Connectome Project (HCP)

(Van Essen et al., 2013) and UK Biobank (Sudlow et al., 2015), researchers are better poised to

study individual subjects (Gordon et al., 2017c), thus taking a step towards fully-personalized

investigations (Dubois and Adolphs, 2016; Hampel et al., 2017). A critical aspect of such

investigations is the development of techniques to characterize individual differences in the

brain, called brain fingerprints (Fig. 1.6).
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The recent surge in studies on brain fingerprinting reflects the high importance of this topic

in neuroscience. Initial studies focused on building fingerprints based on functional MRI. For

example, Finn et al. (Finn et al., 2015) considered the correlation between time courses of

functional regions (parcellation) to generate a functional connectivity profile, and used this

profile to identify individuals across scan sessions, as well as between task and rest condi-

tions. This study establishes that the individual variability in functional organization of brain

is robust and can act as a fingerprint. This functional connectome fingerprint is also shown

to predict levels of fluid intelligence. In (Liu et al., 2018), Liu et al. investigate whether the

variation in coupling among brain regions over time (i.e., the dynamic brain connectivity pat-

terns) can characterize individual uniqueness. This characterization, termed as chronnectome

fingerprinting, is used for identifying individuals and predicting higher cognitive functions.

Similarly, Miranda-Dominguez et al. (Miranda-Dominguez et al., 2014) propose a model-

based approach toward characterizing resting state functional connectivity MRI in individual

participants. A linear model is used to describe the activity of brain regions in resting-state

fMRI as a weighted sum of its functional neighboring regions. Their functional fingerprint,

derived from the model’s coefficients, has the ability to predict individuals at a later date using

a limited number of non-sequential frames.

Brain fingerprints using structural or diffusion MRI have also been proposed. For instance,

Yeh et al. (Yeh et al., 2016a,c) build a local connectome fingerprint using voxel-wise diffusion

information from dMRI data, and apply this fingerprint to the analysis of genetically-related

subjects and neuroplasticity. Moreover, Powell et al. (Powell et al., 2018) show that the lo-

cal connectome fingerprint derived phenotype maps could predict social, health, and cognitive

factors. In (Wachinger et al., 2015a), Wachinger et al. introduce a fingerprint called Brainprint

for the discriminative representation of brain morphology from T1w and T2w MRI. Brain-

print, which quantifies the shape of cortical and subcortical structures via the spectrum of

the Laplace-Beltrami operator, is used for subject identification, age and sex prediction, brain

asymmetry analysis, and analyzing potential genetic influences on brain morphology.
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Figure 1.6 Overview of brain fingerprinting approaches. Top row: functional

connectome fingerprint generation summary (Source: (Pedersen et al., 2015)); Middle

row: diffusion MRI based Local connectome fingerprint (Source: (Yeh et al., 2016c));

and Bottom row: structural MRI based Brainprint (Source: (Wachinger et al., 2015a))

While the field of brain fingerprinting is still in its infancy, researchers are investigating the po-

tential and challenges of its application in a clinical setting. For example, Waller et al. (Waller

et al., 2017b) highlight the need for establishing the replicability, specificity, and generalizabil-

ity of connectome fingerprints. Moreover, (Finn and Constable, 2016) argue that functional

connectome fingerprint could help develop personalized approaches to psychiatric illness, and

(Powell et al., 2018; Liu et al., 2018) utilize fingerprints for prediction of cognitive factors.
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These studies underline that brain fingerprinting can lead to a better understanding of brain

function and structure from a single subject’s perspective.

1.4 Streamline clustering and analysis

White matter fiber tracts can be virtually reconstructed or traced throughout the brain as 3D

space curves using tractography (Behrens et al., 2007; Côté et al., 2013; Daducci et al., 2015;

Neher et al., 2015; Mori et al., 1999). These 3D space curves, called streamlines, are generated

by following most probable tract orientations at each voxel. Each streamline is an estimate of

part of the course of underlying anatomical fiber tract, and has no direct correspondence with

individual axons (Jones et al., 2013). Despite this, tractography output provides a powerful

tool to generate a macroscopic description of the white matter connections.

Recent advances in dMRI acquisition hardware and software have increased the spatial and

angular resolution, yielding large tractography datasets of the order of thousands or millions

of streamlines. These datasets are difficult to parse or interpret manually, and clustering ap-

proaches are often employed to group streamlines into anatomically meaningful and easier to

visualize bundles. Clustering streamlines is also important for the creation of white matter at-

lases and the statistical analysis of microstructure measures along tracts (Guevara et al., 2012;

O’Donnell and Westin, 2007b; Siless et al., 2018).

Over the years, several approaches have been proposed to cluster streamlines. These ap-

proaches can be roughly grouped into two categories: approaches requiring an explicit repre-

sentation of streamlines and those based on streamline similarity/distance measures. Methods

in the first category encode individual streamlines using a fixed set of features, for instance,

the distribution parameters (mean and covariance) of points along the streamline (Brun et al.,

2004) or B-splines (Maddah et al., 2006). Such method typically suffer from two problems:

they are sensitive to the length and endpoint positions of the streamlines and/or are unable to

capture their full shape. Instead of using explicit features, streamlines can also be compared

using specialized distance measures, for example some function of the streamline coordinates
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Figure 1.7 Illustrative examples of clustering approaches. Top row: Spectral embedding

based streamline clustering (Source: O’Donnell et al. (2006)), Middle row:

QuickBundles, bundle centroid estimation based approach (Source: (Garyfallidis et al.,
2012)). Bottom row: Atlas based approach (Source: (Ros et al., 2013))
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in Euclidean space. Popular distance measures for this task include the Hausdorff distance

(Moberts et al., 2005), the Minimum Direct Flip (MDF) distance (Garyfallidis et al., 2012)

and the Mean Closest Points (MCP) distance (Corouge et al., 2004; Moberts et al., 2005).

Streamline clustering algorithms include manifold embedding techniques such as spectral clus-

tering (O’Donnell and Westin, 2007a) and normalized cuts (Brun et al., 2004), agglomerative

approaches like hierarchical clustering (Moberts et al., 2005), k-means (Li et al., 2010), and

Dirichlet processes (Wassermann et al., 2010; Wang et al., 2011c). Recently, studies have also

focused on incorporating anatomical features into the clustering (Siless et al., 2018; Wasser-

mann et al., 2016), or on clustering large multi-subject datasets (Jin et al., 2014; Prasad et al.,

2014). A detailed description and comparison of several distances and clustering approaches

can be found in (Moberts et al., 2005; Olivetti et al., 2017; Siless et al., 2013).

Various studies have also focused on the streamlines segmentation for drawing cross-population

inferences (Guevara et al., 2012; Jin et al., 2014; Prasad et al., 2014; Zhang et al., 2018). Most

of these studies either follow an atlas-based approach (Guevara et al., 2012; Jin et al., 2014;

O’Donnell and Westin, 2007a; Ros et al., 2013) or align specific tracts directly across sub-

jects (Garyfallidis et al., 2015; O’Donnell et al., 2012). Multi-step or multi-level approaches

have also been proposed to segment streamlines, for example, by combining both voxel and

streamline groupings (Guevara et al., 2012), fusing labels from multiple hand-labeled atlases

(Jin et al., 2014), or using a bundle representation based on maximum density paths (Prasad

et al., 2014). A few studies have also investigated the representation of specific streamline

bundles using different techniques such as gamma mixture models (Maddah et al., 2008), the

computational model of rectifiable currents (Durrleman et al., 2009; Gori et al., 2016), and

functional varifolds (Kumar et al., 2017d). Figure 1.7 provides an illustration of three differ-

ent clustering approaches including spectral embedding (top row), a greedy approach based

on MDF distance and bundle centroid estimation (middle row), and an atlas based approach

(last row). For a detailed review of white matter clustering approaches, we refer the reader to

(O’Donnell et al., 2013).
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Despite the many works on this topic, streamline clustering and segmentation are still open

problems. Thus, clustering streamlines into anatomically meaningful bundles is challenging

due to lack of a gold standard. As shown in Figure 1.7 (top row), even for a single subject,

streamlines within the same bundle can have different lengths and endpoints. Thus, using

standard geometric distance measures can often lead to poor results. Another challenge comes

from the weak separability of certain bundles, which can result in low-quality (e.g., too small

or too large) clusters (Fig. 1.7, middle and bottom row). Streamline bundles may also overlap

and intersect each other, making their extraction and analysis difficult. Finally, since there can

be up to millions of streamlines to consider, clustering these streamlines is computationally

complex.

1.5 Methodological concepts explored in the thesis

In this section we explore the basics of concepts explored in this thesis, including, sparse

coding, multi-modal analysis of brain MRI, manifold embedding and bag of feature based

image representation.

1.5.1 Sparse coding

Sparse coding is a well-known technique for encoding and analyzing signals like images. It

has been used in numerous image processing and pattern recognition applications, including

compression, denoising, deblurring, inpainting, and super-resolution and classification (Elad

et al., 2010; Wright et al., 2009, 2010; Yang et al., 2009; Rubinstein et al., 2010). The basic

principle of sparse coding is to learn a basis, called dictionary, which can effectively represent

examples from a given dataset using only a few basis elements (Fig. 1.8). Various priors can

be employed to impose sparsity when encoding examples using the dictionary (Fig. 1.9). Min-

imizing the L0 norm of the encoding limits the number of non-zero elements in this encoding,

however this results in a non-convex optimization problem. A popular alternative is to use the

L1 norm as sparsity prior, defined as the sum of absolute encoding coefficients.
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Figure 1.8 Illustrative example of sparse coding.

Dictionary learning and sparse coding have been investigated for various neuroimaging appli-

cations, for instance, compressed sensing MRI (CS-MRI) (Lustig et al., 2008) or segmentation

of MRI data (Tong et al., 2013). In functional connectivity analysis, Lee et al. (Lee et al.,

2016a) proposed a sparsity based analysis of k-hubness for overlapping network structures.

For diffusion MRI data, sparse coding has been used successfully for clustering white mat-

ter voxels from Orientation Density Function (ODF) data (Çetingül et al., 2014), for finding a

population-level dictionary of key white matter tracts (Zhu et al., 2016), for higher-order tensor

(HOT) based diffusion MRI reconstruction (Feng et al., 2015), and for denoising and recon-

struction for diffusion spectrum imaging (Aranda et al., 2015; Bilgic et al., 2013; Gramfort

et al., 2014; Merlet et al., 2013). Moreover, Daducci et al. (Daducci et al., 2014) showed that

using L0 norm priors improves the reconstruction of fiber orientation distribution functions

(ODF). Likewise, Auria et al. (Auría et al., 2015) use voxel-wise sparsity regularization to

obtain a more accurate reconstruction of fiber orientation distribution functions (FOD).

1.5.2 Manifold embedding

Manifold learning is an approach to non-linear dimensionality reduction (Tenenbaum et al.,

2000) based on the assumption that the dimensionality of many datasets is only artificially

high. Techniques based on this principle, like Isomap (Tenenbaum et al., 2000), Locally Linear
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Figure 1.9 Illustrative example of L0, L1 and L2 norms in the 2D plane. Source: (Kudo

et al., 2013).

Embedding (LLE) (Roweis and Saul, 2000) and Spectral Embedding (SE) (Belkin and Niyogi,

2003), aim to extract a low-dimensional manifold that can best describe the high-dimensional

data (Bengio et al., 2013). Each of these techniques preserve certain properties of data, for ex-

ample Isomap maintains geodesic distance between all points, LLE preserves distances within

local neighborhoods, and SE ensures that points close to each other on the manifold are mapped

close to each other in the low dimensional space.

Manifold learning has also played a crucial role in medical imaging studies (Aljabar et al.,

2012), with applications in a wide variety of problems including registration (Ye et al., 2012),

segmentation (Li et al., 2015), and classification (Ye et al., 2014). For example, Gerber et al.

(Gerber et al., 2010) use manifold learning to perform a population analysis of brain images.

Likewise, Brosch et al. (Brosch et al., 2013) explore a deep learning based approach to learn

the manifold of brain MRIs. Finally, Aljabar et al. performed a morphological analysis of brain

MRI using spectral methods (Aljabar et al., 2008), with application to neonatal MRI (Aljabar

et al., 2010).
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1.5.3 Bag of features

Representations based on local features, often referred to as bag of features (BoF), offer an effi-

cient alternative for encoding and matching image structures without the stringent requirement

of one-to-one correspondence (Lowe, 2004, 1999). This technique is inspired by how human

visual cortex works, where an object can be recognized using only a few salients points on this

object (i.e., the local features). A popular algorithm for detecting and encoding local features

is the Scale-Invariant Feature Transform (SIFT) (Lowe, 2004, 1999), which has the ability to

handle intensity, rotation, scale and affine variations (Mikolajczyk and Schmid, 2005). BoFs

have been used in a wide range of computer vision problems, including scene classification

(Yang et al., 2007), object categorization, semantic video retrieval (Jiang et al., 2007), and

image annotation (Tsai, 2012).

In brain imaging, BoFs have been shown to automatically identify known structural differences

between healthy controls and Alzheimer’s subjects in a fully data-driven fashion (Toews et al.,

2010). They have also been used successfully to model the development of infant brains (Toews

et al., 2012) and align images of different modalities (Toews and Wells, 2013). Despite their

numerous advantages, BoFs have thus far not been explored for brain fingerprinting. This is

mainly due to their large and variable size, which makes comparing two fingerprints non-trivial.

1.6 Summary

While there are multiple facets and fascinating opportunities, this thesis focuses on individual

differences. As asserted before, “we are our connectome” (Seung, 2012). If so, how do we

differ? Where do these differences come from? What is the impact of these differences? How

can we study them? These questions form the motivation and basis of this research.



27

1.6.1 Studies on individual differences: potential and utility

As highlighted in (Dubois and Adolphs, 2016), there is growing interest in the interpretation

of fMRI data at the level of individual brains. For example, Dosenbach et al. (Dosenbach

et al., 2010) predict individual brain maturity using fMRI. Individual differences in relation to

personality (Yarkoni, 2015), intelligence (Finn et al., 2015; van den Heuvel et al., 2009), and

mood (Smith et al., 2015) have also been investigated in the literature. Similarly, the com-

prehensive review of Arbabshirani et al. (Arbabshirani et al., 2017) highlights the potential of

neuroimaging data for single subject prediction of brain disorders including schizophrenia, de-

pressive disorders, autism spectrum disease (ASD), and attention-deficit hyperactivity disorder

(ADHD). Personalized approaches have also been advocated for Alzheimer’s (Hampel et al.,

2017; Reitz, 2016) and Parkinson’s (Bu et al., 2016).

One of the recent developments in the study of individual differences is brain fingerprinting.

While studies on this topic are still in infancy, the potential of brain fingerprinting for differ-

ent applications has been explored in the literature (see Table 1.1). For example, Finn et al.

(Finn and Constable, 2016) argue that functional connectome fingerprint could help develop

personalized approaches to psychiatric illness, Powell et al. (Powell et al., 2018) show that

local connectome phenotypes can predict social, health, and cognitive factors, and Liu et al.

(Liu et al., 2018) report that dynamic brain connectivity patterns can predict individual higher

cognitive performance (e.g., fluid intelligence and executive function).

1.6.2 Brain fingerprinting: challenges and opportunities

The growing interest in brain fingerprinting highlights various challenges and opportunities

that need to be explored. For example, the study in (Chamberland et al., 2017), which ex-

plores the role of white matter architecture in the origin of individual differences in functional

connectivity, suggests that further research is needed to understand the role of anatomical path-

ways in supporting vascular-based measures of functional connectivity. In studying long term
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Table 1.1 Summary of brain fingerprinting studies

Study Modalities Fingerprint
Finn et al. (2015) rfMRI &

tfMRI

Functional connectome fingerprint: defined using correla-

tion between time courses of functional regions (parcella-

tion)

Miranda-Dominguez

et al. (2014)

rfMRI Connectotyping: model’s coefficients describing the activ-

ity of brain regions as a weighted sum of its functional

neighboring regions

Liu et al. (2018) rfMRI Chronnectome fingerprinting: dynamic network analysis

of functional connectivity

Yeh et al. (2016c) dMRI Local connectome fingerprint: a histogram encoding

voxel-wise density of diffusing water along a set of atlas

defined directions in white matter

Wachinger et al.
(2015a)

T1w Brainprint: the shape of cortical and subcortical structures

quantified via the spectrum of the Laplace-Beltrami opera-

tor (shape-DNA)

neural and physiological phenotyping of a single human, Poldrack et al. (Poldrack et al., 2015)

motivate the necessity of larger efforts to characterize psychological and brain function longi-

tudinally. Likewise, Wang et al. (Wang et al., 2015) highlight the need for cortical parcellation

approaches that can accurately map functional organization at the level of individuals, and

Laumann et al. (Laumann et al., 2015) underline the importance of reproducibility and valid-

ity of single subject areal parcellation. Finally, evaluating multi-site reliability of functional

connectivity, Noble et al. (Noble et al., 2017a) claims that aggregation of data across longer

scan durations is necessary to increase the reliability of functional connectivity estimates at the

single-subject level.

Other aspects of fingerprints that require further investigation include improving the inter-

pretability of existing fingerprints (Poldrack et al., 2015; Vanderwal et al., 2017), establishing

the influence of genetics and environment factors (Miranda-Domínguez et al., 2017), observing

changes across life-span (Brown, 2017; Chan et al., 2017) and neurocognitive changes during

adolescence (Foulkes and Blakemore, 2018), as well as addressing the challenges on the ap-

plicability of fingerprints (Finn and Constable, 2016; Horien et al., 2018; Noble et al., 2017b;

Shen et al., 2017; Waller et al., 2017b).
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2.1 Abstract

Diffusion magnetic resonance imaging, a non-invasive tool to infer white matter fiber connec-

tions, produces a large number of streamlines containing a wealth of information on structural

connectivity. The size of these tractography outputs makes further analyses complex, creating

a need for methods to group streamlines into meaningful bundles. In this work, we address

this by proposing a set of kernel dictionary learning and sparsity priors based methods. Pro-

posed frameworks include L0 norm, group sparsity, as well as manifold regularization prior.

The proposed methods allow streamlines to be assigned to more than one bundle, making it

more robust to overlapping bundles and inter-subject variations. We evaluate the performance

of our method on a labeled set and data from Human Connectome Project. Results highlight

the ability of our method to group streamlines into plausible bundles and illustrate the impact

of sparsity priors on the performance of the proposed methods.

2.2 Introduction

Since its development in the 1980s, diffusion tensor imaging (DTI) has become an essential

tool to study white matter connectivity in the human brain. Its ability to infer the orientation of

white matter fibers, in-vivo and non-invasively, is key to understanding brain connectivity and
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associated neurological diseases (Hagmann et al., 2006; de Schotten et al., 2011). Since the

macroscopic inference of underlying fibers from dMRI data, known as tractography, typically

produces a large number of streamlines, it is common to group these streamlines into anatom-

ically meaningful clusters called bundles (O’Donnell et al., 2013). Clustering streamlines is

also essential for the creation of white matter atlases, visualization, and statistical analysis

of microstructure measures along tracts (Guevara et al., 2012; O’Donnell and Westin, 2007b;

Siless et al., 2018). Furthermore, clinical applications of tractography analysis are also numer-

ous and include identifying major bundles for neurological planning in patients with tumors

(O’Donnell et al., 2017), understanding difference between white matter connectivity in typ-

ically developing controls versus children with autism (Zhang et al., 2017), and uncovering

white matter bundles as bio-markers for the diagnosis of Parkinson’s disease (Cousineau et al.,

2017).

Clustering streamlines into anatomically meaningful bundles is a challenging task in part due

to lack of gold standard. There can be several hundreds of thousands of streamlines to consider,

making the clustering problem computationally complex. As illustrated in Fig. 2.1, stream-

lines within the same bundle can have different lengths and endpoints. Thus, using standard

geometric distance measures often leads to poor results. Another challenge comes from the

weak separability of certain bundles, which can result in low-quality (e.g., too small or too

large) clusters. Also, while many clustering approaches assume a crisp membership of stream-

lines to bundles, as shown in Fig. 2.1, such a separation of streamlines into hard clusters is

often arbitrary. In practice, streamline bundles may overlap and intersect each other, making

their extraction and analysis difficult. Moreover, when used to label the streamlines of a new

subject, the clusters learned using crisp methods often give unsatisfactory results due to the

variability across individual brains.

In this paper, we propose a set of flexible and efficient streamline clustering approaches based

on kernel dictionary learning and sparsity priors. The general idea of these approaches is to

learn a compact dictionary of training streamlines capable of describing the whole dataset, and
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Figure 2.1 Illustrative example. Clustering of the corpus callosum by our method: hard

clustering (left), and membership of each streamline to two bundles (center and right).
Dark green represents a zero membership and bright red a maximum membership to the

bundles.

to encode bundles as a sparse non-negative combination of multiple dictionary prototypes. In

contrast to spectral embedding methods (e.g., (Brun et al., 2004; O’Donnell and Westin, 2005))

which perform the embedding and clustering in two separate steps, our approaches find clusters

in the kernel space without having to explicitly compute an embedding.

The proposed streamline clustering approaches have several advantages over existing methods

for this task. First, they do not require an explicit representation of the streamlines and can

extend to any streamline representation or distance/similarity measure. Second, they use a

non-linear kernel mapping which facilitates the separation of clusters in a manifold space.

Third, unlike hard-clustering methods like the k-means algorithm and its variants (e.g. spectral

clustering), they can distribute the membership of streamlines across multiple bundles, making

them more robust to overlapping bundles and outliers, as well as to variability across subjects.

Our specific contributions include:

a. We propose three different streamline clustering models based on kernel k-means, non-

negative factorization and sparse coding, and demonstrate the advantages of these models

with respect to the state of the art;
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b. We provide a flexible platform to integrate and evaluate streamline distance measures,

and compare the performance of three popular measures using two different datasets;

c. Whereas dictionary learning and sparsity have shown promise in various pattern recog-

nition and neuroimaging applications, to our knowledge, the present article is the first

account of their use for streamline clustering in a peer-reviewed indexed publication.

Our results on the streamline clustering problem show the potential of this approach for

other imaging applications.

The rest of the paper is structured as follows. Section 2.3 provides a brief survey of relevant

literature on streamline clustering. In Section 2.4, we present our kernel dictionary learning

based methods. Section 2.5 evaluates the methods on the task of clustering streamlines using

real data. Finally, we conclude with a summary of our main contributions, and discuss potential

extensions.

2.3 Related works

Our presentation of relevant work is divided into two parts, focusing respectively on the various

approaches for representation and analysis of streamlines, and the application of sparse coding

techniques in neuroimaging.

2.3.1 White matter fiber analysis

Over the years, several approaches have been proposed to cluster streamlines and provide a sim-

plified quantitative description of white matter connections, including cross-population infer-

ences (Guevara et al., 2012; Jin et al., 2014; O’Donnell and Westin, 2007a; Prasad et al., 2014).

These studies could be vaguely classified into two categories: representation of streamlines or

streamline similarity, and clustering approaches. Features proposed to represent streamlines

include the distribution parameters (mean and covariance) of points along the streamline (Brun

et al., 2004) and B-splines (Maddah et al., 2006). Approaches using such explicit features

typically suffer from two problems: they are sensitive to the length and endpoint positions of
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the streamlines and/or are unable to capture their full shape. Instead of using explicit features,

streamlines can also be compared using specialized distance measures. Popular distance mea-

sures for this task include the Hausdorff distance, the Minimum Direct Flip (MDF) distance

and the Mean Closest Points (MCP) distance (Corouge et al., 2004; Moberts et al., 2005).

Fiber clustering approaches include manifold embedding techniques such as spectral clustering

and normalized cuts (Brun et al., 2004), agglomerative approaches like hierarchical clustering

(O’Donnell and Westin, 2007b; Corouge et al., 2004), k-means (Li et al., 2010), and Dirichlet

processes (Wassermann et al., 2010; Wang et al., 2011c). Several studies have also focused

on incorporating anatomical features into the clustering (Siless et al., 2018; O’Donnell and

Westin, 2007a), or on clustering large multi-subject datasets (Guevara et al., 2012). A detailed

description and comparison of several distances and clustering approaches can be found in

(Moberts et al., 2005; Olivetti et al., 2017; Siless et al., 2013).

Various studies have also focused on the segmentation of streamlines, toward the goal of draw-

ing cross-population inferences (Guevara et al., 2012; Jin et al., 2014; O’Donnell and Westin,

2007a; Prasad et al., 2014). These studies either follow an atlas based approach (Guevara et al.,

2012; Jin et al., 2014; O’Donnell and Westin, 2007a) or align specific tracts directly across sub-

jects (Garyfallidis et al., 2015; O’Donnell et al., 2012). Multi-step or multi-level approaches

have also been proposed to segment streamlines, for example, by combining both voxel and

streamline groupings (Guevara et al., 2012), fusing labels from multiple hand-labeled atlases

(Jin et al., 2014), or using a bundle representation based on maximum density paths (Prasad

et al., 2014). A few studies have also investigated the representation of specific streamline

bundles using different techniques such as gamma mixture models (Maddah et al., 2008), the

computational model of rectifiable currents (Durrleman et al., 2009; Gori et al., 2016), and

functional varifolds (Kumar et al., 2017d). For detailed review of white matter clustering ap-

proaches, we refer the reader to (O’Donnell et al., 2013).
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2.3.2 Sparse coding for neuroimaging

Sparse coding, with an objective of encoding a signal as a sparse combination of prototypes in

a data-driven dictionary, has been applied in various domains of computer vision and pattern

recognition (Elad et al., 2010; Wright et al., 2009, 2010; Yang et al., 2009). Various neu-

roimaging applications have also utilized concepts from this technique, such as the reconstruc-

tion (Lustig et al., 2008) or segmentation (Tong et al., 2013) of MRI data, and for functional

connectivity analysis (Lee et al., 2016a,b). For diffusion data, sparse coding has been used

successfully for clustering white matter voxels from Orientation Density Function (ODF) data

(Çetingül et al., 2014), for finding a population-level dictionary of key white matter tracts (Zhu

et al., 2016), for higher-order tensor (HOT) based diffusion MRI reconstruction (Feng et al.,

2015), and for denoising and reconstruction for diffusion spectrum imaging (Aranda et al.,

2015; Bilgic et al., 2013; Gramfort et al., 2014; Merlet et al., 2013).

Recently, several studies have outlined the connection between clustering and factorization

problems, such as dictionary learning (Aharon et al., 2006; Sprechmann and Sapiro, 2010)

and non-negative matrix factorization (Kim and Park, 2007). Thus, dictionary learning can be

seen as a soft clustering, where objects can be linked to more than one cluster. Researchers

have also recognized the advantages of applying kernels to existing clustering methods, like the

k-means algorithm (Dhillon et al., 2004), as well as dictionary learning approaches (Nguyen

et al., 2012). Such “kernel” methods have been shown to better learn the non-linear relations

in the data (Hofmann et al., 2008).

Sparse coding and dictionary learning were used in (Moreno et al., 2016; Alexandroni et al.,

2017) to obtain a compressed representation of streamlines. In our previous work (Kumar

et al., 2015; Kumar and Desrosiers, 2016), we applied these concepts to learn an multi-subject

streamline atlas for labelling the streamlines of a new subject. In recent studies, we showed how

this idea can be used to derive a brain fingerprint capturing genetically-related information on
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streamline geometry (Kumar et al., 2017c), and to incorporate along-tract measures of micro-

structure in the representation (Kumar et al., 2017d).

The present study extends our preliminary work in (Kumar et al., 2017d, 2015; Kumar and

Desrosiers, 2016; Kumar et al., 2017c) by providing an in-depth analysis that compares dif-

ferent sparsity priors and evaluates the impact of various parameters. As algorithmic contri-

butions, we present two extensions of the model in (Kumar and Desrosiers, 2016), based on

group sparsity and manifold regularization, that provide more meaningful bundles and can in-

corporate information on streamline geometry, such as the proximity of streamline endpoints,

to constrain the clustering process.

2.4 Kernel dictionary learning for streamline clustering

In this section we propose kernel dictionary learning and sparsity priors based frameworks for

white matter fiber analysis. We start with a brief review of dictionary learning and the k-means

algorithm, followed by proposed methods based on various sparsity priors, and algorithm com-

plexity analysis.

2.4.1 Dictionary learning and the k-means algorithm

Let X be the set of n streamlines, each represented as a set of 3D coordinates. For the purpose

of explanation, we suppose that each streamline i is encoded as a feature vector xi ∈ R
d, and

that X is a d×n feature matrix. Since our dictionary learning method is based on kernels, a

fixed set of features is however not required, and streamlines having a different number of 3D

coordinates could be compared with a suitable similarity measure (i.e., the kernel function).

The traditional (hard) clustering problem can be defined as assigning each streamline to a

bundle from a set of m bundles, such that streamlines are as close as possible to their assigned

bundle’s prototype (i.e., cluster center). Let Ψm×n be the set of all m×n cluster assignment ma-

trices (i.e., matrices in which each row has a single non-zero value equal to one), this problem
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can be expressed as finding the matrix D of m bundle prototypes and the streamline-to-bundle

assignment matrix W that minimize ‖X −DW ‖2F . This formulation of the clustering prob-

lem can be seen as a special case of dictionary learning, where D is the dictionary and W is

constrained to be a cluster assignment matrix, instead of enforcing its sparsity.

While solving this clustering problem is NP-hard, optimizing W or D individually is easy.

For a given dictionary D, the optimal W assigns each streamline i to the prototype m closest

to its feature vector. Likewise, for a fixed W , the optimal dictionary is found by solving a

simple linear regression problem. This simple heuristic correspond to the well-known k-means

algorithm.

2.4.2 Kernel k-means

In our streamline clustering problem, the k-means approach described in the previous section

has two important disadvantages. First, it requires to encode streamlines as a set of features,

which is problematic due to the variation in their length and endpoints. Also, it assumes linear

relations between the streamlines and bundle prototypes, while these relations could be better

defined in a non-linear subspace (manifold).

These problems can be avoided by using a kernel version of k-means for the streamline clus-

tering problem. In this approach, each streamline is projected to a q-dimensional space using

a mapping function φ : Rd → R
q, where q � d. We denote by Φ the R

q×n matrix containing

the tracts of X mapped with φ. The inner product of two streamlines in this space corresponds

to a kernel function k, i.e. k(xi,xj) = φ(xi)
�φ(xj). With K = Φ�Φ, the kernel matrix,

the kernel clustering problem can be expressed as:

argmin
D∈R

q×k

W ∈{0,1}m×n

‖Φ−DW ‖2F subject to W�1m = 1n. (2.1)
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Since the dictionary prototypes are defined in the kernel space, D cannot be computed ex-

plicitly. To overcome this problem, we follow the strategy proposed in (Nguyen et al., 2012;

Rubinstein et al., 2010) and define the dictionary as D = ΦA, where A ∈ R
n×m.

Using a similar optimization approach as in k-means, we alternate between updating matrix W

and A. Thus, we update W by assigning each streamline i to the prototype m whose features

in the kernel space are the closest:

wmi =

⎧⎨
⎩

1 : if m = argminm′ [A�KA]m′m′ − 2[A�ki]m′ ,

0 : otherwise.
, (2.2)

where ki corresponds to the i-th column of K. Recomputing A corresponds once again to

solving a linear regression problem with optimal solution:

A = W�(WW�)−1
. (2.3)

We initialize matrix A as a random selection matrix (i.e., random subset of columns in the

identity matrix). This is equivalent to using a random subset of the transformed streamlines

(i.e., subset of columns in Φ) as the initial dictionary. This optimization process is known as

kernel k-means (Dhillon et al., 2004).

2.4.3 Non-negative kernel sparse clustering

Because they map each streamline to a single bundle, hard clustering approaches like (kernel)

k-means can be sensitive to poorly separated bundles and streamlines which do not fit in any

bundle (outliers). This section describes a new clustering model that allows one to control the

hardness or softness of the clustering.

In the proposed model, the hard assignment constraints are replaced with non-negativity and

L0-norm constraints on the columns of W . Imposing non-negativity is necessary because the

values of W represent the membership level of streamlines to bundles. Moreover, since the L0-
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norm counts the number of non-zero elements, streamlines can be expressed as a combination

of a small number of prototypes, instead of a single one. When updating the streamline-to-

bundle assignments, the columns wi of W can be optimized independently, by solving the

following sub-problem:

argmin
wi ∈R

m
+

‖φ(xi)−ΦAwi‖22 subject to ‖wi‖0 ≤ Smax. (2.4)

Parameter Smax defines the maximum number of non-zero elements in wi (i.e., the sparsity

level), and is provided by the user as input to the clustering method.

The algorithm summary and computational complexity is reported in Supplement material,

Algorithm 1. To compute non-negative weights wi, we modify the kernel orthogonal match-

ing pursuit (kOMP) approach of (Nguyen et al., 2012) to include non-negativity constrains of

sparse weights (Supplement material, Algorithm 2). Unlike kOMP, the most positively corre-

lated atom is selected at each iteration, and the sparse weights ws are obtained by solving a

non-negative regression problem. Note that, since the size of ws is bounded by Smax, comput-

ing ws is fast.

In the case of a soft clustering (i.e., when Smax ≥ 2), updating A with (2.3) can lead to

negative values in the matrix. As a result, the bundle prototypes may lie outside the convex

hull of their respective streamlines. To overcome this problem, we adapt a strategy proposed

for non-negative tri-factorization (Ding et al., 2006) to our kernel model. In this strategy, A is

recomputed by applying the following update scheme, until convergence:

[A]ij ← [A]ij ·
[
KW�]

ij[
KAWW�]

ij

, i = 1, . . . , n, j = 1, . . . ,m. (2.5)

The above update scheme produces small positive values instead of zero entries in A. To

resolve this problem, we apply a small threshold in post-processing. In terms of computa-

tional complexity, the bottleneck of the method lies in computing the kernel matrix. For large
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datasets, we could reduce this computational complexity by approximating the kernel matrix

with the Nyström method (Fowlkes et al., 2004; O’Donnell and Westin, 2007b) (Supplement

material, Section 1.5).

2.4.4 Extension 1: group sparse kernel dictionary learning

The methods proposed above may find insignificant bundles (e.g., bundles containing only a

few streamlines) when the parameter controlling the number of clusters is not properly set. Due

to the lack of gold standard in tractography analysis, finding a suitable value for this parameter

is challenging.

To overcome this problem, we present a new clustering method based on group sparse kernel

dictionary learning. We reformulate the clustering problem as finding the dictionary D and

non-negative weight matrix W minimizing the following problem:

argmin
A∈Rn×m

W ∈R
m×n
+

1

2
‖Φ−ΦAW ‖2F + λ1‖W ‖1 + λ2‖W ‖2,1. (2.6)

In this formulation, ‖W ‖1 =
∑K

i=1

∑N
j=1 |wij| is an L1 norm prior which enforces global

sparsity of W , and ‖W ‖2,1 =
∑K

i=1 ‖wi·‖2 is a mixed L2,1 norm prior imposing the vector of

row norms to be sparse. Concretely, the L1 norm prior limits the “membership” of streamlines

to a small number of bundles, while the L2,1 prior penalizes the clusters containing only a few

streamlines. Parameters λ1, λ2 ≥ 0 control the trade-off between these three properties and the

reconstruction error (i.e., the first term of the cost function).

We solve this problem using an Alternating Direction Method of Multipliers (ADMM) algo-

rithm (Boyd et al., 2011). First, we introduce ancillary matrix Z and reformulate the problem

as:

argmin
A∈Rn×m

+

W ,Z ∈R
m×n
+

1

2
‖Φ−ΦAW ‖2F + λ1‖Z‖1 + λ2‖Z‖2,1 subject to W = Z. (2.7)
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We then convert this an unconstrained problem using an Augmented Lagrangian formulation

with multipliers U :

argmin
A∈Rn×m

+

W ,Z ∈R
m×n
+

1

2
‖Φ−ΦAW ‖2F + λ1‖Z‖1 + λ2‖Z‖2,1 +

μ

2
‖W −Z +U‖2F . (2.8)

Parameters W , Z and U are updated alternatively until convergence. In this work, we use

primal feasibility as convergence criteria and stop the optimization once ‖W −Z‖2F is below

a small epsilon.

Dictionary matrix is updated as (2.5). To update W , we derive the objective function with

respect to this matrix and set the result to 0, yielding:

W =
(
A�KA+ μI

)−1(
A�K + μ(Z −U )

)
. (2.9)

Note that imposing non-negativity on W is not required since we ensure this property for Z

and have W ≈ Z at convergence.

Optimizing Z corresponds to solving a group sparse proximal problem (Friedman et al., 2010).

This can be done in two steps. First, we do a L1-norm shrinkage by applying the non-negative

soft-thresholding operator to each element of W +U :

ẑij = S+
λ1/μ

(
wij + uij

)
= max

{
wij + uij − λ1/μ, 0

}
, i ≤ K, j ≤ N. (2.10)

Then, Z is obtained by applying a group shrinkage on each row of Ẑ:

zi· = max
{
‖ẑi·‖2 − λ2/μ, 0

}
· ẑi·
‖ẑi·‖2 , i ≤ K. (2.11)

Finally, the Lagrangian multipliers are updated as in standard ADMM methods: U := U +

(W − Z). The overall optimization procedure and its computational complexity are reported

in Supplement material, Algorithm 3.
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2.4.5 Extension 2: kernel dictionary learning with manifold prior

Another challenge in streamline clustering is to generate anatomically meaningful groupings.

This may require incorporating prior information into the clustering process, for example,

to impose streamlines ending in the same anatomical region to be grouped together. In this

work, we address this challenge by proposing a manifold-regularized kernel dictionary learn-

ing method.

In the proposed method, we define the manifold as a graph with adjacency matrix G ∈ R
n×n.

In this matrix, gi,i′ = 1 if streamlines i and i′ should be grouped in the same bundle, otherwise

gi,i′ = 0. The manifold regularization prior on the streamline-to-bundle assignments can be

formulated as

Rman(W ) = λL

n∑
i=1

n∑
i′=1

gi,i′ ‖wi −wi′‖22

= λL tr(WLW�), (2.12)

where L ∈ R
n×n is the Laplacian of G and λL is a parameter controlling the strength of

constraints on streamlines.

Our manifold-regularized formulation is obtained by replacing the L2,1 prior on W withRman(W ).

This new formulation can be solved, as the previous one, with an ADMM algorithm. The main

difference occurs when updating W , which corresponds to the following problem:

argmin
W ∈Rk×n

‖Φ−ΦAW ‖2F + λL tr(WLW�) + μ‖W −Z +U‖2F . (2.13)

Derive this objective function with respect to W and setting the result to 0 gives a Sylvester

equation of the form PW + WQ = R where, P = A�KA + μI , Q = λLL, and

R = A�K+μ(Z−U ). This equation can be solved using Bartels-Stewart algorithm (Bartels

and Stewart, 1972), which requires transforming P and Q into Schur form with a QR algo-
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rithm, and solving the resulting triangular system via back-substitution (Supplement material,

Algorithm 4). The computational complexity is O(n3), n being the size of Q. However, this

can be drastically reduced by pre-computing once the Schur form of Q.

2.5 Experimental results and analysis

In this section, we evaluate our proposed methods on a labeled dataset, followed by parameter

impact analysis, and concluding with Human Connectome Project data results on clustering

and automated segmentation of new subjects.

2.5.1 Data and pre-processing

In the first experiment, we compared the proposed methods on a dataset of manually/ex-

pert labeled streamline bundles provided by the Sherbrooke Connectivity Imaging Laboratory

(SCIL). The source dMRI data was acquired from a 25 year old healthy right-handed volun-

teer and is described in (Fortin et al., 2012). We used 10 of the largest bundles, consisting of

4449 streamlines identified from the cingulum, corticospinal tract, superior cerebellar pendun-

cle and other prominent regions. Figure 2.2 (left) shows the coronal and sagittal plane view of

the ground truth set. Fibernavigator tool (Chamberland et al., 2014) was used for visualizations

of this dataset.

To evaluate the performance of our method across a population of subjects, we used two

datasets. First, consisting of 12 healthy volunteers (6 males and 6 females, between 19 to

35 years of age) from the freely available MIDAS dataset (Bullitt et al., 2005). For stream-

line tractography, we used the tensor deflection method (Lazar et al., 2003) with the following

parameters: minimum fractional anisotropy of 0.1, minimum streamline length of 100 mm,

threshold for streamline deviation angle of 70 degrees. A mean number of 9124 streamlines

was generated for the 12 subjects.
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Second, we used the pre-processed dMRI data of 10 unrelated subjects (age 22–35) from the Q3

release of the Human Connectome Project (Glasser et al., 2013; Van Essen et al., 2012, 2013),

henceforth referred to as HCP data. All HCP data measure diffusivity along 270 directions

distributed equally over 3 shells with b-values of 1000, 2000 and 3000 s/mm2, and were acquired

on a Siemens Skyra 3T scanner with the following parameters: sequence = Spin-echo EPI;

repetition time (TR) = 5520 ms; echo time (TE) = 89.5 ms; resolution = 1.25 × 1.25 × 1.25

mm3 voxels. Further details can be obtained from HCP Q3 data release manual1.

For signal reconstruction and tractography, we used the freely available DSI Studio toolbox

(Yeh et al., 2010). All subjects were reconstructed in MNI space using the Q-space diffeo-

morphic reconstruction (QSDR) (Yeh and Tseng, 2011) option in DSI Studio. We set output

resolution to 1 mm. For skull stripping, we used the masks provided with pre-processed dif-

fusion HCP data. Other parameters were set to the default DSI Studio values. Deterministic

tractography was performed with the Runge-Kutta method of DSI Studio (Basser et al., 2000;

Yeh et al., 2013), using the following parameters: minimum length of 40 mm, turning angle

criteria of 60 degrees, and trlinear interpolation. The termination criteria was based on the

quantitative anisotropy (QA) value, which is determined automatically by DSI Studio. As in

the reconstruction step, the other parameters were set to the default DSI Studio values. Using

this technique, we obtained a total of 50 000 streamlines for each subject.

As a note, whether the streamlines, generated from tractography, represent the actual white

matter pathways remains a topic of debate (Jones et al., 2013; Thomas et al., 2014). Stream-

lines derived from DSI studio are hypothetical curves in space that represent, at best, the major

axonal directions suggested by the orientation distribution functions of each voxel, which may

contain tens of thousands of actual axonal streamlines.

1http://www.humanconnectome.org/documentation/Q3/
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2.5.2 Experimental methodology

We tested three distance measures used in the literature for the streamline clustering problem:

1) the Hausdorff distance (Haus) (Corouge et al., 2004; O’Donnell and Westin, 2005) which

measures the maximum distance between any point on a streamline and its closest point on

the other streamline, 2) the mean of closest points distance (MCP) (Corouge et al., 2004) that

computes the mean distance between any point on a streamline and its closest point on the

other streamline, and 3) the end points distance (EP) (Moberts et al., 2005) measuring the

mean distance between the endpoints of a streamline and the closest endpoint on the other

streamline.

Fiber distances were converted into similarities by applying a radial basis function (RBF) ker-

nel: ki,i′ = exp
(
−γ dist2i,i′

)
. Parameter γ was adjusted separately for each distance measure,

using the distribution of values in the corresponding distance matrix. Since the tested distance

measures are not all metrics, we applied spectrum shift to make kernels positive semi-definite:

Kpsd = K + |λmin| I , where λmin is the minimum eigenvalue of K. This technique only

modifies self similarities and is well adapted to clustering (Chen et al., 2009).

We initialized W using the output of a spectral clustering method (O’Donnell and Westin,

2005), which applies the k-means algorithm on the 10 first eigenvectors of the normalized

Laplacian matrix of K. To avoid inversion problems when WW� is close to singular, we

used a small regularization value of 1e-8. Finally, to compare our method with hard cluster-

ing approaches, we converted its soft clustering output to a hard clustering by mapping each

streamline i to the bundle j for which wji is maximum.

We compared our kernel sparse clustering (KSC) approach to four other methods: kernel k-

means (KKM) using the same K and initial clustering, the spectral clustering (Spect) ap-

proach described above, single linkage hierarchical clustering (HSL) (Moberts et al., 2005),

and QuickBundles (QB) (Garyfallidis et al., 2012). The performance of these methods was

evaluated using four clustering metrics: the Rand Index (RI) which measures the consistency
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of the clustering output with respect to the ground truth, the Adjusted Rand Index (ARI) ad-

justing ARI values by removing the chance agreement, the Normalized Adjusted Rand Index

(NARI) that further normalizes the values by considering the cluster sizes, and the Silhouette

(SI) measure which does not use the ground truth and measures the ratio between the intra-

cluster and inter-cluster distances (Rousseeuw, 1987). While RI, ARI and NARI values range

from 0.0 to 1.0, SI values are between −1.0 and 1.0. In practice, SI values are generally much

lower than 1.0 due to the intrinsic intra-cluster variance. More information about these metrics

can be found in (Moberts et al., 2005; Siless et al., 2013).

Table 2.1 Clustering accuracy of our KSC method (Smax=3), kernel k-means (KKM),

spectral clustering (Spect), and hierarchical clustering (HSL), using the Hausdorff, MCP

and EP distances, on the SCIL dataset. For KSC, KKM and Spect, the mean accuracy

over 10 initializations with m=10 is reported. The best results for a distance and accuracy

metric are shown in boldface type.

Dist Method RI ARI NARI SI
mean (std) mean (std) mean (std) mean (std)

MCP

KSC 0.948 (0.012) 0.780 (0.051) 0.716 (0.047) 0.543 (0.032)
KKM 0.947 (0.011) 0.777 (0.049) 0.716 (0.046) 0.541 (0.028)

Spect 0.942 (0.014) 0.752 (0.058) 0.701 (0.047) 0.515 (0.059)

HSL 0.915 (0.000) 0.704 (0.000) 0.612 (0.000) 0.474 (0.000)

QB 0.943 (0.000) 0.780 (0.000) 0.696 (0.000) 0.486 (0.000)

Haus

KSC 0.924 (0.013) 0.658 (0.068) 0.634 (0.030) 0.425 (0.022)
KKM 0.904 (0.020) 0.589 (0.082) 0.573 (0.068) 0.365 (0.054)

Spect 0.884 (0.018) 0.517 (0.041) 0.538 (0.054) 0.317 (0.069)

HSL 0.891 (0.000) 0.640 (0.000) 0.609 (0.000) 0.221 (0.000)

QB 0.851 (0.000) 0.468 (0.000) 0.485 (0.000) 0.143 (0.000)

EP

KSC 0.919 (0.005) 0.634 (0.026) 0.641 (0.006) 0.422 (0.020)
KKM 0.915 (0.013) 0.621 (0.052) 0.634 (0.034) 0.410 (0.032)

Spect 0.911 (0.014) 0.603 (0.053) 0.616 (0.040) 0.408 (0.031)

HSL 0.842 (0.000) 0.539 (0.000) 0.445 (0.000) 0.197 (0.000)

QB 0.885 (0.000) 0.534 (0.000) 0.550 (0.000) 0.129 (0.000)



46

2.5.3 Comparison of methods and distance measures

Table 2.1 gives the accuracy obtained by KSC (Smax=3) and the four other tested methods on

the SCIL dataset, for the same number of clusters as the ground truth (m=10). Since the output

of spectral clustering depends on the initialization of its k-means clustering step, for Spect,

KSC and KKM, we report the mean performance and standard deviation obtained using 10

different random seeds. We see that our KSC method improves the initial solution provided by

spectral clustering, and gives in most cases a higher accuracy than other clustering methods.

We also observe that KSC is more robust to the choice of distance measure than other methods

and, as reported in (Moberts et al., 2005), that MCP is consistently better than other distance

measures.

Ground truth KSC+Haus KSC+MCP KSC+EP

Figure 2.2 Right sagittal (top) and inferior axial (bottom) views of the ground truth,

and bundles obtained by KSC (Smax = 3) using the Haus, MCP and EP.

Figure 2.2 compares the ground truth clustering of the SCIL dataset with the outputs of KSC

(Smax=3) using the Haus, MCP and EP distances. Except for the superior cerebellar peduncle

bundle (cyan and green colors in the ground truth), the bundles obtained by KSC+MCP and

KSC+Haus are similar to those of the ground truth clustering. Also, we observe that the differ-

ences between KSC+MCP and KSC+Haus occur mostly in the right inferior fronto-occipital
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fasciculus and inferior longitudinal fasciculus bundles (yellow and purple colors in the ground

truth). Possibly due to the large variance of endpoint distances in individual bundles, KSC+EP

gives poor clustering results.

2.5.4 Impact of sparsity

Figure 2.3 reports the mean ARI (over 10 runs) obtained on the SCIL dataset by our KSC

approach, using Smax=1,2,3, for an increasing number of clusters (i.e., dictionary size m). For

comparison, the performance of KKM and Spect is also shown. When the Spectral Clustering

initialization is near optimal (i.e., when m is near the true number of clusters and using MCP),

both methods find similar solutions. However, when the initial spectral clustering is poor (e.g.,

Haus and EP distance or small number of clusters) the improvement obtained by KSC is more

significant than KKM. Hence, KSC (Smax≥2) is more robust than hard clustering approaches

(i.e., Spect, KKM or KSC with Smax=1) to the number of clusters and distance measures.
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Figure 2.3 Mean ARI obtained on the SCIL dataset by KSC (Smax = 1, 2, 3), KKM and

Spect, using Haus (left), MCP (center), EP (right); for varying m.

To illustrate the soft clustering of KSC, Fig. 2.4 (left) and (center) show the membership level

of streamlines to two different bundles. Streamline colors in each figure correspond to the

values of a row in W normalized so that the minimum is 0 (blue) and the maximum is 1 (red).

We observe streamlines having a membership to both bundles (e.g., orange-colored streamlines

in the left image), reflecting the uncertainty of this part of the clustering. In Fig. 2.4 (right),

we show the importance of each streamline in defining the prototype of a bundle, using the
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Figure 2.4 Membership level of streamlines to two different bundles (left and center),

and importance of each streamline in defining the prototype of a bundle (right). Blue

means a null membership/importance, while non-zero values are represented by a color

ranging from green (lowest value) to red (highest value).

normalized value of a column in A as colors. It can be seen that only a few streamlines are

used to define this bundle, confirming the sparsity of A.

2.5.5 Group sparsity prior
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Figure 2.5 (a) Mean ARI obtained on the SCIL dataset by GKSC, MCP+L1,

MCP+Manifold and Spect, using MCP; for varying m; (b) mean and standard deviation

of final m for varying input m; (c) Distribution of bundle sizes for a sample run using

m = 20.

Figure 2.5(a) plots the mean Adjusted Rand Index (ARI) obtained by our group sparse model

(MCP+L1+L21) for various cluster numbers (m), over 10 runs with different spectral clustering



49

Table 2.2 Clustering accuracy of proposed methods using MCP distances and three

types of priors: L1 norm sparsity alone (L1), with group sparsity (L1+L21), and with

manifold regularization (L1+Manifold). Reported values are the mean accuracy over 10
initializations with (input) m=10 clusters. The best result for each accuracy metric is

shown in boldface type.

Prior RI ARI NARI SI
mean (std) mean (std) mean (std) mean (std)

L1 0.947 (0.011) 0.775 (0.049) 0.714 (0.045) 0.543 (0.029)

L1+Manifold 0.948 (0.010) 0.780 (0.044) 0.717 (0.046) 0.546 (0.033)

L1+L21 0.949 (0.006) 0.791 (0.025) 0.721 (0.035) 0.563 (0.039)

initializations. As baseline, we also report the ARI of spectral clustering and our method with-

out group sparsity (MCP+L1), i.e. using λ2=0. We see that employing group sparsity improves

clustering quality and provides a greater robustness to the input value of m. The advantages

of using a group sparse prior are further confirmed in Table 2.2, which gives the mean ARI,

RI, NARI and average SI for m=10. Results show that MCP+L1+L21 outperforms MCP+L1

for all performance metrics. In a t-test, these improvements are statistically significant with

p <0.01.

As described in Section 2.4.4, group sparsity has the benefit of providing meaningful bundles,

regardless of the number of clusters m given as input. In Fig. 5(a), we see that the ARI

of MCP+L1+L21 increases monotonically until reaching the ground-truth number of bundles

m∗=10. While the clustering accuracy of other methods drops for m >10, the performance of

MCP+L1+L21 remains stable. This is explained in Fig. (b) which plots the number of non-

empty clusters found by MCP+L1+L21 as a function of m: the number of output clusters stays

near to m∗=10, even for large values of m. As additional confirmation, Fig. 2.5(c) shows the

number of streamlines per cluster for a sample run of MCP+L1+L21 with m = 20. In this

example, the output clustering contains m∗=10 non-empty clusters.

In Fig. 2.6, we measure the impact of sparse regularization parameters λ1 and λ2 for a fixed

ADMM parameter of μ = 0.01. As shown in (a), λ1/μ controls the mean number of non-zero
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weights per streamline (i.e., how soft or hard is the clustering). Likewise, as illustrated in (b),

λ2/μ defines the size of bundles in the output. These results are consistent with the use L1-

norm and L2,1-norm sparsity in (2.10). Finally, the optimization stability of the MCP+L1+L21

model is illustrated in Fig. 2.6(c), where convergence is reached around 20 iterations.
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Figure 2.6 (a) Mean number of non-zero assignment weights per streamline, for

λ2/μ = 80 and increasing λ1/μ. (b) Mean number of streamlines per bundle, for

λ1/μ = 0.1 and increasing λ2/μ. (c) Cost function value at each of a sample run for

MCP+L1+L21.

2.5.6 Manifold regularization prior

We apply the proposed manifold regularization prior to enforce the grouping of streamlines

with similar end-points. The idea is to obtain bundles that correspond to localized regions of

the cortex. To generate the Laplacian matrix in (2.12), we constructed a graph where the nodes

are streamlines and two nodes are connected if the distance between their nearest endpoints is

below some threshold. Following (Gori et al., 2016), we used a distance threshold of 7mm,

giving a Laplacian matrix with overall sparsity near 15%.

In Fig. 2.5(a), we see that the manifold regularization prior (MCP+Manifold) improves per-

formance compared to spectral clustering baseline and L1 norm sparsity (MCP+L1). This

improvement is particularly important when the input number of clusters is below that of the

ground truth (i.e., m <10). Conversely, for m>10, MCP+Manifold is outperformed by group

sparsity (MCP+L1+L21) due to the over-segmentation of streamlines. Fig. 2.7(a) measures the
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(a) (b)

Figure 2.7 (a) Percentage overlap with EP based Laplacian prior matrix, compared with

baseline initialization of spect, for varying m. (b) Mean of avg SI for KSC+MCP

clustering of 10 unrelated HCP subjects for varying m.

the percentage of streamlines with nearby endpoints (i.e., edges in the graph) that are assigned

to the same cluster, denoted as overlap in the figure. As expected, the prior helps preserve

anatomical information defined by streamline endpoints in the clustering.

2.5.7 Validation on HCP data

We evaluated the performance of our kernel sparse clustering (KSC) method on a population

of subjects from the Human Connectome Project (HCP). For this experiment, we used two

datasets: 10 unrelated HCP subjects, and subjects from the freely available MIDAS dataset

(Bullitt et al., 2005) (results in Supplement material). The objective here is to show applicabil-

ity of our method across population-subjects, and analyse the impact of inter-subject variability.

Figure 2.7(b) shows the mean of average SI obtained for the 10 unrelated subjects, using a

varying number m of clusters and 3 runs for each m value. This plot was generated by sampling

5000 streamlines uniformly over the full tractography ((O’Donnell and Westin, 2007a; Kumar

et al., 2017c)) and computing their pairwise MCP distance. We observe that clustering quality

decreases with higher values of m, and that this quality varies across subjects. A similar trend

is observed for MIDAS dataset (Supplement material, Fig. 2). Comparing HCP and MIDAS
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datasets, a greater average SI is obtained for HCP possibly due to the higher resolution of

images in this dataset. Full clustering visualization for 10 subjects (m = 50) and subject 1 for

m = 25, 50, 75, 100, 125, 150 are shown in Supplement material, Figure 3,4). Note the optimal

number of streamline clusters is still an open challenge (O’Donnell and Westin, 2007a), we

used m = 50 in this study for ease of visualization and interpretation.

Figure 2.8 shows sparse code memberships of streamlines in six different bundles: Corpus

Callosum - anterior body (row 1) and central body (row 2), left Inferior Occipitofrontal Fasci-

culus (IOF) (row 3), left Cortico-Spinal-Tract (CST) (row 4), right IOF (row 5), and right CST

(row 6). Results are reported for subject 1 (m=25 and m=50), subjects 2 (m=50) and subject

3 (m=50). Sparse code values are represented by a color ranging from green (lowest value) to

red (highest value). While variations are observed across values of m and subjects, the general

shape of bundles recovered by our method is similar.

2.5.8 Application to automated tractography segmentation

In this section, we apply the proposed KSC method for the automated segmentation of new

subject streamlines. Again, the focus of our analysis is on inter-subject variability and its

effect on results. To label streamlines, we used as bundle atlas the dictionaries obtained from

40 unrelated HCP subjects (4 dictionaries, each one learned from 10 subjects. Dictionaries

were generated by sampling 5000 streamlines in each subject and employing MCP as distance

measure. Note that expert-labeled streamlines could also be used as dictionary.

The bundles encoded by these dictionaries are depicted in Figure 2.9. Moreover, segmentation

results obtained for 4 different subjects using dictionary D1 are shown in Fig. 2.10. For each

subject, we give the full segmentation as well as membership values for CC, left/right IOF,

and left/right CST bundles. Additionally, to analyze the impact of sampling streamlines from a

subject, segmentation results for 5 instances of subject 1 using D1 are provided in Supplement

material. Once more, while we observe variability across segmented streamlines from different

subjects, the results obtained by our method are globally consistent across subjects. Similar
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Subject 1 (m=25) Subject 1 (m=50) Subject 2 (m=50) Subject 3 (m=50)

Figure 2.8 Color coded visualization of sparse code memberships of streamlines in

Corpus Callosum (CC) (row-1,2), left Inferior Occipitofrontal Fasciculus (IOF) and

Cortico-Spinal-Tract (CST) (row-3,4); and right IOF and CST (row-5,6).

consistency is found across multiple instances of the subject 1 (see Supplement material, Fig.

5).
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Dictionary 1 Dictionary 2 Dictionary 3 Dictionary 4

Figure 2.9 Unsupervised multi-subject dictionary visualization. Four different

dictionaries and corresponding bundles. Top row: Axial view of full dictionary with a

unique color assigned to each bundle; Second row: Anterior Body, and Central Body

bundles in Corpus Callosum; Third row: Left CST, and Left IOF bundles; Last row: Right

CST, and Right IOF bundles. Each dictionary has a different color code, while the

bundles respect that dictionary color-code. (m=50 bundles).

2.6 Discussion

We now summarize and discuss the findings related to proposed approaches, impact of various

priors, and their applications. We then highlight limitations and additional considerations of

this study.



55

Subject 1 Subject 2 Subject 3 Subject 4
1

Figure 2.10 Automated segmentation visualization. Top row: full segmentation of 4

HCP subjects using dictionary D1, with a unique color assigned to each cluster, and same

color code as D1. Rows 2-7: sparse code (bundle membership) visualization for the

posterior body CC, anterior body CC, left IOF, left CST, right IOF, and right CST

bundles. Membership values are represented by a color ranging from green (no

membership) to red (highest membership).

2.6.1 Main findings

Our experiments have demonstrated the usefulness of our kernel sparse clustering (KSC) and

various sparsity priors. The soft assignment provided by KSC (Smax ≥ 2) improved perfor-
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mance for all measures of clustering quality compared to a hard clustering approaches like

kernel k-means. This improvement was most significant when the input number of clusters

(parameter m) is not set close to the ground truth value. In such cases, soft assignment offers a

greater robustness to the ambiguous membership of streamlines to bundles.

Comparing the different streamline distances, we found that mean of closest points (MCP)

performed the best. Hausdorff distance measures the maximum distance between any point on

a streamline and its closest point on another streamline, and thus fails to capture bundles with

branching or diverging streamlines. Likewise, end points distances may be more affected by

outlier streamlines or issues in diffusion tractography output. These observations are in line

with previous analyses on streamline distances (Moberts et al., 2005; Siless et al., 2013).

Results revealed the input number of clusters to have a high impact on results. The true value of

this parameter is largely unknown (O’Donnell and Westin, 2007a), and even in expert labeled

set could be off the mark due to labeling errors (Moberts et al., 2005). Our analysis showed that

group sparsity provides robustness to this confound, and recovers meaningful bundles when it

is set far from the ground-truth value. Likewise, the proposed manifold regularization prior

helped the clustering by enforcing related pairs of streamlines to be grouped together. This

could be useful in a wide range of applications where anatomical information (e.g., cortical

parcellation atlas) is available.

Unsupervised clustering of subjects from HCP and MIDAS datasets showed that our KSC

method can be employed for data driven analyses, our method finding plausible clusters cor-

responding to well known bundles. Moreover, the visualization of clusters and membership

values demonstrates that KSC can effectively capture inter-subject variability. Experiments

on automated streamline segmentation also revealed that KSC can accurately recover major

bundles in new subjects, and that this segmentation is robust to the number of clusters, inter-

individual variations, and the sampling of streamlines from the same subject.
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2.6.2 Limitations and additional considerations

Due to the lack of gold standard clustering, as well as the various challenges in diffusion

tractography (Maier-Hein et al., 2017) and its interpretation (Jones et al., 2013), validating

streamline clustering approaches is difficult. A large scale and data-driven analysis, for exam-

ple using data from over 1000 HCP subjects, could lead to interesting observations on number

of bundles and their population-wise variability.

An important aspect of our dictionary learning method is its initialization. While we employed

spectral clustering for this task, considering other techniques could possibly lead to better re-

sults. For the automated segmentation of streamlines in new subjects, we learned the dictio-

nary in an unsupervised setting, however expert-labeled streamlines set or atlas/clustering from

other approaches can also be utilized.

One the main advantages of the proposed kernel-based framework is that it alleviates the need

for an explicit streamline representation. Previous attempts in utilizing dictionary learning and

sparse coding for streamline clustering might have been hindered by this. Employing ker-

nels also provides flexibility and enables the extension to other streamline similarity measures,

which can incorporate a richer set of characteristics such as along-tract diffusivity (Kumar

et al., 2017d; Charon and Trouvé, 2013; Charlier et al., 2014).

Another key element of our study is the anatomical interpretation of clustering results. The

streamlines generated from diffusion tractography provide a macro-scale inference of the un-

derlying fibers(Jones et al., 2013; Maier-Hein et al., 2017). As such, the clustering for a given

distance/similarity measures focuses primarily on the geometric aspect of streamlines. Al-

though we considered end points proximity in our manifold regularization prior, additional

information such as structural parcellation could be incorporated to improve the anatomic plau-

sibility of the final clustering (O’Donnell et al., 2013; Siless et al., 2018).
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The sparse code representation of streamlines conveys a wealth of information on inter-individual

variability in terms of streamline geometry. Extension of this study could leverage this informa-

tion for additional tasks, such as identifying noisy/spurious streamlines, discovering tract-based

biomarkers to discriminate between healthy and diseased subjects (O’Donnell et al., 2017), or

establishing bundle-to-bundle correspondences across subjects.

2.7 Conclusion

We presented a novel framework using kernel dictionary learning with various sparsity priors

for the unsupervised segmentation of white matter streamlines. The proposed framework does

not require explicit streamline representation and enables using any streamline similarity mea-

sure. Dictionary bundles are encoded as a non-negative combination of training streamlines,

and the kernel trick is used to model non-linear relationships between streamlines and bundles.

We compared our method against state-of-the-art streamline clustering approaches using expert-

labeled data, as well as subjects from the HCP and MIDAS dataset. Results demonstrate

the usefulness of having a soft assignment, and that our method is suitable for scenarios

where streamlines are not clearly separated, bundles overlap, or when there is important inter-

individual variability. Experiments using group sparsity (L2,1 norm) and manifold regulariza-

tion show that these priors can improve clustering quality by adding robustness to the input

number of clustering or incorporating anatomical constraints in the clustering.

The benefits of the proposed approach in cases of inter-individual variability was showcased for

the automated segmentation of streamlines from new subjects. In future work, we will investi-

gate the usefulness of our approach for identifying and comparing major bundles in healthy vs

diseased subjects, and for incorporating along-tract measures in the clustering process.
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2.8 Supplement results

2.8.1 Non-negative kernel sparse clustering: Algorithm summary

Algorithm 2.1: Kernelized sparse clustering method

Input: Pairwise streamline distance matrix Sdist ∈ Rn×n;

Input: The desired number of streamline bundles m;

Input: The RBF kernel parameter γ;

Input: The sparsity level Smax and maximum number of iterations Tmax;

Output: The sparse assignment matrix W ∈ Rn×m;

Output: The hard assignment vector c ∈ {1, . . . ,m}n;

Initialize the kernel matrix: kij = exp(−γ ·dist2ij) ;

Initialize A as a random selection matrix;

for t = 1, . . . , Tmax do

Update each column wi of W using NNKOMP (Algorithm 2.2);

Update dictionary until convergence:

Aij ← Aij

(
KW�)

ij(
KAWW�)

ij

, i = 1, . . . , n, j = 1, . . . ,m.;

tout ← tout + 1;

end

Compute hard assignment: ci = argmaxk′ wim′ , i = 1, . . . , n ;

return {W , c} ;

Algorithm complexity

In Algorithm 2.1, the user provides a matrix Sdist of pairwise streamline distances, as well

as the desired number of bundles (clusters), and obtains in return the soft (matrix W ) and

hard (vector c) streamline clusterings. Various distance measures, suitable for streamlines, are

described in experiments. The distances are converted into similarities by using a Gaussian

(RBF) kernel of parameter γ. Note that the obtained kernel is semi-definite positive only if
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the distance is a metric. However, non-metric distances, such as the Hausdorff distance (see

experiments), have been shown to be quite useful in practice (Laub and Müller, 2004). In

the main loop, the dictionary matrix A and sparse streamline-to-bundle assignment matrix W

are optimized alternatively, until convergence or Tmax iterations have been reached. The soft

clustering of W is converted to a hard clustering by assigning each streamline i to the bundle

m for which wim is maximum.

Algorithm 2.2: Non-negative kernelized orthogonal matching pursuit

Input: The dictionary matrix A ∈ Rn×m
+ and kernel matrix K ∈ Rn×n;

Input: The streamline index i and sparsity level Smax;

Output: The set of non-zero weights Is and corresponding weight values ws;

Initialize set of selected atoms and weights: I0 = ∅, w0 = ∅;

for s = 1, . . . , Smax do

τj =
[
A�(ki −KA[Is]ws

)]
j
/
[
A�KA

]
jj
, j = 1, . . . ,m;

jmax = argmaxj �∈ Is−1
τj , Is = Is−1 ∪ jmax;

ws = argminw∈Rs
+

w�A�
[Is]

KA[Is]w − 2ki
�A[Is]w;

end

return {Is, ws} ;

Note: A[Is] contains the columns of A whose index is in Is ;

2.8.2 Group sparse kernel dictionary learning: Algorithm summary

The clustering process of our proposed method is summarized in Algorithm 2.3. In this algo-

rithm, the user provides a matrix Sdist of pairwise streamline distances (see experiments for

more details), the maximum number of clusters m, as well as the trade-off parameters λ1, λ2,

and obtains as output the dictionary matrix A and the cluster assignment weights W . At each

iteration, W , Z and U are updated by running at most Tin ADMM loops, and are then used to

update A. This process is repeated until Tout iterations have been completed or the cost func-
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tion f(D,W ) converged. The soft assignment of W can be converted to a hard clustering by

assigning each streamline i to the bundle m for which wim is maximum.

Algorithm 2.3: ADMM method for group sparse kernelized clustering

Input: Pairwise streamline distance matrix Sdist ∈ Rn×n;

Input: The maximum number of streamline bundles m;

Input: The RBF kernel parameter γ;

Input: The cost trade-off parameters λ1, λ2 and Lagrangian parameter μ;

Input: The maximum number of inner and outer loop iterations Tin, Tout;

Output: The dictionary A ∈ Rn×m and assignment weights W ∈ Rn×m
+ ;

Initialize the kernel matrix: kij = exp(−γ ·dist2ij);
Initialize A as a random selection matrix and tout to 0;

while f(D,W ) not converged and tout ≤ Tout do

Initialize U and Z to all zeros and tin to zero;

while ||W −Z||2F not converged and tin ≤ Tin do
Update W , Z and U :

W ←
(
A�KA+ μI

)−1(
A�K + μ(Z −U )

)
;

ẑij ← max
{
wij + uij −

λ1

μ
, 0

}
, i ≤ m, j ≤ n;

zi· ← max
{
||ẑi·||2 − λ2

μ
, 0

}
· ẑi·
||ẑi·||2 , i ≤ m;

U ← U +
(
W −Z

)
;

tin ← tin + 1;

end

Update dictionary until convergence:

Aij ← Aij

(
KW�)

ij(
KAWW�)

ij

, i = 1, . . . , n, j = 1, . . . ,m.;

tout ← tout + 1;

end

return {A,W } ;
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The complexity of this algorithm is mainly determined by the initial kernel computation, which

takes O(n2) operations, and updating the assignment weights in each ADMM loop, which has

a total complexity in O(Tout · Tin ·m2 · n). Since Tout, Tin and m are typically much smaller

than n, the main bottleneck of the method lies in computing the pairwise distances Sdist used

as input. For datasets having a large number of streamlines (e.g., more than n = 100, 000

streamlines), this matrix could be computed using an approximation strategy such as the the

Nyström method (Fowlkes et al., 2004), described later in the paper.

2.8.3 Kernel dictionary learning with manifold prior: Algorithm summary

Update W: Bartels-Stewart Algorithm summary

Algorithm 2.4 provides the summary of W update using Bartels-Stewart Algorithm. The Schur

forms can be precomputed to speed up the computation.

Algorithm 2.4: Bartels-Stewart Algorithm summary

Input: P , Q, and R;

Output: W

Step 1: Transfrom P and Q into Schur form

Cc = R;

[Qa,T a] = schur(P ); Cc = Qa
�Cc

[Qb,T b] = schur(Q); Cc = CcQb

Step 2: Solve following Simplified Sylvester equation using back substitution

T aW +WT b = Cc

Step 3: Recover W :

W = QaWQb
�

return {W } ;

Algorithm 2.5 provides summary of the methods, while complexity can be computed similar

to previous section, with only difference being update of W.
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Algorithm 2.5: ADMM method for kernelized dictionary learning with Laplacian

prior

Input: Pairwise streamline distance matrix Sdist ∈ Rn×n;

Input: The maximum number of streamline bundles m;

Input: The RBF kernel parameter γ;

Input: The cost trade-off parameters λ1, λL ;

Input: Lagrangian parameter μ1;

Input: The maximum number of inner and outer loop iterations Tin, Tout;

Output: The dictionary A ∈ Rn×m and assignment weights W ∈ Rn×m
+ ;

Initialize the kernel matrix: kij = exp(−γ ·dist2ij);
Initialize A as a random selection matrix and tout to 0;

Precompute schur(λLL);

while f(D,W ) not converged and tout ≤ Tout do

Initialize U and Z to all zeros and tin to zero;

while ||W −Z||2F not converged and tin ≤ Tin do
Update W , Z, and U :

W ← Sylvester
((
A�KA+ μ1I

)
, λLL,

(
A�K + μ1(Z −U )

))

ẑij ← max
{
wij + uij −

λ1

μ1

, 0
}
, i ≤ m, j ≤ n;

U ← U +
(
W −Z

)
;

tin ← tin + 1;

end

Update dictionary until convergence:

Aij ← Aij

(
KW�)

ij(
KAWW�)

ij

, i = 1, . . . , n, j = 1, . . . ,m.;

tout ← tout + 1;

end

return {A,W } ;

2.8.4 Group sparsity and manifold prior visualization

The bundles obtained by group sparsity (MCP+L1+L21) for the input number of clusters m =

20 are presented in Figure 2.11 (middle). We observe that the clustering is similar to the

ground truth clustering, except for small differences in left/right inferior longitudinal fasciculus
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bundles (purple and blue colors in the ground truth). Also, we observe that superior cerebellar

peduncle bundles (cyan and green colors in the ground truth) are well separated.

Figure 2.11(right) shows clustering output using this method for m = 10 and MCP for a sample

run. We observe that the clustering is similar to the ground truth clustering, except for small

differences in left/right inferior longitudinal fasciculus bundles (purple and blue colors in the

ground truth).

Ground truth MCP+L1+L21 (m*=20) MCP+Manifold

Figure 2.11 Right sagittal (top) and inferior axial (bottom) views of the ground truth

(left), and bundles obtained by MCP+L1+L21 (middle, m=20, final m=10), and

MCP+L1+Lap (right, m=10).

2.8.5 Results on multi-subject MIDAS dataset (KSC+MCP)

Data: To evaluate the performance of our method on multiple subjects, we also used the data

of 12 healthy volunteers (6 males and 6 females, 19 to 35 years of age) from the freely available

MIDAS dataset (Bullitt et al., 2005). For fiber tracking, we used the tensor deflection method

(Lazar et al., 2003) with the following parameters: minimum fractional anisotropy of 0.1,



65

minimum streamline length of 100 mm, threshold for streamline deviation angle of 70 degrees.

A mean number of 9124 streamlines was generated for the 12 subjects.

Results: Figure 2.12 (left) shows the mean SI (averaged over all clusters) obtained by KSC

(Smax = 3), KKM and Spect with MCP, on 12 subjects of the MIDAS dataset. We see that

our soft clustering method outperforms the hard clustering approaches, especially for a small

number of clusters. In Figure 2.12 (right), the results obtained for m = 35 are detailed for

each subject. Error bars in the plot show the mean and variance of SI values obtained over 10

different initializations. As can be seen, our method shows a greater accuracy and less variance

across subjects.
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Figure 2.12 MIDAS: Mean of average SI using MCP: varying m mean over 12 subjects

(left); for m = 35 for each subject (middle); Convergence plot (right for KSC+MCP )

2.8.6 Additional results on Human Connectome Project subjects

Figure 2.13 shows clustering output for 10 HCP subjects for m = 50, with an unique color

assigned to each cluster. For this simplified visualization each streamline is assigned to a

single cluster by taking the maximum for each column of the matrix W . Note, we have used a

unique color code for each subject, as establishing a cluster correspondence across subjects is

itself a challenging problem. We observe that the overall pattern of clustering across subjects

looks similar. However, there are subtle variations for clusters across subjects.
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Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Subject 6 Subject 7 Subject 8 Subject 9 Subject 10

Figure 2.13 Visualization of clustering output for 10 unrelated HCP subjects using

KSC, for m = 50.

Similarly, Figure 2.14 shows simplified visualization of clustering output for subject 1, for

varying m. As expected, going from m = 25 to m = 150 the clusters split into smaller ones,

for example, observe the clusters in corpus callosum.

2.8.7 Multi-subject clustering as dictionary

Computing the kernel matrix using the Nyström method

When there can be multiple subjects, each subject having several thousands of streamlines,

computing the similarity between all pairs of training streamlines in K is impossible. To

alleviate this problem, we approximate the kernel matrix using the Nyström method (Fowlkes

et al., 2004; O’Donnell and Westin, 2007b). In this method, a set of p representative streamlines

are sampled from while set of training streamlines, where p � |X|. The pairwise similarities

between all selected streamlines are then computed in a reduced kernel matrix Ka ∈ Rp×p.

Likewise, the similarity between the selected and non-selected ones are obtained in a matrix

Kb ∈ Rp×(|X|−p). The whole kernel matrix is then reconstructed using a low-rank approx-
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m=25 m=50 m=75

m=100 m=125 m=150

Figure 2.14 Visualization of clustering output for subject 1 using KSC, for varying m.

imation K = GG�, where G� = K
− 1

2
a

[
K�

a K�
b

]
. In practice, the most computationally

expensive step of this method is the SVD decomposition of Ka.

HCP multi-subject clustering

When there are multiple subjects, each subject having several thousands of streamlines, com-

puting the similarity between all pairs of training streamlines in K is impossible. To alleviate

this problem, we approximate the kernel matrix using the Nyström method (Fowlkes et al.,

2004; O’Donnell and Westin, 2007b). Figure 9 (manuscript) shows simplified visualization of

A matrix of 4 sets of 10 unrelated HCP subjects. (These subjects are utilized as dictionary in

next section). We utilized 50, 000 streamlines for each set, sampling 5, 000 streamlines from

each subject.
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For simplification, we show full clusterings and select bundles including Anterior Body, and

Central Body bundles in Corpus Callosum; Third row: Left Cortico-Spinal-Tract, and Left

Arcuate Fasciculus bundles; Last row: Right Cortico-Spinal Tract, and Right Inferior Occip-

itofrontal Fasciculus bundles. The objective here is to show that the multi-subject clustering

output provides plausible clusters, corresponding to well-known anatomical bundles. Also,

comparing multi-subject clustering with single subject clustering, we observe overall similar-

ity in terms of clusters, while also reflecting variation. We also observe subtle variations across

multi-subject clustering sets, for example, within IOF or CST bundles.

2.8.8 Application: automated segmentation of new subject streamlines

To analyze the impact of sampling streamlines from a subject, Figure 2.15 shows segmentation

output for 5 instances of subject 1 using dictionary D1.

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

Figure 2.15 Automated segmentation of 5 instances of subject 1 using dictionary D1.
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3.1 Abstract

White matter characterization studies use the information provided by diffusion magnetic res-

onance imaging (dMRI) to draw cross-population inferences. However, the structure, function,

and white matter geometry vary across individuals. Here, we propose a subject fingerprint,

called Fiberprint, to quantify the individual uniqueness in white matter geometry using fiber

trajectories. We learn a sparse coding representation for fiber trajectories by mapping them to

a common space defined by a dictionary. A subject fingerprint is then generated by applying

a pooling function for each bundle, thus providing a vector of bundle-wise features describing

a particular subject’s white matter geometry. These features encode unique properties of fiber

trajectories, such as their density along prominent bundles. An analysis of data from 861 Hu-

man Connectome Project subjects reveals that a fingerprint based on approximately 3 000 fiber

trajectories can uniquely identify exemplars from the same individual. We also use fingerprints
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for twin/sibling identification, our observations consistent with the twin data studies of white

matter integrity. Our results demonstrate that the proposed Fiberprint can effectively capture

the variability in white matter fiber geometry across individuals, using a compact feature vector

(dimension of 50), making this framework particularly attractive for handling large datasets.

3.2 Introduction

Diffusion magnetic resonance imaging (dMRI) is a powerful and non-invasive tool that pro-

vides key information on white matter organization and connectivity based on the diffusion of

water molecules in white matter tissues (Basser et al., 1994). Recent advances in dMRI acqui-

sition protocols have lead to significant improvements in signal reconstruction (Assemlal et al.,

2011; Tuch, 2004; Wedeen et al., 2005), driving the development of novel tools for processing

and interpreting dMRI data. Among the many applications using dMRI data, the quantitative

characterization of white matter geometry and its genetic basis (Chiang et al., 2011; Jahanshad

et al., 2012; Thompson et al., 2013) is an important step in the study of the human brain, es-

sential to understanding the mechanisms of neurological function and disease (Chung et al.,

2011; Griffa et al., 2013; Hagmann et al., 2006; Thomason and Thompson, 2011).

Over the years, several approaches have been proposed to provide a simplified quantitative de-

scription of white matter connections, to allow for cross-population inferences (Guevara et al.,

2012; Jin et al., 2014; O’Donnell and Westin, 2007a; Prasad et al., 2014). While numerous

studies have focused on elucidating brain connectivity patterns that are shared across people,

researchers have also acknowledged the high individual variability in brain structure (Amunts

et al., 2000; Mangin et al., 2004; Rademacher et al., 2001), function (Barch et al., 2013; Grab-

ner et al., 2007; Mueller et al., 2013; Ruiz-Blondet et al., 2016; Rypma and D’Esposito, 1999;

Zilles and Amunts, 2013), and white matter geometry (Bürgel et al., 2006; de Schotten et al.,

2011). Motivated by this, the concept of connectome fingerprinting, which characterizes indi-

viduals using unique connectivity profiles, has recently drawn significant interest from the neu-
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roscience community (Armstrong et al., 2015; Finn et al., 2015; Miranda-Dominguez et al.,

2014; Mišić and Sporns, 2016; Wachinger et al., 2015a; Yeh et al., 2016b,c).

So far, most studies on subject fingerprinting have centered around functional (Armstrong

et al., 2015; Finn et al., 2015; Miranda-Dominguez et al., 2014) and structural data (Wachinger

et al., 2015a; Toews and Wells, 2016). Recently, a novel approach was proposed for building

individual connectome profiles based on dMRI data (Yeh et al., 2016c,a). This approach uses

the Spin Distribution Function (SDF) at each voxel to obtain a fingerprint encoding the dif-

fusion density along a set of prominent directions in cerebral white matter. While it captures

key characteristics of white matter diffusivity, this voxel-level fingerprint lacks direct corre-

spondence with white matter bundles, thus hindering an intuitive representation and analysis.

As highlighted in (Colby et al., 2012), a direct voxelwise comparison of diffusion imaging

data could also be challenging, since the high-contrast edges in diffusion MRI volumes (e.g.,

FA maps) make them more susceptible to small registration errors. Such comparison is also

complicated by the anatomical variability of tract positions in subjects.

Building a fingerprint at the level of fiber trajectories, instead of voxels, could provide a more

meaningful way of analyzing the unique connectivity properties of individuals from dMRI

data. However, working with fiber trajectories also presents additional difficulties, due to the

fact that the number and distribution of fiber trajectories may vary across subjects, and fiber

trajectories may have very different lengths. Finding a common representation space of fiber

trajectories, in different subjects, is essential to overcome these difficulties.

In recent work, we introduced a framework based on sparse coding for the compact represen-

tation and cross-population analysis of fiber trajectories (Kumar et al., 2015). This framework

utilizes dictionary learning to build an atlas of fiber bundles from multi-subject dMRI data.

Via sparse coding, this atlas can then be used to encode new fiber trajectory data into a com-

pact representation, common to all subjects, and segment these fiber trajectories into prominent

bundles (Kumar and Desrosiers, 2016). In the current paper, we propose to use this framework
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to characterize the uniqueness in white matter connectivity exhibited by individual subjects, at

the level of fiber trajectories. The key idea of our work is to represent each fiber trajectory as

a sparse weighted combination of atlas bundles (i.e., the dictionary atoms), and use a pooling

function (Yang et al., 2009) to combine the sparse codes of a subject’s fiber trajectories into

a single feature vector representing bundle-wise properties of fiber trajectory geometry. The

resulting fingerprint, called Fiberprint, is used to uniquely identify subjects, as well as to dis-

cover inheritable characteristics of fiber geometry by comparing the fingerprints of twins and

non-twin siblings. The use of fiber trajectories as a basis for the proposed subject fingerprint

is supported by key studies, such as (Bürgel et al., 2006; de Schotten et al., 2011), which have

shown that the geometry of fiber bundles varies across subjects. However, characterizing an

individual subject’s white matter fiber geometry via a signature has thus far been elusive.

The main contribution of our work is the use of sparse code pooling to build a subject fin-

gerprint, called Fiberprint. To our knowledge, this is the first study to propose a fingerprint

based on fiber geometry. Another notable contribution of this work is the large-scale analysis

and validation of our fingerprint, involving a cohort of 861 subjects from Human Connectome

Project.

The rest of this paper is organized as follows. We first give an overview of related work on

brain fiber analysis, sparse coding, and subject fingerprinting. Section 3.4 then presents the

proposed Fiberprint approach, based on non-negative kernel sparse coding. In Section 3.5,

we conduct an extensive experimental validation using the dMRI data of 861 subjects from the

Human Connectome Project dataset, in which the impact of various parameters of our approach

is measured. We also evaluate the usefulness of the proposed fingerprint on the task of subject,

twin, and non-twin sibling identification, and use hypothesis testing to find bundles showing

significant fingerprint dissimilarities across different subjects groups (i.e., males vs females).

In Section 3.6, we discuss our main observations and experimental findings. We conclude with

a summary of our contributions and a discussion of possible extensions.
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3.3 Related work

Our presentation of relevant work is divided into three parts, focusing respectively on the rep-

resentation and analysis of white matter fiber geometry, the application of sparse coding tech-

niques in neuroimaging, and the topic of subject fingerprinting.

3.3.1 Representation and analysis of white matter fiber geometry

White matter fiber characterization often assumes an initial abstraction based on tractogra-

phy, where local diffusion information is used to recover streamlines representing connectivity

pathways in the brain (Basser et al., 2000; Conturo et al., 1999; Mori et al., 1999). Since

tractography may output thousands of fiber trajectories, early work has focused on finding

simplified quantitative descriptions of white matter connections by grouping fiber trajectories

into anatomically meaningful bundles (O’Donnell et al., 2013). Over the years, a wide range

of approaches have been proposed to cluster fiber trajectories, including methods based on hi-

erarchical clustering (Corouge et al., 2004; Gerig et al., 2004) and spectral clustering (Brun

et al., 2004; Jonasson et al., 2005; O’Donnell and Westin, 2005). Most of these methods group

fiber trajectories using problem-specific measures of similarity, such as the Hausdorff distance

(Corouge et al., 2004; Gerig et al., 2004; Moberts et al., 2005) or a mean of closest points

(MCP) distance (Corouge et al., 2004; Ding et al., 2003; Gerig et al., 2004; Moberts et al.,

2005).

Various studies have also focused on the segmentation of white matter tracts, toward the goal

of drawing cross-population inferences (Guevara et al., 2012; Jin et al., 2014; O’Donnell and

Westin, 2007a; Prasad et al., 2014). These studies either follow an atlas based approach (Gue-

vara et al., 2012; Jin et al., 2014; O’Donnell and Westin, 2007a) or align specific tracts directly

across subjects (Garyfallidis et al., 2015; O’Donnell et al., 2012). Multi-step or multi-level

approaches have also been proposed to segment fiber trajectories, for example, by combining

both voxel and fiber trajectory groupings (Guevara et al., 2012), fusing labels from multiple
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hand-labeled atlases (Jin et al., 2014), using a white matter voxel-space atlas and a bundle

representation based on maximum density paths (Prasad et al., 2014), or using Gaussian pro-

cesses (Wassermann et al., 2010). A few studies have also investigated the representation

of specific fiber trajectory bundles using different techniques such as gamma mixture models

(Maddah et al., 2008), hierarchical Dirichlet processes (Wang et al., 2011c), and the computa-

tional model of rectifiable currents (Durrleman et al., 2009; Gori et al., 2016).

3.3.2 Sparse coding for neuroimaging

Sparse coding, which aims at encoding a signal as a sparse combination of prototypes in a

data-driven dictionary, has been applied in various domains of computer vision and pattern

recognition (Elad et al., 2010; Wright et al., 2009, 2010; Yang et al., 2009). This technique has

also shown promise for various neuroimaging applications, such as the reconstruction (Lustig

et al., 2008) or segmentation (Tong et al., 2013) of MRI data, and for functional connectivity

analysis (Lee et al., 2016a,b). For diffusion data, sparse coding has been used successfully for

clustering white matter voxels from Orientation Density Function (ODF) data (Çetingül et al.,

2014), and for finding a population-level dictionary of key white matter tracts (Zhu et al.,

2016).

To deal with the challenges of anatomic and tractographic variability, we have recently pro-

posed a framework based on non-negative kernel dictionary learning for grouping fiber trajec-

tories into prominent bundles (Kumar et al., 2015). This framework encodes individual fiber

trajectories as a sparse non-negative combination of dictionary prototypes corresponding to

bundles. Unlike other fiber trajectory clustering approaches, which assign fiber trajectories

to individual bundles, the proposed framework gives fiber trajectories a membership value to

each bundle, thus providing a more intuitive way of dealing with overlapping bundles and inter-

subject variability. In a later study, the same framework was used to learn a multi-subject atlas

of fiber bundles and for the automatic segmentation of new fiber trajectory data (Kumar and

Desrosiers, 2016).
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3.3.3 Subject fingerprinting

Most neuroimaging studies collapse multi-subject data to draw inferences about common pat-

terns in a population. Although there are gross similarities, a substantial portion of a subject’s

connectome is unique to that individual (Barch et al., 2013; Bürgel et al., 2006; Grabner et al.,

2007; Mangin et al., 2004; Mueller et al., 2013; Rademacher et al., 2001; Ruiz-Blondet et al.,

2016). A recent study has shown that functional connectivity profiles act as robust and reliable

fingerprints that can identify individual subjects from a large group (Finn et al., 2015). In this

study, a functional brain atlas was employed to define target brain regions. The Pearson corre-

lation coefficients between the time courses of region pairs were then computed, and used as

a functional connectivity profile. This fingerprint was able to identify individuals across scan

sessions, both for task and rest conditions.

In (Wachinger et al., 2015a), Wachinger et al. proposed Brainprint, a subject fingerprint that

characterizes brain morphology by calculating the spectrum of the Laplace-Beltrami operator

on meshes from cortical and subcortical brain structures. This fingerprint was used to study

morphological similarity between brains, with applications in subject identification across mul-

tiple scans of the same subject (achieving a classification accuracy of up to 99.9%), and the

analysis of potential genetic influences on brain morphology.

While the majority of fingerprint studies have focused on functional and structural data, a local

connectome fingerprint using Spin Distribution Function (SDF) voxel profiles obtained from

dMRI data has recently been proposed in (Yeh et al., 2016b,a). This local fingerprint is built

by sampling, at each voxel, the diffusion density of water along principal directions in the

white matter, defined using a common fiber-direction atlas. The proposed fingerprint was used

for quantifying the similarity between genetically-associated individuals, as well as measuring

neuroplasticity over time, and was shown to vary substantially across individual subjects com-

pared to traditional diffusivity measures like Fractional Anisotropy (FA). However, since this

fingerprint is built using voxel-level information, it lacks a direct correspondence with white
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matter bundles, and a direct voxel-level comparison of diffusion imaging data could be chal-

lenging, as the high-contrast edges of diffusion MRI volumes (e.g., FA maps) make them more

susceptible to small misregistration errors, as well as to anatomical variability of tract positions

in health and disease (Colby et al., 2012). Another point is that this fingerprint tries to capture

both voxel-level diffusivity information and morphology. To our knowledge, the present study

is the first to propose a white matter geometry fingerprint at the level of fiber trajectories and

fiber bundles.

3.4 Materials and methods

1. Fiber tracking 2. Dictionary learning 3. Fiber encoding 4. Pooling 5. Subject identification /
Bundle significance

Tractogram
(MNI space)

Bundle dictionary

Sparse codes
Fiberprint

dMRI data
(861 subjects)

Figure 3.1 Pipeline of the proposed Fiberprint approach based on sparse code pooling.

Figure 3.1 summarizes the pipeline of the proposed Fiberprint method, comprised of three

steps. In the first step, signal reconstruction and fiber tracking is performed on the pre-

processed dMRI data of 861 subjects from the Human Connectome Project (Van Essen et al.,

2012, 2013). Second, a dictionary of prototype fiber trajectories is then learned from a subset of

subjects, based on our non-negative kernel dictionary learning framework. This dictionary can

be seen as an atlas for modeling and analyzing the geometry of fiber trajectories from multiple

subjects, along prominent bundles. In the third step, the learned dictionary is used to encode

the fiber trajectories of the remaining subjects in a common feature space, via a sparse coding

method. A fingerprint is then obtained, for each subject, by applying a pooling function to the
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sparse codes corresponding to each subject’s fiber trajectories. This pooling function allows

the comparison of subjects having a different number of fiber trajectories by aggregating the

information from all fiber trajectories in a single fixed-size vector. The resulting fingerprint

corresponds to an estimate of fiber trajectory density along key bundles defined by the atlas.

Finally, in the last step, fingerprints are used to identify unique characteristics of genetically-

related subjects, or for finding bundles showing significant differences across various subject

groups (e.g., male vs female). The following subsections describe each of these steps in greater

detail.

3.4.1 Data and pre-processing

We used the pre-processed dMRI data of 861 subjects (482 females, 378 male and 1 unknown,

age 22–35) from the Q3 release of the Human Connectome Project (Glasser et al., 2013;

Van Essen et al., 2012, 2013), henceforth referred to as HCP data. All HCP data measure

diffusivity along 270 directions distributed equally over 3 shells with b-values of 1000, 2000

and 3000 s/mm2, and were acquired on a Siemens Skyra 3T scanner with the following param-

eters: sequence = Spin-echo EPI; repetition time (TR) = 5520 ms; echo time (TE) = 89.5 ms;

resolution = 1.25 × 1.25 × 1.25 mm3 voxels. Further details can be obtained from HCP Q3

data release manual1.

For signal reconstruction and tractography, we used the freely available DSI Studio toolbox.

All subjects were reconstructed in MNI space using the Q-space diffeomorphic reconstruction

(QSDR) (Yeh and Tseng, 2011) option in DSI Studio. QSDR is an extension of general-

ized q-sampling imaging (GQI, (Yeh et al., 2010)), allowing the construction of spin distri-

bution functions (SDF) in a given template space. DSI Studio first calculates the quantitative

anisotropy (QA) mapping in the native space and then normalizes it to the MNI QA map us-

ing SPM normalization (Ashburner, 2000). We used the SPM 21-27-21 option in DSI Studio

for normalization, and set output resolution to 1 mm. For skull stripping, we used the masks

1http://www.humanconnectome.org/documentation/Q3/
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provided with pre-processed diffusion HCP data. Other parameters were set to the default DSI

Studio values. We also normalized T1-weighted images to MNI template space as part of this

processing.

Deterministic tractography was performed with the Runge-Kutta method of DSI Studio (Basser

et al., 2000; Yeh et al., 2013), using the following parameters: minimum length of 40 mm, turn-

ing angle criteria of 60 degrees, and trlinear interpolation. The termination criteria was based

on the QA value, which is determined automatically by DSI Studio. As in the reconstruction

step, the other parameters were set to the default DSI Studio values. Using this technique, we

obtained a total of 50 000 fiber trajectories for each subject.

As a note, whether these fiber trajectories represent the actual white matter pathways remains

a topic of debate (Jones et al., 2013; Thomas et al., 2014). Fiber trajectories derived from

DSI studio are hypothetical curves in space that represent, at best, the major axonal directions

suggested by the orientation distribution functions of each voxel, which may contain tens of

thousands of actual axonal fibers.

3.4.2 Learning the fiber trajectory dictionary

Out of the 861 available subjects, 10 unrelated ones (O’Donnell et al., 2017) were used to learn

the dictionary of fiber trajectory prototypes, serving as a multi-subject atlas to map new fiber

trajectory data to a common space. The learning process is based on the non-negative kernel

dictionary learning method presented in (Kumar et al., 2015; Kumar and Desrosiers, 2016),

which we now summarize.

Let X be the set of n training fiber trajectories, represented as a set of 3D coordinates. For

the purpose of explanation, we suppose that each trajectory i is encoded as a feature vector

xi ∈ Rd, and that X is a d × n feature matrix. Since our dictionary learning method is

based on kernels, a fixed set of features is however not required, and fiber trajectories having a
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different number of 3D coordinates could be compared with a suitable similarity measure (i.e.,

the kernel function).

In the proposed model, each fiber trajectory can be described as a sparse linear combination

of m prototype fiber trajectories in a dictionary D. Formally, we write this as xi ∼ Dwi,

where wi is a sparse vector of non-negative weights representing the fiber trajectory’s relation-

ship to each prototype. Since fiber trajectories may have very different lengths and endpoints,

encoding them using a fixed set of features can be challenging. To avoid this problem, we

embed them into a q-dimensional Hilbert space via a mapping function φ : Rd → Rq, such

that φ(x)�φ(x′) = k(x,x′) is a kernel function. The main advantage of this approach is that

fiber trajectories can now be represented based on a similarity measure tailored to this type of

data, such as the Hausdorff distance (Corouge et al., 2004; Gerig et al., 2004; Moberts et al.,

2005), the mean of closest points (MCP) distance (Corouge et al., 2004; Ding et al., 2003;

Gerig et al., 2004; Moberts et al., 2005) or the Minimum average Direct Flip (MDF) distance

(Garyfallidis et al., 2012). In this work, we considered the MDF distance, which computes

the average distance between points on a fiber trajectory and corresponding points in a sec-

ond fiber trajectory, or in the reverse point sequence of the second fiber trajectory if it leads

to a smaller distance. A Gaussian kernel was used to convert distances to similarities, i.e.

k(x,x′) = exp
(
− γ · distMDF(x,x

′)
)
. The fiber trajectories were sampled to 15 equidistant

points for distance computation (Garyfallidis et al., 2012) and the kernel bandwidth parameter

was set empirically to γ = 0.0001.

Using Φ ∈ Rq×n to denote the matrix of mapped training fiber trajectories, the kernel matrix

of pairwise similarities then corresponds to K = Φ�Φ. Using the idea proposed in (Nguyen

et al., 2012), we express the dictionary as a non-negative linear combination of training exam-

ples, i.e., D ∼ ΦA, and formulate the dictionary learning task as the following optimization

problem:

argmin
A,W ≥ 0

1

2
‖Φ−ΦAW ‖2F s.t. ‖wi‖0 ≤ Smax, i = 1, . . . , n, (3.1)
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where ‖wi‖0 is the L0 norm (i.e., number of non-zero elements) of wi, constraining each fiber

trajectory to be encoded using at most Smax prototypes, A ∈ Rn×m is the dictionary coefficient

matrix, and W ∈ Rm×n is the sparse code matrix for all fiber trajectories. When Smax = 1,

this formulation corresponds to the kernel K-means problem (Dhillon et al., 2004). As shown

in Section 3.5.1.4, expressing fiber trajectories using more than one prototype (i.e., Smax > 1)

provides a better representation of complex bundles, leading to a more discriminative finger-

print.

This problem is solved using the method described in (Kumar et al., 2015), which updates the

sparse codes W and dictionary matrix A iteratively, until convergence. In the sparse coding

step, each column of W is updated independently by optimizing the following sub-problem:

argmin
wi ≥ 0

1

2
wi

�A�KAwi − k�
i Awi s.t. ‖wi‖0 ≤ Smax, (3.2)

where ki ∈ Rn is the vector containing the similarities between fiber trajectory i and all training

fiber trajectories. This problem is solved heuristically using a non-negative kernel Orthogonal

Matching Pursuit (NKOMP) algorithm (Kumar et al., 2015). The dictionary matrix A is then

obtained using a kernel version of the non-negative matrix tri-factorization approach proposed

in (Ding et al., 2006), which applies the following update scheme until convergence:

Aij ← Aij ·
(
KW�)

ij(
KAWW�)

ij

, ∀ i, j. (3.3)

Due to machine precision, the above update scheme produces small positive values instead of

zero entries. To resolve this problem, a small threshold is applied on A.

Since the kernel contains the similarities between each pair of fiber trajectories (50 000 × 10

fiber trajectories, squared), computing it directly is impracticable. Instead, we start with 5 000

fiber trajectories sampled uniformly from each subject, and approximate the resulting kernel

matrix (50 000×50 000) using Nystrom’s method (Fowlkes et al., 2004; O’Donnell and Westin,
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2007a). This method starts with defining a subset of fiber trajectories and computing the pair-

wise similarities between each training fiber trajectory and this sampled subset. The missing

entries in kernel matrix K are then estimated using a low-rank approximation process based

on SVD. Using this technique, the entire dictionary learning process takes about 1 000 seconds

on a quad-core 3.6 GHz computer with 32 GB of RAM.

Figure 3.2 Dictionary visualization. Visualization of m = 50 fiber trajectory prototypes

learned from 10 subjects, with an unique color assigned to each dictionary prototype. For

this simplified visualization each fiber trajectory is assigned to a single prototype by

taking the maximum for each row of the matrix A. (superior axial, left sagittal, and

anterior coronal views respectively)

Figure 3.2 gives a qualitative visualization of m = 50 fiber trajectory prototypes learned in the

dictionary (the impact of parameter m is analyzed in Section 3.5.1.2), each one correspond-

ing to a different color. To generate this figure, we convert the soft assignment defined in A

to a hard clustering, by assigning each fiber trajectory i to the prototype j for which aij is

maximum2. We see that the fiber trajectory clusters defined by the dictionary are reasonably

consistent with prominent neuroanatomical bundles, such as the corpus callosum, cingulum,

corticospinal tract and superior cerebellar penduncle. Note, however, that a one-to-one rela-

tionship does not always hold between these prototypes and neuroanatomical bundles: complex

bundles may be represented using multiple prototypes. Nonetheless, to simplify the presenta-

2A separate visualization of each fiber trajectory cluster can be found in the supplementary material.
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tion, we use the term bundle dictionary when referring to the output of the dictionary learning

step.

3.4.3 Generating the subject fingerprints

The generation of a fingerprint from the fiber trajectory data of a new subject is composed of

two steps: sparse coding of fiber trajectories and sparse code pooling.

Sparse coding of fiber trajectories

In the first step, the learned dictionary is used to map the fiber trajectories of a given subject to

a common feature space defined by the dictionary’s bundles. This encoding process consists of

solving the sparse coding problem of Eq. (3.2), which has been used for dictionary learning.

Since each fiber trajectory is represented using at most Smax coefficients, this re-encoding of a

subject’s fiber trajectory data is very compact.

The fiber trajectory sparse codes of four different subjects, obtained using the dictionary of

Figure 3.2, are illustrated in Figure 3.3. We represent bundles using the same colors as in

Figure 3.2, and assign each fiber trajectory i to the bundle for which wji is maximum, where

W is the sparse code matrix of a given subject. This hard assignment of fiber trajectories

to dictionary bundles corresponds to the fiber trajectory segmentation approach presented in

(Kumar and Desrosiers, 2016). The strength of the relationship between fiber trajectories and

individual bundles can also be visualized by considering the values in each row of W . In Figure

3.4, the sparse code values (i.e., rows of W ) corresponding to the left and right corticospinal

bundles are color coded such that fiber trajectories having a high membership to a bundle are

red and those having a low membership are green (fiber trajectories with zero membership are

not shown). These figures highlight the implicit correspondence of bundles across subjects,

as well as the variability in the fiber trajectory geometry of bundles, observed for different

subjects.
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Subject 1 Subject 2 Subject 3 Subject 4

Figure 3.3 Visualization of sparse code representation of fiber trajectories from four

subjects. Each fiber trajectory is assigned to a single bundle by taking the maximum of

the sparse code vector. Bundles are represented using the same colors as in Figure 3.2.

(superior axial (top), left sagittal (middle), and anterior coronal (bottom) views

respectively)

Sparse code pooling

Because subjects may have a different number of fiber trajectories, to allow comparison across

subjects, the sparse codes for fiber trajectories obtained in the previous step must be aggregated

in a fixed-size feature vector. This is achieved using a sparse code pooling function (Yang et al.,

2009) that combines, for each dictionary bundle, the relationship between this bundle and all

fiber trajectories of a subject into a single value. Let W ∈ Rm×n be the sparse code matrix

obtained in the previous step, each column corresponding to a different fiber trajectory of the
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Subject 1 Subject 2 Subject 3 Subject 4

Figure 3.4 Color coded visualization of sparse code memberships of fiber trajectories

for the left (top row) and right (bottom row) corticospinal bundles from four subjects.

Green and red represent, a low and a high membership of a fiber trajectory to a bundle,

respectively. Fiber trajectories with a zero membership to the bundle are removed for a

simplified visualization.

subject to encode. We consider three pooling functions frequently used in the literature, based

on the root mean square (RMS), mean and maximum:

[
fRMS(W )

]
j
=

√√√√ 1

n

n∑
i=1

w2
ji (3.4)

[
fMean(W )

]
j
=

1

n

n∑
i=1

|wji| (3.5)

[
fMax(W )

]
j
= max

{
|wj1|, |wj2|, . . . , |wjn|

}
. (3.6)

where [f(W )]j is the pooled feature corresponding to the j-th dictionary bundle.

Each of these pooling functions encodes a different property of a subject’s fiber trajectory dis-

tribution along the dictionary bundles. Function fmean computes the average sparse code value

of fiber trajectories belonging to a bundle, thus giving an estimate of the bundle’s density. fRMS

is another measure of density, which gives a greater importance to large magnitude values in

W . Finally, fmax selects the maximum sparse code value over all fiber trajectories in relation-
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ship to a given bundle. In practice, this value will be low for dictionary prototypes which are

not useful for encoding a subject’s fiber trajectories.

Figure 3.5 shows a bar plot representation of fingerprints obtained using the three pooling

functions, for four different subjects. We observe small but meaningful differences when com-

paring these fingerprints, supporting the hypothesis that they encode unique characteristics of

fiber trajectory geometry. Moreover, we see that the pooling functions capture different prop-

erties (in particular the max pooling function) and have varying responses across bundles. The

uniqueness of subject fingerprints can be further visualized in Figure 3.6, which color codes

the fiber trajectory bundles of the four subjects based on the magnitude of their corresponding

RMS pooling function values. We observe that the bundles showing the highest response are

consistent across subjects, although the magnitude of these responses differs from one subject

to another.

3.5 Experiments and results

In this section, we test the hypothesis that the proposed subject fingerprint can effectively cap-

ture a particular subject’s white matter fiber geometry. Because there are many parameters and

factors involved in the generation of fingerprints (e.g., pooling function, dictionary size, and

fiber tracking approach), we first perform an analysis to assess the robustness of our fingerprint

to these various parameters and factors. We then validate our main hypothesis using the task of

subject identification and twin identification. Specifically, we try to determine if an individual

can be identified using the proposed fingerprint, and whether this fingerprint can discriminate

between twin and non-twin siblings. In the process, we also analyze important properties of

our fingerprint, such as the number of fiber trajectories, from the whole brain or individual

hemispheres, required to characterize a subject’s fiber trajectory geometry. Finally, we conduct

a significance testing analysis to identify fiber trajectory bundles which show important differ-

ences related to the genetic proximity of siblings (i.e., twins vs non-twins), and subject gender

(i.e., males vs females).
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RMS Mean Max

Figure 3.5 Subject fingerprint visualization. Color coded bar plot representation for four

subjects (rows) and three pooling functions (RMS, Mean, and Max; columns), plotted as a

value per bundle ID.

3.5.1 Impact of method parameters

We first analyze the impact of various parameters on the proposed subject fingerprint’s abil-

ity to discriminate between subjects. The following parameters are considered in our analy-

sis: the pooling function (i.e., RMS, Mean or Max), the dictionary size (i.e., m), the sets of
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Subject 1 Subject 2 Subject 3 Subject 4

Figure 3.6 Subject fingerprint visualization. Color coded bundles from four subjects

representing the magnitude of their corresponding RMS pooling function values. We use

the same color code scheme as in Figure 3.5. (superior axial (top), left sagittal (middle),

and anterior coronal (bottom) views respectively)

dictionary learning subjects, the fiber trajectory representation sparsity (i.e., Smax), the inclu-

sion/exclusion of cerebellar white matter, the fiber tracking parameters, and the number of fiber

trajectories used to generate the fingerprint.

The fingerprint’s discriminability is measured quantitatively as follows. First, the 50 000 fiber

trajectories of each subject (i.e., the 851 subjects not used for training the dictionary) are ran-

domly divided into 5 instances, each one containing 10 000 fiber trajectories. These instances

are then converted to subject fingerprints using the sparse coding and pooling process of Sec-
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tion 3.4.3, giving a total of 851× 5 = 4 255 fingerprints. Each of these fingerprints is a vector

of m features, one for each dictionary bundle. We use the Euclidean distance between two fin-

gerprints to measure their similarity, and evaluate the separability of the proposed approach by

comparing the distribution of distances between same-subject instances and instances obtained

from different subjects. The d-prime sensitivity index (Gale and Perkel, 2010) is used to obtain

a quantitative measure of separability:

d-prime =
μ1 − μ2√

1
2

(
σ2
1 + σ2

2

) , (3.7)

where, μ1, μ2 are the means and σ1, σ2 the standard deviations of the compared distributions.

Higher d-prime values indicate better separability. In this work we report absolute value of

d-prime.

3.5.1.1 Pooling function

The impact of the pooling function on the fingerprint’s ability to distinguish subjects is ana-

lyzed in Figure 3.7. The top row of this figure shows the Euclidean distance between all pairs

of instances from 10 different subjects, where same-subject instances are grouped together.

Except for the Max function, we observe a clear pattern where distances between same-subject

instances (i.e., 5 × 5 diagonal blocks) are smaller compared to distances between different-

subject instances (off diagonal block elements). Pooling functions are further compared in

the middle and bottom rows of the figure, showing the normalized histogram and box plots of

distances between same-subject and different-subject instances, computed for all 851 subjects.

Once again, we notice a clear separation for the RMS and Mean pooling functions (d-prime of

4.261 and 3.440), but not the Max function (d-prime of 1.368). In an unpaired t-test, the means

of same-subject and different-subject distances are significantly different, with p < 0.01.

Overall, this analysis shows that fingerprints obtained using the RMS and Mean pooling func-

tions are significantly more similar for same-subject instances than instances from different
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RMS
(d-prime = 4.261)

Mean
(d-prime = 3.440)

Max
(d-prime = 1.368)

Figure 3.7 Impact of pooling functions. Euclidean distance between fingerprints of 10
subjects with 5 instances each (top). Probability normalized histogram (middle) and box

plot (bottom) for distances between same subject (SS) and different subject (DS)

instances for all 851 subjects. Pooling functions: RMS, Mean, and Max (left to right

columns respectively)

subjects, and that the RMS function slightly outperforms Mean. As mentioned above, both

functions estimate the fiber trajectory density along prominent bundles defined by the dictio-

nary. In contrast, the Max function leads to a poorly discriminative fingerprint. This could be

due to the fact that features corresponding to each bundle are estimated using a single fiber

trajectory with maximum sparse code magnitude, which does not capture the full variability

in bundle geometry across subjects. The RMS pooling function was used for the remaining

experiments of this study.
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3.5.1.2 Dictionary size

The size of the dictionary (i.e., parameter m), which reflects the number of different bundles

that can be captured by the encoding, can also impact the quality of the fingerprint: a small

number of bundles may be insufficient to capture subtle differences between subjects, while

having a large number of bundles can affect the performance of the dictionary learning and

sparse coding steps.

d-prime 

Figure 3.8 Impact of the size of the dictionary and the level of sparsity Smax on subject

fingerprint. Box plot of Euclidean distances between same-subject (red) and

different-subject (blue) instances for seven different dictionary sizes using all 851 subjects

(left); and for varying level of the sparsity parameter Smax using 10 subjects (right).

We tested seven different dictionary sizes, i.e. m = 10, 25, 50, 75, 100, 125, 150, while keeping

the number of fiber trajectories per subject to 50 000. Note that varying m affects the number

of fiber trajectories per bundle, as well as the number of features in subject fingerprints. Figure

3.8 (left) shows the box plot of Euclidean distances between same-subject (red) and different-

subject (blue) instances, for the tested dictionary sizes. We observe that the separation between

same-subject and different-subject distance distributions increases slightly with the number of

bundles, mostly due to a decrease in variance for distances between different-subject instances.

In summary, the separability of our subject fingerprint remains significant for dictionaries sizes
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of m ≥ 50, and using a higher number of bundles may improve the consistency of the finger-

print. A dictionary size of m = 50 was used for the remaining experiments.

3.5.1.3 Independent dictionary sets

Since white matter geometry varies across individuals, changing the subjects used for learning

the dictionary can also impact our fingerprint. To measure this impact, we created 5 different

dictionaries learned from independent sets of 10 subjects, while keeping the sampling strategy

and other parameters to their default values (m = 50). Figure 3.9 (top left) shows the box

plot of Euclidean distances between same-subject and different-subject instances using each of

these dictionaries. We observe no significant difference across dictionaries, demonstrating the

robustness of our fingerprint to the choice of dictionary subjects.

3.5.1.4 Encoding sparsity

In the fiber trajectory encoding process, parameter Smax controls the level of sparsity, i.e.,

the maximum number of dictionary prototypes used to encode a given fiber trajectory. This

parameter can also be interpreted as the maximum number of bundles to which a fiber trajectory

can be assigned, thereby providing a soft fiber-to-bundle assignment for Smax > 1.

To evaluate the impact of sparsity, we varied parameter Smax from 1 to 6, both for learning the

dictionary and encoding new fiber trajectory data. Figure 3.8 (right) shows the box plots of

distances between same-subject and different-subject instances, obtained from 10 subjects. We

observe that the separability increases with Smax and saturates around Smax = 4 (Box plots for

m = 100 can be found in the supplementary materials). These results indicate that having a

soft fiber-to-bundle assignment is necessary to capture the complex topology of bundles, which

may cross or overlap one another. Since a maximum d-prime value was obtained for Smax = 4,

this sparsity level was kept for the following experiments.
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3.5.1.5 Fiber tracking parameters

We analyzed the robustness of the proposed method to various fiber tracking parameters, for a

given QSDR based signal reconstruction (in MNI space) and a fixed dictionary. For this pur-

pose, we generated fingerprints based on the fiber trajectories of 10 subjects, obtained by vary-

ing the following parameters: the number of output fiber trajectories (from 30 000 to 150 000),

the deterministic fiber tracking approach (Runge-Kutta – RK4 or Euler (Basser et al., 2000; Yeh

et al., 2013)), the turning angle threshold (from 15 to 75 degrees), and the minimum length of

fibers (from 20 to 250 mm). A single parameter was varied at a time, all other ones set to the

value used in the previous experiments.

Figure 3.9 summarizes the results of this analysis, leading us to the following observations.

First, we notice that the separation between same-subject (red) and different-subject (blue)

instances remains similar for numbers of output fiber trajectories of 30 000 or more. Moreover,

the separability of our fingerprint is nearly the same for both the RK4 and Euler fiber tracking

approaches. For the turning angle threshold, the separation between the medians of the two

distributions decreases as we increase the threshold’s value. Increasing this threshold may lead

to the generation of fibers with large curvature or very small length, which are significantly

different from other fibers in the same bundle. Encoding these fibers can therefore add noise to

the sparse code representation of subjects, resulting in a reduced separability.

Results also show a higher separation for larger values of minimum fiber trajectory length. As

highlighted in several fiber-related studies (Garyfallidis et al., 2012; O’Donnell et al., 2017),

fiber trajectories below 40 mm in length represent short-range connections, having lower clin-

ical relevance (e.g., surgical planning). In applications like automated fiber grouping, such

fiber trajectories may pose a considerable challenge (Garyfallidis et al., 2012). For long fiber

trajectories (i.e., 80 mm to 250 mm), we observe a similar trend where the distance between

distribution medians increases with minimum fiber length. However, the separation in terms

of d-prime does not increase monotonically due to a higher variance in different-subject dis-
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Figure 3.9 Impact of independent dictionary sets and fiber tracking parameters on

subject fingerprints. Box plots of Euclidean distances between same-subject (red) and

different-subject (blue) instances using 10 subjects for: independent sets of dictionaries;

the number of output fiber trajectories; the fiber tracking approach; the turning angle

threshold; and the minimum length of fiber trajectories. (d-prime values are reported

along the right axis of each plot)

tances. Note that this phenomenon could also be explained by the fact that the dictionary used

in this experiment was generated with a minimum fiber length of 40 mm. Overall, we observe

that the fingerprints are quite separable across a large range of variations in these parameters.
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3.5.1.6 Inclusion of cerebellum

The inclusion of fiber trajectories from cerebellar white matter could also impact the proposed

fingerprint, due to the variability in cerebellum slice coverage across subjects. Figure 3.10

gives the normalized histograms and box plots of distances between same-subject and different-

subject instances of all 851 subjects, obtained with and without considering the cerebellum.

Fingerprints without cerebellum were obtained from the full fingerprints by removing the fea-

tures corresponding to fiber trajectory bundles in the cerebellum. These bundles were deter-

mined by visual inspection of bundles in the dictionary. These results show a small decrease in

separability when excluding cerebellum fiber trajectories (d-prime from 4.347 to 3.995), which

could be due to the reduction in the number of bundles from 50 to 44, and also the reduction in

total number of fiber trajectories contributing to the fingerprint. Nevertheless, the fingerprints

generated without information from the cerebellum still exhibits significant differences across

subjects.

3.5.1.7 Number of fingerprint fiber trajectories

Since the fingerprint (with RMS or Mean pooling) estimates the fiber trajectory density along

specific bundles, another relevant question is the impact of the number of fiber trajectories n

used to generate the fingerprint. If this number is low, relative to the number of bundles, it may

not be possible to get an accurate measure of fiber trajectory density. To determine how this

parameter affects the fingerprint’s separability, we generated fingerprints for all 851 subjects

using sub-samples of the subject’s fiber trajectories. For every subject, five instances were

created for fiber trajectory sub-sample sizes ranging from n = 100 to 10 000.

Figure 3.11 (left) gives the box plot of distances between same-subject and different-subject

instances. We observe that the separability (i.e., d-prime) increases steadily with the number of

fiber trajectories n. Moreover, we notice that separability measures increase only slightly after

n = 3000, suggesting this to be the minimum number of fiber trajectories necessary to obtain
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With cerebellum
(d-prime = 4.347)

Without cerebellum
(d-prime = 3.995)

Figure 3.10 Impact of cerebellum exclusion on subject fingerprint. Probability

normalized histogram (top) and box plot (bottom) for Euclidean distances between same

subject (SS) and different subject (DS) instances for all 851 subjects. Note that the

fingerprint without cerebellum is obtained by removing the bundles corresponding to

cerebellum from the full subject fingerprint.

a discriminative fingerprint (for a dictionary size of m = 50). To understand how the number

of fiber trajectories affects the fingerprint, Figure 3.11 (right) shows the RMS pooled features

corresponding to four different bundles of a subject, obtained with varying numbers of fiber

trajectories. We observe that pooled features stabilize for n ≥ 3 000, confirming our previous

hypothesis.
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Figure 3.11 Impact of the number of fiber trajectories used to generate a subject

fingerprint. Box plot for Euclidean distances between same-subject (red) and

different-subject (blue) instances for all 851 subjects (left). Bar plot of RMS pooled

features corresponding to four different bundles of a subject, obtained with varying

numbers of fiber trajectories (right).

3.5.2 Subject identification

The experiments presented in previous sections showed the robustness of the proposed subject

fingerprint to various parameters. In this section, we apply our fingerprint to the task of identi-

fying subjects and pairs of genetically-related subjects (i.e., twins and non-twin siblings). The

objective of this analysis is two-fold: to demonstrate that the fingerprint captures characteris-

tics of white matter geometry which can uniquely identify a subject, and to show that some of

these characteristics are inheritable.

Toward this goal, we use the fingerprints obtained from each of the 4255 instances of fiber

trajectory data (i.e., 851 subjects with 5 instances each), and perform a ranked retrieval analysis

based on the k-nearest neighbors of a fingerprint. Given a subject and a target group (i.e., same

subject, twins or non-twin siblings), we consider each of the subject’s instances individually,

and rank the remaining 4254 instances by their similarity to this subject instance (using the

Euclidean distance between their fingerprints). Denote as T the set of instances in the target

group, and let Sk be the set containing the k most similar instances. We evaluate the retrieval

performance of the fingerprint, for a specific value of k, using the measures of precision and
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recall:

precision@k =
|T ∩ Sk|

k
, recall@k =

|T ∩ Sk|
|T | . (3.8)

We report the mean precision@k and recall@k, computed over all subjects and instances.

3.5.2.1 Same subject identification

Table 3.1 gives the mean precision of the fingerprint for identifying same subject instances,

using a single nearest neighbor (i.e., precision@1). In other words, we measure the frequency

at which the nearest neighbor of an instance belongs to the same subject. Precision values

are reported for a varying number of fiber trajectories used to generate the fingerprints (i.e.,

parameter n), as well as for fingerprints generated with and without cerebellum fiber trajecto-

ries. Furthermore, to evaluate the contribution of fiber trajectories across brain hemispheres,

we also report the precision of fingerprints obtained using only fiber trajectories from the left

hemisphere (17 bundles) or right hemisphere (15 bundles), as well as those obtained using only

inter hemispheric fiber trajectories (12 bundles located mostly in the corpus callosum). Note

that we obtained hemisphere-specific fingerprints from the full brain fingerprint by keeping

only the features corresponding to bundles within these hemispheres. As mentioned earlier,

these bundles were identified by visualization of all dictionary bundles. Finally, to evaluate

the chance factor, we also computed the precision obtained from 1 000 random lists of near-

est neighbors (i.e., the first k entries in a random permutation), using all n = 10 000 fiber

trajectories.

We observe that a mean precision@1 of 100% is achieved, both with and without cerebellum

fiber trajectories, when n = 3 000 or more fiber trajectories are used to generate the finger-

prints. Below this number, the precision decreases monotonically to 1.0% for n = 100. Since

a maximum precision@1 of 0.4% was obtained for the randomly generated lists of k-nearest

neighbors, we conclude that these results are significant. Furthermore, we see that the precision

reduces significantly when considering only fiber trajectories from the left or right hemispheres,

or just inter-hemispheric fiber trajectories. Once again, this could be due to the smaller number
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Table 3.1 Same-subject instance identification. Mean precision@1 (in %) for a varying

number of fiber trajectories using the RMS pooling function and all 851 subjects, in a

nearest neighbor analysis. The second column shows results for fingerprints generated

from the full brain. The third column shows result for without-cerebellum fingerprints.

The right columns evaluate the contribution of fiber trajectories from a specific

hemisphere. Note that the without-cerebellum fingerprints are obtained by removing

cerebellum bundles from the full brain fingerprint, and the hemisphere specific

fingerprints are obtained from the full brain fingerprints by keeping hemisphere-specific

bundles only. Also, the first column indicates the number of fiber trajectories used for

generation of the full brain fingerprint. Maximum precision@1 of 0.4% was obtained for

the randomly generated lists of k-nearest neighbors using the full brain fingerprint.

# Fibers Cerebellum Hemisphere
Yes No Left Right Inter

100 1.4 1.0 0.4 0.4 0.4

500 36.9 21.7 5.1 3.9 3.2

1 000 85.7 68.3 17.4 14.0 10.5

2 000 99.7 97.8 54.0 41.5 27.5

3 000 100.0 99.9 77.6 67.4 46.9

4 000 100.0 100.0 88.6 81.5 61.4

5 000 100.0 100.0 94.7 89.5 73.1

6 000 100.0 100.0 97.7 93.6 81.8

8 000 100.0 100.0 99.3 98.3 91.2

10 000 100.0 100.0 99.8 99.3 95.3

of features in these hemisphere-specific fingerprints, which reduces their ability to differentiate

subjects. Nevertheless, for n = 10 000 full-brain fiber trajectories, fingerprints generated us-

ing only single-hemisphere or inter-hemispheric fiber trajectories achieve a mean precision@1

above 95%, suggesting that characteristics unique to a subject are located in both hemispheres,

as well as in crossing bundles like the corpus callosum. Comparing values across hemispheres,

we notice a higher precision in the left hemisphere (e.g., precision@1 of 77.6 for n = 3000,

versus 67.4 for the right hemisphere). To determine whether handedness could be a factor in

this difference (i.e., 781 of the 851 subjects are right-handed), we repeated this experiment

using 80 left-handed and 80 right-handed subjects. Results obtained with this setup are sim-

ilar to those observed for the entire set of subjects (see Table 1 of Supplementary materials),

indicating that this bilateral asymmetry is independent of subject handedness.
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To analyze the robustness of our fiberprint to alignment and signal reconstruction, we generated

new fingerprints for two subjects using different methods for these pre-processing steps, and

tried to re-identify these two subjects with their original fingerprints. The new fingerprints were

obtained by aligning the diffusion data of the subjects to the HCP 842 template 3 (MNI space,

1mm resolution, similar to the QSDR reconstruction output) using FSL (Jenkinson et al., 2012)

flirt with 12 DOF affine transform (first aligning T1w images, and then applying the affine

transform to diffusion data using the applyxfm4D option). We then performed DTI signal

reconstruction followed by RK4 streamline tracking (FA threshold 0.2, other parameters are

kept the same). Five fingerprint instances were generated for each subject, each one obtained

by randomly subsampling 5 000 fiber trajectories (see Section 3.4.3 for details). Note that the

same dictionary as in previous experiments was employed for obtaining these fingerprints.

Figure 3.12 (left) compares the two subjects’ tractography output obtained using the differ-

ent alignment and reconstruction approaches. We can observe clear differences in the pro-

duced tractographies, highlighted by the non-overlapping red- and blue-colored fiber trajecto-

ries. Examples of fingerprint instances generated using the two processes are shown in Figure

3.13, the first column corresponding to an instance obtained with QSDR and rigid alignment

(QSDR+rigid), and columns two and three showing two fingerprint instances based on DTI

and affine alignment (DTI+affine). Although small differences are present, we can see that our

fiberprint preserves the location and relative importance of the principal fingerprint values (i.e.,

“peaks”) across the two different alignment and reconstruction approaches. This can be ex-

plained by the fact that the fiberprint models fiber trajectory density along prominent bundles,

which is weakly affected by differences in the local geometry of individual fibers.

These results are substantiated in Figure 3.12 (right), where we report mean recall@k for the

task of identifying the DTI+affine fingerprints using the 851 originally generated QSDR+rigid

fingerprints. The mean recall@k is computed over 10 identification tasks (two subjects with

5 instance each). We observe that a mean recall@k of 100% is achieved within k = 10 near-

3http://dsi-studio.labsolver.org/download-images/hcp-842-template)
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est neighbors, further demonstrating the robustness of our fiberprint to alignment and signal

reconstruction methods.

Subject 1 Subject 2

Figure 3.12 Comparison of QSDR+rigid alignment (blue) and DTI+affine alignment

(red) based tractographies for subject 1 and subject 2 (left). Mean recall@k for

DTI+affine alignment based fiberprint identification using 851 QSDR+rigid alignment

fiberprints (right)

Figure 3.13 Color-coded bar plot representation of a subject’s fiberprint, compared

across the different alignment and signal reconstruction methods. Column 1 is a fiberprint

based on QSDR and rigid alignment (Figure 3.5); columns 2 and 3 show fiberprint

instances obtained with DTI and affine alignment.
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3.5.2.2 Genetically-related subject identification

A similar analysis was performed to identify genetically-related subjects. For this analysis, we

used the Mother ID, Age, Twin stat, and Zygosity fields of the Twin HCP dataset to identify

82 pairs of monozygotic twin (MZ) subjects, 82 pairs of dizygotic twin (DZ) subjects, and

166 pairs of non-twin siblings (NT). For every subject having a MZ, DZ or NT sibling, we

used a single instance, and obtained a measure of recall@k, for k = 1, . . . , 30, by counting

the ratio of MZ, DZ or NT sibling subjects within the list of k-nearest neighbors. As in the

previous experiment, the chance factor was considered by computing the maximum recall@k

value obtained from 1 000 random lists of nearest neighbors.

k
0 10 20 30

m
ea

n 
re

ca
ll@

k

0

0.2

0.4

0.6

0.8

1
MZ
DZ
NT
rnd MZ
rnd DZ
rnd NT

k
0 10 20 30

m
ea

n 
re

ca
ll@

k

0

0.2

0.4

0.6

0.8

1
MZ
DZ
NT
rnd MZ
rnd DZ
rnd NT

Figure 3.14 Genetically-related subject identification. The mean recall@k for MZ-twin

(82-pairs), DZ-twin (82-pairs), Non-Twin siblings (166 pairs) using Fiberprint (left) and

full T1w images rigidly aligned to MNI space as fingerprint (middle). The age difference

impact on Non-Twin sibling identification, with 0 ≤ Δage1 ≤ 3, and 3 < Δage2 ≤ 11, 3
being the median age difference (right). In all plots, the chance factor is measured via a

random list of nearest neighbors (rnd).

Figure 3.14 (left) summarizes the results of this analysis. As expected, higher recall values

are observed for MZ twins compared to DZ twins and non-twin siblings, reflecting the fact

that such subjects have identical genetic material. Moreover, a higher recall is obtained for

DZ twins, in comparison to non-twin siblings. Note that, for MZ, DZ and NT pairs, the recall

values obtained based on fingerprint similarity are significantly higher than those computed

from random lists of nearest neighbors, validating the significance of these results.
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Unlike non-twin siblings, DZ twins have the same age, a confound which might bias our anal-

ysis. To measure the true impact of this factor, we divided pairs of NT siblings in two groups

based on their age difference: 0 ≤ Δage1 ≤ 3 and 3 < Δage2 ≤ 11. Figure 3.14 (right)

gives the recall@k values obtained for these two groups. It can be seen that NT siblings having

greater age differences lead to a slightly higher recall (not statistically significant), and that

recall values in both groups are significantly smaller than those observed for DZ twins, thereby

eliminating age as a possible bias.

To substantiate these observations, Figure 3.15 gives the normalized histogram and box plots

of Euclidean distances between instances belonging to MZ, DZ and NT siblings. We observe

that the mean of distances corresponding to MZ twins is smaller than the mean of DZ twin

distances, which is itself less than the mean distance between NT instances (d-prime values of

0.47, 0.64, and 0.26 for BMZ vs BDZ, BMZ vs BNT, and BDZ vs BNT). Note that these differ-

ences are significant in an unpaired t-test, with p < 0.01. Confidence intervals on the difference

of distribution means are [−0.0190,−0.0158], [−0.0327,−0.0287], and [−0.0154,−0.0113],

for BMZ vs BDZ, BMZ vs BNT, and BDZ vs BNT, respectively. Overall, this analysis shows

that the proposed fingerprint captures genetically-related information on the geometry of white

matter.

3.5.2.3 Comparison with a global fingerprint based on T1-weighted images

To compare our Fiberprint with a standard morphological approach, we used the T1-weighted

images (rigidly aligned to MNI space) of subjects as fingerprint and computed nearest neigh-

bors based on the sum of squared differences (SSD) between aligned images. Figure 3.14

(middle) shows the mean recall@k, for k = 1, . . . , 30, obtained by this fingerprint for identi-

fying MZ, DZ and NT siblings.

We observe higher recall values for the fingerprint using T1-weighted images, compared to our

Fiberprint, the most substantial differences obtained for monozygotic twins. This confirms that

global brain geometry, as captured by T1-weighted images, is related to genetic proximity and



105

Figure 3.15 Differences between fingerprints of genetically-related subjects. Probability

normalized histogram and box plot of Euclidean distances between instances belonging to

MZ, DZ, and Non-Twin siblings

can be used for identifying siblings. However, the fingerprint based on T1-weighted images

is much larger than the proposed Fiberprint (157 × 189 × 136 = 4, 035, 528 features versus

m = 50 features for our Fiberprint), and contains a lot of information unrelated to connectivity

(e.g., skull, non-white matter brain regions, etc.). In contrast, the proposed Fiberprint is highly

compact and thus suitable for large-scale datasets. Moreover, it can be employed to compare

subjects specifically on the level of structural connectivity, rather than global geometry.

To further assess the informativeness of our fiberprint compared to a fingerprint based on

whole T1-weighted images, we computed the number of distinct and common sibling pairs

(MZ/DZ/NT) identified by these two fingerprints. Toward this goal, we used the same lists of

nearest neighbors as in Figure 3.14 and considered the identification of a sibling as successful

if this sibling’s fingerprint is found within the k = 30 nearest neighbors.

Table 3.2 reports the proportion of subjects for each category (mean over 5 fiberprint instances).

It can be seen that the proposed fiberprint provides information complementary to the finger-

print based on raw T1 intensities, finding around 15% of siblings not identified by this finger-

print. Conversely, about 20% of siblings are identified only by the whole-image fingerprint. In
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summary, both fingerprints capture unique information of the similarity of genetically-related

subjects.

Table 3.2 Informativeness of our fiberprint compared to a fingerprint based on whole

T1-weighted images for identifying genetically-related subjects. Column 1 gives the

proportion of twins/siblings identified by both fingerprints, Column 2 and 3 the

proportion of twins/siblings identified by only one fingerprint, and column 4 the

proportion of twins/siblings not identified by any of the fingerprints. A sibling is

considered as identified if his/her fingerprint is within the list of k = 30 nearest

neighbors. Number of identification tasks: 164-MZ, 164-DZ, and 215-NT. We report

mean over 5 fiberprint instances.

Sibling Both T1w Fiberprint None
MZ 50.12% 22.44% 15.37% 12.07%
DZ 18.17% 19.02% 15.24% 47.56%
NT 11.35% 19.81% 14.51% 54.33%

3.5.3 Bundle-wise significance analysis

As mentioned before, the proposed fingerprint encodes fiber trajectory geometry along bundles

defined by the dictionary. In this section, we evaluate the significance of individual bundles by

comparing the distribution of fingerprint features in instances corresponding to different subject

groups (e.g., DZ twins vs non-twin siblings, male vs female, etc.).

This bundle-wise analysis of significance uses the distributions of fingerprint features corre-

sponding to specific bundles, in instances belonging to two different subject groups. For each

of the 50 dictionary bundles, we obtain a p-value using a Wilcoxon rank-sum test4, represent-

ing the confidence at which we can reject the hypothesis that the two distributions are equal.

To account for multiple comparisons, we correct these p-values using the Holm-Bonferroni

method (Holm, 1979) and consider as significant the bundles with corrected p < 0.05.

4Results obtained using an unpaired t-test can be found in the supplementary materials.
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3.5.3.1 Differences across genetically-related subjects

We first identify the bundles which show a statistically significant difference across two groups

of genetically-related subjects. As in the subject identification experiment, we compute the

pairwise distances between instances corresponding to MZ twins, DZ twins and non-twin sib-

lings, considering each fingerprint feature (i.e., bundle) individually. The significance of a

bundle is measured based on the null hypothesis that the distances in two groups are equally

distributed.

Figure 3.16 shows the Holm-Bonferroni corrected p-values (in -log10 scale) of each bundle,

for MZ twins compared to non-twin siblings. The results identify three separate bundles with

significant differences (-log10(p-value) > 1.3) corresponding to the corticospinal bundles, with

fiber trajectories in the parietal lobe and dorsal regions of the brain. Furthermore, bundle-wise

differences between DZ and NT siblings, occurring mainly in frontal cortex areas, can also be

seen in Figure 3.17.

3.5.3.2 Differences related to gender

A similar analysis was conducted to find bundles showing statistically significant differences

between male and female subjects. For this analysis, we used the data from 332 males (age:

28.05 ± 3.65) and 436 females (age: 29.33 ± 3.55), all of them right-handed. While the anal-

ysis on genetically-related subjects compared distance distributions, in this case, we compared

features directly. That is, for each bundle, we computed the distribution of feature values cor-

responding to this bundle, and compared the distributions obtained in instances of male and

female subjects.

Figure 3.18 reports the corrected p-values (in -log10 scale) obtained for each bundle. We can

see several significant bundles (14 in total), with corrected p < 0.05, with the most promi-

nent differences occurring in the frontal cortex. Specifically, significant bundles include fiber

trajectories in the pre-frontal area, and around the precuneus.
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Figure 3.16 MZ vs NT. Differences between MZ-twin and Non-Twin siblings. Color

coded bundle visualization for Holm-Bonferroni corrected p-values (in -log10 scale)

obtained using a Wilcoxon rank-sum test. (superior axial, anterior coronal, and left

sagittal views (top row); inferior axial, posterior coronal, and right sagittal views (bottom

row);)

3.6 Discussion

We now summarize and discuss the findings related to our parameter study, subject identi-

fication experiments, and bundle-wise significance tests. We then highlight limitations and

additional considerations of this study.

3.6.1 Findings related to the parameter study

An extensive set of experiments was conducted to determine the impact of various parameters

on the fingerprint’s ability to uniquely characterize a subject. These experiments showed that

pooling functions estimating the fiber trajectory density along dictionary bundles, such as the
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Figure 3.17 DZ vs NT. Differences between DZ-twin and Non-Twin siblings. Color

coded bundle visualization for Holm-Bonferroni corrected p-values (in -log10 scale)

obtained using a Wilcoxon rank-sum test. (superior axial, anterior coronal, and left

sagittal views (top row); inferior axial, posterior coronal, and right sagittal views (bottom

row);)

RMS and Mean functions, provided fingerprints that were significantly more similar for same-

subject instances than those from different subjects. Moreover, fingerprints obtained using

RMS pooling were found to give significant separability for dictionaries containing 50 bundles

or more, a number consistent with previous studies on the topic of fiber trajectory clustering

and segmentation (Guevara et al., 2012; O’Donnell and Westin, 2007a). Our experiments have

also shown the advantage of using a soft assignment of fiber trajectories to bundles, via our

non-negative sparse coding framework, which offers a more precise description of complex

bundles that may overlap and cross each other. Specifically, we observed that fiber trajectories

can be encoded as a sparse combination of Smax = 4 bundle prototypes. This sparsity level
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Figure 3.18 Male vs Female. Differences related to gender. Color coded bundle

visualization for Holm-Bonferroni corrected p-values (in -log10 scale) obtained using a

Wilcoxon rank-sum test. (superior axial, anterior coronal, and left sagittal views (top

row); inferior axial, posterior coronal, and right sagittal views (bottom row);) Note: for

visualization purposes, fibers in non-signifcant bundles are not shown.

was also found to be optimal in our previous work on fiber trajectory segmentation (Kumar and

Desrosiers, 2016).

We evaluated the robustness of the proposed method by varying the fiber tracking parameters.

Our method provides separability for 30 000 or more output fiber trajectories, both using the

RK4 and Euler fiber tracking approaches. The tracking parameters having the highest impact

are the turning angle threshold and minimum fiber trajectory length, although significant sep-

arability was achieved for all tested values of these parameters. In another experiment, we

found that excluding cerebellum fiber trajectories resulted in a small decrease in separabil-

ity. However, the fingerprint without information from the cerebellum still exhibit significant

differences across subjects.
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Varying the number of fiber trajectories used for fingerprint generation, we observed that our

fingerprint could uniquely identify a subject with only 3 000 fiber trajectories uniformly sam-

pled over the whole brain. Moreover, we found that fiber trajectories from both hemispheres

and inter-hemispheric fiber trajectories contributed in a synergic manner to characterize a sub-

ject, the highest separability obtained using left-hemisphere fiber trajectories. This suggests

that unique characteristics of a subject, in terms of fiber trajectory distribution, are present

in the entire brain. Overall, the small variations found in individual bundles, across subjects,

suggest a common blueprint of connectivity, but also an overall pattern that is unique to each

individual. This is consistent with previous work in the literature, showing that each individual

is unique in terms of brain structure (Mangin et al., 2004), function (Barch et al., 2013; Mueller

et al., 2013), and white matter micro-structure (Bürgel et al., 2006; de Schotten et al., 2011).

3.6.2 Findings related to subject identification tests

Our experiments on subject identification have also lead to useful observations. Using fin-

gerprint similarity to define the k-nearest neighbors of a subject instance, we obtained results

consistent with previous work from the literature, showing that MZ twins are significantly more

similar at the fingerprint level than DZ twins, and DZ twins more similar than non-twin sib-

lings (Kochunov et al., 2015). Results also showed a greater similarity between DZ twins than

between non-twin siblings, although both types of siblings have the same amount of shared

genetic information. A deeper analysis revealed that the higher similarity of DZ twins was

not fully explained by age difference. While studies have shown the impact of various en-

vironmental factors on white matter development (Chiang et al., 2011), in particular during

adolescence, the link between the fetal environment and brain development remains largely

unknown. Further investigation is required to determine whether prenatal development fac-

tors, like the mother’s nutrition and stress levels during pregnancy, could play a role in our

observations.
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There are many factors to be considered while interpreting these results, for example, envi-

ronmental factors, gender differences, aging effects, limitations of fiber tracking processes,

non-rigid alignment process, etc. Note the twin zygosity labels used in this analysis were self

reported (HCP Q3 release). The impact of aging was addressed indirectly by the HCP dataset

recruitment policies, which limited the allowed age of subjects to the 22-35 years range, cor-

responding to a plateau in the FA-aging curve (Kochunov et al., 2011, 2015; Van Essen et al.,

2012). We also considered the effect of aging for identifying twins and non-twin siblings by

dividing pairs of non-twin siblings into two groups, using the median age difference as the sep-

aration threshold. No significant difference was observed across age groups, for age differences

up to 11 years.

3.6.3 Findings related to bundle significance tests

Our bundle-wise fingerprint analysis revealed several bundles showing significant differences,

when comparing groups of genetically-related subjects, or different sex subjects. For the com-

parison between MZ twins and Non-Twin siblings, we find three significant bundles (p < 0.05

after Holm-Bonferroni correction), corresponding roughly to the corticospinal bundles. The

differences between DZ twins and Non-Twin siblings were most prominent in the frontal cor-

tex, suggesting that variations between individuals sharing the same amount of genetic material

are linked to higher processing areas. Although a direct comparison is not feasible, these results

are consistent with white matter regions in a recent heritability study, based on the voxel-wise

analysis of fractional anisotropy (FA) (Kochunov et al., 2015).

Moreover, gender-related differences were found to be significant in 14 different bundles, con-

nected mostly to the pre-frontal cortex and precuneus. Again, several of these bundles corre-

spond to regions shown to have significant gender-related effects on FA, in studies using tract

based spatial statistics (TBSS) (Chou et al., 2011; Gong et al., 2011) or structural network

analysis (Yan et al., 2011).
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3.6.4 Informativeness of fiberprint compared to fingerprints based on whole T1-weighted

images

Comparing the proposed fiberprint with a brain fingerprint generated from intensities in aligned

T1w volumes, the two fingerprints yield a similar performance (measured in terms of recall@k)

for the task of identifying genetically-related subjects. However, analyzing the list of sibling

pairs (MZ/DZ/NT) identified by these two fingerprints indicates that each one provides com-

plimentary information, with 15% to 20% of sibling pairs identified by only one of these fin-

gerprints.

Although using raw intensities as fingerprint also allows to capture both local and global dif-

ferences in structural or diffusion geometry, the proposed fiberprint provides a more compact

and high-level representation of white-matter connectivity. Thus, our fiberprint can effectively

encode this information in a vector of about m = 50 features, compared to 157×189×136 fea-

tures for T1-weighted volumes. This makes our framework particularly attractive for handling

large datasets. Moreover, direct voxelwise comparison of diffusion data (e.g., FA maps) could

also be challenging, since high-contrast edges in such volumes make them more susceptible to

small registration errors and to the variability of local tract geometry (Colby et al., 2012). In

contrast, our experiments have shown the proposed fiberprint to be robust to differences in the

alignment and signal reconstruction process. Lastly, unlike voxelwise fingerprints, our frame-

work allows comparing subjects on the level of structural connectivity (i.e., fiber bundles),

rather than unspecified global structure.

3.6.5 Additional considerations

In this study, we analyzed the impact of various factors on our fingerprint’s ability to describe

unique characteristics of subjects. However, additional factors could be considered in our anal-

ysis. For instance, other distances metrics can be used to measure the similarity between fiber

trajectories, such as the Mean of Closest Points (MCP) or the Hausdorff distance. The flexibil-
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ity of the proposed framework allows its potential extension to various computational models

or representations for fiber trajectories, for which a similarity measure can be computed. These

measures could help capture additional information on fiber trajectories (e.g., along-tract dif-

fusion signal), which may be not possible to encode with a geometric representation, leading

to a more discriminative fingerprint.

Partial volume effects and other tractography-related effects, such as fiber tracking or registra-

tion errors, could also impact our fingerprint. Moreover, as highlighted in (Jones et al., 2013),

caution must be used to when interpreting results obtained from diffusion MRI. For instance,

since there is no gold standard for calibrating DWI measures, the reliability of tractography

outputs cannot be evaluated. However, these factors are in part minimized by the large number

of subjects used in our study (i.e., 851 subjects), the pre-processing done by the HCP pipeline

and the QSDR signal reconstruction approach.

In our experiments, we have created multiple instances of the same subject using fiber trajec-

tories derived from a single scan. Another aspect could be to test same subject identification

using repeat scans of the same subject, as done in (Yeh et al., 2016b) for the study of white

matter structure. Since we use the same reconstruction approach and toolbox (DSI studio), the

results after fiber tracking should extend to repeat scan data. Moreover, because our experi-

ments have demonstrated that fingerprints generated from the scans of identical siblings are

more similar than those from other sibling types, we expect repeat scans of the same subject to

have highly similar fingerprints.

Although aging effects were considered in our analysis of bundle-wise significance, a deeper

study is needed to fully understand the impact of neuroplasticity on fingerprints. This could

also be achieved using longitudinal data, by measuring how a subject’s fingerprint changes over

time. Our bundle-wise significance analysis could also be extended to find differences related

to additional phenotypic variables, such as cognitive score.
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3.7 Conclusion

We presented a new subject fingerprint, called Fiberprint, which uses sparse code pooling to

characterize the unique properties of subjects at the level of fiber trajectories. The proposed

fingerprint measures the fiber trajectory density along specific bundles, which are defined using

dictionary learning. Experiments using the dMRI data of 861 subjects from the HCP dataset

were conducted to evaluate the impact of our method’s parameters, to demonstrate that the

proposed fingerprint can be used to identify subjects, pairs of twins, or non-twin siblings, and

to find bundles showing significant differences across various subject groups.

Our results show that a fingerprint capable of uniquely identifying subjects can be obtained

using only 3 000 fiber trajectories sampled across the brain. Moreover, such a fingerprint is

robust to parameters related to fiber tracking, dictionary learning and sparse code pooling. Ex-

periments on the identification of genetically-related subjects demonstrate that the proposed

fingerprint can correctly retrieve instances belonging to a given subject. Our experiments also

suggest that subjects sharing the same genetic information (i.e., monozygotic twins) have more

similar fingerprints than siblings sharing half of their genetic material (i.e., dizygotic twins and

non-twin siblings). Furthermore, our bundle-wise analysis of significance showed that corti-

cospinal bundles had significantly different fingerprint features when comparing monozygotic

twins with non-twin siblings, and that differences between dizygotic twins and non-twin sib-

lings were most prominent in the pre-frontal cortex. A similar comparison across male and

females subjects identified 14 significant bundles, most of them connected to the pre-frontal

cortex and precuneus. Several of these results are consistent with recent heritability studies

based on the voxel-wise analysis of FA.

This work could be extended by evaluating the impact of additional factors related to the track-

ing and encoding of fiber trajectories. Likewise, a deeper analysis of aging effects could help

better understanding the effect of neuroplasticity on individual characteristics of white matter

fiber geometry.
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3.8 Supplement results

3.8.1 Dictionary bundle visualization

We observed bundles from the dictionary, and assigned the hemisphere label to a bundle based

on where majority of fiber trajectories lie. We had 6 bundles in the cerebellum (Figure 3.22),

12 inter-hemispheric bundles (Figure 3.19), 17 bundles in the left hemisphere (Figure 3.20),

and 15 bundles in the right hemisphere (Figure 3.21).

Bundle 2 Bundle 6 Bundle 8 Bundle 9

Bundle 15 Bundle 17 Bundle 39 Bundle 46

Bundle 18 Bundle 28 Bundle 34 Bundle 45

Figure 3.19 Inter-hemispheric dictionary bundles with respective bundle IDs. (Top two

rows show superior axial view, bottom row shows inferior axial view)
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Bundle 3 Bundle 11 Bundle 13 Bundle 16

Bundle 19 Bundle 20 Bundle 21 Bundle 25

Bundle 27 Bundle 30 Bundle 33 Bundle 35

Bundle 38 Bundle 41 Bundle 44 Bundle 47 Bundle 50

Figure 3.20 Left hemisphere dictionary bundles with respective bundle IDs. (Left

sagittal view)

3.8.2 Comparison of subject fingerprint across instances and Encoding sparsity

Figure 3.23 compares the fingerprints for two independent instances of a given subject. We

observe that the fingerprints are similar across instances for all pooling functions.
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Bundle 1 Bundle 4 Bundle 12 Bundle 14 Bundle 22

Bundle 23 Bundle 24 Bundle 26 Bundle 29 Bundle 31

Bundle 32 Bundle 36 Bundle 37 Bundle 42 Bundle 48

Figure 3.21 Left hemisphere dictionary bundles with respective bundle IDs. (Right

sagittal view)

Figure 3.24 (Right) shows box plot for impact of the level of sparsity Smax on subject fingerprint

for m = 100. We observe trend to be similar to box plots for m = 50, thus, justifying our

choice of Smax parameter for our experiments.

3.8.3 Impact of Handedness on subject identification

Table 3.3 shows mean precision@1 (in %) for a varying number of fiber trajectories using the

RMS pooling function and 80 Left handed and 80 Right handed subjects, in a nearest neighbor

analysis.

3.8.4 Impact of age on twin identification

Figure 3.24 (left) measures the impact of age on MZ-twin identification, where twin pairs were

divided based on the median age. We observe that age does not impact MZ-twin identification,
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Bundle 5 Bundle 10 Bundle 40

Bundle 7 Bundle 49 Bundle 43

Figure 3.22 Cerebellum dictionary bundles with respective bundle IDs. (Left sagittal

view in top row; right sagittal and posterior coronal view in bottom row)

pairs in different age groups having similar mean recall@k values. This is consistent with

HCP study design, which aims to minimize the impact of age by selecting subjects in the

plateau of white matter development. Figure 3.24 (right) gives the results of a similar analysis

of DZ twins. While group mean recall@k plots are significantly higher than random mean

recall@k, differences between the mean recall@k values obtained in the two age groups are

not statistically significant.

3.8.5 Twin fingerprint analysis

Figure 3.25 gives the distributions of Euclidean distances between fingerprint instances of sub-

ject pairs corresponding to MZ, DZ and non-twin siblings. We observe that distances between

instances of MZ twins (BMZ) are smaller than those between instances of DZ twins (BDZ) and

distances between instance of Non-Twin siblings (BNT). This figure also highlights that finger-
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Figure 3.23 Fingerprint comparison across two instances of a subject. Color coded bar

representation of subject fingerprint (subject 1, Instance 1 and 2); with Columns

representing: RMS, Mean, and Max pooling functions respectively

d-prime 

Figure 3.24 Impact of age on MZ/DZ-twin identification; and the level of sparsity Smax

on subject fingerprint for m = 100. (Left) The mean recall@k for MZ-Twin identification

(82 pairs); where, 22 ≤ age1 ≤ 29, and 30 ≤ age2 ≤ 35, 30 is the median age for

MZ-twin pairs. (Middle) The mean recall@k for DZ-Twin identification (82 pairs);

where, 22 ≤ age1 ≤ 29, and 30 ≤ age2 ≤ 35, 29 is the median age for DZ-Twin pairs.

(Right) Impact of the level of sparsity Smax on subject fingerprint for m = 100. Note:

mean recall@k for random lists of nearest-neighbors is identified by rnd.

prints of MZ twins are more similar than those of DZ and non-twin siblings, but same-subject

instances are still more similar to one another. Thus, subject signatures preserve individual

differences, and show an expected trend for MZ, DZ and non-twins siblings.
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Table 3.3 Same-subject instance identification. Mean precision@1 (in %) for a varying

number of fiber trajectories using the RMS pooling function and 80 Left handed and 80
Right handed subjects, in a nearest neighbor analysis. The second column shows results

for fingerprints generated from the full brain. The third column shows result for

without-cerebellum fingerprints. The right columns evaluate the contribution of fiber

trajectories from a specific hemisphere. Note that the without-cerebellum fingerprints are

obtained by removing cerebellum bundles from the full brain fingerprint, and the

hemisphere specific fingerprints are obtained from the full brain fingerprints by keeping

hemisphere-specific bundles only. Also, the first column indicates the number of fiber

trajectories used for generation of the full brain fingerprint. Maximum precision@1 of

0.6% was obtained for the randomly generated lists of k-nearest neighbors using the full

brain fingerprint.

# Fibers Cerebellum Hemisphere
Yes No Left Right Inter

100 6.0 3.4 2.3 1.8 1.9

500 58.3 40.3 12.3 13.8 9.3

1 000 94.3 85.0 33.8 30.0 23.8

2 000 99.6 98.9 74.4 65.4 47.0

3 000 100.0 99.9 92.0 86.9 69.0

4 000 100.0 100.0 96.9 93.8 78.8

5 000 100.0 100.0 98.6 96.0 87.6

6 000 100.0 100.0 99.4 97.9 92.4

8 000 100.0 100.0 99.5 99.5 96.9

10 000 100.0 100.0 99.9 99.9 98.6

3.8.6 Additional Plots on bundle significance tests

Figures 3.26, 3.27 and 3.28 show the results of the bundle-wise significance analysis, using

an unpaired t-test. Plots give the color coded Holm-Bonferroni corrected p-values (− log10

scale), corresponding to each dictionary bundle. These results validate those obtained using

the Wilcoxon rank sum tests.
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Figure 3.25 Euclidean distance based differences between fingerprints of

genetically-related subjects w.r.t. same-subject (SS) and different-subject (DS) instances.

Probability normalized histogram and box plots of Euclidean distances for MZ twins (164

subjects), DZ twins (164 subjects), and Non-Twin siblings (215 subjects) using RMS

pooling function

0 0.5 1 1.5 2 2.5

Figure 3.26 MZ vs NT. Differences between MZ-twin and Non-Twin siblings. Color

coded bundle visualization for Holm-Bonferroni corrected p-values (in -log10 scale)

obtained using an unpaired t-test. (superior axial, anterior coronal, and left sagittal views

(top row); inferior axial, posterior coronal, and right sagittal views (bottom row);)
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Figure 3.27 DZ vs NT. Differences between DZ-twin and Non-Twin siblings. Color

coded bundle visualization for Holm-Bonferroni corrected p-values (in -log10 scale)

obtained using an unpaired t-test. (superior axial, anterior coronal, and left sagittal views

(top row); inferior axial, posterior coronal, and right sagittal views (bottom row);)

0 5 10 15 20 25

Figure 3.28 Male vs Female. Differences related to gender. Color coded bundle

visualization for Holm-Bonferroni corrected p-values (in -log10 scale) obtained using an

unpaired t-test. (superior axial, anterior coronal, and left sagittal views (top row); inferior

axial, posterior coronal, and right sagittal views (bottom row); Note: for visualization

purposes, fibers in non-significant bundles are not shown.
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4.1 Abstract

This work presents an efficient framework, based on manifold approximation, for generating

brain fingerprints from multi-modal data. The proposed framework represents images as bags

of local features which are used to build a subject proximity graph. Compact fingerprints are

obtained by projecting this graph in a low-dimensional manifold using spectral embedding. Ex-

periments using the T1/T2-weighted MRI, diffusion MRI, and resting state fMRI data of 945

Human Connectome Project subjects demonstrate the benefit of combining multiple modali-

ties, with multi-modal fingerprints more discriminative than those generated from individual

modalities. Results also highlight the link between fingerprint similarity and genetic proximity,

monozygotic twins having more similar fingerprints than dizygotic or non-twin siblings. This

link is also reflected in the differences of feature correspondences between twin/sibling pairs,

occurring in major brain structures and across hemispheres. The robustness of the proposed

framework to factors like image alignment and scan resolution, as well as the reproducibility
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of results on retest scans, suggest the potential of multi-modal brain fingerprinting for charac-

terizing individuals in a large cohort analysis.

4.2 Introduction

Despite sharing gross similarities, individual brains show a significant amount of variability

(Gordon et al., 2017b) in terms of structure (Mangin et al., 2004), function (Barch et al.,

2013; Gordon et al., 2017a; Mueller et al., 2013), and white matter architecture (Bürgel et al.,

2006; de Schotten et al., 2011). Recently, various studies have focused on characterizing this

variability using brain fingerprints, for instance, based on shape (Wachinger et al., 2015a),

functional connectivity (Finn et al., 2015; Liu et al., 2018), white matter fiber geometry (Kumar

et al., 2017b), or voxel-wise diffusion density (Yeh et al., 2016a). These studies are motivated

by the fact that brain characteristics are largely determined by genetic factors that are often

unique to individuals (Thompson et al., 2013). Moreover, various neurological disorders like

Parkinson (Geevarghese et al., 2015) and autism (Goldman et al., 2013) have been linked to

specific brain abnormalities that are difficult to describe at the population level. With the rapid

improvements in MRI acquisition hardware and analysis tools, and thanks to large brain-related

initiatives like the Human Connectome Project (HCP) (Van Essen et al., 2013) and UK Biobank

(Sudlow et al., 2015), researchers are better poised to study individual subjects in addition to

groups (Dubois and Adolphs, 2016; Gordon et al., 2017c), thus taking a step towards precision

medicine (Hampel et al., 2017) and precision psychiatry (Finn and Constable, 2016).

The importance of brain fingerprinting is evident from the recent surge in studies on this topic.

For example, Yeh et al. (Yeh et al., 2016a) built a local connectome fingerprint using dMRI

data, and applied this fingerprint to the analysis of genetically-related subjects. Kumar et al.

(Kumar et al., 2017b) proposed another dMRI-based fingerprint called Fiberprint, which char-

acterizes white matter fiber geometry. Finn et al. (Finn et al., 2015) considered the correlation

between time courses of atlas-defined nodes to generate a functional connectivity profile, and

used this profile to identify individuals across scan sessions, both for task and rest conditions.
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Liu et al. (Liu et al., 2018) use dynamic brain connectivity patterns for identifying individu-

als and predicting higher cognitive functions. Moreover, Miranda et al. (Miranda-Dominguez

et al., 2014) proposed a linear model to describe the activity of brain regions in resting-state

fMRI as a weighted sum of its functional neighboring regions. Their functional fingerprint, de-

rived from the model’s coefficients, has the ability to predict individuals using a limited number

of non-sequential frames.

Various morphometry-based fingerprints have also been proposed for structural MRI modalities

like T1- or T2-weighted images. For example, Wachinger et al. (Wachinger et al., 2015a) quan-

tify the shape of cortical and subcortical structures via the spectrum of the Laplace-Beltrami

operator. The resulting representation, called Brainprint, is used for subject identification and

analyzing potential genetic influences on brain morphology. Toews et al. (Toews et al., 2010)

represent images as a collection of localized image descriptors, and apply scale-space theory to

analyze their distribution at the characteristic scale of underlying anatomical structures. This

representation is employed to identify distinctive anatomical patterns of genetically-related in-

dividuals or subjects with a known brain disease.

So far, fingerprinting studies in the literature have focused on a single modality. However,

each modality captures unique properties of the brain and combining multiple modalities can

provide a richer, more discriminative information (Calhoun and Sui, 2016; Groves et al., 2012).

Hence, the fusion of multiple modalities has been shown superior than single-modality data to

identify diseases like schizophrenia, bipolar disorder, major depressive disorder and obsessive-

compulsive disorder (Calhoun and Sui, 2016). Multi-modal neuroimaging biomarkers have

also been proposed to predict cognitive deficits in schizophrenia (Sui et al., 2015). Similarly,

the combination of multiple MRI modalities has led to the improved segmentation of isointense

infant brain images (Zhang et al., 2015). Multi-modal imaging data can also be used to predict

the brain-age of subjects and detect cognitive impairments (Liem et al., 2017). Detailed reviews

on multi-modal methods and investigations for psychopathology can be found in (Calhoun and

Sui, 2016; Liu et al., 2015a,b).
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Due to the challenges of combining multiple modalities in a single framework (Calhoun and

Sui, 2016; Liu et al., 2015b), defining a multi-modal brain fingerprinting remains to this day

an elusive task. Morphometry-based approaches, such as Brainprint (Wachinger et al., 2015a),

could potentially be extended to other modalities like dMRI. However, this requires solving

non-trivial problems such as the cross-modality alignment of images with different resolu-

tions, the segmentation and correspondence of neuroanatomical structures, etc. Computational

efficiency is another important issue when dealing with large-scale, multi-subject and multi-

modal datasets like the Human Connectome Project (HCP) (Van Essen et al., 2013) and UK

Biobank (Sudlow et al., 2015). In this work, we propose a multi-modal brain fingerprinting

that overcomes these challenges using manifold approximation. The key idea is to represent

each image as a bag of local features, and derive a subject-level proximity graph using feature

correspondences over the entire set of images (Toews et al., 2010). This subject proximity

graph provides an approximation of the image appearance subspace (i.e., the manifold), which

can be used to obtain a compact fingerprint representation.

Manifold learning has been extensively studied in machine learning (Bengio et al., 2013) with

many approaches like Isomap (Tenenbaum et al., 2000), Locally Linear Embedding (LLE)

(Roweis and Saul, 2000) and Spectral Embedding (Belkin and Niyogi, 2003)proposed over the

years. As detailed in (Aljabar et al., 2012), such techniques have also been used for various

problems of medical imaging like registration, segmentation, and classification. For example,

in (Gerber et al., 2010), Gerber et al. use manifold learning to perform a population analysis

of brain images. Similarly, a deep learning based approach is explored in (Brosch et al., 2013)

to learn the manifold of brain MRIs. A key factor in such methods is image representation.

For instance, the manifold could be approximated using the Euclidean distance between image

pairs, however this would not be robust to translation, rotation or scaling, and would suffer

from high computational costs.

Representations based on local features, often referred to as bag of features (BoF), offer an

efficient alternative for encoding and matching image structures without the stringent require-
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ment of one-to-one correspondence (Lowe, 2004; Tsai, 2012). In brain imaging, BoFs have

been shown to automatically identify known structural differences between healthy controls

and Alzheimer’s subjects in a fully data-driven fashion (Toews et al., 2010). They have also

been used successfully to model the development of infant brains (Toews et al., 2012) and align

images of different modalities (Toews and Wells, 2013). Despite their numerous advantages,

BoFs have thus far not been explored for brain fingerprinting. This is mainly due to their large

and variable size, which makes comparing two fingerprints non-trivial.

The key contributions of this work are as follows:

• Novel framework: We propose a data-driven approach based on BoFs and manifold

approximation that combines the information from multiple imaging modalities into a

common fingerprint. By embedding BoFs in a low-dimensional manifold, the proposed

approach circumvents the problem of variable representation size, and provides a com-

pact description of brain structure that enables efficient comparisons across subjects.

Furthermore, we show how this manifold-based approach can be used to encode non-

structural brain characteristics, for instance, modeling functional connectivity profiles

from fMRI. To our knowledge, this is the first work to combine structural, diffusion, and

functional modalities in a single fingerprint.

• Large-scale analysis: We present a comprehensive analysis of the proposed fingerprint

using a large-scale dataset from the Human Connectome Project (HCP), where numer-

ous properties/factors are investigated: fingerprint parameters (e.g., manifold dimen-

sionality and proximity graph connectivity), contribution of individual modalities and/or

their combination to the fingerprint’s discriminativeness, robustness to image alignment

and scan resolution, and reproducibility of results with re-test or corrupted scans. Us-

ing genetically verified zygosity labels from the HCP twin dataset, we also analyze

the proposed fingerprint’s ability to identify genetically-related subjects (i.e., monozy-

gotic twins, dizygotic twins and non-twin siblings) from a large cohort, and show our
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multi-modal fingerprint to outperform single-modality approaches or fingerprints based

on raw images. In an analysis of local feature correspondences, we identify for indi-

vidual modalities the neuroanatomical regions having the most significant differences

across groups of genetically-related subjects, between males and females, and across

brain hemispheres.

This study extends our preliminary work in (Toews and Wells, 2016; Kumar et al., 2017a),

where BoF representations were used to identify and compare subjects in a population. Here,

we show how these variable-length representations can be converted to fixed-sized fingerprints

via manifold embedding, and present an out-of-sample strategy to generate fingerprints for

new subjects. While our previous work only considered structural and diffusion MRI data,

the current study also investigates the benefit of including fMRI-based information, as well as

different combinations of sMRI, dMRI, and fMRI data. Additionally, it offers a much deeper

analysis where the impact of multiple factors like the inclusion of skull tissue, image alignment

and scan resolution are evaluated. The present study also complements the recent work of Col-

clough et al. (Colclough et al., 2017), which analyzes the heritability of functional connectivity

profiles from multi-modal data (i.e., fMRI and MEG) using the HCP twin dataset. Unlike this

recent work, our study analyzes the relationship between genetic proximity and fingerprint

similarity based on a rank retrieval analysis, and shows that a higher retrieval accuracy can be

obtained when combining structural, diffusion, and functional imaging data.

The rest of this paper is organized as follows. We first present the proposed multi-modal brain

fingerprinting framework, detailing the data pre-processing steps, the BoF representation and

proximity graph computation, as well as the manifold embedding of this graph. In Section 4.4,

we then conduct an extensive experimental validation using the T1-weighted, T2-weighted,

diffusion-weighted MRI, and resting state fMRI data of 945 subjects from the HCP dataset.

Finally, we conclude with a summary of our contributions and a discussion of possible exten-

sions.
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4.3 Materials and methods

1. Input 
image 

2. BoF 
representation 

3. Manifold 
approximation 

Single vs 
Multi-modal 
fingerprint 

T1w 

FA Bag of Features FA Feature Match 
FA: MZ FA subject proximity graph 

T1w+FA subject proximity graph 

T1w subject proximity graph 

Feature Match 
FA: FS 

Feature Match 
T1w: FS 

Feature Match 
T1w: MZ Bag of Features T1w 

4. Fingerprint 
Analysis 

 Twin/sibling 
Identification 

Figure 4.1 Pipeline of the proposed framework and analysis. For a given input image, a

BoF representation is first obtained by extracting local features. This representation is

then converted to a fingerprint by matching features across the entire set of images, and

embedding the resulting proximity graph into the manifold. The manifold approximation

block shows the 2D embedding coordinates (i.e., fingerprint) of HCP subjects (red dots)

obtained with T1w (top), FA (bottom) and combined T1w+FA (middle) images. The

fingerprints of a specific subject (blue dot), his/her monozygotic twin (MZ, cyan dot) and

full sibling (FS, green dot) are highlighted in each plot. The pairwise feature matches of

these two sibling pairs, for T1w and FA images, are shown in the corner images of the

block.

Figure 4.1 summarizes the pipeline of the proposed multi-modal brain fingerprint framework,

which is comprised of four steps. In the first step, we start with pre-processed structural MRI

(sMRI) and diffusion MRI (dMRI) data of 945 subjects from the Human Connectome Project

(Van Essen et al., 2012, 2013). Diffusion Tensor Imaging (DTI) and Generalized Q-Ball Imag-

ing (GQI) based Diffusivity measures are obtained from dMRI scans, including: fractional

anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), radial diffusivity (RD) and

generalized fractional anisotropy (GFA). The second step then extracts local features from the

images of each subject, and encodes subjects as a bag of features (BoF). In the third step, the

multi-modal fingerprints of subjects are computed using manifold approximation. Towards



132

this goal, a subject-level proximity graph is first constructed by matching the features of each

modality across images, and identifying pairs of subjects with a high number of correspon-

dences. Fingerprints are then obtained by embedding this graph in a low-dimensional subspace.

In the last step, we perform various analyses on the subject fingerprints. The informativeness

of individual modalities and their link to genetic proximity are first measured in a twin/sibling

identification analysis. This analysis is then extended to multi-modal fingerprints, showing the

combined effect and complementarity of multiple modalities. Resting state fMRI network ma-

trices and FreeSurfer derived measures of volume, thickness, and area provided by HCP are

also used for fingerprint analysis. Finally, the distribution of feature correspondences between

pairs of subjects are used to identify regions showing significant differences across different

sibling types. The following subsections describe each of these steps in greater detail.

4.3.1 Data and pre-processing

We used the pre-processed structural and diffusion MRI data, and the resting state fMRI net-

work matrices of 945 subjects from the HCP1200 release of the Human Connectome Project

(Van Essen et al., 2013). The retest data of 42 subjects from the same dataset were also con-

sidered in our study to evaluate reproducibility. The HCP1200 release provides genetically-

verified labels for twins and siblings, and is a rich resource to analyze the importance of envi-

ronmental and genetic influences for traits, phenotypes, and disorders (Kochunov et al., 2015;

Van Essen et al., 2012). Table 4.1 provides the demographic details of the subjects used in this

study.

Data were acquired on a Siemens Skyra 3T scanner (Sotiropoulos et al., 2013) and pre-processed

as described in (Glasser et al., 2013). The structural acquisitions include high resolution T1-

weighted (T1w) and T2-weighted (T2w) images (0.7mm isotropic, FOV = 224mm, matrix

= 320, 256 sagittal slices in a single slab), the diffusion acquisition used following parame-

ters: sequence = Spin-echo EPI; repetition time (TR) = 5520ms; echo time (TE) = 89.5ms;

resolution = 1.25× 1.25× 1.25 mm3 voxels, and the resting-state fMRI acquisition involved
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four 15min runs at 2mm isotropic resolution and a repetition time of 0.72 s (4800 vol per sub-

ject). Further details can be obtained from the HCP1200 data release manual1. We used the

hcp2blocks.m script (described in the HCP1200 release) to generate a FamilyID based ma-

trix, only considering subjects having dMRI, sMRI, and rfMRI netmats data, and for which

the HasGT field is true. Using this selection criterion, we obtained a total of 238 monozy-

gotic (MZ) subjects, 126 dizygotic (DZ) subjects, and 581 non-twin subjects. The sibship size

ranged between 1 and 6. In a next step, using the mother ID, father ID, family ID and family

type information from the output of hcp2blocks.m script, we obtained 119 monozygotic

twin pairs, 63 dizygotic twin pairs, 546 full-sibling (FS) pairs, 39 maternal half sibling (MHS)

pairs, and 5 paternal half sibling (PHS) pairs. These pairs are used for twin/sibling identifica-

tion task in the following sections.

Table 4.1 Demographics. We considered the HCP1200 release subjects with structural

MRI, diffusion MRI, and resting state fMRI netmats data, and for which the HasGT field

is true (genetically verified data). The family structure and links are obtained from the

output of hcp2blocks.m script listed in data release manual. The sibship sizes are between

1 and 6.

Type Total Gender Age Handedness
F M Range (median) L R

All 945 501 444 22-36 (29) 84 861

MZ 238 138 100 22-36 (30) 19 219

DZ 126 70 56 22-35 (29) 13 113

NotTwin 581 293 288 22-36 (28) 52 529

For structural MRI, we considered T1-weighted (0.7mm) and T2-weighted (0.7mm), with and

without skull. The images are in native space and skull stripped, unless explicitly specified.

In the case of dMRI data, signal reconstruction was performed with the freely available DSI

Studio toolbox (Yeh et al., 2010) using the Diffusion Tensor Imaging (DTI) and Generalized

Q-Ball Imaging (GQI) reconstruction options. Four widely used DTI-based measures were

extracted to characterize white matter micro-structure: fractional anisotropy (FA), axial dif-

1https://www.humanconnectome.org/documentation/S1200/
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fusivity (AD), mean diffusivity (MD) and radial diffusivity (RD). The interpretation of these

measures are discussed in (Alexander et al., 2007). In addition, to utilize the multi-shell in-

formation and high angular resolution of the HCP data, Generalized Q-Ball Imaging (GQI)

(Yeh et al., 2010) based measures including generalized fractional anisotropy (GFA) and quan-

titative anisotropy (QA) were also obtained. For resting state fMRI, we used the connectivity

matrices (netmats), provided by the HCP 1200 release, derived using the FSLNets toolbox, ei-

ther via full correlation or the partial correlation (Smith et al., 2015), the latter being calculated

by inverting the covariance matrix. For analyzing the impact of alignment, we also used the

MNI space aligned data for T1-weighted (0.7mm) and T2-weighted (0.7mm) provided by the

HCP 1200 release. In addition, to combine structural modalities with dMRI, and to analyze

impact of scan resolution, we re-sampled T1- and T2-weighted images to a 1.25mm resolution

using the linear registration (FLIRT) tool of FSL (Jenkinson et al., 2012). Finally, our analysis

also considered FreeSurfer derived measures of sub-cortical volumes, cortical thickness and

area, as well as T1w/T2w MRI ratio images (0.7mm, myelin content information).

4.3.2 Multi-modal brain fingerprint

Generating brain fingerprints of subjects based on their multi-modal data involves multiple

steps: extracting local descriptors in images to build a bag of features (BoF) representation

of subjects, building a subject proximity graph by comparing their BoF representations, and

embedding this graph in a low-dimensional manifold. Additionally, once the manifold has

been constructed, an out-of-sample extension strategy is required to compute the fingerprint of

new subjects.

4.3.2.1 Bag of feature (BoF) representation of subjects

In the first step, a set of local descriptors (Lowe, 2004) is obtained from each available image

(3D scan). Various local feature extraction and representation approaches (Tuytelaars et al.,

2008) can be used, for example, Scale Invariant Feature Transfrom (SIFT) (Lowe, 1999) or
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Speeded UP Robust Features (SURF) (Bay et al., 2006). In this work, we use 3D SIFT de-

scriptors as they have been well studied for neuro-image analysis (Toews et al., 2010; Toews

and Wells, 2013; Toews et al., 2015) and can be computed efficiently.

3D keypoints are located in the scans of each subject by finding the local extrema (i.e., maxima

or minima) of the difference of Gaussians (DoG) occurring at multiple scales. Keypoints with a

low contrast or corresponding to edge response are discarded, and remaining ones are encoded

into a feature vector (i.e, the descriptor) using the histogram of oriented gradients (HOG) within

a small neighborhood. Note that these descriptors are robust to changes in illumination, scale

and rotation, and are thus efficient for comparing images acquired using different scanners or

imaging parameters. Each subject is then represented as an orderless bag of features (BoF),

containing all the descriptors found in this subject’s scans. This representation provides a

simple, robust and extensible way of incorporating data from multiple modalities.

4.3.2.2 Subject proximity graph

Because the BoFs of two subjects may contain different numbers of descriptors, they are diffi-

cult compare directly. To circumvent this problem, we construct an intrinsic manifold of subject

appearance using a nearest-neighbor (NN) graph in feature space. In this graph, each descrip-

tor is represented by a node and is connected to its K most similar appearance descriptors

based on Euclidean distance. The K-nearest neighbors of each descriptor can be computed in

sublinear time, for example, using randomized KD-search trees (Muja and Lowe, 2009). This

feature graph is then used to induce a subject proximity graph by considering, for each pair of

subjects, the number descriptors in their BoF that are linked in the feature graph.

Let Bm
i and Bm

j be the BoFs (i.e., set of descriptors) of subjects i and j for modality m ∈M ,

where M is the set of available modalities. The similarity between these subjects is evaluated

as

sij =

∑
m∈M |Bm

i ∩Bm
j |∑

m∈M |Bm
i ∪Bm

j |
=

∑
m∈M |Bm

i ∩Bm
j |∑

m∈M
(
|Bm

i | + |Bm
j | − |Bm

i ∩Bm
j |
) , (4.1)
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where |Bm
i ∩ Bm

j | is the number of edges in the feature graph between nodes in Bm
i and

those in Bm
j . When using a single modality, this measure corresponds to the well-known

Jaccard similarity. Here, we extend it to a multi-modal setting by comparing the descriptors of

each modality separately. We note that the Jaccard distance, defined as one minus the Jaccard

similarity, is a metric and thus well-suited for constructing the manifold.

When defining the feature graph, K determines the number of nearest-neighbor connections for

each descriptor. In manifold learning approaches, this parameters controls the locality of the

manifold approximation at each point (Bengio et al., 2013). Its value should be large enough to

capture the manifold’s local structure, but also restricted so that distances to nearest-neighbors

are close to the geodesic. In our experiments, we tested K ∈ {10, 20, 30, 40, 50} and found

similar results for these values. In what follows, we report results obtained with K = 20.

4.3.2.3 Manifold embedding

A manifold embedding technique is used to obtain compact brain fingerprints from the sub-

ject proximity graph. While various approaches could be employed for this task, for instance

Isomap (Tenenbaum et al., 2000) or locally linear embedding (LLE) (Roweis and Saul, 2000),

we performed the embedding using Laplacian eigenmaps (Belkin and Niyogi, 2003). This

technique, which is connected to the well-known Laplace-Beltrami operator, has the advantage

of being efficient and allowing out-of-sample extensions.

In Laplacian eigenmaps, each subject i is mapped to a coordinate vector xi ∈ Rk of the

manifold, whose dimension k is a user parameter. The embedding of subjects in the manifold

is made such that two subjects i and j with a high similarity sij will be close to one another.

Let S ∈ Rn×n be the adjacency matrix of the subject proximity graph, as defined in Eq (4.1),

and denote as L = D − S the Laplacian of S, where D is a diagonal matrix containing the
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row sums of S. The embedding is accomplished by solving the following problem:

argmin
X

n∑
i=1

n∑
j=1

sij‖xi − xj‖22 = tr(XᵀLX), s.t. XᵀDX = I. (4.2)

The constraint on X removes the arbitrary scaling factor in the embedding. As described in

(Belkin and Niyogi, 2003), the solution to this problem is given by the leading k eigenvectors

of the normalized adjacency matrix S = D− 1
2SD− 1

2 , starting from the second one2. Once

computed, the rows of matrix X correspond to the n subject fingerprints of size k.

4.3.2.4 Out-of-sample extension

The manifold embedding technique described above computes the fingerprint of all subjects at

once. If new subjects are added, this process must be repeated over again, which is inefficient

and changes the fingerprint of previous subjects. To alleviate these problems, we use an out-of-

sample extension of Laplacian eigenmaps, based on the Nystrom method (Bengio et al., 2004;

Fowlkes et al., 2004).

Suppose we want to compute the manifold embedding of m new subjects. The first step is

to update the nearest-neighbor feature graph with the local descriptors of these new subjects,

leaving unchanged the nearest-neighbors of the n base subjects. We then evaluate the pair-

wise similarities between new subjects and the base ones. Let P ∈ Rn×m be the matrix

containing these similarities, the adjacency matrix of the extended subject proximity graph

Sext ∈ R(n+m)×(n+m) is given by

Sext =

⎡
⎣ S P

P ᵀ Q

⎤
⎦ . (4.3)

Using the formula in (Belkin and Niyogi, 2003), the matrix Q of similarities between new

subjects can be approximated as P ᵀS−1P .

2The first eigenvector contains constant values.
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To normalize Sext, we compute the vector of row sums

dext =

⎡
⎣ sr + pr

pc + P ᵀS−1pr

⎤
⎦ , (4.4)

where sr,pr ∈ Rn contain the row sums of S and P , respectively, and pc ∈ Rm contains the

column sum of P . In the case where m is small compared to n, we have that sr ≈ sr + pr,

and thus dext can be approximated as

dext ≈

⎡
⎣ sr

pc + P ᵀS−1pr

⎤
⎦ . (4.5)

This strategy, used in (O’Donnell and Westin, 2007a) for white matter fiber segmentation,

allows preserving the previous embedding of base subjects. Let Dext be the diagonal matrix

with entries corresponding to dext, the normalized adjacency matrix of the extended subject

graph is calculated as Sext = D
− 1

2
ext Sext D

− 1
2

ext . The extended embedding is then obtained

following Nystrom’s method as

Xext =

⎡
⎣ U

P
ᵀ
UΛ−1

⎤
⎦ , (4.6)

where UΛU ᵀ is the eigendecomposition of S, and P is the normalized submatrix in Sext

corresponding to P . Hence, the embedding of base subjects is the same as in Section 4.3.2.3,

and new subjects are embedded as P
ᵀ
UΛ−1. Once more, a fingerprint of size k is obtained by

considering only the k leading eigenvectors in matrix U , ignoring the constant eigenvector.

4.3.3 Computational efficiency

Computational and memory requirements are key factors when performing large scale analy-

ses. In this section, we evaluate these requirements for the main steps of the proposed frame-

work. To highlight the efficiency of encoding images with local descriptors, we also compare
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our framework to a simple fingerprint using full images as features. Other aspects like scan

resolution and image alignment requirements are discussed in Section 4.4. All experiments

were performed on a 3.6 GHz processor with 32 GB RAM.

For the BoF representation of images, we extracted 3D SIFT features using a publicly available

tool3. Computing these features took about 3 seconds per image, and approximately 60 minutes

for all 945 images, when processed sequentially. This runtime could however be reduced

significantly by processing images in parallel. The feature matching routine (Muja and Lowe,

2009), for generating the subject proximity graph from the BoFs of all images, required around

5 minutes to complete. In comparison, calculating the sum of squared distances (SSD) between

full images took 1.7 seconds on average for a single pair, and 760,000 seconds for all (945 ×

944)/2 = 446,040 pairs (with parallel computations). In terms of memory, each BoF file is

approximately 400 KB in size, compared to 84 MB on average for a NIfTI volume file. In

summary, the proposed framework is highly efficient in terms of computational and memory

requirements compared to a baseline fingerprint using full images. Moreover, since computing

the subject proximity graph has a complexity in O(N logN) where N is the number of images,

and because extending the manifold embedding can be done efficiently using the Nystrom

method, our framework is scalable to large datasets.

4.3.4 Evaluation measures

To measure the link between fingerprint similarity and genetic proximity, we performed a rank

retrieval analysis using the sibling information provided in the HCP dataset. In this analysis,

we try to identify the twins/siblings of a given subject by comparing its fingerprint with that of

all other subjects in the group. Another goal of this analysis is to provide a common platform

for the quantitative comparison of individual modalities and their combination. Two standard

performance metrics for rank retrieval are used to evaluate the fingerprints: mean recall@k and

mean average precision (MAP) (Turpin and Scholer, 2006).

3http://www.matthewtoews.com/
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Given a subject i, we rank all other subjects by the similarity (i.e., inverse of Euclidean dis-

tance) of their fingerprint to that of subject i. Denote as Ti the set of target siblings/twins of

subject i. For instance, if the target group is non-twin siblings (NT), then Ti contains the sib-

lings of subject i that are not his/her twin. Moreover, let Sk
i be the set containing the k subjects

with fingerprints most similar to that of i (i.e., the k nearest neighbors of i). For a given value

of k, we evaluate the retrieval performance using the measures of recall@k and precision@k:

(recall@k)i =
|Ti ∩ Sk

i |
|Ti|

, (precision@k)i =
|Ti ∩ Sk

i |
k

. (4.7)

Mean recall@k, also known as sensitivity, evaluates the proportion of individuals that are ge-

netically related to a given subject, which are within the k individuals most similar to that

subject (in terms of fingerprint distance). When analyzing the rank performance for a particu-

lar sibling type (i.e., monozygotic twin, dizygotic twin or non-twin sibling), we average values

over the set of subjects which have at least one sibling of this type, i.e. the set {i, s.t. |Ti| > 0}.

We also evaluate performance with the average precision, which extends the above metrics by

considering the rank of nearest neighbors:

AvePi =
1

|Ti|

n∑
k=1

(precision@k)i × reli(k), (4.8)

where reli(k) is an indicator function with value equal to 1 if the k-th nearest neighbor of i is

relevant (i.e., is in Ti), and zero otherwise. The MAP is obtained by averaging AveP values

over all subjects having at least one sibling of the target type.

Finally, we use the d-prime sensitivity index (Gale and Perkel, 2010) to obtain a quantita-

tive measure of separability between the distribution of fingerprint distances corresponding to

different sibling types. Let μ1, μ2 and σ1, σ2 be the means and standard deviations of com-

pared distance distributions (e.g., distance between monozygotic twins versus between dizy-
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gotic twins). The d-prime index is computed as

d-prime =
μ1 − μ2√

1
2

(
σ2
1 + σ2

2

) . (4.9)

In our experiments, we report absolute values of d-prime, higher values indicating better sepa-

rability.

4.4 Experiments and results

A comprehensive set of experiments was conducted to analyze the proposed fingerprint and

evaluate its usefulness in various applications. In the first experiment, we analyze the manifold

embedding of subjects and measure the impact of manifold dimensionality on the fingerprint’s

ability to capture genetic proximity. We then perform a detailed rank retrieval analysis, in

which fingerprints obtained from a single modality or combinations of multiple modalities are

used to identify three types of genetically-related subject: monozygotic twins (MZ), dizygotic

twins (DZ) and full siblings (FS). The driving hypothesis of this experiment is that individual

modalities capture distinct properties of brain tissues, which can be effectively encoded in

the fingerprint, and that combining different modalities can help describe the uniqueness of

individual brains. Another goal of this experiment is to measure the relationship between the

similarity of fingerprints, for different modality combinations, and genetic proximity.

In another experiment, we assess the impact of following factors on the proposed fingerprint:

image alignment, scan resolution, inclusion of skull, and subject age. This is followed by a

reproducibility analysis, performed with the restest scans of 42 subjects, and a comparison

with a baseline fingerprint using full images as features. The objective of these experiments is

to demonstrate the robustness and performance of the proposed fingerprint, compared to a full

image scan-based fingerprint.

We also present applications of the proposed framework for identifying retest scans, duplicate

corrupt scans, and incorrectly-reported zygosity labels. In addition, we use the segmentation
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masks provided with the HCP data to identify cortical and subcortical brain regions where the

distribution of feature correspondences between monozygotic twins is significantly different

from dizygotic twins. In this analysis, we want to find brain regions which are more influenced

by genetic promixity. Finally, we conduct a hemisphere asymmetry analysis using the feature

correspondences for different types of siblings.

4.4.1 Manifold approximation analysis

To analyze the manifold approximation, we generated fingerprints by projecting the subject

proximity graph onto a varying number of spectral components (i.e., leading eigenvectors of

the normalized adjacency or Laplacian matrix). Fingerprints were normalized by converting

each fingerprint to z-scores (centered to have mean 0 and scaled to have standard deviation

1). Figure 4.2 (top row) shows a representative 2D spectral embedding of subject proximity

graphs obtained using T1w, FA, or both modalities (T1w+FA). As described in Section 4.3.2.2,

modalities are combined by aggregating the feature correspondences in each modality when

computing the pairwise subject similarities. In these plots, the position of each red dot corre-

sponds to the 2D fingerprint of a subject. Additionally, in each plot, a single pair of MZ twins

is highlighted using blue and cyan dots and their NT sibling highlighted using a green dot.

It can be seen that the distribution of subject embeddings in the manifold varies from T1w to

FA, showing that these modalities encode different properties in the fingerprint. Differences

between the distributions of FA and T1w+FA fingerprints are in part explained by the fact that

spectral embeddings are defined up to a rotation or axis flipping. Moreover, we observe for

all three modality combinations that genetically-related subjects are near to each other in the

manifold, and that MZ twins are closer than their non-twin (full) sibling.

In Figure 4.2 (bottom row), we measure the impact of manifold dimensionality on the finger-

print obtained with T1w, FA or T1w+FA modalities. The left plot shows the eigenvalues (sorted

by decreasing magnitude) of the subject proximity graph’s normalized adjacency matrix, which

reflect the amount of connectivity information captured by their corresponding eigenvector.
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T1w FA T1w+FA

Figure 4.2 Compact fingerprint analysis. Top row: representative 2D spectral

embedding visualization, blue and cyan dots show one pair of MZ twins and green dot

shows their not twin (full) sibling; Bottom row: plots of eigenvalues (excluding the first),

absolute d-prime, and -log10 (p-value) (unpaired t-test) for Euclidean distances between

MZ pair vs DZ pair fingerprints with increasing number of eigenvectors.

This plot indicates that most information is encoded in the first leading eigenvectors and, thus,

that a compact fingerprint is possible.

This hypothesis is further confirmed in the middle and right plots of the same row, which

evaluate for an increasing number of spectral components (i.e., fingerprint size) how the distri-

butions of distances between MZ fingerprints and between DZ fingerprints differ. The separa-

bility between these two distributions of fingerprint distances is measured in terms of d-prime

(middle plot) and unpaired t-test p-values (in -log10 scale). In both measures, higher values

correspond to a greater separability. For all three modality combinations, a peak separability is

observed around 150 eigenvectors, suggesting this value to be suitable for the fingerprint size.

The decrease in separability for larger manifold dimensions is due to the fact that the added

eigenvectors encode small variations of brain geometry which are not related to genetic prox-
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imity. Nevertheless, the difference between fingerprint distances in MZ pairs and in DZ pairs

is significant with p-value < 0.01, for all tested manifold sizes and modality combinations.

Comparing the three modality combinations, the diffusion-based fingerprint using FA images

provides a higher separability than the fingerprint generated from T1w, for all manifold sizes.

However, the separability is increased further when combining both modalities in the finger-

print, in line with our hypothesis that multi-modal fingerprints are more discriminative than

those based on a single modality.

T1w FA T1w+FA

Figure 4.3 Compact fingerprint comparison for genetically-related subjects.

Count-density histograms (top row) and probability-normalized curves (bottom row;

gamma histogram fitting) of Euclidean distances between twin/sibling pair fingerprints

using 150 eigenvectors.

Finally, Figure 4.3 gives the count histograms and probability density curves (fitted) of Eu-

clidean distances between fingerprints of different sibling types. To generate these results, and

in all following experiments, we used a fingerprint of 150 features (i.e., leading eigenvectors of

the normalized adjacency matrix). It can be seen that the fingerprints of MZ twins, which share
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the most genetic material, are significantly more similar than those of DZ twins or full siblings

(FS). This follows the results of various twin studies (Peper et al., 2007; Thompson et al.,

2013), highlighting the relationship between genetic proximity and anatomical similarity.

4.4.2 Identification of genetically-related subjects

In this section, we use genetically verified labels of the HCP dataset to determine whether

fingerprints generated using different modality combinations can identify genetically-related

individuals within a group of subjects. For combining structural and diffusion modalities, we

considered data at 1.25 mm resolution. For resting state fMRI, we utilize the connectivity

matrices (netmats) as functional connectivity fingerprints, and obtain the subject proximity

graph (manifold approximation) by computing pairwise Pearson correlation. The idea is to

closely follow the functional connectivity fingerprint and similarity computation described in

Finn et al. (Finn et al., 2015) (the parcellation and dataset sizes are different). The multi-

modal combinations involving rfMRI are obtained by a linear combination of the rfMRI subject

proximity graph with the graph derived from BoFs. Combination weights were determined by

grid search, and optimal values of evaluation measures are reported. For measures based on

FreeSurfer, we used the unrestricted csv file, considering volume of sub-cortical structures,

thickness and area measures for cortical regions. Each of the measures were converted to z-

score across subjects, and then used as a fingerprint (volume measures are first divided by

FS-IntraCranial-Vol). Subject proximity graph is approximated by computing the pairwise

Pearson correlation. We refer the reader to Section 4.3.4 for details on the evaluation protocol

and measures.

Table 4.2 reports the mean average precision (MAP) values obtained in a rank retrieval of three

different siblings types (MZ, DZ and FS), using fingerprints generated from various combina-

tions of the following modalities4: FA, MD, GFA, rfMRI netmat (partial correlation, ICA 100),

and FreeSurfer volume, thickness and area measures (Vol+Thck+Area). To lighten the presen-

4DTI = FA+MD+RD+AD; rfMRI netmat = partial correlation and ICA-100
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Table 4.2 Mean average precision (MAP) obtained with different modality

combinations for the identification of genetically-related subjects: monozygotic twins

(MZ), dizygotic twins (DZ) and full siblings (FS).

Experiment Modality Mean Avg Prec
MZ DZ FS

sMRI
T1w 0.886 0.160 0.128
T2w 0.908 0.212 0.111

dMRI

FA 0.964 0.219 0.160
MD 0.803 0.114 0.086
GFA 0.968 0.234 0.161

rfMRI netmat 0.968 0.352 0.205

Modality

Combination

T1w+T2w 0.970 0.283 0.183
T1w+FA 0.977 0.279 0.210
FA+MD 0.978 0.259 0.198
T1w+rfMRI 0.990 0.460 0.279
FA+rfMRI 0.996 0.472 0.301
T1w+T2w+DTI 0.994 0.392 0.270
T1w+T2w+FA+rfMRI 0.997 0.546 0.371

Skull Impact
T1w Skull 0.990 0.305 0.230
T2w Skull 0.980 0.310 0.164

Alignment Impact
T1w MNI 0.852 0.087 0.101
T2w MNI 0.827 0.147 0.111

Resolution Impact
T1w 1.25mm 0.831 0.136 0.121
T2w 1.25mm 0.879 0.173 0.132

Baseline Comparison

T1w 0.649 0.079 0.052
T2w 0.520 0.069 0.038
FA 0.707 0.076 0.049
Vol+Thck+Area (FreeSurfer) 0.795 0.172 0.106

Retest set

T1w 0.915 0.137 0.130
T2w 0.917 0.212 0.113
FA 0.944 0.252 0.158

Random Rand 0.005 0.005 0.006

tation, we only report mean average precision (MAP) values, however mean recall@k results

can also be found in Supplement material (Figure 1 and Table 8). Moreover, detailed results

obtained with dMRI based measures (DTI and GQI), rfMRI netmats, and FreeSurfer measures

are described in Table 3, 4, and 5 of Supplement material, respectively. The statistical signifi-

cance of differences between MAP distributions obtained for different modality combinations

and sibling types is reported in Table 1 of Supplement material.
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A rich and diverse set of observations can be drawn from Table 4.2. Comparing modalities,

we observe that rfMRI netmat yields the highest MAP among all single-modality fingerprints,

these improvements most significant for DZ and FS. For structure-based fingerprints, T1w

and T2w provide similar performances across the different sibling types, slightly higher MAP

values obtained for MZ and DZ using T2w. Similarly, for diffusion based fingerprints, FA

and GFA provide similar performance, both of them outperforming MD. Furthermore, higher

MAP values are obtained when combining multiple modalities, the combination of T1w, T2w,

FA and rfMRI having the best performance for all sibling types. This applies for combina-

tions within/across structural or diffusion modalities: T1w+T2w outperforms T1w and T2w,

FA+MD performs better than FA and MD, T1w+FA outperforms T1w and FA, etc. Similarly,

T1w+rfMRI outperforms T1w and rfMRI, and FA+rfMRI performs better than FA and rfMRI.

With respect to the tested sibling types, we observe a MAP values between 80.3% and 99.7%

when identifying MZ twins, for all modalities and their combinations. This illustrates the high

impact of genetic similarity on the structural and diffusion geometry of the brain, as well as

on its functional connectivity. Comparing all sibling types, we see higher MAP values for

MZ twins compared to DZ twins or full siblings, following the amount of genetic information

shared between subjects of these groups (Polderman et al., 2015). In contrast, performances

obtained for DZ twins and full siblings are comparable, which reflects the fact that both sibling

types have the same genetic proximity. In general, the differences between DZ twins and full

siblings were found to be not significant in an unpaired t-test for single modalities, with T2w

being the exception (Supplement material Table 1). Similar observations can also be drawn

from mean recall@k plots and mean recall@10 values (Supplement material Figure 1 and

Table 8), with combined modalities yielding higher recall values than individual ones. In this

experiment, FA gives a higher recall than rfMRI for MZ identification, although this difference

is not statistically significant. Comparing non-twin siblings, we observe higher MAP values for

full sibling identification vs maternal half sibling (MHS) identification (Supplement material

Table 6), confirming once again the impact of genetic proximity. However, no clear trend
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is found for full sibling identification vs paternal half sibling identification (PHS), which is

mainly due to the limited sample size (i.e., the dataset contains only 5 PHS pairs).

Table 4.3 Relative informativeness of fingerprints from different modalities.

Comparison between modalities or their combination for the task of identification of a

given sibling type. The reported values are relative percentages of MZ/DZ twin

identification for two modalities, with Mod1 representing successful identifications by

modality 1 only. The total number of identification tasks is 238 and 126 for MZ and DZ

respectively. Note: identification of twin 1 for twin 2 and vice-versa are considered two

separate tasks. The identification is considered a success if the twin is identified within

the 10 nearest neighbors of a subject (among 944 subjects).

Experiment Mod1 vs Mod2 Identification % (MZ) Identification % (DZ)
Both Mod1 Mod2 None Both Mod1 Mod2 None

Single Modality

T1w vs T2w 93.28 2.52 3.36 0.84 12.70 13.49 19.05 54.76
T1w vs FA 95.38 0.42 3.78 0.42 14.29 11.90 27.78 46.03
T1w vs rfMRI 93.28 2.52 4.20 0.00 7.14 19.05 45.24 28.57
FA vs rfMRI 96.64 2.52 0.84 0.00 26.19 15.87 26.19 31.75
FA vs MD 88.66 10.50 0.84 0.00 10.32 31.75 12.70 45.24

Modality

Combination

T1w vs All MRI 95.80 0.00 4.20 0.00 21.43 4.76 60.32 13.49
T2w vs All MRI 96.64 0.00 3.36 0.00 25.40 6.35 56.35 11.90
FA vs All MRI 99.16 0.00 0.84 0.00 39.68 2.38 42.06 15.87
rfMRI vs All MRI 97.48 0.00 2.52 0.00 49.21 3.17 32.54 15.08

Note: All MRI = T1w+T2w+FA+rfMRI

To quantify the informativeness of one modality versus another, Table 4.3 reports the relative

percentage of MZ and DZ twins identified by both, a single, or none of the modalities5. Note

that, for a given twin type, each row provides relative comparison between two modalities, with

sum of row being 100%. The total number of identification tasks is 238 for MZ and 126 for

DZ (the identification of twin 1 for twin 2 and vice-versa are considered two separate tasks).

For each task, we consider the k = 10 nearest neighbors of a subject in terms of fingerprint

distance. The identification is considered a success if the subject’s twin is identified within

these neighbors. When comparing the relative success rates of single modalities (top half of

the table), we observe that FA identifies more twins uniquely than when using T1w or MD.

5Results for full siblings are reported in Table 7 of Supplement material.
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This is particularly noticeable for DZ twins, where 27.78% of DZ pairs were identified by the

FA-based fingerprint but not the T1w-based ones. Yet, structural modalities still capture brain

tissue properties that are not provided by dMRI, as shown by the 11.90% of all DZ pairs that

are identified using T1w but not with FA. Similar observations can be drawn when comparing

rfMRI with structural and diffusion modalities. For example, rfMRI identifies 45.24% of DZ

pairs that are not identified using T1w within 10 neighbors, while T1w identifies 19.05% unique

DZ pairs.

As with the results in Table 4.2, we see that combining multiple modalities leads to a more

discriminative fingerprint. For example, 4.20% of MZ and 60.30% of DZ twins are identified

by fingerprints generated from all modalities (i.e., All MRI=T1w+T2w+FA+rfMRI) but not

from fingerprints based only on T1w. Reversely, all MZ twins identified with T1w are also

found using T1w+T2w+FA+rfMRI, and only 4.76% of DZ twins are identified uniquely with

T1w. This last result could be explained by the fact that subjects can have local similarities due

to factors not related to genetics.

4.4.3 Impact of various factors

Factors like image alignment, scan resolution, skull inclusion and subject age, can be con-

founds when analyzing the proposed fingerprint. In the following sub-sections, we measure

the impact of these factors on the fingerprint’s ability to find genetically-related subjects.

4.4.3.1 Image alignment

Population-level analyses usually require aligning images to a common space or segmenting

them into regions of interest, two steps which can be computationally expensive.

Table 4.2 (sMRI vs alignment impact rows) reports the retrieval performance obtained for fin-

gerprints generated from T1w and T2w images in MNI space (0.7 mm resolution, data provided

by the HCP with affine alignment to MNI template). For all sibling types, MNI space-aligned
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fingerprints (denoted as MNI in the table) obtained lower MAP values than fingerprints using

native space data. This observation, which is consistent across T1w/T2w modalities and all

sibling types, indicates that image alignment is not required for our fingerprint. Note that sim-

ilar results were obtained using full images as fingerprints (analyzed in the following section),

with lower MAP for affine-aligned images.

4.4.3.2 Scan resolution

Scan resolution is another important factor in multi-modal and multi-subject analyses, for ex-

ample, sMRI data usually offer higher resolutions compared to dMRI.

Table 4.2 (sMRI vs resolution impact rows) shows that MAP values for the MZ/DZ twin iden-

tification task decrease when going from 0.7 mm to 1.25mm resolution, for both T1w- and

T2w-based fingerprints. This is due in part to the reduced number of SIFT features extracted

from 1.25 mm resolution images, compared to 0.7 mm resolution ones. However, this is not

the case for FS identification tasks, where contrasting trends are observer for T1w and T2w.

Moreover, differences in MAP values for the two resolutions are not significant when running

an unpaired t-test with p-value < 0.01, for any sibling type (see Supplement material). These

results suggest the robustness of our framework to varying scan resolutions.

4.4.3.3 Inclusion of skull

Since skull size and shape is strongly influenced by genetics, including skull information in

fingerprints could increase their discriminative power. In this experiment, we measure the

usefulness of skull tissues for identifying pairs of MZ, DZ and FS subjects (facial features are

not analyzed).

Table 4.2 reports the performances of fingerprints based on T1w and T2w image, with or with-

out skull stripping. For both T1w and T2w, as well as all sibling types, including the skull in

images improves MAP values. These results are significant with p-value < 0.01 in an unpaired
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t-test (see Table 2 of Supplement material). Hence, skull tissues provides additional feature cor-

respondences which help identify twins and non-twin siblings. However, we should mention

that skull stripping is essential to most neuroimaging analyses, and our objective here is only

to measure the informativeness of skull tissues on the proposed fingerprint. An extended skull-

inclusion analysis, including T1w-by-T2w MRI ratio images (myelin content) and modality

combinations are reported in Supplement material Table 10.

4.4.3.4 Subject age

In twin studies, the age of subjects can be a confound when comparing between different sibling

types. For instance, DZ twins and FS siblings share the same amount of genetic material, yet

DZ twins could be more similar due to their same age. The HCP data used in this study was

acquired in the age range of 22–36, which corresponds to the plateau/saturation in brain and

white matter development (Kochunov et al., 2015; Van Essen et al., 2012). Nevertheless, we

analyze whether age differences in non-twin siblings is a contributing factor on performance.

Toward this goal, we divided FS sibling pairs in two groups based on the median age difference

of 3 years, and measured the MAP in each group for fingerprints generated from T1w, T2w,

and FA. Similarly, we also evaluated the impact of absolute age on performance of MZ/DZ. In

this case, we divided subjects (not subject pairs) in two groups based on the median subject age

of 29 years. As shown in Supplement material Table 9, in general no significant differences

in MAP are observed across these groups. In summary, using the HCP dataset, we found no

significant impact of subject age on the proposed fingerprint.

4.4.4 Comparison to baseline fingerprint

We compared the performance of our fingerprint to a baseline using full images as features.

In this baseline, the similarity of two fingerprints is measured as the sum of squared distances

(SSD) between intensities of corresponding voxels. Table 4.2 gives the MAP obtained using

this baseline, for T1w, T2w, and FA images in native subject space. For MZ twin identification,
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the baseline using FA performs better than T1w or T2w, which is consistent with the results

of the proposed fingerprint. However, we see that our fingerprint performs consistently better

than the baseline, with MAP improvements of 0.237 in T1w, 0.388 in T2w, and 0.257 in FA, for

the task of identifying MZ twins. These improvements are significant in a one-sided unpaired

t-test with p-value < 0.01 (see Supplement material Table 2). Note that we also tested a similar

baseline created from MNI aligned images, however this led to lower MAP values.

In addition, we used Freesurfer derived measures of sub-cortical volumes, and thickness and

area of cortical regions as other baseline fingerprints (see Supplement material Table 5 for

detailed analysis on FreeSurfer measures). Higher MAP values are obtained for MZ twin

identification using our fingerprint vs Vol+Thck+Area FreeSurfer (0.886 vs 0.795, p-value

< 0.01). However, no significant difference is observed for DZ and FS identification.

In summary, while much more compact and efficient (see Section 4.3.3), our fingerprint based

on local features is significantly more informative than a voxel-based representation. It also

captures additional information on brain morphology, compared to simple measures of cortical

volume, thickness and area, outperforming this baseline on all identification tasks.

4.4.5 Results reproducibility

To test the reproducibility of the results, we re-ran the same analysis after replacing the T1w,

T2w and FA images of 42 subjects with their retest data. Table 4.2 gives the MAP values ob-

tained following this process. We observe small differences in MAP, compared to fingerprints

using the original data, however, these are not significant (see Supplement material Table 2).

We note that the majority of retest subjects available in the HCP data are MZ twins. Since we

do not observe significant differences for identifying this type of twins, it shows that the results

are reproducible. The small differences in MAP values for DZ twins and FS siblings could be

attributed to slight changes in the ordering of retest subjects’ nearest neighbors.
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4.4.6 Applications

In this section, we demonstrate the usefulness of our fingerprint on three different applications:

1) the correction of erroneous zygosity labels, 2) the detection of retest and duplicate scans, 3)

the visualization and analysis of local feature correspondences for different modalities, sibling

types and neuroanatomical regions.

4.4.6.1 Zygosity label correction

The Q3 release of the HCP dataset contained self-reported zygosity labels for twins. In the

HCP 1200 release, which contains genetically verified zyosity labels, it was found that many

self-reported DZ twins were actually MZ twins. In light of this problem, we first evaluate if

the proposed framework can be used to identify the twins in large dataset whose self-reported

zygosity differs from their true zygosity.

In earlier experiments, we found higher MAP values for MZ twins. Such siblings were always

found within the 10 nearest neighbors of a subject (i.e., a mean recall@k of 100% was obtained

for k ≤ 10, Supplement material Table 8), regardless of the modality combination used for the

fingerprint. Conversely, a lower percentage of DZ twins could be identified in these lists of

nearest neighbors. Based on this idea, we find incorrectly reported MZ candidates as the DZ

twins which are within the 10 nearest neighbors of a subject.

Table 4.4 reports the relative percentage of DZ-to-MZ twins (56 in total) correctly identified

by the proposed fingerprint, the baseline using full images, both or none of these methods, for

T1w, T2w and FA modalities. The results show that our fingerprint can identify most incor-

rectly self-reported MZ twins, with a detection rate of 92.86% for T1w, 100.00% for T2w, and

100.00% for FA. For all modalities, over 32% of cases were identified uniquely by our fin-

gerprint. In contrast, no DZ-to-MZ twins were identified uniquely by the baseline fingerprint.

In conclusion, the proposed fingerprint can be used effectively to detect misreported zygosity

labels.
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Table 4.4 Analysis of self-reported zygosity to genetically verified zygosity detection.

Relative percentage of DZ-to-MZ twin identifications by the proposed framework and the

full-image baseline. Total number of identification tasks is 56. Identification is considered

a success if the twin is identified within the 10 nearest neighbors of a subject.

Modality Identification %
Both Proposed Base None

T1w 60.71 32.15 0.00 7.14
T2w 55.36 44.64 0.00 0.00
FA 64.29 35.71 0.00 0.00

4.4.6.2 Retest and duplicate scan identification

To analyze our fingerprint’s ability to detect repeat scans of the same subjects (acquired after

a time gap), we used the data of 945 subjects + 42 retest subjects, and considered the task of

identifying repeat scan in a rank retrieval analysis.

Following the same evaluation protocol as for identifying MZ/DZ/FS siblings, we obtained a

MAP value of 1 for fingerprints generated from T1w, T2w or FA. Thus, in all cases, the single

most similar fingerprint to that of a subject corresponded to this subject’s retest data. Moreover,

when considering the number of local feature correspondences in the subject similarity (i.e.,

∑
m∈M |Bm

i ∩ Bm
j | in Eq (4.1)), we observed more correspondences for the retest data of a

subject than for the subject’s MZ twin.

Duplicate scans in a dataset, for example resulting from noise corruption, renaming or other

manual errors, can introduce bias in analyses. Therefore, we also assessed if our fingerprint

could detect duplicate scans of the same subject, corrupted by noise. For this experiment, we

introduced duplicate scans for 42 T1w images, to which was added random noise (uniformly

distributed random numbers in the [−a, a] range, where a ∈ {20, 60, 100, 150, 200, 400}; the

mean and stdev of image intensities are respectively 720 and 185). Running a rank retrieval

analysis using these duplicates as target, we again obtained an MAP value of 1, for all tested

noise levels. As in the retest scan identification task, the number of local feature correspon-
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dences was higher with corrupted duplicates than with images of MZ twins. Compared to

retest scans, the number of feature correspondences was nearly half for corrupted duplicated,

suggesting that noise can reduce correspondences to some extent. Overall, the results of this

experiment demonstrate that our fingerprint can preserve brain characteristics over different

scans of a subject.

4.4.6.3 Local feature correspondence analysis

To understand the advantages and limitations of a BoF-based fingerprint compared to voxel-

wise or shape-based methods, we perform an in-depth analysis of local feature correspondences

between subjects. In order to compare our findings with those of related fingerprint studies like

Brainprint (Wachinger et al., 2015a), we limit our analysis to genetically-related subjects from

HCP and to structural MRI modalities. Other applications of BoF representations for neuro-

image analysis have been well studied in the literature (Toews et al., 2010; Toews and Wells,

2013; Toews et al., 2015).

We start with a qualitative visualization of pairwise feature correspondences between subjects

of different sibling types. The distribution of correspondences in these modalities is then ana-

lyzed using the segmentation maps (WM parcellation) files provided with HCP data. Further-

more, we also report cortical and subcortical regions having significantly different match dis-

tributions across sibling types, these regions having a closer relationship to genetic proximity.

Finally, we perform a lateral asymmetry analysis in which the distribution of correspondences

in hemispheres are compared. Since fMRI is not required for these analyses, we considered

all subjects in the HCP twin dataset having genetically verified labels (only 945 out of 1010

subjects have rfMRI netmats data), giving a total of 139 MZ pairs, 72 DZ pairs, and 1214 full

sibling pairs.
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T1w T2w FA

Figure 4.4 Example of feature correspondences for a subject and his/her MZ twin (rows

1-2), and the subject’s full sibling (FS) (rows 3-4). Scale space is represented using circle

radius (for the visible slice).

Scale-space visualization of features correspondences

Analyzing local feature correspondences between sibling pairs provides information in terms

of their location as well as scale. In 3D SIFT features, scale coincides with the variance of a
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Gaussian blur kernel for which the corresponding voxel in the blurred image is a local extrema

(Lowe, 2004, 1999). It thus corresponds to a certain degree with the size of structures in which

these features are located.

Figure 4.4 gives a scale-space visualization of features matched between a subject and his/her

MZ twin, as well as the subject’s non-twin (full) sibling, for T1w, T2w and FA images (See

Supplement material Figure 2 for DZ and non-twin (full) sibling). The scale information is

represented using the radius of circles. Note that circles represent the intersection of 3D spheres

with the visible slice and, thus, non-intersecting features are hidden in this 2D visualization.

It can be seen that different image modalities generally result in distinct, complementary fea-

ture correspondences throughout the brain. In T1w and T2w images, features are mainly lo-

cated in the frontal lobe, corpus callosum and cerebellum. Smaller-scale features are also vis-

ible along various cortical regions, as well as in subcortical structures near the basal ganglia.

Moreover, images based on diffusion measures have less correspondences than in structural

modalities. These correspondences are located mostly inside or near to white matter: larger-

scale features in the corpus-callosum, and smaller-scale ones in the brain stem and along white

matter bundles. The distribution of features in prominent brain regions is further analyzed in

the next section.

Comparing different sibling types, we see a greater number of correspondences between MZ

twins than between DZ twins or full siblings. This observation, which is easier to visualize in

T1w and T2w images, is consistent with other analyses on twin datasets. In terms of feature

location and scale, we observe a slightly higher number of correspondences in the frontal cortex

for MZ twins, however, no obvious pattern can be drawn from one set of representative plots.
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Region-wise analysis of feature correspondences

Here, we analyze the distribution of feature correspondences across atlas-defined neuroanatom-

ical regions, measured over the entire group of subjects. For each scan, segmentation labels

were obtained from the Freesurfer-processed data, using LUT table for label descriptions.

Figure 4.5 shows the box plot distributions of feature correspondences between pairs of MZ,

DZ and full siblings, for T1w and T2w images. Feature match counts are reported for five broad

regions: non-white matter subcortex (s-cort), left/right cortex (crtx-lh/rh) and left/right

white matter (wm-lh/rh). Note that mapping local features to a finer cortical parcellation is

difficult due to the limited thickness of the cortex. Subcortical regions are further analyzed

below.

Figure 4.5 Box plot comparison between MZ, DZ, and FS for pairwise feature

correspondence counts for T1w (left) and T2w (right) for major structures. Red, green

and blue correspond to MZ, DZ, and FS respectively.

Comparing across sibling types, we observe a higher number of feature correspondences for

MZ pairs across all five regions and both T1w and T2w modalities. This confirms once again

that the local features employed in our fingerprint captures brain characteristics related to ge-

netic proximity. Analyzing the region-wise distribution of feature correspondences, all five

regions are well represented. Since the number of local features in a region is proportional to
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its size, it is not surprising that the cortex has the least correspondences. Yet, such features

are also produced by intensity variations (i.e., edges), thus explaining why many correspon-

dences are found in the cortex. Finally, when comparing T1w and T2w modalities, we see

small differences in the match counts, however these are not statistically significant.

Table 4.5 Differences in feature match counts obtained for different sibling types in

various brain regions, using T1w and T2w. We report Holm–Bonferroni corrected

p-values (-log10 scale) measured using an unpaired t-test. Significant results with

corrected p-value < 0.01 are highlighted using bold font.

Label T1w T2w
MZ vs DZ MZ vs FS MZ vs DZ MZ vs FS

subcortical 29.31 50.31 26.06 39.41
Crtx-LH 22.85 35.17 23.37 38.87
Crtx-RH 21.48 39.76 25.38 37.73
WM-LH 37.64 62.83 27.88 47.38
WM-RH 23.38 36.80 21.88 32.62
L-Lat-Vent 5.84 11.34 5.31 7.50
R-Lat-Vent 4.21 10.72 3.99 7.57
L-VentralDC 1.49 6.06 5.16 2.98
R-VentralDC 0.45 0.60 0.00 0.01

R-Cerebellum-WM 3.98 15.40 0.00 0.57

L-Cerebellum-WM 4.82 11.11 2.33 6.55
R-Putamen 0.48 0.51 2.34 1.24

L-Putamen 0.87 0.35 0.06 0.30

L-Cerebellum-Crtx 5.74 6.26 5.58 13.81
L-Thalamus-Proper 2.71 4.03 0.37 0.01

4th-Ventricle 1.49 2.24 1.86 3.91
L-Hippocampus 3.23 3.76 4.61 5.85
CC-Anterior 1.83 0.51 0.40 0.71

R-Cerebellum-Crtx 5.96 11.93 3.38 7.57
3rd-Ventricle 0.45 0.51 0.37 0.43

To identify regions showing a strong relationship to genetic proximity, Table 4.5 gives the

p-values (-log10 scale) of an unpaired t-test comparing the mean number of correspondences

between subjects of a given sibling type versus another sibling type (e.g., MZ vs DZ). Signifi-

cance values are provided for the five major regions described above, as well for 15 prominent

subcortical structures matching the analysis by Wachinger et al. (Wachinger et al., 2015a). To
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account for multiple comparisons (i.e., one for each tested region), reported p-values have been

corrected using the Holm-Bonferroni procedure (Holm, 1979). Moreover, to account for age

and size bias in this analysis, we selected FS pairs with less than 3 years age difference, and

matched the number of FS pairs to MZ pairs using a simple bipartite matching based on age.

From Table 4.5, we observe significant differences between MZ twins and DZ-twins/full-

siblings (i.e., corrected p-value < 0.01), for all five major regions and for both T1w and

T2w images. In subcortical structures of T1w images, cerebellum white matter and cortex

(left and right), lateral ventricles (left and right), left hippocampus and left thalamus proper

have a significantly different number feature correspondences in MZ twins than in DZ twins

or FS subjects. Comparing results obtained with T1w and T2w, the same structures are signif-

icant across both modalities, differences in significance reflecting the complimentary of these

modalities.

Hemisphere asymmetry analysis

In our last experiment, we analyze the symmetry of feature match counts across brain hemi-

spheres, for major structures. Toward this goal, we considered only right-handed (RH) subjects,

and limited sibling pairs to subjects with same gender (i.e., a male and his brother, or a female

and her sister). For non-twin siblings, we also restricted our analysis to subject pairs with less

than 3 years of age difference.

Table 4.6 gives the results of two-sided unpaired t-tests comparing the feature match counts be-

tween cortical or white matter regions (Freesurfer LUT labels) in left- and right- hemispheres.

To analyze gender effects, we also report results individually for RH male siblings and RH

female siblings. Overall, we observe significant asymmetry in white matter regions (with cor-

rected p-value < 0.01) of MZ twins, the highest significance values obtained for T2w images.

No clear pattern is found across sibling types, although hemispherical differences are generally

higher in MZ twins than in DZ twins or full siblings. Likewise, no conclusion can be drawn
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Table 4.6 Hemisphere asymmetry analysis. For a given modality and twin type, we

compare feature match count differences across hemisphere for major structures.

Differences are reported as Holm–Bonferroni corrected p-values (-log10 scale) measured

using an unpaired t-test, significant results (corrected p-value < 0.01) highlighted using

bold font.

Modality Type RH Female RH Male RH Pairs
Crtx WM Crtx WM Crtx WM

T1w

MZ 0.95 1.20 0.15 2.57 0.87 2.73
DZ 1.05 0.78 0.35 0.99 1.12 0.06

FS 1.71 0.39 0.84 0.11 1.89 0.09

T2w

MZ 1.95 9.13 1.52 5.77 3.00 13.97
DZ 1.06 3.60 1.29 1.23 1.93 4.06
FS 1.04 1.22 1.23 5.35 1.90 5.84

when comparing results for male and female sibling pairs, with significance values varying

across different sibling types and modalities.

The asymmetry of function in the brain, for example the hemispheric specializations of lan-

guage and motor functions, has been extensively studied (Toga and Thompson, 2003). Simi-

larly, studies have analyzed anatomical brain asymmetries based on voxel-based morphometry,

sulci and other brain features (Wachinger et al., 2015a). The multi-modal and multi-region

analysis presented in this work extends previous studies of brain asymmetry in the literature

by considering sibling types. Accounting for various confounds, including gender, genetics,

handedness and age, this analysis has shown a greater asymmetry in feature correspondences

between MZ twins than DZ twins and full siblings, mostly found in white matter regions and

T2w images. Moreover, differences in asymmetry appear to be directional.

4.5 Discussion

In this section, we summarize the findings of this study and emphasize their link to previous

investigations. We also highlight its limitations and discuss additional considerations.
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Identification of genetically-related subjects

Our experiments on the task of identifying genetically-related subjects led to various useful ob-

servations. We established that the proposed fingerprint, generated from individual modalities

or their combination, respects the genetic relationships between siblings, with MZ twins being

more similar than DZ twins or full siblings (Peper et al., 2007; Thompson et al., 2013).

3D SIFT features (i.e., keypoints) coincide with the local extrema of a difference of Gaussians

function applied in scale space. These features typically lie in high-contrast regions of an

image, for instance due to the boundaries between white matter and grey matter (see Figure

4.4). More generally, these features represent blob-like structures of varying size and location,

which are robust and discriminative for finding correspondences across images. With respect to

a voxel-wise full image comparison, the proposed BoF-based fingerprint offers a more compact

representation of brain geometry, which is less sensitive to differences in image alignment and

contrast. Likewise, compared to standard morphological measures like cortical thickness or

sub-cortical region volume/area, our representation may capture a broader range of geometrical

brain characteristics, for example distinctive cortical folding patterns only present in a subset

of the population.

Analyzing the manifold approximation, we also showed that a discriminative fingerprint could

be obtained with only 150 spectral components (i.e., leading eigenvectors of the normalized ad-

jacency matrix of the subject proximity graph). When compared to a baseline using full images

as features, this compact fingerprint yielded significantly better performances, for all modali-

ties and sibling types. This illustrates the high efficiency of our fingerprint and its advantages

for comparing large groups of subjects. Moreover, while Laplacian eigenmaps were used to

embed the subject proximity graph, the proposed framework is generic and other approaches

(e.g., see (Bengio et al., 2013)) can be employed for this task.

The comparison of fingerprints obtained from structural MRI, diffusion MRI, and resting state

fMRI highlighted the informativeness and complementarity of these modalities. Among indi-
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vidual modalities, resting state fMRI based fingerprint performed best for DZ/FS identification

and had similar performance to FA/GFA for MZ twin identification. As mentioned in Finn et al.

(Finn et al., 2015), this could be due to the discriminative power of connectivity profiles, which

is a result of integrating imaging data over a relatively long period of time (4800 volumes, and

4 runs of 15 minutes each). The inter-individual variability reflected by the connectivity profile

(rfMRI netmat) is dominated by the spatial topography (spatial variability in the location of

functional regions across individuals) rather than the coupling strength. We refer readers to the

work of Bijsterbosch et al. (Bijsterbosch et al., 2018) to understand the specific contribution

of functional coupling and spatial topography in rfMRI netmats. Moreover, while the MAP

values for FA/GFA are similar to rfMRI based MZ twin identification, mean recall@10 and

relative identification % showed that FA performs slightly better than rfMRI (2.54% unique

MZ pair identification as opposed to 0.84% pairs).

Comparing structural and diffusion MRI modalities, we found fingerprints based on FA/GFA to

outperform those derived from T1w or T2w. We hypothesize this is caused by the pronounced

contrast/magnitude changes in FA maps occurring at the boundary between grey matter and

white matter (e.g., endpoints of fiber bundles). As shown qualitatively in Figure 4.4, this leads

to a more evenly-distributed set of feature matches.

Another interesting observation is the higher MAP values obtained for the identification of

DZ twins compared to full siblings, although both sibling types have the same genetic simi-

larity. In Supplemental material Table 1, this difference is found to be significant for several

modality combinations (e.g., T1w+T2w+FA+rfMRI, p-value < 0.001). While our experiments

accounted for group size and age differences by matching DZ subject pairs with FS pairs hav-

ing the smallest age differences (one to three years difference), remaining age differences may

explain this observation. Further investigation is however required to fully validate this hy-

pothesis.
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This work is motivated by the recent increase in multi-modal brain studies. For instance, multi-

modal MRI has been shown useful for the analysis of neurodegenrative disorders (Calhoun and

Sui, 2016) as well as for identifying subjects with schizophrenia (Sui et al., 2014). Results of

this study demonstrate the usefulness of combining multiple modalities in a brain fingerprint.

The improvements due to multi-modal combination, for all the twin/sibling types, can be at-

tributed to more comprehensive characterization considering structure, white matter architec-

ture, and functional connectivity. Thus, better performances were obtained with a combined

set of modalities than with these modalities alone. Our results are consistent with previous

studies underlining the benefit of a multi-modal fusion (Calhoun and Sui, 2016; Groves et al.,

2012). As a note, we have focused on major observations only, the comprehensive analysis is

open to various other observations including comparison of DTI vs GQI measures, inclusion

of T1w-by-T2w MRI ratio images, FreeSurfer measures based identification, etc.

Applicability of the proposed fingerprint

Our factor impact analysis demonstrated the robustness of the proposed fingerprint to the non-

alignment of images. Since image alignment is key for most population level analysis (Dubois

and Adolphs, 2016), by alleviating this requirement, the proposed fingerprint may help save

computational costs and avoids errors introduced during alignment. Experiments have also

shown that scan resolution (from 0.7mm to 1.25mm) does not have a significant impact on

results, although using lower resolution images reduces the number detected features. Data

acquired from multiple sites or scanners often need to be brought to same resolution, intro-

ducing small errors during interpolation and re-sampling. The proposed fingerprint may thus

be of help for multi-site studies, and pave the way to resolution-independent analyses. Lastly,

using retest scans led to no significant changes in results, further validating the robustness of

our fingerprint to image acquisition. However, a detailed longitudinal analysis with longer

between-scan times would be required to fully confirm this claim.
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The proposed rank retrieval analysis based on MAP provides a principled approach for com-

paring different brain fingerprints, which could be utilized in future studies. In this work, we

used the proposed fingerprint to find incorrectly reported zygosity labels and identify retest/du-

plicate scans of the same subjects. Hence, our fingerprint could serve as efficient and reliable

tool for detecting inconsistent information in large cohorts. Another potential application could

be to provide physicians with related cases in clinical settings like MCI diagnostic assistance

(Gao et al., 2015).

While various twin studies have analyzed genetic influences based on volume, cortical thick-

ness, surface area, and morphometry (Wachinger et al., 2015a), this is the first work to use

local features and manifold approximation for this problem. Analyzing the distribution of fea-

tures correspondences across brain regions, in images of different modalities, reveals many

interesting insights. Results identify various neuroanatomical regions (e.g., cerebellum, lateral

ventricles, ventral diencephalon, hippocampus and thalamus proper) having significantly dif-

ferent match counts in MZ twins than DZ twins or full siblings. These findings relate to those

reported in (Wachinger et al., 2015a), which were obtained on a different dataset (mean subject

of age of 56 years, compared to a median of 29 years in the HCP dataset). Another key aspect

of our analysis is the size of the subject cohort, larger than that of related studies (Peper et al.,

2007).

Additional considerations

In this work, we used a rank retrieval analysis to evaluate the relation between fingerprint

similarity and genetic proximity. Mean recall@k and mean average precision (MAP) were em-

ployed to measure sensitivity, specificity, and relative informativeness of fingerprints generated

from different modality combinations. However, estimating heritability directly, for instance

using the approach described in (Ge et al., 2016), would provide a better quantification of ge-

netic influence on fingerprint features. In (Elliott et al., 2017), Elliott et al. considered the

data of over 8, 000 from the UK Bio-bank (Sudlow et al., 2015) to determine the heritability of
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multi-modal brain imaging phenotypes. Similarly, Colclough et al. report in (Colclough et al.,

2017) the heritability of multi-modal functional connectivity profiles using 800 HCP subjects.

An extensive analysis is required to asses the heritability of the proposed fingerprint and relate

our findings to those in these recent studies.

Moreover, when building the subject proximity graph, we assumed the independence of feature

correspondences across modalities. However, a deeper analysis could be carried out to inves-

tigate false feature correspondences and correlation between features correspondences across

modality. As mentioned before, other manifold embedding methods like Locally Linear Em-

bedding (LLE) (Roweis and Saul, 2000) could also be employed for this step.

In this study we analyzed data from sMRI, dMRI and rfMRI. However, the proposed frame-

work is generic and could be extended to other modalities like task-fMRI, PET-MRI and

quantitative T1/T2 maps. Finally, this study focused on comparing and combining different

modalities for identifying genetically-related subjects, misreported zygosity labels and dupli-

cate/restest scans. An interesting extension of this work would to be to assess whether our

fingerprint can be used as a biomarker to identify subjects with cognitive or neurological dis-

orders. Publicly available data, for instance from the ADNI dataset (Toews et al., 2010) or

Parkinson’s Progression Markers Initiative (PPMI) dataset (Marek et al., 2011), could be used

for this analysis.

4.6 Conclusion

We presented a brain fingerprint, based on manifold approximation, for the multi-modal anal-

ysis of genetically-related subjects. In a rank retrieval analysis, mean recall@k and mean

average precision were used to measure the relation between fingerprint similarity and ge-

netic proximity, as well as the contribution/complementarity of information from different

MRI modalities. Results indicated that a compact fingerprint of only 150 features could iden-

tify genetically-related subjects better than a baseline using full images as features. Our ex-

periments also showed that each modality provides complementary information which can
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uniquely identify some sibling pairs. Furthermore, we demonstrated the benefit of consider-

ing multiple modalities in the fingerprint, combined modalities leading to a better performance

than considering these modalities separately. Moreover, our analysis demonstrated the robust-

ness of the proposed fingerprint to various factors, including image alignment, scan resolution

and subject age. The reproducibility of results was also confirmed using retest scans from the

HCP dataset, showing our fingerprint to be robust to variability in image acquisition.

The usefulness of our fingerprint was assessed on the tasks of identifying incorrectly reported

zygosity and retest/duplicate scans in large dataset. Results of this experiment highlighted the

effectiveness of our fingerprint, with MAP values near 100% for all test cases. Moreover, an-

alyzing the distribution of features correspondences across the brain revealed neuroanatomical

regions (e.g., cerebellum, lateral ventricles, ventral diencephalon, hippocampus and thalamus

proper) with significantly different match counts in MZ twins compared to DZ twins or full

siblings. This work could be extended by further investigating the differences, in terms of fea-

ture location and similarity, between dizygotic twins and non-twin siblings. A deeper analysis

of aging effects could also be performed, for instance, using longitudinal data. Such analysis

would help understand the effect of neuroplasticity on individual brain characteristics.

4.7 Supplement results

4.7.1 Mean Average Precision results

4.7.1.1 Significance testing across twin/sibling types

Table 4.7 reports the unpaired t-test results for twin/sibling vs twin/sibling comparisons for

individual modalities or multi-modal combinations using average precision values. For this

analysis, the samples sizes are matched using simple bipartite matching, for each comparison

(number of MZ pairs and FS pairs are matched to DZ pairs), based on age, and are fixed across

modalities.
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Table 4.7 Significance testing across twin/sibling types for a given modality, using the

distribution of average precision (AveP) values obtained for the the task of twin/sibling

identification. We report -log10 p-values for unpaired t-test for MZvsDZ, MZvsFS, and

DZvsFS for each modality. Note the samples sizes are matched for each comparison

(number of MZ pairs and FS pairs are matched to DZ pairs) based on age, and are fixed

across modalities. p-values ≤ 0.01 are in bold.

Experiment Modality Significance
MZ vs DZ MZ vs FS DZ vs FS

sMRI
T1w 51.63 57.14 0.30
T2w 43.72 72.73 2.68

dMRI

FA 56.56 69.82 1.14
MD 48.54 50.56 0.38
GFA 47.14 66.66 1.27

rfMRI netmat 34.32 47.08 1.26

Modality

Combination

T1w+T2w 41.55 77.29 3.06
T1w+FA 45.46 58.03 1.50
FA+MD 48.01 58.55 1.00
T1w+rfMRI 27.86 43.21 2.93
FA+rfMRI 26.41 41.69 2.57
T1w+T2w+DTI 36.50 50.19 3.09
T1w+T2w+FA+rfMRI 24.39 37.86 3.70

Skull Impact
T1w Skull 41.72 53.70 1.51
T2w Skull 37.98 65.90 2.86

Alignment Impact
T1w MNI 62.52 64.75 0.41
T2w MNI 44.29 51.40 0.89

Resolution Impact
T1w 1.25mm 48.45 54.77 1.60
T2w 1.25mm 50.29 61.66 1.22

Baseline Comparison

T1w 26.92 29.65 0.98
T2w 19.22 22.22 1.51
FA 40.26 42.93 1.35
Vol+Thck+Area 40.54 49.54 1.36

Retest set

T1w 65.07 70.14 0.33
T2w 50.88 81.68 2.22
FA 47.37 68.56 1.91

Random Rand 0.08 0.11 0.02

We observe that the average precision values for mono zygotic twins are statistically significant

compared to di-zygotic twins or full siblings. Comparing di-zygotic twins and full siblings,

we observe that in general for single modalities they are not statistically significant and for

multi-modal combinations they are statistically significant. Since DZ and FS pairs differ in
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terms of age (DZ pair subjects have same age, while FA pair subjects may have different age

also) and to some extent shared environment (due to age difference). The observed change in

statistical significance from single to multi-modal combination could be due to complimentary

information provided by additional modalities enhancing the differences also (in addition to

increasing the similarities within pairs as reflected by increased MAP values).

4.7.1.2 Significance testing: Modality vs Modality comparisons

Table 4.8 reports significance results (-log10 p-values) for modality vs modality comparisons,

for a given sibling type, based on the average precision values. The results support the observa-

tions drawn from MAP values and mean recall@k plots. In general, multi-modal combinations

lead to better non-twin sibling identification as compared to improvements in other sibling

types. For example, comparing T1w vs T1w+FA, we observe that average precision values

for non-twin identification are statistically significant for all three sibling types, with highest

improvement for non-twin siblings (-log10 p-value = 9.83).

4.7.1.3 DTI vs HARDI dMRI measures

Table 4.9 compares the performance of Diffusion Tensor Imaging (DTI) (Alexander et al.,

2007) and Generalized Q-Ball Imaging (GQI) (Yeh et al., 2010) based indices obtained in na-

tive space (skull stripped) for the task of genetically related subject identification. Four widely

used DTI based measures were extracted to characterize white matter micro-structure: frac-

tional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD) and radial diffusivity

(RD). The interpretation of these measures are discussed in (Alexander et al., 2007). Utilizing

the high angular resolution of HCP data, following GQI (Yeh et al., 2010) based measures were

also extracted: Generalized Fractional Anisotropy (GFA), Quantitative Anisotropy (QA), Nor-

malized Quantitative Anisotropy (NQA0), isotropic component of the ODF (ISO), Restricted

Diffusion Imaging (RDI), and Non-Restricted Diffusion Imaging (NRDI). GFA extends the

standard FA measure to orientation distribution functions (ODF) based on spherical harmon-
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Table 4.8 Modality vs modality comparison and contrast. Comparisons between two

modalities (or their combinations), for a given sibling type, for the task of identification of

a given sibling type. -log10 p-values are reported for unpaired t-test performed using the

distribution of average precision values. p-values ≤ 0.01 are in bold. (All MRI=

T1w+T2w+FA+rfMRI)

Experiment Modality vs Modality Significance
MZ DZ FS

Single

T1w v T2w 0.43 0.66 1.01
T1w v FA 3.64 0.85 2.18
T1w v rfMRI 3.92 4.60 9.12
FA v rfMRI 0.12 2.45 3.20
FA v GFA 0.12 0.14 0.02
FA v MD 9.36 2.47 11.05

Modality

Combination

T1w v T1w+T2w 4.27 2.29 5.42
T1w v T1w+FA 5.23 2.27 9.94
FA v T1w+FA 0.52 0.79 3.73
FA v FA+MD 0.55 0.47 2.47
T1w v All MRI 8.37 15.48 62.20
T2w v All MRI 6.45 10.91 72.99
FA v All MRI 2.69 11.46 44.24
rfMRI v All MRI 1.98 3.96 26.36

Skull Impact
T1w v T1w Skull 7.25 3.04 14.24
T2w v T2w Skull 3.93 1.38 5.38

Alignment Impact
T1w v T1w MNI 0.69 1.54 2.02
T2w v T2w MNI 2.57 0.96 0.01

Resolution Impact
T1w v T1w 1.25mm 1.26 0.32 0.31
T2w v T2w 1.25mm 0.63 0.46 1.31

Baseline Comparison

T1w v Base 11.10 1.91 15.46
T2w v Base 26.38 4.10 16.71
FA v Base 16.88 4.49 27.09
T1w v VTA FreeSurfer 2.57 0.12 1.43

Retest set

T1w v T1w Retest 0.62 0.28 0.07
T2w v T2w Retest 0.16 0.00 0.09
FA v FA Retest 0.67 0.37 0.08

ics. NQA is a scaled version of quantitative anisotropy, which is calculated from the peak

orientations on a spin distribution function (SDF). More information about these measures can

be found in (Yeh et al., 2010) and DSI studio documentation 6. The reconstruction was per-

formed using DSI studio toolbox. DTI reconstruction option was used for computing: FA,

6http://dsi-studio.labsolver.org/Manual/Reconstruction
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Table 4.9 Mean average precision (MAP) table comparing diffusion MRI based

measures: DTI and GQI based indices (native space) for the task of genetically related

subject identification.

Experiment Modality Mean Avg Prec
MZ DZ FS

DTI

FA 0.964 0.219 0.160
AD 0.701 0.112 0.083
MD 0.803 0.114 0.086
RD 0.840 0.141 0.113

DTI Combination
FA+MD 0.978 0.259 0.198
FA+MD+RD+AD 0.971 0.332 0.232

GQI

GFA 0.968 0.234 0.161
QA 0.929 0.165 0.141
NQA 0.899 0.177 0.152
ISO 0.820 0.113 0.103
RDI 0.828 0.147 0.138
NRDI 0.856 0.165 0.108

GQI Combination GFA+NQA+RDI 0.991 0.333 0.258

MD, RD, and AD. While GFA, QA, NQA, ISO, RDI (rdi02L), and NRDI (nrdi02L) were

computed using GQI reconstruction option. “rdi02L” quantified the restricted diffusion within

“0.2 L”, where L is the diffusion distance. “nrdi02” quantifies non-restricted diffusion with

displacement greater than “0.2 L”.

Overall we observe that, first, FA and GFA perform best among DTI and GQI measures re-

spectively. Second, comparing across DTI and GQI, GFA perfroms better than FA, this could

be due to the fact that GFA is generalization of FA to high angular resolution data. Third,

combination of DTI or GQI measures perform better than individual measures with GQI com-

bination reaching highest MAP values. Various other observations can be drawn from Table

4.9, for example, NRDI performs better than RDI, and RD performs better than MD and AD.

4.7.1.4 rfMRI network matrices as fingerprints

Table 4.10 reports mean average precision results for functional connectivity profiles as fin-

gerprints. We use the netmats provided on HCP website, and compare the performance across
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correlation (full vs partial) and node sizes, for the task of identification of genetically related

subjects. Similar to the analysis reported in Finn et al. (Finn et al., 2015), we use the Pearson

Correlation to compute similarity between subjects’ netmats. The pairwise similarity matrix

serves as subject proximity graph.

Table 4.10 Functional Connectivity Profiles as fingerprint: Impact of Nodes and

correlation. Mean average precision (MAP) table comparing resting state fMRI network

matrices (netmats) for the task of genetically related subject identification. Manifold

approximation is obtained in the form of a subject proximity graph by computing

similarity between netmats using the Pearson Correlation (Finn et al., 2015).

Experiment Modality Mean Avg Prec
MZ DZ FS

rfMRI full corr

ICA 15 0.349 0.084 0.040
ICA 25 0.470 0.091 0.045
ICA 50 0.597 0.115 0.060
ICA 100 0.706 0.141 0.082
ICA 200 0.779 0.183 0.106
ICA 300 0.824 0.241 0.116

rfMRI partial corr

ICA 15 0.462 0.057 0.045
ICA 25 0.645 0.098 0.070
ICA 50 0.859 0.242 0.128
ICA 100 0.968 0.352 0.205
ICA 200 0.968 0.340 0.205
ICA 300 0.869 0.179 0.117

We draw following major observations: first, partial correlation netmats works better than full

correlation netmats. Second, compared to small number of nodes (15 and 25), high resolution

parcellations (more nodes) give better MAP values (Finn et al., 2015). Third, for partial corre-

lation netmats, we observe a peak in mean average precision around 100 nodes. The maximum

of MAP values around 100 nodes could reflect that increasing nodes doesn’t necessarily add

additional information and may be adding noise to individual profiles. We have used rfMRI

netmats based on partial correlation and 100 ICA nodes in this work.
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4.7.1.5 FreeSurfer derived measures as fingerprint

Table 4.11 shows the MAP values obtained in a rank retrieval of three different siblings types

(MZ, DZ and FS), using fingerprints generated from FreeSurfer measures. We use the unre-

stricted csv file and consider volume of sub-cortical structures, thickness and area measures for

cortical parcellations. Each of the measures are converted to zscore across subjects, and then

used as a fingerprint (volume measures are ICV corrected by first dividing by ICV). Subject

proximity graph is approximated by computing the pairwise Pearson correlation.

Table 4.11 Freesurfer derived measures as fingerprint. Mean average precision (MAP)

table comparing freesurfer derived measures: Vol, Thck, Area, Vol+Thck+Area as

fingerprints for the task of genetically related subject identification. The measures are

obtained from the csv file provided by HCP (each measure converted to zscore

column-wise i.e. across subjects, and NxN subject proximity graph computed using

pairwise Pearson correlation, Vol measures are ICV corrected.)

Experiment Modality Mean Avg Prec
MZ DZ FS

Fressurfer Meas

Vol 0.654 0.116 0.068
Thck 0.356 0.085 0.053
Area 0.367 0.126 0.062
Vol+Thck+Area 0.795 0.172 0.106

We observe the MAP values follow a similar trend as reported for proposed fingerprints, with

MZ twins having higher values as compared to DZ or FS. Comparing across measures, sub-

cortical volumes show a better performance when compared to cortical thickness or area mea-

sures. However, the combination of Volume, Thickness and Area measures is most discrimi-

native.

4.7.1.6 Comparison of sibling types: FS, MHS, PHS

Table 4.12 shows MAP values for the task of identification of sibling types. We report results

for 546 full-sibling (FS) pairs, 39 maternal half sibling (MHS) pairs, and 5 paternal half sibling

(PHS) pairs. While the MAP values are higher than the Random ordering based identification,
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Table 4.12 Non-twin sibling comparison. Mean average precision (MAP) table

comparing different modalities for the task of non-twin sibling identification (full-siblings

(FS), maternal half-siblings (MHS), paternal half-siblings(PHS)).

Experiment Modality Mean Avg Prec
FS MHS PHS

sMRI
T1w 0.128 0.008 0.051
T2w 0.111 0.022 0.053

dMRI

FA 0.160 0.015 0.131
MD 0.086 0.041 0.178
GFA 0.161 0.020 0.231

rfMRI netmat 0.205 0.063 0.037

Modality

Combination

(1.25mm)

T1w+T2w 0.183 0.012 0.132
T1w+FA 0.210 0.015 0.237
FA+MD 0.198 0.044 0.270
T1w+rfMRI 0.279 0.059 0.054
FA+rfMRI 0.301 0.058 0.168
T1w+T2w+DTI 0.270 0.072 0.439
T1w+T2w+FA+rfMRI 0.371 0.066 0.350

Random Rand 0.006 0.004 0.005

Table 4.13 Relative informativeness of fingerprints from two modalities. Percentage of

full sibling (FS) identification for two modalities. Total number of identification tasks is

1092. We consider 10 nearest neighbors, and if the sibling (one for a given task) is

identified within these neighbors, identification is considered a success (among 944
subjects). (All MRI= T1w+T2w+FA+rfMRI)

Mod1 vs Mod2 Identification %
Both Mod1 Mod2 None

T1w vs T2w 9.07 15.75 12.55 62.64
T1w vs FA 12.09 12.73 18.59 56.59
T1w vs rfMRI 11.36 13.46 25.55 49.63
FA vs rfMRI 12.91 17.77 23.99 45.33
FA vs MD 8.24 22.44 7.88 61.45
T1w vs All MRI 19.41 5.40 40.84 34.34
T2w vs All MRI 16.67 4.95 43.59 34.80
FA vs All MRI 25.64 5.04 34.62 34.71
rfMRI vs All MRI 34.89 2.01 25.37 37.73

due to small sample size, specifically for PHS, it could be difficult to draw major inferences.

Still we observe that similar to identification of genetically related subjects the multi-modal
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combinations have higher MAP values. Also, FS identification results are higher than MHS,

while PHS results seems to be better than MHS, but it could be due to limited sample size.

4.7.2 Relative informativeness of fingerprints

To compare relative informativeness of one modality vs another for full-siblings, Table 4.13

reports the relative percentage of full-siblings identified by both, a single, or none of the modal-

ities. The total number of identification tasks is 1092. We consider k = 10 nearest neighbors

of a subject in terms of fingerprint distance. While comparing single modalities we observe

that each modality identifies certain (relative) percentage of full-siblings, with rfMRI perform-

ing relatively better than both T1w and FA. As with the MAP results, we see that combining

multiple modalities leads to more discriminative fingerprints for full siblings also. For exam-

ple, combination of all MRI modalities (All MRI= T1w+T2w+FA+rfMRI) identifies 40.84%,

43.59%, 34.62%, and 25.37% of full siblings not identified (relative) from fingerprints based

only on T1w, T2w, FA, and rfMRI respectively. Please note, each row represents relative per-

centages.

4.7.3 Mean recall@k results

4.7.3.1 Mean recall@k plots

Figure 4.6 shows mean recall@k, for k = 1, . . . , 50. This measure, also known as sensitivity,

evaluates the proportion of individuals that are genetically related to a given subject, which

are within the k individuals most similar to that subject (in terms of fingerprint distance). To

account for chance, we provide the mean recall@k values obtained using a random ranking

of subjects. We compare different MRI modalities (top row), structural MRI based modalities

(second row), diffusion MRI based DTI measures (third row) and GQI measures (fourth row),

and reproducibility (last row).
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MZ DZ FS

Figure 4.6 Twin/Sibling identification. Mean recall@k plots for MZ,DZ and

full-siblings (FS). Plots for comparisons across modalities (top row); sMRI comparisons

(second row); dMRI DTI comparisons (third row); dMRI GQI comparisons (fourth row);

and reproducibility (last row). Mean recall@50 for random ranking of subjects are:

MZ-0.063 ; DZ-0.056 ; FA-0.055. Note: y-axis represents mean recall@k, and it’s range

is varied for plots for better visualization. (All MRI= T1w+T2w+FA+rfMRI)

The results substantiate the observations drawn using Mean Average Precision and provide

more detailed information on changes in sensitivity with increasing k. For example, multi-

modality combination (All MRI = T1w+T2w+FA+rfMRI) achieves mean recall values of 0.818
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for k = 10, and 0.944 for k = 50. Similarly, for full sibling we obtain mean recall values of

0.603 for k = 10, and 0.786 for k = 50.

4.7.3.2 Fingerprint comparisons using mean recall@10

Table 4.14 compares various fingerprints including Fiberprint (Kumar et al., 2017b), func-

tional connectivity based fingerprint (rfMRI netmat), Freesurfer measures based fingerprint,

and proposed BoF and multi-modal fingerprints using mean recall@10. The results reflect

the improvement provided by multi-modal combination, with T1w+T2w+FA+rfMRI reaching

mean recall of 100% for MZ, 81.7% for DZ, and 60.3% for full siblings. The observations are

in line with the Mean Average Precision values while providing another standard measure for

comparing various fingerprints. Comparing Fiberprint which captures fiber geometry, a very

specific information about brain connectivity, we observe that it performs poor w.r.t finger-

prints capturing richer information and over multiple scans (e.g. rfMRI captures information

over several minutes).

Table 4.14 Comparison across fingerprints. Mean recall@10 values. Note: the data size

and processing may vary across the fingerprints, however, the values are on HCP data

with more than 850 subjects in each case, thus providing an approximate comparison.

Experiment Fingerprint Mean Recall@10
MZ DZ FS

Single

Fiberprint 0.500 0.213 0.063
rfMRI netmat 0.975 0.524 0.369
FA BoF 0.992 0.421 0.307
T1w BoF 0.958 0.262 0.248
T2w BoF 0.966 0.317 0.216
T1w Baseline 0.748 0.135 0.088

Combination

T1w+T2w+FA 1.000 0.579 0.429
T1w+T2w+DTI 1.000 0.683 0.469
T1w+T2w+FA+rfMRI 1.000 0.818 0.603

Fressurfer Meas

Vol 0.819 0.246 0.147
Thck 0.567 0.135 0.099
Area 0.588 0.238 0.135
Vol+Thck+Area 0.882 0.325 0.196

Random Rand 0.021 0.032 0.015



178

4.7.4 Impact of age

Table 4.15 reports results for the task of genetically related subject identification (MAP values)

and significance testing, after dividing twins/siblings into two groups based on median age

(MZ/DZ) or median age difference (full siblings).

Table 4.15 Impact of age along with significance testing (right half of the table, with

corresponding hypothesis in last columns). Mean avg precision (MAP) table comparing

different modalities for the task of genetically-related subject identification, with MZ/DZ

divided into 2 groups based on median age of 29, and FS divided into 2 groups based on

median age difference of 3 years. In both case, set1 correspond to sibling pairs with age

(difference) below or equal to the median, and set2 to those above the median. Right side

shows -log10 p-values for unpaired t-test, with p-values < 0.01 in bold font.

Modality Mean Avg Prec Significance Hypothesis
MZ DZ FS MZ DZ FS

T1w 0.886 0.160 0.128 0.63 0.31 0.07 set1 vs set2

Age set1 0.908 0.177 0.130 0.32 0.15 0.04 T1w vs set1

Age set2 0.865 0.140 0.127 0.30 0.17 0.04 T1w vs set2

T2w 0.908 0.212 0.111 0.79 0.12 0.47 set1 vs set2

Age set1 0.932 0.203 0.117 0.41 0.06 0.22 T2w vs set1

Age set2 0.885 0.223 0.104 0.36 0.07 0.25 T2w vs set2

FA 0.964 0.219 0.160 0.60 0.59 2.64 set1 vs set2

Age set1 0.976 0.248 0.186 0.31 0.26 1.01 FA vs set1

Age set2 0.952 0.183 0.132 0.28 0.32 1.21 FA vs set2

4.7.5 Extension to T1w-by-T2w ratio images (myelin content)

We extend our analysis to T1w-by-T2w ratio images (provided with HCP data), which provides

an estimate of myelin content. For comparison we use T1w and T2w images with skull. Table

4.16 reports the MAP values comparing different modalities for the task of genetically related

subject identification. We observe lower MAP values for T1w-by-T2w, compared to T1w Skull

or T2w Skull. Also, the combination of T1w,T2w and T1w-by-T2w (with skull) outperforms

single modalities. This analysis, while including myelin content information, validates our

multi-modal combination hypothesis in a separate setting (skull included).
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Table 4.16 Impact of skull inclusion and extension to T1w/T2w MRI ratio images

(myelin content). Mean average precision (MAP) table comparing different modalities for

the task of genetically related subject identification. Facial features are not analyzed, and

all modalities have 0.7mm scan resolution.

Experiment Modality Mean Avg Prec
MZ DZ FS

sMRI
T1w 0.990 0.305 0.230
T2w 0.980 0.310 0.164

Myelin T1w-by-T2w 0.883 0.154 0.079
Baseline Comparison T1w MNI 0.615 0.123 0.050

Modality

Combination

T1w+T2w 0.998 0.445 0.285
T1w+T1w-by-T2w 1.000 0.363 0.250
T1w+T2w+T1w-by-T2w 1.000 0.468 0.300

Random Rand 0.005 0.003 0.007

4.7.6 Scale-space visualization of features correspondences

Figure 4.7 shows features correspondences for a subject and his/her DZ twin, and with another

non-twin (full) sibling. The scale information is represented using the circles’ radius.

T1w T2w FA

Figure 4.7 Example of feature correspondences for a subject and his/her DZ twin (top

row), and the subject’s non-twin sibling (FS) (bottom row). Scale space is represented

using circle radius (for the visible slice).
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CHAPTER 5

CONCLUSION

“Important thing in science is not so

much to obtain new facts as to discover

new ways of thinking about them”

Sir William Bragg

This last chapter provides a summary of the thesis’ contributions and recommendations for

addressing the limitations of this work.

5.1 Summary of contributions

In Chapter 2, we proposed a general framework based on kernel dictionary learning and spar-

sity priors for white matter fiber analysis. The proposed framework uses an implicit embedding

of streamlines and thus can be employed with any fiber similarity measure or computational

models for fiber representation. Dictionary bundles are encoded as a combination of training

streamlines and kernels are used to model the non-linear relationships between streamlines and

bundles. Comparisons against a variety of state-of-the-art streamline clustering approaches

using expert-labeled data, as well as subjects from the HCP and MIDAS dataset, demonstrate

the usefulness of having a soft assignment. Results also show that our framework is suitable

for scenarios where streamlines are not clearly separated, bundles overlap, or when there is

important inter-individual variability. Furthermore, experiments indicate that using group spar-

sity and manifold regularization priors improves clustering by adding robustness to the input

number of clusters and incorporating anatomical constraints. The benefits of the proposed ap-

proach in cases of inter-individual variability were showcased for the automated segmentation

of streamlines from new subjects.
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Impact: The findings of this chapter has the potential to impact neuroscience studies on dif-

fusion tractography analysis, as well as pattern recognition applications requiring the unsu-

pervised clustering of 3D curves. The proposed streamline segmentation framework extends

current approaches by addressing the many challenges related to this task, including streamline

length and inter-subject variability. It also offers a flexible way to encode various properties of

white matter, such as anatomical priors and microstructure information.

Chapter 3, presented a novel brain fingerprint, called Fiberprint, for the compact characteri-

zation of white matter fiber geometry. The proposed fingerprint measures the fiber trajectory

density along specific bundles, which are defined using dictionary learning. Experiments using

the dMRI data of 861 subjects from the HCP dataset were conducted to evaluate the impact of

our method’s parameters, to demonstrate that the proposed fingerprint can be used to identify

subjects, pairs of twins, or non-twin siblings, and to find bundles showing significant differ-

ences across various subject groups. Our results show that a fingerprint capable of uniquely

identifying subjects can be obtained using only a limited number of streamlines sampled across

the brain. Moreover, such a fingerprint is robust to parameters related to fiber tracking, dictio-

nary learning, and sparse code pooling. Experiments on the identification of genetically-related

subjects demonstrate that the proposed fingerprint can correctly retrieve instances belonging to

a given subject and that the fingerprint encodes information related to genetics.

Impact: The proposed fingerprint is the first to characterize individual differences in white

matter fiber geometry. It offers a powerful technique to explore individual differences in terms

of white matter connectivity and its relationship to genetics. By including along-tract infor-

mation on microstructure, it could also be used to define novel biomarkers for detecting and

tracking the progression of neurological diseases like Parkinson’s.

Finally, Chapter 4 proposes a first multi-modal brain fingerprint, that combines T1/T2-weighted

MRI, diffusion MRI, and resting state fMRI for the compact characterization of individual sub-

jects. A comprehensive analysis using multi-modal data from 945 HCP subjects demonstrated
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the computational efficiency of the proposed fingerprint, as well as its robustness to various

factors including image alignment, scan resolution, and subject age. The reproducibility of the

results was also confirmed using retest scans from the HCP dataset, showing our fingerprint to

be robust to variability in image acquisition. Furthermore, the retrieval analysis presented in

the chapter indicated that a compact fingerprint of only 150 features could identify genetically-

related subjects better than a baseline using full images as features. Results also showed that

each modality provides complementary information which can uniquely identify some sibling

pairs. The usefulness of our fingerprint was assessed on the tasks of identifying incorrectly

reported zygosity and retest/duplicate scans in a large dataset. Results of this experiment high-

lighted the effectiveness of our fingerprint, with 100% retrieval performance for all test cases.

Finally, analyzing the distribution of features correspondences across the brain revealed various

neuroanatomical regions (e.g., cerebellum, lateral ventricles, ventral diencephalon, hippocam-

pus and thalamus proper) with a significantly higher similarity in MZ twins compared to DZ

twins or full siblings.

Impact: This work constitutes the first study to compare and contrast the contribution of in-

dividual modalities towards fingerprint generation. As such, it lays the foundation for future

analyses of brain differences in multi-modal MRI. It can thus lead to new insights on the vari-

ability of both brain structure and function, which could contribute to the development of

personalized treatment strategies.

5.2 Limitations and recommendations

Partial volume effects and other tractography-related effects (Maier-Hein et al., 2017), such as

fiber tracking or registration errors, could impact the evaluation of our streamline clustering

methods and the proposed Fiberprint. Moreover, as highlighted in (Jones et al., 2013), caution

must be used when interpreting results obtained from diffusion MRI. For instance, since there

is no gold standard for calibrating DWI measures, the reliability of tractography outputs cannot

be evaluated. However, these factors are in part minimized by the large number of subjects used
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in our study (i.e., 851 subjects), the pre-processing done by the HCP pipeline and the QSDR

signal reconstruction approach (Maier-Hein et al., 2017; Yeh and Tseng, 2011).

One of the main advantages of the proposed kernel-based framework (as well as Fiberprint) is

that it alleviates the need for an explicit streamline representation. Previous attempts at utilizing

dictionary learning and sparse coding for streamline clustering might have been hindered by

this. Employing kernels also provides flexibility and enables the extension to other streamline

similarity measures, which can incorporate a richer set of characteristics such as along-tract

diffusivity (Kumar et al., 2017d; Charon and Trouvé, 2013; Charlier et al., 2014).

Another key element of our study is the anatomical interpretation of clustering results. The

streamlines generated from diffusion tractography provide a macro-scale inference of the un-

derlying fibers (Jones et al., 2013; Maier-Hein et al., 2017). As such, the clustering and

Fiberprint for a given distance/similarity measure focuses primarily on the geometric aspect

of streamlines. Although we considered end-points proximity in our manifold regularization

prior, additional information such as structural or functional parcellation could be incorporated

to improve the anatomic plausibility of the final clustering and Fiberprint (O’Donnell et al.,

2013; Siless et al., 2018).

Another limitation of the proposed streamline clustering methods stems from their optimiza-

tion techniques, which are based on the ADMM algorithm. While ADMM facilitates solving

a complex problem (e.g., combining several regularization terms) through a process of decom-

position, its convergence rate is below that of other optimization approaches. An alternative

could be to use techniques based on accelerated gradient descent (Nesterov et al., 2007) like

Nesterov’s method. Moreover, techniques combining ADMM optimization with deep learning,

such as ADMM-Net (Sun et al., 2016), could also be explored as a way to improve computa-

tions and reduce the burden of parameter tuning.

The brain fingerprints are motivated by the fact that brain characteristics are largely determined

by genetic factors that are often unique to individuals (Thompson et al., 2013). In this work,
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we used a rank retrieval analysis to evaluate the relation between fingerprint similarity and

genetic proximity. However, estimating heritability directly, for instance using the approach

described in (Ge et al., 2016), would provide a better quantification of genetic influence on

fingerprint features. In (Elliott et al., 2017), the data of over 8,000 subjects from the UK Bio-

bank (Sudlow et al., 2015) was considered to determine the heritability of multi-modal brain

imaging phenotypes. Similarly, Colclough et al. (Colclough et al., 2017) the heritability of

multi-modal functional connectivity profiles using 800 HCP subjects. An extensive analysis is

required to assess the heritability of the proposed fingerprint and relate our findings to these

recent studies.

An interesting extension of this work would be to assess whether our fingerprints can be used

as a biomarker to identify subjects with cognitive or neurological disorders. Publicly available

data, for instance from the ADNI dataset (Mueller et al., 2005; Toews et al., 2010) or Parkin-

son’s Progression Markers Initiative (PPMI) dataset (Marek et al., 2011), could be used for

this analysis. Although aging effects were considered in our analysis, a deeper study is needed

to fully understand the impact of neuroplasticity on fingerprints. This could also be achieved

using longitudinal data, by measuring how a subject’s fingerprint changes over time.
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