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AMÉLIORATION DE LA QUALITÉ DE L'ÉNERGIE 
UTILISANT UN ONDULEUR MONOPHASÉ À CINQ NIVEAUX ET 

TRANSFORMATEUR LEBLANC 
 

Mohamed RAGEH 

 

RÉSUMÉ 

 
Les charges non linéaires qui s’appuient sur la puissance électrique engendrent des courants 
harmoniques qui perturbent l'approvisionnement électrique et génèrent des interférences avec 
les autres usagers, ce qui provoque une altération du signal et une puissance harmonique 
importante. Les courants harmoniques qui en découlent sont capables de créer un 
échauffement du matériel et une panne des systèmes de protection. Ainsi, on utilise les filtres 
de puissance actifs pour diminuer les dérèglements. Néanmoins, différentes méthodes 
d'extraction des courants harmoniques qui sont utilisées afin de maitriser les filtres de 
puissance active, supposent la plupart du temps que les éléments du filtre ont un faible effet 
sur les performances du système de contrôle s’il est bien conçu, algorithme. 

L'objectif principal de ce projet est d'alimenter des charges monophasées telles, les trains 
électriques, des chargeurs de véhicules électriques ou d’alimenter des groupements de 
résidences utilisant de l’énergie solaire ou éolien à partir d’un réseau triphasé. Une 
configuration permettant d’être utilisée comme interface le réseau électrique triphasé et les 
charges, comprend deux convertisseur dc/ac cinq niveaux et un transformateur Leblanc. Les 
deux convertisseurs activent comme compensateur d’harmoniques, de puissance réactive et 
de déséquilibre de la charge, le second comme un lien entre deux sources monophasés et une 
source triphasé.  Un control est aussi développé pour réaliser ces objectifs, une technique de 
balancement des courants a permis de balancer les deux courant au secondaire du 
transformateur Leblanc, ce qui un impact sur l’équilibre des courant du côté du réseau 
triphasé au primaire du transformateur Leblanc. 

 

Mots-clés: Filtre actif de puissance, Compensation d'harmoniques de courant, Qualité 
d’énergie. 

 
 





 

SINGLE PHASE FIVE LEVEL INVERTER USING LEBLANC TRANSFORMER 
FOR POWER QUALITY IMPROVEMENT 

 
Mohamed RAGEH 

 
ABSTRACT 

 
Non-linear loads that rely on electrical power generate harmonic currents that disturb the 
power supply and cause disruptions with other users, which results in signal alteration and 
high harmonic power. The resulting harmonic currents are able to provoke a heating of the 
material and a breakdown of the protection systems. Thus, as a solution, active power filters 
are used to reduce disturbances. Nevertheless, different methods of extracting harmonic 
currents that are used to control the active power filters, most of the time assume that the 
filter elements have little effect on the performance of the control system if it is well 
designed, algorithms. 

In the past, Leblanc and Scott connected transformers used to be a means to interconnect 
three-phase and two-phase systems. Today, three-phase systems have become so universal 
that it is seldom to require such connections. They can also be utilized to diminish the scale 
of phase unbalance in the cases where single-phase loads are fed from three-phase supplies. 
In other words, it is possible that they might still be encountered, on occasions, for such 
applications. 

The main objective of this project is to supply single-phase loads such as electrified railway 
systems, electric vehicle chargers or to supply residential groups using solar or wind energy 
connected from a three-phase network. A configuration that is used as an interface from a 
single phase to the three-phase power grid and loads including five-level dc/ac converter uses 
Leblanc transformer/Scott transformer. Both converters enable compensating harmonics, 
reactive power and load imbalances, the link between two single-phase sources and a three-
phase source. A control is also developed to achieve these objectives, a technique of 
balancing of the currents allowed to balance the two currents in the secondary of the Leblanc 
transformer is proposed, which has an impact on the balance of current on the side of the 
three-phase network at the primary of the Leblanc transformer. 

 

Keywords: Active power filter, Current harmonic compensation, Power quality 
compensation 
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INTRODUCTION 
 

 Over the past few decades, and since the introduction of power electronics, power quality has 

become a great preoccupation. As defined by world   standards, power quality is identified 

 as the "physical characteristics of the electrical supply provided under normal operating 

conditions that do not disrupt or disturb the user processes" (Khadkikar et Chandra, 2008) 

The spread of power electronics systems used in a number of various nonlinear producing 

loads degrades the electric supply networks’ power quality, especially at the level of end 

users. Common instances of those comprise household equipment, office machinery and 

computers, adjustable speed drives (ASDs), uninterruptible power supplies (UPS) and 

industrial furnaces. These converters generate harmonic currents that cause malfunctions and 

failures of protection systems, equipment overheating, noise, vibration and interferences with 

communication systems. Therefore, with the objective of mitigating the harmonic pollution 

within power systems, the IEEE (Institute of Electrical and Electronics Engineers) and IEC 

(international Electro technical Commission) have come up with regulating guidelines, 

standards IEEE 519 and IEC 61000 in an attempt to govern the accepted limits of injected 

(Standard, 2004) 

Table  1.1 IEEE519 harmonic current limits  
 

 Isc / IL1  h<11 11≤h<17   17 ≤ h < 23   23 ≤ h < 35    35 ≤ h   THD (%)  

< 20   4.0   2.0   1.5    0.6   0.3   5.0  

 20 - 50   7.0   3.5    2.5    1.0   0.5   8.0  

50 - 100  10.0   4.5   4.0    1.5   0.7   12.0  

100 - 1000  12.0   5.5   5.0   2.0   1.0   15.0  

> 100   15.0   7.0   6.0   2.5   1.4   20.0  

 

This project’s main purpose is to build a configuration can be used in the near future to allow 

electric vehicle chargers to be offered in the residential group’s integrating solar or wind 

energy to support a grid. The configuration can be extended to supply the electrification 
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railway systems. A configuration that is used as an interface from a single phase to the three-

phase power grid and loads including five-level dc/ac converter uses Leblanc 

transformer/Scott transformer. Both converters enable compensating harmonics, reactive 

power and load imbalances, the link between two single-phase sources and a three-phase 

source. A control is also developed to achieve these objectives, a technique of balancing of 

the currents allowed to balance the two currents in the secondary of the Leblanc transformer 

is proposed, which has an impact on the balance of current on the side of the three-phase 

network at the primary of the Leblanc transformer. 

The aim of using Le-Blanc transformer is to link the single-phase power to electric railway 

from the general grid of three-phase system. Nowadays one of the major problems in the 

railway traction system in terms of network’s power quality caused by (AC) electrified is 

voltage and current. There are numerous methods that are and can be used to decrease such 

unbalance issues. 

Four contributions of the project research are carried out, it concern: 

 Proposed configuration for residency group integrating a charging electric vehicle 

supported by a PV solar from three phases main grid to multiple single phases; 

 Configuration for railway train integrating a PV solar, Leblanc transformer with power 

quality improvement; 

 Developed control to improve to balance a current in the grid side; 

 Review of different control applied to single-phase inverter. 

The present project’s study is mainly about the introduction of two single-phase five level 

inverters scheme in the secondary of the Leblanc transformer/Scott transformer to improve 

power quality in the grid side. The present’s thesis is organized as per the following: 

 

In chapter one is presented a literature review for different topologies and mitigation 

techniques, multilevel inverter, control, different transformer connection and the most special 

winding connection for balance and unbalance load for power quality issue.  
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The second chapter includes, a review different kinds of control topologies such as nonlinear 

control systems, pq control theory and dq control, as well as an analysis the stability of the 

control system. Validation by simulation of different controls including the design and 

simulation result showing the different power elements, like the, DC bus voltage and bus 

capacitor are comprised and link inductor.  

 

Chapter 3 will present a comparison between two different kinds of transformers connection, 

which is Scott and Leblanc transformer design and Simulation. 

 

Chapter 4 is about applying the integration of Leblanc transformers to supply different 

utilities such as railway traction with PV solar that connects to the three-phase system via a 

Leblanc transformer and electrical plug vehicles also by using a Leblanc connection as well 

as a layout of the simulation findings, including a five-level inverter. 

 

Last of all, a general conclusion on the simulation findings ends the project. 

 





 

CHAPTER 1 
 
 

LITERATURE REVIEW 

1.1 Introduction  

Before 1960, the design of the stage wave cascaded H-Bridge multilevel inverter had made 

the multilevel inverter technology happen, attempting to create a new control method for 

generating a surge wave in the output of inverter (Mcmurray, 1971). That cascaded H-bridge 

inverter’s circuit loop was presented in (Bedford et Hoft, 1964), followed by a Diode 

Clamped Converter, in 1970 (Baker, 1980) However, all of these attempts were only applied 

in low power energy.  

 

In the 1980s the Cascade H-Bridge (CHB) and Neutral Point Clamped (NPC) were 

introduced in medium applications (Baker, 1981; Nabae, Takahashi et Akagi, 1981). Then 

during the 1990s, the low-voltage Flying Capacitor (FC) inverter, which had been created in 

the 1960s, was revisited for medium- and high-power voltage applications. The authors 

discuss high-voltage power conversion. They go through and compare conventional series 

connection and three-level voltage source inverter methods. They present a new versatile 

multilevel commutation cell, proving that it’s a safer and an easier to control structure, and 

that it produces purer output waveforms. They also explain the way this method can be used 

for either choppers or voltage-source inverters and can also be broadened to be used for any 

number of switches (Meynard et Foch, 1992). 

 

Around the same time as the commercialization of 4500 V gate turn-off (GTO) thyristors 

(mid 1980s), there was the launch of medium-voltage motor drive as an example of the 

application of those devices (Wu, Converters et Drives, 2006). Later on, during the late 

1990s, the fabrication of insulated gate bipolar transistors (IGBT) and gate commutated 

thyristors (GCT) evolved from high power switch development (Steimer et al., 1997). 



6 

Because of their simple gate-control, snubber less operation, and low power loss, these 

switches were then commonly used inside both medium and high power inverters (Wu, 

Converters et Drives, 2006) 

 

An important characteristic of multilevel inverters is that, through the use of medium-voltage 

equipment, they can help industries and renewable energy resources provide high power 

applications. In fact, he interesting features of these multi-level inverters have attracted 

researchers as well as industries’ attention. Some of their major advantages are as per the 

following (Kouro et al., 2010) 

 Reduced distortion of output voltage, as a result of the multiple levels of the output 

waveform; 

 Reduced the voltage by switches that leads to lower dv/dt (voltage stress); 

 Lower common mode voltage, a useful feature for motor drives; 

 Lower switching losses, by reason of lower switching frequency. 

 

Multilevel inverters of different types have been presented and constructed, most of them for 

power applications high-voltage and medium (Franquelo et al., 2008) for the reason that a it 

is not possible to connect a sole power switch directly to grid in case of a medium-voltage. 

 

1.2 Multi-Level Converters Topologies 

Many industrial applications necessitate power capabilities from medium power to high 

power. For example, motor drives and utility applications need medium voltage and 

megawatt levels of power. In medium to high-voltage power applications, multi-level 

converters can be a convenient alternative, due to the fact that the rating limitations of power 

electronic components disallow connecting for only one power semiconductor switch. They 

also represent a convenient choice for renewable energy systems. Thus, in the past years, a 

number of multi-level topologies have emerged.(Khomfoi et Tolbert, 2007; Tolbert et Peng, 

2000) 
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There are a different multilevel inverter topologies have been presented (Franquelo et al., 

2008; Kouro et al., 2010; Rodriguez, Jih-Sheng et Fang Zheng, 2002) according to the 

following steps.  

 

1.2.1 The Cascade H-Bridge 

Generally utilized in power drives such as high or medium-voltage (Wu, Converters et 

Drives, 2006). The cascaded H-Bridge multilevel inverter comprises multiple units of single-

phase H-Bridge inverters serially connected in each phase. The figure (1.1 a) shows one 

phase of a seven-level cascaded H-Bridge that contains 3 single-phase H-Bridge cells in each 

phase(Malinowski et al., 2010). In a Cascaded H-Bridge multilevel inverter, of each phase 

has an output voltage that can be calculated as: Van=V1+V2+V3. 

 

Two types of Cascaded H-Bridge exists: H-Bridges having equal DC sources and H-Bridges 

having unequal DC sources, as per description below. 

 
 

 
 

Figure  1.1 a) three-Level b) five-level Single-phase cascade H-Bridge 
Taken from Sotoodeh (Sotoodeh, 2014) 



8 

This topology was developed prior to the other two basic topologies and has a totally 

dissimilar configuration. Figure (1.1 b) shows the structure of the three-level and five-level 

cascaded H-Bridge converter. Each DC source connects to an H-bridge converter. Each H-

bridge converter’ AC outputs are serially connected in such a way that the combination 

voltage waveform sums up the inverter outputs. 

 

1.2.2 The Neutral Point Clamped 

A Neutral Point Clamped multilevel invert’s leg is seen in Figure (1.2) which was originally 

proposed by (Nabae, Takahashi et Akagi, 1981) after which the three-level Neutral Point 

Clamped found numerous applications and usages in many industries (Rodriguez et al., 2010) 
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Figure  1.2 Five Level Neutral Point Clamped for single Phase 
Taken from Vahedi (Sotoodeh, 2014) 
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“The clamped diodes (D1a, D2a) are linked to the DC capacitors’ neutral point, resulting in 

adding a zero level to the output voltage. Therefore, in a three-level Neutral Point Clamped, 

the output voltage is constituted of -Vdc, 0 and +Vdc. When S1a and S2a are ON, the output 

is + Vdc. When S3a and S4a are ON, the negative voltage appears at the output which is -

Vdc. Finally, if S2a and S3a are ON, the voltage at the point (a) will be 0. S3a complements 

S1a and the same for S2a and S4a. As an example, when S1a is ON, S3a is OFF. This 

topology’s main advantage is in the fact that it is flexibly controllable by space vector 

modulation (Lewicki, Krzeminski et Abu-Rub, 2011; Rojas, Ohnishi et Suzuki, 1995) 

additionally to PWM. With this characteristic the Neutral Point Clamped becomes a 

multilevel inverters’ topology that is favored by researchers, for them to develop its control 

strategy, by presenting and testing a number of different methods of control (Bor-Ren et Ta-

Chang, 2004; Das et Narayanan, 2012). However extensively utilized in applications, of high 

power the Neutral Point Clamped topology is seen as having the following drawbacks 

balancing the capacitors voltages and unequal loss distribution among switches”.(Vahedi, 

2016) 

 

1.2.3 The Diode-Clamped (DC) Topology 

The diode-clamped multilevel inverter is among the main multilevel inverter topologies. The 

single-phase types of these inverters have been characterized as not having redundant states.  

Significantly, such states are suitable for reducing devices switching frequency throughout 

the inverter operation, and hence for reducing switching power losses and targeted to 

electromagnetic distortion influence. They also enhance other features of inverter 

performance for example enabling capacitor voltage balancing. It consists in using a number 

of diodes that will obstruct small DC sources. Single-phase three-level and configuration of a 

five-level diode-clamped inverter are drawn in Figures (1.3 a) and (1.3 b ),respectively 

(Chaulagain et Diong, 2016) 
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Figure  1.3 a) Single-phase three-level b) Single-phase five-level topology 
Taken from Sotoodeh (Sotoodeh, 2014) 

 
“Extending the DC topology to a collective number of level configurations is easy. In a three-

level diode-clamped inverter, the DC bus voltage is separated by capacitor banks into two 

steps of the same voltage. The inverter’s functioning is simple. The DC topology’s name 

derives from the voltage between two switches being attached through the clamping diodes. 

When switches (S1,S2) are on and (S1ʽ,S2ʽ) are off, the inverter’s output voltage is equal to 

the voltage of C1, which is equal to(+E)/2. Similarly, when switches (S1,S2) are off and 

(S1ʽ,S2ʽ) are on, the inverter’s output voltage is equal to C2’s voltage, which is equal to (-

E)/2. When (S2, S1ʽ) are on and (S1, S2ʽ) are off, the inverter’s output voltage is equal to 0. 

In a five-level diode-clamped inverter, the DC bus voltage is divided into four steps of the 

same voltage. Here, the number of diodes needed to clamp the voltage changes point after 

point. Each diode is set to supply voltage blocking across one capacitor. For example, only 

one diode represents D1, while three diodes equal to D1 represent D1’, diodes that are in 
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series because they must obstruct voltage through capacitors C2, C3 and C4; in other words, 

it allows using one diode with higher blocking capacity or three diodes placed in series with 

same blocking capacity as D1. Considering the diode reverse voltage for a number of level 

inverters, formulated by V_r=E/(n-1), for a five-level inverter’s -diode revers voltage is equal 

to E/4, therefore proving that raising the number of levels decreases the components’ voltage 

stress”.(Vahedi, 2016) 

1.2.4 The Flying Capacitor (FC) topology 

The Flying Capacitor is another multilevel inverters’ topology and it consists of a battery, 

three capacitors and four semiconductor switches, as seen in Figure 1.4(Escalante, Vannier et 

Arzande, 2002). 
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Figure  1.4 One Phase of a Three-Level Flying Capacitor Multilevel Inverter 
Taken from Sotoodeh (Sotoodeh, 2014) 

 
In the Flying Capacitor model, a capacitor replaces the clamped diode found in the Neutral 

Point Clamped. It originates from a two-level inverter in which a capacitor feed each of the 

two switches. This topology leads to an output which features 3 voltage levels for an output 

namely –Vdc, 0, +Vdc. Because it uses several capacitors, the Flying Capacitor has 

restrictions on its use due to its need to have numerous DC capacitors isolators to achieve 

control of voltage balancing (Wu, Converters et Drives, 2006) Additionally to these 

topologies, a number of new topologies are recently being applied which are mentioned in 
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(Kouro et al., 2010). Kouro’s topology is similar to the diode-clamped one in which diodes 

are substituted by capacitors to keep voltage levels the same across DC link capacitors. 

Figures (1.5 a) and b) show the composition of a single-phase three-level and five-level 

flying-capacitor inverter. This topology presents a ladder structure of DC dice capacitors, in 

which each capacitor’s voltage is different from the next capacitor’s.(Vahedi, 2016) 

 
 

 
 

Figure  1.5 a) Single-phase three-level b) Single-phase five-level  
flying-capacitor topology  

Taken from Sotoodeh (Sotoodeh, 2014) 
 
“The three-level flying-capacitor’s operation is quite similar to the three-level diode-clamped 

inverter’s operation. When switches (S1,S2 ) are on and (S1’,S2’)are off, the inverter’s 

output voltage is equal to and when switches (S1,S2) are off and (S1’,S2’) are on, the 

inverter’s output voltage is equal to . When (S1,S1’) are on and(S2,S2’) are off, the 

capacitor C1’s voltage increases and when(S2,S2’)  are on and (S1,S1’)  are off, the capacitor 
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C1 gets in discharging mode. In the two latter cases, the inverter’s output voltage r has value 

of 0. By switching between these two states, the capacitor C1’s charge remains balanced. 

These two switching states are called intra-phase redundant states, different switch 

configurations cannot take place in the three-level inverter. S1 and S1’ which are the number 

of switches, should be switched in a complimentary way”.(Rodriguez, Jih-Sheng et Fang 

Zheng, 2002) 

1.3 Control applied to the single-phase five level active filters 

The Distributed Generation (DG) systems, which rely on renewable energy resources, are 

essentially sporadic energy sources. Power electronic converters are required as interfaces in 

order to connect such distributed generation s to the utility grid so that an interface has 

control synchronization strategies to guarantee the extraction of the maximum achievable 

power from the primary source as well as its transfer to the grid without compromising the 

grid’s standards of quality.(Khajehoddin et al., 2009) There are several different types of 

control methods that can be easily used for single-phase five levels active filter.  

 

1.4 Leblanc Transformer 

The Leblanc transformer is among the best unbalance mitigation strategies and consists of 

three transformers two that have three-windings, and one that is with two-winding. The 

primary windings are the same as the ones found in a regular three-phase transformer, given 

a delta connection. There are five secondary windings, connected to form into two phases, as 

seen in Figure (1.6) A Leblanc transformer used nowadays in electric railway systems. It 

features a special winding connection transformer to generate a single-phase power supply. 

The balancing and connection schemes are caused by dual secondary loads in the substation 

of single-phase electrical railway systems where current unbalance can significantly impact 

the utility supply voltage (Martins, Martins et Pires, 2015). The specially connected Leblanc 

transformer has an asymmetrical winding structure. Because of its unique winding 

connection, the Leblanc transformer can change three-phase systems into two-phase or two 

single power supplies, and thus is considered an attractive alternative for obtaining a two- 
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phase power system. In fact, the Leblanc transformer performs much better than the Scott 

transformer with regard to balancing characteristics, maintenance, winding structure high 

voltage winding connections, and other key factors. 

 
 

 

 

Figure  1.6 The-LeBlanc connexion transformer 
Taken from(Martins, Martins et Pires, 2015) (Martins, Martins et Pires, 2015) 

 

1.5 Scott versus blanc Transformer 

Like the Leblanc transformer, the Scott transformer is popular for electric rail systems. In 

cases of two unbalanced single-phase loads, the Scott transformer can change  three-phase 

power supplies into two single-phase ones by reducing the unbalance current, such as in the 

Tokaido-Shinkansen electric railway (Mochinaga et al., 1991) . It is quite a stress to supply 

the electrical traction loads on the power supply system. 
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In general, electric trains use a single-phase AC catenary line for their power supply. In 

three-phase power systems, single-phase loads are unbalanced. Therefore, when single-phase 

AC power changes to DC in electric trains, harmonic currents result, along with an 

unbalanced load. However, each side can be converted to a single-phase load through 

dividing the catenary line as either outgoing and incoming In this way, there are two equal 

loads, and the Scott transformer can represent to the three-phase supply system as a single 

balanced three-phase load, This resolves any imbalance problems. On the other hand, 

because the two single-phase loads are usually unequal, a certain degree of unbalanced power 

continues to be drawn by the system through the transformer, but this is less than before. In 

(Bin-Kwie et Bing-Song, 1996; Chen et Kuo, 1995), the researchers have studied the degree 

of load unbalance within the three-phase system in the case when two single-phase loads are 

of different values. 
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Figure  1.7 Supplying two single-phase electric train by Scott transformer 
Taken from (Mazin et Gallant, 2010) (Mazin et Gallant, 2010) 
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Figure  1.8 The diagram showing the connection of windings for the Scott transformer 
Taken from(Mazin et Gallant, 2010)(2010) 

 

Scott transformer’s special connection makes two unbalanced single-phase loads appear less 

unbalanced to the power system. One would reflect on whether the Scott transformer would 

also decrease the harmonic produced by two single-phase loads, an interesting subject that 

had never been investigated, as revealed by our extensive literature survey. The article’s 

results indicate that Scott transformer does indeed reduce the harmonic introduced into the 

system by cancelling out the harmonic currents created by the single-phase harmonic loads. 

The degree of harmonic decrease depends on the harmonic order and the load values. (Mazin 

et Xu, 2008) 

 

 
1.6 A single phase to three phase system using Leblanc transformer 

The researchers in this paper present a structure for power conversion that changes a single-

phase invertor into a three-phase multi-level one. The novel structure utilizes three single-

phase voltage source inverters and a Leblanc transformer. Within the power converter, the 

Leblanc transformer is connected to two single-phase outputs for changing the two-phase 

voltage into a three-phase one. With this multi-level power conversion construction, a five-

level three-phase inverter is obtained. Nonetheless, another type of transformers was also 
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used: that’s how power converters that have special line frequency transformers, such as 

Scott or Leblanc, were also presented, since they allow deriving a two-phase current from a 

three-phase source, or vice versa. Two voltages with a 90º phase angle between them are 

generated by the outputs of the power converters. Using Leblanc transformers allows to 

provide a three-phase system (Pires et al., 2011) 
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Figure  1.9 a) the conversion structure from a single phase to a three-phase multilevel inverter 
by using a LeBlanc transformer b) The Connection of the Leblanc transformer 

Taken from Pires et al (Pires et al., 2011) 
 

Figure (1.9 a) shows a three-phase multilevel inverter’s power conversion structure. In order 

to have the maximum output voltage this topology utilizes two DC sources and three single-

phase voltage source converters. A 2-to-3-phase transformer is used at the voltage source 

converters’ output. A five-level voltage (2V, V, 0,-V,-2V) can be obtained for the output of 

the power converter structure, given the connection between the three single-phase inverters. 

However, there is a drawback in using this topology as two of the three inverters have to 
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resist to 2V (Pires et al., 2011). Figure (1.9 b), depicts a Leblanc transformer, utilizing a 

three-phase core, which features a winding system. The main windings, which are developed 

by the power converter that has a 90º phase angle value, are fed by Vcd(t) and Vab(t), while. 

the secondary windings present as the three-phase systems VT(t), VS(t) and VR(t) (Pires et 

al., 2011) 

 

1.7 Connection PV solar single phase to three phase system using Leblanc 
transformer 

Using a Leblanc transformer, the authors propose a power conversion structure for grid-

connected photovoltaic from single phase to three-phase applications, a structure consisting 

of a multilevel inverter and a Leblanc transformer. The multilevel power converter employs 

two single-phase voltage source converters as well as a four-wire voltage source inverter. 

The Leblanc transformer connects to the multilevel converter’s output. The PV system’s 

configuration is dependent on the multi-string technology. The converter’s structure can 

easily create a seven-level output wave form at the multilevel inverter’s output.(Pires et al., 

2012) 

 

Multilevel
inverter
DC/AC

DC/DC
Converter

DC/DC
Converter

DC/DC
Converter

PV
String

PV
String

PV
String

B
C

a

b
c
d

iA

iB
iC

Ai a

i c

Leblanc transformer

 

 

Figure  1.10 The Configuration of photovoltaic system using  
LeBlanc transformer connected to the grid 
Taken from Pires et al (Pires et al., 2011) 
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Figure  1.11 a) The Multilevel DC/AC converter connected to Leblanc transformer 
b) Leblanc transformer in to model connection scheme  

Taken from Pires et al (2011(Pires et al., 2011) 
 

The article presents a multilevel inverter generating two output voltages that must shift by 90 

degrees. The Leblanc transformer is utilized to get a three-phase balanced voltage systems at 

the power converter system’s output. The Leblanc connection transformer is an asymmetrical 

winding transformer, usually used to convert a three-phase voltage system into a two-phase 

supply, using a special winding connection that is shown in Figure (1.11 b). There are five 

windings on the primary side, split into two distinct phases, and three delta-connected 

windings on the secondary side. (Pires et al., 2012) 
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1.8 Integration of PV solar single phase to three-phase grid using Scott 
transformer 

In.(Dat, Wijnhoven et Driesen, 2012) the researchers introduce a novel topology for a grid-

connected PV inverter. This topology was developed as a means to reduce how many 

switches are used. It is also intended to permit fault-tolerant operations through the 

incorporation of a Scott transformer as part of the power converter system. A PV power plant 

connected to the grid is highly vulnerable due to the exposure of its power electronics 

equipment. Scott transformers are often used to increase the grid-connected PV reliability by 

the constant operation of the PV system (to compensate for any switch failures in power 

converters) and decreasing how many switches are used. Three-phase PV inverters can be 

analyzed during both faulty and normal operations (Dat, Wijnhoven et Driesen, 2012) 

 

 

 

Figure  1.12 Block diagram for a grid connected photovoltaic system 
Taken from Dat, Wijnhoven et Driesen (Dat, Wijnhoven et Driesen, 2012) 

 

The power conversion consists of a single phase inverter, electronic switches and a Scott 

transformer. It uses an LC filter to connect to the grid. A Scott transformer constitutes two 

separate transformers. It has a special connection as seen in Figure (1.13.) The Scott 

transformer’s structure presented in this article is pretty similar to Scott transformers 

employed in high-speed railway systems (HSR). There are two single coils or the primary 
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side represented by V1 − G1 and V2 − G2, and by three-phase windings or the secondary 

side represented by VA, VB, VC.  
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Figure  1.13 Scott connection transformer  
Taken from Dat, Wijnhoven et Driesen (Dat, Wijnhoven et Driesen, 2012) 
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Figure  1.14 Connection diagram of switches in IPM triacs and a Scott transformer 
Taken from Dat, Wijnhoven et Driesen (Dat, Wijnhoven et Driesen, 2012) 
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There are many advantages to the Scott transformer for the fault tolerant operation. First, 

only four electronic switches in two power legs are needed to make three-phase output 

currents. The third power leg of a three-phase Integrated Power Electronics Module is hence 

available as a redundant component for fault-tolerant operations. Second, the Scott 

transformer’s wire connection topology helps obtaining two-phase control signals form a 

three-phase current feedback. (Dat, Wijnhoven et Driesen, 2012) 

 

1.9 Leblanc transformer application to supply railway traction system 

“The article demonstrates that the amount of unbalance caused by single-phase loads 

provided by the described transformer types depends on the secondary winding’s relative 

loading. As the traction load varies continuously, the phase voltages and the ensuing 

unbalance will normally reside somewhere. The lowest level of unbalance takes place when 

the traction load is approximately the same in both transformer windings, a phenomenon that 

often takes place on a heavily loaded passenger mainline, where a large number of relatively 

small trains may run at short headway, with almost equal loading in each section. Often, 

there is only one train provided by the substation at any given moment. Considering the one 

single-phase transformer as a reference, the two single-phase transformers and the three-

phase transformer’s asymmetrical connections produce approximately the same level of 

unbalance for the same load. The Leblanc connections will decrease the unbalance only 

while all three phases provide the load. The three-phase transformer’s symmetrical 

connection always provide the load from all three phases and is consequently more 

successful in decreasing the unbalance for the freight railroads type of loading. The author 

initiated a discussion about how to use special winding three-phase to two-phase 

transformers, such as modified Woodbridge-connected, Scott connected and Leblanc 

connected transformers in railway traction systems. The objective of reducing the unbalance 

issue that includes the typical arrangement for rotary balancing equipment such as induction 

motors, synchronous compensators and eliminating the negative sequence currents from the 

three-phase system”.(Kneschke, 1985) 

 



 

CHAPTER 2 
 
 

REVIEW CONTROL OF SINGLE-PHASE ACTIVE FILTER 

2.1 INTRODUCTION 

In recent years, applications needing a three-phase system has typically seen the development 

of Active Power Filters. The electrical grid gets many benefits from the Shunt Active Power 

Filters in use on single-phase facilities, since these installations have power factor and 

nonlinear load problems, and since they are significantly responsible, in their total, of the 

total electric energy consumption. Additional power losses on the electrical grid are caused 

by harmonics and reactive power drained by single-phase installations. Consequently, 

mitigating the harmonics at the source contributes in reducing these extra losses and other 

harmonics generated issues.  

 

The disadvantage from that solution lies in the necessity of numerous Active Power Filters 

that are distributed in major single-phase facilities. Therefore, it is necessary to place a 

simple and non-expensive Shunt Active Power Filter on single-phase installations. 

Furthermore, four simple control theories must be applied on single-phase Shunt Active 

Power Filters. Results of experimental simulation in comparing the four different control 

theories are presented and analyzed to determine the best control based on the results. As 

power electronics were progressing, engineers started to develop electronically controlled 

devices having nonlinear current consumption, primarily with the objective to increase the 

energy efficiency and the controllability of advanced production processes.  

 

These devices create harmonics, however, causing increased energy losses and faulty 

operations in the electrical distribution components. The majority of harmonic sources are 

derived from single-phase loads in electronic equipment, like printers, copiers and 

computers. As a means to reduce the effect of harmonics created by these loads, Gyugi and 

Strycula developed Active Power Filters. In this approach, harmonic distortion in system 

voltages can be prevented by alleviating harmonics on the customer’s side. This is the best 
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possible way to avoid issues on neighboring facilities and to maintain good electric power 

quality service. Shunt Active Power Filters can solve harmonic current issues that degrade 

the voltage waveform on the electrical grid, can also compensate the power factor, and are 

therefore, nowadays, the best solution. 

 

Overall, Shunt Active Power Filters have more benefits than passive filters, as they do not 

need a specific harmonic configuration, whereas, Passive Power Filters have to be tuned in 

every instance. Another advantage of Active Power Filters is their simple installation. They 

do not require commissioning, and can compensate the power factor and current harmonics 

right away. This chapter looks at developing suitable controls to apply to Shunt Active Power 

Filters. This is accomplished, through a comparison of single-phase Shunt Active Power 

Filters to control approaches (Santos et al., 2009) 

 

2.2 Different controls applied to single-phase active filters 

The present chapter introduces a different kind of control which is applicable in single phase 

active filters like park transformation, PQ control, and synchronous d−q reference frame 

control, two cases of direct and indirect current control and of sliding mode or nonlinear 

control. The theory of instantaneous reactive power for the three-phase circuit was 

introduced by. (Akagi, Kanazawa et Nabae, 1984),in order to determine harmonics from non-

sinusoidal voltages and currents. However, it cannot be applied to the single-phase circuit, 

given that, according to their theory, the instantaneous reactive power is described as the 

power flows from one phase to another. In general, the distorted wave circuit theory is used 

to calculate single-phase current and voltage harmonics. An example of this strategy is 

Fourier analysis which analyzes the repeated waveforms in currents and voltages.  

 

Therefore, there is no precise definition of harmonics in transient states. Practically, the 

single-phase active filter’s output voltage and current tend to carry an important number of 

fundamental components, with a tendency to intense fluctuations from the DC bus voltage 

for the non-periodic load changes. Therefore, the electrolytic capacitor’s large size is needed 
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for the active filter’s DC bus, so to avoid this voltage variation. However, from an economic 

aspect, it should not be installed, because its large size requires a large space and has a less 

resistance to the high temperature operation than other types of capacitors. Park 

transformation strategies are commonly applied to, active power filtering applications for 

control synchronous d−q reference frames one benefit of this approach is that harmonic/ 

active/reactive and fundamental active/reactive components which exist within the voltage or 

current d−q frame. The p−q theory, which is also referred to as the instant active/reactive 

power technique, has also proven to be useful for three-phase active filters. However, even 

though the p−q theory and park transformation approaches can be applied in systems 

described as three-phase three-wire or three-phase four-wire, they cannot be used directly for 

single-phase systems.  

 

Not long ago, the three-phase p−q theory concept was extended to single-phase system, such 

as with the direct current control technique, In this method the reference shunt APF current is 

taken out of the reference compensating current, while in the indirect current control method, 

the reference source current is taken out of the reference compensating current. The increased 

use of non-linear and time-varying loads have led to distortion of voltage, current waveforms 

and increased reactive power demand in AC mains. 

 

Converted into the d-q components in order to separate the fundamental and harmonic 

components of instantaneous currents (id, iq). One of the main differences between this 

method and p-q theory is that the d-q method requires calculating the angular position of the 

source voltages’ synchronous reference, using a PLL algorithm. Once the load currents are 

converted into a synchronous reference, the fundamental and harmonic components are 

separated, by utilizing a low-pass or high-pass filter.  

 

Additional, Hilbert transforms can be used to enable d-q transformation. Hilbert transforms 

converts single-phase current or voltage (analytic signals (i.e., complex vectors) 

instantaneously) Because, for both transient and steady states, the current and voltage main 

components convert to DC components at the d-q coordinate, current/voltage, harmonics are 
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obtainable by applying the low-pass filter from the d-q coordinate. The outcome is an 

economical active filter which features a capacitor that suppresses variations in the DC bus 

voltage. The reason for this is that the active filter input is able to remove the fundamental 

power. 

 

2.3 Single phase three level boost control 

A single-phase three level boost rectifier was modeled from Space Vector Modulation and d-

q transformation was presented in (Salaet et al., 2002). Control loops for controlling the 

displacement factor of the conductor current for the line voltage (quadrature path) as well as 

the DC output voltage (direct path) were enabled by the sine variables quadrature and direct 

decomposition (Salaet et al., 2002). In order to build a simpler PI-based controller, the double 

line frequency ripple of the output voltage was ignored and the system equation linearized 

additionally, PFC regulation current loop along with output voltage regulation voltage 

current loops were applied during controller installations. The researchers also included an 

overview of the control system for the neutral point voltage’s control, known as (charges 

balancing), but chose to include no more than one. Other voltage sensors for measuring the 

three-level structure’s two capacitor voltages.(Salaet et al., 2002) 
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Figure  2.1 Block diagram of the Displacement factor and output voltage control system 
Taken from Salaet et al.(Salaet et al., 2002) 
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2.3.1 Single phase unified power quality conditioner control 

In (Khadkikar et Chandra, 2012) applied a single-phase unified power quality conditioner 

(UPQC) to address any quality issues with power for single-phase systems. The authors 

suggest using a control method built from synchronous d-q reference frame, in formulating 

the single-phase system d-q transformation, they used a p-axis, succeeding in attaining, as 

DC variables. The fundamental component for non-linear load currents as well as distorted 

supply voltage The researchers also investigate single-phase load current and supply voltage 

for a d-q frame for real rather than simulated hardware systems, with the overall aim to 

reduce. harmonics for load current as well as the supply voltage (Khadkikar et Chandra, 

2012) 

 

 

Figure  2.2 The control scheme for shunt and series inverters of single-phase  
UPQC in synchronous reference frame 

Taken from (Khadkikar et Chandra, 2012) 
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2.4 Indirect current control 

Figure (2.3) shows a block diagram of synchronous d-q reference frame using indirect 

current controller. As can be seen in the figure, the reference source current and supply 

voltage profile are not connected, indicating the applicability of single-phase d-q theory for 

supply voltage distortion. 
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Figure  2.3 Single-phase indirect d-q current control 
Taken from (Khadkikar et Chandra, 2012) 
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Figure  2.4 Single-phase d-q frame control based on shunt APF 

Taken from (Khadkikar et Chandra, 2012) 
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Figure  2.5 The d-q reference frame control diagram  
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Figure  2.6 Single-line diagram of shunt active power filter 
Taken from (Khadkikar et Chandra, 2012) 
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2.4.1 Modeling and control for d-q theory 

First, in the case of a three-phase system, the three currents or the three-voltage signals of 

(ABC) are converted into the orthogonal frame stationary of (α-β) using equation (2.1). Next, 

by applying equation (2.2), they are converted to (d-q), synchronous frame rotation. The 

necessary components are then taken by the d-q frame, considering the required control. 

Finally, the (d-q) to (α-β) frame conversion, followed by the (ABC) frame conversion is done 

by applying equations (2.3) and (2.4), respectively. The aim is to create reference signals 

before reverting them to the initial frame, such that.  

 

(ABC) to (α-β) conversion: 

 
 

 

( 2.1) 

where (x) is the variable under consideration which is either current or voltage. 

 

(α-β) to (d-q) conversion: 

  

 

( 2.2) 

 (d-q) to (α-β) the inverse conversion: 

 
 

 

( 2.3) 

In equations (2.3) and (2.4) the quantities with notation (“*”) are the reference signals 

 

The inverse conversion: (α-β) to (ABC) 

 
 

( 2.4) 
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At the same time, we can see that the park transformation shown in equation (2.1) is 

applicable for three-phase systems, but alterations to the analyses need to be made in order to 

apply it to single-phase d-q transformation (Jinjun, Jun et Zhaoan, 1999) presented a single-

phase system from an (α-β) frame without resorting to matrix conversion. Instead, they 

applied a hypothetical second variable in their orthogonal (β) and (α). This was actually, a 

variable that was formed out of the voltage and current of the initial variable through using a 

90° phase- shifting. Using this approach, both the hypothetical and the initial signals, are 

considered equal to single-phase systems presented in an orthogonal (α-β) frame (Khadkikar 

et al., 2010) later applied and verified this method for single-phase (p-q) theory (Khadkikar et 

al., 2010) 

 

The load current present in an α-β frame is formulated, as per equation (2.5) below, by 

employing single-phase p-q theory 

 

  

 

( 2.5) 

(Zhang et al., 2002), expressed this single-phase system for a d-q frame by further extending 

the approach which applies a hypothetical variable in the single-phase p-q method. When 

replaced with a variable in equation (2.5), the α-β frame variable present in equation (2.2) 

provides a similar d-q frame rendering for a single- phase system. This can be expressed by 

equations (2.6) and (2.7). 

  

 

( 2.6) 

 
 

( 2.7) 
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The fundamental reactive and active current components for load in equation (2.7) are the 

DC terms  and  In the same equation, the harmonic components are the AC terms  

and   The AC and DC components can be easily taken from  and  using either way 

low pass filter (LPF) and high pass filter (HPF), respectively.  

 

 
 

( 2.8) 

If we remove the quantities in (2.6) replace them with the quantities in (2.8), and take it in 

reverse, we can develop a reference source current signal for (α-β) frame, as follows , 

 

 
 

( 2.9) 

 
 

( 2.10) 

The term of  in equation (2.10) expresses the component required to keep a constant self-

supporting the DC bus’s voltage that is crossing the active filter. The term  is a 

hypothetical component of the initial system and thus can be ignored. Hence 

  

 ( 2.11) 
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2.4.1.1 Simulation results  

Table  2.1Specification parameters used for dq control simulation 

Description Value 

Phase voltage Vs = 120 V (rms) 

Frequency Fs = 60 Hz 

Line impedance Ls = 0.5 mH 

Voltage-source type nonlinear load CL = 500 μF , RL = 25 Ω 

current-source type nonlinear load LL = 50 mH , RL = 10 Ω 
 

Active filter parameters 
 

Lc = 3.5 mH , Rc = 0.1 Ω 
Cdc1 = Cdc2 =2000 μF 

DC-bus voltage Vdc
* = 400 V 

PI regulation parameters Kp = 2 and Ki = 50 

 

In this section, we discuss a single-phase synchronous d-q reference controller’s performance 

and implementation for compensating harmonics that have been developed using non-linear 

loads in a real hardware system, as illustrated in Figure (2.7) 

 

 
Time(S) 

 

Figure  2.7 Single phase based on synchronous d-q control with load variation 
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Time(s) 

 
Figure  2.8 System response to load current increase 

 
 

 
Time(s) 

 
Figure  2.9 System response to a step decrease of load current  
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                                            (a)                                                                                  (b)                   

 

Figure  2.10 The total harmonic distortion a) load current, b) source current in study state 
operation mode 

 

2.5 PQ control  

2.5.1 Introduction 

A general single-phase p-q method is developed in this section by using a p-q control 

approach applied to active power filters for single-phase systems. The control is then slightly 

changed so that it can be used during distorted utility voltage conditions. Direct as well as 

indirect current control strategies are realized and the prototype of the single-phase shunt 

active power filter (APF) applied under various loads and operating conditions in order to 

gauge the p-q method’s applicability and practicality.(Khadkikar, Chandra et Singh, 

2009).As mentioned in previous sections, three-phase three-wire and three-phase four-wire 

systems have been enabled by the PQ method and extensively applied for implementing 

power electronic circuits, such as active filters, static compensators, rectifiers, etc., relies on 

this theory. In order to widen the PQ theory’s application in single-phase systems, many 

researchers have discussed and used the single-phase PQ theory to realize the control of the 

single-phase power electronic circuits. In the present study, we base the single-phase p-q 
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method on instantaneous π/2 lag and π/2 lead for current and voltage as a means to frame the 

initial system as pseudo two-phase 

 

However, the synchronous reference frame approach has been unable to compensate reactive 

power, as instantaneous p-q theory in only able to measure components of harmonic current 

when they occur in conditions of balanced load. Consequently, the system is quite simply 

expressed using α-β coordinates. In this formulation, original load current and source voltage 

are viewed as α-axis quantities, while current and source voltage for π/2lag and π/2 lead are 

viewed as β-axis quantities. Our approach for PQ control uses both direct and indirect current 

control in the for shunt active power filter. 

 

2.5.2 Modeling and control general PQ control 

The equation below expresses single-phase source voltage using α-β coordinates at π/2 lead, 

as follows: 

 
 

 

( 2.12) 

Equation (2.13) uses load current formulation as α – β coordinates at  lead as shown below. 

 
 

 

( 2.13) 

So, as shown in Equation (2.14) and according to the initial 3-phase p-q method outlined previously, 

both instantaneous single-phase reactive power and active power can be expressed as; 

 
 

 

( 2.14) 

The ) and can be expressed as 

  ( 2.15) 
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( 2.16) 

where   denote the DC components integral to instantaneous fundamental active 

& reactive power, and   indicate AC components harmonic power. The inverse 

of equation (2.14) gives us the reference compensating current  

 
 

 

( 2.17) 

 
 

 

( 2.18) 

Equation (2.18) indicates that, the supply voltage profile derives from APF current signal 

extraction reference shunt. Thus supply voltage distortion is able to cause inaccurate 

evaluations for reference currents, which is a major limitation that needs to be, remediated by 

the distorted supply voltage. 

 
 

 

( 2.19) 

where  constitutes the induced reference supply voltage signal. We can see in 

Equation (2.19) that the reference currents have, two possible extracting methods. 

 

2.5.3 Direct PQ control 

In this section, we apply compensating currents for shunt APF current. The shunt APF has to 

make up for it through introducing current that basically sums reactive and harmonic currents 

needed by the load in order to compensate for harmonics caused from single-phase load 

reactive power issues. Hence our reference compensating current derives from   

and  as presented in (Khadkikar, Chandra et Singh, 2009) Figure (2.11) below 
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illustrates a single-phase shunt APF system comprising a self-supporting DC bus and a four-

switch bridge inverter. Several different control strategies are used, including the p-q theory, 

as a means to deal with any power quality problems that could arise in single-phase systems. 

 

2.5.3.1 Modeling and control  

Here, we will apply compensating currents for shunt APF currents as shown in figure (2.6). 

Hence, our reference compensating current derives from   and  as 

presented in(Khadkikar, Chandra et Singh, 2009). In equation (2.19)  is assumed 

as ) with (HPF) as follows 

 

 
 

 

( 2.20) 

Therefore 

 

 

( 2.21) 

 

where Ax =  +  and  indicate the amount the shunt APF 

assumes in order to obtain a DC bus which is self-supporting. Because active power must be 

used to compensate losses caused by the shunt APF, DC bus voltage needs to be bigger than 

the peak amplitude of the input voltage, as shown in Figure (2.11) 
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Figure  2.11 The diagram of direct current control technique for shunt APF  
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2.5.3.2 Simulation results  

Table  2.2 The specification parameters used for pq direct control simulation 

 
Description Value 

Phase voltage Vs = 120 V (rms) 

Frequency Fs = 60 Hz 

Line impedance Ls = 0.5 mH 

Voltage-source type nonlinear load CL = 500 μF , RL = 25 Ω 

current-source type nonlinear load LL = 50 mH , RL = 10 Ω 
 

Active filter parameters 
 

Lc = 4 mH , Rc = 0.2 Ω 
Cdc1 = Cdc2 =2000 μF 

DC-bus voltage Vdc
* = 400 V 

PI regulation parameters Kp = 100 and Ki = 300 

 

 

Time(s) 

 

Figure  2.12 Simulation result during the direct control technique with load variation 
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Time(s) 

 

Figure  2.13 The Simulation result during step decrease of load current 

 
 

 
Time(s) 

 

Figure  2.14 System response to a step increase load current 
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                                        (a)                                                                            (b)                               

 

Figure  2.15 The total harmonic distortion a) load current b) source current in study state 

 

2.5.4 Indirect PQ control 

The immediate fundamental load active power can be written by the reference compensating 

current in the form of .Therefore, when extracting the reference compensating current 

for , fundamental active power only is obtained from the source indirectly, nullifying 

any harmonic or reactive power needs. (Khadkikar, Chandra et Singh, 2009) 

 

As shown in equation (2.19), the source must supply the immediate fundamental load active 

power . In this case,  is looked at during extraction of the reference 

compensating current. Hence, the source can only give fundamental active power for the load 

and thus nullify the requirements of both the reactive and harmonic power. Also in equation 

(2.19), is extracted from  with an LPF: 

 

 
 

 

( 2.22) 

Therefore 
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( 2.23) 

where  denotes a reference source current. This current then needs to be looked at in 

relation to the real source current in order to obtain the expected switching pattern for VSI. 
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Figure  2.16 The block diagram of indirect current control technique for shunt APF 
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2.5.4.1 Simulation results  

Table  2.3 The specification parameters used for pq indirect control simulation 

 

Description Value 

Phase voltage Vs = 120 V (rms) 

Frequency Fs = 60 Hz 

Line impedance Ls = 0.5 mH 

Voltage-source type nonlinear load CL = 500 μF , RL = 25 Ω 

current-source type nonlinear load LL = 50 mH , RL = 10 Ω 
 

Active filter parameters 
 

Lc = 3.5 mH , Rc = 0.1 Ω 
Cdc1 = Cdc2 =2000 μF 

DC-bus voltage Vdc
* = 400 V 

PI regulation parameters Kp = 0.6 and Ki = 10 

 

 

 
Time(s) 

 

Figure  2.17 The Simulation result during indirect control technique with load variation 
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Time(s) 

 

Figure  2.18 The Simulation result during load current decrease 

 
 

 
Time(s) 

 

Figure  2.19 System response to a step increase of load current 



46 

 
                                        (a)                                                                          (b)                               

 

Figure  2.20 The total harmonic distortion a) load current b) source current in study state 

 
2.6 Sliding mode control SMC 

2.6.1 Introduction 

Sliding mode control (SMC) is a nonlinear control technique characterized by outstanding 

properties, such as accuracy, robustness, easy tuning and easy implementation. Based on the 

SMC theory, it is possible to build robust controllers for high-order nonlinear plants 

functioning under diverse conditions of uncertainty. Nonetheless, their implementation may 

result in oscillations of finite amplitude and frequency in the control loop. The first main 

advantage of SMC is that the system’s dynamic behavior may be tailored by the particular 

choice of sliding function. The second main advantage is that the closed loop response 

becomes totally unresponsive to some particular uncertainties. This principle extends to 

model parameter uncertainties, disturbance and non-linearity that are delimited. The current 

section presents an overview of the SMC theory and introduces the design tools used later in 

this thesis. It offers a comprehensive report of existing chattering reduction methods. The 

final methods evaluation and comparison offers a basis for implementation decisions of 

sliding mode controllers. 
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“The dynamic performance of the (SAPF) modeled in the synchronous orthogonal “dq” 

frame is enhanced by the nonlinear control technique. The exact feedback linearization 

theory was applied in the controller’s design, which made it possible to decouple the 

currents, enhance their tracking behavior and improve the DC voltage regulation. The 

reference signals were obtained by taking the harmonic currents from the measured load 

currents. In the orthogonal frame, the fundamental current component can be considered as a 

DC component, and consequently, the harmonic load currents can be taken with high-pass 

filters (HPFs) which were based on fourth order Butterworth low-pass filters.  This method’s 

drawback is in the delay that takes place when the control system is digitally implemented. 

Even if the HPF works perfectly, not all the harmonic load currents can be filtered. 

Moreover, the system is not capable to entirely compensate load current unbalance due to the 

phase shift that is induced by the filter” (Rahmani, Mendalek et Al-Haddad, 2010) 

 

2.6.2 Modeling and control 

 

L

R
Vs

isLs iL

icRc

s1

s2

s3

s2

‘

s3

‘

s1

‘

D1

D2

Cdc1

Cdc2

0
V

Lc
a

n dc

 

 

Figure  2.21 Single-phase shunt 5 level active power system 
Taken from (Haddad et al., 2015) 



48 

We can express the system as follows by applying the Kirchhoff rules used in SPMAPF: 

 
 

 

( 2.24) 

 
 

 

( 2.25) 

where  

Then, using sliding mode law, we can express the sliding surface as: 

 

  

 

( 2.26) 

 

Here, we can formulate the reference current  as: 

 

 

 

 

 

( 2.27) 

In writing the equivalent control law, we can express the sliding surface derivate as follows 

: 

 

 
 

 

( 2.28) 

Then the equivalent control law will be: 

 

  

 

( 2.29) 

 

 

 

 

( 2.30) 

Our aim is that we maintain a constant DC bus voltage throughout all conditions. Hence,   

must follow reference , and the error  must be introduced via a 

Proportional Integral regulator:: 
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( 2.31) 

The resulting closed-loop transfer function of the DC voltage is: 

 

 

 

( 2.32) 
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Figure  2.22 Control law of closed-loop transfer function of the DC voltage block diagram 

 

By identification, the proportional and integral gains are given by: 
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Figure  2.23 Sliding mode control law implementation  
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2.6.3 Simulation results 

Table  2.4 Specification parameters used for sliding mode control simulation 

 
Description Value 

Phase voltage Vs = 120 V (rms) 

Frequency Fs = 60 Hz 

Line impedance Ls = 0.5 mH 

current-source type nonlinear load LL = 50 mH , RL = 10 Ω 
 

Active filter parameters 
 

Lc = 3.5 mH , Rc = 0.1 Ω 
Cdc1 = Cdc2 =2000 μF 

DC-bus voltage Vdc
* = 250 V 

PI regulation parameters Kp = 1 and Ki = 5 

 

Table  2.5 Switching true table used for configuration state 

 

State Van S1 S2 S3 

1 Vdc 1 1 0 

2 Vdc /2 0 1 0 

3 0 0 0 0 

4 -Vdc/2 0 1 1 

5 -Vdc 0 0 1 

 

S1, S2 and S3 are complementary respectively to S1′, S2′ and S3′. 
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Time(s) 

 

Figure  2.24 Simulation result during sliding mode control technique with load variation 
 

 
Time(s) 

 
Figure  2.25 Simulation result during step increase of load current  
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Time(s) 

 

Figure  2.26 Simulation result during step decrease of load current 

 

   

                                    (a)                                                                               (b)                     

 

Figure  2.27 The total harmonic distortion a) load current b) source current at study state 
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2.6.4 Nonlinear control 

(Mahmud, Pota et Hossain, 2014), a novel nonlinear current control scheme is presented in a 

single-phase grid-connected PV system. The controller is built using partial feedback 

linearization, and reference current calculations are performed using the maximum power 

point tracking system. This method. 

highlights the internal dynamics of the system, showing stability as being central to 

implementing the controller. The controller is evaluated by tracking both the reference and 

the grid currents. The system is simulated to determine how it might perform in a variety of 

operating scenarios (e.g., system errors) and conditions (atmospheric changes) in comparison 

to traditional controllers.  

The nonlinear system dynamics are converted mathematically using partial feedback 

linearization. The outcome is a partly linear or reduced-order linear system that functions 

without operating points, given that nonlinearities can be nullified by the application of non-

linearity. It also brings an autonomous system whose dynamics are called internal dynamics 

that need to be stable. One of the primary benefits of this controller is its ability to function 

outside the full model’s dynamics. Hence, a new current controller with partial feedback 

linearization needs to be designed as a means of controlling any current being pushed 

towards the grid.(Mahmud, Pota et Hossain, 2014) 
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Figure  2.28 Implementation block diagram of partial feedback linearizing controller 
Taken from (Mahmud, Pota et Hossain, 2014) 

 

2.6.5 Nonlinear control based Lyapunov direct method 

(Komurcugil, 2009) proposed using Lyapunov’s direct method as the basis for his novel 

nonlinear control strategy designed for single-phase PWM current-source inverters. The 

approach focuses on energy creation inverter system states, framed as a Lyapunov function, 

and figuring out which control strategy can render the time derivative in the Lyapunov 

function perpetually negative in all values. The research indicates the plausibility of 

designing having a control which is universally stable, but which sacrifices the inductor 

current’s time-varying reference function. Despite the challenge presented in evaluating the 

inductor current’s ripple component, the researcher succeeds in devising a control method 

which is essentially based on the Lyapunov model and includes an inductor current constant 

reference. The performance and practicality of the suggested control strategy are shown 

through  computer simulations and experiments (Komurcugil, 2009) 
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Figure  2.29 The block diagram of the control strategy system 
provided by the article for a single-phase 

Taken from(Komurcugil, 2009) 
 

((Komurcugil, 2009) control strategy’s performance was verified by several different 

simulations and experiments under a resistive load operation (Komurcugil, 2009). 

. (Komurcugil, 2009) 

 

 

( 2.33) 

 

 

( 2.34) 

2.6.6 Nonlinear feed-forward controller 

“A nonlinear feed-forward controller applied to a single-phase uninterruptible power supplies 

(UPS) is presented in this article. The controller was designed using a one cycle based PWM 

generator and an output-current feedforward, in order to cancel input-voltage disturbances 

and nonlinear load currents, respectively. It also comprises an external control loop to 
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guarantee good output-voltage tracking. The controller’s design is based on a large-signal 

approach, made to achieve good transient response and stability within a wide range of 

parameter variations. Moreover, despite the nonlinear nature of the controller, a linear 

average output-voltage dynamic response is obtained. The proposed control has the following 

characteristics: fast transient response, low THD sine-wave output-voltage, fixed switching 

frequency and high resistance against load and line step changes. Simulation results 

demonstrate that this control technique is effective for inverters in UPS applications, 

especially in the case when nonlinear loads must be provided and UPS DC-link has large 

undesirable ripple”(Guerrero et al., 2002) 
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Figure  2.30 Block diagram scheme of the closed-loop system 
Taken from (Guerrero et al., 2002) 

 

2.7 Conclusion 

Four different controls strategies have been simulated in different scenarios resulting pretty 

much the same in case of two level type of converter. Whereas, the big difference was 

observed  in case of five level, where the result in terms of compensation quality of signal 

and THD are much better compared to the two level. The reason of choosing five level 
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instead of two level is that Low dc bus voltage can be used, better quality of output voltage 

waveform (use low filter) and consequently lower voltage rating devices can be used. 

However, there are drawbacks such as higher component count and extra and more complex 

control for six switches converter compared to the well-known four devices one. 

 





 

CHAPTER 3 
 
 

SCOTT AND LEBLANC TRANSFORMERS DESSIGN AND SIMULATION FOR 
POWER QUALITY IMPROVEMENT 

3.1 Introduction 

In general, energy companies that have public ownership power the majority of current 

electrical railway systems around the world. However, because of the train’s high speed and 

the extensive distances they travel, the trains’ energy is mostly derived from single-phase 

systems that feed off their respective three-phase public systems. Because of this, the running 

of the world’s train systems have caused voltage unbalances to a significant degree, which in 

turn has caused issues related to the quality of energy allocated to other areas of publicly-

owned power systems. This problem has also impacted various types of equipment used in 

the system. 

 

Specifically, power unbalances can lead to both minor and major issues, such as 

malfunctioning of protective relays, overheating of motors, and communication interference. 

Individually, and when dealt with as they occur, these issues have only minor impacts, but 

collectively, and if not resolved in the short term, the problems can ultimately lead to system 

shut-down. For example, if induction motors are malfunctioning due to energy imbalances, 

they will be less efficient and could severely overheat, causing power loss. These issues can 

also cause a shorter life-cycle of the equipment or component. China is going full-speed 

ahead with implementation of the latest in high-speed train technology, mainly to augment 

and expand the country’s current rail transport system. Unfortunately, the expansion is 

causing major issues related to power quality, such as harmonic currents, unbalance, and 

negative sequence currents.(Chen, 1994) 

 

In general, issues around power can be in intimately related to the type of transformer that 

exists in a traction system. The most popular transformers for industrial and commercial 

applications are the Scott transformers and Leblanc transformers, although the Woodbridge 
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transformers and three-phase V/V transformers are also relatively widely used. Scott 

connections change three-phase into two-phase, or into two single-phases. Such changes 

serve to decrease the voltage imbalances that can arise in the operation of massive rail 

systems. 

 

Given this advantage of the Scott approach, this system is particularly attractive to operators 

of rail lines that feature only moderate short-circuit capacity. However, a major drawback of 

the Scott transformer is its high cost, which can be nearly double that of single-phase 

systems. A secondary drawback is its relatively low efficiency levels, making single-phase 

transformers a better alternative in both of these regards. Yet despite their high cost and low 

efficiency, Scott transformers operate as highly balanced transformers, making feeder 

sections power-balanced without the presence of harmonics. Likewise, with the Scott system, 

any current which enters the utility grid is also balanced and without the presence of 

harmonics. 

 

Nowadays, Scott transformers are typically employed in traction systems. At the same time, 

the Leblanc system, which has been around for over a century, is also able to change three-

phase supplies into two-phase ones, so it offers an alternative to the Scott system. The 

present work looks at both Scott and Leblanc transformers in detail in relation to the 

application in modern rail systems. 

 

3.2 Modeling of Scott transformer 

Issues related to unbalance issues of traction stations can be easily resolved through the use 

of Scott transformers. Scott systems can be used to shift a balanced two-phase system to a 

balanced three-phase AC network. Figure 3.1 depicts some connection diagrams in a Scott-

connected scheme, showing the transformation of a three-phase supply into a two-phase/two 

single-phase one. As shown in the diagram, the two single-phase loads on the secondary load 

obtain three-phase power from the primary side, causing the voltage imbalance to reduce. 

(Chen, 1994) 
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3.2.1 Current and voltage relationships for Scott transformer 
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Figure  3.1 Phasor and connection diagrams of a Scott connected transformer 
Taken from (Chen, 1994) 

 

As shown in Figure 3.1, secondary or primary voltage/current relationships in Scott 

transformers can be expressed as: 
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( 3.5) 

 

 

( 3.6) 

And 

 

 

( 3.7) 

 

 

 

( 3.8) 

 

 

3.2.2 Equivalent loads for Scott transformer 

To make the derivations less complex, we assume the transformers as being ideal, meaning 

that they feature zero impedance and zero voltage drop, and thus zero loss. With this 

scenario, both the transformers and traction load for the rail substation are given as 

equivalent loads. Such that the transformer’s primary-side voltage imbalances at the point of 

common coupling (PCC) can be quickly and simply formulated. For the secondary side, the 

relationships between voltages, currents and complex power can be given as follows:(Chen, 

1994) 

 

 

 

( 3.9) 
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( 3.10) 

 

 

( 3.11) 

 

 

( 3.12) 

 

 

( 3.13) 

Therefore, 

 

 

( 3.14) 

 

 

( 3.15) 

 

 

 

( 3.16) 

An equivalent three-phase load for two single-phase traction loads  and   is expressed 

in Equation (3.16), showing the Scott system changing two single-phase sources into a three 

phase one (Chen, 1994) 
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3.3 Modeling of Leblanc transformer 

The Leblanc transformer provides an alternative to the Scott system for dealing with 

unbalance issues at traction substations. Leblanc transformers are able to transfer load-side 

balanced two-phase systems over to balanced three-phase AC networks. Figure 3.2 illustrates 

a Leblanc connected transformer. As can be seen in the phasor diagram, Leblanc 

transformers can change three-phase supplies into two-phase ones, thereby decreasing 

voltage imbalances that result from single-phase traction loads. Further, as depicted in Figure 

3.2, the Leblanc primary windings have a three-phase delta interphase connection, which is 

typical for a step-down unit from a high voltage source. This winding is beneficial for 

suppressing third-harmonic voltages. As can be seen, there is a common core which features 

a three-phase, three-limb design   
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Figure  3.2 Phasor and connection diagrams of a Leblanc connected transformer 
Taken from(Chen, 1994) 
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instead of the two single-phase core design found in Scott transformers. As well as having a 

less complex core set-up, Leblanc are cheaper to build as they require fewer active materials. 

They also require less floor space than a Scott connector. 

 

3.3.1 Current and voltage relationships for Leblanc transformer 
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Figure  3.3 The connection diagrams of a Leblanc transformer 

 

As shown in Figure 3.3, secondary or primary voltage/current relationships in Leblanc 

transformers can be expressed as: 

 

 

 

 

( 3.17) 
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Figure  3.4 Part A and B of Leblanc connected transformer 
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From figure 3.3 

 

 

 

( 3.26) 
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In which 

 

 

( 3.28) 
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( 3.30) 

3.3.2 Equivalent loads for Leblanc transformer 

Similar to the assumption made in relation to the Scott transformer, equivalent loads can be 

used to represent Leblanc transformers and traction load for rail substations, in which case,  

Relationships among voltages, currents and complex powers for secondary can be expressed 

as: 
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( 3.31) 
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( 3.34) 

 ( 3.35) 

Therefore 

 

 

( 3.36) 

 

 

( 3.37) 

 

 

( 3.38) 

Equation (3.38) expresses how Leblanc transformers change two single-phase traction loads 

 and  into equivalent three-phase loads like for Scott transformers. Consequently, any 

voltage unbalances due to single-phase traction loads coming from both transformers will be 

similar.(Chen, 1994) 
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3.4 Comparison of Scott and Leblanc transformer 

From the perspective of imbalance issues, Leblanc transformers perform at the same level as 

Scott transformers, but the Leblanc one is much cheaper than the Scott one. Imbalances can 

be decreased by making the two transformer loads closer, but this might not be possible as 

the traction loads must adhere to scheduling and the trains must also maintain a certain 

distance. As a result, employing either the Scott or Leblanc systems means that an 

appropriate operating schedule shall enable the operators to gain the benefits of the 

systems.(Chen, 1994) 

 

3.4.1 Validation of Leblanc transformer 

The functionality of the Leblanc transformer is tested with balance and unbalanced load. In 

Figure 3.5 and 3.6, the connection of Leblanc transformer with the Three-phase source. 
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Figure  3.5The Leblanc transformer diagram by Matlab simulation 
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Le-blanc Transformer connection

1N

1N

1N

2

1

2
3

N
N

2

1

1
3

N
N

2

1

1
3

N
N

2

1

1
3

N
N

V

V

A

B

C

2

1

1
3

N
N 2

1

L2

L1i

i

 

 

Figure  3.6 The special connection of Leblanc transformer by Matlab simulation 

 

 

 

Table  3.1 The specification parameters used for LeBlanc simulation 

 
Description Value 

Primary voltage Vp = 600 V (rms) 

Secondary voltage Vs = 208 V (rms) 

linear load RL 1&2 LL = 50 mH , RL = 10 Ω 

Nonlinear load RL 1&2 LL = 50 mH , RL = 10 Ω 

Frequency Fs = 60 Hz 

Line impedance Ls = 0.5 mH , Rs = 0.1 Ω 
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Time(s) 
 

Figure  3.7 Input and output of voltage &current for Leblance transformer 

 
The simulation results of figure (3.7) shows,  the balancing of linear equal loads connected to 

two single phase voltage with 90 º phase shift, that the grid currents (isabc) are will balanced. 

The same simulation was also run with unequal different linear loads connected to the two 

single-phase 90 º phase shifted supply. Secondary voltage as depicted in figure (3.8) shows 

that grid current is unbalanced but remain sinusoidal since the load side currents are 

sinusoidal as well. This unbalances may cause voltage drop depends on the cable and facility 

impedances and cause voltage distortion as well 

 
 

Time(s) 
 

Figure  3.8 Voltage &Current for Leblance transformer in case of unbalanced load 
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Figure  3.9 Voltage &Current of Leblanc transformer in case of balanced nonlinear load 

 
 

 
Time(s) 

 

Figure  3.10 Voltage &Current of Leblanc transformer in case of  unbalanced nonlinear load 
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The simulation results in figure 3.9 shows the conversion of the three-phase source voltage 

and two single phase voltage with 90º phase shift in case of nonlinear load. As we can see the 

grid currents are unbalanced and have to mush distortion which will affect the grid voltage. 

The grid current has to be balanced for power quality Performance. As shown in Figure 3.10, 

the load is unbalanced, which may cause an unbalanced grid current that on the impedance of 

cable and the impedance of the grid. We can see the different between linear and nonlinear 

load by calculating the Total Harmonic distortion as showing in the Figure 3.11 

 
 
 

 
 

Figure  3.11  Harmonic spectrum of the source current in study state 

 

3.4.2 Conclusion 

This chapter has investigated power quality issues affecting the Leblanc and Scott 

connections. The solutions are suitable for vehicle systems that run on high-voltage 

electricity as well as for railway traction. The system is modeled and the technique is applied 

and evaluated to eliminate power quality problem. The results of the tests have shown that 

both the Scott and the Leblanc systems have similar unbalance impacts on power systems. 

Furthermore, PQ problems and other approaches can be used to deal appropriately with 

reactive power issues as well as unbalance and harmonics. The test results show improved 

performances by suppressing unbalance and reactive power. 

 





 

CHAPTER 4 
 
 

INTERFACING OF LEBLANC TRANSFORMER TO SUPPLY DIFFERENT 
UTILITIES 

4.1 Introduction 

The current chapter assesses Power-quality (PQ) of the traction power-supply system (TPSS) 

in trains.  The proposed study concerns the design and control of PV solar and two single-

phase five-level inverters connected to Leblanc transformer in order to feed two single 

phases’ loads and produce 750 V for train utilities. Due to the electrified railway system 

being a nonlinear model of time varying natures of modern trains, the calculation and 

assessment of such power quality (PQ) problems is somewhat complex to establish. The 

suggested configuration guarantees complete compensation of unbalanced loads, the reactive 

power, and the current harmonics in three phase grid systems. Both inverters’ controllers use 

a sliding mode type with indirect control. The first one regulates the dc bus voltage, the 

counterbalancing of the reactive and the current harmonics for the corresponding phase. The 

second indirect control, applied to the second inverter, counterbalances the reactive and the 

current harmonics for the corresponding phase b, balances the current between the two 

single-phase source current in order to guarantee balanced three phases current within the 

grid system. The suggested system is designed and simulated using Matlab 

Simulink/Simpower, and its performance is examined and discussed in the chapter. This 

chapter technically represents an important contribution to the integration of renewable 

energy and distributed generation to railway trains supply systems. 

 

The PQ drawbacks encountered in this kind of power supply systems, such as harmonic, 

unbalance, and low-frequency voltage variation, have attracted growing awareness because 

of their unfavourable outcomes on both traction electrical devices and utility power systems. 

The PQ issues may have a negative impact on the rail signalling and critical communication 

systems, as well as the control system of the HST (high-speed train). Thus, it is imperative 

not only to balance the load but also to enhance the PQ as a means to ensure the reliability 
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and the stability of both the Traction Power Supply System (TPSS) and the Utility Power 

System.  

 

A great number of researchers have looked at the harmonic modeling, harmonic analysis 

techniques, and the impacts of the harmonics on the TPSS. Another major issue in the HSR 

system is the natural instability of the traction loads. In cases of three-phase to single-phase 

or two-phase traction transformer, the instability of traction current creates a negative-

sequence element that is equal or close to the positive-sequence element.  

 

In this work, a developed configuration meant to improve the power quality of the entire 

system is presented. The latter includes a compensation of the current harmonics, power 

factor correction and current unbalances in the grid side. Moreover, multi-level inverters, 

sliding mode control and indirect control have been used to validate the compensation of the 

proposed configuration. It was found that from three-phases to two phases transformation, 

the Leblanc approach is particularly attractive to operators of rail lines. 

 

4.2 Power quality issues 

4.2.1 Harmonic and resonance 

Fourier theory holds that periodic electrical quantities which are non-sinusoidal are 

represented by an infinite sum derived from the sine/cosine functions. From these, a series of 

harmonic components emerges, and the frequencies of these series can be formulated as 

integral multiples from the fundamental frequency. Therefore, in order to formulate a 

network currents’ and voltages’ harmonic content, the total harmonic distortion (THD) must 

first be stated. 

 

Energy systems are able to exhibit harmonic resonance frequency due to interactions which 

can occur between distributed capacitance and transmission lines. In HSR systems, resonance 

results if harmonic currents which have been added from HSTs are identical to the natural 

frequencies of the system. However, this resonance could also lead to instability in HST 
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tractive drive systems, disrupting electrical devices such as communication tools and railroad 

signals and causing voltage distortions leading to power grid loss. Over-voltage of the 

resonance can hit various pieces of equipment and components, including the circuit breaker 

and arrester, destroying the protective insulation, while the over-current can lead to the 

magnetic field distortions. Such distortions can cause massive outbursts of electromagnetic 

radiation, which in turn can lead to communication system interference. Resonance can also 

saturate the core of the transformer, which affects the accuracy of the measurements.(He, 

Zheng et Hu, 2016)  

 

4.2.2 System Unbalance 

A balanced power system will have three-phase currents/voltages showing identical 

amplitudes, while phase differences are 120°. In an unbalanced system, however, the 

currents/voltages are not equal; the unbalance is measured with reference to the nominal 

quantities (voltage/current). If the unbalanced currents are sufficiently large, the resultant 

negative currents might have an effect on a power system’s electrical devices, even to the 

point of disabling the protection device. This is because the negative sequence current that 

enters a generator’s stator winding can spark a second harmonic current at the rotor’s 

winding. Such a current might lead to temperature increases that will negatively impact the 

generator’s functioning and lifespan. Furthermore, there could be malfunctioning of the relay 

protection components as a result of the surge in negative sequence current flow. This kind of 

malfunction can also lead to a less reliable power system.(He, Zheng et Hu, 2016) 

 

4.2.3 Reactive power 

Reactive power can be defined as energy exchange between a load’s reactive portion and the 

energy source. Using the power factor, the presence of reactive power can be gaged, with a 

low power factor representing a large proportion of reactive power, while a high power factor 

represents a small proportion of it. The power factor in the traction power supply system 

(TPSS) is gaged as low, indicating equipment underuse, which can lead to problems in the 

upstream power system.(He, Zheng et Hu, 2016) 
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4.2.4 Rail potential and communication impacts 

In the proper functioning of HSTs, there is more and more rail potential. This potential is 

derived from the leakage current caused by the rail hitting the ballast bed as insulation. As a 

consequence, there is a leaking of the traction current onto the ground caused by transverse 

impedance from the rail and train’s point of contact. The leakage current then goes to the 

nearest substation. This ground/rail resistance provides rail potential. Additionally, the 

current caused by mutual inductance of rail and catenary flows further increases the potential. 

However, if this rail potential becomes too strong, it becomes hazardous and can disrupt 

communications.(He, Zheng et Hu, 2016) 
 
4.2.5 Low-frequency voltage fluctuation 

Amplitude fluctuation in superimposed voltage which has a frequency less than 10 Hz (with 

50 Hz being the rated power frequency) is known as low-frequency voltage fluctuation 

(LVF). Locomotives’ traction ability is reduced when voltage fluctuation amplitudes are so 

large that they lead to rectifier protection action. Because LVF can happen even during 

standard conditions and have major impacts, it is important to understand the LVF 

mechanism.(He, Zheng et Hu, 2016) 

  

4.2.6 Electrical Plug vehicle using Leblanc connection  

The driving habits of an electrical vehicle (EV) driver includes the driver’s use of grid 

electricity to power his/her EV. There is a need to know this particular habit, as it affects the 

ability of the power system to provide sufficient service. Thus, co-ordinating electrical loads 

for a given time period (e.g., day/week/month/year) must take into account the charging 

habits of EV users. 

A recently published report (Dallinger, Krampe et Wietschel, 2011) looks at the habits of EV 

users across Denmark, using the National Travel Survey data2 and data from 350 EVs as 

well as AKTA data3 from 2002 and 2003. The standard adopted for analysis of the EV data 
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is a battery capacity of 24 kWh and a 150 km average range. The data indicated that most of 

the charging took place at the homes of the EV drivers and that they used single-phase grid 

connections. A full recharge of the vehicles took approximately eight hours. The drivers also 

recharged in public venues that offered the service, such as parking lots and shopping malls. 

In these instances, the charging was accomplished with 16 A or 32 A(Dallinger, Krampe et 

Wietschel, 2011) 

The report (Dallinger, Krampe et Wietschel, 2011) also revealed that 26% of the EVs did not 

operate during weekdays, while 36% did not operate on weekends. In these instances, the 

EVs remained at home. Furthermore, the preferred charging time was at night. This data 

provide a window into potential adjustment of services according to user habits, as well as 

forecasting of EV loads (Dallinger, Krampe et Wietschel, 2011)  

The main electrical aim of using the Le-Blanc transformer connection supply the single-

phase power to electrical vehicles plug in from the general grid of three-phase system to keep 

the main grid currents is balanced. Nowadays, current and voltage unbalance is one of the 

major problems in railway traction systems regarding power quality for networks. A variety 

of approaches can be applied to decrease these issues. One approach is the use of specially 

connected transformers like the Le-Blanc, which is a winding connection transformer used 

for single-phase power in electric rail systems.  

The next section presents a Leblanc transformer, modeled in a MATLAB simulation, to 

demonstrate the efficiency of the approach. The following figures contains the simulation of 

the electrical vehicle plug in feed from three-phase system connecting with LeBlanc 

transformer to change it from three-phase system to two phase system with good quality in 

case of (AC) main and the (DC) side have the five-level inverter to performance the power 

quality as shown in the Figure (4.1). This simulation was done using PI controllers in the 

control system of the five-level inverter and the filter current. The simulation was under the 

balance and unbalance load variations to verify the compensation performance of the filter 

and the five-level inverter. The simulation results are presented in the Figures 4.19 and 4.20. 
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Table  4.1The most common EV charging options and power levels 
Taken from (Marra, Larsen et Træholt, 2013) 

 

AC current AC voltage Grid connection Power 

10 A 230 V single phase 3.2 KW 

16 A 230 V single phase 3.7 KW 

32 A 230 V single phase 7.4 KW 

16 A 400 V three-phase 11 KW 

32 A 400 V three-phase 22 KW 

63 A 400 V three-phase 43 KW 

DC current DC voltage Grid connection Power 

125 A 400 V three-phase 50 KW 

 

Figure (4.1) shows the application of the proposed system to power single-phase auxiliary 

loads and charging electrical vehicles while injecting energy from the solar panel; a second 

application is to power electrical railway traction with single-phase voltage while supplying 

the auxiliary loads as shown in figure (4.24)  

The proposed configuration and control has investigated the power quality issues of the 

traction power-supply system, which may be suitable to be applied to single supply railway 

systems. The system is modeled; and control techniques are applied. Evaluation of the 

performances for different scenarios as shown in figures (4.19) are reported. The results 

show the performances the grid side full compensations are accomplished (current 

harmonics, reactive power and unbalance load). Moreover, the proposed technique to balance 

the current in the grid side gives complete satisfactory showing the controller forcing the 

current to be balanced in both inverters. Finally, this work introduces as well interesting 

integrated technological approaches to deal with the developments of integrated renewable 

energy systems applied to the railway’s power systems. One can find in this section 

simulation result of the integration of renewable energies in the electrical vehicle and railway 

traction to reduce the burden on the utility during peak demand. 
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Figure  4.1 Circuit topologie of the plug in system 

 

4.3 Modeling and control of the proposed configuration 

4.3.1 Indirect control of the first inverter 

 

The indirect control is applied to the first five level active filter. It ensures compensation for 

unbalanced load and current harmonic for the right side as well as dc bus voltage regulation. 

At the same time, it must balance the three-phase grid current the control scheme is given in 

Figure 4.2, 

 



82 

PI
Current

Controller
Switching

table

To gating signal
of inverter 1

is1

is2

dc

*dcv PI
controller

v
is2

is2
*

sin t

Comparator

 

 

Figure  4.2 Control scheme for the Inverter1 

 

4.3.2 Sliding mode Control of the Second Active inverter 

 

Applied Kirchhoff’s voltage and current laws to the single phase active filter we will get  

 

 

 

( 4.1) 

 

 

( 4.2) 

If we then use the sliding mode approach, we will get the sliding surface:, 

 

 

 

( 4.3) 

First the generation the current reference of the active filter 
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Figure  4.3 Control scheme for dc bus voltage active current regulation 

 

The derivative is, 

 

 
 

( 4.7) 

The equivalent control law is: 

 

 

( 4.8) 

The control law is defined as follows, 

 

 

 

( 4.9) 
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Figure  4.4 Control scheme for the Inverter2 

 

4.3.3 Stability analysis 

In order to guarantee the sliding mode’s stability across the whole system, we can use the 

Lyapunov function: 
 

 
( 4.10) 

Keeping in mind that the Lyapunov function must be a positive definite when the derivative 

presents as a negative definite. 

 
 

  

 

 

( 4.11) 

Using the inequality: σ.sign(σ)<=|σ| 
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( 4.12) 

 

This inequality (4.12) will be satisfied through choosing the best sliding mode parameters as 

k2> 0 and k1 > 0. Choosing the right parameters is important, as these parameters will then 

determine the state variables’ convergence rate and whether or not the stability condition is 

satisfied.  

 

4.3.4 PV solar modeling  

A main type of sustainable power source used today is the photovoltaic (PV) solar system. 

The PV system is made up of solar panels which make electricity through the rays of the sun, 

using the sun as a renewable energy source. The three main kinds of PV panels are thin film, 

more crystalline, and polycrystalline..  
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Figure  4.5 The equivalent circuit of a solar PV cell 

 
 

 
( 4.13) 
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Figure  4.6 The system of solar cell diagram 
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Figure  4.7 The Pv panel configuration 
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Figure  4.8 The I_ph configuration 
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Figure  4.9 The Detailed Model configuration 
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Figure  4.10 The Reverse Saturation Current configuration 
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Figure  4.11 The diode current configuration 

4.3.4.1 MPPT algorithm using perturbation and observation 

Of the many possible methods, the Perturb and Observe approach has been broadly applied 

in MPPT.  
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Figure  4.12 Perturb and observe MPPT algorithm flowchart. 
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Figure  4.13 Deviation of MPPT with I and V method under rapid PV irradiance changes 

 

The MPPT algorithm is depending on the several of calculations based on the actual and the 

previous values of PV output power (dP). At each repetition, the MPPT algorithm computes 

the (dP). The processes of the methods will end as soon as the difference (dP) is switching 

between positive and negative values, as designated in Figure. 4.12 

 

4.3.4.2 Modeling and control of boost converter 

The main job of a boost converter is to increase the magnitude of the input voltage up to the 

necessary magnitude for output voltage without employing a transformer. Boost converter 

components include a high frequency switch, diode and an inductor. All of these parts work 

together to provide an energy supply by using loads with larger voltage compared to input 

voltage magnitude. They do this by controlling the switch’s duty cycle to change voltages. 

The topology for a typical boost converter is illustrated in Figure.(4.14) As can be seen, there 

are two main operational modes in this modeling approach: one is the charging mode (i.e., S 

switch is ON), and the other is the discharging more (i.e., S switch is OFF). 



90 

VdcReqCdc
SVPv

Lbis ib idc

 

 

Figure  4.14 Post regulator boost converter 

 

 

 
 

 

 

 

 ( 4.14) 

 

 
( 4.15) 

 

4.3.4.3 Charging Mode 

In the charging mode, the switch is closed and the inductor is charged by the source via the 

switch, as per Figure 4.15. The charging current is exponential in nature but, to simplify, is 

considered to be fluctuating linearly. The diode limits the flow of current from the source to 

the load and the load’s need is met by the discharging of the capacitor. 
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Figure  4.15 The boost converter When Switch S is ON 

 

 

 
 

 
( 4.16) 

 

 
( 4.17) 

4.3.4.4 Discharging Mode 

As can be seen in Figure 4.16, with the diode forward-biased and the switch S, the inductor is 

able to discharge. Thus, the capacitor, along with the source charges, can satisfy load 

requirements. As variations in the load current are negligible, the current can be assumed to 

remain constant during the entire operation.. 
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Figure  4.16 The boost converter When Switch S is OFF 
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( 4.21) 

4.3.4.5 Sliding Mode Control of DC-DC converter 

In applying the sliding mode control on the DC-DC converter, maximum power can be 

extracted from PVs. At the same time, perturbation and observation can be used in order to 

determine the most appropriate current for the PV’s maximum power. 
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Figure  4.17 Boost Converter Configuration 

 

The dynamic modeling of the boost is given by 

 
 

 
( 4.22) 

 

Then, by employing sliding mode, we obtain the following formulation for the sliding 

surface: 

 
 

 
( 4.23) 

The derivative is, 

 
 

 
( 4.24) 
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The equivalent control law is: 

 
 

 
( 4.25) 

 

The control law is defined as follows, 

 
 

 
( 4.26) 

The MPPT (Maximum Power Point Tracking) uses a perturbation and observes algorithm 

which requires only the parameters to be sensed, PV voltage and current. 

 

Boost converter

Comparator

eqd

d

Eq4.25dc
Vpv

V

s d

IL

S
d

k1IMP

 
 

Figure  4.18 Scheme of sliding mode control law of the boost converter. 

 

4.3.5 SIMULATION RESULTS  

The validation by simulation of different scenarios: 

 Study state; 

 Unbalance load;  

 Load variation; 

 PV solar variation. 
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Table  4.2 The specification parameters used for Electrical Vehicle simulation 

 
Description |Value 

Primary line voltage Vp = 208 V (rms) 

Secondary voltage Vs = 208 V (rms) 

Nonlinear load RL2 LL = 50 mH , RL = 10 Ω 

Line voltage  Vs = 170 V (rms) 

Frequency Fs = 60 Hz 

Line impedance Ls = 0.5 mH , Rs = 10 Ω , Cs =20 μF 

Active filter parameters Lc = 5 mH , Rc = 0.1 Ω ,Cdc =5000 μF 

DC-bus voltage Vdc
* = 400 V 

PI regulation parameters Kp = 0.6 and Ki = 10 

 

4.3.5.1 Simulation results throughout the study state of the system 

Time(s) 
 

Figure  4.19 Simulation of steady state response  
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The Figure 4.19 shows the three-phase source currents (Is abc) are balanced and 

approximately sinusoidal in case Of the study state. The obtained results also show the two 

single phase current  (iS) and load (iL), and the output of Leblanc transformer, the two phases 

(Va & Vb) are in a good performance and shifted by 90º degree with the same amplitudes. We 

can also see the output of the multilevel inverter the signal of five levels is clear and in good 

performance. Therefore, the proposed model offers a good compensation performance at the 

steady state and adapting the dc bus voltage, reactive power compensation and the THD for 

less than 5% as shown in the figure 4.23  

 

4.3.5.2 Simulation results throughout unbalanced load 

 

 
Time(s) 

 

Figure  4.20 The dynamic response during unbalanced load  
 
The figure 4.20 shows the three-phase source currents (Is abc) are balanced and almost 

sinusoidal in case Of the unbalanced load. The obtained results also show the two single 

phase current source (iS) and load (iL), and the output of Leblanc transformer the two phases 
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(Va & Vb) are in a good performance and shifted by 90º degree with the same amplitudes. We 

can also see the output of the multilevel inverter the signal is five levels is clear and in good 

performance. Consequently, the proposed model offers a good compensation performance at 

whatever time the unbalanced load and while load current changes adapting and regulating 

the dc bus voltage.  

 

4.3.5.3 Simulation results throughout load variation 

 

 
Time(s) 

 

Figure  4.21 The dynamic response during load variation 

 

The Figure 4.21 shows the three-phase source currents (Is abc) are balanced and 

approximately sinusoidal in case of the current load variation. The obtained results also show 

the two single phase current source (iS) and load (iL), and the output of Leblanc transformers 

the two phases (Va & Vb) are in a good performance and shifted by 90º degree with the same 

amplitudes. We can also see the output of the multilevel inverter the signal of five levels is 

clear and in good performance.   
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4.3.5.4 Simulation results throughout PV Solar variation 

 

 
Time(s) 

 

Figure  4.22 The dynamic response during the PV solar variation 

 

The Figure 4.22 shows the three-phase source currents (Is abc) are balanced and decreased as 

the PV solar power increased in case. The obtained results also show the two single phase 

current source (iS) and load (iL), and the output of Leblanc transformer the two phases (Va & 

Vb) are in a good performance and shifted by 90º degree with the same amplitudes. We can 

also see the output of the multilevel inverter the signal of five levels is clear and in good 

performance. As a result the proposed model offers a good compensation performance at 

whatever the PV solar changes and while load current changes adapting and regulating the dc 

bus voltage, reactive power compensation and the THD for less than 5% as has been shown 

in the figure 4.23  
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a)                                                                             b) 

 

Figure  4.23 Harmonic spectrum a) Source current b) Load current 

 

4.4 Montreal railway traction supply with added PV solar capacity using Leblanc 
transformer load balanced 

The main grid comprises a three-phase system connected to a Le Blanc transformer through 

primary side windings. It features a two-phase system transfer from the special winding 

connection of the Leblanc transformer through secondary side windings, as depicted in 

Figure 4.24. Therefore, the PV solar cell is interfacing with the Leblanc transformer as an 

external power source to enable it to feed both the load and the grid, as required. Further, 

solar cells connected in series/shunt create a photovoltaic module. By using a single-phase 

solar cell, a single diode solar cell model can be developed employing one diode, two 

resistors, and a current source. 

 

In a five-level inverter with DC bus regulator, an asymmetric neutral point clamped converter 

is used in order to boost the power quality from the non-linearity of the load. A nonlinear 

controller-based sliding mode is employed for reducing the negative effects of harmonics as 

well as load unbalance and reactive power according to load and grid conditions. The 

switching features of the inverter’s proposed control law serves as a means to incline the  
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trajectory of the system in relation to the sliding surface. The results demonstrate the sliding 

mode control’s usefulness in decreasing harmonic distortion in source current harmonics, 

especially those created in nonlinear loads. The sliding mode control strategy can also 

decrease dc bus voltage values near to those of network voltage. MATLAB/Simpower were 

used to provide simulation results. 

 

 

First Five Level 
inverter

PV SOLAR

Second Five Level  
Inverter

s1

s2 s3 s2

‘ s3

‘

s1

‘

D 1 D 2

s1

s2s3s2

‘s3

‘

s1

‘

D 1D 2

iL1

iL2

via

ib

ic

is1

is2

DC bus -Vdc

ipv1N

1N

1N

2

1

2
3

N
N

2

1

1
3

N
N

2

1

1
3

N
N

2

1

1
3

N
N

2

1

1
3

N
N

vabc

v
LF2

LF1

Cdc2Cdc1
C

L
Boost

S

L1

L2

L

R

1

1

L

R

2

2

 

 

Figure  4.24 Circuit topologie of the system 
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4.4.1 SIMULATION RESULTS  

The validation by simulation of different scenario: 

 Load variation; 

 Unbalance load; 

 Reactive power compensation; 

 PV solar variation. 

 

Table  4.3 The specification parameters used for railway traction simulation 

 
Description Value 

Primary line voltage Vp = 600 V (rms) 

Secondary voltage Vs = 370 V (rms) 

Nonlinear load RL1 LL = 50 mH , RL = 10 Ω 

Nonlinear load RL2 LL = 50 mH , RL = 10 Ω 

Line voltage  Vs = 490 V (rms) 

Frequency Fs = 60 Hz 

Line impedance Ls = 0.5 mH , Rs = 10 Ω , Cs =20 μF 

Active filter parameters Lc = 5 mH , Rc = 0.1 Ω ,Cdc =5000 μF 

DC-bus voltage Vdc
* = 750 V 

PI regulation parameters Kp = 1 and Ki = 10 
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4.4.1.1 Simulation results throughout the study state of the system 

Time(s) 
 

Figure  4.25 Simulation results showing steady state response of the system 

 
The Figure 4.25 shows the three-phase source currents (Is abc) are balanced and 

approximately sinusoidal in case of the steady state. The obtained results also show the two 

single phase current  (iS) and load (iL), and the output of Leblanc transformer, the two 

phases (V1 & V2) are in a good performance and shifted by 90º degree with the same 

amplitudes. We can also see the output of the multilevel inverter the signal of five levels is 

clear and in good performance. 
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4.4.1.2 Simulation results throughout load variation 

Time(s) 
 

Figure  4.26 System response during load step up and step down variations 

 
The Figure 4.26 shows the three-phase source currents (Is abc) are balanced and 

approximately sinusoidal in case of the current load variation. The obtained results also show 

the two single phase current source (iS) and load (iL), and the output of Leblanc transformer 

the two phases (V1 & V2) are in a good performance and shifted by 90º degree with the same 

amplitudes. We can also see the output of the multilevel inverter the signal of five levels is 

clear and in good performance. As a result the proposed model offers a good compensation 

performance at whatever the load changes and while load current changes adapting and 

regulating the dc bus voltage and reactive power compensation  
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4.4.1.3 Simulation result throughout unbalanced load 

Time(s) 
 

Figure  4.27 System response during unbalanced nonlinear load supply condition 

 

The figure 4.27 shows the three-phase source currents (Is abc) are balanced and almost 

sinusoidal in case of the unbalanced load. The obtained results also show the two single 

phase current source (iS) and load (iL), and the output of Leblanc transformer the two phases 

(V1 & V2) are in a good performance and shifted by 90º degree with the same amplitudes. 

We can also see the output of the multilevel inverter the signal is five levels is clear and in 

good performance. As a consequence the proposed model offers a good compensation 

performance at whatever time the unbalanced load and while load current changes adapting 

and regulating the dc bus voltage, 
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Simulation results throughout PV Solar variation. 
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Figure  4.28 The dynamic response during PV connection and load variations 

 

The Figure 4.28 shows the three-phase source currents (Is abc) are balanced and decreased as 

the PV solar power increased in case. The obtained results also show the two single phase 

current source (iS) and load (iL), and the output of Leblanc transformer the two phases (V1 & 

V2) are in a good performance and shifted by 90º degree with the same amplitudes. We can 

also see the output of the multilevel inverter the signal of five levels is clear and in good 

performance. As a result the proposed model offers a good compensation performance at 

whatever the PV solar changes and while load current changes adapting and regulating the dc 

bus voltage, reactive power compensation and the THD for less than 5% as has been shown 

in the figure 4.29 . 
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a)                                                                             b) 

 

Figure  4.29 Harmonic spectrum a) Source current b) Load current 

 



 

CONCLUSION 

 

In this research, a study was dedicated to improve power quality problems.in a train railway 

traction and electric charging vehicles power supply.  A proposed configuration combining a 

three-phase grid, Leblanc transformer, two single phases five levels inverters and a PV solar 

for multitasking use was proposed. The configuration is tested for two kinds of applications, 

namely the charging of electrical vehicle integrated with a group of residency. The 

simulation results give completely satisfactory, and the currents in the grid are fully 

compensated (current harmonics, unbalance load current, reactive power compensation). 

Also is tested the PV solar integration to reduce pressure on the grid side, especially during 

peak power demand.  

 

Moreover, the proposed configuration is tested to supply a railway train by generating two 

single phase systems, each phase will supply the line, and the DC may be used to integrate a 

bank of energy storage battery systems or send this energy directly back to the grid during 

braking with recuperation. 

To control the power converters, a sliding mode controller was adopted, the controllers were 

arranged in such way that the currents can flow between the two converters equally sharing 

the available power.  

 

Two applications were targeted by this project namely the residential single phase one which 

necessitate having its own electric charging vehicle and the train railway traction to integrate 

solar energy to reduce the air pollution and to reduce the cost. Moreover, the main electrical 

aim of using the Le-Blanc transformer connection is to feed the single-phase power to 

electrical vehicles plug in from the general and perhaps weak three-phase system to keep the 

main grid currents balanced. 

 

 





 

FUTURE WORK 

 

Future work on finding more efficient means for optimizing the Power Quality while 

managing the peak power demand with the ultimate aim of building more stable and reliable 

energy supply system for single phase traction system is suitable. More efficient integration 

of renewable energy sources for railway systems should be the goal to be followed; mainly 

because of many advantages obtained by such approach instead of only limiting the effort on 

renewable energy for residential applications. Moreover, among the technical challenges one 

can find battery-charging systems for electric vehicles connected to single output side of 

Leblanc Transformer, this latter brings the difficulty of single supply stability on the double 

outputs available connection offered by the use of LeBlanc transformer, while the other 

output has no load. Furthermore, focus on the regulation of both converters in case of 

renewable energy injection into the DC bus while keeping the DC rail voltage constant. 

Finally, a thorough comparison between the proposed topology and other typologies aiming 

to have the best choice for such application. A second order sliding mode control along with 

chattering elimination problems should also be considered in future work. 
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