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Détection Entièrement Automatisée de la Langue dans les Images Ultrasonores

Elham KARIMI

RÉSUMÉ

Le suivi de la langue dans les images échographiques fournit des informations sur sa forme et

sa cinématique pendant la parole. Dans ce mémoire, nous proposons des solutions d’ingénierie

pour mieux exploiter les cadres existants et les déployer afin de convertir un système de suivi

semi-automatique du contour de la langue en un système entièrement automatique. Les méth-

odes actuelles de détection / suivi de la langue nécessitent une initialisation manuelle ou un

entraînement utilisant de grandes quantités d’images étiquetées.

Ce mémoire présente une nouvelle méthode d’extraction des contours de la langue dans les

images échographiques, qui ne nécessite aucun entraînement ni intervention manuelle. Le

procédé consiste à: (1) appliquer un filtre de symétrie de phase pour mettre en évidence des

régions contenant éventuellement le contour de la langue; (2) appliquer un seuillage adaptatif

et classer les niveaux de gris pour sélectionner des régions qui incluent le contour de la langue

ou se trouvent à proximité de ce dernier; (3) la squelettisation de ces régions pour extraire une

courbe proche du contour de la langue et (4) l’initialisation d’un contour actif précis à partir de

cette courbe. Deux nouvelles mesures de qualité ont également été développées pour prédire la

fiabilité de la méthode, de sorte que des trames optimales puissent être choisies pour initialiser

en toute confiance un suivi de la langue entièrement automatisé. Ceci est réalisé en générant et

en choisissant automatiquement un ensemble de points pouvant remplacer les points segmen-

tés manuellement pour une approche de suivi semi-automatique. Pour améliorer la précision

du suivi, ces travaux intègrent également deux critères permettant de réinitialiser l’approche

de suivi de temps en temps, de sorte que le résultat de suivi ne dépende pas d’interventions

humaines.

Les expériences ont été effectuées sur 16 enregistrements échographiques de parole libre de

sujets sains et de sujets présentant des troubles articulatoires dus à la maladie de Steinert. Les

méthodes entièrement automatisées et semi-automatisées mènent respectivement à une somme

moyenne des erreurs de distance de 1.01mm±0.57mm et de 1.05mm±0.63mm, ce qui montre

que l’initialisation automatique proposée ne modifie pas de manière significative l’exactitude.

De plus, les expériences montrent que l’exactitude s’améliorerait avec la réinitialisation pro-

posée (somme moyenne des erreurs de distance de 0.63mm±0.35mm).

Mots clés: Détection de la langue, Segmentation d’Image, Ultrason, Suivi entièrement au-

tomatisé,





Fully-automated Tongue Detection in Ultrasound Images

Elham KARIMI

ABSTRACT

Tracking the tongue in ultrasound images provides information about its shape and kinematics

during speech. In this thesis, we propose engineering solutions to better exploit the existing

frameworks and deploy them to convert a semi-automatic tongue contour tracking system to a

fully-automatic one. Current methods for detecting/tracking the tongue require manual initial-

ization or training using large amounts of labeled images.

This work introduces a new method for extracting tongue contours in ultrasound images that

requires no training nor manual intervention. The method consists in: (1) application of a

phase symmetry filter to highlight regions possibly containing the tongue contour; (2) adaptive

thresholding and rank ordering of grayscale intensities to select regions that include or are near

the tongue contour; (3) skeletonization of these regions to extract a curve close to the tongue

contour and (4) initialization of an accurate active contour from this curve. Two novel quality

measures were also developed that predict the reliability of the method so that optimal frames

can be chosen to confidently initialize fully automated tongue tracking. This is achieved by

automatically generating and choosing a set of points that can replace the manually segmented

points for a semi-automated tracking approach. To improve the accuracy of tracking, this work

also incorporates two criteria to re-set the tracking approach from time to time so the entire

tracking result does not depend on human refinements.

Experiments were run on 16 free speech ultrasound recordings from healthy subjects and sub-

jects with articulatory impairments due to Steinert’s disease. Fully automated and semi au-

tomated methods result in mean sum of distances errors of 1.01mm± 0.57mm and 1.05mm±
0.63mm, respectively, showing that the proposed automatic initialization does not significantly

alter accuracy. Moreover, the experiments show that the accuracy would improve with the

proposed re-initialization (mean sum of distances error of 0.63mm±0.35mm).

Keywords: Tongue Detection, Image Segmentation, Ultrasound, Fully-automated Tracking
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INTRODUCTION

0.1 Motivation

The study of tongue motion has a variety of applications. It can help understand how the

tongue moves in articulation and can inform different related research areas including disor-

dered speech affected by disease, second language acquisition, speech processing, and biome-

chanical tongue modeling. Measuring tongue function is difficult because the tongue is po-

sitioned within the oral cavity and inaccessible to most instruments. In speech science, ultra-

sound (US) imaging is one of the most used techniques to measure tongue movements involved

in articulation due to the fact it can capture real-time movements of the tongue surface as an

image sequence and it is non-invasive.

US refers to sound waves with high frequencies that are not audible to human hearing (Fenster

et al. (2001)). There are many technological applications of US in many different fields. US

is particularly attractive for studying speech in children because it is non-invasive. There are

many studies and guides regarding US and its applications in medical imaging of the tongue

(Bressmann et al. (2007), Epstein & Stone (2005), Stone (2005)). (Stone (2005)) presents a

very comprehensive survey explaining how US works, the image quality, the validity of the

data collection procedures and stabilization systems.

With all the advantages of US technology, there have been many studies in the literature that

explore a wide range of related subjects including tracking, modeling, analyzing the tongue

contour and its surface using 2D or 3D US images.

This thesis focuses on fully automatically detecting tongue contours from US images without

manual intervention by a human or use of any training data. Tracking the tongue contour

in US image sequences is a difficult problem; thus, it is a popular topic in the literature and

there have been many studies that suggest systems for this task (Akgul et al. (1998), Li et al.
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(2005a), Roussos et al. (2009), Fasel & Berry (2010), Tang et al. (2012), Hageman et al.

(2013), Xu et al. (2016a), and Laporte & Ménard (2018)). Most of these approaches depend on

an initial set of tongue contour points that should be manually given in advance to the system

and the tongue contour is then tracked over the remaining images. Therefore, we call these

approaches “semi-automatic”. This thesis addresses a different but related problem and that

is to automatically segment the tongue contour points an US frame without prior information

about its location, which is a challenging problem. While such a method can be used to extract

tongue contours frame by frame in a video sequence, it is best exploited in combination with

a tracking algorithm that exploits prior information. In this thesis, we show how this can be

achieved.

The biggest advantage of the method proposed by this thesis is that it eliminates the need for

manual intervention. This opens the possibility of designing and implementing software that

could detect the tongue contour on a US machine in real-time and provide immediate visual

biofeedback to the patient, e.g., during a speech therapy session (Bernhardt et al. (2005)).

Moreover, the detection approach proposed here could be extended and applied to other related

applications in medical imaging tasks that involve US.

0.2 Problem statement

This thesis addresses the problem of automatically detecting contours of tongue in 2-dimensional

US images. To solve this problem, we divide our ultimate goal into a number of major prob-

lems that are dealt with at different levels:

• Automatically segmenting tongue contours from 2D US images: this means that the input

is a single US frame and the output is an approximate locus of tongue contour points on

this frame;
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• Transforming a semi automatic tongue contour tracking approach to a fully automated one

using the automated tongue segmentation module;

• Determining when it might be useful to re-initialize the automated tracking approach (re-

initialization).

To set up a framework that addresses these problems, there are specific challenges that should

be overcome. Some of these challenges include dealing with noisy US images, designing

meaningful metrics to evaluate the quality of the points extracted, and deciding when to reset

the system to improve the tracking accuracy.

0.3 Proposed solution

This section summarizes the proposed solution to the research problem discussed in the previ-

ous Section. We first try to address the problem of automatic tongue contour segmentation in

US images. This is achieved through a number of steps described in detail in Chapter 2:

• We develop a system that captures and segments the shape of the tongue from the US

image. This is done by masking the US frame, filtering it with a phase symmetry filter and

adaptively binarizing the synthesized image.

• When the outline of the bright white shape arising from the echo of US off the tongue sur-

face is captured, its skeleton, the set of points lying at an equal distance to all its boundary

points, is generated. This set of points is pruned and some probable outliers are removed.

Then, a spline is fit to the remaining points and these are shifted towards the tongue surface

location by applying a snake fitting procedure.

• The segmented tongue contour points are evaluated by two novel quality measures. This

evaluation makes it possible to select a reliable initialization set for tracking. The proposed
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approach makes it possible to use any semi-automated tracking approach and make it a

fully automated one.

• The final contribution of this thesis is its use of automatic resets to improve the accuracy

of the tracking when the system is dealing with a long sequence of frames. This is where

re-initialization would come to rescue the tracking approach and reduce the potential ag-

gregated error. We define two criteria for the cases where the tracking is possibly lost.

Whenever one of the two criteria is met the algorithm automatically resets the initializa-

tion step and tries to find a set of suitable candidate points for the tracking approach from

scratch.

To validate each part of the proposed solution, we examine intermediate steps and final out-

comes extensively through a number of different experiments in Chapter 3. Specifically, we

focus on the accuracy of our automated segmentation algorithm and then we evaluate the out-

come of using this module along with a semi-automated tracking approach.

0.4 Thesis structure

The remainder of this thesis is structured as follows: Chapter 1 reviews the essential articles

in the literature related to the work presented in this thesis. These articles include background

material on US of the vocal tract imaging, image segmentation using snake models, and state-

of-the-art tongue contour tracking and segmentation approaches.

Chapter 2 discusses the details of the proposed approach for the problem of automatically

detecting the tongue contour in US images.

Chapter 3 details the experimental framework used to test the proposed approach and the data

acquired to do so. It goes over different quality and accuracy measures that were either bor-

rowed from the literature or designed specifically to evaluate our work. The accuracy of the
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proposed segmentation results is presented, showing that the proposed approach can poten-

tially be used in a semi-automated tracking system to make it a fully automated one. We then

analyze the output of such an automated system in practice compared to a state-of-the-art semi-

automated tracking one. Results indicate that the proposed automatic segmentation method can

successfully convert a semi-automated approach to an automatic one.

Finally, Chapter 4 is dedicated to reviewing the contributions of this thesis, its shortcomings

and the work that could be done in the future to improve the current framework.





CHAPTER 1

BACKGROUND AND LITERATURE REVIEW

One of the essentials tasks in the process of human tongue information analysis is the segmen-

tation of tongue contours (Hageman et al. (2013), Tang et al. (2012), Peng et al. (2010),Stone

(2005)). This chapter presents background material on this subject and is organized as follows:

in Sections 1.1 and 1.2, we focus on the general knowledge regarding tongue , and US imag-

ing. We then review some of the existing methods for tongue tracking in US images using

snakes in Section 1.3. Section 1.4 reviews how active appearance models can help with some

of the challenges that exist in snake based approaches. Section 1.5 focuses on motion retrieval

from consecutive frames to track the tongue contour and Section 1.6 summarizes some of the

learning based methods. In Section 1.7 we review work showing how adding temporal and

spatial regularization can improve tongue segmentation. Section 1.8 reviews a recent approach

to reset automatic tracking with the aim of improving performance. We introduce the main

approach used in this thesis as the semi-automatic tracking system of the presented research

work in Section 1.9. Finally, we go over a previous analysis of some of the tongue shape anal-

ysis techniques in Section 1.10, and we conclude the chapter by summarizing our strategy with

regard to the challenges from each method introduced earlier in this chapter in Section 1.11.

1.1 Tongue anatomy

The tongue is a muscular organ in the mouth of most vertebrates that manipulates food for

mastication, and is used in the act of swallowing. Besides these functionalities, the tongue

enables human to produce speech and animals to vocalize (Hixon et al. (2014)).

The arrangement of muscle fibers within the tongue enable it to maneuver freely inside the

mouth cavity. The tongue surface consists of three main parts: the tip, the body and the base

or root (see Figure 1.1).
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Figure 1.1 Diagram showing five components of the tongue.

The tongue muscles include eight different muscles in two groups: four intrinsic muscles and

four extrinsic muscles. Those muscles that originate from the tongue body are called intrinsic

muscles whereas extrinsic muscles are based outside the tongue body. Analyzing the tongue

function with regard to its structure is a challenging problem since tongue anatomy is complex

and interactions between muscles are not yet completely understood by the researchers in the

field. In speech production, tongue shape changes and contact between the tongue and palate

are used to change the flow of air more or less rapidly within the vocal tract and produce

different consonants and vowels. In this thesis, we focus on the surface of the tongue and try

to detect it in a 2D US midsagittal cross-section.

1.2 US imaging

Medical US imaging, also called sonography, is the act of producing pictures from the inside

of body parts that are exposed to high frequency sound waves. US is basically sound waves

with a higher frequency than what is audible to the human ear (higher than 20 kHz). US waves
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are produced by sending electric pulses to piezoelectric transducers. When an US wave passes

through interfaces between different tissues, it partially reflects back to the transducers to be

converted to electrical signals and the machine can determine the distance to the interface as

a function of the pulse round-trip time from the time delay between the transmitted pulse and

the detection of its echo and the speed of sound, assumed constant in biological tissues. The

interference between the different echoes produces a “dotted” pattern best known as “speckle”

in ultrasound images (Jensen (2007)). Figure 1.2 shows how the speckle appears in a sample

US image and how this noisy pattern can pose a challenge to both human and machine image

interpretation.

Typically, medical US imaging uses frequencies in the range of 1 to 18 MHz. As the frequency

goes higher, the image obtained has a better spatial resolution, whereas lower frequencies make

it possible for US to go deeper in the patient tissues. There is no use ionizing radiation in US

imaging as used in X-rays. US imaging can show the movements within a particular body

organ, thus it is categorized as a real-time imaging technique. Due to its various benefits

such as producing no radiation, giving real-time images, being inexpensive, mobile and being

widely accessible in hospitals and research centers, US imaging is one of the most frequently

used medical imaging technologies worldwide.

There are a number of different techniques to assess tongue motion (Stone (1997)). From these

techniques, X-ray imaging is the best known of the imaging systems. The X-ray beam captures

structures such as teeth, jaw, and vertebrae in mouth besides the soft tissue and that makes it

hard to use X-rays to measure the tongue. Computed Tomography (CT) is another technique

that uses X-rays to image slices of the body as thin as 0.5 mm or less. Radiation exposure by CT

removes this technique from the list of instruments of choice for speech research. Magnetic

Resonance Imaging (MRI) produces high contrast resolution images of the tongue surface

by placing electromagnets that surround the body and create a magnetic field. Though MR

images show the entire vocal tract, the capturing is very slow, the sections are very wide, and it

causes potential claustrophobia for subjects. Electromagnetic Articulometer (EMA) is another

technique which is basically a point-tracking based method that tracks markers in the mouth
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using a magnetic field. EMA technique produces high temporal resolution and allows tracking

well defined anatomical landmarks. EMA involves having sensors in the mouth, which is not

convenient for many subjects, specifically for young patients.

Although US imaging of the tongue may not always result in high quality images, this tech-

nique is still a favorable imaging technology for speech therapy and speech science research.

Using US imaging, a clinician can derive many pieces of information such as the approximate

measurement of where the palate would be in relation to the tongue. Due to the fact US does

not require inserting any device into the patient’s mouth, it is also a prime choice for children.

The biofeedback provided by real-time US visualization allows patients and clinicians to aim

for a specific tongue shape they need to produce during speech therapy. These advantages of

US facilitate articulatory gains in speech therapy for many patients (Bernhardt et al. (2005),

Shawker & Sonies (1985),Bacsfalvi & Bernhardt (2011)). US imaging is one of the standard

routines in the phonetics literature (Chi-Fishman (2005), Li et al. (2005a), Tang et al. (2011)),

this thesis also focuses on detection of tongue contours from US images.

In speech studies, tongue US images are typically acquired as follows: a) to get a better quality

image, first gel is applied on the tip on the US probe b) then the probe is fixed underneath of

the subject’s chin c) having a fixed probe, the US images are shown on a display (see Figure

1.2 for a sample US image).

The most significant structure of interest in US images of the tongue is the the upper surface

of the tongue which is the lower edge of the bright white band that would be created by the

reflection of the US at the interface between the tongue surface and air above it. Many types

of noise are created in this process. Backscattered echoes from structures within the tongue

(tendons, blood vessels) can cause high contrast edges. Waves being parallel to portions of

tongue surface may cause the loss of tongue contour within the affected portion. Moreover,

there are other possible scenarios that the US waves would not reflect properly and do not

create high quality images. For example, in some people, US attenuates within the tissue

located between the probe and the tongue, so the reflection off the tongue is weak. Another
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Figure 1.2 Different main parts of the tongue muscle are shown

in this mid-sagittal US frame of a tongue. Note that since there are

no anatomical landmarks on the US image, it is challenging to

determine where the tongue tip and/or body are located at in the

US image.

scenario is when the air gets trapped underneath the tongue (especially near the tip), so US

does not penetrate all the way to the tongue, creating loss of signal (shadow).

1.3 Tongue tracking using snakes

1.3.1 Active contours and snakes

One of the popular classical approaches among linguistics researchers to address the problem

of tongue contour segmentation from a US 2D image is to use snakes or active contour models.

First introduced by Kass et al. (1988), snakes aim to find salient contours for delineating an

object outline from a possibly noisy image. Snakes alone cannot necessarily find salient image

contours. Rather, snake energy minimization methods push a suggested initial set of points

toward an appropriate local minimum. Kass et al. (1988) suggest minimizing a functional that
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is composed of internal energy and external energy. Assuming the snake contour is a set of n

points vi, i = 0 . . .n−1, the snake energy function can be stated as:

E∗
snake =

n

∑
i=1

Esnake(vi) =
n

∑
i=1

αEinternal(vi)+βEexternal(vi) (1.1)

where the internal energy Einternal(vi) is designed to impose a piecewise smoothness constraint

on the snake contour, and the external energy Eexternal(vi) is composed of other forces that aim

to control the fitting of the contour onto the image. Kass et al. (1988) suggest two external

energy components: the first one is an image force which pushes the snake contour toward

salient image features such as lines, edges or etc, the second one is the externally constrained

forces that the user defines to interactively guide the snake towards or away from particular

features.

Snakes, as a feature extraction technique, have a number of advantages over other traditional

approaches in the literature such as being able to automatically adopt a minimum state and be

used to track moving objects. However, snakes are sensitive to local minima and their accuracy

is dependent on the convergence policy.

1.3.2 Tongue segmentation in US images using snakes

Akgul et al. (1998) proposed a method to segment and track the tongue surface contour in

2D US images using snakes introduced earlier in Section 1.3.1. As mentioned earlier, snake

energy is formulated as a linear combination of internal energy and external energy terms. This

formulation is detailed as follows: internal energy is a weighted combination of smoothness

energy and similarity to the initial model energy, on the other hand, external energy is a fraction

of the negative of the image gradient at each pixel (for more accurate details of the approach

please see Section 2.2.1).
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As US images are noisy, using the gradient of the image is not sufficient to segment the tongue

surface. Therefore, the snake model of Akgul et al. (1998) uses manual initialization to improve

tongue contour segmentation accuracy.

1.3.3 EdgeTrak

The snake formulation approach for tongue segmentation and tracking presented in Akgul

et al. (1998) inspired many other approaches in the literature. Li et al. (2005a) extended this

formulation to improve the segmentation and track the tongue contour more robustly in the

presence of noise and spurious high-contrast edges in ultrasound images.

To understand the contribution of the method proposed by Li et al. (2005a), let us assume a

2D US image of a tongue contour (see Figure 1.3). The bright white band shown in this figure

between the upper edge and lower edge shows the reflection at the interface with air above the

tongue surface, and the lower edge (green edge) is the surface of the tongue sought for analysis

by speech scientists. The external energy term of Akgul et al. (1998) is based purely on the

image gradient information. Thus, it is a challenge to distinguish between the two edges (the

upper edge and the lower edge). Li et al. (2005a) introduced a new energy called “band energy”

to guide the snake towards the lower edge of the bright white band. With “band” energy, snake

segments avoid attraction to the irrelevant high gradient above the air reflection.

Having Eband(vi, I) as an additional term, the authors extended the energy term in Akgul et al.

(1998) by defining a new external energy term as:

E ′
ext = Eband(vi, I)×Eext(vi, I). (1.2)

Calling this approach “EdgeTrak”, Li et al. (2005a) present their implemented approach as

a publicly available system. Like Akgul et al. (1998)’s method, EdgeTrak demands the user

input points near the tongue surface as an initial points in first frame of the sequence and by

interpolating initial points by B-spline, the system has a contour near the tongue surface.
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Figure 1.3 The bright white band above the tongue surface

shown between the upper edge and lower edge.

1.4 Active appearance and shape models for tracking

One of the problems with EdgeTrak is that it possibly fails when some parts of the tongue

from previous frames are not visible in a rapid tongue tracking task. In such cases, error

can propagate and tracking cannot usually recover from that. Although preprocessing the US

frames and applying boundary constraints on the snake can help the moving contour keep its

size (Aron et al. (2008)), the constrained snake still needs manual refinements. To address

this, Roussos et al. (2009) proposed a different tracking approach and that is to train a model

with prior information about the shape variations of the tongue contour and its appearance in

US images, known as active appearance models (AAMs). In this method, two models, one for

shape variation of the tongue (obtained using annotated X-ray videos of the speaker’s head)

and one for texture model (based on the US image intensities around the tongue contour), are

trained.

Besides active appearance models, active shape models (ASM) also can be used along with

snakes for segmentation of structures such as the tongue. Hamarneh & Gustavsson (2000)

proposed a method that combines ASM and snakes for segmenting the human left ventricle

in cardiac US images. This is achieved by obtaining a shape variation model that is trained
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by averaging ventricle shapes and then the salient contours of ventricles are found by letting a

snake that deforms to find the boundaries. This approach was successfully applied to tongue

tracking by Ghrenassia et al. (2013).

1.5 Pairwise registration / optical-flow

Tracking the tongue contour is the same as retrieving motion under rotation and distortion

conditions. Therefore, one of the simplest methods to address the problem of segmentation/-

tracking is to estimate motion via a gradient based approach. Chien et al. (2017) present an

approach to track tongue motion in ultrasound images for obstructive sleep apnea using an

optical flow (OF) method by Lucas & Kanade (1984).

Chien et al. (2017) also suggest the strategy of iterative motion estimation, where an initial

motion vector at the coarsest spatial scale is computed first and then those regions of interest

are moved using that initial motion vector and after that another optical flow is calculated at a

finer scale, and this is repeated until completion of all desired resolutions. Moving the ROI’s

at a coarser scale accelerates convergence in general and when a finer scale OF is applied

the results are more accurate. Although this method is technically simple, it has two major

limitations for the task of tracking a tongue contour motion. The first limitation is the heavy

computations that need to be done per frame that make this approach very slow in comparison

with other dynamic methods . Moreover, the errors in the method accumulate from one frame

to the next.

1.6 Machine learning methods

Recent and very rapid developments in machine learning methods in the last decade have led

to their equally rapid and successful application to image analysis tasks using deep neural

networks. US tongue image analysis is no exception. Neural networks can work well if there

are enough data they can learn from; which, in our problem, translates to having a database

of segmented US images of tongue contours. There have been some works in the recent years
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that exploited the possibility of using deep neural networks to trace the tongue contour in US

images.

Fasel & Berry (2010) presented a method based on deep belief networks (DBN) to extract

tongue contours from US without any human supervision. Their approach works in a number

of stages. First, a deep convolutional neural network is built and trained on concatenated sensor

and label input vectors (US images and manually segmented contours). Second, the first layer

of this network is modified to accept only sensor inputs (no contour information anymore). The

second neural network can establish the relationship between the first neural network and the

sensor-only (US) images so that the whole system can infer the labels (tongue segmentation).

To minimize the reconstruction error of labels, the network is fined-tuned using a discriminative

algorithm. The work by Fasel & Berry (2010) has resulted in a publicly available software

called Autotrace.

The approach by Fasel & Berry (2010) makes a complex neural network model based on the

tongue segmentations, which require the intensity of all pixels in the US images plus their con-

tour segmentations as inputs. As this approach frames the tongue contour segmentation goal

as a typical deep learning problem, it needs a large amount of training data to fine tune weights

of 5514 neurons dispatched on 3 hidden layers. Fabre et al. proposed a similar methodology

in line with the work presented by Fasel & Berry (2010) but with a simpler neural network. In

their approach, they take advantage of a PCA-based decomposition technique called “Eigen-

Tongues” which is a compact representation of raw pixels intensities of tongue US images

(explained originally in Hueber et al. (2007)), and they also present a PCA-based model of

the tongue contours which they call “EigenContours” along with a neural network that estab-

lishes a relationship between the two compact representations of the US image data and the

segmented contour pixels. This method provides a simpler model than Autotrace, suggesting

that fewer training data are needed for segmentation.

As manually labeling tongue contours in US images is a very time-consuming task, Jaumard-

Hakoun et al. (2016) modified the Autotrace approach so that it works with labels extracted
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automatically from US images using simple image processing operations. Having an initial

labeling, Jaumard-Hakoun et al. (2016)’s approach first pre-processes the US image with the

aim of finding regions of interest (ROIs). To do the contour detection, the algorithm makes a

set of candidate pixels as those ones that are white themselves and followed by a black pixel.

To limit this set of candidate points, the algorithm looks back to the contour points from the

previous frame and if the candidate point is in the one-pixel vicinity of ex-contour points then

it is automatically labeled as a contour point. The entire set of all these candidate points are

chosen as the automatically labeled image data input to the Autotrace deep neural network (in

replacement of manually segmented contours). The idea of determining a contour point from

a set of candidate points introduces the use of weak temporal consistency constraints in the

application of training deep neural network for tongue contour detection. One of the potential

weaknesses of machine learning based methods is being speaker dependent. In other words, a

learned segmentation algorithm may not work on new speakers that the neural net architecture

has not seen before. Another possibility is that the learned algorithm can be dependent on the

imaging parameters and this makes the method incapable of generalizing to an US depth that

the network has not been trained on.

1.7 Temporal consistency constraints for tongue tracking

The need for a good initialization is a must for snakes based approaches. Moreover, they might

require manual refinements while the approach is performing. One possible way to reduce

these types of problems is to use a database of segmented US images (when it is available)

in a method that use AAMs and/or ASMs. More training data also can help designing tongue

contour segmentation/tracking approaches that use deep learning neural networks. In this sec-

tion, we review a semi-automatic graph based approach presented by Tang et al. (2012). This

work reformulates the tongue contour-tracking as a graph-labeling problem where optimality

of segmentations is tuned by both spatial and temporal regularizations.

As a semi-automatic approach, this method also requires that users select points in the initial

frame, called control points. Tang et al. (2012) represent the set of segmentations for a se-
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quence of N image frames as a graph G(V,E) where each vertex vi ∈V represents the control

point xt,i. t is the frame index and i is the point index in the initialization contour set of points

(see Figure 1.4).

 
 

 
 

  
Figure 1.4 Displacement vector setup in Tang et al. (2012).

Given an initial set of points, the approach presented looks to find a set of displacement vectors

dt,i for xt,i, where

xt,i = x0,i +dt,i (1.3)

that minimize a global energy functional composed of a data energy term and two types of

regularization energy terms that make sure that the algorithm tracks points that keep the en-

tire contour smooth and continuous (spatial constraint), and also contours evolve smoothly

over time (temporal constraint). Optimal segmentations computed for the set of displacements

(dt,is) incorporating both spatial regularization and temporal regularization are obtained by

the Markov Random Field (MRF) energy of the labeling on vi ∈ V . Tang et al. (2012) used

graph-cuts optimization algorithms to find a set of of optimal displacement vectors.
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The approach presented by Tang et al. (2012) is presented a publicly available software called

“TongueTrack”.

1.8 Reinitializing trackers

One limitation to the tracking approaches is that they may drift from the correct answer and

that could happen for a variety of reasons (e.g. the tongue moves too fast, it disappears or gets

too blurry, etc.). Xu et al. (2016a) suggest a trick to reduce this effect, and that is the idea of

re-initializing the tracking system from time to time.

In this approach, the authors suggest a re-initialization whenever the current image is suffi-

ciently similar (according to the SSIM criterion) to that used for manual initialization. Thus,

the tracking system is actually looking for images for which the user provided a reasonable

manual segmentation, whether or not it is actually lost (see Appendix I for the description of

SSIM).

In their work, they tried three tracking approaches: EdgeTrak (Li et al. (2005a)), TongueTrack

(Tang et al. (2012)), and the method proposed by Xu et al. (2016b), and their experimental

setups showed consistent improvement in terms of tracking performance. This led us to imple-

ment a similar but more flexible and less user-dependent re-initialization approach (explained

in Section 2.2.3) for this thesis.

1.9 Particle filter-based tongue segmentation and tracking

Although snake based methods suffer from a number of limitations, they are still among pop-

ular tongue tracking approaches in the literature. Laporte & Ménard (2018) presented a novel

approach that addresses three major limitations of the original work presented by Li et al.

(2005a) known as EdgeTrak. These limitations include the limited capture range, producing

contours that are not typically similar to contour of tongue during speech and not being able

to recover successfully from errors. Laporte & Ménard (2018)’s approach introduces the use

of a particle filtering algorithm as well as an ASM that enforces shape constraints to limit the
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search space dimensionality. A particle filter is used to enforce weak temporal consistency

constraints allowing recovery from error, and this is intuitively related to (but quite different

from) the re-initialization method proposed by Xu et al. (2016a). This method addresses the

mentioned limitations of EdgeTrak and presents a concise tracking approach to segment the

tongue surface in US video recordings.

As results presented by this method are quite promising and due to the immediate availability

of implementation, we chose this system as our semi-automatic approach in this thesis. We

discuss the details of this method in details in Section 2.2.1.

1.10 Error analysis of extracted tongue contours

A survey paper published by Csapó & Lulich (2015) discusses an experiment comparing

publicly available tongue segmentation/tracking methods including EdgeTrak, Autotrace, and

TongueTrack. A small set of 1,145 tongue US images were captured from four subjects (where

the speakers repeat a short English sentence 8 times) and were manually segmented. In addi-

tion to comparing the automatic tracking method results to the manually segmented contours,

Csapó & Lulich (2015) also considered a baseline algorithm, which is simply copying the first

frame’s manual segmentation to all other frames of the video sequence.

One of the findings in this experimental work was that the results generated by automatic

tracking could be very dependent on what they are trained on. Particularly, Autotrace’s results

were dependent on whether the test images were similar to the trained images or not (results

were very dependent on whether the training set and the test set contain images from the same

speakers or sequences with the same phrase). Moreover, results obtained by this study show

that all tracking methods have a similar pattern of error to the one produced by the baseline

algorithm. This shows the difficulty of tracking the tongue contour in the case of rapid tongue

movements and highlights the importance of having algorithms that could track tongue contour

movements in longer sequences of US images. In the next section, we will discuss how the
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work presented in this thesis addresses this difficulty as well as other limitations identified in

this literature review.

1.11 Conclusion

In this Chapter, we reviewed the most important approaches reported in the literature for the

task of automatic tongue contour segmentation and tracking from US images. These methods

can be categorized into the following two groups:

1. Detection approaches with manual initialization: this category includes approaches that

need a set of initialization points to work. This is crucial for many approaches such as

EdgeTrak (Li et al. (2005a)) or Laporte & Ménard (2018). These approaches may or may

not use training information for segmentation/tracking purposes. We call these methods

semi-automatic approaches in this thesis.

2. Detection approaches that do not need manual initialization: this category includes ap-

proaches that work with no need for human intervention while the algorithm is perform-

ing. The work presented by Fasel & Berry (2010) is an example of this category where

large training sets play a crucial role for accuracy.

In this thesis, we propose an algorithm that addresses some of the most challenging limitations

of all approaches reviewed in this chapter. We tackle the following problems :

• The need for a manual initialization

• The need for a huge training data set of manually segmented contours by fully automated

methods

• The loss of tracking in rapid movement scenarios

We overcome or reduce these difficulties by proposing an approach that automatically segments

tongue contours via intuitive image processing procedures, and can be combined with any
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semi-automatic approach to accurately track the tongue contours in US video sequences. The

proposed approach also draws inspiration from the re-initialization idea proposed by Xu et al.

(2016a) which improves results in rapid movements along image very long sequences.



CHAPTER 2

METHODOLOGY

In this chapter, we present a novel approach to automatically segment tongue contours from US

images. This can be used to automatically initialize a fully automated tracker and improve the

tracking using automated, timely, re-initialization. The chapter is organized as follows. Section

2.1 proposes a new approach that try to automatically segment tongue contour points from US

images. In this section, we try to replace the manual initialization by automatically segmenting

the tongue contour as accurately as possible. In Section 2.2, we use the automatic segmentation

algorithm introduced in Section 2.1 and we suggest a new approach to make semi-automatic

frameworks act like a fully-automatic tongue tracking systems that do not need any manual

intervention.

2.1 Automatic tongue segmentation

In US images the echo from the tongue surface generally appears as a continuous bright region.

Therefore, the core idea behind finding the tongue contour automatically is to first find that

white region which we call Region of Interest (ROI) and then extract the tongue contour from

that region.

Figure 2.1 illustrates the proposed approach for automatic tongue contour segmentation. First,

a mask (Section 2.1.1) is applied to remove the irrelevant information that is present in the

input US video sequence. Then, a phase symmetry filter (Section 2.1.2) is applied to enhance

the regions that look like the tongue contour. The enhanced image is binarized (Section 2.1.3)

and processed by the skeletonization module (Section 2.1.4) which produces a set of candidate

points that are close to the actual tongue contour points that lie underneath the white region.

To obtain a smooth connected contour for the tongue, we perform spline fitting (Section 2.1.5)

using the skeletal points generated from the skeletonization module. The fitting process is fused

with an outlier removal step to avoid including non-tongue contour points as much as possible.
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The resulting points are processed by a snake fitting module with the aim of adjusting the

contour in accordance with the actual tongue surface on the US image (Section 2.1.6).

Load US Video Sequence Apply Mask 
Apply Phase  

Symmetry Filter 
 
 
 
 
 
 
 
 
 

Binarize the US frame 
 
 
 
 
 
 
 
 
 

Compute Medial Axis 
 
 
 
 
 
 
 
 
 

Fit Spline &  
Remove Outliers 

Fit Snake 
 
 
 
 
 
 
 
 
 

Figure 2.1 Block diagram of the automatic tongue contour segmentation method

proposed by this thesis. For the remainder of this chapter, we will be using this US frame

as the example image for tongue segmentation.

2.1.1 Masking

The first step towards automatic segmentation the tongue contour is to remove irrelevant infor-

mation from the images by cropping the US video frame. To perform the cropping, we first

find an image mask by looking at parts of the image plane where there is variation from one
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image to the next. By considering a small set of frames (the first 20 frames), it is easy to detect

the background which should be almost the same between all images since they come from

the same machine. In Figure 2.2, the middle shows a mask which is the result of considering

a sequence of frames where the background consists of all pixels whose gray level intensity

standard deviation over time is below 1% of the range from black to white intensities.

Figure 2.2 The left shows an example US frame. The middle shows the mask.

2.1.2 Phase Symmetry Filter

To enhance US images so that they emphasize the regions containing the tongue contour, we

apply a ridge enhancement filter known as a phase symmetry filter (first introduced by Kovesi

et al. (1997)) to each frame of the video sequence. Figure 2.3 shows the elevation map of the

example US frame shown in Figure 2.2. The elevation map shows how the highly specular

surfaces produce ridges and these are due US reflecting off the tongue. The tongue reflection

in US images is generally described as a continuous narrow bright region. This type of ridge-

like, thin bright strip on a dark background is precisely the kind of feature that is targeted by

the phase symmetry measure, a dimensionless quantity that is invariant to changes in image

brightness or contrast.

As we are interested in phase information as a method of accurate localization of the desired

surfaces, Log Gabor filters are used to capture the local phase and symmetry features. In signal

processing Log Gabor filters are used to describe the space and frequency characteristics of

a signal simultaneously. Some of their applications in image processing are edge detection
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Figure 2.3 The elevation map of the masked US image from the Figure 2.1 where ridges

and high peaks show the high intensity regions mostly corresponding to the tongue area.

where edges appear in the frequency domain as high frequencies and corner detection where

they can be described in terms of localized frequency information by using a Log-Gabor filter.

The one-dimensional Log Gabor filter introduced by Field (1987) has the frequency response:

G( f ) = exp

(
−(log( f/ f0))

2

2
(
log(σ f / f0)

)2

)
(2.1)

where f0 represent the center frequency of the filter, and σ f affects the bandwidth of the fil-

ter. In the two-dimensional case, the filter considers both a particular frequency and also a

particular orientation:

G( f ,θ) = exp

(−(log( f/ f0))
2

2(log(σ f / f0))2

)
exp

(−(θ −θ0)
2

2σ2
θ

)
(2.2)

where θ0 represents the center of orientation and σθ the width of the orientation (see Figure

2.4). Here, the orientation is a Gaussian distance function according to the angle in polar

coordinates.

Log Gabor functions with sine and cosine waves each modulated by a Gaussian are good

candidates to compute local frequency and, in particular, phase information in signals. Image

features such as ridges can be characterized by high degree of order in frequency domain,
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Figure 2.4 Construction of two-dimensional Log Gabor filter.

meaning that processing phase information is essential to capture such features. Image signals

with even and odd symmetry will have real and imaginary Fourier transform respectively. In

this work, we are interested in a ridge enhancement filter to localize our desired features from

US images. To capture an axis of symmetry for a ridge like feature point, that point may

result in a dominating even filter response over the odd filter response. The symmetry measure

used in this work focuses purely on the local level (intensity signals in 2D) and is achieved by

analyzing the local phase with values that vary linearly between 0 and π . The local phase of

a given image I is computed by convolving the even (Me
n) and odd (Mo

n ) parts of the inverse

Fourier transform of the frequency-based representation of the filter given in Equation 2.1

(here, we are assuming I is 1D):

[en(x),on(x)] = [I(x)�Me
n, I(x)�Mo

n ] (2.3)

where n represents the scale(frequency) of the cosine and sine wavelets. Assuming that en(x)

and on(x) represent the real and imaginary parts of the complex valued frequency components

respectively, the amplitude of the log Gabor filter response is:

An(x) =
√

en(x)2 +on(x)2 (2.4)

and the phase is:

φn(x) = atan2(en(x),on(x)). (2.5)
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The 1D phase symmetry measure is the difference between the even filter and odd filter re-

sponses. Kovesi et al. (1997) proposes the following equation as a local symmetry measure:

Sym(x) = ∑n�[|en(x)|−|on(x)|]−T�
∑n An(x)+ε

= ∑n�An(x)[|cos(Φn(x))|−|sin(Φn(x))|]−T�
∑n An(x)+ε

. (2.6)

The factor T is a noise compensation term and ε is a small constant so that the denominator

will not be equal to zero. The measure of symmetry introduced in Kovesi et al. (1997) is related

to the phase congruency model of feature perception where one could interpret symmetry as

a delta feature extractor (see Figure 2.5) meaning that this would provide us with a ridge en-

hancement filter. This 1D analysis can be extended to 2D by applying it in multiple orientations

and forming a weighted sum of the results.

-pi -pi/2 0 pi/2 pi

Phase angle

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

|cos(x)|-|sin(x)|

Figure 2.5 Plot of the symmetry measure |cos(x)|− |sin(x)|, where x = Phase angle. A

delta feature starts off having all frequency components aligned in phase and in symmetry.

In the work presented here, we use the Matlab implementation of phase symmetry developed

by Peter Kovesi (http://www.peterkovesi.com/matlabfns/#phasecong). As for the parameters

used in this package, we empirically tuned the number of wavelet scales (n) and the number of

filter orientations (τ). In our implementation, we chose n = 5 and τ = 14 empirically as well

suited to our experiments.



29

By applying the phase symmetry filter to US images we see that it is a good candidate for the

specific task of enhancing the ridges in the US image in comparison to other traditional image

processing tools such as the Canny edge detector (see Figure 2.6).

Figure 2.6 Left: shows the result of applying the Canny edge detector on the example

US image. The green line shows where the surface of tongue is located. Right: shows the

result of applying the phase symmetry filter on the same US image. It can be seen that

phase symmetry filter is better at ignoring this speckle noise than the Canny edge detector.

2.1.3 Binarizing the Ultrasound Image

As we are interested in bright regions that include tongue contour points, we set our next step

to produce a binary image of the frame in which a phase symmetry filter has been applied.

This is done through an adaptive thresholding procedure and that aims to identify those white

regions that either include or are close to the tongue contour points; we call them regions of

interest (ROI) in this work.

To find ROIs, we first binarize the filtered image from previous step using a threshold that is

chosen as the median of all intensity values in the filtered image (see Figure 2.7). To express

this mathematically, let us assume that I represents the input US image (masked and cropped),

I f represents the phase symmetry filter output, and λ = median(I f ). The binarized image (Ib)
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in the Figure 2.7 (left) is obtained by a simple thresholding as it follows:

Ib(i, j) =

⎧⎪⎨
⎪⎩

0, I f (i, j)<= λ

1, I f (i, j)> λ
(2.7)

We also consider another image (Ic), that is similar to Ib except that the white regions in Ib now

get their pixel intensities from the original US image I

Ic(i, j) = 1− Ib(i, j)+ I(i, j)Ib(i, j) (2.8)

0

0.2

0.4

0.6

0.8

1

Figure 2.7 Left: The initial result of binarization with the threshold chosen as the

median of all intensities in the filtered image obtained from the phase symmetry module

(Ib). Right: The white region pixels of the obtained binary image (left) are colored based

upon the intensity values of the same pixels in the original US image normalized between

0 to 1 (Ic).

Let Wk represent the kth white connected component in Ib. An importance score is defined as:

Ψ(Wk) = mean(Ic(Wk))× area(Wk), (2.9)

where mean(Ic(Wk)) represent the average intensities of all the pixels of Ic within Wk and

area(Wk) represents the area of the connected component Wk. Now, let us define a new image

Id as:
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Id(i, j) =

⎧⎪⎨
⎪⎩

Ψ(Wt), (i, j) ∈Wt

1, (i, j) /∈Wk for ∀k
(2.10)

Id emphasizes the regions of the US image that have high average intensities as well as a bigger

area. Combining ROI size with ROI average intensity makes it easier to eliminate small white

regions that are produced by speckle noise. A color-coded version of Id is shown in Figure 2.8

(left). This example shows that most noise regions are associated with low scores when in this

scoring scheme.

Figure 2.8 Left: shows the white regions rank ordered and colored based on their

importance score Ψ(Wk). Intensities are colored from blue (for low importance) to red (for

high importance). Right: shows the result of binarizing the Id image using Otsu’s method.

Finally, we apply Otsu’s thresholding method (Otsu (1979)) to binarize Id , which applies the

threshold that minimizes the intra-class intensity variance. We use the default Matlab imple-

mentation of Otsu’s method and show the result of binarization in Figure 2.8 (right).

2.1.4 Computing the Medial Axis

After the binarization step is performed, we have some ROIs (see Figure 2.8 right) that are

potentially close to the tongue surface. Our main goal is to extract a single curve representing
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the tongue contour. Therefore, we use skeletons (medial axes) in this thesis. In the following,

we use the terms “medial axis” and “skeleton interchangeably”. The medial axis of a shape

was first introduced by Blum (1967) as the locus of all points lying inside the shape and having

more than one closest point to the boundary of that shape. The medial axis is a powerful shape

descriptor and it is used in this thesis to simplify the representation of ROIs from regions with

some width to scattered points that are close to the actual tongue contour points. In this work,

we selected the flux skeleton approach since this medial representation is robust to noise in

the shape boundary. Flux skeletons were introduced by Dimitrov et al. (2003) and have been

improved in different applications (Rezanejad & Siddiqi (2013), Rezanejad et al. (2015)). In

our implementation we used the package developed by Rezanejad et al. (2015). We will review

the geometry of flux skeletons in the following.

To compute the medial axis within a bounded shape, Dimitrov et al. (2003) introduced a new

measure called Average Outward Flux (AOF). AOF is defined as outward flux of the gradient

of the Euclidean distance map to the boundary of a 2D shape through a shrinking disk normal-

ized by the perimeter of that disk. To elaborate, assume an arbitrary region R with a closed

boundary curve denoted ∂R. If the gradient of the Euclidean distance function to ∂R is given

by q̇, the AOF through ∂R is then defined as

AOF =

∫
∂R〈q̇,N〉ds∫

∂R ds
, (2.11)

where s is the arc length along a branch of the medial axis and N represents the outward normal

at each point on the boundary ∂R.

Using the divergence theorem, Dimitrov et al. (2003) show that the AOF takes non-zero values

for skeletal points and zero values everywhere else, when it is computed on a shrinking disk

whose radius tends towards zero. Knowing this, finding skeletal points can be simplified as

finding non-zero values on an AOF map. Since the tongue ROIs are typically narrow, a jittering

effect is present in the binarized pixels and could easily lead to inaccurate medial axes (Xie

et al. (2010)). A major advantage of the flux-based method is that AOF is a region-based
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∂R 

Figure 2.9 Arbitrary region R including a branch segment of the skeleton (shown in

dashed lines). The boundary of the region is represented by ∂R and the blue quiver plot

represents the gradient of the Euclidean distance function to the boundary of a 2D shape,

represented as q̇.

measure (see Equation 2.11) and is very stable with respect to the noise or perturbations of

the boundary of ROIs. Therefore, the computed skeleton is very robust to the aforementioned

jittering effect. Figure 2.10 shows the average outward flux map (left image) and the skeletal

points computed for the binarized region of interest from previous step (right image).

2.1.5 Spline Fitting and Outlier Removal

Skeletonization produces a set of skeletal points that can be used to fit a representative curve for

the tongue contour. In this thesis, we use the formal B-Spline function which is a generalization

of Bezier curves, and creates a smooth curve that goes through a set of 39 control points that

are sub-sampled from the set of skeletal points. In the case where the skeleton has less than

39 points, the system will automatically up-sample the remaining number of points by linearly

interpolating between skeletal points.

Unfortunately, not all points on the medial axes of ROIs are located near the tongue contour

(see Figure 2.10 right), and we have to somehow take care of those outliers. To designate can-



34

Figure 2.10 Left: the average outward flux map applied to our binarized example from

previous step. Here, blue shows the boundary of the ROIs, yellow shows the high values

of AOF. Right: the skeletal points obtained from the AOF map overlayed on the input US

image. This figure shows an example where accidental white regions that appear in US

are picked as candidate ROIs and have generated outlier skeletal points and how they

differ from of the points are close to the legitimate tongue contour.

didate points as being close to the tongue contour we use a spline fitting algorithm that handles

outliers. We use the Density-based spatial clustering of applications with noise (DBSCAN)

clustering algorithm, proposed by Ester et al. (1996), to handle outliers generated from the

remaining small connected components (ROIs) that have not been removed by the threshold-

ing step of Section 2.1.3. DBSCAN is a clustering algorithm that works with spatial data and

rather than having a fixed number of classes it divides the data in different clusters based on

their distance (ε - the maximum distance between points) from each other and a minimum

number of points (MinPts) within each cluster. We set the ε = 20 pixels and MinPts = 10 in

our implementation.

When the clustering is done (see Figure 2.11), the largest cluster is taken to contain the tongue’s

reflection and the remaining smaller clusters are assumed to contain outliers. The next step is

to fit a b-spline curve (as mentioned above) to the main cluster to produce candidate points

for initialization of the automatic tongue tracking system. In this work we used a Matlab

B-spline fitting package freely available on-line (https://www.mathworks.com/matlabcentral/

fileexchange/13812-splinefit) (see Figure 2.12).
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Figure 2.11 Example of how the DBSCAN clustering algorithm would apply to the

generated skeletal points.

Figure 2.12 The result of spline fitting and outlier removal steps on the US example.

The continuous yellow curve shows the resulting spline fit where outliers are removed,

and the pink circle dots show the sampled points on the spline fit we use to fit a snake in

the next step.

2.1.6 Snake Fitting

The final step of our proposed automatic segmentation of tongue contour from an US image

is to fit an active contour model (snake) to the points obtained from the spline fitting/outlier

removal module. This is done to allow the extracted points to adjust themselves according

to the actual tongue contour points. The snake model is presented as an energy minimizing

deformable spline constrained by two energy functions. The first function is an internal energy
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measure which characterizes the rigidity and complexity of the contour shape and the second

one is external energy measure that describes how well the snake latches to structures present

in the image. In our framework, we use the approach of Li et al. (2005a) to fit a snake to each

of the splines obtained in the previous step. Given a contour V = {v1,v2, ...,vn} where the vi,

i = 1, . . . ,n are the points generated by the spline fitting and outlier removal module, the total

energy to be minimized is defined as:

E ′
snake =

n

∑
i=1

αEint(vi)+βEgradient(vi)Eband(vi). (2.12)

Equation 2.12 can be minimized using the dynamic programming approach proposed by Amini

et al. (1990).

The first energy function is Eint which represents internal energy functional that encodes local

constraints on the curvature and stiffness of the snake:

Eint(vi) = λ1

(
1−

−−−→vi−1vi.
−−−→vivi+1

|−−−→vi−1vi|.|−−−→vivi+1|
)
+λ2

||vi − vi−1|−d|
d

(2.13)

where λ1 and λ2 are weighting parameters and d is the average length between two consecutive

snake points.

The second energy measure Egradient helps move the contour towards regions of high image

gradient in the US image:

Egradient(vi, I) = 1− ||∇I(vi)||
C

(2.14)

where I is the input US image, and C is a normalization factor. Based on the implementation

proposed by Laporte & Ménard (2018), C = maxvi ||∇I(vi)||.
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The third energy function is Eband which measures the contrast between the bright region

above the contour and the region immediately below it:

Eband(vi, I) =

⎧⎪⎨
⎪⎩

Epenalty, if contrast(vi, I)< 0

1− contrast(vi, I), otherwise

(2.15)

where Epenalty is a constant penalty factor and contrast(vi, I) is the local image contrast at the

boundary defined by the snake at vertices vi and vi+1. (see Figure 2.13).

Figure 2.13 The result of the snake fitting step on the US example. The blue curve

shows the result of snake fit on sampled points from the spline fit.

2.2 Applications to tongue tracking

In this section, we discuss how to use the automatic tongue detection method discussed in

Section 2.1 to improve an existing tracking framework. First, an existing tracking framework

(Laporte & Ménard (2018) is reviewed. Then, in the following two sections, this chapter

explains how to use the proposed method within this framework to (a) initialize the tracker

and (b) re-initialize it from time to time. A fully automated framework needs two parts: 1) a

semi-automatic tongue tracking framework; in this work, we chose the approach proposed by

Laporte & Ménard (2018); 2) a module that can automatically initialize a set of candidate points

for the semi-automatic system; this set of points should be chosen strategically so the system
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would have the best initial points. In this work, we added a third part to improve accuracy and

reduce the amount of manual intervention required to correct segmentations afterwards and

that is a re-initialization strategy that automatically resets the tracker at strategically chosen

moments to improve accuracy. The re-initialization should be done automatically as well and

should not require any manual intervention. In the following, we will discuss how each of these

three parts are implemented in this work.

2.2.1 Semi-Automatic Tongue Tracking Framework

To evaluate the usefulness of our approach, we apply it to the multi-hypothesis framework of

Laporte & Ménard (2018) for tongue tracking. In this section, we explain how we track the

tongue contour given a set of candidate points automatically initialized. The algorithm used

here is based on the combination of Snakes (Kass et al. (1988)), Active Shape Models (Cootes

et al. (1995)) and Particle Filtering (Arulampalam et al. (2002)).

Firstly, an active shape model (ASM) is built based on a data set of segmented tongue contours

that each contain n vertices. Then, the coordinates of these contour vertices are normalized

with respect to contour position and length. By applying principal component analysis (PCA)

on normalized vertex sets, the contour shape can now be represented in each frame by a sum-

marized compact vector of 6 variables (x,y,s,w1,w2,w3), where (x,y) represents the location,

s is the ratio of the current tongue contour length to that measured in the initial contour, and

(w1,w2,w3) represent the weights of the first three principal components of the active shape

model built by PCA. Note that the first three modes of variation account for 98% of the ob-

served variance.

Secondly, a multivariate Gaussian state transition model that can predict a variety of possible

tongue states is built for the sampling procedure of the particle filtering algorithm. This is

achieved by generating a 6× 6 covariance matrix Σ which is based on differences between

consecutive state vectors, which represent motion between two frames.
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To track the tongue contour at each time step, first, each particle is fitted as a snake to the image

by minimizing the simplified snake energy:

Esnake =
n

∑
i=1

αEint(vi)+βEgradient(vi) (2.16)

Once this is done, the likelihood of each particle is established using:

E ′
snake =

n

∑
i=1

αEint(vi)+βEgradient(vi)Eband(vi) (2.17)

which is a more robust energy functional and discounts high image gradients that are unrelated

to tongue contour. Equation 2.16 is used for particle optimization since it is faster to compute,

and Equation 2.17 is used for particle weight computation. The likelihood of a particle is used

to select the best solution for the current frame and re-sample new particles from the current set

with replacement. This measure is negatively related to snake energy, therefore, the likelihood

of each particle is set as: L = exp(−E ′
snake

), and at each step all likelihoods are normalized

by the sum of all likelihoods so the sum of all particle weights is equal to 1.

At each step, an adaptive number of particles is generated (potential contours for the next

frame). The approach proposed by Laporte & Ménard (2018) chooses the number of particles

in a way that controls the trade-off between accuracy and computation time. The number

of particles is chosen adaptively at every frame, and allows the cumulative likelihood of the

evaluated particles reach a certain threshold T defined as:

T = 7× exp(−E(Vinit , Iinit)) (2.18)

where −E(Vinit , Iinit) is the energy of the manually-segmented contour in the initialization

frame. In this formulation, 7 is an empirically chosen factor and the number of particles is

set to have a minimum limit of 10 and maximum limit of 1000.
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2.2.2 Automatically Finding Candidate Initial Points Within a Window of X Frames

The automatic tongue segmentation process described in Section 2.1 provides a set of candidate

tongue contour points for any input image. The set of candidate points can ultimately be used

to initialize a tracking approach without manual intervention. When segmentation is needed

after acquiring a recording, initialization does not need to take place in the first frame of the

sequence; rather, any frame can be used as a starting point. Therefore, we developed two

quality measures that are predictive of the reliability of our segmentation method so that we

can automatically choose an initial frame where we are most confident that segmentation will

work. First of all let us assume that we have performed the steps of segmentation from masking

to computing medial axis points and we have a set of points represented as V = (v1, ...,vn),

where skeletal points vi, i = 1, . . . ,n are sorted by position from left to right on the US image.

Spline fitting, outlier removal and snake fitting steps are all designed with the aim of perfecting

the set of points found from skeletonization.

We suggest two assessment criteria that are inspired by prior knowledge about the general

shape of a tongue and specifically what it looks like when captured by an US machine.

The first score reflects the fact that points that represent the tongue should not be from very dis-

joint groups of ROIs, that is simply due to the shape of tongue contour, which is a continuous,

smooth curve. This leads to the first reliability measure as the inverse of total contour length:

Γ1 =

(
n−1

∑
i=1

||−−−→vivi+1||
)−1

(2.19)

A decrease in the sum of the distances between pairs of consecutive points would lead to an

increase in the consistency of points, therefore a higher Γ1 means a better set of candidate

points. Poor consistency means that points generated from our approach are more disjoint

from each other (there are gaps in the contour) and therefore either they are not representing

the entirety of the tongue or some of the points are generated from ROIs are close to tongue
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(outlying bright regions). In both cases, a lower score would imply the inadequacy of the

considered set of points.

The first score would be quite high if only a small segment of the tongue (e.g. the middle)

had been segmented. To address this, we use the help of a second score that would prevent

selection of such a frame. The second score suggested here deals with another property of the

shape of the tongue, and that has to do with the length of the tongue. In the perfect scenario,the

sum of distances between contour points should be equal to the completeness of the tongue.

The second reliability measure assesses the completeness of the tongue contour. As the tongue

contour typically occupies a wider range of positions along the x axis, the second score was

designed as the ratio of the coverage length of the candidate points on the x-axis to the image

width:

Γ2 =
n−1

∑
i=1

dvivi+1
cos∠(−−−→vivi+1,

−→x ) (2.20)

where:

dvivi+1
=

⎧⎪⎨
⎪⎩
||−−−→vivi+1||, if ||−−−→vivi+1||<= 2

√
2

0, otherwise

(2.21)

and −→x represent the x-axis. In the second measure, we are considering the skeletal points

found as a graph where each edge is connected if the two consecutive neighboring vertices

have a distance less than 2
√

2 pixels (here we are assuming there shall not be more than one

pixel distance between connected points assuming the points are placed in discretized pixel

world). We should note that this score is measured before the sub-sampling procedure which

happens in spline fitting and outlier removal step. Γ2 is defined as the sum of the projections

of these edges on the x-axis.

The final score is computed based on the combination of these two scores:

Γ = Γη1
1 Γη2

2 (2.22)

where η1 and η2 are chosen empirically.
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Within a window of X frames from the starting frame, we compute Γ for each frame and we

choose the frame with the highest segmentation reliability score as the initial frame and the can-

didate points extracted automatically from that frame as a replacement to manually segmented

points used by the semi-automatic tongue tracking framework described in section 2.2.1. As

the number (X) of frames within the time window increases, we might end up extracting a

better starting frame, but this would happen at the cost of time. In our experiments we set

X = 10.

2.2.3 Re-Initialization

Any tongue contour tracker may temporarily or permanently lose the trajectory and fail due

to a variety of reasons. Low signal to noise ratio is a normal drawback of US imaging and

segmenting a specific structure from an US frame cluttered with speckle noise is difficult.

Sometimes the tongue just moves too fast for the tracking algorithm to find it. These are

examples of cases where a tracked tongue contour may drift away from the actual surface of

the tongue.

In a typical US video of a tongue, we can see frames where the tongue trajectory is not even

easily detectable by a trained professional and such a case could result in a loss of tracking

of the tongue contour in any tracking framework. Inspired by Xu et al. (2016a), to overcome

the challenge of loss in tracking, our framework should be able to automatically re-initialize

tracking from time to time. Thus, we designed our system such that it can find where a reset

could be helpful.

The criteria used to do these resets look for two types of situations. The basic principle be-

hind the first criterion is to look for image similarity and as suggested by Xu et al. (2016a),

we used Structural Similarity index measure (SSIM). To implement the re-initialization step

(see Algorithm 2.1), we use structural similarity (SSIM) algorithm to compare the current

frame and last chosen initial frame (see Appendix I). By considering the similarity value

from this comparison, we can make a choice between re-initialization or continuing with
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tracking. As for implementation, the ready-to use SSIM function from Matlab was used

(https://www.mathworks.com/help/images/ref/ssim.html). The second criterion is to do the

automatic reset when the number of particles from the semi-automatic tracker (Laporte & Mé-

nard (2018)) gets bigger than a particular threshold (which has been chosen empirically - see

Algorithm 2.1). The number of particles, on the other hand, tells us about how hard the par-

ticle filter is working, and how uncertain it is about its own conclusions. This is when we are

looking for situations where we are lost.

Algorithm 2.1 Re-Initialization algorithm

1 Input: Unlabeled ultrasound frames F = { f1, . . . fN}, reset window size W, total
number of frame in the video sequence N

2 Output: Tongue contour segmentation labels L = {l1, . . . lN}
3 Mode ← Re-initialization
4 i ← 1

5 while i ≤ N do
6 if Mode(i) = Re-initialization then
7 best-init-frame ← Do-Automatic-initialization( fi,..., fi+W−1)
8 li = Do-Tracking(best-init-frame)
9 Mode ← Particle-filter-tracking

10 i ← i+W −1

11 end
12 else
13 li+1 = track-one-frame-ahead( fi+1)
14 i ← i+1

15 if SSIM( ft , fi+1) ≤ τ1 or nO f Particles ≥ τ2 then
16 Mode ← Re-initialization
17 end
18 end
19 end
20 In our experiments, we set thresholds τ1 = 0.9 and τ2 = 400, and they are empirically

chosen.

Every time that either of these criteria are met, the semi-automatic module is paused and the

automatic tongue segmentation is performed anew according to the procedure we discussed

in Section 2.2.2. Algorithm 2.1 shows how to combine the thresholds for each of these two

criteria.
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2.3 Summary

The automatic tongue segmentation method proposed in Section 2.1 is a novel approach to

find potential regions of tongue contour in US images and then extract a set of suitable tongue

contour points from that without any manual intervention or training data. We showed how this

automatic segmentation could help us to turn any semi-automatic tracking approach that needs

manual initialization into a fully automated method in Section 2.2. Finally, in Section 2.2.3,

we proposed a novel re-initialization approach to improve the accuracy of tracking. In the next

chapter, we report results of experiments using these novel methods on real speech US video

sequences and how they can be used to build an effective automated tongue detection system.



CHAPTER 3

EXPERIMENTS

This chapter discusses the experimental setups proposed in this thesis along with the results of

the segmentation method described in chapter 2 tested on real US data.

Section 3.1 explains how data acquisition is performed. Section 3.2 then presents evaluation

measures. Using these measures, we then evaluate the segmentation approach proposed in this

thesis and its usefulness in a tracking context in section 3.3. Section 3.4 shows some sample

tongue detection results on US frames. In section 3.5, we analyze the reliability scores we

defined in section 2.2.2. Finally, in section 3.6, we show how the re-initialization module

would affect the tracking results.

Note that all the experiments presented here were done on a PC with the Intel(R) Core(TM)

i7-4710HQ CPU @ 2.50GHz processor, 8.00GB of installed memory (RAM) on Microsoft

Windows 10 Pro, and Matlab 2018a.

3.1 Data acquisition

For our experiments, we used the same US video sequences that were presented in Laporte & Mé-

nard (2018). The machine used for recording is a Sonosite 180 plus US scanner with a

micro-convex 8-5 MHz transducer set at a 84 degree field of view. To stabilize the probe,

an elastic band was attached to the probe and to a helmet on the subject’s head. After record-

ing, the US video sequences were manually segmented by a trained operator using an in-

terface developed by Fasel & Berry (2010) (Source code is available for download: https:

//github.com/jjberry/Autotrace). In our experiments, we used 16 free speech US video seg-

ments from Laporte & Ménard (2018). Each segment was between 20 seconds and 84 seconds

long.

The subjects were 12 adolescent speakers of Canadian French aged from 10 to 14 years old.

Out of these 12 subjects, 7 suffered from Steinert’s disease (denoted SX or SX_Y where X
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represent the video segment number) and 5 were healthy subjects (denoted CX - or Control

group). Subjects were given time to talk freely about their favorite movies or their personal ex-

perience at school. The setup was tuned and adjusted before each recording, to ensure optimal

image quality for the videos. This led to different imaging depths depending on the subject.

Table 3.1 summarizes the characteristics of each recording.

Recording Status Depth #Frames Duration
C1 Healthy 15 cm 2591 84 s

C2 Healthy 12 cm 1343 44 s

C4 Healthy 9.8 cm 1827 60 s

C5 Healthy 9.8 cm 1271 42 s

C6 Healthy 7.4 cm 1039 34 s

S1 Steinert 7.4 cm 1552 51 s

S2 Steinert 7.4 cm 1973 65 s

S2_2 Steinert 7.4 cm 2269 75 s

S2_3 Steinert 7.4 cm 2464 82 s

S4 Steinert 7.4 cm 2160 72 s

S5 Steinert 7.4 cm 1272 42 s

S7 Steinert 7.4 cm 878 29 s

S7_2 Steinert 7.4 cm 778 25 s

S8 Steinert 9.8 cm 983 32 s

S8_2 Steinert 9.8 cm 821 27 s

S9_2 Steinert 7.4 cm 627 20 s

Table 3.1 Composition of the test data set.

3.2 Error measures

To compare automatically extracted tongue contour points with the ground truth data (manu-

ally segmented tongue contour points), we used a number of error measures reported in the

literature. This section discusses these measures in detail and explains how these were used to

test the proposed segmentation approach and compare it to existing methods.
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3.2.1 Mean sum of distances

The first error measure we used in our experiments is called the mean sum of distances (MSD)

and was initially proposed by Li et al. (2005a). MSD is a measure that quantifies the distance

between two contours. Let U = {u1,u2, ...,un} and V = {v1,v2, ...,vn} be two sets of tongue

contour points, where ui and v j are the ith and jth points on contours U and V respectively, and

n is the number of points on each contour. Then, the MSD is defined as the normalized sum of

distances from each contour point ui to its closest counterpart v j and vice-versa:

MSD(U,V ) =
∑n

j=1 min
i
||v j −ui||+∑n

i=1 min
j
||ui − v j||

2n
(3.1)

MSD is a symmetric measure since MSD(U,V ) = MSD(V,U).

3.2.2 Tongue curvature & tongue asymmetry

The next measures we take into consideration are related to the shape of the tongue contour.

We call these measures the tongue curvature and tongue asymmetry, inspired by Ménard et al.

(2012), and these measures capture linguistically relevant shape features. The analysis by

Ménard et al. (2012) considers a triangle defined by three vertices A, B, and C lying on the

tongue contour. Points A and B are the points of intersection of pre-defined polar grid lines

of the US image with the contour that are closest to the traced tongue root and tip, and point

C is the point of the tongue contour that is farthest away from the line joining A and B. By

projecting point C on line that joins A to B we get D . We apply a similar procedure except that

instead of using a pre-defined polar grid we consider the mask computed in section 2.1.1. In

this procedure, points A and B are the leftmost and rightmost points of the computed tongue

contour if they are located inside the mask. Otherwise, they are defined as the intersection of

tongue contours with the mask on either side (see Figure 3.1 ).
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Figure 3.1 Assuming the dashed red line is representing the computed tongue contour,

this figure shows how our approach computes the three points A, B, and C. The purple

star shows the intersection of tongue contours with the mask on either side.

Now the shape measures are defined for curvature and asymmetry respectively:

κ =
||CD||
||AB|| (3.2)

where κ represents the curvature score, and:

γ =
||AD||
||DB|| (3.3)

where γ represents the asymmetry score. To find the point C with the maximum distance to the

line
←→
AB, we iterate over all contour points and find the maximum distance using the following

formula:

distance(
←→
AB,C) =

|(By −Ay)Cx − (Bx −Ax)Cy +BxAy −AxBy|√
(By −Ay)2 +(Bx −Ax)2

(3.4)

where the coordinates of each of the points in the equation represented as A = (Ax,Ay), B =

(Bx,By), and C = (Cx,Cy). Once C is found, it is easy to find the point D which is the intersec-

tion of the line
←→
AB and the line that is perpendicular to

←→
AB and goes through C.
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To compute how similar the obtained curvatures for each of the methods are to the ground truth

data, we considered the following score as a curvature similarity measure:

accκ = 1− |κmet−κgt|
κgt

(3.5)

where κmet is the curvature score of a contour computed by a specific method, and κgt is the

curvature score computed for the ground truth data. Similar tongue contour curvature score to

ground truth results in higher similarity scores (close to one).

Similar to curvature similarity, we consider the following measure as the asymmetry similarity:

accγ = 1− |γmet− γgt|
γgt

(3.6)

where γmet is the asymmetry computed for a contour extracted using a specific method, and

γgt is the asymmetry computed for the ground truth data.

3.3 Comparing the proposed segmentation method to semi- and fully- automated track-
ing approaches

In this section, we evaluate our proposed segmentation method (labeled “skel”) that works

frame-by-frame and then compare it to two tracking approaches. One is our fully automated

approach (labeled “auto”) detailed in section 2.2.2, and the other is the semi-automated method

(labeled “semi”) of Laporte & Ménard (2018), manually initialized at the same frame as the

fully automated method. Since there is a random component in the particle filtering module

in the tracking approaches, for both fully and semi-automated approaches, we repeated the

same process 10 times and averaged error measures over the repetitions in the remainder of

this chapter. Figure 3.2 compares the MSD across these three methods. Skeletal points ex-

tracted frame by frame and not tracked from one frame to the next have the highest MSD

values compared to the other two approaches (skel: 2.8480± 1.5897, semi:1.0534± 0.6356,

auto:1.0156±0.5701). The frame by frame segmentation method does not perform as well as

the other two tracking algorithms, simply due to the fact it is neither using any trained informa-
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tion nor tracking data. We examine some of the failure cases of frame-by-frame segmentation

in comparison with the other two approaches in section 3.4. Note that the same segmenta-

tion method, when used to automatically initialize a fully-automatic tracking approach from

a carefully selected frame, yields MSD scores quite similar to the semi-automatic approach

where the initial points are captured manually. This means that our approach can be used for

automatic initialization without loss of accuracy.
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Figure 3.2 This figure compares the MSD values of tongue contour points computed

from three approaches: our automatic segmentation approach before snake fitting (skel),
our fully automatic tracking approach (auto), and the semi-automatic approach of

Laporte & Ménard (2018) (semi), where all three are compared with ground truth

manually segmented contour points. Since, the particle filter algorithm has a random

component, and it does not always give the same result, for the two tracking approaches

(auto, semi), we repeat the experiment 10 times and we are presenting the averaged result.
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In addition to MSD, we measured tongue curvature and asymmetry similarity scores (see Fig-

ures 3.3 and 3.4), and the results show that the two tracking methods (fully automated, and

semi-automated) have higher shape similarity scores (closer to one) than the automated seg-

mentation method (skeletonization) used frame by frame. The fully automated approach per-

forms similarly to the semi-automated approach where initial points are selected manually.
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Figure 3.3 This figure shows box plot of curvature similarity between contours

extracted using each of the three methods of Figure 3.2 and the ground truth data.

3.4 Sample results and challenges

This section demonstrates some tracking results including different examples of successes and

failures for the various methods tested in this thesis. The approaches tried include the B-spline

contour points extracted from skeletonization, the semi-automatic contour tracking approach

by Laporte & Ménard (2018) that uses particle filter tracking, and the fully automatic con-

tour tracking approach initialized with the initial frame selected and segmented automatically.

These are all compared to ground truth data. The examples provided here give a more qualita-

tive idea of how well the approaches are working, and what are some of the difficulties in the
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Figure 3.4 This figure shows box plot of asymmetry similarity between the contours

extracted by each of the three methods of Figure 3.2 and the ground truth data.

segmentation and tracking tasks. We start with cases where all approaches are finding accurate

tongue contours. Figure 3.5 shows that the three approaches achieve very similar results to

ground truth data for many US frames. These examples could be called easier to detect/track

as the all three algorithms were able to find proper sets of points that were close to the ground

truth data.

Figure 3.6 show cases where automatic segmentation fails. This is not catastrophic since the

goal is not to segment each frame individually without prior information. Rather, it is to find

suitable set of initial points to initialize or re-initialize the tracker. Therefore, in many images,

the actual tracked points would differ considerably from the automated segmentation result

obtained without tracking information.

Besides failure cases that could happen in the skeletonization phase, the semi-automatic and

fully-automatic tracking approaches can also fail due to a number of reasons. There are frames

where the tracking gets lost and cannot recover a proper set of candidate points. Low signal

to noise ratio in many frames could make the tracking task hard and not optimally solved.
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Figure 3.5 (Best viewed by zooming in on the PDF.) Sample contour points obtained

from different approaches where the computed points are similar to ground truth data.

Moreover, the length of snakes can grow beyond the actual tongue in US images. Altogether,

there are many cases where either of the semi- and/or fully automatic approaches can fail (see

Figures 3.7 & 3.8). To address such cases in this thesis, we implemented a re-initialization

module where the system performs a reset when it detects a possible loss or a good opportunity

to re-initialize the tracking system (a frame that is easy to segment). Section 3.6 includes

examples illustrating how re-initialization would resolve some of these cases.

Figure 3.9 presents detailed results for a video sequence which posed a particular challenge,

and that is when the subject swallows. The last row in this figure shows the mean sum of

distances of the tongue contour points from frame 400 to frame 500 to the ground truth data.

The bright regions in the first column of this row show that the frame-by-frame method is

not detecting tongue contours very well in the sequence during swallowing. However, the

semi and fully automated tracking methods were able to track the tongue and generate better
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Figure 3.6 (Best viewed by zooming in on the PDF.) Example cases where skeletal

points fail in segmentation but the fully automatic approach generates points close to

ground truth manually segmented points.

contour points in the vicinity of the true tongue state. Although the frame-by-frame automated

tongue contour segmentation method (‘skeletonization’) fails to detect the tongue contour in

such difficult cases initialization or re-initialization using these poor segmentation results can

be avoided using the reliability scores introduced in section 2.2.2. These scores are analyzed

in the next section.

3.5 Analyzing reliability scores

Section 2.2.2 introduced two reliability measures, to evaluate the suitability of the automati-

cally segmented contour points for tracker initialization. These reliability measures are later

used to select a best set of candidate points to automatically initialize the semi-automatic track-

ing system and convert it to a fully automatic one. To validate the reliability measures, we ex-

amine their relationship to the MSD between the automatically segmented skeletal points and
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Figure 3.7 (Best viewed by zooming in on the PDF.) Example cases where the

fully-automatic approach fails in tracking.

the manually segmented ground truth tongue contours. A contour is assumed to be segmented

well if the skeletal points generated by the automated segmentation system are close enough to

the ground truth data and vice versa. Here, we consider the following goodness measure:

g(V sk
i ,V gt

i ) =
1

MSD(V sk
i ,V gt

i )
(3.7)

where V sk
i and V gt

i represent the tongue contour points obtained by the automated segmenta-

tion method and the manually segmented ground truth data in frame i respectively. To obtain

results that reflect the relative difficulty of segmenting one frame over another within a given

video sequence using the proposed segmentation method, we normalize the g function by its

maximum value over all contours of all US frames in our experiments, yielding scores between
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Figure 3.8 (Best viewed by zooming in on the PDF.) Example cases where the

semi-automatic approach fails in tracking.

0 and 1.

f (V sk
i ,V gt

i ) =
g(V sk

i ,V gt
i )

max
i

g(V sk
i ,V gt

i )
(3.8)

We examine the relationship of f (V sk
i ,V gt

i ) to the combination of the two scores (Γλ1
1 Γλ2

2 ), to

determine whether they share a similar trend.

The 16 videos used in our experiments contain a total of 23776 frames. We segmented all these

frames using the automated segmentation module and then compared the resulting contours to

the ground truth (manual segmentation) using the MSD measure. We then sorted all these

frames in ascending order based on their f score (Equation 3.8). Figure 3.10a shows these

scores sorted in ascending order as a dashed red line. As 23776 frames are sorted based on

their f score, the Γ1 and Γ2 scores for each of the associated automatically segmented contours

are computed presented as a point cloud in Figures 3.10a, and 3.10b. Logarithmic scales are
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Figure 3.9 (Best viewed by zooming in on the PDF.) This Figure shows the automated

segmentation and the two tracking approaches result on a subject during swallow action.

used for improved visualization. Though reliability scores are fairly broadly distributed in

Figures 3.10a and 3.10b, both of these plots show a similar trend to the inverse MSD. Figure

3.10c shows the result of combining the Γ1 and Γ2 scores according to Equation 2.22 in relation

to sorted f scores. Figure 3.10d shows the boxplot of the ratio of the Γ score to the normalized
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Figure 3.10 Analysis of the Γ score introduced in section 2.2.2 (see the text for more

information).

inverse MSD ( f score) along each video separately. This ratio is clearly quite close to 1 in all

cases, indicating that there is a strong relationship between the Γ score and the inverse MSD,

which suggests that the proposed score can safely be used as a reliability measure to select

a candidate set of points for tracker initialization. This is confirmed by the results already

presented in section 3.3, which showed little difference in error between the fully automated

and semi-automated tracking methods.
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3.6 Re-initialization

This section, discusses experiments done using the tracker re-initialization approach described

in section 2.2.3. As discussed earlier in section 3.4, the semi-automatic and fully automatic

tracking methods can lose track of the tongue contour from time to time. When there is a

possible loss of tracking or the opportunity to reset in a reliable fashion, re-setting the approach

and forcing it to automatically re-initialize points may help with the overall quality of the

tracked tongue contour points.

Our system was fine-tuned empirically to suggest cases where the system should reset itself,

and we compared the goodness of tracked contour points for three approaches: 1) the semi-

automatic approach of Laporte & Ménard (2018), 2) the fully automatic approach proposed

in this thesis and 3) the fully automatic approach proposed in this thesis with an added re-

initialization module. Putting the three approaches in the experimental setup as before, and

comparing results (see Figure 3.11), we see that the re-initialization approach decreases the

MSD in all 16 videos consistently compared to both the approaches without re-initialization.

Table 3.2 shows the performance boost that re-intialization process brings to the tracking. This

indicates that the re-initialization helps keep track of the tongue contours in videos with large

numbers of frames (where there is a chance that the tracking could get lost).

Measure Fully-auto Semi-auto Re-initialization
Mean 1.0156 1.0534 0.6372

Standard Deviation 0.5701 0.6356 0.3589

Table 3.2 Comparison of the mean and standard deviation of all MSD values across 16

videos for the three methods of semi, auto, and re-init.

We also recorded the average number of times that a reset happens in each video sequence in a

window of 1000 frames (see Figure 3.12). Here, we see that this number varies from one video

to the next, and is very dependent on the quality of the US data and the shape of the tongue.

Here, we represent the resets caused by high SSIM and also those due to a large number of

particles separately. Results show that large numbers of particles cause more resets than high
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Figure 3.11 This Figure shows the MSD comparison between three methods of semi,
auto, and re-init where the first two have been extensively used and discussed in the

previous Figures of this chapter. The re-init method is the same as the auto with added

module of re-initialization.

SSIM in most cases. We also analyzed the relative computation time required when using

re-initialization compared the baseline to semi and fully automated approaches (see Figure

3.13). Clearly, re-initialization increases computation time; therefore, deciding whether to use

re-initialization in our problem is a choice between accuracy and time complexity.

3.7 Summary

In this chapter, we analyzed the approaches outlined in the methodology chapter. We discussed

the data acquisition, reviewed some error measures that were used and showed the experimental

results of applying our automatic tongue detection methods. Our results show the strength of

the proposed automatic tongue detection method by this thesis as well as the validity of the
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Figure 3.12 The average number of re-initializations occurring in a window of 1000

frames for each video used in our experiments. Note that since there is a random factor in

the tracking approach these numbers are also averaged over 10 repetitions. The blue,

green, and red dashed lines represent the mean number of resets caused due to SSIM

criteria, number of particles criterial and the sum of these two over all video sequences

resepectively.
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Figure 3.13 The average computation time of each method for each recording. This

figure shows that using re-initialization during tracking is slower than the other two

tracking methods.
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choices for reliability scores. Finally, we concluded that our novel approach of re-initialization

would improve the mean and standard deviation of MSD error of the automatic tongue tracking

approach by almost 40%.



CHAPTER 4

CONCLUSION AND FUTURE WORK

The goal of this work was to design a system that detects and tracks tongue contour points in

US images with no need for manual initialization. This involved the development of a novel

algorithm to automatically detect a tongue contour from an US image and self-evaluate its

reliability. In addition to detection of the tongue contour from US images, the system proposed

in this thesis can turn any semi-automatic tracking approach into a fully automatic one by

selecting a suitable set of initialization contour points that are segmented automatically. The

final system is equipped with a reset module which instructs the tracking algorithm to re-

initialize whenever the system detects that a reset would help achieve more accurate tracking.

4.1 Contributions

The contributions of this thesis can be summarized as follows:

1. The first and most important contribution of this thesis is a new approach to automatically

segment tongue contours from US images. This approach is original compared to other

existing ones due to the fact that it is not based on prior information on the shape of

the tongue surface nor does it need manual initialization or refinements. Although the

segmentation method is used in the application of tongue contour detection/tracking in

this thesis, one could possibly utilize the same mechanism in other application domains

(i.e. other organs). Our experiments show that the segmentation system works well

when used in combination with an existing semi-automated tracking approach and results

show either a similar or better performance when we apply the automatic initialization

procedure.

2. A second major contribution of this thesis lies in the reliability scores introduced in Sec-

tion 2.2.2. These scores help extend the segmentation approach to be utilized within any

semi-automatic tongue tracking method, thereby making it a fully-automatic tracking
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method. Being able to automatically evaluate the segmented tongue contours enables the

resulting system to select a candidate set of initial points that are extracted completely

automatically and can be used in place of manual initialization. The analysis provided in

Section 3.5 demonstrates that these scores are proper choices to evaluate the quality of

tongue contour segmented for the purpose of automatically initializing a semi-automatic

tracking approach.

3. A third major contribution of this thesis relates to the fully-automatic tracking approach

that was built by combining the automatic tongue detection approach and a semi-automatic

tracking method. The fully automatic tracking method is a combination of automatic ini-

tialization of tongue contour points using the automatic segmentation method and the

semi-automatic tracking system developed by Laporte & Ménard (2018). This novel

system offers a variety of benefits over the state-of-the-art existing methods including

being more accurate, and not depending on human intervention, refinement or manual

initialization. Moreover, using automatically generated contour points for initialization

has never been reported in past work. We also improved the entire system by adding

a reset module so whenever certain criteria are met the system re-initializes based on

the tracker-independent automatic tongue detection method to improve the final result of

tracking (see Section 2.2.3). The use of these criteria is novel in the sense that it is in-

corporating an existing measure (Xu et al. (2016a)) alongside a measure that is based on

the number of particles and can potentially play the role of indicator for the cases where

tracking is uncertain. We analyzed this method by observing how this could benefit the

overall tracking performance in Section 3.6, and we noticed that both mean and standard

deviation measures of MSD accuracy are improved by about 40%.

4.2 Future work

There are many directions that could be explored to improve the proposed method. The

methodology described in this work utilized 2D US images of the tongue muscle, and this

could easily be extended to work in 3D US images. The masking, phase symmetry filtering,



65

binarization and medial skeletonization steps are all transferable to 3D. The final outcome of

such a system would be a set of tongue surface points.

Moreover, as mentioned earlier, we could easily modify and extend the system proposed in this

thesis and use it in other similar applications involving segmentation and tracking in US im-

ages. This could be extended to many medical applications of US imaging, including echocar-

diography.

Finally, with the recent advances in the domain of neural networks (Goodfellow et al. (2016)),

one could setup a convolutional neural network that could generate tongue contour points from

US image frames. Since this requires a huge dataset of annotated US frames, we could use our

automatic segmentation method along with the reliability scores and generate a large amount

of anotated images for this purpose.





APPENDIX I

THE STRUCTURAL SIMILARITY INDEX

The structural similarity (SSIM) index (Wang & Bovik (2002)) is a quantity that measures the

similarity between two images. In this index, three structural measures from an image are

considered: luminance, contrast, and structural term the which is defined as those attributes

that represent the structure of objects in the scene and is independent of the average luminance

and contrast.

SSIM(A,B) = lum(A,B)α × con(A,B)β × st(A,B)γ (A I-1)

Let us assume mA, mB, σA, σB, and σAB respectively represent the local means, standard devi-

ations, and co-variance of images A and B. With this consideration:

lum(A,B) =
2mAmB +θ1

m2
A +m2

B +θ1

(A I-2)

con(A,B) =
2σAσB +θ2

σ2
A +σ2

B +θ2

(A I-3)

st(A,B) =
2σAB +θ3

σAσB +θ3
(A I-4)

θ1, θ2, θ3 are variables to stabilize the division with weak denominator.
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