
An Empirical Study On Software Testing Tools Terminology

by

Rajesh KOLLI

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE

SUPÉRIEURE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

A MASTER’S DEGREE WITH THESIS IN SOFTWARE ENGINEERING

M.A.Sc.

MONTREAL, JUNE 01, 2018

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

UNIVERSITÉ DU QUÉBEC

Rajesh Kolli, 2018

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS:

M. Sègla Kpodjedo, Thesis Supervisor

Department of Software and IT Engineering, École de technologie supérieure

M. Chamseddine Talhi, President of the Board of Examiners

Department of Software and IT Engineering, École de technologie supérieure

M. Ghizlane El Boussaidi, Member of the jury

Department of Software and IT Engineering, École de technologie supérieure

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON MAY 11, 2018

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor, Segla Kpodjedo, for his support

throughout this project. I would probably never have embarked on such a project without

his unconditional support in terms of morally and financially. Thank you for everything!

Thanks to all my colleagues of LASI lab for their generous support and valuable discussions. I

would like to sincerely thank the members of the jury, Ghizlane El Boussaidi and Chamseddine

Talhi, for agreeing to evaluate my work.

I dedicate this thesis to my family, mainly to my lovely grandmother Ramulamma Kolli with

unconditional love, also to my dear wife Harshitha for her love and unconditional support

throughout my academic journey. Last but not the least, I would like to thank my parents for

their unfailing support and patience through all years of my study, without their encouragement

this accomplished would have been impossible for me to finish this project.

Finally, I would like to thank everybody who have contributed in all forms to the realization of

this project.

UNE ÉTUDE EMPIRIQUE SUR LA TERMINOLOGIE DES OUTILS DE TESTS
LOGICIELS

Rajesh KOLLI

RÉSUMÉ

Le test logiciel est une composante importante du développement de logiciel. La formation à

ce volet du génie logiciel occupe donc une position de premier plan dans les cursus de génie

logiciel, de même que dans des certifications de génie logiciel. Dans le même temps, les tests

logiciels requièrent souvent l’utilisation d’outils de tests pour la production de logiciels de

qualité, à moindre coût. Dans le présent document, nous nous intéressons à la terminologie

utilisée dans ces outils à travers la documentation de leurs nouvelles versions. Notre but est

de vérifier dans quelle mesure les outils de tests supportent les concepts présentés dans des

ressources éducatives de référence comme les SWEBOK ou l’ISTQB. De plus, nous nous

sommes intéressés à la terminologie des outils de tests pour révéler notamment les technlogies

dominantes dans ce domaine.

Mots clés: tests de logiciels, outil de test logiciel, documentation de nouvelle version, SWE-

BOK, ISTQB

AN EMPIRICAL STUDY ON SOFTWARE TESTING TOOLS TERMINOLOGY

Rajesh KOLLI

ABSTRACT

Software testing is an integral part of the software development life cycle. It is helped by

testing tools that support the development of high quality software by reducing human errors

and costs related to it. Testing tools support key testing activities from planning and conception

to execution and results analysis. In this document, we present an empirical study on the

terminology of testing tools through the analysis of their release documentation (release notes

and changelogs). Our goal is to mine insights from such terminology, in particular through

the lens of the terminologies used in established learning resources such as SWEBOK v3, and

ISTQB. We take interest in how close those reference terminologies are to the actual terms

used in testing tools and in how terms actually found in testing tools inform about dominant

concepts supported by testing tools. Results show that most of the terms found in the reference

learning resources are absent from testing tools terminology. In addition, the analysis of testing

tool terminology reveals many insights, in particular with respect to the dominant technologies

in that area.

Keywords: software testing, testing tool, changelogs, release notes, SWEBOK, ISTQB

TABLE OF CONTENTS

Page

INTRODUCTION . 1

CHAPTER 1 LITERATURE REVIEW .. 5

1.1 Software Testing . 5

1.1.1 Definition of Software Testing . 5

1.1.2 Software Testing Tools . 6

1.1.3 Academic work on software testing and software testing tools 7

1.1.4 Software testing terminology . 9

1.2 Release documentation (change logs and release notes) . 9

1.2.1 change logs . 10

1.2.2 Release Notes . 10

1.2.3 Research on release documentation . 11

CHAPTER 2 METHODOLOGY . 13

2.1 The learning resources: SWEBOK v3, ISTQB standard glossary v3.1 13

2.2 Tools and release documentation . 15

2.2.1 Standard format for the logs . 16

2.2.2 "Trimming" the logs from their noise . 18

2.3 Answering our research questions . 20

CHAPTER 3 RESULTS AND DISCUSSION . 23

3.1 RQ1: To which extent are the terms from established testing’s learning

resources present in change logs and release notes of testing tools? 23

3.1.1 Quantitative results: distribution of terms from the learning

resources in the logs . 23

3.1.2 Qualitative analysis: most frequent terms from the learning

resources . 26

3.1.2.1 Most frequent terms from ISTQB . 27

3.1.2.2 Most frequent terms from SWEBOK . 30

3.1.3 A deeper look at the terms from the learning resources . 31

3.1.3.1 Most frequent terms from ISTQB and SWEBOK 31

3.1.3.2 Significant terms from ISTQB . 33

3.1.3.3 Significant terms from SWEBOK . 33

3.2 RQ2: Which would be the dominant terms in a terminology extracted from

change logs and release notes? . 34

3.2.1 Distribution of log terminology . 36

3.2.2 Most frequent terms from log based terminology . 37

3.2.3 Generic Testing terms in the logs . 38

3.2.4 Technologies mentioned in logs . 38

3.2.5 Programming languages from Logs . 39

XII

3.2.6 Tools mentioned in the logs . 41

3.3 RQ3: Comparing ISTQB, SWEBOK and Log based terminologies 42

3.4 Threats to validity . 43

CONCLUSION AND RECOMMENDATIONS . 45

APPENDIX I INTERSECTION OF ESTABLISHED REFERENCE TERMS

AND LOG BASED TERMS . 47

BIBLIOGRAPHY . 49

LIST OF TABLES

Page

Table 2.1 Lists of tools selected for this study . 17

Table 2.2 Lists of tools selected for this study . 18

Table 3.1 Frequent term occurrences from ISTQB glossary in raw release

documentation. 28

Table 3.2 Most frequent term occurrences from ISTQB glossary in trimmed

release documentation . 29

Table 3.3 Most frequent terms from SWEBOK v3 in raw release

documentation . 31

Table 3.4 Most frequent terms from SWEBOK v3 in trimmed release

documentation . 32

Table 3.5 Significant or frequent terms from ISTQB glossary. 34

Table 3.6 Significant or frequent terms from SWEBOK glossary . 35

Table 3.7 Distribution of total hits for log based terms . 36

Table 3.8 Distribution of versions’ percentage for log based terms . 36

Table 3.9 Distribution of tools percentage for log based terms . 36

Table 3.10 Most frequent terms from log based terminology . 37

Table 3.11 Distribution of generic testing terms . 39

Table 3.12 Distribution of technology terms . 40

Table 3.13 Distribution of programming language terms . 41

Table 3.14 Distribution of the tools mentioned in the logs . 42

Table 3.15 Intersection of all sets terminology . 43

LIST OF FIGURES

Page

Figure 1.1 Figure showing an example of change log format taken from

Emacs and GCC (GNU) . 11

Figure 2.1 Flowchart depicting the empirical study . 14

Figure 2.2 Example of extraction of testing terms (highlighted in the text)

from SWEBOK v3. Taken from SWEBOK v3 (Bourque and

Fairley, 2015).. 15

Figure 2.3 Logs format before uniform . 19

Figure 2.4 Logs format after uniform . 19

Figure 2.5 Raw logs. 20

Figure 2.6 Trimmed logs . 20

Figure 3.1 Distribution of learning resources’ terms relatively to their total hits 24

Figure 3.2 Distribution of learning resources’ terms relatively to the

percentage of versions they appear in . 26

Figure 3.3 Distribution of learning resources’ terms relatively to the

percentage of tools they appear in . 27

LIST OF ABREVIATIONS

ETS École de Technologie Supérieure

SWEBOK The Guide to the Software Engineering Body of Knowledge

ISTQB International Software Testing Qualifications Board

CAST Computer Aided Software Testing

API Application Program Interface

XML Extensible Markup language

INTRODUCTION

Context

Software testing is an important software engineering process which is tasked with the evalu-

ation of the quality of a software product. Its impact on the lifecycle of a software product is

significant and estimated at around 40% of the total development time (Laporte et al., 2012).

Courses on software testing are mandatory in many, if not most, software engineering courses.

In particular, testing is featured as one of the main Knowledge Areas in the Software Engi-

neering Body of Knowledge (SWEBOK) (Bourque and Fairley, 2015), which is a consensus

document around which many SE programs, including that of ETS, is modeled. On a more

practical / industry-oriented side, there are many software qualification organizations that spe-

cialize on testing; the biggest one being the International Software Testing Qualification Board

(ISTQB, 2016), which operates over 117 countries world-wide. In short, there is considerable

interest in learning various aspects, processes and technologies of testing.

A key factor to the renewed push for systematic and serious testing resides in the large choice

of tools, testing tools, that help in quality control by automating various testing activities and

reducing human errors. These tools support the testing process and assist in the production

of high-quality software products, with reduced time and cost. The software industry is one

with high velocity, in terms of new paradigms and technologies. This dynamic applies also

to supporting tools such as testing tools, which have to evolve accordingly and propose new

techniques, or refine older ones. As software written to test software products, testing tools

must evolve in conjunction with the testing needs of newer technologies. Updates and new

releases are thus key to the relevance of testing tools and they are (or should be) documented

with meaningful and clear terminology.

New release documentation includes many items for different audiences. User manuals are

important but in the case of engineering tools destined to individuals with above average tech-

2

nicality, artifacts such as change logs or release notes become a privileged way for tool de-

velopers to communicate about the changes and/or new features they introduced in their tools.

Release notes describe new capabilities, known problems, and platform requirements that are

necessary for a proper product operation (Abran et al., 2004). They are usually intended for

end-users and contain useful instructions on how to install or upgrade to the current package.

change logs tend to be a bit more technical and are generally presented as curated and chrono-

logically ordered lists of meaningful changes per version of a software1. They are more useful

from a developer/tester perspective.

In short, change logs and release notes are important release documentation that communicate,

in a concise way, important information on a software and its evolution. We believe they

provide good insights, with tolerable noise level, both on the services offered by a software

and/or the technologies it depends on or is relevant for. The central question of this thesis is thus

related to the adequacy of the terminologies used to teach software testing (e.g., SWEBOK,

ISTQB) with respect to the one used by developers of testing tools to communicate about their

products.

Research on change logs and release notes is relatively new, and thus, more research work is

needed to offer insights into these artifacts. In the literature, several works were conducted to

identify the challenges involved in writing both release notes and change logs. Guidelines and

styles were proposed to write better release notes (Abebe et al., 2016) and change logs (GNU;

Hutterer, 2009; Lacan, 2016). Machine learning techniques have been proposed to identify

important issues from one release to another and then, generate automatically change logs and

release notes (Abebe et al., 2016; Moreno et al., 2014, 2016).

Text mining is a process to automatically extract data from different written resources in order

to discover unknown information. It can be used to study change logs and release notes for a

1 http://keepachangelog.com/

3

better understanding of software maintenance. Text mining approaches have been proposed to

understand software maintenance from the perspective of change logs and release notes (Yu,

2009). (Garousi and Felderer, 2016) presented a survey collecting recent papers from industry

conferences and research conferences on software testing and presented word cloud images

of common phrases used in collected papers spanning across two domains (industry and re-

search). The purpose of their efforts was to find keywords from word clouds and to find the

intersection between industry-academic materials. An important idea behind this effort is to

address the lack of collaboration in software testing between industry and academia in terms of

communication about challenges. In this context, it is necessary to carry out empirical studies

and analyze terms used in change logs and release notes, so that the terminology of software

testing tools can be understood better.

In the current work, we are interested in analyzing change logs and release notes of software

testing tools, in an effort to find how well they communicate on their important issues. Our

analysis is carried out using i) change logs and release notes from a sample of testing tools

and ii) terms from established sources like The guide to the Software Engineering Body of

Knowledge (SWEBOK) V3 and International Software Testing Qualifications Board (ISTQB)

standard glossary of terms v3.1.

Objectives

The main objective of our research is to analyze the change logs and release notes of software

testing tools to get insights on their terminologies. In particular, we aim to conduct a study of

change logs and release notes to see how well they reflect the terms of established references

(SWEBOK V3, ISTQB standard glossary 3.1).

To achieve these objectives, we set out to answer the following research questions:

4

a. How much of the terms from established sources (SWEBOK v3, ISTQB v3.1) related to

testing are reflected in change logs and release notes?

b. Which would be the dominant terms in a terminology extracted from change logs and

release notes?

c. What insights can we get by comparing ISTQB, SWEBOK and Log based terminologies?

Thesis Structure

The remainder of the thesis is organized as follows: Chapter 1 presents background concepts

and literature review relevant to our work. Chapter 2 describes our methodology: data col-

lection and execution. Chapter 3 presents our results: raw numbers and discussion, threats to

validity and the limits of the approach. Finally, this thesis ends with a conclusion and future

perspectives of our research work.

CHAPTER 1

LITERATURE REVIEW

In this chapter, we present the concepts that are relevant for our research study. We begin by

presenting and defining software testing. Then, we present the very few relevant works on

software testing carried out in academia and industry. In the final section, we discuss proposed

approaches for the study of change logs and release notes (release documentation).

1.1 Software Testing

Software testing is an integral part in the software development life-cycle. Inadequate software

testing leads to major risks and consequences (Garousi and Zhi, 2013). The American National

Institute of Standards and Technology (NIST) 2002 report stated that lack of infrastructure in

software testing alone cost $62 billion USD per year in United States (Tassey, 2002). The main

goal of software testing is to find defects and faults in every stage (the earlier the better) of the

development of a software. This is a necessary process as human mistakes are inevitable, and

considering that costs to fix these faults when the software is in maintenance are expensive.

With technology playing nowadays a pivotal role in human life’s (transport, health, etc.), a

defect in a software system may lead to disaster. For example, a testing information systems

failure resulted in a death in London Ambulance Service software (Finkelstein and Dowell,

1996). In this context, software testing tools are deployed to automate the test process (Emami

et al., 2011) in order to improve quality and efficiency of the product, and reduce testing related

costs.

1.1.1 Definition of Software Testing

In the literature, several definitions have been given to software testing. The guide to the

Software Engineering Body of Knowledge(SWEBOK v3) defines Software Testing as, the

’dynamic verification’ that a program provides ’expected behaviours’ on a ’finite’ set of test

6

cases (Bourque et al., 2014). These test cases are suitably selected from the unusually ’infinite

execution domain’.

According to ANSI/IEEE 1059 standard: Testing can be defined as a process of analyzing a

software item to detect the differences between existing and required conditions (that is defect-

s/errors/bugs) and to evaluate the features of the software item (IEEE, 1994).

The Art of Software Testing - Second Edition defines: Software testing [as] a process, or a

series of processes, designed to make sure computer code does what it was designed to do and

that it does not do anything unintended (Reid, 2005).

Finally, The Art of Software Testing - Third Edition defines: Testing [as] the process of

executing a program with the intent of finding errors. (Myers et al., 2011).

1.1.2 Software Testing Tools

The IEEE Standard Glossary of Software Engineering Terminology defines a software tool as:

"a computer program used in the testing, development, maintenance, or analysis of a program

or its documentation" (Radatz et al., 1990). These include cross-reference generators, time

analyzers, flow-charters, decompilers, test case generators, etc. There is a wide variety of

tools available today to provide assistance in every phase of the testing process. There are no

universal testing tools that would cater to all testing needs of all levels and phases of a software

development cycle. Rather, testing tools can be categorized in a number of ways:

a. The testing project or activity in which they are employed (e.g., code verification, test

planning, test execution);

b. The descriptive keyword, i.e. the specific function performed by the tool (e.g., capture/re-

play, logic coverage, compactor);

c. A major area of classification going beyond testing only (e.g., test management, static

analysis, simulator).

7

As an example, we can cite the categorization of (Abran et al., 2001):

a. Test generators

b. Test execution frameworks

c. Test evaluation tools

d. Test management tools

e. Performance analysis tools

While many tools are useful mainly in keeping track and managing tests that are scheduled

or done, some testing tools provide automation in core testing activities. This reduces manual

testing, which is costly, time consuming and error prone (Bajaj, 2014). Test automation helps

in finding issues that are overlooked or not re-verified (regression) (Bajaj, 2014). However, a

recent survey in (Garousi and Zhi, 2013) reveals that about 80 percent of the Canadian firms use

manual testing due to acquisition costs and/or lack of training for good quality test automation

tools.

1.1.3 Academic work on software testing and software testing tools

There are several academic works carried out on testing tools. A very recent (2016) study (Garousi

et al., 2016) finds that the level of joint industry-academic collaboration in software testing is

very low. Researchers have few insights on problems that are important to practitioners, while

practitioners fail to learn what researchers have already discovered that might be useful to

them. In fact, industrial problems are often devoid of scientific challenges, while at the same

time more complex than the mostly small projects for which academia develops rigorous, but

hardly scalable, solutions. A recent survey of 3000 employees in Microsoft suggests that top-

cited research articles in Software Engineering (SE) are not relevant or useful to their everyday

challenges (Lo et al., 2015).

8

A 2013 survey on software testing practices in Canada (Garousi and Zhi, 2013) identified

current trends and challenges in testing, in an effort to provide a window into industry practices

and encourage more academia–industry collaborations. Some of the notable findings of this

survey are as followed:

• Canadian firms are giving more importance to testing related training;

• More effort and attention is spent on unit testing and functional testing;

• When it comes to testing tools, web application and NUnit tools overtook IBM rational

tools and JUnit;

• Many of the companies are still using the Test Last Development (TLD) and only a small

number companies trying to implement new development approaches such as Test Driven

Development (TDD) and Behaviour Driven Development (BDD);

• Canadian firms are considering using new techniques, such as the mutation testing;

• A majority of Canadian firms use a combination of two coverage metrics: condition and

decision coverage;

• In most Canadian companies, testers are out-numbered by developers, with ratios ranging

from 1:2 to 1:5;

An older survey (Emami et al., 2011) of 152 open source software testing tools finds that

the majority of the tools available were meant for performance testing (22%) and unit testing

(21%). On the other hand, only 3% were useful for test management and database testing.

Based on that survey, JAVA is the most supported programming platform by open source soft-

ware testing tools. Almost 39% of testing tools support JAVA programming platform. It is

especially notable that no other programming platform is supported by even as low as 10% of

the tools. On the other hand, Visual Basic and database are the least supported languages/-

concepts for the testing tools surveyed. When it comes to open source software testing tools,

9

concerns about their maintenance are real, due to the non-profit and community driven natures

of these initiatives. The survey found that 77% of the surveyed open source tools have had an

update (version release) within the last six months.

1.1.4 Software testing terminology

Clear and unambiguous communication, through a shared terminology, is particularly helpful

in any industry. A common understanding of terms allows people to communicate ideas more

rapidly with less need for lengthy explanations. This is relevant in software testing as well, in

many somewhat subtle ways. For example, testing can reveal failures, but only faults can and

must be removed (Abran et al., 2004). In the literature, there are several works which present

and discuss testing related terminology. The initial version of the SWEBOK trial version Abran

et al. (2001) explicitly addresses and discusses testing-related terminology. The same applies

to (Utting et al., 2006), which tries to describe and define testing related terminology. From

practitioners perspective, there is the ISTQB standard glossary (ISTQB, 2016), which include

three levels of terminology (foundation, advanced and expert).

1.2 Release documentation (change logs and release notes)

Release documentation takes many forms and goes from user-friendly manuals and tutorials

to more technically oriented change logs. While very useful, user documentation tends to be

scattered (pages of a website, plus videos, plus pdfs) and may not reflect as much as change

logs and release notes information pertaining to features that are still be worked on, bugs that

have been fixed etc. Unlike these, change logs and release notes, which are sometimes treated

the same by developers, are often consolidated in a single, exploitable document, making them

candidates of choice for studies like ours.

10

1.2.1 change logs

A change log is a file where all changes of a software system between two different releases are

stored, in chronological order (Chen et al., 2004). In general, change logs are targeted at devel-

opers, testers and maintainers. They may provide detailed explanation or information about a

change, its location(s), its creator’s name and contact, dates, etc. As such, these documents rep-

resent a valuable source of data for empirical research on software maintenance (Chen et al.,

2004). Most projects maintain their change log in a file simply named ChangeLog. Some

other projects use HISTORY.txt, HISTORY.md, History.md, NEWS.txt, NEWS.md, News.txt,

RELEASES.txt, RELEASE.md, releases.md, etc.

Unfortunately, there are no universally accepted guidelines and format on how to write change

logs . There are, however, a few prominent online blogs/websites like GNU changelog (GNU)

and Keep a changelog (Lacan, 2016) that share their ideas on both content and format of change

logs . Their take is that change logs should contain, after each release, features that are added,

bugs that are fixed, changes to the existing functionality, features that are deleted and features

that are yet to be released. The writing style of a changelog suggested by (GNU) is presented

in Figure 1.1. Though not technically part of a change log, semantic versioning (in short X.Y.Z

for Major.Minor.Patch) is recommended as an effective way to communicate changes to the

users of a software (Preston-Werner, 2013).

1.2.2 Release Notes

Release notes are considered one of the important software trails by (German, 2006). They

contain essential information about a software product and its current release: what is new,

changed, got fixed etc. Release notes are distributed with a software when it is made available

for public use (Yu, 2009; Abebe et al., 2012). Much like change logs , they are used by

developers to communicate with their software users about new changes/ updates in a software

system, but arguably with less emphasis on technical aspects.

11

Figure 1.1 Figure showing an example of change log format taken from Emacs and

GCC (GNU)

1.2.3 Research on release documentation

Research on either change logs or release notes are mostly along two axes: i) (semi-)automatic

generation of these documents, and ii) empirical studies based on them.

On automatic generation, we can cite (Buse and Weimer, 2010) which leverages commit logs

for changes in source code into automatically documenting meaningful program changes, and

thus reducing human errors (mostly in terms of missing entries in the change logs) (Buse and

Weimer, 2010). A few years later, (Moreno et al., 2013) first proposed fine-granularity tech-

niques to automatically generate human readable summaries for java classes, then the same

authors presented, in (Moreno et al., 2014), an approach named ARENA (Automatic RElease

Notes generAtor) to generate the release notes automatically. The tool extracts the information

from source code files, summarizes it, and integrates it with information from versioning sys-

tems and issue trackers. According to the authors, the resulting logs are good approximations

of the ones produced by the developers, with the added benefit that they include important

information which is missing from the manually created release notes. Abebe et al. (2016)

report the same kind of result for their approach. They carried out a study on the release notes

12

of 15 different software systems to understand the type of information in release notes. Their

study identifies six different types of information such as caveats, new features, bugs fixed and

improvements. The authors found that most of the content in release notes is related to issues

that have been addressed; though not all issues that have been addressed are included. Also,

the studied systems accounted for 3 styles of release notes’ writing: consolidated summary of

selected issues, list of selected issues and list of all issues. Finally, the authors used machine

learning techniques trained on 8 release notes of 3 different systems, to automatically suggest,

with reasonable success, issues that needed to be listed in the release notes.

Empirical studies on release documentation include (Khomh et al., 2012), which proposes a

case study of Mozilla Firefox to evaluate whether faster releases improve quality of software.

The authors concluded that 6 week shorter releases offered better marketing opportunities to

companies. Other studies such as (German, 2006) focus on visualisation of release notes and

change logs to highlight which files are changed and who tend to change those files in an effort

to identify the development stage of a project in a given time. Also notable is the vast body

of research work on defect prediction models that are based on historical data and sometimes

use change logs /release notes (He et al., 2012). Finally, and closer to our purposes, (Yu, 2009)

used a keyword based approach to mine change logs of Linux and release notes of FreeBSD

to extract useful software maintenance and evolution information. The authors concluded that

content in the studied change logs is relatively accurate in representing the software changes.

CHAPTER 2

METHODOLOGY

In this chapter, we present the methodology and execution plan of our study. Figure 2.1 presents

an overview of our methodology to answer our research questions on software testing termi-

nology, in particular the extent to which concepts discussed in established learning resources

for software testing are actually mentioned (or implemented) in software testing tools. First,

we selected the established learning resources: SWEBOK, and ISTQB (S1) and the set of test-

ing tools (S2). Then, we extracted a terminology from each of the learning resources (T1, T2)

and collected the release documentation (change logs or release notes) of the tools (L1). After

which, we processed said documentation to eliminate content not related to the testing func-

tionalities offered by the tools, resulting in "trimmed logs" (L2). Subsequently, we extract from

the trimmed logs a new terminology, which we refer to as Tool Terminology. These steps are

the basis on which we investigated answers to our three research questions.

2.1 The learning resources: SWEBOK v3, ISTQB standard glossary v3.1

We selected two well-established learning resources: SWEBOK v3 as the more theoretical

academia-oriented resource and ISTQB v3.1 as the more practitioner-oriented resource. The

Software Engineering Body of Knowledge (SWEBOK) is an international standard (under

ISO/IEC TR 19759:2015) which makes an effort to bring a consistent view on software en-

gineering worldwide. It is the end result of diverse contributions, insights and comments pro-

vided by many software engineering teachers and researchers on the main knowledge areas that

define software engineering. The SWEBOK is a well known and established document that is

used to structure undergraduate software engineering programs in many universities, such as

ETS. We choose it to represent standard academia terminology for software testing. To do so,

we manually went through the 16 pages of the chapter devoted to software testing (Chapter 4)

and extracted a set of words related to software testing. Figure 2.2 presents an example of our

14

Figure 2.1 Flowchart depicting the empirical study

extraction of testing related terms from SWEBOK v3. At the end of this process, we retrieved

142 terms, such as decision table, equivalent partition, defect etc.

The International Software Testing Qualifications Board(ISTQB) is a software testing qualifi-

cation certification organisation founded in 2002. As of June 2017 1, it consists of 58 (national

or regional) board members, such as the Canadian Software Testing Board (CSTB), and di-

rectly covers 82 countries. It has issued over 500,000 certifications, categorised in increasing

levels of learning objectives (Foundation, Advanced, Expert) and modules (Core, Agile, Spe-

cialist). ISTQB’s standard glossary lists concepts, terms and definitions to facilitate commu-

nication in (software) testing and related disciplines. For our study, we use its latest version:

1 https://www.istqb.org/about-as/facts-figures.html

15

Figure 2.2 Example of extraction of testing terms (highlighted in the text) from

SWEBOK v3.

Taken from SWEBOK v3 (Bourque and Fairley, 2015).

the Standard Glossary of Terms used in Software Testing Version 3.1. We collected all the 725

terms into a text file from a PDF file provided by ISTQB. Terms present in the glossary include

condition coverage, memory leak, capture/playback etc.

2.2 Tools and release documentation

Getting a representative sample for testing tools is a task for which there are no clear and

established ways. Publications about software testing tools are rare and do not provide much

16

information (Neto et al., 2012), and there is no established repository for listing testing tools.

Therefore, we had to search for testing tools using mainly Wikipedia, as it is the top crowd-

sourced encyclopedia, and Google, as the top search engine 2. For Wikipedia, we started with

the Wikipedia page for software testing tools (Wikipedia, 2015), which lists both testing tools

and categories of software testing tools (such as GUI tools, load testing tools, security testing

tools and unit testing tools). As for Google, we used the following query "software testing

tools" and went through the first 20 pages 3 of search results, collecting in the process both

links to testing tools and links to listings of testing tools, such as (QATestingTools.com).

We shortlisted 182 tools for our study, taking into account factors such as the status (still

actively maintained or not) and source of the tool to its information. However, most of the tools

in that initial list could not be included in our study because their change logs or release notes

were unavailable. For instance, many of these tools were commercial tools such as HP Unified

Functional Testing (UFT), IBM Rational Tool for which change logs or release notes were not

made publicly available. We reached out to tool developers in many other cases by e-mail to

request release information, but positive replies were relatively low: around 37%. Overall, out

of 182 tools, we managed to get change logs and release notes information for 32 tools. These

change logs and release notes are collected from repositories like GitHub, SourceForge and

respective websites of the software testing tools. Tables 2.1 and 2.2 summarily present the 32

software testing tools along with their target language when relevant (usually for white box

testing tools) and their category. They include very well-established testing tools such as Jest,

JMeter, JUnit, Ranorex, Selenium, Sikuli, SoapUI, etc.

2.2.1 Standard format for the logs

The collected change logs and release notes are in various formats; an example is shown in

Figure 2.3. In order to process these log files properly, we first arranged the version release

information in chronological order of the release dates. Then, we added a deliminator at the be-

2 in October 2017, its market share was estimated at 80.6%(marketshare, 2017)

3 We stopped at 20 pages because there was then less and less new tools returned.

17

Table 2.1 Lists of tools selected for this study

Tool Open
source

Programming
language Testing category

Canoo Yes Javascript
Functional testing for web apps

automated testing.

Easymock Yes Java
Open source testing framework for

Java(unit testing tool)

FitNesse Yes
Java,C++,

Python and etc.
Acceptance testing framework

FunkLoad Yes Python
Web load testing, stress testing, and

functional testing tool

Jest Yes JavaScript

Open source testing framework for

JavaScript to test web applications,

node.js services, mobile apps, and APIs.

Jmeter Yes Java Performance and load testing

Junit Yes Java
Unit testing framework for java

applications

Katalon

Studio
Yes Groovy, Java

Automation tool for web and mobile app

testing.

Load

Impact
No Lua Load testing tool

LoadStrom No N/A
Performance and load testing tool for

cloud web applications.

MochaJS Yes JavaScript JavaScript test framework

Mockito Yes Java Open source testing framework for Java

NeoLoad No C, java

Load and stress testing tool to measure

the performance of web and mobile

applications

Qmetry No N/A Test management tool

Ranorex No C, VB, .NET GUI test automation framework

Robotium Yes Java Android test automation framework

Sahi
Yes/No

Sahi Script Web application testing

Selenium Yes

C, Java, Python,

PHP, Ruby,

NodeJS,

Groovy, Perl,

Scala

Framework for web applications

ginning and end of each version release to facilitate automatic parsing; resulting in an uniform

format, as presented in Figure 2.4.

18

Table 2.2 Lists of tools selected for this study

Tool Open
source

Programming
language Testing category

Sikuli Yes
Java, Python,

C++
GUI testing tool

SoapUI Yes Groovy Functional testing tool

Test Studio No C, VB.NET Functiona, load and performance testing

TestLink Yes JavaScript, PHP Test management tool

TestNG Yes Java Test framwork for Java

Testopia Yes N/A Test management tool

TestPlant No
Java, C#, and

Ruby
GUI Automation Testing

TestRail No

Java, PHP,

Python, Ruby,

.NET

Test management tool

Testuff No N/A Test management tool

TestWave No N/A Test management tool

Watin Yes C#, JavaScript Web application testing tool

Watir Yes Ruby Web application testing tool

XStudio No N/A Test Management

Zephyr Yes N/A Test Management

2.2.2 "Trimming" the logs from their noise

change logs and release notes contain various information about the product like new features,

bug fixes and etc. (See Figure 2.5). Not all that information is relevant to our study; for

instance, a line about a specific bug fix (e.g. a display error) may not be relevant for our study,

even if the term bug is eminently a testing term. We got rid of the noise (in this context,

information not related to a testing activity facilitated or carried out by the tool) by going

through the change logs and release notes, sentence by sentence, and removing content not

related to testing (See Figure 2.6). This manual trimming process gave us trimmed logs(L2) as

shown in Figure 2.1.

19

Figure 2.3 Logs format before uniform

Figure 2.4 Logs format after uniform

20

Figure 2.5 Raw logs

Figure 2.6 Trimmed logs

2.3 Answering our research questions

To answer our research questions, we have to rely extensively on term occurrences in the testing

tools’ logs. A common and standard tool helpful for this kind of a task is the Porter Stemming

algorithm Porter (2001), which is used to stem English words for Information Retrieval (IR)

purposes. In short, it helps to unify terms with different spellings but the same meaning, such

as run, ran, runs, running. In our study, both the terms coming from the established resources

and the terms found in the logs were subjected to stemming4 before trying to retrieve their

number of occurrences.

RQ1: To which extent are the terms from established testing’s learning resources (SWE-

BOK v3, ISTQB v3.1) present in change logs and release notes? To answer RQ1, we

analyze the frequency of the terms taken from SWEBOK (T1) or ISTQB (T2) in the logs of

4 Coded a simple script based on the Porter stemmer to retrieve the term occurrences.

21

the testing tools, whether raw (L1) or trimmed (L2). In particular, for each (Ti, Lj) – with i = 1,

2 and j = 1, 2 – we apply the following steps. We first conduct a quantitative analysis focused

on the occurrences of terms from a terminology Ti in the logs Lj. Number of occurrences are

examined according to three perspectives: 1) the total number of occurrences of the term in all

the logs (TH = total hits), 2) the percentage of version releases in which the term appears (VP

= Versions Percentage), and 3) the percentage of tools in which the term appears (TP = Tool

Percentage). After such quantitative analyses, we proceed to a qualitative analysis, discussing

some of the most significant or frequent terms.

RQ2: Which terms are the most frequent in change logs and release notes?

Focusing on the trimmed logs, we extract a terminology T3 representative of documentation

release for software testing. Our research question is then dedicated to the analysis of T3 in

a search for the most relevant terms in the testing industry, along different categories (from

generic testing terms to technologies, programming languages and tools). Here, we follow the

same procedure as in RQ1: first presenting a quantitative analysis with the same measures and

then proceeding to a qualitative analysis focused on term occurrences by category.

RQ3: What insights can we get by comparing ISTQB, SWEBOK and our new tool ter-

minology?

In order to answer the third research question of our empirical study, we compared the termi-

nologies T1, T2, T3 in order to understand how much of the tool terminology T3 is present

in the terminologies T1 and T2 from the established learning resources. In particular, we take

interest in analysing terms that appear in all three terminologies.

CHAPTER 3

RESULTS AND DISCUSSION

In this chapter, we present the results obtained in our empirical study. For all three RQs,

we start with a quantitative analysis based on term frequencies in the release documentation

of testing tools before proceeding with a qualitative analysis that highlights some interesting

terms. The chapter concludes with the presentation of limits and threats to the validity of our

study.

3.1 RQ1: To which extent are the terms from established testing’s learning resources
present in change logs and release notes of testing tools?

Our first research question is basically about projecting the terminology from learning re-

sources to the logs of testing tools and finding out how many of these terms are mentioned

(and how often) in the testing tools.

3.1.1 Quantitative results: distribution of terms from the learning resources in the logs

We collected occurrences of terms from a given terminology (SWEBOK or ISTQB) in the

release documentation (raw or trimmed), using as axes of analysis, the total number of occur-

rences of a term (Figure 3.1), the percentage of versions in which a term appears (Figure 3.2),

and the percentage of tools in which a term appears (Figure 3.3). Note that the number of terms

is 142 for SWEBOK and 725 for ISTQB.

Figure 3.1 displays the distribution of terms from the learning resources, according to their

total number of occurrences (H: hits) in the release documentation of the selected testing tools.

To facilitate the analysis, we classified these occurrences into categories H0, H1-10, H11-100,

H101-1000 and H1001+; with i) H0: the set of terms that do not appear at all in any release

documentation, ii) H1-10: the set of terms that appear between 1 and 10 times, iii) H11-100:

the set of terms that appear between 11 and 100 times, iv) H101-1000: the set of terms that

24

Figure 3.1 Distribution of learning resources’ terms relatively to their total hits

appear between 101 and 1000, and v) H1001+: the set of terms that appear more than 1000

times. The first important observation is a binary one and refers to whether a term appears or

not in the release documentation. Looking at H0, we can see that 62% of ISTQB terms and

24% of SWEBOK terms do not appear in the raw logs. Unsurprisingly, the percentages are

even higher for the trimmed (i.e., less noisy) versions of the logs: 71% of the ISTQB terms and

41% of the SWEBOK terms have zero occurrences.

Additional observations relate to the distribution of terms when they do appear in the logs.

Roughly 20% of the terms from either SWEBOK or ISTQB belong to H1-10, meaning these

terms do appear but at most 10 times. Differences between SWEBOK and ISTQB become

more noticeable for H11-100 (terms that appear between 11 to 100), where SWEBOK terms

have percentages about 3 times higher than ISTQB’s: 33% vs 11% for raw logs, 26% vs 8%

for trimmed logs. The pattern holds for H101-1000, only with percentages about half what

they are in H11-100. As for the H1001+ category, the percentage of terms that qualify for that

bracket are really low (at most 2%), for all combinations of terminologies and logs. In general,

for the H1+ categories, SWEBOK terms present higher percentages than ISTQB’s, (except for

H1001+ in trimmed logs, for which there are no SWEBOK terms). However, it should be noted

25

that this is not the case for absolute numbers (as opposed to percentages), as there are actually

around 5 times more ISTQB terms than SWEBOK’s (742 vs 125).

Next, in our analysis, is the distribution of the terms according to their presence in the 1332

release versions of the tools in our study. Figure 3.2 presents the distribution of the terms in

the following categories1: i) P0: the set of terms that do not appear in any version, ii) P1-5: the

set of terms that do appear, but in at most 5% of the versions, iii) P5-10: the set of terms that

appear in]5, 10]% of the versions, iv) P10-15: the set of terms that appear in]10, 15]% of the

versions, v) P15-20: terms that appear in]15, 20]% of the versions%, and vi) P20-100, the set

of terms that appear in more than 20% of the versions.

The observations made for H0 above hold for P0, as a term with 0 occurrences obviously

does not appear in any documentation. For P1-5, we notice that i) SWEBOK terms present

percentages roughly twice higher than their ISTQB counterparts: 58% vs 32% for raw logs,

49% vs 26% for trimmed logs, and ii) a few – 6 to 9 – percentage points are lost from the

raw logs to the trimmed ones. Starting from terms that appear in at least 5%, the percentages

for all combinations are dramatically lower, but with SWEBOK terms generally presenting

consistently higher percentages than ISTQB’s2.

Finally, we analyse the distribution of the terms according to their presence in the 32 tools in

our study (Figure 3.3). After preliminary analysis of the data, we split the distribution into the

following categories: i) T0: the set of terms that do not appear in any tool, ii) T1-25: the set of

terms that do appear, but in at most 25% of the tools, iii) T26-50: the set of terms that appear

in between 26 to 50%, iv) T51-75: the set of terms that appear in between 51 to 75%, and v)

T76-100: terms that appear in at least 76% of the tools.

We observe a distribution profile somewhat similar to that of Figure 3.2 (presence in version

documentation), with i) most of the terms appearing in between 1% and 25% of the tools, and

ii) SWEBOK terms having higher percentages than ISTQB terms. A notable difference here is

1 We proposed these categories after preliminary analysis of the obtained data.

2 Again, this is not surprising since there are 5 times more ISTQB terms.

26

Figure 3.2 Distribution of learning resources’ terms relatively to the percentage of

versions they appear in

that we can find much higher percentages of terms in higher categories; meaning many terms

are indeed mentioned in a large number of tools, even if they are not necessarily mentioned in

most versions.

3.1.2 Qualitative analysis: most frequent terms from the learning resources

In this section, we present the most frequent terms from established learning resources in both

raw and trimmed release documentation. For each combination of learning resource (SWE-

BOK or ISTQB) and logs (raw or trimmed), we first retrieve the top 20 most frequent terms,

according to the total number of occurrences (H), percentage of mentions in the release ver-

sions (P) or mentions in any version of a tool (T). We analyse these terms through their profile

respectively to H, P and T (e.g., some terms may be omnipresent in all tools but with rela-

tively few mentions, etc.) and highlight interesting cases. After which, we conduct additional

analysis on the whole set of terms (not just the top 20) to identify terms or cases worth dis-

cussing. Even though we present results for raw logs, we dedicated more effort to the analysis

27

Figure 3.3 Distribution of learning resources’ terms relatively to the percentage of tools

they appear in

of trimmed logs and thus consequently provide more discussion about them. Note finally that,

to ease the reading, we put in italic terms worth highlighting.

3.1.2.1 Most frequent terms from ISTQB

Table 3.1 presents the top 20 most frequent terms from ISTQB in raw logs. The most frequent

terms (and consistently so, across number of occurrences, percentages of versions and tools)

are terms such as test, bug, error, result, unit, fail, code. These are very important, if generic,

testing terms. They highlight the focus of most tools in helping finding defects, bugs and errors

as well as improving support to fix these bugs through updates and features aimed at improving

the test results and logs. Other terms such as driver, record, function, process have high number

of occurrences (TH) but relatively low presence when it comes to versions and tools; this is

unsurprising for a term like driver, which would be relevant only for white (or grey) box testing

tools. Some other terms such as test case, project, configur have high numbers for occurrences

(TH) and versions (VA) but are present in only a few tools.

28

Table 3.1 Frequent term occurrences from ISTQB glossary

in raw release documentation.

Terms Hits Terms Versions Terms Tools
test 7097 test 57.81 bug 96.88

bug 4021 bug 57.21 test 93.75

driver 1302 error 26.43 error 87.50

result 1067 featur 24.85 result 87.50

error 947 fail 23.05 requir 87.50

unit 846 specif 21.40 featur 84.38

record 826 result 20.57 fail 84.38

fail 819 fault 19.82 fault 84.38

requir 781 requir 19.22 perform 84.38

specif 738 path 18.84 avail 84.38

test case 670 code 17.27 code 81.25

code 640 configur 15.54 oper 78.13

fault 607 function 15.09 path 78.13

function 584 project 14.94 pass 78.13

path 581 integr 14.86 system 78.13

project 578 valid 14.79 specif 75

featur 574 perform 13.51 function 75

configur 413 test case 12.91 unit 75

process 388 record 12.61 valid 68.75

valid 366 unit 12.46 replac 68.75

Table 3.2 presents the most frequent terms from ISTQB glossary in trimmed logs. There is

significant similitude with Table 3.1 (raw logs); roughly 80% of the terms in Table 3.2 are also

in Table 3.13, though with lower numbers as noise was removed from the raw logs. Relatively

to the raw logs, there are new terms in the top 20 such as test plan, test approach, metric, test

run, coverage which have high occurrence (H) in trimmed logs. Our analysis of Table 3.1 and

complementary data coming from the logs reveal a few key points worth highlighting:

• Some ISTQB terms are consistently at the top for each of our measures: bug, test case,

error, result, record, fail, unit, function, specif, requir, fault, path, project, integr, valid. For

instance, record and replay is an important feature for half of the tools, which allow the

quick and easy creation of test cases through the recording of all kinds of user-induced

3 Discussion of those terms in the previous paragraph largely apply here too.

29

Table 3.2 Most frequent term occurrences from ISTQB glossary

in trimmed release documentation

Terms Hits Terms Versions Terms Tools
bug 2340 bug 25.23 bug 81.25

test case 579 error 11.49 result 78.13

record 553 test case 11.41 fail 75

result 540 result 11.11 oper 71.88

unit 467 fail 10.44 error 65.63

error 396 unit 10.06 function 65.63

function 354 record 9.23 test case 62.5

fail 341 function 9.16 unit 62.5

specif 336 integr 8.93 path 59.38

test plan 327 path 8.86 valid 59.38

fault 292 specif 8.33 integr 56.25

path 240 requir 7.81 perform 56.25

requir 237 code 7.43 featur 56.25

code 237 fault 7.06 fault 53.13

project 229 valid 6.98 project 50

test approach 214 project 6.31 configur 50

metric 212 configur 5.86 test run 50

integr 185 test run 5.86 failur 50

featur 182 perform 5.63 record 46.88

valid 169 coverag 5.41 specif, requir 46.88

events that can subsequently be replayed across a wide range of desktop, web and mobile

applications.

• Others, like perform, configur, test run, have modest numbers of hits but relatively high

presence in versions and tools; For instance, half the tools place emphasis on and contin-

uously improve their configur(ability), allowing various customisations such as the setting

of a time out for test cases, etc.

• Another category of terms, such as test plan, test approach, metric, have numbers of hits

that are significantly more notable than their presence in versions and tools. The term

metric is among the top most frequent terms but actually appears in only 5% of the versions

and 7% of the tools (i.e. 2 tools);

30

• A few terms are top ranked for hits and another metric: versions (code), or tools (featur); in

a number of tools, feature actually directly refers to the implementation of feature requests

from the tool user such as in "feature request: printed test plan includes title of test plan

(fman) – resolved"

• Finally, coverage is a term mentioned in a lot of versions but with relatively weaker num-

bers for occurences and tools; it relates to code coverage, support for coverage thresholds,

coverage for node tests, test case coverage etc.

3.1.2.2 Most frequent terms from SWEBOK

Table 3.3 presents the top 20 most frequent terms from SWEBOK in raw logs for each metric.

The most frequent terms (and consistently so, across number of occurrences, percentages of

versions and tools) are terms such as error, fault, path, test case, valid[ation], integr[ation],

failure, API, autom[ation], node, trace, captur[e]. Other terms such as interfac, verif, exhaust

test have high number of occurrences but relatively low presence when it comes to versions

and tools. Some other terms such as driver, script, record, defect, coverage have high numbers

for occurrences (Hits) and versions but are present in only a few tools. Finally, some terms

are very frequent in tools (secur, unit test, statist, finit) and sometimes versions too (execut,

consist, dynam) but have relatively low numbers of hits.

Table 3.4 presents, relatively to the trimmed logs, the top 20 terms from SWEBOK for either

hits, versions or tools. Top 20 terms from these three perspectives amount to 26; 15 terms are

present in all the categories: execut, script, test case, record, error, autom, path, fault, valid,

integr, failur, coverag, node, captur, dynam. Four others are top-ranked in at least 2 categories:

hits and versions (defect, repositori), versions and tools (memori leak), hits and tools (secur).

Finally, some terms are outstanding according to only one criterion: hits (interfac, verif),

versions (consist, driver), tools (unit test, finit, trace).

31

Table 3.3 Most frequent terms from SWEBOK v3 in raw release documentation

Terms Total Hits Terms Versions Terms Tools Appearance
driver 1302 error 26.43 error 87.5

script 958 script 21.92 fault 84.38

error 947 execut 21.7 path 78.13

record 826 fault 19.82 execut 71.88

test case 670 path 18.84 valid 68.75

fault 607 integr 14.86 integr 65.63

path 581 valid 14.79 consist 62.5

valid 366 test case 12.91 test case 59.38

interfac 344 record 12.61 failur 56.25

API 289 API 10.51 record 53.13

defect 278 autom 9.83 API 53.13

integr 261 failur 9.53 autom 53.13

failur 213 driver 9.31 node 50

node 211 node 9.01 secur 50

autom 204 defect 8.78 unit test 46.88

coverag 168 coverag 6.91 trace 43.75

verif 140 consist 5.86 captur 40.63

trace 121 trace 5.26 dynam 40.63

exhaust test 114 captur 4.95 statist 40.63

captur 110 dynam 4.65 finit 40.63

3.1.3 A deeper look at the terms from the learning resources

In this section, we discuss the most significant terms from established source terminologies

in trimmed release documentation. We first provide some qualitative insights into the most

frequent terms, then extend our scope to 20 more terms that are worth discussing despite not

being in the top 20 most frequent.

3.1.3.1 Most frequent terms from ISTQB and SWEBOK

Both ISTQB and SWEBOK have only 26 terms accounting for the top 20 terms for hits, ver-

sions and tools. Seven of those terms test case, record, error, path, fault, valid, integr are

shared between the two resources; they also happen to be in top terms for hits, versions and

tools.

32

Table 3.4 Most frequent terms from SWEBOK v3

in trimmed release documentation

Keywords Hits Keywords Versions Keywords Tools
execut 602 execut 14.56 script 71.88

test case 579 test case 11.41 execut 65.63

record 553 error 11.49 error 65.63

error 396 script 10.89 test case 62.5

script 375 autom 9.76 path 59.38

fault 292 record 9.23 valid 59.38

path 240 integr 8.93 autom 56.25

autom 188 path 8.86 integr 56.25

integr 185 valid 6.98 fault 53.13

valid 169 fault 7.06 failur 50

coverag 132 coverag 5.41 record 46.88

interfac 126 failur 4.8 unit test 43.75

defect 112 defect 4.43 node 37.5

failur 89 node 3.83 captur 37.5

node 83 captur 2.93 memori leak 37.5

secur 65 repositori 2.93 dynam 34.38

captur 62 memori leak 2.48 finit 34.38

verif 62 consist 2.4 coverag 31.25

dynam 55 dynam 2.33 secur 31.25

repositori 53 driver 2.18 trace 31.25

Surprisingly, the term integr was not used mainly as in "integration testing" but mostly to in-

dicate that the testing tool could be integrated with other tools. Many testing tools such as

TestLink, TestNG, Testuff, QMetry etc. outsource advanced issue tracking and test manage-

ment capabilities to other software such as Jira, Bugzilla, Mantis, TFS, FogBugz. Continuous

integration is another major driver for potential "integrations" with tools like Jenkins (from

LoadImpact, Ranorex, etc.), Maven (from SoapUI, Jest, MochaJS, JUnit etc.), Tomcat (from

Watin and MochaJS), and Gradle (from XStudio, Mockito and JUnit).

33

3.1.3.2 Significant terms from ISTQB

In this section, we present (see Table 3.5) and discuss some interesting terms from the ISTQB

glossary. Based on these terms occurrences and complementary investigations in the release

documentation, we make the following observations:

• There are no mentions of Software Development Life Cycles (SDLCs) such as V-model,

Agile and SCRUM;

• Memory leaks appear to be a major issue for a third of the tools, especially when executing

scripts for long running record and replay tests;

• Security is a concern for about a quarter of the tools; for instance, Soap UI support the Web

Services Security (WS-Security) extension to apply security to web services while other

tools support security scans on applications;

• Functional, integration and regression testing are explicitly mentioned by only one tool

out of 8 (12.5%) whereas load testing is mentioned and supported by 28% of the tools.

Meanwhile, stress testing is least represented (only 6.25% of the tools). Finally, only one

tool (Test Studio) provides support for exploratory testing.

3.1.3.3 Significant terms from SWEBOK

Table 3.6 presents some of the most interesting terms from SWEBOK v3 with respect to their

occurrence in trimmed release documentation. Here are some observations:

• Terms referring to Adhoc, exhaust[ive] test[ing], finit[e] state, test heurist[ics], mutat[ion]

and test harness do not have any occurrences in release documentation. This is not surpris-

ing since techniques like Adhoc testing are by definition performed without planning and

documentation. As for exhaustive testing, it is not practically possible.

• Decision tables are supported only by the tool Fitnesse.

34

Table 3.5 Significant or frequent terms from ISTQB glossary

Terms Total Hits Versions Appearance in tools
agil test 0 0 0

path coverag 0 0 0

SCRUM 0 0 0

V-model 0 0 0

stress test 2 0.15 6.25 ‘

exploratori test 3 0.23 9.38

reliabl 3 0.23 6.25

integr test 4 0.3 6.25

testabl 5 0.23 6.25

regress test 7 0.45 12.5

test coverag 10 0.3 12.5

function test 22 0.83 12.5

memori leak 38 2.55 34.38

secur 66 2.18 28.13

defect 112 4.43 18.75

coverag 132 5.41 31.25

perform 138 5.63 56.25

load test 152 3.75 28.13

metric 212 4.73 21.88

fail 341 10.44 75

record 553 9.23 46.88

• About 31% of the tools provide support for traceability matrix

3.2 RQ2: Which would be the dominant terms in a terminology extracted from change
logs and release notes?

The second question of our empirical study shifts the perspective from the learning resources

to that of the release documentation terminology. To do so, we focus on terms prominently

featured in the release documentation of the studied tools.

Following the trimming from log files of terms unrelated to testing, there were 343 terms left,

spanning from testing methodologies and frameworks, to testing practices and technologies.

For better insights into these terms, we consider them as a whole but also look into some

interesting categories:

35

Table 3.6 Significant or frequent terms from SWEBOK glossary

Terms Total Hits Versions Appearance in tools
Ad Hoc 0 0 0

exhaust test 0 0 0

finit state 0 0 0

heurist 0 0 0

mutat 0 0 0

test har 0 0 0

interfac test 1 0.08 3.13

reliabl 3 0.23 6.25

testabl 3 0.15 6.25

integr test 4 0.3 9.38

decis tabl 4 0.3 3.13

perform test 13 0.68 3.13

algorithm 27 0.83 12.5

trace 37 2.1 31.25

pattern 43 1.88 25

driver 45 2.18 18.75

verif 62 2.1 25

secur 65 2.1 31.25

graph 97 2.85 25

• Programming languages that are supported by the tool; this is usually relevant only for

white or grey box testing;

• Technologies that are used by the tool, such as XML etc.

• Generic Testing terms similar to the ones found in SWEBOK.

• Tools that are referenced in testing tools.

In the remaining of this section, we detail observations made on these terms, starting from the

whole set of terms then focusing on the different categories above. In essence, we re-apply the

analysis in RQ1, but with additional categories.

36

3.2.1 Distribution of log terminology

Table 3.7 presents the distribution of log terms relatively to their total number of occurrences

(H: hits) in the trimmed release documentation of software testing tools. Looking at the whole

set of terms, we can see that most of the terms have under 10 hits (56%). And the percentages

go dramatically down as the number of hits goes higher. This pattern holds for all the subcat-

egories, except for the programming languages, which have relatively high numbers of hits.

In fact, these observations apply as well for the percentage of versions (see Table 3.8) and the

appearance in tools (see Table 3.9).

Table 3.7 Distribution of total hits for log based terms

Terms H0 H1-10 H11-100 H101-1000 H1001+
ALL 0 56.02 29.84 13.87 0.26

Programming language 0 31.25 43.75 25 0

Technologies 0 63.51 29.73 6.76 0

Generic Testing 0 56.93 27.34 15.36 0.37

Tools 0 40 48 12 0

Table 3.8 Distribution of versions’ percentage for log based terms

Terms P0 P1-5 P5-10 P10-15 P15-20 P>21 <=100
ALL 0 90.84 6.81 2.09 0 0.26

Programming language 0 81.25 12.50 6.25 0 0

Technologies 0 97.30 2.70 0 0 0

Generic Testing 0 88.76 8.24 2.62 0 0.37

Tools 0 100 0 0 0 0

Table 3.9 Distribution of tools percentage for log based terms

Terms T 0 T (1-25) T (26-50) T (51-75) T (76-100)
ALL 0 81.68 12.83 4.97 0.52

Programming language 0 68.75 18.75 12.50 0

Technologies 0 90.54 8.11 1.35 0

Generic Testing 0 78.65 14.61 5.99 0.75

Tools 0 96 4 0 0

37

3.2.2 Most frequent terms from log based terminology

Table 3.10 presents the most frequent terms in the logs.

Table 3.10 Most frequent terms from log based terminology

Terms Hits Terms Versions Terms Tools appearance
bug 2340 bug 25.23 bug 81.25

test case 630 execut 14.56 fail 75

execut 602 test case 12.54 log 71.88

record 551 java 12.24 script 71.88

fman 536 error 11.34 execut 65.63

github 517 script 10.89 error 65.63

java 510 log 10.59 function 65.63

log 408 fail 10.44 test case 62.50

error 390 autom 9.76 java 62.50

script 375 function 9.16 path 59.38

function 354 record 9.08 window 59.38

fail 341 integr 8.86 har 59.38

specif 336 path 8.78 valid 59.38

test plan 327 xml 8.33 autom 56.25

fault 292 specif 8.33 integr 56.25

xml 240 track 8.26 featur 56.25

requir 237 window 8.18 perform 56.25

path 235 requir 7.81 fault 53.13

firefox 226 valid 7.28 xml 53.13

chrome 217 firefox 7.13 record 46.88

• Some log terms are consistently at the top for each of our measures: bug, test case, execut,

record, java, log, error, script, function, fail, xml, path; many of these terms were already

prominent in RQ1 but there are new ones such as xml and java.

• Others, like autom, integr, window, valid, have modest numbers of hits but relatively high

presence in versions and tools;

• Another category of terms, such as fman, github, test plan, chrome, have numbers of hits

that are significantly more notable than their presence in versions and tools.

38

• A few terms are top ranked for hits and another metric: versions (specif, requir, firefox), or

tools (fault);

• Finally, terms such as har, featur, perform are mentioned in many tools but have relatively

weaker numbers for occurrences and versions;

3.2.3 Generic Testing terms in the logs

Table 3.11 present the most frequent generic testing terms. Terms that were not previously

highlighted in RQ1 include project, test run, bug fix, debug, test result etc.

3.2.4 Technologies mentioned in logs

Distribution of technology-related terms from log based terminology is presented in Table 3.12.

Following manual inspections of the logs, we can make the following observations:

• 59.4% of the tools run on Windows compared to 12.5% for Mac OS;

• 37.5% of the tools generate test data in JavaScript Object Notation (JSON) format;

• Unicode Transformation Format (UTF-8) character encoding is explicitly mentioned and

supported by 34.4% of the tools in our study;

• Relatively to web page testing with a browser, Firefox leads with a support by 31.3% of

the tools, with Chrome a close second (28.1%) and other browsers (Internet Explorer (IE),

Safari and Opera) being supported by 21.9% of the tools. PhantomJS is the least popular

browser, and is supported by only 9.4% of tools;

• The web hosting service (GitHub) is used by 28.13% of the tools.

• SOAP (Simple Object Access Protocol) web services and APIs are mentioned by 21.88%

of tools.

.

39

Table 3.11 Distribution of generic testing terms

Terms Totalhits Versions Tools appearance
function 354 9.16 65.63

test case 630 12.54 62.5

valid 169 7.28 59.38

integr 179 8.86 56.25

featur 173 5.33 56.25

perform 138 5.63 56.25

project 229 6.31 50

test run 108 6.01 50

record 551 9.08 46.88

bug fix 118 6.31 46.88

debug 85 4.73 43.75

test result 48 2.85 43.75

unit test 40 2.1 43.75

variabl 163 3.45 40.63

test suit 194 5.86 37.5

memori leak 37 2.48 34.38

coverag 132 5.41 31.25

secur 65 2.1 31.25

test execut 150 3.98 28.13

test report 28 1.58 28.13

test approach 214 2.03 25

execut test 67 2.33 25

verif 62 2.1 25

standard 27 1.5 25

test plan 327 4.95 21.88

metric 212 4.73 21.88

bug report 51 2.18 21.88

regular express 26 1.2 21.88

test script 50 1.13 18.75

test summari report 40 1.05 18.75

3.2.5 Programming languages from Logs

Table 3.13 presents the distribution of programming languages in log terms. We make the

following observations of these terms:

40

Table 3.12 Distribution of technology terms

Terms Totalhits Versions Tools appearance
window 201 8.18 59.38

json 90 3.15 37.5

node 83 3.83 34.38

utf 36 2.1 34.38

firefox 226 7.13 31.25

github 517 4.05 28.13

chrome 217 4.13 28.13

linux 67 3.15 25

soap 87 3.53 21.88

internet explor 54 2.78 21.88

safari 36 1.95 21.88

opera 13 0.83 21.88

bugtrack 46 2.33 12.5

mac os 31 1.28 12.5

algorithm 27 0.83 12.5

chrome extens 5 0.38 12.5

ie record 69 1.58 9.38

bug tracker 67 3.68 9.38

mysql 26 1.28 9.38

phantomjs 8 0.45 9.38

• Java is the leading programming language when it comes to write the test cases or the test

scripts; it is backed by 63% of the tools;

• 43.75% of the tools support the testing of .NET applications on Windows platform;

• The query language XPath has high numbers of hits and versions but it is supported by only

25% of the tools. The inverse is observed for JavaScript, which has relatively low numbers

for hits and versions but is supported by 37.5% of the tools;

• Python is supported by only 15.63% of the tools for the writing of test cases or test scripts;

• Finally, Groovy script, IronPython, java swing and XQuery are the least popular program-

ming languages supported by the testing tools.

41

Table 3.13 Distribution of programming language terms

Terms Totalhits Versions Tools appearance
java 510 12.24 62.5

net 186 5.93 43.75

javascript 63 2.48 37.5

xpath 92 4.13 25

sql 122 4.88 21.88

python 37 2.03 15.63

php 55 1.8 12.5

visual basic 14 0.9 9.38

perl 4 0.15 6.25

groovi script 3 0.15 6.25

ironpython 2 0.15 3.13

java swing 1 0.08 3.13

xquery 1 0.08 3.13

3.2.6 Tools mentioned in the logs

Table 3.14 presents tools that are mentioned in the release documentation of the testing tools.

Many tools are integrated with others to make them standalone and robust. Here are some key

observations:

• Jira (25% of the tools) and Bugzilla (15.63% of the tools) are the most popular issue track-

ing systems when it comes to tool integration;

• As for build automation tools, 21.88% of tools provides support for Maven;

• Selenium, TestNG and Ranorex are popular testing frameworks for the testing of desktop

or web-based or mobile applications; Selenium can be integrated with 18.75% of tools for

testing purposes and report generation;

• Only, 6.25% tools provide integration support for tools such as Sahi, SoapUI, XUnit, XStu-

dio, Fitnesse, and TestPlant.

42

Table 3.14 Distribution of the tools mentioned in the logs

Terms Totalhits Versions Tools appearance
jira 129 4.65 25

maven 52 1.58 21.88

selenium 30 1.35 18.75

testng 64 2.48 15.63

bugzilla 41 2.25 15.63

ranorex 128 3.6 6.25

sahi 29 1.5 6.25

soapui 23 1.35 6.25

xunit 15 0.9 6.25

xstudio 12 0.9 6.25

load gener 9 0.38 6.25

fitness 3 0.23 6.25

testplant 3 0.23 6.25

testlink 31 0.9 3.13

testuff 12 0.83 3.13

watin 9 0.6 3.13

test studio 15 0.45 3.13

funkload 11 0.38 3.13

sikulix 4 0.15 3.13

test plant 1 0.08 3.13

testwav 1 0.08 3.13

3.3 RQ3: Comparing ISTQB, SWEBOK and Log based terminologies

In this section, we compare terminologies derived from learning resources and release docu-

mentation. We compute intersections of the terminologies two at a time (SWEBOK and logs4,

ISTQB and logs5), then all three at once. The set of terms present in all three terminologies is

reported in Table 3.15. Detailed lists of the intersections are presented in Appendix I.

The questions of interest here, for each learning resource, is: a) which percentage of its ter-

minology is part of the documentation release terminology, b) which percentage of the docu-

mentation release terminology can be found in the learning resource terminology. Considering

4 Intersection of log based vs SWEBOK v3 terms = 80

5 Intersection of log based vs ISTQB glossary = 173

43

the SWEBOK terminology, 29.96% of it are terms from the documentation release, and those

terms account for 56.33% of the documentation release terminology. As for the ISTQB ter-

minology, 23.86% of it are terms from the documentation release, and those terms account

for 64.79% of the documentation release terminology. This means that most terms from ei-

ther learning resource are not used in the documentation release terminology but on a slightly

brighter side, the resources terminologies do contain more than half – almost two-thirds for

ISTQB – of the documentation release terminology.

Table 3.15 Intersection of all sets terminology

interfac test, reliabl, testabl, accuraci, stress test, test level, decis tabl, matur, test log,

test case, error, secur, function test, coverag, robust, integr, path, valid, qualif, accept,

integr test, perform test, usabl, consist, fault, oracl, unit test, instrument, stub, failur,

record, defect, verif, driver

3.4 Threats to validity

The purpose of this section is to describe the elements that could impact the validity of this

study with regard to the external and internal validity.

External validity concerns the generalizability of our results. We cannot claim that our re-

sults can be generalized to all testing tools. The tools in our study are those, mostly free, for

which we were able to obtain release documentation. Furthermore, we had to exclude the tools

for which release documentation were not up to date. Nonetheless, our study unveils some

interesting facts that deserve further investigation.

Internal validity threats refer to factors that could impact our conclusions. At all steps of our

study, we proceed to rigorous verification of the data: from the extraction of the terminologies

to the processing of the terms distributions. A few points of concern would be with respect to

the use of stemming, which sometimes leads to semantically different terms getting reduced to

the same root. Though we tried to be as thorough as possible in identifying these inaccuracies,

we cannot guarantee there are no residual problems there. Another possible problem is that in

44

some release documentation, important information could be missing from the change logs of

a version.

CONCLUSION AND RECOMMENDATIONS

In this thesis, we presented an empirical analysis of the terminology of software testing tools

through their release documentation. To do so, we selected a sample of software testing tools

and focused on their release documentation. Terminology extracted from these documents was

used to assess possible discrepancies between those of well established learning resources.

The results obtained showed that there are indeed significant differences between the terminol-

ogy of learning resources and that of testing tools. Our study also unveiled some insights on

concepts that are the most represented in testing tool terminology, from generic testing terms

to technologies, programming languages and even other tools.

Future work could involve a trend analysis aimed at retrieving which terms are picking up

steam over the last years. This could provide some insights on the tooling support for some

testing concepts. For instance, mutation testing is relatively recently being made accessible

through new tools. Additionally, and longer term, there could be avenues for a research work

directed towards providing a terminology-based approach for the selection of a testing tool

based on a list of requirements and desired features.

APPENDIX I

INTERSECTION OF ESTABLISHED REFERENCE TERMS AND LOG BASED
TERMS

Intersection of log based terms and SWEBOK v3 terms.

Terms intersection between log based terms and SWEBOK v3 terms are as followed:

Interfac test, reliabl, testabl, accuraci, stress test, track, test level, techniqu, decis tabl, deter-

minist, matur, captur, reus, dynam, loop, test log, limit, target, statist, model, recoveri, white

box, interfac, test case, machin, trace, error, estim, test select, graph, structur, secur, func-

tion test, coverag, defect track, exploratori, robust, script, random, integr, autom, deriv, execut,

defect, speed, repositori, path, valid, increment, qualif, accept, integr test, frequenc, usabl, con-

sist, code base, perform test, fault, unit test, oracl, finit, cognit, environ, log, pattern, protocol,

equival, criteria, stub, score, har, effort, failur, instrument, regress, effect, record, profil, verif,

driver.

Intersection of log based terms and ISTQB terms.

Terms intersection between log based terms and ISTQB terms are as followed:

Memori leak, specif, pass, recover, decis tabl, test requir, function, test run, test log, compat

test, statement, test session, configur manag, test script, featur, test pass, tester, dashboard, se-

cur, mainten, stabil, fail, except handl, scenario test, complex, decis, qualif, domain, test case

design techniqu, indic, configur test, usabl, consist, test stage, project, process, precondit, risk,

oper, test driver, test suit, record, bug report, driver, prioriti, problem , interfac test, testabl,

accuraci, stress test, test level, static test, moder, test infrastructur, test approach, static analysi,

test autom, deliver, block test case, test process, debug, bug, data driven test, maintain, review,

test compar, convers test, field test, traceabl, script test, test plan, path test, perform test, per-

form, test data, complet test, input valu, debugg, test environ, qualiti, entri point, regress test,

test result, verif, test target, reliabl, test record, test execut phase, expect result, matur, test

48

schedul, metric, accept test, standard, emul, standard test, requir, inspector, test execut autom,

test cycl, coverag, integr, test implement, path, valid, concurr test, test manag tool, best practic,

test tool, fault, usabl test, unit test, pointer, defect report, test specif, compil, output, safeti,

system, stub, failur, configur item, exploratori test, test summari report, test coverag, link test,

user scenario test, test object, test basi, test case, dead code, interoper, buffer overflow, defect

manag, audit trail, error, variabl, mileston, test manag, input, dynam test, audit, branch, scal-

abl, script languag, test fail, function test, storag, test report, robust, suitabl, servic test, condit,

coverag analysi, accept, test oracl, test type, integr test, secur test, test design, simul, oracl,

instrument, code, test execut, test case specif, certif, configur, code coverag, compon, defect,

result, test data prepar tool.

BIBLIOGRAPHY

Surafel Lemma Abebe, Venera Arnaoudova, Paolo Tonella, Giuliano Antoniol, and Yann-Gael

Gueheneuc. Can lexicon bad smells improve fault prediction? In Reverse Engineering
(WCRE), 2012 19th Working Conference on, pages 235–244. IEEE, 2012.

Surafel Lemma Abebe, Nasir Ali, and Ahmed E Hassan. An empirical study of software release

notes. Empirical Software Engineering, 21(3):1107–1142, 2016.

A Abran, JW Moore, P Bourque, R Dupuis, and LL Tripp. Swebok: Software engineering

body of knowledge trial version. IEEE Computer Society, US, 2001.

Alain Abran, JW Moore, P Bourque, R Dupuis, and LL Tripp. Software engineering body of

knowledge. IEEE Computer Society, Angela Burgess, 2004.

Aakash Ahmad, Pooyan Jamshidi, Muteer Arshad, and Claus Pahl. Graph-based implicit

knowledge discovery from architecture change logs. In Proceedings of the WICSA/ECSA
2012 Companion Volume, pages 116–123. ACM, 2012.

Abdulkareem Alali, Huzefa Kagdi, and Jonathan I Maletic. What’s a typical commit? a char-

acterization of open source software repositories. In Program Comprehension, 2008.
ICPC 2008. The 16th IEEE International Conference on, pages 182–191. IEEE, 2008.

Giuliano Antoniol, Massimiliano Di Penta, and Ettore Merlo. An automatic approach to iden-

tify class evolution discontinuities. In Software Evolution, 2004. Proceedings. 7th Inter-
national Workshop on Principles of, pages 31–40. IEEE, 2004.

Harsh P. Bajaj. Choosing the right automation tool, 2014.

Antonia Bertolino. Software testing research: Achievements, challenges, dreams. In 2007
Future of Software Engineering, pages 85–103. IEEE Computer Society, 2007.

Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand Swaminathan. Mining

email social networks. In Proceedings of the 2006 international workshop on Mining
software repositories, pages 137–143. ACM, 2006.

P Bourque and RE Fairley. Guide to the software engineering body of knowledge (swe-

bok)2015: Iso - international organization for standardization, Sep 2015. URL https:

//www.iso.org/standard/33897.html.

Pierre Bourque, Richard E Fairley, et al. Guide to the software engineering body of knowledge
(SWEBOK (R)): Version 3.0. IEEE Computer Society Press, 2014.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Tilmann Bruckhaus. A Quantitative Approach for Analyzing the Impact of Tools on Software
Productivity. PhD thesis, McGill University, Montreal, Que., Canada, Canada, 1997.

AAINQ36962.

50

Jim Buffenbarger and Kirk Gruell. What have you done for me lately?(branches, merges, and

change logs). In International Workshop on Software Configuration Management, pages

18–24. Springer, 1997.

Raymond PL Buse and Westley R Weimer. Automatically documenting program changes. In

Proceedings of the IEEE/ACM international conference on Automated software engi-
neering, pages 33–42. ACM, 2010.

Gerardo Canfora, Luigi Cerulo, Marta Cimitile, and Massimiliano Di Penta. How changes

affect software entropy: an empirical study. Empirical Software Engineering, 19(1):

1–38, 2014.

Kai Chen, Stephen R Schach, Liguo Yu, Jeff Offutt, and Gillian Z Heller. Open-source change

logs. Empirical Software Engineering, 9(3):197–210, 2004.

Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating features in source code.

IEEE Transactions on software engineering, 29(3):210–224, 2003.

Seyed Amir Emami, Jason Chin Lung Sim, and Kwan Yong Sim. A survey on open source

software testing tools: a preliminary study in 2011. In Fourth International Conference
on Machine Vision (ICMV 11), pages 83502Y–83502Y. International Society for Optics

and Photonics, 2011.

Anthony Finkelstein and John Dowell. A comedy of errors: the london ambulance service case

study. In Proceedings of the 8th International Workshop on Software Specification and
Design, page 2. IEEE Computer Society, 1996.

Gordon Fraser, Franz Wotawa, and Paul E Ammann. Testing with model checkers: a survey.

Software Testing, Verification and Reliability, 19(3):215–261, 2009.

Vahid Garousi and Michael Felderer. 1 living in two different worlds: A compari-

son of industry and academic focus areas in software testing, Dec 2016. URL

https://www.researchgate.net/publication/311913424_Living_in_two_different_

worlds_A_comparison_of_industry_and_academic_focus_areas_in_software_testing.

Vahid Garousi and Junji Zhi. A survey of software testing practices in canada. Journal of
Systems and Software, 86(5):1354–1376, 2013.

Vahid Garousi, Matt M Eskandar, and Kadir Herkiloğlu. Industry–academia collaborations

in software testing: experience and success stories from canada and turkey. Software
Quality Journal, pages 1–53, 2016.

D German. Using software trails to rebuild the evolution of software, elisa 2003 workshop,

evolution of large-scale industrial software applications, 24 sept., amsterdam, 2004.

Daniel M German. An empirical study of fine-grained software modifications. Empirical
Software Engineering, 11(3):369–393, 2006.

51

GNU. Gnu coding standards: Style of change logs. URL https://www.gnu.org/prep/standards/

html_node/Style-of-Change-Logs.html#Style-of-Change-Logs.

ISTQB Glossary Working Group et al. Standard glossary of terms used in software testing.

Technical report, Technical report, International Software Testing Qualifications Board.

Version 3.01, 2015.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H

Witten. The weka data mining software: an update. ACM SIGKDD explorations newslet-
ter, 11(1):10–18, 2009.

Zhimin He, Fengdi Shu, Ye Yang, Mingshu Li, and Qing Wang. An investigation on the

feasibility of cross-project defect prediction. Automated Software Engineering, 19(2):

167–199, 2012.

Peter Hutterer. Who-t, Dec 2009. URL http://who-t.blogspot.ca/2009/12/

on-commit-messages.html.

IEEE. Ieee guide for software verification and validation plans. IEEE Std 1059-1993, pages

i–87, 1994. doi: 10.1109/IEEESTD.1994.121430.

ISTQB. Certifying software testers worldwide, 2016. URL http://www.istqb.org/.

Georg Kaes and Stefanie Rinderle-Ma. Mining and querying process change information based

on change trees. In International Conference on Service-Oriented Computing, pages

269–284. Springer, 2015.

Huzefa Kagdi, Michael L Collard, and Jonathan I Maletic. A survey and taxonomy of ap-

proaches for mining software repositories in the context of software evolution. Journal
of software maintenance and evolution: Research and practice, 19(2):77–131, 2007.

Chris F. Kemerer and Sandra Slaughter. An empirical approach to studying software evolution.

IEEE Transactions on Software Engineering, 25(4):493–509, 1999.

Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and Bram Adams. Do faster releases improve

software quality?: an empirical case study of mozilla firefox. In Proceedings of the
9th IEEE Working Conference on Mining Software Repositories, pages 179–188. IEEE

Press, 2012.

Miryung Kim, David Notkin, Dan Grossman, and Gary Wilson. Identifying and summarizing

systematic code changes via rule inference. IEEE Transactions on Software Engineer-
ing, 39(1):45–62, 2013.

Edward Kit and Susannah Finzi. Software Testing in the Real World: Improving the Process.

ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1995. ISBN 0-201-

87756-2.

Olivier Lacan. Keep a changelog, 2016. URL http://keepachangelog.com/en/1.0.0/.

52

Claude Y Laporte, B Nabil, and D Mikel. Measuring the cost of software quality of a large

software project at bombardier transportation: a case study. Software Qual. Manage, 14

(3):14–31, 2012.

Kaiping Liu, Hee Beng Kuan Tan, and Hongyu Zhang. Has this bug been reported? In Reverse
Engineering (WCRE), 2013 20th Working Conference on, pages 82–91. IEEE, 2013.

David Lo, Nachiappan Nagappan, and Thomas Zimmermann. How practitioners perceive the

relevance of software engineering research. In Proceedings of the 2015 10th Joint Meet-
ing on Foundations of Software Engineering, pages 415–425. ACM, 2015.

Walid Maalej and Hans-Jörg Happel. Can development work describe itself? In Mining
Software Repositories (MSR), 2010 7th IEEE Working Conference on, pages 191–200.

IEEE, 2010.

marketshare. Search engine market share, Oct 2017. URL https://www.netmarketshare.com/

search-engine-market-share.aspx?qprid=4&qpcustomd=0.

Paul W McBurney and Collin McMillan. Automatic documentation generation via source code

summarization of method context. In Proceedings of the 22nd International Conference
on Program Comprehension, pages 279–290. ACM, 2014.

James Bret Michael, Bernard J Bossuyt, and Byron B Snyder. Metrics for measuring the

effectiveness of software-testing tools. In Software Reliability Engineering, 2002. ISSRE
2003. Proceedings. 13th International Symposium on, pages 117–128. IEEE, 2002.

Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock, and K Vijay-

Shanker. Automatic generation of natural language summaries for java classes. In Pro-
gram Comprehension (ICPC), 2013 IEEE 21st International Conference on, pages 23–

32. IEEE, 2013.

Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian Marcus,

and Gerardo Canfora. Automatic generation of release notes. In Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, pages 484–495. ACM, 2014.

Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian Marcus, and

Gerardo Canfora. Arena: An approach for the automated generation of release notes.

IEEE Transactions on Software Engineering, 2016.

Vicky Mosley. How to assess tools efficiently and quantitatively. IEEE Software, 9(3):29–32,

1992.

Khaled M Mustafa, Rafa E Al-Qutaish, and Mohammad I Muhairat. Classification of soft-

ware testing tools based on the software testing methods. In Computer and Electrical
Engineering, 2009. ICCEE’09. Second International Conference on, volume 1, pages

229–233. IEEE, 2009.

53

G.J. Myers. The Art of Software Testing. A Wiley-Interscience publication. Wiley, 1979a.

ISBN 9780471043287. URL https://books.google.ca/books?id=DV0ZAQAAIAAJ.

Glenford J. Myers. Art of Software Testing. John Wiley & Sons, Inc., New York, NY, USA,

1979b. ISBN 0471043281.

Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software Testing. Wiley

Publishing, 3rd edition, 2011. ISBN 1118031962, 9781118031964.

Myung Hwan Na, Jongwoo Jeon, and Dong Ho Park. Testing whether failure rate changes its

trend with unknown change points. Journal of statistical planning and inference, 129

(1):317–325, 2005.

Crescencio Rodrigues Lima Neto, Eduardo Santana de Almeida, and Silvio Romero

de Lemos Meira. A software product lines system test case tool and its initial evaluation.

In Information Reuse and Integration (IRI), 2012 IEEE 13th International Conference
on, pages 25–32. IEEE, 2012.

Lima Neto and Crescencio Rodrigues. Splmt-te: A software product lines system test case

tool, 2011.

online repository for testing tools. list of testing tools. http://qatestingtools.com/, 2015.

Kai Pan, E James Whitehead, and Guozheng Ge. Textual and behavioral views of function

changes. In Proceedings of the 3rd international workshop on Traceability in emerging
forms of software engineering, pages 8–13. ACM, 2005.

Martin F Porter. Snowball: A language for stemming algorithms, 2001.

Robert M. Poston and Michael P. Sexton. Evaluating and selecting testing tools. In Assessment
of Quality Software Development Tools, 1992., Proceedings of the Second Symposium
on, pages 55–64. IEEE, 1992.

Tom Preston-Werner. Semantic versioning 2.0. 0. línea]. Available: http://semver. org, 2013.

QATestingTools.com. All about software testing tools. accessed 22 october 2015.

url http://www.qatestingtools.com/. URL http://www.qatestingtools.com/

contact-consultant.

Jane Radatz, Anne Geraci, and Freny Katki. Ieee standard glossary of software engineering

terminology. IEEE Std, 610121990(121990):3, 1990.

Sarah Rastkar and Gail C. Murphy. Why did this code change? In Proceedings of
the 2013 International Conference on Software Engineering, ICSE ’13, pages 1193–

1196, Piscataway, NJ, USA, 2013. IEEE Press. ISBN 978-1-4673-3076-3. URL

http://dl.acm.org/citation.cfm?id=2486788.2486959.

54

Stuart Reid. The art of software testing, second edition. glenford j. myers. revised and updated

by tom badgett and todd m. thomas, with corey sandler. john wiley and sons, new jersey,

u.s.a., 2004. isbn: 0-471-46912-2, pp 234: Book reviews. Softw. Test. Verif. Reliab., 15

(2):136–137, June 2005. ISSN 0960-0833. doi: 10.1002/stvr.v15:2. URL http://dx.doi.

org/10.1002/stvr.v15:2.

SB Rinderle, Martin Jurisch, and Manfred Reichert. On deriving net change information from

change logs-the deltalayer-algorithm. 2007.

Jelber Sayyad Shirabad, Timothy C Lethbridge, and Stan Matwin. Supporting software mainte-

nance by mining software update records. In Software Maintenance, 2001. Proceedings.
IEEE International Conference on, pages 22–31. IEEE, 2001.

speak your languages. Why terminology is important, 2017. URL http://www.

speakyourlanguages.com/courses/unit01/ter03/01ter03.htm.

Gregory Tassey. The economic impacts of inadequate infrastructure for software testing. Na-
tional Institute of Standards and Technology, RTI Project, 7007(011), 2002.

Sergey Uspenskiy et al. A survey and classification of software testing tools. 2010.

Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based testing.

2006.

Ming-Shi Wang and Jung-te Weng. Locating matching rules by mining software change log.

In 9th Joint International Conference on Information Sciences (JCIS-06). Atlantis Press,

2006.

Tom Preston Werner. Semantic versioning 2.0.0, 2016. URL http://semver.org/.

Wikipedia. Category:software testing tools, Nov 2015. URL https://en.wikipedia.org/wiki/

Category:Software_testing_tools.

Pulei Xiong. Life-cycle e-commerce testing with object-oriented TTCN-3. PhD thesis, Univer-

sity of Ottawa (Canada), 2004.

Christine Youngblut. An examination of selected software testing tools: 1992. Technical

report, DTIC Document, 1992.

Liguo Yu. Mining change logs and release notes to understand software maintenance and

evolution. CLEI Electron Journal, 12(2):1–10, 2009.

