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L’apprentissage profond appliqué à la vérification de signatures manuscrites

Luiz Gustavo HAFEMANN

RÉSUMÉ
La signature manuscrite est, encore aujourd’hui, la modalité biométrique la plus acceptée so-

cialement et légalement, pour authentifier les documents manuscrits et imprimés. Au cours

des dernières décennies, plusieurs chercheurs ont abordé le problème de l’automatisation du

processus de la vérification des signatures, en utilisant diverses techniques d’apprentissage ma-

chine et de reconnaissance de formes. La majorité des travaux de recherche ont porté sur la

définition et l’évaluation de représentations discriminantes des signatures, soit en concevant de

nouveaux extracteurs de caractéristiques spécialisés, soit en utilisant des extracteurs de carac-

téristiques développées à d’autres fins. Les chercheurs ont notamment utilisé des connaissances

en graphologie, en vision par ordinateur et en traitement du signal. Malgré les progrès réalisés

à ce jour, la classification des signatures authentiques et des faux avec imitation demeure un

problème de recherche non résolu.

Dans cette thèse, nous proposons d’aborder ce problème sous un autre angle, en apprenant les

représentations de caractéristiques directement à partir d’images de signature. L’hypothèse est

que, en l’absence d’un bon modèle du processus de génération de données, il est préférable

d’apprendre les caractéristiques à partir des données. Dans la première contribution, nous pro-

posons une méthode pour apprendre les caractéristiques génériques pour plusieurs personnes,

en utilisant un objectif d’optimisation substitut. Après la phase d’apprentissage des carac-

téristiques, un classificateur est entrainé pour chaque personne, en utilisant les caractéristiques

apprises à partir d’un corpus de scripteurs indépendant. De plus, on considère une extension

de notre méthode qui permet l’apprentissage de caractéristiques en utilisant des images de faux

avec imitation (disponibles pour un sous-ensemble d’utilisateurs). On a observé sur quatre

bases de signatures que ces caractéristiques sont bien adaptées pour la vérification des signa-

tures provenant de nouveaux utilisateurs qui n’ont pas été utilisés pour l’apprentissage de cette

représentation. Les résultats expérimentaux obtenus sur les quatre bases de données ont montré

les meilleures performances considérant l’état de l’art.

Dans la deuxième contribution, nous examinons trois problèmes liés aux systèmes de vérifica-

tion de signature: (i) l’apprentissage d’une représentation de cardinalité fixe pour des images de

signatures de tailles variées; (ii) l’impact de la résolution des images de signatures numérisées

sur la performance du système de vérification et (iii) comment les caractéristiques généralisent

dans de nouvelles conditions de fonctionnement avec et sans raffinement. Nous proposons des

méthodes qui permettent de traiter des signatures de tailles variées et nos simulations montrent

des résultats comparables à ceux publiés dans la littérature, sans la contrainte de normaliser la

taille des images présentées à l’entrée du réseaux de neurones.

Dans la troisième contribution, nous proposons de formuler le problème de la vérification des

signatures manuscrites comme un méta-problème. Cette formulation apprend également di-

rectement à partir des images de signatures et permet l’optimisation directe de l’objectif (sé-
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parer les signatures authentiques des falsifications qualifiées) au lieu de s’appuyer sur des ob-

jectifs substituts pour l’apprentissage des caractéristiques. De plus, on montre que cette méth-

ode peut naturellement faciliter l’adaptation du classificateur pour des nouveaux utilisateurs

avec un classificateurs à une classe.

Pour ce qui est de la quatrième contribution, nous analysons les limites des systèmes de véri-

fication hors ligne de signatures manuscrites dans un contexte d’apprentissage machine an-

tagoniste (adversarial learning), où un adversaire actif essaie de perturber le système. Une

nouvelle taxonomie des menaces représentées par les exemples antagonistes pour les systèmes

biométrique est proposée. Plusieurs stratégies ont été considérées pour évaluer expérimentale-

ment les attaques basées sur différents scénarios d’objectifs et de connaissance du système at-

taqué. Nous avons observé que les systèmes de vérification qui reposent sur des caractéristiques

définies manuellement et ceux basés sur des caractéristiques apprises aux chapitres précédents

sont susceptibles d’attaques antagonistes dans plusieurs scénarios. Notamment, ces systèmes

de vérification sont vulnérables aux attaques basées sur une connaissance partielle des mé-

canismes internes du système, pour lesquels l’attaquant n’a pas accès aux classificateurs déjà

entraînés. Bien que certaines défenses proposées dans la littérature augmentent la robustesse

de ces systèmes, cette recherche met en évidence les scénarios pour lesquels ceux-ci sont vul-

nérables.

Mots-clés: Verification de signatures, biométrie, apprentissage de représentations



Learning features for Offline Handwritten Signature Verification

Luiz Gustavo HAFEMANN

ABSTRACT

Handwritten signatures are the most socially and legally accepted means for identifying a per-

son. Over the last few decades, several researchers have approached the problem of automating

their recognition, using a variety of techniques from machine learning and pattern recognition.

In particular, most of the research effort has been devoted to obtaining good feature represen-

tations for signatures, by designing new feature extractors, as well as experimenting with fea-

ture extractors developed for other purposes. To this end, researchers have used insights from

graphology, computer vision, signal processing, among other areas. In spite of the advance-

ments in the field, building classifiers that can separate between genuine signatures and skilled

forgeries (forgeries made targeting a particular individual) is still an open research problem.

In this thesis, we propose to address this problem from another perspective, by learning the

feature representations directly from signature images. The hypothesis is that, in the absence

of a good model of the data generation process, it is better to learn the features from data. As

a first contribution, we propose a method to learn Writer-Independent features using a surro-

gate objective, followed by training Writer-Dependent classifiers using the learned features.

Furthermore, we define an extension that allows leveraging the knowledge of skilled forgeries

(from a subset of users) in the feature learning process. We observed that such features gen-

eralize well to new users, obtaining state-of-the-art results on four widely used datasets in the

literature.

As a second contribution, we investigate three issues of signature verification systems: (i)

learning a fixed-sized vector representation for signatures of varied size; (ii) analyzing the

impact of the resolution of the scanned signatures in system performance and (iii) how features

generalize to new operating conditions with and without fine-tuning. We propose methods to

handle signatures of varied size and our experiments show results comparable to state-of-the-

art while removing the requirement that all input images have the same size.

As a third contribution, we propose to formulate the problem of signature verification as a meta-

learning problem. This formulation also learns directly from signatures images, and allows

the direct optimization of the objective (separating genuine signatures and skilled forgeries),

instead of relying on surrogate objectives for learning the features. Furthermore, we show

that this method is naturally extended to formulate the adaptation (training) for new users as

one-class classification.

As a fourth contribution, we analyze the limitations of these systems in an Adversarial Machine

Learning setting, where an active adversary attempts to disrupt the system. We characterize

new threats posed by Adversarial Examples on a taxonomy of threats to biometric systems,

and conduct extensive experiments to evaluate the success of attacks under different scenarios

of attacker’s goals and knowledge of the system under attack. We observed that both systems
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that rely on handcrafted features, as well as those using learned features, are susceptible to

adversarial attacks in a wide range of scenarios, including partial-knowledge scenarios where

the attacker does not have full access to the trained classifiers. While some defenses proposed

in the literature increase the robustness of the systems, this research highlights the scenarios

where such systems are still vulnerable.

Keywords: Signature Verification, Biometrics, Feature Learning, Adversarial Machine Learn-

ing
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INTRODUCTION

Biometric recognition technology is used in a wide variety of security applications. The aim

of such systems is to recognize a person based on physiological or behavioral traits. In the

first case, recognition is based on measurements of biological traits, such as the fingerprint,

face, iris, etc. The second is concerned with behavioral traits such as voice and the handwritten

signature (Jain et al. (2004)).

The handwritten signature is a particularly important type of biometric trait, mainly due to its

ubiquitous use to verify a person’s identity in legal, financial and administrative areas. One

of the reasons for its widespread use is that the process of collecting handwritten signatures

is non-invasive, and people are familiar with the use of signatures in their daily life (Plamon-

don & Srihari (2000)).

Signature verification systems aim to automatically discriminate if a signature sample is in-

deed of a particular person or not. This type of system usually consists of two phases: in an

enrollment phase, users of the system provide signature samples. During the verification phase,

a user claims a particular identity and provide a signature sample. The system then uses the

samples provided during enrollment (or a model built using them) to verify if the user is indeed

who he or she claims to be - that is, it classifies the sample as genuine or forgery.

Depending on the acquisition method, signature verification systems are divided into two cate-

gories: online (dynamic) and offline (static). In the online case, an acquisition device, such as

a digitizing tablet, is used to acquire the user’s signature. The data is collected as a sequence

over time, containing the position of the pen, and in some cases including additional informa-

tion such as the pen inclination, pressure, etc. In offline signature verification, the signature is

acquired after the writing process is completed. In this case, the signature is represented as a

digital image (Impedovo & Pirlo (2008)).
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Problem statement

The problem of Handwritten Signature Verification can be modeled as a Pattern Recognition

problem. Given a dataset Lv (Learning set for verification) of signature images, the objec-

tive is to learn a model that can distinguish between genuine signatures and forgeries. In the

most common formulation, namely writer-dependent classification, one classifier is built for

each writer. In this formulation, we consider a dataset for each user: Lv = {(X (i),y(i))}N
i=1,

where X (i) is a signature image, and y(i) is a binary variable that indicates if the signature is

genuine (y(i) = 1) or a forgery (y(i) = 0). Commonly, genuine signatures from other users are

used as negative samples (in this context, they are called Random Forgeries), since in real ap-

plication scenarios, skilled forgeries cannot be expected to be available for every user. Given

the dataset Lv, a feature extraction function φ is used, that receives an image X as input, and

outputs a feature vector φ(X) ∈ R
N , where N is the dimensionality of the vector (the number

of features). The feature vectors, as well as the labels y are used to train a binary classifier f .

In the generalization phase, a new signature Xnew is acquired, and the same feature extraction

process is applied. The feature vector φ(Xnew) is then fed to the classifier, that outputs a deci-

sion: f (φ(Xnew)), which is a prediction of whether the signature is genuine or a forgery. This

process is illustrated in Figure 0.1.

Most of the research focus in the literature has been devoted to obtaining good feature rep-

resentations for signatures, that is, designing good feature extractors φ(X) (Hafemann et al.

(2017b)). Defining discriminative feature extractors for offline signatures is a hard task. The

question “What characterizes a signature” is a difficult concept to implement as a feature

descriptor. Recent work uses texture features, such as Local Binary Patterns (LBP) (Yıl-

maz & Yanıkoğlu (2016), Hu & Chen (2013)) and Gray-Level Co-occurrence Matrix (GLCM)

(Hu & Chen (2013)); directional-based features such as Histogram of Oriented Gradients

(HOG) (Yılmaz & Yanıkoğlu (2016)) and Directional-PDF (Rivard et al. (2013), Eskander
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Figure 0.1 Example of writer-dependent classification.

et al. (2013)); feature extractors specifically designed for signatures, such as the estimation

of strokes by fitting Bezier curves (Bertolini et al. (2010)); among others. No single feature

extractor has emerged as particularly suitable for signature verification, and most recent work

uses a combination of many such techniques.

The difficulty of finding a good representation for signatures reflects on the classification per-

formance of signature verification systems, especially to distinguish genuine signatures from

skilled forgeries - forgeries that are made targeting a particular individual.

Challenges

In this section, we summarize the key challenges in signature verification:

- Obtaining good feature representations: The performance of a signature verification sys-

tem is highly dependent on the features used to train the classifiers. The choice of which

feature descriptors to use is problem-dependent, and it is often hard to design good feature

extractors. Ideally, the features reflect the process used to generate the data - for instance,
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neuromotor models of the hand movement. Although this has been explored in the con-

text of online signature verification (e.g. the work from Ferrer et al. (2015)), there is not a

widely accepted “best" way to extract features for the problem, especially for Offline (static)

signature verification, where the dynamic information of the signature generation process

is not available.

- Partial knowledge during training: A very challenging aspect of Handwritten signature

verification is the presence of partial knowledge during training. The objective of the system

is to distinguish between genuine signatures and forgeries. However, considering a realistic

application scenario, during the training phase only information about the genuine class is

available for the majority of users. This fact, combined with the observation that forgers try

to make their forgeries very similar to genuine signatures, makes the problem quite hard.

- Low number of samples per user: Another challenging aspect is the requirement of these

systems to work with a low number of samples per user. Even for applications having

millions of users, for a new user, it is common to have only a few samples (e.g. between 1

and 5 samples).

Research Objectives and Contributions

The main research question that we address in this work is whether we can learn better feature

representations for offline signature verification, from data, instead of using hand-designed

feature extractors.

The core contributions of this thesis are:

- In Chapter 2, the issue of obtaining good features for signature verification is addressed

with a two-step process that uses Writer-Independent feature learning, followed by Writer-

Dependent classification. Features are learned from a collection of users, partially address-
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ing the problem of having few samples per user. We also present a formulation to incor-

porate knowledge of forgeries (from a subset of users) in the feature learning process, that

addresses some of the issues of partial knowledge during training.

Related publications:

Learning features for offline handwritten signature verification using deep convolutional

neural networks (published in Elsevier’s Pattern Recognition, 2017)

Analyzing features learned for offline signature verification using Deep CNNs (published

in the proceedings of the 23rd International Conference on Pattern Recognition (ICPR),

2016)

Writer-independent feature learning for offline signature verification using deep convolu-

tional neural networks (published in proceedings of the 2016 International Joint Conference

on Neural Networks (IJCNN), 2016).

- Chapter 3 presents a method to address the issue of learning a fixed-sized representation

space for signatures of variable size. This chapter also presents results on the impact of

the resolution of the images used for training, and the impact of adapting (fine-tuning) the

representations to new operating conditions (different acquisition protocols, such as writing

instruments and scan resolution).

Related publication:

Fixed-sized representation learning from Offline Handwritten Signatures of different sizes

(published in Springer’s International Journal on Document Analysis and Recognition (IJ-

DAR), 2018)

- Chapter 4 considers an approach to directly address the issue of partial knowledge during

training, by formulating signature verification as a meta-learning problem. This formulation

directly optimizes for the objective of separating genuine signatures and forgeries, even

when forgeries are not available for all users.
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Related publication:

Meta-learning for fast classifier adaptation to new users of Signature Verification systems

(to be submitted to the IEEE Transactions on Information Forensics and Security)

- Chapter 5 explores the limitations of signature verification systems under the presence of

an active adversary. The issue of adversarial examples is characterized for signature verifi-

cation, under an existing taxonomy of threats to biometric systems.

Related publication:

Characterizing and evaluating adversarial examples for Offline Handwritten Signature Ver-

ification (published in IEEE Transactions on Information Forensics and Security, 2019)

To facilitate further research on this field, all the code associated to the papers above was made

publicly available 1 2.

An additional contribution was made in the field of adversarial machine learning, by devel-

oping a fast algorithm to generate adversarial examples, and its usage for training defense

mechanisms (joint work with colleagues, described in appendix I). This method was used to

win one of the competitions of the NIPS 2018 Adversarial Vision Challenge (Brendel et al.

(2018b)) 3:

Decoupling Direction and Norm for Efficient Gradient-Based L2 Adversarial Attacks and De-

fenses (accepted to the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR 2019))

1 https://github.com/luizgh/sigver_wiwd

2 https://github.com/luizgh/adversarial_signatures

3 https://medium.com/bethgelab/results-of-the-nips-adversarial-vision-challenge-2018-e1e21b690149
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Organization of the thesis

This is a thesis by articles, with Chapters 2 to 5 in the main text corresponding to a journal pa-

per. Chapter 1 presents a literature review on Offline Handwritten Signature Verification. This

chapter is based on a literature review published in the 2017 Seventh International Conference

on Image Processing Theory, Tools and Applications (IPTA) (Hafemann et al. (2017b)), that

was updated with the recent advancements on the field.

The second chapter presents a method to learn Writer-Independent features from a collection of

users, that is subsequently used to train Writer-Dependent classifiers. In particular, it introduces

a novel formulation of the problem, that incorporates knowledge of skilled forgeries from a

subset of users, using a multi-task learning strategy. The hypothesis is that the model can learn

visual cues present in the signature images, that are discriminative between genuine signatures

and forgeries in general (i.e. not specific to a particular individual). This feature representation

is used to train classifiers for another set of users, for which skilled forgeries are not available.

Preliminary results of this method were presented in two conference papers (Hafemann et al.

(2016b,a)), and the complete paper was published in Elsevier’s Pattern Recognition (Hafemann

et al. (2017a)).

The third chapter explores three issues with signature verification systems that rely on learned

features: (i) How to obtain a fixed-sized vector representation for signatures of varied size,

(ii) How the resolution of the scanned signatures impact system performance, and (iii) the

impact of fine-tuning representations to other operating conditions (e.g. different acquisition

protocols, signatures from people of different locations), by using transfer learning to other

datasets. This chapter was published in Springer’s International Journal on Document Analysis

and Recognition (IJDAR) (Hafemann et al. (2018)).
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In the fourth chapter, we proposed to formulate Signature Verification as a meta-learning prob-

lem. This approach enables directly optimizing for the metric of interest (separating genuine

signatures and forgeries), by considering two levels of learning: a task-level (learning a clas-

sifier for a particular user), and a meta-level (leverage knowledge across multiple tasks). In

particular, the meta-learner can guide the user classifiers to be discriminative of forgeries, even

when the classifiers themselves are not trained with them. We also show that this method nat-

urally extends for a one-class formulation, such that for a new user, only genuine signatures

from the users is necessary for training the classifier.

The fifth chapter investigates the limitations of signature verification systems in the presence

of an active adversary. In particular, it investigates the impact of Adversarial examples (ex-

amples crafted to induce misclassifications) on systems that used learned features, as well as

a handcrafted feature extractor (CLBP), considering different scenarios of attacker’s goal and

knowledge of the system. The contents of this chapter were published in the IEEE Transactions

on Information Forensics and Security (Hafemann et al. (2019)).

Appendix I presents a fast method for generating adversarial examples, that is also used in

adversarial training for learning a model that is more robust against this type of attack. The

contents of this chapter will be published in the IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition (CVPR) (Rony et al. (2018)).

Appendix II lists the supplementary material for the contribution described in Chapter 5, with

a comprehensive list of experiments conducted on four datasets.



CHAPTER 1

LITERATURE REVIEW

The area of automatic Offline Signature Verification has been researched since the decade of

1970. Over the years, the problem has been addressed from many different perspectives, as

summarized by surveys in the late 80’s by Plamondon & Lorette (1989), 90’s by Leclerc & Pla-

mondon (1994) and 2000’s by Impedovo & Pirlo (2008). In this chapter we summarize the

main concepts relevant to the field, the main methods used for addressing the problem, and the

recent work on the area. This chapter is based on a literature review published as a conference

paper (Hafemann et al. (2017b)), and was updated to include recent developments in the field

of signature verification, as well as the literature on adversarial examples, which is the subject

of chapter 5.

The task of automated signature verification refers to verifying the identity of a person based

on his/her handwritten signature. During a system’s operation, a user claims an identity and

provides a signature sample. This sample is then evaluated using a reference set of genuine

signatures from the claimed individual (or a model built using them), and it is classified as

genuine (created by the claimed individual) or a forgery (created by someone else).

Forgeries are often classified in three types: random, simple and skilled (or simulated) forg-

eries. In the case of random forgeries, the forger has no information about the user or his

signature and uses his own signature instead. In this case, the forgery contains a different se-

mantic meaning than the genuine signatures from the user, presenting a very different overall

shape. In the case of simple forgeries, the forger has knowledge of the user’s name, but not

about the user’s signature. In this case, the forgery may present more similarities to the genuine

signature, in particular for users that sign with their full name, or part of it. In skilled forgeries,

the forger has access for both the user’s name and signature, and often practices imitating the

user’s signature. This result in forgeries that have higher resemblance to the genuine signature,

and therefore are harder to detect.
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This problem can be formulated as a Pattern Recognition task: given a dataset of genuine

signatures from the users enrolled in the system, a classifier is trained for a user, so that it

can discriminate new samples (not seen during training) as genuine signatures or forgeries. It

follows a standard Pattern Classification pipeline:

- Data acquisition: The first step is to obtain the data. For the problem at hand, this is

accomplished by scanning the documents containing the signatures.

- Preprocessing: After the document has been scanned, the signature is extracted from the

document and image processing techniques are applied to reduce noise or in general en-

hance the quality of the samples.

- Feature Extraction: This step consists in obtaining a set of measurements from the sam-

ples. Given a preprocessed signature image, this step produces a real-valued feature vector.

- Training: Once we have feature vectors from the samples, we train a machine learning

model, by optimizing its parameters to minimize a cost function in the training set.

The initial steps of data acquisition and signature extraction are not considered in the majority

of the studies, that already consider individual signature images as the input for the systems.

As an exception, this has been explored for bank cheques, that contain a complex background

(Dimauro et al. (1997), Djeziri et al. (1998)). Other preprocessing steps vary among different

studies, but the majority use simple techniques such as noise removal, size normalization and

centering (Huang & Yan (1997), Pourshahabi et al. (2009)), and a variety of morphological

transformations such as binarization and thinning (Huang & Yan (1997), Ferrer et al. (2005)).

The following sections detail the developements on the other steps of this pipeline.

1.1 Preprocessing

As with most pattern recognition problems, preprocessing plays an important role in signa-

ture verification. Signature images may present variations in terms of pen thickness, scale,
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rotation, etc., even among authentic signatures of a person. Bellow we summarize the main

preprocessing techniques:

- Signature extraction - This is an initial step that consists in finding and extracting a signa-

ture from a document. This is a particular challenging problem in bank cheques, where the

signature is often written on top of a complex background (Dimauro et al. (1997), Djeziri

et al. (1998)). This step is, however, not considered in most signature verification studies,

that already consider signatures extracted from the documents.

- Noise Removal - Scanned signature images often contain noise. A common strategy to

address this problem is to apply a noise removal filter to the image, such a median fil-

ter (Huang & Yan (1997)). It is also common to apply morphological operations to fill

small holes and remove small regions of connected components (Huang & Yan (1997),

Yılmaz & Yanıkoğlu (2016)).

- Size normalization and centering - Depending on the properties of the features to be

used, different size normalization strategies are adopted. The simplest strategy is to crop

the signature images to have a tight box on the signature (Ghandali & Moghaddam (2008)).

Another strategy is to user a narrower bounding box, such as cutting strokes that are far

from the image centroid, that are often subject to more variance in a user’s signature (Yıl-

maz & Yanıkoğlu (2016)). Other authors use a fixed frame size (width and height), and

center the signature in this frame (Pourshahabi et al. (2009), Hafemann et al. (2017a)) .

- Signature representation - Besides just using the gray-level image as input to the fea-

ture extractors, other representations have been considered. For instance, using the sig-

nature’s skeleton, outline, ink distribution, high pressure regions and directional frontiers

(Huang & Yan (1997)).

- Signature Alignment - alignment is a common strategy in online signature verification, but

not broadly applied for the offline scenario. Yılmaz & Yanıkoğlu (2016) propose aligning

the signatures for training, by applying rotation, scaling and translation. Kalera et al. (2004)
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propose a method to perform Rotation normalization, using first and second order moments

of the signature image.

1.2 Feature Extraction

Offline signature verification has been studied from many perspectives, yielding multiple alter-

natives for feature extraction. Broadly speaking, the feature extraction techniques can be clas-

sified as Static or Pseudo-dynamic, where pseudo-dynamic features attempt to recover dynamic

information from the signature execution process (such as speed, pressure, etc.). Another broad

categorization of the feature extraction methods is between Global and Local features. Global

features describe the signature images as a whole - for example, features such as height, width

of the signature, or in general feature extractors that are applied to the entire signature image.

In contrast, local features describe parts of the images, either by segmenting the image (e.g.

according to connected components) or most commonly by the dividing the image in a grid (of

Cartesian or polar coordinates), and applying feature extractors in each part of the image.

Recent studies approach the problem from a representation learning perspective (Hafemann

et al. (2016b), Hafemann et al. (2017a), Rantzsch et al. (2016), Zhang et al. (2016)): instead of

designing feature extractors for the task, these methods rely on learning feature representations

directly from signature images.

1.2.1 Handcrafted feature extractors

A large part of the research efforts on the field has been devoted to finding good feature repre-

sentations for offline signatures. In this section we summarize the main descriptors proposed

for the problem.

1.2.1.1 Geometric Features

Geometric features measure the overall shape of a signature. This includes basic descriptors,

such as the signature height, width, caliber (height-to-width ration) and area. More complex
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descriptors include the count of endpoints and closed loops (Baltzakis & Papamarkos (2001)).

Besides using global descriptors, several authors also generate local geometric features by

dividing the signature in a grid and calculating features from each cell. For example, using the

pixel density within grids (Baltzakis & Papamarkos (2001), El-Yacoubi et al. (2000), Justino

et al. (2000)).

1.2.1.2 Graphometric features

Forensic document examiners use the concepts of graphology and graphometry to examine

handwriting for several purposes, including detecting authenticity and forgery. Oliveira et al.

(2005) investigated applying such features for automated signature verification. They selected

a subset of graphometric features that could be described algorithmically, and proposed a set

of feature descriptors. They considered the following static features: Calibre - the ratio of

Height / Width of the image; Proportion, referring to the symmetry of the signature, Alignment

to baseline - describing the angular displacement to an horizontal baseline, and Spacing -

describing empty spaces between strokes.

1.2.1.3 Directional features

Directional features seek to describe the image in terms of the direction of the strokes in the

signature. Sabourin & Drouhard (1992) and Drouhard et al. (1996) extracted Directional-PDF

(Probability Density Function) from the gradient of the signature outline. Rivard et al. (2013)

used this method of feature extraction using grids of multiple scales. Zhang (2010) investigated

the usage of pyramid histogram of oriented gradients (PHOG). This descriptor represents local

shapes in a image by a histogram of edge orientations, also in multiple scales.

1.2.1.4 Mathematical transformations

Researchers have used a variety of mathematical transformations as feature extractors. Nem-

cek & Lin (1974) investigated the usage of a fast Hadamart transform and spectrum analysis
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for feature extraction. Pourshahabi et al. (2009) used a Contourlet transform as feature extrac-

tion, stating that it is an appropriate tool for capturing smooth contours. Coetzer (2005) used

the discrete Radon transform to extract sequences of observations, for a subsequent HMM

training. Deng et al. (1999) proposed a signature verification system based on the Wavelet

transform. Zouari et al. (2014) investigated the usage of the Fractal transform for the problem.

1.2.1.5 Shadow-code

Sabourin & Genest (1994) proposed an Extended Shadow Code for signature verification. A

grid is overlaid on top of the signature image, containing horizontal, vertical and diagonal bars,

each bar containing a fixed number of bins. Each pixel of the signature image is then projected

to its closest bar in each direction, activating the respective bin. The count of active bins in

the projections is then used as a descriptor of the signature. This feature extractor has been

used by Rivard et al. (2013) and Eskander et al. (2013) with multiple resolutions, together with

directional features, to achieve promising results on writer-independent and writer-dependent

classification, respectively.

1.2.1.6 Texture features

Texture features, in particular variants of Local Binary Patterns (LBP), have been used in many

experiments in recent years. The LBP operator describe the local patterns in the image, and

the histogram of these patterns is used as a feature descriptor. LBP variantions have been used

in many studies (Yilmaz et al. (2011), Yılmaz & Yanıkoğlu (2016), Serdouk et al. (2014),

Serdouk et al. (2015b), Hu & Chen (2013)), and have demonstrated to be among the best hand-

crafted feature extractors for this task. Another important texture descriptor is GLCM (Gray

Level Co-occurrence Matrix). This feature uses relative frequencies of neighboring pixels, and

was used in a few papers (Hu & Chen (2013), Vargas et al. (2011)).
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1.2.1.7 Interest point matching

Interest point matching methods, such as SIFT (Scale-Invariant Feature Transform) and SURF

(Speeded Up Robust Features) have been largely used for computer vision tasks. Ruiz-del Solar

et al. (2008) used SIFT to extract local interest points from both query and reference samples

to build a writer-dependent classifier. After extracting interest points from both images, they

generated a set of 12 features, using information such as the number of SIFT matches between

the two images, and processing time. Malik et al. (2014) used SURF to extract interest points

in the signature images, and used these features to assess the local stability of the signatures.

During classification, only the stable interest points are used for matching. The number of

keypoints in the query image, and the number of matched keypoints were used to classify the

signature as genuine or forgery.

1.2.1.8 Pseudo-dynamic features

Oliveira et al. (2005) presented a set of pseudo-dynamic features, based on graphometric stud-

ies: Distribution of pixels, Progression - that measures the tension in the strokes, providing

information about the speed, continuity and uniformity, Slant and Form - measuring the con-

cavities in the signature.

More recently, Bertolini et al. (2010) proposed a descriptor that considers the curvature of

the signature. This was accomplished by fitting Benzier curves to the signature outline (more

specially, to the largest segment of the signature), and using the parameters of the curves as

features.

1.2.2 Deep learning

There has been an increased interest in recent years on techniques that do not rely on hand-

engineered feature extractors. Instead, feature representations are learned from raw data (pix-

els, in the case of images). This is the case of Deep Learning models (Bengio (2009), LeCun

et al. (2015)).
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Early work applying representation learning for the task used private datasets and did not report

much success: Ribeiro et al. (2011) used RBMs to learn a representation for signatures, but

only reported a visual representation of the learned weights, and not the results of using such

features to discriminate between genuine signatures and forgeries. Khalajzadeh et al. (2012)

used CNNs for Persian signature verification, but only considered random forgeries in their

tests.

Considering work that targeted the classification between genuine signatures and skilled forg-

eries, we find two main approaches in recent literature: 1) learning writer-independent features

in a subset of users, to be used for training writer-dependent classifiers; 2) learning feature

representations and a writer-independent system at once, using metric learning.

Concurrent to the work on this thesis, Rantzsch et al. (2016) proposed a Writer-Independent

approach using metric learning. In this approach, the system learns a distance between signa-

tures. During training, tuples composed of three signatures are fed to the network: (Xr, X+,

X−), where Xr is a reference signature, X+ is a genuine signature from the same user, and X−

is a forgery (either a random or skilled forgery). The system is trained to minimize the dis-

tance between Xr and X+, and maximize the distance between Xr and X−. The central idea

is to a learn a feature representation that will therefore assign small distances when compar-

ing a genuine signature to another (reference) genuine signature, and larger distances when

comparing a skilled forgery with a reference. Zhang et al. (2016) proposed using Genera-

tive Adversarial Networks (GANs) (Goodfellow et al. (2014)) for learning the features from

a subset of users. In this case, two networks are trained: a generator, that learns to generates

signatures, and a discriminator, that learns to discriminate if an image is from a real signature

or one that was automatically generated. After training, the authors used the convolutional

layers of the discriminator as the features for new signatures. Zois et al. (2018a,b) consider

sparse coding and dictionary learning for learning representations, that are subsequently used

for training writer-dependent classifiers. Tsourounis et al. (2018) considered a Deep Sparse

Coding method, using sparse representations from different layers, that are processed with a

Local Spatial Pooling layer followed by using dimensionaly reduction.
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1.3 Model Training

Classifiers for signature verification can be broadly classified in two groups: writer-dependent

and writer-independent. In the first case, which is more common in the literature, a model is

trained for each user, using the user’s genuine signatures, and random forgeries (by using gen-

uine signature from other users). During the operations phase, the model trained for the claimed

identity is used to classify query signatures as genuine or forgery. The writer-independent ap-

proach, on the other hand, involves only a single classifier for all users. In this case, the system

learn to compare a query signature with a reference. During the test phase, the model is used

to compare a query signature with reference genuine samples from the claimed individual, to

make a decision. One common way of training WI systems is to use a dissimilarity represen-

tation, where the inputs to the classifiers are differences between two feature vectors: |xq−xr|,
with a binary label that indicates whether the two signatures are from the same user or not

(Rivard et al. (2013); Eskander et al. (2013)).

Some authors use a combination of both approaches. For example, Eskander et al. (2013)

and Zhang et al. (2016) trained hybrid writer-independent-writer-dependent solutions, where

a writer-independent classifier is used for classification when only a few genuine signatures

are available. When the number of collected genuine samples passes a threshold, a writer-

dependent classifier is trained for the user. Yılmaz & Yanıkoğlu (2016) propose a hybrid

approach, where the results of both a writer-independent and writer-dependent classifiers are

combined.

Besides the most basic classifiers (e.g. simple thresholding and nearest-neighbors), several

strategies have been tried for the task of signature verification. The following sections cover

the main models used for the task.

1.3.1 Hidden Markov Models

Several authors have proposed using Hidden Markov Models for the task of signature verifica-

tion (Justino et al. (2000), Oliveira et al. (2005), Batista et al. (2012)). In particular, HMMs
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with a left-to-right topology have been mostly studied, as they match the dynamic characteris-

tics of American and European handwriting (with hand movements from left to right).

In the work from Justino et al. (2000), Oliveira et al. (2005) and Batista et al. (2012), the

signatures are divided in a grid format. Each column of the grid is used as an observation of

the HMM, and features are extracted from the different cells within each column, and subse-

quently quantized in a codebook. In the verification phase, a sequence of feature vectors is

extracted from the signature and quantized using the codebook. The HMM is then used to

calculate the likelihood of the observations given the model. After calculating the likelihood, a

simple threshold can be used to discriminate between genuine signatures and forgeries (Justino

et al. (2000)), or the likelihood itself can be used for more complex classification mechanisms

(Batista et al. (2012)).

1.3.2 Support Vector Machines

Support Vector Machines have been extensively used for signature verification, for both writer-

dependent and writer-independent classification (Özgündüz et al. (2005), Justino et al. (2005),

Bertolini et al. (2010), Kumar et al. (2012), Yılmaz & Yanıkoğlu (2016), Hafemann et al.

(2017a)), empirically showing to be the one of the most effective classifiers for the task. In

recent years, Guerbai et al. (2015) used One-Class SVMs for the task. This type of model

attempt to only model one class (in the case of signature verification, only the genuine signa-

tures), which is a desirable property, since for the actual users enrolled in the system we only

have the genuine signatures to train the model. However, the low number of genuine signatures

present an important challenge for this strategy.

1.3.3 Neural Networks and Deep Learning

Neural Networks have been explored for both writer-dependent and writer-independent sys-

tems. Huang & Yan (1997) used Neural Networks to classify between genuine signatures

and random and targeted forgeries. They trained multiple networks on features extracted at
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different resolutions, and another network to make a decision, based on the outputs of these

networks. Shekar et al. (2015) presented a comparison of neural networks and support vector

machines in three datasets.

More recently, Soleimani et al. (2016) proposed a Deep Multitask Metric Learning (DMML)

system for signature verification. In this approach, the system learns to compare two signatures,

by learning a distance metric between them. The signatures are processed using a feedforward

neural-network, where the bottom layers are shared among all users (i.e. the same weights are

used), and the last layer is specific to each individual, and specializes for the individual. In the

work of Rantzsch et al. (2016), a metric learning classifier is learned, jointly learning a feature

representation, and a writer-independent classifier.

1.3.4 Ensemble of classifiers

Some authors have adopted strategies to train multiple classifiers, and combine their predictions

when classifying a new sample. Bertolini et al. (2010) used a static ensemble selection with

graphometric features. They generate a large pool of classifiers (trained with different grid

sizes), and used a genetic algorithm to select a subset of the models, building an ensemble

of classifiers. Batista et al. (2012) used dynamic selection of classifiers for building a writer-

dependent system. They used a bank of HMMs as base classifiers, and for a given sample,

the posterior likelihood is calculated for all HMMs. The set of likelihoods is considered as

a feature vector, and a specialized random subspace method is used to train an ensemble of

classifiers . Yılmaz & Yanıkoğlu (2016) proposed a system that combines writer-dependent

and writer-independent models (trained with a variety of feature descriptors). The scores from

all classifiers is subsequently aggregated using a linear combination, obtaining a final decision

of the ensemble.
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1.3.5 Data augmentation

One of the main challenges for building an automated signature verification system is the low

number of samples per user for training. To address this issue, some researchers have proposed

ways to generate more samples based on existing genuine signatures.

Huang & Yan (1997) have proposed a set of “perturbations" to be applied to each genuine

signature, to generate new samples: slant, rotation, scaling and perspective. In their work,

they considered a set of “slight distortions", used to create new genuine samples, and “heavy

distortions" to generate forgeries from the genuine samples. More recently, signature synthesis

approaches inspired on a neuromotor model have been proposed (Ferrer et al. (2013), Ferrer

et al. (2015), Diaz et al. (2017)).

1.4 Security of biometric systems

The security of machine learning systems has been object of study in the past two decades.

Barreno et al. (2006, 2010) categorize attacks to biometric systems along three axes: (i) the

influence of the attack (causative or exploratory); (ii) the specificity of the attack (targeted or

indiscriminate); and (iii) the security violation of the attack: integrity violation (e.g. intrusion)

or availability disruption (e.g. make the system unusable for legitimate users).

Biggio et al. (2014, 2015) considered a model of the adversary that includes its goals, knowl-

edge of the target system, and capabilities of manipulating the input data or system compo-

nents. The goals of an attacker are mainly divided in: 1) Denial of service: preventing real

users from using the system; 2) Intrusion: impersonating another user; 3) Privacy violation:

stealing private information from an user (such as the biometric templates). The knowledge of

the adversary refers to the information of the target system that is available to the adversary,

such as perfect knowledge (e.g. knowledge of the feature extractor, type of classifier and model

parameters) or limited (partial) knowledge of the system. The capabilities of the adversary re-

fer to what it can change in the target system, such as changing the training set (poisoning

attack), or the inputs to the system at test time (evasion attack).
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1.4.1 Adversarial Examples

Adversarial examples are a relatively new threat identified for machine learning systems. These

are samples similar to the true data distribution, but that fool a classifier. In computer vi-

sion tasks, these are images X̃ that are visually similar to an image X (from the true data

distribution), but that fool a classifier (i.e. the classifier predicts an incorrect class for X̃ :

argmaxy P(y|X̃) �= argmaxy P(y|X)).

Szegedy et al. (2014) showed that for deep neural networks, an optimization procedure to be

used to find a small change δ to an image, such that X̃ = X + δ is an adversarial example.

They found that in many cases, this change in imperceptible for a person, while inducing a

misclassification in the system. Perhaps more surprisingly, they also discovered that an attack

that is created to fool one network also fools other networks (trained on different subsets of

data), meaning that attacks can be created even without full knowledge of the classifier under

attack. It was later shown that such attacks can be done in the physical world (Kurakin et al.

(2017a)), where adversarial images printed on paper and later captured with a camera also

fooled a classifier. During the past few years, several attacks have been proposed in the liter-

ature (Goodfellow et al. (2015); Moosavi-Dezfooli et al. (2016); Carlini & Wagner (2017b)),

as well as several defense strategies (Goodfellow et al. (2015), Tramèr et al. (2018), Papernot

et al. (2016), Guo et al. (2018), Madry et al. (2018)). However, this problem remains an open

research question, as these defenses have either shown not to be robust against strong iterative

attacks, or not to scale to larger datasets (Athalye et al. (2018a); Athalye & Carlini (2018)).

Lastly, it is worth noting that even detecting that an input is adversarial is a hard task, and it

has been shown that such detectors can also be easily fooled (Carlini & Wagner (2017a)).

1.5 Summary

Reviewing the current literature on Signature Verification, we identify that separating genuine

signatures from skilled forgeries remains a challenging task, and we identify the feature repre-

sentation as being a key factor limiting the performance of such systems. Therefore, learning
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features from signature data is the main topic of this thesis, which is explored in chapters 2,

3 and 4, by proposing formulations of the problem that allow learning features using convolu-

tional neural networks, directly from signature images.

Another key challenge is the presence of partial knowledge during training: we cannot expect

to have skilled forgeries available for every user of the system, since these are only obtained

during actual forgery attempts. We address this problem in two ways: in chapter 2, we consider

a formulation for feature learning that includes knowledge of forgeries, by optimizing a multi-

task loss. This allows the features to be discriminant of visual cues commonly present in

forgeries (e.g. limp strokes), that generalize to new users, for which we only have genuine

signatures for training. In chapter 4 we consider a meta-learning problem, with two levels

of learning: a task-level (learning a classifier for a user) and a meta-level (learning across

tasks). This addresses the issue of partial knowledge by employing only genuine signatures

on the task-level, and forgeries (if available for some users) as part of the meta-level learning.

Therefore, the meta-learner can guide the task-level classifiers to be discriminative of forgeries,

even if the task-level classifiers themselves do not use forgeries for training.

Having a low number of samples per user is another key aspect of signature verification. In this

thesis, we address this issue by (i) learning features using data from multiple users (chapters 2,

3 and 4), and (ii) modeling the system as a meta-learning problem, such that the meta-learner

have access to signatures from many users (chapter 4).

Finally, recent research on adversarial machine learning highlights the threat of adversarial

examples, that affects most machine learning systems, and in particular deep learning. While

most research in the literature was conducted in classification tasks, we evaluate the threats that

they pose for signature verification. We identify important differences that arise in verification

problems: in such systems, each new user effectively introduces a new class, which raises

questions about the transferability of attacks in scenarios where the attacker does not have full

access to the system under attack. Therefore, we conduct a thorough study to characterize the

problem of adversarial examples in the context of biometric system security, identifying new
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threats to handwritten signature verification, and evaluating attack performance under different

scenarios of attacker knowledge.
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Abstract

Verifying the identity of a person using handwritten signatures is challenging in the presence

of skilled forgeries, where a forger has access to a person’s signature and deliberately attempt

to imitate it. In offline (static) signature verification, the dynamic information of the signature

writing process is lost, and it is difficult to design good feature extractors that can distinguish

genuine signatures and skilled forgeries. This reflects in a relatively poor performance, with

verification errors around 7% in the best systems in the literature. To address both the difficulty

of obtaining good features, as well as improve system performance, we propose learning the

representations from signature images, in a Writer-Independent format, using Convolutional

Neural Networks. In particular, we propose a novel formulation of the problem that includes

knowledge of skilled forgeries from a subset of users in the feature learning process, that aims

to capture visual cues that distinguish genuine signatures and forgeries regardless of the user.

Extensive experiments were conducted on four datasets: GPDS, MCYT, CEDAR and Brazil-

ian PUC-PR datasets. On GPDS-160, we obtained a large improvement in state-of-the-art

performance, achieving 1.72% Equal Error Rate, compared to 6.97% in the literature. We also

verified that the features generalize beyond the GPDS dataset, surpassing the state-of-the-art
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performance in the other datasets, without requiring the representation to be fine-tuned to each

particular dataset.

2.1 Introduction

Signature verification systems aim to verify the identity of individuals by recognizing their

handwritten signature. They rely on recognizing a specific, well-learned gesture, in order to

identify a person. This is in contrast with systems based on the possession of an object (e.g. key,

smartcard) or the knowledge of something (e.g. password), and also differ from other biometric

systems, such as fingerprint, since the signature remains the most socially and legally accepted

means for identification (Plamondon & Srihari (2000)).

In offline (static) signature verification, the signature is acquired after the writing process is

completed, by scanning a document containing the signature, and representing it as a digital

image (Impedovo & Pirlo (2008)). Therefore, the dynamic information about the signature

generation process is lost (e.g. position and velocity of the pen over time), which makes the

problem very challenging.

Defining discriminative feature extractors for offline signatures is a hard task. The question

“What characterizes a signature” is a difficult concept to implement as a feature descriptor.

This can be observed in the literature, where most of the research efforts on this field have been

devoted to finding a good representation for signatures, that is, designing feature extractors

tailored for signature verification, as well as using feature extractors created for other purposes

(Hafemann et al. (2017b)). Recent work uses texture features, such as Local Binary Patterns

(LBP) (Yılmaz & Yanıkoğlu (2016), Hu & Chen (2013)) and Gray-Level Co-occurrence Ma-

trix (GLCM) (Hu & Chen (2013)); directional-based features such as Histogram of Oriented

Gradients (HOG) (Yılmaz & Yanıkoğlu (2016)) and Directional-PDF (Rivard et al. (2013),

Eskander et al. (2013)); feature extractors specifically designed for signatures, such as the es-

timation of strokes by fitting Bezier curves (Bertolini et al. (2010)); among others. No feature
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extractor has emerged as particularly suitable for signature verification, and most recent work

uses a combination of many such techniques.

a) b) c) d)

Figure 2.1 Examples of challenges in designing feature extractors for offline signatures,

and the challenge of classifying skilled forgeries. Each column shows two genuine

signatures from the same user in the GPDS dataset, and a skilled forgery created for the

user. We notice that skilled forgeries resemble genuine signatures to a large extent. Since

we do not have examples from the forgery class for training, the problem is even more

challenging. We also note the challenges of creating feature extractors for these genuine

signatures: (a) The shape of the first name is very different among the two genuine

samples. A feature descriptor based on grid features would have very different vectors for

the two samples. (b) The shape of the characters in the first name (“Paula”) is very

different. An analysis based on the design of individual letters would perform poorly for

this user. (c) Large variation in flourishes may impact directional-based descriptors (such

as HOG or D-PDF). (d) For some users, it is difficult to pinpoint the common attributes of

two signatures even after carefully analyzing the samples.

The difficulty of finding a good representation for signatures reflects on the classification per-

formance of signature verification systems, in particular to distinguish genuine signatures and

skilled forgeries - forgeries that are made targeting a particular individual. When we consider

experiments conducted on large public datasets, such as GPDS (Vargas et al. (2007)), the best

reported results achieve Equal Error Rates around 7%, even when the number of samples for

training is around 10-15, with worse results using fewer samples per user.

To address both the issue of obtaining a good feature representation for signatures, as well as

improving classification performance, we propose a framework for learning the representations
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directly from the signature images, using convolutional neural networks. In particular, we

propose a novel formulation of the problem, that incorporates knowledge of skilled forgeries

from a subset of users, using a multi-task learning strategy. The hypothesis is that the model

can learn visual cues present in the signature images, that are discriminative between genuine

signatures and forgeries in general (i.e. not specific to a particular individual). We then evaluate

if this feature representation generalizes for other users, for whom we do not have skilled

forgeries available.

Our main contributions are as follows: 1) we present formulations to learn features for offline

signature verification in a Writer-Independent format. We introduce a novel formulation that

uses skilled forgeries from a subset of users to guide the feature learning process, using a

multi-task framework to jointly optimize the model to discriminate between users (addressing

random forgeries), and to discriminate between genuine signatures and skilled forgeries; 2)

we propose a strict experimental protocol, in which all design decisions are made using a

validation set composed of a separate set of users. Generalization performance is estimated in

a disjoint set of users, from whom we do not use any forgeries for training; 3) we present a

visual analysis of the learned representations, which shows that genuine signatures and skilled

forgeries get better separated in different parts of the feature space; 4) lastly, we are making

two trained models available for the research community1, so that other researchers can use

them as specialized feature extractors for the task.

Experiments were conducted on four datasets, including the largest publicly available signature

verification dataset (GPDS), achieving a large performance improvement in the state-of-the-

art, reducing Equal Error Rates from 6.97% to 1.72% in GPDS-160. We used the features

learned on this dataset to train classifiers for users in the MCYT, CEDAR and Brazilian PUC-

PR datasets, also surpassing the state-of-the-art performance, and showing that the learned

feature space not only generalizes to other users in the GPDS set, but also to other datasets.

1 https://www.etsmtl.ca/Unites-de-recherche/LIVIA/Recherche-et-innovation/Projets
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Preliminary results, using only genuine signatures for learning the features, were published

as two conference papers. In (Hafemann et al. (2016b)), we introduced the formulation to

learn features from genuine signatures from a development dataset, using them to train Writer-

Dependent classifiers to another set of users. In (Hafemann et al. (2016a)), we analyzed the

learned feature space and optimized the CNN architecture, obtaining state-of-the-art results

on GPDS. The present work includes this formulation of the problem for completeness, with

additional experiments on two other datasets (MCYT and CEDAR), a clearer explanation of

the method and the experimental protocol, as well as the novel formulation that leverages

knowledge of skilled forgeries for feature learning.

The remaining of this paper is organized as follows: Section 2.2 reviews the related work on

signature verification and on feature learning techniques. Section 2.3 details the formulation

and methodology to learn features for offline signature verification, and section 2.4 describes

our experimental protocol. Section 2.5 presents and discusses the results of our experiments.

Lastly, section 2.6 concludes the paper.

2.2 Related works

The review of related works is divided below into two parts: we first present a review of

previous work on Offline Signature Verification, followed by a brief review of representation

learning methods.

2.2.1 Related works on Offline Signature Verification

The area of automatic Offline Signature Verification has been researched at least since the

decade of 1970. Over the years, the problem has been addressed from many different per-

spectives, as summarized by Plamondon & Lorette (1989), Leclerc & Plamondon (1994) and

Impedovo & Pirlo (2008).

In this problem, given a set of genuine signatures, the objective is to learn a model that can

distinguish between genuine signatures and forgeries. Forgeries are signatures not created by
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a claimed individual, and are often subdivided into different types. The most common clas-

sification of forgeries in the literature considers: Random Forgeries, where a person uses his

or her own signature to impersonate another individual, and Skilled Forgeries, where a person

tries to imitate the signature of the claimed individual. While the former is a relatively easier

task, discriminating skilled forgeries is an open pattern recognition problem, and is the focus

of this paper. This problem is challenging due to a few factors: First, there is a large simi-

larity between genuine signatures and skilled forgeries, as forgers will attempt to imitate the

user’s signature, often practicing the signature beforehand. Second, in a practical application

scenario, we cannot expect to have skilled forgeries for all users in the system, therefore the

classifiers should be trained only with genuine signatures in order to be most widely applicable.

Lastly, the number of genuine samples per user is often small, especially for new users of the

system, for whom we may have only 3 or 5 signatures. This is especially problematic as many

users have large intra-class variability, and a few signatures are not sufficient to capture the full

range of variation.

There are mainly two approaches for building offline signature verification systems. The most

common approach is to design Writer-Dependent classifiers. In this scenario, a training set is

constructed for each user of the system, consisting of genuine signatures as positive examples

and genuine signatures from other users (random forgeries) as negative samples. A binary

classifier is then trained on this dataset, resulting in one model for each user. This approach

has shown to work well for the task, but since it requires one model to be trained for each

user, complexity increases as more users are enrolled. An alternative is Writer-Independent

classification. In this case, a single model is trained for all users, by training a classifier in a

dissimilarity space (Bertolini et al. (2010), Eskander et al. (2013)). The inputs for classification

are dissimilarity vectors, that represent the difference between the features of a query signature,

and the features of a template signature (a genuine signature of the user). In spite of the reduced

complexity, Writer-Independent systems often perform worse, and the best results in standard

benchmarks are obtained with Writer-Dependent systems.
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A large variety of feature extractors have been investigated for this problem, from simple ge-

ometric descriptors (Nagel & Rosenfeld (1977), Justino et al. (2000)), descriptors inspired

in graphology and graphometry (Oliveira et al. (2005)), directional-based descriptors such as

HOG Yılmaz & Yanıkoğlu (2016) and D-PDF (Sabourin & Drouhard (1992), Rivard et al.

(2013), Eskander et al. (2013)), interest-point based, such as SIFT (Yılmaz & Yanıkoğlu

(2016)), to texture descriptors, such as Local Binary Patterns (LBP) (Yılmaz & Yanıkoğlu

(2016)) and Gray-Level Co-occurrence Matrix (GLCM) (Hu & Chen (2013)). These features

are commonly extracted locally from the signature images, by dividing the image in a grid and

computing descriptors for each cell (either in Cartesian or polar coordinates).

Methods to learn features from data have not yet been widely explored for offline signature

verification. Ribeiro et al. (2011) used Restricted Boltzmann Machines (RBMs) to learn fea-

tures from signature images. However, in this work they only showed the visual appearance

of the weights, and did not test the features for classification. Khalajzadeh et al. (2012) used

Convolutional Neural Networks (CNNs) for signature verification on a dataset of Persian sig-

natures, but only considered the classification between different users (e.g. detecting random

forgeries), and did not considered skilled forgeries. Soleimani et al. (2016) proposed a so-

lution using deep neural networks for Multitask Metric Learning. In their work, a distance

metric between pairs of signatures is learned. Contrary to our work, the authors used hand-

crafted feature extractors (LBP in the experiments with the GPDS dataset), while in our work

the inputs to the system are the signature themselves (pixel intensities), and the feature repre-

sentation is learned. In a similar vein to our work, Eskander et al. (2013) presented a hybrid

Writer-Independent Writer-Dependent solution, using a Development dataset for feature selec-

tion, followed by training WD classifiers using the selected features. However, in the present

work we use a Development dataset for feature learning instead of feature selection.

2.2.2 Related work on Representation Learning for computer vision tasks

In recent years, there has been a large interest in methods that do not rely on hand-crafted

features, but rather learn the representations for a problem using raw data, such as pixels, in
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the case of images. Methods based on learning multiple levels of representation have shown

to be very effective to process natural data, especially in computer vision and natural language

processing (Bengio (2009), Bengio (2013), LeCun et al. (2015)). The intuition is to use such

methods to learn multiple intermediate representations of the input, in layers, in order to better

represent a given problem. In a classification task, the higher layers amplify aspects of the

input that are important for classification, while disregarding irrelevant variations (LeCun et al.

(2015)). In particular, Convolutional Neural Networks (CNNs) (LeCun et al. (1989)) have

been used to achieve state-of-the-art performance in many computer vision tasks (LeCun et al.

(2015), Krizhevsky et al. (2012), Szegedy et al. (2015)). These models use local connections

and shared weights, taking advantage of the spatial correlations of pixels in images by learning

and using the same filters in multiple positions of an input image (LeCun et al. (2015)). With

large datasets, these networks can be trained with a purely supervised criteria. With small

datasets, other strategies have been used successfully, such as unsupervised pre-training (e.g.

in a greedy layer-wise fashion (Bengio et al. (2007))), and more recently with transfer learning

(Donahue et al. (2014), Oquab et al. (2014), Nanni & Ghidoni (2017)). CNNs have been

used to transfer learning of representations, by first training a model in a large dataset, and

subsequently using this model in another task (often, a task for which a smaller dataset is

available), by using the network as a “feature extractor”: performing forward-propagation of

the samples until one of the last layers before softmax (Donahue et al. (2014), Oquab et al.

(2014)), or the last layer (that corresponds to the predictions for classes in the original task,

as in (Nanni & Ghidoni (2017))), and using the activation at that layer as a feature vector.

Alternatively, this pre-trained model can be used to initialize the weights of a model for the

task of interest, and training proceeds normally with gradient descent.

2.3 Feature learning for Signature Verification

In this work we present formulations for learning features for Offline Signature Verification,

and evaluate the performance of such features for training Writer-Dependent classifiers. We

first note that a supervised feature learning approach directly applied for Writer-Dependent
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classification is not practical, since the number of samples per user is very small (commonly

around 1-14 samples), while most feature learning algorithms have a large number of parame-

ters (in the order of millions of parameters, for many computer vision problems, such as object

recognition (Krizhevsky et al. (2012))). On the other hand, we expect that signatures from

different users share some properties, and we would like to exploit this intuition by learning

features across signatures from different writers.

We consider a two-phase approach for the problem: a Writer-Independent feature learning

phase followed by Writer-Dependent classification. The central idea is to leverage data from

many users to learn a feature space that captures intrinsic properties of handwritten signatures.

We subsequently train classifiers for each user, using this feature space, that model the char-

acteristics of each user. Since in real applications the list of users of the system is not fixed,

we consider a disjoint set of users for learning the features and training the writer-dependent

classifiers, to verify if the learned feature space is useful (i.e. generalizes) to new users. We use

the term Writer-Independent for the feature learning process, since the learned representation

space is therefore not specific for a set of users.

Given a development set D of signatures, we train Deep Convolutional Neural Networks

(CNNs) using the formulations defined below. Subsequently, we use the trained network to

project the input signatures onto the representation space learned by the CNN for an Exploita-

tion set E , and train a binary classifier for each user. The hypothesis is that genuine signatures

and forgeries will be easier to separate in this feature space, if the network succeeds in captur-

ing intrinsic properties of the signatures, that generalizes to other users.

Convolutional Neural Networks are a particularly suitable architecture for signature verifica-

tion. This type of architecture scales better than fully connected models for larger input sizes,

having a smaller number of trainable parameters. This is a desirable property for the prob-

lem at hand, since we cannot reduce the signature images too much without risking losing the

details that enable discriminating between skilled forgeries and genuine signatures (e.g. the

quality of the pen strokes). We also note that this type of architecture shares some properties
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with handcrafted feature extractors used in the literature, as features are extracted locally (in

an overlapping grid of patches) and combined in non-linear ways (in subsequent layers). In the

sections below we present our proposed formulations for the problem, first considering only

genuine signatures, and then considering learning from skilled forgeries.

2.3.1 Learning features from genuine signatures

Let D be a dataset consisting of genuine signatures from a set of users YD . The objective is to

learn a function φ(X) that projects signatures X onto a representation space where signatures

and forgeries are better separated. To address this task, we consider learning a Convolutional

Neural Network to discriminate between users in D . This formulation has been introduced in

(Hafemann et al. (2016b)), and it is included here for completeness.
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Figure 2.2 Illustration of a CNN architecture used in this work. The input image goes

through a sequence of transformations with convolutional layers, max-pooling layers and

fully-connected layers. During feature learning, P(y|X) (and also P( f |X) in the

formulation from sec 2.3.2.2) are estimated by performing forward propagation through

the model. The weights are optimized by minimizing one of the loss functions defined in

the next sections. For new users of the system, this CNN is used to project the signature

images onto another feature space (analogous to “extract features”), by performing

feed-forward propagation until one of the last layers before the final classification layer,

obtaining the feature vector φ(X).
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Formally, we consider a training set composed of tuples (X ,y) where X is the signature image,

and y is the user, that is, y ∈ YD . We create a neural network with multiple layers, where

the objective is to discriminate between the users in the Development set. The last layer of

the neural network has M units with a softmax activation, where M is the number of users

in the Development set, (M = |YD |), and estimates P(y|X). Figure 2.2 illustrates one of the

architectures used in this work, with M = 531 users. We train the network to minimize the

negative log likelihood of the correct user given the signature image:

L =−∑
j

yi j logP(y j|Xi) (2.1)

Where yi j is the true target for example i (yi j = 1 if the signature belongs to user j), Xi is the

signature image, and P(y j|Xi) is the probability assigned to class j for the input Xi, given by

the model. This cost function can then be minimized with a gradient-based method.

The key idea behind this approach is that by training the network to distinguish between users,

we expect it to learn a hierarchy of representations, and that the representations on the last

layers capture relevant properties of signatures. In particular, if the network succeeds in distin-

guishing between different users of the development set, then the representation of signatures

from these users will be linearly separable in the representation space defined by φ(X), since

the last layer is a linear classifier with respect to its input φ(X). We test, therefore, the hypoth-

esis that this feature space generalizes well to signatures from other users.

2.3.2 Learning features from genuine signatures and skilled forgeries

One limitation of the formulation above is that there is nothing in the training process to drive

the features to be good in distinguishing skilled forgeries. Since this is one of the main goals of

a signature verification system, it would be beneficial to incorporate knowledge about skilled

forgeries in the feature learning process.
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In a real application scenario, we cannot expect to have skilled forgeries available for each user

enrolled in the system. We consider, however, a scenario where we obtain skilled forgeries for

a subset of the users. Assuming such forgeries are available, we would like to formulate the

feature learning process to take advantage of this data. Using the same notation as above, we

consider that the development set D contains genuine signatures and skilled forgeries for a set

of users, while the exploitation set E contains only genuine signatures available for training,

and represent the users enrolled to the system.

In this section we introduce novel formulations for the problem, that incorporate forgeries in the

feature learning process. The first approach considers the forgeries of each user as a separate

class, while the second formulation considers a multi-task learning framework.

2.3.2.1 Treat forgeries as separate classes

A simple formulation to incorporate knowledge of skilled forgeries into training is to consider

the forgeries of each user as a different class. In this formulation, we have two classes for each

user (genuine signatures and forgeries), that is, M = 2|YD |.

We note that this alternative is somewhat extreme, as it considers genuine signatures and forg-

eries as completely separate entities, while we would expect genuine signatures and skilled

forgeries to have a high level of resemblance.

2.3.2.2 Add a separate output for detecting forgeries

Another formulation is to consider a multi-task framework, by considering two terms in the cost

function for feature learning. The first term drives the model to distinguish between different

users (as in the formulations above), while the second term drives the model to distinguish

between genuine signatures and skilled forgeries. Formally, we consider another output of the

model: P( f |X), a single sigmoid unit, that seeks to predict whether or not the signature is

a forgery. The intuition is that in order to classify between genuine signatures and forgeries
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(regardless of the user), the network will need to learn visual cues that are particular to each

class (e.g. bad line quality in the pen strokes, often present in forgeries).

We consider a training dataset containing tuples of the form (X , y, f ), where X is the signature

image, y is the author of the signature (or the target user, if the signature is a forgery), and f

is a binary variable that reflects if the sample is a forgery or not ( f = 1 indicates a forgery).

Note that contrary to the previous formulation, genuine signatures and forgeries targeted to the

same user have the same y. For training the model, we consider a loss function that combines

both the classification loss (correctly classifying the user), and a loss on the binary neuron

that predicts whether or not the signature is a forgery. The individual losses are shown in

Equation 2.2, where the user classification loss (Lc) is a multi-class cross-entropy, and the

forgery classification (L f ) is a binary cross-entropy:

Lc =−∑
j

yi j logP(y j|Xi)

L f =− fi log(P( f |Xi))− (1− fi) log(1−P( f |Xi))

(2.2)

For training the model, we combine the two loss functions and minimize both at the same

time. We considered two approaches for combining the losses. The first approach considers a

weighted sum of both individual losses:

L1 = (1−λ )Lc +λL f

=−(1−λ )∑
j

yi j logP(y j|Xi)+

λ
(− fi log(P( f |Xi))− (1− fi) log(1−P( f |Xi))

)
(2.3)

Where λ is a hyperparameter that trades-off between the two objectives (separating the users

in the set D , and detecting forgeries)
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In a second approach we consider the user classification loss only for genuine signatures:

L2 = (1− fi)(1−λ )Lc +λL f

=−(1− fi)(1−λ )∑
j

yi j logP(y j|Xi)+

λ
(− fi log(P( f |Xi))− (1− fi) log(1−P( f |Xi))

)
(2.4)

In this case, the model is not penalized for misclassifying for which user a forgery was made.

In both cases, the expectation is that the first term will guide the model to learn features that

can distinguish between different users (i.e. detect random forgeries), while the second term

will focus on particular characteristics that distinguish between genuine signatures and forg-

eries (such as limp strokes). It is worth noting that, in the second formulation, using λ = 0

is equivalent to the formulation in section 2.3.1, where only genuine signatures are used for

training, since the forgeries would not contribute to the loss function.

2.3.3 Preprocessing

The signatures from the datasets used in our experiments are already extracted from the docu-

ments where they were written, so signature extraction is not investigated in this paper. Some

few preprocessing steps are required, though. The neural networks expect inputs of a fixed

size, where signatures vary significantly in shape (in GPDS, they range from small signatures

of size 153x258 to large signatures of size 819x1137 pixels).

We first center the signatures in a large canvas of size Scanvas = H×W , by using the signatures’

center of mass. We remove the background using Otsu’s algorithm (Otsu (1975)), setting

background pixels to white (intensity 255), and leaving the foreground pixels in grayscale.

The image is then inverted by subtracting each pixel from the maximum brightness I(x,y) =
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255− I(x,y), such that the background is zero-valued. Lastly, we resize the image to the input

size of the network.

2.3.4 Training the Convolutional Neural Networks

For each strategy described above, we learn a feature representation φ(.) on the Development

set of signatures by training a Deep Convolutional Neural Network on this set. This section

describes the details of the CNN training.

Table 2.1 Summary of the CNN layers

Layer Size Other Parameters
Input 1x150x220

Convolution (C1) 96x11x11 stride = 4, pad=0

Pooling 96x3x3 stride = 2

Convolution (C2) 256x5x5 stride = 1, pad=2

Pooling 256x3x3 stride = 2

Convolution (C3) 384x3x3 stride = 1, pad=1

Convolution (C4) 384x3x3 stride = 1, pad=1

Convolution (C5) 256x3x3 stride = 1, pad=1

Pooling 256x3x3 stride = 2

Fully Connected (FC6) 2048

Fully Connected (FC7) 2048

Fully Connected + Softmax (P(y|X)) M

Fully Connected + Sigmoid (P( f |X)) 1

In order to use a suitable architecture for signature verification, in (Hafemann et al. (2016a)) we

investigated different architectures for learning feature representations using the objective from

section 2.3.1 (training using only genuine signatures). In this work we use the architecture that

performed best for this formulation, which is described in table 2.1. The CNN consists of mul-

tiple layers, considering the following operations: convolutions, max-pooling and dot products

(fully-connected layers), where convolutional layers and fully-connected layers have learnable

parameters, that are optimized during training. With the exception of the last layer in the

network, after each learnable layer we apply Batch Normalization (Ioffe & Szegedy (2015)),

followed by the ReLU non-linearity. The last layer uses the softmax non-linearity, which is

interpreted as P(y|X) - the probability assigned by the network to each possible user in YD .

For the formulation in section 2.3.2.2, the neuron that estimates P( f |X) uses the sigmoid func-
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tion. Both output layers receive as input the result of layer FC7. Table 2.2 lists the operations

mentioned above.

Optimization was conducted by minimizing the loss with Stochastic Gradient Descent with

Nesterov Momentum, with a momentum factor of 0.9. In each iteration, a batch of 32 im-

ages is used, and the loss function is averaged across all images in the batch (equations 2.1

to 2.4, depending on the loss being considered). As regularization, we applied L2 penalty

with weight decay 10−4. The models were trained for 60 epochs, with an initial learning rate

of 10−3, that was divided by 10 every 20 epochs. We used simple translations as data aug-

mentation, by using random crops of size 150x220 from the 170x242 signature image. As

in (Ioffe & Szegedy (2015)), the batch normalization terms (mean and variance) are calcu-

lated from the mini-batches during training. For generalization, the mean (E[zi]) and variance

(Var[zi]) for each neuron were calculated from the entire training set.

Table 2.2 List of feedforward operations

Operation Formula

Convolution zl = hl−1 ∗W l

MaxPooling hl
xy = maxi=0,..,s, j=0,..,s hl−1

(x+i)(y+ j)

Fully-connected layer zl =W lhl−1

ReLU ReLU(zi) = max(0,zi)

Sigmoid σ(zi) =
1

1+e−zi

Softmax softmax(zi) =
ezi

∑ j ez j

Batch Normalization BN(zi) = γiẑi +βi,

ẑi =
zi−E[zi]√

Var[zi]

zl : pre-activation output of layer l
hl : activation of layer l
∗: discrete convolution operator

W , γ , β : learnable parameters

It is worth noting that, in our experiments, we found Batch Normalization to be crucial to train

deeper networks. Without using this technique, we could not train architectures with more than

4 convolutional layers and 2 fully-connected layers. In these cases, the performance in both a
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training and validation set remained the same as chance, not indicating overfitting, but rather

problems in the optimization process.

2.3.5 Training Writer-Dependent Classifiers

After training the CNN, we use the network to extract feature representations for signatures

from the Exploitation set, and train Writer-Dependent classifiers. To do so, we crop the center

150x220 pixels from the 170x242 signature image, perform feedforward propagation until the

last layer before softmax (obtaining φ(X)), and use the activations at that layer as the feature

vector for the image. This can be seen as a form of transfer learning, similar to (Donahue

et al. (2014)) between the two sets of users. For each user, we build a training set consisting of

genuine signatures from the user as positive samples, and genuine signatures from other users

as negative samples. We trained Support Vector Machines (SVM), both in a linear formulation

and with the Radial Basis Function (RBF) kernel.

We used different weights for the positive and negative class to account for the imbalance of

having many more negative samples than positive. The SVM objective becomes (Osuna et al.

(1997)):

min
1

2
‖w‖2 +C+

(
∑

i:yi=+1

ξi

)
+C−

(
∑

i:yi=−1

ξi

)

subject to

yi(wxi +b)≥ 1−ξi

ξi ≥ 0

(2.5)

Where the change to the standard SVM formulation is the usage of different weights C for

the two classes (we refer the reader to (Osuna et al. (1997)) for the dual formulation). We set

the weight of the positive class (genuine signatures) to match the skew (denoted below as ψ).

Let P be the number of positive (genuine) samples for training, and N the number of negative

(random forgery) samples:
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ψ =
N
P

C+ = ψC− (2.6)

For testing, we used a disjoint set of genuine signatures from the user (that is, not used for

training) and the skilled forgeries made targeting the user’s signature.

2.4 Experimental Protocol

We conducted experiments using the datasets GPDS-960 (Vargas et al. (2007)), MCYT-75

(Ortega-Garcia et al. (2003)), CEDAR (Kalera et al. (2004)) and the Brazilian PUC-PR (Fre-

itas et al. (2000)). Table 2.3 summarizes these datasets, including the size used to normalize

the images in each dataset (height x width). GPDS-960 is the largest publicly available dataset

for offline signature verification with 881 users, having 24 genuine samples and 30 skilled

forgeries per user. We used a subset of users from this dataset for learning the features (the

development set D) and evaluating how these features generalize to other users in this dataset

(the exploitation set E ). To enable comparison with previous work, we performed experiments

on GPDS having the set E as the first 160 or the first 300 users of the dataset (to allow com-

parison with the datasets GPDS-160, and GPDS-300, respectively). In order to evaluate if

the features generalize to other datasets, we use the same models learned on GPDS to train

Writer-Dependent classifiers for the MCYT, CEDAR and Brazilian PUC-PR datasets.

Table 2.3 Summary of the datasets used in this work

Dataset Name Users Genuine signatures Forgeries Scanvas
Brazilian (PUC-PR) 60 + 108 40 10 simple, 10 skilled2 700×1000

CEDAR 55 24 24 730×1042

MCYT-75 75 15 15 600×850

GPDS Signature 960 Grayscale 881 24 30 952×1360

2 This dataset contains simple and skilled forgeries for the first 60 users
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Figure 2.3 The GPDS dataset is separated into an exploitation set E and Development

set D . The development set is used for learning the features, and making all model

decisions. The exploitation set represents the users enrolled to the system, where we train

Writer-Dependent classifiers using only genuine signatures.

The GPDS dataset is divided as follows, as illustrated in Figure 2.3: The Convolutional Neural

Networks are trained on a set Lc (denoting Learning set for classification) consisting of 531

users. We monitor the progress on a validation set Vc (Validation set for classification). Both

sets contains the same users, but a disjoint set of signature samples from these users. We split

90% of the signatures for training, and 10% for this validation set.

After the CNNs are trained, we train Writer-Dependent classifiers on a validation set Vv (Validation

set for verification) consisting of 50 users. The purpose of this set is to allow the estimation of

the performance of Writer-Dependent classifiers trained with the representation space learned

by the CNN. We use this validation set to make all model choices (CNN architecture and values

hyperparameters). On this validation phase, we follow the same protocol for Writer-Dependent

classifier training, using a fixed number of 12 genuine signatures for the user as positive sam-

ples, and random forgeries from Lc as negative samples.

Finally, we use the models and hyperparameters that performed best in the validation set, to

train and test classifiers for the exploitation set E . We trained Support Vector Machines on the

set Lv (denoting Learning set for verification) and tested on Tv (Testing set for verification).

For each user, we build a dataset consisting of r genuine signatures from the user as positive

samples, and genuine signatures from other users as negative samples. Taking into considera-

tion the differences in datasets and experimental protocols that used them in the literature, we
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used a different number of signatures for training and testing, which is summarized in table 2.4.

For the GPDS and the Brazilian PUC-PR datasets, we used signatures from users that are not

in the Exploitation set as random forgeries (i.e. signatures from users 301-881 for GPDS-300

and users 61-168 for the Brazilian PUC-PR). For MCYT and CEDAR, we consider genuine

samples from other users from the exploitation set as negative samples for training the WD

classifier. In each experiment, we performed the WD training 10 times, using different splits

for the data. We report the mean and variance of the performance across these executions.

Table 2.4 Separation into training and testing for each dataset

Dataset Name Training set Testing set
Genuine Random Forgeries

Brazilian (PUC-PR) r ∈ {1, . . . ,30} 30×108 = 3240 10 genuine, 10 random, 10 simple, 10 skilled

CEDAR r ∈ {1, . . . ,12} 12×54 = 648 10 genuine, 10 skilled

MCYT-75 r ∈ {1, . . . ,10} 10×74 = 588 5 genuine, 15 skilled

GPDS-160 r ∈ {1, . . . ,14} 14×721 = 10094 10 genuine, 10 random, 10 skilled

GPDS-300 r ∈ {1, . . . ,14} 14×581 = 8134 10 genuine, 10 random, 10 skilled

We used the same hyperparameters for training the SVM classifiers as in previous work (Hafe-

mann et al. (2016a)): for the linear SVM, we used C− = 1 (C+ is calculated according to

equation 2.6). For the SVM with RBF kernel, we used C− = 1 and γ = 2−11. We found these

hyperparameters to work well for the problem, on a range of architectures and users, but we

note that they could be further optimized (to each model, or even to each user), which is not

explored in this study.

For learning features using forgery data, specifically the formulation on section 2.3.2.2, we

tested values of λ from 0 to 1 is steps of 0.1. The boundaries are special cases: with λ = 0,

the forgery neuron is not used at all, and the model only classifies among different users; with

λ = 1 the model does no try to separate among different users, but only classifies whether

or not the input is a forgery. In our experiments, we found better results on the right end of

this range, and therefore we refined the search for the appropriate λ with the following cases:

λ ∈ {0.95,0.99,0.999}.
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Besides comparing the performance with the state-of-the-art in this dataset, we also considered

a baseline consisted of a CNN pre-trained on the Imagenet dataset. As argued in (Razavian

et al. (2014)), these pre-trained models offer a strong baseline for Computer Vision tasks. We

used two pre-trained models3, namely Caffenet (Caffe reference network, based on AlexNet

(Krizhevsky et al. (2012))), and VGG-19 (Simonyan & Zisserman (2014)). We used these

networks to extract the feature representations φ(X) for signatures, and followed the same

protocol for training Writing-Dependent classifiers using these representations. We considered

the following layers to obtain the representations: pool5, fc6 and fc7.

We evaluate the performance on the testing set using the following metrics: False Rejection

Rate (FRR): the fraction of genuine signatures rejected as forgeries; False Acceptance Rate

(FARrandom and FARskilled): the fraction of forgeries accepted as genuine (considering random

forgeries and skilled forgeries). We also report the Equal Error Rate (EER): which is the error

when FAR = FRR. We considered two forms of calculating the EER: EERuser thresholds: using

user-specific decision thresholds; and EERglobal threshold: using a global decision threshold. In

both cases, to calculate the Equal Error Rate we only considered skilled forgeries (not random

forgeries) - that is, we use only FRR and FARskilled to estimate the optimum threshold and

report the Equal Error Rate. We also report the mean Area Under the Curve (AUC), considering

ROC curves created for each user individually. For calculating FAR and FRR in the GPDS

exploitation set, we used a decision threshold selected from the validation set Vv (the threshold

that achieved EER using a global decision threshold).

For the Brazilian PUC-PR dataset, we followed the convention of previous research in this

dataset, and also report the individual errors (False Rejection Rate and False Acceptance

Rate for different types of forgery) and the Average error rate, calculate as AER = (FRR+

FARrandom+FARsimple+FARskilled)/4. Since in this work we are mostly interested in the prob-

lem of distinguishing genuine signatures and skilled forgeries, we also report AERgenuine + skilled =

(FRR+FARskilled)/2.

3 https://github.com/BVLC/caffe/wiki/Model-Zoo
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2.5 Results and Discussion

The experimental results with the proposed method are listed and discussed in this section. The

first part presents the experiments on the Development set, which was used for making all the

design decisions for the proposed method: evaluating different loss functions and other hyper-

parameters. The second part presents the results on the Exploitation set, and the comparison

with the state-of-the-art for all four datasets.

2.5.1 Signature Verification System Design

In these experiments, we trained the CNN architectures using the loss functions defined in

section 2.3, used them to extract features for the users in the validation set Vv, and trained

Writer-Dependent classifiers for these users using 12 reference signatures. We then analyzed

the impact in classification performance of the different formulations of the problem.

For the formulation on section 2.3.2.2, where we have a separate neuron to estimate if a sig-

nature is a forgery or not, we trained models with variable values of λ . Figure 2.4 shows the

results on the validation set using loss L1 (from equation 2.3), and loss L2 (from equation 2.4).

The models with loss L2 only consider the user-classification loss for genuine signatures, while

the models using L1 consider user-classification loss for all signatures (genuine and forgeries).

As a performance reference, we also show the results using a model trained with genuine sig-

natures only, as well as the model trained with forgeries as separate classes (sec 2.3.2.1).

Both using a linear SVM or using an SVM with RBF kernel, the results using the loss L1

were very poor for low values of λ . This is likely caused by the fact that, in this formulation,

both genuine signatures and forgeries of the same user are assigned to the same class y, and

the loss function guides the model to be less discriminative between the genuine signatures

and forgeries of the same user. This behavior is not present when we use the loss L2, since

the model is not penalized for misclassifying for which user the forgery was created. We

also noticed that the best results were closer to the right end of the range, suggesting that the

distinction of forgeries (regardless of the user) in the development set may be more relevant
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Figure 2.4 Performance on the validation set (Vv), using features learned from genuine

signatures and forgeries (sec 2.3.2.2), as we vary the hyperparameter λ . For reference, the

performance of models using features learned from genuine signatures only (sec 2.3.1)

and using forgeries as different classes (sec 2.3.2.1) are also included.

than the distinguishing genuine signatures from different users. In the extreme case, with

λ = 1, the model is only learning to discriminate between genuine signatures and forgeries

(the output is a single binary unit), and the performance is still reasonable, although worse than

the performance when both loss functions are combined. It is worth noting that the scale of Lc

is larger than L f by definition: Lc is a cross-entropy loss among 531 users. A random classifier

would have loss Lc ≈ log(531) ≈ 6.27. On the other hand, L f is a cross-entropy loss among

2 alternatives, and a random classifier would have loss around L f ≈ log(2)≈ 0.69, which also

partially explains larger λ values.
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We noticed an unexpected behavior using loss L2 with λ = 0. This loss function is equivalent

to the loss when using only genuine signatures, but actually performed worse during our ex-

periments. Analyzing this abnormal behavior, we identified that, although the forgeries do not

contribute to the loss function directly, they do have some indirect effect on loss function due

to the usage of batch normalization. During training, the skilled forgeries are used, together

with genuine signatures, when computing the batch statistics (mean and variance), therefore

affecting the output of the network. However, it is unclear why this effect results in worse

performance, instead of simply adding more variance to the results.

We also verified if the forgery neuron generalized well to other users. Since this neuron is

not related to a particular user in the development set, we can use it to estimate P( f |X) for

signature images from other users. In this case, we estimate if a signature is a forgery only by

looking at the questioned specimen, and not comparing it to other genuine signatures from the

same user. We used the neuron trained with loss L2 and λ = 0.999 to classify all signatures

from the validation set Vv, achieving an error rate of 14.37%. In comparison, for classifying

signatures from the same set of users where the CNN was trained (i.e. testing on Vc), the model

achieved 2.21% of error. This suggests that using this neuron is mostly helpful to guide the

system to obtain better representations (and subsequently train WD classifiers), than to use it

directly as a classifier for new samples, since it mainly generalizes to other signatures from the

same users used to train the CNN.

Table 2.5 consolidates the performance obtained in the validation set Vv using the proposed

methods. The baseline, using a CNN pre-trained on the ImageNet dataset, performed rea-

sonably well compared to previous work on the GPDS dataset, but still much worse than the

methods that learned on signature data. An interesting result is that the naive formulation to

use forgeries (treat forgeries as separate classes - section 2.3.2.1) performed worse than the

formulation that used only genuine signatures for training the CNN. Using the model trained

with genuine signatures, we obtained EER of 3.91% using a linear SVM, and 3.13% using the

RBF kernel. Using the model trained with forgeries as separate classes, we obtained EER of

5.61% using Linear SVM and 4.10% using the RBF kernel. A possible explanation for this
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Table 2.5 Performance of the WD classifiers on the validation set Vv (subset of 50 users

in GPDS; Errors and Standard deviations in %)

Classifier Formulation used to learn the features EERglobal threshold EERuser thresholds Mean AUC

Linear SVM Baseline (Caffenet, layer pool5) 14.09 (+- 2.80) 10.59 (+- 2.96) 0.9453 (+- 0.0198)

Using genuine signatures only (sec 2.3.1) 6.80 (+- 0.57) 3.91 (+- 0.64) 0.9876 (+- 0.0022)

Forgeries as separate classes (sec 2.3.2.1) 9.45 (+- 0.51) 5.61 (+- 0.63) 0.9749 (+- 0.0028)

Forgery neuron (sec 2.3.2.2, loss L1, λ = 0.999) 7.01 (+- 0.42) 3.63 (+- 0.43) 0.9844 (+- 0.0024)

Forgery neuron (sec 2.3.2.2, loss L2, λ = 0.95) 6.09 (+- 0.29) 3.17 (+- 0.34) 0.9899 (+- 0.0017)

SVM (RBF) Baseline (Caffenet, layer fc6) 16.20 (+- 0.94) 13.51 (+- 0.99) 0.9261 (+- 0.0054)

Using genuine signatures only (sec 2.3.1) 5.93 (+- 0.43) 3.13 (+- 0.46) 0.9903 (+- 0.0018)

Forgeries as separate classes (sec 2.3.2.1) 7.79 (+- 0.43) 4.10 (+- 0.41) 0.9857 (+- 0.0012)

Forgery neuron (sec 2.3.2.2, loss L1, λ = 1) 2.41 (+- 0.32) 1.08 (+- 0.36) 0.9978 (+- 0.0008)

Forgery neuron (sec 2.3.2.2, loss L2, λ = 0.999) 2.51 (+- 0.33) 1.04 (+- 0.31) 0.9971 (+- 0.0009)

effect is that this formulation effectively doubles the number of classes, making the classifica-

tion problem much harder. This fact, combined with the observation that genuine signatures

and forgeries for the same user usually share several characteristics, may justify this drop in

performance. On the other hand, the formulation using the forgery neuron performed much

better in the validation set, showing that this is a promising formulation of the problem. We

reiterate that forgeries are used only in the feature learning process, and that no forgeries from

the validation set Vv were used for training.

Although it is not the focus of this paper, we note that these models could also be used for

user identification from signatures. Using the features learned from genuine signatures only

(sec 2.3.1), the performance on the validation set Vc (classification between the 531 users) is

99.23%, showing that using CNNs for this task is very effective.

2.5.1.1 Visualizing the learned representation space

We performed an analysis of the feature space learned by the models, by using the t-SNE

algorithm (Van der Maaten & Hinton (2008)) to project the samples from the validation set

Vv from R
N to R

2. This analysis is useful to examine the local structure present in this high-

dimensionality space. For this analysis, we used the baseline model (Caffenet, using features
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from layer pool5), a model learned with genuine signatures only, and a model learned with

genuine signatures and forgeries (using loss L2 and λ = 0.95). These models were trained

on the set Lc, which is a disjoint set of users from the validation set. In all cases, we used

the models to “extract features” from all 1200 signatures images from the validation set, by

performing forward propagation until the layer specified above. For the baseline model, this

representation is in R
9216, while for the other models it is in R

2048. For each model, we used

the t-SNE algorithm to project the samples to 2 dimensions.

a) Baseline (Features

learned on Imagenet)

b) Using only genuine

signatures to learn the

features

c) Using genuine

signatures and forgeries to

learn the features

Figure 2.5 2D projections (using t-SNE) of the feature vectors from the 50 users in the

validation set Vv. Each point represents a signature sample: genuine signatures are

displayed in blue (dark), while skilled forgeries are displayed in orange (light).

The result can be seen in Figure 2.5. The baseline system (model trained on natural images)

projects the samples onto a space where samples from different users are clustered in separate

regions of the space, which is is quite interesting considering that this network was never

presented signature images. On the other hand, skilled forgeries are also clustered together

with genuine signatures in this representation. On the models trained with signature data, we

can see that signatures from different users also occupy different regions of the feature space.

Using the model trained with genuine signatures and forgeries, we see that the forgeries from

the users in the validation set are much more grouped together in a part of the feature space,

although several forgeries are still close to the genuine signatures of the users. This suggests

that the network has learned characteristics that are intrinsic to many forgeries, that generalizes

to other users.
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2.5.2 Generalization performance and comparison with the state-of-the-art

We now present the results on the exploitation set, comparing the results with the state-of-the-

art. In these experiments, we do not use any skilled forgeries from the users, since it is not

reasonable to expect skilled forgeries to be available for all users enrolled in the system.

We reiterate that all design decisions (e.g. choice of architecture and other hyperparameters)

were done using the validation set Vv, which consists of a separate set of users, to present an

unbiased estimate of the performance of the classifier in the testing set. In these experiments,

we used the architectures that performed best in the validation set, as seen in Table 2.5. In

particular, we consider a model that was learned using genuine signatures only (sec 2.3.1),

which we call simply by SigNet in this section. We also consider a model learned using

genuine signatures and forgeries (sec 2.3.2.2), using loss L2, which we call SigNet-F. For

the experiments with a linear SVM, we used the model learned with λ = 0.95, while for the

experiments with the SVM with the RBF kernel, we used the model learned with λ = 0.999.

2.5.2.1 Experiments on GPDS-160 and GPDS-300

For these experiments, we used the models SigNet and SigNet-F to extract features of the

exploitation set (GPDS-160 and GPDS-300), and trained Writer-Dependent classifiers. To

report the False Rejection Rate and False Acceptance Rates, we used the validation set to find

the optimum global threshold (the threshold that obtained EERglobal threshold on the validation

set Vv) as a global threshold for all users. In this work, we do not explore techniques for

setting user-specific thresholds, but simply report EERuser thresholds, which is the equal error

rate obtained by using the optimal decision thresholds for each user.

Table 2.6 lists the detailed results on the GPDS-160 and GPDS-300 datasets, for experiments

using SigNet-F. We notice that the using only 5 samples per user already achieves a good

average performance on these datasets, showing that the proposed strategy works well with low

number of samples per user. We also note that the performance using user-specific thresholds

is much better than using a single global threshold (1.72% vs 3.61%) in the GPDS-160 dataset,
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Table 2.6 Detailed performance of the WD classifiers on the GPDS-160 and GPDS-300

datasets (Errors and Standard Deviations in %)

Dataset Samples per user Classifier FRR FAR_random FAR_skilled EERglobal threshold EERuser thresholds Mean AUC

GPDS-160 5 SVM (Linear) 9.09 (+- 0.65) 0.01 (+- 0.03) 5.75 (+- 0.12) 7.30 (+- 0.35) 3.52 (+- 0.28) 0.9880 (+- 0.0013)

SVM (RBF) 5.16 (+- 0.41) 0.06 (+- 0.04) 5.17 (+- 0.17) 5.15 (+- 0.22) 2.41 (+- 0.12) 0.9924 (+- 0.0011)

12 SVM (Linear) 6.39 (+- 0.67) 0.01 (+- 0.02) 3.96 (+- 0.18) 5.15 (+- 0.28) 2.60 (+- 0.39) 0.9922 (+- 0.0010)

SVM (RBF) 3.59 (+- 0.23) 0.02 (+- 0.03) 3.66 (+- 0.15) 3.61 (+- 0.07) 1.72 (+- 0.15) 0.9952 (+- 0.0006)

GPDS-300 5 SVM (Linear) 9.28 (+- 0.36) 0.01 (+- 0.02) 8.18 (+- 0.23) 8.68 (+- 0.22) 4.84 (+- 0.26) 0.9792 (+- 0.0016)

SVM (RBF) 6.03 (+- 0.45) 0.04 (+- 0.04) 4.68 (+- 0.18) 5.25 (+- 0.15) 2.42 (+- 0.24) 0.9923 (+- 0.0007)

12 SVM (Linear) 6.80 (+- 0.31) 0.00 (+- 0.01) 6.16 (+- 0.17) 6.44 (+- 0.17) 3.56 (+- 0.18) 0.9857 (+- 0.0010)

SVM (RBF) 3.94 (+- 0.29) 0.02 (+- 0.02) 3.53 (+- 0.11) 3.74 (+- 0.15) 1.69 (+- 0.18) 0.9951 (+- 0.0004)

which is consistent with previous findings that the definition of user-specific thresholds is key

in obtaining a good performance.

We notice that the performance using a linear classifier (Linear SVM) is already good, which is

interesting from a practical perspective for a large-scale deployment. Since the CNN model is

the same for all users, adding new users to the system requires only training the WD classifier.

For a linear classifier, this requires only one weight per dimension (plus a bias term), adding

to 2049 doubles to be stored (16KB per user). For the SVM with RBF kernel, the storage

requirements for each user depends on the number of support vectors. In the GPDS-300 dataset,

in average the classifiers used 75 support vectors. Since the set of random forgeries is the same

for all users, most of these support vectors will be shared among different users. On the other

hand, we noticed that the majority of genuine signatures were selected as support vectors (as

expected) - in average 10.3 genuine signatures, when using 12 references for training.

Table 2.7 compares our results with the state-of-the-art on the GPDS dataset. We observed

a large improvement in verification performance, obtaining 1.72% EER on GPDS-160, com-

pared to a state-of-the-art of 6.97%, both using 12 samples per user for training. We also note

that this result is obtained with a single classifier, while the best results in the state-of-the-art

use ensembles of many classifiers. As in the experiments in the validation set, we notice an

improvement in performance using SigNet-F to extract the features compared to using SigNet.
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Table 2.7 Comparison with state-of-the art on the GPDS dataset (errors in %)

Reference Dataset
#samples

per user
Features EER

Hu & Chen (2013) GPDS-150 10 LBP, GLCM, HOG 7.66

Guerbai et al. (2015) GPDS-160 12 Curvelet transform 15.07

Serdouk et al. (2015a) GPDS-100 16 GLBP, LRF 12.52

Yılmaz & Yanıkoğlu (2016) GPDS-160 5 LBP, HOG, SIFT 7.98

Yılmaz & Yanıkoğlu (2016) GPDS-160 12 LBP, HOG, SIFT 6.97

Soleimani et al. (2016) GPDS-300 10 LBP 20.94

Present Work GPDS-160 5 SigNet 3.23 (+-0.36)

Present Work GPDS-160 12 SigNet 2.63 (+-0.36)

Present Work GPDS-300 5 SigNet 3.92 (+-0.18)

Present Work GPDS-300 12 SigNet 3.15 (+-0.18)

Present Work GPDS-160 5 SigNet-F 2.41 (+-0.12)

Present Work GPDS-160 12 SigNet-F 1.72 (+-0.15)

Present Work GPDS-300 5 SigNet-F 2.42 (+-0.24)

Present Work GPDS-300 12 SigNet-F 1.69 (+-0.18)

2.5.2.2 Generalizing to other datasets

We now consider the generalization performance of the features learned in GPDS to other

datasets. We use the same networks, namely SigNet and SigNet-F, for extracting features and

training Writer-Dependent classifiers on MCYT, CEDAR and the Brazilian PUC-PR datasets.

Tables 2.8, 2.9 and 2.10 present the comparison with the state-of-the-art performance on MCYT,

CEDAR and Brazilian PUC-PR, respectively. In all datasets we notice improvement in perfor-

mance compared to the state-of-the-art, suggesting that the features learned on GPDS gener-

alize well to signatures from other datasets (with different protocols for signature acquisition,

created with different users in different countries). We also note that other methods proposed in

the literature often present better performance only in one dataset, for instance, Guerbai et al.

(2015) obtained good results on CEDAR, but poor results on GPDS; Soleimani et al. (2016)

obtained good results on MCYT, but not on GPDS. The proposed method, however, obtained

state-of-the-art performance in all datasets. For MCYT we obtained EER of 2.87% compared
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Table 2.8 Comparison with the state-of-the-art in MCYT

Reference # Samples Features EER

Gilperez et al. (2008) 5 Contours (chi squared distance) 10.18

Gilperez et al. (2008) 10 Contours (chi squared distance) 6.44

Wen et al. (2009) 5 RPF (HMM) 15.02

Vargas et al. (2011) 5 LBP (SVM) 11.9

Vargas et al. (2011) 10 LBP (SVM) 7.08

Ooi et al. (2016) 5 DRT + PCA (PNN) 13.86

Ooi et al. (2016) 10 DRT + PCA (PNN) 9.87

Soleimani et al. (2016) 5 HOG (DMML) 13.44

Soleimani et al. (2016) 10 HOG (DMML) 9.86

Proposed 5 SigNet (SVM) 3.58 (+- 0.54)

Proposed 10 SigNet (SVM) 2.87 (+- 0.42)

Proposed 5 SigNet-F (SVM) 3.70 (+- 0.79)

Proposed 10 SigNet-F (SVM) 3.00 (+- 0.56)

Table 2.9 Comparison with the state-of-the-art in CEDAR

Reference # Samples Features AER/EER

Chen & Srihari (2006) 16 Graph Matching 7.9

Kumar et al. (2010) 1 morphology (SVM) 11.81

Kumar et al. (2012) 1 Surroundness (NN) 8.33

Bharathi & Shekar (2013) 12 Chain code (SVM) 7.84

Guerbai et al. (2015) 4 Curvelet transform (OC-SVM) 8.7

Guerbai et al. (2015) 8 Curvelet transform (OC-SVM) 7.83

Guerbai et al. (2015) 12 Curvelet transform (OC-SVM) 5.6

Proposed 4 SigNet (SVM) 5.87 (+- 0.73)

Proposed 8 SigNet (SVM) 5.03 (+- 0.75)

Proposed 12 SigNet (SVM) 4.76 (+- 0.36)

Proposed 4 SigNet-F (SVM) 5.92 (+- 0.48)

Proposed 8 SigNet-F (SVM) 4.77 (+- 0.76)

Proposed 12 SigNet-F (SVM) 4.63 (+- 0.42)
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Table 2.10 Comparison with the state-of-the-art on the Brazilian PUC-PR dataset

(errors in %)

Reference
#samples

per user
Features FRR FARrandom FARsimple FARskilled AER AERgenuine + skilled EERgenuine + skilled

Bertolini et al. (2010) 15 Graphometric 10.16 3.16 2.8 6.48 5.65 8.32 -

Batista et al. (2012) 30 Pixel density 7.5 0.33 0.5 13.5 5.46 10.5 -

Rivard et al. (2013) 15 ESC + DPDF 11 0 0.19 11.15 5.59 11.08 -

Eskander et al. (2013) 30 ESC + DPDF 7.83 0.02 0.17 13.5 5.38 10.67 -

Present Work 5 SigNet 4.63 (+- 0.55) 0.00 (+- 0.00) 0.35 (+- 0.20) 7.17 (+- 0.51) 3.04 (+- 0.17) 5.90 (+- 0.32) 2.92 (+- 0.44)

Present Work 15 SigNet 1.22 (+- 0.63) 0.02 (+- 0.05) 0.43 (+- 0.09) 10.70 (+- 0.39) 3.09 (+- 0.20) 5.96 (+- 0.40) 2.07 (+- 0.63)

Present Work 30 SigNet 0.23 (+- 0.18) 0.02 (+- 0.05) 0.67 (+- 0.08) 12.62 (+- 0.22) 3.38 (+- 0.06) 6.42 (+- 0.13) 2.01 (+- 0.43)

Present Work 5 SigNet-F 17.17 (+- 0.68) 0.00 (+- 0.00) 0.03 (+- 0.07) 2.72 (+- 0.37) 4.98 (+- 0.16) 9.94 (+- 0.31) 5.11 (+- 0.89)

Present Work 15 SigNet-F 9.25 (+- 0.88) 0.00 (+- 0.00) 0.25 (+- 0.09) 6.55 (+- 0.37) 4.01 (+- 0.24) 7.90 (+- 0.46) 4.03 (+- 0.59)

Present Work 30 SigNet-F 5.47 (+- 0.46) 0.00 (+- 0.00) 0.38 (+- 0.11) 8.80 (+- 0.44) 3.66 (+- 0.12) 7.13 (+- 0.25) 3.44 (+- 0.37)

to 6.44% in the literature. On CEDAR, we obtained EER of 4.63%, compared to 5.6%. For

the Brazilian PUC-PR dataset, we notice an improvement in performance both in terms of av-

erage error rate (considering all types of forgery), and the average error rate comparing only

genuine signatures and skilled forgeries. It is worth noting that in these experiments we used a

global threshold = 0 to report FRR and FAR, since we did not have a validation set to learn the

appropriate global threshold, hence the large differences between FRR and FARskilled.

We also noticed that the formulation that learned features using skilled forgeries from the

GPDS dataset did not perform better in all cases. For MCYT and CEDAR the performance

between SigNet and SigNet-F was not significantly different, whereas for the Brazilian PUC-

PR dataset it obtained worse performance than SigNet. This suggests that the representation

may have specialized to traits present in the forgeries made for the GPDS dataset, which depend

on the acquisition protocol, such as if only one type of writing instrument was used, and the

directions given to participants to create the forgeries. We note, however, that 1920 people

participated in creating forgeries for the GPDS dataset (Vargas et al. (2007)).

Finally, considering that the MCYT dataset contains both an Offline dataset (with static sig-

nature images, as used in this paper), and an Online version (with dynamic information of the

strokes), it is possible to compare the two approaches to the problem. In the literature, online

signature verification systems empirically demonstrate better performance than offline systems

(Impedovo & Pirlo (2008)), which is often attributed to the lack of dynamic information of the
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signature writing process in the offline signatures. The gains in performance using the method

proposed in this paper reduce the gap between the two approaches. Using offline signatures,

we obtained 2.87 % EERuser thresholds using 10 samples per user. Using online data, the best

results reported in the literature achieve 2.85 % EER (Rua & Castro (2012)) and 3.36 % EER

(Fierrez et al. (2007)), also using 10 samples per user. We note, however, that in our work

we do not address the issue of selecting user-specific thresholds (or performing user-specific

score normalization), which is left as future work. In constrast, both (Rua & Castro (2012))

and (Fierrez et al. (2007)) use score normalization, followed by a single global threshold, so

the comparison of these papers to our work is not direct.
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Figure 2.6 Average performance of the Writer-Dependent classifiers for each dataset, as

we vary the number of genuine signatures (per user) available for training.
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2.5.2.3 Varying the number of genuine samples available for training

Figure 2.6 shows the improvement in performance on the four datasets as we obtain more sam-

ples per user for training. Each point represents the performance of the WD classifiers trained

with a given number of genuine samples (mean and standard deviation across 10 replications).

As in previous work (Eskander et al. (2013), Hafemann et al. (2016b)), we notice diminishing

returns as we collect more samples for each user. It is worth noting that in the GPDS dataset,

even with a single sample per user we obtain 5.74% EER, which surpasses the state-of-the-art

system that used 12 samples per user, showing that good feature representations are indeed

critical to obtain good performance.

2.6 Conclusion

In this work, we presented different formulations for learning representations for offline sig-

nature verification. We showed that features learned in a writer-independent way can be very

effective for signature verification, improving performance on the task, compared to the meth-

ods that rely on hand-engineered features.

In particular, we showed a formulation of the problem to take advantage of having forgery data

from a subset of users, so that the learned features perform better in distinguishing forgeries

for unseen users. With this formulation, we obtain an EER or 1.72% in the GPDS-160 dataset,

compared to 6.97% reported in the literature. The visual analysis of the feature space shows

that the features generalize well to unseen users, by separating genuine signatures and forgeries

in different regions of the representation space. We also noted very good performance of this

strategy even when few samples per user are available. For instance, with 5 samples per user,

we obtained 2.41 % EER on this dataset.

The experiments with the MCYT, CEDAR and Brazilian PUC-PR datasets demonstrate that

the features learned in this Writer-Independent format not only generalize to different users of

the GPDS dataset, but also to users from other datasets, surpassing the state-of-the-art perfor-

mance on all three. We noticed, however, that the model learned with forgeries in the GPDS
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dataset did not perform better in all cases, suggesting that the characteristics of forgeries in

the datasets may be different - this will be further studied in future work. Another promis-

ing research direction is the combination of online and offline signature verification methods.

This can improve robustness of the system since it becomes harder to create a forgery that is

misclassified by both classifiers, that is, a forgery having similar strokes in terms of speed of

execution, and at the same time that is visually similar to a genuine signature from the user.
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Abstract

Methods for learning feature representations for Offline Handwritten Signature Verification

have been successfully proposed in recent literature, using Deep Convolutional Neural Net-

works to learn representations from signature pixels. Such methods reported large performance

improvements compared to handcrafted feature extractors. However, they also introduced an

important constraint: the inputs to the neural networks must have a fixed size, while signa-

tures vary significantly in size between different users. In this paper we propose addressing

this issue by learning a fixed-sized representation from variable-sized signatures by modify-

ing the network architecture, using Spatial Pyramid Pooling. We also investigate the impact

of the resolution of the images used for training, and the impact of adapting (fine-tuning) the

representations to new operating conditions (different acquisition protocols, such as writing

instruments and scan resolution). On the GPDS dataset, we achieve results comparable with

the state-of-the-art, while removing the constraint of having a maximum size for the signatures

to be processed. We also show that using higher resolutions (300 or 600dpi) can improve per-

formance when skilled forgeries from a subset of users are available for feature learning, but

lower resolutions (around 100dpi) can be used if only genuine signatures are used. Lastly, we

show that fine-tuning can improve performance when the operating conditions change.
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3.1 Introduction

The handwritten signature is a behavioral biometric trait that is extensively used to verify

a person’s identity in legal, financial and administrative areas. Automating the verification

of handwritten signatures has been a subject of research since the decade of 1970 (Plamon-

don & Lorette (1989); Leclerc & Plamondon (1994); Impedovo & Pirlo (2008); Hafemann

et al. (2017b)), considering two scenarios: online (dynamic) and offline (static). In the on-

line case, signatures are captured using a special device, such as a pen tablet, that records the

dynamic information of the writing process (e.g. position of the pen over time). For offline

signature verification, we consider signatures written on paper, that are subsequently scanned

to be used as input.

Most of the research effort in offline signature verification has been devoted to finding good

feature representations for signatures, by proposing new feature descriptors for the problem

(Hafemann et al. (2017b)). Recent work, however, showed that learning features from data

(signature images) can improve system performance to a large extent (Hafemann et al. (2016b,

2017a); Rantzsch et al. (2016); Zhang et al. (2016)). These work rely on training Deep Con-

volutional Neural Networks (CNNs) to learn a hierarchy of representations directly from sig-

nature pixels.

Although these methods present good performance, they also introduce some issues. Signa-

tures from different users vary significantly in size, while a feature descriptor should provide a

fixed-sized representation for classification. This is not a problem in many feature descriptions

used for signature verification, that by design are able to accommodate signatures of differ-

ent sizes. Neural networks, on the other hand, in general require fixed-sized inputs, and thus

these methods require pre-processing the signatures such that they all have the same size. Most

commonly, signatures are either a) resized to a common size or b) first centered in a blank im-

age of a “maximum signature size", and then resized. Figure 3.1 illustrates the problems with

these approaches. In alternative (a), the width of the strokes become very different depending

on the size of the original image, while in alternative (b) the width of strokes is not affected,



61

but instead we may lose detail on small signatures, that would otherwise be preserved in the

first alternative. Empirically, alternative (b) presented much better results (Hafemann et al.

(2016b)), but it also creates the problem that now a “maximum size" is defined, and if a new

signature is larger than this size, it would need to be reduced (causing similar problems to (a)

regarding the width of the strokes).

Another problem in learning the representations from signature images is the selection of the

resolution of the input images. The methods proposed in the literature use small images (e.g.

96×192 in (Rantzsch et al. (2016)), 170×242 in (Hafemann et al. (2016a))). For the signatures

used in these papers, this is equivalently of using a resolution around 100 dpi. However, as

illustrated in figure 3.2, the distinction of genuine signatures and skilled forgeries often rely on

the line quality of the strokes (in particular for slowly-traced forgeries, as noted in (Hafemann

et al. (2016a))). This suggests that using higher resolutions may improve performance on this

task.

a) Directly resizing signatures b) Centering in a canvas and then resizing

Figure 3.1 Two approaches for normalizing the signatures to a common size. The

signature on the left is small (176×229 pixels) while the signature on the right is large

(484×819 pixels). (a) directly resizing the signatures to the input size of the network

(170×242); (b) centering the signatures in a canvas of a “maximum size" (600×850)

and then resizing to 170×242 pixels.

In this paper, we propose learning a fixed-sized representation for signatures of variable size,

by adapting the architecture of the neural network, using Spatial Pyramid Pooling (SPP) (He

et al. (2014), He et al. (2015)). Our contributions are as follows: we define and evaluate

different training protocols for networks with SPP applied to offline handwritten signatures.

After training, signatures of any size can be fed to the network in order to obtain a fixed-

sized representation. We also evaluate the impact of the image resolution on the classification
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a) Genuine, 300 dpi b) Genuine, 100 dpi

c) Forgery, 300 dpi d) Forgery, 100 dpi

Figure 3.2 Detail of a genuine signature and a skilled forgery for user 244 in the GPDS

dataset. At 300 dpi, we can notice the limp strokes of the skilled forgery, most likely due

to slow hand movements while attempting to reproduce the overall shape of the genuine

signature. At 100 dpi, information about line quality is mostly lost.

accuracy, and the generalization of features learned in one dataset to other operating conditions

(e.g. different acquisition protocols, signatures from people of different locations), by using

transfer learning to other datasets.

For feature learning, we used the problem formulation presented in (Hafemann et al. (2017a)),

where Writer-Independent features are learned using a subset of users, and subsequently used

to train Writer-Dependent classifiers for another set of users. We also use the architecture

defined in this work as baseline (SigNet). We adapt this architecture to learn fixed-sized rep-

resentations (proposing different training protocols) and modifying the architectures to handle

images of higher resolution. We conducted experiments on four widely used signature verifi-

cation datasets: GPDS, MCYT, CEDAR and the Brazilian PUC-PR dataset; and two synthetic

datasets (Bengali and Devanagari scripts). Using the proposed architecture, we obtain a sim-

ilar performance compared to the state-of-the-art, while removing the constraint of having a

fixed maximum signature size. We also note that using higher resolutions (300dpi) greatly

improves performance when skilled forgeries (from a subset of users) is available for training.

On the other hand, if only genuine signatures are used for feature learning, higher resolutions

did not improve performance. We verify that the learned features generalize to different oper-
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ating conditions (by testing them on other datasets), and that fine-tuning the representation for

the different conditions further improves performance. We observed that the features learned

on GPDS generalize better to other western signature datasets (MCYT, CEDAR and Brazilian

PUC-PR) than to other types of scripts (Bengali and Devanagari), and that fine-tuning also

largely addresses this problem.

3.2 Related Work

The problem of Offline Signature Verification is either formulated as Writer-Dependent, with

one classification task defined for each user enrolled to the system, or as a Writer-Independent

problem, where we consider a single problem, of comparing a questioned signature to a ref-

erence signature. In the literature, Writer-Dependent classification is most commonly used:

for each user, a set of reference (genuine) signatures are used as positive samples, and a set

of genuine signatures from other users (in this context called “Random forgeries") are used as

negative samples, and a binary classifier is trained. Alternatively, some authors propose using

one-class classifiers for the Writer-Dependent formulation, using only genuine signatures from

the user as positive samples (e.g. Guerbai et al. (2015)). Writer-Independent classification,

on the other hand, is often used by training a binary classifier on a dissimilarity space, where

the inputs are the absolute difference of two feature vectors: x = |f1 − f2|, where f1 and f2 are

feature vectors extracted from two signatures, and we consider a binary label: y = 1 if both

signatures are from the same user, and y =−1 otherwise (Bertolini et al. (2010); Rivard et al.

(2013); Eskander et al. (2013)).

After training the classifiers, we verify the performance of the system in distinguishing gen-

uine signatures from forgeries. We adopt the following definitions of forgery, which are the

most common in the Pattern Recognition community: “Random Forgeries" are forgeries made

without any knowledge of the user’s genuine signature, where the forger uses his own signature

instead. In the case of “Simple forgeries", the forger has access to the person’s name. In this

case, the forgery may present more similarities to the genuine signature, in particular for users

that sign with their full name, or part of it. Lastly, for “Skilled Forgeries", the forger has access
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to the user’s signature, and often practices imitating it. This result in forgeries that have higher

resemblance to the genuine signature, and therefore are harder to detect. While discriminating

Random and Simple forgeries are relatively simpler tasks (as reflected in lower error rates in

the literature), discriminating genuine signatures and skilled forgeries remains a challenging

task.

A critical aspect of designing signature verification systems is how to extract discriminant

features from the signatures. A large part of the research efforts on this field addresses this

question, by proposing new feature descriptors for the problem. These features range from

simple descriptors such as the size of the signature and inclination (Nagel & Rosenfeld (1977)),

graphometric features (Justino et al. (2000), Oliveira et al. (2005)), texture-based (Vargas et al.

(2011); Yılmaz & Yanıkoğlu (2016)), interest point-based (Pal et al. (2012)), among others.

Recent advancements in this field include using multiple classifiers trained with different rep-

resentations (Yılmaz & Yanıkoğlu (2016)), using interval symbolic representations (Alaei et al.

(2017)) and augmenting datasets by duplicating existing signatures or creating synthetic ones

(Ferrer et al. (2015); Diaz et al. (2017); Ferrer et al. (2017)). More recently, methods for

learning features from signature images have been proposed (Hafemann et al. (2016b, 2017a);

Rantzsch et al. (2016); Zhang et al. (2016)). Although these methods demonstrated improved

performance, they introduced some issues, notably by requiring that all signature images have

the same size, which is the problem addressed in this paper. We note that this problem is not

present in many handcrafted feature descriptions used for signature verification: for instance

Local Binary Patterns (LBP) (Ojala et al. (2002)) and Histogram of Oriented Gradients (HOG)

(Dalal & Triggs (2005)) use histograms over the entire image, therefore resulting in feature

vectors of the same size regardless of the input size; Extended Shadow Code (ESC) (Sabourin

et al. (1993)) divides the image in the same number of windows (adapting the size the win-

dows), therefore also working with signatures of variable sizes.

The problem of requiring inputs of a fixed size for neural networks also affects other appli-

cations, such as object recognition. This problem is often handled by simply resizing and

cropping images. While these are common operations for object recognition, we argue that
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they are less interesting for signature verification. In object recognition, the classification task

considers objects at different scales. Therefore, resizing an image to fit a particular size is a

reasonable action to take, since it is aligned with the invariance to scale that we expect from

the classifiers (as long as the change in scale does not distort the image, such as scaling height

and width by different factors). On the other hand, for signature verification we have control

of how the signatures are acquired: all signatures are usually scanned at the same resolution,

usually 300 or 600 dpi. Therefore, changes in scale, introduced by resizing the image, alter the

signal is ways that would not otherwise be present. In this case, a better solution would not

require resizing the signature images by different factors depending on their original size.

In the context of object recognition, He at al. proposed a solution for working with inputs

of variable size, by using Spatial Pyramid Pooling (He et al. (2015)). However, the training

procedure still requires fixed-sized images. He et al. (2015) proposed using two image sizes,

resizing each image to the these sizes (i.e. duplicating the dataset in two different scales).

Learning is then conducted by alternating between the two sets in each training epoch. This

is sub-optimal for signature images, since we would like to avoid resizing the images entirely.

In this work we propose and test other training protocols for training networks with SPP on

signature data.

3.3 Proposed Method

In this work we consider the two-stage approach described in (Hafemann et al. (2016b)) and

(Hafemann et al. (2017a)), where we train Writer-Dependent classifiers on a set of users, using

a feature representation learned on another set of users. We note, however, that the methods

described in this paper can be used for other feature learning strategies, such as the ones used

in (Rantzsch et al. (2016); Zhang et al. (2016)).

We consider two disjoint sets of users: a development set D , where we learn feature represen-

tations, and an exploitation set E that consists of the users “enrolled to the system", for whom

we train Writer-Dependent classifiers. The first phase consists in learning a function φ(X), us-



66

ing the data from D , that takes a signature X as input, and returns a fixed-sized feature vector.

In the second phase, we use this learned function to “extract features" for the signatures in E ,

and train a binary classifier for each user. While we could use all users for learning the rep-

resentations, this separation in two sets allows us to estimate the generalization performance

of using this learned representation for new users. This is important since the set of users in a

system is not fixed - new users may enroll at any time, and in this formulation we simply use

the learned function φ(X) to obtain a representation for the signatures of this new user, and

train a binary classifier.

In order to handle signatures of different sizes, we change both the feature learning process, as

well as the process to obtain representations for new signatures using the learned network.

3.3.1 Network architecture and objective function

The definition of a Convolutional Neural Network architecture usually specifies the input size

of the images for training and testing. However, as noted in (He et al. (2015)), this constraint

is not caused by the usage of convolution and pooling layers, but rather by the usage of fully-

connected layers at the end of network architectures. The reason is that the convolution and

pooling operations are well defined for inputs of variable sizes, simply resulting in an output

of a larger size. This presents a problem between the last pooling layer and the first fully-

connected layer of the network (layer FC1 in figure 3.3): the last pooling layer is “flattened"

to a vector of dimensionality K (e.g. a pooling output of size 32× 3× 2 becomes a vector of

K = 192 elements), and the fully-connected layer uses a weight matrix of size K ×M, where

M is the output size of the fully-connected layer. If we use the network to process an input

X̂ of a different size, the output of the last pooling layer will have a different size. Flattening

the representation results in a vector of dimensionality K̂ �= K, and therefore the vector-matrix

product in the fully-connected layer will not be defined.

The central idea of Spatial Pyramid Pooling (SPP) (He et al. (2015)) is to obtain a fixed-size

representation for variable-sized input images. This is done by adapting the size of the pooling
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Input (variable size)
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Figure 3.3 A CNN architecture with SPP used in this work. The input signature (of

variable size) is transformed in a sequence of convolution and max-pooling operations.

The last convolutional layer results in 128 maps of size h×w (the actual size varies

according to the signature size). The Spatial Pyramid Pooling layer (SPP) is then used to

obtain a fixed-sized representation, by adapting the size of pooling regions, to obtain

pooled results in three sizes: 4×4, 2×2 and 1×1. These are concatenated in a single

vector of size 21×128 = 2688 units, which is then used as input to the fully-connected

layers. During training, the network outputs P(y|X) (and, if forgeries are used during

training, also P( f |X)), and the network is trained to minimize the cross-entropy with

respect to the training dataset. For obtaining representations for new signatures, we

perform forward propagation until the last layer before softmax, obtaining φ(X), a vector

of 2048 dimensions, regardless of the signature size.

region (and strides) for each image size, such that the output of the last pooling operation has a

fixed size, and therefore can be used as input to fully-connected layers. In SPP, a set of fixed-

sized outputs is chosen, and the result of them is concatenated. This is illustrated in the “SPP

Layer" box in figure 3.3: we consider pooling with output sizes 1×1, 2×2 and 4×4, which

has a total of 1+4+16 = 21 outputs for each channel. Each image would therefore output a

fixed representation of size 21×C, where C is the number of feature maps/channels in the last

convolutional layer.

Figure 3.3 illustrates a CNN architecture used in this work. The network contains a series of

convolutions and max-pooling operations, with a Spatial Pyramid Pooling layer between the

last convolutional layer and the first fully-connected layer. This layer outputs a fixed-sized

output regardless of the size of the input signature.
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We consider two application scenarios, as in (Hafemann et al. (2017a)): one in which we

have only genuine signatures available for training, and one in which we also have access to

skilled forgeries for a subset of users. In the first scenario, we consider a training objective of

distinguishing between different users in the development set: the network outputs P(y|X): the

probability of the signature belonging to one of the users in D . Therefore, the network learns

to identify the users that produced the signatures in D . In the second scenario, we would like to

leverage the information of forgeries in the feature learning process, and we use the multi-task

approach defined in (Hafemann et al. (2017a)). In this formulation, the network also predicts

whether or not the signature is a forgery: P( f |X). We simultaneously train the network to

optimize both objectives (distinguish between different users, and between genuine signatures

and skilled forgeries), by using the loss function defined in equation 3.1:

L = (1− fi)(1−λ )Lc +λL f

=−(1− fi)(1−λ )∑
j

yi j logP(y j|Xi)+

λ
(− fi log(P( f |Xi))− (1− fi) log(1−P( f |Xi))

)
(3.1)

Where λ is a hyperparameter that trades-off between the two objectives, Xi is the signature, yi is

the actual user of signature (yi j = 1 if the signature i belongs to user j), and fi indicates whether

or not the signature i is a forgery. Lc and L f indicate the loss functions for user classification

and forgery classification, respectively, which are expanded in the second and third lines. We

refer the reader to (Hafemann et al. (2017a)) for more details on this formulation.

Table 3.1 lists the CNN architectures used in this paper. We consider a total of six architec-

tures, considering three different resolutions (around 100 dpi, 300 dpi and 600 dpi), and with

or without Spatial Pyramid Pooling. Each line in the table represents a layer of the CNN. For

convolutional layers, we specify the size and number of feature maps (filters), the stride and the

padding. For instance, conv11-32-s4-p5 refers to a convolutional layer with 32 filters of size
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Table 3.1 CNN architectures used in this paper

SigNet SigNet-SPP SigNet-300dpi SigNet-SPP-300dpi SigNet-600dpi SigNet-SPP-600dpi
conv11-96-s4-p0 conv11-96-s4-p0 conv11-32-s3-p5 conv11-32-s3-p5 conv11-32-s4-p5 conv11-32-s4-p5

pool3-s2-p0 pool3-s2-p0 pool3-s2-p0 pool3-s2-p0 pool3-s3-p0 pool3-s3-p0

conv5-256-p2 conv5-256-p2 conv5-64-p2 conv5-64-p2 conv5-64-p2 conv5-64-p2

pool3-s2-p0 pool3-s2-p0 pool3-s3-p0 pool3-s3-p0 pool3-s2-p0 pool3-s2-p0

conv3-384-p1 conv3-384-p1 conv3-128-p1 conv3-128-p1 conv3-128-p1 conv3-128-p1

conv3-384-p1 conv3-384-p1 conv3-128-p1 conv3-128-p1 conv3-128-p1 conv3-128-p1

pool3-s2-p0 pool3-s2-p0 pool2-s2-p0 pool2-s2-p0

conv3-256-p1 conv3-180-p1 conv3-128-p1 conv3-128-p1 conv3-128-p1 conv3-128-p1

pool3-s2-p0 spp-4-2-1 pool3-s3-p0 spp-4-2-1 pool4-s4-p0 spp-4-2-1
FC1-2048 FC1-2048 FC1-2048 FC1-2048 FC1-2048 FC1-2048

FC2-2048 FC2-2048 FC2-2048 FC2-2048 FC2-2048 FC2-2048

FC-M + softmax ; FC-1 + sigmoid

11×11, with stride s = 4 and padding p = 5. For pooling operations, we inform the pool size,

the stride and padding. When not specified, we use stride s = 1. After each learnable layer

(with the exception of the output layers) use a Batch Normalization layer (Ioffe & Szegedy

(2015)). The SigNet architecture was defined in previous work (Hafemann et al. (2017a)),

while the other architectures are adapted versions to handle larger images. For higher reso-

lutions, we notice that images are very large (e.g. 780x1095 pixels for a 600 dpi signature).

To handle these larger images, we used a smaller number of feature maps, and a more rapid

reduction in size across the layers, by using a more aggressive pooling. For each of the three

resolutions, we consider both a version with SPP (that accepts inputs of any size), and without

SPP (that accepts inputs of a fixed size). The two versions have the same overall structure,

but diverge on the last pooling layer. The network SigNet-SPP has another difference (lower

number of convolutional maps in the last convolutional layer) to keep the number of param-

eters between the SPP and non-SPP version similar. In the table, the differences between the

non-SPP and SPP versions are highlighted in bold. In all architectures, the last layer outputs

M neurons, which estimate P(y|X), the probability of a signature X belonging to a particular

user in D . For the experiments using forgeries during feature learning, the network also out-

puts a single neuron that predicts P( f |X), the probability that the signature is a forgery. We

report experiments with both scenarios (with and without forgeries for feature learning). In the

cases were forgeries are used, we append a suffix -F to the architecture name. For example,

SigNet-300dpi-F refers to using the architecture SigNet-300dpi using both genuine signatures
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and skilled forgeries for training, while SigNet-300dpi refers to using the same architecture,

but trained with only genuine signatures.

The Spatial Pyramid Pooling layer was implemented as in (He et al. (2015)): we use pooling

regions of sizes 4×4, 2×2 and 1×1, resulting in a total of 21 outputs for each feature map.

The pooling region and strides are dynamically determined for each input size. Let h and w be

the output size of the last convolutional layer. For the pyramid level of size n×n, the pooling

region of the unit ( j, i) is defined as rows between:
⌊ j−1

n h
⌋

and
⌈ j

nh
⌉

and columns between⌊ i−1
n w

⌋
and

⌈ i
nw

⌉
, where 
.� and �.
 denote the floor and ceiling operations. Similarly to max-

pooling, we take the max of this pooling region, that is, the output of unit ( j, i) is the maximum

value of the pooling region defined above. The implementation of this layer has been made

publicly available in the Lasagne library 1.

3.3.2 Training protocol

The neural networks are initialized with random weights following (Glorot & Bengio (2010)),

and training is performed with stochastic gradient descent to minimize the loss function de-

fined in section 3.3.1. We use mini-batches of data (which is required in order to use Batch

Normalization, and also speeds up training), and we consider different protocols for generating

the mini-batches, as described below.

The networks without SPP require a fixed input size for all images. In this case, we pre-

process all signatures by centering them in a canvas of a “maximum size", and then resizing to

the desired input size for the network.

When using Spatial Pyramid Pooling, we can process signatures of any size, but during training

we need to design a protocol that provides batches of signatures having the exact same size.

We consider two alternatives:

1 https://github.com/Lasagne/Lasagne/
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1. Fixed size: Using a single “maximum signature size" (as in the training for networks

without SPP);

2. Multiple sizes: Defining multiple canvas sizes, and centering each signature on the small-

est canvas that fit the signature.

In the first case, all the images on the training set have the same size, and we simply process

the images in mini-batches in a random order.

For the second alternative, we define different image sizes based on statistics of the develop-

ment set (the set of signatures used to train the CNN). Consider the following definitions:

- μh, σh, maxh: height of the signatures in the development set (mean, standard deviation and

maximum, respectively);

- μw, σw, maxw: width of the signatures in the development set (mean, standard deviation

and maximum, respectively).

We divide the dataset into 5 different parts, as follows:

1. Images larger than 3 standard deviations are considered “outliers". In particular, images

taller than τh = μh+3σh or wider than τw = μw+3σw are all assigned to the largest canvas,

of size (maxh ×maxw);

2. The remaining signatures are split in four groups, by using the medians of the height and

width. Given the medians H̃ and W̃ for the height and width, respectively, we consider the

following canvas sizes: (H̃ ×W̃ ), (H̃ × τw), (τh ×W̃ ), (τh × τw).

Each signature is centered (not resized) in the smallest canvas size that fits the signature. There-

fore, this creates a total of 5 datasets, one for each canvas size.

During training, we create an iterator for each of the 5 datasets: each iterator returns batches

of signatures of the same size (within the batch). We then train the model by taking batches of
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different image sizes, alternating the sizes after each mini-batch (contrary to (He et al. (2015))

that alternated after an entire epoch). This procedure is detailed in Algorithm 13. In this

algorithm, the train function is a single step of Stochastic Gradient Descent, with Nesterov

Momentum.

Algorithm 3.1 Training algorithm for “multiple sizes", for one epoch.

1 Input: S: set of image sizes; iterators: list of data iterators, for each image size
2 active ← S ;

3 while active �= /0 do
4 for s ∈ active do
5 if iterator[s].has_next_batch() then
6 mini_batch ← iterator[s].next_batch() ;

7 train(mini_batch) ;

8 end
9 else

10 active ← active \ s

11 end
12 end
13 end

We trained the networks for 60 epochs, using mini-batches of size 32, L2 penalty with weight

decay set to 10−4 and momentum factor of 0.9. Training started with a learning rate of 10−3,

which was decreased twice (at epochs 20 and 40) by dividing it by 10 each time.

3.3.2.1 Data augmentation

In previous work (Hafemann et al. (2016a)) we performed data augmentation by performing

random crops of the input images. We adopt the same protocol for the “Fixed size" training.

However, in the “Multiple sizes" protocol defined above, where we use smaller canvas sizes,

cropping the images could result in cropping part of the signature, not only the background.

Instead, we use the opposite strategy, of enlarging the signature images, by padding the signa-

tures with the background color. We use this strategy to avoid losing part of the signal due to

cropping. For example, consider an image of size 300x300, and a padding of size 20x20: we

pad the image so that it has size 320x320, positioning the original image to randomly start be-
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tween 0 and 20 pixels in height and width (i.e. not necessarily in the center of this new image).

For even greater variability, we consider a maximum value of padding, and in each mini-batch

we randomly select the padding between 0 and this maximum value.

3.3.3 Fine-tuning representations

When considering the generalization of the learned features to new operating conditions (e.g.

new acquisition protocol), it is possible to fine-tune the representations to the new conditions.

In order to evaluate the impact of fine-tuning the representations, we consider a network trained

in one dataset as a starting point, and subsequently train it for users of another dataset.

Similarly to previous work on transferring representations (Oquab et al. (2014); Chatfield et al.

(2014)), we perform the following steps for fine-tuning representation to a new dataset:

- Duplicate the network that was trained in the first dataset;

- Remove the last layer (that correspond to P(y|X) for the users in the first dataset);

- Add a new softmax layer, with M2 units, corresponding to P(y|X), the probability of a

signature image belonging to one of the M2 users of the second dataset;

- Train the network on the second dataset with a reduced learning rate (5×10−4).

The training procedure during finetuning is similar to the training algorithm used for learning

the features in the first dataset. The exception is for the SPP models trained with a “Fixed size".

In this case, we consider two distinct sizes: the original maximum signature size from the first

dataset, and the maximum signature size from the target dataset.

Since different datasets have different acquisition protocols (e.g. type of writing instrument,

instructions for the forgers, and the resolution of scanned images), we expect that fine-tuning

the representations to a set of users from the same domain should improve performance.
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3.3.4 Training WD classifiers

After we learn the CNN in one set of users, we use it to obtain representations for signatures of

users in the exploitation set E , and train Writer-Dependent classifiers. The procedure to obtain

the representations vary slightly depending on the training method:

- Networks without SPP: The signatures from E are centered in a canvas of maximum size

(Hmax ×Wmax). During transfer learning, we consider the maximum size of the target

dataset, and resize all images to the size of the original dataset;

- SPP trained with “fixed size": The signatures from E are centered in a canvas of size

(Hmax ×Wmax). During transfer learning, signatures that are larger than this canvas are

processed in their original size;

- SPP trained with “multiple sizes": The signatures are processed in their original size.

The differences among the three training alternatives are summarized in table 3.2.

For each user in the set E , we build a dataset consisted of r genuine signatures from the user as

positive samples, and genuine signatures from other users as negative samples. We then train

a binary classifier for the user: a linear SVM or an SVM with the RBF kernel. We usually

have many more negative than positive samples for training, since we only have a few genuine

signatures for the user, while we can use samples from many users as negative samples. For

this reason, we correct this skew by giving more weight to the positive samples, as described

in (Hafemann et al. (2017a)). After the classifiers are trained, we measure their capability of

classifying genuine signatures are different types of forgery.

3.4 Experimental Protocol

We conducted experiments on four offline handwritten signature datasets: GPDS-960 (Vargas

et al. (2007)), MCYT-75 (Ortega-Garcia et al. (2003)), CEDAR (Kalera et al. (2004)) and
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Table 3.2 Summary of differences between the training/testing protocols

Without SPP SPP (training with
fixed size)

SPP (training with
multiple sizes)

Training images Centered in a fixed

size

Centered in a fixed

size

Consider 5 different

sizes

CNN architecture Use pooling with

fixed pooling size

Use SPP (variable

pooling size, fixed

output)

Use SPP (variable

pooling size, fixed

output)

Generalization (ex-
tracting features)

Center images in a

fixed size. Larger

images are resized

Center images

in a fixed size.

Larger images are

processed in their

original size

All images are pro-

cessed in their origi-

nal size

Finetuning Center images in the

maximum size of the

target dataset. All

images are resized to

the maximum size of

the source dataset

Center images in two

canvases: maximum

size of the target

dataset, and max-

imum size of the

source dataset

Consider 5 different

sizes (defined in the

target dataset)

Brazilian PUC-PR (Freitas et al. (2000)); and two synthetic datasets, for Bengali and Devana-

gari scripts (Ferrer et al. (2017)). We used a subset of the GPDS-960 dataset for learning

feature representations, using the different architectures and training methods described in this

article. We then evaluate the performance of Writer-Dependent classifiers trained with these

feature representations, on a disjoint subset of GPDS, as well as the other datasets.

In order to allow comparison with previous work, we used the development set D as the last 531

users of GPDS (users 350-881) for training the CNNs. For the training protocol using “multiple

sizes", we followed the procedure detailed in section 3.3.2 to process the development dataset

into 5 different canvas sizes. For instance, at 600 dpi we used canvases of size 338× 684,

338×1183, 619×684, 619×1183 and 778×1212. The networks were then trained as defined

in section 3.3.2.

The images were pre-processed to remove noise, by applying Otsu’s algorithm to find the

threshold between background and foreground. The background pixels were set to white, leav-
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ing the signature pixels in grayscale. The images were then inverted by subtracting them from

the maximum pixel intensity: IP(x,y) = 255− I(x,y). In the resulting images the background

is therefore zero-valued. The OTSU algorithm was not applied to the two synthetic datasets,

since they do not contain any noise.

In the literature, slightly different protocols are used for each dataset, in particular regarding

how many reference signatures are used for training, and which signatures are used as negative

samples. We use the following protocols: In the GPDS dataset, we trained Writer-Dependent

classifiers for the first 300 users (to compare to results using the GPDS-300 dataset), using

r = 12 reference signatures as positive samples. We used 12 signatures from each user in the

development D as negative samples (12×531 = 6372 signatures). This protocol is similar to

the Brazilian dataset, where we have a separate development set D . We train classifiers for the

first 60 users using r = 15, and 15 signatures from each of the remaining 108 users as negative

samples (15×108 = 1620 signatures). In the MCYT and Cedar datasets, we used r = 10 and

r = 12, respectively, and the same number of signatures from each other user in the exploitation

set E as negative samples. In all cases, we trained a binary SVM, with an RBF kernel. We

used the same hyperparameters as previous research (Hafemann et al. (2016a)): C = 1 and

γ = 2−11, that were selected using a subset of the GPDS validation set. In this paper we did not

explore optimizing these hyperparameters for each dataset (or even each user), but rather keep

the same set of parameters for comparison with previous work.

For the experiments generalizing to different conditions (datasets), we considered two scenar-

ios: using the CNN trained on GPDS to extract features without any changes, and fine-tuning

the representation on these datasets. In these experiments, we used the network trained on

GPDS images of the same resolution of the datasets (300 dpi for Cedar and Brazilian, 600 dpi

for other datasets).

In order to assess the generalization performance of the fine-tuned representations, we con-

ducted cross-validation experiments as follows:
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1. The dataset in randomly split in two sets of users (50%/50%). Following the same termi-

nology as before, we can consider them to be a development set D and exploitation set

E ;

2. We fine-tune the CNN (originally trained on GPDS) for the development set D ;

3. We use the fine-tuned CNN to extract features for the exploitation set E and train WD

classifiers.

This protocol allows for an unbiased estimation of the performance on new users, whose sig-

natures match the same operating characteristics of the dataset. We performed cross-validation

running the steps above 10 times, each time randomly splitting the dataset in half, fine-tuning

the CNN and training WD classifiers. For each fine-tuned CNN, we performed 10 runs on the

WD classifier training with different signatures used for training/testing. Therefore, we fine-

tuned a total of 10 CNNs for each dataset, and trained a total of 100 WD classifiers for each

user in each dataset, and for each architecture. We then report the mean and standard deviation

across these 100 runs.

We evaluate the generalization of the learned representations to different scripts by training WD

classifiers on synthetic signatures for two indian scripts: Bengali and Devanagari (Ferrer et al.

(2017)). For these datasets, since skilled forgeries are not available (the generation procedure

is only defined for genuine signatures in (Ferrer et al. (2017))) we evaluate the performance

of the system on random forgeries. To allow for comparison with previous work, we train the

WD classifiers with r = 5 genuine signatures as positive samples. We also evaluated the errors

on random forgeries on the other four datasets, which allows us to verify the generalization

performance to other western scripts (on MCYT, CEDAR and Brazilian PUC-PR) and for

other types of scripts (Bengali and Devanagari).

We evaluate the performance primarily using the Equal Error Rate (EER): which is the error

when False Acceptance (misclassifying a forgery as being genuine) is equal to False Rejection

(misclassifying a genuine as being a forgery). We considered two forms of calculating the
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EER: EERuser thresholds: using user-specific decision thresholds; and EERglobal threshold: using a

global decision threshold. For most experiments, we report the Equal Error Rates using only

skilled forgeries. In the experiment where we compare the generalization to different scripts,

we report the Equal Error Rates calculated with random forgeries.

For the Brazilian PUC-PR dataset, we used the same metrics as previous research in this

dataset, and also report the individual errors (False Rejection Rate and False Acceptance

Rate for different types of forgery) and the Average error rate, calculate as AER = (FRR+

FARrandom + FARsimple + FARskilled)/4. We also reported the average error rate considering

only genuine signatures and skilled forgeries: AERgenuine + skilled = (FRR+FARskilled)/2.

For the comparison between different training types, and to measure the impact of finetuning,

we use t-tests to compare the classifiers (using the EERuser thresholds metric). We considered

results significantly different for p < 0.01.

3.5 Results

We first present our analysis on using different image resolutions, followed by the analysis of

the methods trained with SPP for handling signatures of variable size, and a comparison with

the state-of-the-art.

The results with varying the image resolution are summarized in figure 3.4. This figure shows

the classification performance (EER) of Writer-Dependent classifiers trained on the GPDS-300

dataset, as we increase the resolution of the images. For these experiments, we consider the

models trained without SPP, and consider two training scenarios: when we only use genuine

signatures, and when skilled forgeries from a subset of users is used for feature learning (note

that for training the WD classifiers, no skilled forgeries are used). The objective of this ex-

periment is to verify the hypothesis that higher image resolutions are required to discriminate

skilled forgeries. We notice an interesting trend in this figure: when using both genuine signa-

tures and skilled forgeries, increasing the resolution greatly improves performance, reducing

errors from 2.10% using 100 dpi to 0.4% using 300 dpi. On the other hand, increasing resolu-
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tion did not improve performance when only genuine signatures are used for feature learning.

We argued in the introduction (in figure 3.2) that low resolutions lose information about the

line quality. These results suggest that, although fine details are present in higher resolution

images, they are not taken into account when only genuine signatures are used for training the

CNN. In other words, since the network does not have access to any skilled forgery, it does

not learn features that discriminate line quality. Therefore, when only genuine signatures are

available for training, low resolutions (100 dpi) are sufficient, but if forgeries from a subset of

users are available, higher resolutions (e.g. 300 dpi) greatly improve performance.

Figure 3.4 Impact of the image resolution on system performance: EER of

Writer-Dependent classifiers trained on GPDS-300, with representations learned in D at

different resolutions. Left: Using only genuine signatures for feature learning; Right:

Using genuine signatures and skilled forgeries for feature learning. Error bars indicate

one standard deviation of the mean error (across 10 replications)

We now consider the experiments using SPP for learning a fixed-sized representation for sig-

natures of different sizes. Table 3.3 compares the performance of the WD classifiers on the

GPDS dataset, as we change the training method. We consider both the baseline (network

without SPP), and the two proposed training protocols for using SPP: with a single fixed can-

vas for training (denoted “Fixed" in the table), and using the 5 different canvases, defined in

the development set (denoted “Multi" in the table). The results that are significantly better than

the baseline (at p < 0.01) are denoted with a bullet point (•). We notice that the performance

between the baseline and SPP Fixed is very similar, while the method using multiple canvases
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Table 3.3 Performance of WD classifiers on GPDS-300, using 12 reference signatures

(Errors and standard deviations in %)

Feature
Training

Algorithm
EERglobal threshold EERuser thresholds

SigNet-300dpi 5.72 (±0.21) 3.5 (±0.22)

SigNet-SPP-300dpi Fixed 5.63 (±0.22) 3.15 (±0.14) •
SigNet-SPP-300dpi Multi 7.75 (±0.28) 4.86 (±0.24)

SigNet-300dpi-F 1.78 (±0.12) 0.4 (±0.08)

SigNet-SPP-300dpi-F Fixed 1.69 (±0.1) 0.41 (±0.05)

SigNet-SPP-300dpi-F Multi 2.52 (±0.09) 0.8 (±0.07)

SigNet-600dpi 7.11 (±0.17) 4.2 (±0.27)

SigNet-SPP-600dpi Fixed 7.06 (±0.13) 4.02 (±0.18)

SigNet-SPP-600dpi Multi 6.36 (±0.16) 3.96 (±0.23)

SigNet-600dpi-F 2.46 (±0.09) 0.8 (±0.08)

SigNet-SPP-600dpi-F Fixed 2.27 (±0.18) 0.65 (±0.11) •
SigNet-SPP-600dpi-F Multi 2.85 (±0.16) 0.86 (±0.1)

during training performs a little worse. The proposed method using SPP Fixed keeps about the

same level of performance as the baseline, while removing the constraint of having a maximum

signature size (since both SPP methods accept larger signatures for processing).

The results on transferring representations to different operating conditions are summarized in

figure 3.5. We considered models trained on the GPDS dataset, and used these models to extract

features and train WD classifiers on other operating conditions, that is, three other datasets:

Brazilian PUC-PR, Cedar and MCYT. In all cases, we verify the impact of fine-tuning the

representations for the new operating conditions, following the procedure detailed in section

3.3.3. For the first two datasets, that were scanned in 300 dpi, we used the representations

learned in GPDS at 300 dpi, while for MCYT we used the representations learned at 600

dpi. In this experiment, we did not use any forgeries for training (neither from GPDS nor the
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Figure 3.5 Classification performance of Writer-Dependent classifiers trained with

representations learned in the GPDS dataset. The hatched bars denote results with

features fine-tuned in each particular dataset. Error bars denote the standard deviation

across 100 replications.

target dataset). We performed t-tests to verify if fine-tuning the representation significantly

improved the classification performance (marked with a bullet point next to the dataset name).

We can see that the baseline (without SPP) and the SPP model trained with fixed image sizes

performed similarly, while SPP trained on multiple canvas sizes performed worse for transfer.

We also consistently see that fine-tuning representations on the target datasets helps the domain

adaptation, reducing the errors on average.

Table 3.4 shows the results of the experiments on transferring the representation to other types

of scripts. The objective of this experiment was to verify if the features learned on the GPDS

dataset generalizes to other types of script (in particular, we tested for Bengali and Devana-

gari). Differently from the previous analysis, for these datasets we consider the performance

on discriminating genuine signatures and random forgeries (signatures from other users), since

skilled forgeries are not available in these synthetic datasets. We consider experiments us-

ing the network trained on GPDS with no changes, and experiments where we finetune the

representation to the particular dataset, following the protocol from section 3.3.3. Results

that are significantly better (at p < 0.01) are shown with a bullet. We noticed an interesting
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Table 3.4 Generalization performance on other datasets, with and without fine-tuning

(for random forgeries)

Dataset Finetuned EERglobal threshold EERuser thresholds
Bengali 5.07 (±0.8) 3.41 (±0.81)

Bengali Yes 0.77 (±0.27) 0.16 (±0.14) •
Devanagari 4.65 (±0.92) 2.93 (±0.8)

Devanagari Yes 0.33 (±0.2) 0.06 (±0.09) •
MCYT 0.19 (±0.39) 0.03 (±0.13)

MCYT Yes 0.04 (±0.12) 0.0 (±0.0)

CEDAR 1.14 (±0.75) 0.37 (±0.42)

CEDAR Yes 0.23 (±0.26) 0.08 (±0.19) •
Brazilian 0.47 (±0.3) 0.2 (±0.25)

Brazilian Yes 0.5 (±0.38) 0.16 (±0.24)

Bengali

(Results from Ferrer et al. (2017))
- 0.67 -

Devanagari

(Results from Ferrer et al. (2017))
- 0.47 -

trend in these results, where without finetuning, the performance on other datasets that con-

tain western-style signatures is already good (around or less than 1% for MCYT, CEDAR and

Brazilian PUC-PR), but for the indian scripts the performance was much worse (3-5% EER).

By finetuning the representation for the scripts, we obtain good performance (comparable with

the previously reported in (Ferrer et al. (2017))). This suggests that the learned representa-

tion generalize better to users with western scripts than to other scripts. Multi-script learning

approaches could be considered to improve performance on all scripts.

Lastly, tables 3.5, 3.6, 3.7 and 3.8 compare the results we obtained with SPP-Fixed (consid-

ering EERuser thresholds using genuine signatures and skilled forgeries) with the state-of-the-art

in GPDS, MCYT, Cedar and Brazilian PUC-PR, respectively. We observe results competitive

to the state of the art in all datasets. In particular, in the GPDS dataset we notice big gains in

performance (0.41% EER compared to 1.69% EER).

It is also worth noting that the MCYT dataset contains both Offline and Online signature data

(for the same users). Historically, performance on online systems was greatly superior, but

recent work on offline signature verification is closing the gap between the two strategies.



83

Table 3.5 Comparison with state-of-the art on the GPDS dataset (errors in %)

Reference Dataset
#samples

per user
Features EER

Hu & Chen (2013) GPDS-150 10 LBP, GLCM, HOG 7.66

Guerbai et al. (2015) GPDS-160 12 Curvelet transform 15.07

Serdouk et al. (2015a) GPDS-100 16 GLBP, LRF 12.52

Yılmaz & Yanıkoğlu (2016) GPDS-160 5 LBP, HOG, SIFT 7.98

Yılmaz & Yanıkoğlu (2016) GPDS-160 12 LBP, HOG, SIFT 6.97

Soleimani et al. (2016) GPDS-300 10 LBP 20.94

Hafemann et al. (2017a) GPDS-300 12 SigNet-F 1.69 (±0.18)

Present Work GPDS-300 12 SigNet-SPP-300dpi 3.15 (±0.14)

Present Work GPDS-300 12 SigNet-SPP-300dpi-F 0.41 (±0.05)

Table 3.6 Comparison with the state-of-the-art in MCYT (errors in %)

Reference #samples
per user Features EER

Gilperez et al. (2008) 5 Contours (chi squared distance) 10.18

Gilperez et al. (2008) 10 Contours (chi squared distance) 6.44

Wen et al. (2009) 5 RPF (HMM) 15.02

Vargas et al. (2011) 5 LBP (SVM) 11.9

Vargas et al. (2011) 10 LBP (SVM) 7.08

Ooi et al. (2016) 5 DRT + PCA (PNN) 13.86

Ooi et al. (2016) 10 DRT + PCA (PNN) 9.87

Soleimani et al. (2016) 5 HOG (DMML) 13.44

Soleimani et al. (2016) 10 HOG (DMML) 9.86

Hafemann et al. (2017a) 10 SigNet (SVM) 2.87 (± 0.42)

Present Work 10 SigNet-SPP-600dpi 3.64 (± 1.04)

Present Work 10 SigNet-SPP-600dpi (finetuned) 3.40 (± 1.08)

The best results on the literature achieve 2.85% EER (Rua & Castro (2012)) and 3.36% EER

(Fierrez et al. (2007)) on the Online MCYT dataset, while for offline signature verification,

performance is achieving around 3% EERuser thresholds. Although these results are not directly

comparable (both Rua & Castro (2012) and Fierrez et al. (2007) implement per-user score
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Table 3.7 Comparison with the state-of-the-art in CEDAR (errors in %)

Reference #samples
per user Features AER/EER

Chen & Srihari (2006) 16 Graph Matching 7.9

Kumar et al. (2010) 1 morphology (SVM) 11.81

Kumar et al. (2012) 1 Surroundness (NN) 8.33

Bharathi & Shekar (2013) 12 Chain code (SVM) 7.84

Guerbai et al. (2015) 4 Curvelet transform (OC-SVM) 8.7

Guerbai et al. (2015) 8 Curvelet transform (OC-SVM) 7.83

Guerbai et al. (2015) 12 Curvelet transform (OC-SVM) 5.6

Hafemann et al. (2017a) 12 SigNet-F (SVM) 4.63 (± 0.42)

Present Work 10 SigNet-SPP-300dpi 3.60 (± 1.26)

Present Work 10 SigNet-SPP-300dpi (finetuned) 2.33 (± 0.88)

Table 3.8 Comparison with the state-of-the-art on the Brazilian PUC-PR dataset (errors

in %)

Reference
#samples

per user
Features FRR FARrandom FARsimple FARskilled AER AERgenuine + skilled EERgenuine + skilled

Bertolini et al. (2010) 15 Graphometric 10.16 3.16 2.8 6.48 5.65 8.32 -

Batista et al. (2012) 30 Pixel density 7.5 0.33 0.5 13.5 5.46 10.5 -

Rivard et al. (2013) 15 ESC + DPDF 11 0 0.19 11.15 5.59 11.08 -

Eskander et al. (2013) 30 ESC + DPDF 7.83 0.02 0.17 13.5 5.38 10.67 -

Present Work 15 SigNet 1.22 (± 0.63) 0.02 (± 0.05) 0.43 (± 0.09) 10.70 (± 0.39) 3.09 (± 0.20) 5.96 (± 0.40) 2.07 (± 0.63)

Present Work 15 SigNet-SPP-300dpi 0.69 (±0.51) 0.04 (±0.07) 0.14 (±0.2) 9.51 (±1.27) 2.59 (±0.35) 5.1 (±0.69) 1.33 (±0.65)

Present Work 15
SigNet-SPP-300dpi

(finetuned)
0.63 (±0.57) 0.03 (±0.07) 0.14 (±0.2) 8.78 (±1.55) 2.39 (±0.39) 4.7 (±0.77) 1.35 (±0.6)

normalization with a single global threshold), it shows that the gap between the two approaches

is being reduced.

3.6 Conclusion

In this work we proposed and evaluated two methods for adapting the CNN architectures to

learn a fixed-size representation for signatures of different sizes. A simple method, of training

a network with SPP in images of a fixed sized (and generalizing to signatures of any size)

showed similar performance to previous methods, while removing the constraint of having a

maximum signature size that could be processed.
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Our experiments with different resolutions showed that using larger image resolutions do not

always lead to improved performance. In particular, we empirically showed that using reso-

lution higher than 100 dpi greatly improves performance if skilled forgeries (from a subset of

users) is used for feature learning, but does not improve performance if only genuine signatures

are used. This suggests that when learning features from skilled forgeries, the network can use

detailed information about the signature strokes (e.g. if the writing is shaky, with limp strokes),

while this information is ignored when only genuine signatures are used for training the CNN

(when the network is only attempting to distinguish between different users).

Lastly, our experiments with transfer learning confirm previous results that features learned

in one signature dataset generalize to other operating conditions. Our results also suggest that

fine-tuning the representations (on a subset of the users in the new dataset) is useful to adapt the

representations to the new conditions, improving performance. Especially for signatures from

different styles than used for training (e.g. CNN trained on western signatures and generalizing

to other types of script), finetuning showed to be particularly important. Other techniques, such

as multi-script learning are also be promising for this scenario.
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Abstract

Handwritten Signature verification presents a challenging Pattern Recognition problem, where

only knowledge of the positive class is available for training. While classifiers have access

to a few genuine signatures for training, during generalization they also need to discriminate

forgeries. This is particularly challenging for skilled forgeries, where a forger practices imi-

tating the user’s signature, and often is able to create forgeries visually close to the original

signatures. Most work in the literature address this issue by training for a surrogate objective:

discriminating genuine signatures of a user and random forgeries (signatures from other users).

In this work, we propose a solution for this problem based on meta-learning, where there are

two levels of learning: a task-level (where a task is to learn a classifier for a given user) and a

meta-level (learning across tasks). In particular, the meta-learner guides the adaptation (learn-

ing) of a classifier for each user, which is a lightweight operation that only requires genuine

signatures. The meta-learning procedure learns what is common for the classification across

different users. In a scenario where skilled forgeries from a subset of users are available, the

meta-learner can guide classifiers to be discriminative of skilled forgeries even if the classifiers

themselves do not use skilled forgeries for learning. Experiments conducted on the GPDS-960

dataset show improved performance compared to Writer-Independent systems, and achieve re-
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sults comparable to state-of-the-art Writer-Dependent systems in the regime of few samples

per user (5 reference signatures).

4.1 Introduction

Handwritten signature verification remains a challenging problem in the presence of skilled

forgeries, where the forger has access to the user’s signature and practices imitating it (Hafe-

mann et al. (2017b)). This problem is particularly challenging since in a practical application

scenario we cannot expect to have access to skilled forgeries for every user in the system for

training the classifiers.

This problem is mainly addressed in three ways in the literature: (i) training a classifier for

each user using a surrogate objective, where the negative samples are genuine signatures from

other users (called random forgeries in this context) (Vargas et al. (2010); Yılmaz & Yanıkoğlu

(2016); Hafemann et al. (2017a)) (ii) training a one-class classifier for each user (Guerbai et al.

(2015)); (iii) training a global, writer-independent classifier (Kumar et al. (2012); Eskander

et al. (2013); Rantzsch et al. (2016)). The first alternative (Writer Dependent (WD) classifica-

tion) optimizes a surrogate objective, which therefore can be sub-optimal. The second alterna-

tive (one class Writer Dependent classification) is an appropriate formulation of the problem,

but empirical results show that this approach performs worse than the first. A possible reason

is that for signature verification tasks we normally have only a small number of samples per

user, which makes it hard to estimate the support (or probability density) of the positive class.

Lastly, the third alternative (Writer Independent (WI) classification) alleviates the problem of

a small number of samples per user by transforming the problem in a binary classification

problem: comparing a query signature with a reference (template) signature, where the same

classifier is used for all users. However, empirically these approaches also show worse per-

formance than WD classification, at least when the number of signatures available for training

(per user) is larger than 1. We hypothesize that a reason for this gap in performance is that the

WI classifiers compare a query signature with a reference signature one at a time, while the
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WD classifiers are trained with multiple references at the same time, and therefore can better

estimate the invariances in a person’s signature (intra-class variation).

Considering different approaches, WD classification (alternative (i) above) shows better empir-

ical performance (Hafemann et al. (2017b)). However, this approach has other shortcomings

compared to WI approaches: they require training a classifier for each user, which is not desir-

able in some scenarios: For instance, when the number of users is very large, and each user do

not use the system often - many classifiers are trained but are almost never used. Also, in the

cases where features are learned from data (e.g. Hafemann et al. (2017a)), if we want to change

the feature representation, for instance by training with new data, we would need to re-train all

WD classifiers in the system, while a global (WI) classifier would not require any extra step.

WI systems also naturally handles the issue of adding more signatures to the reference set.

In this work, we propose to formulate the task as a meta-learning problem, inspired by the

work of a Forensics Handwritten Expert: the expert acquires knowledge examining genuine

signatures and forgeries from several people along his/her training and work experience. For a

new case, along with knowledge of signatures from the individual, this previous experience is

also used when analyzing a signature of interest. We consider a meta-learner that learns across-

tasks (classification for specific individuals), that is then adapted to a particular user in order to

make a prediction on a query signature. In particular, we consider an established meta-learning

algorithm: Model Agnostic Meta Learning (MAML) (Finn et al. (2017)), that we extend to

use different loss functions during classifier adaptation and meta-learning, to address the issue

of partial-knowledge during training. This approach learns directly from signature pixels, and

the meta-learning procedure learns a representation that is highly adaptable: it is adapted to a

new user by one (or a few) gradient descent steps. In this way, the adaptation of the classifier

for a user is a lightweight operation that can be done on demand (e.g. for each query). This

results in a system that is scalable as a WI system, but that is also adaptable for individual

users. Additionally, contrary to other work that learns representations to train WD classifiers

(Hafemann et al. (2017a)), not only the final classification layer is adapted to the new user, but

the feature representation is also adapted.
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We conducted most experiments with the GPDS-960 dataset (Vargas et al. (2007)). We evalu-

ated the performance of proposed method in different scenarios such as varying the training set

size and the number of gradient descent steps. On the GPDS-300 subset, the proposed method

obtains better results than WI systems proposed in the literature, and approach the performance

of WD systems, especially when few samples are available for training. With 5 reference signa-

tures, the proposed method obtains 5.16% EER (using a global threshold), compared to 9.05%

of a WI system and 5.25% of a WD system. For a larger number of references the WD system

still performs better, but the gap in performance is greatly reduced. Considering 12 reference

signatures, the method obtains 4.39% EER (with a global threshold), vs 3.74% for the WD

system, while being more scalable (single meta-classifier). We also discuss some limitations

of the system, most notably the requirement of using data from a large number of users for

training, and worse results when transferring the meta-learner to the other datasets, by testing

the system in the MCYT-75 (Ortega-Garcia et al. (2003)), CEDAR (Kalera et al. (2004)) and

Brazilian PUC-PR (Freitas et al. (2000)) datasets.

The paper is organized as follows: section 4.2 reviews the related work on signature verification

and meta-learning, and describes the common strategy of performing WD classification using

learned features. Section 4.3 introduces the formulation of signature verification as a meta-

learning problem, and the proposed algorithm. Section 4.4 describes the experimental protocol,

and section 4.5 presents and discusses our results. Finally, section 4.6 concludes the paper.

4.2 Related Work

The objective of signature verification systems is to classify a query signature as being genuine

(produced by the claimed individual), or a forgery (produced by another person). In the Pattern

Recognition community, different forgeries are considered: Random forgeries - in which the

forger has no knowledge of the user’s signature, and use his signature instead; Simple forgeries

- in which the forger knows the person’s name, but not their signature; Skilled forgeries - where

the forger has access to the user’s signature, and practices imitating it. While the problem of
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distinguishing random and simple forgeries is relatively easy (i.e. low error rates in state-of-

the-art classifiers), skilled forgeries still present a significant challenge for classification.

These systems can be broadly categorized as Writer-Dependent (WD, also called User-Dependent)

and Writer-Independent (WI, also called User-Independent). For Writer-Dependent classifiers,

we consider a dataset for each user {x,y}n
i=1, where x are signatures, and y indicate whether

they are genuine signatures from the user (y = 1) or random forgeries (y = 0) (Vargas et al.

(2010); Yılmaz & Yanıkoğlu (2016); Hafemann et al. (2017a)). Some work consider one-class

WD classifiers, in which only genuine signatures from the user are used for training (only

y = 1) (Guerbai et al. (2015)). For WI classifiers, there are two main approaches: training a

single classifier in a dissimilarity space, and metric learning approaches. In the first case, the

training samples are difference of feature vectors: |φ(x1)−φ(x2)|, with y = 1 if both signatures

are from the same user, and y = 0 otherwise (Kumar et al. (2012); Eskander et al. (2013)). The

metric learning approaches use a siamese network architecture (Bromley et al. (1994)), which

takes two signatures (x1,x2) as input, and outputs a metric (distance) between them.

Recent work on signature verification rely on feature learning methods (Hafemann et al. (2016b,

2017a); Zois et al. (2017, 2018a); Rantzsch et al. (2016)), in which learning is conducted di-

rectly from signature pixels, instead of relying on handcrafted feature extractors. When used in

conjunction with WD classifiers, feature learning is conducted for another surrogate objective,

e.g. dictionary learning (Zois et al. (2017, 2018a)), or classifying the user that produce the

signatures (Hafemann et al. (2017a)). For WI classification, the system can be trained jointly

(feature extraction and classification) (Rantzsch et al. (2016)). Despite being jointly trained,

such WI systems still perform worse than WD classifiers trained with features learned with

surrogate objectives, at least when more than one signature references are used. A possible

reason for this gap is the fact that WI systems compare the query signature to each reference

individually (or comparing with the centroid of the signatures), which is less powerful than

training a classifier for the user, in capturing the invariances of the person’s signature.
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4.2.1 Meta-learning

In a broad sense, meta-learning is concerned with the problem of learning to learn, with ori-

gins in the 80’s and 90’s (Schmidhuber (1987), Bengio et al. (1991)). More recently, algo-

rithms based on meta-learning have achieved state-of-the-art results in tasks such as hyperpa-

rameter optimization (Maclaurin et al. (2015)), neural network architecture search (Baker et al.

(2017))), and few-shot learning (Ravi & Larochelle (2017); Finn et al. (2017)). Few-shot learn-

ing considers a scenario where only a few samples from each class are available for training,

which is similar to actual application scenarios in handwritten signature verification.

The goal of these meta-learning approaches for few-shot learning is to train a model that can

quickly (i.e. in a few iterations) adapt to a new task using only a few samples. A new task

in this context refers, for instance, to classify a new object, for which only a few samples are

known. Ravi & Larochelle (2017) proposed learning an optimizer and initialization for the

tasks (Meta Nets). They propose using a Long short-term memory (LSTM) model to learn the

update rule for adapting the network parameters to a new task. Finn et al. (2017) proposed a

Model Agnostic Meta Learning (MAML) procedure that does not require any extra parameters.

This model optimizes the sensitivity of the weights, that is, obtain a feature representation that

is highly adaptive, such that a single (or a few) gradient descent iterations are sufficient to

optimize to new tasks.

4.2.2 Revisiting WD classification using learned features

Current state-of-the-art signature verification methods consider a feature-learning phase, where

a function φ(x) is learned to extract features from signature images x. This is commonly

learned with a surrogate objective (e.g. classifying users (Hafemann et al. (2017a)), dictionary

learning (Zois et al. (2017))). This feature representation is learned from a Development dataset

D , which is then used to extract features and train Writer-Dependent classifiers for the users of

interest (exploitation set E ). A dataset Vv (Validation set for verification) is used to optimize

hyperparameters for feature learning. The exploitation set if further divided in training (Lv,
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Figure 4.1 Common dataset separation for Feature

Learning followed by WD classification.

used to train the WD classifiers) and test (Tv, use to evaluate generalization performance).

Furthermore, some formulations consider that skilled forgeries from a subset of users (from

D) are available for training, and measure the impact of classification for users in E . This

dataset division is illustrated in figure 4.1.

While this approach achieved state-of-the-art classification (Hafemann et al. (2017a)), it has

some shortcomings: it requires training one classifier for each user, which may be an expensive

operation (e.g. best results were reported with an SVM trained with the RBF kernel for each

user). If the feature extractor is updated (e.g. trained with more data), then all classifiers need

to be retrained. Also, these systems use a fixed representation for all users, and it is possi-

ble that adapting the representation for each user would yield improvements in classification

performance.

4.3 Proposed Method

In this work we propose a meta-learning approach for signature verification. This formulation

considers a meta-learner that guides the adaptation of a classifier for each user. We consider

that each user describes a task: discriminating between genuine signatures (created by the user)

and forgeries. Figure 4.2 illustrates the data available for one task: we consider a reference

(support) dataset that is used for training a classifier that can classify new queries as genuine

or forgery.
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genuine genuine ? ?

Figure 4.2 Illustration of the data available for one task (user). Left: the reference

(support) set. Right: query samples.

genuine genuine genuine forgery

genuine genuine genuine forgery

Figure 4.3 Example of the meta-learning setup. Each user represents an episode, where

Du is used for classifier adaptation and D ′
u is used for meta-update.

In a meta-learning setting, we consider that training a classifier for a particular user is guided

by a meta-learner, that leverages data from multiple tasks for learning. For this we consider a

dataset Dmeta-train, and then evaluate the generalization performance on unseen users Dmeta-test.

We note that this approach has a direct correspondence to previous work that used feature learn-

ing followed by WD classification (section 4.2.2), and here we make the association between

the terminology in the meta-learning research and previous work on Signature Verification. In

both cases we use a separate set of users for feature learning (Dmeta-train is analogous to the

development set in sec. 4.2.2), which is then used for to train and test classifiers on a new set

of users (Dmeta-test is analogous to the exploitation set). The key differences of meta-learning
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is that: (i) The loss optimized for feature learning is directly related to the final objective (sep-

arate genuine signatures and forgeries); (ii) training a classifier for a new user is a lightweight

process (a few gradient descent iterations); (iii) not only the classifier, but the features are also

adapted for each user.

In the next section we formalize the problem of signature verification as a meta-learning task.

4.3.1 Problem formulation

Table 4.1 Table of symbols

Symbol Description
T Distribution of tasks (i.e. users)

Tu Task for user u
Dmeta-train Training set for the meta-learner

Dmeta-test Testing set for the meta-learner

Du Samples for weight adaptation for user u
D ′

u Samples for meta-update for user u
Gu Genuine signatures for user u
Su Skilled forgeries for user u
θ Network parameters

θ (u)
k Parameters adapted to user u after k descent steps

L Loss function for weight adaptation

L′ Loss function for meta-update

We consider that each user describes a task Tu ∈ T , where the task consists in classifying

a signature image as genuine (created by the user) or forgery (not created by the user). A

collection of users therefore describes a distribution of tasks T , and the aim of the meta-

learner is to explore the structure present in this distribution. We consider a dataset Dmeta-train

containing tasks from T , that is used for meta-learning. For each user we consider a set Du,

that is used to adapt the classifier, and a set D ′
u that is used for updating the meta-learner. Lastly,

to verify the generalization to unseen users, we consider a set Dmeta-test, that contains data from

a disjoint set of users (Dmeta-train∩Dmeta-test = /0). Figure 4.3 illustrates the meta-learning setup,

and the symbols used in this paper are listed in Table 4.1 for clarity.
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Meta-learning

Generalization

Classi er
Adaptation

(Alg. 2)

Meta-Training
(Alg. 1)

Classi cation

Weights (  )

Adapted Weights (       )

Figure 4.4 Overview of the meta-learning system for signature verification.

Model Model Model

3

1

2

Figure 4.5 Illustration of one iteration of meta-training for one task Tu. Starting with

parameters θ , the weights are specialized for the task in K gradient descent steps. Each

step involves computing the loss (1), back-propagating the loss w.r.t to θ ′
k−1 (2) and

updating the weights (3). For the meta-update, the loss L′ is backpropagated through the

entire chain (from L′ back to the initial θ ), computing ∇θ L′(D ′
u,θ u

K).
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4.3.2 Model Agnostic Meta-Learning for signature verification

In this work we propose an extended version of Model-Agnostic Meta-Learning (MAML)

(Finn et al. (2017)), by considering different criteria for classifier adaptation and meta-learning.

An overview of the system can be seem in figure 4.4. We consider a development set for meta-

training, that consists in learning the weights θ of a Convolutional Neural Network, that are

highly adaptable to new tasks. During generalization, for a user u, a reference set Du is used

to adapt the classifier to this user (using K gradient descent steps) obtaining weights θ (u)
K . This

adapted classifier is then used to classify a query image xq, obtaining P(y = 1|xq,θ
(u)
K ).

Algorithm 4.1 Meta-Training algorithm

1 Input: M: Meta-batch size
2 Input: K: Number of gradient descent steps
3 Input: α , β Learning rates
4 Output: θ : Meta-learned weights
5 Randomly initialize θ
6 while not done do
7 Sample a batch of tasks {Tu}M

u=1 ∼ T

8 θgrad ←�0
9 for u ← 1 to M do

10 Sample Du // Genuine only
11 θ ′

0 ← θ
12 for k ← 1 to K // Adapt weights to u
13 do
14 θ ′

k ← θ ′
k−1 −α∇θ ′

k−1
L(Du,θ ′

k−1)

15 end
16 Sample D ′

u // Genuine and forgeries
17 Compute predictions: P(ytest|Xtest,θ ′

K)

18 θgrad ← θgrad +
1
M ∇θ L′(D ′

u,θ ′
K)

19 end
20 θ ← θ −βθgrad // Meta-update
21 end

Algorithm 4.1 describes the full meta-training algorithm. Meta-training is conducted in episodes

(Figure 4.3). In each episode, the classifier is adapted to a particular user using Du (lines 7 to

10), and the adapted classifier is used to classify the set D ′
u. The loss is then back-propagated
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through all intermediate steps of the classifier adaptation (lines 11 and 12), and is used to update

the meta-learner weights θ (line 14). Therefore, instead of having a feature representation that

is directly applicable for any user, they are learned to work well for new users after K gradient

descent steps on the user’s signatures. For stability during training, we train on “mini-batches"

of episodes, by accumulating the gradients for M episodes before updating θ .

Figure 4.5 illustrates the classifier adaptation procedure. In this work, we adapt the MAML

algorithm to use different loss functions for the classifier adaptation and the final loss (used

for the meta-update). In particular, we consider a loss function L that only uses genuine signa-

tures for the classifier adaptation, and a loss function L′ that use both genuine signatures and

forgeries. Let Du = Gu∪Gi�=u be the training set consisted of genuine signatures from the user

(Gu) and random forgeries (Gi�=u). We consider the following loss for classifier adaptation:

L(Du,θ) =− 1

|Gu| ∑
x:Gu

log(P(y|x,θ))

− 1

|Gi�=u| ∑
x:Gi�=u

log(P(y|x,θ))
(4.1)

where |Gu| and |Gi�=u| are the number of users in the sets, which is used to correct for the

imbalance between the two classes.

Let D ′
u = G′

u∪G′
i�=u∪S′u be the a disjoint set of signatures for user u: genuine signatures (G′

u),

random forgeries (G′
i�=u), and (if available), skilled forgeries S′u. We define the loss function for

meta-update as follows:

L′(D ′
u,θ) =− 1

|G′
u| ∑

x:G′
u

log(P(y|x,θ (u)
K ))

− 1

|G′
i�=u| ∑

x:G′
i�=u

log(P(y|x,θ (u)
K ))

− 1

|S′u| ∑
x:S′u

log(P(y|x,θ (u)
K ))

(4.2)
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Algorithm 4.2 Classifier adaptation

1 Input: K: Number of gradient descent steps
2 Input: α Learning rate
3 Input: θ Meta-learned weights
4 Input: Du Reference set for user u
5 Output: θ ′

K: Weights adapted to the user after K steps
6 θ ′

0 ← θ
7 for k ← 1 to K do
8 θ ′

k ← θ ′
k−1 −α∇θ ′

k−1
L(Du,θ ′

k−1)

9 end

On generalization, for a new user we first adapt the weights to this user using a set of reference

signatures Du, and then classify a new query signature using the adapted weights. Algorithm

4.2 describes the classifier adaptation to a new user. We note that only the loss function L is

used, and therefore only genuine signatures are used when adapting a classifier for a new user.

4.3.3 Meta-learning for one-class classification

The approach defined above can also be extended for one-class classification, where the clas-

sifier adaptation is done with only genuine signatures from the user of interest. This is easily

implemented by considering Du = Gu. It is worth noting that similarity-based methods and

one-class methods that involve feature learning often suffer from the problem of collapsing rep-

resentations into a point (Perera & Patel (2018)). This is often addressed by adding a penalty

in the loss function that requires dissimilar items to be far apart in the feature space. In our

formulation, while the user’s classifier is only trained with data from one class, we observe that

training does not collapse to a single point since the meta-training procedure directly optimizes

the performance on separating forgeries in D ′
u.

4.4 Experimental Protocol

We conducted most experiments on the GPDS-960 dataset (Vargas et al. (2007)), that consists

of 881 users, with 24 genuine signatures per user and 30 skilled forgeries. We follow the same
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dataset separation as previous work (figure 4.1), with users 350-881 as Dmeta-train, 300-350 as

Dmeta-val and users 0-300 as Dmeta-test. We used the same pre-processing method from previous

work (Hafemann et al. (2016b, 2017a)), by removing the background noise using Otsu, cen-

tering the images in a canvas of size 952×1360 and resizing them to 170×242. We also con-

ducted experiments with the datasets MCYT-75 (Ortega-Garcia et al. (2003)), CEDAR (Kalera

et al. (2004)) and Brazilian PUC-PR (Freitas et al. (2000)), to investigate the transferability of

the meta-learner.

We analyze the impact of the hyperparameters in the classifier’s performance, measured in

Dmeta-val. We consider the experiments by varying these parameters:

- Number of gradient descent steps in the classifier adaptation: K ∈ {1,5}

- One-class classification vs adaptation using genuine signatures and random forgeries

- Fraction of users with skilled forgeries available for training

- Performance as we vary the number of reference genuine signatures

We compare the results on Dmeta-val with a baseline using feature learning followed WD clas-

sification (Hafemann et al. (2017a)). As in (Hafemann et al. (2017a)), we evaluate each model

with repeated random subsampling: we randomly partition the validation set into training (Du)

and testing (D ′
u), repeating the experiment 10 times with different partitions. We report the

mean and standard deviation of the metrics.

In all experiments, we train the meta-classifier for a total of 100 epochs, considering a meta-

batch size M = 4. We consider an initial meta-learning rate β = 0.001, that is reduced (with

cosine annealing) to 10−5 by the last epoch. We used early stopping, by keeping the meta-

learner weights that performed best in the validation set. Following (Antoniou et al. (2019)),

we used Multi-Step Loss Optimization (MSL) for improving training stability. For the first 20

iterations, instead of computing the loss function L′ only after K steps (step 12 of algorithm

4.1), we compute the loss function for all intermediate θ ′
k, and consider a weighted average of
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the losses. In the first epoch the loss using each θ ′
k contributes equally to the loss function, and

the weights are annealed to give more weight to the last step until iteration 20, after which only

the loss function at the final step K contributes to the loss. We found this procedure effective

in stabilizing training (measured by the variation in validation accuracy across epochs). We

also attempted to use learnable task learning rates (LSLR) described in Antoniou et al. (2019)

without success. Empirically, we also noticed that when using only genuine signatures the task

learning rate needs to be larger than the case where skilled forgeries are available for training.

In our experiments, if the fraction of users with skilled forgeries is less than 10% we used a

task learning rate α = 0.01, and a learning rate of α = 0.001 for the other experiments.

In order to evaluate the transferability of the features to other operating conditions, we con-

ducted experiments on other datasets, (that were collected in different regions, and followed

different collection processes). We conducted two experiments: (i) use the meta-learner trained

on GPDS directly for new users of these datasets; (ii) train a meta-learner with data from the

four datasets. It is worth noting that, with the exception of GPDS, the datasets are relatively

small, with 55, 75 and 60 users for CEDAR, MCYT and Brazilian PUC-PR. We observed that

the formulations from this work require a large amount of users for training, and for this rea-

son, we conducted 10-fold cross validation. We divide each dataset in 10 folds (by users), and

for each run we consider 1 fold as meta-test, and the remaining folders for meta-training and

validation. As in the previous experiments, we further use repeated subsampling for evaluating

the adaptation for the new users. In total, for experiment (ii), we train 10 CNN models and

perform 10 adaptations for each user. We report the mean error rates over all runs, and the

standard deviation across the 10 different adaptations (each based on different train/test splits

of the repeated subsampling).

The CNN architecture used in the experiments is listed in table 4.2. We found that using a

smaller network, compared to previous work using feature learning followed by WD classifi-

cation, was successful in the meta-learning setting. This network has a total of 1.4M weights

and uses 0.1 GFLOPS for forward propagation, while SigNet (Hafemann et al. (2017a)) has
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Table 4.2 Base architecture used in this work

Layer Size
Input 1x150x220

Convolution (C1) 32x5x5

Max Pooling 32x5x5

Convolution (C2) 32x5x5

Pooling 32x5x5

Fully Connected (FC3) 1024

Fully Connected (FC4) 256

Fully Connected + Sigmoid 1

15.8M weights and uses 0.6 GFLOPS. That is, the CNN used in this work is 10x smaller and

6x times faster.

We evaluate the performance using the following metrics: False Rejection Rate (FRR): the

fraction of genuine signatures rejected as forgeries; False Acceptance Rate (FARrandom and

FARskilled): the fraction of forgeries accepted as genuine (considering random forgeries and

skilled forgeries). We also report the Equal Error Rate (EER): which is the error when FAR

= FRR. We considered two forms of calculating the EER: EERglobal τ : using a global decision

threshold and EERuser τ : using user-specific decision thresholds. In both cases, to calculate the

Equal Error Rate we only considered skilled forgeries. For FRR and FAR, we report the values

with a threshold of 0.5 (i.e. if p(y = 1|x,θ ′
K) ≥ 0.5 we consider the model predicting x as a

genuine signature).

Table 4.3 Performance on Dmeta-val with one-class and two-class formulations

Type #Gen #RF FRR FARrandom FARskilled EERglobal τ EERuser τ
SigNet* + WD 5 7434 10.48 (±2.24) 0.03 (±0.01) 24.67 (±0.99) 17.03 (±1.06) 13.17 (±0.94)

SigNet-F* + WD 5 7434 18.08 (±1.49) 0.16 (±0.04) 1.55 (±0.22) 4.6 (±0.59) 3.08 (±0.38)

Meta-learning

One-class
5 - 2.54 (±0.61) 2.74 (±0.93) 4.24 (±0.93) 3.48 (±0.57) 1.69 (±0.43)

Meta-learning

Two-class

5 5 2.82 (±0.59) 1.98 (±0.55) 4.18 (±0.48) 3.8 (±0.48) 2.04 (±0.41)

5 10 5.1 (±0.99) 1.94 (±0.27) 2.66 (±0.76) 3.56 (±0.57) 1.85 (±0.57)

5 20 2.84 (±0.97) 1.98 (±0.48) 3.1 (±0.83) 2.86 (±0.59) 1.78 (±0.27)

5 30 2.62 (±0.82) 2.48 (±0.39) 3.46 (±0.62) 3.17 (±0.37) 1.4 (±0.48)
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4.5 Results

4.5.1 System design

In this section we report the results on Dmeta-val (GPDS users 300-350), considering the exper-

iments defined in section 4.4. The objective is to evaluate different aspects of the system, such

as the number of gradient steps (that trades-off comstarutation complexity and accuracy), as

well as investigate the performance of the model in different data scenarios.

In a first experiment we consider the results of the one-class formulation and the two-class for-

mulation as we vary the number of Random Forgeries used for classifier adaptation (#RF). For

this experiment, use used 5 genuine signatures for classifier adaptation, and K = 5 gradient de-

scent steps; for meta-training we considered that skilled forgeries were available on Dmeta-train

(users 350-881). Note that for validation, no skilled forgeries were used for training. Table 4.3

reports the results of these experiments. We observe similar verification performance on the

two formulations. Note that the formulation using random forgeries is more computationally

expensive, as the classifier adaptation involves a larger batch of images (e.g. computing the

loss for one-class uses 5 images, while for two-class with #RF=30 uses 35 images). We also

compare with a method using feature learning followed by WD classification (Hafemann et al.

(2017a)). The entries denoted SigNet* used the same approach proposed in (Hafemann et al.

(2017a)), but using the CNN architecture defined for this work (table 4.2). We note that the

meta-learning formulation performed much better, while being a simpler model (single model

for all users). A comparison with the SigNet CNN architecture from (Hafemann et al. (2017a))

is conducted in section 4.5.2, where we compare to the state-of-the-art.

Figure 4.6 shows the results on verification performance as we vary the number of gradient

descent steps K. For each value of K, we meta-trained a network and evaluate its performance

on Dmeta-val. We observed improved performance with larger number of steps, but with dimin-

ishing returns. As we increase the number of steps, however, we increase the computational

cost. If we consider that forward propagation and backward propagation have similar cost, the
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Figure 4.6 Performance on Dmeta-val as we vary the number of update steps K.

classifier adaptation for a new user takes 2K the time for a single forward pass. A higher K

also requires more memory (in the order of 2K) during meta-training, since the whole update

sequence needs to be stored in memory in order to compute the gradient for meta-update (as

can be seen in figure 4.5).

In figures 4.7 and 4.8 we analyze the impact in performance as we vary the size of the Dmeta-train

set. As noted in section 4.3.2, if skilled forgeries from a subset of users are available, we can

incorporate them into the meta-update loss function L′. In this experiment we considered that

Dmeta-train contains all 531 users, and vary the number of users for which skilled forgeries are

available. For each case, we build a dataset consisting of genuine signatures for all users and

skilled forgeries for the selected users, and trained a model. Figure 4.7 shows the performance

as we vary the number of users for which skilled forgeries as available. We re-iterate that we

evaluate the performance on a disjoint set of users (Dmeta-val) for which only genuine signatures

are used. We observed that the meta-learning formulation of the problem is well suited to

incorporating information from skilled forgeries (when it is available), and this generalizes

well to unseen users, for which we only have genuine signatures. However, we observed that

the performance is not very good when there are only genuine signatures for meta-training: the
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Figure 4.7 Performance on Dmeta-val as we vary the number of users in Dmeta-train for

which skilled forgeries are available.

a) One-class b) Two-class

Figure 4.8 Performance on Dmeta-val as we vary the number of users available for

meta-training. (a): one-class formulation; (b) two-class formulation.

one-class formulation achieves 14.15% EER when only genuine signatures are available, and

3.48% EER when skilled forgeries are available for all 531 users in meta-training.

In figure 4.8, we evaluate the performance of the system as we vary the number of users in

Dmeta-train. We also consider 4 levels of availability of skilled forgeries in the meta-training
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set: 0% (genuine only), 10%, 50% and 100%, where the percentages refer to the number of

users for which skilled forgeries are available (e.g. 10% with 100 users means that forgeries

for 10 users are considered, where the remaining 90 users have only genuine signatures). For

a given number of users and skilled forgery percentage, we construct a dataset with randomly

selected users (taken from the 531 users in the development set), with genuine signatures from

all the selected users, and skilled forgeries for a fraction of the users. We then use this dataset

for meta-training a model, and evaluate its performance on Dmeta-val. We observed improved

performance both as more users are available for meta-training, as well as when more knowl-

edge of skilled forgeries is available. Most surprisingly, we observed that for the two-class

formulation, a classifier trained with 100 users with 100% forgeries (i.e. forgeries for every

user in meta-train) performed better than a model trained with 531 users with forgeries for

only 100 users (comparing figures 4.8b and 4.7): 6.07% EER vs 9.14% EER. We re-iterate that

this measures the performance on discriminate genuine signatures and skilled forgeries, and

the model that has access to more users (with the same amount of users with skilled forgeries)

has better performance on discriminating random forgeries, since its optimization consisted

mostly of this problem.

4.5.2 Comparison with the state-of-the-art

We now compare our results with the state-of-the-art in the GPDS-300 dataset. For these com-

parisons, we considered a model trained with the one-class formulation, and a model trained

with the two-class formulation, with r = 30 forgeries. In both cases, we used the whole dataset

Dmeta-train for training, and used 5 genuine signatures for training and k = 5 updates. While

training was conducted with 5 reference signatures, we evaluate the performance of the system

with different number or references.

Table 4.4 compares our results with the state-of-the-art. We observe an improved performance

compared to other WI systems, achieving 5.16% EER (global τ) with 5 reference signatures,

compared to 9.05% from (Souza et al. (2018)). Comparing to WD systems, we observed

similar performance in some scenarios (5 reference signatures), and worse results otherwise.
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Table 4.4 Comparison with state-of-the art on the GPDS dataset (errors in %)

Reference Type Dataset #samples
per user Features EER

Hu & Chen (2013) WI GPDS-150 10 LBP, GLCM, HOG 7.66

Guerbai et al. (2015) WD GPDS-160 12 Curvelet transform 15.07

Serdouk et al. (2015a) WD GPDS-100 16 GLBP, LRF 12.52

Yılmaz & Yanıkoğlu (2016) WD GPDS-160 5 LBP, HOG, SIFT 7.98

Yılmaz & Yanıkoğlu (2016) WD GPDS-160 12 LBP, HOG, SIFT 6.97

Soleimani et al. (2016) WI GPDS-300 10 LBP 20.94

Hafemann et al. (2017a) WD GPDS-300 5 SigNet-F (global τ) 5.25 (±0.15)

Hafemann et al. (2017a) WD GPDS-300 5 SigNet-F (user τ) 2.42 (±0.24)

Hafemann et al. (2017a) WD GPDS-300 12 SigNet-F (global τ) 3.74 (±0.15)

Hafemann et al. (2017a) WD GPDS-300 12 SigNet-F (user τ) 1.69 (±0.18)

Souza et al. (2018) WI GPDS-300 5 SigNet (global τ) 9.05 (±0.34)

Souza et al. (2018) WI GPDS-300 5 SigNet (user τ) 4.40 (±0.34)

Souza et al. (2018) WI GPDS-300 12 SigNet (global τ) 7.96 (±0.26)

Souza et al. (2018) WI GPDS-300 12 SigNet (user τ) 3.34 (±0.22)

Present work WI/WD GPDS-300 5 MAML one-class (global τ) 5.52 (±0.20)

Present work WI/WD GPDS-300 5 MAML one-class (user τ) 3.35 (±0.13)

Present work WI/WD GPDS-300 5 MAML two-class (global τ) 5.16 (±0.19)

Present work WI/WD GPDS-300 5 MAML two-class (user τ) 2.94 (±0.20)

Present work WI/WD GPDS-300 12 MAML one-class (global τ) 4.70 (±0.11)

Present work WI/WD GPDS-300 12 MAML one-class (user τ) 2.93 (±0.27)

Present work WI/WD GPDS-300 12 MAML two-class (global τ) 4.39 (±0.18)

Present work WI/WD GPDS-300 12 MAML two-class (user τ) 2.68 (±0.17)

With 12 reference signatures, the proposed system obtained 4.39% EER (global τ), compared

to 3.74 for the WD system (Hafemann et al. (2017a)). However, the proposed system is more

scalable, as a single model is stored for all users.

Figure 4.9 shows the performance on GPDS-300 as we vary the number of reference samples

available for each user. As commonly observed in WD systems (e.g. Hafemann et al. (2017a)),

the performance greatly improves as more reference samples are available for training: For the

one-class formulation, performance with a single reference is 9.09% EER (global τ) and 5.81%

EER (user τ). With 12 references, we obtain 4.70% EER (global τ) and 2.93% EER (user τ).

4.5.3 Transfer to other datasets

We now consider results on three other datasets: MCYT, CEDAR and the Brazilian PUC-PR.

Table 4.5 shows the performance in two scenarios: (i) meta-learner trained only in GPDS, with
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a) One-class b) Two-class

Figure 4.9 Performance on GPDS-300 as we vary the number reference signatures

available for each user. (a): one-class formulation; (b) two-class formulation.

Table 4.5 Transfer performance to the other datasets

Target Dataset Training Dataset EER (global) EER (user)
MCYT GPDS 15.48 (± 1.00) 12.54 (± 1.86)

All 15.37 (± 0.97) 12.77 (± 0.46)

CEDAR GPDS 15.98 (± 1.09) 12.07 (± 1.01)

All 10.69 (± 1.76) 8.02 (± 1.22)

Brazilian GPDS 8.05 (± 0.95) 4.83 (± 1.07)

All 8.55 (±0.55) 6.7 (± 0.87)

its generalization to new operating conditions and (ii) meta-learned trained on all four datasets

(using 10-fold cross validation, as described in section 4.4). While the method generalized

well to unseen GPDS users, we see that the generalization performance to other datasets is

much worse. Furthermore, we notice that even when training with a subset of users from all

datasets, the performance does not improve for all datasets. A possible explanation is that the

GPDS dataset is still much larger (10 times larger than the others) and dominates training.

Overall, this suggests that the proposed method requires a large amount of data from the target

application, and is sensitive to changes in operating conditions. Finally, tables 4.6, 4.7 and

4.8 compares de results with the state-of-the-art on MCYT, CEDAR and Brazilian PUC-PR,

respectively.
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Table 4.6 Comparison with the state-of-the-art in MCYT

Reference Type # Samples Features EER
Wen et al. (2009) WD 5 RPF 15.02

Vargas et al. (2011) WD 5 LBP 11.9

Vargas et al. (2011) WD 10 LBP 7.08

Ooi et al. (2016) WD 5 DRT + PCA 13.86

Ooi et al. (2016) WD 10 DRT + PCA 9.87

Soleimani et al. (2016) WD 5 HOG 13.44

Soleimani et al. (2016) WD 10 HOG 9.86

Hafemann et al. (2017a) WD 5 SigNet (user τ) 3.58 (± 0.54)

Hafemann et al. (2017a) WD 10 SigNet (user τ) 2.87 (± 0.42)

Present Work WI/WD 5 MAML one-class (global τ) 15.37(± 0.97)

Present Work WI/WD 5 MAML one-class (user τ) 12.77(± 0.46)

Present Work WI/WD 10 MAML one-class (global τ) 14.50(± 0.77)

Present Work WI/WD 10 MAML one-class (user τ) 12.44(± 0.97)

Table 4.7 Comparison with the state-of-the-art in CEDAR

Reference Type # Samples Features AER/EER
Chen & Srihari (2006) WD 16 Graph Matching 7.9

Kumar et al. (2010) WI 1 morphology 11.81

Kumar et al. (2012) WI 1 Surroundness 8.33

Bharathi & Shekar (2013) WD 12 Chain code 7.84

Guerbai et al. (2015) WD 4 Curvelet transform 8.7

Guerbai et al. (2015) WD 8 Curvelet transform 7.83

Guerbai et al. (2015) WD 12 Curvelet transform 5.6

Hafemann et al. (2017a) WD 4 SigNet (SVM) 5.87 (± 0.73)

Hafemann et al. (2017a) WD 8 SigNet (SVM) 5.03 (± 0.75)

Present Work WI/WD 4 MAML one-class (global τ) 11.06(± 1.12)

Present Work WI/WD 4 MAML one-class (user τ) 8.27(± 1.45)

Present Work WI/WD 8 MAML one-class (global τ) 10.21(± 1.21)

Present Work WI/WD 8 MAML one-class (user τ) 7.07(± 1.08)

4.6 Conclusion

In this paper we proposed to formulate Signature Verification as a meta-learning problem,

where each user defines a task. This formulation enables directly optimizing for the objec-

tive (separating genuine signatures and forgeries) even when forgeries are not available for all

users. The resulting system is scalable and yet adaptable for individual users: a single meta-

classifier is learned and stored, and for the verification of a given signature, the classifier is
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Table 4.8 Comparison with the state-of-the-art on the Brazilian PUC-PR dataset (errors

in %)

Reference Type #samples Features AERgenuine + skilled/EER
Bertolini et al. (2010) WI 15 Graphometric 8.32

Batista et al. (2012) WD 30 Pixel density 10.5

Rivard et al. (2013) WI 15 ESC + DPDF 11.08

Eskander et al. (2013) WD 30 ESC + DPDF 10.67

Hafemann et al. (2017a) WD 5 SigNet (user τ) 2.92 (± 0.44)

Hafemann et al. (2017a) WD 15 SigNet (user τ) 2.07 (± 0.63)

Souza et al. (2018) WI 5 SigNet (global τ) 5.95 (± 0.68)

Souza et al. (2018) WI 5 SigNet (user τ) 2.58 (± 0.72)

Souza et al. (2018) WI 15 SigNet (global τ) 5.13 (± 0.23)

Souza et al. (2018) WI 15 SigNet (user τ) 1.70 (± 0.40)

Present Work WI/WD 5 MAML one-class (global τ) 8.55 (± 0.55)

Present Work WI/WD 5 MAML one-class (user τ) 6.70(± 0.87)

Present Work WI/WD 15 MAML one-class (global τ) 6.93(± 0.73)

Present Work WI/WD 15 MAML one-class (user τ) 5.74(± 0.84)

adapted to the claimed user and subsequently used for verification. The proposed method is

also able to naturally incorporate new reference signatures for a user, and enable adapting the

representation as more training data is available. The drawbacks of this solution are twofold:

increased computational cost and worse transferability to new conditions. The method is 2K

slower, when using K updates for the classification adaptation, although it allows the option

to trade storage and computational cost - the adapted weights for a given user can be stored

for faster classification. Our experiments transferring the meta-learner to other datasets show

reduced performance, highlighting the need for better adaptation to new conditions, which will

be explored in future work. Future work also includes considering a dynamic scenario, where

the meta-classifier is updated as new training data is available.
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Abstract

The phenomenon of Adversarial Examples is attracting increasing interest from the Machine

Learning community, due to its significant impact to the security of Machine Learning systems.

Adversarial examples are similar (from a perceptual notion of similarity) to samples from the

data distribution, that “fool" a machine learning classifier. For computer vision applications,

these are images with carefully crafted but almost imperceptible changes, that are misclassi-

fied. In this work, we characterize this phenomenon under an existing taxonomy of threats to

biometric systems, in particular identifying new attacks for Offline Handwritten Signature Ver-

ification systems. We conducted an extensive set of experiments on four widely used datasets:

MCYT-75, CEDAR, GPDS-160 and the Brazilian PUC-PR, considering both a CNN-based

system and a system using a handcrafted feature extractor (CLBP). We found that attacks that

aim to get a genuine signature rejected are easy to generate, even in a limited knowledge sce-

nario, where the attacker does not have access to the trained classifier nor the signatures used

for training. Attacks that get a forgery to be accepted are harder to produce, and often require

a higher level of noise - in most cases, no longer “imperceptible" as previous findings in object

recognition. We also evaluated the impact of two countermeasures on the success rate of the

attacks and the amount of noise required for generating successful attacks.
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5.1 Introduction

Biometric systems are extensively used to establish a person’s identity in legal and administra-

tive tasks (Jain et al. (2004)). They are commonly modeled as Pattern Recognition systems, in

which biometric data from an individual is acquired (e.g. during an enrollment process), and

stored as a “template" for future comparisons, or used to train a classifier that can discriminate

if new samples belong to this user.

The reliability of these systems have security implications, and in the last decade these systems

have been analyzed from an Adversarial Machine Learning perspective. From this viewpoint,

we consider an active adversary, with its own goals (e.g. getting access to a system), knowledge

(e.g. knowing the classifier parameters, or the learning algorithm) and capabilities (e.g. ability

to manipulate the training data, or the inputs during test time). In particular, Ratha et al. (2001)

and later Biggio et al. (2015) characterize the different components of a biometric system that

can be attacked.

However, an emerging issue of “Adversarial Examples" pose new security concerns for such

systems. This issue refers to adversarial input perturbations specially crafted to induce mis-

classifications. Szegedy et al. (2014) showed that very small perturbations on images (almost

imperceptible) could be crafted to mislead a state-of-the-art CNN-based classifier. Moreover,

attacks crafted for one model often transfer to other models, meaning that an attacker could

train its own surrogate classifier to generate attacks, as long as it has access to data from the

same data distribution. This issue has been analyzed in many recent papers (Goodfellow et al.

(2015); Papernot et al. (2016); Tramèr et al. (2018); Carlini & Wagner (2017b,a)), but the

theoretical reasons are not fully understood, and most defenses are weak (i.e. they fail if the

attacker knows about the defense).

We evaluate this new threat for biometric systems, by characterizing the potential new attacks

under a taxonomy of threats to such systems (Ratha et al. (2001), Biggio et al. (2015)). We

consider particular attack scenarios to Offline Handwritten Signature Verification, identifying

the attacker’s goals, required knowledge and capabilities.
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It is worth noting that attacking verification systems can present difficulties not present in clas-

sification problems. In particular, as new users join the system, they introduce a new class,

not only unseen examples of existing classes. We present a refined version of the adversary’s

knowledge model that explicitly makes the distinction of whether access to data from a partic-

ular individual of interest is available to the attacker.

We conducted experiments on Writer-Dependent classifiers trained with a CNN-based repre-

sentation (SigNet) and a handcrafted feature extractor (CLBP), considering four widely used

Datasets: MCYT, CEDAR, GPDS-160 and the Brazilian PUC-PR. We defined a comprehen-

sive set of experiments to evaluate such systems under different scenarios of the adversary’s

knowledge level and objectives, using four attack methods (gradient-based and gradient-free).

Our main contributions are as follows:

- We characterize different attack scenarios for Offline Handwritten Signature Verification

systems, focused on new threats introduced by Adversarial Examples.

- We identify that there is an asymmetry in the attacks, empirically showing that attacking

genuine signatures (so that they are rejected) can be done with high success rate and a

relatively low amount of noise, while attacking forgeries (so that they are accepted) is a

much harder task.

- Our experiments with different scenarios of attacker knowledge show that attacks can be

done even with Limited Knowledge, where the attacker has no access to the signatures used

to train the classifiers, showing that this transferability affects both CNN-based systems and

systems based on handcrafted features. We also identify that attack transferability is greatly

reduced if the CNN is trained on a different subset of users, contrasting with previous

findings that attacks transfer well if the CNN is trained on a different subset of samples

from the same classes (Szegedy et al. (2014)).

- Lastly, we evaluate the impact of countermeasures and find that the Madry defense (Madry

et al. (2018)) is effective in increasing the amount of noise necessary to make a sample
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adversarial, even when it is applied only to the feature learning phase, and not on training

the WD classifiers. Code for reproducing the experiments will be made publicly available

at https://github.com/luizgh/adversarial_signatures.

The paper is organized as follows: in section 5.2 we introduce the main concepts of security in

biometric systems; in section 5.3 we present the issue of adversarial examples and in section

5.4 we present particular attack scenarios for offline signature verification, and a refinement

of the adversary’s knowledge model. Section 5.5 describes the experimental protocol, and the

results are discussed in section 5.6. Finally, our conclusions are listed in section 5.7.

5.2 Security in biometric systems

The security of machine learning systems have been widely studied in the past decade. Barreno

et al. (2006, 2010) categorize attacks to such systems along three axes: (i) the influence of the

attack, that can be causative (when training data is compromised) or exploratory (probing the

learner to acquire information); (ii) the specificity of the attack: targeted, in which a particular

point or a set of points is targeted or indiscriminate; and (iii) the security violation of the

attack, that can seek an integrity violation (e.g. intrusion) or availability disruption (e.g. make

the system unusable for legitimate users).

Biggio et al. (2014, 2015) further expands this analysis for biometric systems, incorporating a

model of the adversary that includes its goals, knowledge of the target system, and capabilities

of manipulating the input data or system components. The goals of an attacker are mainly

divided in: 1) Denial of service: preventing real users from using the system; 2) Intrusion:

impersonating another user; 3) Privacy violation: stealing private information from an user

(such as the biometric templates). The knowledge of the adversary refers to the information of

the target system that is available to the adversary, such as perfect knowledge (e.g. knowledge

of the feature extractor, type of classifier and model parameters) or limited (partial) knowledge

of the system. The capabilities of the adversary refer to what it can change in the target
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system, such as changing the training set (poisoning attack), or the inputs to the system at test

time (evasion attack).

Veri cation

New Sample

Writer-Dependent Training

Generalization

Training dataset

Classi er 
training

Feature 
Extraction

Feature 
Extraction

Sensor

Adaptive
update

Accept

Reject

True

False

1

2

3

4

5

6

7

Figure 5.1 A typical writer-dependent signature verification system, with annotated

points of attack. On the training phase, a classifier fu is trained for each user. During

operations, for a new sample Xnew we obtain a feature vector φ(Xnew), and use the

classifier fu to accept or reject the signature. For adaptive systems, an update rule select

signatures for classifier adaptation.

Modeling the knowledge of the adversary was formalized by Biggio & Roli (2018). Let X

and Y be the feature and label spaces, respectively, and D be a dataset D = {xi,yi}n
i=1 of

n training samples. Let f be a training algorithm (classifier), and w be a collection of its

parameters and hyper-parameters. The knowledge of the attacker can be formalized as a set θ ,

containing the components of the system that are known to the attacker. Perfect-Knowledge

(PK) attacks consider full knowledge of the system, that is, θPK = (D ,X , f ,w). We can also

consider Limited Knowledge (LK) attacks, in which some of the information is not available to

the adversary. As an example, if the adversary does not have access to the learned weights of

the model, but has access to the training data, a surrogate classifier f can be trained (learning

parameters ŵ) and used to generate the attack. Similarly, if the training data is not available,

the adversary may be able to collect another training set from the same data distribution and

use it to train the surrogate classifier. In this last scenario, the knowledge of the attacker would
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be represented as θLK = (D̂ ,X , f , ŵ). The hat symbol (ˆ) indicate limited knowledge of a

component (such as getting a surrogate dataset from the same data distribution).

Biometric systems are composed of several components, such as the sensors capturing the

biometric, and software to extract features, store templates and perform classification. Ratha

et al. (2001) identified eight points of attack on biometric security systems, that were later

grouped by Jain et al. (2008) and extended by Biggio et al. (2015) to include multi-modal

systems and adaptive systems. The set of this attack points is considered the attack surface of

the system. Figure 5.1 shows a typical User-Dependent classification system, with the main

attack points. Below we discuss the main threats to the different points of attack.

The first point of attack (#1) in a biometric system is the user interface that collects the sample

(e.g. a scanner capturing a document with a signature, or a mobile application taking a picture

of a bank cheque). For many biometrics, attacks on this first point mainly consist of spoofing

attacks, that normally use a fabricated fake biometric trait. Possible defenses for such attacks

rely on liveness detection. On the signature verification task, simulated and traced forgeries

can be considered attacks targeting this stage. A second set of attack points refer to attacks in

the communication between different components of the system (#2, #4) (for example, inter-

cepting and replacing the sensor input or the extracted features, that is input to the subsequent

module). Defenses for such attacks involve encrypting the communication between the dif-

ferent modules. The software modules (#1, #3, #5, #6, #7) may present vulnerabilities in the

code (such as buffer overflow) that can be exploited by a malicious user. The classifier training

(#5) can be targeted for poisoning attacks (e.g. adding samples from another user in the train-

ing data for subsequent intrusion). For adaptive systems, the template update rule (#7) can be

targeted to update the template database (e.g. for intrusion).

5.3 Adversarial Examples

Adversarial examples are samples similar to the true data distribution, but that fool a classi-

fier. In computer vision, these are images X̃ that are visually similar to a “real" image X , but
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Original Image Adversarial Noise Adversarial Image

Figure 5.2 Illustration of adversarial examples. An adversarial noise δ is added to

original images X , such that the resulting image X̃ is misclassified. Top: Type-I attack: a

genuine signature from user u1 (left) is attacked to be classified as a forgery (right).

Bottom: Type-II attack. The original image (left) is from user u2 (i.e. a random forgery

for u1), and is attacked to be classified as a genuine (right).

that fool a classifier (i.e. the classifier predicts an incorrect class for X̃ : argmaxy P(y|X̃) �=
argmaxy P(y|X)).

Szegedy et al. (2014) showed that for deep neural networks, we can run an optimization proce-

dure to produce a small change δ to an image, such that X̃ = X +δ is an adversarial example,

as illustrated in Figure 5.2. Perhaps more surprisingly, they also discovered that an attack that

is created to fool one network also fools other networks (trained on different subsets of data),

meaning that attacks can be created even without full knowledge of the classifier under at-

tack. It was later shown that such attacks can be done in the physical world (Kurakin et al.

(2017a)), where adversarial images printed on paper and later captured with a camera also

fooled a classifier. Lastly, although some defense strategies have been proposed (Goodfellow

et al. (2015); Papernot et al. (2016); Tramèr et al. (2018); Madry et al. (2018)), most solutions

are not robust to strong iterative attacks. Even detecting that an input is adversarial is a hard

task (Carlini & Wagner (2017a)).
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Most of the recent research on this area concentrates on differentiable classifiers (usually Deep

Learning models), creating attacks that use gradient information of the loss function with re-

spect to the inputs. However, most feature extractors used in signature verification (such as

LBP, HOG) are non-differentiable, and therefore attacks to systems using these features could

not rely on gradient-based methods. Some methods proposed in the literature do not rely on

gradient information, and could potentially be used for this task. Papernot et al. (2017) pro-

posed Substitute model training, in which the attacker train a substitute (differentiable) model,

and use it to generate the attack. Brendel et al. (2018a) proposed a Decision-based attack, that

relies only on the decision (prediction) of the model under attack. Its strategy is the opposite

of most attacks: given an image X and an image X̃0 that is from another class, the algorithm

iteratively refines X̃k to be closer to X̃ (e.g. in L2 norm). The image X̃0 can be a random image

(e.g. sampled at random until it is from the desired class), or an actual image from a target

class. Chen et al. (2017) proposed a Zeroth order optimization method, where the gradient

is estimated numerically. Doing so naively is impractical (due to the dimensionality of the

input), so the authors employ techniques to reduce the computational complexity of this esti-

mation (block coordinate descent, attack-space dimension reduction, hierarchical attacks and

importance sampling). With all these techniques, the attack has shown to scale to imagenet

(299× 299× 3 pixels), producing an attack in 20 minutes. This method requires the function

to be smooth and Lipshitz continuous. Ilyas et al. (2018) proposed using Natural Evolution

Strategy (NES) gradient estimate - instead of using numerical methods to estimate the gradi-

ent (as above), the authors propose using Natural Evolution Strategies for the gradient estimate.

These estimates are given by computing the loss function along random directions. The authors

claim that this method require 1-2 orders of magnitude less computations of the loss function.

Lastly, Ramanathan et al. (2017) explored using Simulated annealing for creating adversarial

examples for a system based on HOG features with a linear SVM classifier. In each iteration,

a small perturbation is applied to the image, and the distance of the new image to the SVM

hyperplane is used as a condition to accept the new point. With this approach the authors were

able to craft adversarial images with imperceptible noise that fooled the HOG+SVM classifier.
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5.3.1 Attacks considered in this paper

In this paper, we consider two gradient-based attacks (that can be used when the classifiers are

differentiable with respect to the input), and two gradient-free attacks, that can be used even if

the features and/or classifiers are non-differentiable. In this paper we are mostly interested in

feature extractors widely used for signature verification, and chose the LBP descriptor, which is

used in several studies (Vargas et al. (2011); Hu & Chen (2013); Yılmaz & Yanıkoğlu (2016)).

Since LBP is highly discontinuous (due to the thresholding using the center pixel’s value),

methods that estimate the gradient are less interesting: the gradient should be very discontinu-

ous (0 almost everywhere), since for each pixel, the transition from one pattern to the other is a

step function. For this reason we selected two methods that do not rely on estimating the gra-

dients: the decision-based attack (Brendel et al. (2018a)) and the optimization using Simulated

annealing. For the gradient-based attacks, we considered the Fast Gradient Method (FGM)

(Goodfellow et al. (2015)) and the Carlini & Wagner attack (Carlini & Wagner (2017b)).

The decision-based attack (Brendel et al. (2018a)) is an iterative method: given an image X

from class yi, the objective is to find an image X̃k that is classified as a different class, and

minimizes the distance D(X , X̃k) for some distance measure. It starts with a sample X̃0 from a

class y �= yi. In each step, first the sample is projected in a random direction that is orthogonal

to (X̃k−1 −X) (i.e. orthogonal to a straight line to the sample X), and then takes a step in the

direction of X . If the point is still from a class different than yi, it is accepted as the next point

X̃k, otherwise a new point is searched in another random direction. This method therefore only

requires the decision of the model (which class a sample X̃k belongs to).

The annealing method uses the well known simulated annealing method as a gradient-free op-

timization method. Starting from the image X , we add a small perturbation obtaining X̃k. If the

resulting image is closer to the decision boundary of the SVM (i.e the score decreases/increases

depending on the type of attack), it is accepted as the next point. Otherwise, with a probability

inversely proportional to the current step, it is still accepted as the next point. In the work from

Ramanathan et al. (2017), the authors consider as the objective function simply to reduce the
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distance to the SVM hyperplane, and stop optimization when the boundary is crossed. In our

experiments, we found it necessary to include a penalty on the L2 norm of the noise added to

the image. This is further detailed in section 5.5.

The FGM attack is a one-step gradient-based attack. In this paper we consider the version of

this attack focused on the L2 norm:

X̃ = X + ε
∇J(x,y)

‖∇J(x,y)‖2

(5.1)

Where X is the original image, ∇J(x,y) is the gradient of the loss function with respect to the

input, and ε is a hyperparameter that controls the size of the update. The adversarial image is

then clipped to the allowed range of the input (e.g. pixels between 0 and 255).

The Carlini & Wagner L2 attack uses an iterative gradient attack, using a gradient descent

method (the Adam optimizer). The objective to be minimized contains two terms: a term

minimizing the noise δ and a term encouraging the model to misclassify the image:

min
w

‖δ‖2 + c f (X +δ ) (5.2)

Where c trades-off between the two objectives, and is chosen with a binary search (the smallest

c that still obtains a misclassified image). Instead of enforcing hard constraints on the adversar-

ial image (to keep pixel values between 0 and 255), the authors propose a change of variable.

First, they consider images normalized between 0 and 1. Then, to enforce that X + δ ∈ [0,1]

they consider the following change of variable:

δi =
1

2
(tanh(wi)+1)− xi (5.3)
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Since −1 ≤ tanh(wi) ≤ 1, it follows that 0 ≤ Xi + δ1 ≤ 1, satisfying the box constraints on

the resulting image, but putting no constraints on the variable under optimization (w). As for

the term that encourages the model to misclassify the image, they choose a term that seeks to

increase the distance between the logits (pre-softmax activation) of the target class t and the

class with maximum prediction (other than the target class):

f (X) = max(max
i�=t

(Z(X)i)−Z(X)t ,−κ) (5.4)

Where Z(X) is the logit (pre-softmax activation) and κ is a constant that can be used to select

how confident the model must be in the wrong class prediction. This loss function has no

constraints, and can be solved by any gradient-based method.

5.3.2 Countermeasures

Under a paradigm of Security by design, systems should be designed to be secure from the

ground up. In the case of Machine Learning, systems should be designed explicitly considering

an adversary (Biggio & Roli (2018)). Dalvi et al. (2004) presented one of the first formulations

of this problem, by considering a game between the classifier and the adversary. They propose

a solution of this game for naive bayes classifiers, considering a classifier that performs as well

as possible against an optimal adversary. This has some resemblance to recent approaches pro-

posed for adversarial examples called Adversarial Training (Goodfellow et al. (2015); Tramèr

et al. (2018)), in which the training procedure is augmented with adversarial samples, with the

objective of increasing robustness of the systems.

In this work we are concerned with the new vulnerabilities introduced by adversarial changes

in the input images that induce misclassifications in Signature Verification systems. In this

setting, some defenses become harder to implement - for instance, Biggio et al. (2013) pro-

pose learning the support (P(X)) and incorporating this knowledge on the classifier training.
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Learning this support when X is high dimensional (which is the case in signature images, eg.

150× 200 pixels in this work) is a hard task, specially when just a few samples per user are

available. The problem of working with large models and input dimensions is explored in

recent work in adversarial examples for deep neural networks. For instance by Adversarial

training (Goodfellow et al. (2015), Tramèr et al. (2018)); defensive distilation (retraining a

network with knowledge extract from a previous training) (Papernot et al. (2016)); and tech-

niques to add non-differentiable steps in the inference process (e.g. transforming the input with

non-differentiable operations (Guo et al. (2018))). Most defenses, however, have been shown

to fail when the attacker has knowledge of them. Tramèr et al. (2018) showed that Adversar-

ial training is not robust to iterative attacks on a white-box (PK) scenario; Carlini & Wagner

(2017b) showed that distillation is also not effective in this scenario. More recently, Athalye

et al. (2018a); Athalye & Carlini (2018) showed that almost all defenses presented in recent

ICLR and CVPR conferences can be bypassed. The only exception was the work of Madry

et al. (2018), that propose a framework that provides guarantees against attacks with a maxi-

mum L∞ norm. However, as noted in (Athalye & Carlini (2018)), this defense is hard to scale

(the authors only reported results on the CIFAR-10 dataset, which consists of small images of

32 × 32 pixels), and that resistance to L∞ attacks does not guarantee resistance to other sce-

narios (e.g. when the attacker is limited by a maximum L2 norm of the noise). This problem

therefore remains as an open research question.

In this paper we focus our attention in defenses for the CNN-based models, in particular by

evaluating two defenses: Ensemble Adversarial Training (Tramèr et al. (2018)) and the Madry

defense (Madry et al. (2018)). The first has demonstrated some robustness in Limited Knowl-

edge scenarios, while the second is a proposed defense against perfect-knowledge attacks.

For the ensemble adversarial training, we first train M models on the task at hand. Then we

train another model with the following loss function:

J̃(X ,y,θ) = αJ(X ,y,θ)+(1−α)J(X̃ ,y,θ) (5.5)
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Where J(X ,y,θ) is the cross-entropy loss function of a sample X with true label y, and X̃ is an

adversarial sample generated using FGM (equation 5.1) either using the model being trained,

or one of the M previously trained models.

The Madry defense involves a saddle point optimization problem, in which we optimize for the

worst case:

min
θ

p(θ)

where p(θ) = E(x,y)∼D

[
max
δ∈S

J(X +δ ,y,θ)
] (5.6)

Where S defines a feasible region of the attack (i.e. the attacker capability). For instance, to

add robustness against attacks that minimize the L2 norm of the attacks, we train the classifier

with an adversary constrained to S = {δ : ‖δ‖2 < ε}, for a given maximum perturbation ε .

Lastly, we also consider a countermeasure using background removal. Handwritten data has an

important difference compared to other vision tasks, such as object recognition, where we have

a clear and simple separation of background and foreground. This is an important distinction

because adversarial samples usually involve adding a crafted “noise" all around the image. To

this end, we investigate the impact (on the attack success rate) of removing the background

after the adversarial samples are generated.

5.4 Attack scenarios for Offline Handwritten Signature Verification

We now consider the possible attacks to biometric systems based on adversarial examples

X̃ . In particular, we identify possible attack points, and provide specific scenarios for Offline

Handwritten Signature Verification.

The attacks using adversarial examples involve changing the inputs to the classifier, and there-

fore we identify two potential areas of vulnerability: at the sensor level, or the template stor-

age/update level. The most prominent aspect of adversarial examples is that they fool a ma-

chine learning system without fooling humans (i.e. X̃ being visually similar to X). This is

an important difference to spoofing attacks (that also target the sensor level), since these fake
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biometric traits, such as a “gummy finger”, are clearly identified as different from a real finger

by a human. We identify the following new attacks on signature verification systems, along

with possible goals of an attacker:

1. Attacks on the data capture (targets point #1). In this case the adversarial image is crafted

before the image is collected for the system. That is, an adversary can craft adversarial

images X̃ , and present them to the system, for instance using a banking application that

allows a customer to use a picture of a cheque to cash it; or by printing adversarial noise

on a physical signature. We identify two types of attack:

- Type-I attack (false rejection): Present a genuine signature that fools the system as

being a forgery. This can be used for denial of service (preventing genuine users to

accessing a system). We can also make a parallel to disguised signatures, where the

user signs a document with the intent of later denying it (for example, the receiver of a

check accepts it, but fails to cash it as the system classifies it is a forgery).

- Type-II attack (false acceptance): Present a random forgery (i.e. a genuine signature

from user yi) that fools the system as being genuine for user y j ( j �= i). At the same time,

to a person, this sample can show no signs of being forgery (if it is not compared to a

reference), since it is a genuine signature. The attacker can also use a skilled forgery as

“starting point", creating noise to increase the likelihood of the forgery being accepted.

2. Attacks on the templates (targets point #5): If original images are stored as part of the

system (e.g. for classifier re-training, or manual verification in case of system failure/re-

jection of a sample), the templates can be changed to still look like genuine signatures for

human operators, but in a way that accept signatures from a different person as genuine.

3. Attack on template update (targets point #7): For adaptive systems, the attacker can craft

changes on the user’s signature, so that adversarial templates are added to the gallery, to

enable an intrusion later using a signature from another person. Similarly to the point

above, the templates would appear as genuine to a person.
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The attacks above require different capabilities from the part of the attacker. The first attack

only affects the system at test time (evasion attack), and in many practical scenarios would

require the creation of a physical attack, that is, the creation of an adversary signature in a

piece of paper, for instance by printing adversarial noise on top of a handwritten signature.

The second attack is a poisoning attack, that does not require a physical sample, as it impacts

the stored templates of an user. However, it requires the capability of the attacker to update the

template database, and can be categorized as an insider attack as per the terminology used by

Biggio et al. (2015). Note that this attack differ from simply adding another user’s biometric

to the templates, since a manual inspection of the templates would not reveal that the templates

have been tampered with. The third attack can also be seen as a poisoning attack, affecting

adaptive systems, that automatically add new samples to the set of user templates.

As for the knowledge required from the adversary, we can consider different scenarios, ranging

from full knowledge of the system, to scenarios where only limited information is available to

the attacker.

5.4.1 Refining the adversary’s knowledge model

For biometric verification tasks, we identify an important refinement of the adversary’s knowl-

edge model. We argued in section 5.2 that an adversary that does not have access to the training

set can collect its own data D̂ from the same data distribution, and train a surrogate classifier.

For verification systems, each new user to the system effectively introduces a new class, and

therefore it is important to make a distinction of accessing data for a particular individual of

interest, and a “background class", that are negative examples for a given user (e.g. signa-

tures from other users). We refer therefore to two data components: Db - biometric data from

the background class (i.e. not for the individual under attack), and Du - biometric data from

the targeted individual. This allows the definition of limited knowledge scenarios where the

biometric sample of the user can be collected, or for scenarios where the adversary can only

collect samples from a other users.
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In our experiments, we consider three attack scenarios:

- Perfect Knowledge scenario: the attacker has knowledge of all components of the system:

θPK = (Db,Du,X , f ,w). This scenario serves as a tool to analyze the worst-case scenario

(from the system’s defense perspective).

- Limited Knowledge #1: we consider a scenario where the attacker does not have access to

the dataset used for training the classifiers, but has access to all other components. We con-

sider that the attacker is able to collect signatures from some users (D̂b, that are from differ-

ent users from those used to train the system), and some signatures from the user of interest,

that were not used for training the system: D̂u. In this case, θLK1 = (D̂b,D̂u,X , f , ŵ).

- Limited Knowledge #2: similarly to the above, but we consider a scenario where the at-

tacker does not have full access to the feature extraction function (that induces the space

X ). In particular, we consider a scenario where the attacker does not have access to the

CNN model that was used to extract the features, but trains its own CNN (with identi-

cal training procedure and architecture) on a different set of users. In this case, θLK2 =

(D̂b,D̂u,X̂ , f , ŵ).

5.5 Experimental Protocol

We conducted experiments using the datasets MCYT-75 (Ortega-Garcia et al. (2003)) (with 75

users), CEDAR (Kalera et al. (2004)) (55 users), GPDS-160 (Vargas et al. (2007)) (160 users)

and the Brazilian PUC-PR (Freitas et al. (2000)) (60 users).

In order to simulate the different attack scenarios we split the dataset into two parts of disjoint

users, as illustrated in Figure 5.3. The set D refers to the users “enrolled in the system", that

will be under attack. This dataset is divided in training (user signatures Du) and testing T .

For the limited knowledge scenarios, we consider a set D̂b that contains signatures from other

users (not those being attacked), simulating the scenario of an attacker that acquired his own

signature dataset in order to generate the attacks. We also consider that the attacker has access
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Figure 5.3 Dataset separation for the MCYT dataset. The set Du is used for training the

classifiers under attack, and the sets D̂b and D̂u are used by the attacker to train surrogate

classifiers.

to some signatures from the user, D̂u, that were not used for training the system (i.e. disjoint

from Du and T ).

The images were pre-processed in a similar way to (Hafemann et al. (2017a)): Signatures

were first centered in a blank canvas using their center of mass. We then resize the images to

150×220 pixels and invert the image such that the background pixels are zero-valued. Lastly,

we run the OTSU algorithm to identify the optimal threshold that separates background and

foreground. We set the pixels with intensity smaller than the threshold to intensity 0, leaving

the remaining pixels in grayscale.

We consider Writer-Dependent classifiers, training an SVM (linear or with the RBF kernel)

for each user. As feature extraction φ(X), we consider: (i) a CNN-based learned representa-

tion: SigNet (Hafemann et al. (2017a)), and (ii) the CLBP operator (Completed Local Binary

Patterns) (Guo et al. (2010)). We train the SVMs with 5 genuine signatures from the user as

positive samples, and 5 signatures from each other user as negative.

For the scenario LK2, we consider two CNN models with the same architecture and training

procedures, but trained on a disjoint set of users. The CNN used by the model under attack was

trained on GPDS users 350-614, and the CNN used by the surrogate models (by the attacker)

were trained with users 615-881. Training procedure followed the same as SigNet (Hafemann
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et al. (2017a)). For the Ensemble Adversarial Learning evaluation, we first trained two models

with different architectures (slight variations from SigNet, as described in the Supplemental

Material) and then trained a model with the SigNet architecture and the loss function defined

in equation 5.5, with ε = 5. For the Madry defense, we also used the same architecture, and

trained with S = {δ : ‖δ‖2 < ε} with ε = 2. We tried using larger values for ε and obtained

worse classification performance during the CNN training, so these values represent a tradeoff

between robustness and accuracy. In both cases, we trained the network with users 350-614,

to enable evaluating the scenario LK2. In this scenario, we consider an attacker that trained a

regular CNN (no adversarial training), with users 615-881.

After training the classifiers for each user, the SVMs implement the following decision func-

tions:

sLinear = wᵀφ(X)+b (5.7)

sRBF = ∑
i∈S

αi exp(−γ ‖φ(X)−Xi‖)+b (5.8)

Where sLinear and sRBF are the scores for the linear SVM and the SVM with the RBF kernel,

respectively; w are the weights learned by the linear SVM, S is the set of support vectors,

αi and Xi are the coefficients and support vectors, γ is a hyperparameter for the RBF kernel

and b is the bias. We can easily see that both functions are differentiable with respect to φ(X)

(Biggio et al. (2013)). For the classifier using a CNN-based model to extract the features, we

can calculate the gradients of the scores w.r.t the inputs X, and apply gradient-based methods

to generate the attacks. For non-differentiable feature extractors, we consider only the two

gradient-free methods described in section 5.3.1. When reporting the scores in Figures 5.2,

5.4 and 5.5, we consider a normalized loss as follows: s̃(X) = s(X)− τ , where τ is the global

threshold. This makes it easy to identify if a signature would be classified as genuine or as a

forgery (s̃(X)≥ 0 indicates the prediction of X being a genuine signature).
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For the classifiers using LBP, we consider the the operator CLBP_S/M/C (Guo et al. (2010))

(3D histogram of CLBP S, M and C), with the following parameters: R = 1 (radius of 1 pixel),

P = 8 (eight neighbors) and rotation invariant uniform patterns (“riu2"). The feature vector has

a total of 200 dimensions.

To simplify the generation of the attacks we considered a global threshold for the classifica-

tions, that obtained the Equal Error Rate on the set D (without any attacks).

After the classifiers are trained, we generate attacks using the four methods described in sec-

tion 5.3.1. We used the FGM method with ε = 1000, and the Carlini & Wagner attack with

κ = 1. For the Decision-based attack, we considered the implementation from the authors1,

running the attack for a maximum of 1000 iterations. For the Simulated Annealing method, we

considered an open implementation of simulated annealing2. In each iteration, we change the

state by adding gaussian noise ε (ε ∼ N (0,σ I), with σ = 2), and clipping the image between

0 and 255. We consider the energy to be a mixture of the SVM score and the L2 norm of the

adversarial noise δ : E = s(X)+λ ‖δ‖2, with λ = 0.001 being a trade-off between changing

the SVM score, and not deviating too far from the original image. We used an initial tempera-

ture Tmax = 1 and final temperature Tmin = 0.001. These values were chosen such that around

95% of the steps that would increase the energy are still accepted in the start of the procedure,

and less than 5% were accepted in the end. We ran this procedure with at most 1000 steps,

with early stopping (we stop optimization if the image is adversarial).

The experiments consisted in Type-I attacks (attempting to have a genuine signature rejected

by the system) and Type-II attacks (attempting to have a forgery accepted by the system). For

each user, we selected one genuine signature, one random forgery and one skilled forgery, such

that all four classifiers correctly classified these samples. We then used the different attack

methods to generate adversarial samples, and measured the attack success rate (number of

misclassified images after the attack), and the average RMSE (root mean square error) of the

1 https://github.com/bethgelab/foolbox

2 https://github.com/perrygeo/simanneal
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adversarial noise on successful attacks. It is worth noting that we consider pixel values in the

range [0,255], so the RMSE of the adversarial noise is also constrained in the same range. To

summarize the experiments, we considered:

- Datasets: MCYT-75, CEDAR, GPDS-160, Brazilian PUC-PR

- Feature extractor: CLBP, SigNet

- SVM type: Linear, RBF

- Attack method: Decision-based, Simulated Annealing, FGM, Carlini

- Attacker’s goal: Type-I (attacking Genuine signatures) and Type-II (attacking Random and

Skilled forgeries),

- Attacker’s knowledge: Perfect Knowledge, Limited Knowledge LK1 and LK2

- Defense: No defense, Ens. Adv. training, Madry

It is worth mentioning that in this work we did not consider the discretization of the generated

adversarial images. We worked with images in float format, instead of discretized into integers

between 0 and 255. This is discussed in section 5.6.6.

5.6 Results and discussion

Before presenting the results of the attacks, we first validate the performance of the WD classi-

fiers on the four datasets. Table 5.1 shows the EER obtained by using different features/classi-

fiers, when trained with 5 reference signatures per user, with the protocol defined in section 5.5.

We observe a large variance in the results across different datasets, which suggests different de-

grees of difficulty on separating genuine signatures and forgeries in them. We also observe a

large difference of performance between systems trained with the SigNet and CLBP features.

In order to have a fair analysis of the adversarial examples against each classifier/feature extrac-

tor, we select the same set of images for the attacks on all classifiers, ensuring that the original
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Table 5.1 Results of WD classifiers using different feature sets (EER considering skilled

forgeries)

Dataset Features EER global-τ EER user-τ
Linear RBF Linear RBF

MCYT-75 SigNet 7.12 7.03 7.39 5.68

CLBP 26.49 27.03 27.21 26.85

CEDAR SigNet 12.03 11.82 6.01 4.52

CLBP 28.01 21.36 23.95 16.39

GPDS Signet 7.70 6.80 4.62 4.14

CLBP 26.74 24.58 21.79 22.37

Brazilian PUC-PR SigNet 6.78 5.22 3.61 2.67

CLBP 26.83 19.61 24.61 16.83

images (before the attack) were correctly classified by them. Although the classifier perfor-

mance varies across different datasets, the results for the adversarial attacks showed consistent

trends across them. In this paper we report the consolidated results over the four datasets, and

for completeness we include the results on individual datasets in the Supplementary Material.

5.6.1 Perfect Knowledge

We consider first a scenario of Perfect Knowledge, in which the adversary has full knowledge

of all components of the system: θPK = (Db,Du,X , f ,w). The attacker can run his own copy

of the system, and use one of the proposed attacks to generate adversarial images.

Table 5.2 Success rate of Type-I attacks (% of attacks that transformed a genuine

signature in a forgery)

Attack Type
Feature Classifier FGM Carlini Anneal Decision
CLBP Linear - - 63.16 80.70

CLBP RBF - - 100.00 100.00

SigNet Linear 99.42 100.00 98.83 100.00

SigNet RBF 98.25 100.00 98.83 100.00

For Type-I attacks, given a genuine sample Xg, the objective is to obtain an adversarial X̃ =

Xg+δ that is classified as a forgery. Table 5.2 shows the success rate of attacks in this scenario
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Table 5.3 Distortion (RMSE of the adversarial noise) for successful Type-I attacks

Attack Type
Feature Classifier FGM Carlini Anneal Decision
CLBP Linear - - 0.40 1.57

CLBP RBF - - 0.36 10−9

SigNet Linear 4.04 1.35 5.69 3.27

SigNet RBF 4.06 1.40 5.17 3.02

(i.e. the percentage of attacks that found an adversary image), by attack type and classifier type.

We see a high success rate for most attacks. Table 5.3 shows the average RMSE (root mean

squared error) of the adversarial noise δ . We notice that the required amount of noise varies

significantly with different classifiers and attack types. In general, gradient-based attacks find

adversarial images with much less noise on the differentiable models. For the models with

handcrafted features (where we do not have gradients), we noticed that even smaller changes

on the image were enough to induce a misclassification. Figures 5.4 and 5.5 present examples

of this type of attack.

a) Carlini (s̃ =−0.69,

RMSE 2.46)

b) FGM (s̃ =−0.79,

RMSE 3.48)

c) Decision

(s̃ =−0.65, RMSE

6.21)

d) Anneal (s̃ =−0.62,

RMSE 7.66)

Figure 5.4 Example of Type-I attacks on the SVM model with RBF kernel and SigNet

features. The original image is correctly classified as genuine by this model (s̃ = 0.13).
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a) Decision

(s̃ =−0.39, RMSE

0.99)

b) Anneal (s̃ =−0.27,

RMSE 0.21)

Figure 5.5 Example of Type-I attacks on the SVM model with Linear kernel and CLBP

features. The original image is correctly classified as genuine by this model (s̃ = 1.60).

Table 5.4 Success rate of Type-II attacks (% of attacks that transformed a forgery in a

genuine signature)

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
CLBP Linear random - - 37.36 45.98

skilled - - 38.73 46.24

CLBP RBF random - - 0.00 0.00

skilled - - 0.00 0.00

SigNet Linear random 1.15 96.55 0.00 0.00

skilled 28.90 99.42 2.31 3.47

SigNet RBF random 0.57 94.83 0.00 0.00

skilled 19.65 100.00 1.73 1.73

We now consider Type-II attacks, in which we want to modify a forgery Xf , by creating an ad-

versary X̃ = Xf +δ that is classified as a genuine signature. Table 5.4 shows the success rate of

the different methods, and table 5.5 shows the level of noise required in the successful attacks.

Table 5.5 Distortion (RMSE of the adversarial noise) for successful Type-II attacks

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
CLBP Linear random - - 0.39 1.17

skilled - - 0.42 1.08

SigNet Linear random 4.11 6.07 - -

skilled 4.20 3.19 3.61 1.34

SigNet RBF random 4.70 6.55 - -

skilled 4.08 3.62 3.17 1.18
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The results show that this attack is much harder to obtain compared to the Type-I attacks. For

the models trained with CLBP features, we observed that the linear classifier could be attacked

half of the time, while we could not generate any attack using the two gradient-free methods

for the non-linear model. For the CNN-based models, a strong gradient-based method (Carlini)

worked for almost all samples, while the gradient-free methods did not work in most cases -

we only observed some success when using skilled forgeries as the starting point. Comparing

tables 5.3 and 5.5, we observe that for the CLBP-based classifiers, a similar amount of noise

was required to create successful attacks. For the CNN-based methods, when starting from a

random forgery a large amount of noise was required to create successful attacks, while when

starting from a skilled forgery a lower amount of noise was required. We reiterate that the

skilled forgeries selected for attack were correctly classified by the model (i.e. classified as

forgeries), while in successful attacks the adversarial image is classified as a genuine.

It is worth noting that in the experiments with the strong gradient-based attack, we observed a

much larger amount of noise required for misclassification compared to previous results reports

on object recognition. For instance, in the classification task on ImageNet, successful attacks

(using the same Carlini & Wagner method) are reported with much lower noise (RMSE of

0.004 for 100% success of targeted attacks on ImageNet (Carlini & Wagner (2017b))). While

for object recognition the adversarial images are often perceptually identical to the original,

for signatures we noted some distinguishable noise, specially on the Type-II attacks, as can be

seen in figure 5.2 (where the Type-II attack has RMSE of 10.34).

5.6.2 Limited Knowledge #1

We now consider a limited knowledge scenario, where the attacker does not have access

to the signatures used for training the system, but does obtain a surrogate dataset: θLK1 =

(D̂b,D̂u,X , f , ŵ). In this case, the signatures from the background set (used as negative sam-

ples during training) were from a different set of users than those used to train the system.

We also consider that the attacker collected some signatures from the user of interest D̂u, but

that are also different from those used to train the system. This scenario also assumes that the
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attacker knows the feature extractor (i.e. full knowledge of the feature extractor, including all

parameters), and the learning function (the WD classifier type, but not the learned parameters).

In this scenario, the attacker uses the surrogate data to train their own version of the WD classi-

fiers, and uses this classifier to generate the attacks. We then evaluate the success rate of these

attacks on the actual system.

Table 5.6 Success rate of Type-I attacks (% of attacks that transformed a genuine

signature in a forgery) (Limited Knowledge)

Attack Type
Feature Classifier FGM Carlini Anneal Decision
CLBP Linear - - 42.69 43.86

CLBP RBF - - 82.46 82.46

SigNet Linear 97.08 80.12 50.88 40.35

SigNet RBF 97.66 91.81 54.39 47.95

Table 5.6 shows the success rate of the Type-I attacks. We observe a lower success rate com-

pared to the perfect knowledge scenario, but still we find a high success rate against most mod-

els. This suggests that indeed there is a transferability of attacks across models (as observed

before in CNNs (Szegedy et al. (2014))), and that this transferability also impacts systems

trained with handcrafted features.

Table 5.7 Success rate of Type-II attacks (% of attacks that transformed a forgery in a

genuine signature) (Limited Knowledge)

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
CLBP Linear random - - 24.71 28.74

skilled - - 21.97 26.01

CLBP RBF random - - 0.00 0.00

skilled - - 0.00 0.00

SigNet Linear random 0.00 46.55 0.00 0.00

skilled 22.54 71.68 1.73 0.00

SigNet RBF random 0.00 74.71 0.00 0.00

skilled 19.08 83.24 0.58 0.00
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Table 5.7 shows the success rate for Type-II attacks in a limited knowledge scenario. Again we

see a drop in performance compared to the perfect knowledge scenario, but still the attacks that

worked in the PK scenario also worked (to some extent) in the limited knowledge scenario.

5.6.3 Limited Knowledge #2

We now consider a limited knowledge scenario similar to the above, but where the attacker

also does not have access to the CNN used to extract the features. In this case, we consider that

the attacker trains a surrogate CNN using a disjoint set of users, which induces a new feature

space X̂ . We consider therefore θLK2 = (D̂b,D̂u,X̂ , f , ŵ).

Table 5.8 Success rate of Type-I attacks (% of attacks that transformed a genuine

signature in a forgery) (Limited Knowledge #2)

Attack Type
Feature Classifier FGM Carlini Anneal Decision
SigNet Linear 60.34 6.90 48.85 19.54

SigNet RBF 64.37 9.20 51.15 18.97

Table 5.9 Success rate of Type-II attacks (% of attacks that transformed a forgery in a

genuine signature) (Limited Knowledge #2)

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
SigNet Linear random 0.00 0.00 0.00 0.00

skilled 2.30 2.30 0.57 0.57

SigNet RBF random 0.00 0.00 0.00 0.00

skilled 1.72 1.72 1.15 0.00

Tables 5.8 5.9 show the success rate of the Type-I and Type-II attacks, respectively. We observe

much lower success rates, especially for Type-II attacks, where no attacks were successful

when starting from a random forgery, and starting with a skilled forgery the success was as low

as 1-2%. For the Type-I attacks, we notice lower success rates compared to the PK and LK1

scenarios. Overall, these results suggest that transferability of the attacks is much worse when

the models are trained with a different subset of users, that is, when the attacker does not have

access to signatures from the same users that were used to train the CNN model. This contrasts
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with findings in object classification, where attacks trained on a subset of data transfer well to

a model trained with another subset of data (different samples from the same classes) (Szegedy

et al. (2014)). Also, it is worth noting that the strong Carlini attack (that achieves close to

100% success in the Perfect Knowledge scenario) drops in performance in the LK scenarios,

confirming previous findings that such iterative attacks transfer less than single-step attacks

such as FGM (Kurakin et al. (2017b)).

5.6.4 Evaluating countermeasures

Table 5.10 Success rate of Type-I attacks considering different defenses and attacker

knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier PK LK1 LK2 PK LK1 LK2
Baseline Linear 100.00 95.40 60.34 100.00 78.16 6.90

RBF 100.00 97.70 64.37 100.00 85.63 9.20

Ens. Adv Linear 91.38 85.63 45.40 100.00 79.89 4.60

RBF 90.23 83.91 46.55 100.00 90.23 5.75

Madry Linear 91.38 83.33 22.99 100.00 74.71 1.72

RBF 89.08 86.21 21.84 100.00 89.08 0.57

Table 5.11 Distortion (RMSE of the adversarial noise) for Type-I attacks, considering

different defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier PK LK1 LK2 PK LK1 LK2
Baseline Linear 4.17 4.19 4.30 1.31 1.33 1.37

RBF 4.20 4.21 4.30 1.40 1.38 1.55

Ens. Adv. SigNet & Linear 4.37 4.30 4.20 1.35 1.43 1.85

RBF 4.36 4.32 4.20 1.44 1.43 1.63

Madry SigNet & Linear 4.76 4.72 4.26 3.19 3.28 1.59

RBF 4.77 4.74 4.27 3.48 3.52 2.19

We now consider the impact of two counter-measures for the CNN-based systems: Ensemble

Adversarial Learning (Tramèr et al. (2018)) and the Madry defense (Madry et al. (2018)).

Tables 5.10 and 5.11 show the success rate and distortion (RMSE) for Type-I attacks. We
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consider the three Knowledge scenarios discussed in section 5.4.1 (Perfect Knowledge and two

Limited Knowledge scenarios), and the two gradient-based attacks (FGM and Carlini). We

notice that both defenses provide some robustness against the FGM attack in all knowledge

scenarios. Considering the Carlini attack, we see that in a Perfect-Knowledge scenario the

attack was always successful, but Table 5.11 shows that the Madry defense greatly increase

the amount of noise required to generate adversarial examples, going from a RMSE of 1.4 to

around 3.3.

Table 5.12 Success rate of Type-II attacks considering different defenses and attacker

knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier Forgery Type PK LK1 LK2 PK LK1 LK2
Baseline Linear random 2.87 1.15 0.00 98.85 42.53 0.00

skilled 40.80 29.31 2.30 100.00 66.67 2.30

RBF random 1.72 1.15 0.00 95.98 68.39 0.00

skilled 34.48 27.59 1.72 100.00 83.91 1.72

Ens. Adv. Linear random 1.72 0.57 0.00 93.10 41.38 0.00

skilled 29.31 14.94 1.15 100.00 64.37 3.45

RBF random 2.30 0.00 0.00 93.10 69.54 0.00

skilled 22.99 17.24 1.15 100.00 83.91 2.30

Madry Linear random 1.72 0.57 0.00 98.28 45.98 0.00

skilled 48.85 38.51 8.05 100.00 73.56 3.45

RBF random 2.30 0.57 0.00 97.70 75.86 0.00

skilled 45.98 37.36 6.32 100.00 87.93 2.87

Tables 5.12 and 5.13 shows the results on Type-II attacks. In these experiments, we again

observe that the Carlini attack finds attacks most of the time, and that the Madry defense

showed to be effective in increasing the amount of noise required to obtain an adversarial

example (e.g. the average RMSE is increased from 5.98 to 10.81 when starting with a random

forgery, comparing the baseline and the Madry defense). It is worth noting that the RMSE

values only consider the successful attacks, and therefore the results on the Limited Knowledge

scenarios (where the success rate is very low) are likely skewed by a few forgeries that were

already close to the decision boundary.
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Table 5.13 Distortion (RMSE of the adversarial noise) for Type-II attacks, considering

different defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier Forgery Type PK LK1 LK2 PK LK1 LK2
Baseline Linear random 3.97 3.75 - 5.98 5.71 -

skilled 4.21 4.14 4.24 2.99 2.71 2.43

RBF random 3.84 3.83 - 6.27 6.03 -

skilled 4.11 4.06 4.64 3.32 3.20 1.77

Ens. Adv. Linear random 4.51 4.82 - 8.61 8.83 -

skilled 4.53 4.58 4.09 4.71 4.34 1.43

RBF random 4.40 - - 9.45 9.31 -

skilled 4.59 4.58 4.07 5.43 4.82 2.14

Madry Linear random 4.74 5.38 - 10.81 10.97 -

skilled 4.90 4.93 4.15 6.18 5.87 1.94

RBF random 4.62 5.28 - 11.49 11.46 -

skilled 4.91 4.88 4.16 7.00 6.71 2.40

5.6.5 Impact of background removal

Table 5.14 Success of Type-I attacks in a PK scenario, with no pre-processing and with

OTSU pre-processing

Attack Type and Preprocessing
FGM Carlini Anneal Decision

Feature Classifier None OTSU None OTSU None OTSU None OTSU
CLBP Linear - - - - 63.16 9.36 80.70 3.51

RBF - - - - 100.00 0.58 100.00 0.00

SigNet baseline Linear 100.00 88.51 100.00 18.39 96.55 0.57 100.00 1.72

RBF 100.00 86.21 100.00 22.41 98.28 0.00 98.85 0.57

SigNet Ens. Adv. Linear 91.38 67.24 100.00 2.87 97.70 0.00 100.00 0.00

RBF 90.23 65.52 100.00 1.72 98.28 0.00 100.00 0.00

SigNet Madry Linear 91.38 87.93 100.00 77.01 87.93 0.00 99.43 6.90

RBF 89.08 87.36 100.00 75.86 88.51 0.00 100.00 5.75

We now investigate the impact of simple noise-reduction techniques on the success of the

attacks. Starting from the adversarial examples found in the experiments from the previous

section, we applied the OTSU algorithm to remove noise with intensity lower than a threshold

(as described in section 5.5). We then evaluate if the resulting image remains adversarial.
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Table 5.15 Success of Type-II attacks in a PK scenario, with no pre-processing and with

OTSU pre-processing

Attack Type and Preprocessing
FGM Carlini Anneal Decision

Feature Classifier Forgery Type None OTSU None OTSU None OTSU None OTSU
CLBP Linear random - - - - 37.36 0.57 45.98 0.00

skilled - - - - 38.73 1.73 46.24 1.16

RBF random - - - - 0.00 0.00 0.00 0.00

skilled - - - - 0.00 0.00 0.00 0.00

SigNet Baseline Linear random 2.87 0.57 98.85 0.00 0.00 0.00 0.00 0.00

skilled 40.80 31.03 100.00 12.07 1.15 0.00 1.15 0.00

RBF random 1.72 0.57 95.98 0.00 0.00 0.00 0.00 0.00

skilled 34.48 24.14 100.00 14.37 1.72 0.00 1.72 0.00

SigNet Ens Adv. Linear random 1.72 1.15 93.10 7.47 0.00 0.00 1.72 0.00

skilled 29.31 22.99 100.00 21.84 0.57 0.00 2.87 0.57

RBF random 2.30 1.15 93.10 12.64 0.00 0.00 0.00 0.00

skilled 22.99 14.94 100.00 27.59 0.57 0.00 0.57 0.00

SigNet Madry Linear random 1.72 1.15 98.28 45.40 0.00 0.00 1.72 0.00

skilled 48.85 43.10 100.00 77.01 0.57 0.00 2.87 0.57

RBF random 2.30 1.72 97.70 62.64 0.00 0.00 0.00 0.00

skilled 45.98 40.23 100.00 84.48 0.57 0.00 0.57 0.00

Tables 5.14 and 5.15 evaluate the impact of processing the adversarial images with OTSU on

the success rate of the attacks, for Type-I and Type-II attacks, respectively. We noticed that this

pre-processing was effective against the gradient-free attacks, and provided some reduction in

the success rate using gradient-based attacks. A possible explanation for this difference is that

on the gradient-free methods used in these experiments, only small changes to a random set

of pixels in done in each iteration, while the gradient-based methods can select larger changes

to a smaller set of pixels (the regions where we have a large gradient of the loss w.r.t to the

pixels).

5.6.6 Limitations and practical considerations

In this work we evaluated different attack scenarios (knowledge and capabilities for the at-

tacker), but we would like to highlight some practical aspects to take into consideration for

actual attacks:

- Discretization: In this work, we use images in floating point representation, which is ap-

propriate for the optimization methods. Images are commonly stored in 8-bits per channel
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(i.e. pixels intensities that are integer values Xi j ∈ {0, ...,255}). Simply rounding the pixel

intensities to the nearest integer degrades the quality of adversarial examples. An alterna-

tive is to conduct a greedy search (changing each pixel at a time and checking if the image

is still adversarial). This solution is computationally intensive, but can solve the problem

(Carlini & Wagner (2017b) reported success with this search - i.e. by using this method, the

discretized version of an adversarial image is still adversarial, for all images). For figures

5.4 and 5.5 we used the discretized images (and reported the score and RMSE using the

discretized version of the images), so this step mainly adds more computational complexity

for the attacker.

- Physical Attacks: We considered only attacks using digital images (i.e. after the sensor

acquisition) which are limited for scenarios where digital images are used: services where

the client provides a digital image (e.g. an app where the user scans a picture of a bank

cheque). It has been shown that physical attacks are possible (Kurakin et al. (2017a), Atha-

lye et al. (2018b)), where adversarial images were printed, subsequently captured using a

camera, and still fooled classifiers. However, this often requires more noise to be added, to

account to transformations such as slight rotations or translations of the image. Also, it is

worth noting that, if noise is printed on top of a handwritten signature, the noise δ needs

to be constrained to be positive. In some early experiments in this scenario, we found it to

also require more noise (50% higher RMSE) than if δ does not have this constraint.

- Knowledge of noise-removal: In section 5.6.5, we considered a pre-processing step to

remove noise, that is effective (to some extent) in many scenarios. We note, however, that

this cannot be considered a robust defense, and that if the adversary is aware of it, it can use

this information as part of generating the adversarial images (e.g. knowing that a threshold

τ is used, consider adding only pixels with intensity larger than τ). This still increases the

difficulty for gradient-based methods, since the problem becomes discontinuous (the pixel

intensities can be 0 or greater than τ).
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5.7 Conclusion

In this paper we investigated the impact of adversarial examples on biometric systems, in par-

ticular by identifying threats to Offline Handwritten Signature Verification under the point of

view of Adversarial Machine Learning. Our experiments indicate that the issue of adversar-

ial examples present new threats to such systems in several scenarios, including both systems

using handcrafted feature extractors and systems that learn directly from image pixels. In par-

ticular, we identify that Type-I attacks (changing a genuine signature so that it is rejected by

the system) were successful is all systems investigated, even in a limited knowledge scenario,

where the attacker does not have access to the signatures used for training the writer-dependent

classifiers. The results in this scenario confirm previous findings that attacks transfer across dif-

ferent CNN classifiers (Szegedy et al. (2014)), and show that this transferability is also present

on attacks on systems using a handcrafted feature extractor (CLBP). We found, however, that

transferability is greatly reduced when the CNN is trained with a different set of users (rather

than a dijsoint set of samples from the same classes, as investigated in (Szegedy et al. (2014))).

We identified that Type-II attacks (changing a forgery to be accepted as genuine) are much

harder to craft, obtaining lower success rates overall, and requiring larger amounts of noise

for the strong gradient-based method. This contrasts with results in object recognition litera-

ture, where successful attacks (even in a targeted setting) are reported with much lower noise

(less than 3 orders of magnitude), that are commonly visually imperceptible (Carlini & Wagner

(2017b)).

Lastly, we investigated some countermeasures for this problem, and confirmed previous find-

ings that the Madry defense (Madry et al. (2018)) increase the amount of noise necessary to

generate adversarial images. In this paper, we show that this defense is effective even when

only applied on the feature learning phase, with no changes to the subsequent WD classifier

training. We do note, however, that in spite of the increased amount of noise required, a strong

attack (Carlini) is able to find adversarial examples most of the time. Our experiments with

noise reduction show that this can reduce the success rate of attacks when the attacker is not

aware of the defense, although we reiterate that this cannot be considered a robust defense
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(the adversary can incorporate this knowledge on the attack generation process). A definitive

solution for this issue is yet an open research problem. Exploring the nature of the signal (a

pen trajectory in 2D space) as part of the defense can be a promising direction for defenses.

Another interesting area for future work is analyzing the impact of physical attacks (e.g. by

printing adversarial noise on top of a signature).





CONCLUSION AND RECOMMENDATIONS

In this thesis, we proposed different methods to learn feature representations for Offline Hand-

written Signatures directly from data (signature images). We analyzed the problem taking

into consideration the constraints of real applications, such as the requirement of having a low

number of samples per user and the lack of skilled forgeries for training writer-dependent clas-

sifiers. We also analyzed the limitations of these systems in an adversarial machine learning

scenario.

First, we presented formulations for writer-independent feature learning followed by training

writer-dependent classifiers. These approaches showed to be very effective for signature verifi-

cation, improving performance compared to the methods that rely on hand-engineered features.

In particular, we showed a formulation of the problem to take advantage of having forgery data

from a subset of users, so that the learned features perform better in distinguishing forgeries

for unseen users. With this formulation, we obtained state-of-the-art results on four datasets:

GPDS, MCYT, CEDAR, and Brazilian PUC-PR, demonstrating that the features learned in this

Writer-Independent format generalize well to new users.

In a second contribution, we evaluated two methods for adapting the CNN architectures to

learn a fixed-size representation for signatures of different sizes. A simple method, of training a

network with SPP in images of a fixed sized (and generalizing to signatures of any size) showed

similar performance to previous methods, while removing the constraint of having a maximum

signature size that could be processed. Our experiments varying the image resolution showed

that larger resolutions are not always optimal: when only genuine signatures are available for

feature learning, a relatively low resolution (100 dpi) sufficient, but if forgeries are available,

higher resolutions are required in order to capture the low-level details on the pen strokes. We

also showed that transfer learning can improve performance on new operating conditions, by

fine-tuning representations on the other datasets.
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In a third contribution, we considered a formulation of signature verification as a meta-learning

problem. This allows to directly optimize the objective (discriminating genuine signatures and

forgeries). The resulting system is scalable, requiring a single meta-classifier to be stored, that

is adapted to each user on demand. This method showed state-of-the-art results compared to

Writer-Independent approaches on GPDS, and closed the gap to Writer-Dependent systems.

On the other hand, we show that this method requires more data (i.e. from more users) to be

effective, and it does not transfer as well to new operating conditions.

Lastly, we analyzed the limitations of such methods in an Adversarial Machine Learning set-

ting. In particular, we characterized new security threats to Offline Handwritten Signature

Verification, and experimentally validated that adversarial examples present new threats to

such systems in several scenarios, including both systems using handcrafted feature extrac-

tors and systems that learn directly from image pixels. In particular, we identify that Type-I

attacks (changing a genuine signature so that it is rejected by the system) were successful is all

systems investigated, even in a limited knowledge scenario, where the attacker does not have

access to the signatures used for training the writer-dependent classifiers. The results in this

scenario confirm previous findings that attacks transfer across different CNN classifiers, and

show that this transferability is also present on attacks on systems using a handcrafted feature

extractor (CLBP). We found, however, that transferability is greatly reduced when the CNN

is trained with a different set of users. We identified that Type-II attacks (changing a forgery

to be accepted as genuine) are much harder to craft, obtaining lower success rates overall, and

requiring larger amounts of noise for the strong gradient-based method. This contrasts with

results in object recognition literature, where successful attacks (even in a targeted setting) are

reported with much lower noise (less than 3 orders of magnitude), that are commonly visually

imperceptible. Lastly, we investigated some countermeasures for this problem, and confirmed

previous findings that the Madry defense increases the amount of noise necessary to gener-
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ate adversarial images. However, a definitive solution for this issue is yet an open research

problem.

Future Work

The analyses of this thesis suggest the following directions for future work:

- Explicitly address the issue of having a low number of samples per user: low number

of samples per class is a fundamental issue in signature verification. In this thesis, we

partially addressed this problem with (i) learning feature across several users (chapter 2);

(ii) a meta-learning formulation that leverages information across several users (chapter 4).

However, we still notice a steep curve when we consider system performance as we vary

the number of samples per user. Possible directions for addressing this issue involve using

more advanced data augmentation techniques, such as those inspired by neuromotor models

of the handwriting process (Diaz et al. (2017)).

- Online learning: In a practical application, new users are constantly joining the system.

The approaches considered in this thesis consider only using data from a fixed Development

set for learning the features / training a meta-classifier. However, in such dynamic scenario,

it is possible to consider online learning where, as new data is available, it can be used to

improve the system. This is particularly interesting for the meta-learning case developed in

chapter 4, since a single model is used for all users, and therefore this update can benefit the

performance of the system for all new queries, including for existing users of the system.

- Improving defenses against adversarial examples: we showed that current defenses (e.g.

the Madry defense) can increase system robustness by requiring more noise to be added to

the signatures in order to craft adversarial examples. However, these defenses are generic,

and it is possible that better defenses exist, that consider the nature of the signal (a pen

trajectory in 2D space).
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- Analyzing the impact of physical attacks: In chapter 5, we analyzed the impact of ad-

versarial examples for signature verification, but did not consider the aspect of physical

attacks. While existing research shows that adversarial examples exist in the physical world

(Kurakin et al. (2017a); Athalye et al. (2018b)), there are unique properties of the problem

that deserve further investigation. For instance, a realistic scenario would involve printing

adversarial noise on top of a signature, which in practice would restrict the noise to be posi-

tive. This, combined with the observation that physical attacks often requires more noise (to

account for random elements in the data collection) suggest that these attacks may require

a very high level of noise, that would no longer be imperceptible. This problem has a large

impact, but a proper analysis of this hypothesis is needed to reach any conclusions.
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Abstract

Research on adversarial examples in computer vision tasks has shown that small, often im-

perceptible changes to an image can induce misclassification, which has security implications

for a wide range of image processing systems. Considering L2 norm distortions, the Carlini

and Wagner attack is presently the most effective white-box attack in the literature. However,

this method is slow since it performs a line-search for one of the optimization terms, and often

requires thousands of iterations. In this paper, an efficient approach is proposed to generate

gradient-based attacks that induce misclassifications with low L2 norm, by decoupling the di-

rection and the norm of the adversarial perturbation that is added to the image. Experiments

conducted on the MNIST, CIFAR-10 and ImageNet datasets indicate that our attack achieves

comparable results to the state-of-the-art (in terms of L2 norm) with considerably fewer itera-

tions (as few as 100 iterations), which opens the possibility of using these attacks for adversarial

training. Models trained with our attack achieve state-of-the-art robustness against white-box

gradient-based L2 attacks on the MNIST and CIFAR-10 datasets, outperforming the Madry

defense when the attacks are limited to a maximum norm.
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2. Introduction

Deep neural networks have achieved state-of-the-art performances on a wide variety of com-

puter vision applications, such as image classification, object detection, tracking, and activity

recognition (Gu et al. (2018)). In spite of their success in addressing these challenging tasks,

they are vulnerable to active adversaries. Most notably, they are susceptible to adversarial

examples1, in which adding small perturbations to an image, often imperceptible to a human

observer, causes a misclassification (Biggio & Roli (2018); Szegedy et al. (2014)).

Recent research on adversarial examples developed attacks that allow for evaluating the ro-

bustness of models, as well as defenses against these attacks. Attacks have been proposed to

achieve different objectives, such as minimizing the amount of noise that induces misclassifica-

tion (Carlini & Wagner (2017b); Szegedy et al. (2014)), or being fast enough to be incorporated

into the training procedure (Goodfellow et al. (2015); Tramèr et al. (2018)). In particular, con-

sidering the case of obtaining adversarial examples with lowest perturbation (measured by its

L2 norm), the state-of-the-art attack has been proposed by Carlini and Wagner (C&W) (Car-

lini & Wagner (2017b)). While this attack generates adversarial examples with low L2 noise,

it also requires a high number of iterations, which makes it impractical for training a robust

model to defend against such attacks. In contrast, one-step attacks are fast to generate, but

using them for training does not increase model robustness on white-box scenarios, with full

knowledge of the model under attack (Tramèr et al. (2018)). Developing an attack that finds

adversarial examples with low noise in few iterations would enable adversarial training with

such examples, which could potentially increase model robustness against white-box attacks.

Developing attacks that minimize the norm of the adversarial perturbations requires optimizing

two objectives: 1) obtaining a low L2 norm, while 2) inducing a misclassification. With the

current state-of-the-art method, C&W (Carlini & Wagner (2017b)), this is addressed by using

a two-term loss function, with the weight balancing the two competing objectives found via an

1 This also affects other machine learning classifiers, but we restrict our analysis to CNNs, that are

most commonly used in computer vision tasks.
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expensive line search, requiring a large number of iterations. This makes the evaluation of a

system’s robustness very slow and it is unpractical for adversarial training.

In this paper, we propose an efficient gradient-based attack called Decoupled Direction and

Norm2 (DDN) that induces misclassification with a low L2 norm. This attack optimizes the

cross-entropy loss, and instead of penalizing the norm in each iteration, projects the pertur-

bation onto a L2-sphere centered at the original image. The change in norm is then based

on whether the sample is adversarial or not. Using this approach to decouple the direction

and norm of the adversarial noise leads to an attack that needs significantly fewer iterations,

achieving a level of performance comparable to state-of-the-art, while being amenable to be

used for adversarial training.

A comprehensive set of experiments was conducted using the MNIST, CIFAR-10 and Ima-

geNet datasets. Our attack obtains comparable results to the state-of-the-art while requiring

much fewer iterations (~100 times less than C&W). For untargeted attacks on the ImageNet

dataset, our attack achieves better performance than the C&W attack, taking less than 10 min-

utes to attack 1 000 images, versus over 35 hours to run the C&W attack.

Results for adversarial training on the MNIST and CIFAR-10 datasets indicate that DDN can

achieve state-of-the-art robustness compared to the Madry defense (Madry et al. (2018)). These

models require that attacks use a higher average L2 norm to induce misclassifications. They

also obtain a higher accuracy when the L2 norm of the attacks is bounded. On MNIST, if

the attack norm is restricted to 1.5, the model trained with the Madry defense achieves 67.3%

accuracy, while our model achieves 87.2% accuracy. On CIFAR-10, for attacks restricted to a

norm of 0.5, the Madry model achieves 56.1% accuracy, compared to 67.6% in our model.

2 Code available at https://github.com/jeromerony/fast_adversarial.



152

3. Related Work

In this section, we formalize the problem of adversarial examples, the threat model, and review

the main attack and defense methods proposed in the literature.

3.1 Problem Formulation

Figure-A I-1 Example of an adversarial image on the ImageNet dataset. The sample x is

recognized as a Curly-coated retriever. Adding a perturbation δ we obtain an adversarial

image that is classified as a microwave (with ‖δ‖2 = 0.7).

Let x be an sample from the input space X , with label ytrue from a set of possible labels Y .

Let D(x1,x2) be a distance measure that compares two input samples (ideally capturing their

perceptual similarity). P(y|x,θ) is a model (classifier) parameterized by θ . An example x̃ ∈X

is called adversarial (for non-targeted attacks) against the classifier if argmax j P(y j|x̃,θ) �=
ytrue and D(x, x̃) ≤ ε , for a given maximum perturbation ε . A targeted attack with a given

desired class ytarget further requires that argmax j P(y j|x̃,θ) = ytarget. We denote as J(x,y,θ),

the cross-entropy between the prediction of the model for an input x and a label y. Figure-A I-1

illustrates a targeted attack on the ImageNet dataset, against an Inception v3 model (Szegedy

et al. (2016)).

In this paper, attacks are considered to be generated by a gradient-based optimization pro-

cedure, restricting our analysis to differentiable classifiers. These attacks can be formulated

either to obtain a minimum distortion D(x, x̃), or to obtain the worst possible loss in a region
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D(x, x̃) ≤ ε . As an example, consider that the distance function is a norm (e.g., L0, L2 or

L∞), and the inputs are images (where each pixel’s value is constrained between 0 and M). In a

white-box scenario, the optimization procedure to obtain an non-targeted attack with minimum

distortion δ can be formulated as:

min
δ

‖δ‖ subject to argmax
j

P(y j|x+δ ,θ) �= ytrue

and 0 ≤ x+δ ≤ M
(A I-1)

With a similar formulation for targeted attacks, by changing the constraint to be equal to the

target class.

If the objective is to obtain the worst possible loss for a given maximum noise of norm ε , the

problem can be formulated as:

min
δ

P(ytrue|x+δ ,θ) subject to ‖δ‖ ≤ ε

and 0 ≤ x+δ ≤ M
(A I-2)

With a similar formulation for targeted attacks, by maximizing P(ytarget|x+δ ,θ).

We focus on gradient-based attacks that optimize the L2 norm of the distortion. While this

distance does not perfectly capture perceptual similarity, it is widely used in computer vision

to measure similarity between images (e.g. comparing image compression algorithms, where

Peak Signal-to-Noise Ratio is used, which is directly related to the L2 measure). A differen-

tiable distance measure that captures perceptual similarity is still an open research problem.

3.2 Threat Model

In this paper, a white-box scenario is considered, also known as a Perfect Knowledge scenario

(Biggio & Roli (2018)). In this scenario, we consider that an attacker has perfect knowledge

of the system, including the neural network architecture and the learned weights θ . This threat

model serves to evaluate system security under the worst case scenario. Other scenarios can
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be conceived to evaluate attacks under different assumptions on the attacker’s knowledge, for

instance, no access to the trained model, no access to the same training set, among others.

These scenarios are referred as black-box or Limited-Knowledge (Biggio & Roli (2018)).

3.3 Attacks

Several attacks were proposed in the literature, either focusing on obtaining adversarial ex-

amples with a small δ (Equation A I-1) (Carlini & Wagner (2017b); Moosavi-Dezfooli et al.

(2016); Szegedy et al. (2014)), or on obtaining adversarial examples in one (or few) steps for

adversarial training (Goodfellow et al. (2015); Kurakin et al. (2017b)).

L-BFGS. Szegedy et al. (2014) proposed an attack for minimally distorted examples (Equa-

tion A I-1), by considering the following approximation:

min
δ

C‖δ‖2 + logP(ytrue|x+δ ,θ)

subject to 0 ≤ x+δ ≤ M
(A I-3)

where the constraint x+ δ ∈ [0,M]n was addressed by using a box-constrained optimizer (L-

BFGS: Limited memory Broyden–Fletcher–Goldfarb–Shanno), and a line-search to find an

appropriate value of C.

FGSM. Goodfellow et al. (2015) proposed the Fast Gradient Sign Method, a one-step method

that could generate adversarial examples. The original formulation was developed considering

the L∞ norm, but it has also been used to generate attacks that focus on the L2 norm as follows:

x̃ = x+ ε
∇xJ(x,y,θ)
‖∇xJ(x,y,θ)‖ (A I-4)

where the constraint x̃ ∈ [0,M]n was addressed by simply clipping the resulting adversarial

example.

DeepFool. This method considers a linear approximation of the model, and iteratively refines

an adversary example by choosing the point that would cross the decision boundary under
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this approximation. This method was developed for untargeted attacks, and for any Lp norm

(Moosavi-Dezfooli et al. (2016)).

C&W. Similarly to the L-BFGS method, the C&W L2 attack (Carlini & Wagner (2017b))

minimizes two criteria at the same time – the perturbation that makes the sample adversarial

(e.g., misclassified by the model), and the L2 norm of the perturbation. Instead of using a box-

constrained optimization method, they propose changing variables using the tanh function,

and instead of optimizing the cross-entropy of the adversarial example, they use a difference

between logits. For a targeted attack aiming to obtain class t, with Z denoting the model output

before the softmax activation (logits), it optimizes:

min
δ

[
‖x̃− x‖2

2 +C f (x̃)
]

where f (x̃) = max(max
i�=t

{Z(x̃)i}−Z(x̃)t ,−κ)

and x̃ =
1

2
(tanh(arctanh(x)+δ )+1)

(A I-5)

where Z(x̃)i denotes the logit corresponding to the i-th class. By increasing the confidence

parameter κ , the adversarial sample will be misclassified with higher confidence. To use this at-

tack in the untargeted setting, the definition of f is modified to f (x̃) = max(Z(x̃)y −maxi�=y{Z(x̃)i},−κ)

where y is the original label.

3.4 Defenses

Developing defenses against adversarial examples is an active area of research. To some extent,

there is an arms race on developing defenses and attacks that break them. Goodfellow et

al.proposed a method called adversarial training (Goodfellow et al. (2015)), in which the

training data is augmented with FGSM samples. This was later shown not to be robust against

iterative white-box attacks, nor black-box single-step attacks (Tramèr et al. (2018)). Papernot

et al. (2016) proposed a distillation procedure to train robust networks, which was shown to

be easily broken by iterative white-box attacks (Carlini & Wagner (2017b)). Other defenses

involve obfuscated gradients (Athalye et al. (2018a)), where models either incorporate non-
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differentiable steps (such that the gradient cannot be computed) (Buckman et al. (2018); Guo

et al. (2018)), or randomized elements (to induce incorrect estimations of the gradient) (Dhillon

et al. (2018); Xie et al. (2018)). These defenses were later shown to be ineffective when

attacked with Backward Pass Differentiable Approximation (BPDA) (Athalye et al. (2018a)),

where the actual model is used for forward propagation, and the gradient in the backward-

pass is approximated. The Madry defense (Madry et al. (2018)), which considers a worst-case

optimization, is the only defense that has been shown to be somewhat robust (on the MNIST

and CIFAR-10 datasets). Below we provide more detail on the general approach of adversarial

training, and the Madry defense.

Adversarial Training. This defense considers augmenting the training objective with adver-

sarial examples (Goodfellow et al. (2015)), with the intention of improving robustness. Given

a model with loss function J(x,y,θ), training is augmented as follows:

J̃(x,y,θ) = αJ(x,y,θ)+(1−α)J(x̃,y,θ) (A I-6)

where x̃ is an adversarial sample. In (Goodfellow et al. (2015)), the FGSM is used to generate

the adversarial example in a single step. Tramèr et al. (2018) extended this method, showing

that generating one-step attacks using the model under training introduced an issue. The model

can converge to a degenerate solution where its gradients produce “easy” adversarial samples,

causing the adversarial loss to have a limited influence on the training objective. They proposed

a method in which an ensemble of models is also used to generate the adversarial examples x̃.

This method displays some robustness against black-box attacks using surrogate models, but

does not increase robustness in white-box scenarios.

Madry Defense. Madry et al. (2018) proposed a saddle point optimization problem, in which

we optimize for the worst case:

min
θ

p(θ)

where p(θ) = E(x,y)∼D

[
max
δ∈S

J(x+δ ,y,θ)
] (A I-7)
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where D is the training set, and S indicates the feasible region for the attacker (e.g. S = {δ :

‖δ‖ < ε}). They show that Equation A I-7 can be optimized by stochastic gradient descent

– during each training iteration, it first finds the adversarial example that maximizes the loss

around the current training sample x (i.e., maximizing the loss over δ , which is equivalent to

minimizing the probability of the correct class as in Equation A I-2), and then, it minimizes

the loss over θ . Experiments by Athalye et al. (2018a) show that it was the only defense not

broken under white-box attacks.

4. Decoupled Direction and Norm Attack
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Figure-A I-2 Histogram of the best C found by the C&W algorithm with 9 search steps

on the MNIST dataset.

From the problem definition, we see that finding the worst adversary in a fixed region is an

easier task. In Equation A I-2, both constraints can be expressed in terms of δ , and the resulting

equation can be optimized using projected gradient descent. Finding the closest adversarial

example is harder: Equation A I-1 has a constraint on the prediction of the model, which

cannot be addressed by a simple projection. A common approach, which is used by Szegedy

et al. (2014) and Carlini & Wagner (2017b) is to approximate the constrained problem in

Equation A I-1 by an unconstrained one, replacing the constraint with a penalty. This amounts

to jointly optimizing both terms, the norm of δ and a classification term (see Eq. A I-3 and A

I-5), with a sufficiently high parameter C. In the general context of constrained optimization,

such a penalty-based approach is a well known general principle (Jensen & Bard (2003)).

While tackling an unconstrained problem is convenient, penalty methods have well-known
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difficulties in practice. The main difficulty is that one has to choose parameter C in an ad hoc

way. For instance, if C is too small in Equation A I-5, the example will not be adversarial; if it

is too large, this term will dominate, and result in an adversarial example with more noise. This

can be particularly problematic when optimizing with a low number of steps (e.g. to enable

its use in adversarial training). Figure-A I-2 plots a histogram of the values of C that were

obtained by running the C&W attack on the MNIST dataset. We can see that the optimum

C varies significantly among different examples, ranging from 2−11 to 25. We also see that

the distribution of the best constant C changes whether we attack a model with or without

adversarial training (adversarially trained models often require higher C). Furthermore, penalty

methods typically result in slow convergence (Jensen & Bard (2003)).

Algorithm-A I-1 Decoupled Direction and Norm Attack

1 Input: x: original image to be attacked
2 Input: y: true label (untargeted) or target label (targeted)
3 Input: K: number of iterations
4 Input: α: step size
5 Input: γ: factor to modify the norm in each iteration
6 Output: x̃: adversarial image
7 Initialize δ0 ← 0, x̃0 ← x, ε0 ← 1

8 If targeted attack: m ←−1 else m ←+1

9 for k ← 1 to K do
10 g ← m∇x̃k−1

J(x̃k−1,y,θ)
11 g ← α g

‖g‖2
// Step of size α in the direction of g

12 δk ← δk−1 +g
13 if x̃k−1 is adversarial then
14 εk ← (1− γ)εk−1 // Decrease norm
15 end
16 else
17 εk ← (1+ γ)εk−1 // Increase norm
18 end
19 x̃k ← x+ εk

δk
‖δk‖2

// Project δk onto an εk-sphere around x

20 x̃k ← clip(x̃k,0,1) // Ensure x̃k ∈ X

21 end
22 Return x̃k that has lowest norm ‖x̃k − x‖2 and is adversarial
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(a) x̃k not

adversarial

(b) x̃k adversarial

Figure-A I-3 Illustration of an untargeted attack. The shaded area denotes the region of

the input space classified as ytrue. In (a), x̃k is still not adversarial, and we increase the

norm εk+1 for the next iteration, otherwise it is reduced in (b). In both cases, we take a

step g starting from the current point x̃, and project back to an εk+1-sphere centered at x.

Given the difficulty of finding the appropriate constant C for this optimization, we propose an

algorithm that does not impose a penalty on the L2 norm during the optimization. Instead,

the norm is constrained by projecting the adversarial perturbation δ on an ε-sphere around the

original image x. Then, the L2 norm is modified through a binary decision. If the sample xk is

not adversarial at step k, the norm is increased for step k+1, otherwise it is decreased.

We also note that optimizing the cross-entropy may present two other difficulties. First, the

function is not bounded, which can make it dominate in the optimization of Equation A I-3.

Second, when attacking trained models, often the predicted probability of the correct class for

the original image is very close to 1, which causes the cross entropy to start very low and

increase by several orders of magnitude during the search for an adversarial example. This

affects the norm of the gradient, making it hard to find an appropriate learning rate. C&W

address these issues by optimizing the difference between logits instead of the cross-entropy.

In this work, the issue of it being unbounded does not affect the attack procedure, since the

decision to update the norm is done on the model’s prediction (not on the cross-entropy). In

order to handle the issue of large changes in gradient norm, we normalize the gradient to have

unit norm before taking a step in its direction.
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The full procedure is described in algorithm I-1 and illustrated in Figure-A I-3. We start from

the original image x, and iteratively refine the noise δk. In iteration k, if the current sample

x̃k = x+ δk is still not adversarial, we consider a larger norm εk+1 = (1+ γ)εk. Otherwise, if

the sample is adversarial, we consider a smaller εk+1 = (1− γ)εk. In both cases, we take a step

g (step 5 of algorithm I-1) from the point x̃k (red arrow in Figure-A I-3), and project it back

onto an εk+1-sphere centered at x (the direction given by the dashed blue line in Figure-A I-3),

obtaining x̃k+1. Lastly, x̃k+1 is projected onto the feasible region of the input space X . In the

case of images normalized to [0,1], we simply clip the value of each pixel to be inside this

range (step 13 of algorithm I-1). Besides this step, we can also consider quantizing the image

in each iteration, to ensure the attack is a valid image.

It’s worth noting that, when reaching a point where the decision boundary is tangent to the

εk-sphere, g will have the same direction as δk+1. This means that δk+1 will be projected on

the direction of δk. Therefore, the norm will oscillate between the two sides of the decision

boundary in this direction. Multiplying ε by 1+γ and 1−γ will result in a global decrease (on

two steps) of the norm by 1− γ2, leading to a finer search of the best norm.

5. Attack Evaluation

Experiments were conducted on the MNIST, CIFAR-10 and ImageNet datasets, comparing

the proposed attack to the state-of-the-art L2 attacks proposed in the literature: DeepFool

(Moosavi-Dezfooli et al. (2016)) and C&W L2 attack (Carlini & Wagner (2017b)). We use

the same model architectures with identical hyperparameters for training as in (Carlini & Wag-

ner (2017b)) for MNIST and CIFAR-10 (see the supplementary material for details). Our base

classifiers obtain 99.44% and 85.51% accuracy on the test sets of MNIST and CIFAR-10, re-

spectively. For the ImageNet experiments, we use a pre-trained Inception V3 (Szegedy et al.

(2016)), that achieves 22.51% top-1 error on the validation set. Inception V3 takes images of

size 299×299 as input, which are cropped from images of size 342×342.
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Table-A I-1 Performance of our DDN attack compared to C&W and DeepFool attacks

on MNIST, CIFAR-10 and ImageNet in the untargeted scenario.

Attack Budget Success Mean L2 Median L2 #Grads Run-time (s)

M
N

IS
T

C&W

4×25 100.0 1.7382 1.7400 100 1.7

1×100 99.4 1.5917 1.6405 100 1.7

9×10 000 100.0 1.3961 1.4121 54 007 856.8

DeepFool 100 75.4 1.9685 2.2909 98 -

DDN

100 100.0 1.4563 1.4506 100 1.5

300 100.0 1.4357 1.4386 300 4.5

1 000 100.0 1.4240 1.4342 1 000 14.9

C
IF

A
R

-1
0

C&W

4×25 100.0 0.1924 0.1541 60 3.0

1×100 99.8 0.1728 0.1620 91 4.6

9×10 000 100.0 0.1543 0.1453 36 009 1 793.2

DeepFool 100 99.7 0.1796 0.1497 25 -

DDN

100 100.0 0.1503 0.1333 100 4.7

300 100.0 0.1487 0.1322 300 14.2

1 000 100.0 0.1480 0.1317 1 000 47.6

Im
ag

eN
et

C&W

4×25 100.0 1.5812 1.3382 63 379.3

1×100 100.0 0.9858 0.9587 48 287.1

9×10 000 100.0 0.4692 0.3980 21 309 127 755.6

DeepFool 100 98.5 0.3800 0.2655 41 -

DDN

100 99.6 0.3831 0.3227 100 593.6

300 100.0 0.3749 0.3210 300 1 779.4

1 000 100.0 0.3617 0.3188 1 000 5 933.6

Table-A I-2 Comparison of the DDN attack to the C&W L2 attack on MNIST.

Average case Least Likely
Attack Success Mean L2 Success Mean L2

C&W 4×25 96.11 2.8254 69.9 5.0090

C&W 1×100 86.89 2.0940 31.7 2.6062

C&W 9×10 000 100.00 1.9481 100.0 2.5370

DDN 100 100.00 1.9763 100.0 2.6008

DDN 300 100.00 1.9577 100.0 2.5503

DDN 1 000 100.00 1.9511 100.0 2.5348

For experiments with DeepFool (Moosavi-Dezfooli et al. (2016)), we used the implementation

from Foolbox (Rauber et al. (2017)), with a budget of 100 iterations. For the experiments with

C&W, we ported the attack (originally implemented on TensorFlow) on PyTorch to evaluate

the models in the frameworks in which they were trained. We use the same hyperparameters
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Table-A I-3 Comparison of the DDN attack to the C&W L2 attack on CIFAR-10.

Average case Least Likely
Attack Success Mean L2 Success Mean L2

C&W 4×25 99.78 0.3247 98.7 0.5060

C&W 1×100 99.32 0.3104 95.8 0.4159

C&W 9×10 000 100.00 0.2798 100.0 0.3905

DDN 100 100.00 0.2925 100.0 0.4170

DDN 300 100.00 0.2887 100.0 0.4090

DDN 1 000 100.00 0.2867 100.0 0.4050

Table-A I-4 Comparison of the DDN attack to the C&W L2 attack on ImageNet. For

C&W 9×10 000, we report the results from Carlini & Wagner (2017b).

Average case Least Likely
Attack Success Mean L2 Success Mean L2

C&W 4×25 99.13 4.2826 80.6 8.7336

C&W 1×100 96.74 1.7718 66.2 2.2997

C&W 9×10 000 100.00 0.96 100.0 2.22

DDN 100 99.98 1.0260 99.5 1.7074

DDN 300 100.00 0.9021 100.0 1.3634

DDN 1 000 100.00 0.8444 100.0 1.2240

from (Carlini & Wagner (2017b)): 9 search steps on C with an initial constant of 0.01, with

10 000 iterations for each search step (with early stopping) - we refer to this scenario as C&W

9×10 000 in the tables. As we are interested in obtaining attacks that require few iterations,

we also report experiments in a scenario where the number of iterations is limited to 100. We

consider a scenario of running 100 steps with a fixed C (1×100), and a scenario of running

4 search steps on C, of 25 iterations each (4×25). Since the hyperparameters proposed in

(Carlini & Wagner (2017b)) were tuned for a larger number of iterations and search steps, we

performed a grid search for each dataset, using learning rates in the range [0.01, 0.05, 0.1, 0.5,

1], and C in the range [0.001, 0.01, 0.1, 1, 10, 100, 1 000]. We report the results for C&W

with the hyperparameters that achieve best Median L2. Selected parameters are listed in the

supplementary material.
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For the experiments using DDN, we ran attacks with budgets of 100, 300 and 1 000 iterations,

in all cases, using ε0 = 1 and γ = 0.05. The initial step size α = 1, was reduced with cosine

annealing to 0.01 in the last iteration. The choice of γ is based on the encoding of images.

For any correctly classified image, the smallest possible perturbation consists in changing one

pixel by 1/255 (for images encoded in 8 bit values), corresponding to a norm of 1/255. Since

we perform quantization, the values are rounded, meaning that the algorithm must be able to

achieve a norm lower than 1.5/255 = 3/510. When using K steps, this imposes:

ε0(1− γ)K <
3

510
⇒ γ > 1−

(
3

510ε0

) 1
K

(A I-8)

Using ε0 = 1 and K = 100 yields γ � 0.05. Therefore, if there exists an adversarial example

with smallest perturbation, the algorithm may find it in a fixed number of steps.

For the results with DDN, we consider quantized images (to 256 levels). The quantization step

is included in each iteration (see step 13 of algorithm I-1). All results reported in the paper

consider images in the [0,1] range.

Two sets of experiments were conducted: untargeted attacks and targeted attacks. As in (Car-

lini & Wagner (2017b)), we generated attacks on the first 1 000 images of the test set for MNIST

and CIFAR-10, while for ImageNet we randomly chose 1 000 images from the validation set

that are correctly classified. For the untargeted attacks, we report the success rate of the attack

(percentage of samples for which an attack was found), the mean L2 norm of the adversarial

noise (for successful attacks), and the median L2 norm over all attacks while considering un-

successful attacks as worst-case adversarial (distance to a uniform gray image, as introduced

by (Brendel et al. (2018b))). We also report the average number (for batch execution) of gradi-

ent computations and the total run-times (in seconds) on a NVIDIA GTX 1080 Ti with 11GB

of memory. We did not report run-times for the DeepFool attack, since the implementation

from foolbox generates adversarial examples one-by-one and is executed on CPU, leading to

unrepresentative run-times. Attacks on MNIST and CIFAR-10 have been executed in a single
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batch of 1 000 samples, whereas attacks on ImageNet have been executed in 20 batches of 50

samples.

For the targeted attacks, following the protocol from (Carlini & Wagner (2017b)), we gener-

ate attacks against all possible classes on MNIST and CIFAR-10 (9 attacks per image), and

against 100 randomly chosen classes for ImageNet (10% of the number of classes). There-

fore, in each targeted attack experiment, we run 9 000 attacks on MNIST and CIFAR-10, and

100 000 attacks on ImageNet. Results are reported for two scenarios: 1) average over all at-

tacks; 2) average performance when choosing the least likely class (i.e. choosing the worst

attack performance over all target classes, for each image). The reported L2 norms are, as in

the untargeted scenario, the means over successful attacks.

Table-A I-1 reports the results of DDN compared to the C&W L2 and DeepFool attacks on the

MNIST, CIFAR-10 and ImageNet datasets. For the MNIST and CIFAR-10 datasets, results

with DDN are comparable to the state-of-the-art. DDN obtains slightly worse L2 norms on the

MNIST dataset (when compared to the C&W 9×10 000), however, our attack is able to get

within 5% of the norm found by C&W in only 100 iterations compared to the 54 007 iterations

required for the C&W L2 attack. When the C&W attack is restricted to use a maximum of

100 iterations, it always performed worse than DDN with 100 iterations. On the ImageNet

dataset, our attack obtains better Mean L2 norms than both other attacks. The DDN attack

needs 300 iterations to reach 100% success rate. DeepFool obtains close results but fails to

reach 100% success rate. It is also worth noting that DeepFool seems to performs worse against

adversarially trained models (discussed in section 7). Supplementary material reports curves

of the perturbation size against accuracy of the models for the three attacks.

Tables I-2, I-3 and I-4 present the results on targeted attacks on the MNIST, CIFAR-10 and

ImageNet datasets, respectively. For the MNIST and CIFAR-10 datasets, DDN yields similar

performance compared to the C&W attack with 9×10 000 iterations, and always perform better

than the C&W attack when it is restricted to 100 iterations (we re-iterate that the hyperparam-

eters for the C&W attack were tuned for each dataset, while the hyperparameters for DDN
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are fixed for all experiments). On the ImageNet dataset, DDN run with 100 iterations obtains

superior performance than C&W. For all datasets, with the scenario restricted to 100 iterations,

the C&W algorithm has a noticeable drop in success rate for finding adversarial examples to

the least likely class.

6. Adversarial Training with DDN

Since the DDN attack can produce adversarial examples in relatively few iterations, it can be

used for adversarial training. For this, we consider the following loss function:

J̃(x,y,θ) = J(x̃,y,θ) (A I-9)

where x̃ is an adversarial example produced by the DDN algorithm, that is projected to an

ε-ball around x, such that the classifier is trained with adversarial examples with a maximum

norm of ε . It is worth making a parallel of this approach with the Madry defense (Madry et al.

(2018)) where, in each iteration, the loss of the worst-case adversarial (see Equation A I-2) in

an ε-ball around the original sample x is used for optimization. In our proposed adversarial

training procedure, we optimize the loss of the closest adversarial example (see Equation A

I-1). The intuition of this defense is to push the decision boundary away from x in each it-

eration. We do note that this method does not have the theoretical guarantees of the Madry

defense. However, since in practice the Madry defense uses approximations (when searching

for the global maximum of the loss around x), we argue that both methods deserve empirical

comparison.

7. Defense Evaluation

We trained models using the same architectures as (Carlini & Wagner (2017b)) for MNIST,

and a Wide ResNet (WRN) 28-10 (Zagoruyko & Komodakis (2016)) for CIFAR-10 (similar to

(Madry et al. (2018)) where they use a WRN 34-10). As described in section 6, we augment

the training images with adversarial perturbations. For each training step, we run the DDN



166

attack with a budget of 100 iterations, and limit the norm of the perturbation to a maximum

ε = 2.4 on the MNIST experiments, and ε = 1 for the CIFAR-10 experiments. For MNIST,

we train the model for 30 epochs with a learning rate of 0.01 and then for 20 epochs with a

learning rate of 0.001. To reduce the training time with CIFAR-10, we first train the model

on original images for 200 epochs using the hyperparameters from (Zagoruyko & Komodakis

(2016)). Then, we continue training for 30 more epochs using Equation A I-9, keeping the

same final learning rate of 0.0008. Our robust MNIST model has a test accuracy of 99.01%

on the clean samples, while the Madry model has an accuracy of 98.53%. On CIFAR-10, our

model reaches a test accuracy of 89.0% while the model by Madry et al.obtains 87.3%.

Table-A I-5 Evaluation of the robustness of our adversarial training on MNIST against

the Madry defense.

Defense Attack Attack
Success Mean L2 Median L2

Model
Accuracy
at ε ≤ 1.5

Baseline

C&W 9×10 000 100.0 1.3961 1.4121 42.1

DeepFool 100 75.4 1.9685 2.2909 81.8

DDN 1 000 100.0 1.4240 1.4342 45.2

All 100.0 1.3778 1.3946 40.8

Madry

et al.

C&W 9×10 000 100.0 2.0813 2.1071 73.0

DeepFool 100 91.6 4.9585 5.2946 93.1

DDN 1 000 99.6 1.8436 1.8994 69.9

All 100.0 1.6917 1.8307 67.3

Ours

C&W 9×10 000 100.0 2.5181 2.6146 88.0

DeepFool 100 94.3 3.9449 4.1754 92.7

DDN 1 000 100.0 2.4874 2.5781 87.6

All 100.0 2.4497 2.5538 87.2

We evaluate the adversarial robustness of the models using three untargeted attacks: Carlini

9×10 000, DeepFool 100 and DDN 1 000. For each sample, we consider the smallest adversar-

ial perturbation produced by the three attacks and report it in the “All” row. Tables I-5 and I-6

report the results of this evaluation with a comparison to the defense of Madry et al. (2018)3

and the baseline (without adversarial training) for CIFAR-10. For MNIST, the baseline corre-

3 Models taken from https://github.com/MadryLab
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Table-A I-6 Evaluation of the robustness of our adversarial training on CIFAR-10

against the Madry defense.

Defense Attack Attack
Success Mean L2 Median L2

Model
Accuracy
at ε ≤ 0.5

Baseline

WRN 28-10

C&W 9×10 000 100.0 0.1343 0.1273 0.2

DeepFool 100 99.3 0.5085 0.4241 38.3

DDN 1 000 100.0 0.1430 0.1370 0.1

All 100.0 0.1282 0.1222 0.1

Madry

et al.
WRN 34-10

C&W 9×10 000 100.0 0.6912 0.6050 57.1

DeepFool 100 95.6 1.4856 0.9576 64.7

DDN 1 000 100.0 0.6732 0.5876 56.9

All 100.0 0.6601 0.5804 56.1

Ours

WRN 28-10

C&W 9×10 000 100.0 0.8860 0.8254 67.9

DeepFool 100 99.7 1.5298 1.1163 69.9

DDN 1 000 100.0 0.8688 0.8177 68.0

All 100.0 0.8597 0.8151 67.6

sponds to the model used in section 5. We observe that for attacks with unbounded norm, the

attacks can successfully generate adversarial examples almost 100% of the time. However, an

increased L2 norm is required to generate attacks against the model trained with DDN.
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Figure-A I-4 Models robustness on MNIST (left) and CIFAR-10 (right): impact on

accuracy as we increase the maximum perturbation ε .
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Figure-A I-4 shows the robustness of the MNIST and CIFAR-10 models respectively for differ-

ent attacks with increasing maximum L2 norm. These figures can be interpreted as the expected

accuracy of the systems in a scenario where the adversary is constrained to make changes with

norm L2 ≤ ε . For instance on MNIST, if the attacker is limited to a maximum norm of ε = 1.5,

the baseline performance decreases to 40.8%; Madry to 67.3% and our defense to 87.2%. At

ε = 2.0, baseline performance decreases to 9.2%, Madry to 38.6% and our defense to 74.8%.

On CIFAR-10, if the attacker is limited to a maximum norm of ε = 0.5, the baseline perfor-

mance decreases to 0.1%; Madry to 56.1% and our defense to 67.6%. At ε = 1.0, baseline

performance decreases to 0%, Madry to 24.4% and our defense to 39.9%. For both datasets,

the model trained with DDN outperforms the model trained with the Madry defense for all

values of ε .

Figure-A I-5 shows adversarial examples produced by the DDN 1 000 attack for different mod-

els on MNIST and CIFAR-10. On MNIST, adversarial examples for the baseline are not

meaningful (the still visually belong to the original class), whereas some adversarial exam-

ples obtained for the adversarially trained model (DDN) actually change classes (bottom right:

0 changes to 6). For all models, there are still some adversarial examples that are very close

to the original images (first column). On CIFAR-10, while the adversarially trained models

require higher norms for the attacks, most adversarial examples still perceptually resemble the

original images. In few cases (bottom-right example for CIFAR-10), it could cause a confusion:

it can appear as changing to class 1 - a (cropped) automobile facing right.
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Figure-A I-5 Adversarial examples with varied levels of noise δ against three models:

baseline, Madry defense and our defense. Text on top-left of each image indicate ‖δ‖2;

text on bottom-right indicates the predicted class4.

8. Conclusion

We presented the Decoupled Direction and Norm attack, which obtains comparable results

with the state-of-the-art for L2 norm adversarial perturbations, but in much fewer iterations.

Our attack allows for faster evaluation of the robustness of differentiable models, and enables

a novel adversarial training, where, at each iteration, we train with examples close to the deci-

sion boundary. Our experiments with MNIST and CIFAR-10 show state-of-the-art robustness

against L2-based attacks in a white-box scenario. Future work includes the evaluation of the

transferability of attacks in black-box scenarios.

The methods presented in this paper were used in NIPS 2018 Adversarial Vision Challenge

Brendel et al. (2018b), ranking first in untargeted attacks, and third in targeted attacks and

robust models (both attacks and defense in a black-box scenario). These results highlight the

effectiveness of the defense mechanism, and suggest that attacks using adversarially-trained

surrogate models can be effective in black-box scenarios, which is a promising future direction.

4 For CIFAR-10: 1: automobile, 2: bird, 3: cat, 5: dog, 8: ship, 9: truck.
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Supplementary material

9. Model architectures

Table-A I-7 lists the architectures of the CNNs used in the Attack Evaluation - we used the

same architecture as in (Carlini & Wagner (2017b)) for a fair comparison against the C&W and

DeepFool attacks. Table-A I-8 lists the architecture used in the robust model (defense) trained

on CIFAR-10. We used a Wide ResNet with 28 layers and widening factor of 10 (WRN-28-

10). The residual blocks used are the “basic block" (He et al. (2016); Zagoruyko & Komodakis

(2016)), with stride 1 for the first group and stride 2 for the second an third groups. This

architecture is slightly different from the one used by Madry et al. (2018), where they use

a modified version of Wide ResNet with 5 residual blocks instead of 4 in each group, and

without convolutions in the residual connections (when the shape of the output changes, e.g.

with stride=2).

Table-A I-7 CNN architectures used for the Attack Evaluation

Layer Type MNIST Model CIFAR-10 Model
Convolution + ReLU 3×3×32 3×3×64

Convolution + ReLU 3×3×32 3×3×64

Max Pooling 2×2 2×2

Convolution + ReLU 3×3×64 3×3×128

Convolution + ReLU 3×3×64 3×3×128

Max Pooling 2×2 2×2

Fully Connected + ReLU 200 256

Fully Connected + ReLU 200 256

Fully Connected + Softmax 10 10

10. Hyperparameters selected for the C&W attack

We considered a scenario of running the C&W attack with 100 steps and a fixed C (1×100),

and a scenario of running 4 search steps on C, of 25 iterations each (4×25). Since the hyperpa-

rameters proposed in (Carlini & Wagner (2017b)) were tuned for a larger number of iterations
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Table-A I-8 CIFAR-10 architecture used for the Defense evaluation

Layer Type Size
Convolution 3×3×16

Residual Block

[
3×3,160

3×3,160

]
×4

Residual Block

[
3×3,320

3×3,320

]
×4

Residual Block

[
3×3,640

3×3,640

]
×4

Batch Normalization + ReLU -

Average Pooling 8×8

Fully Connected + Softmax 10

and search steps, we performed a grid search for each dataset, using learning rates in the range

[0.01, 0.05, 0.1, 0.5, 1], and C in the range [0.001, 0.01, 0.1, 1, 10, 100, 1 000]. We selected

the hyperparameters that resulted in targeted attacks with lowest Median L2 for each dataset.

Table-A I-9 lists the hyperparameters found through this search procedure.

Table-A I-9 Hyperparameters used for the C&W attack when restricted to 100 iterations.

Dataset # Iterations Parameters
MNIST 1×100 α = 0.1, C = 1

MNIST 4×25 α = 0.5, C = 1

CIFAR-10 1×100 α = 0.01, C = 0.1
CIFAR-10 4×25 α = 0.01, C = 0.1
ImageNet 1×100 α = 0.01, C = 1

ImageNet 4×25 α = 0.01, C = 10

11. Examples of adversarial images

Figure-A I-6 plots a grid of attacks (obtained with the C&W attack) against the first 10 exam-

ples in the MNIST dataset. The rows indicate the source classification (label), and the columns

indicate the target class used to generate the attack (images on the diagonal are the original

samples). We can see that in the adversarially trained model, the attacks need to introduce
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(a) Baseline (without adversarial training) (b) Adversarially trained

Figure-A I-6 Adversarial examples obtained using the C&W L2 attack on two models:

(a) Baseline, (b) model adversarially trained with our attack.

much larger changes to the samples in order to make them adversarial, and some of the adver-

sarial samples visually resemble another class.

Figure-A I-7 shows randomly-selected adversarial examples for the CIFAR-10 dataset, com-

paring the baseline model (WRN 28-10), the Madry defense and our proposed defense. For

each image and model, we ran three attacks (DDN 1 000, C&W 9×10 000, DeepFool 100),

and present the adversarial example with minimum L2 perturbation among them. Figure-A I-8

shows cherry-picked adversarial examples on CIFAR-10, that visually resemble another class,

when attacking the proposed defense. We see that on the average case (randomly-selected),

adversarial examples against the defenses still require low amounts of noise (perceptually) to

induce misclassification. On the other hand, we notice that on adversarially trained models,

some examples do require a much larger change on the image, making it effectively resemble

another class.
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Figure-A I-7 Randomly chosen adversarial examples on CIFAR-10 for three models.

Top row: original images; second row: attacks against the baseline; third row: attacks

against the Madry defense.

Figure-A I-8 Cherry-picked adversarial examples on CIFAR-10 for three models. Top
row: original images; second row: attacks against the baseline; third row: attacks

against the Madry defense; bottom row: attacks against the proposed defense. Predicted

labels for the last row are, from left to right: dog, ship, deer, dog, dog, truck, horse, dog,

cat, cat.

12. Attack performance curves

Figure-A I-9 reports curves of the perturbation size against accuracy of the models for three

attacks: Carlini 9×10 000, DeepFool 100 and DDN 300.
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(a) MNIST / Baseline model.
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(b) MNIST / Madry defense.
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(c) MNIST / Our Defense
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(d) ImageNet / Inception V3.
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(e) CIFAR-10 / Baseline model.
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(f) CIFAR-10 / Baseline WRN 28-10.
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(g) CIFAR-10 / Madry defense.
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(h) CIFAR-10 / Our Defense.

Figure-A I-9 Attacks performances on different datasets and models.



APPENDIX II

SUPPLEMENTARY MATERIAL FOR THE PAPER TITLED CHARACTERIZING
AND EVALUATING ADVERSARIAL EXAMPLES FOR OFFLINE HANDWRITTEN

SIGNATURE VERIFICATION

1. CNN architectures

In this paper, we used the SigNet architecture (Hafemann et al. (2017a)) for the CNN-based

experiments. This architecture is listed in Table II-1. Additionally, as base models for the

Ensemble Adversarial Training (Tramèr et al. (2018)), we trained two models based on similar

architectures: SigNet-thin, that has a smaller amount of channels in the convolutional layers

(described in Table II-2) and SigNet-smaller that has less layers (described in Table II-3). In

all cases, M refer to the number of users (531 in the PK and LK1 experiments, and 264 in the

LK2 experiments).

Table-A II-1 SigNet architecture

Layer Size Other Parameters
Input 1x150x220

Convolution (C1) 96x11x11 stride = 4, pad=0

Pooling 96x3x3 stride = 2

Convolution (C2) 256x5x5 stride = 1, pad=2

Pooling 256x3x3 stride = 2

Convolution (C3) 384x3x3 stride = 1, pad=1

Convolution (C4) 384x3x3 stride = 1, pad=1

Convolution (C5) 256x3x3 stride = 1, pad=1

Pooling 256x3x3 stride = 2

Fully Connected (FC6) 2048

Fully Connected (FC7) 2048

Fully Connected + Softmax M
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Table-A II-2 SigNet-thin architecture

Layer Size Other Parameters
Input 1x150x220

Convolution (C1) 96x11x11 stride = 4, pad=0

Pooling 96x3x3 stride = 2

Convolution (C2) 128x5x5 stride = 1, pad=2

Pooling 128x3x3 stride = 2

Convolution (C3) 128x3x3 stride = 1, pad=1

Convolution (C4) 128x3x3 stride = 1, pad=1

Convolution (C5) 128x3x3 stride = 1, pad=1

Pooling 128x3x3 stride = 2

Fully Connected (FC6) 1024

Fully Connected (FC7) 1024

Fully Connected + Softmax M

Table-A II-3 SigNet-smaller architecture

Layer Size Other Parameters
Input 1x150x220

Convolution (C1) 96x11x11 stride = 4, pad=0

Pooling 96x3x3 stride = 2

Convolution (C2) 256x5x5 stride = 1, pad=2

Pooling 256x3x3 stride = 2

Convolution (C3) 384x3x3 stride = 1, pad=1

Convolution (C4) 256x3x3 stride = 1, pad=1

Pooling 256x3x3 stride = 2

Fully Connected (FC5) 2048

Fully Connected + Softmax M

2. Visualizing adversarial examples

Figures II-1 to II-4 show adversarial examples for different users and defenses. For these vi-

sualizations, we considered the first 160 users of the GPDS Synthetic dataset (Ferrer et al.

(2015)). We followed the experimental protocol defined in Chapter 5, using the three CNN

models to extract the features, and training WD classifiers using 5 signatures as positive sam-

ples, and 5 signatures from the other users as negative samples. We then generated adversarial

examples in a Perfect Knowledge scenario.
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(a) Genuine signatures used to train the system

(b) Genuine under

attack

(c) Baseline (d) Ens. Adv. (e) Madry

(f) Random forgery

under attack

(g) Baseline (h) Ens. Adv. (i) Madry

Figure-A II-1 Adversarial examples against user 2, considering three systems: baseline

(no defense), Ens. Adv training and Madry. Top: Two signatures used to train the

classifier. Middle: attacking a genuine signature to be classified as forgery. Bottom:

attacking a random forgery to be classified as genuine.

For each figure, we consider attacks against three models, that used: (i) the baseline model,

(ii) the CNN trained with Ensemble Adversarial training, (iii) the CNN trained with the Madry

defense. Figure II-1 consider attacks against user 2 of the dataset: the first row shows two

reference signatures from this user, that were used to train the classifier. The middle row shows

Type-I attacks, making a signature from this user be classified as forgery, for each of the three

target systems; the bottom row shows Type-II attacks, making a random forgery be accepted as

genuine for this user. We observe that, in general, Type-II attacks require much larger amounts

of noise, which is reflected in a higher RMSE for these attacks. We also observe that attacking

a system with the Madry defense often requires a noticeable amount of noise than the baseline.

Lastly, we observe that for some users (e.g. figure II-1), the attacks have imperceptible amounts

of noise, even when defenses are considered.
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(a) Genuine signatures used to train the system

(b) Genuine under

attack

(c) Baseline (d) Ens. Adv. (e) Madry

(f) Random forgery

under attack

(g) Baseline (h) Ens. Adv. (i) Madry

Figure-A II-2 Adversarial examples against user 4, considering three systems: baseline

(no defense), Ens. Adv training and Madry. Top: Two signatures used to train the

classifier. Middle: attacking a genuine signature to be classified as forgery. Bottom:

attacking a random forgery to be classified as genuine.
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(a) Genuine signatures used to train the system

(b) Genuine under

attack

(c) Baseline (d) Ens. Adv. (e) Madry

(f) Random forgery

under attack

(g) Baseline (h) Ens. Adv. (i) Madry

Figure-A II-3 Adversarial examples against user 16, considering three systems: baseline

(no defense), Ens. Adv training and Madry. Top: Two signatures used to train the

classifier. Middle: attacking a genuine signature to be classified as forgery. Bottom:

attacking a random forgery to be classified as genuine.
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(a) Genuine signatures used to train the system

(b) Genuine under

attack

(c) Baseline (d) Ens. Adv. (e) Madry

(f) Random forgery

under attack

(g) Baseline (h) Ens. Adv. (i) Madry

Figure-A II-4 Adversarial examples against user 25, considering three systems: baseline

(no defense), Ens. Adv training and Madry. Top: Two signatures used to train the

classifier. Middle: attacking a genuine signature to be classified as forgery. Bottom:

attacking a random forgery to be classified as genuine.
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3. Results on each dataset

Results on the MCYT dataset for different knowledge scenarios are shown in Tables II-4 to

II-11. Results with countermeasures are shown in tables II-12 to II-15. Results with noise

removal are shown in tables II-16 and II-17.

Results on the CEDAR dataset for different knowledge scenarios are shown in Tables II-18

to II-25. Results with countermeasures are shown in tables II-26 to II-29. Results with noise

removal are shown in tables II-30 and II-31.

Results on the Brazilian PUC-PR dataset for different knowledge scenarios are shown in Tables

II-32 to II-39. Results with countermeasures are shown in tables II-40 to II-43. Results with

noise removal are shown in tables II-44 and II-45.

Results on the GPDS dataset for different knowledge scenarios are shown in Tables II-46 to

II-53. Results with countermeasures are shown in tables II-54 to II-57. Results with noise

removal are shown in tables II-58 and II-59.

Table-A II-4 Success rate of Type-I attacks on the MCYT dataset(% of attacks that

transformed a genuine signature in a forgery)

Attack Type
Feature Classifier FGM Carlini Anneal Decision
CLBP Linear - - 55.56 75.00

CLBP RBF - - 100.00 100.00

SigNet Linear 97.22 100.00 97.22 100.00

SigNet RBF 91.67 100.00 97.22 100.00

Table-A II-5 Distortion (RMSE of the adversarial noise) for successful Type-I attacks

on the MCYT dataset

Attack Type
Feature Classifier FGM Carlini Anneal Decision
CLBP Linear - - 0.36 2.34

CLBP RBF - - 0.36 10−9

SigNet Linear 4.19 2.08 7.37 4.43

SigNet RBF 4.22 2.17 6.80 4.16
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Table-A II-6 Success rate of Type-II attacks on the MCYT dataset (% of attacks that

transformed a forgery in a genuine signature)

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
CLBP Linear random - - 45.95 48.65

skilled - - 45.95 48.65

CLBP RBF random - - 0.00 0.00

skilled - - 0.00 0.00

SigNet Linear random 0.00 100.00 0.00 0.00

skilled 40.54 100.00 2.70 2.70

SigNet RBF random 0.00 100.00 0.00 0.00

skilled 29.73 100.00 2.70 2.70

Table-A II-7 Distortion (RMSE of the adversarial noise) for successful Type-II attacks

on the MCYT dataset

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
CLBP Linear random - - 0.45 0.47

skilled - - 0.53 0.67

SigNet Linear random - 7.78 - -

skilled 4.29 4.13 1.72 0.52

SigNet RBF random - 8.53 - -

skilled 4.24 4.54 0.94 0.27

Table-A II-8 Success rate of Type-I attacks on the MCYT dataset (% of attacks that

transformed a genuine signature in a forgery) (Limited Knowledge)

Attack Type
Feature Classifier FGM Carlini Anneal Decision
CLBP Linear - - 38.89 41.67

CLBP RBF - - 77.78 77.78

SigNet Linear 88.89 80.56 52.78 44.44

SigNet RBF 88.89 86.11 55.56 50.00
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Table-A II-9 Success rate of Type-II attacks on the MCYT dataset (% of attacks that

transformed a forgery in a genuine signature) (Limited Knowledge)

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
CLBP Linear random - - 29.73 35.14

skilled - - 27.03 29.73

CLBP RBF random - - 0.00 0.00

skilled - - 0.00 0.00

SigNet Linear random 0.00 54.05 0.00 0.00

skilled 21.62 78.38 2.70 0.00

SigNet RBF random 0.00 78.38 0.00 0.00

skilled 24.32 86.49 2.70 0.00

Table-A II-10 Success rate of Type-I attacks on the MCYT dataset (% of attacks that

transformed a genuine signature in a forgery) (Limited Knowledge #2)

Attack Type
Feature Classifier FGM Carlini Anneal Decision
SigNet Linear 37.84 8.11 40.54 18.92

SigNet RBF 43.24 10.81 40.54 18.92

Table-A II-11 Success rate of Type-II attacks on the MCYT dataset (% of attacks that

transformed a forgery in a genuine signature) (Limited Knowledge #2)

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
SigNet Linear random 0.00 0.00 0.00 0.00

skilled 0.00 2.70 0.00 0.00

SigNet RBF random 0.00 0.00 0.00 0.00

skilled 5.41 2.70 0.00 0.00

Table-A II-12 Success rate of Type-I attacks on the MCYT dataset considering different

defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier PK LK1 LK2 PK LK1 LK2
Baseline Linear 100.00 86.49 37.84 100.00 75.68 8.11

RBF 100.00 89.19 43.24 100.00 81.08 10.81

Ens. Adv. Linear 70.27 64.86 16.22 100.00 89.19 8.11

RBF 72.97 59.46 16.22 100.00 86.49 5.41

Madry Linear 67.57 45.95 8.11 100.00 78.38 2.70

RBF 56.76 48.65 8.11 100.00 86.49 0.00
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Table-A II-13 Distortion (RMSE of the adversarial noise) for Type-I attacks on the

MCYT dataset, considering different defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier PK LK1 LK2 PK LK1 LK2
baseline Linear 4.25 4.29 4.46 2.03 2.05 2.22

RBF 4.29 4.32 4.49 2.16 2.15 2.52

ensadv Linear 4.58 4.52 4.38 2.19 2.33 2.05

RBF 4.55 4.50 4.34 2.35 2.48 2.23

madry Linear 4.88 4.90 4.05 4.94 4.96 1.95

RBF 4.87 4.90 4.07 5.26 5.54 -

Table-A II-14 Success rate of Type-II attacks on the MCYT dataset considering

different defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier Forgery Type PK LK1 LK2 PK LK1 LK2
baseline Linear random 0.00 0.00 0.00 100.00 51.35 0.00

skilled 35.14 32.43 0.00 100.00 67.57 2.70

RBF random 0.00 0.00 0.00 100.00 70.27 0.00

skilled 35.14 29.73 5.41 100.00 83.78 2.70

ensadv Linear random 0.00 0.00 0.00 97.30 45.95 0.00

skilled 29.73 13.51 0.00 100.00 78.38 0.00

RBF random 0.00 0.00 0.00 97.30 70.27 0.00

skilled 24.32 21.62 0.00 100.00 83.78 0.00

madry Linear random 0.00 0.00 0.00 100.00 54.05 0.00

skilled 35.14 27.03 2.70 100.00 78.38 2.70

RBF random 0.00 0.00 0.00 100.00 78.38 0.00

skilled 35.14 27.03 5.41 100.00 94.59 5.41
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Table-A II-15 Distortion (RMSE of the adversarial noise) for Type-II attacks on the

MCYT dataset, considering different defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier Forgery Type PK LK1 LK2 PK LK1 LK2
baseline Linear random - - - 7.02 7.00 -

skilled 4.41 4.42 - 3.69 3.97 3.56

RBF random - - - 7.89 8.28 -

skilled 4.39 4.45 4.75 4.22 4.39 2.26

ensadv Linear random - - - 12.41 11.93 -

skilled 4.49 4.41 - 6.77 7.11 -

RBF random - - - 13.05 13.66 -

skilled 4.51 4.49 - 7.68 7.23 -

madry Linear random - - - 15.01 15.83 -

skilled 4.91 4.99 4.31 8.91 9.16 3.73

RBF random - - - 15.79 16.14 -

skilled 4.94 5.00 4.10 9.85 9.90 3.68

Table-A II-16 Success of Type-I attacks on the MCYT dataset in a PK scenario, with no

pre-processing and with OTSU pre-processing

Attack Type and Preprocessing
FGM Carlini Anneal Decision

Feature Classifier None OTSU None OTSU None OTSU None OTSU
CLBP Linear - - - - 55.56 8.33 75.00 2.78

RBF - - - - 100.00 0.00 100.00 0.00

SigNet Baseline Linear 100.00 67.57 100.00 21.62 94.59 0.00 100.00 0.00

RBF 100.00 62.16 100.00 24.32 97.30 0.00 100.00 0.00

SigNet Ens. Adv. Linear 70.27 43.24 100.00 0.00 91.89 0.00 100.00 0.00

RBF 72.97 35.14 100.00 0.00 94.59 0.00 100.00 0.00

SigNet Madry Linear 67.57 59.46 100.00 56.76 64.86 0.00 97.30 2.70

RBF 56.76 51.35 100.00 59.46 67.57 0.00 100.00 2.70
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Table-A II-17 Success of Type-II attacks on the MCYT dataset in a PK scenario, with

no pre-processing and with OTSU pre-processing

Attack Type and Preprocessing
FGM Carlini Anneal Decision

Feature Classifier Forgery Type None OTSU None OTSU None OTSU None OTSU
CLBP Linear random - - - - 45.95 0.00 48.65 0.00

skilled - - - - 45.95 0.00 48.65 2.70

RBF random - - - - 0.00 0.00 0.00 0.00

skilled - - - - 0.00 0.00 0.00 0.00

SigNet Baseline Linear random 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00

skilled 35.14 24.32 100.00 16.22 0.00 0.00 0.00 0.00

RBF random 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00

skilled 35.14 24.32 100.00 16.22 0.00 0.00 0.00 0.00

SigNet Ens. Adv. Linear random 0.00 0.00 97.30 10.81 0.00 0.00 5.41 0.00

skilled 29.73 13.51 100.00 21.62 0.00 0.00 5.41 0.00

RBF random 0.00 0.00 97.30 10.81 0.00 0.00 0.00 0.00

skilled 24.32 10.81 100.00 27.03 0.00 0.00 0.00 0.00

SigNet Madry Linear random 0.00 0.00 100.00 56.76 0.00 0.00 5.41 0.00

skilled 35.14 35.14 100.00 75.68 0.00 0.00 5.41 2.70

RBF random 0.00 0.00 100.00 72.97 0.00 0.00 0.00 0.00

skilled 35.14 29.73 100.00 81.08 0.00 0.00 0.00 0.00

Table-A II-18 Success rate of Type-I attacks on the CEDAR dataset(% of attacks that

transformed a genuine signature in a forgery)

Attack Type
Feature Classifier FGM Carlini Anneal Decision
CLBP Linear - - 70.37 85.19

CLBP RBF - - 100.00 100.00

SigNet Linear 100.00 100.00 100.00 100.00

SigNet RBF 100.00 100.00 100.00 100.00

Table-A II-19 Distortion (RMSE of the adversarial noise) for successful Type-I attacks

on the CEDAR dataset

Attack Type
Feature Classifier FGM Carlini Anneal Decision
CLBP Linear - - 0.36 0.69

CLBP RBF - - 0.36 10−9

SigNet Linear 3.83 0.85 4.69 2.43

SigNet RBF 3.81 0.88 3.99 2.09
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Table-A II-20 Success rate of Type-II attacks on the CEDAR dataset (% of attacks that

transformed a forgery in a genuine signature)

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
CLBP Linear random - - 25.93 44.44

skilled - - 34.62 46.15

CLBP RBF random - - 0.00 0.00

skilled - - 0.00 0.00

SigNet Linear random 0.00 100.00 0.00 0.00

skilled 30.77 100.00 3.85 7.69

SigNet RBF random 0.00 100.00 0.00 0.00

skilled 26.92 100.00 0.00 0.00

Table-A II-21 Distortion (RMSE of the adversarial noise) for successful Type-II attacks

on the CEDAR dataset

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
CLBP Linear random - - 0.35 0.72

skilled - - 0.38 1.12

SigNet Linear random - 3.38 - -

skilled 3.96 2.16 1.30 0.88

SigNet RBF random - 4.05 - -

skilled 3.73 2.58 - -

Table-A II-22 Success rate of Type-I attacks on the CEDAR dataset (% of attacks that

transformed a genuine signature in a forgery) (Limited Knowledge)

Attack Type
Feature Classifier FGM Carlini Anneal Decision
CLBP Linear - - 33.33 33.33

CLBP RBF - - 85.19 85.19

SigNet Linear 100.00 77.78 62.96 40.74

SigNet RBF 100.00 96.30 62.96 48.15
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Table-A II-23 Success rate of Type-II attacks on the CEDAR dataset (% of attacks that

transformed a forgery in a genuine signature) (Limited Knowledge)

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
CLBP Linear random - - 18.52 14.81

skilled - - 15.38 15.38

CLBP RBF random - - 0.00 0.00

skilled - - 0.00 0.00

SigNet Linear random 0.00 37.04 0.00 0.00

skilled 30.77 65.38 3.85 0.00

SigNet RBF random 0.00 70.37 0.00 0.00

skilled 23.08 76.92 0.00 0.00

Table-A II-24 Success rate of Type-I attacks on the CEDAR dataset (% of attacks that

transformed a genuine signature in a forgery) (Limited Knowledge #2)

Attack Type
Feature Classifier FGM Carlini Anneal Decision
SigNet Linear 70.37 3.70 55.56 25.93

SigNet RBF 74.07 11.11 59.26 22.22

Table-A II-25 Success rate of Type-II attacks on the CEDAR dataset (% of attacks that

transformed a forgery in a genuine signature) (Limited Knowledge #2)

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
SigNet Linear random 0.00 0.00 0.00 0.00

skilled 0.00 0.00 3.70 3.70

SigNet RBF random 0.00 0.00 0.00 0.00

skilled 0.00 3.70 7.41 0.00

Table-A II-26 Success rate of Type-I attacks on the CEDAR dataset considering

different defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier PK LK1 LK2 PK LK1 LK2
baseline Linear 100.00 96.30 70.37 100.00 74.07 3.70

RBF 100.00 100.00 74.07 100.00 81.48 11.11

ensadv Linear 100.00 100.00 70.37 100.00 77.78 3.70

RBF 100.00 100.00 70.37 100.00 96.30 3.70

madry Linear 100.00 96.30 33.33 100.00 77.78 0.00

RBF 100.00 100.00 25.93 100.00 92.59 0.00
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Table-A II-27 Distortion (RMSE of the adversarial noise) for Type-I attacks on the

CEDAR dataset, considering different defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier PK LK1 LK2 PK LK1 LK2
baseline Linear 3.93 3.99 4.07 0.86 0.91 0.85

RBF 3.96 3.97 4.07 0.94 0.92 0.97

ensadv Linear 4.22 4.09 4.03 0.82 0.86 1.10

RBF 4.20 4.15 4.00 0.90 0.84 1.02

madry Linear 4.49 4.43 4.14 2.01 2.10 -

RBF 4.54 4.45 4.31 2.34 2.30 -

Table-A II-28 Success rate of Type-II attacks on the CEDAR dataset considering

different defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier Forgery Type PK LK1 LK2 PK LK1 LK2
baseline Linear random 11.11 7.41 0.00 100.00 37.04 0.00

skilled 48.15 25.93 0.00 100.00 48.15 0.00

RBF random 11.11 7.41 0.00 100.00 70.37 0.00

skilled 40.74 37.04 0.00 100.00 74.07 3.70

ensadv Linear random 7.41 0.00 0.00 100.00 40.74 0.00

skilled 29.63 11.11 0.00 100.00 62.96 7.41

RBF random 11.11 0.00 0.00 100.00 66.67 0.00

skilled 22.22 14.81 0.00 100.00 77.78 3.70

madry Linear random 7.41 0.00 0.00 100.00 40.74 0.00

skilled 59.26 44.44 22.22 100.00 62.96 7.41

RBF random 3.70 0.00 0.00 100.00 81.48 0.00

skilled 55.56 37.04 11.11 100.00 81.48 7.41



190

Table-A II-29 Distortion (RMSE of the adversarial noise) for Type-II attacks on the

CEDAR dataset, considering different defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier Forgery Type PK LK1 LK2 PK LK1 LK2
baseline Linear random 3.93 3.75 - 3.50 4.49 -

skilled 4.03 3.85 - 2.04 1.60 -

RBF random 3.84 3.83 - 4.11 4.24 -

skilled 3.97 3.93 - 2.40 2.33 0.77

ensadv Linear random 4.43 - - 4.82 5.00 -

skilled 4.40 4.65 - 3.13 2.47 1.11

RBF random 4.28 - - 5.87 4.83 -

skilled 4.46 4.46 - 3.76 3.13 1.82

madry Linear random 4.55 - - 5.66 5.73 -

skilled 4.88 5.00 4.26 3.71 3.20 1.32

RBF random 4.09 - - 6.45 6.34 -

skilled 4.87 4.94 4.26 4.71 4.42 1.47

Table-A II-30 Success of Type-I attacks on the CEDAR dataset in a PK scenario, with

no pre-processing and with OTSU pre-processing

Attack Type and Preprocessing
FGM Carlini Anneal Decision

Feature Classifier None OTSU None OTSU None OTSU None OTSU
CLBP Linear - - - - 70.37 7.41 85.19 0.00

RBF - - - - 100.00 0.00 100.00 0.00

SigNet Baseline Linear 100.00 100.00 100.00 11.11 100.00 0.00 100.00 0.00

RBF 100.00 100.00 100.00 14.81 96.30 0.00 100.00 0.00

SigNet Ens. Adv. Linear 100.00 81.48 100.00 0.00 100.00 0.00 100.00 0.00

RBF 100.00 81.48 100.00 0.00 100.00 0.00 100.00 0.00

SigNet Madry Linear 100.00 100.00 100.00 85.19 100.00 0.00 100.00 3.70

RBF 100.00 100.00 100.00 81.48 100.00 0.00 100.00 0.00
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Table-A II-31 Success of Type-II attacks on the CEDAR dataset in a PK scenario, with

no pre-processing and with OTSU pre-processing

Attack Type and Preprocessing
FGM Carlini Anneal Decision

Feature Classifier Forgery Type None OTSU None OTSU None OTSU None OTSU
CLBP Linear random - - - - 25.93 0.00 44.44 0.00

skilled - - - - 34.62 0.00 46.15 3.85

RBF random - - - - 0.00 0.00 0.00 0.00

skilled - - - - 0.00 0.00 0.00 0.00

SigNet Baseline Linear random 11.11 3.70 100.00 0.00 0.00 0.00 0.00 0.00

skilled 48.15 40.74 100.00 14.81 3.70 0.00 3.70 0.00

RBF random 11.11 3.70 100.00 0.00 0.00 0.00 0.00 0.00

skilled 40.74 29.63 100.00 22.22 7.41 0.00 7.41 0.00

SigNet Ens. Adv. Linear random 7.41 3.70 100.00 3.70 0.00 0.00 0.00 0.00

skilled 29.63 22.22 100.00 22.22 0.00 0.00 0.00 0.00

RBF random 11.11 3.70 100.00 14.81 0.00 0.00 0.00 0.00

skilled 22.22 11.11 100.00 33.33 0.00 0.00 0.00 0.00

SigNet Madry Linear random 7.41 3.70 100.00 25.93 0.00 0.00 0.00 0.00

skilled 59.26 55.56 100.00 81.48 3.70 0.00 3.70 0.00

RBF random 3.70 3.70 100.00 59.26 0.00 0.00 0.00 0.00

skilled 55.56 55.56 100.00 85.19 3.70 0.00 3.70 0.00

Table-A II-32 Success rate of Type-I attacks on the Brazilian PUC-PR dataset(% of

attacks that transformed a genuine signature in a forgery)

Attack Type
Feature Classifier FGM Carlini Anneal Decision
CLBP Linear - - 66.67 76.67

CLBP RBF - - 100.00 100.00

SigNet Linear 100.00 100.00 100.00 100.00

SigNet RBF 100.00 100.00 100.00 100.00

Table-A II-33 Distortion (RMSE of the adversarial noise) for successful Type-I attacks

on the Brazilian PUC-PR dataset

Attack Type
Feature Classifier FGM Carlini Anneal Decision
CLBP Linear - - 0.36 0.37

CLBP RBF - - 0.36 10−9

SigNet Linear 3.92 1.03 5.10 2.75

SigNet RBF 3.89 1.05 4.46 2.51
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Table-A II-34 Success rate of Type-II attacks on the Brazilian PUC-PR dataset (% of

attacks that transformed a forgery in a genuine signature)

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
CLBP Linear random - - 33.33 36.67

skilled - - 33.33 36.67

CLBP RBF random - - 0.00 0.00

skilled - - 0.00 0.00

SigNet Linear random 6.67 100.00 0.00 0.00

skilled 33.33 100.00 0.00 3.33

SigNet RBF random 3.33 100.00 0.00 0.00

skilled 10.00 100.00 3.33 3.33

Table-A II-35 Distortion (RMSE of the adversarial noise) for successful Type-II attacks

on the Brazilian PUC-PR dataset

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
CLBP Linear random - - 0.36 0.60

skilled - - 0.36 0.19

SigNet Linear random 4.11 4.63 - -

skilled 4.26 2.01 - 0.27

SigNet RBF random 4.70 5.70 - -

skilled 4.19 2.45 3.92 1.30

Table-A II-36 Success rate of Type-I attacks on the Brazilian PUC-PR dataset (% of

attacks that transformed a genuine signature in a forgery) (Limited Knowledge)

Attack Type
Feature Classifier FGM Carlini Anneal Decision
CLBP Linear - - 50.00 53.33

CLBP RBF - - 90.00 90.00

SigNet Linear 100.00 80.00 50.00 43.33

SigNet RBF 100.00 96.67 56.67 53.33
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Table-A II-37 Success rate of Type-II attacks on the Brazilian PUC-PR dataset (% of

attacks that transformed a forgery in a genuine signature) (Limited Knowledge)

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
CLBP Linear random - - 26.67 33.33

skilled - - 23.33 26.67

CLBP RBF random - - 0.00 0.00

skilled - - 0.00 0.00

SigNet Linear random 0.00 50.00 0.00 0.00

skilled 23.33 83.33 0.00 0.00

SigNet RBF random 0.00 83.33 0.00 0.00

skilled 10.00 93.33 0.00 0.00

Table-A II-38 Success rate of Type-I attacks on the Brazilian PUC-PR dataset (% of

attacks that transformed a genuine signature in a forgery) (Limited Knowledge #2)

Attack Type
Feature Classifier FGM Carlini Anneal Decision
SigNet Linear 80.00 10.00 43.33 13.33

SigNet RBF 83.33 10.00 56.67 20.00

Table-A II-39 Success rate of Type-II attacks on the Brazilian PUC-PR dataset (% of

attacks that transformed a forgery in a genuine signature) (Limited Knowledge #2)

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
SigNet Linear random 0.00 0.00 0.00 0.00

skilled 10.00 10.00 0.00 0.00

SigNet RBF random 0.00 0.00 0.00 0.00

skilled 0.00 3.33 0.00 0.00

Table-A II-40 Success rate of Type-I attacks on the Brazilian PUC-PR dataset

considering different defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier PK LK1 LK2 PK LK1 LK2
baseline Linear 100.00 100.00 80.00 100.00 86.67 10.00

RBF 100.00 100.00 83.33 100.00 96.67 10.00

ensadv Linear 100.00 96.67 76.67 100.00 80.00 3.33

RBF 100.00 100.00 83.33 100.00 96.67 3.33

madry Linear 100.00 93.33 33.33 100.00 83.33 3.33

RBF 100.00 100.00 36.67 100.00 100.00 0.00
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Table-A II-41 Distortion (RMSE of the adversarial noise) for Type-I attacks on the

Brazilian PUC-PR dataset, considering different defenses and attacker knowledge

scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier PK LK1 LK2 PK LK1 LK2
baseline Linear 4.09 4.06 4.24 0.96 0.97 1.18

RBF 4.09 4.00 4.11 1.03 1.04 1.27

ensadv Linear 4.28 4.26 4.15 0.94 0.92 1.51

RBF 4.31 4.35 4.12 0.98 0.97 1.59

madry Linear 4.57 4.54 4.39 2.16 2.35 0.83

RBF 4.57 4.64 4.18 2.41 2.55 -

Table-A II-42 Success rate of Type-II attacks on the Brazilian PUC-PR dataset

considering different defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier Forgery Type PK LK1 LK2 PK LK1 LK2
baseline Linear random 3.33 0.00 0.00 100.00 46.67 0.00

skilled 50.00 30.00 10.00 100.00 76.67 10.00

RBF random 0.00 0.00 0.00 100.00 80.00 0.00

skilled 30.00 26.67 0.00 100.00 93.33 3.33

ensadv Linear random 3.33 3.33 0.00 100.00 53.33 0.00

skilled 46.67 20.00 3.33 100.00 60.00 6.67

RBF random 3.33 0.00 0.00 100.00 96.67 0.00

skilled 23.33 16.67 3.33 100.00 100.00 3.33

madry Linear random 3.33 3.33 0.00 96.67 50.00 0.00

skilled 76.67 60.00 10.00 100.00 76.67 3.33

RBF random 10.00 3.33 0.00 96.67 93.33 0.00

skilled 66.67 56.67 10.00 100.00 93.33 0.00
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Table-A II-43 Distortion (RMSE of the adversarial noise) for Type-II attacks on the

Brazilian PUC-PR dataset, considering different defenses and attacker knowledge

scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier Forgery Type PK LK1 LK2 PK LK1 LK2
baseline Linear random 4.63 - - 4.47 5.13 -

skilled 4.25 4.06 4.21 1.86 1.79 2.05

RBF random - - - 5.31 4.95 -

skilled 4.01 3.85 - 2.25 2.18 2.29

ensadv Linear random 4.66 4.82 - 6.83 7.46 -

skilled 4.53 4.60 3.86 2.86 2.84 1.51

RBF random 4.76 - - 8.27 8.16 -

skilled 4.62 4.60 3.84 3.89 3.69 2.45

madry Linear random 5.12 5.38 - 8.23 8.69 -

skilled 4.89 4.86 3.95 3.88 3.69 1.30

RBF random 4.79 5.28 - 9.41 9.67 -

skilled 4.86 4.74 4.27 4.96 4.73 -

Table-A II-44 Success of Type-I attacks on the Brazilian PUC-PR dataset in a PK

scenario, with no pre-processing and with OTSU pre-processing

Attack Type and Preprocessing
FGM Carlini Anneal Decision

Feature Classifier None OTSU None OTSU None OTSU None OTSU
CLBP Linear - - - - 66.67 13.33 76.67 3.33

RBF - - - - 100.00 0.00 100.00 0.00

SigNet Baseline Linear 100.00 100.00 100.00 10.00 90.00 0.00 100.00 6.67

RBF 100.00 96.67 100.00 23.33 100.00 0.00 96.67 0.00

SigNet Ens. Adv. Linear 100.00 93.33 100.00 6.67 96.67 0.00 100.00 0.00

RBF 100.00 93.33 100.00 3.33 96.67 0.00 100.00 0.00

SigNet Madry Linear 100.00 100.00 100.00 90.00 93.33 0.00 100.00 6.67

RBF 100.00 100.00 100.00 86.67 96.67 0.00 100.00 6.67



196

Table-A II-45 Success of Type-II attacks on the Brazilian PUC-PR dataset in a PK

scenario, with no pre-processing and with OTSU pre-processing

Attack Type and Preprocessing
FGM Carlini Anneal Decision

Feature Classifier Forgery Type None OTSU None OTSU None OTSU None OTSU
CLBP Linear random - - - - 33.33 0.00 36.67 0.00

skilled - - - - 33.33 0.00 36.67 0.00

RBF random - - - - 0.00 0.00 0.00 0.00

skilled - - - - 0.00 0.00 0.00 0.00

SigNet Baseline Linear random 3.33 0.00 100.00 0.00 0.00 0.00 0.00 0.00

skilled 50.00 36.67 100.00 13.33 3.33 0.00 3.33 0.00

RBF random 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00

skilled 30.00 26.67 100.00 16.67 3.33 0.00 3.33 0.00

SigNet Ens. Adv. Linear random 3.33 3.33 100.00 3.33 0.00 0.00 0.00 0.00

skilled 46.67 43.33 100.00 20.00 3.33 0.00 6.67 0.00

RBF random 3.33 3.33 100.00 16.67 0.00 0.00 0.00 0.00

skilled 23.33 23.33 100.00 36.67 3.33 0.00 3.33 0.00

SigNet Madry Linear random 3.33 3.33 96.67 36.67 0.00 0.00 0.00 0.00

skilled 76.67 60.00 100.00 73.33 0.00 0.00 3.33 0.00

RBF random 10.00 6.67 96.67 60.00 0.00 0.00 0.00 0.00

skilled 66.67 56.67 100.00 90.00 0.00 0.00 0.00 0.00

Table-A II-46 Success rate of Type-I attacks on the GPDS-160 dataset(% of attacks that

transformed a genuine signature in a forgery)

Attack Type
Feature Classifier FGM Carlini Anneal Decision
CLBP Linear - - 62.82 83.33

CLBP RBF - - 100.00 100.00

SigNet Linear 100.00 100.00 98.72 100.00

SigNet RBF 100.00 100.00 98.72 100.00

Table-A II-47 Distortion (RMSE of the adversarial noise) for successful Type-I attacks

on the GPDS-160 dataset

Attack Type
Feature Classifier FGM Carlini Anneal Decision
CLBP Linear - - 0.46 1.99

CLBP RBF - - 0.36 10−9

SigNet Linear 4.09 1.30 5.52 3.22

SigNet RBF 4.13 1.36 5.12 3.00
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Table-A II-48 Success rate of Type-II attacks on the GPDS-160 dataset (% of attacks

that transformed a forgery in a genuine signature)

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
CLBP Linear random - - 38.75 48.75

skilled - - 38.75 48.75

CLBP RBF random - - 0.00 0.00

skilled - - 0.00 0.00

SigNet Linear random 0.00 92.50 0.00 0.00

skilled 21.25 98.75 2.50 2.50

SigNet RBF random 0.00 88.75 0.00 0.00

skilled 16.25 100.00 1.25 1.25

Table-A II-49 Distortion (RMSE of the adversarial noise) for successful Type-II attacks

on the GPDS-160 dataset

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
CLBP Linear random - - 0.37 1.80

skilled - - 0.39 1.51

SigNet Linear random - 6.78 - -

skilled 4.18 3.54 5.71 2.74

SigNet RBF random - 6.83 - -

skilled 4.11 3.98 4.66 1.96

Table-A II-50 Success rate of Type-I attacks on the GPDS-160 dataset (% of attacks that

transformed a genuine signature in a forgery) (Limited Knowledge)

Attack Type
Feature Classifier FGM Carlini Anneal Decision
CLBP Linear - - 44.87 44.87

CLBP RBF - - 80.77 80.77

SigNet Linear 98.72 80.77 46.15 37.18

SigNet RBF 100.00 91.03 50.00 44.87
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Table-A II-51 Success rate of Type-II attacks on the GPDS-160 dataset (% of attacks

that transformed a forgery in a genuine signature) (Limited Knowledge)

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
CLBP Linear random - - 23.75 28.75

skilled - - 21.25 27.50

CLBP RBF random - - 0.00 0.00

skilled - - 0.00 0.00

SigNet Linear random 0.00 45.00 0.00 0.00

skilled 20.00 66.25 1.25 0.00

SigNet RBF random 0.00 71.25 0.00 0.00

skilled 18.75 80.00 0.00 0.00

Table-A II-52 Success rate of Type-I attacks on the GPDS dataset (% of attacks that

transformed a genuine signature in a forgery) (Limited Knowledge #2)

Attack Type
Feature Classifier FGM Carlini Anneal Decision
SigNet Linear 60.00 6.25 52.50 20.00

SigNet RBF 63.75 7.50 51.25 17.50

Table-A II-53 Success rate of Type-II attacks on the GPDS dataset (% of attacks that

transformed a forgery in a genuine signature) (Limited Knowledge #2)

Attack Type
Features Classifier Forgery Type FGM Carlini Anneal Decision
SigNet Linear random 0.00 0.00 0.00 0.00

skilled 1.25 0.00 0.00 0.00

SigNet RBF random 0.00 0.00 0.00 0.00

skilled 1.25 0.00 0.00 0.00

Table-A II-54 Success rate of Type-I attacks on the GPDS dataset considering different

defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier PK LK1 LK2 PK LK1 LK2
baseline Linear 100.00 97.50 60.00 100.00 77.50 6.25

RBF 100.00 100.00 63.75 100.00 85.00 7.50

ensadv Linear 95.00 86.25 38.75 100.00 76.25 3.75

RBF 91.25 83.75 38.75 100.00 87.50 7.50

madry Linear 96.25 92.50 22.50 100.00 68.75 1.25

RBF 96.25 93.75 21.25 100.00 85.00 1.25
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Table-A II-55 Distortion (RMSE of the adversarial noise) for Type-I attacks on the

GPDS dataset, considering different defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier PK LK1 LK2 PK LK1 LK2
baseline Linear 4.25 4.27 4.37 1.27 1.29 1.07

RBF 4.28 4.32 4.42 1.34 1.33 1.32

ensadv Linear 4.39 4.33 4.31 1.29 1.33 2.02

RBF 4.38 4.33 4.36 1.37 1.36 1.53

madry Linear 4.88 4.85 4.28 3.17 3.26 1.99

RBF 4.90 4.85 4.34 3.46 3.45 2.19

Table-A II-56 Success rate of Type-II attacks on the GPDS dataset considering different

defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier Forgery Type PK LK1 LK2 PK LK1 LK2
baseline Linear random 1.25 0.00 0.00 97.50 38.75 0.00

skilled 37.50 28.75 1.25 100.00 68.75 0.00

RBF random 0.00 0.00 0.00 91.25 62.50 0.00

skilled 33.75 23.75 1.25 100.00 83.75 0.00

ensadv Linear random 0.00 0.00 0.00 86.25 35.00 0.00

skilled 22.50 15.00 1.25 100.00 60.00 2.50

RBF random 0.00 0.00 0.00 86.25 60.00 0.00

skilled 22.50 16.25 1.25 100.00 80.00 2.50

madry Linear random 0.00 0.00 0.00 97.50 42.50 0.00

skilled 41.25 33.75 5.00 100.00 73.75 2.50

RBF random 0.00 0.00 0.00 96.25 66.25 0.00

skilled 40.00 35.00 3.75 100.00 85.00 1.25
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Table-A II-57 Distortion (RMSE of the adversarial noise) for Type-II attacks on the

GPDS dataset, considering different defenses and attacker knowledge scenarios

Attack Type and Knowledge scenario
FGM Carlini

Defense Classifier Forgery Type PK LK1 LK2 PK LK1 LK2
baseline Linear random 3.40 - - 6.92 5.58 -

skilled 4.17 4.12 4.32 3.40 2.78 -

RBF random - - - 6.64 6.06 -

skilled 4.07 3.99 4.41 3.60 3.32 -

ensadv Linear random - - - 8.88 9.24 -

skilled 4.59 4.61 4.32 4.98 3.89 1.67

RBF random - - - 9.48 9.33 -

skilled 4.66 4.66 4.31 5.54 4.74 2.14

madry Linear random - - - 11.55 10.81 -

skilled 4.90 4.92 4.10 6.62 5.87 1.99

RBF random - - - 11.98 11.97 -

skilled 4.95 4.91 3.98 7.22 6.63 1.67

Table-A II-58 Success of Type-I attacks on the GPDS dataset in a PK scenario, with no

pre-processing and with OTSU pre-processing

Attack Type and Preprocessing
FGM Carlini Anneal Decision

Feature Classifier None OTSU None OTSU None OTSU None OTSU
CLBP Linear - - - - 62.82 8.97 83.33 5.13

RBF - - - - 100.00 1.28 100.00 0.00

SigNet Baseline Linear 100.00 90.00 100.00 22.50 98.75 1.25 100.00 1.25

RBF 100.00 88.75 100.00 23.75 98.75 0.00 98.75 1.25

SigNet Ens. Adv. Linear 95.00 63.75 100.00 3.75 100.00 0.00 100.00 0.00

RBF 91.25 63.75 100.00 2.50 100.00 0.00 100.00 0.00

SigNet Madry Linear 96.25 92.50 100.00 78.75 92.50 0.00 100.00 10.00

RBF 96.25 95.00 100.00 77.50 91.25 0.00 100.00 8.75
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Table-A II-59 Success of Type-II attacks on the GPDS dataset in a PK scenario, with no

pre-processing and with OTSU pre-processing

Attack Type and Preprocessing
FGM Carlini Anneal Decision

Feature Classifier Forgery Type None OTSU None OTSU None OTSU None OTSU
CLBP Linear random - - - - 38.75 1.25 48.75 0.00

skilled - - - - 38.75 3.75 48.75 0.00

RBF random - - - - 0.00 0.00 0.00 0.00

skilled - - - - 0.00 0.00 0.00 0.00

SigNet Baseline Linear random 1.25 0.00 97.50 0.00 0.00 0.00 0.00 0.00

skilled 37.50 28.75 100.00 8.75 0.00 0.00 0.00 0.00

RBF random 0.00 0.00 91.25 0.00 0.00 0.00 0.00 0.00

skilled 33.75 21.25 100.00 10.00 0.00 0.00 0.00 0.00

SigNet Ens. Adv. Linear random 0.00 0.00 86.25 8.75 0.00 0.00 1.25 0.00

skilled 22.50 20.00 100.00 22.50 0.00 0.00 1.25 1.25

RBF random 0.00 0.00 86.25 11.25 0.00 0.00 0.00 0.00

skilled 22.50 15.00 100.00 22.50 0.00 0.00 0.00 0.00

SigNet Madry Linear random 0.00 0.00 97.50 50.00 0.00 0.00 1.25 0.00

skilled 41.25 36.25 100.00 77.50 0.00 0.00 1.25 0.00

RBF random 0.00 0.00 96.25 60.00 0.00 0.00 0.00 0.00

skilled 40.00 33.75 100.00 83.75 0.00 0.00 0.00 0.00
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