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Détection avancée de RFI, excision de RFI et détection de spectre: algorithmes et
analyses de performances

Tilahun Melkamu GETU

RÉSUMÉ

En raison d’interférence intentionnelle et non intentionnelle, l’interférence radiofréquence (RFI)

entraîne une perte de performance dans divers systèmes tels que la radiométrie à hyperfréquences,

la radioastronomie, les communications par satellite, les communications ultra-large bande, le

radar et la radio cognitive. Pour surmonter l’impact de la RFI, une détection RFI robuste avec

une excision RFI efficace est donc nécessaire. Parmi leurs limites, les techniques existantes

tendent à être complexes en calcul et à rendre inefficace l’excision des RFI. D’un autre côté,

plusieurs techniques de détection de spectre sont disponibles pour la radio cognitive (CR).

Cependant, la plupart des techniques existantes reposent sur la disponibilité de l’information

d’état de canal (CSI) ou sur les caractéristiques du signal d’intérêt. Motivé par les limitations

soulignées, cette thèse présente les résultats de recherche en trois volets: détection avancée de

RFI, excision avancé de RFI et détection avancée de spectre.

Concernant la détection avancée de RFI, cette thèse présente cinq détecteurs RFI: un détecteur

de puissance (PD), un détecteur d’énergie (ED), un détecteur de valeurs propres (EvD), un

détecteur à base de matrice et un détecteur à base de tenseur. Tout d’abord, un PD simple

permettant de détecter une RFI large bande est étudiée. En supposant des canaux à atténuation

Nakagami-m, des expressions analytiques exactes pour la probabilité de détection RFI et pour

la fausse alarme sont dérivées et validées par simulations. Les simulations également démon-

trent que le PD surpasse le détecteur de kurtosis (KD). Deuxièmement, on étudie un ED pour

la détection de RFI dans les systèmes de communication sans fil. Sa probabilité moyenne de

détection est approximée, et des expressions analytiques asymptotiques sont dérivées. Aussi,

une expression exacte pour la probabilité moyenne de fausse alarme est dérivée. Des simu-

lations Monte-Carlo valident les expressions analytiques dérivées et corroborent le fait que le

détecteur d’énergie étudié (ED) dépasse les performances de KD et d’un détecteur de test de

rapport de vraisemblance généralisée (GLRT). La performance d’ED est également évaluée en

utilisant de données réelles contaminées par RFI. Troisièmement, un EvD aveugle est proposé

pour les systèmes SIMO (Single-Input Multiple-Output) pouvant être affectés par la RFI. Pour

caractériser les performances d’EvD, des expressions de performance fermées valables pour

des échantillons infiniment énormes sont dérivées et validées par le biais de simulations. Les

simulations corroborent également le fait qu’EvD manifeste, même dans des paramètres de

saturation d’échantillon, des performances de détection comparables avec un détecteur GLRT

alimenté avec la connaissance du canal de signal d’intérêt (SOI) et un détecteur de sous-espace

adapté alimenté avec les canaux SOI et RFI. Enfin, pour une détection robuste de RFI reçue via

un canal à chemins multiples, cette thèse présente des détecteurs RFI multi-antennes à base de

matrice et à base de tenseur, tout en introduisant une hypothèse de test à base de tenseur. Pour

caractériser les performances de ces détecteurs, des analyses de performance ont été menées.
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Les simulations évaluent les performances des détecteurs proposés et valident les caractérisa-

tions asymptotiques dérivées.

Concernant l’excision avancée de RFI, cette thèse introduit une méthode basée sur l’algèbre

multi-linéaire pour une excision de multi-interféreurs (MI-RFI) en proposant un algorithme

multi-linéaire d’estimation et de projection (MLSEP) pour les systèmes SIMO. Après avoir

utilisé des fenêtres d’observation lissées, un algorithme MLSEP (s-MLSEP) lissé est égale-

ment proposé. MLSEP et s-MLSEP nécessitent la connaissance du nombre d’interféreurs et de

leur ordre de canal respectif. En conséquence, un nouveau énumérateur d’interféreurs à base de

matrice lissée et un énumérateur d’ordre de canaux est proposé. Les analyses de performance

confirment que MLSEP et s-MLSEP peuvent exciser tous les brouilleurs lorsque les pertur-

bations deviennent infiniment petites. Pour de telles perturbations, les analyses confirment

également que le s-MLSEP présente une convergence plus rapide vers une erreur d’excision

nulle que le MLSEP, qui converge plus rapidement qu’un algorithme de projection de sous-

espace. Malgré sa faible complexité, les simulations et l’évaluation des performances sur des

données réelles démontrent que le MLSEP surpasse les algorithmes d’excision RFI basés sur

la projection. Les simulations confirment également que s-MLSEP surpasse MLSEP à mesure

que le facteur de lissage diminue.

En ce qui concerne la détection de spectre avancée, ayant été inspiré par un détecteur de F–test

avec une expression de seuil de fausse alarme analytique considéré comme une alternative aux

détecteurs aveugles existants, cette thèse présente et évalue la simple technique de détection du

spectre F–test basée sur des tests ne nécessitant pas la connaissance des CSI pour les CR multi-

antennes. Des expressions de performances analytiques exactes et asymptotiques sont dérivées.

Les simulations évaluent les performances et valident les expressions analytiques. Pour un bruit

additif présentant la même variance sur plusieurs antennes, les simulations montrent que les

détecteurs présentés ont un taux de fausse alarme constant, et ils sont également robustes contre

l’incertitude liée au bruit.

Mots-clés: détection de RFI, excision de RFI, détection de spectre, détection robuste, excision

efficace, analyses de performance.
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ABSTRACT

Because of intentional and unintentional man-made interference, radio frequency interference

(RFI) is causing performance loss in various radio frequency operating systems such as mi-

crowave radiometry, radio astronomy, satellite communications, ultra-wideband communica-

tions, radar, and cognitive radio. To overcome the impact of RFI, a robust RFI detection cou-

pled with an efficient RFI excision are, thus, needed. Amongst their limitations, the existing

techniques tend to be computationally complex and render inefficient RFI excision. On the

other hand, the state-of-the-art on cognitive radio (CR) encompasses numerous spectrum sens-

ing techniques. However, most of the existing techniques either rely on the availability of the

channel state information (CSI) or the primary signal characteristics. Motivated by the high-

lighted limitations, this Ph.D. dissertation presents research investigations and results grouped

into three themes: advanced RFI detection, advanced RFI excision, and advanced spectrum

sensing.

Regarding advanced RFI detection, this dissertation presents five RFI detectors: a power de-

tector (PD), an energy detector (ED), an eigenvalue detector (EvD), a matrix-based detector,

and a tensor-based detector. First, a computationally simple PD is investigated to detect a

broadband RFI. By assuming Nakagami-m fading channels, exact closed-form expressions for

the probabilities of RFI detection and of false alarm are derived and validated via simula-

tions. Simulations also demonstrate that PD outperforms kurtosis detector (KD). Second, an

ED is investigated for RFI detection in wireless communication systems. Its average proba-

bility of RFI detection is studied and approximated, and asymptotic closed-form expressions

are derived. Besides, an exact closed-form expression for its average probability of false alarm

is derived. Monte-Carlo simulations validate the derived analytical expressions and corrobo-

rate that the investigated ED outperforms KD and a generalized likelihood ratio test (GLRT)

detector. The performance of ED is also assessed using real-world RFI contaminated data.

Third, a blind EvD is proposed for single-input multiple-output (SIMO) systems that may suf-

fer from RFI. To characterize the performance of EvD, performance closed-form expressions

valid for infinitely huge samples are derived and validated through simulations. Simulations

also corroborate that EvD manifests, even under sample starved settings, a comparable detec-

tion performance with a GLRT detector fed with the knowledge of the signal of interest (SOI)

channel and a matched subspace detector fed with the SOI and RFI channels. At last, for a

robust detection of RFI received through a multi-path fading channel, this dissertation presents

matrix-based and tensor-based multi-antenna RFI detectors while introducing a tensor-based

hypothesis testing framework. To characterize the performance of these detectors, performance

analyses have been pursued. Simulations assess the performance of the proposed detectors and

validate the derived asymptotic characterizations.
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Concerning advanced RFI excision, this dissertation introduces a multi-linear algebra frame-

work to the multi-interferer RFI (MI-RFI) excision research by proposing a multi-linear sub-

space estimation and projection (MLSEP) algorithm for SIMO systems. Having employed

smoothed observation windows, a smoothed MLSEP (s-MLSEP) algorithm is also proposed.

MLSEP and s-MLSEP require the knowledge of the number of interferers and their respective

channel order. Accordingly, a novel smoothed matrix-based joint number of interferers and

channel order enumerator is proposed. Performance analyses corroborate that both MLSEP

and s-MLSEP can excise all interferers when the perturbations get infinitesimally small. For

such perturbations, the analyses also attest that s-MLSEP exhibits a faster convergence to a

zero excision error than MLSEP which, in turn, converges faster than a subspace projection al-

gorithm. Despite its slight complexity, simulations and performance assessment on real-world

data demonstrate that MLSEP outperforms projection-based RFI excision algorithms. Simula-

tions also corroborate that s-MLSEP outperforms MLSEP as the smoothing factor gets smaller.

With regard to advanced spectrum sensing, having been inspired by an F–test detector with

a simple analytical false alarm threshold expression considered an alternative to the existing

blind detectors, this dissertation presents and evaluates simple F–test based spectrum sensing

techniques that do not require the knowledge of CSI for multi-antenna CRs. Exact and asymp-

totic analytical performance closed-form expressions are derived for the presented detectors.

Simulations assess the performance of the presented detectors and validate the derived expres-

sions. For an additive noise exhibiting the same variance across multiple-antenna frontends,

simulations also corroborate that the presented detectors are constant false alarm rate detectors

which are also robust against noise uncertainty.

Keywords: RFI detection, RFI excision, spectrum sensing, robust detection, efficient exci-

sion, performance analyses.
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N(≡ ÑW ),γsnr

)
= (300,−6dB), and 105

realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209



LIST OF ALGORITHMS

Page

Algorithm 5.1 MB-RD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

Algorithm 5.2 TB-RD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

Algorithm 6.1 MLSEP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140

Algorithm 6.2 SMB-JoNICOE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

Algorithm 7.1 g-FT-v-SVD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183





LIST OF ABBREVIATIONS AND ACRONYMS

ADC analog-to-digital converter

AGC automatic gain control

APB asynchronous pulse blanking

AWGN additive white Gaussian noise

BAM-KLT bordered autocorrelation method-KLT

BIC Bayesian information criterion

BPSK binary phase shift keying

CDF cumulative distribution function

cf. confer

CFAR constant false alarm rate (constant FAR)

Ch. (Chs.) Chapter (Chapters)

CON convergence

CR cognitive radio

CROC complementary receiver operating characteristics (complementary ROC)

CSI channel state information

CSP cross subspace projection

2D two-dimensional

DFT discrete Fourier transform

DoA direction-of-arrival



XXXII

DoF degrees of freedom

DWVD discrete Wigner-Ville distribution

ECCM electronic counter-countermeasures

ED energy detection (detector)

EFA extended factor analysis

EM expectation-maximization

eq. (eqs.) equation (equations)

EvD eigenvalue detector

EVD eigenvalue decomposition

EVM error vector magnitude

EVs eigenvalues

FAR false alarm rate

FFT fast Fourier transforms

Fig. (Figs.) figure (figues)

FIR finite-duration impulse response

FM frequency modulation

FT F–test

FT-v-SVD F–test via singular value decomposition

4G fourth generation

5G fifth generation



XXXIII

GEO geostationary earth orbit

g-FT-v-SVD generalized F–test via singular value decomposition (generalized FT-v-SVD)

GLRT generalized likelihood ratio test

GNSS global navigation satellite system

GPS global positioning system

HOSVD higher-order singular value decomposition (higher-order SVD)

HRD Hadamard ratio detector

IEE interference error envelope

IF intermediate frequency

iff if and only if

i.i.d. independent and identically distributed

IIR infinite-duration impulse response

i.ni.d. independent and non-identically distributed

INR interference-to-noise ratio

IRG Interference Reduction Group

I/Q in-phase/quadrature

J-RMSE joint root mean square error (joint RMSE)

KD kurtosis detector

KLT Karhunen−Loève transform

LMS least mean squares



XXXIV

LoS line-of-sight

LTI long-term interval

MB matrix-based

MB-MSE matrix-based MI-RFI subspace estimator

MB-RD matrix-based RFI detector

MCED multi-channel energy detection (detector) or multi-channel ED

MCED-U multi-channel energy detection with noise uncertainty

MIMO multiple-input multiple-output

MIMO CR g-FT-v-SVD multiple-input multiple-output cognitive radio g-FT-v-SVD

min minimum

MI-RFI multi-interferer RFI

MIS maximal invariant statistic

MLSEP multi-linear subspace estimation and projection

MME maximum-minimum eigenvalue

MoG mixture of Gaussian

MR moment ratio

MSD matched subspace detector

MSE mean square error

MUSIC multiple signal identification and classification

NCPs noncentrality parameters



XXXV

No. number

non-LoS non-line-of-sight

NRAO National Radio Astronomy Observatory

NSERC Natural Sciences and Engineering Research Council of Canada

OFDM orthogonal frequency division multiplexing

OPB oblique projection beamforming

OOC order of convergence

PAM pulse amplitude modulation

PCM population covariance matrix

PCSI perfect channel state information (perfect CSI)

PD power detector

PDF probability density function

PMF probability mass function

PSK phase shift keying

PSP polynomial-augmented subspace projection

PU primary user

QAM quadrature amplitude modulation

QPSK quadrature phase shift keying

RA radio astronomy

RF radio frequency



XXXVI

RFI radio frequency interference

RHS right-hand side

RMSEE root mean square excision error

RMSE root mean square error

ROC receiver operating characteristics

RVs random variables

SatCom satellite communications

SCM sample covariance matrix

SCT sample covariance tensor

Sec. Section

SIG Satcoms Innovation Group

SIMO single-input multiple-output

SINR signal-to-interference-plus-noise ratio

SMB-JoNICOE smoothed matrix-based joint number of interferers and channel order enu-

merator

SMB-MSE smoothed matrix-based MI-RFI subspace estimator

s-MLSEP smoothed multi-linear subspace estimation and projection

SNR signal-to-noise ratio

SOI signal of interest

SP subspace projection

s-RMSEE smoothed root mean square excision error



XXXVII

s-SCM smoothed sample covariance matrix

STB-MSE smoothed tensor-based MI-RFI subspace estimator

STIs short-term intervals

SU secondary user

SVD singular value decomposition

TB tensor-based

TB-MSE tensor-based MI-RFI subspace estimator

TB-RD tensor-based RFI detector

TDTs transformed-domain techniques

TF time-frequency

Thm. Theorem

VHDL VHSIC hardware description language

VHSIC very high speed integrated circuit

VLA Very Large Array

VSAT very small aperture terminal

w.r.t. with respect to





LIST OF SYMBOLS AND UNITS OF MEASUREMENTS

Common Symbols

� equal by definition

>> much greater than

∈ element of (belongs to)

→ approaches to

← assignment

∼ distributed as

≈ approximated as

∝ statistically equivalent

� greater than, less than, or equal to

�·	 the ceiling function

lim limit

≡ equivalence

∗ a discrete-time convolution

[· , · ] horizontal concatenation

∂
∂x

(
∂
∂ z

)
partial differentiation w.r.t. x (w.r.t. z)

Re{·} real part

Im{·} imaginary part

| conditioned on (under)



XL

n! n factorial

⊗ Kronecker product

(·)T transpose

(·)H Hermitian

(·)−1 inverse

(·)+ the Moore-Penrose inverse

(·)+r the r-mode pseudoinverse of a tensor

|| · || the Euclidean norm

|| · ||2 norm squared

||· ||F Frobenius norm

C
NR
(
C

NRW)
the sets of NR(NRW )—dimensional vectors of complex numbers

C
NRW×N the sets of NRW ×N complex matrices

H
NR×NR the sets of NR×NR Hermitian matrices

H
NRW×NRW the sets of NRW ×NRW Hermitian matrices

C
NR×W×N the sets of NR×W ×N three-way tensors

AAA(i, j) the (i, j)-th element of AAA

AAA(:, j) the j-th column of AAA

AAA(:, i : j) the columns of AAA between its i-th and j-th columns including its i-th and j-th

columns

tr(·) trace

vec(·) vectorization



XLI

unvec(·) unvectorization

diag(·) diagonal (block diagonal) matrix

O(·) the Landau notation

E{·} expectation

Pr{·} the probability of

U(·) the unit step function
(
i.e., U(y≥ 0) = 1

)
χ2 chi-square

χ2
ν the central chi-square distribution with ν degrees of freedom

χ ′2ν(λ ) the noncentral chi-square distribution with ν degrees of freedom and non-

centrality parameter λ

In(·) the nth-order modified Bessel function of the first kind

Qu(·, ·) the uth-order generalized Marcum Q-function

Γ(·) the gamma function

Γ(·, ·) the (upper) incomplete gamma function

G (·, ·) the gamma distribution

N A (·, ·) the Nakagami-m distribution

1F1(·; ·; ·) the special case of the generalized hypergeometric function

Fν1,ν2
the central F–distribution with (ν1,ν2) DoF

F ′ν1,ν2
(λ1) the singly noncentral F–distribution with (ν1,ν2) DoF and an NCP of λ1

F ′′ν1,ν2
(λ1,λ2) the doubly noncentral F–distribution with (ν1,ν2) DoF and NCPs of (λ1,λ2)

F(λ ;ν1,ν2) the CDF of Fν1,ν2
evaluated at λ



XLII

F−1(λ ;ν1,ν2) the inverse CDF of Fν1,ν2
evaluated at λ

F ′(λ ;ν1,ν2|λ1) the CDF of F ′ν1,ν2
(λ1) evaluated at λ

F ′′(λ ;ν1,ν2|λ1,λ2) the CDF of F ′′ν1,ν2
(λ1,λ2) evaluated at λ

G·,··,·(·) the Meijer G-function

H0 hypothesis on the absence of an RFI or Q RFIs (also on the absence of a

primary user)

H1 hypothesis on the presence of an RFI or Q RFIs (also on the presence of a

primary user)

Pd(PD) the probability of RFI detection (also the probability of a primary user detec-

tion)

Pf (PFA) the probability of false alarm in RFI detection (also the probability of false

alarm in a primary user detection)

Pm the probability of miss in RFI detection (the probability of miss in a primary

user detection)

λ a decision threshold

σ2 the variance of the AWGN

C/N0 carrier-to-noise ratio

G a three-way RFI or MI-RFI filtering tensor

H a three-way SOI filtering tensor (a three-way secondary filtering tensor)

Y a three-way received signal tensor

Z a three-way noise tensor

Z s the smoothed version of Z



XLIII

NR, NT the number of receive antennas, the number of transmit antennas

γsnr, γinr the SNR, the INR

γ̄snr, γ̄inr, γ̄ j
inr the average SNR, the average INR, the average INR of the j-th RFI

[G ](3), [H ](3) the 3-mode unfolding of tensor G , the 3-mode unfolding of tensor H

[Y ](r), [X ](r) the r-mode unfolding of tensor Y , the r-mode unfolding of tensor X

Symbols Common to Chapter 2

N (·, ·) the normal distribution

r(t), r[n] the received baseband signal, the n-th sample of r(t)—i.e., r[n] = r(nT )

s(t), v j(t) the SOI, the j-th Gaussian RFI

s[n], v j[n] the n-th sample of s(t)—i.e., s[n] = s(nT ), the n-th sample of v j(t)—i.e.,

v j[n] = v j(nT )

Q, T the number of RFIs, the sampling interval (symbol duration)

sn, v j,l the n-th unknown and deterministic SOI, the l-th sample of the j-th Gaussian

RFI

p(t) a rectangular pulse shape of duration T

P, Pj the power of the SOI, the power of the j-th RFI

h, h̄s the flat fading SOI channel gain, the local mean received power of the SOI
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vector corresponding to the second largest singular value in Σ̂ΣΣ

P̂PP2:NR a projection matrix that projects toward the joint subspace spanned by the

singular vectors corresponding to the non-largest singular values in Σ̂ΣΣ
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(
IIINRW
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(
NRW ×NRW

)
identity matrix
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μμμ ∈ C
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NRW×NRW —W ≥ 1 (NRW ≥ 2)
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sI
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vI
k, vQ

k the in-phase and quadrature components of a QPSK modulated RFI signal

Ps, Pv the transmitted SOI power, the transmitted RFI power

vvvm a vector of the RFI samples structured w.r.t. the m-th STI
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hhhl the SOI channel gain vector for the l-th multi-path component

HHH the SOI filtering matrix

gggl the RFI channel gain vector for the l-th multi-path component

GGG the RFI filtering matrix

yyy[k] the k-th sampled multi-antenna received baseband signal vector

yyym the structured received signal vector of size NRW ×1 w.r.t. the m-th STI

YYY the horizontal concatenation of N yyyms

ỸYY the noiseless version of YYY

R̂RRyy the sample covariance matrix computed using yyym

zzz[k] the k-th zero mean circularly symmetric complex AWGN vector

zzzm the sampled AWGN vector structured w.r.t. the m-th STI
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ŨUU , ṼVV the left and right unitary matrices that comprise the SVD of YYY

Σ̃ΣΣ a diagonal matrix of the singular values that comprises the SVD of YYY{
σ̃i

}NRW

i=1
the singular values—comprising the diagonal elements of Σ̃ΣΣ—sorted out in

descending order
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UUU , VVV the true version of ÛUU , the true version of V̂VV

ÛUU1:r the estimated subspace spanned by the eigenvectors corresponding to the
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UUU1:r the true version of ÛUU1:r

ΔUUU1:r the perturbations in ÛUU1:r
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UUUr+1:NRW the true version of ÛUUr+1:NRW
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Σ̂ΣΣ a diagonal matrix of the singular values that comprises the SVD of R̂RRyy

ΣΣΣ the true version of Σ̂ΣΣ{
σ̂i

}NRW

i=1
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P̂PPnd a projection matrix that projects toward the subspace spanned by ÛUUr+1:NRW

R̂RR
(p)
yy the projected SCM computed using P̂PPnd and R̂RRyy

˜̂UUU , ˜̂VVV the left and right unitary matrices that comprise the SVD of R̂RR
(p)
yy

˜̂ΣΣΣ a diagonal matrix of the singular values that comprises the SVD of R̂RR
(p)
yy

˜̂UUU1:r1
the estimated subspace spanned by the eigenvectors corresponding to the

largest r1 =W +L1 eigenvalues, i.e., ˜̂UUU1:r1
= ˜̂UUU(:,1 : r1)

˜̂UUUr1+1:NRW the estimated subspace spanned by the eigenvectors corresponding to the

non-largest NRW − r1 eigenvalues, i.e., ˜̂UUUr1+1:NRW = ˜̂UUU(:,r1 +1 : NRW )
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P̂PPd a projection matrix that projects toward the subspace spanned by ˜̂UUU1:r1

ν1 the degrees of freedom of the numerator, i.e., tr
(
P̂PPdR̂RR

(p)
yy
)

ν2 the degrees of freedom of the denominator, i.e., tr
(
(IIINRW − P̂PPd)R̂RR

(p)
yy
)

Y ×R+1 Y H the (R+1)-mode multiplication of tensor Y and its Hermitian

P̂
[nd]

a tensor defined through its 3-mode unfolding as

[
P̂

[nd]
]T

(3)

= P̂PPnd

Y p a tensor defined through a 3-mode product as Y p = P̂
[nd]×3 Y

[Y p](r) the r-mode unfolding of Y p

R̂
(p)
yy the sample covariance tensor

˜̂S [1:r1] the truncated core tensor

˜̂UUU [1:r1]
1 the left unitary matrix of the singular vectors of [Y p](1)

˜̂UUU [1:r1]
2 the left unitary matrix of the singular vectors of [Y p](2)

˜̂UUU [1:r1]
3 the left unitary matrix of the singular vectors of [Y p](3)

˜̂TTT 1 a projection matrix computed as ˜̂TTT 1 =
˜̂UUU [1:r1]

1
˜̂UUU [1:r1]

H

1

˜̂TTT 2 a projection matrix computed as ˜̂TTT 2 =
˜̂UUU [1:r1]

2
˜̂UUU [1:r1]

H

2

ˆ̃P1,2 a tensor defined through its 3-mode unfolding as

[
˜̂P1,2

]T

(3)

= ˜̂TTT 1⊗ ˜̂TTT 2

˜̂U [1:r1] a subspace estimating tensor[
˜̂U [1:r1]

]
(3)

the 3-mode unfolding of ˜̂U [1:r1]

Pd the probability of RFI detection exhibited by TB-RD

Pmat
d the probability of RFI detection manifested by MB-RD
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Symbols Common to Chapter 6

α , β high INR evoking factor, a roll-off factor

ξ , η phase ambiguity compensation factor, smoothing factor

t0 propagation delay

000M×N an M×N zero matrix

000 a zero matrix whose dimension is deduced from the context

IIINR an NR×NR identity matrix

IIIW , IIINRW a W ×W identity matrix, an NRW ×NRW identity matrix

min(·, ·) minimum

max(·, ·) maximum

C N (· , ·) complex (multivariate) normal distribution

diag(·) the MATLAB R© function that returns the diagonal elements of a square ma-

trix

min(·) the MATLAB R© function that returns the minimum element of a vector or

the minimum element of every column of a matrix

length(·) the MATLAB R© function that returns the length of a vector or the size of a

matrix

zeros(m,n) the MATLAB R© function that returns an m×n zero matrix

Ot a zero tensor

Σ̂ΣΣ a diagonal matrix of the singular values comprising the SVD of YYY I

Σ̂ΣΣI a diagonal matrix made of the r = ∑Q
i=1(W +Li) largest singular values in Σ̂ΣΣ
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Σ̂ΣΣn a diagonal matrix made of the NRW − r smallest singular values in Σ̂ΣΣ

fi(n) the symbol emitted by the i-th RFI transmitter at time n

fff im a vector of the i-th RFI samples structured w.r.t. the m-th STI

fff m a vector made of the vertical concatenation of Q fff ims, 1≤ i≤ Q

FFF the sampled MI-RFI matrix

FFFs the smoothed version of FFF

ggg(l)i the array response of the NR antennas corresponding to the i-th RFI’s l-th

channel tap

GGG the MI-RFI filtering matrix

GGGi j a banded Toeplitz matrix associated with the i-th RFI and the j-th receive an-

tenna’s impulse response gggi j
�
=
[
g0

i j, . . . ,g
Li
i j
]T

=
[
gi j(t0), . . . ,gi j(t0 +LiTs)

]T

hhhl the array response of the NR antennas corresponding to the l-th SOI channel

tap

HHH the SOI filtering matrix

I 3 the 3-mode identity tensor

L+1 the number of channel taps of the SOI channel

Li +1 the number of channel taps of the i-th RFI channel{
L̂(Q̂− i)

}Q̂−1

i=0
the set of the estimated channel orders of the Q broadband interferers

n, N time index, the number of STIs per LTI

Ns the number of overlapping observation windows

NSOI the number of LTIs by which SOI transmission is conducted
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Na
R the number of auxiliary antennas

PPP a projection matrix

γsinr(PPP) SINR in dB computed after projecting with PPP

P the estimated three-way projection tensor[
P

]
(3)

the 3-mode unfolding of P

Ps the estimated three-way smoothed projection tensor[
Ps

]
(3)

the 3-mode unfolding of Ps

Q, Q̂ the number of interferers, the estimated number of interferers

RRRysys the population covariance matrix w.r.t. yyys
ms

RRR f s f s the smoothed MI-RFI population covariance matrix

R̂RRysys the smoothed sample covariance matrix

s(n) the symbol emitted by the SOI transmitter at time n

sssm a vector of the SOI samples structured w.r.t. the m-th STI

SSS the sampled SOI matrix (the horizontal concatenation of N sssms)

SSSs the smoothed SOI matrix

t0 the propagation delay (time-of-arrival)

Ts the symbol duration of the SOI signal

Ŝ
[I]

a three-way core tensor which satisfies the all-orthogonality conditions

Ŝ s[I] the smoothed version of Ŝ
[I]

UUUI the left unitary matrix corresponding to the SVD of the noiseless version of

YYY I
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ÛUUI the estimated MI-RFI subspace

ΔUUUI the perturbations in ÛUUI

ÛUU
s
I the smoothed version of ÛUUI

ÛUU
[I]
1 the left unitary matrix of the singular vectors of [Y I](1)

ΔUUU [I]
1 the perturbations in ÛUU

[I]
1

ÛUUs
1
[I] the smoothed version of ÛUU

[I]
1

ÛUU
[I]
2 the left unitary matrix of the singular vectors of [Y I](2)

ÛUUs
2
[I] the smoothed version of ÛUU

[I]
2

ÛUU
[I]
3 the left unitary matrix of the singular vectors of [Y I](3)

ÛUUs
3
[I] the smoothed version of ÛUU

[I]
3

Û
[I]

the MI-RFI subspace estimating three-way tensor

Û s[I] the smoothed version of Û
[I]

[
Û

[I]
]
(3)

the 3-mode unfolding of Û
[I]

[
Û s[I]

]
(3)

the 3-mode unfolding of Û s[I]

ÛUUn the estimated noise subspace

VVV I the right unitary matrix corresponding to the SVD of the noiseless version of

YYY I

W the number of samples per STI

yyym a structured received signal vector of size NRW ×1 w.r.t. the m-th STI

YYY the horizontal concatenation of N yyyms



LVII

YYY I the received signal matrix without the SOI

YYY s
I the smoothed version of YYY I

Y I a received three-way tensor in the absence of the SOI

Y s
I a received smoothed three-way tensor in the absence of the SOI[

Y I

]
(3)

the 3-mode unfolding of Y I

[
Y s

I

]
(3)

the 3-mode unfolding of Y s
I

zzz(n) the sampled AWGN with a distribution C N
(
000,σ2IIINR

)
zzzm the sampled AWGN vector structured w.r.t. the m-th STI

ZZZ an AWGN matrix of samples made of the horizontal concatenation of N zzzms

ZZZs the smoothed version of ZZZ

Symbols Common to Chapter 7

L+1 the number of channel taps of the primary-to-secondary multi-path channel

M oversampling factor

N the number of intercepted per-antenna samples

Ñ the number of intercepted STIs w.r.t. the g-FT-v-SVD algorithm

˜̃N the number of intercepted STIs w.r.t. the MIMO CR g-FT-v-SVD algorithm

T the FT-v-SVD test statistic

T̃ the g-FT-v-SVD test statistic

˜̃T the MIMO CR g-FT-v-SVD test statistic
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λ̃ a decision threshold w.r.t. the g-FT-v-SVD algorithm

˜̃λ a decision threshold w.r.t. the MIMO CR g-FT-v-SVD algorithm

W the number of samples per STI

max{·, ·} maximum

IIINR

(
IIINRW

)
an NR×NR

(
NRW ×NRW

)
identity matrix

000M×N an M×N zero matrix

000 a zero matrix whose dimension is deduced from the context

C N M(μμμ,ΣΣΣ) the circularly symmetric complex multivariate normal distribution with mean

μμμ ∈ C
M and covariance matrix ΣΣΣ ∈H

M×M (M ≥ 2)

C NNR(000, IIINR) the circularly symmetric complex multivariate normal distribution with mean

of a zero vector and covariance matrix of IIINR (NR ≥ 2)

yyy[k] the k-th sample received multi-antenna signal vector

yyym the structured received multi-antenna signal vector of size NRW ×1 w.r.t. the

m-th STI

ỹyym the structured MIMO received multi-antenna vector of size NRW × 1 w.r.t.

the m-th STI

YYY a matrix made of the horizontal concatenation of N yyy[k]s

ỸYY a matrix made of the horizontal concatenation of Ñ yyyms

˜̃YYY a matrix made of the horizontal concatenation of ˜̃N ỹyyms

hhhl the primary-to-secondary l-th multi-path fading component’s CSI vector

hhh0 (hhh) the primary-to-secondary flat fading CSI vector
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HHHl the MIMO channel impulse responses corresponding to the primary-to-secondary

l-th multi-path fading component

HHH the secondary filtering matrix

HHHT the MIMO filtering matrix made of banded Toeplitz matrices

s[k] the k-th unknown and deterministic primary symbol

sI
k, sQ

k the in-phase and quadrature components of a QPSK modulated primary sig-

nal (for the considered SIMO CR networks)

Ps the transmitted primary power

s j[k] the k-th unknown and deterministic primary symbol transmitted through the

j-th antenna

sI
k j, sQ

k j the in-phase and quadrature components of a QPSK modulated primary sig-

nal transmitted through the j-th antenna (for the considered MIMO CR net-

works)

sss[k] the k-th symbol vector transmitted through the NT transmit antennas

sssm a vector of the primary samples structured w.r.t. the m-th STI

s̃ssm a vector of the MIMO primary samples structured w.r.t. the m-th STI

EEE an error matrix accommodating the respective calibration uncertainties on the

NR antenna frontends

ẼEE an error matrix adjusted as per the adopted vertical stacking pre-processing

of the g-FT-v-SVD algorithm

zzz[k] the k-th zero mean circularly symmetric AWGN vector

zzzm a vector of the AWGN samples structured w.r.t. the m-th STI

R̂RRyy the sample covariance matrix computed using yyy[k]



LX

˜̂RRRyy the sample covariance matrix computed using yyym

R̃RRyy the population covariance matrix, under H1, w.r.t. the MIMO CR g-FT-v-

SVD algorithm

RRRs̃s̃ the primary data correlation matrix w.r.t. the MIMO CR g-FT-v-SVD algo-

rithm

˜̃RRRyy the sample covariance matrix computed using ỹyym

RRR(n)
yy the noiseless sample covariance matrix

ÛUU , V̂VV the left and right unitary matrices that comprise the SVD of R̂RRyy

UUU , VVV the true version of ÛUU , the true version of V̂VV

˜̂UUU , ˜̂VVV the left and right unitary matrices that comprise the SVD of ˜̂RRRyy

˜̃UUU , ˜̃VVV the left and right unitary matrices that comprise the SVD of ˜̃RRRyy

Σ̂ΣΣ a diagonal matrix of the singular values that comprises the SVD of R̂RRyy

˜̂ΣΣΣ a diagonal matrix of the singular values that comprises the SVD of ˜̂RRRyy

˜̃ΣΣΣ a diagonal matrix of the singular values that comprises the SVD of ˜̃RRRyy

ΣΣΣ the true version of Σ̂ΣΣ{
σ̂i

}NR

i=1
the singular values—comprising the diagonal elements of Σ̂ΣΣ—sorted out in

descending order

ÛUUs the estimated subspace spanned by the singular vector corresponding to the

largest singular value, i.e., ÛUUs = ÛUU(:,1)

ΔUUUs the perturbations in ÛUUs

˜̂UUUs the estimated subspace spanned by the eigenvectors corresponding to the

largest r =W +L eigenvalues, i.e., ˜̂UUUs =
˜̂UUU(:,1 : r)



LXI

ΔŨUUs the perturbations in ˜̂UUUs

˜̃UUUs the estimated subspace spanned by the eigenvectors corresponding to the

largest ˜̃r = NT (W +L) eigenvalues, i.e., ˜̃UUUs =
˜̃UUU(:,1 : ˜̃r)

ÛUUn the estimated subspace spanned by the singular vectors corresponding to the

NR−1 non-largest singular values, i.e., ÛUUn = ÛUU(:,2 : NR)

ΔUUUn the perturbations in ÛUUn

˜̂UUUn the estimated subspace spanned by the eigenvectors corresponding to the

non-largest NRW − r eigenvalues, i.e., ˜̂UUUn =
˜̂UUU(:,r+1 : NRW )

˜̃UUUn the estimated subspace spanned by the eigenvectors corresponding to the

non-largest NRW − ˜̃r eigenvalues, i.e., ˜̃UUUn =
˜̃UUU(:, ˜̃r+1 : NRW )

P̂PPs a projection matrix that projects toward the subspace spanned by ÛUUs

˜̂PPPs a projection matrix that projects toward the subspace spanned by ˜̂UUUs

˜̃PPPs a projection matrix that projects toward the subspace spanned by ˜̃UUUs

Piid
d the probability of detection under i.i.d. noise samples

Pinid
d the probability of detection under i.ni.d. noise samples

ν1 the degrees of freedom of the numerator, i.e., tr(P̂PPsR̂RRyy)

ν2 the degrees of freedom of the denominator, i.e., tr
(
(IIINR− P̂PPs)R̂RRyy

)
ν̃1 the degrees of freedom of the numerator, i.e., tr( ˜̂PPPs

˜̂RRRyy)

ν̃2 the degrees of freedom of the denominator, i.e., tr
(
(IIINRW − ˜̂PPPs)

˜̂RRRyy
)

˜̃ν1 the degrees of freedom of the numerator, i.e., tr( ˜̃PPPs
˜̃RRRyy)

˜̃ν2 the degrees of freedom of the denominator, i.e., tr
(
(IIINRW − ˜̃PPPs)

˜̃RRRyy
)

ηnu a factor of uncertainty regarding a noise power overestimation
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ξ a constant noise uncertainty factor related with ηnu as ξ = 10log10 ηnu

σ̂2 the estimated noise power

Units of Measurements

W Watt

Hz Hertz

MHz Megahertz

W/Hz Watt per Hertz



Part I

Preliminaries





INTRODUCTION

“A thousand mile journey begins with one step.”—Lao Tsu

Man-made interference, intentional or unintentional, manifested in terms of radio frequency in-

terference (RFI) is causing system performance loss in various radio frequency (RF) operating

systems. The main causes of RFI identified in (AVIO-601, 2018) include human error, im-

proper installation, lack of training, poor or sub-standard equipment, equipment failure, lack

of adherence to regulatory requirements and industry, poor system design, adjacent (nearby

systems), terrestrial interferers, orbital interferers, RF jammers, malicious interference, and

spoofing attacks. Because of these causes, RFI is becoming increasingly common in various

RF operating systems as diverse as microwave radiometry (Guner et al., 2007), radio astron-

omy (van der Tol & van der Veen, 2005), and satellite communications (SatCom) (Borio et al.,

2008; Newtec and IRG, Sep. 2013). RFI also occurs in ultra-wideband communications for

wideband interferers (Shi et al., 2007); radar because of wideband jammers (De Maio & Or-

lando, 2016; Orlando, 2017; Bandiera & Orlando, 2009); and cognitive radios as a result of

an imperfect spectrum sensing (Getu et al., 2015a)—neighboring primary users emitting such

interference can constrain the energy detector’s spectrum sensing capability, as analytically

demonstrated in (Boulogeorgos et al., 2016b).

If left unmitigated, such a widely occurring RFI can evoke severe system performance losses.

Consequently, the state-of-the-art comprises several RFI detection and excision algorithms.

Based on their signal processing schemes, these algorithms can be divided into six groups:

spectral (Guner et al., 2007), temporal (Johnson & Ellingson, 2005), spectral-temporal (Borio

et al., 2008), statistical (Ruf et al., 2006; Arribas et al., 2013a,b), spatial filtering-based (van

der Tol & van der Veen, 2005; Jeffs et al., 2005), and transformed domain-based (Dovis et al.,

2012) RFI detection and excision algorithms. Despite the several algorithms, the existing tech-

niques exhibit huge computational complexity; provide unsatisfactory detection performance
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and most of them are effective for huge sample settings; detect some type of RFIs only; render

inefficient RFI excision; and/or have limited applicability.

On the other hand, spectrum sensing is crucial for cognitive radios (CRs), especially for the

ones which employ a spectrum overlay access scheme. The state-of-the-art on spectrum sens-

ing comprises numerous contributions and techniques. Based on the bandwidth of the primary

signal to be detected, these techniques have been classified as narrowband and wideband sens-

ing techniques (Ali & Hamouda, 2017; Sharma et al., 2015; Yucek & Arslan, 2009). Upon

the advent of active sensing techniques (Miridakis et al., 2017; Heo et al., 2014; Song et al.,

2010b), spectrum sensing techniques are classified as active sensing (Miridakis et al., 2017;

Heo et al., 2014; Song et al., 2010b) and quiet sensing (Ali & Hamouda, 2017; Sharma et al.,

2015; Wang & Liu, 2011; Axell et al., 2012; Yucek & Arslan, 2009; Haykin et al., 2009).

In spite of the numerous disseminated techniques, the state-of-the-art in spectrum sensing fea-

tures several limitations. In particular, most of the existing techniques rely on assumptions

regarding the primary signal; several conventional narrowband techniques are either compu-

tationally complex or rely on huge samples; most of the wideband techniques manifest high

computational complexity and some require synchronization circuits; some of the active sens-

ing techniques require more spectrum and extra power resources and the protocol they em-

ploy would keep on conducting a secondary transmission while emitting interference to a

primary receiver whenever a hidden terminal problem occurs; the F–test based techniques

(Huang & Chung, 2013a,b) rely on the knowledge of the channel state information between

the primary transmitter and secondary receivers; and most of the existing techniques notably

rely on the consideration of independent and identically distributed (i.i.d.) noise samples.

Motivated by the aforementioned limitations regarding the state-of-the-art RFI detection, RFI

excision, and spectrum sensing, this Ph.D. dissertation has set out to realize these objectives:

the investigation and development of robust RFI detection algorithms for satellite and terrestrial
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communications; the investigation and development of efficient RFI excision algorithms for

satellite and terrestrial communications; and the investigation and development of advanced

low-complexity spectrum sensing techniques. Toward the realization of these objectives, in

the meantime, this dissertation has contributed advanced RFI detection techniques, advanced

RFI excision techniques, and advanced spectrum sensing techniques. It is to be noted that the

proposed techniques can be widely applied in both terrestrial and satellite communications.

Along with this introduction, Part I presents the preliminaries of this dissertation. Part II

presents contributions in advanced RFI detection. Part III continues with the presentation of

contributions concerning advanced RFI excision. Part IV follows with contributions in ad-

vanced spectrum sensing. At last, Part V presents discussions on the reported results; the

conclusion and recommendations of this dissertation; and the accompanying appendices of

this dissertation.





CHAPTER 1

MOTIVATION AND RESEARCH PROBLEMS

“Scientific knowledge is a body of statements of varying degrees of certainty—some most

unsure, some nearly sure, none absolutely certain.”—Richard P. Feynman

As motivated in (AVIO-601, 2018), systems based on satellite communications (SatCom) are

increasingly suffering from radio frequency interference (RFI) because of the near conges-

tion of satellite communication bands (L/S/C/Ku) (Maral & Bousquet, 2009), scarcity of radio

frequency (RF) spectrum, and an increase of interference events. This observation is also

corroborated by an industrial survey conducted by Newtec (Newtec, 2018) and the Satcoms

Innovation Group (SIG) (SIG, 2018)—formerly known as the Satellite Interference Reduction

Group (IRG). According to this industrial survey (Newtec and IRG, Sep. 2013), 93% of satel-

lite operators experience RFI; 24% of satellite operators experience RFI weekly; and 17% of

satellite operators experience RFI daily. Accordingly, the research community has paid consid-

erable attention to the detection and mitigation of RFI—mainly—in radio astronomy (van der

Tol & van der Veen, 2005; Jeffs et al., 2005), microwave radiometry (Ruf et al., 2006; Misra

et al., 2009), and SatCom (Wildemeersch & Fortuny-Guasch, 2010; Nguyen et al., 2015).

The state-of-the-art comprises various RFI detection and excision algorithms. Despite the rich

literature, most of the state-of-the-art RFI detection and excision algorithms are either non-

robust techniques and/or suffer from a considerable computational complexity induced by their

inherent non-linearities. In addition, the state-of-the-art techniques have limited applicability.

Consequently, RFI detection and excision have continued to be an active field of research,

chiefly, in satellite communications, radio astronomy, and microwave radiometry. Meanwhile,

it is worthwhile noting that the statistical signal processing problems of RFI detection and

spectrum sensing are similar. As a matter of this fact, some of the contributions of this Ph.D.

dissertation—with respect to RFI detection—have motivated new contributions regarding spec-

trum sensing pursued in the context of a cognitive radio (CR) that targets at the exploitation
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of the vacant space-time-frequency voids (Goldsmith et al., 2009) of a primary user (PU) by a

secondary user (SU).

Following this brief introduction, the remainder of this chapter is organized as follows. Section

1.1 presents the literature on the state-of-the-art RFI detection, RFI excision, and spectrum

sensing techniques. Section 1.2 presents the limitations of the respective state-of-the-art tech-

niques. Section 1.3 highlights the motivation of this dissertation. Section 1.4 outlines the

research objectives and methodologies. Section 1.5 then enumerates the contributions of this

dissertation. Finally, Section 1.6 outlines the overall organization of this dissertation.

1.1 State-of-the-art

1.1.1 Literature on RFI Detection and Excision

The state-of-the-art on RFI detection and excision encompasses various algorithms. These

algorithms have been proposed, mainly, for microwave radiometry, radio astronomy, and global

navigation satellite systems (GNSS) applications. In line with the purpose of this chapter

while being inspired by the classifications1 of (Misra, 2011; Motella, 2008; Bauza, 2012), the

state-of-the-art RFI detection and excision algorithms are presented via six groups: spectral,

temporal, spectral-temporal, statistical, spatial filtering-based, and transformed domain-based

algorithms. Subsequently, the main state-of-the-art techniques are summarized.

1.1.1.1 Spectral Algorithms

The existing spectral detection and excision algorithms, first, apply discrete Fourier transform

(DFT) to the incoming signal. Thereafter, a comparison is performed between the spectrum

of the received signal and a theoretical threshold that is determined according to the statistical

model of the received signal. Meanwhile, some of the state-of-the-art spectral detection and

excision algorithms are itemized beneath.

1 Since some of the state-of-the-art techniques employ two or more signal processing schemes, it is

worth noting that distinct classification of the existing techniques would be difficult.
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• Cross frequency blanking is a frequency domain RFI mitigation technique which es-

sentially consists of three thresholding operations versus frequency. This technique is

successful in mitigating low-level RFI. Nonetheless, it is relatively efficient for a large

number of channels (Johnson & Guner, 2007; Guner et al., 2007).

• A non-parametric spectral estimation approach based on the Welch windowed peri-

odogram (Proakis & Manolakis, 2006) is proposed in (Tani & Fantacci, 2008). This

algorithm relies on a pre-correlation operation so as to detect RFI happening in GNSS.

• To detect RFI, the work in (Chen et al., 2010) reconstructs interference using the es-

timated frequency, amplitude, and phase parameters of the signal spectrum. Then, it

subtracts the artificial interference from the time domain complex input signal. How-

ever, the technique disseminated in (Chen et al., 2010) is hardly helpful in wideband

interference mitigation.

1.1.1.2 Temporal Algorithms

Amongst the existing temporal detection and excision algorithms, asynchronous pulse blanking

(APB) is a popular one. As also implied by its name, APB blanks the portion of the received

signal where the amplitude of the complex in-phase/quadrature (I/Q) signal exceeds a certain

level of the threshold set with respect to the noise amplitude. Proposed in (Johnson & Elling-

son, 2005), APB maintains a running estimate of the mean and variance of the sample magni-

tudes. Whenever a sample magnitude greater than a threshold number of standard deviations

from the mean is detected, APB blanks a block of samples beginning from a predetermined

period before the triggering sample. Furthermore, APB has been tested in several field trials

and is convenient for pulsed RFI mitigation (Johnson & Ellingson, 2005).

1.1.1.3 Spectral-Temporal Algorithms

An interfering signal mostly appears for a limited time and present a variable behavior in fre-

quency. In such cases, the presence of interference is limited to a region of the time-frequency
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(TF) plane. Using a TF representation, it is possible to better monitor the interference contri-

bution (Musumeci & Dovis, 2012).

In (Borio et al., 2008), a general class of TF excision algorithm is represented by three func-

tional blocks: the TF representation, the interference intermediate frequency (IF) estimation

unit, and the excision filter. In this context, the use of spectrogram and of a simple interpo-

lation technique for the IF estimation is proposed; statistical interference detection algorithm

has been proposed; and an analytical expression for the interference detection threshold has

been derived. Moreover, the use of infinite-duration impulse response (IIR) notch filters for

interference excision in GNSS applications has also been introduced. It is to be highlighted

that the introduced IIR filters render better performance than the FIR notch filters.

1.1.1.4 Statistical Algorithms

Statistical detection algorithms detect the presence of RFI by applying detection theory to the

received signal (Kay, 1998; Schonhoff & Giordano, 2006). Concerning these algorithms, the

statistics of the RFI are either known as a priori or unknown and evoking a variation in the

covariance matrix of the noise—for instance, as in (Arribas et al., 2013a,b).

The state-of-the-art comprises several statistical RFI detection algorithms and some of them

are summarized beneath.

• In order to detect RFI happening in microwave radiometry, kurtosis detection is an algo-

rithm proposed in (Ruf et al., 2006) and comparatively detailed in (Misra et al., 2009).

Kurtosis detector (KD) evaluates the fourth central moment of a signal divided by the

square of its second central moment. Thereafter, it considers those values which differ

from the kurtosis of a Gaussian distributed signal as the ones caused by RFI(s) (Misra

et al., 2009). KD relies on the fact that the kurtosis of a Gaussian source is three and it

deviates, in most cases, from three in the presence of a non-normal (typically man-made)

interfering source. However, the algorithm manifests a considerable computational com-
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plexity due to the intrinsic non-linearities evident in the kurtosis expression. Besides, it

fails to discriminate Gaussian (near-Gaussian) distributed RFI.

• In (Arribas et al., 2013a), the Neyman-Pearson detection framework and a generalized

likelihood ratio test (GLRT) (Kay, 1998; Schonhoff & Giordano, 2006) are deployed

to obtain a new GNSS detector. The proposed detector is able to mitigate temporally-

uncorrelated point source interferences even if the array is unstructured and moderately

uncalibrated. In the aforementioned work, an arbitrary and unknown covariance noise

matrix which attempts to capture the statistical behavior of the RFI(s) and other nonde-

sirable signals is assumed.

• In (Arribas et al., 2013b), the GLRT-based detection algorithm of (Arribas et al., 2013a)

is extended to multiple antenna techniques.

• In the presence of continuous wave and wideband RFI signals, the authors of (Nguyen

et al., 2015) have developed analytical and simulation models so as to evaluate the car-

rier acquisition and tracking performances of practical unified S-band satellite operations

command systems. The impacts of RFI on the carrier synchronizer were used in the de-

tection of the RFI events. The same authors described an approach to predict the RFI

interfering time duration using a carrier synchronizer. They also assessed the impacts of

the carrier performance degradation of a synchronizer on the command bit error rate per-

formance. Furthermore, advanced signal processing algorithms to estimate, predict, and

characterize continuous wave and wideband RFI signals were described in detail along

with the derived analytical expressions which characterize the estimators’ performance.

1.1.1.5 Spatial Filtering-Based Algorithms

Having assumed that the signal of interest (SOI), RFI(s), and noise are located in some re-

gion2of a space-time field, spatial filtering-based techniques deploy arrays to filter signals (of

interest to an application at hand) in a space-time field through the exploitation of their spatial

2 Depending on the applications of interest, the regions pertaining to a space-time field of the SOI, RFI,

and noise have some overlap (Van Trees, 2002, Ch. 2).
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characteristics (Van Trees, 2002, Ch. 2). Referring to arrays, they can have linear, planar, or

volumetric configuration (Van Trees, 2002, Ch. 1). Apart from their configuration, the spacing

among arrays is an important design parameter: for instance, uniform spacing, non-uniform

spacing, and random spacing are often considered in linear arrays (Van Trees, 2002, Ch. 1).

With respect to the aforementioned filtering, spatial filtering-based RFI detection and exci-

sion algorithms first estimate the RFI subspace. Thereafter, projection onto the orthogonal

subspace of the estimated RFI subspace is executed so as to excise the RFI. To carry out the

RFI subspace estimation, either the eigenvalue decomposition (EVD) of the received signal’s

space-time autocorrelation matrix (van der Tol & van der Veen, 2005) or the singular value de-

composition (SVD) of the received signal’s space-time cross-correlation matrix is, generally,

deployed (Jeffs et al., 2005). Beneath, the existing spatial filtering-based RFI detection and

excision algorithms are briefly summarized.

• Subspace projection (SP): SP is a spatial filtering-based algorithm proposed and analyzed

in (van der Tol & van der Veen, 2005). It relies on the EVD of the sampled autocorrela-

tion matrix and forms an orthogonal projector out of the eigenvectors which correspond

to the dominant eigenvalues. In order to ease the separation of the RFI and noise sub-

spaces, however, it is assumed that the SOI autocorrelation matrix is approximately a

zero matrix (van der Tol & van der Veen, 2005). Recently, SP was enhanced in (Sar-

darabadi et al., 2016) which has proposed two reference-antenna based algorithms. The

first algorithm deploys factor analysis to estimate an improved interference subspace.

The second one estimates the RFI-free covariance matrices directly using extended fac-

tor analysis (EFA).

• Cross subspace projection (CSP): auxiliary-antenna assisted CSP is an RFI excision al-

gorithm proposed in (Jeffs et al., 2005). This algorithm relies on the SVD of the space-

time cross-correlation matrix computed from the received signal vector. For its improved

estimation of the RFI subspace, CSP constructs a projection matrix that utilizes the infor-

mation regarding the strong interference received via the auxiliary-antennas. By cascad-
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ing a zero matrix in its last columns, at the same time, the constructed projection matrix

rejects the strong RFI received via the auxiliary antennas.

• Oblique projection beamforming (OPB): OPB is proposed in (Hellbourg et al., 2012) for

RFI mitigation in radio astronomy, especially for cyclostationary RFI. OPB is based on

(Behrens & Scharf, 1994) and reported outperforming both classical beamforming and

orthogonal projection with respect to relative error considered as a performance metric.

Nevertheless, a practical implementation of OPB requires the knowledge of the RFI and

the SOI spatial signatures.

• Polynomial-augmented subspace projection (PSP): PSP is proposed in (Landon et al.,

2012) to address low interference-to-noise ratio (INR), relatively rapid interference mo-

tion, and correlated noise across the receiving array. PSP is proposed for a wireless

system suffering from interference, in general, and radio astronomy, in particular. A

polynomial-based model is incorporated in the proposed algorithm to track changes, over

time, in the array covariance matrix, mitigate interference subspace estimation errors,

and improve canceler’s performance (Landon et al., 2012).

1.1.1.6 Transformed Domain-Based Algorithms

Transformed domain techniques (TDTs) are used to detect the interference waveform affecting

the received signal whose presence could be masked in the time domain (Musumeci & Dovis,

2012; Dovis et al., 2012). To detect the masked interference, TDTs, first, obtain the represen-

tation of the received signal in a different domain. Afterward, they detect interference by com-

paring the value of the statistic inferred from the obtained representation with a pre-determined

threshold. Meanwhile, the existing TDTs are summarized beneath.

• Techniques based on the TF representation: in these techniques, first, the TF represen-

tation of the received signal is obtained by performing Gabor expansion on the samples

at the output of the analog-to-digital converter (ADC). Second, a pre-determined mask

on the previously obtained TF representation is applied to the received signal. Third, the

interference coefficients are obtained by performing an inverse transformation and the
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interfering signal is synthesized. Finally, so as to excise the interference, the synthesized

interference is subtracted from the received signal (Musumeci & Dovis, 2012).

• Techniques based on the Wavelet transform: these mitigation techniques are based on

the decomposition of a received signal through the use of local basis functions. These

functions are obtained from a mother Wavelet through scaling and shifting as highlighted

in (Dovis & Musumeci, 2011; Musumeci & Dovis, 2012). To continue, the proposed

techniques start with the Wavelet decomposition of the received signal. The Wavelet de-

composition is performed so as to isolate the interference frequency components. Once

the received signal is decomposed, a detection strategy is needed in order to identify the

presence of interference on each scale. A possible detection approach is based on the

determination of a threshold according to the specified false alarm rate (FAR) or misde-

tection probability. Interference isolation is then achieved via the compact TF behavior

of the Wavelet functions (Dovis & Musumeci, 2011). Once the interference frequency

components are identified and isolated, a synthetic reconstruction of the interference sig-

nal, in the time domain, is provided through the inverse Wavelet transformation. At last,

the reconstructed interference signal is subtracted from the received signal rendering in-

terference excision (Dovis & Musumeci, 2011).

• Techniques based on the Karhunen−Loève transform (KLT): in these techniques,

KLT is used to detect, especially, feeble interference using eigenvalue sensitivity (Mac-

cone, 2010). For a Gaussian signal contaminated with no RFI, its eigenvalues converge

to one and are equal to one on average. On the contrary, since the eigenfunctions would

correlate with a hidden RFI, the eigenvalues will be greater than one upon the reception

of an RFI. Using this property of eigenvalues, techniques based on KLT detect RFI even

if it is very weak. Nevertheless, the computational complexity required to extract a very

large number of eigenvalues and eigenfunctions is a notable drawback. Consequently,

bordered autocorrelation method-KLT (BAM-KLT) was proposed in (Maccone, 2010)

as an efficient implementation of KLT—like fast Fourier transforms (FFT) being an effi-

cient implementation of DFT. BAM-KLT is an alternative technique to evaluate the KLT

of stationary processes that may run faster on computers than the traditional full-solving
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KLT technique. Nonetheless, BAM-KLT is not yet capable of unambiguously detecting

wideband signals such as a BPSK signal appearing as noise or interference in a GNSS-

like signals (Szumski, 2010). Similar to the Wavelet-based techniques, the interference

excision is performed by applying an inverse KLT and using only those eigenfunctions

representing the useful signal. The threshold in the eigenvalues domain has been chosen

such that about 90% are used for the GNSS signal reconstruction (Musumeci & Dovis,

2012). Even if KLT-based mitigation techniques are, in principle, one-dimensional meth-

ods, they showcase good performance in terms of isolating interference and preserving

GNSS signal energy. Such a performance is due to the properties of the KLT basis

functions—derived through the properties of an autocorrelation function—that can vary

and adapt to the shape of the received signal (Musumeci & Dovis, 2012; Szumski, 2010).

1.1.2 RFI in Satellite Communications

For a satellite operator, the most common sources of interference are adjacent satellite interfer-

ence, co-polarized interference, and cross-polarized interference (Oltrogge & Rashid, 2012).

In addition, intentional interferers like in-car jammers (Bauernfeind et al., 2011) can cause a

denial of service in SatCom, in general, and in GNSS, in particular. Hence, attention has been

paid to the detection and mitigation of RFI that might happen in GNSS and various detectors

have been proposed. Henceforth, some of these techniques are itemized.

• Interference detection in GNSS receiver by monitoring the behavior of the automatic gain

control (AGC) is highlighted in (Wildemeersch & Fortuny-Guasch, 2010). In GNSS

receivers, where the signal power is below that of the thermal noise floor, the AGC is

driven by the ambient noise environment rather than the signal power. With respect to

this property, accordingly, AGC is employed to detect interference impinging in a GNSS

receiver.

• After the received signal is digitized, it is also discussed in (Wildemeersch & Fortuny-

Guasch, 2010) that interference can be detected via the acquisition and code tracking

performance. Useful during the acquisition phase, different acquisition metrics have
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been proposed in (Motella et al., 2007). These metrics are used to investigate the effects

of real out-of-band signals on GNSS receivers and to analyze the impact on the overall

receiver chain. Mentioning the metrics, the first one is the ratio of the highest correlation

peak to the second highest peak in the search space; the second one is the ratio of the

highest correlation metric to the mean value of the correlation floor.

• The authors of (Balaei et al., 2006) present a technique proposed to detect and charac-

terize a continuous wave RF interference. In (Balaei et al., 2006), the carrier-to-noise

ratio (C/N0) at the output of the correlator is used to estimate the frequency of the RFI.

The comparison between a mathematical expression of C/N0 and an estimation of the

actual C/N0 is used to determine the frequency of the interference. Yet, the power of the

interference is estimated by the value of the AGC.

• (Ying et al., 2012) presents a GNSS interference detection using a software defined

radio. The proposed detection algorithms employ pre-correlation and post-correlation

techniques. The pre-correlation techniques make use of digital signals, at an IF or base-

band, that are available at a software receiver’s sensor. Whereas the post-correlation

techniques exploit standard measurements such as satellite orbit information and signal-

to-noise ratio (SNR) measurements. However, the algorithms of (Ying et al., 2012) re-

quire a network of distributed receivers for cooperative detection.

• The system proposed in (Bauernfeind et al., 2011) attempts to mitigate GNSS interfer-

ence by providing a reasonable warning and a localization system based on currently

standardized vehicular communication architecture. By relying on a car-to-car commu-

nication and an existing infrastructure, it is reported that it is possible to simultaneously

warn advancing vehicles and inform local authorities about the strength, location, and

movement of the interference source.

• Unlike (Ying et al., 2012) and (Bauernfeind et al., 2011), the authors of (Kurz et al.,

2014) propose a self-contained camera integrated array-antenna GNSS receiver for spa-

tial detection of RFI sources. The proposed receiver is capable of generating the RFI

source-maps to be superimposed to real-world pictures obtained from the camera. Source-

map generation is generally based on direction-of-arrival (DoA) estimation performed
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using the multiple signal identification and classification (MUSIC) algorithm. Ampli-

tudes in the spectrum indicate the DoA of RFI sources depending on azimuth and eleva-

tion angles in the hemisphere above the array-antenna. These coordinates are transferred

into cartesian image coordinates and an overlay image is generated with colors reflecting

the shape of the spectrum. Thereafter, the image is superimposed to a gray-scale picture

obtained from the camera and the RFI sources can be visualized in the image.

• As highlighted in Section 1.1.1.1, a non-parametric spectral estimation approach based

on the Welch windowed periodogram is proposed in (Tani & Fantacci, 2008). The spec-

tral detection technique of (Tani & Fantacci, 2008) exploits a pre-correlation operation

to detect RFI that might also occur in GNSS.

• Furthermore, (Wildemeersch & Fortuny-Guasch, 2010) highlights RFI detection algo-

rithms which employ interference error envelope (IEE) and error vector magnitude (EVM).

The concept of IEE is to express the distortion of the discriminator function as a function

of several parameters of the interfering signal, i.e., the frequency shift and the continu-

ous wave phase (Wildemeersch & Fortuny-Guasch, 2010). On the other hand, EVM de-

scribes the quality of the employed modulation by quantifying the distance between the

constellation points and their corresponding ideal locations (Wildemeersch & Fortuny-

Guasch, 2010).

Once RFI is properly detected, signal processing for its efficient excision should follow. In this

respect, some of the state-of-the-art RFI mitigation techniques are summarized beneath.

• A TF excision algorithm employing a TF representation, an IF estimation unit, and an

excision filter is proposed for GNSS applications in (Borio et al., 2008). In this work,

IIR filters which render better performance than FIR notch filters are also introduced.

• (Wildemeersch & Fortuny-Guasch, 2010) discusses a technique which consists of a pre-

whitening linear filter mounted in front of a conventional receiver optimized for a white

Gaussian noise. The filtering performed in the frequency domain yields to large com-

puting load. In addition, it renders a significant correlation loss in the presence of wide-

band interference such as frequency modulation (FM) or pulsed jammers. Meanwhile,
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a structure made out of adaptive notch filters connected in series and controlled by the

least mean squares (LMS) algorithm is proposed to track multiple jammers.

• In (Sgammini et al., 2012), a two-step blind adaptive beamforming approach employing

orthogonal projections is proposed for GNSS applications. A subspace-based approach is

deployed by (Sgammini et al., 2012) so as to propose a two-stage adaptive beamformer

for interference suppression and line-of-sight (LoS) signal amplification. In the first

stage, the covariance matrix is determined immediately from the digital antenna signals

for interference mitigation. In the second stage, an eigen-beamformer which maximizes

the ratio of the power of the desired LoS signal to the power of the undesired non-

LoS signal is derived. Meanwhile, a fixed-point VHSIC hardware description language

(VHDL) implementation of such an algorithm is presented in (Kurz et al., 2012).

1.1.3 Literature on Spectrum Sensing

The state-of-the-art on spectrum sensing encompasses numerous techniques disseminated over

the years (Ali & Hamouda, 2017; Sharma et al., 2015; Yucek & Arslan, 2009). Upon the ad-

vent of active sensing techniques, the state-of-the-art spectrum sensing techniques can be clas-

sified as active sensing (Miridakis et al., 2017; Heo et al., 2014; Song et al., 2010b) and quiet

sensing (Ali & Hamouda, 2017; Sharma et al., 2015; Wang & Liu, 2011; Axell et al., 2012;

Yucek & Arslan, 2009; Haykin et al., 2009). To begin with, quiet sensing is performed by an

SU which senses the channel for a fixed time-duration (Miridakis et al., 2017) and transmits

afterward provided that the primary channel is idle. To overcome the capacity reduction due

to quiet periods which are usually short to provide adequate samples for an accurate spectrum

sensing (Miridakis et al., 2017; Heo et al., 2014), and to surmount an extra burden of syn-

chronization for the quiet periods (Song et al., 2010b)—for instance, the one needed in IEEE

802.22 intra-frame sensing (Stevenson et al., 2009), active sensing has emerged as a promising

spectrum sensing paradigm. In particular, the authors of (Song et al., 2010b) have proposed

quiet-active sensing scheme by using inactive SUs which sense the primary channels in both

quiet and active periods. At the cost of quiet-period synchronization (Song et al., 2010b), the
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advantage of this scheme over quiet sensing emanates from the additional samples obtained

during the active period. To overcome the synchronization requirement of quiet-active sensing,

the same authors have proposed an active sensing scheme—dubbed optimized active sensing—

by placing quiet samples in the frequency domain so that selection diversity would be achieved

(Song et al., 2010b).

Capitalizing on the three-port antenna based spatial filtering technique of (Tsakalaki et al.,

2014), the authors of (Heo et al., 2014) have introduced a simultaneous sensing and data trans-

mission technique by deploying a spatial isolation technique on the antennas of each cognitive

node. Relying on the self-interference cancellation technique, the proposed scheme divides

the spatial resources so that some antennas are devoted to spectrum sensing while others for

data transmission (Miridakis et al., 2017). Nevertheless, this very technique suffers from a

large self-interference produced during spectrum sensing and an appropriate physical distance

should be maintained between the sensing and transmitting antennas (Miridakis et al., 2017).

To alleviate these issues, (Miridakis et al., 2017) has investigated a distributed multiple-input

multiple-output (MIMO) CR-based system operating in the presence of multiple PUs. In par-

ticular, the paper proposes a communication protocol made of training, data transmission, and

spectrum sensing phases which alternate periodically. After the introductory training phase,

the paper assumes a spectrum sensing per every symbol duration prior to a transmission by the

secondary nodes, and a joint minimum mean squared error detection and an energy detection

based spectrum sensing.

The wideband techniques can be Nyquist based or sub-Nyquist based depending on the adopted

sampling rate (Ali & Hamouda, 2017; Sun et al., 2013). Sub-Nyquist sampling techniques usu-

ally deploy either compressive sampling (Donoho, 2006) or multi-coset sampling (Venkatara-

mani & Bresler, 2000). On the other hand, Nyquist based wideband sensing techniques are

based on either fast Fourier transforms (Quan et al., 2009), Wavelets (Tian & Giannakis,

2006), or filter-banks (Farhang-Boroujeny, 2008). Delving into narrowband sensing, several

narrowband spectrum sensing techniques have been proposed (Wang & Liu, 2011; Axell et al.,

2012; Ali & Hamouda, 2017; Sharma et al., 2015). The conventional ones are energy de-
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tection (ED) (Sonnenschein & Fishman, 1992; Digham et al., 2007; Sofotasios et al., 2013),

matched filtering (Poor, 1994), feature-based detection (Gardner, 1988), polarization detection

(Guo et al., 2016), sample covariance matrix (SCM) based algorithms (Kortun et al., 2012;

Zeng & Liang, 2009b,a; Bianchi et al., 2011), moment ratio detection (Bogale & Vanden-

dorpe, 2013a), and max-min detection (Bogale & Vandendorpe, 2014, 2013b). Apart from

these conventional algorithms, some other algorithms such as Bartlett estimate-based energy

detection (Gismalla & Alsusa, 2012), a frequency domain eigenvalue-based spectrum sensing

algorithms (Yousif et al., 2016), subband energy-based spectrum sensing algorithm (Dikmese

et al., 2016), energy detection spectrum sensing under RF imperfections and with multiple

PUs (Boulogeorgos et al., 2016a,b), and a robust estimator-correlator and a robust generalized

likelihood detectors (Patel et al., 2016) have been proposed.

On the other hand, unlike most of the aforementioned multi-antenna techniques which pre-

sume independent and identically distributed (i.i.d.) noise samples, calibration uncertainties

in the different antenna frontends are inevitable rendering independent and non-identically

distributed (i.ni.d.) noise samples. Such a scenario was considered in (Leshem & van der

Veen, 2001; Tugnait, 2012; Ramírez et al., 2011): by assuming a Gaussian distributed re-

ceived signal, a Hadamard ratio detector (HRD) was derived in (Leshem & van der Veen,

2001); a spectrum sensing technique which deploys an asymptotic analysis of the DFT of

the received multi-antenna signal—whose time domain version is an HRD—is proposed in

(Tugnait, 2012); and (Ramírez et al., 2011) devised a GLRT-based technique by proposing an

efficient alternating minimization algorithm so as to compute its statistic. Recently, the F–test

(FT) based spectrum sensing technique was proposed in (Huang & Chung, 2013a) and cor-

roborated to be superior over an energy detector, a maximum-minimum eigenvalue (MME)

detector (Zeng & Liang, 2009b), and a GLRT detector (Taherpour et al., 2010; Wang et al.,

2010), especially at low SNR. While exhibiting a moderate computational complexity, this de-

tector is also robust against noise uncertainty and doesn’t require the knowledge of the noise

power.



21

1.2 Limitations

1.2.1 Limitations of the Existing RFI Detection and Excision Techniques

The RFI detection and excision algorithms that have been proposed to date exhibit the follow-

ing limitations.

• Complexity: most of the state-of-the-art techniques exhibit various non-linear opera-

tions that render a huge number of processing cycles.

• Unsatisfactory detection performance: most of the state-of-the-art techniques are ef-

fective for huge sample settings. Thus, the existing techniques are hardly useful for

real-time implementation, as this would require only very few samples.

• Detection for some type of RFIs only: some of the state-of-the-art techniques fail to

detect Gaussian (near-Gaussian) RFI(s); for instance, KD fails to detect Gaussian (near-

Gaussian) RFI (Misra et al., 2009; Ruf et al., 2006). Nevertheless, detection should be

made regardless of the type of the RFI(s).

• Inefficient RFI excision: the state-of-the-art RFI excision algorithms render, mostly,

an inefficient RFI excision which is also aggravated when the impinging RFI traverses

through a highly time-variant channel. However, an RFI excision technique should al-

ways have an efficient RFI excision capability irrespective of the time-variant channel(s)

of the impinging RFI(s).

• Limited applicability: the majority of the state-of-the-art RFI detection and excision

algorithms have been proposed, mainly, for microwave radiometry and radio astronomy

applications. Some have also been proposed for GNSS applications. On the contrary,

any RFI detection and excision technique shall have broad applicability to any RF oper-

ating systems, including—for instance—terrestrial communications and mobile satellite

communications (Arapoglou et al., 2011; Richharia, 2014) systems.
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1.2.2 Limitations of the Existing Spectrum Sensing Techniques

In spite of a nearly mature research sub-field encompassing numerous contributions, the state-

of-the-art spectrum sensing techniques manifest several limitations that are summarized below.

• Assumptions regarding the primary signal(s): several of the state-of-the-art detec-

tion techniques rely on assumptions concerning the primary signal characteristics. For

instance, Bartlett estimate-based energy detection (Gismalla & Alsusa, 2012), a fre-

quency domain eigenvalue-based spectrum sensing algorithms (Yousif et al., 2016), sub-

band energy-based spectrum sensing algorithm (Dikmese et al., 2016), energy detection

spectrum sensing under RF imperfections and with multiple PUs (Boulogeorgos et al.,

2016a,b), and a robust estimator-correlator as well as a robust generalized likelihood

detectors (Patel et al., 2016) rely on the complex Gaussian distributed primary signal.

Nonetheless, if a given spectrum sensing technique has to be attractive for practical CR

applications, there shall not be any assumption on the characteristics of the primary sig-

nal, as the rendered detection will not be robust otherwise.

• Limitations of the conventional narrowband techniques: most of the conventional

narrowband techniques exhibit their respective limitations. To mention, ED relies on the

known power spectral density of the noise and exhibits a high sensitivity to noise un-

certainty (Wang & Liu, 2011) leading to a poor performance at a low SNR regardless

of the number of intercepted samples, as demonstrated via SNR walls (Tandra & Sa-

hai, 2008); matched filters suffer from intrinsic computational complexity and hence

are unattractive for practical spectrum sensing applications; particular features need to

be introduced to deploy feature detectors in orthogonal frequency division multiplexing

(OFDM) based communications (Wang & Liu, 2011); polarization detectors are com-

putationally complex and sensitive to estimation errors (Guo et al., 2016); SCM-based

techniques suffer from performance loss under sample-starved settings and their asymp-

totic threshold differs considerably from the exact value for finite sensors and samples

(Kortun et al., 2012); a moment ratio detection (Bogale & Vandendorpe, 2013a) is com-

putationally complex and relies on the asymptotic Gaussian distribution; and max-min
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detector (Bogale & Vandendorpe, 2014, 2013b) suffers from a huge computational com-

plexity.

• Limitations of the wideband techniques: as tabulated in (Ali & Hamouda, 2017, Table

III), the various wideband techniques have also their own limitations. Highlighting these

limitations, the FFT-based detectors require a high sampling rate; the Wavelet-based

detectors and the filter-bank based detectors manifest high computational complexity;

and the multi-coset sampling based detectors require synchronization circuits. Moreover,

the compressive sampling based detectors exhibit high computational complexity; rely

on the sparsity assumption; and manifest dynamic behaviors for sparsity level.

• Limitations of the active sensing techniques: the schemes of (Song et al., 2010b) re-

quire more spectrum resources and extra power resources are required because of the

signalling overhead, and sensing of the primary signal and transmission of the sens-

ing information to the active SU; the technique proposed by (Heo et al., 2014) suffers

from large self-interference produced during spectrum sensing and an appropriate phys-

ical distance should be maintained between the sensing and transmitting antennas; and

whenever a hidden terminal problem (Axell et al., 2012; Yucek & Arslan, 2009) arises,

the protocol deployed in (Miridakis et al., 2017) will keep on conducting a secondary

transmission and emitting interference to a primary receiver which may not be blocked,

unlike the blocked primary transmitter.

• Limitations of the FT-based technique: it requires prior knowledge of the channel state

information (CSI) between the primary transmitter and secondary receiver rendering it

susceptible to CSI estimation errors. Moreover, the FT detector of (Huang & Chung,

2013a) assumes a single-antenna primary transmitter which is not the case for the trans-

mitters of the fourth generation (4G) and the fifth generation (5G) era, as they are usually

equipped with a number of antennas for the sake of array gain, spatial diversity gain, spa-

tial multiplexing gain, and interference reduction (Biglieri et al., 2007).

• Reliance on i.i.d. noise samples: unlike the numerous state-of-the-art techniques whose

developments and analyses rely on i.i.d. noise samples, calibration uncertainties in the
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different antenna frontends are evident—rendering i.ni.d. noise samples. In this re-

spect, (Leshem & van der Veen, 2001; Tugnait, 2012; Ramírez et al., 2011) consider

i.ni.d. noise samples and devise the respective detectors, as highlighted in Section 1.1.3.

Nevertheless, new spectrum sensing techniques that do not assume anything on the char-

acteristics of the primary signal while considering i.ni.d. noise samples are needed.

1.3 Motivation

The limitations of the state-of-the-art techniques have motivated this Ph.D. dissertation. While

underscoring the natural performance versus complexity trade-off, the limitations itemized in

Section 1.2.1 have inspired less complex RFI detection techniques that have a satisfactory

detection performance, broad applicability, and detection of any type of RFI. Besides, they have

also inspired a widely applicable tensor-based RFI excision algorithms that render efficient

RFI excision at the cost of computational complexity. Similarly, some of the limitations of

the state-of-the-art spectrum sensing techniques summarized in Section 1.2.2 have inspired

matrix-based FT spectrum sensing techniques that are blind and efficient, especially in terms of

overcoming hidden terminal problems by rendering detection at very low SNRs. With respect

to this motivation, Section 1.4 presents the research objectives and methodologies of this Ph.D.

dissertation.

1.4 Research Objectives and Methodologies

1.4.1 Research Objectives

This Ph.D. dissertation has three objectives that are enumerated below.

1. The investigation and development of robust RFI detection algorithms for satellite and

terrestrial communications.

2. The investigation and development of efficient RFI excision algorithms for satellite and

terrestrial communications.
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3. The investigation and development of advanced low-complexity spectrum sensing tech-

niques.

Regarding the first objective, robustness in RFI detection can be inferred from:

• satisfactory detection performance for the desired FAR even in sample starved settings.

It is to be noted that most of the existing RFI detection algorithms offer satisfactory

detection performance, mainly, for a huge number of available samples.

• ability to detect the unknown RFI irrespective of its statistics or type, i.e., detection

capability of narrowband, wideband (Gaussian or near-Gaussian), continuous wave, and

pulsed RFI.

• ability to detect a feeble RFI.

• sufficient detection performance regardless of a noise power uncertainty.

Concerning the second objective, efficiency in RFI excision can be deduced from an RFI ex-

cision performance close to the average signal-to-interference-plus-noise ratio (SINR) gain

performance of a perfect excision algorithm—an algorithm that relies on a perfect knowledge

of the RFI channel.

With respect to the third objective, advanced low-complexity spectrum sensing techniques can

be deduced from an efficient and robust spectrum sensing which is:

• blind;

• independent of any assumption regarding the noise power;

• independent of an assumption about any type of CSI;

• able to overcome hidden terminal problems by rendering excellent detection at very low

SNRs; and

• computationally simple.

Moreover, advanced low-complexity spectrum sensing techniques shall exhibit:

• a minimum number of non-linear operations;

• a minimum number of multiplications; and

• a minimum number of processing cycles.
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1.4.2 Research Methodologies

This Ph.D. dissertation commenced through a detailed research survey regarding the state-of-

the-art. In this initial phase of the doctoral research:

• the state-of-the-art RFI detection and excision algorithms proposed for radio astronomy,

microwave radiometry, and SatCom applications were identified and studied;

• the limitations of the state-of-the-art RFI detection and excision techniques were delin-

eated;

• numerous the state-of-the-art spectrum sensing (narrowband versus wideband and active

versus quiet) techniques were identified and studied; and

• the limitations of the state-of-the-art spectrum sensing techniques were also delineated.

After carrying out the above-mentioned initial phase of this doctoral research, we have shifted

our attention toward the realization of the three objectives enumerated in Section 1.4.1. To-

ward this end, this dissertation has employed the underneath mathematical frameworks and

performance analysis tools.

• In order to propose robust RFI detection algorithms, we have deployed detection and

estimation theory (binary hypothesis testing as well as binary composite hypothesis test-

ing), statistical signal processing, linear algebra, and tensor (multi-linear) algebra. As to

performance analysis tools, we have exploited the first-order perturbation analysis, the

estimation theory of a population covariance matrix (PCM), probability distributions,

and theories regarding probability, random variables, and stochastic processes.

• To propose efficient RFI excision techniques, we have employed the tensor (multi-linear)

algebra framework. To analyze the performance of these excision techniques, we have

deployed a higher-order singular value decomposition (HOSVD) based parameter esti-

mation, the first-order perturbation analysis, and the estimation theory of a PCM.

• To propose advanced low-complexity spectrum sensing techniques, we have deployed

the FT, linear algebra, and multi-linear (tensor) algebra frameworks. To pursue the re-

spective performance analyses, we have employed the first-order perturbation analysis,
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tensor-based signal processing, the estimation theory of a PCM, and probability distri-

butions.

For the performance assessment of the proposed algorithms and validation of the derived

closed-form expressions, this dissertation has deployed the MATLAB R© software. In order

to assess the performance of the proposed techniques over real-world scenario, we have also

deployed real-time RFI contaminated ADC data received by one of the antennas of the Very

Large Array (VLA) (NRAO, 2017) of the National Radio Astronomy Observatory.

1.5 Thesis Contributions

This Ph.D. dissertation has made contributions in terms of the journal and conference papers

itemized in Appendix 1 and Appendix 2 (under APPENDIX I), respectively. Meanwhile, the

highlight of the respective contributions is noted in Appendix 3 (under APPENDIX I).

1.6 Thesis Organization

For the sake of the systematic reporting of the journal contributions—enumerated in Appendix

1 (under APPENDIX I)—and its coherent organization, this Ph.D. dissertation is organized

into five parts. To highlight each:

• Part I covers the preliminaries, including an introduction to this dissertation as well as its

motivation and research problems —detailed in Chapter 1—of this dissertation.

• Part II details the dissertation contributions to the research sub-field of RFI detection. In

particular, Chapter 2 reports a power-based broadband RF interference detector; Chapter

3 presents the performance analysis of an energy-based RFI detector; Chapter 4 presents

an eigenvalue-based RF interference detector; and Chapter 5 presents linear and multi-

linear RFI detectors.

• Part III introduces tensor-based advanced multi-antenna RFI(s) excision techniques de-

tailed in Chapter 6.
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• Part IV reports the dissertation contributions concerning the research sub-field of spec-

trum sensing. In this respect, Chapter 7 presents simple F–test based multi-antenna

spectrum sensing techniques.

• For better readability of this dissertation, Part V encompasses the appendices of Chapters

1-7 preceded by the discussion of the results highlighted in Chapter 8 which, in turn, is

followed by the conclusion and recommendations of this dissertation.



Part II

Advanced RFI Detection





CHAPTER 2

POWER-BASED BROADBAND RF INTERFERENCE DETECTOR FOR WIRELESS
COMMUNICATION SYSTEMS

Tilahun M. Getu1,2, Wessam Ajib2, and René Jr. Landry1
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This article was published in IEEE Wireless Communications Letters as of December 2018

(Getu et al., 2018c).

“You must have long-term goals to keep you from being frustrated by short-term

failures.”—Charles C. Noble

Abstract—As broadband radio frequency interference (RFI) affects various systems operating

radio frequencies, it has to be detected and mitigated. Accordingly, a computationally sim-

ple power-based detector (PD) is investigated. By assuming reception over the Nakagami-m

fading channels, exact closed-form expressions for the probabilities of RFI detection and of

false alarm are derived and validated via simulations. Simulations also demonstrate that PD

outperforms kurtosis detector.

Index Terms—RFI mitigation, RFI detection, power detection.

2.1 Introduction

Radio frequency interference (RFI) is mainly the result of out-of-band emissions by nearby

transmitters and harmonics, jamming, spoofing, and meaconing. These interferences might be

a broadband RFI which affects several systems operating radio frequencies over a large band-

width such as microwave radiometry (Misra et al., 2009), radio astronomy (van der Tol & van

der Veen, 2005), and satellite communications (Newtec and IRG, Sep. 2013). Similarly, a

global navigation satellite system (GNSS) and a very small aperture terminal (VSAT) suffer
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from broadband RFI (Borio et al., 2008). Broadband RFI can also happen in ultra-wideband

communications for wideband interferers (Shi et al., 2007); radar for wideband jammers (De

Maio & Orlando, 2016; Orlando, 2017; Bandiera & Orlando, 2009); and cognitive radios for

an imperfect spectrum sensing (Getu et al., 2015a): neighboring primary users emitting such

interference can constrain the spectrum sensing capability of an energy detector, as analytically

demonstrated in (Boulogeorgos et al., 2016b). To be mitigated efficiently, broadband RFI, thus,

should be detected robustly.

For microwave radiometry and GNSS applications, the state-of-the-art encompasses various

RFI detectors (Misra et al., 2009; De Roo et al., 2007; De Roo & Misra, 2010; Balaei & Demp-

ster, 2009; Dovis et al., 2012). However, these computationally complex detectors are not

widely applicable in various systems operating radio frequencies and kurtosis detector (KD)

fails to detect Gaussian (near-Gaussian) RFI (Misra et al., 2009; Ruf et al., 2006). Mean-

while, a power detector (PD) was employed for an RFI detection in microwave radiometry

(Guner et al., 2007). Similar detectors were deployed in a radiometer (Sonnenschein & Fish-

man, 1992), a multi-channel energy detector (Wang et al., 2010), and the cooperative spectrum

sensing of (Hussain & Fernando, 2014). Despite the several RFI detectors, their exact per-

formance closed-form expressions have not been reported—to the best of our knowledge—to

date. Moreover, due to the lack of a false alarm rate (FAR) expression that is often used to set

a decision threshold, the PD of (Guner et al., 2007) employed a heuristic decision threshold.

Capitalizing on the aforementioned power-based detectors, this paper investigates a power-

based broadband RFI detector by modeling—like (Wildemeersch & Fortuny-Guasch, 2010)—

broadband RFIs as Gaussian processes. Unlike the state-of-the-art literature on RFI detection,

we derive exact closed-form performance expressions for this computationally simple and prac-

tically appealing PD. Having deployed an average power-based test statistic, we, specifically,

derive exact expressions for the probabilities of RFI detection and of false alarm along with the

analytical assessment of the impact of the number of RFIs. Following this introduction, Sec.

2.2 outlines the system model and the investigated detection. Sec. 2.3 presents the performance
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analysis. Sec. 2.4 highlights the respective practical issues. Sec. 2.5 reports the simulation

results followed by conclusions drawn in Sec. 2.6.

Notation: �, ∼, |, n!, E{·}, and Pr{·} stand for equal by definition, distributed as, conditioned

on, n factorial, expectation, and the probability of, respectively; U(·), Γ(·, ·), G (·, ·), N (·, ·),
and N A (·, ·) denote the unit step function

(
i.e., U(y≥ 0) = 1

)
, the (upper) incomplete gamma

function, the gamma distribution, the normal distribution, and the Nakagami-m distribution,

respectively.

2.2 System Model and the Investigated Detection

2.2.1 System Model

Consider the detection of Q independent Gaussian RFIs that might be received along with

the signal of interest (SOI) through Nakagami-m fading channels (Karagiannidis et al., 2007).

Employing the Rician shadowed model (Giunta et al., 2018; Abdi et al., 2003), such a problem

can also be recast as the detection of Q Nakagami-m distributed non-line-of-sight (non-LoS)

components received along with Nakagami-m distributed LoS component. For the received

passband signal downconverted to its baseband equivalent denoted by r(t), a binary hypothesis

test is formulated regarding the detection of the Q RFIs as

r(t) =

⎧⎪⎨
⎪⎩

hs(t)+∑Q
j=1 g jv j(t)+ z(t) : H1

hs(t)+ z(t) : H0,

(2.1)

where H0 and H1 are hypotheses on the absence and presence of the Q RFIs, respectively;

s(t) =
√

P∑∞
n=−∞ sn p(t− nT ) is the SOI for sn, p(t), and P being the n-th unknown and de-

terministic SOI symbol, a rectangular pulse shape of duration T , and the power of the SOI,

respectively; h∼N A (m1, h̄s) is the flat fading SOI channel gain for m1 being the SOI fading

severity parameter and h̄s � E{h2}; v j(t) =
√

Pj ∑∞
l=−∞ v j,l p(t− lT ) is the j-th Gaussian RFI

for v j,l ∼ N (0,1) and Pj denoting the power of the j-th RFI; g j ∼ N A (m j+1, ḡ j,s) is the
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channel gain of the j-th RFI for m j+1 being the fading severity parameter of the j-th RFI and

ḡ j,s �E{g2
j}; and z(t) is a band-limited zero mean additive white Gaussian noise (AWGN) pro-

cess. We assume that v j,l , {g j}Q
j=1, h, and the AWGN are statistically independent; {m j}Q+1

j=1

are integers; and an estimate of the noise power is available.

Baseband
input

Noise
pre-filter

r(t) r(nT ) 1

N

N

∑
n=1

(·)2 Y
H1

�
H0

λ

Figure 2.1 The investigated broadband RFI detector

2.2.2 The Investigated Detection

The PD that can be easily integrated into a baseband receiver is depicted in Fig. 2.1, where the

baseband input is first filtered by a noise pre-filter that serves to limit the noise bandwidth

(Urkowitz, 1967). Sampling in every T —as per the Nyquist rate (Oppenheim & Schafer,

2010)—and squaring then follow. Averaging N squared samples, the mean received power

is approximated to render a decision variable Y.1 If Y exceeds the decision threshold denoted

by λ , H1 is detected. Otherwise, H0 is detected.

2.3 Performance Analysis

From Fig. 2.1 and (2.1), denoting r(nT ) by r[n] leads to

r[n] =

⎧⎪⎨
⎪⎩

hs[n]+∑Q
j=1 g jv j[n]+ z[n] : H1

hs[n]+ z[n] : H0,

(2.2)

1 Having realized that average received power is the average received energy per unit time, it is to be

noted that the investigated power detector can also be posed as an energy detector.
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where s[n] = s(nT ), v j[n] = v j(nT ), and z[n] = z(nT ). The exact mean received power—

Y = E{r2[n]}—is computed as

Y =

⎧⎪⎨
⎪⎩
E
{(

hs[n]+∑Q
j=1 g jv j[n]+ z[n]

)2}
: H1

E{(hs[n]+ z[n])2} : H0.

(2.3)

Meanwhile, (2.3) is characterized via the following theorem.

Theorem 1. For σ2 = E{z2[n]}, (2.3) simplifies to

Y =

⎧⎪⎨
⎪⎩

σ2
(
γ̄snr +∑Q

j=1 γ̄ j
inr +1

)
: H1

σ2
(
γ̄snr +1

)
: H0,

(2.4)

where γ̄snr and γ̄ j
inr are, respectively, the average signal-to-noise ratio (SNR) and the j-th RFI’s

average interference-to-noise ratio (INR) defined via

(γ̄snr, γ̄ j
inr) =

(
h̄sPE{s2

n}/σ2, ḡ j,sPj/σ2
)
. (2.5)

Proof. Please see Appendix 1 under APPENDIX II.

Under H0, Ỹ =Y −σ2 ∼ G (m1,Ω1) for h∼N A (m1, h̄s). Hence, its probability density func-

tion (PDF)— fỸ |H0
(y)—is given by (Karagiannidis et al., 2006a, eq. (2)) for Ω1 = E{Ỹ |H0}=

σ2γ̄snr. Integrating fỸ |H0
(y) results in the respective cumulative distribution function (CDF)—

FỸ |H0
(y)—equated as (Karagiannidis et al., 2006a, eq. (3))

FỸ |H0
(y) =

[
1− Γ(m1,

m1
Ω1

y)

(m1−1)!

]
U(y). (2.6)

Under H1, Ỹ is the sum of Q+1 mutually independent gamma distributed random variables—

Y1 ∼ G (m1,Ω1) and {Yj+1}Q
j=1 ∼ G (m j+1,Ω j+1), Ω j+1 = σ2γ̄ j

inr—which admit the Erlang

distribution (Karagiannidis et al., 2006a) for the integerness of {m j}Q+1
j=1 . Hence, the PDF—
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fỸ |H1
(y)—given by (Karagiannidis et al., 2006a, eqs. (2) and (6)) leads to a CDF of Ỹ under

H1—FỸ |H1
(y)—equated as (Karagiannidis et al., 2006a, eqs. (3) and (9))

FỸ |H1
(y) =

Q+1

∑
i=1

mi

∑
k=1

Ξm1...mQ+1
η1...ηQ+1

(i,k)
[

1− Γ(k,y/ηi)

(k−1)!

]
U(y), (2.7)

where ηi =
Ωi
mi

and Ξm1...mQ+1
η1...ηQ+1

(i,k) is a weight defined through (Karagiannidis et al., 2006a, eqs.

(7) and (8)). Hereinafter, the probability of RFI detection—denoted by Pd—and the probability

of false alarm—denoted by Pf —exhibited by PD are derived.

2.3.1 The Probability of RFI Detection

Using Y in (2.4), the exact Pd is computed as Pd = Pr
{

Y > λ |H1

}
= Pr

{
Ỹ > (λ −σ2)|H1

}
=∫ ∞

λ−σ2
fỸ |H1

(y)dy. Thus,

Pd = 1−
∫ λ−σ2

−∞
fỸ |H1

(y)dy = 1−FỸ |H1
(λ −σ2). (2.8)

Subsequently, two cases are discussed.

2.3.1.1 The Case of a Single RFI

In this case, Ỹ becomes the sum of Y1 and Y2 ∼ G (m2,Ω2)—Ω2 = σ2γ̄1
inr. Deploying (2.7) in

(2.8) and using
{

Ωi
}2

i=1
=U(1− i)σ2γ̄snr +U(i−2)σ2γ̄1

inr,

Pd =
2

∑
i=1

mi

∑
k=1

Ξm1m2
η1η2

(i,k)Γ
(

k, mi(λ/σ2−1)

U(1−i)γ̄snr+U(i−2)γ̄1
inr

)
(k−1)!

, (2.9)

where Ξm1m2
η1η2

(i,k) is a weight defined via (Karagiannidis et al., 2006a, eq. (A-5)).

2.3.1.2 The Case of Multiple RFIs

Substituting (2.7) and, in turn,
{

Ωi
}Q+1

i=1
=U(1− i)σ2γ̄snr +U(i−2)σ2γ̄ i−1

inr into (2.8) gives
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Pd =
Q+1

∑
i=1

mi

∑
k=1

Ξm1...mQ+1
η1...ηQ+1

(i,k)Γ
(

k, mi(λ/σ2−1)

U(1−i)γ̄snr+U(i−2)γ̄ i−1
inr

)
(k−1)!

. (2.10)

Furthermore, Pd is characterized via the following lemma.

Lemma 1. Pd improves with the number of RFIs.

Proof. Using (2.4), Pd = Pr
{

σ2
(
γ̄snr +∑Q

j=1 γ̄ j
inr
)
> λ̃

}
for λ̃ = λ −σ2. For the same desired

FAR, the P′d in the presence of Q′ > Q RFIs can be equated as P′d = Pr
{

σ2
(
γ̄snr +∑Q

j=1 γ̄ j
inr
)
>(

λ̃ −∑Q′
j=Q+1 γ̄ j

inr
)}

. As {γ̄ j
inr}Q′

j=Q+1 > 0, λ̃ >
(
λ̃ −∑Q′

j=Q+1 γ̄ j
inr
)

and hence P′d > Pd . �

2.3.2 The Probability of False Alarm

The exact Pf is obtained as Pf = Pr
{

Y > λ |H0

}
= Pr

{
Ỹ > (λ−σ2)|H0

}
=
∫ ∞

(λ−σ2)
fỸ |H0

(y)dy.

Accordingly,

Pf = 1−
∫ (λ−σ2)

−∞
fỸ |H0

(y)dy = 1−FỸ |H0
(λ −σ2). (2.11)

Deploying (2.6) in (2.11) and, in turn, employing Ω1 = σ2γ̄snr,

Pf =
Γ
(
m1,

m1(λ/σ2−1)
γ̄snr

)
(m1−1)!

. (2.12)

Remark 1. The single RFI case can be inferred from the multiple RFIs case. Besides, (2.10)

and (2.12) are the special cases of (Boulogeorgos et al., 2016b, eq. (12)) and (Boulogeorgos

et al., 2016b, eq. (13)), respectively.

2.4 Practical Issues

As in Fig. 2.1, PD computes the mean received power to detect RFI. However, (2.12) should

be solved for λ should it be set as per the desired FAR. To do so, first, the detector can be

calibrated to estimate the actual noise power with high accuracy (Quan et al., 2009). Thereafter,

the average SNR should be estimated via (2.5). To carry out this estimation, the SOI channel

estimator is required and such an estimator has to be broadband RFI-aware channel estimator,



38

as RFI(s) can impinge at any time. Accordingly, the broadband RFI-aware channel estimators

of (Getu et al., 2015a) can be deployed to obtain the estimate of the average SNR via (2.5).

Having performed the aforementioned estimations, the λ rendering the desired FAR can finally

be determined through (2.12). Moreover, the inevitable RF impairments such as phase noise,

amplifier non-linearities, and in-phase and quadrature-phase imbalance (Boulogeorgos et al.,

2016a; Gokceoglu et al., 2014) shall be compensated. As a preliminary step, the Gaussianity

of the received signal samples might also be tested (Giannakis & Tsatsanis, 1994; Yuan, 1998;

Sigut et al., 2005).

2.5 Simulation Results

Unless otherwise mentioned, the reported results—generated using the MATLAB R© codes in

(Getu, Apr. 2018)—deploy the parameters of Table 2.1.

Table 2.1 Simulation parameters

unless otherwise mentioned

Parameters Assigned value

(m1,m2,m3,Q) (2,2,2,1)

(P,P1,P2,σ2) (10,10,10,1) W(
No. of realizations,N

)
(104,104)

Without loss of generality, the subsequent assessments are conducted in the context of a VSAT

communication system under these settings: the LoS reception of a binary phase shift keying

(BPSK) modulated SOI transmitted by a regenerative geostationary earth orbit (GEO) satellite;

one or more independent Gaussian RFIs that might be emitted by a nearby regenerative GEO

satellite(s); and perfectly estimated and identical propagation delays of the SOI and RFI(s).

Having computed λ—rendering the desired FAR of 0.1—using (2.12), PD is simulated as

per Fig. 2.1. Approximating expectation via the average of N samples, KD is simulated via

kurtosis (κ) computed via (Misra et al., 2009, eqs. (1) and (2)) for a factor z determined via the

KD’s FAR expression (Misra et al., 2009, eq. (5)). Thereafter, a no RFI detection interval of

3−zσR0≤ κ ≤ 3+zσR0 (Misra et al., 2009; De Roo et al., 2007) is deployed for σR0 =
√

24
N —
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N > 5×104—being the standard deviation of the RFI-free kurtosis (De Roo et al., 2007, Sec.

III).
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Figure 2.2 Pd versus γ̄1
inr: Pf = 0.1 and N = 105. Note that (9)

stands for (2.9), [1] represents (Misra et al., 2009), and [15]
represents (De Roo et al., 2007)

With regards to the desired FAR of 0.1, the Pd exhibited by PD and KD is depicted via Fig. 2.2

which showcases—for a broadband RFI—that the former outperforms the latter. The substan-

tial performance gain is attributed to the fact that PD takes the mean received RFI power into

account unlike KD that relies on kurtosis. Specifically, KD relies on the fact that the kurtosis of

a Gaussian signal equals three (Misra et al., 2009; Ruf et al., 2006). If the kurtosis is different

from three, an RFI would, thus, be detected. However, when a Gaussian RFI impinges, the re-

spective kurtosis also becomes three which makes KD fail to detect a Gaussian RFI, as reported

in (Misra et al., 2009) and (Ruf et al., 2006). Despite intercepting the received signal for a much

longer duration, Fig. 2.2 demonstrates that KD fails to detect a Gaussian RFI, especially at high

INRs. Remarkably, the Gaussian RFI superimposes on the AWGN indiscriminately rendering

KD to be an SOI detector operating as per the signal-to-interference-plus-noise ratio (SINR).



40

As seen in Fig. 2.2 for higher INRs which result in small SINRs, KD suffers a performance

loss in RFI detection which is the implicit result of a poor SOI detection at small SINRs. For

small INRs leading to relatively larger SINRs, on the other hand, the performance of KD gets

better—for the better detection of the SOI at relatively larger SINRs—though it is still inferior

to PD’s. Furthermore, Fig. 2.2 validates (2.9).
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Figure 2.3 Pd versus λ : γ̄snr = 0 dB. Note that (9) and (10) stand

for (2.9) and (2.10), respectively

Figs. 2.3 and 2.4, respectively, depict the Pd and Pf exhibited by PD. As demonstrated via

Fig. 2.3, the numerical results of the exact expressions for Pd and the Monte-Carlo simulations

are in a perfect overlap validating (2.9) and (2.10). In addition, Fig. 2.3 demonstrates that the

detection performance of PD improves with the number of RFIs, as also shown in Lemma 1.

Fig. 2.4 also corroborates an overlap between the numerical results of the exact expression

for Pf and the Monte-Carlo simulations irrespective of γ̄snr. Hence, simulations also validate

(2.12).
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Eventually, the complementary receiver operating characteristics (ROC) of PD is depicted via

Fig. 2.5, where the probability of miss (Pm)—simulated as Pm = 1− Pd—decreases as Pf

increases and vice versa. Thus, such a natural trade-off is demonstrated while validating (2.9)

and (2.12).

2.6 Conclusions

A computationally simple power-based broadband RFI detector is investigated. Contrary to the

prior works, exact closed-form expressions for the probabilities of RFI detection and of false

alarm are derived and validated through simulations. Simulations also corroborate that PD out-

performs KD. Toward an efficient mitigation of broadband RFI(s), this paper finds applications

in radio frequency operating systems that may suffer from broadband RFI(s). Moreover, this

paper inspires further research toward an interference-aware SNR estimation.
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“I am not discouraged, because every wrong attempt discarded is another step

forward.”—Thomas Edison

Abstract—As radio frequency interference (RFI) affects many systems operating radio fre-

quencies, RFI detection is essential for excising such RFI efficiently. For this reason, here we

investigate an energy-based RFI detector for wireless communication systems suffering from

RFI. For this detector, its average probability of RFI detection is studied and approximated,

and asymptotic closed-form expressions are derived. Besides, an exact closed-form expres-

sion for its average probability of false alarm is derived. Monte-Carlo simulations validate

the derived analytical expressions and corroborate that the investigated energy detector (ED)

outperforms a kurtosis detector (KD)—even under the scenario that KD intercepts the received

signal for a longer interval—and a generalized likelihood ratio test (GLRT) detector. At last,

the performance of ED is also assessed using real-world RFI contaminated data.

Index Terms—RFI detection and excision, energy detection, performance analysis, GLRT

detector, real-world data.

3.1 Introduction

Radio frequency interference (RFI) can arise from either intentional or unintentional inter-

ferers; for example, out-of-band emissions by nearby transmitters and harmonics, jamming,
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spoofing, and meaconing (Getu et al., 2017, 2016, 2015b; Misra et al., 2009; Jeffs et al., 2005;

Kaplan & Hegarty, 2006). As a result, RFI is becoming increasingly common in microwave

radiometry (Misra et al., 2009), radio astronomy (Jeffs et al., 2005), and satellite commu-

nications (Borio et al., 2008). For instance, global navigation satellite system (GNSS) and

very small aperture terminal (VSAT) are increasingly suffering from RFI. In this respect, it

is attested by (Newtec and IRG, Sep. 2013) that 93% of the satellite industry suffer from in-

terference. Moreover, RFI occurs in ultra-wideband communication systems for narrowband

interferers (Shi et al., 2007); radar systems because of jammers (De Maio & Orlando, 2016);

and cognitive radios for an imperfect spectrum sensing (Getu et al., 2015a) and neighboring

primary users emitting RFI (Boulogeorgos et al., 2016b). Such primary users can constrain the

spectrum sensing capability of an energy detector (Boulogeorgos et al., 2016b).

The state-of-the-art encompasses several RFI detectors proposed for either microwave radiom-

etry or GNSS applications. The RFI detection techniques based on kurtosis (Misra et al., 2009;

Ruf et al., 2006), moment ratio (MR) (De Roo & Misra, 2010), fast Fourier transforms (Bal-

aei & Dempster, 2009), spectrogram and discrete Wigner-Ville distribution (DWVD) (Borio

et al., 2008), and transformed-domain (Dovis et al., 2012) are the main ones. However, these

RFI detectors generally have limited applications and exhibit a lack of sufficient analytical

performance characterizations with respect to (w.r.t.) a decision threshold.

In a mathematical context, while presuming a receiving reference antenna, the RFI detec-

tion problem can be posed as an adaptive radar detection problem tackled in (Ciuonzo et al.,

2016a,b, 2017; Aubry et al., 2014) by exchanging the RFI and the signal of interest (SOI).

As the RFI target vectors are generally unknown, nonetheless, the consideration of known left

and right subspaces corresponding to the signal and/or interference makes the aforementioned

detectors hardly realistic. For the same multi-antenna setting, the RFI detection problem can

also be formulated in terms of the blind adaptation problems of (Scharf & McCloud, 2002)

or the matched subspace detection problems of (Scharf & Friedlander, 1994); a source enu-

meration (Lu & Zoubir, 2015) problem of “two sources” versus “one source”; and a rank-1

signal detection problem (Ramírez et al., 2011). Nevertheless, the blind adaptation techniques
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of (Scharf & McCloud, 2002) require the knowledge of the subspaces spanned by the SOI and

RFI and the matched subspace detectors of (Scharf & Friedlander, 1994) rely on the known

subspaces spanned by the SOI and/or RFI; the two-step test of (Lu & Zoubir, 2015) cannot be

adopted here, as the SOI and RFI are not necessarily Gaussian random processes; and (Ramírez

et al., 2011) can not be applied here for the multi-antenna SOI channel gains are not necessarily

known and the underlying signals are not necessarily Gaussian random processes. Considering

these reasons, further research toward a computationally simple and practically relevant RFI

detector is worth pursuing.

In an energy detector (ED), on the other hand, energy detection is performed by comparing the

incoming signal energy to a given threshold (Herath et al., 2011). It was first used by Urkowitz

(Urkowitz, 1967) for detecting unknown deterministic signals in white Gaussian noise. Re-

cently, ED and its variants were deployed for the detection of unknown signals over fading

channels (Herath et al., 2011; Sofotasios et al., 2016; Digham et al., 2007), spectrum sens-

ing in cognitive radio (Atapattu et al., 2014; Gismalla & Alsusa, 2011; Gokceoglu et al., 2014;

Boulogeorgos et al., 2016a), cooperative spectrum sensing in cognitive radio networks (Tavana

et al., 2017; Quan et al., 2008), the design of ultra-wideband receivers (D’Amico et al., 2007;

Gishkori & Leus, 2013), and in an integrated information and energy receiver (Zhou et al.,

2013). Despite its widespread applications, the deployment and characterization of ED for RFI

detection pose challenges. First, the distribution of the received signal when an RFI occurs is

unknown for an unknown RFI distribution. Second, determining the average probability of RFI

detection depends on the unknown distribution of the received signal which is directly affected

by several random variables (RVs).

Accordingly, this paper investigates an energy-based RFI detector for wireless communication

systems and assesses its applicability in the context of the Very Large Array (VLA) (NRAO,

2017) also by conducting real-world data based simulations. At first, the detector computes

the received signal energy by exploiting the sampling theorem representation of bandlimited

signals. Thereafter, it passes a decision about the RFI by comparing the computed energy with

a decision threshold. Specifically, the main contributions of this paper are itemized below.
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• We deploy the ED test statistic for the detection of RFI.

• Upon the reception of any kind of RFI, we show that the energy-based decision statistic

admits the noncentral chi-square distribution with 2u degrees of freedom (DoF)—u being

the time-bandwidth product—and a noncentrality parameter that depends on the signal-

to-noise ratio (SNR), the interference-to-noise ratio (INR), the SOI, and the RFI.

• Approximated and asymptotic expressions are derived for the average probability of RFI

detection. For the average probability of false alarm, an exact expression is derived.

• Simulations assess the performance of ED and validate the derived expressions.

• The performance of ED is also assessed using real-world RFI contaminated data.

Following this introduction, Sec. 3.2 describes the system model and the investigated detection.

Sec. 3.3 details the performance analysis. Sec. 3.4 and Sec. 3.5 present the simulation results

and the real-world data based simulations, respectively. Finally, the paper conclusions and

outlooks are composed in Sec. 3.6.

Notation: Upper-case letters, italic letters, lower-case boldface letters, and upper-case boldface

letters denote RVs, the values assigned to RVs, vectors, and matrices, respectively; �, >>, ∼,

→, and n! denote equal by definition, much greater than, distributed as, approaches to, and n

factorial, respectively; ∗, ∂
∂x , |, Re{·}, O(·), and χ2 imply a discrete-time convolution, partial

differentiation w.r.t. x, under, real part, the Landau notation, and chi-square, respectively; E{·},
Pr{·}, U(·), In(·), and Qu(·, ·) stand for expectation, the probability of, the unit-step function

defined via U(y ≥ 0) = 1, the nth-order modified Bessel function of the first kind, and the

uth-order generalized Marcum Q-function, respectively; and Γ(·), Γ(·, ·), G (·, ·), N A (·, ·),
1F1(·; ·; ·), and G·,··,·(·) implicate the gamma function, the (upper) incomplete gamma function,

the gamma distribution, the Nakagami-m distribution, the special case of the generalized hy-

pergeometric function (Gradshteyn & Ryzhik, 2007, eq. (9.14-1)), and the Meijer G-function

(Gradshteyn & Ryzhik, 2007, eq. (9.301)), respectively.
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Figure 3.1 The investigated energy-based RFI detector

3.2 System Model and the Investigated Detection

3.2.1 System Model

We consider a received signal downconverted to its baseband equivalent. As shown in Fig.

3.1 that depicts the investigated ED, we assume that the baseband signal is filtered by the

ideal noise pre-filter that has the bandwidth of the SOI. The presumed filter not only limits

the noise bandwidth but also the bandwidth of RFI, if any (Urkowitz, 1967). To overcome

aliasing, this paper assumes that the sampling operations obey the Nyquist sampling criterion

(Oppenheim & Schafer, 2010). Since the Nakagami-m distribution offers the best fit to land-

mobile, indoor-mobile multi-path propagation, and scintillating ionospheric radio links (Abdi

et al., 2003), (Simon & Alouini, 2005, p. 25), it is adopted by this paper to model the SOI and

RFI fading channels. These narrowband channels are assumed to be flat fading channels since

they have a good agreement with the experimental data (Loo, 1985; De Gaudenzi & Giannetti,

1998). Meanwhile, we assume that detection is performed only after the reception phase of

pilot (preamble) symbols, if any.

The considered SOI can exhibit a one- or two-dimensional (2D) modulation schemes. For

2D schemes, ED can be integrated into the in-phase and/or quadrature component of a ded-

icated receiver (Proakis & Salehi, 2008). Specifically, we consider the SOI being the base-

band equivalent of a deterministic passband signal—denoted by s̃(t)—given as s̃(t) ∈
{

sk(t) =

Re
{

Ak p(t)e j2π fct}}M

k=1
(Proakis & Salehi, 2008, eq. (3.2–45)) for p(t), fc, and M being a

rectangular pulse of duration Ts, carrier frequency, and the modulation order, respectively;

Ak = 2k− 1−M, Ak = e j 2π
M (k−1), and Ak = AI

k + jAQ
k for M-ary pulse amplitude modulation
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(PAM), M-ary phase shift keying (PSK), and M-ary quadrature amplitude modulation (QAM),

respectively. To continue, a noise pre-filtered received baseband signal—denoted by r(t)—is

expressed via a binary hypothesis test as

r(t) =

⎧⎪⎨
⎪⎩

hs(t)+gv(t)+ z(t) : H1

hs(t)+ z(t) : H0,

(3.1)

where H0 and H1 are hypotheses regarding the absence and presence of the RFI, respectively;

s(t) and v(t) denote the aforementioned SOI and an RFI assumed unknown and deterministic,

respectively; h ∼N A (m1, h̄s) is the SOI channel gain for m1 being the SOI fading severity

parameter and h̄s �E{h2}; g∼N A (m2, ḡs) is the RFI channel gain for m2 being the RFI fad-

ing severity parameter and ḡs � E{g2}; and z(t) is a zero mean additive white Gaussian noise

(AWGN) process with a known power spectral density of N0 W/Hz. For analytical tractability,

these assumptions are considered: m1 and m2 are integers; h and g are linearly independent.

3.2.2 The Investigated Detection

The investigated ED is diagrammed in Fig. 3.1, where the baseband input is, first, filtered by

an ideal noise pre-filter. Second, squaring followed by a finite time integration produces the

energy over T of the input signal (Urkowitz, 1967). Third, the energy is multiplied by 2/N0

to generate a decision variable Y. At Last, H1 is detected when Y is greater than a decision

threshold λ . Otherwise, H0 is detected.

3.3 Performance Analysis

Hereinafter, the performance of the energy-based RFI detector is analyzed. In particular, ap-

proximated and asymptotic closed-form expressions are derived for the average probability of

RFI detection. To do so, the probability density function (PDF) and the cumulative distribu-

tion function (CDF) of the ED test statistic are derived when an unknown RFI impinges on the

receiver. Having employed the ED test statistic’s PDF and CDF corresponding to the signal

present hypothesis in the spectrum sensing (Atapattu et al., 2014; Gismalla & Alsusa, 2011;
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Gokceoglu et al., 2014; Boulogeorgos et al., 2016a) and unknown signal detection problems

(Herath et al., 2011; Sofotasios et al., 2016; Digham et al., 2007), the average probability of

false alarm is also derived.

3.3.1 Distribution of the ED Test Statistic

From Fig. 3.1, the decision variable is equated as

Y � 2

N0

∫ t

t−T
r2(t)dt. (3.2)

Let Es =
∫ t

t−T
s2(t)dt be the SOI energy; γsnr = h2 Es

N0
be the SNR; and fY |H0

(y) be the PDF of

Y |H0. Having been derived using the sampling theorem representation for bandlimited signals,

fY |H0
(y) admits the noncentral χ2–distribution with 2u DoF and a noncentrality parameter 2γsnr

(Herath et al., 2011; Urkowitz, 1967; Digham et al., 2007). Thus,

fY |H0
(y) =

1

2

(
y/2γsnr

) u−1
2 e−

2γsnr+y
2 Iu−1(

√
2γsnry). (3.3)

The CDF under H0—FY |H0
(y) = Pr

{
Y ≤ y|H0

}
=

∫ y

−∞
fY |H0

(y)dy—simplifies to

FY |H0
(y) = 1−Qu(

√
2γsnr,

√
y). (3.4)

Meanwhile, the distribution of Y |H1 is characterized by the following theorem.

Theorem 2. Let Ev =
∫ t

t−T
v2(t)dt be the RFI energy. For any type of RFI, Y |H1 admits the

noncentral χ2–distribution with 2u DoF and a noncentrality parameter ρ given by

ρ = 2(γsnr + γinr)+
2hg
σ2

2u

∑
j=1

α jβ j, (3.5)

where W is the bandwidth of the SOI, u = TW , γinr = g2 Ev
N0

defines the INR, α j = s( j/2W ),

and β j = v( j/2W ).
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Proof. Please refer to Appendix 1 under APPENDIX III.

Employing Theorem 2, the PDF of Y |H1 is given by fY |H1
(y) = fY |H0

(y)
∣∣
2γsnr=ρ . Thus, the CDF

of Y |H1 is given by

FY |H1
(y) = Pr

{
Y ≤ y|H1

}
= 1−Qu(

√
ρ,
√

y). (3.6)

3.3.2 Average Probability of RFI Detection

The probability of detection Pd = Pr
{

Y > λ |H1

}
= 1−Pr

{
Y ≤ λ |H1

}
simplifies via (3.6) as

Pd = 1−FY |H1
(λ ) = Qu(

√
ρ,
√

λ ). (3.7)

Meanwhile, the Pd given by (3.7) satisfies the underneath theorem.

Theorem 3. Suppose Ps and Pv denote the SOI power and the RFI power, respectively. For the

SOI and RFI, respectively, given by s(t)=
√

Ps ∑∞
n=−∞ sn p(t−nTs) and v(t)=

√
Pv ∑∞

n=−∞ vn p(t−
nTs),

Pd ≥ Qu(
√

2(γsnr + γinr),
√

λ ), (3.8)

if and only if (iff) ∑2u
j=1 s jv j ≥ 0 and both signals experience non-deep fading channels.

Proof. Employing (3.5) in (3.7) and considering two cases—∑2u
j=1 s jv j = 0 and ∑2u

j=1 s jv j > 0—

via (Sun et al., 2010, eq. (24)), the inequality in (3.8) follows. �

For the SOI and RFI as in Theorem 3, an approximated expression is derived in the sequel.

3.3.2.1 Approximated Expression

Note that the Pd given by (3.7) depends on the distribution of ρ which, in turn, depends on the

joint distribution of several RVs. As detailed in Appendix 2 (under APPENDIX III), deriving
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the PDF of ρ is either mathematically intractable or too complex. Consequently, we derive the

approximated PDF of ρ which is stated below.

Theorem 4. Let Ξm1m2
η1η2

(i,k) be a weight defined in (Karagiannidis et al., 2006a, eq. (A-5));

γ̄snr be the average SNR; and γ̄inr be the average INR. For PC(c j) = Pr{s j}Pr{v j}—c j = s jv j,

(η1,η2) =
( γ̄snr

m1
, γ̄inr

m2

)
=

(
h̄sPs ∑2u

j=1E{s2
j}

2m1N0W ,
ḡsPv ∑2u

j=1E{v2
j}

2m2N0W

)
, and

PY4
(r) = PC(r)∗PC(r)∗ · · · ∗PC(r)︸ ︷︷ ︸

2u−1 fold discrete-time convolution

, r = ∑2u
j=1 s jv j, (3.9)

the approximated PDF of ρ is given by (3.10).

Proof. Please see Appendix 2 under APPENDIX III.

fP(ρ)≈
2

∑
i=1

mi

∑
k=1

Ξm1m2
η1η2

(i,k)

[
ρk−1e−

ρ
2ηi PY4

(0)

(2ηi)k(k−1)!
+ ∑

r∈M \{0}

2PY4
(r)G2,0

0,2

(
ρ2

4η1η2r2

∣∣∣∣ −

m1,m2

)
ρ(m1−1)!(m2−1)!

]
U(ρ).

(3.10)

Remark 2. The right-hand side (RHS) of (3.10) is a valid PDF.

Proof. Please refer to Appendix 3 under APPENDIX III.

Using Theorem 4, the average probability of RFI detection—denoted by P̄d—can be approxi-

mated as

P̄d ≈
∫ ∞

0
Pd fP(ρ)dρ ≈

∫ ∞

0
Qu(
√

ρ,
√

λ ) fP(ρ)dρ. (3.11)

Meanwhile, the approximated expression is stated below.

Theorem 5. For ∏m2
m1

= (m1−1)!(m2−1)!, the approximated average probability of RFI de-

tection is given by (3.12).
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Proof. Please refer to Appendix 4 under APPENDIX III.

P̄d ≈ 1− e−
λ
2

∞

∑
n=u

∞

∑
l=0

2

∑
i=1

mi

∑
k=1

λ n+lΞm1m2
η1η2

(i,k)
2nl!(n+ l)!

[
PY4

(0)(l + k−1)!η l
i

2l(1+ηi)l+k(k−1)!

+ ∑
r∈M \{0}

PY4
(r)√

π ∏m2
m1

G2,2
2,2

(
4

η1η2r2

∣∣∣∣
1−l

2 , 2−l
2

m1,m2

)]
. (3.12)

From (3.12), lim
u→∞

P̄d → 1. Thus, the detection of RFI is certain on average when T gets larger.

As (η1,η2)→ (0,∞), (γ̄snr, γ̄inr)→ (0,∞). Similarly, as (η1,η2)→ (∞,0), (γ̄snr, γ̄inr)→ (∞,0).

Therefore, employing (Karagiannidis et al., 2006a, eq. (A-5)) and (3.12), lim
(γ̄snr,γ̄inr)→(0,∞)

P̄d =

lim
(γ̄snr,γ̄inr)→(∞,0)

P̄d → 1, as G2,2
2,2(·) approaches zero when

1

η1η2
approaches ∞. This implies that

ED detects RFI certainly whenever there is a big difference between the strength of the SOI

and RFI.

3.3.2.2 Asymptotic Expression

The expression for P̄d whenever γinr >> γsnr is derived subsequently. In this case, (3.5) simpli-

fies to ρ ≈ 2γinr which is plugged into (3.7) to give

Pd ≈ Qu(
√

2γinr,
√

λ ). (3.13)

In (3.13), γinr∼G (m2, γ̄inr) for g∼N A (m2, ḡs). Thus, P̄d demands averaging over the gamma

PDF fY (γinr;m2,η2) =
(γinr)

m2−1

ηm2
2 Γ(m2)

e−
γinr
η2 U(γinr) (Karagiannidis et al., 2006a, eq. (2)) which is

employed in (3.11) to render

P̄d ≈
mm2

2

(γ̄inr)m2Γ(m2)

∫ ∞

0

Qu(
√

2y,
√

λ )ym2e−
m2y
γ̄inr

y
dy
∣∣∣∣
y=γinr

. (3.14)
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Using (Simon & Alouini, 2005, eq. (4.63)), (3.14) simplifies to

P̄d ≈ 1− e−
λ
2

Γ(m2)

(
m2

γ̄inr

)m2 ∞

∑
n=u

(
λ/2

)n/2×
∫ ∞

0
e−
(

1+
m2
γ̄inr

)
yym2−1−n/2In(

√
2λy)dy

∣∣∣∣
y=γinr

. (3.15)

Following (Herath et al., 2011, eqs. (4) and (5)), the asymptotic average probability of RFI

detection is given by

P̄d ≈ 1− e−
λ
2 κm2

∞

∑
n=u

(n!)−1
(
λ/2

)n
1F1

(
m2;n+1;λ μ/2

)
, (3.16)

where κ = m2
γ̄inr+m2

and μ = γ̄inr
γ̄inr+m2

. From (3.16), lim
γ̄inr→∞

P̄d → 1. Thus, as the RFI gets stronger,

ED detects it with certainty.

Remark 3. Note that (3.16) coincides with the average probability of a deterministic signal

detection over the Nakagami-m fading channel exhibited by ED (Herath et al., 2011, eq. (5)).

It is to be noted that the aforementioned analyses also encompass the scenario that the SOI and

RFI are non-overlapping after the initial filtering. In this scenario, the filtered RFI would have

a bandwidth less than the bandwidth of the SOI. Consequently, the intercepted RFI energy

becomes smaller by the virtue of Parseval’s theorem (Proakis & Salehi, 2008); so does the

average INR. Therefore, this is similar to the overlapping case with a reduced average INR.

3.3.3 Average Probability of False Alarm

As the RFI absent hypothesis—in the RFI detection problem—is the signal present hypothesis

in the spectrum sensing and unknown signal detection problems (Herath et al., 2011; Sofotasios

et al., 2016; Digham et al., 2007; Atapattu et al., 2014; Gismalla & Alsusa, 2011; Gokceoglu

et al., 2014; Boulogeorgos et al., 2016a), (3.3) and (3.4) can be used to derive the average

probability of false alarm—denoted by P̄f —for a given λ . Using (3.4), the probability of false

alarm Pf = Pr
{

Y > λ |H0

}
= 1−Pr

{
Y ≤ λ |H0

}
becomes

Pf = 1−FY |H0
(λ ) = Qu(

√
2γsnr,

√
λ ). (3.17)
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For a given h, Pf is given by (3.17). Thus, P̄f is obtained by averaging (3.17) over fY (γsnr;m1,η1)=

fY (γinr;m2,η2)
∣∣
(γinr,m2,η2)=(γsnr,m1,η1)

. Doing so by following (3.14)-(3.16),

P̄f = 1− e−
λ
2 κ̃m1

∞

∑
n=u

(n!)−1
(
λ/2

)n
1F1

(
m1;n+1;λ μ̃/2

)
, (3.18)

where κ̃ = m1
γ̄snr+m1

and μ̃ = γ̄snr
γ̄snr+m1

. Employing (3.18), lim
γ̄snr→∞

P̄f → 1. Thus, as the SOI gets

stronger, ED would exhibit the maximum false alarm rate (FAR) for it would confuse the SOI

for the RFI.

Remark 4. For the matching of hypotheses, (3.18) is identical with the average probability of

a deterministic signal detection over the Nakagami-m fading channel (Herath et al., 2011, eq.

(5)).

Summarizing the overall performance analysis, (3.12) implies that the average detection per-

formance of ED depends on the relative strength of the SOI w.r.t. the RFI and vice versa. Since

(3.12) is valid—by the virtue of Theorem 2—irrespective of the type of RFI, the aforemen-

tioned dependence is valid regardless of the type of RFI. Similarly, it is inferred from (3.18)

that the exhibited average FAR increases with the average strength of the SOI. Most impor-

tant, because only the signal energy matters; not its form, ED can be applied for the detection

of any deterministic signal (Urkowitz, 1967, Sec. I). Therefore, once the received signal is

downconverted to its baseband equivalent, ED can be applied in both satellite (see Fig. 3.2)

and terrestrial (for instance, see (Proakis & Salehi, 2008, Figs. 5.1–1 and 5.1–2)) commu-

nications regardless of their difference in the pre-baseband signal processing. Talking about

practical applicability, however, ED requires an accurate noise power estimator, as it relies on

the knowledge of the noise power.

3.4 Simulation Results

Without loss of generality, ED is applied in the context of a VSAT communication system. For

a VSAT receiver located in a rural area free from scattering, the reception of a binary PSK
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Figure 3.2 The simulated VSAT (Maral, 2003) scenario

(BPSK) modulated SOI transmitted by a regenerative geostationary earth orbit (GEO) satellite,

a BPSK modulated RFI possibly emitted by a regenerative GEO satellite, and a line-of-sight

reception are assumed. Moreover, the channel models and assumptions outlined in Sec. 3.2.1

are deployed.

Table 3.1 Simulation parameters

unless otherwise mentioned

Parameters Assigned value

(m1,m2) (2,2)

(σ2,Ps,Pv) (1W,10W,10W)

No. of realizations 105

Table 3.2 Complexity comparison in terms of the

number (No.) of multiplications and additions

Detectors No. of multiplications No. of additions

ED 2u+1 2u−1

KD 12u+5 8u−4

The simulated VSAT scenario is depicted in Fig. 3.2, where the received baseband signal af-

ter noise pre-filtering is modeled based on the GNSS received signal model in (Borio, 2008,

eq. (2.2)). As seen in Fig. 3.2, ED can be cascaded to the VSAT receiver so as to detect

RFI. Regarding the SOI and RFI propagation delays, perfect and identical estimates are as-

sumed rendering a model consistent with (3.1). Having defined the average SNR and INR as

in Theorem 4, simulations with parameters of Table 3.1—unless otherwise mentioned—are

conducted.
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Four results are given to assess the exhibited P̄d . First, a Monte-Carlo simulation named “sim-

ulation 1” is conducted via the binarization of (A III-4) w.r.t. λ—while employing (A III-

8b)—followed by averaging. Second, (3.12) is implemented by approximating the infinite

summations w.r.t. n and l through the first 50− u and 50 terms, respectively. Third, “simula-

tion 2” is conducted by averaging (3.7). Fourth, (3.16) is implemented via the approximation

of the infinite summation w.r.t. n by the first 50− u terms. Three results are presented to as-

sess the exhibited P̄f . First, a Monte-Carlo simulation named “simulation 3” is conducted via

the binarization of (A III-4) w.r.t. λ—while employing (A III-8b) and no RFI—followed by

averaging. Second, (3.18) is implemented by approximating the infinite summation by the first

50−u terms. Third, a simulation named “simulation 4” is conducted by averaging (3.17).
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Figure 3.3 Comparison in P̄d: (γ̄snr, γ̄inr) = (−5 dB,5 dB). Note

that [4] represents (Misra et al., 2009)
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Figure 3.4 Comparison in P̄d: (γ̄snr,λ ) = (3 dB,2). Note that

[4] represents (Misra et al., 2009)

3.4.1 Performance Comparison with the State-of-the-art

Amongst the state-of-the-art algorithms (Misra et al., 2009; Borio et al., 2008; Ruf et al., 2006;

Balaei & Dempster, 2009; De Roo & Misra, 2010; Dovis et al., 2012), we opt for a performance

comparison with a kurtosis detector (KD). The choice is motivated by the fact that KD is a

statistical algorithm—like ED—and the remaining ones are sub-optimal techniques that tend

to exhibit some heuristics (cf. Appendix 5 under APPENDIX III). To continue, we assume a

received baseband signal sampled at Ts = 1/2W apart and conduct a Monte-Carlo simulation

for KD (Misra et al., 2009; Ruf et al., 2006). Using this assumption which leads to (A III-

8b), the kurtosis (κ) is computed through expectation-based operations in (Misra et al., 2009,

eqs. (1) and (2)). As computing expectation requires infinite samples, we update the RFI-free

detection threshold stated in (Misra et al., 2009) to our simulation setting. In this regard, we

employ a threshold of 3− 1
γ̄inr ln(u2/λ ) ≤ κ ≤ 3+ 1

γ̄inr ln(u2/λ ) for the detection of no RFI and

perform averaging over 105 channel realizations.
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Figs. 3.3 and 3.4 depict the P̄d exhibited by ED and KD. Note that the performance of ED is

simulated as per “simulation 1”. Although ED intercepts the received signal for the 1/50th

duration of KD’s, Fig. 3.3 corroborates that ED outperforms KD regardless of λ for a given

(γ̄snr, γ̄inr). Fig. 3.4 also demonstrates that ED outperforms KD regardless of γ̄inr for a given

(γ̄snr,λ ). These superior performance gains are due to the fact that ED takes the energy of RFI

into account to detect RFI unlike KD which relies merely on the kurtosis. Interestingly, such a

gain is also guaranteed at a smaller computational complexity, as attested by Table 3.2 which

tabulates the complexity comparison of ED and KD based on the test statistics in (A III-4) and

(Misra et al., 2009, eqs. (1) and (2)), respectively.
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Figure 3.5 Comparison in P̄d: (P̄f , γ̄snr) = (0.1,0 dB) and

NR = 5. Note that [50] and [51] represent (Wang et al., 2010) and

(Taherpour et al., 2010), respectively

3.4.2 Performance Comparison with GLRT

For a received baseband signal sampled at Ts = 1/2W apart and a single-input multiple-output

system, a generalized likelihood ratio test (GLRT) detector (Wang et al., 2010; Taherpour et al.,
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that (12) and (16) stand for (3.12) and (3.16), respectively

2010)—a multi-antenna technique—is compared with the ED extended—similar to (Wang

et al., 2010, eq. (3))—to a multi-channel ED (MCED). In order to apply GLRT to the RFI de-

tection problem at hand, we assume a perfect knowledge of the multi-antenna SOI channel gain

hhh and project orthogonal to the SOI subspace using a projection matrix PPP= IIINR−hhh(hhhHhhh)−1hhhH .

Thereafter, we apply the GLRT statistic (Wang et al., 2010, eq. (13)), (Taherpour et al., 2010,

eq. (39)) and conduct an RFI detection via comparison with a test threshold rendering the target

average FAR of 0.1. To continue, MCED is simulated by applying ED per a receive antenna

and adding the output of every ED. By doing so, the overall intercepted energy is compared

with a test threshold resulting in the target average FAR of 0.1.

Having deployed the aforementioned simulation settings, the detection performance compari-

son of MCED and GLRT is depicted via Fig. 3.5. Although GLRT assumes a perfect knowl-

edge of the multi-antenna SOI channel gains, MCED outperforms GLRT by around 20 dB.

Although MCED assumes the knowledge of the noise power, such a significant performance
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Figure 3.7 Comparison in P̄d: (γ̄snr,λ ) = (1 dB,3). Note that

(12) and (16) stand for (3.12) and (3.16), respectively

gain interestingly comes with a low-computational complexity—see Table 3.2—unlike GLRT

which first computes a singular value decomposition which is computationally complex—i.e.,

O
(
N3

R
)

multiplications and additions (Zeng & Liang, 2009b)—for large-scale multi-antenna

systems.

3.4.3 Validation of the Derived Analytical Expressions

Figs. 3.6 and 3.7 compare the P̄d for different (λ ,u) and (γ̄inr,u), respectively. As shown,

simulation 1, simulation 2, and (3.12) are in agreement. In addition, Figs. 3.6 and 3.7 reveal

that the asymptotic curves suffer from a performance loss as λ gets larger for (γ̄snr, γ̄inr,u) =

(−5 dB,0 dB,3) and for small values of γ̄inr estimated with u = 3, respectively. Meanwhile,

Figs. 3.6 and 3.7 demonstrate that the performance of ED and the accuracy of (3.16) improve

with u implying that a larger intercepted energy results in a better P̄d .
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Figs. 3.8 and 3.9 compare the P̄d for different (λ , γ̄inr) and (γ̄snr, γ̄inr), respectively. As depicted,

the increment of γ̄inr results in a better P̄d . As γ̄inr increases, it is observed in Fig. 3.8 that

the asymptotic curve gets close to the approximated curve. Fig. 3.9 also corroborates that

P̄d improves not only with γ̄inr but also with γ̄snr, as the increment in γ̄snr (implicating the

average SOI energy) is perceived by ED as the presence of an RFI rendering an increase in the

intercepted energy.

Figs. 3.10-3.12 depict the exhibited P̄f . As it is evident from Figs. 3.10 and 3.12, the increment

of u increases P̄f since ED can be misled by the increment of the respective intercepted energy.

Similarly, Figs. 3.11 and 3.12 display an increment in P̄f when γ̄snr increases for the same

reason mentioned before. For the exhibited P̄f which varies w.r.t. γ̄snr, these plots also corrob-

orate that ED is not a constant FAR (CFAR) detector. Such a non-CFARness is directly related

to the fact that ED is non-robust to noise uncertainty (Wang et al., 2010; Huang & Chung,
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2013a). Moreover, Figs. 3.10-3.12 showcase that simulation 3, simulation 4, and (3.18) are in

an overlap.

3.4.4 Assessment of the Receiver Operating Characteristics

To assess the complementary receiver operating characteristics (CROC) (Digham et al., 2007)

of ED, Fig. 3.13 depicts the average probability of miss (P̄m)—simulated as P̄m = 1− P̄d—

versus P̄f . As displayed, the natural trade-off between P̄m and P̄f is corroborated; the CROC

curves move inward when γ̄inr increases; and the Monte-Carlo simulations validate (3.12) and

(3.18).

3.5 Real-World Data Based Simulations

We assess the performance of ED using real-world RFI contaminated data received by one of

the antennas of the VLA (NRAO, 2017). For this VLA data sampled at a sampling frequency
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Figure 3.14 The extracted SOI and RFI

of 2048 MHz, (Getu et al., 2017, Fig. 15) depicts its fast Fourier transforms (FFT) whose lower

frequency component is diagrammed in (Getu et al., 2017, Fig. 16).

3.5.1 Simulation Setup

As seen in (Getu et al., 2017, Fig. 16), there are four impinging RFIs in four different subbands:

102.8-107.2 MHz, 110.7-115 MHz, 115.2-118.8 MHz, and 123.9-127.5 MHz. In order to sim-

ulate the performance of ED w.r.t. the specified average FAR, the respective decision threshold

should be computed from the “signal+noise” hypothesis (H0). To compute this decision thresh-

old, the four impinging RFIs have to be filtered out and removed from the received signal. To

extract the RFI-free signal, the four bandpass filters designed using the near-optimal Kaiser

windows (Oppenheim & Schafer, 2010; Mitra, 2001) and reported through (Getu et al., 2018d,

Figs. 3 and 4) are deployed. Using these filters, the four RFIs are extracted and superimposed

as manifested through their FFT plotted in Fig. 3.14. These superimposed RFIs—denoted by

vvv—are used as an RFI in the subsequent simulations. As depicted through an FFT operation
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diagrammed in Fig. 3.14, the superimposed RFIs are then subtracted from the VLA data so as

to obtain the RFI-free data which are, hereinafter, considered as the extracted SOI—denoted

by sss.

To simulate the performance of ED for the ranges of average SNR and INR, the extracted

SOI is contaminated by an AWGN of power σ2. It is to be noted that the noise power is

adjusted w.r.t. the average SNR and INR defined, respectively, as γ̄snr = ‖sss‖2/Ntσ2 and γ̄inr =

ϕ‖vvv‖2/Ntσ2 for Nt being the number of samples in the VLA data and ϕ being a constant used

to adjust the power of the extracted RFI w.r.t. the desired INR. To simulate the exhibited P̄f , the

AWGN contaminated extracted SOI samples are employed as per (A III-4)—while employing

no RFI—and compared with λ so as to pass a decision. On the other hand, the exhibited

P̄d is simulated by adding the extracted RFI—whose power was adjusted using
√ϕ—to the

extracted SOI contaminated by an AWGN. Thereafter, these samples are deployed in (A III-4)

and compared with λ . Having repeated such comparisons Nt/2u times followed by averaging,

the respective Monte-Carlo simulation results are plotted.

3.5.2 Results

The exhibited P̄d and P̄f assessed using the VLA data are depicted in Figs. 3.15 and 3.16.

As expected, Fig. 3.15 demonstrates that P̄d improves with γ̄inr and u. At the same time, the

increment in u and hence the respective increment in the intercepted energy can mislead the

detector and cause an undesired increment in P̄f , as demonstrated via Fig. 3.16.

3.6 Conclusions and Outlooks

3.6.1 Conclusions

As RFI is affecting many systems operating radio frequencies, it should be properly detected

so as to be efficiently excised. In this respect, an energy-based RFI detector is investigated for

wireless systems suffering from RFI. Having exploited the sampling theorem representation
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Figure 3.15 P̄d using the VLA data: (γ̄snr, P̄f ) = (0dB,0.1)

of bandlimited signals, ED computes the intercepted energy which is employed to make a

decision upon the RFI. In order to quantify the performance of ED, we derive novel closed-

form expressions by determining the distribution of the received signal and the associated RVs

whenever an RFI—which usually exhibits an unknown distribution—impinges on the receiving

antenna. Assuming the Nakagami-m fading channels, approximated and asymptotic closed-

form expressions are derived for the average probability of RFI detection, and an exact closed-

form expression is derived for the average probability of false alarm. Simulations validate

these expressions and corroborate that ED outperforms KD—even under the scenario that KD

intercepts the received signal for a much longer interval—and a GLRT detector. Moreover, the

performance of ED is also simulated and assessed using real-world RFI contaminated data.

3.6.2 Outlooks

Since the mixture of Gaussian (MoG) distribution exhibits a universal approximation property

(Selim et al., 2016), as it can be proved using the Wiener’s theorem of approximation (Pla-
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Figure 3.16 P̄f using the VLA data: γ̄snr = 0 dB

taniotis & Hatzinakos, 2001), it can approximate any non-Gaussian distribution such as the

Nakagami-m distribution. Hence, the MoG distribution has been deployed for channel mod-

eling in wireless sensor networks (Salvo Rossi et al., 2016, 2015b,a) and approximation of

the envelope, and SNR distributions in several wireless fading channels (Selim et al., 2016;

Alhussein, 2015).

Following the MoG distribution’s easiness in analytical tractability and high accuracy (Salvo

Rossi et al., 2016), we hereby approximate Nakagami-m distributed SOI channel’s envelope

with the MoG distribution. Bayesian information criterion (BIC) (Stoica & Selen, 2004; Se-

lim et al., 2016) is used to determine the number of mixture components C required for an

approximation whose accuracy is assessed using the mean square error (MSE) between PDFs.

To estimate parameters of the approximating MoG distribution, the expectation-maximization

(EM) algorithm (Mengersen et al., 2011, Ch. 1), (Bishop, 2006, Ch. 9) is deployed.
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To demonstrate the aforementioned universal approximation property using simulations, we

adapt the MATLAB R© code in (Alhussein, 2015, Appendix B) which implements a BIC as-

sisted EM algorithm using N independent and identically distributed Nakagami-m random

samples. For the reception of a BPSK modulated SOI over the Nakagami-m fading chan-

nel, the MoG-based PDF and the empirical PDF corresponding to the received signal’s en-

velope are depicted in Figs. 3.17 and 3.18. As plotted, the MoG distribution approximates

Nakagami-m distributed envelope with high accuracy. Accordingly, the performance analysis

of an energy-based RFI detector using the MoG distributed fading channels has become our

future undertaking.
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“Mathematics is a language plus reasoning; it is like a language plus logic. Mathematics is a

tool for reasoning.”—Richard P. Feynman

Abstract—Radio frequency interference (RFI) is occurring in both satellite and terrestrial

communication systems. In order to mitigate RFI efficiently, it has to be detected robustly.

Toward this end, through the computation of an eigenvalue-based test statistic, an eigenvalue-

based blind RFI detector is proposed for single-input multiple-output systems that may suffer

from RFI. Valid for infinitely huge samples, performance closed-form expressions are derived

through the derivation of the distribution of the equivalent test statistic and signified through

simulations. For medium to large interference-to-noise ratio (INR) regimes and sample starved

settings, simulations also corroborate that the proposed blind detector manifests a comparable

detection performance with a generalized likelihood ratio test (GLRT) detector fed with the

knowledge of the signal of interest (SOI) channel, and a matched subspace detector fed with

the knowledge of the SOI and RFI channels. Such performance underscores the applicability

of the proposed RFI detector for real-time applications.

Index Terms—RFI excision, RFI detection, eigenvalue detector, blind detector, GLRT detec-

tor, matched subspace detector.



72

4.1 Introduction

4.1.1 Related Works

Due to out-of-band emissions by nearby transmitters and harmonics, jammers, spoofers, and

meaconers, radio frequency interference (RFI) is being increasingly common in microwave ra-

diometry (Guner et al., 2007), radio astronomy (RA) (van der Tol & van der Veen, 2005), and

satellite communications (SatCom) (Nguyen et al., 2015; Getu et al., 2017). Regarding Sat-

Com, 93% of the industrial applications suffer from interference—as reported in (Newtec and

IRG, Sep. 2013)—and RFI is a potential threat to global navigation satellite system (Wilde-

meersch & Fortuny-Guasch, 2010). RFI also happens in cognitive radio systems for imperfect

spectrum sensing (Getu et al., 2015a) (as also analytically implicated through (Boulogeorgos

et al., 2016b)); ultra-wideband communications due to the prevalent narrowband interferers

(Shi et al., 2007); and radar because of the inevitable jammers (De Maio & Orlando, 2016). As

such a widely occurring RFI must be first detected so as to be excised efficiently, researchers

have paid attention, throughout the years, to the research sub-field of RFI detection.

In the aforementioned regard, the state-of-the-art encompasses a considerable number of RFI

detectors. Mentioning the main ones, the RFI detector in asynchronous pulse blanking (John-

son & Ellingson, 2005), kurtosis detector (KD) (Misra et al., 2009), fast Fourier transforms-

based RFI detector (Balaei & Dempster, 2009), a precorrelation-based RFI detector (Borio

et al., 2008), and transformed-domain detectors (Dovis et al., 2012). In general, these RFI

detectors deployed frameworks that did not lead to analytical performance characterizations,

which are often missing. On the other hand, the performance characterization of a given RFI

detector is not a straightforward undertaking, as the distribution and parameters of the im-

pinging RFI are generally unknown. Such a lack of knowledge makes the existing hypothesis

testing frameworks (Kay, 1998; Scharf, 1991) hardly useful with regard to the aforementioned

undertaking. Highlighting the latest research advancements pertaining to this research sub-

field, meanwhile, a power-based broadband RFI detector and an energy-based RFI detector are

investigated in (Getu et al., 2018c) and (Getu et al., 2018b), respectively. However, these RFI
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detectors rely on the knowledge of the noise power and they are detectors proposed, mainly, for

single-antenna systems. Thus, it is of an academic and practical significance to develop robust

multi-antenna RFI detectors whose performance characterizations shall also be pursued.

Mathematically, the multi-antenna RFI detection problem can be related to the adaptive radar

detection problem—considered in (Ciuonzo et al., 2016a,b, 2017; Aubry et al., 2014)—by

exchanging the underlying RFI and the signal of interest (SOI) while presuming a receiving

reference antenna. For the adaptive signal detection in homogeneous Gaussian disturbance

and structured interference, (Ciuonzo et al., 2016b) has derived several theoretically founded

detectors which are proved to be the function of the maximal invariant statistic (MIS) corrobo-

rating their constant false alarm rate (CFAR) property. Following (De Maio & Orlando, 2016),

(Ciuonzo et al., 2017) exploits the principle of invariance to surmount the problem of adap-

tive vector subspace signal detection in a partially homogeneous Gaussian disturbance plus

structured interference. In particular, (Ciuonzo et al., 2017) derives an MIS which is shown

to coincide with the adaptive normalized matched filter (Conte et al., 1996) (adaptive coher-

ence estimator (Scharf & McWhorter, 1996)) in a complementary subspace of the structured

interference. Thereafter, several well-known test statistics are derived and shown to be statisti-

cally equivalent to the MIS. Similarly, (Aubry et al., 2014) deals with the adaptive detection of

point-like targets in a possibly heterogeneous environment. In a mathematical sense, some of

the electronic counter-countermeasures (ECCM) techniques (Orlando, 2017; Bandiera et al.,

2010; Melvin & Scheer, 2013) are also related to the problem of multi-antenna RFI detection.

4.1.2 Motivation

Despite the mathematical resemblance, the detection techniques of (Ciuonzo et al., 2016a,b,

2017; Aubry et al., 2014) cannot be adopted as robust multi-antenna RFI detection techniques.

The presumption of known left and right subspaces for the signal and interference makes the

unifying framework of (Ciuonzo et al., 2016b) hardly practical for multi-antenna RFI detec-

tion. Similarly, the assumptions that a target signature and a structured interference belong to

known subspaces make (Ciuonzo et al., 2017) unattractive for multi-antenna RFI detection.
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Because of the assumption regarding a known subspace spanned by the interference steer-

ing vectors, (Aubry et al., 2014) is also unattractive. Meanwhile, adapting the techniques

of (Bandiera & Orlando, 2009) devised for a mismatched signal model is either challeng-

ing or complex, as the RFI target vectors are generally unknown and time-variant. Further-

more, as the impinging RFI may not be Gaussian and its distribution is generally unknown,

adapting the ECCM related techniques—such as (Orlando, 2017), (Bandiera et al., 2010), and

(Melvin & Scheer, 2013, Ch. 12)—as robust multi-antenna RFI detection techniques would be

hardly realistic.

Because it requires identifying the type of RFI which could be narrowband, broadband, con-

tinuous wave, or pulsed RFI (Nguyen et al., 2015; Wildemeersch & Fortuny-Guasch, 2010),

the development of a robust multi-antenna RFI detector is challenging. In this regard, an RFI

detector should robustly detect any kind of RFI unlike KD which fails to detect Gaussian (near

Gaussian) RFI(s) (Misra et al., 2009). To be attractive for real-time applications, an RFI de-

tector should not also rely on a large number of samples. Moreover, an RFI detector shall also

be able to detect very weak RFI, as several such RFIs can make the communication (system)

unreliable, especially in SatCom and RA which manifest a received signal whose strength is

usually under the noise floor (van der Tol & van der Veen, 2005).

In another regard, eigenvalue-based detectors (Kortun et al., 2012; Zeng & Liang, 2009b;

Bianchi et al., 2011) have been proposed for spectrum sensing in the context of cognitive

radios. These detectors exhibit an attractive detection performance and their blindness makes

them practically appealing. They do not also rely on the power spectral density of the noise

unlike conventional energy detectors (Digham et al., 2007; D’Amico et al., 2007; Herath et al.,

2011; Boulogeorgos et al., 2016a; Sofotasios et al., 2013). Meanwhile, eigenvalues in the

Karhunen-Loève transform domain were deployed to detect RFI, as detailed in (Maccone,

2010). Nonetheless, time-domain eigenvalue detection had not been investigated until recently.

In line with this specific motivation, (Getu et al., 2018, accepted) has disseminated a prelimi-

nary study regarding an eigenvalue-based multi-antenna RFI detection.
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4.1.3 Contributions

Based on the lead of (Getu et al., 2018, accepted), this article presents a full-fledged investiga-

tion on eigenvalue-based RFI detector and its performance analyses. As a consequence of the

conducted investigation, the respective contributions are itemized beneath.

• For single-input multiple-output (SIMO) systems that may suffer from RFI, an eigenvalue-

based RFI detector is studied and assessed.

• The distribution—valid for infinitely huge samples—of the equivalent test statistic is

derived.

• Deploying the derived distribution, performance closed-form expressions—valid for in-

finitely large samples—regarding the probability of RFI detection and the probability of

false alarm are derived.

• The performance of the investigated RFI detector is assessed through Monte-Carlo sim-

ulations which also signify the derived performance closed-form expressions.

Following this introduction, Sec. 4.2 describes the considered system model. Sec. 4.3 presents

the problem formulation and the proposed detection followed by the performance analysis

detailed in Sec. 4.4. Sec. 4.5 reports the simulation results succeeded by the paper conclusions

and outlooks presented in Sec. 4.6.

4.1.4 Notation

Italic letters, lower-case boldface letters, and upper-case boldface letters denote scalars, vec-

tors, and matrices, respectively; CNR , CN×M, and H
NR×NR are the sets of NR–dimensional vec-

tors of complex numbers, of N ×M complex matrices, and of NR×NR Hermitian matrices,

respectively; →, ∼, |, �, ∝, (·)−1, (·)T , and (·)H denote approaches to, distributed as, con-

ditioned on (under), equal by definition, statistically equivalent, inverse, transpose, and Her-

mitian, respectively; ∈, ≡, >>, →, lim, AAA(:, i), AAA(:, i : j), and diag(·) implicate element of
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(belongs to), is equivalent to, much greater than, approaches to, limit, the i-th column of AAA, the

columns of AAA between its i-th and j-th columns including its i-th and j-th columns, and diago-

nal (block diagonal) matrices, respectively; (·)+, || · ||, Pr{·}, E{·}, tr(·), IIINR , and 000N×M denote

the Moore-Penrose inverse, Euclidean norm, the probability of, expectation, trace, an NR×NR

identity matrix, and an N ×M zero matrix, respectively; Re{·}, Im{·}, Var{·}, Cov{·, ·},
NNR(·, ·), and C NNR(μμμ,ΣΣΣ) stand for real part, imaginary part, variance, covariance, the mul-

tivariate normal distribution of dimension NR (NR ≥ 2), and the circularly symmetric com-

plex multivariate normal distribution with mean μμμ ∈ C
NR and covariance matrix ΣΣΣ ∈ H

NR×NR

(NR ≥ 2), respectively; χ2
ν , χ ′2ν(λ ), Fν1,ν2

, F ′ν1,ν2
(λ1), and F ′′ν1,ν2

(λ1,λ2) represent the central

chi-square distribution with ν degrees of freedom (DoF), the noncentral chi-square distribu-

tion with ν DoF and noncentrality parameter (NCP) λ , the central F–distribution with (ν1,ν2)

DoF, the singly noncentral F–distribution with (ν1,ν2) DoF and NCP λ1, and the doubly non-

central F–distribution with (ν1,ν2) DoF and NCPs (λ1,λ2), respectively; and F(λ ;ν1,ν2),

F ′(λ ;ν1,ν2|λ1), and F ′′(λ ;ν1,ν2|λ1,λ2) denote the cumulative distribution function (CDF)

pertaining to Fν1,ν2
, the CDF pertaining to F ′ν1,ν2

(λ1), and the CDF attributed to F ′′ν1,ν2
(λ1,λ2),

respectively, evaluated at λ .

4.2 System Model

First, we assume that the received passband signal is downconverted to its baseband equivalent

and sampled at the Nyquist rate. In line with this assumption, we consider a SIMO system that

may suffer from an RFI as depicted in Fig. 4.1. Along with the reception of the transmitted SOI,

an RFI emitted by a nearby single-antenna source might also be received by the NR antennas.

For this scenario, the received multi-antenna signal contaminated by a noise and an impinging

RFI is expressed as

yyy[k] = hhhs[k]+gggv[k]+ zzz[k] ∈ C
NR , (4.1)

where yyy[k] ∈C
NR is the k-th sample of the received multi-antenna signal; hhh = [h1,h2, . . . ,hNR ]

T

∈ C
NR is the flat fading SOI channel gain vector assumed constant during the RFI detection
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interval; s[k] is the k-th unknown and deterministic symbol of the SOI; ggg = [g1,g2, . . . ,gNR ]
T ∈

C
NR is the flat fading RFI channel gain vector assumed constant during the RFI detection inter-

val; v[k] is the k-th unknown and deterministic symbol of the RFI; and zzz[k]∼ C NNR(000,σ2IIINR)

is—with an unknown power of σ2—a zero mean circularly symmetric complex additive white

Gaussian noise (AWGN) vector, which manifests a spatially uncorrelated noise.

Inferring from (4.1), the RFI-free received multi-antenna signal is equated as

yyy[k] = hhhs[k]+ zzz[k] ∈ C
NR . (4.2)

The remainder of this manuscript presumes that hhh, ggg, and zzz[k] are independent with each other.

Figure 4.1 A baseband schematic of a SIMO

system suffering from an RFI
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4.3 Problem Formulation and Proposed Detection

4.3.1 Problem Formulation

A binary hypothesis test is formulated from (4.1) and (4.2) as

yyy[k] =

⎧⎪⎨
⎪⎩

hhhs[k]+gggv[k]+ zzz[k] : H1

hhhs[k]+ zzz[k] : H0,

(4.3)

where {H0,H1} are, respectively, hypotheses regarding the absence and presence of the RFI and

1≤ k≤N for N being the number of intercepted per-antenna samples. Stacking the observation

vectors of N sampling intervals,

yyy =

⎧⎪⎨
⎪⎩

HHHsss+GGGvvv+ zzz : H1

HHHsss+ zzz : H0,

(4.4)

where yyy =
[
yyyT [1],yyyT [2], . . . ,yyyT [N]

]T ∈C
NRN is the stacked multi-antenna received signal sam-

ples, HHH = diag(hhh,hhh, . . . ,hhh)∈C
NRN×N is the SOI channel matrix, GGG= diag(ggg,ggg, . . . ,ggg)∈C

NRN×N

is the RFI channel matrix, sss =
[
s[1],s[2], . . . ,s[N]

]T ∈ C
N is the stacked symbols of the SOI,

vvv=
[
v[1],v[2], . . . ,v[N]

]T ∈C
N is the stacked RFI symbols, and zzz=

[
zzzT [1],zzzT [2], . . . ,zzzT [N]

]T ∈
C

NRN ∼C NNRN(000,σ2IIINRN) is the stacked multi-antenna noise vector. If HHH and GGG were known

in the matched subspace detection problem stated via (Scharf & Friedlander, 1994, eq. (2.4)),

(4.4) and (Scharf & Friedlander, 1994, eq. (2.4)) would be equivalent problems for SSS = HHH,

φφφ = sss; and μ = 1, HHH = GGG, and θθθ = vvv.1

The problem formulated in (4.4) can also be related to the adaptive radar signal detection prob-

lems of (Ciuonzo et al., 2016a,b, 2017; Aubry et al., 2014). However, adopting these tech-

niques is challenging, since they rely on known subspace(s). The problem can also be posed

as a source enumeration problem (Lu & Zoubir, 2015; Wax & Kailath, 1985; Stoica & Selen,

1 Referring to (Scharf & Friedlander, 1994), please note that μHHHθθθ and SSSφφφ denote an information-

bearing signal and an interference, respectively.
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2004): “two sources” versus “one source”. Nonetheless, the technique of (Lu & Zoubir, 2015)

cannot be adopted here, as {s[k],v[k]} are not necessarily Gaussian random variables (RVs).

Besides, the information criterion rules (Wax & Kailath, 1985; Stoica & Selen, 2004) are com-

putationally complex, as they rely on the minimization of highly non-linear functions made of

several maximum-likelihood estimates (Proakis & Salehi, 2008). For known hhh and Gaussian

{s[k],v[k]}, it is worth mentioning that the problem can also be recast in terms of a unified gen-

eralized likelihood ratio test (GLRT) based spectrum sensing framework of (Axell & Larsson,

2011).

4.3.2 Proposed Detection

At first, the proposed eigenvalue-based RFI detector computes the sample covariance matrix

(SCM) as

R̂RRyy =
1

N

N

∑
k=1

yyy[k]yyyH [k] =
1

N
YYYYYY H ∈H

NR×NR , (4.5)

where YYY =
[
yyy[1],yyy[2], . . . ,yyy[N]

] ∈ C
NR×N . Hereinafter, we assume that N > NR to ensure that

all eigenvalues of the SCM are positive with probability one. Computing the singular value

decomposition (SVD) of (4.5),

R̂RRyy = ÛUU Σ̂ΣΣV̂VV
H
= [ÛUU1 ÛUU2:NR ]Σ̂ΣΣV̂VV

H (a)
= ÛUU Σ̂ΣΣÛUU

H
, (4.6)

where ÛUU1 = ÛUU(:,1), ÛUU2:NR = ÛUU(:,2 : NR), and Σ̂ΣΣ = diag
(
σ̂1, σ̂2, . . . , σ̂NR

)
for {σ̂i}NR

i=1 being

the singular values—in decreasing order—of the SCM, and (a) emanates from the fact that an

SCM is both a positive semi-definite and Hermitian matrix.

It shall be recalled that {σ̂i}NR
i=2 and {σ̂i}NR

i=3 are the noise eigenvalues under H0 and H1, respec-

tively. Under H1, if the interference-to-noise ratio (INR) is greater than the signal-to-noise ratio

(SNR), σ̂2 is contributed by the signal and the noise; whereas σ̂2 is contributed by the interfer-

ence and the noise provided that the SNR is greater than the INR. Employing this intuition, the
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test statistic—that can flag the impinging RFI—is defined as

T � σ̂2

∑NR
i=3 σ̂i

. (4.7)

For λ being the decision threshold often set as per the desired false alarm rate (FAR), a decision

rule follows as

T
H1

�
H0

λ . (4.8)

Remark 5. Once the trace of the SCM is obtained, (4.7) can be computed via the first two

dominant eigenvalues obtained efficiently using the power method (Golub & Van Loan, 2013,

Chs. 7 and 8).

4.3.3 Equivalent Test Statistic

To derive an equivalent test statistic, we define a projection matrix P̂PP2:NR and a projected SCM

R̂RR
(p)
yy as

P̂PP2:NR = ÛUU2:NRÛUU
+
2:NR

(b)
= ÛUU2:NRÛUU

H
2:NR

(4.9a)

R̂RR
(p)
yy = P̂PP2:NRR̂RRyyP̂PP

H
2:NR

, (4.9b)

where (b) follows from the orthonormal columns of ÛUU . Computing the SVD of R̂RR
(p)
yy ,

R̂RR
(p)
yy = ŨUU Σ̃ΣΣṼVV H

= [ŨUU1 ŨUU2:NR ]Σ̃ΣΣṼVV H
, (4.10)

where ŨUU1 = ŨUU(:,1), ŨUU2:NR = ŨUU(:,2 : NR), and ṼVV = ŨUU . Substituting (4.6) and (4.9a) into (4.9b),

R̂RR
(p)
yy = ÛUU2:NRΣ̂ΣΣ2:NRÛUU

H
2:NR

, (4.11)

where Σ̂ΣΣ2:NR = diag(σ̂2, σ̂3, . . . , σ̂NR). From (4.10) and (4.11), these relations can be concluded:

ŨUU = ÛUU2:NR = ṼVV and Σ̃ΣΣ = Σ̂ΣΣ2:NR . A new projection matrix P̂PP2 can then be computed using
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ŨUU1 = ÛUU2:NR(:,1) = ÛUU(:,2) as

P̂PP2 = ÛUU2:NR(:,1)ÛUU
H
2:NR

(:,1) = ÛUU(:,2)ÛUU
H
(:,2). (4.12)

Realizing that tr(P̂PP2R̂RR
(p)
yy ) = σ̂2 and tr

(
(IIINR− P̂PP2)R̂RR

(p)
yy
)
= ∑NR

i=3 σ̂i, the proposed test statistic can

also be expressed as

T =
tr(P̂PP2R̂RR

(p)
yy )

tr
(
(IIINR− P̂PP2)R̂RR

(p)
yy
) . (4.13)

Considering (ν1,ν2) =
(
2N,2N(NR−2)

)
which are shown, in Appendix 1 (under APPENDIX

IV), to be the DoF of the numerator and denominator of the right-hand side (RHS) of (4.13),

T ∝ Teq =
ν2

ν1

tr(P̂PP2R̂RR
(p)
yy )

tr
(
(IIINR− P̂PP2)R̂RR

(p)
yy
) . (4.14)

Meanwhile, through the derivation of the distribution of Teq, the performance analysis of the

proposed detector is pursued subsequently.

4.4 Performance Analysis

The exact performance analysis of an eigenvalue-based detector is a complex undertaking.

In this regard, the existing investigations resort to the asymptotic analysis of the underlying

eigenvalue-based detectors (Zeng & Liang, 2009b; Bianchi et al., 2011; Kritchman & Nadler,

2009; Nadakuditi & Edelman, 2008) by employing random matrix theory (Couillet & Debbah,

2011). While such analyses intuitively capture the asymptotic performance of the investigated

detectors, it is demonstrated in (Kortun et al., 2012) that their asymptotic threshold differs con-

siderably from the exact value for finite sensors and samples. In (Kortun et al., 2012), mean-

while, the probability density function (PDF) and CDF of the ratio of the largest eigenvalue

to the trace of complex Wishart matrices were derived. Nevertheless, as we are not dealing

with a noise only hypothesis and because we are operating a different test statistic, the exact
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closed-form expressions of (Kortun et al., 2012) cannot be adapted for our detection problem

at hand.

Valid for any sample size N, obtaining exact closed-form expressions pertaining to the PDF and

the CDF of the eigenvalue-based test statistic given by (4.7) is mathematically intractable. For

our underlying hypotheses, specifically, the intractability tends to be significant since the type

of the impinging RFI and its distribution are often unknown. Accordingly, through the deriva-

tion of the PDF of the equivalent test statistic defined in (4.14), performance characterizations—

valid for infinitely large samples—are attempted subsequently.

4.4.1 The Distribution of Teq

For infinitely huge samples, the distribution of Teq is characterized below.

Theorem 6. Suppose (ν1,ν2)=
(
2N,2N(NR−2)

)
; hhh∼C N NR(000, IIINR) and ggg∼C N NR(000, IIINR);

E{s2[k]} = Ps and E{v2[k]} = Pv quantify the transmitted SOI and RFI powers, respectively;

γsnr =

∣∣∣∣HHHsss
∣∣∣∣2

NNRσ2
and γinr =

∣∣∣∣GGGvvv
∣∣∣∣2

NNRσ2
be the SNR and INR, respectively; and P̂PP3:NR = ÛUU(:,3 :

NR)ÛUU
H
(:,3 : NR). For (λ H1

1 ,λ H1
2 ) = 1

σ2 ∑N
k=1

(∥∥P̂PP2(hhhs[k] + gggv[k])
∥∥2
,
∥∥P̂PP3:NR(hhhs[k] + gggv[k])

∥∥2)
and (λ H0

1 ,λ H0
2 ) = 1

σ2 ∑N
k=1

(∥∥P̂PP2hhhs[k]
∥∥2
,
∥∥P̂PP3:NRhhhs[k]

∥∥2)
, the distribution of Teq is characterized

as follows:

• if (γsnr,γinr) = (0,0), lim
N→∞

Teq ∼ Fν1,ν2
;

• if γinr = 0 and γsnr > 0, lim
N→∞

Teq ∼ F ′′ν1,ν2
(λ H0

1 ,λ H0
2 ); or

• if γinr > 0 and γsnr > 0, lim
N→∞

Teq ∼ F ′′ν1,ν2
(λ H1

1 ,λ H1
2 ).

Proof. Please see Appendix 1 under APPENDIX IV.

When infinitely large samples are available, Theorem 6 attests that Teq admits the central F–

distribution whenever no SOI and RFI are received. Under H0 and H1, Teq is characterized

through the noncentral F–distribution with NCPs that, respectively, depend on the SNR, and
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both the SNR and the INR provided that infinitely huge samples are available. If the received

RFI and SOI are very weak, the effect of the NCPs would vanish rendering Teq to admit the

central F–distribution. As highlighted below for different values of N, meanwhile, the PDF of

Teq is assessed analytically and using simulations.
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Figure 4.2 The PDF of Teq: N = 106, NR = 5, σ = 1 W,

(γsnr,γinr) = (0,0), and 105 realizations

Employing a PDF estimation technique highlighted in (Kay, 2006, p. 20-21) and the MATLAB R©

function dubbed fpdf(·, ·, ·) scripted to compute the PDF of the central F–distribution analyti-

cally, the PDF of Teq is depicted in Figs. 4.2 and 4.3. As seen in Fig. 4.2 for N = 106, the central

F–distribution approximates the estimated PDF accurately except for Teq ∈ [0.996,1.006]. As

N is increased to 107, the approximation through the central F–distribution becomes accurate

except for the interval Teq ∈ [0.998,1.002]. Since increasing N is rendering in a better approx-

imation, this is in line with the first case of Theorem 6.
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Figure 4.3 The PDF of Teq: N = 107, NR = 5, σ = 1 W,

(γsnr,γinr) = (0,0), and 105 realizations

4.4.2 Performance Closed-Form Expressions

The probability of RFI detection and the probability of false alarm exhibited by the proposed

detector are characterized beneath.

Proposition 1. For a given realization, let Pd = Pr{T > λ |H1} and Pf = Pr{T > λ |H0}, re-

spectively, define the probability of RFI detection and the probability of false alarm manifested

by the proposed detector. When the preconditions of Theorem 6 are satisfied,

lim
N→∞

Pd = 1−F ′′
(
ν2λ/ν1;ν1,ν2|λ H1

1 ,λ H1
2

)
(4.15)

lim
N→∞

Pf = 1−F ′′
(
ν2λ/ν1;ν1,ν2|λ H0

1 ,λ H0
2

)
. (4.16)

Proof. Please refer to Appendix 2 under APPENDIX IV.
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Proposition 1 offers a generic characterization of the performance of the proposed detector. In

addition, it inspires the underneath lemma which elucidates the performance of the proposed

detector valid for the high SNR and INR regimes.

Lemma 2. Let λgv =
1

σ2 ∑N
k=1 ‖gggv[k]‖2 and λhs =

1
σ2 ∑N

k=1 ‖hhhs[k]‖2. If the proposed detector is

operating in the high SNR and INR regimes, and

• if γsnr >> γinr,

lim
N→∞

Pd = 1−F ′
(
ν2λ/ν1;ν1,ν2|λgv

)
; (4.17)

• if γinr >> γsnr,

lim
N→∞

Pd = 1−F ′
(
ν2λ/ν1;ν1,ν2|λhs

)
. (4.18)

Moreover, when the detector is operating in the high SNR regimes, then we obtain

lim
N→∞

Pf = 1−F
(
ν2λ/ν1;ν1,ν2

)
. (4.19)

Proof. Please refer to Appendix 3 under APPENDIX IV.

Meanwhile, since the function that computes the CDF of the doubly noncentral F–distribution

is unavailable in MATLAB R©, we resort to its approximation via the central F–distribution.

To do so, the noncentral χ2–distributions—that constitute the noncentral F–distribution—are

approximated by the central χ2–distributions that lead to the central F–distribution (Johnson

et al., 1995). Using (Johnson et al., 1995, eq. (30.54)), in this regard,

F ′′ν1,ν2
(λ1,λ2)≈ 1+λ1ν−1

1

1+λ2ν−1
2

Fν ,ν ′ , (4.20)

where ν = (ν1+λ1)
2(ν1+2λ1)

−1 and ν ′= (ν2+λ2)
2(ν2+2λ2)

−1. Using (4.20) and the CDF

relation in (Bertsekas & Tsitsiklis, 2008, p. 206),

F ′′
(
ν2λ/ν1;ν1,ν2|λ H1

1 ,λ H1
2

)≈ F
(
λ H1

2,1;β H1
1 ,β H1

2

)
, (4.21)
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where λ H1
2,1 =

1+λ H1
2 ν−1

2

1+λ H1
1 ν−1

1

(
ν2λ
ν1

)
, β H1

1 = (ν1 +λ H1
1 )2(ν1 +2λ H1

1 )−1, and β H1
2 = (ν2 +λ H1

2 )2(ν2 +

2λ H1
2 )−1. Similarly, adopting the aforementioned approximations also leads to the relation

F ′′
(
ν2λ/ν1;ν1,ν2|λ H0

1 ,λ H0
2

)≈ F
(
λ H0

2,1;β H0
1 ,β H0

2

)
, (4.22)

where λ H0
2,1 =

1+λ H0
2 ν−1

2

1+λ H0
1 ν−1

1

(
ν2λ
ν1

)
, β H0

1 = (ν1 +λ H0
1 )2(ν1 +2λ H0

1 )−1, and β H0
2 = (ν2 +λ H0

2 )2(ν2 +

2λ H0
2 )−1. It is to be noted that (4.21) and (4.22) can be used for an approximated numerical as-

sessment. In addition, (4.20) implies that the approximation through the central F–distribution

becomes more accurate as (λ1,λ2)→ (0,0).

4.5 Simulation Results

Evaluated for a SIMO system, this section reports the simulation results regarding the perfor-

mance of the proposed RFI detector, matched subspace detector (MSD) (Scharf & Friedlander,

1994), and multi-antenna detectors (Huang & Chung, 2013a; Taherpour et al., 2010; Wang

et al., 2010). Unless otherwise mentioned, the conducted simulations employ the parameters

of Table 4.1.

Table 4.1 Simulation parameters

if unmentioned

Parameters Assigned value

NR 5

γsnr 0 dB

Ps 10 W

No. of realizations 105

Without loss of generality and similar to (Ramírez et al., 2010; Getu et al., 2018a), the in-

dependently distributed complex channel gains pertaining to the SOI and RFI—unless stated

differently—are modeled by a Rayleigh fading as in Theorem 6. Unless otherwise mentioned

and without loss of generality, we consider a quadrature phase shift keying (QPSK) modu-

lated SOI and RFI, i.e, s[k] =
√

Ps/2
[
sI

k + jsQ
k

]
and v[k] =

√
Pv/2

[
vI

k + jvQ
k

]
for {sI

k,s
Q
k } ∈

{−1,1}×{−1,1} and {vI
k,v

Q
k } ∈ {−1,1}×{−1,1}.
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The subsequent Monte-Carlo simulations of the proposed detector deploy the test statistic

equated in (4.7) and the decision rule expressed in (4.8). These simulations consider the SNR

and INR definitions stated in Theorem 6. Having adjusted the power of the received SOI and the

received RFI, respectively, as per the SNR and INR definitions stated in Theorem 6, the Monte-

Carlo simulations regarding exhibited Pd—by any considered detector—assume the reception

of H1 per a realization and average over the number of assumed realizations. Along with the

simulation of Pd , the probability of miss-detection (Pm) exhibited by any considered detector is

simulated as Pm = 1−Pd . On the other hand, the simulations concerning the FAR—manifested

by any detector—assumes a per-realization reception of H0, whose SOI component is adjusted

as per the SNR definition stated in Theorem 6, and average over the number of presumed

realizations. Meanwhile, fixed for the detection performance assessment of the considered

detectors, the decision thresholds rendering the desired FARs are obtained via Monte-Carlo

simulations that average over 106 independent realizations under H0. Regarding the proposed

eigenvalue-based RFI detector, hereinafter, performance comparison with MSD; performance

comparison with multi-antenna detectors; validation of the derived closed-form expressions;

and assessment of the manifested FAR and complementary receiver operating characteristics

(CROC) are reported.

4.5.1 Performance Comparison with MSD

To compare the proposed detector and an MSD (Scharf & Friedlander, 1994) which assumes

real-valued signals, we emulate the transmission of a binary phase shift keying (BPSK) mod-

ulated SOI and BPSK modulated RFI over real-valued Rayleigh fading channels, i.e., hhh ∼
NNR(000, IIINR) and ggg ∼ NNR(000, IIINR). With respect to the desired FAR of 0.01, we detect the

presence of RFI using the proposed detector and the MSD derived for a subspace signal detec-

tion in subspace interference and noise of unknown level (Scharf & Friedlander, 1994, Sec.

VIII). For a given realization, the performance of MSD is assessed via the PD expression

given by (Scharf & Friedlander, 1994, eq. (8.10)) and its respective FAR threshold is ob-

tained via the PFA expression, also, equated in (Scharf & Friedlander, 1994, eq. (8.10)). As
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the NCP (Scharf & Friedlander, 1994, eq. (8.7)) that comprises the closed-form detection ex-

pression (Scharf & Friedlander, 1994, eq. (8.10)) varies for every realization, we average the

per-realization detection performance of MSD over 105 realizations. Similarly, the detection

performance of the proposed RFI detector is assessed through Monte-Carlo simulations that

also average over 105 realizations. Whereas for the respective Pm simulations, averaging over

106 realizations is considered.
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Figure 4.4 Pd versus γinr: Pf = 0.01

With respect to the aforementioned simulation settings, Figs. 4.4 and 4.5, respectively, depict

the Pd and Pm exhibited by the proposed RFI detector and MSD. As seen in Fig. 4.4 for γinr ≥ 5

dB, the proposed RFI detector has a comparable detection performance with MSD fed with the

knowledge of HHH and GGG though the proposed detector is a blind one. Concerning Fig. 4.5, even

though it is outperformed—in the low INR regimes—by MSD fed with the knowledge of HHH

and GGG, the proposed blind detector also enjoys a considerably small Pm, especially in the high

INR regimes, manifested even for a sample starved setting as small as N = 50.
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Figure 4.5 Pm versus γinr: Pf = 0.01 and 107 channel realizations

4.5.2 Performance Comparison with Multi-Antenna Detectors

We compare the performance of the proposed eigenvalue detector with multi-antenna detectors

(Huang & Chung, 2013a; Taherpour et al., 2010; Wang et al., 2010) proposed for spectrum

sensing in the context of cognitive radios (Axell et al., 2012). To simulate the RFI detection

performance of these detectors (Huang & Chung, 2013a; Taherpour et al., 2010; Wang et al.,

2010), we first assume the availability of the knowledge of hhh and execute projection orthogonal

to the SOI subspace using a projection matrix PPP = IIINR−hhh(hhhHhhh)−1hhhH . Thereafter, along with

the proposed blind detector, we simulate the F–test based detector (Huang & Chung, 2013a,

eqs. (4) and (5)), blind GLRT (Taherpour et al., 2010, eq. (39)), multi-channel energy de-

tection (MCED) (Wang et al., 2010, eq. (2)), and multi-channel energy detection with noise

uncertainty (MCED-U) (Wang et al., 2010, eq. (3)).

To simulate the detection performance of the F–test based detector (Huang & Chung, 2013a),

the test statistic in (Huang & Chung, 2013a, eq. (5)) is computed via a projection matrix
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Figure 4.6 Pd versus γinr: N = 50 and Pf = 0.01

PPP′ = IIINR−ggg(gggHggg)−1gggH , by also assuming the knowledge of ggg, after projecting orthogonal to

the SOI using PPP. Having projected orthogonal to the SOI subspace, blind GLRT is simulated

via (Taherpour et al., 2010, eq. (39)). Note that such a GLRT statistic was also reported in

(Wang et al., 2010, eq. (13)). After also projecting orthogonal to the SOI subspace, MCED

and MCED-U are, respectively, simulated via (Wang et al., 2010, eq. (2)) and (Wang et al.,

2010, eq. (3)). To simulate the detection performance of MCED-U, we employ a constant noise

uncertainty factor ξnu = 10log10 ηnu which is valid when the observation time is short (Wang

et al., 2010). Following the lead of (Tugnait, 2012), we assume that MCED-U overestimates

σ2 by a factor of uncertainty denoted by ηnu, i.e., σ̂2 = ηnuσ2, and compute its respective

threshold rendering the considered desired FAR. Nevertheless, the detection performance of

MCED-U is simulated using data with the exact noise variance σ2.

Observing at Fig. 4.6, the proposed blind RFI detector has a comparable detection performance

with a GLRT fed with a perfect estimate of the SOI channel for the medium to high INR

regimes. For the small INR regimes, the proposed detector outperforms the F-test detector
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Figure 4.7 Pm versus γinr: N = 50 and Pf = 0.01

(Huang & Chung, 2013a, eqs. (4) and (5)), MCED (Wang et al., 2010, eq. (2)), and MCED-

U (Wang et al., 2010, eq. (3)) with ξnu = 1 dB though the latter detectors are fed with the

knowledge of the SOI channel. Such a performance manifested for a sample starved setting—

as few as N = 50—implicates the applicability of the proposed blind detector for real-time

detection of weak RFI(s) which usually occurs in SatCom and RA.

In order to offer further insight, we simulate the Pm versus γinr performance curves as depicted

in Fig. 4.7. For the small INR regimes, the proposed blind detector manifests a comparable

miss-detection performance with GLRT fed with the knowledge of the SOI channel. As the

strength of the received RFI increases, MCED and MCED-U fed with both the knowledge of

the SOI channel and the noise power—as ED requires the knowledge of the noise power—

outperforms the proposed RFI detector. It is visible in Fig. 4.7 that the performance gains

of MCED and MCED-U are evident with a significantly small Pm for a given INR. Summa-

rizing the observations, however, from practicality and real-time processing perspectives, the
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proposed blind detector is attractive as manifested through its detection and miss-detection

performance for both the small and the high INR regimes.
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Figure 4.8 Pd versus λ : 104 realizations

4.5.3 Validation of the Derived Closed-Form Expressions

Hereinafter, the accuracy of the derived performance closed-form expressions—given by (4.15)

and (4.16)—is assessed. Since there is no any, in its latest edition, MATLAB R© function

that implements the CDF of the doubly noncentral F–distribution, we evaluate (4.15) and

(4.16) numerically using (4.21) and (4.22), respectively. As the NCPs—stated in Theorem

6—characterizing (4.15) and (4.16) depend on RVs that vary per a realization, the numerical

evaluations of (4.15) and (4.16) are, thus, averaged over the considered number of realizations.

With these simulation settings, Figs. 4.8 and 4.9 showcase the accuracy of (4.15); whereas

Figs. 4.10 and 4.11 demonstrate how accurate (4.16) is.
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Figure 4.9 Pd versus λ : 104 realizations

Figs. 4.8 and 4.9 corroborate that the accuracy of (4.15) increases as N gets larger. On the

other hand, Fig. 4.9 implicates that the accuracy of (4.15) also depends on the magnitude of

the INR. Specifically, when the INR increases, it is observed in Fig. 4.8 that the accuracy of

(4.15) gets worse, which is a manifestation of the approximation in (4.20) getting poorer as

(λ H1
1 ,λ H1

2 ) gets larger.

Figs. 4.10 and 4.11 assess the FAR exhibited by the proposed detector and the accuracy of

(4.16). As seen in these plots and in line with Proposition 1, the accuracy of (4.16), with

respect to the Monte-Carlo simulations, increases as N gets larger and larger.

4.5.4 Assessment of the Manifested FAR and CROC

The impact of the number of received signal samples on the manifested FAR is assessed

through Fig. 4.12. As depicted, the probability of false alarm becomes infinitesimally small

as N gets larger. It is also demonstrated that the CFAR constraint is not satisfied in the fi-
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Figure 4.10 Pf versus λ : γsnr =−4 dB and 103 realizations

nite length regime if the threshold is set using asymptotic false alarm probability—like GLRT

(Taherpour et al., 2010; Wang et al., 2010). As originally addressed by (Scharf & Lytle, 1971),

the proposed detector also exhibits difficulties to satisfy the FAR constraint exactly like com-

plex detectors.

At last, the simulation assessments are culminated by the assessment of the CROC exhibited

by the proposed RFI detector. In order to depict the underlying CROC, the Pm versus Pf curves

are depicted for different NR and γinr that comprise Fig. 4.13. As corroborated via Fig. 4.13,

since the increment in INR or NR provides an improvement in an RFI detection and hence a

smaller likelihood of missing the impinging RFI, the CROC curves shift inward with respect

to γinr and NR. In addition, Fig. 4.13 demonstrates the natural trade-off between Pm and Pf .
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Figure 4.11 Pf versus λ : γsnr =−4 dB and 103 realizations

4.6 Conclusions and Outlooks

4.6.1 Conclusions

An eigenvalue-based blind RFI detector is proposed and studied for SIMO systems that may

suffer from RFI. Through the derivation of the distribution of the equivalent test statistic, per-

formance closed-form expressions of the probability of RFI detection and probability of false

alarm are derived for infinitely large samples. Meanwhile, the accuracy of the derived closed-

form expressions is demonstrated through Monte-Carlo simulations. For sample starved set-

tings and medium to large INR regimes, the conducted simulations also corroborate that the

proposed detector exhibits a comparable detection performance with a GLRT detector fed with

the knowledge of the SOI channel, and an MSD fed with the knowledge of the SOI and RFI

channels. Such a performance reveals the attractiveness of the proposed RFI detector for real-

time applications.
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4.6.2 Outlooks

If the values of hhh are known and {s[k],v[k]} are Gaussian RVs, the underlying RFI detection

problem can also be reformulated as the detection of rank-1 signals, which is a special case

of the hypothesis test in (Ramírez et al., 2011, eq. (3)). With respect to (Ramírez et al.,

2011) which considers the detection of rank-R (R ≥ 1) signals with uncalibrated multiple

antennas, the proposed eigenvalue detector can also be extended to the detection of rank-R

(R > 1) RFI(s). To practically realize such an extension, the channel order of the SOI and

the RFI(s) are required and hence source enumeration techniques (Lu & Zoubir, 2015; Sto-

ica & Selen, 2004; Nadakuditi & Edelman, 2008) would be, preliminarily, needed. In addition

to the aforementioned extension, the extension of the proposed RFI detector to the multiple-

input multiple-output (MIMO) and massive MIMO systems (Müller et al., 2014; Yin et al.,

2016)—that might also consider a rank-R (R > 1) RFI(s)—is worth addressing. Moreover,

accounting for the inevitable calibration uncertainties of the NR antenna frontends similar to

(Tugnait, 2012; Ramírez et al., 2011; Leshem & van der Veen, 2001), consideration of inde-
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Figure 4.13 Complementary ROC: N = 100

pendent and non-identically distributed (i.ni.d.) noise samples is also worth investigating for

SIMO, MIMO, and massive MIMO systems.
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“The function of education is to teach one to think intensively and to think critically.

Intelligence plus character - that is the goal of true education.”—Martin Luther King, Jr.

Abstract—Radio frequency interference (RFI) is affecting various radio frequency operat-

ing systems. In practical wireless channels, RFI can be received through a multi-path fading

channel. In such a scenario, robust detection of RFI can be challenging since the signal of

interest can also be received through a multi-path fading channel. Hence, while introducing a

tensor-based hypothesis testing framework, this paper proposes matrix- and tensor-based multi-

antenna RFI detection techniques for an RFI that might be received through a multi-path fading

channel. To characterize the performance of the proposed detectors, performance analyses that

led to insightful asymptotic characterizations have been pursued. Simulations assess the per-

formance of the proposed detectors and validate the derived asymptotic characterizations.

Index Terms—RFI detection, matrix-based detector, tensor-based detector, tensor-based hy-

pothesis testing.
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5.1 Introduction

5.1.1 Related Works

Radio frequency interference (RFI) is caused by intentional interferers—such as jammers,

spoofers, and meaconers—and unintentional interferers—for instance, nearby transmitters and

harmonics manifesting out-of-band emissions. Because of these interferers, RFI is becoming

common in many radio frequency (RF) operating systems as diverse as microwave radiometry,

radio astronomy, satellite communications, ultra-wideband communications, radar, and cogni-

tive radios (van der Tol & van der Veen, 2005; Getu et al., 2015b; Misra et al., 2009; Borio

et al., 2008; Getu et al., 2017; Ciuonzo et al., 2016a; Bandiera & Orlando, 2009; Getu et al.,

2016; Boulogeorgos et al., 2016b). To detect a widely occurring RFI that is also affecting 93%

of the satellite industry (Newtec and IRG, Sep. 2013), the state-of-the-art encompasses sev-

eral RFI detection techniques: for example, statistical (Misra et al., 2009; Ruf et al., 2006; De

Roo & Misra, 2010; Balaei & Dempster, 2009; Getu et al., 2018c,b) and transformed domain-

based (Dovis et al., 2012; Borio et al., 2008) techniques.

Despite the considered assumptions regarding the type of the signal of interest (SOI), the type

of RFI, the SOI channel, and/or the RFI channel, the multi-antenna RFI detection problem

can be posed as an adaptive radar detection problem tackled in (Ciuonzo et al., 2016a,b, 2017;

Aubry et al., 2014); the blind adaptation problems of (Scharf & McCloud, 2002) or the matched

subspace detection problems of (Scharf & Friedlander, 1994); and the source enumeration

problem of (Lu & Zoubir, 2015). However, an RFI can be emitted by different sources at

different times and the assumption on the type of RFI cannot render a robust RFI detection. In

addition, as transmitted signals usually traverse through a multi-path fading channel in practice

(Simon & Alouini, 2005; Proakis & Salehi, 2008), RFI detectors can be sensitive to the errors

pertaining to the inevitably inaccurate estimation of the SOI and RFI channels. As a result,

further research toward a robust RFI detection would be of importance.
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5.1.2 Motivation

Despite the fact that an RFI can traverse through a multi-path fading channel, robust detection

techniques that are specifically designed for such an RFI has not been addressed to date. In such

a setting, RFI detection can be challenging, as both the RFI channel and the SOI channel can be

frequency selective which is a manifestation of a multi-path fading channel often encountered

in practice (Simon & Alouini, 2005; Proakis & Salehi, 2008).

Concerning the detection of an RFI received through a multi-path fading channel, one of the

viable research strategies would be the robust estimation of the subspace spanned by the re-

ceived RFI. In this regard, the RFI detection problem boils down to the accurate estimation

of the RFI parameter such as RFI subspace. Regarding a parameter estimation such as the

RFI subspace estimation, the recent advancements in tensor-based signal processing (Haardt

et al., 2008; Roemer & Haardt, 2010; Roemer et al., 2014; Getu et al., 2017, 2018d) have

revealed that tensor-based parameter estimators outperform their matrix-based counterparts.

In line with these advancements, tensors have been investigated for several applications such

as parameter/channel estimation (Haardt et al., 2008; Song et al., 2010a; Roemer & Haardt,

2010; Roemer et al., 2014; Getu et al., 2015a), single- and multi-interferer RFI excision (Getu

et al., 2015b, 2016, 2017, 2018d), source enumeration (da Costa et al., 2011), blind recovery

of signals and blind identification of mixtures (Lim & Comon, 2014), brain-source imaging

(Becker et al., 2014, 2015), and time-varying graph topology identification as well as tracking

of dynamic networks (Shen et al., 2017; Giannakis et al., 2018). In spite of such broad appli-

cations, improved parameter estimation, and significant advancements in tensor-based signal

processing, it is to be noted that tensors have not been employed for the detection of an RFI(s).

5.1.3 Contributions

Regarding the aforementioned motivation, this paper introduces a tensor-based hypothesis test-

ing framework which can find several applications in communication systems and signal pro-

cessing. This framework is introduced with respect to a tensor-based multi-antenna detection—
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along with the matrix-based detection—of RFI received over a multi-path fading channel. In a

nutshell, the contributions of this paper are itemized beneath.

• We introduce a tensor-based hypothesis testing framework whose application is tailored

for the multi-antenna detection of RFI.

• For a reception through a multi-path fading channel and single-input multiple-output

(SIMO) systems, we propose a matrix-based RFI detector (MB-RD) and a tensor-based

RFI detector (TB-RD).

• The asymptotic performance of the proposed detectors is analytically characterized and

assessed via Monte-Carlo simulations.

Following this introduction, Sec. 5.2 describes the considered system model. Sec. 5.3 presents

the matrix-based detection and the MB-RD algorithm. Sec. 5.4 details the tensor-based detec-

tion which leads to the TB-RD algorithm. Sec. 5.5 follows with the performance analyses of

TB-RD along with its performance comparison with MB-RD. Sec. 5.6 reports the correspond-

ing simulation results and conclusions are drawn in Sec. 5.7.

5.1.4 Notation

Scalars, vectors, matrices, and tensors are denoted by italic letters, lower-case boldface letters,

upper-case boldface letters, and boldface calligraphic letters, respectively; CNRW , CNRW×r, and

H
NRW×NRW represent the sets of NRW–dimensional vectors of complex numbers, of NRW × r

complex matrices, and of NRW ×NRW Hermitian matrices, respectively; ∼, lim, ∝, �, AAA(:, i),

and AAA(:, i : j) mean distributed as, limit, statistically equivalent, equal by definition, the i-th

column of AAA, and the columns of AAA between its i-th and j-th columns including its i-th and

j-th columns, respectively; 000M×N , diag(·), (·)T , (·)H , and (·)+ stand for an M×N zero ma-

trix, diagonal (block diagonal) matrix, transpose, Hermitian, and the Moore-Penrose inverse,

respectively; →, min(·, ·), max(·, ·), Pr{·}, tr(·), and C N NRW (μμμ,ΣΣΣ) denote approaches to,

minimum, maximum, the probability of, trace, and the circularly symmetric complex multi-

variate normal distribution with mean μμμ ∈ C
NRW×1 and covariance matrix ΣΣΣ ∈ H

NRW×NRW —
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W ≥ 1 (NRW ≥ 2), respectively; and >>, (·)−1,⊗, and IIIW
(
IIINRW

)
implicate much greater than,

inverse, Kronecker product, and a W ×W
(
NRW ×NRW

)
identity matrix, respectively.

The tensor Y ∈ C
I1×I2×...×IR is an R-way array of size Ir along its r-th mode. The r-mode

unfolding of Y is denoted by [Y ](r) ∈ C
Ir×Ir+1...IRI1...Ir−1 and defined to be consistent with

(Haardt et al., 2008). The r-mode product of Y and UUUr ∈ C
Jr×Ir is denoted as X = Y ×r

UUUr and defined through [X ](r) = UUUr[Y ](r) (Haardt et al., 2008; Getu et al., 2017). The r-

mode product of Y and a tensor C ∈ C
J1×J2×...×Jr×...×JR is denoted by and defined through

(Vasilescu & Terzopoulos, 2007; Getu et al., 2017)

D = Y ×r C ⇔ [D ](r) = [C ]r[Y ](r), (5.1)

where D ∈ C
I1×...×Ir−1×Jr×Ir+1...×IR and Ir = J1J2 . . .Jr−1Jr+1 . . .JR. Applying (5.1) recursively,

the r-mode product among three tensors Y , C , and A ∈ C
K1×K2×...×Kr×...×KR is denoted by

and defined through

D = Y ×r C ×r A ⇔ [D ](r) = [A ]r[C ]r[Y ](r), (5.2)

where Jr =K1K2 . . .Kr−1Kr+1 . . .KR, Ir = J1J2 . . .Jr−1Jr+1 . . .JR, and D ∈C
I1×...×Ir−1×Kr×Ir+1...×IR .

For the set of N subsequent time snapshots in a measurement tensor Y ∈ C
I1×I2×...×IR×N , the

sample covariance tensor (SCT) R̂yy ∈ C
I1×I2×...×IR×I1I2...IR is defined as

R̂yy �
1

N

[
Y ×R+1 Y H

]
, (5.3)

where Y H is the Hermitian of a tensor Y defined with respect to (w.r.t.) its (R+ 1)-mode

unfolding as
[
Y H]

(R+1)
=
(
[Y ](R+1)

)H
. At last, the addition and subtraction between two

comformable tensors X and Y are denoted by and defined through

X ±Y ⇔ [X ±Y ](r) = [X ](r)± [Y ](r). (5.4)
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Figure 5.1 A baseband schematic depicting the l-th multi-path component of a

SIMO system suffering from RFI

5.2 System Model

Consider a SIMO system over a multi-path fading channel that may also suffer from an RFI as

depicted in Fig. 5.1. An SOI is transmitted by a single-antenna transmitter whose traversing

channel—w.r.t. the NR receive antennas—is modeled by a finite-duration impulse response

filter (FIR) with L+1 taps. An RFI emitted by a nearby single-antenna transmitter that might

have also been received by the NR antennas is considered. The corresponding RFI channel is

modeled by an FIR filter with L1 + 1 taps. Meanwhile, we need to detect if an RFI impinges

on the SIMO reception of the SOI.

Concerning the aforementioned scenario, the RFI detection problem can be posed as a binary

hypothesis test given by

yyy[k] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L

∑
l=0

hhhls[k− l]+
L1

∑
l=0

ggglv[k− l]+ zzz[k] : H1

L

∑
l=0

hhhls[k− l]+ zzz[k] : H0,

(5.5)
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where H0 and H1 are hypotheses on the RFI absence and presence, respectively; yyy[k] ∈ C
NR

is the k-th sample multi-antenna received signal vector; s[k] is the k-th unknown and deter-

ministic symbol of the SOI; v[k] is the k-th unknown and deterministic symbol of the RFI;

hhhl = [h1l,h2l, . . . ,hNRl]
T ∈ C

NR is the SOI channel gain vector for the l-th multi-path com-

ponent; gggl = [g1l,g2l, . . . ,gNRl]
T ∈ C

NR is the RFI channel gain vector for the l-th multi-path

component; and zzz[k]∼C N NR(000,σ2IIINR) is a zero mean circularly symmetric complex additive

white Gaussian noise (AWGN) for σ2 being the unknown noise power. Moreover, we assume

that hhhl , gggl , and zzz[k] are independent with each other.

5.3 Matrix-Based RFI Detection

5.3.1 Problem Formulation

Adopting the preliminary processing of (Getu et al., 2015b) and (Getu et al., 2017), we stack

the observations of the NR antennas and W data windows into a highly structured vector w.r.t.

the m-th short-term interval (STI). Doing so by employing (5.5),

yyym =

⎧⎪⎨
⎪⎩

HHHsssm +GGGvvvm + zzzm : H1

HHHsssm + zzzm : H0,

(5.6)

where yyym ∈C
NRW , sssm =

[
s[mW ],s[mW−1], . . . ,s[mW−W−L+1]

]T ∈C
(W+L), vvvm =

[
v[mW ],

v[mW −1], . . . ,v[mW −W −L1+1]
]T ∈C

(W+L1), HHH ∈C
NRW×(W+L) is the SOI filtering matrix

defined through (Song et al., 2010a, eqs. (3) and (5)), and zzzm ∼ C N NRW (000,σ2IIINRW ) is the

stacked multi-antenna noise vector. Moreover, GGG ∈ C
NRW×(W+L1) is the RFI filtering matrix

structured as

GGG =
[
GGGT

1 ,GGG
T
2 , . . . ,GGG

T
NR

]T
, (5.7)
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where GGG j ∈ C
W×(W+L1) is a banded Toeplitz matrix, made of the j-th antenna’s RFI impulse

response ggg j
�
=
[
g j0, . . . ,g jL1

]T
, given by

GGG j =

⎡
⎢⎢⎢⎢⎢⎢⎣

g j0 . . . g jL1
0 . . . . . . 0

0 g j0 . . . g jL1
0 . . . 0

...
...

...
...

...
...

...

0 . . . . . . 0 g j0 . . . g jL1

⎤
⎥⎥⎥⎥⎥⎥⎦ . (5.8)

The horizontal concatenation of N STIs leads to a binary hypothesis test given by

YYY =

⎧⎪⎨
⎪⎩

HHHSSS+GGGVVV +ZZZ : H1

HHHSSS+ZZZ : H0,

(5.9)

where YYY = [yyy1,yyy2, . . . ,yyyN ] ∈ C
NRW×N , SSS = [sss1,sss2, . . . ,sssN ] ∈ C

(W+L)×N , VVV = [vvv1,vvv2, . . . ,vvvN ] ∈
C
(W+L1)×N , and ZZZ = [zzz1,zzz2, . . . ,zzzN ] ∈C

NRW×N . Based on the hypothesis testing stated through

(5.9), the proposed MB-RD is discussed beneath.

5.3.2 Proposed Detection

Using (5.6), the sample covariance matrix (SCM) is computed as

R̂RRyy =
1

N

N

∑
m=1

yyymyyyH
m =

1

N
YYYYYY H ∈H

NRW×NRW . (5.10)

In order to proceed further, we consider these assumptions: i) the SCM has full rank, i.e., N ≥
max(W +L,W +L1); (ii) HHH and GGG have full column rank, i.e., NRW ≥ max(W +L,W +L1);

and (iii) the window length is greater than both the SOI and RFI channel orders, i.e., W >

max(L,L1). Having employed these assumptions, MB-RD comprises the signal processing

described subsequently.
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First, the singular value decomposition (SVD) of YYY is computed as

YYY = ŨUU Σ̃ΣΣṼVV H
, (5.11)

where r =W +L and Σ̃ΣΣ = diag(Σ̃ΣΣ1:r, Σ̃ΣΣr+1:NRW ) for Σ̃ΣΣ1:r = diag(σ̃1, σ̃2, . . . , σ̃r) and Σ̃ΣΣr+1:NRW =

diag(σ̃r+1, σ̃r+2, . . . , σ̃NRW ). Using (5.11), the SVD of the SCM—equated as R̂RRyy = ÛUU Σ̂ΣΣV̂VV
H

—is

expressed as

R̂RRyy = ŨUU
(

Σ̃ΣΣ2

N

)
ŨUUH

=

ÛUU︷ ︸︸ ︷
[ÛUU1:r ÛUUr+1:NRW ] Σ̂ΣΣV̂VV

H
, (5.12)

where ÛUU = ŨUU = V̂VV , Σ̂ΣΣ= Σ̃ΣΣ2
/N, ÛUU1:r = ÛUU(:,1 : r)∈C

NRW×r and ÛUUr+1:NRW = ÛUU(:,r+1 : NRW )∈
C

NRW×(NRW−r) are the subspaces spanned by the eigenvectors corresponding to the largest r

eigenvalues and the smallest NRW − r eigenvalues, respectively, and Σ̂ΣΣ = diag(Σ̂ΣΣ1:r, Σ̂ΣΣr+1:NRW )

for Σ̂ΣΣ1:r = diag(σ̂1, σ̂2, . . . , σ̂r), Σ̂ΣΣr+1:NRW = diag(σ̂r+1, σ̂r+2, . . . , σ̂NRW ), and σ̂1 > σ̂2 > .. . >

σ̂NRW . It shall be noted that YYY and R̂RRyy span identical column space.

A projection matrix P̂PPnd which projects the received signal vector orthogonally onto the sub-

space spanned by the singular vectors corresponding to the r largest singular values is then

computed from ÛUU1:r as

P̂PPnd = IIINRW −ÛUU1:rÛUU
+
1:r = ÛUUr+1:NRWÛUU

+
r+1:NRW . (5.13)

As ÛUU1:r offers orthonormal columns, ÛUU
H
1:rÛUU1:r = IIIr and hence ÛUU

+
1:r = (ÛUU

H
1:rÛUU1:r)

−1ÛUU
H
1:r = ÛUU

H
1:r.

Thus, P̂PPnd = IIINRW − ÛUU1:rÛUU
H
1:r can be used instead for the sake of low computational burden.

Using (5.13), the SCM projected orthogonal onto the subspace spanned by the singular vectors

corresponding to the r largest singular values is obtained as

R̂RR
(p)
yy =

1

N

N

∑
m=1

P̂PPndyyym(P̂PPndyyym)
H = P̂PPndR̂RRyyP̂PP

H
nd. (5.14)
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Computing the SVD of (5.14),

R̂RR
(p)
yy = ˜̂UUU ˜̂ΣΣΣ ˜̂VVV H = [ ˜̂UUU1:r1

˜̂UUUr1+1:NRW ] ˜̂ΣΣΣ ˜̂VVV H , (5.15)

where r1 =W +L1, ˜̂UUU1:r1
= ˜̂UUU(:,1 : r1)∈C

NRW×r1 is the subspace spanned by the singular vec-

tors corresponding to the largest r1 singular values of R̂RR
(p)
yy , ˜̂UUUr1+1:NRW = ˜̂UUU(:,r1+1 : NRW ), and

˜̂ΣΣΣ= diag( ˜̂ΣΣΣ1:r1
, ˜̂ΣΣΣr1+1:NRW ) for

˜̂ΣΣΣ1:r1
= diag( ˜̂σ1, ˜̂σ2, . . . , ˜̂σr1

), ˜̂ΣΣΣr1+1:NRW = diag( ˜̂σr1+1, ˜̂σr1+2, . . . ,

˜̂σNRW ), and ˜̂σ1 > ˜̂σ2 > .. . > ˜̂σNRW . Using ˜̂UUU1:r1
, a projection matrix P̂PPd is obtained as

P̂PPd = ˜̂UUU1:r1

˜̂UUU+
1:r1

= ˜̂UUU1:r1

˜̂UUUH
1:r1

. (5.16)

Having performed the aforementioned computations, it is now time to define the MB-RD test

statistic which is able to discriminate the RFI presence instance from the RFI absence instance.

To motivate the MB-RD test statistic, it shall be realized that (5.15) comprises a subspace

spanned by the non-dominant NRW − r singular vectors computed using (5.12). Concerning

this subspace, projection onto the subspace spanned by the r1 dominant singular vectors is

performed via (5.16). Employing (5.14) and (5.16), the MB-RD test statistic is formulated as

T MB � ν2

ν1

tr
(
P̂PPdR̂RR

(p)
yy
)

tr
(
(IIINRW − P̂PPd)R̂RR

(p)
yy
) , (5.17)

where
(
ν1,ν2

)
=
(
2Nr1,2N(NRW − r1)

)
are the degrees of freedom of the numerator and de-

nominator, respectively. By using (5.17), a decision rule is then formulated as

T MB
H1

�
H0

λ , (5.18)

where λ is a decision threshold. Whenever T MB > λ , H1 is detected, as also implied by the

linearity between the received signal samples and the joint CSI of the SOI and RFI. Otherwise,

H0 is detected. Meanwhile, MB-RD algorithm is summarized in Algorithm 5.1.
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Algorithm 5.1 MB-RD Algorithm

Input:
{

yyym
}N

m=1
, λ , r, r1, ν1, and ν2

Output: H1 or H0

1 Compute R̂RRyy and its SVD using (5.10) and (5.12)

2 Compute P̂PPnd using (5.13)

3 Compute R̂RR
(p)
yy and its SVD using (5.14) and (5.15)

4 Compute P̂PPd using (5.16)

5 Compute T MB using (5.17)

6 if T MB > λ , detect H1

7 else, detect H0

5.3.3 Equivalent Test Statistic

While recalling the Hermitianness and positive semi-definiteness of the SCM, i.e., ÛUU = V̂VV ,

deploying (5.12) and (5.13) in (5.14)

R̂RR
(p)
yy = ÛUUr+1:NRW Σ̂ΣΣr+1:NRWÛUU

H
r+1:NRW . (5.19)

From the positive semi-definiteness and Hermitianness of R̂RR
(p)
yy , ˜̂UUU = ˜̂VVV . Thus, (5.15) leads to

R̂RR
(p)
yy = [ ˜̂UUU1:r1

˜̂UUUr1+1:NRW ] ˜̂ΣΣΣ[ ˜̂UUU1:r1

˜̂UUUr1+1:NRW ]H . (5.20)

Equating (5.19) and (5.20),

˜̂UUU1:r1
= ÛUUr+1:NRW (:,1 : r1) (5.21a)

˜̂ΣΣΣ = diag
( ˜̂ΣΣΣ1:r1

, ˜̂ΣΣΣr1+1:NRW
)
= Σ̂ΣΣr+1:NRW (5.21b)

˜̂UUUr1+1:NRW = ÛUUr+1:NRW (:,r1 +1 : d), (5.21c)

where d = NRW − r. From (5.21c), an additional assumption can be inferred, i.e., NRW − r ≥
r1 +1 or equivalently, NRW ≥ r+ r1 +1 = 2W +L+L1 +1.
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To continue, substituting (5.21a) into (5.16),

P̂PPd = ÛUUr+1:NRW (:,1 : r1)ÛUU
H
r+1:NRW (:,1 : r1). (5.22)

While deploying (5.21a)-(5.21c), substituting (5.20) and (5.22) into (5.17) leads to the equiva-

lence in (5.23).

T MB ∝
tr
(

ÛUUr+1:NRW (:,1 : r1)Σ̂ΣΣr+1:NRW (1 : r1,1 : r1)ÛUU
H
r+1:NRW (:,1 : r1)

)
tr
(

ÛUUr+1:NRW (:,r1 +1 : d)Σ̂ΣΣr+1:NRW (r1 +1 : d,r1 +1 : d)ÛUU
H
r+1:NRW (:,r1 +1 : d)

) .
(5.23)

Applying the property of trace and the orthonormal property of ÛUU , (5.23) simplifies to

T MB ∝
∑r+r1

i=r+1 σ̂i

∑NRW
i=r+r1+1 σ̂i

. (5.24)

To minimize computational complexity, it is worth noting that MB-RD can be implemented

through (5.24).

5.4 Tensor-Based RFI Detection

5.4.1 Problem Formulation

To pursue a tensor-based formulation of the problem in (5.9), we assume that the received

multi-antenna signal samples are arranged in a tensor Y diagrammed in Fig. 5.2—similar to

the arrangement of (Getu et al., 2015b). To continue, should
[
Y
]T
(3)

be equal to YYY expressed

in (5.9), the multi-linear equivalent of (5.9) is given by

Y =

⎧⎪⎨
⎪⎩

H ×3 SSST +G ×3 VVV T +Z : H1

H ×3 SSST +Z : H0,

(5.25)
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where H , G , and Z are the SOI filtering tensor, the RFI filtering tensor, and the noise tensor,

respectively. Note that H and G are, respectively, constructed by aligning the banded Toeplitz

matrices
{

HHH j
}NR

j=1
and

{
GGG j

}NR
j=1

as in Fig. 5.2, i.e.,
[
H

]T
(3)

= HHH and
[
G
]T
(3)

= GGG.

Y

W N

NR

=

HHH1

HHH2
.
.
.

HHHNR

W
W +L

NR

N

W +L

H

SSST

.

.

.

+

GGG1

GGG2
.
.
.

GGGNR

W
W +L1

G
NR

N

W +L1

FFFT

.

.

.

+

W N

NR

Z

Figure 5.2 A multi-linear formulation from (5.9) under H1 (Getu et al., 2015b)

In the subsequent algorithm development, we adopted the assumptions of Sec. 5.3.2 and Sec.

5.3.3. To define an equivalent tensor for the matrix YYY p = P̂PPndYYY , we define a projection tensor

P̂
[nd]

via its 3-mode unfolding as

[
P̂

[nd]
]T

(3)

= P̂PPnd. (5.26)

Using P̂
[nd]

, a tensor whose 3-mode unfolding transpose spans the subspace spanned by the

singular vectors that correspond to the non-largest NRW − r singular values—computed in

(5.12)—is defined as

Y p = P̂
[nd]×3 Y . (5.27)

Employing the definition in (5.1) and the equality in (5.26),

[
Y p

]T

(3)

=

[
P̂

[nd]
]T

(3)

[
Y

]T

(3)

=

[
P̂

[nd]
]T

(3)

YYY = P̂PPndYYY . (5.28)
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Deploying (5.27), the respective SCT is computed as

R̂
(p)
yy =

1

N

[
Y p×3 Y H

p

]
. (5.29)

To obtain the subspace spanned by the eigenvectors corresponding to the dominant eigenvalues

of
[
Y p

]T
(3)

which is also spanned by the eigenvectors corresponding to the dominant eigenval-

ues of
[
R̂

(p)
yy
]T
(3)

, the truncated higher-order SVD (HOSVD) of (5.27) is given by (Roemer

et al., 2014; Getu et al., 2017)

Y p ≈ ˜̂S [1:r1]×1
˜̂UUU [1:r1]

1 ×2
˜̂UUU [1:r1]

2 ×3
˜̂UUU [1:r1]

3 , (5.30)

where ˜̂S [1:r1] ∈C
r̃1×r̃2×r̃3 is the truncated core tensor—r̃1 =min

(
NR, L1+1

)
, r̃2 =min(W, NNR),

and r̃3 = min
(
N, r1

)
—and ˜̂UUU [1:r1]

n ∈C
f̃n×r̃n is a unitary matrix of the dominant singular vectors

of [Y p](n), n ∈ {1,2,3} and [ f̃1, f̃2, f̃3] = [NR,W,N] (Getu et al., 2017, 2015b). Thus, since

N ≥ r1, r̃2 =W and r̃3 = r1.

The respective tensor-based (TB) estimator for the subspace spanned by the r1 singular vectors

corresponding to the r1 largest singular values—obtained in (5.15)—is defined as (Roemer

et al., 2014, eq. (17))

˜̂U [1:r1] = ˜̂S [1:r1]×1
˜̂UUU [1:r1]

1 ×2
˜̂UUU [1:r1]

2 ×3
˜̃ΣΣΣ−1

1:r1
, (5.31)

where ˜̃ΣΣΣ1:r1
= Σ̃ΣΣr+1:NRW (1 : r1,1 : r1) is a normalization factor which has no impact on the

subspace estimation accuracy (Roemer et al., 2014). Underneath, being the result of the sim-

plification of (5.31), the relationship between TB and matrix-based (MB) subspace estimators

is stated.

Proposition 2. For ˜̂TTT c =
˜̂UUU [1:r1]

c
˜̂UUU [1:r1]

H

c and c ∈ {
1,2

}
, the TB and MB subspace estimators

are related as [
˜̂U [1:r1]

]T

(3)

=
( ˜̂TTT 1⊗ ˜̂TTT 2

) ˜̂UUU1:r1
. (5.32)
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Proof. Following the lines of (Roemer et al., 2014, Appendix A), Proposition 2 can be proved

for R = 2 by replacing
[
Û

[s]
;
[
X

]T
(3)

; Σ̂ΣΣs

]
with

[
˜̂U [1:r1];

[
Y p

]T
(3)

; ˜̃ΣΣΣ1:r1

]
. A similar proof is

also reported in (Getu et al., 2015a, Appendix A). �

5.4.2 Proposed Detection

Note that TB and MB subspace estimators offer identical performance for NR≤ (L1+1). When

NR > (L1 + 1), the TB estimator stated via (5.32) offers an improved estimate for the noise

is better filtered in its three modes rendering an improved noise suppression, unlike the MB

subspace estimator (Haardt et al., 2008, Appendix I). This better filtering is achieved through

the Kronecker projection matrix— ˜̂TTT 1⊗ ˜̂TTT 2—which would characterize a tensor ˆ̃P1,2 as

[
˜̂P1,2

]T

(3)

= ˜̂TTT 1⊗ ˜̂TTT 2 =
˜̂TTT 1⊗ IIIW , (5.33)

where ˜̂TTT 2 = ˜̂UUU [1:r1]
2

˜̂UUU [1:r1]
H

2 = IIIW for r̃2 = W all the time. To leverage the aforementioned

performance enhancement, we define a projection tensor ˜̂P [d] ∈ C
NR×W×NRW defined via

[
˜̂P [d]

]T

(3)

=
( ˜̂TTT 1⊗ IIIW

) ˜̂UUU1:r1

˜̂UUUH
1:r1

. (5.34)

We are now ready to define the TB-RD test statistic. Using (5.29) and (5.34), the TB-RD test

statistic is defined as

T TB � ν2

ν1

tr
([

˜̂P [d]×3 R̂
(p)
yy

]T

(3)

)
tr
([(

˜̂P1,2− ˜̂P [d]
)
×3 R̂

(p)
yy

]T

(3)

) . (5.35)

The corresponding decision rule is then given by

T TB
H1

�
H0

λ . (5.36)
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Regarding (5.36), TB-RD decides in favor of H1 provided that T TB > λ . Otherwise, it detects

H0. Meanwhile, TB-RD algorithm is summarized in Algorithm 5.2.

Algorithm 5.2 TB-RD Algorithm

Input:
{

yyym
}N

m=1
, λ , r, r1, ν1, and ν2

Output: H1 or H0

1 Compute R̂
(p)
yy using (5.28) and (5.29)

2 Compute ˜̂P1,2 using (5.33)

3 Compute ˜̂P [d] using (5.34)

4 Compute T TB using (5.35)

5 if T TB > λ , detect H1

6 else, detect H0

In order to get further intuition about TB-RD, (5.35) is simplified and its result is stated in the

underneath lemma.

Lemma 3. The TB-RD statistic given by (5.35) simplifies to (5.37) and (5.38).

T TB =
ν2

ν1

tr
([ ˜̂P [d]]T

(3)
R̂RR
(p)
yy

)
tr
(([ ˜̂P1,2

]T
(3)
− [ ˜̂P [d]]T

(3)

)
R̂RR
(p)
yy

) . (5.37)

T TB ∝
tr
(
( ˜̂TTT 1⊗ IIIW )ÛUUr+1:NRW (:,1 : r1)Σ̂ΣΣr+1:NRW (1 : r1,1 : r1)ÛUU

H
r+1:NRW (:,1 : r1)

)
tr
(
( ˜̂TTT 1⊗ IIIW )ÛUUr+1:NRW (:,r1 +1 : d)Σ̂ΣΣr+1:NRW (r1 +1 : d,r1 +1 : d)ÛUU

H
r+1:NRW (:,r1 +1 : d)

) .
(5.38)

Proof. Please refer to Appendix 1 under APPENDIX V.

Note that (5.38) can be deployed to implement the low-complexity version of TB-RD.
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5.5 Performance Analyses

In this section, the performance analyses of TB-RD and MB-RD are pursued. As the per-

formance of TB-RD and MB-RD, respectively, depends solely on (5.35) and (5.17), the re-

spective distributions are needed so as to derive the exact performance expressions. However,

such distributions tend to be mathematically intractable, especially for the test statistics ac-

commodating an impinging RFI with unknown distribution and highly time-variant channel.

To overcome such a possible intractability, we analyze the probability of RFI detection exhib-

ited by TB-RD and MB-RD for high signal-to-noise ratio (SNR) and interference-to-noise ratio

(INR) regimes. In other words, the corresponding detection performance is analyzed when the

perturbations get infinitesimally small. Moreover, the detection performance of TB-RD and

MB-RD is analytically compared for different scenarios.

5.5.1 Performance Analyses for the High SNR and INR Regimes

The high SNR and INR regimes are the manifestations of infinitesimally small perturbations.

For such perturbations, the first-order perturbation analysis is often a tool which is deployed to

assess the asymptotic performance of subspace-based algorithms (Ciuonzo et al., 2015; Roe-

mer et al., 2014; Liu et al., 2008). As TB-RD and MB-RD are also subspace-based algorithms,

the first-order perturbation analysis can also be employed so as to characterize their asymptotic

performance, especially for the high SNR and INR regimes. In the subsequent analyses, to

continue, quantization error is neglected so as to facilitate mathematical tractability.

To highlight the first-order perturbation analysis, we begin with the noiseless version ỸYY =[
ỹyy1, ỹyy2, . . . , ỹyyN

]
whose SVD is computed as

ỸYY =UUUΣΣΣVVV H , (5.39)

where UUU = [UUU1:r̃ UUUr̃+1:NRW ], for r̃ = r+ r1 = 2W +L+L1, UUU1:r̃ = UUU(:,1 : r̃) ∈ C
NRW×r̃ de-

notes the true subspace jointly spanned by the SOI and the RFI (if any), UUUr̃+1:NRW =UUU(:, r̃+1 :

NRW ) ∈ C
NRW×(NRW−r̃) represents the true noise subspace, and ΣΣΣ = diag(ΣΣΣ1:r,ΣΣΣr+1:NRW ) for
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ΣΣΣ1:r = diag(σ1,σ2, . . . ,σr), ΣΣΣr+1:NRW = diag(σr+1,σr+2, . . . ,σr̃,0,0, . . . ,0), and σ1 ≥ σ2 ≥
. . . ≥ σr̃. Note that UUU1:r = UUU(:,1 : r) and UUUr+1:NRW = UUU(:,r + 1 : NRW ) are the true sub-

space spanned by the r strongest signal and the true subspace jointly spanned by the remaining

signals and noise, respectively. When an AWGN contaminates each ỹyyk, YYY is decomposed as in

(5.11) for ŨUU = [ŨUU1:r̃ ŨUUr̃+1:NRW ] = [ÛUU1:r̃ ÛUUr̃+1:NRW ] and the corresponding parameters in (5.39)

are replaced by their respective estimates.

Comparing (5.39) and (5.11) via (Ciuonzo et al., 2015, eqs. (18) and (20)) and noting that

ŨUU = ÛUU ,

ÛUU1:r̃ =UUU1:r̃ +ΔUUU1:r̃ (5.40a)

ÛUUr̃+1:NRW =UUUr̃+1:NRW +ΔUUUr̃+1:NRW , (5.40b)

where ΔUUU1:r̃ =UUUr̃+1:NRWUUUH
r̃+1:NRW ZZZVVV 1:r̃ΣΣΣ−1

1:r̃ , for VVV 1:r̃ =VVV (:,1 : r̃) and ΣΣΣ1:r̃ = ΣΣΣ(1 : r̃,1 : r̃), is

the perturbations in the joint SOI and RFI subspace, and ΔUUUr̃+1:NRW =−UUU1:r̃ΣΣΣ−1
1:r̃VVV H

1:r̃ZZZ
HUUUr̃+1:NRW

is the perturbations in the noise subspace. Similarly,

ÛUUr+1:NRW =UUUr+1:NRW +ΔUUUr+1:NRW , (5.41)

where ΔUUUr+1:NRW = [ΔUUU1:r̃(:,r+ 1 : r̃), ΔUUUr̃+1:NRW ] is the perturbations in the joint subspace

of the second r1 strongest signals and noise. Observing (5.40a) and (5.40b), both ΔUUU1:r̃ and

ΔUUUr̃+1:NRW approach 000 as ZZZ → 000. In other words, ΔUUUr+1:NRW → 000 as ZZZ → 000. With these

analyses, the subsequent characterizations follow.

Theorem 7. Suppose Pd = Pr
{

T TB > λ |H1

}
be the probability of RFI detection exhibited by

TB-RD. For λ < ∞ and 000 denoting 000NRW×(NRW−r), lim
ΔUUUr+1:NRW→000

Pd = 1.

Proof. Please refer to Appendix 2 under APPENDIX V.
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Theorem 7 implicates that TB-RD perfectly detects an RFI whenever the perturbations become

infinitesimally small—correspondingly, when the SNR and INR are very high. Besides, it

inspires the underneath corollary.

Corollary 1. Suppose the probability of RFI detection manifested by MB-RD is given by

Pmat
d = Pr

{
T MB > λ |H1

}
. For λ < ∞, lim

ΔUUUr+1:NRW→000
Pmat

d = 1.

Proof. From (5.23) and (5.38), T MB = T TB
∣∣∣ ˜̂TTT 1⊗IIIW=IIINRW

. Thus, replacing ˜̂TTT 1⊗ IIIW by IIINRW and

following the lines of Appendix 2 (under APPENDIX V), the result follows immediately. �

5.5.2 Comparison Between TB-RD and MB-RD

A comparison between the detection performance of MB-RD and TB-RD is stated beneath.

Theorem 8. For Pd and Pmat
d that are, respectively, exhibited by TB-RD and MB-RD,

• if NR ≤ (L1 +1), Pd = Pmat
d ;

• if the received SOI or RFI, respectively, corresponds to the very high SNR and INR

regimes, Pd = Pmat
d ; and

• if NR >> (L1 + 1), NRW >> r + r1, and the exhibited SNR as well as INR are very

low—i.e.,
(
γsnr, γinr

)→ (
0, 0

)
, Pd >> Pmat

d .

Proof. Please see Appendix 3 under APPENDIX V.

It can be concluded from Theorem 8 that TB-RD offers no benefit in terms of performance

improvement whenever NR≤ (L1+1) which is in line with the fact that TB subspace estimators

offer no improvement w.r.t. their MB counterparts for NR ≤ (L1 +1). For NR >> (L1 +1) and

NRW >> r + r1, the TB subspace estimator offers significant performance improvement for

the low SNR and INR regimes, and sample starved settings. Such a performance improvement

gets significant when the number of receive antennas increases. Leveraging this improvement,

TB-RD renders a significant performance improvement for the low INR and SNR regimes
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whenever NR >> (L1 +1) and NRW >> r+ r1. For the high SNR and INR regimes, both the

TB and MB subspace estimators offer parameter estimates with high accuracy. Accordingly,

the improvement in detection performance provided by TB-RD vanishes and both detectors

manifest identical asymptotic performance, as characterized in Theorem 7 and Corollary 1.

Table 5.1 Simulation parameters

unless otherwise mentioned

Parameters Assigned value

(L, L1,Ps) (1, 1,10W)(
NR, γsnr

)
(10,0dB)

(W, N) (10,24)

Number of realizations 105

5.6 Simulation Results

This section assesses the performance of MB-RD and TB-RD using Monte-Carlo simulations.

Unless otherwise mentioned, these simulations use the parameters of Table 5.1. For a recep-

tion through a multi-path fading channel, the simulations consider the reception of a quadrature

phase shift keying (QPSK) modulated SOI which might be interfered also by a QPSK mod-

ulated RFI. Specifically, for {sI
k,s

Q
k } ∈ {−1,1}×{−1,1} and {vI

k,v
Q
k } ∈ {−1,1}×{−1,1},

we simulate the SOI and RFI as s[k] =
√

Ps/2
[
sI

k + jsQ
k

]
and v[k] =

√
Pv/2

[
vI

k + jvQ
k

]
for

Ps and Pv being the transmitted power of the SOI and RFI, respectively. Similar to (Getu

et al., 2018a) and without loss of generality, the SOI and RFI multi-path fading channels

are modeled by a zero mean complex AWGN with unit variance, i.e.,
[{

hhhl
}L

l=0
,
{

gggl
}L1

l=0

] ∼
C N NR(000, IIINR). Moreover, the SNR and INR are defined—w.r.t. an STI—as γsnr =

∣∣∣∣HHHsssm
∣∣∣∣2

NRWσ2

and γinr =

∣∣∣∣GGGvvvm
∣∣∣∣2

NRWσ2
, respectively.

MB-RD is simulated by comparing (5.17) with a decision threshold. Implemented on the basis

of Algorithm 5.2, TB-RD is simulated by comparing (5.37) with a decision threshold. While

computing (5.37), the corresponding matricization and tensorization operations are performed

using Tensorlab (Sorber et al., Jan. 2014). Throughout this section, the decision threshold ren-
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dering a false alarm rate (FAR) of 0.1 is obtained via Monte-Carlo simulations which average

over 105 independent channel realizations. To simulate the Pd exhibited by different detectors,

we assume the reception of an SOI and an RFI over multi-path fading channels, as modeled

above, and their contamination by a complex AWGN. Whereas the simulation of Pf mani-

fested by different detectors is conducted by assuming the reception of the SOI contaminated

by a complex AWGN.
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MB-RD: N = 24, γsnr = 0dB

TB-RD: N = 24, γsnr = 0dB

Figure 5.3 Pd versus γinr: Pf = 0.1 and 104 realizations

5.6.1 TB-RD versus MB-RD

Regarding the exhibited Pd , Figs. 5.3-5.5 showcase the performance comparison between TB-

RD and MB-RD. As seen in these plots, TB-RD visibly improves MB-RD, especially in the

detection of a weak RFI. The performance improvement is attributed to the fact that TB-RD

deploys a TB subspace estimator which filters the noise in three modes rendering an improved

noise suppression than its MB counterpart provided that NR > L1 +1.
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Figure 5.4 Pd versus γinr: Pf = 0.1 and 104 realizations

Comparing Figs. 5.3 and 5.4, it is demonstrated that the performance of TB-RD improves

w.r.t. γsnr. This improvement is because of the fact that the quality of the RFI subspace es-

timation increases with the increment of γsnr which, in turn, implicates the better excision of

the SOI executed through the first projection matrix. Moreover, Figs. 5.3-5.5 demonstrate that

the RFI detection performance of TB-RD and MB-RD increases w.r.t. NR since the increment

in NR improves the quality of the RFI subspace estimates and the tensor-based subspace es-

timator improves its matrix-based counterpart, respectively. Thus, it is corroborated via the

aforementioned plots that TB-RD significantly improves MB-RD, especially for the low INR

regimes. Such an improved detection of a weak RFI over multi-path fading channel is an

important phenomenon in mobile satellite communication systems (Arapoglou et al., 2011;

Maral & Bousquet, 2009). For high INR regimes, Figs. 5.3-5.5 corroborate that MB-RD and

TB-RD exhibit an identical performance—validating the second case of Theorem 8 proved in

Appendix 3 (under APPENDIX V).
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Figure 5.5 Pd versus γinr: Pf = 0.1 and 104 realizations

5.6.2 Comparison with a Multi-Antenna Detector

Generalized likelihood ratio test (GLRT) is a popular multi-antenna blind detection technique

(Wang et al., 2010; Taherpour et al., 2010). To deploy it for an RFI detection and compare it

with the proposed TB-RD, we, first, assume the availability of HHH and project the received signal

toward the subspace orthogonal to the SOI subspace using the projection matrix PPP = IIINRW −
HHH(HHHHHHH)−1HHHH . Second, we compute the projected SCM using the projected received signal.

Third, we compute the singular values of the projected SCM—which is both a Hermitian and

positive semi-definite matrix—that are also the eigenvalues of the SCM, as the SVD and the

EVD of a Hermitian matrix are identical. Fourth, using the computed eigenvalues, the blind

GLRT statistic (Wang et al., 2010, eq. (13)), (Taherpour et al., 2010, eq. (39)) is computed and

compared with a test threshold resulting in the desired FAR of 0.1.

Employing the aforementioned simulation setup for GLRT and the described simulation setup

of TB-RD, Fig. 5.6 depicts the RFI detection performance comparison of GLRT and TB-
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Figure 5.6 Pd versus γinr: γsnr = 0 dB, Pf = 0.1, and 104

realizations

RD. As observed for γinr ∈ {−10,−7} dB, TB-RD outperforms GLRT even though GLRT

assumes the perfect knowledge of HHH. Hence, regarding the detection of a weak RFI, TB-RD

also manifests an appealing detection performance which is important for an RFI excision in

radio astronomy and satellite communications, where the received line-of-sight signal often

happens to be under the noise floor (van der Tol & van der Veen, 2005).

5.6.3 FAR and Complementary Receiver Operating Characteristics (CROC) Curves

5.6.3.1 FAR Curves

The FAR exhibited by MB-RD is depicted through Figs. 5.7 and 5.8. As seen, the FAR

manifested by MB-RD increases with γsnr—regardless of the number of receive antennas—for

the increment in SNR is going to put the detector at a more ambiguity concerning the reception
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Figure 5.7 Pf versus λ manifested by MB-RD

of an RFI. Moreover, w.r.t. a given λ , the FAR exhibited by MB-RD also increases with NR, as

larger NR results in a larger value of the MB-RD test statistic.

Similarly, Figs. 5.9 and 5.10 showcase the FAR exhibited by TB-RD. Like MB-RD, the FAR

manifested by TB-RD increases with γsnr irrespective of the number of receive antennas. This

undesirable increment is because of the fact that the increment in SNR evokes more ambiguity

to TB-RD so that the additional SOI energy would be miss-detected as the reception of an

RFI. The value of the TB-RD test statistic in (5.37) increases with NR rendering an increment

in the exhibited FAR w.r.t. a given λ and an increase in NR. At last, because Figs. 5.7-5.10

demonstrate a different FAR for a different SNR, neither MB-RD nor TB-RD is a constant

FAR (CFAR) detector w.r.t. γsnr.
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Figure 5.8 Pf versus λ manifested by MB-RD

5.6.3.2 CROC Curves

The CROC exhibited by MB-RD and TB-RD is showcased by Fig. 5.11, where a plot regarding

the probability of miss (Pm)—simulated as Pm = 1−Pd—versus Pf is depicted. As seen in Fig.

5.11, TB-RD exhibits a smaller Pm—for a given Pf —than MB-RD for NR ∈
{

5,10
}

. As NR

increases from 5 to 10, it is also visible in Fig. 5.11 that the Pm exhibited by TB-RD is much

smaller than the Pm exhibited by MB-RD. In other words, for NR = 10, the Pd exhibited by TB-

RD is much greater than the Pd exhibited by MB-RD. Accordingly, the third case of Theorem

8 is corroborated. Furthermore, the natural trade-off between Pm and Pf is demonstrated via

Fig. 5.11.

5.7 Conclusions

RFI is occurring in various RF operating systems as diverse as radio astronomy, microwave

radiometry, satellite communications, cognitive radios, ultra-wideband communications, and
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Figure 5.9 Pf versus λ exhibited by TB-RD

radar. The efficient excision of an RFI relies on an RFI detector which should also have a ro-

bust RFI detection capability for the detection of an RFI that might also be received through a

multi-path fading channel. Toward this end, having been inspired by the recent advancements

in tensor-based signal processing, this paper introduces the tensor-based RFI detection frame-

work to the research sub-field of RFI detection. In particular, this paper proposes matrix- and

tensor-based RFI detection algorithms for multi-antenna communications through a multi-path

fading channel. For the proposed algorithms, insightful asymptotic performance analyses—

that characterize the asymptotic behavior of the proposed detectors—have been reported. Sim-

ulations showcase the performance of the proposed detectors and validate the derived asymp-

totic characterizations of the proposed detectors.
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“If you dream it, you can do it.”—Walt Disney

Abstract—Radio frequency interference (RFI) is causing performance loss in microwave ra-

diometry, radio astronomy, and satellite communications. As the number of interferers in-

creases, the performance loss gets more severe and RFI excision becomes more difficult. In

this regard, this paper introduces the multi-linear algebra framework to the multi-interferer RFI

(MI-RFI) excision research by proposing a multi-linear subspace estimation and projection

(MLSEP) algorithm for single-input multiple-output (SIMO) systems suffering from MI-RFI.

Having employed smoothed observation windows, a smoothed MLSEP (s-MLSEP) algorithm,

which enhances MLSEP, is also proposed. MLSEP and s-MLSEP require the knowledge of

the number of interferers and their respective channel order. Accordingly, a novel smoothed

matrix-based joint number of interferers and channel order enumerator is proposed. Perfor-

mance analyses corroborate that both MLSEP and s-MLSEP can excise all interferers when

the perturbations get infinitesimally small. For such perturbations, the analyses also attest that

s-MLSEP exhibits a faster convergence to a zero excision error than MLSEP which, in turn,

converges faster than a subspace projection algorithm. Despite its slight complexity, simula-

tions and performance assessment on real-world data demonstrate that MLSEP outperforms
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projection-based RFI excision algorithms. Simulations also corroborate that s-MLSEP outper-

forms MLSEP as the smoothing factor gets smaller.

Index Terms—RFI excision, multi-linear subspace estimation, multi-linear projection, joint

enumeration, perturbation analysis.

6.1 Introduction

Radio frequency interference (RFI) is generally caused by out-of-band emissions by nearby

transmitters and harmonics, jammers, spoofers, and meaconers. For these emitters, RFI is

being prevalent in radio astronomy (van der Tol & van der Veen, 2005; Jeffs et al., 2005),

microwave radiometry (Guner et al., 2007; Misra et al., 2009), and global navigation satellite

systems (GNSS) (Borio et al., 2008). Moreover, RFI is evident in cognitive radio systems

for imperfect spectrum sensing (Getu et al., 2015a). Accordingly, the inevitable detection

and excision of RFI have inspired the development of spectral (Guner et al., 2007), tempo-

ral (Johnson & Ellingson, 2005), spectral-temporal (Borio et al., 2008), transformed domain-

based (Dovis et al., 2012), statistical (Ruf et al., 2006; Arribas et al., 2013a,b), and spatial

filtering-based (van der Tol & van der Veen, 2005; Jeffs et al., 2005) RFI detection and exci-

sion algorithms.

Spectral detection and excision algorithms such as cross-frequency blanking (Guner et al.,

2007) and the mitigation algorithm in (Chen et al., 2010) are proposed for microwave ra-

diometry applications. These algorithms typically deploy fast Fourier transforms (FFT) and

reconstructed interference, respectively, to mitigate RFI. Nevertheless, cross-frequency blank-

ing requires detection thresholds that, if set incorrectly, can degrade performance and (Chen

et al., 2010) is not suitable for wideband RFI mitigation. To continue to the temporal algo-

rithms, the popular asynchronous pulse blanking blanks the portion where the amplitude of the

signal exceeds a threshold with respect to (w.r.t.) the noise. However, its performance suffers

from the exploited heuristic threshold.
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In many cases, an interfering signal may appear for a limited time and present a variable behav-

ior in frequency (Dovis et al., 2012). In such cases, a time-frequency representation such as a

spectrogram or Gabor expansion can make the RFI easier to identify and remove (Borio et al.,

2008). In (Dovis et al., 2012), the RFI is estimated in the time-frequency domain and then sub-

tracted from the signal. Similarly, transformed domain-based algorithms employing Wavelet

and Karhunen−Loève transform, and bordered autocorrelation method are detailed in (Dovis

et al., 2012) and (Maccone, 2010), respectively. However, the algorithms in (Dovis et al., 2012)

are computationally complex and (Maccone, 2010) is not capable of unambiguously detecting

wideband signals, as reported in (Szumski, 2010).

Despite their benefits, both time-frequency and transformed-domain based algorithms suffer

from computational complexity and hence one may resort to statistical algorithms such as kur-

tosis detection (Ruf et al., 2006). Kurtosis detection, which is compared with pulse detection

algorithm in (Misra et al., 2009), assumes non-Gaussian RFI. On the other hand, statistical

approaches which assume RFI with unknown statistics are proposed in (Arribas et al., 2013a)

and (Arribas et al., 2013b). In (Arribas et al., 2013a), the Neyman-Pearson detection theory

and the generalized likelihood ratio test are deployed to obtain a new GNSS detection algo-

rithm. Nonetheless, statistical detection and excision algorithms suffer from a computational

complexity resulting from non-linear operations.

The previously highlighted approaches are not only computationally complex but also prone to

RFI misdetection. At last, the signal processing practitioner may opt for spatial filtering tech-

niques such as subspace projection (SP) (van der Tol & van der Veen, 2005) and cross subspace

projection (CSP) (Jeffs et al., 2005). SP and CSP rely on the eigenvalue decomposition (EVD)

of the space-time autocorrelation matrix and the singular value decomposition (SVD) of the

space-time crosscorrelation matrix, respectively. These algorithms are the state-of-the-art for

excising RFI emitted by a relatively stationary interferer, especially for radio astronomy appli-

cations. Moreover, oblique projection beamforming (Hellbourg et al., 2012) is proposed for

cyclostationary RFI mitigation. Recently, a polynomial-augmented subspace projection (Lan-
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don et al., 2012) addressed low interference-to-noise ratio (INR), relatively rapid interference

motion, and correlated noise scenarios.

Recent advances have corroborated that tensor-based parameter estimators which deploy trun-

cated higher-order SVD (HOSVD) have outperformed their matrix-based counterparts (Roe-

mer, 2012; Roemer et al., 2014). Meanwhile, the congestion of licensed spectrum in both

satellite and terrestrial communications calls for efficient signal processing algorithms that

render efficient RFI excision. However, there is a lack of tensor-based efficient algorithms

for the excision of multi-interferer RFI (MI-RFI). Hence, this paper tackles this issue via the

enumerated contributions.

• The multi-linear subspace estimation and projection (MLSEP) algorithm is proposed for

efficient MI-RFI excision in single-input multiple-output (SIMO) systems.

• We study smoothed observation windows to enhance the performance of MLSEP at the

expense of computational complexity.

• Smoothed matrix-based joint number of interferers and channel order enumerator (SMB-

JoNICOE) is proposed.

• Novel asymptotic performance and convergence analyses are presented for MLSEP,

smoothed MLSEP (s-MLSEP), and SP.

• The complexity analysis of MLSEP, s-MLSEP, SP, and CSP is presented.

Following this introduction, Section 6.2 presents the notation and system model. Section 6.3

details the MLSEP followed by Section 6.4 which presents the s-MLSEP. Section 6.5 then

presents SMB-JoNICOE followed by performance and complexity analyses of Section 6.6.

Thereafter, simulation results and performance assessment on real-world data are reported in

Section 6.7 and Section 6.8, respectively. Finally, conclusions are drawn in Section 6.9.
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6.2 Notation and System Model

6.2.1 Notation

Throughout the paper, scalars, vectors, matrices, and tensors are denoted by italic letters, lower-

case boldface letters, uppercase boldface letters, and boldface calligraphic letters, respectively.

The notation∼, ≡, (:, i), [· , · ], ||· ||F , (·)T , (·)H , IIIR, 000M×N , Ot , ⊗, (·)−1, (·)+, and (·)+r imply

distributed as, equivalence, the i-th column of a matrix, horizontal concatenation, Frobenius

norm, transposition, Hermitian transposition, an R×R identity matrix, an M×N zero matrix, a

zero tensor, Kronecker product, inverse, Moore-Penrose inverse, and the r-mode pseudoinverse

of a tensor, respectively. Moreover, vec(·), unvec(·), diag(·), min(· , ·), max(· , ·), lim, E{·},
C N (· , ·), and U(·) denote vectorization, unvectorization, diagonal matrix, minimum, max-

imum, limit, expectation, complex (multivariate) normal distribution, and unit step function,

respectively.

The tensor A ∈ C
I1×I2×...×IR is an R-way array of size Ir along the r-th mode which is con-

sistent with (Lathauwer et al., 2000). The r-mode unfolding of A is denoted by [A ](r) ∈
C

Ir×Ir+1...IRI1...Ir−1 and defined as in (Lathauwer et al., 2000) and (Haardt et al., 2008). More-

over, the r-rank of A is defined as the rank of [A ](r). The r-mode product of A and UUUr ∈
C

Jr×Ir is denoted as B =A ×r UUUr and defined through [B](r) =UUUr[A ](r) (Haardt et al., 2008).

Similarly, the r-mode product of A and a tensor C ∈ C
J1×J2×...×Jr×...×JR is denoted by D =

A ×r C ∈C
I1×...×Ir−1×Jr×Ir+1×...×IR and defined through [D ](r) = [C ]r[A ](r) for Ir = J1J2 . . .Jr−1

Jr+1 . . .JR (Vasilescu & Terzopoulos, 2007). Accordingly, the r-mode identity tensor I r ∈
C

J1×J2×...×Jr×...×JR as well as the r-mode pseudoinverse tensor A +r are both defined to satisfy

(Vasilescu & Terzopoulos, 2007)

(
A ×r A +r

)
×r A = A and I r×r A = A , (6.1)

where [A +r](r) = [A ]+
(r), [I ](r) = IIIJr(≡Jr+1...JRJ1...Jr−1), Jr = Jr+1 . . .JRJ1 . . .Jr−1, and Jr =

Ir+1 . . . IRI1 . . . Ir−1.
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At last, diag(·), min(·), length(·), and zeros(· , ·) are the MATLAB R© functions.
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Figure 6.1 A baseband schematic depicting the l-th multi-path

component of a SIMO system suffering from interference emitted by Q
interferers

6.2.2 System Model

We consider a SIMO system with NR receive antennas suffering from severe MI-RFI emitted

by Q independent single-antenna interferers as shown in Fig. 6.1. The signal of interest (SOI)

channel between the transmitter and each receive antenna pair is modeled as a finite-duration

impulse response (FIR) filter with L+1 taps. The SOI channel is assumed to be time-invariant

for a long-term interval (LTI). Similarly, the RFI channel between the i-th RFI transmitter and

each receive antenna pair is modeled as an FIR filter with Li + 1 taps. Meanwhile, the MI-

RFI channel is assumed to have a coherence time of NSOI +1 times the coherence time of the

SOI—NSOI being an arbitrary constant. The received baseband signal at time n is then given

by

yyy(n) =
L

∑
l=0

hhhls(n− l)+
Q

∑
i=1

Li

∑
l=0

ggg(l)i fi(n− l)+ zzz(n), (6.2)
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where {hhhl,ggg
(l)
i } ∈ C

NR are, respectively, the coefficients of the channel impulse responses cor-

responding to the l-th SOI and the i-th RFI’s l-th channel taps, s(n) denotes the unknown and

deterministic symbol emitted by the SOI transmitter at time n, fi(n) is the sampled i-th broad-

band RFI which is usually modeled as a zero mean circularly symmetric complex additive

white Gaussian noise (AWGN), and zzz(n) ∼ C N (000,σ2IIINR) is a sampled circularly symmet-

ric complex AWGN. Furthermore, we assume that the Q Gaussian RFIs and the AWGN are

independent.

6.3 MLSEP

MLSEP for MI-RFI excision comprises two phases. In the first phase, no SOI is transmitted

for a duration of one LTI—similar to (Subbaram & Abend, 1993)—in order to estimate the

projection tensor. One LTI is made of N short-term intervals (STIs). An STI has a duration

of WTs, where Ts denotes the symbol duration. During each STI, W samples from every NR

antennas are stacked. The horizontal concatenation of N stacked STIs forms a matrix. The

multi-linear equivalent of such a matrix is deployed to estimate the MI-RFI subspace tensor

using truncated HOSVD. Thereafter, the multi-linear projector is derived from the estimated

MI-RFI subspace tensor.

In the second phase, an SOI is transmitted from the second LTI onwards for NSOI LTIs and a

per LTI MI-RFI excision is executed.

6.3.1 Problem Setup

Stacking the observation vectors of the NR receive antennas and W data windows into one

highly structured vector of size NRW ×1 w.r.t. the m-th STI gives

yyym = HHHsssm +
Q

∑
i=1

GGGi fff im + zzzm ∈ C
NRW , (6.3)
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where sssm =
[
s
(
mW

)
, . . . ,s

(
mW −W −L+1

)]T ∈C
(W+L), fff im =

[
fi
(
mW

)
, . . . , fi

(
mW −W −

Li + 1
)]T ∈ C

(W+Li), and zzzm are the sampled SOI, i-th RFI, and a zero mean AWGN, respec-

tively. HHH ∈ C
NRW×(W+L) is the SOI filtering matrix defined through (Song et al., 2010a, eqs.

(3) & (5)). GGGi =
[
GGGT

i1, . . . ,GGG
T
iNR

]T ∈ C
NRW×(W+Li) is the i-th RFI filtering matrix for GGGi j ∈

C
W×(W+Li) being a banded Toeplitz matrix associated with the i-th RFI and the j-th receive

antenna’s impulse response gggi j. gggi j is defined as gggi j
�
=
[
g0

i j, . . . ,g
Li
i j
]T

=
[
gi j(t0), . . . ,gi j(t0 +

LiTs)
]T

, where t0 is the time-of-arrival, and

GGGi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

g0
i j . . . gLi

i j 0 . . . . . . 0

0 g0
i j . . . gLi

i j 0 . . . 0
...

...
...

...
...

...
...

0 . . . . . . 0 g0
i j . . . gLi

i j

⎤
⎥⎥⎥⎥⎥⎥⎦ . (6.4)

Meanwhile, expressing the summation in (6.3) as a matrix product gives

yyym = HHHsssm +GGG fff m + zzzm ∈ C
NRW , (6.5)

where GGG = [GGG1,GGG2, . . . ,GGGQ] ∈ C
NRW×∑Q

i=1(W+Li) represents the MI-RFI filtering matrix and

fff m =
[

fff T
1m, . . . , fff T

Qm
]T ∈C∑Q

i=1(W+Li) denotes the MI-RFI vector. The horizontal concatenation

of (6.5) then renders

YYY = HHHSSS+GGGFFF +ZZZ ∈ C
NRW×N , (6.6)

where SSS = [sss1, . . . ,sssN ], FFF =
[
FFFT

1 , . . . ,FFF
T
Q
]T

for FFFi = [ fff i1, . . . , fff iN ] ∈ C
(W+Li)×N , and ZZZ =

[zzz1, . . . ,zzzN ]. In the first LTI, no SOI is transmitted and the received signal becomes

YYY I = GGGFFF +ZZZ. (6.7)

In (6.7), GGGFFF and GGG span identical column space (Strang, 2003). However, the AWGN perturbs

the singular vectors that span the MI-RFI subspace. The estimated MI-RFI subspace denoted
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by ÛUUI ∈C
NRW×∑Q

i=1(W+Li), for NRW ≥∑Q
i=1(W +Li), can be obtained from the SVD of (6.7) as

YYY I = ÛUU Σ̂ΣΣV̂VV
H
= [ÛUUI ÛUUn]

⎡
⎣ Σ̂ΣΣI 000r×(N−r)

000d×r Σ̂ΣΣn

⎤
⎦ [V̂VV I V̂VV n]

H , (6.8)

where r = ∑Q
i=1(W +Li), d = NRW − r, Σ̂ΣΣI = diag(σ̂1, . . . , σ̂r), and Σ̂ΣΣn = diag(σ̂r+1, . . . , σ̂NRW ).
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Figure 6.2 Multi-linear formulation from (6.6)

6.3.2 Problem Formulation

If we obtain W samples from all antennas positioned vertically while presuming that the tem-

poral dimension moves horizontally, we will get an NR×W matrix of samples per STI. During

an LTI, we will then have N such matrices. Should we align the number of STIs in the third

dimension, a three-way tensor of NR×W×N samples has resulted during an LTI. This arrange-

ment maintains the inherent structure of the measurement data and inspires Y ∈ C
NR×W×N to

model the received signal similar to (Song et al., 2010a). Should
[
Y
]T
(3)

be equal to YYY in (6.6),
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the multi-linear equivalent of (6.6) becomes

Y = H ×3 SSST +G ×3 FFFT +Z , (6.9)

where H ∈ C
NR×W×(W+L), G ∈ C

NR×W×r, and Z are the SOI filtering tensor, the MI-RFI

filtering tensor, and the noise tensor, respectively. H and G are constructed by aligning the

banded Toeplitz matrices HHH j and GGGi j as in Fig. 6.2, i.e., [H ]T(3) = HHH and [G ]T(3) = GGG. To ensure

the identifiability of the SOI and the MI-RFI subspaces (Getu et al., 2015b), SSS, FFF , [H ](3), and

[G ](3) are assumed to have a full row rank and W > max(L,Li). More precisely, N ≥ (W +L),

N ≥ r, NRW ≥W +L, and NRW ≥ r.

6.3.2.1 MI-RFI Subspace Estimation

The subspace estimation is performed similarly to (Song et al., 2010a). In the first LTI, no SOI

transmission occurs and hence the truncated HOSVD of the received signal Y I =G ×3 FFFT +Z

would be (Roemer et al., 2014, eq. (16))

Y I ≈ Ŝ
[I]×1 ÛUU

[I]
1 ×2 ÛUU

[I]
2 ×3 ÛUU

[I]
3 , (6.10)

where Ŝ
[I] ∈ C

r1×r2×r3 is the truncated core tensor and ÛUU
[I]
n ∈ C

dn×rn is a unitary matrix of

the dominant singular vectors of [Y I](n)—n ∈ {1,2,3} and [d1,d2,d3] = [NR,W,N] (Roemer

et al., 2014). Similar to the considerations of (Getu et al., 2015b), r1 = min
(
NR, ∑Q

i=1(Li+1)
)
,

r2 = min(W, NNR), and r3 = min
(
N, r

)
. Accordingly, r2 =W and r3 = r, since N ≥ r. From

(6.10), the estimated MI-RFI subspace tensor Û
[I] ∈ C

NR×W×r is defined as (Roemer et al.,

2014)

Û
[I]
= Ŝ

[I]×1 ÛUU
[I]
1 ×2 ÛUU

[I]
2 ×3 Σ̂ΣΣ−1

I . (6.11)

Here it is worth mentioning that the normalization factor Σ̂ΣΣ−1
I —included for the sake of mathe-

matical analysis—has no impact on the MI-RFI subspace estimation accuracy. The columns of[
Û

[I]
]T

(3)

∈C
NRW×r3 span the estimated MI-RFI subspace and inspire the underneath theorem.
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Theorem 9. The tensor-based MI-RFI subspace estimator
[
Û

[I]
]T

(3)
and the matrix-based MI-

RFI subspace estimator ÛUUI are related by

[
Û

[I]
]T

(3)

=
(
T̂TT 1⊗ T̂TT 2

)
ÛUUI, (6.12)

where T̂TT c = ÛUU
[I]
c ÛUU

[I]H

c , c ∈ {1,2}.

Proof. Following (Roemer et al., 2014, Theorem 1), Theorem 9 can be proved for R = 2. �

If NR ≤ ∑Q
i=1(Li +1), r1 = min

(
NR, ∑Q

i=1(Li +1)
)
= NR, T̂TT 1 = IIINR , and T̂TT 2 = IIIW , for r2 =W .

As a result, T̂TT 1⊗ T̂TT 2 = IIINRW renders identical estimates for the tensor- and the matrix-based MI-

RFI estimators. If NR > ∑Q
i=1(Li +1), r1 = min

(
NR, ∑Q

i=1(Li +1)
)
= Q+∑Q

i=1 Li. In this case,

Û
[I]

filters out the noise in its three different modes rendering an improved noise suppression,

unlike ÛUUI (Haardt et al., 2008, Appendix I). Accordingly, the tensor-based estimator offers a

better estimate than its matrix-based counterpart.

6.3.2.2 Multi-Linear Projection

For a perfect Û
[I]

, the multi-linear projector is stated below.

Theorem 10. For a perfect Û
[I]

, the multi-linear projector P ∈ C
NR×W×NRW which results in

a perfect excision of the MI-RFI is given by

P = I 3− Û
[I]×3

(
Û

[I]
)+3

, (6.13)

where I 3 ∈C
NR×W×NRW is the 3-mode identity tensor,

(
Û

[I]
)+3

is the 3-mode pseudoinverse

tensor,
[
I 3

]
(3)

= IIINRW , and

[(
Û

[I]
)+3

]
(3)

=

[
Û

[I]
]+
(3)

.

Proof. cf. Appendix 1 under APPENDIX VI.
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However, Û
[I]

is imperfect and a perfect excision is impossible. To measure the resulting

excision error, we make use of a performance parameter named root mean square excision

error (RMSEE) which quantizes the root mean square MI-RFI excision error for an LTI as

RMSEE =

√
E

{∥∥[P×3 G
]T
(3)

∥∥2

F

}
. (6.14)

We note that (6.14) is inspired by the fact that
∥∥[P×3 G

]T
(3)

∥∥
F = 0 under perfect excision.

The MLSEP routines which require the assumptions given at Section 6.3.2 are highlighted in

Algorithm 6.1. Once the MI-RFI excision is conducted for NSOI LTIs, the overall algorithm

will be repeated for the subsequent MI-RFI excisions.

Algorithm 6.1 MLSEP Algorithm

Input: YYY I , YYY , NR, W , N, Q, {Li}Q
i=1, NSOI

Output: RFI excised YYY
1 r = ∑Q

i=1(W +Li), r1 = min
(
NR, ∑Q

i=1(Li +1)
)
, r2 =W , n = 1

2 Y I =the tensorization of
[
Y I

]
(3)

= YYY T
I

3 Computation of Û
[I]

using (6.12)

4 Computation of P using (6.13)

5 repeat
6 Y =the tensorization of

[
Y
]
(3)

= YYY T

7 return
[
P×3 Y

]T
(3)

8 n← n+1

9 until n≤ NSOI;

6.4 s-MLSEP

Smoothed observation windows are deployed to improve the performance of the proposed

channel estimation algorithm in (Song et al., 2010a). The improvement is for smoothed obser-

vation windows result in an improved estimate of the signal subspace. Similarly, we exploit

smoothed observation windows exhibiting a smoothing factor η which denotes the number of



141

new samples in the next observed data window (Song et al., 2010a). Consequently, we propose

the s-MLSEP algorithm.

6.4.1 Problem Setup

If η new samples are included in the subsequent STIs, the observation windows will overlap for

1≤ η <W . To propose s-MLSEP, such overlapping windows are deployed for every antenna

as in (Song et al., 2010a, Fig. 6). For 1≤ η <W and Ns overlapping windows, the smoothed

version of (6.6) becomes

YYY s = HHHSSSs +GGGFFFs +ZZZs ∈ C
NRW×Ns

, (6.15)

where SSSs =
[
ssss

1, . . . ,sss
s
Ns

]
for ssss

m =
[
s
(
W +(m− 1)η

)
, . . . ,s

(
W +(m− 1)η −W −L+ 1

)]T ∈
C
(W+L), FFFs = [FFFT

1s, . . . ,FFF
T
Qs]

T for FFFis = [ fff s
i1, . . . , fff s

iNs ] and fff s
im =

[
fi
(
W +(m−1)η

)
, . . . , fi

(
W +

(m−1)η−W −Li +1
)]T ∈ C

(W+Li), and ZZZs is the smoothed AWGN.

Likewise, no SOI is transmitted in the first LTI. Thus, the smoothed received signal becomes

YYY s
I = GGGFFFs +ZZZs = ÛUU

sΣ̂ΣΣs
V̂VV

sH

, (6.16)

where ÛUU
s
= [ÛUU

s
I ÛUU

s
n] is the smoothed version of ÛUU , ÛUU

s
I ∈ C

NRW×r is the estimated smoothed

MI-RFI subspace for NRW ≥ r, V̂VV
s
= [V̂VV

s
I V̂VV

s
n] is the smoothed equivalent of V̂VV , and Σ̂ΣΣs

=

diag
(
Σ̂ΣΣs

I , Σ̂ΣΣ
s
n
)

is the smoothed equivalent of Σ̂ΣΣ.

6.4.2 Problem Formulation

Similar to the formulation of Section 6.3.2, the multi-linear equivalent of (6.15) is

Y s = H ×3 SSSsT +G ×3 FFFsT +Z s ∈ C
NR×W×Ns

. (6.17)

The assumptions of Section 6.3.2 are then adopted to ensure the identifiability of subspaces.
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6.4.2.1 Smoothed MI-RFI Subspace Estimation

In the first LTI, the truncated HOSVD of the received signal tensor Y s
I = G ×3 FFFsT +Z s can

be given as

Y s
I ≈ Ŝ s[I]×1 ÛUUs

1
[I]×2 ÛUUs

2
[I]×3 ÛUUs

3
[I], (6.18)

where Ŝ s[I] ∈ C
rs

1×rs
2×rs

3 is the truncated core tensor and ÛUUs
n
[I] ∈ C

dn×rs
n is a unitary matrix of

the dominant singular vectors of [Y s
I ](n)—n∈ {1,2,3} and [d1,d2,d3] = [NR,W,Ns]. Similar to

(Getu et al., 2015b), rs
1 = min

(
NR, ∑Q

i=1(Li+1)
)
, rs

2 =W , and rs
3 = r for Ns≥ r. The estimated

smoothed MI-RFI subspace tensor Û s[I] ∈ C
NR×W×r is then defined as (Roemer et al., 2014)

Û s[I] = Ŝ s[I]×1 ÛUUs
1
[I]×2 ÛUUs

2
[I]×3 Σ̂ΣΣs

I
−1. (6.19)

Similar to Theorem 9, the smoothed tensor-based MI-RFI subspace estimator
[
Û s[I]

]T

(3)
∈

C
NRW×rs

3 and the smoothed matrix-based MI-RFI subspace estimator ÛUU
s
I are related by

[
Û s[I]

]T

(3)

=
(
T̂TT

s
1⊗ T̂TT

s
2

)
ÛUU

s
I , (6.20)

where T̂TT
s
c = ÛUUs

c
[I]ÛUUs

c
[I]H , c ∈ {1,2}. Like the tensor-based MI-RFI subspace estimator, the

smoothed version offers a better estimate than its smoothed matrix-based counterpart whenever

NR > ∑Q
i=1(Li +1). Otherwise, both provide identical estimates.

6.4.2.2 Smoothed Multi-Linear Projection

By extending Theorem 10 for a perfect Û s[I], the smoothed multi-linear projector Ps ∈
C

NR×W×NRW that renders a perfect excision is given by

Ps = I 3− Û s[I]×3

(
Û s[I]

)+3

, (6.21)
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where
[
I 3

]
(3)

= IIINRW and

[(
Û s[I]

)+3]
(3)

=

[
Û s[I]

]+
(3)

.

Nonetheless, Û s[I] cannot be perfect and the resulting RMSEE is quantified by

s-RMSEE =

√
E

{∥∥∥[Ps×3 G
]T

(3)

∥∥∥2

F

}
. (6.22)

Deploying smoothed equivalents in Algorithm 6.1, s-MLSEP routines can easily be adapted.

6.5 SMB-JoNICOE

To execute MLSEP and s-MLSEP as per Algorithm 6.1, r and r1 should be initialized. As a

result, both the number of interferers and their respective channel order are required. Although

source enumeration (Lu & Zoubir, 2015) and channel order estimation (Vía et al., 2006) are old

problems, joint estimation of the number of interferers and their respective channel order has

not been addressed. Meanwhile, the algorithm proposed in (Kotoulas et al., 2006) estimates the

number of sources of a multiple-input multiple-output system via the number of subsystems

that attain each channel order. However, it can’t identify the respective channel order of each

source and is complex in terms of the number of required SVDs.

Accordingly, we propose SMB-JoNICOE which employs the eigenvalues (EVs) of the smoothed

sample covariance matrix (s-SCM). SMB-JoNICOE merely deploys a single SVD and esti-

mates both the number of interferers and their respective channel order during the first LTI. To

do so, it executes iterative eigenvalue difference test and iterative eigenvalue comparison test

with adaptive thresholds.
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6.5.1 Problem Formulation

The population covariance matrix (PCM) is obtained by transmitting no SOI in the first LTI as

(Lu & Zoubir, 2015, eq. (2))

RRRysys = E{yyys
myyysH

m }= GGGRRR f s f sGGGH +σ2IIINRW , (6.23)

where yyys
m is the smoothed version of yyym and RRR f s f s = E{ fff s

m fff sH

m } is the smoothed MI-RFI PCM

given by

RRR f s f s = diag
(

σ2
1 , . . . ,σ

2
1︸ ︷︷ ︸

W+L1 terms

,σ2
2 , . . . ,σ

2
2︸ ︷︷ ︸

W+L2 terms

, . . . ,σ2
Q, . . . ,σ

2
Q︸ ︷︷ ︸

W+LQ terms

)
, (6.24)

where σ2
i is the power of the i-th broadband RFI and it is assumed that σ1 ≥ σ2 ≥ . . . ≥ σQ.

Employing (6.24) into (6.23), the first W + L1 EVs are likely to be close to each other, so

do the second W + L2 EVs, and so on. From theses numbers, we can estimate {Li}Q
i=1 and

Q. However, we can’t obtain the PCM, as infinite samples are required, and we resort to the

estimation of the s-SCM obtained as (Lu & Zoubir, 2015, eq. (5))

R̂RRysys =
1

NsYYY s
IYYY

sH

I =
1

NsÛUU
sΣ̂ΣΣsΣ̂ΣΣsH

ÛUU
sH

= ÛUU
sΛ̂ΛΛs

ÛUU
sH

, (6.25)

where Λ̂ΛΛs
= Σ̂ΣΣsΣ̂ΣΣsH

/Ns, l1 > l2 > .. . > lr > .. . > lNRW are the distinct EVs of the s-SCM—when

N ≥ NRW—and NRW − r of them are contributed by the AWGN. Using these EVs, the noise

EVs and the EVs of each interferer can be identified for the joint enumeration. Toward this

end, the SMB-JoNICOE algorithm is devised.

6.5.2 SMB-JoNICOE Algorithm

Detailed in Algorithm 6.2, this algorithm computes the SVD of YYY s
I to obtain a vector Λ̃ΛΛ that

comprises the EVs of YYY s
I (lines 1-2). Having employed Λ̃ΛΛ, SMB-JoNICOE executes iterative

eigenvalue difference test which subtracts the minimum eigenvalue (EV) lmin from a given EV

so as to determine the noise EVs (lines 5-7). When the aforementioned test generates a value
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Algorithm 6.2 SMB-JoNICOE Algorithm

Input: YYY I , NR, W , N
Output: {L̂(Q̂− i)}Q̂−1

i=0 , Q̂
1 Set values for Δ, ξ ; decomposition of YYY s

I as in (6.16)

2 Λ̃ΛΛ = diag
(
Σ̂ΣΣsΣ̂ΣΣsH)

/Ns; lmin = min
(
Λ̃ΛΛ
)

3 repeat
4 Δ← ξ Δ; k = length(Λ̃ΛΛ)
5 repeat
6 r̂← k; k← k−1

7 until Λ̃ΛΛ(k)− lmin ≥ lminΔ;

8 m← k−W ; c← 0

9 repeat
10 if r̂+ c > length(Λ̃ΛΛ), then break
11 lth ← Λ̃ΛΛ(r̂+ c); Q̂← 0; L̂← zeros(1,100); k← r̂−1; m← k−W
12 repeat
13 l̂ = 0

14 repeat
15 l̂ ← l̂ +1; k← k−1

16 until Λ̃ΛΛ(k)≥ Λ̃ΛΛ(m)+ lth & k ≥ 1;

17 Q̂← Q̂+1

18 if l̂−W ≥W , then break
19 L̂(Q̂) = l̂−W ; m← m−W − L̂(Q̂)

20 until m < 1;

21 if m < 0, then break
22 c← c+1

23 until m < 0;

24 if m < 0, then break
25 ξ ← ξ +1

26 until ξ Δ≥ 2;

27 return L̂(Q̂), L̂(Q̂−1), . . ., L̂(2), L̂(1), Q̂

greater than the product of the initialized threshold Δ and lmin (line 7), the algorithm would

preliminarily identify the noise EVs. Hereinafter, it considers the remaining EVs as the MI-RFI

EVs and conducts iterative eigenvalue comparison test so as to render a joint enumeration. In

this regard, the algorithm employs the EV that is immediately greater than the largest estimated

noise EV as a preliminary comparison threshold lth (line 11 for c = 0).

SMB-JoNICOE commences an iterative eigenvalue comparison test by comparing the MI-RFI

EVs with an adaptive threshold. The adaptive threshold is preliminarily set to lth plus the value
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of the W -th largest EV w.r.t. the smallest MI-RFI EV (lines 11 and 16 for c = 0). Then, the

channel order of the first interferer would be estimated and the eigenvalue comparison test

would resume for the remaining interferes (lines 12-20 for c = 0) provided that each estimated

channel order is less than W (line 18). If not, the loop would break and go for the smaller

comparison threshold by resetting all the estimated channel orders (lines 10-11 for c > 0). By

the virtue of our assumptions, line 18 ensures that the estimated channel orders are less than W .

If the loop doesn’t break, the number of interferers will be estimated whenever there is a viable

channel order estimate for every interferer (lines 17 and 27). Whenever the iterative eigenvalue

comparison test resumes by descending W plus the estimated channel order values through Λ̃ΛΛ

(line 19), SMB-JoNICOE will make sure that the last largest EV under test is the closest to the

maximum EV (lines 21-24).

When iterative eigenvalue difference and iterative eigenvalue comparison tests satisfy all the

loop controls, the algorithm returns the number of interferers and their respective channel order

(line 27).

6.6 Performance and Complexity Analyses

This section presents the asymptotic performance and complexity analysis of MLSEP and s-

MLSEP, and the asymptotic convergence analysis of SP, MLSEP, and s-MLSEP.

6.6.1 Asymptotic Performance Analysis

This performance analysis makes use of the first-order perturbation analysis detailed in (Li

et al., 1993). To facilitate mathematical tractability, quantization error is neglected. Besides,

the contribution of the MI-RFI subspace to the perturbation of the singular vectors that span

the MI-RFI subspace is discarded unlike (Liu et al., 2008), since MLSEP relies on the overall

MI-RFI subspace rather than on individual basis vectors.
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To motivate perturbation analysis, we begin with YYY 0 = GGGFFF decomposed as

YYY 0 = [UUUI UUUn]

⎡
⎣ ΣΣΣI 000r×(N−r)

000d×r 000d×(N−r)

⎤
⎦ [VVV I VVV n]

H . (6.26)

Comparing (6.8) and (6.26), and exploiting the first-order perturbation expansion (Roemer

et al., 2014, eq. (20)), it is possible to deduce that

ÛUUI =UUUI +ΔUUUI, ΔUUUI =UUUnUUUH
n ZZZVVV IΣΣΣ−1

I , (6.27)

where ΔUUUI is the perturbations in the singular vectors that span the MI-RFI subspace. For

NR ≤ ∑Q
i=1(Li +1), T̂TT 1 = ÛUU

[I]
1 ÛUU

[I]H

1 = IIINR and

[
Û

[I]
]T

(3)

=
(
IIINR⊗ IIIW

)
ÛUUI = IIINRWÛUUI = ÛUUI. (6.28)

Inserting (6.27) into (6.28) then gives

[
Û

[I]
]T

(3)

=UUUI +

[
ΔÛ

[I]
]T

(3)

=UUUI +ΔUUUI. (6.29)

When NR > ∑Q
i=1(Li +1), T̂TT 1 �= IIINR and (6.12) is simplified to

[
Û

[I]
]T

(3)

=
(

ÛUU
[I]
1 ÛUU

[I]H

1 ⊗ IIIW

)
ÛUUI. (6.30)

Following the perturbation analysis extended to the HOSVD-based subspace estimate in (Roe-

mer et al., 2014)

ÛUU
[I]
1 =UUU [I]

1 +ΔUUU [I]
1 , (6.31)

where ΔUUU [I]
1 = UUU [n]

1 UUU [n]H

1

[
Z
]
(1)

VVV [I]
1 ΣΣΣ[I]−1

1 (Roemer et al., 2014, eq. (23)). Substituting (6.31)

and (6.27) into (6.30), and omitting second-order terms afterward give (6.32).

Having exploited these analyses, the underneath theorem follows.
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[
Û

[I]
]T

(3)

=UUUI+

[
ΔÛ

[I]
]T

(3)

,

[
ΔÛ

[I]
]T

(3)

=ΔUUUI+
(
UUU [I]

1 ΔUUU [I]H

1 ⊗IIIW
)
UUUI+

(
ΔUUU [I]

1 UUU [I]H

1 ⊗IIIW
)
UUUI.

(6.32)

Theorem 11. RMSEE exhibited by MLSEP satisfies the condition

lim
ΔUUUI→000

RMSEE = 0. (6.33)

Proof. cf. Appendix 2 under APPENDIX VI.

Theorem 11 has important implications though it is an asymptotic result. First, it implies that

the RMSEE = 0 axis is a tight lower bound at high INR. Second, it implies that MLSEP can

excise all interferers when the perturbations get infinitesimally small. Using the smoothed

versions of (6.28) and (6.32) in (6.22), and following Appendix 2 (under APPENDIX VI)

render

lim
ΔUUUs

I→000
s-RMSEE = 0, (6.34)

where ΔUUUs
I is the smoothed version of ΔUUUI . Accordingly, s-MLSEP can also excise all inter-

ferers when the perturbations get infinitesimally small.

6.6.2 Asymptotic Convergence Analysis

Using the aforementioned analyses, the asymptotic convergence of SP and MLSEP is charac-

terized beneath.

Theorem 12. When NR > ∑Q
i=1(Li +1), lim

ΔUUUI→000
RMSEE converges to 0 for MLSEP faster than

for SP.

Proof. cf. Appendix 3 under APPENDIX VI.
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Adopting similar derivations, Corollary 2 has resulted.

Corollary 2. Whenever 1≤η <W , lim
ΔUUUs

I→000
s-RMSEE converges to 0 faster than lim

ΔUUUI→000
RMSEE.

Proof. cf. Appendix 4 under APPENDIX VI.

Table 6.1 Comparison of the number of multiplications

of an MI-RFI excision using different algorithms and Na
R

auxiliary antennas

Algorithms No. of required multiplications

SP (van der Tol & van der Veen, 2005) N2
Rr2

2

[
2N +NRr2 +(1+ kt)r3

]
CSP (Jeffs et al., 2005) NRNa

Rr2
2

[
2N + ktr3 +

NRN
Na

R
− NRr3

Na
R
+NRr2

]
MLSEP ktr2NRN

(
r1 + r2 + r3

)
+N2

Rr2
2(1+ r3 +N)

+NRr2r3(2r3 +
r2

3
NRr2

+NRr2)+N2
Rr1 + r3

2

s-MLSEP ktr2NRNs(r1+r2+r3

)
+N2

Rr2
2(1+r3+Ns)

(η = 1) +NRr2r3(2r3 +
r2

3
NRr2

+NRr2)+N2
Rr1 + r3

2

Table 6.2 Sample comparison of the number of

multiplications of an MI-RFI excision using different

algorithms and Na
R auxiliary antennas

Algorithms No. of multiplications for NR = 8, Na
R = 6,

kt = 10, N = 60 r1 = 4, r2 = 5, and r3 = 18

SP (van der Tol & van der Veen, 2005) 572800

CSP (Jeffs et al., 2005) 475200

MLSEP 835333

s-MLSEP (η = 1) 3761733

6.6.3 Complexity Analyses

In the sequel, the complexity of MLSEP, s-MLSEP, SP, and CSP is analyzed by assuming the

knowledge of r1, r2, and r3. In this analysis, orthogonal iteration (Golub & Van Loan, 2013)—

being an efficient SVD implementation—is exploited to implement SVD and EVD, i.e., the

EVD of AAA is analyzed as the SVD of AAA2.
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For an M×N matrix AAA truncated to rank r, computation of its SVD demands ktMNr multiplica-

tions for kt being a constant that depends on the design of the algorithm (Haardt et al., 2008).

Besides, MNK multiplications are carried out during the multiplication of AAA and an N ×K

matrix BBB. Meanwhile, MLSEP requires the efficient implementation of three SVDs and addi-

tional multiplications as per (6.12). On top of that, extra multiplications are required for the

computation of the projection tensor given by (6.13) and the eventual MI-RFI excision. In the

computation of (6.13), the inverse operation is assumed to be implemented via a Gauss-Jordan

elimination.

Having resorted to the aforementioned computations, the complexity analysis of MLSEP, SP

(van der Tol & van der Veen, 2005), and CSP (Jeffs et al., 2005) is tabulated in Tables 6.1

and 6.2. Besides, the complexity of s-MLSEP is tabulated for a given η and hence Ns =

Ntot/η−W/η+1, for Ntot being the number of observed symbols per LTI. According to Tables

6.1 and 6.2, MLSEP and s-MLSEP entail a slightly higher complexity. However, significant

performance gain is leveraged by employing them, as demonstrated in Section 6.7.

Table 6.3 Simulation parameters

unless otherwise mentioned

Simulation parameters Assigned value

(L,L1,L2,L3) (1,1,1,1)
(Δ,β ,ξ ) (0.05,0.5,1)
Pre-excision SINR 0 dB

t0 0.1Ts
(Na

R,NSOI) (6,200 LTIs)
No. of channel realizations 1000

6.7 Simulation Results

The performance of the MI-RFI subspace estimators, SMB-JoNICOE, MLSEP, and s-MLSEP

is assessed via simulations which deploy the succeeding setup and simulation parameters of

Table 6.3, unless otherwise mentioned.
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During the first LTI and subsequent 200 LTIs, Q zero mean circularly symmetric complex

white Gaussian signals—as a broadband MI-RFI—and Gray-coded 4-QAM symbols—as an

SOI—contaminated by Q zero mean circularly symmetric complex white Gaussian signals

are, respectively, transmitted over multi-path fading channels. To simulate the SOI and the i-th

RFI multi-path fading channels, (L+1)- and (Li+1)-ray multi-path continuous-time channels

are constructed synchronously using the raised cosine pulse shaping filter prc(t,β ) exhibit-

ing a roll-off factor β as h j(t) = ∑L
l=0 hl

j prc(t − lTs,β ) and gi j(t) = ∑Li
l=0 gl

i j prc(t − lTs,β ),

for
{

hl
j,g

l
i j
} ∼ C N (0,1), respectively (Song et al., 2010a). For HHH and {GGGi}Q

i=1 normalized

to a Frobenius norm of
√

W , signal-to-interference-plus-noise ratio (SINR) in dB denoted as

γsinr(PPP) for a projection matrix PPP and INR [dB] denoted as γinr are, respectively, defined for Q

interferers with identical power as

γsinr(PPP) = 10log10

E
{∥∥PPPHHHSSS

∥∥2

F

}
E
{∥∥PPPGGGFFF

∥∥2

F

}
+E

{∥∥PPPZZZ
∥∥2

F

} (6.35a)

γinr = 10log10

E

{∥∥GGGFFF
∥∥2

F

}
E

{∥∥ZZZ
∥∥2

F

} . (6.35b)

Average SINR gain [dB] is defined as 1
NSOI

∑NSOI
n=1

(
γsinr(PPP)− γsinr(IIINRW )

)
. To assess the perfor-

mance of the MI-RFI subspace estimators, root mean square error (RMSE) is defined through

a per column subspace estimation error as in (Liu et al., 2008) and (Roemer et al., 2009).

Specifically,

RMSE =

√
E
{∥∥ΔUUU

∥∥2

F

}
, (6.36)

where ΔUUU(:,k) = ÛUU(:,k)
ÛUU

H
(:,k)UUU(:,k)

|ÛUUH
(:,k)UUU(:,k)|

−UUU(:,k) and UUU is the true estimate. Similarly, the

performance of SMB-JoNICOE is assessed via joint RMSE (J-RMSE) defined in (6.37), for

ΔQ = Q̂−Q, ΔLi = L̂(i)−Li, and U(·) being a unit step function.

Implementation of Algorithm 6.1 simulates MLSEP whose average RMSEE is assessed by av-

eraging (6.14) over 200 LTIs. Having deployed the equivalent smoothed matrices and tensors,

s-MLSEP is simulated by adapting the aforementioned definitions and Algorithm 6.1. There-
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J-RMSE =

√√√√U(−ΔQ)E
{ Q̂

∑
i=1

(ΔLi)2 +(ΔQ)2
}
+U(ΔQ)E

{ Q

∑
i=1

(ΔLi)2 +(ΔQ)2
}
. (6.37)

after, its average RMSEE is assessed by averaging (6.22) over 200 LTIs. Meanwhile, Tensorlab

(Sorber et al., Jan. 2014) is deployed for our matricization and tensorization operations, and

all the performance assessments are reported subsequently.
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TB-MSE: NR = 4, Q = 2

MB-MSE: NR = 4, Q = 2

TB-MSE: NR = 8, Q = 2

MB-MSE: NR = 8, Q = 2

TB-MSE: NR = 12, Q = 2

MB-MSE: NR = 12, Q = 2

Figure 6.3 RMSE for TB-MSE and MB-MSE: Ntot = 160,

W = 8, N = 20, and (σ1,σ2) = (1,1) W

6.7.1 Performance Assessment of the MI-RFI Subspace Estimators

Monte-Carlo simulations for the tensor-based MI-RFI subspace estimator (TB-MSE) and the

matrix-based MI-RFI subspace estimator (MB-MSE) are conducted by employing

[
Û

[I]
]T

(3)

and ÛUUI , respectively, in (6.36) and deploying the aforementioned simulation setup. As cor-

roborated by Fig. 6.3, TB-MSE and MB-MSE have identical RMSE performance when NR ≤
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Figure 6.4 RMSE for TB-MSE, MB-MSE, STB-MSE, and

SMB-MSE: Ntot = 250, W = 10, and (σ1,σ2) = (1,1) W

∑Q
i=1(Li + 1). Otherwise, TB-MSE outperforms MB-MSE, especially as NR gets larger, for

Û
[I]

renders an improved noise suppression by filtering the noise in three different modes.

Similarly, Monte-Carlo simulations for the smoothed tensor-based MI-RFI subspace estima-

tor (STB-MSE) and the smoothed matrix-based MI-RFI subspace estimator (SMB-MSE) are

performed as per the aforementioned simulation setup while employing

[
Û s[I]

]T

(3)

and ÛUU
s
I ,

respectively, in (6.36). As demonstrated by Fig. 6.4, STB-MSE significantly improves SMB-

MSE, especially for smaller values of η . As expected, STB-MSE and SMB-MSE, respectively,

improve TB-MSE and MB-MSE whenever η <W . The smaller estimation errors are attributed

to the smoothing which provides more observation windows. For η =W , STB-MSE and SMB-

MSE overlap with TB-MSE and MB-MSE, respectively.
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Q = 2, Ntot = 900

Figure 6.5 J-RMSE for SMB-JoNICOE over 5000 iterations:

W = NR = 8, η = 1, and (σ1,σ2) = (1,1) W

6.7.2 Performance Assessment of SMB-JoNICOE

Having deployed the aforementioned simulation setup and (6.37), the J-RMSE performance

of SMB-JoNICOE is simulated through Algorithm 6.2. As demonstrated by Figs. 6.5 & 6.6,

J-RMSE for SMB-JoNICOE decreases as the INR increases. It is evident that an MI-RFI with

stronger power will have a better joint estimate of the number of interferers and their respective

channel order. It is also evident from Fig. 6.6 that J-RMSE gets smaller, as Q gets smaller. For

an Ntot which is not large enough, increasing the INR won’t help too much after some level of

INR—as depicted in Figs. 6.5 & 6.6.

6.7.3 Performance Assessment of MLSEP

By deploying the aforementioned simulation setup, the average RMSEE performance of MLSEP

is simulated along with the respective performances of SP and CSP. Having taken the EVD of
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Figure 6.6 J-RMSE for SMB-JoNICOE over 5000 iterations:

W = NR = 8, η = 1, and (σ1,σ2,σ3) = (1,1,1) W

the space-time correlation matrix made of (6.3), the dominant eigenvectors are used for the

simulation of SP. On the other hand, (6.3) and its equivalent received via Na
R low-gain auxiliary

antennas make the space-time crosscorrelation matrix whose SVD is exploited for the simula-

tion of CSP. Low-gain auxiliary antennas exhibit large sidelobes where interference is observed

at. Hence, any received weak interference would get strong. To simulate this phenomenon, we

deploy an α factor which renders high INR. Meanwhile, average RMSEE exhibited by SP and

CSP is simulated by averaging the matrix version of (6.14) over 200 LTIs.

6.7.3.1 Performance for Perfect {Li}Q
i=1 and Q

Fig. 6.7 demonstrates that MLSEP provides an INR gain of at least 5 dB, for γinr ≥ 10 dB and

Q = 2. This visible gain is attributed to the employed TB-MSE. Similarly, Fig. 6.8 demon-

strates a better average SINR gain for MLSEP which is also attributed to the TB-MSE. Mean-
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Figure 6.7 Average RMSEE for an MI-RFI excision using SP,

CSP, and MLSEP: Ntot = 300, W = 5, N = 60, and α = 100. Note

that [1] and [2] represent (van der Tol & van der Veen, 2005) and

(Jeffs et al., 2005), respectively

while, it is evident from Fig. 6.8 that MLSEP performs close to the perfect excision algorithm

which assumes a perfect knowledge of the MI-RFI channel.

6.7.3.2 Performance with SMB-JoNICOE

As it is also observed in Figs. 6.9 & 6.10, MLSEP simulated with estimates produced by SMB-

JoNICOE improves SP and CSP. As the INR increases, MLSEP with SMB-JoNICOE performs

very close to the genie-aided MLSEP which requires the knowledge of {Li}Q
i=1 and Q. This

happens for SMB-JoNICOE produces estimates with high accuracy whenever the INR is high.
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Figure 6.8 Average SINR gain of MI-RFI excision using SP,

CSP, and MLSEP: Ntot = 300, W = 5, N = 60, and α = 100. Note

that [1] and [2] represent (van der Tol & van der Veen, 2005) and

(Jeffs et al., 2005), respectively

6.7.4 Performance Assessment of s-MLSEP

6.7.4.1 Performance for Perfect {Li}Q
i=1 and Q

Having employed the aforementioned setup, the average RMSEE and average SINR gain per-

formances of s-MLSEP are plotted in Figs. 6.11 & 6.12, respectively. As it is evident from Fig.

6.11, s-MLSEP significantly improves MLSEP, as the smoothing factor gets smaller, despite

an increase in computation time. The significant improvement is attributed to the STB-MSE

which also renders an improvement in the average SINR gain depicted in Fig. 6.12.
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Figure 6.9 Average RMSEE for an MI-RFI excision using

MLSEP: Ntot = 800 and W = NR = 8. Note that [1] and [2]

represent (van der Tol & van der Veen, 2005) and (Jeffs et al.,
2005), respectively

6.7.4.2 Performance with SMB-JoNICOE

For a similar reason to the ideal scenario discussed above, s-MLSEP simulated with estimates

of SMB-JoNICOE improves MLSEP simulated with SMB-JoNICOE—as demonstrated by

Figs. 6.13 & 6.14. Moreover, at high INR, s-MLSEP with SMB-JoNICOE performs very

close to the genie-aided s-MLSEP which requires the knowledge of {Li}Q
i=1 and Q, since SMB-

JoNICOE offers more precise estimates at high INR.

6.8 Performance Assessment on Real-World Data

To assess the MI-RFI excision on real-world data, we acquired real-time RFI contaminated

analog-to-digital converter (ADC) data sampled at 2048 MHz. The ADC data were received

by one of the antennas of the very large array (VLA) observatory (NRAO, 2017) and their
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Figure 6.10 Average SINR gain of MI-RFI excision using

MLSEP: Ntot = 800, W = NR = 8, and η = 1. Note that [1] and

[2] represent (van der Tol & van der Veen, 2005) and (Jeffs et al.,
2005), respectively

FFT is plotted in Figs. 6.15 & 6.16, where f = 0 Hz corresponds to a sky frequency of 3988

MHz and 10log10 |Y ( f )| indicates the magnitude of the FFT in dB. As seen in Fig. 6.16,

there are four impinging RFIs from 102.8 MHz to 127.5 MHz. These frequencies plus the

aforementioned sky frequency implies that the RFIs are caused by satellites transmitting in the

downlink of a C band (Maral & Bousquet, 2009, Table 1.3). Meanwhile, it is assumed that the

aforementioned RFIs are received upon a line-of-sight propagation, i.e., {Li}4
i=1 = 0, because

of the high directivity of the VLA antennas (NRAO, 2017) at this frequency and the received

MI-RFI power.

In order to perform the performance assessment, first, the four RFIs are extracted using Kaiser

window bandpass filters (Oppenheim & Schafer, 2010) and superimposed to generate the MI-

RFI for the first antenna. Second, the VLA data and the MI-RFI received at the remaining

(NR− 1) antennas are generated by considering a uniform linear array incurring one-symbol
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Figure 6.11 Average RMSEE for an MI-RFI excision using

MLSEP and s-MLSEP: Ntot = 600, W = 10, and N = 60
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Figure 6.12 Average SINR gain of MI-RFI excision using

MLSEP and s-MLSEP with Ntot = 600, W = 10, and N = 60
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Figure 6.13 Average RMSEE performance of MLSEP and

s-MLSEP: Ntot = 800, W = NR = 8, and η = 1

delay between neighboring antennas. Next, a per LTI spatial filtering and MI-RFI excision are

executed using MLSEP, SP, and CSP, for [Ntot,γinr,NR,Na
R,W ] = [800,20 dB,10,6,5].

The results of the MI-RFI excision using MLSEP, SP, and CSP are demonstrated in Figs. 6.17

& 6.18. Fig. 6.17 corroborates that the average residual MI-RFI power after MLSEP excision

is almost one-fourth of the average residual MI-RFI power after SP or CSP excision, since the

received power is proportional to the squared amplitude. Meanwhile, Fig. 6.18 showcases an

almost flat spectrum rendered by MLSEP along with the non-flat spectra of SP and CSP. This

implies the efficacy of MI-RFI excision using MLSEP, as also demonstrated by an approxi-

mately 10 dB excision of the MI-RFI spectrum. Moreover, Fig. 6.19 depicts the FFT of the

spatially filtered VLA data using MLSEP, SP, and CSP. It shows that both SP and CSP ren-

der an almost flat spectrum from 0 MHz to 130 MHz, unlike the spectrum of the VLA data.

On the contrary, the spectrum of the VLA data after the MI-RFI spatial filtering by MLSEP
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Figure 6.14 Average SINR gain performance of MLSEP and

s-MLSEP: Ntot = 800, W = NR = 8, and η = 1

produces a spectrum in the 0 MHz-130 MHz whose envelope almost follows that of the SOI,

while efficiently excising the MI-RFI.

6.9 Conclusions

This paper introduces the multi-linear algebra framework to the MI-RFI excision research. To

do so, TB-MSE, which provides a significant improvement in the estimation of the MI-RFI

subspace whenever NR > ∑Q
i=1(Li+1), is deployed for the estimation of the MI-RFI subspace.

Thereafter, the multi-linear projector that renders perfect excision of the MI-RFI, for the per-

fectly estimated MI-RFI subspace tensor, is derived. However, perfect estimate of the MI-RFI

subspace tensor cannot be obtained and a performance parameter named RMSEE, which quan-

tizes the root mean square MI-RFI excision error, is used. The aforementioned multi-linear

estimation and projection produce MLSEP. Meanwhile, smoothed observation windows are

exploited to propose s-MLSEP which enhances MLSEP at the expense of computation time.
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Figure 6.15 The absolute value of the FFT of the VLA data

As MLSEP and s-MLSEP require the knowledge of the number of interferers and their respec-

tive channel order, a novel SMB-JoNICOE, which jointly enumerates the number of interfer-

ers and their respective channel order, is proposed. Performance analyses which employ the

first-order perturbation analysis corroborate that both MLSEP and s-MLSEP can excise all in-

terferers when the perturbations get infinitesimally small. For such perturbations, the analyses

also attest that s-MLSEP exhibits a faster convergence to a zero excision error than MLSEP

which, in turn, converges faster than SP. Furthermore, the complexity of MLSEP and s-MLSEP

is analyzed. Despite its complexity, Monte-Carlo simulations have corroborated that MLSEP

significantly improves the state-of-the-art projection-based algorithms. Moreover, smoothing

improves MLSEP at the price of computation time. At last, performance assessment on the

real-world data also corroborates that MLSEP outperforms the state-of-the-art projection-based

RFI excision algorithms.
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Figure 6.16 The lower frequency component

Acknowledgments

The authors acknowledge AVIO-601 project for the provided funding and Alan Erickson of the

National Radio Astronomy Observatory for facilitating the RFI data.



165

Figure 6.17 Real-world MI-RFI excision

Figure 6.18 The FFT of a real-world MI-RFI excision
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“Everything is interesting if you go into it deeply enough.”—Richard P. Feynman

Abstract—An F–test detector with a simple analytical false alarm threshold expression is con-

sidered an alternative to the blind detectors which exhibit complicated analytical expressions.

However, the existing F–test requires the channel state information (CSI) as prior knowledge

and is known to be sensitive to CSI estimation errors. In this paper, we present and evaluate

simple F–test based spectrum sensing techniques that do not require the knowledge of CSI

for multi-antenna cognitive radios. Exact and asymptotic analytical performance closed-form

expressions are derived for the presented detectors. Simulations assess the performance of the

presented detectors and validate the derived closed-form expressions. For an additive noise ex-

hibiting the same variance across multiple-antenna frontends, simulations also corroborate that

the presented detectors are constant false alarm rate (CFAR) detectors which are also robust

against noise uncertainty.

Index Terms—Cognitive radio, spectrum sensing, channel state information, F–test, CFAR

detectors.
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7.1 Introduction

Cognitive radio (CR) is a promising technology to alleviate the problem of spectrum scarcity

which is getting aggravated by an ever-increasing demand for higher data rates. To realize

such a radio, licensed spectrum sharing techniques such as spectrum underlay and spectrum

overlay have been proposed (Zhao & Sadler, 2007; Wang & Liu, 2011). In spectrum un-

derlay, a secondary user (SU) is allowed to transmit on the licensed band of a primary user

(PU) while respecting a PU’s interference threshold (Wang & Liu, 2011). In spectrum overlay,

SUs rather transmit after locating idle frequency bands, licensed to PUs, till a primary trans-

mission is conducted on them (Wang & Liu, 2011; Haykin, 2005). Such an idle frequency

band detection is called spectrum sensing and hence fundamental to CR based communica-

tion systems. As per the bandwidth of the signal to be detected, spectrum sensing techniques

can be narrowband or wideband (Sharma et al., 2015; Bogale et al., 2015; Sun et al., 2013;

Jayaweera, 2014). Depending on the adopted sampling rate, the wideband techniques can be

Nyquist based (Ali & Hamouda, 2017; Sun et al., 2013) or sub-Nyquist based (Donoho, 2006;

Venkataramani & Bresler, 2000). The Nyquist based wideband sensing techniques are based on

either fast Fourier transforms (Quan et al., 2009), Wavelets (Tian & Giannakis, 2006), or filter-

banks (Farhang-Boroujeny, 2008). The sub-Nyquist ones deploy either compressive sampling

(Donoho, 2006) or multi-coset sampling (Venkataramani & Bresler, 2000).

Delving into narrowband sensing, several narrowband spectrum sensing techniques have been

proposed to date (Wang & Liu, 2011; Axell et al., 2012; Haykin et al., 2009; Ali & Hamouda,

2017; Sharma et al., 2015). The conventional ones are energy detection (ED) (Jayaweera,

2014; Digham et al., 2007; Sofotasios et al., 2013), matched filtering (Poor, 1994), feature-

based detection (Gardner, 1988), polarization detection (Guo et al., 2016), sample covariance

matrix (SCM) based algorithms (Kortun et al., 2012; Zeng & Liang, 2009b,a; Bianchi et al.,

2011), moment ratio detection (Bogale & Vandendorpe, 2013a), and max-min detection (Bo-

gale & Vandendorpe, 2014, 2013b). Nevertheless, ED relies on the known power spectral

density of the noise and exhibits a high sensitivity to noise uncertainty (Wang & Liu, 2011;

Axell et al., 2012) leading to a poor performance at low signal-to-noise ratio (SNR) regardless
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of the number of intercepted samples, as demonstrated via the SNR walls (Tandra & Sahai,

2008); matched filters suffer from intrinsic computational complexity; particular features need

to be introduced to deploy feature detectors in OFDM-based communications (Wang & Liu,

2011); polarization detectors are computationally complex and sensitive to estimation errors

(Guo et al., 2016); SCM-based techniques suffer from performance loss under sample-starved

settings—despite their blindness—and their asymptotic threshold differs considerably from the

exact value for finite sensors and samples (Kortun et al., 2012); moment ratio detection is com-

putationally complex and relies on the asymptotic Gaussian distribution; and max-min detector

suffers from huge computational complexity.

Apart from the highlighted conventional algorithms, some other algorithms such as Bartlett

estimate-based energy detection (Gismalla & Alsusa, 2012), a frequency domain eigenvalue-

based spectrum sensing algorithms (Yousif et al., 2016), subband energy-based spectrum sens-

ing algorithm (Dikmese et al., 2016), energy detection spectrum sensing under RF imperfec-

tions and with multiple PUs (Boulogeorgos et al., 2016a,b), and robust estimator-correlator and

robust generalized likelihood detectors (Patel et al., 2016) have been proposed. However, all

these important contributions are less attractive for practical CR applications since they rely on

the complex Gaussian distributed primary signal. On the other hand, unlike most of the afore-

mentioned multi-antenna techniques which presume an independent and identically distributed

(i.i.d.) noise samples, calibration uncertainties in the different antenna frontends are inevitable

rendering independent and non-identically distributed (i.ni.d.) noise samples. Such a scenario

was considered in (Leshem & van der Veen, 2001; Tugnait, 2012; Ramírez et al., 2011): by

assuming a Gaussian distributed received signal, a Hadamard ratio detector (HRD) was derived

in (Leshem & van der Veen, 2001); a spectrum sensing technique which deploys asymptotic

analysis of the discrete Fourier transform of the received multi-antenna signal—whose time

domain version is an HRD—is proposed in (Tugnait, 2012); and (Ramírez et al., 2011) devised

a generalized likelihood ratio test (GLRT) based technique by proposing an efficient alternating

minimization algorithm to compute its statistic.
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Recently, the F–test based spectrum sensing technique was proposed in (Huang & Chung,

2013a,b) and corroborated to be superior over an energy detector, a maximum-minimum eigen-

value (MME) detector, and a GLRT detector, especially at low SNR. While exhibiting a mod-

erate computational complexity, this detector is also robust against noise uncertainty and inde-

pendent of noise power. However, it requires prior knowledge of the channel state information

(CSI) between the primary transmitter and secondary receiver. Hence, it is susceptible to CSI

estimation errors.

Inspired by the performance of the F–test detector of (Huang & Chung, 2013a), this paper

presents modified versions of (Huang & Chung, 2013a) that do not require the knowledge of

CSI nor the noise power. For these F–test based techniques, this paper studies and evalu-

ates their performance analytically. Specifically, the respective contributions of this paper are

itemized below.

• Along with its performance analyses, a detector named F–test via singular value decom-

position (FT-v-SVD) is presented for a single-input multiple-output (SIMO) CR network

operating over flat fading channels.

• Apart from its performance analyses, a detector dubbed generalized FT-v-SVD (g-FT-v-

SVD) is presented for a multi-antenna spectrum sensing over frequency selective chan-

nels.

• The g-FT-v-SVD detector is generalized to accommodate a spectrum sensing over a

multiple-input multiple-output (MIMO) CR network.

• For both i.i.d. and i.ni.d. noise samples, the performance of the presented detectors

is assessed through Monte-Carlo simulations which also validate the derived analytical

expressions.

Following this introduction, Sec. 7.2 presents the notation and system model. Sec. 7.3 details

FT-v-SVD whose performance analyses are reported in Sec. 7.4. Sec. 7.5 details g-FT-v-

SVD and its performance analyses. Sec. 7.6 provides a computational complexity analysis of

different detectors. Sec. 7.7 reports the simulation results that inspire the paper conclusions

drawn in Sec. 7.8.



173

7.2 Notation and System Model

7.2.1 Notation

Scalars, vectors, and matrices are denoted by italic letters, lower-case boldface letters, and

upper-case boldface letters, respectively; ∼, n!, ∝, �·	, ≡, ←, and → mean distributed as,

n factorial, statistically equivalent, the ceiling function, is equivalent to, assignment, and ap-

proaches to, respectively; lim, max{·, ·}, || · ||, (·)T , (·)H , (·)−1, and (·)+ imply limit, max-

imum, the Euclidean norm, transpose, Hermitian, inverse, and the Moore-Penrose inverse,

respectively; CM, CM×N , and H
M×M denote the sets of M–dimensional vectors of complex

numbers, of M×N complex matrices, and of M×M Hermitian matrices, respectively; diag(·),
AAA(i, j), AAA(:, j), AAA(:, i : j), IIINR

(
IIINRW

)
, and 000M×N denote a diagonal matrix, the (i, j)-th element

of AAA, the j-th column of AAA, the columns of AAA between its i-th and j-th columns including its

i-th and j-th columns, an NR×NR
(
NRW ×NRW

)
identity matrix, and an M×N zero ma-

trix, respectively; O(·), Pr{·}, E{·}, tr(·), and C N M(μμμ,ΣΣΣ) represent the Landau notation, the

probability of, expectation, trace, and the circularly symmetric complex multivariate normal

distribution with mean μμμ ∈ C
M and covariance matrix ΣΣΣ ∈ H

M×M (M ≥ 2), respectively; χ2,

Fν1,ν2
, F ′ν1,ν2

(λ1), and F ′′ν1,ν2
(λ1,λ2) denote chi-square, the central F–distribution with (ν1,ν2)

degrees of freedom (DoF), the singly noncentral F–distribution with (ν1,ν2) DoF and a non-

centrality parameter (NCP) of λ1, and the doubly noncentral F–distribution with (ν1,ν2) DoF

and NCPs of (λ1,λ2), respectively; and F(λ ;ν1,ν2), F−1(λ ;ν1,ν2), F ′(λ ;ν1,ν2|λ1), and

F ′′(λ ;ν1,ν2|λ1,λ2) denote the cumulative distribution function (CDF) of Fν1,ν2
, the inverse

CDF of Fν1,ν2
, the CDF of F ′ν1,ν2

(λ1), and the CDF of F ′′ν1,ν2
(λ1,λ2), respectively, evaluated at

λ .

7.2.2 System Model

Consider a CR communication system made of a primary transmitter and a secondary receiver

with NR antennas. First, the primary transmitter is assumed to have one antenna for simplicity;

but a generalization regarding a multi-antenna primary transmitter is given in Sec. 7.5.4. For
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an opportunistic transmission, the SU senses the licensed band through a frequency selective

channel modeled as a finite-duration impulse response filter with L+1 taps. Toward this end,

a binary hypothesis test is formulated on a primary signal detection as

yyy[k] =

⎧⎪⎨
⎪⎩

∑L
l=0 hhhls[k− l]+ zzz[k] : H1

zzz[k] : H0,

(7.1)

where H0 and H1 are, respectively, hypotheses regarding the idleness and activeness of a PU,

yyy[k] ∈ C
NR is the k-th sample received signal vector, zzz[k] ∼ C NNR(000,ΣΣΣ) is a zero mean cir-

cularly symmetric complex additive white Gaussian noise (AWGN) with ΣΣΣ ∈ H
NR×NR , hhhl =

[h1l,h2l, . . . ,hNRl]
T ∈ C

NR is the l-th multi-path fading component’s CSI vector assumed con-

stant during the primary signal interception, and s[k] is the k-th unknown and deterministic

primary symbol.

For i.i.d. noise samples with power σ2, ΣΣΣ = σ2IIINR is considered. For i.ni.d. noise samples, we

suppose ΣΣΣ = σ2IIINR +σ2EEE, where EEE = diag(ε1,ε2, . . . ,εNR), εi > 0 and 1≤ i≤ NR, is an error

matrix accommodating the respective calibration uncertainties on the NR antenna frontends.

For flat fading channels, moreover, we consider L = 0 and hhh0 = hhh.

7.3 FT-v-SVD: Algorithm

The FT-v-SVD algorithm is detailed for a reception over flat fading channels under i.i.d. noise

samples. We also derive equivalent test statistics and discuss the effect of i.ni.d. noise samples

on the performance of FT-v-SVD.

7.3.1 The Formulated F–Test

In the presented spectrum sensing technique, the SCM R̂RRyy ∈ C
NR×NR is, first, computed using

(7.1) as

R̂RRyy =
1

N

N

∑
k=1

yyy[k]yyyH [k] =
1

N
YYYYYY H , (7.2)
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where N is the number of intercepted per-antenna samples and YYY =
[
yyy[1],yyy[2], . . . ,yyy[N]

] ∈
C

NR×N . Second, the SVD of the SCM is computed by using (7.2) as

R̂RRyy = ÛUU Σ̂ΣΣV̂VV
H
= [ÛUUs ÛUUn]Σ̂ΣΣV̂VV

H
, (7.3)

where Σ̂ΣΣ = diag(σ̂1, σ̂2, . . . , σ̂NR), for σ̂1 ≥ σ̂2 . . . ≥ σ̂NR being the singular values, ÛUUs = ÛUU(:

,1)∈C
NR is the estimated subspace spanned by the singular vector corresponding to the largest

singular value, and ÛUUn = ÛUU(:,2 : NR) ∈C
NR×(NR−1). Third, a projection matrix P̂PPs ∈C

NR×NR is

computed from ÛUUs as

P̂PPs = ÛUUsÛUU
+
s = ÛUUsÛUU

H
s , (7.4)

where UUUH
s UUUs = 1 is exploited in UUU+

s = (UUUH
s UUUs)

−1UUUH
s , as ÛUUs is an orthonormal vector.

Fourth, a decision statistic T which is based on the F–test is formed to verify the existence

of a linear relationship between the received signal samples and the received primary signal.

Following (Huang & Chung, 2013a, eq. (5)) and using (7.4), the FT-v-SVD test statistic and

the corresponding decision rule are formulated as

T � ν2

ν1

tr(P̂PPsR̂RRyy)

tr
(
(IIINR− P̂PPs)R̂RRyy

) H1

�
H0

λ , (7.5)

where λ is the decision threshold and (ν1,ν2)=
(
2N,2N(NR−1)

)
are the DoF of the numerator

and denominator, respectively.

Remark 6. Unlike (Huang & Chung, 2013a, eq. (5)), (7.5) is independent of the knowledge

of the CSI between the primary transmitter and the secondary receiver.
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7.3.2 Equivalent Test Statistics

This subsection derives test statistics that are statistically equivalent with the formulated F–test

statistic. Substituting (7.2) and (7.4) into (7.5) renders

T
(a)
= (NR−1)

tr(σ̂1ÛUUsV̂VV
H
s )

tr
(
ÛUUnΣ̂ΣΣnV̂VV

H
n
) , (7.6)

where (a) follows from the fact that ÛUUsÛUU
H
s ÛUUs = ÛUUs and ÛUU

H
s ÛUUn = 0001×(NR−1) for the columns

and rows of ÛUU are orthonormal (Horn & Johnson, 2013, Thm. 2.1.4). Because the SCM is

a Hermitian as well as a positive semi-definite matrix, its eigenvalue decomposition and SVD

are identical. Hence, ÛUU = V̂VV , ÛUUs = V̂VV s, and ÛUUn = V̂VV n. As a result,

T = (NR−1)

[
σ̂1tr(ÛUUsÛUU

H
s )

tr
(
ÛUUnΣ̂ΣΣnÛUU

H
n
) (b)
=

σ̂1tr(ÛUUsÛUU
H
s )

tr
(
ÛUU

H
n ÛUUnΣ̂ΣΣn

)
]
, (7.7)

where (b) follows for tr(AAABBB) = tr(BBBAAA) (Magnus & Neudecker, 2007). From the orthonormal

property of ÛUU , tr
(
ÛUUsÛUU

H
s
)
= ||ÛUUs||2 = 1 and ÛUU

H
n ÛUUn = III(NR−1). Accordingly, tr

(
ÛUU

H
n ÛUUnΣ̂ΣΣn

)
=

tr
(
Σ̂ΣΣn
)
= ∑NR

i=2 σ̂i and

T = (NR−1)
σ̂1

∑NR
i=2 σ̂i

∝
σ̂1

∑NR
i=2 σ̂i

. (7.8)

Remark 7. To reduce the computational complexity of the FT-v-SVD algorithm, it can also be

implemented via (7.8) as an eigenvalue detector.

As ∑NR
i=2 σ̂i = ∑NR

i=1 σ̂i− σ̂1, the test statistic can also be further simplified to

T ∝
σ̂1

∑NR
i=1 σ̂i− σ̂1

=
σ̂1/∑NR

i=1 σ̂i

1− σ̂1/∑NR
i=1 σ̂i

=
y

1− y
, (7.9)

where y = σ̂1/∑NR
i=1 σ̂i and 1/NR ≤ y ≤ 1 (Wang et al., 2010, Appendix II). Note that (7.9)

increases monotonically over y ∈ (1/NR,1). Consequently, the test statistic simplifies to

T ∝
σ̂1

∑NR
i=1 σ̂i

. (7.10)



177

Remark 8. As the singular values and the eigenvalues of the SCM are identical, (7.10) and

the blind GLRT statistic (Wang et al., 2010, eq. (13)), (Taherpour et al., 2010, eq. (39)) are

identical.

7.3.3 Impact of i.ni.d. Noise Samples on FT-v-SVD

As the F–test is derived from a likelihood ratio test under i.i.d. noise samples (Seber, 2003, Ch.

4), this detector implicitly exploits the assumption that the noises in the different antenna fron-

tends are i.i.d.. Nonetheless, calibration uncertainties are unavoidable rendering noises with

unequal variance in the different antenna frontends (Leshem & van der Veen, 2001; Ramírez

et al., 2011). As elucidated in Sec. 7.4.3, i.ni.d. noise samples incur performance loss, espe-

cially for low to medium SNRs.

7.4 Performance Analyses of FT-v-SVD

7.4.1 Exact Performance Analyses: i.i.d. Noise Samples

For H1, plugging (7.1) into (7.2) and, in turn, into (7.5) give

T |H1 =
ν2

ν1

F̂1|H1

F̂2|H1

, (7.11)

where F̂1|H1 =
N

∑
k=1

(
hhhs[k]+zzz[k]

)HP̂PPs
(
hhhs[k]+zzz[k]

)
, F̂2|H1 =

N

∑
k=1

(
hhhs[k]+zzz[k]

)H(IIINR−P̂PPs
)(

hhhs[k]+

zzz[k]
)
, and zzz[k] ∼ C NNR(000,σ2IIINR). As T |H1 is the ratio of two independent and scaled non-

central χ2–distributed random variables (RVs), T |H1 ∼ F ′′ν1,ν2
(λ H1

1 ,λ H1
2 ) (Johnson et al., 1995,

Ch. 30) for
(
λ H1

1 ,λ H1
2

)
= 2

σ2 ∑N
k=1

(∣∣∣∣P̂PPshhhs[k]
∣∣∣∣2, ∣∣∣∣(IIINR− P̂PPs

)
hhhs[k]

∣∣∣∣2).

Similarly, the test statistic under H0 becomes

T |H0 =
ν2

ν1

F̂1|H0

F̂2|H0

, (7.12)
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where F̂1|H0 =
N

∑
k=1

zzzH [k]P̂PPszzz[k] and F̂2|H0 =
N

∑
k=1

zzzH [k](IIINR − P̂PPs)zzz[k]. The right-hand side of

(7.12) is a ratio of two independent and scaled χ2–distributed RVs. Thus, T |H0 ∼ Fν1,ν2
(John-

son et al., 1995, Ch. 27). Hereinafter, the exact expressions for the probability of detection—

denoted by Pd—and the probability of false alarm—denoted by Pf —are derived.

7.4.1.1 The Probability of False Alarm and Test Threshold

The exact Pf = Pr
{

T > λ |H0

}
= Pr

{
T |H0 > λ

}
exhibited by FT-v-SVD is obtained as

Pf = 1−Pr
{

T |H0 ≤ λ
}
= 1−F(λ ;ν1,ν2). (7.13)

For a given λ , ν1, and ν2, the false alarm rate (FAR) of FT-v-SVD, regardless of the noise

power, is given by (7.13). Accordingly, FT-v-SVD is a constant false alarm rate (CFAR) de-

tector under i.i.d. noise samples. From (7.13), meanwhile, the test threshold rendering a target

Pf = α is given by λ = F−1
(
1−α;ν1,ν2

)
.

7.4.1.2 The Probability of Detection

The exact Pd for a given λ is computed as

Pd = Pr
{

T > λ |H1

}
= Pr

{
T |H1 > λ

}
= 1−Pr

{
T |H1 ≤ λ

}
. (7.14)

Since T |H1 ∼ F ′′ν1,ν2
(λ H1

1 ,λ H1
2 ), (7.14) simplifies to

Pd = 1−F ′′
(
λ ;ν1,ν2

∣∣λ H1
1 ,λ H1

2

)
. (7.15)

As the function that computes F ′′ν1,ν2
(λ1,λ2) is unavailable in a well-known software such as

MATLAB R©, we approximate F ′′ν1,ν2
(λ1,λ2) by Fν1,ν2

through the approximation of the non-

central χ2–distributions by the central χ2–distributions (Johnson et al., 1995). Therefore, em-
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ploying (Johnson et al., 1995, eq. (30.54)),

F ′′ν1,ν2
(λ1,λ2)≈ 1+λ1ν−1

1

1+λ2ν−1
2

Fν ,ν ′ , (7.16)

where ν = (ν1 +λ1)
2(ν1 +2λ1)

−1 and ν ′ = (ν2 +λ2)
2(ν2 +2λ2)

−1. Using the CDF relation-

ship (Bertsekas & Tsitsiklis, 2008, p. 206),

F ′′
(
λ ;ν1,ν2

∣∣λ H1
1 ,λ H1

2

)≈ F
(
λ ′;β H1

1 ,β H1
2

)
, (7.17)

where λ ′ =
(
1+λ H1

2 ν−1
2

)
λ/

(
1+λ H1

1 ν−1
1

)
, β H1

1 = (ν1+λ H1
1 )2(ν1+2λ H1

1 )−1 and β H1
2 = (ν2+

λ H1
2 )2(ν2 +2λ H1

2 )−1. Note that (7.17) can be used for numerical assessments.

7.4.2 Asymptotic Performance Analyses: i.i.d. Noise Samples

The subsequent asymptotic performance analyses make use of the first-order perturbation anal-

ysis and the estimation theory of a population covariance matrix (PCM). The first-order per-

turbation analysis is mainly used as a performance analysis tool for subspace-based algorithms

(Ciuonzo et al., 2015; Roemer et al., 2014; Liu et al., 2008). Accordingly, it is deployed here to

assess the asymptotic performance of FT-v-SVD. To facilitate mathematical tractability, quan-

tization error is assumed negligible.

To motivate the first-order perturbation analysis under H1, the noiseless SCM is defined as

RRR(n)
yy = 1

N ∑N
k=1 yyy[k]yyyH [k]

∣∣∣{
zzz[k]
}N

k=1
=0

and decomposed as

RRR(n)
yy =UUUΣΣΣVVV H = [UUUs UUUn]ΣΣΣ[VVV s VVV n]

H , (7.18)

where ΣΣΣ= diag(σ1,0, . . . ,0), for ΣΣΣs =σ1, UUUs =UUU(:,1) is the perfectly estimated primary signal

subspace, and UUUn = UUU(:,2 : NR). Comparing (7.3) and (7.18) via the first-order perturbation

analysis (Ciuonzo et al., 2015, eqs. (18) and (20)),

ÛUUs =UUUs +ΔUUUs; ÛUUn =UUUn +ΔUUUn, (7.19)
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where ΔUUUs = UUUnUUUH
n ZZZVVV sΣΣΣ−1

s is the perturbations in the primary signal subspace whereas

ΔUUUn =−UUUsΣΣΣ−1
s VVV H

s ZZZHUUUn is the perturbations in the noise subspace for ZZZ =N−1 ∑N
k=1

(
hhhs[k]zzzH [k]

+ zzz[k]sH [k]hhhH + zzz[k]zzzH [k]
)
—zzz[k]∼ C NNR(000,σ2IIINR).

Using (7.19), the projection matrix is also given by

P̂PPs = (UUUs +ΔUUUs)(UUUs +ΔUUUs)
+. (7.20)

By utilizing (7.19) and (7.20) in (7.3) and (7.5), the asymptotic Pd and Pf are characterized

subsequently.

7.4.2.1 Asymptotic Probability of Detection

The asymptotic Pd exhibited by FT-v-SVD is characterized beneath.

Proposition 3. For λ < ∞ and 000 implying 000NR×1, lim
ΔUUUs→000

Pd = 1.

Proof. Please refer to Appendix 1 under APPENDIX VII.

Proposition 3 corroborates that FT-v-SVD detects a primary signal perfectly when the pertur-

bations get infinitesimally small. In other words, this detector is certain in detecting an active

PU, as the respective SNR gets larger.

For infinitely large sample size, the estimation theory of a PCM asserts that the SCM per-

fectly approximates the PCM. To this end, the asymptotic Pd—with respect to (w.r.t.) N—is

characterized by the following proposition.

Proposition 4.

lim
N→∞

Pd = 1−F ′(λ ;ν1,ν2|λ H1), (7.21)

where λ H1 = lim
N→∞

2

σ2

N

∑
k=1

∣∣∣∣hhhs[k]
∣∣∣∣2. If λ > (NR−1)γ̄∞

snr for γ̄∞
snr = lim

N→∞

1

N

N

∑
k=1

∣∣∣∣hhhs[k]
∣∣∣∣2

NRσ2
being

the average SNR over an infinite duration, then lim
N→∞

Pd = 0.
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Proof. Please refer to Appendix 2 under APPENDIX VII.

7.4.2.2 Asymptotic Probability of False Alarm

Similarly, the estimation theory of a PCM is deployed to characterize the exhibited asymptotic

Pf stated beneath.

Lemma 4. If λ > 0, lim
N→∞

Pf = 0.

Proof. Please see Appendix 3 under APPENDIX VII.

Remark 9. As N → ∞, FT-v-SVD exhibits a null probability of false alarm.

7.4.3 Asymptotic Performance Analyses: i.ni.d. Noise Samples

Proposition 5. If Piid
d and Pinid

d , respectively, denote the probability of detection under i.i.d.

and i.ni.d. noise samples, lim
N→∞

Piid
d > lim

N→∞
Pinid

d whenever σ2tr
(
EEE
)
> 0. If σ2tr

(
EEE
)
= 0, on the

other hand, lim
N→∞

Piid
d = lim

N→∞
Pinid

d .

Proof. Please see Appendix 4 under APPENDIX VII.

Note that the i.i.d. and i.ni.d. cases render the same performance whenever σ2tr
(
EEE
)
= 0. In

case of calibration errors, σ2tr
(
EEE
)
= 0 if and only if σ2 = 0. Accordingly, both i.i.d. and i.ni.d.

cases exhibit identical performance at high SNR which approximately implicates a zero noise

covariance matrix.

7.5 g-FT-v-SVD: Algorithms and Performance Analyses

7.5.1 Detector for SIMO Systems

From (7.1), stacking the observations of the secondary antennas into a highly structured vector

w.r.t. the m-th short-term interval (STI) made of W symbol durations gives (Getu et al., 2017;
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Song et al., 2010a)

yyym =

⎧⎪⎨
⎪⎩

HHHsssm + zzzm : H1

zzzm : H0,

(7.22)

where yyym ∈ C
NRW , sssm =

[
s[mW ],s[mW − 1], . . . ,s[mW −W − L+ 1]

]T ∈ C
(W+L), and zzzm ∼

C NNRW (000,σ2IIINRW ). Meanwhile, HHH =
[
HHHT

1 ,HHH
T
2 , . . . ,HHH

T
NR

]T ∈ C
NRW×(W+L) is the secondary

filtering matrix for HHH j ∈ C
W×(W+L) being a banded Toeplitz matrix—made of the j-th an-

tenna’s impulse response hhh j
�
=
[
h j0, . . . ,h jL

]T
—defined as in (Song et al., 2010a, eq. (5)) for

h ji = h( j)
i , i ∈ {

0,1, . . . ,L
}

.

The SCM ˜̂RRRyy ∈ C
NRW×NRW and its SVD can then be computed as

˜̂RRRyy =
1

Ñ

Ñ

∑
m=1

yyymyyyH
m =

1

Ñ
ỸYYỸYY H

(7.23a)

= ˜̂UUU ˜̂ΣΣΣ ˜̂VVV H = [ ˜̂UUUs
˜̂UUUn]

˜̂ΣΣΣ ˜̂VVV H , (7.23b)

where Ñ denotes the number of intercepted STIs, ỸYY = [yyy1,yyy2, . . . ,yyyÑ ] ∈C
NRW×Ñ , ˜̂UUUs =

˜̂UUU(:,1 :

r)∈C
NRW×r is the estimated subspace spanned by the eigenvectors corresponding to the largest

r =W +L eigenvalues, ˜̂UUUn =
˜̂UUU(:,r+1 : NRW )∈C

NRW×(NRW−r), and
˜̂ΣΣΣ= diag( ˜̂σ1, ˜̂σ2, . . . , ˜̂σNRW )

for
{

˜̂σi
}NRW

i=1
being the singular values. Note that ˜̂UUUs is a primary signal subspace estimator un-

der H1. To identify the primary signal subspace under H1, we make the following assumptions:

the SCM is full rank, i.e., Ñ ≥ (W + L) (Getu et al., 2017); HHH has a full column rank, i.e.,

NRW ≥ (W + L); and the window length is greater than the secondary channel order, i.e.,

W > L. The corresponding projection matrix ˜̂PPPs ∈ C
NRW×NRW is then defined as

˜̂PPPs =
˜̂UUUs

˜̂UUU+
s = ˜̂UUUs

˜̂UUUH
s . (7.24)

Using (7.23a) and (7.24), the g-FT-v-SVD test statistic and decision rule are formulated as

T̃ � ν̃2

ν̃1

tr( ˜̂PPPs
˜̂RRRyy)

tr
(
(IIINRW − ˜̂PPPs)

˜̂RRRyy
) H1

�
H0

λ̃ , (7.25)
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where (ν̃1, ν̃2) =
(
2Ñr,2Ñ(NRW − r)

)
are the respective DoF and λ̃ is the decision threshold.

Substituting (7.23b) and (7.24) into (7.25), and adopting the simplifications of (7.6)–(7.8),

T̃ =
NRW − r

r
∑r

i=1
˜̂σi

∑NRW
i=r+1

˜̂σi
∝ ∑r

i=1
˜̂σi

∑NRW
i=r+1

˜̂σi
. (7.26)

Following the highlighted processing, the g-FT-v-SVD algorithm is summarized in Algorithm

7.1.

Algorithm 7.1 g-FT-v-SVD Algorithm

Input:
{

yyym
}Ñ

m=1
, λ̃ , ν̃1, and ν̃2

Output: H1 or H0

1 Stack the observations through (7.22) and obtain yyym

2 Compute ˜̂RRRyy and ˜̂UUUs using (7.23a) and (7.23b), respectively

3 Compute ˜̂PPPs using (7.24)

4 Compute T̃ using (7.25)

5 if T̃ > λ̃ , H1 is true
6 else, H0 is true

7.5.2 Performance Analyses

Based on the performance analyses of FT-v-SVD, g-FT-v-SVD is analyzed below.

Theorem 13. The exact Pd = Pr
{

T̃ > λ̃ |H1} = Pr
{

T̃ |H1 > λ̃} and Pf = Pr{T̃ > λ̃ |H0} =
Pr{T̃ |H0 > λ̃} exhibited by g-FT-v-SVD are given by

Pd = 1−F ′′
(
λ̃ ; ν̃1, ν̃2

∣∣λ̃ H1
1 , λ̃ H1

2

)
(7.27a)

Pf = 1−F
(
λ̃ ; ν̃1, ν̃2

)
, (7.27b)

where λ̃ H1
1 = 2

σ2 ∑Ñ
m=1 || ˜̂PPPsHHHsssm||2 and λ̃ H1

2 = 2
σ2 ∑Ñ

m=1 ||(IIINRW − ˜̂PPPs)HHHsssm||2.
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Proof. Following (7.11) and (7.15), replacing (7.22) under H1 into (7.23a) and, in turn, into

(7.25) render (7.27a). Following (7.12) and (7.13), adopting the same substitutions gives

(7.27b). �

Regardless of the power of the contaminating AWGN, the FAR manifested by g-FT-v-SVD is

given by (7.27b). Hence, g-FT-v-SVD is also a CFAR detector under i.i.d. noise samples. From

(7.27b), the target threshold rendering a target Pf = α̃ is obtained as λ̃ = F−1
(
1− α̃; ν̃1, ν̃2

)
.

Meanwhile, the asymptotic behavior of g-FT-v-SVD is characterized beneath.

Proposition 6. For 000 denoting 000NRW×r, the asymptotic Pd and Pf exhibited by g-FT-v-SVD are

characterized through

lim
ΔŨUUs→000

Pd = 1 (7.28a)

lim
Ñ→∞

Pd = 1−F ′(λ̃ ; ν̃1, ν̃2|λ̃ H1) (7.28b)

lim
Ñ→∞

Pf = 0, (7.28c)

where λ̃ H1 = lim
Ñ→∞

2

σ2

Ñ

∑
m=1

∣∣∣∣HHHsssm
∣∣∣∣2, ΔŨUUs is the perturbations in the primary signal subspace

estimator ˜̂UUUs, and λ̃ > 0.

Proof. The relationship in (7.28a) follows from the substitution of (ν1,ν2,T ) by (ν̃1, ν̃2, T̃ ),[
IIINR ,ΔUUUs

]
by

[
IIINRW ,ΔŨUUs

]
, and

[
ÛUU , Σ̂ΣΣ,V̂VV

]
by

[ ˜̂UUU , ˜̂ΣΣΣ, ˜̂VVV
]

in Appendix 1 (under APPENDIX

VII). On top of the aforementioned replacement, replacing
[
UUU ,ΣΣΣ,VVV

]
by

[
ŨUU , Σ̃ΣΣ,ṼVV

]
—for ŨUU , Σ̃ΣΣ,

and ṼVV being the true estimates—and following Appendix 2 (under APPENDIX VII) render

(7.28b). At last, using T̃ |H0 in place of T |H0 and following Appendix 3 (under APPENDIX

VII) result in (7.28c) whenever λ̃ > 0. �

Remark 10. For (L,W )= (0,1), the g-FT-v-SVD algorithm becomes the FT-v-SVD algorithm.



185

7.5.3 Impact of i.ni.d. Noise Samples

Similar to FT-v-SVD, g-FT-v-SVD assumes receiver frontends experiencing i.i.d. noise sam-

ples only. Practically, calibration uncertainties rendering i.ni.d. noise samples occur on the

receiver frontends. As a result, g-FT-v-SVD—like FT-v-SVD—incurs a performance loss un-

der i.ni.d. noise samples. Consequently, Proposition 5 is also valid for g-FT-v-SVD when EEE is

replaced by ẼEE given by ẼEE = diag
(

ε̃1, ε̃1, . . . , ε̃1︸ ︷︷ ︸
W times

, . . . , ε̃NR , ε̃NR , . . . , ε̃NR︸ ︷︷ ︸
W times

)
, ε̃i > 0, 1≤ i≤ NR.

7.5.4 Generalization to a MIMO CR Network

It is probable that a PU has a primary transmitter with NT antennas and an SU equipped with NR

antennas senses the licensed spectrum for an opportunistic spectrum access. In this scenario,

we have a MIMO CR network and the generalization of g-FT-v-SVD—hereinafter referred to

as the MIMO CR g-FT-v-SVD—is presented subsequently.

Based on the system model in (Song et al., 2013, Sec. II-A), the k-th received and sampled

baseband signal yyy[k] ∈ C
NR is expressed via a binary hypothesis test given by

yyy[k] =

⎧⎪⎨
⎪⎩

∑L
l=0 HHHlsss[k− l]+ zzz[k] : H1

zzz[k] : H0,

(7.29)

where sss[k] =
[
s1[k],s2[k], . . . ,sNT [k]

]T ∈C
NT denotes the k-th symbol vector transmitted through

the NT transmit antennas—s j[k] being the k-th unknown and deterministic primary symbol

emitted by the j-th primary antenna—and HHHl ∈C
NR×NT comprises the MIMO channel impulse

responses corresponding to the l-th multi-path fading component.
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Similar to Sec. 7.5.1, stacking the observations of the secondary antennas into a highly struc-

tured vector w.r.t. the m-th STI gives

ỹyym =

⎧⎪⎨
⎪⎩

HHHT s̃ssm + zzzm : H1

zzzm : H0,

(7.30)

where ỹyym ∈C
NRW , s̃ssm =

[
sssT

1m,sss
T
2m, . . . ,sss

T
NT m

]T ∈C
NT (W+L) for sss jm =

[
s j[mW ],s j[mW −1], . . . ,

s j[mW −W −L+ 1]
]T ∈ C

(W+L) (Song et al., 2013), and HHHT ∈ C
NRW×NT (W+L) is the MIMO

filtering matrix made of banded Toeplitz matrices and defined through (Song et al., 2013, eqs.

(3)-(5)).

Using (7.30), the corresponding SCM ˜̃RRRyy ∈ C
NRW×NRW is computed as

˜̃RRRyy =
1

˜̃N

˜̃N

∑
m=1

ỹyymỹyyH
m =

1

˜̃N
˜̃YYY ˜̃YYY H , (7.31)

where ˜̃N is the number of STIs and ˜̃YYY = [ỹyy1, ỹyy2, . . . , ỹyy ˜̃N ]. From (7.30), the PCM under H1

becomes (Song et al., 2013, eq. (6))

R̃RRyy = E
{

ỹyymỹyyH
m
}
= HHHT RRRs̃s̃HHHH

T +σ2IIINRW , (7.32)

where RRRs̃s̃ =E
{

s̃ssms̃ssH
m
}∈C

˜̃r× ˜̃r, for ˜̃r = NT (W +L), denotes the primary data correlation matrix

which indicates an NRW × ˜̃r dimensional primary signal subspace. Applying SVD to (7.31),

˜̃RRRyy =
˜̃UUU ˜̃ΣΣΣ ˜̃VVV H = [ ˜̃UUUs

˜̃UUUn]
˜̃ΣΣΣ ˜̃VVV H , (7.33)

where ˜̃ΣΣΣ = diag
(

˜̃σ1, ˜̃σ2, . . . , ˜̃σNRW
)
, for ˜̃σi being the i-th singular value, ˜̃UUUs =

˜̃UUU(:,1 : ˜̃r) ∈
C

NRW× ˜̃r denotes the estimated subspace spanned by the eigenvectors corresponding to the

largest ˜̃r eigenvalues, and ˜̃UUUn =
˜̃UUU(:, ˜̃r+1 : NRW ). To identify the primary signal subspace un-

der H1, meanwhile, we make these assumptions (Song et al., 2013): NT < NR, ˜̃N ≥NT (W +L),

NRW ≥ NT (W +L), and W > L.
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Using (7.31) and a projection matrix ˜̃PPPs ∈ C
NRW×NRW defined as ˜̃PPPs =

˜̃UUUs
˜̃UUUH

s , the MIMO CR

g-FT-v-SVD test statistic and decision rule are formulated as

˜̃T �
˜̃ν2

˜̃ν1

tr( ˜̃PPPs
˜̃RRRyy)

tr
(
(IIINRW − ˜̃PPPs)

˜̃RRRyy
) H1

�
H0

˜̃λ , (7.34)

where ( ˜̃ν1, ˜̃ν2) =
(
2 ˜̃N ˜̃r,2 ˜̃N(NRW − ˜̃r)

)
are the DoF and

˜̃λ is the decision threshold.

Remark 11. As the g-FT-v-SVD algorithm is an FT-v-SVD algorithm for L = 0 and W = 1,

the FT-v-SVD algorithm can similarly be generalized to a MIMO CR network.

7.6 Computational Complexity Analysis

Based on (Huang & Chung, 2013a, Table I), the computational complexity analysis of the F–

test (FT) detector (Huang & Chung, 2013a), a multi-channel energy detector (MCED) (Wang

et al., 2010), a blind GLRT detector (Taherpour et al., 2010; Wang et al., 2010), an MME de-

tector (Zeng & Liang, 2009b), an FT-v-SVD, and a g-FT-v-SVD is tabulated in Tables 7.1 and

7.2. To minimize complexity, the complexity of FT-v-SVD and g-FT-v-SVD is, respectively,

analyzed through the equivalent statistics in (7.8) and (7.26). Computing (7.8) requires com-

puting an SCM and its SVD which require NNR(NR + 1)/2, for even N, and O
(
N3

R
)

complex

multiplications and additions (Huang & Chung, 2013a; Zeng & Liang, 2009b), respectively.

Similarly, computing (7.26) requires ÑNRW (NRW + 1)/2 and O(N3
RW 3) complex multiplica-

tions and additions.

As a SIMO system with NR antennas can be modeled via a single-antenna system oversampled

at an oversampling factor M = NR (Zeng & Liang, 2009b, Sec. II), the computational complex-

ity of max-min detector (Bogale & Vandendorpe, 2014, 2013b) is analyzed w.r.t. the complex

multiplications and additions carried out in (Bogale & Vandendorpe, 2014, eqs. (5)-(14)). De-

tailing the overall analysis: the computation of AAA and BBB of (Bogale & Vandendorpe, 2014, eq.

(5)) requires NR(NR +1)�N/2	 multiplications each and NR(NR +1)�N/2	 additions each; the

SVD in (Bogale & Vandendorpe, 2014, eq. (8)) requires O
(
N3

R
)

multiplications and O
(
N3

R
)
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Table 7.1 Computational complexity (in

multiplication) analysis of different detectors

Detectors Complex multiplications

MCED (Wang et al., 2010) NRN
FT (Huang & Chung, 2013a) NR(NR +1)(1+ �N/2	)
Blind GLRT NR(NR +1)�N/2	+O

(
N3

R
)

(Taherpour et al., 2010; Wang et al., 2010)(
MME (Zeng & Liang, 2009b)

)
FT-v-SVD NR(NR +1)�N/2	+O

(
N3

R
)

g-FT-v-SVD NRW (NRW +1)�Ñ/2	+O
(
N3

RW 3
)

max-min (Bogale & Vandendorpe, 2014, 2013b) (6N2
R +NNR)(NR +1)+4NR +2O

(
N3

R
)

Table 7.2 Computational complexity (in addition)

analysis of different detectors

Detectors Complex additions

MCED (Wang et al., 2010) (NR−1)(N−1)
FT (Huang & Chung, 2013a) NR(NR +1)�(N−1)/2	+2(NR−1)

Blind GLRT NR(NR +1)�N/2	+O
(
N3

R
)

(Taherpour et al., 2010; Wang et al., 2010)(
MME (Zeng & Liang, 2009b)

)
FT-v-SVD NR(NR +1)�N/2	+O

(
N3

R
)

g-FT-v-SVD NRW (NRW +1)�Ñ/2	+O
(
N3

RW 3
)

max-min (Bogale & Vandendorpe, 2014, 2013b) (NR +1)(NNR +4NR−4)
+3NR(NR−1)(2NR +1)+2O

(
N3

R
)

additions; the computation of ÃAA, beneath (Bogale & Vandendorpe, 2014, eq. (13)), requires

4N3
R multiplications and 4N2

R(NR− 1)+NR(NR− 1) additions; the SVD of ÃAA requires O
(
N3

R
)

multiplications and O
(
N3

R
)

additions; the computation of αααmin as well as αααmax—employed in

(Bogale & Vandendorpe, 2014, eqs. (6) and (7))—requires N3
R +N2

R multiplications each and

N2
R(NR− 1)+NR(NR− 1) additions each; and the computation (via (Bogale & Vandendorpe,

2014, eq. (5))) of the numerator and denominator of (Bogale & Vandendorpe, 2014, eq. (14))

requires 2NR(NR+1) multiplications each and 2(NR−1)(NR+1) additions each. Summing up

the overall computations, the complexity of max-min detector reported in Tables 7.1 and 7.2 is

obtained.
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An FT-v-SVD has similar complexity with that of GLRT and MME, and an FT exhibits the least

computational complexity at the cost of the availability of perfect CSI. As per Tables 7.1 and

7.2, the multiplication and addition complexities of FT-v-SVD and g-FT-v-SVD are in the or-

der of O
(
max{NN2

R/2,N3
R}
)

and O
(
max{ÑN2

RW 2/2,N3
RW 3}), respectively. Accordingly, the

direct implementation of the presented algorithms are attractive for small-scale multi-antenna

systems, as they exhibit a computational burden for high NR and N or Ñ.

Remark 12. By employing the trace of the SCM and the power method—which computes

the maximum eigenvalue without computing the SVD (Golub & Van Loan, 2013)—so as to

implement (7.8), the computational burden of FT-v-SVD can be alleviated for large-scale multi-

antenna systems.

7.7 Simulation Results

Unless otherwise mentioned, this section provides Monte-Carlo simulations and/or analytical

performance assessments of FT-v-SVD, g-FT-v-SVD, and MIMO CR g-FT-v-SVD by using

the simulation parameters of Table 7.3. The performance of these detectors is exhaustively

assessed also via a comparison with the state-of-the-art detectors.

Table 7.3 Simulation parameters

unless otherwise mentioned

Simulation parameters Assigned value

(NR,W,L) (5,3,1)

(Ps, Ñ, ˜̃N) (10 W,100,100)

(Number of realizations, N) (103,103)

The subsequently reported results are conducted for SIMO systems unless they are explicitly

accompanied by a pair (NT ,NR) which implicates the MIMO CR network considered in Sec.

7.5.4. Unless it is explicitly stated as “a transmission over an AWGN channel”, the reported

detection plots are simulated for fading channels. To simulate the detection plots for a SIMO

CR system over a frequency flat fading, a frequency selective fading, and an AWGN channels,

we consider a quadrature phase shift keying (QPSK) modulated primary signal, i.e, s[k] =
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√
Ps/2

[
sI

k+ jsQ
k

]
for Ps being the transmitted primary power and {sI

k,s
Q
k } ∈ {−1,1}×{−1,1}.

For a MIMO CR network, we also consider QPSK symbols that are transmitted via the NT

antennas, i.e., s j[k] =
√

Ps/2
[
sI

k j + jsQ
k j

]
, {sI

k j,s
Q
k j} ∈ {−1,1}×{−1,1} and 1≤ j ≤ NT .

Without loss of generality and similar to (Ramírez et al., 2010), we assume that
{

hhhl
}L

l=0
∼

C N NR(000, IIINR). Similarly, we assume that the elements of HHHl exhibit the Gaussian distribution

with zero mean and unit variance, i.e., HHHl(i, j) ∼ C N 1(0,1), 0 ≤ l ≤ L, 1 ≤ i ≤ NR, and

1 ≤ j ≤ NT . For the target FAR of 0.1, the corresponding FT-v-SVD decision threshold λ ,

the corresponding g-FT-v-SVD decision threshold λ̃ , and the corresponding MIMO CR g-

FT-v-SVD decision threshold
˜̃λ are obtained via the implementation—under H0—of the test

statistics in (7.5), (7.25), and (7.34), respectively, followed by averaging over 106 realizations.

By defining the SNR as γsnr =
∣∣∣∣hhhs[k]

∣∣∣∣2/∑NR
i=1(1+ εi)σ2, FT-v-SVD is simulated via (7.5);

g-FT-v-SVD is simulated through (7.25) for an SNR defined as γsnr =
∣∣∣∣HHHsssm

∣∣∣∣2/∑NRW
i=1 (1+

ε̃i)σ2; and the MIMO CR g-FT-v-SVD is simulated via (7.34) for an SNR defined as γsnr =∣∣∣∣HHHT s̃ssm
∣∣∣∣2/NRWσ2. Moreover, the false alarm plots are simulated by considering the samples

of an AWGN of power σ2 as an input.

Regarding the performance assessment of FT-v-SVD with i.ni.d. noise samples and NR = 5,

EEE = diag
(
0.2,0.1,0.4,0.1,0.2

)
is considered. To simulate the performance of g-FT-v-SVD

with i.ni.d. noise samples, we consider NR = 5, W = 3, and ẼEE = diag
(
eee1,eee2,eee3,eee4,eee5

)
, where

eee1 = eee5 = [0.4,0.4,0.4], eee2 = eee4 = [0.2,0.2,0.2], and eee3 = [0.8,0.8,0.8]. For simulations under

i.ni.d. noise samples, EEE and ẼEE are assumed constant and known to the FT-v-SVD and g-FT-v-

SVD receivers, respectively. Unless stated explicitly, the simulations are conducted with i.i.d.

noise samples. To simulate the effect of noise uncertainty, we assume—like (Tugnait, 2012)—

that all detectors overestimate σ2 by a factor of uncertainty denoted by ηnu, i.e., σ̂2 = ηnuσ2,

and compute the respective thresholds but the tests—of Sec. 7.7.3—are simulated using data

with exact noise variance σ2. For the usual assumption that the noise is stationary and ergodic,

we deploy a constant noise uncertainty factor ξ = 10log10 ηnu that is usually valid when the

observation time is short (Wang et al., 2010).
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Figure 7.1 ROC for a transmission over an AWGN channel:

M = NR = 8 and γsnr =−14 dB. Note that [26] and [27] represent

(Bogale & Vandendorpe, 2014) and (Bogale & Vandendorpe,

2013b), respectively

7.7.1 Performance Assessment of FT-v-SVD

7.7.1.1 Performance Comparison with the State-of-the-art

We compare the max-min detector (Bogale & Vandendorpe, 2014, 2013b) applied to a system

oversampled at M = 8 with the FT-v-SVD detector applied to a SIMO system with NR = 8.

To do so, the max-min algorithm is simulated for a synchronous receiver scenario via (Bo-

gale & Vandendorpe, 2014, eqs. (22) and (23)) using the parameters of (Bogale & Vanden-

dorpe, 2013b, Table II) estimated for a transmitter which employs a square root raised cosine

filter. Having employed the same filter and assumed a perfect synchronization, the performance

of FT-v-SVD is simulated through Monte-Carlo simulations averaged over 104 realizations. As

seen in Fig. 7.1 which depicts the receiver operating characteristics (ROC) for a transmission

over an AWGN channel, FT-v-SVD outperforms the max-min detector though the max-min



192

detector intercepts the received signal for a much longer time, i.e., N = 215 (32768) versus

500. It is worth noting that such an improvement is evident with a much lesser computational

complexity, as analyzed in Tables 7.1 and 7.2.
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Figure 7.2 Pd versus γsnr: Pf = 0.1 and 104 realizations. Note

that [22], [38], [42], and [43] represent (Zeng & Liang, 2009b),

(Huang & Chung, 2013a), (Taherpour et al., 2010), and (Wang

et al., 2010), respectively

For the detection of a primary signal manifesting a very low SNR, Fig. 7.2 demonstrates that

FT-v-SVD outperforms both MME (Zeng & Liang, 2009b) and GLRT (Taherpour et al., 2010;

Wang et al., 2010). Moreover, it is corroborated by the same plot that FT-v-SVD—being a blind

detector—performs as good as FT (Huang & Chung, 2013a) fed with a perfect CSI (PCSI) for

γsnr ≥−10 dB.



193

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

P
ro

b
a
b
il
it
y

o
f
d
et
ec

ti
o
n

FT-v-SVD
FT with PCSI [38]

Analytical (15)

FT-v-SVD
FT with PCSI [38]

Analytical (15)

γsnr=−4 dB

γsnr=0 dB

Figure 7.3 Pd versus λ . Note that [38] represents

(Huang & Chung, 2013a) and (15) stands for (7.15)

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

P
ro

b
a
b
il
it
y

o
f
d
et
ec
ti
o
n

FT-v-SVD
FT with PCSI [38]

Analytical (15)

FT-v-SVD
FT with PCSI [38]

Analytical (15)

NR=6

NR=9

Figure 7.4 Pd versus λ : γsnr =−4 dB. Note that [38] represents

(Huang & Chung, 2013a) and (15) stands for (7.15)
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7.7.1.2 Validation of the Closed-Form Detection Expressions

As observed in Fig. 7.3, FT-v-SVD which is a blind detector performs as good as the one in

(Huang & Chung, 2013a) fed with PCSI regardless of the SNR. As λ increases, the detection

performance of FT-v-SVD falls like FT with PCSI, as both become susceptible to more ambi-

guity. Fig. 7.4 displays the Pd versus λ plot w.r.t. a different number of secondary antennas.

As before, FT-v-SVD and FT with PCSI manifest identical performance regardless of NR. Be-

sides, their detection performance improves with the increment of NR. Meanwhile, Figs. 7.3

and 7.4 validate (7.15) which was plotted via the approximation in (7.17).
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Asymptotic (21): N = 300

Figure 7.5 Pd versus γsnr: Pf = 0.1. Note that [38] represents

(Huang & Chung, 2013a); (15) and (21) stand for (7.15) and

(7.21), respectively

As observed in Fig. 7.5, FT with PCSI performs better than FT-v-SVD, especially for a very

low SNR and N = 300. This is evident because of the primary signal subspace estimates

being poor whenever the SNR is very small, especially for a sample size as small as N = 300.

For γsnr ≥ −10 dB, FT-v-SVD performs as good as FT fed with PCSI though the former is a
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Figure 7.6 Pd versus γsnr: Pf = 0.1. Note that [38] represents

(Huang & Chung, 2013a); (15) and (21) stand for (7.15) and

(7.21), respectively

blind detector. As the primary signal can be in a deep fade of the secondary receiver and hence

manifesting a low SNR at the secondary antennas (Cabric, 2008), such a detection performance

is important, especially for real-time and fast sensing applications. As N increases from 300

to 600, Fig. 7.6 demonstrates that the performance of FT-v-SVD approaches that of FT’s even

at very low SNR. This phenomenon implies that the blind detector—FT-v-SVD—performs as

good as, regardless of the SNR, the detector fed with PCSI when N gets larger. For weak to

moderately weak SNR, Figs. 7.5 and 7.6 validate the accuracy of the exact and asymptotic

expressions given by (7.15) and (7.21), respectively. For γsnr ≤−10 dB, the numerical results

of these expressions deviate from the Monte-Carlo simulation results, especially for N = 300.

This implies that (7.17) which was deployed to depict the numerical results of (7.15) renders

a poor approximation. On the other hand, as N increases from 300 to 600, the accuracy of the

asymptotic expression increases, regardless of the SNR, implying its validity as N gets larger.
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Figure 7.7 Pf versus λ . Note that (13) stands for (7.13)

7.7.1.3 The FAR and Complementary ROC Curves

Fig. 7.7 depicts the Pf versus λ plot exhibited by FT-v-SVD for N ∈ {1000,4000}. As de-

picted, FT-v-SVD exhibits an identical Pf for σ ∈{1,5}W for N ∈{1000,4000}. Accordingly,

FT-v-SVD is a CFAR detector under i.i.d. noise samples, as also implied by (7.13). In addition,

it is visible that the analytical and simulation results are overlapping for λ ≥ 1.2 and λ ≥ 1.1

at N = 1000 and N = 4000, respectively. For λ < 1.1 and λ < 1.2, there is a deviation between

the analytical results and the Monte-Carlo simulation results, especially for N = 1000. As N

increases from 1000 to 4000, the analytical and the Monte-Carlo simulation results become

very close to each other. Meanwhile, increasing N renders a shift in the Pf plot to the Pf = 0

line indicating the validity of Lemma 4.

Fig. 7.8 depicts the complementary ROC manifested by FT-v-SVD and FT. As evident from

Fig. 7.8, in comparison with FT-v-SVD, FT with PCSI offers a slightly smaller probability of

missed detection (Pm)—simulated as Pm = 1−Pd—for a given Pf . Exhibited by FT-v-SVD,
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this performance loss is due to a slightly smaller Pd rendered by FT-v-SVD, especially for N as

small as 50. Hence, this is a little price to pay by FT-v-SVD when compared with FT fed with

PCSI. Moreover, Fig. 7.8 validates (7.15)—plotted via (7.17)—and (7.13).

7.7.1.4 Performance Assessment under i.i.d. and i.ni.d. Noise Samples

Figs. 7.9 and 7.10 display the Pd versus γsnr plot for FT-v-SVD, FT with PCSI, and the time

domain detector (Tugnait, 2012, eq. (25))—also known as an HRD (Leshem & van der Veen,

2001, eq. (3))—at the desired FAR of 0.1. Having observed Figs. 7.9 and 7.10, the following

conclusions can be made: as the magnitude of the calibration uncertainties increases, FT—

under i.ni.d. noise samples—suffers a performance loss even if it has a PCSI; for the small to

high SNR regimes and small calibration uncertainties, FT-v-SVD performs as good as HRD; as

the magnitude of calibration uncertainties increases, FT-v-SVD—under i.ni.d. noise samples—

also suffers a performance loss for it is formulated using the F–test that is the result of a like-
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lihood ratio under i.i.d. noise samples (Seber, 2003, Ch. 4); and an HRD (Leshem & van der

Veen, 2001, eq. (3)), (Tugnait, 2012, eq. (25))—derived under the assumption of i.ni.d. noise

samples—exhibits no performance loss regardless of the magnitude of the calibration uncer-

tainties. As a summary, Figs. 7.9 and 7.10 demonstrate that the detectors derived for i.i.d. noise

samples suffer a performance loss at low SNR under i.ni.d. noise samples unlike the detectors

derived using the assumption of i.ni.d. noise samples. Moreover, as seen in Figs. 7.9 and 7.10,

both the i.i.d. and i.ni.d. cases exhibit identical performance at high SNR—the validation of

Proposition 5.
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7.7.2 Performance Assessment of g-FT-v-SVD

7.7.2.1 Assessment of Detection Performance

Fig. 7.11 displays the results of the Monte-Carlo simulation and the expression in (7.27a) that

was plotted via the approximation in (7.17). As demonstrated, the Pd exhibited by g-FT-v-SVD

improves with NR and the Monte-Carlo results validate the accuracy of (7.27a).

Fig. 7.12 implicates that g-FT-v-SVD performs better with i.i.d. noise samples than with

i.ni.d. noise samples—corroborating Proposition 5. For i.i.d. noise samples, the detection

performance of g-FT-v-SVD is better with L = 1 than with L = 2, as the increment in channel

order renders in a poor subspace estimation accuracy for the primary signal subspace. At the

desired FAR of 0.1, the detection probability exhibited by g-FT-v-SVD approaches one even
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Figure 7.11 Pd versus λ̃ : Ñ = 1000, W = 4, L = 2, and

γsnr =−4 dB. Note that (27a) stands for (7.27a)

for an SNR as small as -5 dB. For the high SNR regimes, a detection probability of one is

observed—validating (7.28a). Meanwhile, Fig. 7.13 corroborates the improvement w.r.t. NR

of the g-FT-v-SVD’s detection performance.

Via Fig. 7.14, the impact of frequency selectivity on the detection performance of g-FT-v-

SVD is assessed. As it is seen, g-FT-v-SVD suffers from the increment of L which implies the

poor performance of the detector when the severity of frequency selective fading increases. In

other words, the increment in L indicates the enlarging primary signal subspace—estimated via

(7.23b). Consequently, a bigger subspace would be estimated with a lesser accuracy rendering

the aforementioned poor performance whenever L increases.

7.7.2.2 Assessment of the FAR and Complementary ROC

The probability of false alarm exhibited by g-FT-v-SVD is depicted by Figs. 7.15-7.18. For

both i.i.d. and i.ni.d. noise samples, and L ∈ {1,2}, g-FT-v-SVD exhibits an identical FAR for
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Figure 7.12 Pd versus γsnr: Pf = 0.1 and 105 realizations

σ ∈ {1,5} W. These phenomena corroborate that g-FT-v-SVD is a CFAR detector under i.i.d.

noise samples, as also implied by (7.27b), and i.ni.d. noise samples. Practically, however, the

CFAR property lacks when the noises are i.ni.d., as the elements of ẼEE are unknown and can

vary since they can be RVs. Besides, Figs. 7.15 and 7.16 attest that the FAR increases w.r.t. L

under i.i.d. as well as i.ni.d. noise samples, as increasing L makes the subspace estimation less

accurate.

Regarding the FAR exhibited by g-FT-v-SVD, Figs. 7.17 and 7.18 display the respective sim-

ulation and analytical results. The plots essentially corroborate that both results overlap with

each other for λ̃ ≥ 1.3 and λ̃ ≥ 1.15 for Ñ ∈ {1000,3000} and Ñ ∈ {3000,6000}, respectively.

It is also visible in Figs. 7.17 and 7.18 that the Monte-Carlo simulation gets very close to the

plot of the closed-form in (7.27b), as Ñ is increased from 3000 to 6000. As Ñ gets larger and

larger, the SCM perfectly estimates the PCM, especially when N → ∞ (≡ Ñ → ∞)—cf. Ap-

pendix 2 (under APPENDIX VII). Under this perfect estimation scenario, the g-FT-v-SVD test

statistic in (7.25) would become the ratio of two independent χ2–distributed RVs, with (ν̃1, ν̃2)
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Figure 7.13 Pd versus γsnr: Pf = 0.1 and 105 realizations

DoF, multiplied by ν̃2/ν̃1. Thus, this ratio is precisely distributed as Fν̃1,ν̃2
when Ñ gets very

large rendering the aforementioned improvement in the accuracy of (7.27b). Moreover, as Ñ

is increased from 3000 to 6000, the simulation results get closer to the analytical results which

are also getting closer to the Pf = 0 line—validating (7.28c).

The complementary ROC exhibited by g-FT-v-SVD is displayed via Fig. 7.19. This figure

features the Pm versus Pf plot, where Pm is also simulated as Pm = 1−Pd . As displayed, both

the simulation and the analytical results overlap with each other. This validates the closed-form

expressions of (7.27a)—plotted via the approximation in (7.17)—and (7.27b). Moreover, the

natural trade-off between Pm and Pf is evident.

7.7.2.3 Performance Assessment in a MIMO CR Network

Figs. 7.20 and 7.21 depict the probabilities of detection and of false alarm exhibited by the

MIMO CR g-FT-v-SVD, respectively. W.r.t. the desired FAR of 0.1, Fig. 7.20 showcases
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Figure 7.14 Pd versus γsnr: Pf = 0.1 and 105 realizations

the detection performance of the MIMO CR g-FT-v-SVD for different values of NT . As it

is seen, the Pd exhibited by the MIMO CR g-FT-v-SVD decreases with the increment of NT .

Such a performance loss is attributed to the fact that a large NT results in a large primary

signal subspace—estimated via (7.33)—which is naturally estimated poorly. In other words,

the observed performance loss can also be explained via an increase in interference emitted by

the neighboring transmitting antennas whenever NT increases. Such a phenomenon, similarly,

affects the false alarm performance of the MIMO CR g-FT-v-SVD which increases w.r.t. NT ,

as demonstrated in Fig. 7.21.

7.7.3 Performance Assessment of Detectors Under Noise Uncertainty

The impact of noise uncertainty on FT-v-SVD, g-FT-SVD, and MCED is showcased via Figs.

7.22 and 7.23. As it is evident from these plots, both FT-v-SVD and g-FT-SVD exhibit an

identical ROC regardless of the values of the noise uncertainty. Hence, they are robust to noise

uncertainty. On the contrary, as the noise uncertainty increases from 0.75 to 1 dB, it is demon-
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strated in Figs. 7.22 and 7.23 that MCED incurs a significant performance loss implicating its

well-known non-robustness to noise uncertainty.

7.8 Conclusions

CR based communication systems help to overcome the discrepancy between spectrum under-

utilization and spectrum scarcity. Such systems employing a spectrum overlay access scheme

become efficient and reliable whenever spectrum holes are efficiently and robustly detected. In

this respect, efficient and robust spectrum sensing shall not rely on the presumed noise power

nor the primary signal characteristics. Such sensing shall be blind, independent of the knowl-

edge of any CSI, and computationally simple—unlike some of the state-of-the-art spectrum

sensing techniques which rely on several estimated parameters.
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Accordingly, simple F–test based spectrum sensing techniques named FT-v-SVD and g-FT-v-

SVD are presented for a spectrum sensing over a frequency flat and a frequency selective fading

channels, respectively. For these detectors presented for SIMO systems, exact and asymptotic

performance analyses are provided and validated. Along with the aforementioned detectors

presented for SIMO systems, this paper also generalizes the g-FT-v-SVD detector for a MIMO

CR network. Moreover, simulations assess the performance of the presented detectors under

contaminating i.i.d. and i.ni.d. noise samples. As per the conducted simulations with i.i.d.

noise samples, FT-v-SVD and g-FT-v-SVD are corroborated to be CFAR detectors which are

also robust against noise uncertainty.
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Miscellaneous





CHAPTER 8

DISCUSSION OF THE RESULTS

“Imagination will often carry us to worlds that never were. But without it we go

nowhere.”—Carl Sagan

This chapter briefly discusses the overall results of this dissertation along with their implica-

tions and contributions to the respective research fields.

8.1 Discussion of the Results Reported in Part II

Recalling the objectives of this dissertation outlined in Section 1.4.1, the first goal of this dis-

sertation has been the investigation and development of robust radio frequency interference

(RFI) detection algorithms for satellite and terrestrial communications. After a thorough un-

derstanding of the state-of-the-art algorithms and their respective limitations, we have devel-

oped ideas that led to the investigation and development of robust RFI detection algorithms.

To realize these ideas, we have employed the research methodology detailed in Section 1.4.2.

Subsequently, the results of Chapters 2-5 along with their implications are discussed.

In Chapter 2, we have investigated a computationally simple power detector (PD) for the de-

tection of broadband RFI(s). For the probabilities of RFI detection and of false alarm exhibited

by this detector, exact closed-form expressions are derived and validated through simulations.

Simulations also demonstrate that PD outperforms kurtosis detector (KD) (Misra et al., 2009;

Ruf et al., 2006) that has failed to detect Gaussian (near-Gaussian) RFI. Despite such a supe-

rior performance of the investigated PD, the investigated PD requires an accurate estimate of

the noise power and an average signal-to-noise ratio (SNR) which are needed to set a decision

threshold as per the desired false alarm rate (FAR). To perform such estimations, the employed

signal processing technique should be broadband RFI-aware, as RFI(s) can impinge on the

received signal at any time. Accordingly, the results of Chapter 2 have inspired interference-
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aware estimation techniques and such techniques are also key for realizing a communication

paradigm dubbed interference-aware wireless communications.

Chapter 3 detailed the performance analysis of energy detector (ED) investigated for the detec-

tion of an RFI received through the Nakagami-m fading channel along with the signal of interest

(SOI) also received via the same channel. Having exploited the sampling theorem representa-

tion of bandlimited signals, ED computes the intercepted received signal energy which is, in

turn, deployed to make a decision upon the presence of the RFI. By deriving the distribution

of the ED test statistic valid regardless of the type of the impinging RFI, novel approximated

and asymptotic closed-form expressions are derived for the probability of RFI detection man-

ifested by ED. A closed-form expression is also derived for the exhibited probability of false

alarm. These derived closed-form expressions are validated by Monte-Carlo simulations. The

simulations also demonstrate that the investigated ED outperforms both KD and a generalized

likelihood ratio test (GLRT) detector. Regarding real-world data based simulations conducted

using real-world RFI contaminated data received by one of the antennas of the Very Large

Array (VLA) (NRAO, 2017) observatory, simulations further assess the performance of the

investigated ED.

Once the received signal is downconverted to its baseband equivalent, it is worthwhile noting

that ED can be applied in both satellite and terrestrial communications, regardless of their

difference in the pre-baseband signal processing. In spite of such broad applicability and its

appealing simplicity, ED notably relies on the knowledge of the noise power. Consequently, the

realistic implementation of ED as an RFI detector needs an accurate noise power estimator and

such an estimator should be an interference-aware estimator, as an RFI(s) can impinge on the

received signal at any time. Moreover, as summarized and demonstrated in the outlooks section

of Chapter 3, the mixture of Gaussian (MoG) distribution perfectly approximates Nakagami-

m distributed BPSK modulated SOI. Interestingly, the MoG distribution offers such a high

accuracy on top of its analytical tractability. As a result, the performance analysis of an energy-

based RFI detector using the MoG distributed fading channels would be an important extension

to the work reported in the same chapter.
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As the first work on a multi-antenna RFI detection, Chapter 4 reports an eigenvalue-based

robust multi-antenna RFI detection algorithm. The reported eigenvalue detector (EvD) is pro-

posed for multi-antenna wireless communications, especially for single-input multiple-output

(SIMO) systems that may suffer from a multi-antenna RFI. By deriving the distribution—valid

for infinitely huge samples—of the equivalent test statistic, performance closed-form expres-

sions, valid for infinitely large samples, regarding the probability of RFI detection and the

probability of false alarm are derived. The derived closed-form expressions are corroborated by

using Monte-Carlo simulations. For medium to large interference-to-noise ratio (INR) regimes

and sample starved settings, simulations also corroborate that EvD manifests a comparable de-

tection performance with a GLRT detector fed with the knowledge of the SOI channel, and a

matched subspace detector fed with the knowledge of the SOI and RFI channels. Nonetheless,

a single-antenna transmitter assumed by the considered SIMO system is not necessarily the

case for the transmitters of the fourth generation (4G) and the fifth generation (5G) era, as they

are usually equipped with a number of antennas for the sake of array gain, spatial diversity gain,

spatial multiplexing gain, and interference reduction (Biglieri et al., 2007). Accordingly, the

proposed EvD shall be extended to accommodate multiple-input multiple-output (MIMO) and

massive MIMO systems. Furthermore, accounting for the inevitable calibration uncertainties

of the NR antenna frontends similar to (Tugnait, 2012; Ramírez et al., 2011; Leshem & van der

Veen, 2001), consideration of independent and non-identically distributed (i.ni.d.) noise sam-

ples is also worth addressing for SIMO, MIMO, and massive MIMO systems.

Inspired by the results reported in Chapter 4 and Chapter 6—regarding a multi-interferer RFI

(MI-RFI) excision, robust matrix- and tensor-based multi-antenna RFI detection techniques are

proposed and reported in Chapter 5. Motivated by the fact that multi-path fading channels are

usually manifested in practical wireless communication channels, the proposed techniques are,

in particular, applicable for a multi-antenna RFI detection over a multi-path fading channel. To

continue, we have addressed the issue of RFI detection over wireless multi-path fading chan-

nels; we have introduced a tensor-based hypothesis testing framework whose application is

tailored for the detection of RFI; for reception through a multi-path fading channel and SIMO
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systems, we propose a matrix-based RFI detector (MB-RD) and a tensor-based RFI detector

(TB-RD); and the asymptotic performance of the proposed detectors is characterized analyti-

cally and assessed via Monte-Carlo simulations. The simulations validate the derived perfor-

mance characterizations and notably demonstrate that TB-RD outperforms GLRT even though

GLRT assumes the availability of the perfect knowledge of the SOI channel. Accounting for

their inherent signal processing schemes, MB-RD and TB-RD assume that both the SOI and

RFI fading channels remain constant for a long-term interval. On the contrary, some practical

wireless channels manifest highly time-variant multi-path fading channel. Consequently, the

extension of the proposed techniques to accommodate highly time-variant channel scenarios

is of importance. Moreover, as highlighted in the previous paragraphs, MIMO and massive

MIMO multi-antenna systems are preferable to SIMO systems. Thus, the extensions of MB-

RD and TB-RD to account for MIMO and massive MIMO multi-antenna systems are worth

addressing.

8.2 Discussion of the Results Reported in Part III

As outlined in Section 1.4.1, the second objective of this dissertation has been the investi-

gation and development of efficient RFI excision algorithms for satellite and terrestrial com-

munications. Following the methodology highlighted in Section 1.4.2, this dissertation has

introduced the multi-linear (tensor) algebra framework to the RFI excision research sub-field.

As detailed in Chapter 6, two novel tensor-based efficient RFI excision algorithms have been

proposed. Inspired by their inherent signal processing schemes, these algorithms are named

as the multi-linear subspace estimation and projection (MLSEP) algorithm and the smoothed

MLSEP (s-MLSEP) algorithm. As demonstrated in Chapter 6, MLSEP outperforms the state-

of-the-art projection based algorithms namely subspace projection (SP) (van der Tol & van der

Veen, 2005) and cross subspace projection (CSP) (Jeffs et al., 2005). With respect to the root

mean square excision error (RMSEE) and the average signal-to-interference-plus-noise ratio

(SINR) gain performance metrics, MLSEP outperforms both SP and CSP, especially whenever

NR > ∑Q
i=1(Li +1)—Li +1 being the number of channel taps of the i-th interferer and Q being
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the number of interferers. Such a performance gain is also demonstrated via simulations that

employ a simulation setting that the number of interferers and their respective channel order are

estimated by the smoothed matrix-based joint number of interferers and channel order enumer-

ator (SMB-JoNICOE)—an algorithm also reported in Chapter 6. Simulations also corroborate

that s-MLSEP enhances MLSEP at the expense of computation time.

Apart from the aforementioned simulations, performance assessment using real-world data re-

ceived by one of the antennas of the VLA also corroborates that MLSEP outperforms both SP

and CSP. Such a performance gain has also been further validated by a theorem which states—

for ΔUUUI being the perturbations in the MI-RFI subspace—that lim
ΔUUUI→000

RMSEE converges to 0

for MLSEP faster than for SP provided that NR > ∑Q
i=1(Li + 1). As discussed and presented

in Chapter 6, the significant performance gains of MLSEP and s-MLSEP over SP and CSP

are attributed to the fact that the deployed tensor-based subspace estimators outperform their

matrix-based counterparts. However, for NSOI being an arbitrary constant, the tensor-based

subspace estimator employs the assumption that the MI-RFI channel is assumed to have a

coherence time of NSOI +1 times the coherence time of the SOI. As a result, such an assump-

tion would restrict the applicability of the proposed tensor-based algorithms to, mainly, the

quasi-stationary MI-RFI scenario(s). Despite the fact that the multi-linear algebra framework

was introduced to the RFI excision research sub-field, further research which shall make the

tensor framework applicable for a time-variant MI-RFI scenario(s) is needed. Accordingly,

both MLSEP and s-MLSEP would serve as foundational multi-linear algorithms that shall be

extended to incorporate the inherently time-variant nature of the MI-RFI channel.

8.3 Discussion of the Results Reported in Part IV

As a third objective, this dissertation has also aimed at the investigation and development of

advanced low-complexity spectrum sensing techniques. Having conducted detailed research

survey on the numerous state-of-the-art spectrum sensing techniques, we have identified an ide-

alistic assumption on the existing F–test detector reported in (Huang & Chung, 2013a) though

it was corroborated—via simulations—to be superior over an energy detector, a maximum-
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minimum eigenvalue (MME) detector, and a GLRT detector, especially at low SNRs. While

exhibiting a moderate computational complexity, the reported detector of (Huang & Chung,

2013a) is also robust against a noise power uncertainty and independent of the knowledge of

the noise power. With respect to the aforementioned limitation, we have developed ideas that

overcome the limitations of (Huang & Chung, 2013a) and also extended the F–test framework

so that it would incorporate the multi-path fading channel scenario which is evident in prac-

tical wireless communication channels. Beneath, the results of Chapter 7 and their respective

implications are discussed.

Having been motivated by the performance of the F–test detector of (Huang & Chung, 2013a)

and its low computational complexity, Chapter 7 presents simple F–test based spectrum sens-

ing techniques that do not require the knowledge of any channel state information (CSI).

Specifically, along with its performance analyses, a detector named F–test via singular value

decomposition (FT-v-SVD) is presented for SIMO cognitive radio (CR) networks operating

over flat fading channels; apart from its performance analyses, a detector dubbed generalized

FT-v-SVD (g-FT-v-SVD) is presented for a multi-antenna spectrum sensing over frequency

selective channels; and the g-FT-v-SVD detector is generalized to accommodate a spectrum

sensing over the MIMO CR networks. Meanwhile, the performance of the presented detec-

tors is assessed through Monte-Carlo simulations which also validate the derived analytical

expressions. Despite a computational complexity analysis that reveals that the presented blind

F–test based detectors exhibit a low computational complexity and an attractive detection per-

formance, the considered SIMO and MIMO systems are not necessarily the case for systems

of the 5G era. Therefore, the extension of the presented detectors so as to accommodate the

scenarios of massive MIMO systems shall be addressed.



CONCLUSION AND RECOMMENDATIONS

“Intellectual growth should commence at birth and cease only at death.”—Albert Einstein

For intentional and unintentional man-made interference, radio frequency interference (RFI)

is becoming increasingly common in various radio frequency operating systems as diverse as

microwave radiometry, radio astronomy, satellite communications, ultra-wideband communi-

cations, radar, and cognitive radio. If left unmitigated, such RFI can result in a severe system

performance loss. Toward an efficient RFI mitigation, the state-of-the-art encompasses several

RFI detection and excision algorithms. However, amongst their limitations, these algorithms

exhibit considerable computational complexity and they eventually render inefficient RFI ex-

cision. On the other hand, as an enabler of cognitive radio (CR), numerous spectrum sensing

techniques have been proposed to date. On the contrary, among their limitations, some of the

state-of-the-art spectrum sensing techniques rely either on the presumed characteristics of the

primary signal(s) or the availability of the channel state information (CSI). Motivated by these

limitations, this Ph.D. dissertation has investigated and presented advanced signal processing

techniques regarding RFI detection, RFI mitigation, and spectrum sensing.

With respect to RFI detection and its first objective, this dissertation has investigated and pre-

sented five RFI detectors: a power detector proposed for the detection of broadband RFI(s);

an energy detector investigated for RFI detection in wireless communication systems; a blind

eigenvalue-based detector proposed for single-input multiple-output (SIMO) systems that may

suffer from RFI; and matrix- and tensor-based RFI detectors proposed for a robust detection

of RFI received through a multi-path fading channel featuring SIMO systems. For these RFI

detectors, this dissertation has presented detailed performance analyses that are corroborated

by Monte-Carlo simulations. Simulations also assess the performance of the aforementioned

RFI detectors in comparison with some of the state-of-the-art RFI detectors.
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Once RFI is robustly detected, the next step is its efficient excision. Toward this end and the re-

alization of its second objective, this dissertation has investigated and presented a multi-linear

subspace estimation and projection (MLSEP) algorithm and a smoothed MLSEP (s-MLSEP)

algorithm proposed for the MI-RFI excision in SIMO systems that suffer from MI-RFI. Per-

formance analyses corroborate that both MLSEP and s-MLSEP can excise all interferers when

the perturbations get infinitesimally small. For such perturbations, the analyses also attest that

s-MLSEP exhibit a faster convergence to a zero excision error than MLSEP which, in turn, con-

verges faster than a subspace projection algorithm. Monte-Carlo simulations and simulations

conducted using real-world RFI contaminated data have corroborated the performance of the

proposed multi-linear RFI excision algorithms. Although at the expense of computation time,

the simulations have also demonstrated that s-MLSEP outperforms MLSEP as the smoothing

factor gets smaller.

Concerning its third objective, this dissertation has investigated and presented simple F–test

based spectrum sensing techniques that do not require the knowledge of CSI for multi-antenna

CRs. Applicable for different multi-antenna systems, the investigated blind F–test detectors

are derived for both frequency flat and frequency selective primary-to-secondary channels.

Exact and asymptotic analytical performance closed-form expressions are derived for the pre-

sented detectors. Simulations assess the performance of the presented detectors and validate

the derived closed-form expressions. For an additive noise exhibiting the same variance across

multiple-antenna frontends, simulations also corroborate that the presented detectors are con-

stant false alarm rate detectors which are robust against noise uncertainty.

Finally, to outline the recommendations of this dissertation, the aforementioned investigations

inspire new research from both specialist and generalist points of view. From specialist points

of view, this dissertation inspires research—but not limited to—on tensor-based RFI excision

techniques for highly time-variant wireless environments; linear and multi-linear multi-antenna
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RFI detection techniques applicable also for highly time-variant wireless environments; ef-

ficient spectrum sensing in highly time-variant primary-to-secondary wireless channel envi-

ronments; machine learning (deep learning) enabled RFI detection; and RFI detection using

bootstrap techniques (Zoubir & Robert Iskander, 2007; Zoubir & Iskander, 2004). On another

regard, this dissertation also inspires extensive research that can be conducted from gener-

alist points of view. In particular, this dissertation motivates research toward interference-

resistant wireless communications—for instance, interference-resistant terrestrial communica-

tions and interference-resistant satellite communications; interference-resistant optical com-

munications; interference-resistant molecular (nano) communications (Nakano et al., 2013;

Farsad et al., 2016); interference-resistant mobile molecular communications (Nakano et al.,

2017); an interference-resistant biomedical signal processing; and interference-resistant robotic

communications and control.
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research sub-field;

• [J1] is our main contribution concerning RFI excision along with the respective confer-

ence contributions through [C5], [C3], and [C2];

• with respect to spectrum sensing, we have made journal contributions through [J3] as

well as conference contributions in terms of [C9] and [C6];

• concerning source enumeration (model order selection), we have made a contribution

through [C4]; and

• we have made a contribution in channel estimation in terms of [C1].



APPENDIX II

APPENDICES OF CHAPTER 2

1. Proof of Theorem 1

For independent {v j[n]}Q
j=1, h, {g j}Q

j=1, and z[n],

Y |H1 = E{(
r̃[n]︷ ︸︸ ︷

hs[n]+∑Q
j=1 g jv j[n]+z[n]

)2} (A II-1a)

= E{r̃2[n]}+2E{r̃[n]}E{z[n]}+σ2 (A II-1b)

(a)
= E{(hs[n]+∑Q

j=1 g jv j[n])2}+σ2, (A II-1c)

where (a) follows for E{z[n]}= 0.

For the considered independence, E{s[n]v j[n]}= E{vi[n]v j[n]}= 0, i �= j. Thus,

Y |H1 = E{h2s2[n]}+∑Q
j=1E{g2

jv
2
j [n]}+σ2 (A II-2a)

= h̄sE{s2[n]}+∑Q
j=1 ḡ j,sE{v2

j [n]}+σ2. (A II-2b)

From Sec. 2.2.1 , E{v2
j [n]}= PjE{v2

j,l}= Pj and E{s2[n]}= PE{s2
n}. As a result,

Y |H1 = h̄sPE{s2
n}+∑Q

j=1 ḡ j,sPj +σ2 (A II-3a)

(b)
= σ2

(
γ̄snr +∑Q

j=1 γ̄ j
inr +1

)
, (A II-3b)

where (b) follows from (2.5).

Under H0, {v j[n]}Q
j=1 = 0. Accordingly,

Y |H0 = E{(hs[n]+∑Q
j=1 g jv j[n]+ z[n])2}∣∣{γ̄ j

inr}Q
j=1=0

. (A II-4)
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Deploying (A II-1a)—via its equivalent given by (A II-3b)—in (A II-4),

Y |H0 = σ2
(
γ̄snr +∑Q

j=1 γ̄ j
inr +1

)∣∣
{γ̄ j

inr}Q
j=1=0

= σ2
(
γ̄snr +1

)
. (A II-5)

Finally, combining (A II-3b) and (A II-5) leads to (2.4). �



APPENDIX III

APPENDICES OF CHAPTER 3

1. Proof of Theorem 2

For a baseband input of bandwidth W , we note that 2u terms are sufficient to approximate

its energy in a finite duration sample of a bandlimited process (Urkowitz, 1967, Appendix).

For a lowpass (baseband) process, the values are obtained by sampling the process at 1/2W

times apart. Having relied on the aforementioned approximation which is the result of the

Karhunen−Loève transform, terms of H1 in (3.1) are represented as (Urkowitz, 1967, eqs.

(11) and (12)) (
hs(t),gv(t),z(t)

)
=

2u

∑
j=1

(
hα j,gβ j,ξ j

)
sinc(2Wt− j), (A III-1)

where ξ j = z( j/2W ) and sinc(x) = sin(πx)/πx. It is to be noted that the type of RFI in (A

III-1) is irrelevant for the approximation and each ξ j is a Gaussian RV with a zero mean and

variance of σ2 = N0W.

Deploying (A III-1) in (3.1),

r(t)|H1 =
2u

∑
j=1

(
hα j +gβ j +ξ j

)
sinc(2Wt− j). (A III-2)

Substituting (A III-2) into (3.2) results in

Y |H1 =
2

N0

2u

∑
j=1

2u

∑
i=1

(
hα j +gβ j +ξ j

)(
hαi +gβi +ξi

)
×
∫ t

t−T
sinc(2Wt− j) sinc(2Wt− i)dt︸ ︷︷ ︸

= 1
2W , if j=i; =0, if j �=i.

. (A III-3)
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Employing the orthogonality of sinc functions (Urkowitz, 1967, eq. (5)) and recalling that

σ2 = N0W,

Y |H1 =
2u

∑
j=1

(
hα j/σ +gβ j/σ +ξ j/σ

)2
. (A III-4)

As every ξ j is a Gaussian RV with a zero mean and variance of σ2, ξ j/σ is a Gaussian RV with

a zero mean and variance of 1. Thus, Y |H1 in (A III-4) admits the noncentral χ2–distribution

with 2u DoF and a noncentrality parameter given by

ρ =
2u

∑
j=1

(
hα j/σ +gβ j/σ

)2
. (A III-5)

Expanding (A III-5) and substituting σ2 = N0W yields

ρ = 2
h2

N0

( 1

2W

2u

∑
j=1

α2
j

)
+2

g2

N0

( 1

2W

2u

∑
j=1

β 2
j

)
+2

2u

∑
j=1

(hα j

σ

)(gβ j

σ

)
. (A III-6)

Following the stated suppositions that Es =
∫ t

t−T
s2(t)dt and Ev =

∫ t

t−T
v2(t)dt,

(Es,Ev) =
2u

∑
j=1

2u

∑
i=1

(α jαi,β jβi)

= 1
2W , if j=i; =0, if j �=i.︷ ︸︸ ︷∫ t

t−T
sinc(2Wt− j)sinc(2Wt− i)dt

︸ ︷︷ ︸
= 1

2W ∑2u
j=1(α

2
j ,β

2
j )

. (A III-7)

At last, plugging (A III-7) into (A III-6) and realizing that (γsnr,γinr) = (h2Es/N0,g2Ev/N0)

lead to (3.5). �
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2. Proof of Theorem 4

Recalling that (α j,β j) =
(
s( j/2W ),v( j/2W )

)
and using the SOI, and RFI representations as

in Theorem 3,

(
α j,β j

)
=

∞

∑
n=−∞

(√
Pssn,

√
Pvvn

)
p( j/2W −nTs) (A III-8a)

=
(√

Pss j,
√

Pvv j
)
, (A III-8b)

where p( j/2W − nTs) = 1 iff j = n is exploited, as p(t) is a rectangular pulse of duration Ts.

Substituting (A III-8b) into (A III-7) results in

(
Es, Ēs

)
=

Ps

2W

2u

∑
j=1

(
s2

j ,E{s2
j}
)

(A III-9a)

(
Ev, Ēv

)
=

Pv

2W

2u

∑
j=1

(
v2

j ,E{v2
j}
)
, (A III-9b)

where Ēs and Ēv are the average SOI energy and the average RFI energy, respectively.

Substituting (A III-8b) into (3.5) gives

ρ = 2Z, (A III-10)

where

Z = γsnr + γinr +
hg
√

PsPv

σ2

2u

∑
j=1

s jv j. (A III-11)
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Accordingly, the PDF of ρ can be obtained from the PDF of Z. If we suppose

Y1 = γsnr, Y2 = γinr (A III-12a)

Y = Y1 +Y2 (A III-12b)

Y3 =
hg
√

PsPv

σ2
, Y4 =

2u

∑
j=1

s jv j (A III-12c)

X = Y3Y4, (A III-12d)

then

Z = Y +X . (A III-13)

Prior to diving to the PDF derivation, we note that Z becomes a mixed RV whenever the discrete

RV Y4 becomes non-zero. More precisely,

Z =

⎧⎪⎨
⎪⎩

Y, if Y4 = 0,

X +Y, if Y4 �= 0.

(A III-14)

To derive the PDF fZ(z), we resort to the derivation of the CDF of Z, i.e., FZ(z), by deploying

the total probability theorem (Bertsekas & Tsitsiklis, 2008, p. 28) and applying differentiation

afterward. Note that FZ(z) = Pr{Z ≤ z}. Applying the total probability theorem through (A

III-14) gives

FZ(z) = Pr{Y ≤ z}PY4
(0)+∑

r:
r �=0

Pr
{

Z ≤ x+ y|Y4 = r
}

PY4
(r) (A III-15)

FZ(z) = FY (z)PY4
(0)+∑

r:
r �=0

FZ|Y4=r(x+ y|Y4 = r)PY4
(r), (A III-16)

Differentiating (A III-16) w.r.t. z then gives

fZ(z) = fY (z)PY4
(0)+∑

r:
r �=0

fZ|Y4=r(x+ y|Y4 = r)PY4
(r). (A III-17)
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To continue, we are going to pursue the derivation of the probability mass function (PMF) of Y4.

Should we let c j = s jv j, 1≤ j ≤ 2u, then for the independence of s j and v j (Bertsekas & Tsit-

siklis, 2008; Gallager, 2013),

PC(c j) = Pr{s j}Pr{v j}. (A III-18)

Meanwhile, Y4 becomes the sum of 2u RVs, {c j}2u
j=1, and its PMF can be recursively deter-

mined as the PMF of An = An−1 + cn for A0 = 0. To continue (Bertsekas & Tsitsiklis, 2008, p.

213),

PA2
(r) = Pr{A2 = r}= Pr{c1 + c2 = r} (A III-19a)

=
∞

∑
n=−∞

PC(n)PC(r−n) = PC(r)∗PC(r). (A III-19b)

Similarly,

PA3
(r) = Pr{A2 + c3 = r}=

∞

∑
n=−∞

PA2
(n)PC(r−n) (A III-20a)

= PA2
(r)∗PC(r) (A III-20b)

= PC(r)∗PC(r)∗PC(r). (A III-20c)

Pursuing the recursive analysis further eventually gives

PY4
(r) = PA2u(r) = PC(r)∗PC(r)∗ · · · ∗PC(r)︸ ︷︷ ︸

2u−1 fold discrete-time convolution

, (A III-21)

where r = ∑2u
j=1 s jv j.

Should we presume that all the possible values of r belong to a set M , then M = M− ∪
{0}∪M+ for M− and M+ being the set of all possible negative and positive values of r,
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respectively. Accordingly,

fZ(z) = fY (z)PY4
(0)+ ∑

r−∈M−
fZ|Y4

(x+ y|Y4 = r−)PY4
(r−)

+ ∑
r+∈M+

fZ|Y4
(x+ y|Y4 = r+)PY4

(r+). (A III-22)

If r > 0, x > 0, and x < 0 when r < 0—cf. (A III-12d). Hence, determining the PDF of Z for

both conditions depends on the PDF of X and Y . However, these RVs depend on the transmitted

SOI and RFI, the SOI channel, and the RFI channel. Accordingly, X and Y are dependent RVs

rendering the derivation of the exact PDF of Z either mathematically intractable or too complex.

To the best of our knowledge, such a PDF hasn’t been derived to date.

To overcome the aforementioned intractability, we approximate the resulting PDF for r > 0

by the PDF of the sum of two independent RVs. Relying on (Bertsekas & Tsitsiklis, 2008, p.

214),

fZ|Y4
(x+ y|Y4 = r+)≈

∫ ∞

−∞
fX |Y4

(x|Y4 = r+) fY (z− x)dx. (A III-23)

Similarly, the PDF for r < 0 is approximated by the PDF of the difference of two independent

RVs. Thus, relying on (Bertsekas & Tsitsiklis, 2008, p. 216),

fZ|Y4
(x+ y|Y4 = r−)≈

∫ ∞

−∞
fY (x) fX |Y4

(x− z|Y4 = r−)dx. (A III-24)

Substituting (A III-23) and (A III-24) into (A III-22) results in

fZ(z)≈ fY (z)PY4
(0)+ ∑

r+∈M+

PY4
(r+)

∫ ∞

−∞
fX |Y4

(x|Y4 = r+) fY (z− x)dx

+ ∑
r−∈M−

PY4
(r−)

∫ ∞

−∞
fY (x) fX |Y4

(x− z|Y4 = r−)dx. (A III-25)

Henceforth, the PDFs fY (y), fX |Y4
(x|Y4 = r−), and fX |Y4

(x|Y4 = r+) are derived. From the

considered Nakagami-m fading channels, h2 and g2 are gamma distributed (Trigui et al., 2009).

Accordingly, Y1 ∼ G (m1,Ω1) and Y2 ∼ G (m2,Ω2) for Ω1 = γ̄snr =
h̄sĒs
N0

=
h̄sPs ∑2u

j=1E{s2
j}

2N0W and
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Ω2 = γ̄inr =
ḡsĒv
N0

=
ḡsPv ∑2u

j=1E{v2
j}

2N0W . For the integerness of m1 and m2, Y1 and Y2 exhibit the

Erlang distribution expressed via its PDF as (Karagiannidis et al., 2006a, eq. (2))

fYl(y;ml,ηl) =
yml−1

ηml
l (ml−1)!

e−
y

ηl U(y), (A III-26)

where 1 ≤ l ≤ 2, η1 = γ̄snr
m1

, and η2 = γ̄inr
m2

. The PDF of Y, which is the sum of two mutually

independent Erlang distributed RVs, is then given by (Karagiannidis et al., 2006a, eq. (6))

fY (y) =
2

∑
i=1

mi

∑
k=1

Ξm1m2
η1η2

(i,k) fYi(y;k,ηi), (A III-27)

where the weight Ξm1m2
η1η2

(i,k) is as defined in (Karagiannidis et al., 2006a, eq. (A-5)). Using (A

III-26) and (A III-27),

fY (z) =
2

∑
i=1

mi

∑
k=1

Ξm1m2
η1η2

(i,k)
zk−1

ηk
i (k−1)!

e−
z

ηi U(z). (A III-28)

Meanwhile, the PDF of Y3 can be recognized as the distribution of the product of two indepen-

dent Nakagami-m distributed RVs h
√

Ps
σ and g

√
Pv

σ with local mean received powers of Ω̃1 =
h̄sPs
σ2

and Ω̃2 = ḡsPv
σ2 , respectively. Employing (Karagiannidis et al., 2007, eq. (4)) for N = 2, the

PDF of Y3 becomes

fY3
(y) =

2y−1

2

∏
j=1

(m j−1)!

G2,0
0,2

(
y2

2

∏
j=1

(
m j

Ω̃ j

)∣∣∣∣ −

m1,m2

)
. (A III-29)

Recognizing that Ω̃1 and Ω̃2 are, respectively, the ratio of the average SOI power and the

average RFI power to the noise power, Ω̃1 = γ̄snr and Ω̃2 = γ̄inr. In addition, the PDF in (A III-

29) is a non-negative function (Karagiannidis et al., 2006b). Hence, it can be further expressed

as

fY3
(y) =

2y−1

(m1−1)!(m2−1)!
G2,0

0,2

(
y2

η1η2

∣∣∣∣ −

m1,m2

)
U(y). (A III-30)
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Once fY3
(y) and PY4

(r) are obtained, fX |Y4
(x|Y4 = r−) and fX |Y4

(x|Y4 = r+) can be derived by

using the total probability theorem (Bertsekas & Tsitsiklis, 2008, p. 28) for r < 0 and r > 0,

respectively. To derive these PDFs, we resort to the derivation of the CDF of X and apply

derivative afterward. Employing the definition of CDF (Bertsekas & Tsitsiklis, 2008, p. 148),

FX |Y4
(x|Y4 = r+) = Pr{Y3r ≤ x}= FY3

(x/r). (A III-31)

Differentiating (A III-31) w.r.t. x yields

fX |Y4
(x|Y4 = r+) = fY3

(x/r)/r. (A III-32)

Similarly, for r < 0 (|r|=−r),

FX |Y4
(x|Y4 = r−) = Pr{−Y3|r| ≤ x} (A III-33a)

= Pr
{−Y3 ≤ x/|r|}= F−Y3

(x/|r|). (A III-33b)

Differentiating (A III-33b) w.r.t. x results in

fX |Y4
(x|Y4 = r−) = f−Y3

(x/|r|)/|r| (A III-34a)

(a)
=

1

|−1| fY3
(x/−|r|)/|r|= fY3

(x/r)
|r| , (A III-34b)

where (a) follows from the PDF relation (Bertsekas & Tsitsiklis, 2008, p. 205) for −Y3 =

−1×Y3. Utilizing (A III-32) and (A III-34b) in (A III-25),

fZ(z)≈ fY (z)PY4
(0)+ ∑

r∈M+

PY4
(r)
r

∫ ∞

−∞
fY3

(x/r) fY (z− x)dx

+ ∑
r∈M−

PY4
(r)
|r|

∫ ∞

−∞
fY (x) fY3

((x− z)/r)dx. (A III-35)

From (A III-28), fY (z−x) is a non-negative function with a support, w.r.t. x, of [0,z] whenever

r > 0. From (A III-30), fY3
((x− z)/r) is also a non-negative function with a support, w.r.t. x,
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of [−z,0]. As a result,

fZ(z)≈ fY (z)PY4
(0)+ ∑

r∈M+

PY4
(r)
r

∫ z

0
fY3

(x/r) fY (z− x)dx

+ ∑
r∈M−

PY4
(r)
|r|

∫ 0

−z
fY (x) fY3

((x− z)/r)dx. (A III-36)

Meanwhile, substituting (A III-26) into (A III-27) produces the expression

fY (y) =
2

∑
i=1

mi

∑
k=1

Ξm1m2
η1η2

(i,k)
yk−1

ηk
i (k−1)!

e−
y

ηi U(y). (A III-37)

Substituting (A III-37) into (A III-36) results in (A III-38).

fZ(z)≈ fY (z)PY4
(0)+ ∑

r∈M+

2

∑
i=1

mi

∑
k=1

PY4
(r)Ξm1m2

η1η2
(i,k)

r

∫ z

0
fY3

(x/r)
(z− x)k−1e−

z−x
ηi

ηk
i (k−1)!

dx︸ ︷︷ ︸
I1

+ ∑
r∈M−

2

∑
i=1

mi

∑
k=1

PY4
(r)Ξm1m2

η1η2
(i,k)

|r|
∫ 0

−z

xk−1e−
x

ηi

ηk
i (k−1)!

fY3
((x− z)/r)dx︸ ︷︷ ︸

I2

. (A III-38)

As fY3
(y) in (A III-30) is a product of a power function and the Meijer G-function (Grad-

shteyn & Ryzhik, 2007, eq. (9.301)), I1 and I2—of (A III-38)—are convolutions between the

gamma distribution, and the product of a power function and the Meijer G-function. To the best

of our knowledge, the solutions of these integrals have never been reported in any mathematical

book nor website. Thus, we offer the solutions, as detailed in the underneath lemma.

Lemma 5.

I1 =
∫ z

0
fY3

(x/r)
(z− x)k−1e−

z−x
ηi

ηk
i (k−1)!

dx = fY3
(z/r) (A III-39a)

I2 =
∫ 0

−z

xk−1e−
x

ηi

ηk
i (k−1)!

fY3
((x− z)/r)dx = fY3

(z/|r|). (A III-39b)
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Proof. To solve the aforementioned integrals, we start by recapping the partial differenti-

ation of the (upper) incomplete gamma function (Wolfram Research Inc., Jan. 2002, eq.

(06.06.20.0003.01)). Thus,
∂Γ(a,z)

∂ z
=−e−zza−1. (A III-40)

Using (A III-40) and the chain rule of differentiation,

∂Γ(k,(z− x)/ηi)

∂x
= e−

z−x
ηi
(z− x)k−1

ηk
i

. (A III-41)

Deploying (A III-41) in (A III-39a) gives

I1 =
∫ z

0

∂Γ(k,(z− x)/ηi)

∂x
fY3

(x/r)
(k−1)!

dx. (A III-42)

Employing the definition in (Woods, 1934, eq. (1), p. 66), it can be inferred that

∂Γ(k,(z− x)/ηi)

∂x
= lim

Δx→0

Γ
(
k, z−x+Δx)

ηi

)−Γ
(
k, z−x

ηi

)
Δx

. (A III-43)

Substituting (A III-43) into (A III-42) and exchanging the limit and integral operations result

in

I1 = lim
Δx→0

1

Δx

[∫ z

0
Γ(k,(z+Δx− x)/ηi)

fY3
(x/r)

(k−1)!
dx

−
∫ z

0
Γ(k,(z− x)/ηi)

fY3
(x/r)

(k−1)!
dx
]
. (A III-44)

To surmount the z+Δx term in (A III-44), (A III-44) can be written as

I1 = lim
Δx→0

1

Δx

[∫ z+Δx

Δx
Γ(k,(z− x)/ηi)

fY3
(x/r)

(k−1)!
dx

−
∫ z

0
Γ(k,(z− x)/ηi)

fY3
(x/r)

(k−1)!
dx
]
. (A III-45)
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As Δx is very close to zero, (A III-45) can be simplified to

I1 = lim
Δx→0

1

Δx

[∫ z+Δx

0

Γ(k,(z− x)/ηi)

(k−1)!
fY3

(x/r)dx

−
∫ z

0

Γ(k,(z− x)/ηi)

(k−1)!
fY3

(x/r)dx
]
. (A III-46)

Considering the integrals in (A III-46) as a two-variable function of the integration limits and

deploying the aforementioned definition of a partial derivative, (A III-46) is the partial deriva-

tive of the integral w.r.t. z. Thus,

I1 =
∂
∂ z

∫ z

0

Γ(k,(z− x)/ηi)

(k−1)!
fY3

(x/r)dx. (A III-47)

It is straightforward to observe that the derivative of the integral is its integrand. Following

(Woods, 1934, eq. (1), p. 141),

I1 =
Γ
(
k, z−x

ηi

)
fY3

(x/r)

(k−1)!

∣∣∣∣
x=z

=
Γ(k,0) fY3

(z/r)
(k−1)!

. (A III-48)

Recalling that Γ(k,0) = Γ(k) = (k−1)! for k is an integer,

I1 = fY3
(z/r). (A III-49)

To continue, letting t = x− z (x = t + z), dt = dx and

I2 =
∫ −z

−2z

(t + z)k−1

ηk
i (k−1)!

e−
t+z
ηi fY3

(t/r)dt (A III-50a)

=−
∫ −z

−2z
− (t + z)k−1

ηk
i (k−1)!

e−
t+z
ηi fY3

(t/r)dt. (A III-50b)

Employing (A III-40),

∂Γ(k,(t + z)/ηi)

∂ t
=−e−

t+z
ηi

(
t + z
ηi

)k−1

× 1

ηi
. (A III-51)
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Substituting (A III-51) into (A III-50b) and adopting identical procedures as in (A III-43)-(A

III-46) render

I2 =−
∫ −z

−2z

∂Γ(k,(t + z)/ηi)

∂ t
fY3

( t
r

)
(k−1)!

dt (A III-52a)

=− ∂
∂ (−z)

∫ −z

−2z

Γ(k,(t + z)/ηi)

(k−1)!
fY3

(
t
r

)
dt (A III-52b)

=− ∂
∂ (−z)

∫ −z

−2z

Γ(k,(t− (−z))/ηi)

(k−1)!
fY3

(
t
r

)
dt (A III-52c)

=

[
∂
∂c

∫ c

2c

Γ(k,(t− c)/ηi)

(k−1)!
fY3

(
t
r

)
dt
]

c=−z
(A III-52d)

=

[
Γ(k,(t− c)/ηi)

(k−1)!
fY3

(
t
r

)∣∣∣∣
t=c

]
c=−z

(A III-52e)

=

[
Γ(k,0)
(k−1)!

fY3

(
c
r

)]
c=−z

= fY3
(z/|r|). (A III-52f)

Using Lemma 5, (A III-30), and realizing that U(z/r) =U(z) for r > 0,

I1 =
2r

z(m1−1)!(m2−1)!
G2,0

0,2

(
z2

η1η2r2

∣∣∣∣ −

m1,m2

)
U(z) (A III-53a)

I2 =
2|r|

z(m1−1)!(m2−1)!
G2,0

0,2

(
z2

η1η2r2

∣∣∣∣ −

m1,m2

)
U(z). (A III-53b)

Substituting (A III-28), (A III-53a), and (A III-53b) into (A III-38) results in (A III-54).

fZ(z)≈
2

∑
i=1

mi

∑
k=1

Ξm1m2
η1η2

(i,k)

[
zk−1e−

z
ηi PY4

(0)

ηk
i (k−1)!

+ ∑
r∈M \{0}

2PY4
(r)G2,0

0,2

(
z2

η1η2r2

∣∣∣∣ −

m1,m2

)
z(m1−1)!(m2−1)!

]
U(z).

(A III-54)
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The PDF of ρ , fP(ρ), can now be inferred from fZ(z) given by (A III-54). From (A III-10),

ρ = 2Z. As a result (Bertsekas & Tsitsiklis, 2008, p. 205),

fP(ρ) =
1

2
fZ(ρ/2). (A III-55)

Finally, substituting (A III-54) into (A III-55) and realizing that U(ρ/2) = U(ρ) result in

(3.10). �

3. Proof of Remark 2

From (A III-5), we note that ρ is non-negative. Hence, the RHS of (3.10)—denoted by f̃P(ρ)—

is non-negative for all ρ since U(ρ) = 0 for ρ < 0. Meanwhile, f̃P(ρ) will be a valid PDF iff∫ ∞

0
f̃P(ρ)dρ = 1. Deploying (3.10),

∫ ∞

0
f̃P(ρ)dρ =

2

∑
i=1

mi

∑
k=1

Ξm1m2
η1η2

(i,k)PY4
(0)

(2ηi)k(k−1)!
×
∫ ∞

0
ρk−1e−

ρ
2ηi dρ + ∑

r∈M \{0}

2

∑
i=1

mi

∑
k=1

PY4
(r)

× Ξm1m2
η1η2

(i,k)
(m1−1)!(m2−1)!

∫ ∞

0

2

ρ
G2,0

0,2

(
ρ2

4η1η2r2

∣∣∣∣ −

m1,m2

)
dρ︸ ︷︷ ︸

I(ρ)

. (A III-56)

With the aid of (Gradshteyn & Ryzhik, 2007, eq. (3.381.3)) and for integer k,

∫ ∞

0
ρk−1e−

ρ
2ηi dρ = (2ηi)

kΓ(k,0) = (2ηi)
k(k−1)!. (A III-57)

Letting t = ρ2, dt = 2ρdρ , dρ = dt
2ρ , and

I(ρ) =
∫ ∞

0

1

t
G2,0

0,2

(
t

4η1η2r2

∣∣∣∣ −

m1,m2

)
dt (A III-58a)

(a)
= Γ(m1)Γ(m2)

(b)
= (m1−1)!(m2−1)!, (A III-58b)

where (a) follows through the aid of (Adamchik & Marichev, 1990, eq. (24)) and (b) follows

for the integerness of
{

mi
}2

i=1
.
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Substituting (A III-57) and (A III-58b) into (A III-56) results in

∫ ∞

0
f̃P(ρ)dρ =

2

∑
i=1

mi

∑
k=1

Ξm1m2
η1η2

(i,k)×
[

PY4
(0)+ ∑

r∈M \{0}
PY4

(r)
]
. (A III-59)

From a valid gamma distribution-based PDF defined in (A III-27), Ξm1m2
η1η2

(i,k) satisfies the

constraint: ∑2
i=1 ∑mi

k=1 Ξm1m2
η1η2

(i,k) = 1. As a result,

∫ ∞

0
f̃P(ρ)dρ = ∑

r∈M

PY4
(r)

(c)
= 1, (A III-60)

where (c) follows for the sum of a PMF over its support is 1 (Bertsekas & Tsitsiklis, 2008, p.

75). Therefore, the RHS of fP(ρ) is a valid PDF. �

4. Proof of Theorem 5

Deploying (Simon & Alouini, 2005, eq. (4.63)) in (3.11) and employing

∫ ∞

0
fP(ρ)dρ =∫ ∞

0
f̃P(ρ)dρ = 1,

P̄d ≈ 1− e−
λ
2

∞

∑
n=u

λ
n
2

∫ ∞

0
e−

ρ
2 ρ−

n
2 In(

√
ρλ ) fP(ρ)dρ. (A III-61)

Supposing t =
√

ρλ , ρ = t2/λ , dρ = 2t
λ dt, and

P̄d ≈ 1−2e−
λ
2

∞

∑
n=u

λ n−1
∫ ∞

0
e−

t2
2λ t−n+1In(t) fP

(
t2

λ

)
dt. (A III-62)

Substituting the series representation of In(t) (Jeffrey & Dai, 2008, eq. (17.7.1.1-3)) into (A

III-62) and simplifying,

P̄d ≈ 1−
∞

∑
n=u

∞

∑
l=0

2e−
λ
2 λ n−1

2n+2l l!(n+ l)!

∫ ∞

0
t2l+1e−

t2
2λ fP

(
t2

λ

)
dt. (A III-63)
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Substituting (3.10) into (A III-63) results in (A III-64).

P̄d ≈ 1−2e−
λ
2

∞

∑
n=u

∞

∑
l=0

2

∑
i=1

mi

∑
k=1

λ nΞm1m2
η1η2

(i,k)
2n+2l l!(n+ l)!

[
PY4

(0)

(2ληi)k(k−1)!

∫ ∞

0
t2l+2k−1e−

t2(1+ηi)
2ηiλ dt︸ ︷︷ ︸

I3

+
2

(m1−1)!(m2−1)! ∑
r∈M \{0}

PY4
(r)

∫ ∞

0
t2l−1e−

t2
2λ G2,0

0,2

(
t4

4η1η2λ 2r2

∣∣∣∣ −

m1,m2

)
dt︸ ︷︷ ︸

I4

]
. (A III-64)

To simplify (A III-64), we let v = t2. Consequently, dv = 2tdt, dv
2v1/2 = dt, and

I3 =
1

2

∫ ∞

0
vl+k−1e−

v(1+ηi)
2ηiλ dv (A III-65a)

(d)
=

Γ(l + k,0)
2

(
2ηiλ
1+ηi

)l+k

(A III-65b)

=
(l + k−1)!

2

(
2ηiλ
1+ηi

)l+k

, (A III-65c)

where (d) follows with the aid of (Gradshteyn & Ryzhik, 2007, eq. (3.381.3)). Recalling

v = t2, dv = 2tdt and dv
2v1/2 = dt,

I4 =
1

2

∫ ∞

0
vl−1e−

v
2λ G2,0

0,2

(
v2

4η1η2λ 2r2

∣∣∣∣ −

m1,m2

)
dv (A III-66a)

(e)
=

22lλ l

4
√

π
G2,2

2,2

(
4

η1η2r2

∣∣∣∣
1−l

2 , 2−l
2

m1,m2

)
, (A III-66b)

where (e) follows with the aid of (Wolfram Research Inc., Feb. 2007, eq. (07.34.21.0088.01)).

Eventually, substituting (A III-65c) and (A III-66b) into (A III-64) and rearranging render

(3.12). �
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5. Remarks on the State-of-the-art RFI Detectors

The MR detector of (De Roo & Misra, 2010) relies on a huge number of samples to invoke

the Gaussian approximation which signifies its sub-optimality in sample starved settings. The

authors of (Balaei & Dempster, 2009) assume the GPS signal to be a real, bandpass, zero mean,

and wide-sense stationary Gaussian process (see (Balaei & Dempster, 2009, Sec. III)); a hardly

practical assumption which underscores the sub-optimality of the technique. By neglecting the

impact of the GNSS signal, it appears in (Borio et al., 2008, Appendix A) that the spectrogram

test statistic in the absence of interference exhibits the central χ2–distribution—employed to

derive the FAR expression—which implicates a sub-optimality whenever the SNR is greater

than zero. The distribution of the DWVD test statistic in the absence of RFI is approximated

via the Gaussian distribution rendering a sub-optimal detection scheme proposed also by the

authors of (Borio et al., 2008). Finally, since the transformed-domain techniques (Dovis et al.,

2012; Musumeci & Dovis, 2012) didn’t exploit any explicit test statistic so as to detect an RFI,

they tend to be heuristic and hence sub-optimal techniques.



APPENDIX IV

APPENDICES OF CHAPTER 4

1. Proof of Theorem 6

Recalling the equivalent test statistic given by (4.14),

Teq =
ν2

ν1

tr(P̂PP2R̂RR
(p)
yy )

tr
(
(IIINR− P̂PP2)R̂RR

(p)
yy
) . (A IV-1)

Substituting (4.9b) into (A IV-1) and exploiting tr(AAABBB)= tr(BBBAAA) (Magnus & Neudecker, 2007),

Teq =
ν2

ν1

tr(P̂PP2P̂PP2:NRR̂RRyyP̂PP
H
2:NR

)

tr
(
(IIINR− P̂PP2)P̂PP2:NRR̂RRyyP̂PP

H
2:NR

) (A IV-2a)

=
ν2

ν1

tr(P̂PP
H
2:NR

P̂PP2P̂PP2:NRR̂RRyy)

tr
(
(IIINR− P̂PP2)P̂PP2:NRR̂RRyyP̂PP

H
2:NR

) (A IV-2b)

=
ν2

ν1

tr(P̂PP
H
2:NR

P̂PP2P̂PP2:NRR̂RRyy)

tr
(
P̂PP

H
2:NR

(IIINR− P̂PP2)P̂PP2:NRR̂RRyy
) . (A IV-2c)

To continue, we hereinafter simplify the arguments of the numerator and denominator of the

RHS of (A IV-2c). Employing (4.9a) and (4.12), and the fact that the projection matrices

P̂PP2 and P̂PP2:NR are Hermitian—P̂PP2 = P̂PP
H
2 and P̂PP2:NR = P̂PP

H
2:NR

—and idempotent—P̂PP2P̂PP2 = P̂PP2 and

P̂PP2:NRP̂PP2:NR = P̂PP2:NR (Strang, 2003),

P̂PP
H
2:NR

P̂PP2P̂PP2:NR = ÛUU2:NRÛUU
H
2:NR

[
ÛUU2:NR(:,1)ÛUU

H
2:NR

(:,1)
]
ÛUU2:NRÛUU

H
2:NR

(A IV-3a)

(a)
= ÛUU2:NR

[
1 0001×(NR−2)

]H[
1 0001×(NR−2)

]
ÛUU

H
2:NR

(A IV-3b)

(b)
= ÛUU2:NR(:,1)ÛUU

H
2:NR

(:,1) = ÛUU(:,2)ÛUU
H
(:,2) = P̂PP2, (A IV-3c)
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where (a) and (b) follow from the orthonormal columns of ÛUU . By the same fashion, employing

(A IV-3c), (4.9a), and (4.12):

P̂PP
H
2:NR

(IIINR− P̂PP2)P̂PP2:NR = P̂PP
H
2:NR

P̂PP2:NR− P̂PP
H
2:NR

P̂PP2P̂PP2:NR (A IV-4a)

= P̂PP2:NR− P̂PP2 (A IV-4b)

= ÛUU2:NRÛUU
H
2:NR

−ÛUU2:NR(:,1)ÛUU
H
2:NR

(:,1) (A IV-4c)

(c)
=
[
IIINR−ÛUU(:,1)ÛUU

H
(:,1)

]−ÛUU(:,2)ÛUU
H
(:,2) (A IV-4d)

(d)
= IIINR−ÛUU(:,1 : 2)ÛUU

H
(:,1 : 2) (A IV-4e)

= ÛUU(:,3 : NR)ÛUU
H
(:,3 : NR) = P̂PP3:NR , (A IV-4f)

where (c) is because of the orthonormal columns of ÛUU leading to the relationship that ÛUU(:

,1)ÛUU
H
(:,1)+ÛUU(:,2 : NR)ÛUU

H
(:,2 : NR) = IIINR and (4.12); (d) follows by noticing that ÛUU(:,1 :

2) =
[
ÛUU(:,1) ÛUU(:,2)

]
.

Following the aforementioned simplifications, substituting (A IV-3c) and (A IV-4f) into (A

IV-2c),

Teq =
tr(P̂PP2R̂RRyy)/ν1σ2

tr
(
P̂PP3:NRR̂RRyy

)
/ν2σ2

, (A IV-5)

where division by σ2 is accommodated into the numerator and denominator, as it brings no

difference to the underlying statistic. Meanwhile, substituting (4.5) into (A IV-5) and applying

the properties of trace (Magnus & Neudecker, 2007, p. 11) recursively,

Teq =

tr

(
P̂PP2

N

∑
k=1

yyy[k]yyyH [k]
)
/ν1σ2

tr

(
P̂PP3:NR

N

∑
k=1

yyy[k]yyyH [k]
)
/ν2σ2

=

tr

( N

∑
k=1

P̂PP2yyy[k]yyyH [k]
)
/ν1σ2

tr

( N

∑
k=1

P̂PP3:NRyyy[k]yyyH [k]
)
/ν2σ2

. (A IV-6)
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Moreover,

Teq =

N

∑
k=1

tr
(

P̂PP2yyy[k]yyyH [k]
)
/ν1σ2

N

∑
k=1

tr
(

P̂PP3:NRyyy[k]yyyH [k]
)
/ν2σ2

=

N

∑
k=1

tr
(

yyyH [k]P̂PP2yyy[k]
)
/ν1σ2

N

∑
k=1

tr
(

yyyH [k]P̂PP3:NRyyy[k]
)
/ν2σ2

(A IV-7a)

(e)
=

N

∑
k=1

yyyH [k]P̂PP2yyy[k]/ν1σ2

N

∑
k=1

yyyH [k]P̂PP3:NRyyy[k]/ν2σ2

( f )
=

N

∑
k=1

yyyH [k]ÛUU(:,2)ÛUU
H
(:,2)yyy[k]/ν1σ2

N

∑
k=1

yyyH [k]ÛUU(:,3 : NR)ÛUU
H
(:,3 : NR)yyy[k]/ν2σ2

, (A IV-7b)

where (e) follows from the fact that the trace of a 1× 1 matrix is itself and ( f ) follows from

(A IV-3c) and (A IV-4f). To continue, let

ak = σ−1ÛUU
H
(:,2)yyy[k] ∈ C (A IV-8a)

bbbk = σ−1ÛUU
H
(:,3 : NR)yyy[k] ∈ C

(NR−2). (A IV-8b)

Plugging (A IV-8a) and (A IV-8b) into the RHS of (A IV-7b) then leads to

Teq =

1
ν1

∑N
k=1 aH

k ak
1
ν2

∑N
k=1 bbbH

k bbbk
(A IV-9a)

=

1
ν1

∑N
k=1 aH

k ak

1
ν2

∑N
k=1 ∑NR−2

j=1 bbbH
k [ j]bbbk[ j]

, (A IV-9b)

where bbbk[ j] = σ−1ÛUU
H
(:,2+ j)yyy[k]. By exploiting (A IV-9b) for infinitely huge samples, it is

now time to determine the distribution of Teq for the underneath three cases.

Case 1. (γsnr,γinr) = (0,0): this condition implies that neither the SOI nor the RFI is received

by the receiving antennas. For this scenario, ak = σ−1ÛUU
H
(:,2)zzz[k] and bbbk = σ−1ÛUU

H
(:,3 :

NR)zzz[k]. Employing the properties of mean and variance (Seber, 2003; Gallager, 2013; Pa-

poulis & Pillai, 2002), as zzz[k] ∼ C NNR(000,σ2IIINR), E{ak} = σ−1
E{ÛUUH

(:,2)zzz[k]} = σ−1ÛUU
H
(:

,2)000NR×1 = 0; Var{ak}= 1
σ2ÛUU

H
(:,2)σ2ÛUU(:,2) = ÛUU

H
(:,2)ÛUU(:,2) = 1. Hence, ak ∼C N1(0,1).



248

Deploying the properties of mean and variance (Seber, 2003; Gallager, 2013; Papoulis & Pillai,

2002), similarly, bbbk ∼ C N(NR−2)(000, III(NR−2)).

Since ak ∼ C N 1(0,1), Re{ak} ∼N1(0,1)
( ≡ [

Re{ak}
]2 ∼ χ2

1

)
, Im{ak} ∼N1(0,1)

( ≡[
Im{ak}

]2 ∼ χ2
1

)
, and it shall be recalled that aH

k ak =
[
Re{ak}

]2
+
[
Im{ak}

]2
. As a result, for

the independence of the constituent terms, aH
k ak ∼ χ2

2 and hence ∑N
k=1 aH

k ak ∼ χ2
2N . Hence, the

numerator of Teq is made of the sum of 2N chi-square distributed independent RVs (each with

a DoF of 1) and hence it has a degree of freedom of 2N = ν1. Consequently, ∑N
k=1 aH

k ak ∼ χ2
ν1

.

To continue, as each element of bbbk is independently drawn from the complex normal distribu-

tion of zero mean and unit variance, Re{bbbk[ j]} ∼N1(0,1)
( ≡ [

Re{bbbk[ j]}
]2 ∼ χ2

1

)
, 1≤ j ≤

(NR−2) and 1≤ k≤ N; Im{bbbk[ j]} ∼N1(0,1)
(≡ [

Im{bbbk[ j]}
]2 ∼ χ2

1

)
, 1≤ j ≤ (NR−2) and

1 ≤ k ≤ N; it shall be recalled, once again, that bbbH
k [ j]bbbk[ j] =

[
Re{bbbk[ j]}

]2
+
[
Im{bbbk[ j]}

]2
,

1 ≤ j ≤ (NR − 2) and 1 ≤ k ≤ N; and all the constituent terms are independent of each

other (Seber, 2003, Ch. 2). As a result, for 1 ≤ j ≤ (NR− 2) and 1 ≤ k ≤ N, bbbH
k [ j]bbbk[ j] ∼

χ2
2 , ∑NR−2

j=1 bbbH
k [ j]bbbk[ j] ∼ χ2

2(NR−2), and ∑N
k=1 ∑NR−2

j=1 bbbH
k [ j]bbbk[ j] ∼ χ2

2N(NR−2). Note that the de-

nominator of Teq is made of the sum of 2N(NR− 2) chi-square distributed independent RVs

(each with a DoF of 1) and hence it exhibits a DoF of 2N(NR− 2) = ν2. In other words,

∑N
k=1 ∑NR−2

j=1 bbbH
k [ j]bbbk[ j]∼ χ2

ν2
.

Employing the above analyses in (A IV-9b),

Teq ∼
χ2

ν1
/ν1

χ2
ν2
/ν2

. (A IV-10)

Attempting at a further standardized characterization, (A IV-10) implicates that the central F–

distribution can characterize the distribution of Teq provided that an independence precondition

is satisfied. In this regard, if the distribution of Teq is to be expressed in terms of the central

F–distribution, it should be attested that χ2
ν1

and χ2
ν2

are independent RVs (Johnson et al.,

1995, p. 322). In other words, the constituent Gaussian RVs of the numerator and denominator

of (A IV-9b) should be independent (as discussed before, it shall be recalled that all the con-

stituent Gaussian RVs of the numerator are independent with each other; all the corresponding
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Gaussian RVs of the denominator are also independent.). Should the sought independence be

true, it would suffice to show that ak = σ−1ÛUU
H
(:,2)yyy[k] and bbbk = σ−1ÛUU

H
(:,3 : NR)yyy[k] are

independent.

According to (Seber, 2003, Theorem 2.5, p. 25), ak and bbbk would be independent if and

only if Cov{ak,bbbk} = 0001×(NR−2). To check if this is true or not, we deploy the definition

of covariance stated in (Seber, 2003, Theorem 1.2, p. 6) for real RVs. Thus, adapting the

definition to our scenario (as we are dealing with complex RVs) while recalling that E{ak}= 0

and E{bbbk}= 000(NR−2)×1,

Cov{ak,bbbk}= E

{(
ak−E{ak}

)(
bbbk−E{bbbk}

)H
}

(A IV-11a)

= E

{
akbbbH

k

}
=

1

σ2
ÛUU

H
(:,2)E

{
yyy[k]yyyH [k]

}
ÛUU(:,3 : NR) (A IV-11b)

(g)
=

1

σ2
ÛUU

H
(:,2)E

{
zzz[k]zzzH [k]

}
ÛUU(:,3 : NR), (A IV-11c)

where (g) is the result of the aforementioned preconditions that (γsnr,γinr) = (0,0). When in-

finitely large samples are available, E
{

zzz[k]zzzH [k]
}
= lim

N→∞

1

N

N

∑
k=1

zzz[k]zzzH [k] = σ2IIINR . Therefore,

exploiting the inherent property concerning the orthonormal columns of ÛUU ,

lim
N→∞

Cov{ak,bbbk}= ÛUU
H
(:,2)ÛUU(:,3 : NR) = 0001×(NR−2). (A IV-12)

Under an infinitely huge sample setting and (γsnr,γinr)= (0,0), hence, ak and bbbk are independent—

making χ2
ν1

and χ2
ν2

independent. Consequently, for the scenario under consideration and

the availability of infinite samples, (A IV-10) would satisfy the definition of the central F–

distribution (Johnson et al., 1995, Ch. 27, p. 322) and hence

lim
N→∞

Teq ∼ Fν1,ν2
. (A IV-13)

�
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Case 2. γinr = 0 and γsnr > 0: for this scenario, H0 is true and hence yyy[k] = hhhs[k] + zzz[k].

Accordingly,

ak = σ−1ÛUU
H
(:,2)

(
hhhs[k]+ zzz[k]

) ∈ C (A IV-14a)

bbbk = σ−1ÛUU
H
(:,3 : NR)

(
hhhs[k]+ zzz[k]

) ∈ C
(NR−2). (A IV-14b)

Employing the simplifications of Case 1,

N

∑
k=1

aH
k ak =

N

∑
k=1

[
Re{ak}

]2
+
[
Im{ak}

]2
(A IV-15a)

=
N

∑
k=1

[
Re{σ−1ÛUU

H
(:,2)(hhhs[k]+ zzz[k])}]2

+
[
Im{σ−1ÛUU

H
(:,2)(hhhs[k]+ zzz[k])}]2

.

(A IV-15b)

Expanding (A IV-15b) leads to

N

∑
k=1

aH
k ak =

N

∑
k=1

[
Re

{
σ−1ÛUU

H
(:,2)hhhs[k]}+Re{σ−1ÛUU

H
(:,2)zzz[k]}]2

+
N

∑
k=1

[
Im{σ−1ÛUU

H
(:,2)hhhs[k]}+ Im{σ−1ÛUU

H
(:,2)zzz[k]}]2

. (A IV-16)

As both Re{σ−1ÛUU
H
(:,2)zzz[k]} and Im{σ−1ÛUU

H
(:,2)zzz[k]} manifest a distribution N1(0,1), it

can be concluded that ∑N
k=1 aH

k ak ∼ χ ′2ν1
(λ H0

1 ), where λ H0
1 is the NCP inferred from (A IV-16)

and expressed as

λ H0
1 =

1

σ2

N

∑
k=1

[
Re

{
ÛUU

H
(:,2)hhhs[k]}]2

+
1

σ2

N

∑
k=1

[
Im

{
ÛUU

H
(:,2)hhhs[k]}]2

(A IV-17a)

=
1

σ2

N

∑
k=1

([
Re

{
ÛUU

H
(:,2)hhhs[k]}]2

+
[
Im

{
ÛUU

H
(:,2)hhhs[k]}]2

)
. (A IV-17b)
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Furthermore,

λ H0
1 =

1

σ2

N

∑
k=1

(hhhs[k])HÛUU(:,2)ÛUU
H
(:,2)hhhs[k] =

1

σ2

N

∑
k=1

(hhhs[k])H P̂PP2︸︷︷︸
=P̂PP

H
2 P̂PP2

hhhs[k] (A IV-18a)

=
1

σ2

N

∑
k=1

(
P̂PP2hhhs[k]

)HP̂PP2hhhs[k] (A IV-18b)

=
1

σ2

N

∑
k=1

∥∥P̂PP2hhhs[k]
∥∥2
. (A IV-18c)

Similarly, realizing that bbbk[ j] = σ−1ÛUU
H
(:,2+ j)(hhhs[k]+ zzz[k]),

N

∑
k=1

NR−2

∑
j=1

bbbH
k [ j]bbbk[ j] =

N

∑
k=1

NR−2

∑
j=1

[
Re{bbbk[ j]}

]2
+
[
Im{bbbk[ j]}

]2
. (A IV-19)

Pursuing the simplification of (A IV-19) through expansion,

N

∑
k=1

NR−2

∑
j=1

bbbH
k [ j]bbbk[ j] =

N

∑
k=1

NR−2

∑
j=1

[
Re{σ−1ÛUU

H
(:,2+ j)(hhhs[k]+ zzz[k])}]2

+
N

∑
k=1

NR−2

∑
j=1

[
Im{σ−1ÛUU

H
(:,2+ j)(hhhs[k]+ zzz[k])}]2

(A IV-20)

N

∑
k=1

NR−2

∑
j=1

bbbH
k [ j]bbbk[ j] =

N

∑
k=1

NR−2

∑
j=1

[
Re{σ−1ÛUU

H
(:,2+ j)hhhs[k]+σ−1ÛUU

H
(:,2+ j)zzz[k]}]2

+
N

∑
k=1

NR−2

∑
j=1

[
Im{σ−1ÛUU

H
(:,2+ j)hhhs[k]+σ−1ÛUU

H
(:,2+ j)zzz[k]}]2

. (A IV-21)

Realizing in (A IV-21) that Re
{

σ−1ÛUU
H
(:,2+ j)zzz[k]

}∼N1(0,1) and Im
{

σ−1ÛUU
H
(:,2+ j)zzz[k]

}
∼N1(0,1), ∑N

k=1 ∑NR−2
j=1 bbbH

k [ j]bbbk[ j] ∼ χ ′2ν2
(λ H0

2 ), where λ H0
2 is the NCP that is inferred from
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(A IV-21) as

λ H0
2 =

1

σ2

N

∑
k=1

NR−2

∑
j=1

[
Re{ÛUUH

(:,2+ j)hhhs[k]}]2
+

1

σ2

N

∑
k=1

NR−2

∑
j=1

[
Im{ÛUUH

(:,2+ j)hhhs[k]}]2

(A IV-22a)

=
1

σ2

N

∑
k=1

NR−2

∑
j=1

(hhhs[k])HÛUU(:,2+ j)ÛUU
H
(:,2+ j)hhhs[k] (A IV-22b)

=
1

σ2

N

∑
k=1

(hhhs[k])HÛUU(:,3 : NR)ÛUU
H
(:,3 : NR)hhhs[k] =

1

σ2

N

∑
k=1

(hhhs[k])H

=P̂PP
H
3:NR

P̂PP3:NR︷ ︸︸ ︷
P̂PP3:NR hhhs[k]

(A IV-22c)

=
1

σ2

N

∑
k=1

(
P̂PP

H
3:NR

hhhs[k]
)HP̂PP3:NRhhhs[k] (A IV-22d)

=
1

σ2

N

∑
k=1

∥∥P̂PP3:NRhhhs[k]
∥∥2
. (A IV-22e)

Employing the above-detailed simplifications in (A IV-9b),

Teq ∼
χ ′2ν1

(λ H0
1 )/ν1

χ ′2ν2
(λ H0

2 )/ν2

. (A IV-23)

If (A IV-23) has to be simplified in terms of the noncentral F–distribution, χ ′2ν1
(λ H0

1 ) and

χ ′2ν2
(λ H0

2 ) should be independent (Johnson et al., 1995, Ch. 30, p. 480). In other words, ak

and bbbk—equated, respectively, in (A IV-14a) and (A IV-14b)—should be independent. Equiv-

alently, Cov{ak,bbbk} = E
{(

ak−E{ak}
)(

bbbk−E{bbbk}
)H}

becomes a zero vector provided that

(A IV-23) should admit the noncentral F–distribution.

To continue with the computation of Cov{ak,bbbk}, meanwhile, using (A IV-14a) and (A IV-

14b):

E{ak}= σ−1ÛUU
H
(:,2)

(
E{hhh}E{s[k]}+E{zzz[k]}) (h)

= 0 (A IV-24a)

E{bbbk}= σ−1ÛUU
H
(:,3 : NR)

(
E{hhh}E{s[k]}+E{zzz[k]}) (i)

= 000(NR−2)×1, (A IV-24b)
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where (h) and (i) follow for E{hhh}= E{zzz[k]}= 000NR×1—due to the presumed zero mean Gaus-

sian distribution. Thus,

Cov{ak,bbbk}= 1

σ2
ÛUU

H
(:,2)E

{
(hhhs[k]+ zzz[k])(hhhs[k]+ zzz[k])H

}
ÛUU(:,3 : NR) (A IV-25a)

( j)
=

1

σ2
ÛUU

H
(:,2)

(
E{hhhhhhH}E{s2[k]}︸ ︷︷ ︸

=Ps

+E{zzz[k]zzzH [k]}
)

ÛUU(:,3 : NR), (A IV-25b)

where ( j) follows for the independence of hhh and zzz[k], and the presumption that E{hhh} =

E{zzz[k]} = 000NR×1. When infinite samples are available, E{hhhhhhH} = IIINR and E{zzz[k]zzzH [k]} =
σ2IIINR . As a result,

lim
N→∞

Cov{ak,bbbk}= 1

σ2
ÛUU

H
(:,2)(Ps +σ2)IIINRÛUU(:,3 : NR) (A IV-26a)

=
Ps +σ2

σ2
ÛUU

H
(:,2)ÛUU(:,3 : NR)

(k)
= 0001×(NR−2), (A IV-26b)

where (k) follows because of the orthonormality constraint characterizing the columns of ÛUU .

As a summary, for infinitely huge samples, hhh ∼ C N NR(000, IIINR), E{s2[k]} = Ps, and zzz[k] ∼
C N NR(000,σ2IIINR), χ ′2ν1

(λ H0
1 ) and χ ′2ν2

(λ H0
2 ) are independent RVs making (A IV-23) satisfy

the definition regarding the noncentral F–distribution (Johnson et al., 1995, Ch. 30, p. 480)

with (ν1,ν2) DoF and NCPs (λ H0
1 ,λ H0

2 ). Therefore, under the aforementioned conditions,

lim
N→∞

Teq ∼ F ′′ν1,ν2
(λ H0

1 ,λ H0
2 ). (A IV-27)

�

Case 3. γinr > 0 and γsnr > 0: this case is exactly Case 2 subjected to a constraint of γinr > 0.

With regard to such a constraint,

ak =
1

σ
ÛUU

H
(:,2)

(
hhhs[k]+gggv[k]+ zzz[k]

) ∈ C (A IV-28a)

bbbk =
1

σ
ÛUU

H
(:,3 : NR)

(
hhhs[k]+gggv[k]+ zzz[k]

) ∈ C
(NR−2). (A IV-28b)
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As seen in (A IV-28a) and(A IV-28b), ak and bbbk admit the same distribution except the shift, in

the corresponding NCPs, by gggv[k]. Hence,

Teq ∼
χ ′2ν1

(λ H1
1 )/ν1

χ ′2ν2
(λ H1

2 )/ν2

, (A IV-29)

where (λ H1
1 ,λ H1

2 ) =
1

σ2

N

∑
k=1

(∥∥P̂PP2(hhhs[k] + gggv[k])
∥∥2
,
∥∥P̂PP3:NR(hhhs[k] + gggv[k])

∥∥2
)

. To express (A

IV-29) in terms of the noncentral F–distribution, χ ′2ν1
(λ H1

1 ) and χ ′2ν2
(λ H1

2 ) are required to be

independent, and hence Cov{ak,bbbk}= E
{(

ak−E{ak}
)(

bbbk−E{bbbk}
)H}

should be a zero row

vector.

Employing (A IV-28a) and (A IV-28b), and following (A IV-24a)-(A IV-25b):

Cov{ak,bbbk}= 1

σ2
ÛUU

H
(:,2)

(
E{hhhhhhH}E{s2[k]}︸ ︷︷ ︸

=Ps

+E{ggggggH}E{v2[k]}︸ ︷︷ ︸
=Pv

+E{zzz[k]zzzH [k]}
)

ÛUU(:,3 : NR)

(A IV-30a)

(l)
=

Ps +Pv +σ2

σ2
ÛUU

H
(:,2)× IIINR×ÛUU(:,3 : NR)

(m)
= 0001×(NR−2), (A IV-30b)

where (l) follows because of the independence of hhh, ggg, and zzz[k], and the considered as-

sumption that hhh ∼ C N NR(000, IIINR) and ggg ∼ C N NR(000, IIINR); and (m) follows from the or-

thonormal columns of ÛUU . Under these conditions—hhh ∼ C N NR(000, IIINR), ggg ∼ C N NR(000, IIINR),

E{s2[k]} = Ps, E{v2[k]} = Pv, and zzz[k] ∼ C N NR(000,σ2IIINR)—and the availability of infinite

samples, χ ′2ν1
(λ H1

1 ) and χ ′2ν2
(λ H1

2 ) would be independent RVs. Consequently, for the underly-

ing case and the preconditions of Theorem 6, as per (Johnson et al., 1995, Ch. 30, p. 480),

lim
N→∞

Teq ∼ F ′′ν1,ν2
(λ H1

1 ,λ H1
2 ). (A IV-31)

�

Finally, accommodating Case 1, Case 2, and Case 3 leads to Theorem 6. �
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2. Proof of Proposition 1

This proof begins with the derivation of the closed-form expression—valid under infinitely

huge samples—of Pd . Thereafter, the corresponding closed-form expression of Pf is inferred.

Employing the definition in Proposition 1, (4.13), and (4.14):

Pd = Pr{T > λ |H1}= Pr

{
ν1

ν2
Teq > λ

∣∣∣∣H1

}
= Pr

{
Teq >

ν2λ
ν1

∣∣∣∣H1

}
(A IV-32a)

= 1−Pr

{
Teq ≤ ν2λ

ν1

∣∣∣∣H1

}
= 1−Pr

{
Teq

∣∣H1 ≤ ν2λ
ν1

}
. (A IV-32b)

To simplify (A IV-32b), it shall be realized that Teq|H1 corresponds to the scenario that the

corresponding SNR and INR being greater than zero, i.e., Teq|H1 ≡ Teq

∣∣∣∣
γsnr>0 & γinr>0

. Conse-

quently,

Pd = 1−Pr

{
Teq

∣∣∣∣
γsnr>0 & γinr>0

≤ ν2λ
ν1

}
(A IV-33a)

lim
N→∞

Pd
(a)
= 1−Pr

{
lim

N→∞
Teq

∣∣∣∣
γsnr>0 & γinr>0

≤ ν2λ
ν1

}
, (A IV-33b)

where (a) follows through the exploitation of the properties of limit. Meanwhile, invoking the

third “if condition” of Theorem 6,

lim
N→∞

Pd = 1−Pr

{
Teq︸︷︷︸

∼F ′′ν1,ν2
(λ H1

1 ,λ H1
2 )

≤ ν2λ
ν1

}
. (A IV-34)

Therefore, the CDF of F ′′ν1,ν2
(λ H1

1 ,λ H1
2 ) can be deployed to simplify (A IV-34) to

Pd = 1−F ′′
(
ν2λ/ν1;ν1,ν2|λ H1

1 ,λ H1
2

)
. (A IV-35)
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Employing the definition Pf = Pr{T > λ |H0}, (4.13), and (4.14); and following (A IV-32a)

through (A IV-32b),

Pf = 1−Pr

{
Teq ≤ ν2λ

ν1

∣∣∣∣H0

}
= 1−Pr

{
Teq

∣∣H0 ≤ ν2λ
ν1

}
. (A IV-36)

Under H0 (no RFI condition), γinr = 0 and γsnr > 0. As a result, Teq|H0 ≡ Teq

∣∣∣∣
γinr=0 & γsnr>0

and

hence

lim
N→∞

Pf
(b)
= 1−Pr

{
lim

N→∞
Teq

∣∣∣∣
γinr=0 & γsnr>0

≤ ν2λ
ν1

}
(A IV-37a)

(c)
= 1−Pr

{
Teq︸︷︷︸

∼F ′′ν1,ν2
(λ H0

1 ,λ H0
2 )

≤ ν2λ
ν1

}
, (A IV-37b)

where (b) follows directly from the properties of limit and (c) follows by utilizing the second

“if condition” of Theorem 6. Meanwhile, deploying the CDF of F ′′ν1,ν2
(λ H0

1 ,λ H0
2 ) in (A IV-37b)

leads to the expression

lim
N→∞

Pf = 1−F ′′
(
ν2λ/ν1;ν1,ν2|λ H0

1 ,λ H0
2

)
. (A IV-38)

�

3. Proof of Lemma 2

First, please note that P̂PP2 projects toward the subspace spanned by the singular vector cor-

responding to the second largest singular value; P̂PP3:NR projects toward the subspace jointly

spanned by the singular vectors corresponding to the remaining smallest singular values. To

continue, as N → ∞, the population covariance matrix (PCM) RRRyy = E{yyy[k]yyyH [k]} would be

perfectly estimated by the SCM R̂RRyy. In this regard, the signal subspace (which is spanned by

the SOI and/or the RFI) would be perfectly differentiated from the orthogonal noise subspace.

For this scenario:
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• if the proposed detector is operating in the high SNR and INR regimes, and γsnr >> γinr,

the first and the second largest singular values are contributed by the SOI and RFI, re-

spectively. This is also corroborated by the fact that the contribution of the noise eigen-

values in the high SNR and INR regimes is close to zero, as the contaminating noise has

a very weak power, i.e., P̂PP2hhh = 000NR×1, P̂PP2ggg = ggg, and P̂PP3:NRggg = P̂PP3:NRhhh = 000NR×1. From the

suppositions of Theorem 6 and Lemma 2, thus,

(λ H1
1 ,λ H1

2 ) =
1

σ2

N

∑
k=1

(∥∥
=000NR×1︷ ︸︸ ︷
P̂PP2hhhs[k]+

=ggg︷︸︸︷
P̂PP2ggg v[k]

∥∥2
,
∥∥

=000NR×1︷ ︸︸ ︷
P̂PP3:NRhhhs[k]+

=000NR×1︷ ︸︸ ︷
P̂PP3:NRgggv[k]

∥∥2)
(A IV-39a)

=
1

σ2

N

∑
k=1

(∥∥gggv[k]
∥∥2
,0
)
= (λgv,0). (A IV-39b)

Meanwhile, recalling that the singly noncentral F–distribution is the result of the doubly

noncentral distribution with one of its NCPs being zero (Johnson et al., 1995, Ch. 30, p.

480), the closed-form expression given by (4.17) follows from (4.15). �

• if the proposed detector is operating in the high SNR and INR regimes, and γinr >>

γsnr, the first and the second largest singular values are contributed by the RFI and SOI,

respectively, i.e., P̂PP2hhh = hhh, P̂PP2ggg = 000NR×1, and P̂PP3:NRggg = P̂PP3:NRhhh = 000NR×1. Hence,

(λ H1
1 ,λ H1

2 ) =
1

σ2

N

∑
k=1

(∥∥ =hhh︷ ︸︸ ︷
P̂PP2hhhs[k]+

=000NR×1︷︸︸︷
P̂PP2ggg v[k]

∥∥2
,
∥∥

=000NR×1︷ ︸︸ ︷
P̂PP3:NRhhhs[k]+

=000NR×1︷ ︸︸ ︷
P̂PP3:NRgggv[k]

∥∥2)
(A IV-40a)

=
1

σ2

N

∑
k=1

(∥∥hhhs[k]
∥∥2
,0
)
= (λhs,0). (A IV-40b)

Similarly, deploying (A IV-40b) in (4.15), (4.18) becomes evident. �

If the proposed RFI detector is operating in the high SNR regimes, on the other hand, the

largest singular value is contributed entirely by the SOI and the rest of the eigenvalues

are the noise eigenvalues of equal magnitude (especially, as N → ∞), i.e., P̂PP2hhh = 000NR×1
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and P̂PP3:NRhhh = 000NR×1. Accordingly, evoking the supposition of Theorem 6,

(λ H0
1 ,λ H0

2 ) =
1

σ2

N

∑
k=1

(∥∥ P̂PP2hhh︸︷︷︸
=000NR×1

s[k]
∥∥2
,
∥∥ P̂PP3:NRhhh︸ ︷︷ ︸
=000NR×1

s[k]
∥∥2)

(A IV-41a)

= (0,0). (A IV-41b)

Plugging (A IV-41b) into (4.16) and realizing that the central F–distribution is the non-

central F–distribution with zero NCPs (Johnson et al., 1995, Ch. 27, p. 322), (4.19)

follows. �

Eventually, accommodating the aforementioned scenarios leads to Lemma 2. �



APPENDIX V

APPENDICES OF CHAPTER 5

1. Proof of Lemma 3

Following the definitions in (5.1) and (5.4),

[( ˜̂P1,2− ˜̂P [d])×3 R̂
(p)
yy
]T
(3)

=
([ ˜̂P1,2

]T
(3)
− [ ˜̂P [d]]T

(3)

)[
R̂

(p)
yy
]T
(3)

(A V-1a)[ ˜̂P [d]×3 R̂
(p)
yy
]T
(3)

=
[ ˜̂P [d]]T

(3)

[
R̂

(p)
yy
]T
(3)
. (A V-1b)

Applying the definition in (5.1) to (5.29) and, in turn, utilizing (5.28) and (5.14),

[
R̂

(p)
yy

]T

(3)
=

1

N

[
Y p

]T
(3)

([
Y p

]T
(3)

)H
(A V-2a)

= P̂PPndR̂RRyyP̂PP
H
nd = R̂RR

(p)
yy . (A V-2b)

Substituting (A V-2b) into (A V-1a) and (A V-1b), and, in turn, into (5.35) gives (5.37).

To continue, employing (5.16) in (5.34),

[
˜̂P [d]

]T

(3)

=
( ˜̂TTT 1⊗ IIIW

)
P̂PPd. (A V-3)

Exploiting (5.33) and (A V-3) in (5.37),

T TB =
ν2

ν1

tr
(( ˜̂TTT 1⊗ IIIW

)
P̂PPdR̂RR

(p)
yy

)
tr
(( ˜̂TTT 1⊗ IIIW

)(
IIINRW − P̂PPd

)
R̂RR
(p)
yy

) . (A V-4)

Deploying (5.16) and (5.20) in (A V-4),

T TB =
ν2

ν1

tr
(
( ˜̂TTT 1⊗ IIIW ) ˜̂UUU1:r1

˜̂ΣΣΣ1:r1

˜̂UUUH
1:r1

)
tr
(
( ˜̂TTT 1⊗ IIIW ) ˜̂UUUr1+1:NRW

˜̂ΣΣΣr1+1:NRW
˜̂UUUH

r1+1:NRW
) . (A V-5)
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From (5.21b),

˜̂ΣΣΣ1:r1
= Σ̂ΣΣr+1:NRW (1 : r1,1 : r1) (A V-6a)

˜̂ΣΣΣr1+1:NRW = Σ̂ΣΣr+1:NRW (r1 +1 : d,r1 +1 : d). (A V-6b)

At last, substituting (5.21a), (5.21c), (A V-6a), and (A V-6b) into (A V-5) leads to (5.38). �

2. Proof of Theorem 7

Employing the stated definition, lim
ΔUUUr+1:NRW→000

Pd = Pr
{

lim
ΔUUUr+1:NRW→000

T TB > λ
∣∣H1

}
. In other

words, lim
ΔUUUr+1:NRW→000

Pd = Pr
{

lim
ΔUUUr+1:NRW→000

T TB
∣∣H1 > λ

}
. While employing (5.21a)-(5.21c), ap-

plying limit and its properties to (5.38),

lim
ΔUUUr+1:NRW→000

Pd = Pr

{
tr
(
N̂NN1

)
tr
(
N̂NN2

)∣∣∣∣H1 > λ̃
}
, (A V-7)

where λ̃ = ν1λ/ν2 and

N̂NN1 = lim
ΔUUUr+1:NRW→000

{
( ˜̂TTT 1⊗ IIIW ) ˜̂UUU1:r1

˜̂ΣΣΣ1:r1

˜̂UUUH
1:r1

}
(A V-8)

N̂NN2 = lim
ΔUUUr+1:NRW→000

{
( ˜̂TTT 1⊗ IIIW ) ˜̂UUUr1+1:NRW

˜̂ΣΣΣr1+1:NRW
˜̂UUUH

r1+1:NRW

}
. (A V-9)

For
[
Y p

]
(1)

decomposed as
[
Y p

]
(1)

=
[ ˜̂UUU [1:r1]

1
˜̂UUU [n]

1

] ˜̂ΣΣΣ[i]
1

[ ˜̂VVV [1:r1]
1

˜̂VVV [n]
1

]H
and

˜̂ΣΣΣ[1:r1]
1 = ˜̂ΣΣΣ[i]

1 (1 :

r1,1 : r1), the perturbation analysis extended to the HOSVD-based subspace estimate (Roemer

et al., 2014, Sec. III-B) leads to

˜̂UUU [1:r1]
1 = ŨUU [1:r1]

1 +ΔŨUU [1:r1]
1 , (A V-10)

where ŨUU [1:r1]
1 denotes the true version of ˜̂UUU [1:r1]

1 and ΔŨUU [1:r1]
1 = ŨUU [n]

1 ŨUU [n]H

1

[
Z̃
]
(1)

ṼVV [1:r1]
1 Σ̃ΣΣ[1:r1]

−1

1

(Roemer et al., 2014, eq. (23)) for ŨUU [n]
1 and Σ̃ΣΣ[1:r1]

1 being the true versions of ˜̂UUU [n]
1 and

˜̂ΣΣΣ[1:r1]
1 ,
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respectively. Expanding (A V-8) and (A V-9) using the properties of limit, (5.21a)-(5.21c), and

(A V-10), (A V-11) and (A V-12) follow.

N̂NN1 = lim
ΔUUUr+1:NRW→000

( ˜̂TTT 1⊗ IIIW
)× lim

ΔUUUr+1:NRW→000
ÛUUr+1:NRW (:,1 : r1)

× lim
ΔUUUr+1:NRW→000

Σ̂ΣΣr+1:NRW (1 : r1,1 : r1)×
[

lim
ΔUUUr+1:NRW→000

ÛUUr+1:NRW (:,1 : r1)
]H

. (A V-11)

N̂NN2 = lim
ΔUUUr+1:NRW→000

( ˜̂TTT 1⊗ IIIW )× lim
ΔUUUr+1:NRW→000

ÛUUr+1:NRW (:,r1 +1 : NRW − r)

× lim
ΔUUUr+1:NRW→000

Σ̂ΣΣr+1:NRW (r1 +1 : NRW − r,r1 +1 : NRW − r)

×
[

lim
ΔUUUr+1:NRW→000

ÛUUr+1:NRW (:,r1 +1 : NRW − r)
]H

. (A V-12)

To simplify (A V-11) and (A V-12), we simplify the respective limits using the first-order

perturbation analysis. Deploying (A V-10),

lim
ΔUUUr+1:NRW→000

{
( ˜̂TTT 1⊗ IIIW ) =

(
(ŨUU [1:r1]

1 +ΔŨUU [1:r1]
1 )(ŨUU [1:r1]

H

1 +ΔŨUU [1:r1]
H

1 )⊗ IIIW
)}

=
(
ŨUU [1:r1]

1 ŨUU [1:r1]
H

1 ⊗ IIIW
)
= AAA. (A V-13)

From (5.41), (A V-14) and (A V-15) become evident.

lim
ΔUUUr+1:NRW→000

{
ÛUUr+1:NRW (:,1 : r1) =UUUr+1:NRW (:,1 : r1)+ΔUUUr+1:NRW (:,1 : r1)

}
=UUUr+1:NRW (:,1 : r1). (A V-14)
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lim
ΔUUUr+1:NRW→000

{
ÛUUr+1:NRW (:,r1 +1 : NRW − r) =UUUr+1:NRW (:,r1 +1 : NRW − r)

+ΔUUUr+1:NRW (:,r1 +1 : NRW − r)
}
=UUUr+1:NRW (:,r1 +1 : NRW − r). (A V-15)

Realizing that (5.39) is valid when the perturbations go to zero,

lim
ΔUUUr+1:NRW→000

Σ̂ΣΣr+1:NRW (1 : r1,1 : r1) = ΣΣΣ1:r1
, (A V-16)

where ΣΣΣ1:r1
= ΣΣΣr+1:NRW (1 : r1,1 : r1). Besides, for a = r1 +1 and b = NRW − r,

lim
ΔUUUr+1:NRW→000

Σ̂ΣΣr+1:NRW (a : b,a : b) = diag
(
0,0, . . . ,0

)
. (A V-17)

Deploying (A V-13), (A V-14), and (A V-16) in (A V-11),

N̂NN1 = AAAUUUr+1:NRW (:,1 : r1)ΣΣΣ1:r1
UUUH

r+1:NRW (:,1 : r1). (A V-18)

Similarly, employing (A V-13), (A V-15), and (A V-17) in (A V-12),

N̂NN2 = 000NRW×NRW . (A V-19)

Finally, substituting (A V-18) and (A V-19) into (A V-7) while employing the property of trace,

lim
ΔUUUr+1:NRW→000

Pd = Pr
{

tr
(
N̂NN1

)
/0 = ∞ > λ̃

}
(A V-20)

Thus, if λ = ν2λ̃/ν1 < ∞, lim
ΔUUUr+1:NRW→000

Pd = 1. �



263

3. Proof of Theorem 8

To prove the theorem, three cases are shown subsequently.

Case 4. NR ≤ (L1+1)—for this case, r̃1 = min(NR,L1+1) = NR. Thus, ˜̂TTT 1 = IIINR . Employing

this relation—IIINR⊗ IIIW = IIINRW —in (A V-4) and recalling (5.17),

T TB =
ν2

ν1

tr(P̂PPdR̂RR
(p)
yy )

tr
(
(IIINRW − P̂PPd)R̂RR

(p)
yy
) = T MB. (A V-21)

As a result, Pd = Pmat
d . �

Case 5. For the very high SNR and INR regimes—this scenario corresponds to the infinites-

imally small perturbations which render very high SNR and INR values. Thus, the behavior

of the test statistic in (A V-4) can be assessed when the perturbations go to zero. To continue,

from (Getu et al., 2017, eq. (63)),

˜̂TTT 1 = IIINR− ˜̂UUU [n]
1

˜̂UUU [n]H

1 , (A V-22)

where ˜̂UUU [n]
1 provides an orthonormal basis for the noise subspace which is obtained through—

as discussed in Appendix 2 (under APPENDIX V)—the SVD of [Y p](1). For the very high

SNR and INR regimes, the overall signal lies in the signal subspace. Hence, it is possible to

argue that

˜̂TTT 1 ≈ IIINR . (A V-23)

Employing (A V-23) in (A V-4),

T TB ≈ ν2

ν1

tr
(
P̂PPdR̂RR

(p)
yy
)

tr
(
(IIINRW − P̂PPd)R̂RR

(p)
yy
) = T MB, (A V-24)

where the estimated parameters are to be replaced by their true estimates. Thus, for the very

high SNR and INR regimes, Pd = Pmat
d . �
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Case 6. For the low SNR and INR regimes with the constraint: NR >> (L1 +1) and NRW >>

r+ r1—this scenario is going to be investigated by also using (A V-4). Realizing that a projec-

tion matrix ˜̂TTT 1 is Hermitian, i.e., ˜̂TTT H
1 = ˜̂TTT 1, and idempotent, i.e., ˜̂TTT 1

˜̂TTT 1 =
˜̂TTT 1, the subsequent

simplifications follow.

Let F1 = tr
(( ˜̂TTT 1⊗ IIIW

)
P̂PPdR̂RR

(p)
yy

)
and F2 = tr

(( ˜̂TTT 1⊗ IIIW
)
R̂RR
(p)
yy

)
. With these suppositions, it is

inferred from (A V-4) that

T TB =
ν2

ν1

F1

F2−F1
. (A V-25)

Using the identity that tr(AAABBB) = tr(BBBAAA) (Magnus & Neudecker, 2007, p. 11),

F1 = tr
(

P̂PPdR̂RR
(p)
yy
( ˜̂TTT 1⊗ IIIW

))
(A V-26a)

F2 = tr
(

R̂RR
(p)
yy
( ˜̂TTT 1⊗ IIIW

))
. (A V-26b)

Deploying (A V-22) in (A V-26a), the identity (AAA+BBB)⊗CCC =AAA⊗CCC+BBB⊗CCC (Magnus & Neudecker,

2007, p. 32), and the identity tr(AAA−BBB) = tr(AAA)− tr(BBB) (Magnus & Neudecker, 2007, p. 11),

(A V-27) follows.

F1 = tr
(
P̂PPdR̂RR

(p)
yy
(
(IIINR− ˜̂UUU [n]

1
˜̂UUU [n]H

1 )⊗ IIIW
))

= tr
(
P̂PPdR̂RR

(p)
yy
)− tr

(
P̂PPdR̂RR

(p)
yy
( ˜̂UUU [n]

1
˜̂UUU [n]H

1 ⊗ IIIW
))︸ ︷︷ ︸

F1,1

= tr
(
P̂PPdR̂RR

(p)
yy
)−F1,1. (A V-27)

As F2 = F1

∣∣
P̂PPd=IIINRW

, it is inferred from (A V-27) that

F2 = tr
(
R̂RR
(p)
yy
)−F2,1, (A V-28)

where

F2,1 = F1,1

∣∣
P̂PPd=IIINRW

. (A V-29)
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Substituting (A V-27) and (A V-28) into (A V-25),

T TB =
ν2

ν1

tr
(
P̂PPdR̂RR

(p)
yy
)−F1,1

tr
(
(IIINRW − P̂PPd)R̂RR

(p)
yy
)− (F2,1−F1,1)

. (A V-30)

When NR >> (L1 +1) and
(
γsnr, γinr

)→ (
0, 0

)
, it can be visualized that the overall received

signal lies on the noise subspace which is orthogonal to the signal subspace. Accordingly, it

can be argued that ˜̂UUU [n]
1

˜̂UUU [n]H

1 ≈ IIINR which, in turn, implicates that

F1,1 ≈ tr
(

P̂PPdR̂RR
(p)
yy IIINRW = P̂PPdR̂RR

(p)
yy

)
=

r+r1

∑
i=r+1

σ̂i. (A V-31)

From (A V-29) and (A V-31),

F2,1 ≈ tr
(

R̂RR
(p)
yy IIINRW = R̂RR

(p)
yy

)
=

NRW

∑
i=r+1

σ̂i. (A V-32)

To continue, since an SCM is both a Hermitian and positive semi-definite matrix, it is to be

noted that σ̂i ≈ σ2 > 0, ∀ i ≥ r + r1 + 1, which is much stronger than the strength of the

received SOI and RFI signals whenever (γsnr,γinr)→ (0,0). Using (A V-31) and (A V-32), (A

V-30) simplifies to

T TB ≈ ν2

ν1

tr
(
P̂PPdR̂RR

(p)
yy
)−∑r+r1

i=r+1 σ̂i

tr
(
(IIINRW − P̂PPd)R̂RR

(p)
yy
)−∑NRW

i=r+r1+1 σ̂i

(A V-33a)

(a)
>>

ν2

ν1

tr
(
P̂PPdR̂RR

(p)
yy
)−∑r+r1

i=r+1 σ̂i

tr
(
(IIINRW − P̂PPd)R̂RR

(p)
yy
) (A V-33b)

(b)
=T MB− ν2

ν1
× ∑r+r1

i=r+1 σ̂i

∑NRW
i=r+r1+1 σ̂i

, (A V-33c)

where (a) follows for ∑NRW
i=r+r1+1 σ̂i ≈ (NRW − r− r1)σ2 >> 0 and (b) follows from (5.17).
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To continue further, we analyze the behavior of
∑

r+r1
i=r+1 σ̂i

∑
NRW
i=r+r1+1 σ̂i

whenever NRW >> r + r1 and(
γsnr, γinr

)→ (
0, 0

)
—the preliminary conditions. As both the SNR and INR get close to

zero, ∑r+r1
i=r+1 σ̂i ≈ r1σ2, ∑NRW

i=r+r1+1 σ̂i ≈ (NRW − r− r1)σ2, and hence

∑r+r1
i=r+1 σ̂i

∑NRW
i=r+r1+1 σ̂i

≈ r1σ2(
NRW − (r+ r1)

)
σ2

(c)≈ r1

NRW
(d)≈ 0, (A V-34)

where (c) follows for NRW >> r + r1 and (d) follows for the consideration that NRW >>

r+r1 > r1. Meanwhile, employing (A V-34) in (A V-33c) renders T TB >> T MB. Equivalently,

Pr
{

T TB > λ |H1

}
>> Pr

{
T MB > λ |H1

}
. Correspondingly, Pd >> Pmat

d . �

Eventually, combining Case 4, Case 5, and Case 6, Theorem 8 follows. �



APPENDIX VI

APPENDICES OF CHAPTER 6

1. Proof of Theorem 10

For a perfect Û
[I]

, P ∈ C
NR×W×NRW excises the MI-RFI in (6.9) if and only if (iff)

P×3 Û
[I]
= P×3 G = Ot = Û

[I]− Û
[I]
, (A VI-1)

where Ot ∈C
NR×W×r is a zero tensor. Employing (6.1),

(
Û

[I]×3

(
Û

[I]
)+3)

×3 Û
[I]
= Û

[I]

and I 3×3 Û
[I]
= Û

[I]
. Accordingly, perfect excision is possible iff

P×3 Û
[I]
= I 3×3 Û

[I]−
(

Û
[I]×3

(
Û

[I]
)+3)

×3 Û
[I]
= Ot . (A VI-2)

Applying the definition of the 3-mode product of two tensors (cf. Section 6.2.1) and the dis-

tributive property of matrix product to (A VI-2) give

[
P×3 Û

[I]
]
(3)

=

[
Û

[I]
]
(3)

([
I 3

]
(3)

−
[
Û

[I]×3

(
Û

[I]
)+3]

(3)

)
. (A VI-3)

Thereafter, the tensorization of (A VI-3) renders

P×3 Û
[I]
=

(
I 3− Û

[I]×3

(
Û

[I]
)+3)

×3 Û
[I]
. (A VI-4)

Finally, it is easily inferred from (A VI-4) that

P = I 3− Û
[I]×3

(
Û

[I]
)+3

. (A VI-5)

�
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2. Proof of Theorem 11

Applying the definition of the r-mode product of two tensors (cf. Section 6.2.1) and transposi-

tion to (6.14) render

RMSEE =

√
E

{∥∥[P]T
(3)
[G ]T

(3)

∥∥2

F

}
. (A VI-6)

From the MLSEP problem formulation, [G ]T(3) = GGG—cf. Section 6.3.2. As a result,

RMSEE =

√
E

{∥∥[P]T
(3)

GGG
∥∥2

F

}
. (A VI-7)

From (6.13) and the definition of the 3-mode unfolding—cf. Section 6.2.1,

[
P
]T
(3)

= IIINRW −
[
Û

[I]
]T

(3)

([
Û

[I]
]T

(3)

)+

. (A VI-8)

Using (6.29) or (6.32) in (A VI-8) and substituting it into (A VI-7) afterward lead to (A VI-9).

RMSEE =

√√√√E

{∥∥∥∥
(

IIINRW −
(

UUUI +

[
ΔÛ

[I]
]T

(3)

)(
UUUI +

[
ΔÛ

[I]
]T

(3)

)+)
GGG
∥∥∥∥2

F

}
. (A VI-9)

Applying limit and its respective properties to (A VI-9) gives (A VI-10).

lim
ΔUUUI→000

RMSEE=

√√√√E

{∥∥∥∥
(

IIINRW −
(

UUUI + lim
ΔUUUI→000

[
ΔÛ

[I]
]T

(3)

)(
UUUI + lim

ΔUUUI→000

[
ΔÛ

[I]
]T

(3)

)+)
GGG
∥∥∥∥2

F

}
.

(A VI-10)

To simplify (A VI-10), the underneath lemma is required.
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Lemma 6.

lim
ΔUUUI→000

[
ΔÛ

[I]
]T

(3)

= 000. (A VI-11)

Proof. The proof of (A VI-11) depends on NR. Thus, two cases are shown in the sequel.

Case 7. NR ≤ ∑Q
i=1(Li +1)

From the equality in (6.29), lim
ΔUUUI→000

[
ΔÛ

[I]
]T

(3)

= lim
ΔUUUI→000

ΔUUUI = 000. �

Case 8. NR > ∑Q
i=1(Li +1)

Employing (6.32),

lim
ΔUUUI→000

[
ΔÛ

[I]
]T

(3)

= lim
ΔUUUI→000

{
ΔUUUI+

(
UUU [I]

1 ΔUUU [I]H

1 ⊗ IIIW
)
UUUI +

(
ΔUUU [I]

1 UUU [I]H

1 ⊗ IIIW
)
UUUI

}
(A VI-12)

lim
ΔUUUI→000

[
ΔÛ

[I]
]T

(3)

=
(

UUU [I]
1 ×

(
lim

ΔUUUI→000
ΔUUU [I]

1

)H⊗ IIIW

)
UUUI

+
((

lim
ΔUUUI→000

ΔUUU [I]
1

)
×UUU [I]H

1 ⊗ IIIW

)
UUUI. (A VI-13)

To continue, the aforementioned limit should be computed. Utilizing (6.31) for ΔUUU [I]
1 ,

lim
ΔUUUI→0

ΔUUU [I]
1 = lim

ΔUUUI→0

ŨUU [n]
1︷ ︸︸ ︷

UUU [n]
1 UUU [n]H

1 [Z ](1)

ṼVV [I]
1︷ ︸︸ ︷

VVV [I]
1 ΣΣΣ[I]−1

1 (A VI-14a)

= lim
ΔUUUI→0

unvec
(

vec
(
ŨUU [n]

1 [Z ](1)ṼVV
[I]
1

))
, (A VI-14b)
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where ŨUU [n]
1 = UUU [n]

1 UUU [n]H

1 and ṼVV [I]
1 = VVV [I]

1 ΣΣΣ[I]−1

1 . Applying the property of “vec”—referring to

(Magnus & Neudecker, 2007, eq. (5), p. 35)—and limit to (A VI-14b),

lim
ΔUUUI→0

ΔUUU [I]
1 = unvec

(
˜(VVV
[I]T

1 ⊗ŨUU [n]
1 ) lim

ΔUUUI→0
vec

(
[Z ](1)

))
. (A VI-15)

From (6.27), ΔUUUI → 0 as ZZZ → 0. On the other hand, vec
(
[Z ](1)

)
= KKKW×NRNvec

(
ZZZ
)

(Roemer

et al., 2014, eq. (73)), for KKKW×NRN ∈ R
NRWN×NRWN being the commutation matrix (Mag-

nus & Neudecker, 2007). As a result,

lim
ΔUUUI→0

ΔUUU [I]
1 = unvec

(
(ṼVV [I]T

1 ⊗ŨUU [n]
1 )KKKW×NRN lim

ZZZ→0
vec

(
ZZZ
))

= 000. (A VI-16)

Substituting (A VI-16) into (A VI-13), lim
ΔUUUI→000

[
ΔÛ

[I]
]T

(3)

= 000. �

Eventually, combining Case 7 and Case 8 results in

lim
ΔUUUI→000

[
ΔÛ

[I]
]T

(3)

= 000. (A VI-17)

Deploying Lemma 6 in (A VI-10) results in

lim
ΔUUUI→000

RMSEE =

√
E

{∥∥(IIINRW −UUUIUUU+
I
)
GGG
∥∥2

F

}
. (A VI-18)

To simplify (A VI-18), we use the following relation:

GGG = GGGIIIr = GGG(FFFFFFH)(FFFFFFH)−1 = (GGGFFF)FFFH(FFFFFFH)−1. (A VI-19)
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From (6.26), GGGFFF =UUUIΣΣΣIVVV H
I . Thus,

GGG = (UUUIΣΣΣIVVV H
I )FFF

H(FFFFFFH)−1 =UUUIΣΣΣIVVV H
I FFFH(FFFFFFH)−1. (A VI-20)

Substituting (A VI-20) into (A VI-18) renders

lim
ΔUUUI→000

RMSEE =

√
E

{∥∥(UUUI−UUUIUUU+
I UUUI

)
ΣΣΣIVVV H

I FFFH(FFFFFFH)−1
∥∥2

F

}
. (A VI-21)

For UUUI possesses linearly independent columns, UUU+
I =

(
UUUI

HUUUI
)−1UUUI

H . Accordingly,

UUUI−UUUIUUU+
I UUUI =UUUI−UUUI

(
UUUI

HUUUI
)−1UUUI

HUUUI︸ ︷︷ ︸
=IIIr

= 000. (A VI-22)

Substituting (A VI-22) into (A VI-21), and taking Frobenius norm eventually result in

lim
ΔUUUI→000

RMSEE = 0. (A VI-23)

�

3. Proof of Theorem 12

Substituting UUUI +

[
ΔÛ

[I]
]T

(3)

=

[
Û

[I]
]T

(3)

to (A VI-9) results in

RMSEE =

√√√√E

{∥∥∥[IIINRW −
[
Û

[I]
]T

(3)

([
Û

[I]
]T

(3)

)+]
GGG
∥∥∥2

F

}
. (A VI-24)

Whenever NR > ∑Q
i=1(Li +1)—cf. (6.12),

[
Û

[I]
]T

(3)
=
(
T̂TT 1⊗ T̂TT 2

)
ÛUUI =

(
T̂TT 1⊗ IIIW

)
ÛUUI. (A VI-25)
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Employing SVD,
[
Y I

]
(1)

= ÛUU1Σ̂ΣΣ1V̂VV
H
1 , for ÛUU1 =

[
ÛUU

[I]
1 ÛUU

[n]
1

]
. As a result,

T̂TT 1 = ÛUU
[I]
1 ÛUU

[I]H

1 = IIINR−ÛUU
[n]
1 ÛUU

[n]H

1 . (A VI-26)

Employing (A VI-26) in (A VI-25) by applying the distributive property of Kronecker product

(Magnus & Neudecker, 2007) gives

[
Û

[I]
]T

(3)
= ÛUUI−

(
ÛUU

[n]
1 ÛUU

[n]H

1 ⊗ IIIW
)︸ ︷︷ ︸

ϒϒϒ

ÛUUI (A VI-27a)

= ÛUUI−ϒϒϒÛUUI =UUUI +ΔUUUI−CCC(ϒϒϒ), (A VI-27b)

where (6.27) is utilized in (A VI-27b), ϒϒϒ =
(
ÛUU

[n]
1 ÛUU

[n]H

1 ⊗ IIIW
)
, and CCC(ϒϒϒ) = ϒϒϒUUUI +ϒϒϒΔUUUI . Sub-

stituting (A VI-27b) into (A VI-24) results in (A VI-28).

RMSEE =

√
E

{∥∥∥∥
[

IIINRW −
(
UUUI +ΔUUUI−CCC(ϒϒϒ)

)(
UUUI +ΔUUUI−CCC(ϒϒϒ)

)+]GGG
∥∥∥∥2

F

}
. (A VI-28)

Employing (6.27) in the projection matrix PPP = IIINRW −ÛUUI(ÛUUI)
+ gives the RMSEE for SP as

sp-RMSEE =

√
E

{∥∥∥[IIINRW − (UUUI +ΔUUUI)(UUUI +ΔUUUI)+
]
GGG
∥∥2

F

}
. (A VI-29)

From (A VI-23) & (A VI-28), the convergence (CON) of lim
ΔUUUI→000

RMSEE to 0 depends on the

CON of

C̃CC(ΔUUUI) = ΔUUUI−CCC(ϒϒϒ) = ΔUUUI−
(
ϒϒϒUUUI +ϒϒϒΔUUUI

)
. (A VI-30)

From (A VI-23) & (A VI-29), the CON of lim
ΔUUUI→000

sp-RMSEE to 0 depends on the CON of ΔUUUI .

Meanwhile,

ÛUU
[n]
1 =UUU [n]

1 +ΔUUU [n]
1 , (A VI-31)
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where ΔUUU [n]
1 = −UUU [I]

1 ΣΣΣ[I]−1

1 VVV [I]H

1 [Z ]H(1)UUU
[n]
1 ∈ C

NR×(NR−r1) (Li et al., 1993, eqs. (7) & (11)) is

the perturbations in the singular vectors that span the noise subspace.

Employing (A VI-31),

ϒϒϒ =

[(
UUU [n]

1 UUU [n]H

1 +UUU [n]
1 ΔUUU [n]H

1

)
⊗ IIIW

]
+

((
ΔUUU [n]

1 UUU [n]H

1 +ΔUUU [n]
1 ΔUUU [n]H

1

)
⊗ IIIW

]
. (A VI-32)

Substituting (A VI-32) into (A VI-30), and discarding second- and third-order terms result in

(A VI-33).

C̃CC(ΔUUUI) = ΔUUUI−
(
UUU [n]

1 UUU [n]H

1 ⊗ IIIW
)
UUUI−

(
UUU [n]

1 ΔUUU [n]H

1 ⊗ IIIW
)
UUUI−

(
ΔUUU [n]

1 UUU [n]H

1 ⊗ IIIW
)
UUUI

− (
UUU [n]

1 UUU [n]H

1 ⊗ IIIW
)
ΔUUUI. (A VI-33)

Letting Θ =UUU [I]
1 ΣΣΣ[I]−1

1 VVV [I]H

1 and adopting the simplifications of (A VI-14a)–(A VI-16),

lim
ΔUUUI→0

ΔUUU [n]
1 = 000. Asymptotically, as ZZZ→ 000,

[
Y I

]
(1)

=UUU [I]
1 ΣΣΣ[I]

1 VVV [I]H

1 . As a result, UUU [n]
1 UUU [n]H

1 ≈ 000

and

C̃CC(ΔUUUI)≈ ΔUUUI−
(

UUU [n]
1 ΔUUU [n]H

1 ⊗ IIIW

)
UUUI−

(
ΔUUU [n]

1 UUU [n]H

1 ⊗ IIIW

)
UUUI. (A VI-34)

To continue, the CON of ΔUUUI = UUUnUUUH
n ZZZVVV IΣΣΣ−1

I ∈ C
NRW×r to 000 depends on the CON of ZZZ

and UUUnUUUH
n . As each element of UUUn ∈ C

NRW×(NRW−r) is close to zero, UUUnUUUH
n converges to

(NRW−r)ZZZZZZH as ZZZ→ 000, since (NRW−r) terms are being multiplied and summed per element.

As a result, the order of convergence (OOC) of ΔUUUI is of (NRW − r)ZZZZZZHZZZ.

On the other hand, the CON of
(
ΔUUU [n]

1 UUU [n]H

1 ⊗ IIIW
)
UUUI to 000 depends on the CON of [Z ](1) and

UUU [n]
1 UUU [n]H

1 , as ΔUUU [n]
1 UUU [n]H

1 = −UUU [I]
1 ΣΣΣ[I]−1

1 VVV [I]H

1 [Z ]H(1)UUU
[n]
1 UUU [n]H

1 . As ΔUUUI → 000 and hence ZZZ → 000,

UUU [n]
1 UUU [n]H

1 → 000 and [Z ](1)→ 000—cf. Lemma 6.
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As each element of UUU [n]
1 ∈C

NR×(NR−r1) is close to 0, UUU [n]
1 UUU [n]H

1 converges to (NR−r1)[Z ](1)[Z ]H(1)

as [Z ](1) → 000, since (NR− r1) terms are being multiplied and summed per element. Hence,

ΔUUU [n]
1 UUU [n]H

1 exhibits an OOC of (NR−r1)[Z ]H(1)[Z ](1)[Z ]H(1). To this end, the OOC of
(
ΔUUU [n]

1 UUU [n]H

1

⊗ IIIW
)
UUUI is of (NR− r1)ZZZZZZHZZZ and hence NR−r1

NRW−r ΔUUUI , as [Z ](1)→ 000 when ZZZ → 000.

Deploying a similar logic, the OOC of
(
UUU [n]

1 ΔUUU [n]H

1 ⊗ IIIW
)
UUUI is also of NR−r1

NRW−r ΔUUUI . Thus,

μμμMLSEP being the OOC of MLSEP becomes

μμμMLSEP = ΔUUUI−2
NR− r1

NRW − r
ΔUUUI. (A VI-35)

Similarly, μμμSP being the OOC of SP becomes

μμμSP = ΔUUUI. (A VI-36)

As W > 1, αI = 2 NR−r1
NRW−r =

2
W

NRW−Wr1
NRW−r < 1. Combining (A VI-35) and (A VI-36)

μμμMLSEP = μμμSP−αIΔUUUI, (A VI-37)

Employing (A VI-37), μμμMLSEP approaches 000 faster than μμμSP whenever ΔUUUI → 000. Therefore,

lim
ΔUUUI→000

RMSEE converges to 0 faster for MLSEP than for SP when NR > ∑Q
i=1(Li +1). �

4. Proof of Corollary 2

Deploying (A VI-37) for NR > ∑Q
i=1(Li +1), lim

ΔUUUs
I→000

s-RMSEE converges to zero with an OOC

μμμs-MLSEP = ΔUUUs
I−αIΔUUUs

I . (A VI-38)
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Employing (6.8), the PCM and SCM are, respectively, obtained similar to (6.23) and (6.25) as

RRRyy = E{yyymyyyH
m}=UUUΣΣΣΣΣΣHUUUH (A VI-39a)

R̂RRyy =
1

N
YYY IYYY H

I =
1

N
ÛUU Σ̂ΣΣΣ̂ΣΣH

ÛUU
H
. (A VI-39b)

It is to be noted that the perfect MI-RFI subspace can be estimated via the PCM. When 1≤ η <

W , Ns > N and hence more samples result in a better estimate of the PCM. Employing (A VI-

39a), (A VI-39b), (6.25), and (6.23), ‖RRRysys − R̂RRysys‖F < ‖RRRyy− R̂RRyy‖F ⇔ ‖ΔUUUs
I‖F < ‖ΔUUUI‖F .

Hence, μμμs-MLSEP approaches 000 faster than μμμMLSEP, as ΔUUUs
I approaches 000 faster than ΔUUUI .

When NR ≤ ∑Q
i=1(Li +1), (6.29) corroborates that μμμMLSEP = ΔUUUI and μμμs-MLSEP = ΔUUUs

I . Like-

wise, μμμs-MLSEP approaches 000 faster than μμμMLSEP provided that 1≤ η <W .

Therefore, lim
ΔUUUs

I→000
s-RMSEE converges to 0 faster than lim

ΔUUUI→000
RMSEE whenever 1≤ η <W . �





APPENDIX VII

APPENDICES OF CHAPTER 7

1. Proof of Proposition 3

Substituting (7.20) and (7.3) into (7.5) and, in turn, applying limit along with its properties

render (A VII-1).

lim
ΔUUUs→000

T |H1 =

ν2

ν1

tr((UUUs + lim
ΔUUUs→000

ΔUUUs)(UUUs + lim
ΔUUUs→000

ΔUUUs)
+[UUUs + lim

ΔUUUs→000
ΔUUUs UUUn + lim

ΔUUUs→000
ΔUUUn] lim

ΔUUUs→000
Σ̂ΣΣV̂VV

H
)

tr
(
(IIINR − (UUUs + lim

ΔUUUs→000
ΔUUUs)(UUUs + lim

ΔUUUs→000
ΔUUUs)

+)[UUUs + lim
ΔUUUs→000

ΔUUUs UUUn + lim
ΔUUUs→000

ΔUUUn] lim
ΔUUUs→000

Σ̂ΣΣV̂VV
H) .

(A VII-1)

From (7.19), ΔUUUs → 000 as ZZZ → 000NR×NR

(≡ {zzz[k]}N
k=1 → 000NR×1

)
. As ΔUUUs → 000, hence, ΔUUUn →

000NR×(NR−1) for it also depends on ZZZ—cf. the note below (7.19). Consequently,

lim
ΔUUUs→000

ΔUUUs = 000NR×1 & lim
ΔUUUs→000

ΔUUUn = 000NR×(NR−1). (A VII-2)

Utilizing (A VII-2) in (A VII-1) results in

lim
ΔUUUs→000

T |H1 =
ν2

ν1

tr(UUUsUUU+
s [UUUs UUUn] lim

ΔUUUs→000
Σ̂ΣΣV̂VV

H
)

tr
(
(IIINR−UUUsUUU+

s )[UUUs UUUn] lim
ΔUUUs→000

Σ̂ΣΣV̂VV
H) . (A VII-3)

Employing the product property of limit, lim
ΔUUUs→000

Σ̂ΣΣV̂VV
H
= lim

ΔUUUs→000
Σ̂ΣΣ× lim

ΔUUUs→000
V̂VV

H
= ΣΣΣVVV H since the

estimates become perfect when the perturbations get infinitesimally small. Thus, recalling that
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UUU+
s = (UUUH

s UUUs)
−1UUUH

s =UUUH
s ,

lim
ΔUUUs→000

T |H1 =
ν2

ν1

tr(UUUsUUUH
s [UUUs UUUn]ΣΣΣVVV H)

tr
(
(IIINR−UUUsUUUH

s )[UUUs UUUn]ΣΣΣVVV H) (A VII-4a)

(a)
=

ν2

ν1

tr([UUUs 000NR×(NR−1)]ΣΣΣVVV H)

tr
(
[000NR×1 UUUn]ΣΣΣVVV H) , (A VII-4b)

where (a) follows for UUUsUUUH
s UUUs =UUUs and UUUH

s UUUn = 0001×(NR−1). Substituting ΣΣΣ and VVV defined in

(7.18) into (A VII-4b) gives

lim
ΔUUUs→000

T |H1 =
ν2

ν1

tr(UUUsΣΣΣsVVV H
s )

tr
(
000NR×NR)

= ∞. (A VII-5)

From (7.14), lim
ΔUUUs→000

Pd = lim
ΔUUUs→000

Pr{T |H1 > λ} and hence

lim
ΔUUUs→000

Pd = Pr
{

lim
ΔUUUs→000

T |H1 > λ
}
. (A VII-6)

For λ < ∞, thus, employing (A VII-5) in (A VII-6) results in

lim
ΔUUUs→000

Pd = Pr{∞ > λ}= 1. (A VII-7)

�

2. Proof of Proposition 4

As N → ∞, the PCM under H1 and its SVD are given by RRRyy = E
{

hhhs[k]sH [k]hhhH}+σ2IIINR and

RRRyy =UUUΣΣΣVVV H = [UUUs UUUn]ΣΣΣ[VVV s VVV n]
H , (A VII-8)

where UUUs = UUU(:,1) is the true primary signal subspace, UUUn = UUU(:,2 : NR) is the true noise

subspace, and ΣΣΣ = diag
(
ΣΣΣs,ΣΣΣn

)
for ΣΣΣs = σ1, ΣΣΣn = diag

(
σ2,σ3, . . . ,σNR

)
, and σ1 ≥ σ2 ≥ . . .≥

σNR . As N →∞, the SOI and noise subspaces are perfectly estimated. Hence, we can infer that
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E{hhhs[k](hhhs[k])H}=UUUsΣΣΣsVVV H
s (A VII-9a)

σ2IIINR =UUUnΣΣΣnVVV H
n . (A VII-9b)

As N → ∞, the SCM perfectly estimates the PCM, i.e., lim
N→∞

R̂RRyy = RRRyy. Hence,

lim
N→∞

P̂PPs = PPPs =UUUsUUU+
s =UUUsUUUH

s . (A VII-10)

From the decision rule,

lim
N→∞

Pd = lim
N→∞

Pr{T > λ |H1}= lim
N→∞

Pr{T |H1 > λ} (A VII-11a)

= Pr
{

lim
N→∞

T |H1 > λ
}
. (A VII-11b)

Utilizing (7.5) and applying the properties of limit gives

lim
N→∞

T |H1 =
ν2

ν1

tr
(

lim
N→∞

P̂PPs× lim
N→∞

R̂RRyy
)

tr
(
(IIINR− lim

N→∞
P̂PPs) lim

N→∞
R̂RRyy

) (A VII-12a)

=
ν2

ν1

tr
(
PPPsRRRyy

)
tr
(
(IIINR−PPPs)RRRyy

) . (A VII-12b)

Expressing RRRyy via infinite summation of products,

lim
N→∞

T |H1 = lim
N→∞

ν2

ν1

∑N
k=1 ỹyyH [k]PPPsỹyy[k]

∑N
k=1 ỹyyH [k]

(
IIINR−PPPs

)
ỹyy[k]

, (A VII-13)

where ỹyy[k] = hhhs[k]+ zzz[k].
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Meanwhile, PPPs and
(
IIINR−PPPs

)
perfectly project toward the primary signal and noise subspaces,

respectively. Accordingly, lim
N→∞

T |H1 ∼ F ′ν1,ν2
(λ H1) for λ H1 being an NCP defined as

λ H1 = lim
N→∞

2

σ2

{ N

∑
k=1

∣∣∣∣PPPshhhs[k]
∣∣∣∣2 = ∣∣∣∣hhhs[k]

∣∣∣∣2}. (A VII-14)

Consequently,

lim
N→∞

Pd = Pr
{

lim
N→∞

T |H1 > λ
}

(A VII-15a)

= 1−Pr
{

lim
N→∞

T |H1 ≤ λ
}

(A VII-15b)

= 1−F ′(λ ;ν1,ν2|λ H1). (A VII-15c)

To further characterize the asymptotic Pd , we simplify (A VII-13). Substituting (A VII-8) and

(A VII-10) into (A VII-12b) results in

lim
N→∞

T |H1 =
ν2

ν1

tr
(
UUUsUUUH

s [UUUs UUUn]ΣΣΣVVV H)
tr
(
(IIINR−UUUsUUUH

s )[UUUs UUUn]ΣΣΣVVV H) . (A VII-16)

Recalling that UUUsUUUH
s UUUs =UUUs and UUUH

s UUUn = 0001×(NR−1), (A VII-16) simplifies to

lim
N→∞

T |H1 =
ν2

ν1

tr([UUUs 000NR×(NR−1)]ΣΣΣVVV H)

tr
(
[000NR×1 UUUn]ΣΣΣVVV H) (A VII-17a)

=
ν2

ν1

tr
(
UUUsΣΣΣsVVV H

s
)

tr
(
UUUnΣΣΣnVVV H

n
) (A VII-17b)

(b)
=

ν2

ν1

E{tr(hhhs[k](hhhs[k])H)}
tr
(
σ2IIINR

) , (A VII-17c)

where (b) follows from (A VII-9a) and (A VII-9b).

Expressing expectation via the average of infinite summation of products gives

lim
N→∞

T |H1 = (NR−1)γ̄∞
snr, (A VII-18)
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where γ̄∞
snr = lim

N→∞

1

N

N

∑
k=1

∣∣∣∣hhhs[k]
∣∣∣∣2/NRσ2 is the average SNR defined over an infinite duration.

Hence,

lim
N→∞

Pd = Pr{ lim
N→∞

T |H1 > λ} (A VII-19a)

= Pr
{
(NR−1)γ̄∞

snr > λ
}
. (A VII-19b)

Therefore, whenever λ > (NR−1)γ̄∞
snr, lim

N→∞
Pd = 0. �

3. Proof of Lemma 4

By definition,

lim
N→∞

Pf = lim
N→∞

Pr
{

T > λ |H0

}
= lim

N→∞
Pr
{

T |H0 > λ
}

(A VII-20a)

= Pr
{

lim
N→∞

T |H0 > λ
}
. (A VII-20b)

From (7.1), T |H0 = T |H1

∣∣{s[k]}N
k=1=0

. Thus,

lim
N→∞

T |H0 = lim
N→∞

T |H1

∣∣{s[k]}N
k=1=0

. (A VII-21)

Using (A VII-13) in (A VII-21) results in

lim
N→∞

T |H0 = lim
N→∞

ν2

ν1

F1|H0

F2|H0
, (A VII-22)

where F1|H0 = ∑N
k=1 zzzH [k]PPPszzz[k] and F2|H0 = ∑N

k=1 zzzH [k](IIINR − PPPs)zzz[k]. Consequently, it is

evident that lim
N→∞

T |H0 ∼ Fν1,ν2
and hence

lim
N→∞

Pf = 1−F(λ ;ν1,ν2). (A VII-23)
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To characterize Pf further, we deploy (A VII-18) in (A VII-21). Doing so results in

lim
N→∞

T |H0 = 0. (A VII-24)

Using (A VII-24) in (A VII-20b), lim
N→∞

Pf = Pr
{

lim
N→∞

T |H0 > λ
}
= Pr

{
0 > λ

}
. Therefore, if

λ > 0, lim
N→∞

Pf = 0. �

4. Proof of Proposition 5

For the i.i.d. case, RRRyy = E{hhhs[k]sH [k]hhhH}+σ2IIINR whenever N → ∞. For the i.ni.d. case,

RRRyy = E{hhhs[k]sH [k]hhhH}+σ2IIINR +σ2EEE provided that N → ∞. For perfectly estimated signal

and noise subspaces, we can argue via (A VII-9a) and (A VII-9b)—for the i.ni.d. case—that

E
{

hhhs[k](hhhs[k])H}=UUUsΣΣΣsVVV H
s (A VII-25a)

σ2IIINR +σ2EEE =UUUnΣΣΣnVVV H
n . (A VII-25b)

By definition, lim
N→∞

Pinid
d = lim

N→∞
Pr
{

T inid > λ |H1

}
= lim

N→∞
Pr
{

T inid|H1 > λ
}

. Thus,

lim
N→∞

Pinid
d = Pr

{
lim

N→∞
T inid|H1 > λ

}
. (A VII-26)

Following the simplifications of (A VII-12a)-(A VII-17c),

lim
N→∞

T inid|H1 =
ν2

ν1

tr
(
UUUsΣΣΣsVVV H

s
)

tr
(
UUUnΣΣΣnVVV H

n
) (A VII-27a)

(c)
=

ν2

ν1

E{tr(hhhs[k](hhhs[k])H)}
tr
(
σ2IIINR +σ2EEE

) , (A VII-27b)

where (c) follows from (A VII-25a) and (A VII-25b). If tr
(
EEE
)
> 0, it is evident from the com-

parison of (A VII-27b) and (A VII-17c)—derived for i.i.d. noise samples—that lim
N→∞

T |H1 >
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lim
N→∞

T inid|H1. Therefore, whenever σ2tr
(
EEE
)
> 0,

Pr
{

lim
N→∞

T |H1 > λ
}
> Pr

{
lim

N→∞
T inid|H1 > λ

}
. (A VII-28)

In other words, lim
N→∞

Piid
d > lim

N→∞
Pinid

d whenever σ2tr
(
EEE
)
> 0. When σ2tr

(
EEE
)
= 0, (A VII-28)

turns into an equality relationship. Thus, lim
N→∞

Piid
d = lim

N→∞
Pinid

d provided that σ2tr
(
EEE
)
= 0. �
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