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Optimisation du placement des tâches dans des cellules robotiques

MohammadHadi FARZANEHKALOORAZI

RÉSUMÉ

Le but de la présente étude est d’améliorer l’efficacité des cellules robotisées dans divers do-

maines d’application en optimisant l’emplacement de la tâche. Le problème de placement de

tâche est examiné pour quatre cas : (a) un robot sériel, (b) un robot sériel et un parallèle avec

une table rotative, (c) un robot et un module externe redondant à un degré de liberté (ddl) avec

planification des trajectoires et (d) un robot avec un placement discret des tâches. La premer

cas est étudié comme un cas particulier du deuxième cas. Pour avoir une estimation approx-

imative du meilleur emplacement possible, une approche créative basée sur la géométrie est

tout d’abord utilisée pour trouver un emplacement suffisant pour la tâche afin de maximiser

l’espace de travail accessible. Ensuite, des approches numériques pour une exécution optimale

des tâches pour plusieurs fonctions objectives sont introduites.

Pour le deuxième cas, une méthode d’optimisation utilisant le Particle Swarm Optimization

(PSO) est introduite afin d’optimiser simultanément la planification de la trajectoire et le place-

ment d’un chemin donné dans une cellule de travail robotique redondante pour une application

de placement de fibre automatisé. La cellule de travail consiste en un manipulateur sériel

à six ddl, un manipulateur parallèle à six ddl et une table rotative montée sur le manipulateur

parallèle. Comme la cellule de travail dispose de treize ddl, il faut résoudre la redondance ciné-

matique. La solution sera obtenue en tenant compte des singularités du manipulateur sériel et

des limites de l’espace de travail de tous les manipulateurs. L’algorithme permettant d’obtenir

le placement optimal du chemin est expliqué par un exemple simple et le résultat d’un chemin

en hélice autour de la pièce est représenté.

Pour le troisième cas, une nouvelle méthode est proposée pour identifier le nombre de paramètres

indépendants afin d’optimiser l’emplacement d’un chemin de pose de la colle pour une cellule

robotique redondante. La cellule robotique consiste en un manipulateur sériel à six ddl et à

un module actioné à un ddl. La pièce est attachée au module, mais le module n’est pas at-

taché au manipulateur sériel. Deux cas de module sont étudiés, à savoir une table rotative et

un guide linéaire. En général, six paramètres sont nécessaires pour placer un chemin sur le

module et six paramètres pour placer le module dans l’espace de travail du manipulateur sériel.

Cependant, en raison des symétries et du degré de redondance impliqués dans le problème, les

douze paramètres ne peuvent pas tous affecter de manière indépendante la décision de place-

ment. Par conséquent, il est important d’identifier le nombre de paramètres indépendants afin

d’améliorer l’efficacité du processus d’optimisation du placement. Une méthode innovante

utilisant le volume balayé est proposée pour déterminer le nombre de paramètres indépendants

pour les deux cas étudiés, à savoir la table rotative et le guide linéaire, en tenant et en ne tenant

pas compte les limites articulaires. Le processus d’optimisation est appliqué et les résultats

de l’utilisation des douze paramètres, par opposition aux seuls paramètres indépendants, sont
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comparés. De plus, les performances de la table rotative sont comparées à celles du guide

linéaire, pour l’application de colle sur un masque.

Pour le quatrième cas, l’objectif est d’améliorer l’efficacité d’une cellule robotique utilisée

pour l’inspection des aubes de turbine en optimisant l’emplacement de la caméra de contrôle et

en optimisant la séquence des images. La cellulerobotique contient un manipulateur sériel à six

ddl qui tient l’aube et la montre à la caméra sous différents angles. La caméra prend des images

d’inspection. Le problème à résoudre consiste en une optimisation continue à six ddl pour le

placement de la caméra et en une optimisation combinatoire discrète de la séquence d’images.

Une nouvelle approche combinée est introduite, appelée optimisation dynamique des essaims

de Particle Swarm Optimization (BD-PSO), afin d’obtenir simultanément la conception opti-

male pour les deux domaines. L’objectif est de minimiser le temps de cycle, tout en évitant les

collisions dans la cellule de travail lors de l’inspection. Bien que PSO soit largement utilisé

dans les problèmes d’ingénierie, la méthode d’optimisation combinatoire proposée présente

une nouveauté : sa capacité à être utilisée efficacement dans les problèmes des vendeurs it-

inérants, où les distances entre les villes sont inconnues (aveugle) et les distances sont vari-

ables (dynamique). Ce domaine hautement imprévisible est le cas de la cellule d’inspection où

le temps de cycle entre les images changera pour différents emplacements de la caméra. Le

temps de cycle est calculé sur la base du temps de parcours mixte pondéré du robot. Les huit

configurations du robot sont prises en compte, par conséquent, la configuration du robot est

également optimisée dans le résultat final.

Mots-clés: manipulateurs sériels, manipulateurs parallèle, cinématique, espace de travail,

optimisation, redondance, PSO



Optimizing Task Placement in Robotic Cells

MohammadHadi FARZANEHKALOORAZI

ABSTRACT

The primary objective of this dissertation is to develop novel and practical techniques for opti-

mal task placement in robotic cells. To this end, it is shown how task placement affect the effi-

ciency of the cell, whether the task is automated fiber placement to create composite materials,

gluing or inspection. Here, efficiency of the cell is defined by either cycle time of the produc-

tion or distance to singularity, having collision avoidance as a constraint. Task placement, even

for one robotic arm, is an under-constrained problem in nature. This issue drastically grows

in case of redundant robotic cells. Actuator redundancy in robotic cells is added by either a

positioner or another manipulator.

This work is focused on taking advantage of redundancy in robotic cells and optimizing it for

better performance. One of the main challenges here is to identify the number of independent

placement parameters. Therefore, we ignore ineffective variables and only focus on minimum

number of parameters possible. Hence, faster optimization process and more precise results

are obtained. Another challenge is in motion planning of redundant cells. Because there can

be infinite solutions for such cells, there is room for optimization. In this work, we propose

methods to fix the optimal placement of the task and, furthermore, assign the optimal motion

planning to all manipulators in the cell, simultaneously.

A novel method is proposed to identify the number of independent parameters and applied

to a gluing path for a coordinated redundant robotic workcell. The workcell consists of a

generic six-DOF serial manipulator and a one-DOF redundancy provider (RP). Two cases of

RPs are investigated, namely a rotary table and a linear guide. An innovative method using

swept volume is proposed for determining the number of independent parameters for both

cases under study. The outcome of this study is an intuitive method to identify the number of

independent parameters in redundant cells. The results are compared between using all initial

parameters, as contrary to only the independent ones. It is proven that the proposed method

improves the optimization efficiency by 32%. Moreover, the performance of the rotary table is

compared to the linear guide, for a specific gluing application.

Optimization methods in this work are based on Particle Swarm Optimization (PSO). A work-

cell consisting of a six degrees of freedom (DOF) serial manipulator, a six-DOF parallel ma-

nipulator and a rotary table mounted on the parallel manipulator is studies for automated fiber

placement task. The solution to motion planning is obtained considering the singularities of

the serial manipulator and the workspace boundaries of all manipulators. The algorithm to

obtain the optimum path placement is explained through a simple example and the results for a

helix path with nearly 2,700 points around the workpiece is represented. The results for motion

planning are represented where distance to singularity is maximized, collision avoidance and

workspace boundaries are respected. The result is obtained after 10 iterations with 20 particles.
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This outcome of this study is a reliable and easy to apply motion planning algorithm to be used

in redundant cells.

Another challenge in this work is combinatorial task placement that arises in robotic inspection

cells. The goal is to improve the efficiency of a turbine blade inspection cell through optimizing

the placement of the camera and optimizing the sequence of the images. The workcell contains

a six-DOF serial manipulator that is holding the blade and shows it to the camera from dif-

ferent angles, whereas the camera takes inspection images. The problem at hand consists of a

six-DOF continuous optimization for camera placement and discrete combinatorial optimiza-

tion of sequence of images (end-effector poses). A novel combined approach is introduced,

called Blind Dynamic Particle Swarm Optimization (BD-PSO), to simultaneously obtain the

optimal design for both domains. Our objective is to minimize the cycle time, while avoiding

any collisions in the workcell during the inspection operation. Even though PSO is vastly used

in engineering problems, novelty of the proposed combinatorial optimization method is in its

ability to be used efficiently in the traveling salesman problems where the distances between

cities are unknown (blind) and the distances are subject to change (dynamic). This highly un-

predictable domain is the case of the inspection cell where the cycle time between images will

change for different camera placements. The cycle time is calculated based on weighted joint

travel time of the robot. All the eight configurations of the robot are taken into the consider-

ation, therefore, robot’s configuration is optimized in the final result as well. The outcome of

this study is an innovative hybrid algorithm to simultaneously solve combinatorial and contin-

ues problems. Results show fast convergence and reliable motions. The test of benchmarks

selected from TSPLIB shows that the results obtained by this algorithm are better and closer

to the theoretical optimal values with better robustness than those obtained by other methods.

The best placement of camera and best image sequence (for 8 images) is obtained after 11

iterations using 30 particles.

In general, the main results of this thesis are three algorithms: an algorithm to obtain mini-

mum number of placement parameters in redundant robotic workcells; an algorithm for mo-

tion planning of highly redundant cells; and an algorithm to optimize camera placement and

simultaneously obtain the optimal image sequence in an inspection cell.

Keywords: serial manipulators, parallel manipulators, kinematics, workspace, optimization,

redundancy, motion planning, PSO
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INTRODUCTION

In today’s industrial robotic cells, efficiency is a key factor to mass production. Faster process

cycle time leads to more production and more business value. Industrial robots are mainly

used in repetitive applications, therefore, they successfully perform tasks programmed in teach

mode and through off-line programming. Some examples of typical robot applications are pick

and place operations, welding, painting, gluing, assembly, inspection, machining, drilling or

composite fiber placement. One aspect that can be improved in order to minimize cycle time

and thus increase productivity, is task placement. The goal of task placement optimization

is to find the best layout of the workcell that minimizes the production time while avoiding

singularities and obstacles.

In the simplest case, a layout consists of one robot and one path (task). In such a layout

placement of the path with respect to the robot is to be optimized. Consider, for example, a

laser cutting robot that needs to cut a metal plate that is held by a jig. Although we talk about

path placement, in practical terms, we need to find the optimal placement of the jig. Such

robotic cells can be more complex; for example multi robot collaboration with the presence

of external axes, presence of obstacles in the environment, discretization of the operations,

etc. These challenges add to the level of complexity and therefore need advanced optimization

techniques.

This thesis is organized as following. First, a background review of the problems at hand is

represented. Most recent and important literature are reviewed and the core value of solving the

problems are described. Objectives and contribution of the thesis is expressed. There are three

chapters dedicated to three main projects introduced in upcoming paragraphs. These projects

are related to each other through redundancy resolution and path placement commonalities.

In Chapter 2, a generic method is proposed to cover the first three layouts. The method is

structured around an industrial automated fiber placement project, in a collaboration between
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École de technologie supérieure, Concordia University and École Polytechnique de Montréal.

The goal is to simultaneously do path placement and trajectory planning. The contents of that

chapter was published in (FarzanehKaloorazi et al. (2018b)).

In Chapter 3, a generic method based on a novel concept of swept volume is proposed to iden-

tify the number of independent parameters in the task placement and applied on ski goggles

gluing task. Traditionally speaking, the identification has to be represented before the opti-

mization, but here it is vice versa to emphasis the importance of identification. The contents of

that chapter was published in (FarzanehKaloorazi et al. (2018a)).

In Chapter 4, the problem of the fourth layout, namely a task placement for discrete operation

is addressed. A novel combined method is proposed to simultaneously optimize the sequences

of images and camera placement for a turbine blade inspection workcell. Each chapter has

a dedicated section for relevant introduction and literature review, as well as methodology

explanation, results and conclusion sections.



CHAPTER 1

BACKGROUND AND PROBLEMATIC

1.1 Problem description

Optimal motion planning has been a relevant area for robotics researchers for many years.

Several authors have worked on motion planning based on different optimization objectives

(Ur-Rehman et al. (2010)). A review of trajectory planning techniques is given in (Ata (2007)).

Various optimization objectives can be considered, such as energy consumption (Field & Stepa-

nenko (1996); Hirakawa & Kawamura (1997)), travel or machining cycle time (Chan & Zalzala

(1993); Pateloup et al. (2004)), minimum traveled distance (Tian & Collins (2003)), while sat-

isfying several geometric, kinematic and dynamic constraints.

The trajectory planning deals with the determination of the path and velocity/acceleration pro-

files (or the time history of the robot’s joints), the start and end points of the trajectory being

predefined and fixed in the workspace. Another less explored aspect of trajectory planning is

the placement of a given path within the workspace. It aims at determining the optimum loca-

tion of a predefined path to be followed by the EE of a PMs or a robot, within its workspace

with respect to one or many given objective(s) and constraint(s). This path can be the shape

of a component to be machined, a welded profile or an artistic/decorative profile etc. In such

situations, the trajectory planner cannot alter the shape of the path but he/she can only play

with the location of that path within the workspace in order to optimize one or several crite-

rion(a). Such an approach can be very interesting in many robotic applications. For example,

in machining applications, the location of the workpiece within the workspace may affect the

electric energy used by its actuators.

The path placement problem has not been extensively studied in the past. Nevertheless, some

researchers proposed to solve it with respect to various optimization objectives. Several perfor-

mance criteria for path location problems can be considered simultaneously (multi-objective)

or individually, such as travel time, different kinetostatic performance indices (such as, ma-
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nipulability or the conditioning number of the normalized kinematic Jacobian matrix), kine-

matic performance (velocity, acceleration), collisions, wear and vibration reduction, energy

consumption etc.

Empirical performance criteria based on geometric and physical properties are commonly used

for real-time decision-making (and design) of redundant anthropomorphic workcells perform-

ing high level tasks while avoiding obstacles, providing safety, and responding to human com-

mands. Tisius et al. (2009) described 50 operational criteria and 50 potential criteria for serial

manipulator operation. Machining or fiber placement quality, as well as robot energy consump-

tion may also depend on the workpiece placement.

Optimal location of a task and optimal trajectory planning are an important research fields

of robotics. In most cases, the presented works in the relevant literature introduce an index

that allows the quantification of some aspect(s) of the manipulator’s performance during task

execution, a method, the mathematical formulation of the optimal task placement problem ac-

cording to the considered constraints and the introduced index and a search method (Valsamos

et al. (2018)). In most of these works, the results for the considered test cases that are exam-

ined to validate each of the proposed methods are mainly (with a very few exceptions such as

(Ur-Rehman et al. (2010), Erdős et al. (2016)) in this case) numerical and simulation based.

1.2 Literature review

Researches related to our work can be categorized in three major sections, namely, workpiece

(path) placement, redundancy resolution and Particle Swarm Optimization (PSO).

1.2.1 Workpiece (path) placement

Workpiece placement is always subject to redundancy, even in the presence of just one manip-

ulator. The Degree Of Redundancy (DOR) in the workpiece placement is independent of the

robot DOF and can be higher. (Caro et al. (2013)) determines the optimum placement of the

workpiece to be machined, considering the elastostatic model of the robot and the cutting forces
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applied on the tool. In (Robin et al. (2011)), a redundancy resolution for polishing operations is

suggested. The kinematics capability is chosen to be the speed ratio of the End-Effector (EE),

since they wanted to obtain voluntarily non-isotropic behavior. In (Ur-Rehman et al. (2010)),

multi-objective path placement optimization for Parallel Mechanism (PM)s uses GA in order

to minimize actuator torques, energy consumption, and shaking forces, for a 3 DOF PM. It is

argued in (Vosniakos & Matsas (2010)) that it is more efficient to perform the milling operation

in regions of the robot’s workspace where manipulability is highest. Therefore the best initial

pose of the robot is obtained to maximize manipulability. In (Hemmerle & Prinz (1991)), the

authors numerically solved the problem of path placement for redundant manipulators. This

included the problem of where to place the components (tables, other robots, or machining

stations) relative to each other, as well as how to resolve the redundancies of the workcell.

None of the aforementioned studies considers the path placement for a coordinated redundant

robotic workcell that has a second manipulator detached from the main manipulator. They all

place the path on a fixed platform rather than a moving platform. Furthermore, they neglect

to perform the trajectory optimization simultaneously for both the main manipulator and the

redundant manipulator.

In a more recent article, (Gao et al. (2017c,b,a)), the authors propose an approach to optimize

the path planning of a robot and positioner in a redundant workcell for a fiber placement task.

Time-optimal profiles for the joint variables are obtained by discretization of the problem,

wherein all possible motions of the robot and positioner are represented as directed multi-layer

graphs. This technique is based on the discrete dynamic programming principle, which allows

finding the global optimum by sequentially solving all possible sets of the problems of lower

dimensions. However, since the workspace of the positioner is discretized, for each motion of

the positioner, the time-optimal solution is obtained by reducing to analysis of the preceding

node at each step. Furthermore, the method does not take the placement of the positioner and

the path on the positioner into account. The goal of (Gao et al. (2017c,b,a)) is one part of the

objective of this chapter. This part will be referred to as the 1D optimization, i.e. optimization

of the rotary table’s motion.
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The same objective of fiber placement redundancy resolution is investigated in (Hely et al.

(2017); Hely (2016)). They obtain the optimal trajectory for rotary table by the means of gra-

dient projection method. This method is a powerful tool when it comes to 1 DOF redundancy

resolution, but for higher DOF workcells, it can only result into local optimums.

The optimal positioning of tasks in robot applications is an extremely important step in the

design of robotic cells as it will allow the system to achieve the required high performance

given the selected performance measure. In (Valsamos et al. (2018)) the optimal positioning

of a robotic task is presented with the aim to minimize the required joint velocities during task

execution, for a 6 DOF manipulator. The method is used to determine the optimal location for

a path following task in the workspace of a UR5 manipulator. Results show that the optimal

task placement allows for a significant reduction of joint velocities to maintain a given constant

EE velocity during task execution.

Mlynek et al. (2018) discuss the quality of the manufacturing process technology of a shaped

composite in 3D space. The mathematical model of the winding process and the matrix calcu-

lus are used to determine the optimized 3D trajectory of EE. The differential evolution algo-

rithm is applied to finding the optimized 3D trajectory of the EE.

1.2.2 Redundancy resolution

In this work, we use the term “robot coordination” to mean a collaboration between two or

more robots that leads to a high DOR in the workcell. In (Shimizu et al. (2008)), an analytic

methodology for computing the inverse kinematic problem for 7 DOF redundant manipulators

is proposed. The Jacobian matrix of redundant manipulators has a non-empty null space. Ma-

nipulability is enhanced by taking advantage of the null space in (Yoshikawa (1985)). Efficient

use of the null space enables other types of subtask resolution to be done, such as torque opti-

mization (Nokleby et al. (2005)), obstacle avoidance (Nearchou (1998); FarzanehKaloorazi

et al. (2014)), and singularity avoidance (Nenchev et al. (2004); Kaloorazi et al. (2015)).

These Jacobian-based redundancy resolutions are usable for tracking a trajectory of the ma-
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nipulator tip, which may be generated dynamically. However, these methods are not suitable

for the analysis of the global configuration space constrained by joint limits. To handle the

global reachable region under joint limits, we have to solve the IKP in the position domain. In

(Hollerbach & Suh (1987)), methods for resolving kinematic redundancies of manipulators by

the effect on joint torque are examined. When the generalized inverse is formulated in terms of

accelerations and incorporated into the dynamics, the effect of redundancy resolution on joint

torque can be directly reflected. One method chooses the joint acceleration null-space vector to

minimize joint torque in a least squares sense; when the least squares is weighted by allowable

torque range, the joint torques tend to be kept within their limits. They present contrasting

methods employing only the pseudo-inverse with and without weighting by the inertia matrix.

In (Wang et al. (2010)), the authors extend the closed-loop inverse kinematic algorithm to

the acceleration level to meet some applications that require the joint accelerations. They

have solved redundancy at the velocities and acceleration levels via pseudo-inverse method.

In (Wang et al. (2010)), the objective function of joint limits avoidance is combined into the

redundancy resolution as an optimization approach of the null space motion.

Jacobian-based redundancy resolution is applicable to dynamically tracking the trajectory of

the robot. In (Hollerbach & Suh (1987)), the authors minimize the joint torques by choosing

the joint acceleration null-space vector. In (Wu et al. (2009)), the authors derive the inverse

dynamics for an actuated redundant 3-DOF PM by optimizing the driving force using the least

squares approach. Various artificial intelligent methods are proposed by (Zhang & Lei (2011))

to solve the IKP of an actuation-redundant 3-DOF PM, such as multilayer perceptron neural

networks, radial basis functions, and support vector machines. In (Cheng (1995)), the authors

present a novel approach to on-line collision-free path planning of a two-arm manipulator

system. They implemented a system that generates a collision-free path for one manipulator

while the other is moving.
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1.2.3 Particle swarm optimization

The optimization methods proposed in this study are based on a stochastic technique called

PSO as the optimization core for components placement. PSO simulates the social movement

behavior of a group (typically animals), such as a flock of birds or school of fish (Kennedy

(2011); Kenndy & Eberhart (1995)). Like other meta-heuristic methods, PSO does not need

any higher-order information, such as the gradient of the problem being optimized. Therefore,

it does not require the problem to be differentiable. However, meta-heuristic methods do not

guarantee the solution to be global optimal. Moreover, they usually involve a greater number

of function calls than classic methods.

We chose PSO over other optimization methods because for the problem at hand, it is im-

possible to find an explicit answer to the first derivative of the cost function. Therefore, it is

only possible to use a numerical optimization method. Out of all the numerical methods –

including classical methods such as Newton-Raphson (NR) and more advanced methods based

on the second derivative of the cost function – we chose an evolutionary algorithm because

it provides us with the reliability and convergence time we need (Najjari & Guilbault (2015);

Savsani et al. (2010); Kucuk (2013)). There are various evolutionary algorithms, some of them

are well-known and have been used for a variety of problems such as Genetic Algorithm (GA)

(Khorshidi et al. (2011)). In comparison to other evolutionary algorithms, PSO is easy to im-

plement and obtains the optimum solution efficiently. It has a simple concept, it is robustness

to control parameters. It is insensitive to scaling of design variables and can be easily paral-

lelized for concurrent processing. It is derivative free and has very few algorithm parameters

and eventually is a very efficient global search algorithm.

Among all the articles comparing PSO with GA, the reader is referred to Hassan et al. (2005)

for more details. In this paper to carry out the t-tests, eight sample test problems were solved

using both PSO and the GA over multiple runs. The test problems includes three well-known

benchmark test problems; these are: the Banana (Rosenbrock function, the Eggcrate Function,

and Golinski’s Speed Reducer. Two space systems design problems were also investigated to
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test the algorithms on real-life engineering problems. The eight test problems represent a wide

range of complexity, nonlinearity, and constraint levels. Two metrics were identified for the two

t-tests. The effectiveness test for both PSO and the GA uses a quality of solution metric that

measures the normalized difference between the solutions obtained by the heuristic approaches

and known solutions of the test problems. The efficiency test uses the number of function

evaluations needed by the heuristic approaches to reach convergence. The same convergence

criterion is enforced on PSO and the GA. The results of the t-tests support the hypothesis

that while both PSO and the GA obtain high quality solutions, with quality indices of 99% or

more with a 99% confidence level for most test problems, the computational effort required

by PSO to arrive to such high quality solutions is less than the effort required to arrive at the

same high quality solutions by the GA. The results further show the computational efficiency

superiority of PSO over the GA is statically proven with a 99% confidence level in 7 out of the

8 test problems investigated. Further analysis shows that the difference in computational effort

between PSO and the GA is problem dependent. It appears that PSO outperforms the GA with

a larger differential in computational efficiency when used to solve unconstrained nonlinear

problems with continuous design variables and less efficiency differential when applied to

constrained nonlinear problems with continuous or discrete design variables.

An important distinction is that GA is initially a discrete technique that is also suitable for

combinatorial problems, and PSO is a continuous technique that is very poorly suited to com-

binatorial problems. To equate their search space explorations, the particle movement in PSO

can be seen as a form of path re-linking among personal best positions. In this sense, both

PSO and GA can be seen as generating new solutions in the neighbourhood of two parents (via

crossover in GA and via attractions to two personal best positions in PSO). This multi-parent

effect should be a key advantage over single-point techniques such as simulated annealing, tabu

search, and 1+lambda-ES.

To discuss an advantage of PSO over GA, PSO is really two populations, namely best memories

and current positions. This allows greater diversity and exploration over a single population

(which with elitism would only be a population of best memories). Also, the momentum
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effects on particle movement can allow faster convergence (e.g. when a particle is moving in

the direction of a gradient) and more variety/diversity in search trajectories. The details will be

discussed in the upcoming sections.

1.3 Objectives and contributions of the thesis

In this study the goal is to propose and verify an efficient and simple solution to optimize

the workcell layout. The core idea of this thesis is how to find the best task placement in

highly redundant cells. As mentioned in the literature review, the task placement problem has

only been addressed for simple layouts with zero or low DOR, without requiring any motion

planning. On the other hand, trajectory and motion planning are solely explored assuming the

placement of all components are already known and fixed.

The task placement problem has two aspects. Either the task is a set of points (frames) in space,

for which all the points are given with respect to a reference frame and are locked one after

another. Or the task is a set of points without any predetermined order and can be explored by

any sequence. Each aspect needs to be approached in a particular way. We have addressed both

aspects and described their methodologies through examples. For instance, fiber placement

problem illustrates the first aspect and turbine blade inspection problem exhibits the second

one. However, both solutions are represented generically and are applicable to any robotic

placement problem within the scope of this thesis. Moreover, problems are simplified and

reformed in order to use evolutionary techniques.

Our main contribution is proposing algorithms to solve task placement problem and motion

planning, simultaneously. In proposed algorithms, best configuration selection is taken into

account as well as robots’ joint limits, singularity, workspace and collision avoidance. Fur-

thermore, we propose an innovative algorithm for combined combinatorial and continuous

optimization. This method can find application in a vast portion of engineering problems.

Moreover, the number of independent placement parameters is often neglected, which is a ba-

sic requirement for task placement. We propose a systematic method to obtain the minimum
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number of effective placement parameters, therefore task placements are optimized much more

efficiently.

1.4 Overview of the results

The goal of the present study is to improve the efficiency of robotic workcells in various ap-

plication fields through optimizing the placement of the task. The task placement problem is

investigated for four layouts: (a) a single serial robot, (b) one serial robot and one parallel

robot with a rotary table, (c) one serial robot and a redundant external module with trajectory

planning and (d) one robot with a discrete task placement. The first layout is studied as a

special case of the second layout. To have a rough estimation of the best possible placement,

first a creative geometric-based approach is used to find a good-enough placement for the task

for maximizing the reachable workspace. Then numerical approaches to achieve optimal task

placement for multi-objective functions are introduced.





CHAPTER 2

SIMULTANEOUS PATH PLACEMENT AND TRAJECTORY PLANNING
OPTIMIZATION FOR A REDUNDANT COORDINATED ROBOTIC WORKCELL

2.1 Introduction

Due to composites’ light weight, high stiffness, and high strength, they have found applica-

tions in many areas, including aerospace, automobiles, wind turbines, and civil infrastructures.

The increasing use of composites gives rise to the need to improve their method of manufac-

turing. Composite structures are typically manufactured using labor-intensive methods such

as hand lay-up. However, this technique has many disadvantages, such as poor repeatability,

a significant amount of wasted materials, and long process times. The advent of automated

tape placement and Automated Fiber Placement (AFP) machines has significantly improved

the manufacturing of composites in terms of speed of material deposition, repeatability, good

compaction, reduction of waste, and seamless transfer from design to manufacturing.

2.1.1 Automated fiber placement

AFP machines have been used to make the fuselage of Boeing 787s and components of many

aircraft structures (McCarville (2009); Chen & Chen (2015)). Current AFP machines are gen-

erally built for manufacturing aircraft components that are shaped like shallow plates or shells.

Normally, they have a 6 Degree Of Freedom (DOF) Serial Manipulator (SM) in order to place

the fiber on the workpiece and a rotary table to spin the workpiece. For certain applications

where the shapes are more complex, such as tubes with double curvature, some modifications

must be made to extend the machines’ capabilities. One possible way to increase manufactur-

ing flexibility is to add another 6 DOF manipulator to the workcell. Due to the heavy weight

of the piece and other advantages of parallel mechanisms (Merlet (2006a); Nzue et al. (2013);

Gao et al. (2002); Chiu & Perng (2004); Dasgupta & Mruthyunjaya (2000)), we have chosen

to use a hexapod Parallel Manipulator (PM) in this work. The hexapod is a classic design for

position and motion control, and is often used in flight simulation (Husty (1996); Yu (1987)).
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Mounting the rotary table (1 DOF) on the 6 DOF hexapod permits maximum freedom in op-

eration. The 6 DOF SM thus enables a 13 DOF coordinated robotic workcell to do the fiber

placement task.

The quality of the end product – the composite – is largely dependent on how the original

fiber path is generated (Shirinzadeh et al. (2007); Blom et al. (2009)). Before we can build a

framework for collaboration between a 6-DOF hexapod and a SM, we must first analyze the

robots’ kinematics. It is essential to solve the Inverse Kinematic Problem (IKP) and Forward

Kinematic Problem (FKP) of both robots in order to control them. The main concern of this

chapter is to obtain the optimized motions for the aforementioned 13 DOF workcell.

In (Hassan et al. (2018)) a two-stage approach is proposed to perform fiber placement. The first

stage considers multiple objectives to optimally allocate each autonomous industrial robots

with surface areas, while the second stage aims to generate coordinated paths for the au-

tonomous industrial robots.

In (Gao et al. (2018a), Gao et al. (2018b)) a methodology for optimal coordination of motions

in robotic systems with robot, positioner and linear track is proposed in order to reduce the

total processing time. The developed technique transforms the original continuous problem

into a discrete one where the desired time-optimal motions are presented as a shortest path on

the task graph satisfying the problem-specific acceleration and velocity constraints imposed on

the joint coordinates. The desired time optimal motions are generated using enhanced dynamic

programming algorithm that considers both of these constraints. Two case studies are presented

to demonstrate efficiency of the approach and evaluate benefits of simultaneous actuation of all

robotic system axes.

In this chapter, we intend to optimize the path placement of a redundant coordinated robotic

workcell, Fig. 4.1. Assuming that the path is given using the method represented in (Hely et al.

(2017); Hely (2016)), it is possible to place it anywhere within the workspace boundaries. In

this chapter, a path is a set of time-independent frames in the Cartesian space given in the

form of a text file (each line in the file has 16 entries representing 16 elements in the 4 by 4
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homogeneous transformation matrix) and a trajectory is the motion in space (either Cartesian

or joint space) relevant to each frame in the path. The optimization problem is to find the

best path placement in order to satisfy the optimization criteria. As shown in Fig. 4.1, the

coordinated workcell consists of an SM, a hexapod PM, and a rotary table mounted on the

hexapod. The workpiece to be wrapped is placed on the rotary table, and the fiber placer head

is a tool attached to the EE of the SM. In fiber placement applications, the tool must always be

perpendicular to the surface of the workpiece. The given path is in a 6D space.

It is worth mentioning that since the hexapod is already integrated into the system, we will be

using it as a tilt and torsion table (see section 2.2.2.1). Adding 1, 2 or 3 supplementary axes

is indeed a classic approach, but our work generalizes this to a six-axis machine and could

be adapted to these simpler cases. It is true that this operation can be done with fewer DOF,

but it requires setting up a new workcell which is less justified practically. Since setting up a

robotic workcell is a costly deed, one needs to design a multipurpose workcell. This workcell

is set up in such a way that it is used for multiple purposes, one of such being the focus of this

chapter, i.e., fiber placement. In this chapter, collision avoidance among the different parts of

the workcell is not taken into account. However it is considered in the third chapter.

The proposed optimization method consists of a 1D optimization for the rotary table’s rotation

angle and a 6D optimization for hexapod’s pose. The motion optimization of the rotary table

is coupled with the hexapod EE pose. Therefore, they must be solved within one optimization

routine. The path is fixed to the moving frame of the rotary table, the base frame of the rotary

table is fixed to the EE of the hexapod, and the base frame of the hexapod is fixed with respect

to the global base frame of the SM. The hexapod moves the rotary table and places it in the

optimized pose regarding the singular poses of the SM. Once done, the rotary table moves the

workpiece in order to place each point of the path in the best place.

The remainder of this chapter is organized as follows. First, the kinematic equations of the

hexapod and SM are briefly addressed. The general idea of PSO is represented. Then, the

methodology to optimize the path placement problem of the workcell is explained through a
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a) b) Taken from (Zhang et al. (2014))

Figure 2.1 The redundant coordinated robotic workcell. The workpiece to be wrapped is

placed on the rotary table, which is mounted on the hexapod. The SM has a fiber

placement tool attached to its EE.

simple planar example. Finally, the proposed method is applied to a 6D case study and the

obtained results are presented.

2.2 Kinematics of the hexapod and Serial Manipulator

In the 13 DOF workcell under study, three mechanisms are involved: (a) a 6 DOF SM; (b)

a hexapod; and (c) a rotary table (as shown in Fig. 2.2). The SM is a Fanuc LR Mate 120i

industrial robot. All its joints are revolute joint actuators and its last three joints intersect at the

wrist center, as shown in Fig 2.2a. The hexapod is a 6-RSS PM, where R stands for actuated

revolute joint and S stands for spherical passive joint (see Fig. 2.2b).

In this section, the FKP and IKP of the robots are explained. The FKP is to obtain the pose

(position and orientation) of the EE (in Cartesian space), having the values of the actuators (in

the joint space). The EE’s pose is the displacement along the x, y and z axis and rotation about

the x, y and z axis. The IKP is to find the values of all actuators corresponding to a given EE
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a) 6 DOF SM b) 6 DOF hexapod c) Rotary table

Figure 2.2 Three mechanisms collaborating in the project.

pose. Both the IKP and FKP are represented in the base frame of each robot. In what follows,

the IKP and FKP for the SM and hexapod are presented.

2.2.1 Kinematics of the SM

The kinematic model of the SM is derived based on the Denavit-Hartenberg Modified (DHM)

notation (Denavit (2000)). Table 2.1 presents the DHM information for the Fanuc robot. The

transformation matrix from frame i to i−1 can be shown as follows:

Ai−1
i = Rot(x,αi)Trans(ai,0,0)Rot(z,θi)Trans(di,0,0), (2.1)

Ai−1
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

c(θi) −s(θi) 0 ai

s(θi)c(αi) c(θi)c(αi) −s(αi) −dis(αi)

s(θi)s(αi) c(θi)s(θi) c(αi) dic(αi)

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.2)

The FKP of any SM can be obtained via chain multiplication of the transformation matrix of

the robot’s joints, as follows:
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Table 2.1 DHM parameters of the SM in cm.

i θi αi ai di
1 θ1 0 0 0

2 −π
2 −π

2 150 0

3 θ3 0 790 0

4 θ4 −π
2 250 835

5 θ5 0 π
2 0

6 θ6 0 −π
2 100

A0
6 = A0

1A2
1A3

2A3
4A4

5A5
6. (2.3)

The FKP of SMs is easy to solve; the main challenge is to solve the IKP for SMs. The majority

of 6 DOF industrial robots have a wrist arrangement for the last three joints that leads to an

analytical solution of the IKP. Various methods have been introduced to solve the IKP of the

wrist-partitioned SMs, such as geometrical methods (Husty et al. (2007)), and mathematical

ones (Qiao et al. (2010)). This chapter uses the formulation suggested in Craig’s book; for

more details on the IKP, the reader is referred to (Craig).

Having in mind that the direct kinematics is as follows:

X = T0
6 = A0

1A1
2A2

3A3
4A4

5A5
6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (2.4)

we can find the position of the origin of the 4th frame using one of the two next equations:

T0
4 = A0

1A1
2A2

3A3
4 = X(A4

5A5
6)

−1 =

⎡
⎣ R0

4 p0
4,origin

0 0 0 1

⎤
⎦ , (2.5)
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p0
4,origin = A0

1A1
2A2

3A3
4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦
= X

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

−d6

1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.6)

It is straight forward to find the first three joints based on:

p0
4,origin =

⎡
⎢⎢⎢⎣

px4

py4

pz4

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

c1(a2 +a3s2 +d4c23 +a4s23)

s1(a2 +a3s2 +d4c23 +a4s23)

d1 +a3c2 −d4s23 +a4c23

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

px4 −d6ax

py4 −d6ay

pz4 −d6az

⎤
⎥⎥⎥⎦ . (2.7)

Combining the two first equations from Eq. (2.7), solution for first joint q1 is direct considering

that the term a2 +a3s2 +d4c32 +a4s32 is different from zero:

c1

px −d6ax
=

s1

py −d6ay
. (2.8)

There are two solutions for q1:

q1{1,2} = atan2(m1(py −d6ay),m1(px −d6ax)), (2.9)

m = [+1;−1] is an index, either +1 or -1, to indicate the working mode of the robot. In the case

that py = d6ay and px = d6ax the so-called alignment singularity occurs. In this case we cannot

apply Eq. (2.8). Having the solution for q1, q3 can be obtained using next two equations:

c1 px4
+ s1 py4

−a2 = a3s2 +d4c23 +a4s23 (2.10)

a3c2 −d4s23 +a4c23 = pz4
−d1. (2.11)
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Simplifying the above equations one has:

c3 =
A+Bs3

C
, (2.12)

in which:

A = (pz4
−d1)

2 +(c1 px4
+ s1 py4

−a2)
2 −a2

3 −d2
4 −a2

4 (2.13)

B = 2a3d4 (2.14)

C = 2a4a3. (2.15)

Two cases may occur; C = 0 or C �= 0. If C = 0 it means that a4 is zero (a3 could also be zero

but in this case it would not be useful to have the third axes).

s3 =−A
B
. (2.16)

Therefore q3:

q3{1,2} = atan2(s3,m2

√
1− s2

3), (2.17)

m2 = [+1;−1] is an index for working mode. In the case that C �= 0:

s3{1,2} =
−AB

C2 ±
√

A2B2

C4 +(1+ B2

C2 )(1− A2

C2 )

1+ B2

C2

. (2.18)

In case that the absolute value for s3 is bigger than 1, the given pose is not reachable by the

robot and it is called elbow singularity. Having s3, q3 is:

q3{1,2} = atan2(s3{1,2},
A+Bs3{1,2}

C
). (2.19)
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In order to find q2, from Eq. (2.11) one has:

a3 −d4s3 +a4c3 = k1s2 + k2c2 (2.20)

d4c3 +a4s3 = c2k1 − s2k2, (2.21)

where:

k1 = c1 px4
+ s1 py4

−a2 (2.22)

k2 = px4
−d1, (2.23)

As we have q3, q2 is defined based on the following:

⎡
⎣ k1 k2

−k2 k1

⎤
⎦
⎡
⎣ s2

c2

⎤
⎦=

⎡
⎣ a3 +d4s3 +a4c3

d4c3 +a4s3

⎤
⎦ (2.24)

q2 = atan2(s2,c2). (2.25)

To find the last three joints we must use R3
6:

T3
6 = (A0

1A1
2A2

3)
−1X = A3

4A4
5A5

6 =

⎡
⎣ R3

6 p3
6,origin

0 0 0 1

⎤
⎦ , (2.26)

where

R3
6 =

⎡
⎢⎢⎢⎣

r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

∗ ∗ −c4s5

−s5c6 s5s6 c5

∗ ∗ s4s5

⎤
⎥⎥⎥⎦ , (2.27)

we obtained the expressions marked with as they are not of interest. We obtained two solutions

for q5:

q5{1,2} = atan2(m3

√
1− r2

2,3,r2,3). (2.28)
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Once q5 is found, q4 and q6 are completely defined if q5:

q4 = atan2(
r3,3

s5
,
−r1,3

s5
), (2.29)

q6 = atan2(
r2,2

s5
,
−r2,2

s5
). (2.30)

If the robot works always in the range of [−180,180] degree, there are 8 possible solutions. In

the case of q5 = 0 which is also called as wrist singularity:

R3
6 =

⎡
⎢⎢⎢⎣

r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

−c4c6 + s4s6 ∗0

0 0 1

c4s6 + s4c6 ∗ 0

⎤
⎥⎥⎥⎦ . (2.31)

One can completely find q6 if q4 is known (there is one DOF so it can be considered that

q4 = 0):

s4r1,1 + c4r3,1 = s2
4s6 + c2

4s6 = s6 (2.32)

s4r3,1 − c4r1,1 = c6 (2.33)

q6 = atan2(s6,c6). (2.34)
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2.2.1.1 Jacobian matrix and singularities of the SM

Consider all kinematic equations of EE, m = 6. Each of them is a function of n = 6 DOF:

x = x(θ1, . . . ,θ6)

y = y(θ1, . . . ,θ6)

z = z(θ1, . . . ,θ6)

β = β (θ1, . . . ,θ6)

α = α(θ1, . . . ,θ6)

γ = γ(θ1, . . . ,θ6).

(2.35)

The time derivative of the above equations is found as follows:

dx
dt

=
∂x
∂θ1

dθ1

dt
+ · · · ∂x

∂θ6

dθ6

dt
...

dγ
dt

=
∂γ
∂θ1

dθ1

dt
+ · · · ∂γ

∂θ6

dθ6

dt

(2.36)

In Eq. (2.35), x,y,z are displacement and β ,α,γ are orientations of the EE of the Fanuc robot.

To obtain the Jacobian matrix of the SMs using Eq. (2.3), one has:

x = A0
6(1,4)

y = A0
6(2,4)

z = A0
6(3,4)

β = atan2(A0
6(1,3),

√
1− sin(A0

6(1,3))
2)

α = atan2(−A0
6(2,3)/cos(β ),A0

6(3,3)/cos(β ))

γ = atan2(−A0
6(1,2)/cos(β ),A0

6(1,1)/cos(β )).

(2.37)

This can be written in vector form:

ẋ = Jθ̇ , (2.38)
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where J is the Jacobian matrix – in which the elements are the partial derivatives of the kine-

matics equations, ẋ is the vector of EE velocities, and θ̇ is the vector of joint velocities. The

relationship between the EE velocity and the (known) joint velocities is thus fully described

by the Jacobian. The EE velocity is a linear function of the joint velocities. Any configuration

in the workspace of the robot for which det(J) vanishes is called a singularity. In singularity

configurations, the robot may lose some DOF or reach some uncontrollable DOF. For more in-

formation on how to obtain the Jacobian matrix, please refer to (Nubiola (2011); Kohli & Hsu

(1987)). For singularities in SMs, see ((Angeles & Angeles, 2002; Zlatanov et al., 1998)).

2.2.2 Kinematics of the hexapod

In contrast to SMs, it is easy to solve the IKP for PMs and difficult (in some cases impossible)

to find an analytical solution for the FKP. The IKP of the hexapod under study is obtained

analytically. The FKP is solved using a numerical method.

The kinematic model of the hexapod is represented in Fig. 2.3. The rotation matrix representing

the orientation of the mobile platform (o′x′y′z′) relative to the base frame (oxyz) is as follows:

REE = RxRyRz =

⎡
⎢⎢⎢⎣

cosβ −sinβ 0

sinβ cosβ 0

0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

cosα 0 sinα

0 1 0

−sinα 0 cosα

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 0

0 cosγ −sinγ

0 sinγ cosγ

⎤
⎥⎥⎥⎦ .

(2.39)

The following relation holds for each link (see Fig. 2.3 and please refer to (Zhang et al. (2014))

for more details):
−−→
OO′ =

−−→
OBi +

−−→
BiTi +

−−→
TiAi +

−−→
AiO′, (2.40)

where the angle of the vector
−−→
BiTi is the joint angle. The initial position of an actuator is set

by the user. In Eq. (2.40),
−−→
OBi is fixed,

−−→
AiO′ is defined by the EE pose, and the length of the

distal links TiAi and proximal link BiTi are known. Therefore, by solving a quadratic equation,
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the IKP of the hexapod is solved. This quadratic equation corresponds to the intersection of

the joint circle with the center of Bi, and the sphere with the center of Ai.

T1

T2 T3

T4

T4

T6

B1

B2 B3

B4

B5B6

x

y

z

x′
y′

z′

O′

O

A1
A2 A3

A4

A5A6

Figure 2.3 The kinematic model of the hexapod. Revolute actuators are located in B1...6.

Equation (2.41) represents this system of equations (values are in mm).

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(xti − xai)
2 +(yti − yai)

2 +(zti − zai)
2 = l2

AT

(xti − xbi)
2 +(yti − ybi)

2 = l2
AT

zti = |tiTi|
x2

ti + y2
ti = |BiTi|2

(2.41)

The fixed values |BiTi| and in Eq. (2.41) is known from the geometrical properties of hexa-

pod.There can be up to 26 = 64 solutions to the hexapod IKP. The hexapod FKP is solved

numerically; see (Zhang et al. (2014)).

2.2.2.1 Workspace of the hexapod

The hexapod provides a 6 DOF workspace. Since the rotary table provides one orientational

DOF and is mounted on the hexapod, one orientational DOF in the workspace of the hexapod is

redundant. One can consider the orientation about the z-axis of hexapod’s EE as the redundant

DOF. Furthermore, the displacement of the EE is very limited, and compared to the workspace

of the SM, it is very small: about 1%. Therefore, the translation along the x, y and z axes is

negligible. Hence, the hexapod is essentially only useful for tilting about the horizontal axis.
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One orientational workspace representation, which is very applicable here, is called Tilt and

Torsion (T&T) workspace (Bonev & Gosselin (2006); Jiang & Gosselin (2009)). T&T has

proven to be useful for the workspace representation of symmetrical parallel mechanisms.

The next step is to use a simple numerical procedure to obtain the so-called constant-torsion

workspace.

The T&T representation only uses two angles in such a way that the axis of one angle is variable

and defined by the other angle. As shown in Fig. 2.4a, first the body frame is tilted about the

horizontal axis a, at an angle θ . Then, as illustrated in Fig. 2.4b, the body frame is rotated

about the updated z axis, called the z′ axis, at an angle σ . The first step is the so-called tilt, and

the second step is torsion.

T&T angles are defined in two steps, tilt and torsion. It does not mean that only two angles

define T&T angles, but simply that the axis of tilt is variable and defined by another angle. In

the first step, illustrated in Fig. 2.4a, the body frame is tilted about a horizontal axis a, at an

angle θ , referred to as the tilt. Axis a is defined by an angle φ , called the azimuth, which is the

angle between the projection of the body’s z′ axis onto the fixed xy plane and the fixed x axis.

In the second step, Fig. 2.4b, the body frame is rotated about the body’s z′ axis at an angle σ ,

called the torsion.

a) b)

Figure 2.4 The T&T angles defined by successive rotations: (a) tilt; (b) torsion (taken

from Bonev & Gosselin (2006)).
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The rotation matrix R defines the orientation described by T&T angles (see (Bonev et al.

(2002))), as follows

R = Rz(φ)Ry(θ)Rz(σ −φ) (2.42)

R =

⎡
⎢⎢⎢⎣

c(φ)c(θ)c(σ −θ)− s(φ)s(σ −φ) −c(φ)c(θ)s(σ −φ)− s(φ)c(σ −φ) c(φ)s(θ)

s(φ)c(θ)c(σ −φ)+ c(φ)s(σ −φ) −s(φ)c(θ)s(σ −φ)+ c(φ)c(σ −φ) s(φ)s(θ)

−s(θ)c(σ −φ) s(θ)c(σ −φ) c(θ)

⎤
⎥⎥⎥⎦ .

(2.43)

The T&T workspace of the hexapod for a range of σ is represented in Fig. 2.5. In this fig-

ure, the T&T workspace is obtained by means of discretization, at a specific pose of the EE,

i.e. [x,y,z] = [0,0,0.12] cm, which is roughly the center of the workspace. In Fig. 2.6, the

maximum projected orientation workspace of the mechanism is depicted for a range of other

variables, i.e. x = [−0.4,0.4],y = [−0.4,0.4], z = [0.09,0.15],σ = [−0.2,0.2]. As can be

observed in Fig. 2.6, the maximum tilt provided by the hexapod is about 12 degrees.

a) σ =−34◦ b) σ =−17◦ c) σ = 0◦ d) σ = 17◦ e) σ = 34◦

Figure 2.5 Projected orientation workspace [x,y,z] = [0,0,0.12].

It is essential to obtain the workspace of the hexapod in order to limit the search space of

the transition phase in the algorithm. While optimizing the placement of the main branch

of the workpiece, the optimization is constrained by the joint limits, i.e. workspace, of the

SM. Therefore, once the optimized place has been obtained for the main branch of the work-
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Figure 2.6 Maximal projected orientation workspace x = [−0.4,0.4], y = [−0.4,0.4],
z = [0.09,0.15], σ = [−11.5,11.5].

piece, the hexapod has to be placed according to the obtained place. This can be anywhere

in the workspace of the SM and is not related to the workspace of the hexapod. But once the

placement of the hexapod is fixed for the main branch, the optimum placement for the second

branch has to be within the workspace of the hexapod. This is because the transition phase

is the movement of the EE of the hexapod in order to place the second branch in an optimum

place. Therefore, the search space for the transition phase is restricted to the obtained T&T

workspace. Essentially, due to the very limited translational workspace of the hexapod, it is

only being used as a tilt and torsion table.

At a singular pose, the EE loses one or more degrees of twist freedom (instantaneously, the EE

cannot move in these directions). Serial robots with less than six independent joints are always

singular in the sense that they can never span a six-dimensional twist space. This is often called

an architectural singularity. A singularity is usually not an isolated point in the workspace of

the robot, but a sub-manifold. When robot’s EE reaches a singular pose, it is impossible to

control it. Therefore one has to avoid such poses. These poses are related to the Jacobian

matrix of the robot. When Jacobian matrix vanishes, the relation between the actuated joints

and EE space is destroyed. Most of the time we want a robot to follow a specific trajectory
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in the workspace. Also, we want it to be as far from the singularity as possible. The word

“Trajectory" refers to a set of points. The number of points needed to represent a trajectory

depends on the accuracy needed for a specific task. The more accurate the trajectory, the more

calculation time of inverse kinematic of the robot and singularity analysis. In more detail, a

trajectory is a set of frames. It means for each point of the trajectory, we have 6 values, i.e.,

x,y,z,θ ,φ ,ψ; three Cartesian coordination and three rotations around Cartesian axes.

2.3 Relative positions of the hexapod and the Fanuc robot

Figure 2.7 Applying the concept of closed-curve offset to obtain the center of the

maximum embedded circle in the workspace of the Fanuc robot (Taken from Kaloorazi

et al. (2015)).

Since there are three robots working together to do the fiber placement, the relative positions

of them are important. For example, they must not be too far or too close to each other. Rotary

table is fixed to the center of EE of hexapod, therefore only relative position of hexapod to

Fanuc is of interest. In this section, having the maximum shared workspace between the Fanuc

robot and the hexapod is important. If we put the center of the workspace of the hexapod in the



30

center of the workspace of the Fanuc robot, we have the maximum shared workspace. Based

on (Kaloorazi et al. (2015)), a geometrical method in a CAD software is used to find the center

of the workspace of the Fanuc robot. The workspace of the Fanuc robot and the obtained

center are represented in Fig. 2.7. The obtained center point is also known as the center of

the maximum embedded workspace circle. This task has been done in Catia, using an offset

algorithm. In Fig. 2.8, the relative positions of the two robots is represented. Note that in this

figure, the singularity of the Fanuc robot is not considered and as it can be observed, the Fanuc

robot is in a singularity.

Figure 2.8 A first try to place hexapod in Fanuc’s workspace. The singularity of Fanuc

is not considered and also it is not applicable regarding the constraint of being on the

same level as Fanuc.

We assume that the base of the Fanuc robot is fixed and we want to find a proper location to

place the hexapod. In general, the hexapod can be placed in the 6D workspace of the Fanuc

robot. However, we have a constraint of placing it on the floor (at same level as the Fanuc

robot). Therefore, we do not have the freedom of displacement along the z axis and rotation

about x and y. Furthermore, the first joint of the Fanuc robot has a wide range of rotation

about the z axis, so it is unnecessary to have a displacement along the y axis. Also, the rotary

table rotates about the z axis and there is no need to consider this freedom for the hexapod
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placement. The only freedom we are left with is the displacement along the x axis. The center

of the embedded circle in the workspace of the Fanuc robot is represented in Fig. 2.9. The

result of the hexapod placement is represented in Fig. 2.10. As it can be observed, the base-to-

base distance between the two robots is chosen in such a way that the workspace center of the

hexapod be placed in the center of the offset curves of the Fanuc robot. However, almost half

of the Fanuc robot’s workspace is under the ground level and practically lost. It is suggested

that the Fanuc robot be mounted on a riser to be able to take advantage of its full workspace.

Figure 2.9 Maximum embedded circle in the workspace of Fanuc, regarding same level

placement.

2.4 Particle swarm optimization

The reason of using PSO to find the optimum solution of the problem is the higher chance of

finding a global optimum in the search space in comparison with other methods. This is the
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Figure 2.10 Final placement of hexapod relative to Fanuc.

case for evolutionary algorithms that they do not guarantee, but have a chance to find the global

optimum of the problem.

In contrary to classic methods, such as Newton’s method and SQP, evolutionary methods do

not depend on the gradient and/or Hessian of the function. Therefore, they can be used in

a vast field of applications, in which the gradient and Hessian is very expensive to obtain or

even not available at all. In our case, the gradient and Hessian of the objective functions are

very hard to obtain and also we want to find the global optimum of the problem. Among

all the evolutionary algorithms, PSO has been chosen. Because it is easy to implement, the

convergence speed is higher and its Number of Function Call (NFC) is less than GA (Kennedy

(2011)). Unlike conventoinal evolutionary algorithms, such as GA, PSO does not use selection

(Kennedy (2011)). PSO is based on social intelligence. In Fig. 2.11a, the main concept of

PSO is to find the deepest part of the lake. Each member shares their observations with others,

and for the next move, each individual decides on its direction based on the entire swarm’s

information. Furthermore, in this study, some features are added to the basic PSO in order to

improve the algorithm’s functionality. The PSO algorithm is briefly explained in what follows;

for more information on the origin of PSO, see (Kennedy (2011)).
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As a basic interpretation of PSO, a population of swarms includes the candidate solutions, i.e.

particles, (Zhang et al. (2015)). The particles move around in the initiated search-space based

on the simple PSO formulae. Each particle is driven by its personal best memory and the

entire flock’s best memory. In each iteration, improved positions are discovered, which will

be used to guide the movements of the particles in the next iteration. A series of iterations

will hopefully lead to the global optimum. However, as with all numeric optimizations, there

is no guarantee of finding the absolute global optimum solution. The chances of finding the

global optimum increase with more iterations, more particles, and greater fine-tuning of the

PSO parameters.

a) Social intelligence to find

deepest part of a lake
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b) PSO Simplified algorithm

Figure 2.11 PSO (a) to find the deepest part of the lake and (b) a simplified

representation of the involved parameters. Choosing the search direction of two particles

in the swarm, i.e. particle i and j. gbest is the global best in the current iteration. pbest is

the best memory of the particle itself. The resulting velocity is a combination of personal

and global best memories, as well as the previous velocity of the particle and an element

of randomness to shuffle the particle around.

A general overview of the velocity vector is presented in Fig. 2.11b. In this figure, the velocity

of a particle for each iteration is being calculated by a combination of the previous velocity and

best known personal and global positions. The PSO velocity update equation is as following:

vi,d ← ωvi,d +φprp(pi,d −xi,d)+φgrg(gi,d −xi,d), (2.44)
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where ω , φp, and φg are tuning parameters, which must be chosen carefully in order to achieve

reliable results. Velocity vi,d is the current velocity of the ith particle for the dth dimension; xi,d

is the current position of a particle; pi,d is the best personal memory of the ith particle; and gi,d

is the best global memory of the whole swarm.

During the procedure, it is probable that for a particular member of the path, while applying the

velocity vector, that member locates outside of the optimization constraints – in other words,

outside the robot’s workspace. In this case, the reflection effect will be applied to the particle.

The next section explains this feature in greater detail.

2.5 Methodology

The optimization objective of the proposed method is to find the best placement of a given path

in the SM workspace. The optimization variables are placement components in the Cartesian

space, i.e. the position and orientation of the path. Path T4×4×n is the input of the optimization

algorithm, which is a set of homogeneous 4×4 matrices representing n points in the path.

The objective is to be as far as possible from singular poses of the SM. There are several indexes

we can use to measure the performance of a robot, such as condition number, manipulability,

dexterity, etc. (Merlet (2006b)). However, none of these can be considered the best metric, due

to scale and unit differences. In this chapter, distance-to-the-singularity index is simply defined

as absolute value of Jacobian matrix determinant of SM. The bigger this value, the further from

the singularity is the robot. Therefore, the obtained optimized placement is a solution with the

biggest determinant value. The joints limits of the SM are considered as the constraints of

the optimization. For the hexapod, the joint limits are only considered in the transition phase,

which will be discussed in upcoming sections.

The optimization problem can be structured as follows:
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max f =−
m

∑
p=1

|det(Jp)|

s.t. qimin
< qi < qimax ,

(2.45)

where Jp is the Jacobian matrix of SM for point p, f is absolute summation of determinant of

Jp, for all the points in the path (p = 1 . . .m). The optimization constraint is the joint limits

of the SM, which must be within a certain range. Optimization parameters are 12 placement

parameters plus 1 DOF for rotary table actuation (13 in total). Once the placement of path on

the rotary table and rotary table on the hexapod is known and joint value of rotary table is set

for each point of the path, Jp is a unique value for each point and performance index consists

of summation of all Jp.

The problem of obtaining the best path placement mainly arises from the nature of the coor-

dinated robotic workcells. The optimization is performed in a mixed space of Cartesian space

(12 placement parameters) and joint space (1 rotary table actuation). Using PSO, each particle

represents a specific place for the path and rotary table, and represents rotary table joint value.

Just like in the example in Fig. 2.11a, the particles search throughout the workspace by testing

the path in different places and sharing results in order to calculate individual velocities for the

next iteration. For the first iteration, a population of the particles is randomly generated within

the hexapod’s workspace.

In general, there are six design parameters in a 6D search space, i.e. the pose of the reference

frame of the path to the moving frame of the hexapod. The number of objective functions

equals the number of points in the path. For example, in a three-point path, three independent

values will be obtained for the cost function of a particle. This can be regarded as a multi-

objective optimization problem. Various methods can be used to transform a multi-objective

problem to a single-objective one; this study uses a simple summation, which means all the

points in the path have the same effect on the cost function. The single cost value of a particle

is obtained by the summation of the costs of all points divided by number of points. For future
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works, we recommend using a weighted sum function, in which it is possible to have different

levels of importance for different points in the path. For example, if the points around the

junction of the workpiece are more important than the points around the main branch, one can

add more weight to the former points, and therefore obtain those results that are more favorable

to junction points.

At the first iteration, a hypercube space (depending on the number of optimization parameters)

is assigned as the search space. It is possible for the particles to violate the initial search space

during subsequent iterations. Therefore, another feature, called the reflection effect, can be

added to the basic PSO. In the reflection effect, when a particle goes outside of the initial

search space boundaries, a reflection function brings it back inside the search space. The

formulation of this add-on is simple. By adding only the negative value of the velocity vector,

the particle is brought back inside. However, sometimes it is better to not have this add-on in

the algorithm, because in its presence, the final answer is forced to be found only inside the

initial search space. Without this add-on, because of a randomness coefficient in the velocity

equation, a particle can search beyond the initial search space boundaries. In this chapter, the

reflection effect is not applied for the initial search space, but it is applied for the constraint,

i.e. the mechanism workspace.

For all evolutionary algorithms, tuning of the code’s parameters is an important task. A basic

way to do so is simple trial-and-error. In some particular cases, partitioners may use a lighter

optimization algorithm to tune the parameters of the main algorithm. This can be helpful

in large-scale projects where an optimization routine will be repeated over and over. In this

project, we used the simple trial-and-error method. In evolutionary algorithms, it is probable

that running the algorithm multiple times will lead to different results. The degree of difference

depends on population size and the number of iterations: the greater the population and number

of iterations, the more similar the results.
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a) Workspace of a planar serial robot. It

has three revolute joints to provide a

planar 3D workspace.

b) Example of a path to draw a line in

the 3D planar space.

Figure 2.12 Items involved in the placement problem: (a) the robot; (b) the path.

2.5.1 Simplified illustration

In order to have a better understanding of the algorithm, a simple example of the process is

presented as follows. In this example, a simple path of three points in a planar space (x,y,φ )

is taken into account (as shown in Fig. 2.12b). In this case, there are three design variables (x,

y and φ of the reference frame of the path, i.e. the first point), and three objective functions

(three points). An example of a planar serial robot’s workspace is presented in Fig. 2.12a.

Summation of the three objective functions is considered as the final objective function to be

optimized. The goal of the algorithm is to maximize the net distance of the path from the

singular poses of the planar robot. This is computed using the determinant of the Jacobian

matrix of the robot at each point of the trajectory. An example of a poorly located particle

is shown in Fig. 2.13a. In this case, we bring the particle back into the workspace and apply

a small random movement on it. Fig. 2.13b presents an example of a PSO problem’s initial

population, which is randomly distributed in the workspace of the robot. A pseudo-code of the

algorithm is presented in Algorithm 2.1 The final result of the simple path placement example

is represented in Fig. 2.13c. As it can be observed in the figure, the path is more inclined

toward the middle of the workspace to be far from the borders (end of workspace singularity).
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Furthermore, it is oriented in such a way that the average of third joint’s angle is close to 90

degrees.

a) An example of a poorly

placed particle outside the

workspace of a serial robot.

b) Randomly distributed

population in the workspace

of the mechanism.

c) Final result of the best

placement of the path.

Figure 2.13 Different aspects of the path placement and the final result.

In this optimization, the number of particles in the population, nPop, is 30, and the maximum

number of iterations, MaxIt, is 20. “Maximum number of iterations" means that the process

may end before this number of iterations. That is because there is another criterion applied here:

If changes in the cost are less than ε , then terminate the process. When the latter criterion is

inactive, the number of function call is roughly NFC = 20× 30 = 600. This process is done

in 0.7067 seconds by a 3.5 GHz processor. The result of the optimization, not considering the

stopping criteria of ε , is presented in Fig. 2.14a. When we add stopping criteria of ε in such

a way that if for the last 4 iterations, the changes in the cost are less than ε = 0.002, then

terminate the process, the result is as shown in Fig. 2.14b and the number of function calls is

NFC = 10×30 = 300, which produces a 0.3536 second process.

2.6 Redundancy optimization

The previous section introduced a method of finding the best placement for the path inside the

workspace of the SM. In this section, we apply the method to the 13 DOF workcell to take

advantage of the redundancy and use it to find the best kinematic solution for the robots at

hand. The purpose of the optimization is to be as far as possible from the singular poses of the
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b) With a stopping criterion of ε < 0.002.

Figure 2.14 Convergence of the algorithm. The general stopping criteria is a limit of 20

iterations.

SM. Here we only consider the singularity of the SM based on the determinant of the Jacobian

matrix. The singularity of the hexapod is not taken into consideration, because there is no

singularity within the limited hexapod’s workspace.

Recalling the general goal of the project – fiber placement – we consider a Y-shaped workpiece

to be wrapped. The rotary table is mounted on the hexapod, and the central axis of the main

branch of the Y-shaped workpiece is (ideally) coincident with the rotation axis of the rotary

table. (Later we will see that the algorithm works even if the rotation and central axes are not

coincident.)

The strategy to follow in this algorithm is to manipulate only the SM and the rotary table during

the fiber placement of each branch, and keep the hexapod still. In other words, if we have three

branches in a part – which is the case for the Y-shaped workpiece – the hexapod moves once

before we wrap the first branch to place the entire branch in an optimized place; then the rotary

table and the SM do their jobs to wrap the branch. For the second branch, the hexapod moves

to place the second branch in the optimized pose. (Note that this pose is not necessarily a good

pose for the first branch, but as it has already been wrapped, this is not a problem). Likewise,

for the third branch, hexapod moves in order to place the branch in its optimized pose. While

each branch is being wrapped, a system of 7 DOF is active (including the SM and rotary table).
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a) The workpiece

to be wrapped

with fiber.

b) The path

around the part.

c) Close-up view of the joint

section of the path.

Figure 2.15 The initial path around the workpiece. Each point is represented as a frame

consisting of the origin and RGB as xyz axes. The path has 2795 points starting from the

bottom. Points 1 to 1399 are a simple helix around the main branch, and point 1400 is

where the junction appears (Taken from Hely et al. (2017)).

There is a transition phase between each branch during which the rotary table and the SM

are fixed and the hexapod moves the entire workpiece to place it in the optimized pose in the

workspace of the SM. Note that during the transition phase, the SM is attached and fixed to

the workpiece. Since the workpiece is being moved by the hexapod, the SM has to move to

maintain its EE on the transition point of the part; however, the movement of the SM is not a

part of the optimization, and it is merely guided by the hexapod. This is very important, since

the fragile fibres are easily broken under shear stress.

The procedure of this algorithm includes a 6 DOF optimization to obtain the optimized pose of

the hexapod (i.e., the placement of the rotary table). Each possible hexapod pose is a particle

in the population. For each particle, a 1D optimization is done to obtain the rotation of the

rotary table. The 1D optimization is simply performed using a method based on NR. Start of

the NR is chosen to be the rotary angle of the previous point of the path. Since the points in the

path are usually very close to each other, the 1D optimization converges within a few iterations

(although this still depends on the desired precision). The 1D optimization is applied to all the

points in the path.
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Figure 2.16 The initial population of the path’s reference frame is generated randomly

within the hexapod workspace.

2.6.1 The pseudo-code of the algorithm

Algorithm 2.1 represents the pseudo-code of the proposed method. The input of the algorithm

is path as the path around the workpiece. The path is given as a set of frames perpendicular to

the surface of the workpiece. In particular, an array of transformation matrices (path4×4×p).

Geometrical parameters of the robots are presented in the DH table for the SM and link lengths

of the hexapod. These parameters will be used to compute the IKP of the mechanisms as well

as the Jacobian matrix and singularity index. Rrot(θ) represents a rotation matrix of θ degrees

around the rotary table’s rotation axis. The path has m points and the population of the swarm

is n. Lines 3 to 10 show the first iteration in which a random population is generated and for

which the 1D optimization has been done. In line 4, a 4×4 transformation matrix, i.e. Trans,

is randomly generated within the workspace of the hexapod, i.e. PMw. In line 5, the random

transformation matrix is multiplied to the whole path, resulting in the ith Particle. Note that

“{:}” refers to all the members of a set. In lines 6 to 8, the cost function is calculated for

each point of the particle. In line 7, the 1D optimization is done by a simple NR method, i.e.

fmaxsearch. Function singularity_dist computes the determinant of the Jacobian

matrix of the SM; it returns the distance to the singularity. In the 1D optimization, θ as the
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Algorithm 2.1 The pseudo-code of the optimization algorithm, based on PSO, to obtain

placement of a given path in the 13 DOF workcell under study.

1 Input: path as trajectory on the part; Geometrical parameters of the robots; Rrot(θ) as

the rotation matrix about the rotary table’s axis.

2 Parameters: n number of particles; p number of points in the path.

3 for i from 1 to n do
4 rndTrans = rnd(Trans,PMw);

5 Particle{i}= rndTrans ∗path{:}
6 for j from 1 to p do
7 [dist{ j},θbest{ j}] =

fmaxsearch(singularity_dist(Rrot(θ)∗Particle{i}{ j}))
8 end
9 ParticlePersonalBest{i} = sum(dist{:})

10 end
11 ParticleGlobalBest = max(ParticlePersonalBest{:})

12 while desired precision do
13 for i from 1 to n do
14 Particle{i} = Eq. 4.1

15 for j from 1 to p do
16 [dist{ j},θbest{ j}] =

fmaxsearch(singularity_dist(Rrot(θ)∗Particle{i}{ j}))
17 end
18 if ParticlePersonalBest{i}< sum(dist{:}) then
19 ParticlePersonalBest{i} = sum(dist{:})
20 end
21 end
22 if ParticleGlobalBest < max(ParticlePersonalBest{:}) then
23 ParticleGlobalBest = max(ParticlePersonalBest{:})

24 end
25 end
26 Output: ParticleGlobalBest as the hexapod’s poses, θbest{:} as the rotary table’s path.

rotation angle of the rotary table is the variable to be optimized. The objective is to maximize

the distance from the singular poses of the SM. Particle{i}{ j} refers to the jth point in the

ith particle of the population. The output of line 7 is the max distance-to-singularity of the jth

point, i.e. dist{ j}, and also the best θ . Line 9 shows that in the initialization iteration, the

best personal memory of a particle ParticlePersonalBest, is the summation of all the distances



43

through out the path, i.e. dist{:}. In the next iterations, the ParticlePersonalBest may change

if a better result is obtained.

In line 11, the particle having maximum ParticlePersonalBest among all, is the global best

and is stored in ParticleGlobalBest. Lines 12 to 25 are the iterative part of the algorithm,

and it continues until the desired accuracy of the result is achieved. It is basically the same

routine as lines 3 to 10. The difference is that in line 14, instead of random generation, this

time based on the PSO logic represented in Eq. (4.1), the position of the particle is determined.

Another difference is in lines 18 and 22, in which the obtained results for the current iteration

are compared to the previous best results. If the new result is better, it replaces the old result;

if not, the old result is still the personal and global best.

It is probable that for one point in the path, the determinant of the Jacobian is a positive value

and for the next one is negative value (instead of zero for both of them). In this case, the

algorithm obtains a safe distance to singularity for both points, but in fact the SM has to cross

a singularity, i.e. change the working mode in order to move on to the next point. Therefore,

one must check if the sign of the determinant has changed. If it has, the particle is completely

useless, and ∞ is returned as the cost function. Furthermore, in the application of the fiber

placement, a sudden direction change for the rotary table is not allowed, because it may cause

the fiber to break. Such a condition has been considered in the code in such a way that the

speed and direction of the rotary table is limited.

This algorithm is extensible to any redundant robotic workcell, and it is possible to modify

the optimization criteria and add more of them. As always, computational time depends on

the desired accuracy and complexity of the system. In this example, for each 1D optimization

the IKP of the SM is solved and the determinant of the Jacobian is computed. Based on the

symmetry of the path, some sections have been simplified in order to decrease the number

of points. In this study, there were 10 iterations for 20 particles, performed with a 2.3 GHz

processor and 8 GB of ram, and it took about 21 minutes to converge on the results.
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2.6.2 Results

An example of a helix-type path around the Y-shaped workpiece is presented in Fig. 2.15. In

accordance with the concept of PSO, the first population is generated randomly. An example

of the random generation within the workspace of the hexapod is represented in Fig. 2.16.

The frames shown in the figure are the reference frame of the path and basically each frame

represents a particle. At the end of the first iteration, we have a population of the random poses

of the hexapod and for each random pose, the rotation angle of the rotary table is optimized.

The hexapod pose is the same as the placement of the rotary table with respect to the SM, with

a fixed offset from the hexapod’s EE, In the next iteration, the velocity of the particles change

with respect to Eq. (4.1). In this iteration, the hexapod pose has somewhat improved, and again

a 1D optimization runs for each point of the path. Finally, after a number of iterations, the pose

of the hexapod is optimized and the best rotation angle for the rotary table is obtained for each

point of the path.

Figure 2.17 Some possible angles of one point of the trajectory are optimized by a 1D

optimization. The result is an optimized angle of the rotary table for this point.

The concept of the 1D rotary table optimization is illustrated in Fig. 2.17. This figure only

shows one point of the path, for which the rotary table is able to move the point in a circular

manner. For each point of the path, the optimized rotation angle of the rotary table, with respect
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to the objective function, is obtained. For each particle, a series of rotation angles associated

to the points of the path is then obtained. The summation of the objective functions, (i.e., the

determinant of the Jacobian matrix of the SM) at all the points of the path represents the total

cost of the particle.

Figure 2.18 The footprint of fiber placement tool tip, at the end of the fiber placement

process. The yellow curve is the final trajectory for the SM to follow. It is a linear

trajectory for the main branch and an expanding helix for the second branch.

The tool tip footprint of final trajectory for the SM to follow is presented in Fig. 2.18. It

is a semi-linear trajectory from point 1 to 1399 in the path. Since the axis of the main branch

coincides with the rotation axis of the rotary table, and the path is a helix, the trajectory is a line

for the main branch. For the rest of the path from point 1400 to the end, it is an expanding helix.

The transition point is defined by the practitioner. In this study, point 1617 is the transition

point. In the transition point, the rotary table holds its angle and the tip of the SM’s tool is

fixed to the transition point. Meanwhile, the hexapod adjusts itself to a new pose, which is the

optimum for the second branch. Then after the transition is done, the hexapod will stay fixed

and the SM and rotary table start working and continue to do their fiber placement. Also, the

trajectory for the rotary table to follow during the fiber placement is constantly decreasing in

angle, see Fig. 2.19. For points number 1 to 1399, it is a linear descent, and therefore it is
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neglected for the sake of a better representation. Note that it is essential for the rotary table

to be capable of infinite rotation. The joint trajectory for the SM to follow is presented in

Fig. 2.20. From point 1 to around 1500, it has almost zero movements, since it is associated

with the main branch. The transition phase happens at point 1617. After this point it has a

periodic movement. One can observe that for the linear part, joint 5 (J5) operates near 90

degrees, for which it is the furthest distance to the singularity (given the fact that J5 = 0,180 is

a singular pose for the SM). Afterwards the average movement of J5 is around 90 degrees. J5

stays within the range J5 = [78,128], which is a safe margin for the SM to operate.
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Figure 2.19 The trajectory for the rotary table to follow. It is linear for points number 1

to 1399, and therefore it is neglected for the sake of a better representation.

The final pose of the hexapod and the placement of the rotary table on the hexapod is presented

in Fig. 2.21. As it can be observed, the final placement does not resemble a conventional

workcell. In this case, either the hexapod on the floor, or the rotary table on the hexapod has

to be placed in such a way that satisfies the obtained result. An easy way to do so is to use

a spacer in order to provide the fixed transformation from the base of the rotary table to the

hexapod EE. The hexapod is fixed to the floor at a distance of x = 1549 mm from the world

frame (SM Base). The optimized placement of the rotary table is actually to be defined in the

world frame (restricted inside the workspace of the hexapod), and its placement on the hexapod
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Figure 2.20 The trajectory for the SM to follow. It is linear for point numbers 1 to 1399,

and therefore it is neglected for the sake of a better representation.

can actually be variable. The start pose of the hexapod depends on the size and shape of the

spacer. However, in order to take advantage of the full hexapod workspace, the rotary table is

fixed on the moving frame of the hexapod in such a way that the hexapod’s starting point is

aligned with the center of the T&T workspace. Therefore, the fixed frame of the rotary table is

represented in the moving frame of the hexapod as following: {x = 56, y = 56, z = 144, θ =

23, φ = 75, ψ = 16, in Euler zyx convention.

2.7 Conclusion

In this chapter, an optimization method based on PSO was introduced. A redundant coordinated

robotic workcell of 13 DOF – including a 6 DOF SM, a 6 DOF hexapod parallel mechanism,

and a 1 DOF rotary table – was mounted on the hexapod. The workcell’s task was to wrap

a fiber around a Y-shaped workpiece to create a composite material. The optimization had
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Figure 2.21 The final placement of the rotary table on the hexapod. It is not

conventional to place the rotary table with an orientation to the surface of the EE. A

spacer is needed in this situation in order to place and fix the rotary table on the hexapod.

two objectives: first, for a given path on the Y-shaped part, to obtain a solution regarding

redundancy in the DOF; and second, regarding the singular poses of the SM, for the obtained

solutions be far from singularities. The optimization method is basically a 1D optimization

within a 6D optimization. The procedure was explained through an illustrative example, and

the result for a sample path was presented.



CHAPTER 3

PARAMETERS IDENTIFICATION OF THE PATH PLACEMENT OPTIMIZATION
PROBLEM FOR A REDUNDANT COORDINATED ROBOTIC WORKCELL

3.1 Introduction

Path placement is an inevitable part of any robotic task. Sometimes the given path is simple

and it is not important to find the best placement of the path within the workspace of the robot.

However, in many cases the given path is complex and numerous factors play a constraining

role in the path placement task, such as the fiber placement task represented in the previous

chapter (Hely et al. (2017)). This problem is common in practical applications, where it is

usually solved by trial and error. In this chapter, we introduce a systematic methodology to

find the number of independent placement parameters. A path is a set of poses with respect to

a workpiece that need to be attained by the tool reference frame in order to do a specific task.

For example, in a ski goggles gluing task, the path is the set of poses on the contact edge of the

goggles’ glass and frame. A trajectory is defined as a set of the joint movements of a robot in

order to cover a path.

Path placement is an optimization problem. In order to find the optimum solution to the prob-

lem, there are two general approaches: analytical and numerical (Rao (2009)). In a numerical

optimization, such as described in the previous chapter, typically many iterations are needed

before an acceptable solution is obtained. Therefore, it is important to identify the necessary

parameters and optimize only for them. Trying to find a solution among all the available pa-

rameters in an optimization problem may lead to a highly resource-consuming process. In

most cases, there are some dependent parameters involved. It saves a great deal of time later

in the optimization process if the user, before starting the optimization process and developing

the corresponding code, analyzes all the parameters at hand and chooses the least number of

independent parameters necessary for the optimization process. These are the parameters that

will cover all aspects of the problem.
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There are many practical applications for coordinated robotic workcells, such as gluing sys-

tems (MA & ZHANG (2007)), welding (Ahmad & Luo (1989)), cutting and painting. In

coordinated robotic workcells, manipulator motion planning is an important issue, because of

the redundancy of the system regarding the manufacturing task. In order to generate the proper

motion, the decomposition of the given task into the manipulator motion and positioner motion

is required. In the literature, several studies deal with this matter. A conventional method is

based on redundancy resolution using the generalized inverse (pseudo inverse) of the kinematic

Jacobian (Kazerounian & Nedungadi (1988); Flacco & De Luca (2015); Wu et al. (2000); Buss

(2004)). The unique solution can be obtained by using the pseudo-inverse in the sense of least

squares, which corresponds to the smallest Euclidean norm of the displacement vector in the

joint space. However, this method is not capable of generating the time-optimal solution, re-

garding the velocity and acceleration limitations of the actuators, which are absolutely impor-

tant in real-life industrial applications. The idea of “master-slave” is another approach to plan

the motion for redundant robotic systems (Tabarah et al. (1994); Gan et al. (2013), in which

the trajectories of the “master” manipulator is set at first, then the corresponding conjugate

trajectories of the “slave” are determined. Even though this method is quite simple and com-

putationally efficient, assigning the master trajectory totally ignores the redundancy benefits.

Furthermore, in this case it is impossible to take into account the actuator limits.

In the literature, there have been several studies on workpiece placement. (Caro et al. (2013))

introduces a methodology that aims toward determining the best placement of the workpiece to

be machined knowing the elastostatic model of the robot and the cutting forces exerted on the

tool. In (Ur-Rehman et al. (2010)), the authors deal with the multi-objective path placement

optimization for parallel kinematics machines based on energy consumption, actuator torques

and shaking forces. In (Vosniakos & Matsas (2010)) the authors discuss that it is desirable

to perform the milling operation in regions of the robot’s workspace where the manipulability

(both kinematic and dynamic) is highest, thereby exhausting the robot’s potential to cope with

the process. The authors did so by selecting the most suitable initial pose of the robot with

respect to the workpiece. In (Hemmerle & Prinz (1991)), the authors numerically solved the
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problem of path placement for redundant manipulators. This included the problem of where

to place the components (such as other robots, tables, or machining stations) relative to each

other, as well as how to resolve the redundancies of the workcell and process in an optimal

fashion. None of the aforementioned studies considers the path placement for a coordinated

redundant robotic workcell having a second manipulator detached from the main manipulator.

They place a path on a fixed platform rather than on a moving platform. Furthermore, the

trajectory optimization of the redundant workcell has not been done simultaneously for both

the main manipulator and the redundant manipulator.

The path placement problem is, by its nature, an under-constrained problem. In general, there

are six parameters needed to define the position and the orientation (pose) of a given path

with respect to the robot, i.e., x, y, z, R(x), R(y) and R(z). In this chapter, the goal is to find

the number of parameters needed to optimize the path placement for a redundant coordinated

robotic workcell, which consists of a 6-DOF SM and a Redundancy Provider (RP). The RP is

essentially a moving platform on which the path is to be placed on. Throughout this chapter

the basic RPs with one DOF are taken into the account. In the literature the RP is often referred

to as a positioner (Gao et al. (2017c)). In this chapter, we will consider two types of RPs: (1)

rotary table, and (2) linear guide. The rotary table (turn table) is an actuated revolute joint. By

duality, a linear guide is an actuated prismatic joint. The path is going to be placed on the RP.

This coordinated workcell allows us to have a bigger virtual workspace. This means that by

using the same SM, it is possible to reach some poses on the path that were not reachable in the

absence of the RP. The workspace is called virtual because the real workspace of the SM does

not change, but by using the RP and moving the given path (either by rotation in the case of the

rotary table, or by linear movement in the case of the linear guide) those unreachable poses on

the path will be brought into the workspace of the SM.

In the presence of the RP, the number of decision parameters is even more than six, because

there are six parameters to place the path on the RP and six parameters to place the RP with

respect to the SM. Furthermore, the RP itself provides the user with one DOF which has to be

considered in the placement process. Not all the parameters are independent. The goal of this
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chapter is to identify how many parameters are independent for each case. Once the number of

independent parameters is obtained, the optimization algorithm will be executed considering

only those parameters as design variables.

Figure 3.1 (a) Ski goggles; (b) ski goggles path used throughout this chapter as an

example. Each point of the path is a frame (origin and orientation). Red, Green and Blue

(RGB) are x, y and z axes, respectively.

The remainder of the chapter is organized as follows. First, the problem is introduced and the

objective function to be optimized is represented. Then a classical approach to dependency

identification is examined. The number of independent parameters for the two cases of the

RP is investigated. Then, based on case studies, an innovative approach is proposed. The

optimization algorithm is briefly described. Then the result of the optimization process when

using only the independent parameters is compared to the optimization when using all the

available parameters. The results for the rotary table and the linear guide are also compared.

Finally, the conclusion of the chapter is presented.

3.2 Problem description

The workcell under study includes a 6 DOF generic SM and an RP, i.e., rotary table or linear

guide. For the sake of better understanding, throughout this chapter a gluing application is

considered and the methods are formed around this application. However the method can be

generalized to any application. The application is to apply glue on ski goggles. The path

on the ski goggles is depicted in Fig. 3.1. The path is relatively complex, in the sense that
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the orientations vary. The workcell, including the SM and the rotary table, is represented in

Fig. 3.2 and the workcell including the linear guide is represented in Fig. 3.3.

Figure 3.2 The redundant coordinated robotic workcell with a rotary table as the RP.

Frame Oxyz is the base of the SM and also the world reference frame, frame A′
xyz is the

rotary table’s base frame, Frame Axyz is the moving frame of the rotary table, and Bxyz is

the reference frame of the path.

Figure 3.3 The redundant coordinated robotic workcell with a linear guide as the RP.

The frames definition is the same as Fig. 3.2.
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The problem is defined as the placement of the base frame of the RP (A′
xyz) with respect to the

global base frame (Oxyz); and placement of the reference frame of the path (Bxyz) with respect

to the moving frame of RP (Axyz). Note that Axyz and A′
xyz are related by the RP kinematic

equations. Since RP is a simple 1 DOF mechanism, its IKP and the FKP are the same and

straightforward. The relation between Axyz and A′
xyz can be demonstrated by a 4× 4 trans-

formation matrix. In the case of the rotary table the transformation matrix is represented in

Eq. (3.1):

TA′
A Rotary table =

⎡
⎢⎢⎢⎢⎢⎢⎣

cosqr −sinqr 0 0

sinqr cosqr 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.1)

where TA′
A Rotary table is the transformation matrix corresponding to the moving frame of the

rotary table, and qr is the actuator variable of the rotary table. This is a rotation around the z

axis of the rotary table.

Applying the same reasoning, for the linear guide the transformation matrix is represented in

Eq. (3.2):

TA′
A Linear guide =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 ql

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.2)

where TA′
A Linear guide is the transformation matrix corresponding to the moving frame of the

linear guide, and ql is the actuator variable of the linear guide. This is a translation along the x

axis of the linear guide.

The workcell at hand is a coordinated robotic workcell which has 7 DOF (6 provided by the SM

and 1 by the RP). Both the robot and the RP work together simultaneously and the redundant
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DOF provides the option to optimize the trajectory planning of both. In short, the overall

optimization process is to find the best placement for the path on the RP and the RP in the

workplace of the SM in such a way that optimizes the trajectory planning of the coordinated

workcell, i.e., the trajectory planning of the SM. One can remodel the trajectory planning

problem of the whole workcell only as the trajectory planning of RP, because once the trajectory

of RP is fixed, the number of solutions for the kinematic problem of the SM is finite and

depends on its working mode. The objective function of the optimization task is to minimize

the cycle time and avoid the singularities. A more detailed explanation of the optimization

method is given in the upcoming section.

The general homogeneous transformation matrix is as shown in Eq. (3.3):

T=

⎡
⎢⎢⎢⎢⎢⎢⎣

cαcβ cαsβ sγ−sαcγ cαsβ cγ+sαsγ x

sαcβ sαsβ sγ+cαcγ sαsβ cγ−cαsγ y

−sβ cβ sγ cβ cγ z

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.3)

where notation c and s stand for sin and cos, respectively. x, y and z are the displacements of

a frame with respect to its reference frame. Similarly α , β and γ are orientations of the frame

with respect to its reference. For instance, TA
B is transformation matrix of frame B with respect

to its parent which is A. In the next section the reasoning to find the number of independent

parameters is discussed for both cases.

3.2.1 Optimization objective

The optimization objective is to find the best placement of the RP inside the workspace of the

SM, and the placement of the path on the RP, in such a way that the SM operates with the

minimum cycle time, while maintaining a safe distance from singularities. The singularities

are those poses of the end-effector of the SM where the robot loses some DOF and becomes
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uncontrollable in some directions (Tsai (1999)). Moreover, the joint limits of the SM are taken

into account.

In this chapter, the cycle time refers to the absolute movement of the joints. This can be also

interpreted as the energy consumption. Assuming constant acceleration, one can minimize the

energy consumption by minimizing the movement. The optimization problem can be structured

as in Eq. (3.4).

min f =
n

∑
p=2

|IKP(Xp)− IKP(Xp−1)|

X = g(tk×1,qRP)

s.t. qimin
< qi < qimax

|(det(J))|> ε

(3.4)

In Eqs. (3.4), f is the cycle time, IKP(Xp) is the inverse kinematic solution of the SM for the

target Xp, and n is the number of points in the path. Values of tk are the optimization variables,

i.e., the placement parameters. Target X is a pose in 6D Cartesian space and a function of the

placement (tk) and the RP actuator (qRP). A set of targets creates the trajectory of the SM. If

k = 12, then the optimization has been done without considering the proposed method; k = 8

(for rotary table) and k = 6 (for linear guide) implies that the optimization has been done with

respect to the identified parameters. The constraints of the optimization are the joint limits

of SM (qi) which have to be within a certain range (qimin
and qimax). Moreover, the absolute

value of the determinant of the kinematic Jacobian matrix (J) is being limited to be bigger than

a certain value ε . Because the smaller |det(J)| is, the closer to a singularity configuration is

the robot. Moreover, the control system of industrial robots has a threshold for the proximity

to the singularity, in which it turns off the motors while doing a Cartesian movement near a

singularity.
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3.3 Classical approach to dependency identification

The problem of identifying number of independent arguments involved in a given function

can be tackled by differentiating the function with respect to all the arguments and obtain the

Jacobian matrix.

Assume f from Eq. (3.4) to be the function for which we are interested in determining the

number of independent arguments. After simplifying the expression and then differentiating it,

one has:

f = f (q, tk×1,qRP), (3.5)

d f = [
∂ f
∂ t1

. . .
∂ f
∂ tk

] · [dt1 . . . dtk]T , (3.6)

d f = J ·dt. (3.7)

Note that we only differentiate f with respect to tk and not q nor qRP, because only tk is a

design parameter of the placement, i.e., the decision variables of the optimization, and the

actuation of the RP is not an argument for which we want to find out if it is dependent or not.

In the case that the placement of the path in the workspace of the robot with no RP is taken

into the consideration, there are 6 decision variables, namely the placement of the path in the

workspace of the SM, but not all of them are effective on f .

In Eq. (3.5)-(3.7), only if f is differentiable then this problem is analytically solvable. In our

case, the objective function is discrete due to the discrete nature of the path. Apart from that,

the absolute value in the objective function makes it non-differentiable. However, it is possible

to break down the absolute value to positive and negative domains of the function. Obtaining

the derivative of such a complex function can be a very cumbersome task and in some cases, it

is not possible to find an analytic solution. Assuming that J is available, one can evaluate the

number of effective arguments by knowing the number of linearly independent columns.
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This classic approach works well before we introduce the RP to the workcell. But with the RP,

the number of design variables (the decision arguments in f ) is doubled, but one can instantly

see that the number of linearly independent columns in J will stay the same as the case before.

This is because the transformation between Axyz and A′
xyz (TA′

A ) appears as a linear transforma-

tion among the rest of the transformations (TO
A′ , TA

B). Therefore, the linear dependency of the

columns stays the same. Even if we consider qRP as a decision variable, we have to consider

a different qRP for each point in the path since it can change regardless of the differentiation

(which is a small change in the variables resulting in a small change in the f ).

As a simple analogy, assume h = h(v+[d]); h is a function of a real variable v and an interval

variable [d], see Fig. 3.4. This function is not differentiable since there is an interval variable

involved. The presence of an RP have the same impact on the objective function. With the

RP, the actuator of the RP (qRP) behaves as an interval variable. It provides a range for the

placement of the path. Therefore, it makes it impossible to find the number of independent

variables by the classic approach. In the upcoming section, an innovative method is introduced

to identify the number of independent parameters.

v

h
(v

+
[d
])

v0

[d0]

Figure 3.4 A function of a real variable and an interval. Because the output if the

function is an interval, it is not differentiable.
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3.4 The innovative parameter identification method

This section describes the innovative method of identifying the number of independent param-

eters involved in the placement optimization for both RP cases, i.e., the rotary table and linear

guide. First, for each case the method is discussed, and then the general method is concluded

from the case studies.

Two approaches can be applied to this problem; (1) considering all possibilities and eliminate

those which are dependent and (2) starting from scratch and add up those parameters which are

independent. The beginning of this section, i.e., the study case by case, is more focused on the

1st approach and the later part, general method, is more based on the 2nd approach.

Definition 1. A parameter is considered to be “independent” if it makes a brand new trajectory

from the SM’s point of view, and that trajectory cannot be made by any other parameters or

combinations of parameters.

Since all the optimization goals are set to improve the SM’s operations, only those parameters

which make a difference for the SM are considered to be the independent parameters. As shown

in Fig. 3.2 and 3.3, a generic industrial SM with 6 DOF, has 6 actuated joints (qi, i = 1, . . . ,6).

We assume that q1 provides a uniform polar workspace for the SM, because q1 has a range

of almost 360 degrees. Therefore, two parameters of frame A′
xyz are dependent, namely x and

y. Hence, one can define the distance between the origin of the base frame of the RP to the

SM by only one parameter. This is a common factor between both cases. In the upcoming

sections more factors which cause dependencies are studied. Note that in this chapter we do

not consider the joint limit of q1.

3.4.1 Swept volume

Before representing the methodology, it is necessary to introduce the concept of Swept volume.

The Swept volume is a hyper-volume in the (n+1)D space generated by sweeping (translation

and/or rotation) of an nD path. For example, a point is a 0D object (path). Its Swept volume is
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a line, which is a 1D object. As another example, a disk is a 2D object. The Swept volume of

a disk can be a cylinder, which is a 3D object. Therefore, the Swept volume of a 6D path is a

7D hyper-volume. The 7th dimension is provided by the RP.

In other words, the Swept volume is an extra placement option provided by the RP, but the

difference between this and the fixed placement options (placement of frame A′ in frame O and

frame B in frame A) is that once the fixed placements are done and the coordinated system is

ready to operate, non of the fixed placements can change but RP can move the path and make a

new placement, simultaneously with the operation of the SM. This is the interval effect of the

RP.

The shape of the Swept volume depends on the type of sweep and the original path. An example

of the Swept volume of a 6D ski goggles path generated by the rotary table is shown in Fig. 3.5

and by the linear guide in Fig. 3.6. Note that each member of the ski goggles path has an

orientation with respect to the path reference frame Bxyz as well as its position, but since it is

not possible to depict a 7D path or even 6D path, we can only show a cross-sectional view of

the Swept volume. In Fig. 3.5 and Fig. 3.6 the orientation of the path points is neglected. As

it can be observed, the original path is a spacial curve in 3D space and it turns into a surface,

which is 1 dimension higher than a curve.

3.4.2 Rotary table

Considering the coordinated robotic workcell with a rotary table, there are two cases possible:

the rotary table with (1) unlimited rotation, and (2) limited rotation capability, e.g. swivel table.

3.4.2.1 Unlimited rotation

All 12 candidate parameters are represented in Table 3.1, where the Dependency Group (DG)

shows which parameters are dependent to each other. Those parameters sharing the same DG

are dependent and, as can be observed, there are 8 independent parameters.
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Front view

Top view Bottom view

Left viewRight view

Isometric view

Figure 3.5 Wireframe draft of the Swept volume of a 6D ski goggles path generated by

the rotary table. Note that it is not possible to depict a 7D path, so one can see only 3

dimensions of the result. This is a cross-section representation which neglects the

orientation of each point of the path. Therefore, the path is degraded to a 1D curve

embedded in 3D space and the resultant swept volume shows a 2nd dimension provided

by the RP which results in a surface embedded in 3D space.

Top view Bottom view Isometric view

Right view Front view Left view

Figure 3.6 Wireframe draft of the Swept volume of a 6D ski goggles path generated by

the linear guide. Note that it is not possible to depict a 7D path, therefore one can see only

3D of the result.

The reasoning for each group in Table 3.1 is as follows:

1. The first joint of the SM, q1, provides a uniform polar workspace. Therefore, only the

radial distance between the RP’s base frame and Oxyz makes a difference for the SM. The
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combination of xA′
xyz

and yA′
xyz

determines the radial distance of the RP to the SM, so they

are dependent.

2. As it can be observed from Fig. 3.2, the direction of zA′
xyz

is the same as zAxyz . Therefore,

the combination of these two parameters is representing one independent parameter. Note

that the pose of Bxyz is represented with respect to Axyz, so zBxyz is a value along −→z Axyz .

Hence, the orientation of Bxyz will not deny the aforementioned fact.

3. The moving frame of the rotary table rotates around its z axis and provides a uniform radial

workspace, the same reasoning as DG 1 is applicable here: the placement of the reference

frame of the path (Bxyz) with respect to the moving frame of RP (Axyz) only depends on the

radial distance of Bxyz, and therefore, xBxyz and yBxyz are dependent.

4. The rest of the DGs (4,. . . ,8) are all independent parameters. That is because each of them

causes a new Swept volume and there is no symmetricity to tie two or more parameters

together.

Table 3.1 Parameter identification for the rotary table. DG refers to dependency group.

Those parameters sharing the same DG are dependent to each other.

RP’s base (A′) DG Path’s reference (B) DG

xA′
xyz

1 xBxyz 3

yA′
xyz

1 yBxyz 3

zA′
xyz

2 zBxyz 2

αA′
xyz

4 αBxyz 6

βA′
xyz

5 βBxyz 7

γA′
xyz

0 γBxyz 8

DG 0 means that the orientation around the z axis of A′
xyz does not count because it is the same

as variation of qr, i.e., rotation of the rotary table’s actuator. Therefore, from the initial 12

candidates, 8 parameters are independent. It is up to the user to choose one of the candidates

from each DG. For example, in DG 1, either xA′
xyz

or yA′
xyz

can be chosen to be an optimization

variable.



63

3.4.2.2 Limited rotation

In a case where the rotation of the rotary table is limited (swivel table), γA′
xyz

should be con-

sidered as an optimization variable. Since qr is limited, the orientation around z axis of A′
xyz

changes the resultant path for the SM. So in this case 9 parameters are important out of 12. It is

noteworthy that actually the 9th parameter can be chosen from group DG 1. It means that the

rotary table can be placed behind the SM while maintaining the same orientation around the z

axis. However, the result would be the same.

3.4.3 Linear guide

In the case of the coordinated robotic workcell with the linear guide as the RP, we consider two

cases of the linear guide: with (1) unlimited, and (2) limited actuator length. It is not a realistic

assumption to consider that the linear guide is capable of infinite actuation, but for the sake of

respecting the duality between the rotary table and the linear guide, both unlimited and limited

cases are studied.

3.4.3.1 Unlimited translation

All 12 candidate parameters are represented in Table 3.2. In Table 3.2, the Dependency Group

(DG) shows which parameters are dependent to each other. Those parameters sharing the same

DG are dependent and as can be observed, there are 6 independent parameters.

The reasoning for each group in Table 3.2 is as follows:

1. As in the case of the rotary table, the first joint of the SM, q1, provides a uniform polar

workspace. Therefore, only the radial distance between the RP’s base frame and Oxyz

makes a difference for the SM. But in this case, the combination of xA′
xyz

, yA′
xyz

, γA′
xyz

and

yBxyz all together determines this radial distance, so they are dependent.

1∗ indicates that yA′
xyz

and yBxyz are dependent. Because the actuation of the linear guide

provides a pure translational movement, the combination of the aforementioned parameters
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represents the distance from the origin of Bxyz to q1 axis. Furthermore, since yA′
xyz

is tied

up together with xA′
xyz

representing the radial distance to q1, 1 and 1∗ are dependent. In the

case of infinite motion of the linear guide, the geometric problem can be modeled as a line

to point distance on a plane. The rotation around the z axis does not change the distance,

so γA′
xyz

also belongs to the group of DG 1.

2. As can be observed from Fig. 3.3, the direction of zA′
xyz

is the same as zAxyz, so the combina-

tion of these two parameters represents one independent parameter. Note that the pose of

Bxyz is represented with respect to Axyz, and therefore zBxyz is a value along −→z Axyz. Hence,

the orientation of Bxyz will not deny the aforementioned fact.

3. Variation in αBxyz does not change the shape of the Swept volume. But the orientation

around xA′
xyz

will change the pose of the Swept volume from the SM’s point of view. The

user can choose either of αA′
xyz

and αBxyz as an optimization variable.

4. The rest of the DGs (4,. . . ,6) are all independent parameters because they make variations

in the final path seen by SM and there is no symmetricity to tie two or more parameter

together.

DG 0 means that the variation in xBxyz , represented in Axyz, does not count because it is the same

as variation of ql . Therefore, out of the initial 12 candidates, 6 parameters are independent. The

user can choose between the dependent parameters. For example, in DG 1, either xA′
xyz

, yA′
xyz

,

γA′
xyz

or yBxyz can be chosen to be an optimization variable.

3.4.3.2 Limited translation

In the event that the linear guide can only provide a limited range of motion, which is the

realistic case, one more parameter will be added to the previous 6. It can be chosen from the

group DG 1 or it can be the DG 0. Hence, 7 parameters are needed.
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Table 3.2 Parameter identification for the linear guide.

RP’s base DG Path’s base DG

xA′
xyz

1∗ xBxyz 1∗

yA′
xyz

1 yBxyz 0

zA′
xyz

2 zBxyz 2

αA′
xyz

4 αBxyz 5

βA′
xyz

3 βBxyz 3

γA′
xyz

1 γBxyz 6

3.4.4 General method

After performing the case studies and investigating the parameter identification of the place-

ment optimization problem, a general approach can be deduced which may be extended to more

complicated coordinated robotic workcells in future works. The formulation of the method is

represented as follows:

n = d − s− r+w (3.8)

nrotary table : 8 = 6−1−1+4 (3.9)

nlinear guide : 6 = 6−1−1+2 (3.10)

- n: the number of independent parameters.

- d: dimensions of the workspace. A generic path in a 6D space can be placed by defining 6

parameters. For a planar coordinated robotic system d = 3.

- s: the number of parameters which are dependent because of the symmetricity of the SM’s

workspace. In the case of a generic SM, 1 degree of symmetricity is provided by q1.

- r: the number of RP’s DOF, i.e., the number of the RP actuators. In this chapter we investi-

gated 1 DOF RPs, therefore r = 1.
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- w: the number of parameters out of 6 (6 being the total number of parameters involved in

the placement of the path on the RP), that their change will make a different shape of the

Swept volume.

It is worth mentioning that, if for example the RP has 2 DOF, r = 2. But this does not mean

that the higher the DOF, the lower the flexibility of the workcell, because the higher RP’s

DOF leads to fewer placement parameters and more freedom during the optimization of the

trajectory planning of the coordinated workcell.

As shown in Eq. (3.9), applying the general approach to the rotary table gives us the already

known 8 parameters, 8 = 6−1−1+4. Here, 6 is for the original freedom of placement, −1 is

because of q1, and the second −1 is because of the rotation axis of RP. Finally, +4 adds those

parameters related to the placement of the path on the rotary table which create new Swept

volumes. One of them is for the distance to the center of the rotation of the rotary table and

three of them for the three orientations of Bxyz with respect to Axyz.

Similarly for the linear guide, +6−1−1+2= 6. −1 is because of q1, −1 because of the linear

guide actuation, and +2 is for the placement of the path on the linear guide orientation in such

a way that it creates new Swept volume shapes, which is the rotation of the path around −−→yAxyz

and −−→zAxyz . In this case, the displacement of the path on the linear guide (displacement along

axes x,y and z) and rotation along the actuation axis of the linear guide (−−→xAxyz), will not change

the Swept volume shape and it would be exactly as shown in Fig. 3.6.

The number of independent parameters is obtained, but which one of them is to be chosen de-

pends on the specific application. For the most applications, it does not matter which parameter

from a DG is considered for the optimization (the case of this chapter). In some cases there

are some limitations along the way. For example painting with an open container in which the

nature of the path dictates some restrictions due to the direction of gravity, or for example when

the linear guide is bound to be horizontal due to design restrictions.
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3.5 Result comparison

In this section, the proposed method is applied to optimize the objective function represented

in Eq. (3.4) in order to test the effectiveness, before and after applying the identified number

of parameters. Then the results of the optimization both with and without the effect of the

identified parameters are compared. In the last subsection we investigate which RP performs

better in the case of ski goggles gluing optimization.

3.5.1 PSO method

The main objective of this chapter is on the innovative method to find the number of inde-

pendent parameters, and the optimization algorithm is out of the scope of this chapter. The

optimization algorithm is only summarized in what follow, and a detailed explanation is repre-

sented in the previous chapter. The algorithm includes two parts. The first part is based on an

evolutionary algorithm, namely PSO, to find the optimum placement for the RP and the path

(tk). The second part is based on a traditional NR (Rao (2009)) to find the optimized solution

for the RP kinematics. In other words, the PSO suggests a placement (some values for tk), and

the NR finds the best qRP for the suggested placement. Then for the next iteration, the PSO

suggests another placement, which is deduced based on the current and past personal memory

and group memory of all the particles in the PSO population. For any given iteration of the

PSO, the NR finds the best qRP for the obtained placement. The iterative process leads to find-

ing the optimized placement and optimized qRP (trajectory planning) at the same time. Finally,

the optimized placement is fixed, the optimized trajectory planning for the RP is obtained, and

the optimized trajectory planning for the SM is straightforward to calculate.

3.5.2 Results comparison between the identified parameters and all parameters

In this section, the results in terms of accuracy and speed of the convergence to the optimized

placement is compared between two conditions: (a) k = 12, and (b) k = 8. The results are

represented for the ski goggles gluing. As can be observed from Fig. 3.7, the placement op-
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timization converges to the final solution in 26 iterations when using the identified number of

parameters (k = 8), but it takes 40 iterations to obtain the same result in the case of using all

the candidates (k = 12). Therefore, there is a 32% improvement in the optimization process

by only choosing the necessary optimization variables. Note that the objective function (cycle

time) is the summation of all the SM’s joint movements to go through the path, point by point.
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Figure 3.7 Comparison of the optimization results using the rotary table as the RP, when

all 12 candidate parameters are taken into account vs using only 8 independent

parameters. An improvement of 32% is achieved.

3.5.3 Results comparison between rotary table and linear guide

This section compares the results of the performance of the two RPs at gluing the ski goggles.

As can be observed from Fig. 3.8, the rotary table performs about 70% better than the linear

guide. The rotary table’s superiority was expected because of the shape of the path. The ski

goggles has a rounded path, and the rotary table enables the SM to reach over all the points in

the path. If the given path was a lengthy object, such as a solar panel, the linear guide would

have performed better.
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Figure 3.8 Comparison of the optimization results between the rotary table and the

linear guide. The rotary table performs about 70% better than the linear guide.

3.5.4 Discussion

After comparing the results between different RPs and different number of parameters, it is

worth providing the results for the case with no RP, i.e., the robotic system only consists of a

SM. The results represented in this section helps the partitioner to make a decision based on

value per cost of adding an RP. However, the problem of the optimized placement still exists,

i.e., the path placement. Therefore, an optimization algorithm has been applied to the problem

and the result is represented. For this optimization, the reference frame of the path can be

placed by defining 6 parameters, namely the 6 DOF in the Cartesian space. The algorithm is

the same as the main algorithm, with less complexity. Even though the number of involved pa-

rameters is 6 instead of 12, still the parameters identification is needed. In this optimization, in

order to avoid complexities, no parameter identification has been done and all the 6 parameters

have been optimized. As represented in Fig. 3.9 when no RP is used, after 40 iterations, the

optimum result is obtained. As it can be observed, the obtained cycle time is close to what has

been already achieved using a linear guide as the RP. The final result of the objective function

with no RP converges to 590, versus 510 for the case with a linear guide. It is up to the practi-
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tioner to decide weather to use an RP or not. In our case, using a rotary table does make sense

regarding the cost of adding one, however, it is not financially justified to use a linear guide.

The best obtained placement configuration of the coordinated robotic system, which corre-

sponds to the rotary table, is as shown in FIg. 3.10 and the corresponding transformation matrix

is represented in Eq. (3.11).

A′
Rotary table =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.028970 0.842236 0.538330 979.940000

0.998889 0.044417 −0.015737 241.860000

−0.037165 0.537276 −0.842587 346.990000

0.000000 0.000000 0.000000 1.000000

⎤
⎥⎥⎥⎥⎥⎥⎦
. (3.11)
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Figure 3.9 Convergence of the ski goggles gluing, when no RP is used.

As it can be observed in Fig. 3.10, the RP is placed in a relatively far distance from the SM.

This decreases the cycle time. Since the lever arm is greater, the displacement at the point of

application is as small as possible. However, it demands more torque from the proximal joints.

3.6 Conclusion

In this chapter, an innovative method of identifying the number of independent parameters

was proposed in order to optimize the placement of a given path in a coordinated redundant
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Figure 3.10 The final configuration of the coordinated robotic system to glue the ski

goggles, using a rotary table as the RP.

robotic workcell. Results showed that there are 6 and 8 parameters needed, respectively, to

place a generic path on a rotary table and linear guide. In the case where one takes into the

account the joint limit of the aforementioned redundancy providers, 1 more parameter will

affect the placement optimization. Moreover, the results indicate that because of the nature

of the problem of ski goggles gluing, a rotary table performs better than a linear guide as a

redundancy provider in the coordinated workcell. In future works, expansion to higher DOF

redundancy providers is recommended.





CHAPTER 4

SIMULTANEOUS TASK PLACEMENT AND SEQUENCE OPTIMIZATION IN AN
INSPECTION ROBOTIC CELL

4.1 Introduction

In today’s industrial robotic cells, efficiency is a key factor to mass production. Less pro-

cess cycle time leads to more production and more business value. Two common automation

problems that need optimization are task sequencing and task placement.

Even though many researchers have been interested in optimizing the work flow of a multi-task

workcell Alatartsev et al. (2015); Kovács (2016); Kolakowska et al. (2014); Vicencio et al.

(2014), there is still no method that is able to efficiently optimize task sequence and consider

all degrees of freedom (DOF) and constraints, e.g., workcell layout, collision-free trajectory

planning, multiple inverse kinematics solutions (robot configurations).

The goal of this study is to minimize the process time of a turbine blade inspection work-

cell. The process includes the following tasks: a polished turbine blade is gripped by a serial

robot and shown to a stationary camera with different poses. This chapter proposes a novel

algorithm to find the optimized placement of the camera and the best sequence of the images,

simultaneously. The objective is to minimize the inspection time, while avoiding collisions

Kaloorazi et al. (2013, 2015). This method will combine the continuous camera placement and

combinatorial image sequencing problems and solve them together.

Camera placement in a workcell is a redundancy resolution problem FarzanehKaloorazi et al.

(2018a). Similar to part or path placement, in camera placement, six Degrees Of Redundancy

(DOR) are introduced to the problem. Infinite solutions can be found to a redundancy resolu-

tion problem and various approaches are introduced in the literature.

For example, in Caro et al. (2013), optimum placement of the workpiece to be machined is

investigated, considering the forces applied to the robot. In Ur-Rehman et al. (2010), the
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actuator torques, energy consumption, and shaking force are minimized for a multi-objective

path placement optimization involving parallel mechanisms. Finally, simultaneous placement

optimization and trajectory planning was performed in FarzanehKaloorazi et al. (2018b). In

that publication, a serial robot and a rotary stage (1 DOF redundancy) work together in an

automated fiber placement cell. A meta-heuristic method was proposed based on PSO (particle

swarm optimization) to find the best placement of the rotary stage, while optimizing the angle

value of the rotary stage.

Sequence optimization is also a common problem in robotics and has been addressed in the lit-

erature. In Zhang & Li (2009); Zacharia & Aspragathos (2004), using GA (genetic algorithm),

the sequence of visiting tasks and robot configurations are optimized. However, the task place-

ment was not considered. In Baizid et al. (2010), a GA-based method is developed to optimize

the task point visit order, considering the robot configuration and the workcell layout. How-

ever in Baizid et al. (2010), the robot placement is limited to position and to only four points.

In Baizid et al. (2014), a similar problem is address but this time by adding discrete limited

orientation placement options for the robot. The issue with GA is that it is naturally limited to

discrete search spaces. In these studies a high number of population size and iterations were

required. For example in Baizid et al. (2010), the generation number is 500,000 and the iter-

ation number is 222,857. Special modifications are needed in order to optimize a continues

problem by GA. In Tubaileh et al. (2007), the task sequence and feasible robot configurations

are obtained by using sequential quadratic programming, but not the task placement.

In Zacharia & Aspragathos (2005), the traveling salesman problem (TSP) is adapted to robotics.

Travel time between any two poses is considered to be affected by the selection of the robot

configuration. Again, the method is based on GA and an encoding technique is introduced to

take into account all solutions of the inverse kinematic problem (IKP). In Aneja & Kamoun

(1999), two decisions that need to be made simultaneously are investigated: finding the robot

move cycle, and finding the input part sequence. The objective is to maximize the throughput

rate of the cell. The problem is formulated as a special kind of TSP. An O(n4) time algorithm

which solves this problem optimally has been provided in Hall et al. (1997) and the authors ex-
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tend that work and provide an algorithm of complexity O(n log n). Finally, in Kovács (2016),

the goal is to find the appropriate order of welding tasks where the robot path is considered

during sequencing. For modeling the problem, an extension of the TSP with neighborhoods,

denoted as TSP-ND, is introduced. A GRASP meta-heuristic algorithm is proposed for solving

it.

In this chapter, a novel method based on PSO is proposed to simultaneously optimize the con-

tinuous problem of camera placement and the combinatorial problem of image sequence opti-

mization. PSO is a meta-heuristic optimization method, proven to obtain the optimal result in

various engineering problems, without requiring the function to be derivable Kennedy (2011).

In PSO, a population of particles search for the optimum value of the function and inform each

other about the best results they have obtained. For an individual particle, personal and global

(swarm) best memory, as well as the inertia from the previous movement, defines the current

velocity of the particle.

In the proposed method, each particle conveys six real values (camera placement in 6-DOF

space) and a set of integers (sequence of the images). Therefore, the problem in hand is solved

for the location of the camera while the best image sequence is obtained. Even though PSO is

widely used by researchers to solve continuous problems, it is less utilized for combinatorial

cases. The proposed method is specifically new in term of combinatorial engineering problems.

The remainder of this chapter is as follows. Firstly, the problem is explained in detail and the

challenges are investigated. Then, the proposed methodology is discussed. Pseudo-code for

the proposed algorithm is represented and explained. After that, two case studies are presented,

which examine the efficiency of the algorithm. One is a pure combinatorial problem and the

other is on the turbine blade inspection problem at hand. At the end, the results are discussed.

4.2 Problem description

In an automated robotic workcell and specifically in an inspection application, the placement of

the elements involved is highly important. Imagine a turbine blade finishing setup in which the
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objective of the robot is to grab a machined blade, surface finish it on a grinding belt and then

inspect it (Fig. 4.1). Each working cycle of the robot consists of two phases. In the first phase,

the robot takes the blade from a conveyor and brings it to the grinding belt. In the second phase,

the polished blade is to be inspected by a stationary camera. The inspection process consists

of taking multiple images of the polished blade. In this section, the problem is described and

the proposed solutions are postponed to the next section.

Figure 4.1 The robotic workcell to polish and inspect turbine blades. The robot grabs

the blade from the conveyor, brings it to belt grinder, then brings it to the camera.

The elements of the workcell, i.e., the robot, the conveyor, the polishing machine and the

camera, are to be placed with respect to the world frame. Since the polishing machine, as well

as the robot, are typically bulky and fixed to the workcell, they cannot be easily moved. The

only device that is relatively easy to displace is the camera. Therefore, a proper placement of

the camera is needed to be able to take all the required images of the blade in a time efficient

manner. These images actually correspond to a set of predefined poses of the blade with respect

to the camera. All image poses are fixed with respect to the camera frame.
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Definition 1. A feasible placement of the camera is a placement in which all the required

images can be taken.

If for one or more required images, the inverse kinematics of the robot has no solution, the

corresponding placement of the camera is deemed unfeasible.

4.2.1 Optimization criteria

Regarding the feasibility of the camera placement, there may exist more than one solution.

However, it is typically very hard to find any feasible solution for this camera placement prob-

lem, as solutions can be found only in a small region of the robot workspace. In this chap-

ter, we try to find the best solution among all the feasible camera placements. To find the

best placement, various optimization objectives can be considered, such as energy consump-

tion Field & Stepanenko (1996); Hirakawa & Kawamura (1997), cycle time Chan & Zalzala

(1993); Pateloup et al. (2004), minimum traveled distance Tian & Collins (2003), etc. Here,

the following optimization objectives are to be achieved by the proposed algorithm: find the

best placement of the camera in the workcell for which (1) the cycle time is minimized, (2)

there exist no collisions, and (3) the placement is feasible for all images. In what follows, these

criteria are explored.

4.2.1.1 Collision avoidance

The collision-free placement of the camera is essential. Assuming that the placement of the

robot and the belt grinder is already free of collisions, the camera needs to be located in such

a way that it does not collide with neither the robot, nor the conveyor, nor the belt grinder.

Furthermore, the camera has to be out of the robot path followed in the first phase (i.e., from

conveyor to grinder).

Collision detection methods have been investigated for decades and several efficient methods

are being used extensively FarzanehKaloorazi et al. (2017, 2014). Among them, 3D collision

detection is very popular in robotics applications. They can be categorized into four groups:
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space–time volume intersection, swept volume interference, multiple interference detection

and trajectory parameterization Jiménez et al. (2001). In this chapter, an open source collision

detection for both still and moving CAD models is used, called Bullet. The results then are

simulated in RoboDK and collision detection is doubled checked.

4.2.1.2 Cycle time

Since the placement of the camera does not affect the first phase of the automated process,

only the time for inspecting the blade is considered and is simply referred to as the cycle time

throughout this chapter.

The exact cycle time of the robot depends on numerous factors. The actual cycle time of

the robot can be quite difficult to obtain as it depends on various parameters set by the user

(e.g., maximum acceleration) and on the robot controller. In terms of an iterative optimization,

it is not feasible to run the real robot to get the actual cycle time (or even to run the robot

manufacturer’s simulation software). Therefore, we need to find the best approximation for

calculating the cycle time.

4.2.2 Sequence of images

For any camera placement, the order of the images to be taken has a direct impact on cycle

time. To find the optimal sequence, the well-known Traveling Salesman Problem (TSP) has

to be solved Lawler (1985). In TSP, the objective is to find the shortest path to visit each of

several cities. In our inspection problem, the robot needs to move between each two inspection

poses.

In a classical TSP the distance between each pair of given cities is known in advance. Usually a

C×C chart with (C2−C)/2 unique entries for the distance between each pair is given, where C

is the number of cities. Moreover, the distance between two cities is constant and is not subject

to change. There are three major differences between the classical TSP and the problem at

hand. This fact demands certain strategy changes.



79

Firstly, it is not guaranteed that, if the best sequence is obtained for a certain camera place-

ment, this same sequence will serve the best result for another placement. Secondly, unlike

the classical TSP, the distance chart is not given in advance. This chart needs to be calculated

for each given placement of the camera. It would be extremely computationally expensive to

obtain all the distances and then solve the TSP for each camera placement in an iterative solu-

tion. Finally, for each inspection pose, there are up to eight possible robot configurations to be

considered (i.e., the salesman needs to visit only one of several cities in each area).

4.2.3 Degrees of Placement

The number of independent parameters describing the placement of the camera are known to

be the degree of placement (DOP), also known as degree of redundancy. In general, the camera

placement has 6 DOP, i.e., 3 translational and 3 rotational DOP along and around x-, y- and z-

axis, respectively. Depending on the conditions of the workcell and the vision system, the DOP

can be reduced. For instance, rotation around the z-axis of the camera is equivalent to rotating

a taken image in the post-processing, if the lighting conditions are uniform. Moreover, in some

cases due to the symmetry of the robot’s workspace, some of the DOP fall into a dependency

group. For example, since the first joint of the robot is generally revolute and its axis parallel

to the robot’s base z-axis, the following three parameters are dependent: displacement along x-

and y- axes and rotation around the z-axis. Only two of them can independently affect the cycle

time. For a detailed study on parameter dependency, refer to FarzanehKaloorazi et al. (2018a).

4.3 Methodology

The problem of inspection workcell optimization can be divided into two subproblems: (1) find-

ing the best sequence of the images and (2) finding the best placement for the camera. On one

hand, the first subproblem is a combinatorial problem Lawler (1985), in which the objective

is to find the optimal ordered set of combinations, among a finite number of combinations,

which minimizes the cycle time. On the other hand, the second subproblem is a continuous

optimization problem Storn & Price (1997), in which the objective is to find the best location of
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the camera in a 6D continuous space, among infinite possibilities. Even though the objectives

of both subproblems are the same, they cannot be easily combined, because of their different

search spaces. This chapter is proposing a novel approach based on a modified PSO to solve

the TSP, thus solving the two subproblems simultaneously.

In what follows, first the generic cost function, constraints and parameters discussed in Sec. 4.2.1

are brought back to perspective, specifically structured, and represented for the problem at

hand. Then, the proposed modified methodology using PSO is described to combine the two

subproblems. Finally, the pseudo-code of the proposed algorithm is represented.

4.3.1 Practical problem structure

In this section, the optimization objective (cycle time) and the optimization constraint (collision

avoidance) are structured for the camera placement subproblem. Moreover, the optimization

parameters for the combinatorial subproblem (sequence of images) and parameters for the

continuous subproblem (camera placement) are investigated.

4.3.1.1 Objective function (cycle time)

As mentioned earlier, for an efficient iterative optimization one needs to calculate an estimate

for the cycle time. In this chapter, the Weighted Joint Travel Time (WJTT) estimation will

be used Caro et al. (2013). The weight factor for each joint depends mostly on its maximum

velocity, especially when relatively large joint motions are involved and maximum joint accel-

erations are used. Ideally, however, the weight factor must be adjusted experimentally.

In today’s commercially-available industrial robots, the (generally) fastest and simplest way to

move the robot end-effector from one pose to another, is to use a joint-mode motion command.

In joint mode, all joints move simultaneously, following linear trajectories in the joint space.

Thus, in general, only one of the joints will be moving at maximal speed and its travel time

will determine the cycle time for the pose-to-pose motion. This joint is usually the slowest of
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them.Thus, for a total of C images to be taken, the total cycle time that must be optimized is

the sum of the C−1 pose-to-pose motions.

There are C! sequences of images. In practice, a turbine blade inspection may require dozens

of images, which means that there are millions of different sequences. Furthermore, for each

image (inspection pose), there are up to eight different joint sets (robot configurations). This

means that there are 8CC! different sequences to verify.

4.3.1.2 DOP

As mentioned in Sec. 4.2.3, although theoretically, the DOP in a camera placement problem

can be less than 6, due to practical limitations (e.g., unsymmetrical workcell, uneven lighting

conditions), all the 6 DOP are taken into account.

4.3.2 Combining combinatorial and continuous optimization

In this section, the PSO is first briefly addressed and then the novelty of this work to combine

the combinatorial and the continuous optimization for an inspection workcell is represented.

4.3.2.1 PSO

PSO is a population-based stochastic method, first introduced in Kennedy (1997). The classical

PSO algorithm is highly capable of solving continuous problems. It over-performs the other

numerical optimizers in many engineering problems Hassan et al. (2005). In PSO, a population

of particles evaluate the search space and share their results among each other. In each iteration,

considering the best personal memory and the best group memory, each particle decides on a

new direction to search. An optimized result is obtained after a stopping criteria is reached.

Similar to other stochastic optimizers, a global optimum is not guaranteed, but is very likely

to reach. In what follows, the formulation of PSO is summarized. For more details refer to

FarzanehKaloorazi et al. (2018b).
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The PSO procedure starts with an initial population (swarm) of particles, typically randomly

distributed in the search space. Each particle consists of a value set called location, i.e., opti-

mization parameters, having s dimensions. Moreover, each particle stores a value for personal

and a value for global best memory, along with the location of these memories. Each particle

evaluates the fitness function with respect to its own location and saves it as its best personal

memory. After memorizing its best personal location, each particle checks whether its own

personal best is better than the current global best, and if so, global memory is updated and

shared with other members of the population. For the next iteration, a velocity vector is calcu-

lated for each particle. The particle’s location is changed due to the velocity and, if necessary,

its personal or global best memory is updated. The above can be summarized as:

vnew
i,s ← φωvold

i,s +φprp(pi,s −xi,s)+φgrg(gs −xi,s), (4.1)

where velocity vnew
i,s is the location update for the next iteration, velocity vold

i,s is the current

velocity of the ith particle for the sth dimension, working as a movement inertia (vi,s is zero for

the very first iteration), xi,s is the current location of ith particle, pi,s is the best location personal

memory of the ith particle, and gs is the best location global memory of the whole swarm.

Tunable parameters φω , φp, and φg are the learning coefficients from previous velocity, personal

memory and global memory, respectively. The tunable parameters have a value between {0,1}
and must be chosen carefully in order to achieve reliable results. Furthermore, uniform random

mutation factor rp for the personal and rg for the global learning (rp,rg = {0,1}) improves the

search ability of the swarm.

4.3.2.2 Modifications to fit TSP

As it has been discussed, the continuous optimization, i.e., the placement of the camera, and the

combinatorial optimization, i.e., the sequence of images, need to be simultaneously resolved.

Therefore, it is necessary to modify the classical PSO in order to first, be able to solve a

combinatorial problem, i.e., TSP, and then to do it along side with the continuous optimization.
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In this chapter a basic combinatorial PSO is used, Wang et al. (2003), and some features are

added to improve the performance of the algorithm. The proposed combinatorial algorithm is

then tested on a few TSP benchmarks to verify its ability.

The algorithm is described by the means of TSP. Assume C cities to be traveled by a salesman.

The latter has to pass each city once and only once. The route is an open chain, not a loop.

The start and end city do not matter. The goal is to obtain a combination of the cities which

minimizes the traveled distance. Using PSO, each particle is a combination. It keeps track of

its own best and global memory. The procedure starts with a randomly generated population

of particles, i.e., random combinations. Each particle saves its current combination as the best

personal memory, and also replaces the global best memory, if needed. In the next iteration, a

series of swaps alters the current combination of each particle. A swap is done only between

two cities in the sequence.

To choose which cities to swap, similar to Eq. (4.1), a velocity update type routine, based on

learning coefficients, is executed. Learning coefficients ψp, ψg and ψm (personal, global and

mutation respectively) are real numbers between {0,1}. Five factors are related to the new ve-

locity: personal and global best combination memories, personal and global previous velocity

inertia and mutation. After a few iterations, the optimized combination is obtained. The Num-

ber of Function Calls (NFC) depends on the population size and the number of iterations. More

iterations and particles are needed for larger problems. The pseudo-code of combinatorial PSO

combined with continuous is represented in Alg. 4.1.

The proposed combinatorial PSO is tested on few benchmarks and the results for ATT48 prob-

lem is represented. ATT48 is a set of 48 points in 2D space, corresponding to the capitals of

the states in the USA. The optimum answer to this problem has been represented in the liter-

ature long ago. Yet an efficient algorithm to find the best sequence is still a challenge today.

The proven shortest path is 10,628 and is nearly achieved by Hybrid Discrete PSO (HDPSO)

Wang et al. (2006). However, this result has been achieved by an excessive NFC. Typically, a
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value around 34,000 can be obtained by a regular cost efficient method Odili & Mohmad Kahar

(2016). Note that the lengths are normalized values.

In the literature to solve the TSP, the population is initialized starting from one point and con-

necting each city to its nearest neighbor Huilian (2010). Furthermore, during the optimization,

swaps are done between the cities based on fixed and given distances Wang et al. (2003). This

approach requires a chart of distances, known and invariable form the beginning. The problem

at hand is different than the classical TSP. For the camera placement problem, the cycle time

from one image to another is subject to change and depends on the camera’s pose, i.e., the dis-

tances between the cities can change. Therefore, those methods that require a chart of distances

given at the beginning, do not work for this problem. Moreover, in our problem, the start and

end city are not fixed and the salesman does not travel in a loop, therefore we have C! possibil-

ities. Due to the aforementioned conditions, this combinatorial image sequence optimization

needs more NFC compared to the classical TSP.

The proposed algorithm is called Blind Dynamic map TSP PSO (BD-PSO). Blind because it

is independent of cities map and calculates the distances as it goes city by city. Dynamic map

because it can handle changeable distances, i.e., the map dynamically changes. The algorithm

is able to find the best camera placement and the smallest cycle time, simultaneously. Put in

TSP notion, imagine that there is a book of different maps for a territory. BD-PSO finds which

map yields the shortest tour and provides the tour itself. Details about embedded BD-PSO into

continuous PSO is represented in the following section.

4.4 Algorithm

In this section, the proposed algorithm is represented in a pseudo-code format. In Alg. 4.1,

the main routine of the algorithm is shown. First, the inputs and outputs of the algorithm are

declared. The algorithm consists of two sections: initialization of the population and iterations.
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Algorithm 4.1 The pseudo-code of the optimization algorithm, based on BD-PSO, to

optimize the cost function, fnc.

1 Input: fnc, S, C, Vlower,upper, itmax, npop, φω , φp, φg, ψω , ψp, ψg, ψm.

2 Output: pbest
cam, seqbest.

———————————— Initialization ————————————

3 for i from 1 to npop do
4 PP

i = UniDist(S,Vlower,upper)

5 VP
i = 0S

6 P
seq
i = RndInt(C)

7 V
seq
i =P

seq
i

8 Pibest = fnc(PP
i ,P

seq
i )

9 end
10 Pgbest = min(Pi→nbest)

—————————————— Iterations ————————————

11 while itmax do
12 for i from 1 to npop do
13 for s from 1 to S do
14 PP

i = Eq. (4.1)
15 end
16 P

seq
i ⇐ Alg. 4.2

17 if fnc(PP
i ,P

seq
i )<Pibest then

18 Pibest = fnc(PP
i ,P

seq
i )

19 if Pibest <Pgbest then
20 Pgbest =Pibest
21 end
22 end
23 end
24 end
25 pbest

cam ←Pp
gbest

26 seqbest ←P
seq
g best

4.4.1 Main routine

As it can be observed in the pseudo-code, the required inputs of the optimization procedure

are as follows. The cost function f nc, i.e., the fitness function, determines the fitness value of

each particle P. Each particle is twofold. Continuous parameters, i.e., the camera placement

variables shown as Pp, and combinatorial parameters, i.e., the sequence of the images shown

as Pseq. The number of continuous optimization parameters S (for space) is the dimensions
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of the search space. The number of combinatorial optimization parameters C (for city) is the

number of images. Tensor Vlower,upper is of size 2× S and consists of two vectors: lower and

upper bound of the initial search field in the continuous space. Maximum number of iterations

itmax and population size npop are standard PSO parameters.

Note that, in this chapter the stopping criteria is set to be the maximum iterations, therefore,

the total NFC is npop × (itmax + 1). The rest are the tuning parameters of the optimization al-

gorithm. Coefficients φ and ψ are associated with continuous and combinatorial, respectively.

Coefficients φω , φp and φg are the inertia, personal and global learning coefficients of camera

placement, respectively. Coefficients ψω , ψp, ψg and ψm are the inertia, personal and global

learning coefficients and mutation factor of the image sequence optimization, respectively.

The outputs of the algorithm are the best pose of the camera pbest
cam and best sequence of images

seqbest.

4.4.1.1 Initialization

The initialization section consists of a loop assigning the initial value to all particles. Index

i shows the individual particle. In line 4, a vector of size S with uniform distribution within

the lower and upper boundary limits is assigned to continuous particles, Pp. In our inspection

workcell, S = 6 and each continuous particle consists of 6 values, namely the displacement

along and orientation around x-, y- and z-axis. The initial continuous velocity of each particle,

Vp, is a zero vector of size S.

The combinatorial part of the particle is then initialized. A string of numbers from 1 to C

is randomly shuffled and assigned to Pseq. Then, the velocity of combinatorial part Vseq is

initialized to be the same as the particle itself, because this implies zero velocity. Next, once

the pose and combination of the ith particle is set, they are passed into the cost function f nc

and the fitness of the particle is returned.
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The f nc is represented in Alg. 4.3 and will be described in the upcoming paragraphs. The

output of f nc is the cycle time of the particle. For the initialization, the current pose and

combination is stored as the particle’s personal best memory Pibest. Note that Pibest contains

both continuous and combinatorial parameters.

Finally, after all particles are assigned with the initial values and their best memory is captured,

the best global memory is extracted from comparing all the members of population and the one

with the minimum cycle time is stored in Pgbest.

4.4.1.2 Iterations

In the iterative section, each particle decides about its search direction based on personal and

global memories and explores new possibilities. From lines 11 to 26, the algorithm starts

the iterations and stops when itmax number of iterations are done. In lines 12 to 25, for each

particle i, the pose and combination is updated and the fitness value is obtained. In lines 13 to

15, the pose of the camera for each dimension S is updated based on Eq. (4.1). In line 16, the

combination of the sequential part of particle is updated based on Alg. 4.2. In lines 17 to 22, the

fitness is evaluated with updated particles values. In lines 17 and 19, if for a particle the new

pose and combination yield to a better cycle time, the personal best memory is updated with

the new values. In lines 19 and 20, if the current particle’s personal updated memory is better

that of its global, the global best memory is replaced with the current particle’s attributes. After

itmax number of iterations, the existing global best pose and combination (Pp
gbest,Pseq

g best)

are represented as the optimized camera placement and image sequence.

4.4.2 BD-PSO

In Alg. 4.2, the pseudo-code of the BD-PSO is represented. In line 1, three counters are created.

Counters lp, lg and lv keep track of how many times a particle has learned from its personal best

combination, swarm global best combination and previous velocity combination, respectively.
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Algorithm 4.2 The pseudo-code of the combinatorial BD-PSO to update the particles

combination. rnd(0,1) is a random real number generated independently each time.

1 lp = 0, lg = 0, lv = 0

————————— Inertia from previous iteration ———————-

2 for c from 1 to C do
3 if Pseq

i,c �=V
seq
i,c and rnd(0,1)< ψω then

4 in P
seq
i,c swap(P

seq
i,c , V

seq
i,c )

5 lV ++

6 end
7 end

————————————— Personal learn ———————————

8 for c from 1 to C do
9 if Pseq

i,c �=P
seq
p,c best and rnd(0,1)< ψp then

10 in P
seq
i,c swap(P

seq
i,c ,P

seq
p,c best)

11 lP ++
—— Prepare velocity for next iteration

12 else if Pseq
i,c �=P

seq
p,c best then

13 in V
seq
i,c swap(V

seq
i,c ,P

seq
p,c best)

14 end
15 end

————————————— Global learn ———————————-

16 for c from 1 to C do
17 if Pseq

i,c �=P
seq
g,c best and rnd(0,1)< ψg then

18 in P
seq
i,c swap(P

seq
i,c ,P

seq
g,c best)

19 lg ++
—— Prepare velocity for next iteration

20 else if Pseq
i,c �=P

seq
g,c best then

21 in V
seq
i,c swap(V

seq
i,c ,P

seq
g,c best)

22 end
23 end

——————————————– Mutation ———————————

24 if lv + lp + lg = 0 then
25 for μ from 1 to ceil(C/5) do
26 in P

seq
i,c swap two random cities

27 end
28 end

All these learning counters are zero at the beginning. The BD-PSO consists of four major

sections.
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4.4.2.1 Inertia

In lines 2 to 7, the first section which is the effect of inertia is represented. In these lines, it is

checked that if a city c in the particle sequence P
seq
i is different than the city in the velocity

sequence V
seq
i , possibly city c in the particle will be swapped with the one in the velocity. The

velocity sequence is generated from last iterations and contains those possible swaps that were

not done in the previous sequence.

In line 3, if the aforementioned condition is met, there is a chance that the swap is done,

because it is done only if a randomly generated real number between 1 and 0 (rnd(0,1)) is

smaller than the inertia coefficient. This random chance swap prevents the algorithm from

premature convergence. This will be observed in other learning sections as well. Without this

likelihood implementation, after the first iteration all the particles would be the same as global

best. This is not desirable and we want the particles to explore new possibilities.

In line 4, the swap operation is applied. See Eq. (4.2) as an example for a swap in particle’s

combination. Assume that in this example c = 2 (i.e., the swap is being checked for the second

city) and rnd(0,1)< ψω is true.

Velocity combination: V
seq
i = {5, 3, 6, 4, 1, 2}

Particle combination before swap: P
seq
i = {5, 2, 4, 3, 6, 1}

Particle combination after swap: P
seq
i = {5, 3, 4, 2, 6, 1}.

(4.2)

As it can be observed, second city in velocity is 3 and second city in particle is 2. Therefore,

the second city in particle is swapped to match the velocity’s second city (2 and 3 are swapped

in particle).

This concept is applied to every city in particle and if they are lucky enough (rnd(0,1)< ψω ),

they will be swapped. Note that the random number is independently generated each time it is

called. In line 5, velocity learning counter is increased by 1. It will be useful later.
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4.4.2.2 Personal learning

In the second section from line 8 to 15, the particle learns from its own personal best. In

lines 9 to 11, similar to previous section, the particle updates its sequence if it differs from

its personal best memory, and if the randomly generated number is smaller than the personal

learning coefficient. In line 11 the personal learning counter increases. In lines 12 to 14, if city

c in the particle is different than its counterpart in the particle’s personal best, but did not have

the chance to swap (the random number was larger than lp), the swap is stored in the velocity.

This velocity will be used in the next iteration. In this vein, in the next iteration the particle still

has a chance to take advantage of the unused swap. Therefore, in line 13, the swap is done for

the velocity sequence and cth city in the velocity is updated with the according city of particle’s

personal best.

4.4.2.3 Global learning

In the third section of the algorithm from line 16 to 23, the same concept from the previous

section is applied for global learning . The particle has a chance to learn from the best memory

of the whole swarm. In line 17, the learning coefficient lg determines the chance and in line 18

swap is done and global learning counter increases in line 19. In line 21, the possible useful

swaps are stored in velocity for next iteration.

4.4.2.4 Mutation

In the final section of this algorithm, from line 24 to 28, a mutation is applied to the particle.

Mutation is applied when a particle has learned nothing from the previous sections, meaning

that the particle’s sequence is exactly the same as its previous iteration with no change. In

this case, random swaps in the particle happens. It improves the efficiency of the algorithm,

because if a particle is the same as its previous iteration, a call to the fitness function is made

with no new results. Therefore, in line 24, the algorithm checks if all the learning counters

are still zero, i.e., no change from the beginning, some of the cities are chosen randomly and
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swapped. In line 25, depending on the total number of cities, some of the cities are chosen

randomly and swapped. Approximately 20% of the cities are randomly swapped.

Algorithm 4.3 The pseudo-code of the Cost function, fnc, to calculate the cycle time of

the inspection phase.

1 Input: Pp
i as the pose of the camera, P

seq
i as the sequence of the images

2 Output: Cycle time

—————————– Set camera and images pose ————————

3 Hcam
base = pose2tran(Pp

i )

4 for c from 1 to C do
5 cHflange

base = Hflange
blade Hblade

imgc
Himgc

cam Hcam
base

6 end
————————————— Calculations ———————————–

7 try:
8 IKP(1Hflange

base )

9 for c in P
seq
i do

10 ctc = CycleTime(cHflange
base ,(c+1)H

flange
base )

11 CollisionCheck(cHflange
base ,(c+1)H

flange
base )

12 end
13 catch fail:
14 Collision or out of reach

15 return inf

16 break
17 end
18 return ∑ct

4.4.3 Cost function (fnc)

The fitness function fnc of the optimization algorithm is represented in Alg. 4.3. The inputs

of fnc, as shown in line 1, are both the continuous and combinatorial part of a particle, i.e.,

the pose of the camera and the sequence of the images, respectively. The output of fnc, i.e.,

the fitness value, is a single number as the cycle time of the blade inspection operation. The

function fnc is twofold: (1) set camera’s pose and consequently the inspection poses and (2)

the cycle time calculation and collision check.
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4.4.3.1 Set camera and image pose

In the first section, in line 3, using the pose2tran() function, the camera’s pose is converted

from the 6× 1 pose vector of Pp, i.e., translation and orientation, into a homogeneous 4× 4

transformation matrix represented with respect to the global base frame. In lines 4 to 6, each

image pose, which is given in the camera’s frame, is represented as a transformation matrix

with respect to the base. In line 5, the transformation matrix from robot’s flange to the base

frame is obtained. In line 5, the transformation matrices are as follows: camera’s location with

respect to the base (Hcam
base), cth image with respect to camera (Himgc

cam ), reference frame of the

blade with respect to cth image (Hblade
imgc

) and robot’s flange with respect to blade’s reference

frame (Hflange
blade ). Note that Himgc

cam , Hblade
imgc

and Hflange
blade are invariable and only Hcam

base can change.

Consequently, the pose of the flange with respect to the base (cHflange
base ) is obtained for cth image.

4.4.3.2 Calculations

At this point all we need is to compute the cycle time and check for any collisions. In lines 7 to

12, the algorithm tries to calculate the cycle time and checks for collisions. In line 8, the IKP

is solved for the first image in the sequence. Since this is being done in a try and catch block,

if any of the functions in the try block fails, it is caught in line 13 and the fitness value of the

particle is returned as infinite. In lines 9 to 12, for each image c, the cycle time is calculated

(line 10) and stored in ctc. Furthermore in line 11, all possible collisions are checked.

The try block may fail in two general cases: (1) if there is a collision or (2) if the IKP has no

solution. The IKP may fail in two cases: when the Cartesian target Hflange
base (1) is out of reach

for the robot or (2) is at a singularity. In line 17, in case of no failure, the sum of the cycle times

for all the images is returned as the fitness value of the particle. Otherwise, inf is returned and

basically the current state of the particle is useless and will be ignored by the swarm.
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4.4.4 Cycle time and collision check

In Alg. 4.4, two subroutines which were used in the previous section are explained, namely

cycle time and collision check.

4.4.4.1 Cycle time

J1 J2 J3 J4 J5 J6

0.35 0.25 0.2 0.1 0.05 0.05

Table 4.1 Weights used in WJTT

In order to calculate the cycle time, two sets of joint values are needed: start and end one. In

line 1, the resultant matrix transformation to get the pose of cth image, cHflange
base and the image

after, (c+1)H
flange
base are given as inputs. In line 2, the output of this subroutine is the cycle time,

ct. In line 3, the IKP is solved for the image pose corresponding to the beginning of movement

and robot’s joint values are stored in qst. In line 4 to 7, the joint value difference between start

and end joint set is obtained for all eight robot configurations. In line 5, the IKP is solved for

the end joint set at the mth configuration of the robot and the solution is stored in an array called

qend. In line 6 the difference in the joint values are calculated and stored in an array called D.

Note that the difference is fist multiplied to the weight vector ω (represented in Table. 4.1) to

apply the joint response time. In line 7, the set of smallest joint value difference among all the

configurations is stored in d. In case the IKP fails, the loop breaks and failure is returned to

superior calculation routine. Otherwise, in line 9, the maximum cycle time value among the

six joints is returned as the cycle time.

The working mode of the robot may change from one image to another. The method behind

choosing the right working mode (also referred to as configuration) is illustrated in Fig. 4.2.

In this figure, from left to right, the approach point is a fixed point in space, also referred to

as home position. After the robot has polished the blade, it re-positions at the approach point.

From the approach point, the IKP is solved for all 8 possible configurations of the robot in order
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to reach the pose for image 1. The configuration that requires the smallest cycle time is chosen.

In Fig. 4.2, the smallest cycle time is shown by a dotted circle around the approach point. In

the illustrated example, the 3rd working mode result in smallest cycle time. Then, from the 3rd

working mode to reach image 2, the 4th working mode results in the smallest cycle time. For

some working modes, it might happen that no solution can be found for the robot. The working

mode selection process continues for all images. Note that this is a local optimum solution and

each working mode is only guaranteed to be the best choice regarding the previous solution.
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Figure 4.2 Working mode selection for each image.

4.4.4.2 Collision check

In the second subroutine, all possible collisions in the workcell are checked. Inputs are the

CAD models of all the parts in the workcell. The output is only a flag indicating if the collision

check is passed. If only one of them fails, the whole cycle fails. This task is performed by

an external CAD engine collision check program in line 11. However, it is important to check

for the collisions not only at the beginning and ending point, but also along the joint mode

pose-to-pose movement. Therefore, in line 10, joint values between start qst and end qend joint

sets are divided into approximately 10 steps. Of course, if the resolution between qst and qend

is higher, the results are more reliable, but the calculation time will increase as well.
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Algorithm 4.4 The pseudo-code of two routines: CycleTime() and CollisionCheck().

———————————– CycleTime ———————————

1 Input: cHflange
base and (c+1)H

flange
base

2 Output: ct
3 qst = IKP(cHflange

base )

4 for m from 1 to 8 do

5 qend = IKP

∣∣∣∣
m

(
(c+1)H

flange
base

)

6 Dm = ω(qst −qend)

7 end
8 d = maxColumn D
9 return fail if out of reach

10 return mind as ct
——————————— CollisionCheck ——————————

11 Input: Cad model of all parts in workcell

12 Output: fail or pass

13 for step from qst to qend each (max(qend −qst)/10) degree do
14 Check for geometrical collision

15 return fail if collision

16 end

4.5 Case study and discussion

In this section the proposed algorithm is tested to see whether it is reliable to solve combined

(continuous and combinatorial) problems. First, the continuous factor is eliminated in order

to verify the algorithm’s power only in combinatorial problems, where a map of 13 cities is

considered for the TSP and the performance of the algorithm is analyzed. Then, the case study

of this chapter, i.e., turbine blade inspection cell, is resolved using the proposed algorithm.

4.5.1 Combinatorial test case of 13 cities

The city map of this combinatorial problem test case is shown at the top of Fig. 4.3. These

points (cities) are chosen in a fashion that it is easy to predict the optimal path, which is a

circular route. Furthermore, the points are chosen so that they are not symmetrically or homo-

geneously distributed. It is worth recalling the fact that BD-PSO algorithm is blind in terms of
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Figure 4.3 A test case to measure reliability of the BD-PSO algorithm.

knowing the distances between the cities in advance. Therefore, no decision is made based on

proximity of two points or predicting what would be the consequence of certain swaps. The

solution purely evolves by manipulating a sequence of numbers, i.e., seq= [1,2, . . . ,13].

In Fig. 4.3, the evolution of particles is depicted throughout the iterations. For this optimization,

20 particles are evaluated for 20 iterations. In total, 400 = 20× 20 NFC. Each column in the

figure indicates an iteration, therefore, there are 20 particles represented in each column. For

each particle, a broken line is drawn with respect to the sequence represented by the particle.

For example, on the top of the figure, the drawing of the minimal route is shown. In the

first column located on NFC 0, the initial random generation of 20 particles in the swarm is
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illustrated. The cost function, i.e., path length, obtained for the initial generation is between

12.2 to 19, see Fig. 4.4. In the second column, a sensible drop in route length is observed

between 9 and 17. From the first column to the eighth, all the particles are converging to

a solution, because there is always either a global, personal or velocity learned swap done

(lg + lp + lv �= 0). From the ninth iteration, a diverging behavior is observed, see Fig. 4.3.

That is where the mutation has started. This happens when some of the particles are brought

forward to the next iteration without a single change. In order to avoid calling the cost function

for a previously calculated sequence, at least one random swap is done in the particle. For this

reason in the later iterations, more outliers are emerging to explore new opportunities.
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Figure 4.4 Convergence plot of 13-point test case using BD-PSO. From NFC 0 to 20 is

the initial random generated population. Spikes of longer path length in the plot shows the

mutation-based attempt to find new solutions.

For this optimization the stopping criteria is set to the maximum number of iterations. As it can

be observed, after 400 NFC the result of path length is 4.87. Even though the optimal solution

is known to be 4.57, the obtained result is quite satisfactory, because without any optimization,
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13! = 6,227,020,800 NFC is needed to find the best solution. Yet after only 400 NFC, a

near optimal solution is found. Moreover, this is done in a blind fashion, without knowing the

distances between each two points.
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Figure 4.5 Histogram of comparison between four combinations of population size and

max number of iterations. For each combination, the algorithm is tested 1000 times and

distribution of the result shows the repeatability of the algorithm.

Finally, a comparison is done between various combinations of population size and maximum

number of iterations in Fig. 4.5. Furthermore, this study compares 1000 runs of the algorithm

to obtain its repeatability. In Fig. 4.5, four different combinations are compared, where i stands

for the maximum number of iterations and p for the population of swarm. For example, NFC

900 = 45i × 20p means 45 iterations are done for a population of 20 particles. Evidently, better

results are obtained with more calls to the cost function, i.e., NFC 900 gives a better overall

result than NFC 400. However at a fixed NFC, it would be interesting to examine whether a
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larger p is more important than a larger i. As a future work, a full analysis of the method, e.g.,

fine tuning the learning coefficients and NFC combinations, using more TSP benchmarks, is

suggested.

4.5.2 Turbine blade inspection test case

In this section, the proposed algorithm is applied on a simulated turbine blade polish and in-

spection workcell. As it can be observed in Fig. 4.1, a 6-DOF serial robot (UR5, from Universal

Robots) is located in the middle of the workcell. It grabs a turbine blade from the conveyor

and takes it to belt grinder machine (phase 1). After the polishing operation is done, the robot

takes the blade in front of the camera to take the images (phase 2). The location of the camera

and the sequence of the images are optimized with the proposed algorithm.

In this example, eight images from different angles are needed, see Fig. 4.6. Therefore, there

are eight inspection poses of the end-effector with respect to the camera. These poses are

illustrated in Fig. 4.7. Eight reference frames correspond to the poses.

Figure 4.6 Eight images needed to be taken from different angles of the turbine blade

for the sake of inspection.

In Fig. 4.8, a comprehensive evolution of particles during the optimization process is depicted.

On the top the figure, the shortest path of an 8-point map is shown. This is a representation of

the sequence of eight images.

In Fig. 4.8, the evolution of the particles to optimize the inspection workcell using BD-PSO is

depicted. Each octagonal shape drawing represents the sequence of the particle. For example,
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Figure 4.7 Eight reference frames corresponding to the eight images.

the upper particle in the first column (with highest cycle time value of around 565) represents

the following image sequence: {2,7,5,8,3,6,1,4}. One can match the particle to the large

octagonal (top right of Fig. 4.8) to obtain this sequence. Each column represents one iteration.

The first column is the initial randomly generated population. The cost function is the cycle

time of taking all eight images. The population size is 30 particles. As it can be noticed

from the figure, the first column has less than 30 particles. This is due to the fact that for

some particles (pose of camera and combination), there is no solution found, either because of

collisions or because of workspace limits. From the first column (for which the cost is between

300 and 570) to the second column (cost between 210 and 425) a drastic drop in cycle time is

observed. This drop continues up to the fourth iteration, where the mutation feature starts to act

on particles. After that, there is always mutations in the particle to avoid repeated calculations.

It is worth comparing the impact of image sequence and camera pose on the cycle time to

see which one is more effective to reduce the cycle time. For instance, as it can be seen in

Fig. 4.8 between 25 and 35 NFC, for the same sequence at the bottom, there exist a slight

difference in cycle time among the particles. These differences are caused by the camera pose

adjustment and ranges in about 207 to 216 (9 unit difference in cycle time). Comparing the

difference in the sequence, which ranges between 160 to 187 (about 17 units in cycle time), it

is safe to say that the image sequence optimization is much more important than the camera

location adjustment. However, finding a camera location that results in a solution is still very
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Figure 4.8 Evolution of the particles to optimize the inspection workcell using BD-PSO.

Each octagonal shape drawing represents the sequence of the particle.

important. Moreover, the camera placement may be of more importance given a different set

of images. Eventually, a near optimal solution is obtained in about 70 NFC (0.17% of 8! total

possibilities), see Fig. 4.10. The final placement of the camera is represented in Fig. 4.9 and

the obtained sequence is {1,2,3,4,5,6,7,8}.
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Figure 4.9 8 robot poses to perform image inspection for 8 complicated images.

4.6 Conclusion

In this chapter, an evolutionary based optimization method, called BD-PSO was proposed to

simultaneously solve the continuous problem of camera placement optimization and the com-

binatorial problem of image sequence optimization. The continuous search space of camera

placement includes 6 degrees of freedom. The combinatorial solution was the shortest travel-

ing path in a TSP for a blind and dynamic map space, meaning that the distances between the

cities are not known (blind) and can change as a function of the camera placement (dynamic).

Details of the algorithm were represented where the learning coefficients for personal, global,

previous velocity and mutation are defined for both aspects of the problem. The proposed al-

gorithm was verified by comparing the result to a TSP benchmark. A near optimal result of
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Figure 4.10 Convergence of cycle time in the optimization of inspection workcell.

(4.87, compared to 4.57) was obtained after 6.42×10−8 NFC fraction of total possibilities. A

case study was introduced for a turbine blade polishing and inspection workcell.

Optimal design of workcell layout was obtained. In this optimization the objective was to

minimize the total cycle time of the process and collision avoidance was respected as a limit of

the solutions. In future works, fine TSP solution is suggested to be performed at the end when

the camera location is fixed, for high number of images.





CHAPTER 5

CONCLUSIONS

Path placement optimization is a key step for an efficient robotic setup. Without a proper

placement, occasionally, it can be wrongly interpreted that a given robotic task is impossible

to perform, yet it is only a matter of properly choosing the right layout. Among all the benefits

of foreseeing components arrangement within the layout, singularity avoidance and cycle time

improvement are of prominent value. There are a variety of parameters involved in path and

component placement. Often times the number of such parameters is especially high and not

all are independently effective on our decision makings. Path placement is usually combined

with path planning and should be solved simultaneously.

The present study touched on path placement and path planning optimization in industrial

robotic workcells. As a whole, this thesis views the placement problem from different angles.

It consisted of three main topics. First, in Chapter 2, path placement and component place-

ment in a highly redundant collaborative redundant setup was addressed. The cell layout was

obtained, based on optimized path placement in a fiber placement cell. Singularity avoidance

and redundancy resolution was achieved in a 13-DOF cell. Usually a highly experienced hu-

man practitioner is required to investigate such cells, with lots of trial and error, to solve path

planning and component placement. But with the proposed algorithm represented in Chapter

2, all aforementioned tasks are efficiently and automatically performed within a few iterations.

Second, in Chapter 3, taking a step backward to see the big picture, the number of independent

parameters effective in path placement was investigated. Without having this number carefully

studied, a big portion of the previous algorithm was doomed to run for inefficient loops. This

is specially the case for higher DOF workcells and redundancy resolution. Results showed

about 30% improvement in calculation time for a ski goggles gluing task. Furthermore, useful

suggestions were given on what redundancy provider to choose.
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Finally in Chapter 4, a complex combinatorial component placement and path planning task

for turbine blade inspection cell was investigated. A novel algorithm was introduced to simul-

taneously obtain the best placement of an inspector camera and sequence of the images to be

taken. The proposed method is especially usefully in highly dynamic and unpredictable en-

vironments where most other classic algorithms are unable to provide a reliable result. Other

non-robotic applications, with a dynamic and unknown map of TSP problem can also benefit

from this algorithm.

In the future works, regarding the methodology to obtain the minimal number of parameters re-

quired for task placement, only seven DOF systems (one DOR) are considered. This study can

be extended to higher DORs. For example using the same approach, obtain the minimum num-

ber of effective parameters for dual rotaries, dual rails, etc. It would be interesting and quite

challenging to combine rotary and linear RPs in an eight DOF redundant cell as well. More-

over for optimizing trajectory, only the distance to singularity is considered as the optimization

criterion and collision avoidance as a constraint. But other measures, such as condition num-

ber, manipulability or dexterity, or energy consumption can be explored. Furthermore, the

combinatorial optimization method to solve TSP is applicable to other disciplines and can be

improved by combining with other approaches.

Related future works that are not in scope of this thesis can be task distribution in multi-

robot cells which is still quite challenging to this date. Also, online programming for such

cells brings many new challenges to the table. A major challenge in future works is how to

implement some of proposed methods so that they can be used in an intuitive manner by users

who are not experts in robotics or optimization. This is a real-world issue right now for the

author as he is working in industrial robotic simulation section.

In conclusion, this thesis investigated different aspects of path and component placement. Var-

ious applications and numerous situations were investigated that may arise in a robotic cell

layout design and placement, as well as path planning. The authors hope that the present work
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can be of value to the robotics community and help future works to rely on an efficient way of

doing path placement, in a variety of robotics problems.
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