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 Étude du graphène sous forme de poudre et dans un revêtement de résine  
 

 Nam NGUYEN  
 

RÉSUMÉ 
 
Le graphène est une monocouche à deux dimensions d’atomes de carbone organisée en 
réseau hexagonal. La feuille de route d’application du graphène montre qu’il s’agit d’une 
technologie potentiellement perturbatrice. NanoXplore a déjà produit plusieurs générations 
de graphène et le produit récent est le graphène noir 3X, un graphène de 6 à 10 couches. 
 
Dans la présente étude, en montrant l’incorporation de feuilles de graphène dans une matrice 
de résine vinylique, nous montrons qu’il est possible de fabriquer des revêtements 
conducteurs à faible teneur en graphène à haute stabilité thermique. L’analyse 
thermogravimetrique montre que ces nanocomposites peuvent être utilisés à une temperature 
inféreure a 300oC sans décomposition chimique. Les revêtements conducteurs peuvent être 
obtenus en ajoutant seulement 5% de graphène. La valeur de conductivité la plus élevée est 
3,7 x 10-2 S/cm avec 20% en poids de G3X, suffisamment élevée pour divers dispositifs 
électriques. De plus, l’analyse morphologique par SEM et AFM a révélé une distribution 
uniforme du graphène noir 3X dans la matrice polymere et l’épassseur des feuilles de 
graphène. Les propriétés mécaniques peuvent être augmentées 1.5 fois en comparant les 5% 
et 7% en poids de charge de graphène du composite. Cette augmentation est exceptionnelle et 
rarement mentionnée dans littérature pour ce type de revêtement. 
 
Mots-clés: Nanocomposites, nanomatériaux, résines vinylester, graphène, morphologie, 
conductivité électrique 
 





 

 Investigation of graphene as a powder and in a resin coating 
 

 Nam NGUYEN  
 

ABSTRACT 

 
Graphene is two-dimension monolayers of carbon atoms organized in a hexagonal lattice. 
The road map of application of graphene shows that this is a potentially disruptive 
technology. NanoXplore already produced several generations of graphene and the recent 
product is the Graphene Black 3X, a 6-10 layers’ graphene. 
 
In the present investigation, by incorporating black 3X graphene sheets into a vinyl resin 
matrix, we show that is possible to fabricate low graphene content conductive coatings with 
high thermal stability. TGA analysis shows that these nanocomposites can be used at a 
temperature lower than 300oC without any chemical decomposition. The conductive coatings 
can be achieved with the addition of only 5 wt.% of graphene. The highest value of 
conductivity is found to be 3.7 x 10-2 S/cm with 20 wt.% of G3X, sufficiently high for 
various electrical devices. Furthermore, the morphological analysis by SEM and AFM 
revealed uniform distribution of black 3X graphene within the polymer matrix and the 
thickness of graphene sheets. The mechanical properties can be increased 1.5 times 
comparing 5 wt.% and 7 wt.& loading of the graphene of the composite. This increment is 
exceptional high and rarely reported in the literature for this kind of coating. 
 
Keywords: Nanocomposites, Nanomaterial, Vinyl ester resins, Graphene, morphology, 
Electrical conductivity 
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INTRODUCTION 
 
The capability to synthesize nanoparticles of diverse materials, sizes and shapes associated 

with the ability to assemble them efficiently into complicated structures makes a significant 

breakthrough in the area of nanoscience (Evanoff Jr. et Chumanov, 2005). The structural 

characteristics allow nanomaterials to possess a large variety of applications. However, 

different types of materials owning advanced physicochemical properties were thoroughly 

investigated to be more dimensionally compatible in the field of nanoscience and technology. 

The exploration of graphene and graphene-based polymer nanocomposites has consequently 

become essential in the field of nanoscience particularly and in the era of science and 

technology (Stankovich et al., 2006). 

 

There has been an increasingly positive concern about polymer nanocomposites in the recent 

years thanks to their improved properties derived from the reinforcement of nanofillers (Kim, 

Abdala et Macosko, 2010; Potts et al., 2011). In comparison with the conventional micron 

scale fillers, the properties of the composites are considerably influenced by the dispersion of 

the nanofilleres inside the polymer matrix (Kuilla et al., 2010). Graphene is a one-atom-thick 

planar sheet of sp2-bonded carbon atoms and emerges as a potentially multifunctional 

nanofiller owning to its range of strengths, namely exceptionally high electrical and thermal 

conductivities, enormous mechanical properties and affordably-priced manufacture. It is 

additionally seen as the “thinnest material in the universe” with a great potential for different 

applications (Dreyer et al., 2010; Si et Samulski, 2008). 

 

NanoXplore is a company located in Montreal and it has expertise on graphene commercial 

at a low cost, large volume and highly scalable. Graphene is two-dimension monolayers of 

carbon atoms organized in a hexagonal lattice. The road map of application of graphene 

shows that this is a potentially disruptive technology. NanoXplore already produced several 

generations of graphene and the recent product is the Graphene Black 3X, a 6-10 layers’ 

graphene. The potential applications are various, including heat dissipation, EMI shielding, 

gas barriers, UV resistance, conductive inks and coatings, battery electrodes, smart 
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composites, electrostatic discharge (ESD) and anti-static. Graphene may also be used for 

latest innovative technologies such as production of hydrogen from water (Peng et al., 2018); 

enhanced surface-enhanced Raman spectroscopy (SERS) (Liu et al., 2018), storage energy  

(Pei et al., 2018) and fast water transport (Xie et al., 2018). 

 

The current data sheet does not contain information about the basic conductivity of this 

material. NanoXplore has an important line of activity in graphene that needs more 

investigations on several aspects including: coating materials and methods, durability, 

conductivity. Regarding graphene based nanocomposites, NanoXplore has developed strict 

collaboration and funded to some research groups to prepare smart graphene-polymer 

nanocomposites: i) conducting polymer from polyethylene (PE)/graphene (Moghimian et al., 

2017), ii) EVA/graphene, iii) super thermally conductive PE/graphene nanoplatelets 

(Hamidinejad et al., 2018), iv) super-high heat dissipation poly (vinyldene fluoride)/graphene 

nanoplatelets composites to improve electromagnetic shielding (Zhao et al., 2017a). 

 

Vinyl ester resins are thermoset matrices, which are widely applied in the industry of 

composites (Changwoon Jang, 2012; Liao et al., 2010). It is the esterification of epoxy resin 

with unsaturated monocarboxylic acid that manufactures the VE resin. The environment 

which is suitable for the resins requires high corrosion and chemical resistance, water barrier 

properties, low moisture absorption, low shrinkage and good dimensional stability (Anupama 

Chaturvedi, 2013; Zhanhu Guo, 2006). Owing a variety of advantages, these resins have been 

extensively used in number of applications such as matrix material, coating, adhesive, 

electronic encapsulate, in the marine industry, pipelines and automotives (Guo, 2009; 

Thostenson et Chou, 2006; Zhang et al., 2014). 

 

Objectives of the Master thesis 

 
The general objective of this project is to prepare and characterize graphene/vinyl ester 

nanocomposite. The specific objectives are the following:  
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• Measure the conductivity of graphene powders; 

• Investigate the optimal conditions for the preparation of conducting coating from vinyl 

ester resin by turning processing conditions (graphene content, temperature, hardness 

content, sample thickness, and mixing time). 

• Investigate the electrical, thermal, mechanical properties of as-prepared coatings. 

 
Thesis outline 
 
In the “Literature review”, the mechanism, synthesis and applications on composite 

materials, a brief overview of thermoset resins, vinyl ester resin, graphene and 

characterization methods have been introduced.  

 

In the following chapter Materials and methods, Chapter 2 explains the experimental process, 

materials and test methods involved in making and analyzing Vinyl ester resin/graphene 

black 3X composite materials. 

 

In chapter 3 Results and discussions, the synthesized samples were characterized by scanning 

electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis 

(TGA), tensile strength measurements, broadband dielectric spectroscopy (BDS) and four-

point probe test. 

Conclusions and recommendations are made for summary and future research. 

 

Appendix 1 shows exploratory results on graphene black 0X and bio-epoxy resin 

decomposition. These results were not further analyzed because of the low conductivity. 

 

Original contribution 
 
The aim of the present work is to perform facile and low cost mechanical methods to prepare 

advanced composite materials. Graphene-based vinyl ester resin composites were 

successfully prepared by incorporating graphene into the matrix with improved electrical 
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properties, thermal stability, and mechanical strength. Furthermore, results from this thesis 

provide better understanding on the new graphene materials and their potential applications 

in the smart composite materials. The improvement of the material properties, particularly on 

conductivity of materials contributes to reducing the price and increases the performance of 

the composite materials. The latter has a direct link to the use of energy efficiency and thus 

sustainable development. 

 



 

CHAPTER 1 
 
 

LITERATURE REVIEW 

1.1 Introduction 

In this section, the structure and applications of materials (plastic, vinyl ester resins, 

graphene), characterization methods are introduced.  

 

A composite material is composed of at least two distinct materials. It is typically composed 

of two phases, a non continuous phase, like a particle, which has superior properties and a 

continuous phase, the matrix. This review of conducting polymer/graphene nanocomposites 

highlighted their potential applications in the coming years for material science and 

construction engineering field. 

 

The overall polymer nanocomposites properties are driven by the optimal conditions for the 

preparation of conducting coating and the properties of the graphene and vinyl ester resins. 

Graphene-based is undoubtedly considered as an exceptional material which was studied for 

different properties, such as thermal properties (Shahil et Balandin, 2012), mechanical 

properties (Al-Saleh et Sundararaj, 2011), electrical properties (Sanjinés et al., 2011), 

rheological properties (Potts et al., 2011), microwave adsorption (Lee, 2012; Qin et 

Brosseau, 2012), environmental and toxicological impacts (Singh et al., 2011), tailoring with 

preparation methods (van Rooyen, Karger-Kocsis et David Kock, 2015), and gas barrier 

properties (Kim, Abdala et Macosko, 2010). The polymer nanocomposites and graphene 

have been currently used to widespread applications in electronics (Bkakri et al., 2014), bio-

electric sensors (Lian et al., 2015), energy technology (Abdin et al., 2013), lithium batteries 

(Sun et al., 2014), aerospace (Azeez et al., 2013), and various other fields of nanotechnology 

(Agnihotri, Chowdhury et De, 2015). 
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1.2 Materials 

The matrix of the composite studied in this master thesis is made of plastic, more specifically 

a thermoset resin. In this section, the classification of plastic is explained, then the composite 

polymer and graphene is introduced. 

 

1.2.1 Plastic classification 

Plastic plays a crucial role in a large number of industrial fields such as the automobile, 

aerospace, transport, and communication. Plastic, a general term for a range of synthetic or 

semi-synthetic polymer, is extensively applied to almost all the industries. The plastic mainly 

consists of thermoplastics, thermosets and elastomers families. 

 

The term “plastic” is derived from a Greek word “plastikos” which means the act of molding 

and shaping (Starr, 2002). The reason behind this term is that plastic is soft and flexible, and 

in the process of manufacturing, it is molded and reshaped into many different structures 

such as films, fibers, plates, and bottles (Robertson, 2005). In the 21st century, plastics are 

widely used to replace products made of fabric, wood, metal, glass, etc. as they featured as 

the optimal materials which are light-weight, chemically and mechanically resilient, easy to 

form and can accommodate many functional additives (Rhoades, 2008). 

 

Polymers are long chains of molecules and they can be organized into two main types: 

natural polymer and synthetic polymer (Kutz, 2011). Synthetic polymers are classified as 

either thermoplastics or cross-linked polymers (JMG Cowie, 2007) as shown in Fig. 1.1. This 

study will focus on thermoplastics and thermoset polymers, which are a subset of crosslinked 

polymers. 
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Figure 1.1 The main categories of polymers 
Taken from Ouellette et Rawn (2015) 

 

a. Thermoplastics and Thermosets 
 

Thermoplastics are a class of plastics which exhibit a common set of physical properties.  

Thermoplastics can be formed into stable shapes by heat or pressure (D Hull, 1996). They 

can also be cast in a liquid form and exhibit no degradation of properties upon 

resolidification. The most common thermoplastics are polyethylene (PE), polypropylene 

(PP), polystyrene (PS) and polyvinyl chloride (PVC). 

 

Thermoplastics, which could be reused and cost less than other types of plastic, constitute 

75% of the global plastic consumption (Biron, 2018). Having widely been applied to several 

industries, thermoplastics have increasingly dominated the field of materials worldwide.  

Polyethylene (and its derivatives HDPE, LDPE, LLDPE) and polypropylene make up more 

than 60% of the total thermoplastic consumption and are mainly applied to the manufacture 

of packaging and household products (Beckman, 2018). Constituting 15% of total plastics, 

PVC  has been the third most widely used kind of thermoplastic for manufacturing the 

materials in the construction industry, for example, pipe, frame or membrane (Beckman, 

2018). The final products used in the market are plastic bags, building materials, consumer 
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products, electronics, and furniture. Figure 1.2 represents the percentage of worldwide 

utilization of thermoplastics, thermosets and elastomers. 

 

 

Figure 1.2 The proportion of global use of plastics 
Taken from OBRC (2013) 

 

Thermosets are the polymers capable of chemically reacting to form three dimensional (3D) 

cross-linked structures which cannot, after curing, change their shape by the application of 

heat (D Hull, 1996). The most well-known thermosets are epoxy, phenolic, polyurethane, and 

silicone. Thermosets are mainly used in the construction engineering, furniture, logistics, 

adhesives, electronic devices, inks, and coatings. 

 

b. Plastics by application  
 

Plastics are typically categorized by application.  Common plastics are widely used due to 

their inexpensive source and manufacturing.  In particular, polyethylene and polypropylene 

are the most well known for their applications in consumer products (Maddah, 2016). 

Engineering plastics, such as those studied in this thesis, are a more specialized class of 

polymers whose properties surpass those of common plastics and are typically used for the 

manufacturing of industrial goods (Council, 2005). Specialized plastics are designed for each 
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use case and are reserved for applications where critical material properties warrant a more 

expensive material design and manufacturing process (Drobny, 2014). 

 

1.2.2 Thermoset polymer and resins 

Due to the 3D cross-linked structure of thermoset polymers, the cannot be converted into the 

different forms by the application of heat (J-P. Pascault, 2002). Thermoset polymers are 

obtained by a wide range of cross-linking routes of linear pre-polymers or by the 

establishment of cross-linked networks from the reaction between two monomers (Saleem et 

al., 2016). In comparison to thermoplastic materials, thermosets are superior in strength, 

hardness, and thermal stability (P.E, 2006). To further enhance the quality of thermoset 

materials, fillers have been incorporated, including clays, carbon nanotubes, and graphene. 

The most well-known thermosetting polymers in construction materials are epoxies, vinyl 

ester resin, phenolic, melamine, and urea-formaldehydes, acrylics, urethane and furane. Table 

1.1 shows that the thermoset resins are common in the coating industry. 
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Table 1.1 Summary of construction material applications for thermoset resins 
Taken from Pissis (2007) 

 

Thermoset resins Application 

Epoxy 
Coating materials- liquid and powder, 
adhesives, encapsulations, advanced 

composites, polymer concrete 

Vinyl ester Coatings, adhesives, composites, 
flooring materials 

Phenolic 
Advanced composites, composites, 

rubber reinforcing, polymer concrete, 
coatings 

Melamines and urea-formaldehydes Molding materials, laminate surfacing 
materials, foams 

Acrylics Paints, composites, sheeting, casting 

Urethane and isocyanurate Composites, paints, self-skinned 
moldings 

Furane Tooling 

 

Approximately 90% of the thermosetting resins used in the structural composites are epoxy 

resins, polyesters, and vinyl esters (Loos, 2015). Table 1.2 gives information on the primary 

advantages and disadvantages of each type of resin. 
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Table 1.2 Compare three main of thermoset polymers  
Adapted from Loos (2015) 

 

Thermoset polymer Advantages Disadvantages 

Polyester 

• Easy to handle 
• Cheaper resin than 

epoxy and vinyl 
ester 

• High styrene 
emission 

• High shrinkage 
after cure 

Vinyl ester 

• High chemical 
resistance to the 
environment 

• Mechanical 
properties superior 
to polyester 

• More expensive 
than polyester 

• High content of 
styrene 

• High shrinkage 
after cure 

Epoxy 

• High mechanical 

and thermal 

properties 

• Superior resistance 

to humidity 

• Low shrinkage 

after cure 

• More expensive 

than vinyl ester 

and polyester resin 

• Mixture of 

components is 

critical 

 

1.2.3 Vinyl ester resin 

Vinyl ester resins are unsaturated resins with the high performance which are made from the 

reaction of different epoxide resins with α-β unsaturated carboxylic acids (Gaur, 2014). The 

development of vinyl ester resin was to integrate the simplicity and affordable cost of 

polyesters into thermal and mechanical properties of epoxies. The similarity of vinyl ester 

resins and polyesters is the molecular structure, and the main difference is placed on location 

of their reactive groups, which are situated at the end of the chains (Hodgkin, 2001). Vinyl 
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ester resins are much more long-lasting and sturdy than polyesters because the length of the 

chains in the former is accessible to absorb impact loads (M.J. Mullins, 2012). The vinyl 

ester molecule is also characterized by fewer ester groups as shown in Fig. 1.3. These ester 

groups are likely to be affected by degradation via hydrolysis of water, which demonstrates 

that vinyl ester is more resilient to water and other chemicals than the polyester (Andreas 

Kandelbauer, 2013). As a result, it is extensively applied to transmission lines and chemical 

storages (Loos, 2015). 

 

 

Figure 1.3 Chemical structure composition of vinyl ester resins 
Taken from Aghili (2016) 

 

Vinyl ester (VE) based thermosetting polymers are found in a variety of applications thanks 

to their exceptional mechanical and corrosion resistant properties from their relatively low 

viscosity of the resin and capability to cure at ambient temperature (Atta, El-Saeed et Farag, 

2006; Pauer, 2009; Thostenson, Ziaee et Chou, 2009). The material electrical conductivity is 

of great importance when it comes to the applications such as aerospace, electronics, 

adhesives and coatings. The use of a conductive filler, such as graphene, is required to 

increase the electrical conductivity of the material for those applications (Almajid et al., 

2015). 
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1.2.4 Graphene 

Graphene, in its original form, contains a single layer of carbon atoms arranged in a sp2-

bonded aromatic structure as shown in Fig. 1.4 and Fig. 1.5, respectively. It is found as the 

building block of graphite, where π-stacking of graphene sheets holds the lamellar graphite 

structure strongly in place with an interlayer spacing of 3.34 Å between the sheets (Hontoria-

Lucas et al., 1995). To produce the single layers of graphene, graphite is exfoliated. The 

sequential cleavage of graphite to graphene employed the use of adhesive tape (Zhu et al., 

2010). Geim and Novoselov manufactured the first single-layer graphene sheets (Perreault, 

Fonseca de Faria et Elimelech, 2015). Their research played an indispensable role in the 

understanding of the electronic properties of graphene, which was then awarded the Nobel 

Prize in Physics in 2010 (Geim, 2009; Novoselov, 2007). 

 

Graphene exhibits a large number of exceptional properties which are ideal for some 

environment-inclined applications. One aspect of graphene which is intensively examined is 

its electronic properties (Castro Neto et al., 2009; Geim, 2009). Similar to any other 

nanoscale material, graphene has a high surface area. In theory, graphene exhibits the highest 

possible surface area, having the theoretical value of 2630 m2g-1, because each atom of a 

single-layer graphene sheet participates in two surfaces (Sanchez et al., 2012). The high 

surface area of graphene allows it to be the perfect material for some processes such as 

adsorption or surface reactions. Graphene, additionally, is a great support to anchor chemical 

functionalities or nanomaterials. Graphene-based nanocomposites, therefore, have become 

the attractive field of research for novel materials (Compton et Nguyen, 2010). 
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Figure 1.4 The structure and main properties of graphene-based materials 
Adapted from Changgu Lee (2008); Gómez-Navarro, Burghard and Kern, (2008); Park and 

Ruoff (2009); Sreeprasad and Berry (2013); Suk et al. (2010) 
 

 

Figure 1.5 The 3D structure of graphene layer 
 

However, some of these characteristics have been achieved only for the high-quality samples 

(such as mechanically exfoliated graphene) or graphene deposited on special substrates like 
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hexagonal boron nitride. When developing practical applications, there are three major 

concerns which need to be addressed: (1) the synthesis of high-quality crystals; (2) to 

functionalize efficiently functions to each case, and (3) to develop more exceptional 

applications for graphene (Kuldeep Singh, 2012). 

 

Synthesis 
 
There have been four distinct synthetic methods of graphene, including micro-mechanical 

exfoliation, chemical vapour deposition (CVD), liquid phase reduction of graphene oxide and 

epitaxial growth (Kuilla et al., 2010). Of these approaches, direct liquid phase exfoliation is 

the best to obtain low cost and high throughput material. Hummers and Offeman invented in 

1958 what is now regarded as the primary method to create graphene oxide from graphene 

(Mohan et al., 2016). In this work key techniques were introduced for the production of 

graphene and its derivatives, which is shown in Fig. 1.6 (Mohan et al., 2018). 
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Figure 1.6 The Summary of Synthesis Techniques for Graphene 
Adapted from E Malic (2013); Gadipelli and Guo (2015); Georgakilas (2014);  

Morris JE (2013); Subbiah Alwarappan (2013); Z (2015) 
 

Mechanical properties 
 
Through graphene is only one atom in thickness, it exhibits very high mechanical properties. 

It is considered the strongest material, with a Young’s modulus of E = 1.0 TPa and intrinsic 

strength of 130 GPa in its pristine, atomically perfect form (Changgu Lee, 2008). Those 

outstanding mechanical characteristics create the great interest in the application of graphene 

as a filler to strengthen the mechanical characteristics of softer materials (Potts et al., 2011). 

Graphene materials possess a large number of outstanding mechanical features, which are 

also very promising in nano-electromechanical applications. The latest research on the 

mechanical characteristics of graphene derivatives are shown in Table 1.3. 
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Table 1.3 Reported Mechanical Properties of Different Graphene Sources 
 

Derivative 
Production 

method 
Young’s modulus Reference 

Graphene 
Mechanical 

exfoliation 
1 TPa 

(Frank et al., 

2007) 

Graphene 
Mechanical 

exfoliation 
0.96 TPa 

(Faccio et al., 

2009) 

Graphene 
Mechanical 

exfoliation 
0.8 TPa 

(Changgu Lee, 

2008) 

Graphene 
Mechanical 

exfoliation 
1.02 TPa (Kudin K, 2001) 

Graphene 
Mechanical 

exfoliation 
1.1 TPa 

(Van Lier et al., 

2000) 

 

Electrical properties 
 

Electrons were observed to possess a high mobility in graphene, reaching 10 000 cm2 V-1 s-1 

to 50 000 cm2 V-1 s-1 at room temperature (Fig. 1.4), with an intrinsic mobility limit of > 200 

000 cm2 V-1 s-1 (Bolotin et al., 2008; Sreeprasad et Berry, 2013). Without scattering, these 

charge carriers can be travel sub-micrometer distances and it is known as ballistic transport. 

Graphene is capable of maintaining current densities up to six order of magnitude higher than 

copper (Novoselov, 2007). Nevertheless, these electronic characteristics of graphene are only 

measured under certain conditions, with mechanically exfoliated graphene under vacuum 

(Bolotin et al., 2008). A number of reasons are attributed to the limitations of the electronic 

characteristics of graphene, including number of layers, the presence of defects, impurities, 

functional groups, the size and flatness of the sheet, and the nature of the substrate 

(Sreeprasad et Berry, 2013; Yang et al., 2010). 
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A summary of researches on the electrical characteristics of graphene materials is illustrated 

in Table 1.4. A range of polymer matrices from thermoplastic to thermoset, along with the 

different weight and volume percentage addition of graphene materials has been examined by 

various approaches and the results are impressive (Aguilar-Bolados et al., 2016; Mohan et 

al., 2015; Tang et al., 2012a). 

 

Table 1.4 Literature review on electrical conductivity of different graphene derivatives 
 

Derivative Production 
method 

Reduction/modifying 
agent 

Electrical 
conductivity 

(S.cm-1) 
Reference 

Gr 
Liquid 

exfoliation/Vacuum 
filtration 

Hydrazine hydrate 1000 (Wang et 
al., 2010) 

Gr Liquid exfoliation Ammonia and 
hydrazine 5.5 (Chenlu 

Bao 2012) 

rGO Liquid exfoliation KOH 60 (Zhang et 
al., 2012) 

GNS Liquid exfoliation Hydroquinone  (Wang et 
al., 2008) 

fGO Liquid exfoliation Hydrazine and Pyrene 
groups ~1000 (Su et al., 

2009) 

TrGO Liquid exfoliation Thermal reduction 80 (Worsley et 
al., 2010) 

(Gr: Graphene, rGO: reduced graphene oxide, GNS: graphene nanosheets, fGO: unctionalized graphene oxide, 
TrGO: Thermally reduced graphene oxide)  
 

Thermal properties 
 

Similar to the electrical conductivity, in theory graphene exhibits exceptional thermal 

properties. However, interfacial interactions and atomic defects can significantly reduce this 

property.  Imperfections in the 2D lattice of graphene create sites for phonon dispersion, 

dramatically reducing the thermal conductivity. Table 1.5 illustrates literature data on the 

thermal conductivity values of different graphene materials. 
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Table 1.5 Literature review on thermal conductivity of different graphene derivatives 
produced by various methods 

 

Derivative 
Production 

method 
Reduction/modifying 

agent 

Thermal 
conductivity 
(KW-1m-1) 

Reference 

Graphene Liquid 
exfoliation Thermal reduction 1238 (Kumar et al., 

2014) 

Single layer 
graphene 

CVD 
graphene - 52500 (Hong et al., 

2012) 

Graphene - - ~ 5000 (Prasher, 
2010) 

Pristine 
graphene CVD - ~ 5000 (Lee et al., 

2011) 

Graphene Mechanical 
exfoliation - ~ 4840 - 5300 (Pei et 

Cheng, 2012) 
(CVD: Chemical vapour deposition) 
 

1.3 Fabrication and characterization methods 

1.3.1 High shear mixer 

This work employed a high shear mixer which is also called high shear rotor/stator mixer. 

The invention of high shear mixer made a breakthrough in the mixing technology, enhancing 

the processing and manufacturing industries globally. The targeted fields served with this 

machine are diverse, including food, pharmaceuticals, cosmetics, adhesives and chemicals. 

Almost all kinds of high shear mixers aim at accomplishing a shared set of objectives, 

namely homogenization, emulsification, powder wet-out and de-agglomeration. The 

dominance of the high shear rotor/stator mixer over the conventional mixers originates from 

the design of workhead, which makes the mixing process highly effective (Zhang, Xu et Li, 

2012).  
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In the first stage, the rotor with the high-speed rotation creates a suction, which forces liquid 

and solid materials upwards to the workhead. The process moves on with the centrifugal 

force pushing the materials to the periphery of the workhead at which they are ground 

between the rotor blades and the stator. Following this step, an intense hydraulic shear 

happens when the materials are forced out of the stator and return to the mixture. Fresh 

materials are then pulled into the workhead, which repeats the cycle. The resulting process 

largely eliminates turbulent material flow and minimizes aeration (Utomo, Baker et Pacek, 

2008).  

 

There is a host of advantages a high shear mixer. For many applications, the advanced high 

shear mixer is manufactured with the capability of reducing mixing times up to 90 percent 

compared to conventional methods. The specifically-designed workhead allows each 

machine to perform a variety of functions simultaneously. For instance, in case of oil and 

water emulsions, a nearly instantaneous stable emulsion can be produced through the high 

shear mixer in comparison with other available mixers, which can find hard to form the 

emulsion by a stirrer or an agitator. In another example, thickening agents can be added 

quickly and form a clear agglomerate-free solution, whereas other conventional agitators 

require the rather slow and careful act of pouring thickening agents so that agglomerates 

could be prevented. The mixer can also be used for disintegrating and homogenizing large 

solids like any types of animal, mineral or synthetic original in a single operation (Kowalski, 

Cooke et Hall, 2011). 

 

1.3.2 Morphological studies 

a. Atomic force microscope (AFM) 
 

An atomic force microscope (AFM) is used to image the micro and nanostructure of 

materials. AFM is a tool for observing the morphology and measuring the thickness of 3X 

and OX graphene sheets. In an AFM, a cantilever is attached to a sharp tip is used for 

scanning the sample surface. When the tip touches the sample surface, the force generated 
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between the tip and the surface make the cantilever move towards the surface. However, 

when the cantilever bends closer towards the surface, a controlled repulsive force is exerted 

on the cantilever to bend away from the surface. An AFM contains 3 crucial devices for 

different functions. The first instrument is a Z scanner to move the cantilever up and down. 

In order to move across the sample an XY scanner is employed. The position detector is also 

added to record the bending of the cantilever. The function of the position sensor is to track a 

laser beam reflected off the flat top of the cantilever. The direction of the reflected beam is 

changed if the cantilever is bent. The position detector records those beam changes to map 

the surface. An AFM records the topographic map of the sample surface by scanning the 

cantilever over some areas using a feedback loop to control the tip on the surface (Giessibl, 

2003).  

 

Unlike other microscopes providing a two-dimensional image of a sample, AFM provides a 

three-dimensional surface profile. Sample surfaces tested on AFM do not require any special 

treatments like metal or carbon coatings, which may cause the change or damage for the 

sample. Most of the AFMs can work efficiently in ambient air or even a liquid environment 

compared to some microscopes that require a high vacuum environment. AFM is also 

considered dominant as it provides atomic resolution in ultra-high vacuum and in liquid 

environments (Garcı́a et Pérez, 2002).  

 

On the other hand, AFM still has some weak points that need to be fixed. The very first 

weakness is that AFM is the single size, which can only image a maximum height of 10-20 

micrometers and a maximum scanning area of about 150 x 150 micrometers. Another 

limitation is the scanning speed. AFM requires a large amount of time for a typical scan, 

which causes the thermal drift in the image. Consequently, AFM is not the proper method for 

the measurement of accurate distances between topographical features. One more 

disadvantage is attributed to the hysteresis of the piezoelectric material and cross-talk 

between the x, y, z piezoelectric actuators, which can affect the AFM images, leading to the 

fact that the real topographical features can be flattened out. Like any other methods, the 
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image artifacts can be found by inappropriate tip, poor-quality environment or even by the 

sample itself (Meyer et Amer, 1988). 

 

b. Scanning electron microscope (SEM) 
 

A scanning electron microscope (SEM) is an accomplished device used for obtaining 

information on the surface of solid materials through the focused beams of electrons. Thanks 

to the high-solution and three-dimensional images provided by SEM, a great deal of data 

about the sample is revealed, including external morphology (texture), chemical composition, 

crystalline structure and orientation of materials (Joseph I. Goldstein, 2017).  

 

An SEM is comprised of an electron gun, focusing lenses, a high vacuum chamber and a 

series of electron detectors. The electron gun generates a beam of high-energy electrons 

down the column and into a series of electromagnetic lenses to focus onto and raster across 

the sample. This process is conducted on a computer with the support of SEM operator to 

control magnification and identify the surface area to be scanned. The beam is focused onto 

the stage, where a solid sample is placed. Sample preparation for the sample is required 

before being put in the vacuum chamber. All samples require the capability of handling the 

low pressure inside the vacuum chamber. The acceleration rate of incident electrons, carrying 

significant amounts of kinetic energy, will determine the interaction between the incident 

electrons and the surface of the sample. When the interaction happens, energetic electrons are 

exposed from the surface of the sample. The scattered patterns give information in size, 

shape, texture and composition of the sample. Several detectors, including backscattered 

electrons and X-rays, are applied for attracting different types of scattered electrons. 

Backscatter electrons provide composition data regarding element and compound detection. 

The data about mineral can be found through X-rays emitted from beneath the sample surface 

(Reimer, 2013).  
 

SEM is undoubtedly crucial in the fields that require the examination of solid materials. Due 

to the three-dimensional, topographical images and detailed information from different 
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detectors, SEM is widely applied for a range of areas, particularly on geological applications. 

For the most part, almost all SEMs are comparatively easy to operate. The available 

assistance of computer technology and associated software makes the operation much 

simpler for operators. The use of this technique is primarily limited by high equipment cost 

(Goldstein, 2017). In addition to the unit cost, SEMs must be operated in an environment 

where there is no interference of electricity, magnet and vibration. The requirement for 

maintenance is also demanding, which involves remaining a stable voltage, currents to 

electromagnetic coils and circulation of cool water. The preparation of samples can lead to 

the artifacts, making an adverse impact on the information processing. There is still no 

absolute way to eliminate or identify the potential artifacts (Goldstein, 2017). 

 

1.3.3 Fourier Transform Infrared (FTIR) spectroscopy 

Fourier Transform Infrared (FTIR) is a method used to measure infrared spectrum 

absorption. FTIR is a mathematical process to turn the data into a visual spectrum. In the 

infrared spectroscopy, infrared radiation passes through a sample. Some of the infrared 

radiation is absorbed by the sample and some of it is transmitted. The resulting spectrum 

shows the molecular absorption and transmission, which forms the molecular fingerprint of 

the sample.  FTIR spectroscopy can be applied to identifying unknown materials, determine 

the quality or consistency of a sample and the amount of components in a mixture (Smith, 

2011).  

 

FTIR spectroscopy offers a number of advantages over other techniques. As all of the 

frequencies are measured at the same time and spectra are generated in a matter of seconds. 

The application of FTIR can substantially improve the molecular sensitivity. The noise levels 

have been observed far lower with the support of the detectors and the higher optical 

throughput. With regard to the mechanical property, as there exists only one moving part in 

the machine, the unit is low maintenance. These instruments also use a HeNe laser as an 

internal wavelength calibration standard which allows them to be self-calibrating (Smith, 

2011). 



24 

1.3.4 Thermal properties 

Thermogravimetric analysis (TGA) is a thermal analysis technique for measuring mass 

changes of a sample under the condition of raising temperature in a controlled atmosphere. 

From this measurement, two data sets can be obtained, which are weight loss-time and mass 

loss-temperature. Thermogravimetric analysis was carried out in a combined system 

Thermogravimetric/Differential Thermal Analysis (TG/DTA) (JD Menczel, 2009).  

 

This instrument is the combination of a special furnace and a sensitive mass balance. DSC 

sensor is used to replace the scale pan. In order to limit the impact on the environment, the 

balance cell is thermostated. The balance beam is then attached to the TGA-DSC sensor. The 

sample and reference crucibles are set in the center of the furnace. Due to the support of 

thermal buoyancy and the purge gas flow, the horizontal design of the furnace is able to 

reduce the possibility of turbulence. Both sides of the furnace are protected with baffles, and 

the whole volume is purified by a constant flow of gas. The sample can also be purged with a 

reactive gas flowing through the capillary near the sample crucible. The volatile and gaseous 

combustion products from the sample, together with the purge gas and reactive gas remove 

from the furnace through the gas outlet on the left. The process finishes with the connection 

of analytical devices and the outlet to obtain the gas analysis (Broido, 1969). 

 

A key strength of the TGA technique is its proven dual balance beam to provide drift-free 

baselines. The efficiency of the dual balance design minimizes the effects of changing purge 

gases and purge gas flow rates; reducing chimney and convection effects. The system is 

resilient to external disturbances such as temperature fluctuations and vibrations. High 

quality results can be obtained even for very low mass weight loss events. With the 

horizontal balance design of TG/DTA, the gas flow and the weight direction are 

perpendicular. Consequently, the purge gas flows will cause a limited amount of effect even 

at rapid purge rates up to 1000 mL/min. Highly condensable or oily volatiles are measured by 

high purge gas flow since they are purged from the DT-TGA instrument before significant 

condensation. The act of introducing the corrosive or special purge gases into the furnace 
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tube helps to minimize the damage to the balance assembly and electronics. Additionally, the 

maintenance cost and time is reduced by the light weight replaceable parts (Doyle, 1961). 

 

1.3.5 Tensile property 

The capacity to minimalize the breakage under tensile stress is one of the most pivotal 

measured properties of materials for structural applications. In order to quantify this property, 

the maximum force per unit area (MPa or psi) is measured, known as the ultimate tensile 

strength or tensile strength at break. The speed at which the sample is pulled apart in the test 

can be varied between 0.2 and 20 inches per minute and this will have an influence on the 

results. For the test, composite samples are either manufactured from the stock shapes or 

injection molded. The machine used to test the tensile strength pulls the samples from both 

sides and then measures the force required while simultaneously measuring the strain before 

breaking (Kim et al., 2006). 

 

With this ultimate tensile strength measured, the material characteristics are identified, which 

allows the materials engineers to forecast whether the materials will react favorably in their 

designed applications (D Gay, 2007). The data obtained from the tensile test can be also 

utilized to determine batch quality and consistency in manufacture. However, there are some 

factors influencing tensile strength such as the effect of additives and impurities, temperature, 

geometric size and shape of samples, gauge length, orientation and morphology, and surface 

condition (Zhang et al., 1999). 

 

1.3.6 Electrical properties 

a. Four-point probe test 
 
Electrical resistivity is the fundamental material characteristic, which determines the 

material’s opposition to the current flow. The material’s resistivity relies on some factors, 

including the material doping, processing, and environmental factors such as temperature 
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and humidity. Some characteristics, namely the series resistance, threshold voltage, and 

capacitance can be influenced by the material’s resistivity (Archie, 1942).  

 

A four-point probe is a suitable equipment to quantify the resistivity of semiconductor 

samples. To measure the substrate resistivity, a current is passed through two outer probes 

and the voltage is measure through the inner probes (Smits, 1958). 

 

The method of the four-point probe is conducted by contacting four equally spaced probes 

with a material of unknown resistance. There is a DC current set between the outer two 

probes, and a voltmeter is employed to test the voltage between the inner two probes. The 

calculation of the resistivity depends on several factors such as the geometry, the source 

current and the voltage measurement. To simplify measurements, integrated parameter 

analyzer accompanied by control software is applied for a variety of material resistances 

including very high-resistance semiconductor materials (Smits, 1958). 

 

Even though the principle is simple, some experimental problems are still taken into 

consideration when using a four-point probe. The application of metal into a semiconductor 

generates a Schottky diode rather than an ohmic contact. The samples with very high or very 

low resistivity require the modification of the drive current to get the reliable reading. 

Samples with cut or lapped surfaces are more easily measured than those with polished 

surfaces (Smits, 1958). 

 

To quantify the resistivity of thin, flat materials including semiconductors or conductive 

coatings, a four-point collinear probe together with a parameter analyzer has been 

successfully applied. A few parameter analyzers provide built-in configurable tests, which 

require the proper calculations. The possibilities of defects such as electronics interference, 

leakage current, and environmental factors like light and temperature need to be also taken 

into account to ensure the proper measurements (Schuetze et al., 2004).  
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The primary advantage of sheet resistance compared to other methods of measuring 

resistance is that it is independent of the size of the square, which allows the consistent 

comparison between samples. With the assistance of a four-point probe, it can be easily 

measured. Another significant strength of using a four-point probe is the contact and wire 

resistances can be eliminated from the measurement (Schuetze et al., 2004). 

 

 

Figure 1.7 Schematic four-point probe and BDS                                                    
(dark polygon represents the graphene black, and maroon shows the electron) 

 
 

b. Broadband dielectric spectroscopy 
 
Broad band dielectric spectroscopy (BDS) is a experimental technique for the purpose of 

studying the dynamics of polymeric systems. In its current form, BDS can collect data on 

frequency ranges from 10-3 Hz to 109 Hz, extending both limits to lower and higher values (F 

Kremer, 2012). 

 

Broadband dielectric spectroscopy (BDS) measures the interaction of electromagnetic waves 

with the frequency range from 10-6 Hz to 1012 Hz. The substantially wide frequency range 

provides the study of both molecular fluctuations and collective phenomena, charge and 
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polarization effects and the dielectric properties of different materials in both liquid and solid 

form. The versatility of  BDS has made it the primary technique in the multidisciplinary 

design, characterization and application of materials in various fields from nanotechnology to 

biology (F Kremer, 2012). 

 

BDS quantifies the dielectric permittivity as a function of frequency and temperature. It can 

also be used to non-conducting materials. The frequency ranges from 10-6 Hz to 1012 Hz. 

BDS is sensitive to dipolar species and localized charges, and it determines their strength, 

their kinetics and their interactions. Dielectric spectroscopy, therefore, is an influential device 

for measuring electrical properties of non-conducting and semiconducting materials (Kremer, 

2002).  

 

Dielectric spectroscopy is based on the interaction of an external electric field with the 

electric dipole moment and charges of the medium (Stannarius, Kremer et Arndt, 1995). The 

information on dielectric spectroscopy can be analyzed through a wide range of ways: (i) in 

terms of dielectric permittivity, (ii) in terms of AC conductivity, (iii) in terms of electric 

modulus, and (iv) in terms of complex impedance. Those four methods can be applied to 

identity and analyze the recorded electrical characteristics. In some circumstances, however, 

a certain method could be more impactful to extract data. The dielectric data, therefore, 

should be measured in more than one way, especially in the case of the examination of a 

complicated material as in a nanocomposite.   

 

Due to the high sensitivity with decreasing domain size and wide dynamic range, dielectric 

spectroscopy has been beneficial in the research of polymer dynamics and in confining 

geometries. The dielectric characteristics of graphene (dielectric constant, dielectric 

permittivity, etc.) including polymer nanocomposites are remarkably impacted by the aspect 

ratio of the graphene and its interfacial adhesion with the polymer matrix (Petzelt et al., 

2013). 
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1.4 Review of the measured properties of polymer composites with graphene 

In this section, a thorough investigation of preparing graphene-based polymer composites, 

including melt blending, solution blending or in-situ polymerisation methods was made. The 

electrical, thermal and mechanical characteristics are shown to incorporate more effectively 

with graphene-based filler materials. A list of different graphene based composites and their 

ultimate tensile strength (UTS) are given in Table 1.6. Electrical conductivities, thermal 

conductivities of different graphene reinforced polymer composites are given in Table 1.7 

and Table 1.8, respectively. 

 

Table 1.6 Literature review on different nanocomposites showing the tensile                      
with respective fabrication methods 

 

Nanocomposites Filler 
loading 

Fabrication 
method 

UTS (MPa) Reference 

PS/Graphene 1 wt.% Solution 
casting 42.5 (Fang et al., 

2009) 

PP/Graphene 10 wt.% Melt blending 24 (Song et al., 
2011) 

PVDF/Graphene 5 wt.% Solution 
casting 100 (Layek et al., 

2010) 

PVA/Graphene 2 wt.% Solution 
casting 42 (Wang et al., 

2011) 

PVA/Graphene 0.7 wt.% In-Situ 85 (Liang et al., 
2009) 

(PS: Polystyrene, PP: Polypropylene, PVDF: Polyvinylidene difluoride, PVA: Polyvinyl alcohol) 
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Table 1.7 Literature review on electrical conductivity  
values of different polymer graphene composites 

 

Nanocomposites 
Filler 

loading 
Fabrication 

method 

Electrical 
conductivity 

(S.cm-1) 
Reference 

Polystyrene/Graphene 5 vol.% Solution casting 1 (Wu et al., 
2013) 

PET/Graphene 3 vol.% Melt blending 0.1 (Zhang et al., 
2010) 

Polyurethane/Graphene 
0.015, 

0.02, 0.025 
vol.% 

Melt 
blending/Solution 

casting/In-Situ 
0.0001 

(Kim, Miura et 
Macosko, 

2010) 

Polyester/Graphene 1.5 vol.% Solution casting 1 (Tang et al., 
2012b) 

EVA/Graphene 15 wt.% 
Melt 

blending/Solution 
casting 

1x 10-7 (Azizi et al., 
2018) 

(PET: Polyethylene terephthalate, EVA: Ethylene vinyl acetate) 
 

  



31 

Table 1.8 Literature review on polymer graphene nanocomposites 
showing their respective thermal conductivity 

 

Nanocomposites 
Filler 

loading 
Fabrication method 

Thermal 
conductivity 
(WK-1m-1) 

Reference 

Epoxy/Graphene 4 wt.% Mechanical stirring 
and Ultrasonication 1.6 (Teng et al., 

2011) 

Polyester/Graphene 1.5 
vol.% Solution casting 0.55 (Tang et al., 

2012b) 

Polypropylene/Graphene 2 vol.% Melt blending 0.4 (Song et al., 
2011) 

Epoxy/Graphene/Silver 
hybrid 5 wt.% 

High-shear 
mixing/Ultrasonicatio

n/In-Situ 
10 

(Goyal et 
Balandin, 

2012) 

PVDF/Graphene 10 wt.% In-Situ 0.58 (Yu et al., 
2011) 

(PVDF: Polyvinylidene difluoride) 

 

1.5 Application of vinyl ester resin and graphene in coating 

In this thesis, the physical properties and synthesis route for a novel vinyl ester resin and 

graphene nanocomposite material are explained.  As previously state, vinyl ester resin is 

among the class of thermoset polymers which, despite their more complicated forming 

requirements and low recyclability, see use in a variety of fields.  This is primarily due to 

their increased mechanical properties compared to thermoplastic polymer alternatives.  The 

interest in adding graphene as a filler is twofold: to further improve the mechanical properties 

of the resin to appeal to existing markets, and to develop new applications through the 

addition of a new property to the composite, electrical conductivity. 

 

Polymers which exhibit some degree of electrical conductivity are already common in 

multiple industries.  They are used as coatings and additives in a variety of applications, 
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including integrated de-icing and security coatings for vehicle glass (Mcmaster, 1942) and 

antistatic coatings for textiles (Gregory et al, 1991).  The proposed vinyl ester resin – 

graphene nanocomposite described herein offers a further alternative in the range of 

electrically conducive materials for coatings which offers advantages in mechanical stability 

compared to conventional technology. This material is applicable to many of the same fields 

as conventional conductive polymers, such as electrical grounding coatings for equipment 

and factory floors and to electromagnetic shielding applications such as for electrical devices 

to reduce reception and transmittance of radio interference (Williams et al, 2017).  

 



 

CHAPTER 2 
 
 

MATERIALS AND METHODS 

2.1 Introduction 

This chapter describes the experimental materials, procedures and test methods used through 

the thesis. Scheme in Fig. 2.1 shows a summary of the work in this master thesis. During the 

experimental process, the fabrication and tests were carried out on two types of thermoset 

resin: vinyl ester resin and bio-epoxy resin. The coating with vinyl ester resin was made with 

graphene 3X and the coating with bio-epoxy with graphene OX. Although graphene black 

OX exhibits higher electrical conductivity in pure state than graphene black 3X, a very low 

electrical conductivity in the bio-epoxy composites were measured due to the poor 

compatibility with the bio-resin matrix as shown with electron imaging. Therefore, the main 

focus of the thesis is on the experiments and results of vinyl ester resin/graphene black 3X 

composite materials. The content of bio-epoxy/graphene black OX is included in the section 

Appendix I as complementary measurements. 

 

 

Figure 2.1 The overview of the experimental procedure 
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2.2 Materials 

The constituents of the composites synthesized are vinyl ester resin, methyl ethyl ketone 

peroxide (MEKP) and graphene black 3X. 

 

2.2.1 Vinyl ester resin 

Vipel F010-TBN is a mixture of epoxy-based vinyl ester resin and bisphenol A as a high 

corrosion resistant additive and fire retardant (molecular weight: ∼10,000 to 15,000). The 

material was supplied by AOC, LLC (USA). The designation codes and characteristics of the 

vinyl ester resins are shown in Table 2.1. 

 
Table 2.1 Characteristics of the vinyl ester resin 

 
 

 

 

 

 

 

 

 

2.2.2 Hardener 

As recommended by the manufacturers, the curing of the resin employed a catalyst of methyl 

ethyl ketone peroxide (MEKP) or Luperox DDM-9 as shown in Fig. 2.2. The use of methyl 

ethyl ketone (MEK) as a dissolution enables the graphene to disperse in the resin. 

 

Designation 
code 

Vipel F010-TBN segment Melting 
point  
(oC) 

Boiling 
point 

Specific 
Gravity 
(g/cm3) Molecular 

weight 
Content 
(wt.%) 

F010-TBN-28 10,000 to 15,000 28 -23.8 F/-
30.6 oC 

293 
F/145 oC 1.03 
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Figure 2.2 Chemical structure of MEKP 
 

Methyl ethyl ketone peroxide, which is also called 2-butanone peroxide, is proven to be an 

intensely oxidizing (caustic) organic peroxide that is used as a room temperature hardening 

and curing agent for fiberglass-reinforced plastics and unsaturated polyester resins (HCN, 

2002; NTP, 1993).  

 

As MEKP is used as a hardening or curing agent, the period of the reaction largely depends 

on the types of resins which are being cured and on the formulation of the MEKP. The 

average reactions consist of 1 to 2% MEKP (CI, 1999).  The length of the curing time was 

approximately 40 – 50 minutes with formulations of commercial MEKP. The curing time is 

defined as the duration until the resin reaches its peak temperature around 177oC (350oF), 

which is not necessarily the end of the reaction (Puckett, 1997). 

 

2.2.3 Graphene 

Graphene Black 3X (G3X) was received from NanoXplore (Canada). Through the technical 

data sheet of NanoXplore, Graphene Black 3X is seen as a practical powder with the typical 

flake size of 40 μm. Figure 2.3 presents some main applications of graphene such as heat 

dissipation, EMI shielding, gas barrier, UV resistance, conductive inks and coatings, battery 

electrodes, ESD and antistatic. 
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Figure 2.3 The application of graphene black 3X in the industry                                 
(Technical data sheet from NanoXplore) 

 
Physical and chemical properties are illustrated in Table 2.2 and Table 2.3 as following the 

NanoXplore technical data sheet. 

 
Table 2.2 Physical properties of graphene black 3X 

 
Property Value 

Particle size (laser diffraction) D50=38 μm 
Number of layers 6-10 

Bulk density 0.18g/cm3 
Solubility Insoluble 

Moisture (TGA) <0.7 wt.% 
Peak decomposition temperature 750oC 

 
Table 2.3 The graphene black 3X chemical composition values 

 
Element Value 
Carbon >91 at.% 
Oxygen <7 at.% 
Sulfur <0.5 at.% 

Metal impurities <2 at.% 
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2.3 Processing the preparation of vinyl ester resin/graphene composites 

Vinyl ester resin/Graphene black 3X composites was prepared at different graphene 

concentrations by dispersing graphene in vinyl ester resin and subsequently cross-linked the 

resin using DDM-9. A visualization of the synthesis process is given in Figure 2.4. 

 

 

Figure 2.4 Fabrication process of vinyl ester resin/graphene black 3X composite 
 

Vinyl ester resin (VSR)/Graphene black 3X (G3X) composites with different contents: 1, 2.5, 

5, 7, 10, 15, 20 wt.% were prepared as follows: a defined graphene content was mixed with 

200 grams of vinyl ester resin using high shear rate mixer machine for 30 min with the speed 

of 5000 rpm. The mixture was then degassed for 30 min under vacuum to remove the air 

bubbles. Afterwards, 1.5 wt.% of the curing agents Luperox DDM-9 was gradually added 

into the composite and is molded between two teflon plates. The hot pressure machine is then 

used to harden the given mixture at 60oC under the pressure of 2 MPa for 2 h. The Table 2.4 

shows the volume of materials using in the experiment. 
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Table 2.4 The proportion of vinyl ester resin and graphene black 3X 
 

The percentage of graphene 
in the mixture 

Vinyl ester resin(g) 
Graphene black 

3X(g) 

VSR-1%G 198 2 
VSR-2.5%G 195 5 
VSR-5%G 190 10 
VSR-7%G 186 14 

VSR-10%G 180 20 
VSR-15%G 170 30 
VSR-20%G 160 40 

 

 

Figure 2.5 The composite samples based on VSR and various G3X contents                              
for electrical conductivity measurements 

 

2.4 Test methods 

2.4.1 Electrical properties measurements of graphene black 3X and OX 

The electrical conductivity of the 3X and OX graphene powders were measured at room 

temperature. Every sample was compressed between two brass pistons to form the adjustable 

(upper) and fixed electrodes (lower) and was put in a hollow cylinder with 27 mm inner 

diameter. The pressure (P) varied from 0.3 to 200 N by a compressing piston, while the load 

was measured using Tektronix DMM4040 6-1/2 Digit precision multimeter. A digital vernier 
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caliper was used to measure the changes in height at each compression step. Conductivity 

was measured using Tektronix DMM4040 6-1/2 Digit precision multimeter following 

resistivity and pressure. Ohmic conductivity was measured using following formula : 

 
                 (2.1) 

Where σ is electrical conductivity, L is the sample distance, A is the area of the piston 

surface, and R is resistivity. 

 

2.4.2 Scanning electron microscopy 

The SEM technique was used for investigating the surface characteristics of vinyl ester resin 

and vinyl ester resin/graphene black 3X composites. SEM was accompanied by a Hitachi, 

Su-8230, FE-SEM microscope with a secondary electron detector using an accelerating 

voltage of 5kV. In preparation for the analysis, the surface morphology of the samples was 

covered by platinum using a sputter coater and turbo evaporator Q150T S (Guelph, Canada). 

This device consists of a turbomolecular pump, to create a vacuum of 5 x 10-5 mbar for the 

sputtering. The specimens’ cross-sections were formed by a cryogenic microtome and the 

thin films were then covered with around 2 nm of sputtered platinum to hinder the charging 

throughout the SEM analyses. The SEM and turbo-pumped sputter and carbon coater 

machines are represented in Figure 2.6 and Figure 2.7, respectively. 

 

 

 

Figure 2.6 The SEM model Su-8230, FE-SEM equipment in ÉTS laboratory 
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Figure 2.7 The turbo-pumped sputter machine in ÉTS laboratory 
 

2.4.3 Atomic force microscope 

To prepare the samples of polymers for atomic force microscopy analysis, a Leica RM2265 

rotary microtome is used to section the samples. A 5 μm thick smooth, uniform section of 

composite film is formed for each analysis by the Leica RM 2265 as shown in Figure 2.8. 

 

 

Figure 2.8 Leica RM2265 rotary microsystem  
in ÉTS laboratory 
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An atomic force microscope (AFM) is used to observe the morphology and measure the 

thickness of the black 3X graphene sheet. The images of AFM from the Université de 

Montréal laboratory (Figure 2.9) reveals a typical tapping-mode AFM image in which 

graphene black 3X sheet are directly deposited onto a Si-wafer substrate. 

 

 

Figure 2.9 AFM images from the Université de Montréal laboratory 
 

2.4.4 Thermogravimetric Analysis 

The thermogravimetric analysis (TGA) was conducted to study sample mass changes under 

rising temperature and controlled atmosphere. From this measurement, two data sets can be 

obtained, which are weight loss-time and mass loss temperature. The analyses were carried 

out in a combined system Thermogravimetric/Differential Thermal Analysis (TG/DTA). The 

melting crucible was composed of platinum, and the analyzed temperature ranges was 200 – 

700 °C and with soak at 700 °C for 3 min and a heating rate of 25 °C min-1 under a nitrogen 

flow rate of 50 mL min-1. A sample weight from 10 to 15 mg was selected for each 

measurement. The main devices for this analysis can be shown in Figure 2.10. 
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Figure 2.10 Diamond Thermogravimetric/Differential Thermal Analyzer device 
 

2.4.5 Mechanical properties 

For measurement of the mechanical properties, dog-bone shaped composite samples were cut 

such that the distance between the grips was 40 mm, the thickness was1.45 mm and the width 

was 6 mm as per ASTM E8 (Figure 2.11). The tensile strength measurements were 

conducted with speed of 2 mm/min at room temperature (Figure 2.12). For each content of 

fillers, the tensile test was carried out on at least three specimens and the results are averaged. 

 

 

 

Figure 2.11 Nanocomposite dog-bone specimens for mechanical tests 
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Figure 2.12 Tensile strength measurement equipment used in this work 
 

2.4.6 Broadband dielectric spectroscopy 

The dielectrical properties of composites were measured by a dielectric spectroscopy as a 

function of frequency (Broadband Dielectric Spectrometer, Novocontrol Technologies). Each 

sample with a diameter of 3 cmz and average thickness of 1.5 mm was mounted between two 

brass electrodes for the test (Figure 2.13). Isotherm scans were performed over a frequency 

from 10-2 Hz to 300 kHz under an applied voltage of 3 Vrm/s (corresponding to 

approximately 2 V/mm). 

 

  

Figure 2.13 Images showing main devices for BDS technique 
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2.4.7 Four-point probe 

The four-point probe test was used to determine the resistivity of a composite materials. A 

direct current (DC) power source with a high internal resistivity applies a current through two 

outer electrodes. A voltmeter measures the potential drop between the two inner electrodes, 

from which the resistivity in the sample can be calculated. The four-point probe test was 

selected for this measurement due to its ability to correct for material-electrode contact 

resistance. This increases the reliability of the measurement compared to two-point 

equivalent tests. 

 

The electrical conductivity of vinyl ester resin/graphene black 3X composites at different 

loadings were determined using a four-point probe resistivity measurement system (Figure 

2.14). Measurements of electrical conductivity were performed using a Keithley 2000 

instrument. For measurement of the electrical properties, the composite films were cut to a 

diameter of 3 cm and a thickness of 1.45 mm. The resistivity of the samples (ρ is the 

resistivity (Ωcm) was measured in a four-point probe unit using the following equation. 

 

 
(2.2) 

 

 
(2.3) 

 

Where V is the applied voltage, I is the measured current through the sample, F(t/s) is a 

correction factor, s is the distance between the probes and s = 2.61 mm. 

In this formula t is the film thickness, V is the measured voltage and I is the measured 

current. This gives that the resistivity is independent of the distance s between the electrodes. 

In this experiment, for a value of thickness t = 1.45 mm and s = 2.61 mm, we consider the 

measurement of body resistivity on thin samples. From the Table 2.5, F(t/s) = 0.9948 with t = 

1.45 mm, s = 2.61 mm. 
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Figure 2.14 Four-point probe collinear probe resistivity method 
 

Table 2.5 Measurement of body resistivity ρ on thin samples of thickness t and spacing s 
Taken from F.M.Smits (1957) 

 

t/s F(t/s) 
0.4000 0.9995 
0.5000 0.9974 
0.5555 0.9948 
0.6250 0.9898 
0.7143 0.9798 
0.8333 0.9600 
1.0000 0.9214 
1.1111 0.8907 
1.2500 0.8490 
1.4286 0.7938 
1.6666 0.7225 
2.000 0.6336 





 

CHAPTER 3 
 
 

RESULTS AND DISCUSSIONS 

3.1 Introduction 

A nanocomposite material was made via dispersing graphene black 3X into a vinyl ester 

resin matrix. In this section, results and relevant discussions are presented. 

 

3.2 Results and discussions 

3.2.1 Electrical conductivity of 3X and OX graphene under compression 

The samples were synthesized using a compressive force to increase the contact, form a 

cohesive sample body and ensure conductivity. Here, we investigate first the electrical 

conductivity of a well-known commercial graphene (G/X) containing particles of 3-6 layers 

thick and another version, named OX graphene. The latter is expected to have higher purity 

and thinner structure, making it more suitable for advanced technology. The comparison of 

the electrical conductivity is made between both graphene products in samples of the same 

mass (1 mg) with equal applied compression at the room temperature. 
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Figure 3.1 Electrical conductivity versus pressure of  
two types of graphene 

 
The electrical behavior of graphene black 3X and graphene black OX under compression (0.3 

to 200 N) is shown in Fig. 3.1. For both types of graphene, the more pressure graphene is 

applied, the higher the electrical conductivity is observed. Both graphenes show an increase 

in the electrical conductivity at load 200 N. At a load of 200 N, the electrical conductivity of 

graphene black 3X and graphene black OX reaches at nearly 4 S/m and ~12 S/m, 

respectively, meaning that the electrical conductivity of XO is 3 times higher compared to 

graphene black 3X.  

 

In this master thesis, mechanical, thermal, and electrical properties of graphene black 3X 

reinforced vinyl ester resin nanocomposites are correlated with topographical features, 

morphology and dispersion state of graphene. 
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3.2.2 Morphological studies 

a. Morphological investigation using AFM 
 

Atomic Force Microscopy (AFM) is a suitable strategy to describe graphene black 3X by 

revealing the length and thickness of graphene sheets and layer morphology. For an AFM 

study of pure graphene, the sample is prepared by scattering graphene in solvents such as 

acetone or water onto a freshly fractured mica surface and drying.  

 

The dispersion of graphene black 3X sheets in the composite matrix was also investigated by 

atomic force microscopy (AFM). The topologies of the surface of the graphene black 3X, and 

the composite films are shown in Figure 3.2. This reveals the average thickness of the 

graphene black 3X sheets to be around 5 nm (Figure 3.2), indicating well exfoliated 

nanosheets. With the thickness of single graphene layer of 0.345 nm (one atom thickness), 

the graphene stacks are estimated to contain 6-8 layers. This is in line with supplied 

information of the manufacturer NanoXplore of 6-10 layers. Furthermore, surface 

modification of graphene black 3X was a homogeneous dispersion of individual graphene 

sheets in the vinyl ester resin matrix on the micrometre area (Figure. 3.3). Combined with 

images SEM observations, it is seen that the rough surface of the nanocomposite acted a 

barrier to transport of volatile products created during decomposition process and can 

enhance the general thermal stability of the polymer matrix. Additionally, the incorporation 

of graphene black 3X into the matrix created nanoscale roughness which in other cases has 

been used to give materials superhydrophobic properties (Peng et al., 2018). 
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Figure 3.2 AFM image of graphene black 3X with 500x500 nm 
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Figure 3.3 AFM images of VSR_20%G with 3x3μm 
 

b. Morphological investigation using SEM 
 
The morphological properties of a polymeric nanocomposite can be changed by 

incorporation of graphene black 3X in different ratios. The packing arrangement of the 

polymer may be affected by the dispersion of foreign element in the continuous polymeric 

matrix, which can cause the formation of voids. In certain cases, the characteristics of the 

nanocomposite are adversely influenced, which suggests the agglomeration of the particles in 

the polymeric matrix. Therefore, checking the dispersion of the graphene black 3X in the 

bulk of the nanocomposite is of great importance to interpreting the results.  

 

The images shown in Figure 3.4 document the distribution of graphene black 3X in the 

matrix with increasing loading from 1 to 10 wt.%. Figure 3.4a and Figure 3.4b demonstrate 

an uneven dispersion of graphene in the vinyl ester resin, which takes the appearance of a 

layered structure compared to the smooth surface of the vinyl ester resin. However, in the 

other images, the well uniform dispersion of graphene black 3X sheets in the polymer matrix 

are shown. The images from SEM displays that the distribution of graphene sheets black 3X 

in the vinyl ester resin is random. This is most evident in the Figure 3.4b with 5 wt.% loading 

of graphene.  
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Figure 3.5 shows the SEM of graphene black 3X to be a layered, occasionally folded 

structure.  The thickness of these layered graphene sheets is measured to be 119 nm and  471 

nm in folded areas (Figure 3.5a). This is in contrast to the dispersed graphene sheets 

measured by AFM to have a thickness between 43 nm to 73 nm as shown in Figure 3.5b. 

This phenomenon of a few restacking may affect the tensile properties and other 

characteristics of the composites. By SEM, the width of a graphene sheets can be measured 

to be between 10.6 μm to 17.5 μm as shown in Figure 3.5c and Figure 3.5d. These SEM 

results reveal that the compatibility of graphene black 3X with the resin was enhanced as the 

proportion of carbon black in the polymer matrix increased. Through a random distribution 

of cross-linked graphene sheets, a nanocomposite can be formed with the characteristic 

properties of the graphene such as enhanced electrical conductivity and mechanical 

properties. 
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a. VSR_1%G 

 
b. VSR_5%G 

 
c. VSR_7%G 

 
d. VSR_10%G 

 
e. VSR_20%G 

 
g. VSR_7%G (size image x5.00k) 

Figure 3.4 SEM images of cross section of the composites  
a. VSR_1%G, b. VSR_5%G, c. VSR_7%G, d. VSR_10%G, 

 e.VSR_20%G, and g. VSR_7%G (size image x5.00k) respectively 
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a. The graphene layer is folded 

 
b. The thickness of graphene layers 

c. The width of graphene layers d. The images of 1 graphene sheet 

Figure 3.5 SEM images of structure characteristics of black 3X graphene in vinyl ester 
matrix a. graphene layer is folded, b. c. thickness and width of graphene layers,                   

and d. the graphene sheet 
 

3.2.3 Thermal properties  

The effect of the addition of graphene black 3X on the thermal degradation of vinyl ester 

resin was studied by thermogravimetric analysis (TGA). TGA curves for vinyl ester resin 

with hardener resin (VSR_H), vinyl ester resin with varying amounts of graphene 3X loading 

(VSR X%G), and graphene black 3X (G3X) are shown in Figure 3.6 with corresponding data 

being summarized in Table 3.1.  
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From the TGA curve of VSR_H, the initial weight loss occurs at temperature of 400 °C 

(Figure 3.6 (VSR_H)). The most dramatic weight loss, starting from 350 °C, corresponds to 

the degradation of the backbone chain (CH2 groups) in polymer (Bora et Dolui, 2012; 

Costache, Jiang et Wilkie, 2005; Sabet, Soleimani et Hosseini, 2018; Wu, Zhao et Chen, 

2012). The second mass loss begins at 580°C and is related to the evaporation of resin in the 

composite matrix. When the temperature reaches to 700 °C, the residual weight is 

approaching 0 %, meaning that the resin is almost entirely decomposed. Graphene black 3X 

plays an important role in the thermostability of the composites. On incorporation of 

graphene black 3X, the major degradation temperature of vinyl ester resin was remarkably 

improved from 170-230 °C (Figure 3.5a). This improvement in thermal stability is attributed 

to the strong interaction between graphene black 3X and vinyl ester resin which stabilizes the 

polymer segments at the interfaces of vinyl ester resin and graphene 3X. The incorporation of 

graphene into the matrix acts as a mass transport barrier to the volatile products generated 

during decomposition which may enhance the overall thermal stability of the composite.  

 

The results of the differential thermal analysis (DTA) of the vinyl ester resin composites with 

graphene black 3X display two-step thermal degradation as shown in Figure 3.7. Consistent 

with the TGA results, the primary degradation begins at 420°C. Interestingly, it is observed 

that with higher loading of graphene the decomposition shifts to slightly lower temperatures. 

However, the decomposition temperature plummeted in first phase when there was no 

enhancement of graphene in the resin film. As considered by Figure 3.6 and Figure 3.7, the 

addition of graphene black 3X slightly increases the thermal endurance of the composites. 

Table 3.1 demonstrates that increasing the percentage of graphene substance will improve the 

thermal properties of the nanocomposite materials. 
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Figure 3.6 TGA curves of neat G3X, neat resin  
and VSR/G3X composites 

 

 

Table 3.1 TGA data of prepared samples 
 

Sample 
Major degradation 
temperature (Td) 

°C 

Weight loss % at temperature Weight 
retention (%) 

at 700°C 
350°C 450°C 500°C 600°C 

VSR_H 410 2 34 88 94 1 

VSR_5%G 365 4 79 83 89 5 

VSR_7%G 380 3 75 80 89 7 

VSR_10%G 385 3 73 78 83 11 

VSR_15%G 385 5 70 74 85 14 

VSR_20%G 390 4 67 70 81 18 

G3X 550 1 2 3 5 82 
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Figure 3.7 DFA thermograms of the derivative of mass loss as  
a function of temperature 

 

3.2.4 Mechanical properties 

In many applications of coatings, mechanical stability is required for the protection of the 

substrate. Due to the large particle aspect ratio and outstanding mechanical theoretical 

strength, the graphene black 3X reinforcement of vinyl ester resin shows a significant impact 

on the mechanical properties of the composites. The representative stress-strain curves of the 

composites at various graphene loadings are shown in Figure 3.8. The measured 

improvement is observed to be dependent on the graphene content. For 5 wt% loading, the 

primary improvement is in the ultimate strain.  However, for higher graphene contents, the 

composites exhibit a significant increase in ultimate tensile strength. Even at as little as 7 

wt.% graphene the tensile strength is 1.5 times as higher than 5 wt.%, demonstrating the 

importance of the dispersion of the graphene particles, as observed in the SEM results 

(Figure 3.4g). Additions up to 20% graphene demonstrate significant increases in the 

ultimate strain up to 3.5 mm/mm.  
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Figure 3.8 Representatives stress-strain curves of the  
composites with different graphene black 3X contents 

 

Table 3.2 The tensile strength of the nanocomposites 
 

% of Graphene black 3X Ultimate Tensile strength (MPa) 

1 23.34 ± 1.95 
5 26.00 ± 1.93 
7 40.87 ± 1.15 

10 52.71 ± 0.10 
20 57.63 ± 0.76 

 

The dependence of the ultimate tensile strength on the filler content of graphene is shown in 

Table 3.2. For the loading of graphene black 3X at 1 % or 5 wt.%, the tensile strength of the 

nanocomposite remains almost constant. However, further additions of graphene black 3X 

led to significant increase of the tensile strength of the nanocomposites. The maximum value 

of tensile strength was achieved to about 57.6 MPa with a graphene back 3X content of 20 

wt.%, an improvement by over a factor of two.  
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3.2.5 Electrical properties 

a. Four-point probe test 
 
The electrical conductivity of vinyl ester resin/graphene black 3X composites at different 

graphene contents are determined using a four-point probe resistivity measurement system as 

shown in Figure 3.9. This figure shows that composites with at least 7 % of G3X exhibit 

some degree of electrical conductivity with constant conductivity for current intensities up to 

5 mA. Moreover, the electrical conductivity increases with the of graphene content in the 

formulations. The samples containing 20 wt.% of G3X demonstrate the highest conductivity 

tested of about 3.7 10-2 S/cm.  Increasing higher conductivity with content is explained by the 

increased probability of favorable electrical contacts between graphene particles dispersed 

homogeneously in the resin matrix. 

 

 

Figure 3.9 Electrical properties by four point probe test of VSR_G3X 
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b. Broadband dielectric spectroscopy 
 
The electrical conductivity of vinyl ester resin-graphene black 3X nanocomposites as a 

function of frequency-domain dielectric responses is shown in Figure 3.10 and Figure 3.11, 

in terms of modulus of the complex conductivity. The measurements were recorded from 10-2 

to 30 kHz frequency at room temperature.  

 

The vinyl ester resin containing 3 - 20 wt.% of graphene black 3X featured a percolation 

threshold concentration at about 5 wt.% which represents a dominance of the electrical 

conduction over dielectric response in the frequency range. The dielectric response of vinyl 

ester resin with 5% graphene loading (VSR_5% G) exhibited high frequency-independent 

dielectric losses. Meanwhile, resin with 7% graphene (VSR_7% G) demonstrated electrical 

conductivity breakthrough, exposing the high-frequency property. At 5 wt.% of G3X, the 

nanocomposites had an alternating current conductivity over 10-8 S/cm at 0.01 Hz as shown 

in Figure 3.10. When the concentration rises above the percolation threshold, the 

conductivity increases rapidly.  

 

Figure 3.11 presents the value of the vinyl ester resin sample with the hardener (VSR_H), 

with 1% graphene (VSR_1%G), and with 3% (VSR_3%G). At low filler concentration, the 

dielectric response of graphene 3X and vinyl ester resin composite is measured to be under 

10-15 S/cm and the vinyl ester resin pure is 10-17 S/cm. This demonstrates the range of 

improvement possible with additions of graphene to the resin matrix. 
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Figure 3.10 Modulus of VSR_G3X complex conductivity as function of frequency 
 

 

 

 

Figure 3.11 Modulus of VSR_G3X complex conductivity as  
function of frequency VSR_H, VSR_1%G and VSR_3%G 

 





 

CONCLUSION 

 

The objective in this master thesis is to advance a new nanocomposite material through the 

process of mixing graphene black 3X with Vinyl ester resin matrix. Apart from the 

investigation into the characterization of the synthesized samples, the writing also provides a 

central focus on the optimal preparation of graphene based vinyl ester resin nanocomposite. 

Some particular properties of importance are exhibited by these novel materials including 

improved thermal stability, enhanced mechanical strength and electrical conductivity. The 

success of incorporating graphene into the polymer matrix is observed in the morphological 

analyses by SEM and AFM.  

 

In the first chapter of the thesis, the theoretical foundation for the work was explained and a 

literature review provided a background on thermoset resins, vinyl ester resin, graphene, and 

relevant characterization methods. Chapter 2 presented an in-depth review of the materials 

and methods utilized in this work. The specific materials, synthesis method, characterization 

techniques and testing procedures involved in the making and analysis of graphene vinyl 

ester resin composite were explained to clarify the experiments conducted for this thesis.  

 

Chapter 3 provides the results of those tests indicating a beneficial combination of properties 

for composites of graphene and vinyl ester resin. By incorporating black 3X graphene 

particles into a resin matrix, it is possible to fabricate low graphene content conductive 

coatings with improved thermal stability. TGA analysis shows that these nanocomposites can 

be used at a temperature lower than 300oC without any chemical decomposition. Electrically 

conductive coatings can be achieved with the addition of only 5 % of graphene. The highest 

value of conductivity was 3.7. 10-2 S/cm with 20 wt.% of G3X, high enough to various 

electrical devices. Furthermore, it was observed that the mechanical properties can be 

increased by a factor of two. This combination of improvements in both mechanical stability 

and electrical functionalization is exceptional and suggests a future for this type of graphene 

thermoset nanocomposite in a variety of applications. 





 

RECOMMENDATIONS 
 
Although the preliminary results issued in this work are encouraging, there remains several 

open questions for future work to explore. For example: 

 

a. What are chemical interactions at the graphene/resin interface? 

b. What is the real distribution of graphene in the resin matrix? 

c. How to improve the dispersion of fillers and thus reduce the filler content to achieving the 

similar performance (electrical, thermal, mechanical properties). 

 

The BisPhenol A (BPA) containing epoxy-vinyl ester resin used in this work has a negative 

impact on the environment, so there is significant interest in replacing this by a green-

sourced or high recyclability alternative. This is the motivation behind planning similar 

investigations of nanocomposites based on a bioepoxy resin (bio-resource resin). However, 

this dispersion of the graphene in the bioepoxy was difficult with current laboratory 

fabrication methods. Preliminary results which formed an insulating composite even at high 

graphene content are included in the Appendix.  

 

It is expected that bio-based polymer composite products will be available in the market 

based on this technique in the upcoming years. However, the study of mechanisms related to 

the production and functionalization of graphene nanomaterials will continue to require more 

research to generate sustainable products for the global market. 

 





 

APPENDIX I 

COMPLEMENTARY MEASUREMENTS 

a. Results of Vinyl ester resin, Graphene black 3X, Hardener MEKP, and Vinyl 
ester resin/Graphene black 3X composites were obtained from FTIR-spectrum and 
FTIR-time base experiment 
 

FTIR spectra of pure Vinyl ester resin, graphene, and VSR/G3X resin composite are shown 

in Fig.-A I-1 and Fig.-A I-2. From the FTIR spectrum, it is seen that the absorption peaks for 

O-H deformation, C-OH stretching vibration, C-O stretching vibrations and carbonyl group 

(C=O). From the FTIR results, we can say that graphene black OX has been successfully 

incorporated or not in the polymer matrix. 

 

 

Figure-A I-1 FTIR –spectrum patterns of Graphene black 3X, Hardener MEKP,  
Vinyl ester resin and Vinyl ester resin/MEKP mixture 
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Figure-A I-2 Comparison of model and experimental data for Vinyl ester resin 

Graphene black 3X composites with different filler loadings 
 

b. Bio-epoxy resin/graphene black OX 
 
1. Bio-epoxy resin and graphene black OX datasheet 
 
The bio-epoxy resin and hardener was supplied by Entropy Resins, Inc and the designation 

codes and characteristics of the materials are shown in Table-A I-1 as following technical 

information Entropy Resins Inc. 2015. 
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Table-A I-1 Characteristics of the bio-epoxy and hardener resins 
 

Product (Bio-epoxy/Hardener) 
Super Sap CPM epoxy/Super Sap CPF 

hardener 

Key features 
Excellent adhesion, high modulus, good 

elongation 

Applications Compression molding 

Potetial use Snowboard, Skateboard, Ski 

Mix ratio (by weight) 100:43 

Biobased carbon content (ASTM D6866) 30% 

Component density  
(specific density @ 25oC) 

1.14 (epoxy), 0.98 (hardener) 

 

All technical information of graphene black OX is based on NanoXplore (Canada) Technical 

datasheet. Table-A I-2 and Table-A I-3 illustate the physical and chemical properties of 

graphene black OX as following the NanoXplore technical data sheet. 

 
Table-A I-2 Physical properties of graphene black OX 

 
Property Value 

Particle size (laser diffraction) D50= 13 μm 

Number of layers 6-10 

Bulk density 0.14g/cm3 

Solubility Insoluble 

Moisture (TGA) <0.6 wt% 

Peak decomposition temperature 774oC 

 

 

Table-A I-3 The graphene black OX chemical composition values of the chemical element 
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Element Value 

Carbon >95 at.% 

Oxygen 3.5 at.% 

Sulfur 0.25 at.% 

Metal impurities <1 at.% 

 

2. Morphological investigation using AFM  
  
The Figure-A I-3 represents the dispersion of graphene sheets in the matrix of bio-epoxy 

resin with the image size 5x5 μm by using the AFM tapping mode. In the AFM image of 

Bio_10%GOX, the average roughness of the topology was found to be around 20 nm (Fig.-A 

I-3c). The image shows a smooth surface appears and the rest of the image illustrates the 

graphene black OX dispersed in the matrix polymer. Therefore, the distribution of graphene 

black OX in the resin is not uniform well in the bio-epoxy matrix.  

 

 

Figure-A I-3 AFM images of Bio_10%GOX with 5x5 μm 
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3. Morphological investigation using SEM 
 

The surface characteristics of bio-epoxy resin/graphene black OX were investigated using 

SEM with 20 wt.% and 25 wt.% loading of graphene black OX, respectively. The images 

demonstrate two main reasons for poor compatibility of GOX into bio-resin matrix: 

 

• The same blending and curing procedures were utilized as in the vinyl ester 

resin/graphene black 3X composites. However, air holes are visible in the matrix as shown 

in Fig.-A I-4c. Appearance of this air holes indicates poor incorporated graphene black 

OX in the bio matrix. 

• Fig.-A I-4a and Fig.-A I-4b illustrate two different areas of bio resin matrix at the loading 

of 25 wt.% graphene black OX.  Fig.-A I-4a shows that graphene black OX has been 

successfully dispersed in the bio-epoxy matrix. However, in the second area most of the 

region is covered with bio-epoxy resin. Furthermore, it also revealed that the dispersion of 

graphene black OX is not uniform to create the homogeneous pathway of graphene layers 

in the matrix. 
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Figure-A I-4 SEM images of cross section of the composites a., b. Bio_25%GOX, 
respectively, c. Bio_20%GOX 
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