
Modelling, Identification, and Control of a Quadrotor Helicopter

by

Nuradeen FETHALLA

MANUSCRIPT-BASED THESIS PRESENTED TO ÉCOLE DE

TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ph.D.

MONTREAL, Tuesday 30th July, 2019

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Nuradeen Fethalla, 2019



This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.



BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Prof. Maarouf Saad, Thesis Supervisor

Département de génie électrique, ETS

Prof. Hannah Michalska, Co-supervisor

Electrical and compuetr engineering department, Mcgill University

Prof. Guy Gauthier, President of the Board of Examiners

Département de génie des systèmes, ETS

Prof. Belleau Christian, Member of the jury

Département de génie mécanique, ETS

Prof. Benoit Boulet, External Independent Examiner

Department of Electrical and Computer Engineering, Mcgill University

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON JULY 18
th

, 2019

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE





ACKNOWLEDGEMENTS

There are a number of individuals who have supported me through my aspiration of completing

this PhD thesis. I make a humble attempt to thank a few of them here. First and foremost, I

would like to express my deepest gratitude to my advisors, Dr. Maarouf Saad and Dr. Hannah

Mechalska for all their teachings and the shared knowledge; but especially their invaluable

guidance, patience, and their enormous qualities as a mentor and as a person. Without them,

the achievement of the present work would not have been possible.

I want to thank as well Dr. Jawhar Ghommam for his contributions to this research, Engineers:

Yossif Bekbouti and Azzoz Taoussi for their great role in the preparation of the experimental

equipment. Also, I want to thank Dr. Guy Gauthier, Dr. Christian Belleau for their teaching

during the initial part of my studies and for being part of the committee along with Dr. Benoit

Boulet who agreed to review and evaluate this research.

I take this opportunity to express my gratefulness to all who have helped me financially through

my study and my stay in Canada: the Libyan Higher Education Ministry and Elmerghib Uni-

versity.

Overall, I want to express my warmest thanks to my parents, my wife, my brothers and sisters,

and my children: Yahia, Elyas, and Arwa for their unconditional love and support in all possible

ways. My most sincere thanks To all my friends, back in Libya and the ones that I made here

in Canada, who always supported me in many different means and for sharing so many fun and

stress-relieving moments, as well as the support and encouragement.





Modélisation, identification, et contrôle d’un quadrotor hélicoptère

Nuradeen FETHALLA

RÉSUMÉ

Cette thèse de doctorat propose et valide l’étude d’un contrôle de vol autonome d’hélicoptère

de type quadrotor. Des stratégies de conception de contrôle non linéaires robustes utilisant

un contrôle basé sur un observateur sont développées, lesquelles sont capables d’obtenir des

résultats fiables et un contrôle de suivi précis pour les UAV de type quadrotors contenant des

incertitudes dynamiques et des perturbations externes.

Afin de faciliter la lecture de cette thèse, des explications détaillées sur le modèle mathématique

du quadrotor sont fournies, y compris le formalisme de Newton-Euler, méthodes d’analyse

de la stabilité basée sur la théorie de Lyapunov, le contrôle par mode glissant (SMC) et le

backstepping, et les outils de contrôle non linéaires basés sur l’observateur.

Le problème de contrôle de suivi d’un quadrotor en présence d’incertitudes de modèle et des

perturbations externes est étudié. En particulier, cette thèse présente la conception et la mise en

œuvre expérimentale d’un contrôleur non linéaire de quadrotor avec observateur pour estimer

les incertitudes et les perturbations externes afin d’atteindre les objectifs de contrôle souhaités.

Basé sur un modèle non linéaire qui prend en compte les forces aérodynamiques de base et les

perturbations externes, le modèle d’UAV quadrotor est simulé pour effectuer diverses manip-

ulations telles que le décollage, l’atterrissage, translation douce et mouvements de trajectoire

horizontal et circulaire. Les techniques par backstepping et par mode glissant combinées à des

observateurs sont étudiées, testées et comparées. Une simulation et une plate-forme expéri-

mentale ont été développées pour démontrer l’efficacité du contrôleur basé sur l’observateur

à mener à bien certaines missions en présence de perturbations externes considérablement in-

connues et à obtenir une estimation correcte et satisfaisante.

Mots-clés: Quadrotor UAV; Backstepping control; Sliding mode control (SMC); Nonlin-

ear disturbance observer (NDO); Super-twisting sliding mode observer (STO);

Kernel differentiator observer (KDO)





Modelling, Identification, and Control of a Quadrotor Helicopter

Nuradeen FETHALLA

ABSTRACT

In this dissertation, we focused on the study of an autonomous flight control of quadrotor heli-

copter. Robust nonlinear control design strategies using observer-based control are developed,

which are capable of achieving reliable and accurate tracking control for quadrotor UAV con-

taining dynamic uncertainties, external disturbances.

In order to ease readability of this dissertation, detailed explanations of the mathematical model

of quadrotor UAV is provided, including the Newton-Euler formalism, Lyapunov-based sta-

bility analysis methods, sliding mode control (SMC) and backstepping fundamentals, and

observer-based nonlinear control tools. The tracking control problem of a quadrotor in the

presence of model uncertainties and external disturbances is investigated.

Particularly, this dissertation presents the design and experimental implementation of non-

linear controller of quadrotor with observer to estimate the uncertainties and external distur-

bances to meet the desired control objectives. Based on a nonlinear model which considers

basic aerodynamic forces and external disturbances, the quadrotor UAV model is simulated to

perform a variety of maneuvering such as take-off, landing, smooth translation and horizon-

tal and circular trajectory motions. Backstepping and sliding mode techniques combined with

observers are studied, tested and compared. Simulation and a real platform were developed to

prove the ability of the observer-based controller to successfully perform certain missions in

the presence of unknown external disturbances and can obtain good and satisfactory estimation.

Keywords: Quadrotor UAV; Backstepping control; Sliding mode control (SMC); Nonlin-

ear disturbance observer (NDO); Super-twisting sliding mode observer (STO);

Kernel differentiator observer (KDO)
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CHAPTER 1

INTRODUCTION

1.1 Background

The study of the Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicle (UAV) has

been growing intensively by researchers in the recent decades. The UAVs have gradually been

adopted by the public to be used in several areas. In fact, several industries (automotive, med-

ical, manufacturing, space,..etc.), require the use of UAVs. They are also starting to spread in

the field of delivery especially with online shopping. Several structures and configurations of

UAVs have been developed to allow 3D movements. For example, there are blimps, fixed-wing

planes, single rotor helicopters, bird-like prototypes, quadrotors, Each of them has advantages

and drawbacks.

Drones have evolved throughout this century to be used today in many areas. A drone is a fly-

ing machine that does not use a human pilot. These aircraft were used for the first time in the

military field during the First World War. The evolution of technology, particularly in electron-

ics, has significantly improved the performance of the drone. The drones are now employed in

the medical field (Pulver et al., 2016), audiovisual (Nägeli et al., 2017) and engineering (Mc-

Cabe et al., 2017). Recently, among the developed rotary-wing UAVs is a particular fixed-pitch

4-rotor UAV, namely the quadrotor. The quadrotor is one of the existing drones that feature two

sets of identical propellers that are powered by DC brushless motors to provide the required

thrust force and perform maneuvers when they are in flight. Quadrotor has the advantages of

light-weight configuration and inherent instability, which improves its flight maneuverability

over fixed-wing UAV. More importantly, quadrotors have the capabilities to perform VTOL

and hovering in mid-flight.

The Vertical Take-Off and Landing requirement of this project excludes some of the previous

configurations. However, the platforms which show this characteristic have a unique ability

for vertical, stationary and low-speed flight. The quadrotor architecture has been chosen for

this research for its low dimension, good maneuverability, simple mechanics and payload ca-
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pability. As the main drawback, the high energy consumption can be mentioned. However, the

trade-off results are very positive. These properties are some of the reasons for the expansion

of quadrotor research. In addition, this structure can be attractive in several applications, in

particular for surveillance, imaging, dangerous environments, indoor navigation, and mapping.

The goals of this thesis are the quadrotor identification, system modeling, the control algorithm

design evaluation, the simulator design, and the real platform development.

The parameters of the quadrotor are identified to allow the implementation of several types

of controllers. The study of the kinematics and dynamics is helpful to understand the physics

of the quadrotor and its behavior. Together with the modelling, the determination of the con-

trol algorithm structure is very important to achieve a better stabilization. The whole system

is validated and tested using Matlab-Simulink. Quadrotors are often used outdoors using a

GPS (Global Positioning System). Most research, however, is done in laboratories where GPS

cannot be used, and therefore another position detection system must be found. The most

widespread solutions use motion sensors. These sensors can be however expensive, limiting

the development of quadrotor research. The Microsoft Kinect, initially intended for entertain-

ment, has been the subject of several types of research on the detection of human movements.

This research was extended to the detection of objects. Some of the aspects that make re-

searchers choose the Kinect are its price, which is affordable, and the interest to use the camera

that has become important. In 2013, Microsoft released an improved version of the Kinect

called Kinect One. This camera offers better accuracy and a high definition camera. Using the

Kinect One, it becomes easy to detect the position of the quadrotor and makes it possible to

test quadrotors in laboratories with an affordable equipment price. However, the limitation of

the Kinect is its accuracy where the systematic error is around 3 cm, and it increases on the pe-

riphery of the range image and for increasing object-camera distance (Khoshelham & Elberink,

2012). In order to speed up the delivery order and supplementing manpower shortages, online

retail giant Amazon (Amazon, 2015) exploited drones through the use of quadrotors to fly au-

tonomously and make deliveries to its customers. Quadrotors can also be handily mounted with

high-resolution cameras photographers and filmmakers to capture high altitude pictures with-
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out having charter a flight during production. The popularity of the quadrotor extends to the

field research laboratories as well. Quadrotors with their small size, VTOL and hovering ca-

pabilities can easily operate in an indoor environment of research laboratories. In recent years,

commercial quadrotors such as crazyFly, AR Parrot,etc., have become increasingly popular

and relatively cheap for UAV research.

However, commercial quadrotors are typically associated with their own hard-coded software

and pre-programmed plant model. Therefore, to perform complex flight controls or modify

their mathematical model, it is required to modify the quadrotor’s autopilot embedded code. In

academic research, the objective of the control system design would require implementing the

Simulink system model and controller design as embedded software into autopilot hardware

via a specific Micro-controller (MCU) platform and language implementation.

Amongst the commercial quadrotors, PX4 open hardware project elaborated in (Meier et al.,

2015) has designed the Pixhawk autopilot system that can be programmed using the PX4 flight

stack software (L.Meier, 2015). Pixhawk uses PX4 flight stack software that runs on Nuttx

RTOS and is able to support multiple applications that can be programmed individually. More

importantly, PX4 is able to support system models and control algorithms developed using

Simulink without for the need to be proficient in high-level programming. This capability

allows for a research project to rapidly progress from the modeling and simulation to imple-

mentation phase on the actual hardware.

The quadrotor is listed under Rotary-wing UAVs category because it has several rotors. It is

composed of five main elements: the four motors, the chassis, the IMU, the electronic card

and the radio receiver. Quadrotor has attracted great interests in both control and robotics

communities due to its simpler mechanism in comparison to the traditional helicopters.

1.2 Quadrotor Dynamics and control

This section provides a vast summary of some of the methods that have been engaged in the lit-

erature for the Modelling and robust control of quadrotor UAVs. The literature review provides
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the motivation for the research areas on which this work focuses. Some of the issues discussed

in this chapter are considered in detail in the relevant chapters of the dissertation.

1.2.1 UAV Modeling

A quadrotor UAV is considered as a rigid body in 3-dimensional space. It has 6 degrees of free-

dom, three translational and three rotational degrees of freedom. The first three translational

degrees describe the UAV position which a trivial task and the other three degrees describe the

UAV orientation which is a somewhat complicated task and has implications on the derived

model. Some methods exist for defining the orientation of a generally rigid body in space. The

most widely used methods in aeronautical applications are quaternions and Euler angles, (Jia,

2013a; Michael et al., 2010). Euler angles shall be the focus of this discussion. They comprise

three angles: yaw, pitch, and roll, which are used to describe the orientation of a rigid body.

One of the advantages of the Euler angles approach is that it is intuitive and it is easy to visu-

alize rotations described in this way. On the other hand, its disadvantage is the "gimbal lock"

phenomenon which is an exhibition of singularities that restricts the trajectory tracking of the

quadrotor. Due to this phenomenon, some of the control algorithms that are designed for UAV

modeled using this approach are not capable of executing aggressive aerobatic maneuvers. Un-

like Euler angles, the quaternion method does not suffer from the singularity issues and thus

provides a globally valid way of representing UAV orientation. Additionally, in comparison

to Euler angles, the quaternion is computationally efficient as it uses a 4 element vector to de-

scribe rotations compared to a 3x3 matrix in the case of Euler angles. Despite these advantages,

quaternion is less used in modeling quadrotors because they are conceptually challenging to

understand and are not very intuitive. In this work, Euler angles are used for representing the

quadrotor UAV’s orientation. Due to the limitations of Euler angles, the controller is designed

in such a way that gimbal lock is avoided. A more detailed discussion of Euler angles is con-

tained in Chapter 2 of this dissertation.

In order to derive the equations of motion of the quadrotor, it is common to assume that the

vehicle is a rigid body. Euler angles method is used to describe the motion of a rigid body in
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3-D space governed by the Newton-Euler equations. Given the full dynamics of the quadrotor,

when it hovers at a certain height in the presence of small perturbations, the angular rotations

of the quadrotor are independent on its linear translations, while the translational motions of

the quadrotor depend on its orientations (Bouabdallah, 2007). Therefore, the dynamic system

of the quadrotor can be divided into two subsystems: The position subsystem and the attitude

subsystem. The control algorithm can be designed using two types of system structures: The

outer-loop control structure to control the position (Lee et al., 2009), (Alexis et al., 2016) and

the inner-loop control structure to control the attitude (Choi & Ahn, 2015), (Cao & Lynch,

2016).

In practice, the quadrotors motion cannot always be described by their exact dynamics due

to the existing uncertainties mainly caused by model uncertainties, external disturbances, and

inaccuracy of measurements. Each part of these uncertainties is described below.

• Model uncertainties

Model uncertainties are mainly caused by the following reasons: 1) The linearized quadro-

tor dynamics are widely used to simplify the controller design. 2) Some system parameters

are inaccurate including the inertia and the weight of the quadrotor. 3) The motor dynamics

are assumed to be that of a first-/second-order system, which may not exactly describe the

thrust generated by the propellers. The problem of the model inaccuracy can be solved by

identifying the system dynamics through experiments (Bouffard et al., 2012; Iskandarani

et al., 2013; Alexis et al., 2011), or by considering it as an external disturbance (Lee et al.,

2009; Choi & Ahn, 2015; Bouffard et al., 2012).

• External disturbances

During the flight, the quadrotor is usually affected by external disturbances, including se-

vere wind, actuator failure, and additional payload. In (Alexis et al., 2012b), the quadrotor

is operated under a strong wind. In (Dai et al., 2014), an unknown payload is connected to

the quadrotor by using a flexible cable. The loss of the motor effectiveness is considered

and handled in (Sharifi et al., 2010).

• Measurement inaccuracy

The inaccurate measurement is usually produced for the following reasons: 1) There exist
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sensor noises so that the measured data are inaccurate. 2) The sensor loses its effectiveness

leading to the unavailable states. To solve this problem, observers are usually adopted; as

described in (Berbra et al., 2008).

1.2.2 Control methods

As stated above, the quadrotor is always subject to different uncertainties. In most ideal cases,

quadrotor dynamics are considered accurate because perturbations are omitted. Thus, in such

cases, the control methods need not be able to handle the uncertainties. For complex working

environments, the robustness of control methods applied to the quadrotor is required due to

external disturbances. In this subsection, the recent works on the control methods for the

quadrotor will be presented.

1.2.2.1 Nominal system control methods

In this case, uncertainties are omitted, and the nonlinear model is assumed to describe the mo-

tions of the quadrotor accurately. The nonlinear model of the quadrotor has been widely studied

in the literature and many nonlinear methods have been adopted to control the quadrotor. In

(Mistler et al., 2001), the quadrotor dynamics were linearized by using the exact linearization

technique, and then a feedback controller was used to solve the trajectory tracking problem of

the quadrotor. In (Bouabdallah & Siegwart, 2005), two nonlinear control methods were pro-

posed; the backstepping method and the sliding mode method, in which the inner-outer loop

structure is employed with the consideration of full quadrotor dynamics. The linear motion

subsystems are controlled by using the backstepping technique. The sliding mode technique

and the backstepping technique are applied to the attitude subsystems of the quadrotor, respec-

tively.

As mentioned in Section 1.2.1, the nonlinearities of the quadrotor dynamics make the controller

design and implementation sophisticated. To describe the quadrotor motions, the linearized

quadrotor dynamics will be sufficiently accurate when the quadrotor is practically hovering at

a certain height. In the latter case, the linear control methods are adopted for the control of
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the quadrotor. The classical proportional-integral-derivative (PID) controllers are proposed in

(Bouabdallah et al., 2004b; Erginer & Altug, 2007) to track a desired trajectory. The linear

quadratic regulator (LQR) is another technique used to control the linearized dynamics due to

its smooth implementation and satisfactory performance. In (Bouabdallah et al., 2004b), the

linearized quadrotor model was updated around each equilibrium point, and an adaptive LQR

controller was developed to regulate the orientation of the quadrotor. In (Kim et al., 2007),

feedback linearization technique has been used to linearize the quadrotor input-output model,

then the orientations of the quadrotor regulated using a proposed LQR controller. A model-

free-control-based LQR controller is designed and implemented in (Younes et al., 2014). The

shortcoming of LQR occurs when the physical constraints of the quadrotor are enforced, e.g.,

the limited input voltage of motors and the restrained flying area. Therefore, the LQR becomes

incapable to handle system constraints. To overcome these constraints, the model predictive

control (MPC) can be a good alternative to solve this problem. The tracking control problem

of quadrotor subjected to state and input constraints investigated using linear MPC technique

by (Abdolhosseini et al., 2013). A linear MPC algorithm combined with learning technique

has been proposed by (Bouffard et al., 2012).

1.2.2.2 Uncertain system control methods

If the external disturbances are small, the uncertainties are mainly caused by parameter pertur-

bations, which can be solved by identifying the quadrotor dynamics. The translational position

subsystem of the quadrotor is considered as a second-order linear system (Iskandarani et al.,

2013), whereas the trajectory tracking problem has been tackled using linear MPC according

to the identified models. The step response can be used to obtain the unknown parameters. A

similar methodology has been used by (Bouffard et al., 2012) to identify the attitude subsys-

tem. A piecewise affine representation of the linearized quadrotor dynamics has been rewritten

around the equilibrium point, and updated around different operating points (Alexis et al.,

2010, 2012b).

To improve the control robustness of the quadrotor, enormous efforts have been made in recent
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years in order to deal with external disturbances. Some adopted methods consider the sum of

errors to deal with external disturbances. The integral-based method is one of these methods.

An integral- prediction-based nonlinear H∞ control algorithm has been proposed by (Raffo

et al., 2010) for tracking control of quadrotor. The drawback of these methods lies in the addi-

tional disturbances that might be caused by the integral-based actions if the nonlinear dynamics

of the quadrotor are omitted. Therefore, when integral-based methods are used, it is required to

consider the full dynamics of the quadrotor. Another integral backstepping control algorithm

has been proposed by (Bouabdallah & Siegwart, 2007) to counteract external disturbances.

To overcome the problem of additional disturbances caused by the integral-based actions, the

observer-based control algorithms have been adopted. Sliding mode and backstepping tech-

niques are among the techniques that can be involved in observer-based algorithms. (Benal-

legue et al., 2008) have proposed a high-order sliding mode observer for the estimation of

state and the disturbance rejection. A sliding mode observer has been developed by (Besnard

et al., 2012) which depends on the boundaries of the disturbance. Other observers includ-

ing feedback linearization technique combined with linear observer have been introduced by

(Mokhtari et al., 2006), a nonlinear symmetry- preserving observer has been given by (Mahony

et al., 2012). A modified observer-based will be adopted later in this dissertation.

1.3 Motivation

Many control methods have been proposed to deal satisfactorily with the control problems

of UAVs. Most of them focused on the stabilization problem, which is the first step toward

successful flights. Some also handled position tracking or velocity tracking in order to ob-

tain certain maneuvers and thus full autonomous control. However, most of them relied on a

complicated dynamic model that might be unavailable in certain situations and some control

methods require intensive computation that might become a problem when applied on-board.

Furthermore, only a few types of research have addressed disturbances in simulations or ex-

periments, which should be a significant concern in real-world applications. Robust control

of quadrotor have been proposed to deal with tasks that have model uncertainties and external
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disturbances. Motivated by the aforementioned advantages of robust controller design against

parameter uncertainties and external disturbances, this research will focus on the control sys-

tem design of a quadrotor UAV for various maneuverings.

1.4 Objectives

This thesis intends to take advantage of mechanical simplicity and inexpensive construction of

quadrotor to develop a robust control system for a quadrotor UAV in order to obtain a good

trajectory tracking performance. The purpose of this thesis is to develop a robust nonlinear

controller for the quadrotor UAV taking into account external disturbances and parameter un-

certainties with the use of Kinect 2 for motion capture system. The validation and test have

been done in an indoor laboratory on an area of four square meters. Only the quadrotor moves

in the field of view of the Kinect. We will model at first the dynamics of the drone, then use

this modeling to design a suitable controller for the position and attitude. For motion capture

system, an algorithm based on the color detection is used to retrieve the position of the quadro-

tor from the Kinect. Due to the existing noise of the real systems, the current velocity of the

quadrotor is estimated by Kalman filter. For the identification of parameters, three methods

have been proposed to determine the parameters of the quadrotor. Ultimately, the validation

of the designed controller by simulation and experimentation using the assembled quadrotor in

our lab mounted with the well-known micro-controller, Pixhawk.

The main objectives of this thesis can be summarized as:

• Verify the capability, performance, and robustness against parameter uncertainties and ex-

ternal disturbances of the nonlinear dynamic model of a quadrotor UAV.

• Compare performance among robust control strategies for future development.

• Develop robust observer-based control approach on quadrotor trajectory tracking and ob-

tain guidelines for further improvement.

• Implement experimentally the designed robust observer-based control in real-time applica-

tions.
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Therefore, the practical objective of this thesis research is to implement the system model and

controller design on pixhawk using px4.

1.5 Methodology Overview

The theoretical objectives mentioned previously are achieved in this thesis via simulations done

in MATLAB by:

• Forming a nonlinear dynamic model of a quadrotor and derive the equations of motion

from the mathematical model.

• Deriving the design of the robust position and attitude controllers for the quadrotor written

in the Simulink software.

• Adding external disturbances into dynamic model of quadrotor in simulations to prove the

robustness of the designed nonlinear controller.

• Implementing the designed controller for the quadrotor onto the PX4 autopilot. The com-

mercial quadrotor S500 Glass Fiber Quadcopter Frame 480 mm - Integrated PCB assem-

bled in our lab is selected to achieve this goal.

Finally, the quadrotor’s model and controller design is validated through a real autonomous

flight test.

1.6 Thesis Contribution

As mentioned above, many efforts have been made to investigate the tracking problem of the

quadrotor. Controlling the quadrotor is still a challenging problem in motion control. The de-

tailed contributions of this dissertation are:

• Robust trajectory tracking: Based on the idea behind observer-based control, a robust con-

trol algorithm is proposed to provide good convergence and stability properties for the

system with disturbances. The contribution lies in the extension of the controller to add ro-

bustness against external disturbances. The idea of extending an existing controller with an
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observer to enhance disturbance rejection seems to be applicable to any trajectory-tracking

controller (for underactuated systems).

• A backstepping-based sliding control algorithm is developed for quadrotor UAV with matched

and unmatched uncertainties. To combine sliding mode control and backstepping control,

the conventional Lyapunov based approach is used.

• The developed observer-based nonlinear control algorithm is realized on the real-time ex-

perimental platform.

1.7 Thesis Outline

The outline of this thesis is summarized as follows:

The first chapter provides an introduction to drones including the background of quadrotor

technology and explains the motivation behind this thesis research; it also provides a general

concept of quadrotor components and its parameter identification to implement an indoor flight.

The second chapter of this thesis describes the dynamic model of quadrotor and parameter

identification.

The third chapter presents the first paper of this research work. It is called "Robust Observer-

Based Dynamic Sliding Mode Controller for a Quadrotor UAV" and was published in IEEE

Access Journal in October, 2018 (Nuradeen F. et al 2018)(online version).

The fourth chapter presents the second paper of this research work titled "Robust Sliding-Mode

Tracking Control of a Quadrotor". It was submitted to Frankline institute Journal in December

2018.

The fifth chapter contains the third research paper titled "A Double-Sided Kernel Observer

For Robust Trajectory Control Of Quadrotor". It was submitted to the International Journal of

Control in March, 2018.

After, the conclusion and recommendation of the thesis based on the manuscripts described

above are given. Finally, to present the additional content, Appendix I presents hardware set-

up for experimental results of this research that were not encompassed in the third and fourth

chapters.





CHAPTER 2

DYNAMIC MODEL OF QUADROTOR AND PARAMETER IDENTIFICATION

2.1 Theoretical concept of the quadrotor

The quadrotor is a flying machine that has four motors (M1, M2, M3, M4), to which are fixed

four propellers (Fig. 2.1) mounted symmetrically on the crossbeam, and separated into two

groups rotating in opposite directions. The rotary torque effectiveness is balanced because of

the specific structure of the quadrotor due to the lightweight and powerful motors of quadrotor;

it has higher accelerations than traditional helicopters. The quadrotor can conduct complicated

tasks such as maneuvering, mapping, and navigation, etc. Since the quadrotor has 4 actuators

with 6 degrees of freedom (DOF), it is an underactuated system. The system dynamics for the

linear motions and the angular rotations of the quadrotor are coupled. As a first step in this

research thesis, the modeling and simulation of the quadrotor must be performed to determine

its flight characteristics and designing its robust position and attitude controllers.

Figure 2.1 Principle representation of quadrotor
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Along with the extraordinary simplicity of the mechanical design that eliminates the complex-

ity of the main rotor control of the conventional helicopter, quadrotor UAVs become a different

multirotor UAVs. They can be considered as Solid prototype UAVs. Due to their flight char-

acteristics coupled with a low price of hardware, the number of applications has increased in

both the military and commercial sectors. Furthermore, quadrotor is a popular platform widely

used in military applications, where missions can be conducted using programmed quadrotors

to fly into buildings to perform visual mapping and identify possible threats.

The motors M1,M3 rotate in counterclockwise direction with speed ω1,ω3 respectively. Like-

wise, the motors M2,M4 rotate in clockwise direction with speed ω2,ω4 respectively. The three

orientation movements, roll, pitch, and yaw (φ,θ,ψ, see Fig. 2.2), can be achieved by the speed

difference of the four engines. Increasing the engine speeds of motors M1 and M2 relative to

the engine speeds of motors M3 and M4 will produce a positive rotation in the roll and vice

versa for a negative rotation. An increase of the engine speeds of motors M1 and M4 relative to

the engine speeds of motors M2 and M3 will produce a positive pitch rotation and vice versa for

a negative rotation. The positive yaw rotation can be achieved by increasing the engine speeds

of motors M2 and M4 relative to the engine speeds of motors M1 and M3. Likewise, increasing

engine speeds of motors M1 and M3 relative to engine speeds M2 and M4 will produce a nega-

tive yaw rotation.

Two frames are used to describe the movement of the drone. The I frame represents the iner-

tial frame. It is fixed in relation to the Earth. The B is the frame of the quadrotor’s body. The

z-axis of the B frame is always normal to the body of the quadrotor.

The orientation of the quadrotor can be described in different ways. We can indeed use quater-

nions (Jia, 2013b) or Euler angles. Unlike Euler angles, quaternions do not need to have

auxiliary frames to be properly described. They can also avoid the so-called "gimbal lock"

phenomenon, which removes two degrees of freedom from the quadrotor.
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2.2 Transformation between the inertial frame and the body frame of the quadrotor

Three auxiliary frames have been used (ri, rψ, rθ) to describe the Euler angles. Namely, Yaw-

Pitching-Roll convention will be used (see Fig. 2.2).

• The origin of the frame ri is at the center of quadrotor’s body. Its orientation is the same as

the orientation of the inertial frame I;

• The frame rψ follows the rotation of angle ψ on the z-axis of the frame I;

• The frame rθ follows the rotation of angle θ on the y-axis of the frame rψ;

• The frame rφ follows the rotation of angle φ on the x-axis of the frame rθ and coincides

with the reference frame B.

Figure 2.2 Auxiliary frames of the quadrotor

To describe the transformation between the frames, rotation matrices can be used. We define

the rotation matrix x
yR to move from the frame {y}to the frame {x}. We then have the following

rotation matrices:
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rθ
rψR =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.1)

B
rθR =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0

0 cos(φ) sin(φ)

0 −sin(φ) cos(φ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.2)

rψ
ri R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.3)

From equations (2.3), (2.1) and (2.2), we can easily find the matrix of rotation Bri
R allowing

transformation from the inertial frame ri to the body frame B:

B
ri

R =BrθR
rθ
rψR rψ

ri R (2.4)

B
ri

R =
[

cos(θ)cos(ψ) cos(θ) sin(ψ) −sin(θ)
sin(φ) sin(θ)cos(ψ)−cos(φ) sin(ψ) sin(φ) sin(θ) sin(ψ)+cos(φ)cos(ψ) sin(φ)cos(θ)
cos(φ) sin(θ)cos(ψ)+sin(φ) sin(ψ) cos(φ) sin(θ) sin(ψ)−sin(φ)cos(ψ) cos(φ)cos(θ)

]
(2.5)

In other words, a vector IX expressed in the frame I can be expressed in the frame B by a

vector BX using the following expression:

BX = BIRIX = Bri
RIX (2.6)

2.3 Angular Velocities

The quadrotor has a gyroscope to record its angular velocities relative to the reference I and

expressed in the frame B. These velocities can be defined by a vector bΩ. This vector is

composed of three coordinates o, q, r describing the angular velocities respectively around the
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x, y and z-axes in the body frame B.

bΩ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ρ

q

r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.7)

To design a nonlinear controller for the orientation of the quadrotor, the angular velocities

of Euler angles must be derived. Therefore, it is essential to find a relationship between the

information obtained from the gyroscope and the orientation angles. It can be seen from (Craig

(2005)) that the frames transformation of the angular velocity from one frame to another can

be determined using the following relation:

i+1Ωi+1 =
i+1
i RΩi+Θ̇i+1

i+1Ẑi+1 (2.8)

where i+1Ωi+1 the angular velocity of the frame {i+ 1} with respect to the inertial frame I
expressed in the frame {i+ 1}, i+1

i R is the rotation transformation matrix passing from the old

frame to the new one, Θ̇i+1 the angular velocity of the rotation angle, and i+1Ẑi+1 the unit vector

associated with the axis of rotation in the new coordinate system. Hence, Eq.(2.8) leads to

bΩ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
φ̇

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+
b
rθR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

θ̇

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+
b
rθR

rθ
rψR

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

0

ψ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.9)

bΩ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 −sin(θ)

0 cos(φ) sin(φ)cos(θ)

0 −sin(φ) cos(φ)cos(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
φ̇

θ̇

ψ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.10)

bΩ =Jη̇ (2.11)

where η̇ is the angular velocity vector of Euler angles and J is the inverse of the Euler matrix.
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2.4 Quadrotor Dynamics: Newton-Euler method

The forces exerted on the quadrotor can be expressed in the inertial frame I using Newton’s

laws:

mp̈ = i
bR

b
F −mg

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦−mΔ (2.12)

where m is the mass of the quadrotor in kg and p̈ is the acceleration vector of the quadrotor in

m.s−2 in the inertial frame I defined as:

p̈ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ẍ

ÿ

z̈

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.13)

The vector bF represents the force (thrust) of lift expressed in the body frame B defined as:

bF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

0

T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.14)

where T is the total lift force along z-axis in N.

mΔ represents external forces acting on the quadrotor. These forces considered as external

forces (wind gust, loads, etc.). Most likely, they are unknown. Δ is a vector in the form:

Δ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Δx

Δy

Δz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.15)

It can be noted that the forces due to the resistance of the air were not included in the model.

We assumed that the quadrotor will fly at low speed and the air resistance forces are too small
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compared to other forces. The relations of Newton laws as well as the effects of Coriolis:

bFt = m(bV̇ + bΩ× bV) (2.16)

where bFt the forces mentioned in the Eq. (2.12) expressed in the body frame B and bV is the

linear velocity vector of the quadrotor relative to the inertial frame expressed in the frame B
whose elements are:

bV =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u

v

w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.17)

By modifying the equality in Eq. (2.16) and recall Eq. (2.7) and Eq. (2.17) yield:

˙⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u

v

w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
rv−qw

pw− ru

qu− pv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+
bFt

m
(2.18)

Using the equations of Euler’s moment:

uΘ = IbΩ̇+ bΩ× (IbΩ) (2.19)

with

uΘ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
uφ

uθ

uψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.20)

And I is the moment of inertia of the quadrotor. The torques resulting from the rotation of the

propellers due to a gyroscopic effect can be added to Eq. (2.19). These torques are expressed

by the relation:

τg =
bΩ×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

0

JmΩr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.21)
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where Jm is the inertia of one of each rotor, Ωr is the relative angular velocity of the propellers

defined as:

Ωr = ω1+ω3−ω2−ω4 (2.22)

where ωi (i=1,2,3,4) is the rotor speed.

For simplicity, it is assuming that the change in orientation of the quadrotor and its propellers

is very small, therefore the influence of gyroscopic effects on the quadrotor can be considered

small. Therefore they can be neglected. In addition, the quadrotor is considered to be a rigid

body and symmetrical about the frame B. The origin of the frame B is located in the center of

the quadrotor. Therefore, the moment of inertia matrix is considered to be a diagonal matrix in

the form:

I =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ixx 0 0

0 Iyy 0

0 0 Izz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.23)

The equations (2.11), (2.12), and (2.19) are involved to describe the dynamics of the quadrotor

in the body frame state space as:

Ẋ = f (X,U) (2.24)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẍ

ẋ

ÿ

ẏ

z̈

ż

φ̇

θ̇

ψ̇

ṗ

q̇

ṙ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iFx/m−Δx

ẋ
iFy/m−Δy

ẏ
iFz/m−g−Δz

ż

p+qsin(φ) tan(θ)+ r cos(φ) tan(θ)

qcos(φ)− r sin(φ)

qsin(φ) sec(θ)+ r cos(φ) sec(θ)

(Iyy− Izz)qr/Ixx+uφ/Ixx

(Izz− Ixx)pr/Iyy+uθ/Iyy

(Ixx− Iyy)pq/Izz+uψ/Izz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.25)
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where

iF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
iFx

iFy

iFz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
i
bR

b
F (2.26)

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
iF

uΘ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2.27)

2.5 The Relationship between the forces and the torques of the quadrotor

The resulting forces and torques in the dynamics of the quadrotor will be determined to design

the controller of the quadrotor. Therefore, the relationship between the forces and torques of

the motors of the quadrotor were derived as: Let Fn and τn be the force and torque generated

by the motor Mn. By taking l the length between the axis of a motor and the center of the

quadrotor, we find the following relations in a cross configuration:

uφ =
l(F3+F4−F1−F2)√

2

uθ =
l(F1+F4−F2−F3)√

2

uψ =τ2+τ4−τ1−τ3

T =F1+F2+F3+F4

(2.28)

The velocity of the motors, their forces, and their torques are related by the following relations

(Deters et al., 2014)

Fn =ρD4CT (ωn)ω2
n (2.29)

τn =
ρD5

2π
CP(ωn)ω2

n (2.30)
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where ρ is the density of the air and D is the diameter of a propeller. CT and CP are thrust

and power factors respectively dependent on the motor speed. They also depend on the char-

acteristics of the propellers. In practice, these factors are approximated by constants deduced

experimentally. A measuring device will be used to measure the force and torque produced by

each motor to derive these factors.

The equations (2.29) and (2.30) can be rearranged in one relation as

τn =
D
2π

CP

CT
Fn = f (ωn)Fn (2.31)

Equation (2.28) can be re-written in the following form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T

uφ

uθ

uψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1

− l√
2

− l√
2

l√
2

l√
2

l√
2

− l√
2

− l√
2

l√
2

− f (ωn) f (ωn) − f (ωn) f (ωn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1

F2

F3

F4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.32)

and therefore ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1

F2

F3

F4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4 −

√
2

4l

√
2

4l − 1
4 f(ωn)

1
4 −

√
2

4l −
√

2
4l

1
4 f(ωn)

1
4

√
2

4l −
√

2
4l − 1

4 f(ωn)

1
4

√
2

4l

√
2

4l
1

4 f(ωn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T

uφ

uθ

uψ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.33)

2.6 Parameters Identification

The previous section presented the dynamic model of the quadrotor in which the moments of

inertia and the mass of the quadrotor must be known. The quadrotor can be weighed easily

to find its mass. However, moments of inertia are more complicated to determine. A device

measurement must also be used to determine the relationship between propeller speeds and

exerted forces by each motor. In this section, the parameters of the S500 quadrotor will be

determined. Three methods have been used to find these parameters; experimental method, the
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software-based method, and theoretical method. The quadrotor platform used in this thesis is

S500 (Fig.2.3). The equipments of the platform are

1. The electronic board which is the Pixhawk with PX4 firmware. It will be used to imple-

ment the controller and will control the motors;

2. The Odroid XU4 microcomputer equipped with a WI-FI dongle will establish the connec-

tion between the computer, where the trajectories and position information obtained by the

Kinect will be sent, and the Pixhawk;

3. A 3300mAh Turnigy battery for an autonomy of about ten minutes;

4. A telecommunication DX6i Spectrum which has AR610 channel receiver;

5. Four 2216 KV920 brushless motors with speed controllers; Multistar SBEC4A Turnigy

20A.

Figure 2.3 Auxiliary frames of the quadrotor

In this section, two methods, an experimental method and theoretical method, will be described

respectively and the third one will be described in Chapter 3.
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2.6.1 Experimental Method

The quadrotor tracking control design described above was tested by way of computer sim-

ulations as well as on a real quadrotor system in the Control System Laboratory of École de

Technologie Supérieure (ETS), Montreal, Canada.

For the simulation and real flight trajectories to be comparable, the parameters of the real phys-

ical system had to be estimated first. To this end, we describe the estimation procedure in

detail.

The mass of the quadrotor was simply obtained by weighing the device. However, obtaining

the inertia moments was more complex. An RCbenchmark series 1580 dynamometer device

(Robotics, 2018) was used to determine the relationship between the propellers’ speeds and the

forces exerted by the motors. A commercial quadrotor, S500 Glass Fiber Quadcopter Frame

480 mm - Integrated PCB was used as the experimental platform (see Figure 2.3). The mea-

surements necessary for parameters identification were obtained by the use of an experimental

method. In this method, the moment of inertia of quadrotor’s mass is determined using the

trifilar pendulum methodology. This methodology was introduced by (Piersol & Paez, 2009).

To calculate the moment of inertia of quadrotor’s mass , the quadrotor is held by the trifilar

pendulum and rotated along the z-axis. The period of a single oscillation over three iterations

will be measured. In the end, the average of measured values will be calculated. Ultimately,

the period is used in a relation to calculate the moment of inertia of the quadrotor’s mass. The

trifilar pendulum setup comprises 3 wires fastened to the ceiling from one end and to a disc at

an equal distance from each other (120°) from the other ends which make the disc hanging (see

Figure 2.4).

Prior to determining the moment of inertia of the quadrotor using trifilar pendulum method,

the disc’s weight, its radius, and the wires’ length have to be measured first. The results of

the measurements for experimental setup are listed in Table 2.1. To figure out the moment of

inertia of quadrotor’s mass along any axis (i.e. Ixx, Iyy and Izz), the trifilar pendulum’s axis

of oscillation was aligned with the axis of interest and the quadrotor was positioned on the

disc. The moment of inertia of the quadrotor’s mass (I) along the x-axis, y-axis and z-axis
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measured via 3 configurations of displacement shown in Figure 2.5, Figure 2.6, and Figure 2.7

respectively. Thereafter, the trifilar pendulum will be rotated 10 rotations/oscillations for the

period by applying a small angular displacement to the disc holding the quadrotor. For each

period, the measurement was repeated three times. Three experimental rounds were tested

and the average of the total period is considered in order to reduce random errors effects of

experimental.

Figure 2.4 Wired Triangle Pendulum Method

Therefore, the moment of inertia along each base axis for the quadrotor’s mass can be computed

using equation 2.34:

Ixx,yy,zz =
Mr2

discTx,y,z

4π2lw
(2.34)

where: Ixx,yy,zz is moment of inertia of quadrotor in x,y, or z-axis, Tx,y,z is period of one oscil-

lation in s, M is the mass of the disc and quadrotor in kg, rdisc is radius of the disc in m, and lw

is length of wire suspending the disc from ceiling in m.
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Figure 2.5 Measurement of Mass Moment of

Inertia along x-axis

In order to calculate the moments of inertia Ixx, Iyy and Izz, the quadrotor oscillated 10 oscilla-

tions using a timer in order to ensure the precision. The experiment was performed three times

on the same axis to obtain the average of the measurements.

Table 2.1 Inertia moments of quadrotor S500

using experimental method.

Reference Disc Quadrotor
Ixx Iyy Izz

Mass (kg) 0,2408 0,0908 1,354 1,354 1,354

Period,T (s) 2,708 2,68 1,856 1,85 2,452

Inertia (kg.m2) 0,0052 negligible 0,0126 0,0125 0,0235
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For simplicity, the contribution of the moment of inertia of the rotating disc to the equation

(2.34) is omitted. The results from the measurement of the periods along each principal axis

and the mass moment of inertia along each principal axis were calculated and summarized in

Table 2.1.

Figure 2.6 Measurement of Mass Moment of

Inertia along y-axis
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Figure 2.7 Measurement of Mass Moment of

Inertia along z-axis.

2.6.2 Theoretical Method

In this method, the quadrotor is considered as a rigid body where the majority of the mass

mbase distributed in a cylinder of radius rbase and height hbase located in the center of the drone.

The arms are considered as rods of length larm and mass marm. The motors are modeled by

cylinders of motor radius rmotor, motor height hmotor and motor mass mmotor (including the

propellers mass). Figure 2.8 shows the model sketch. Therefore, from the theorem of parallel

axes and the formulas of the moments of inertia of a rod and a cylinder, the relationships of the
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moments of inertia can be written as

Izz = 4(
mmotorr2

motor

2
+mmotorl2)

+
mbaser2

base

2
+

marml2arm

3
+marml2arm

(2.35)

Ixx = Iyy = 4(
mmotor(3r2

motor +h2
motor)

12

+
mmotorl2

2
)+

mbase(3r2
base+h2

base

12

+
marml2arm

6
+

marml2arm

2

(2.36)

Table 2.2 shows the measurements of the S500 quadrotor.

Figure 2.8 The theoretical model of

a quadrotor.

Table 2.2 The Theoretical measurements of S500

quadrotor model.

mbase (kg) 0.7662 rbase (m) 0.08

marm (kg) 0.0704 larm(m) 0.0.18

mmotor (kg) 0.0766 hbase (m) 0.085

rmotor (m) 0.014 h (m) 0.225
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therefore, the quadrotor’s moments of inertia are calculated as

Ixx = Iyy = 0.0122 kg.m2 and Izz = 0.0232 kg.m2

In practice, the outputs from the designed controller system are the calculated torques corre-

sponding to the measured orientation of the quadrotor and the lift forces. These were then used

to determine the forces exerted by each motor. However, the forces control the motors indi-

rectly via PWM signals that regulate the motor speeds. Consequently, in order to find a motors’

thrust coefficients, the relationships between the lifting force and the PWM signal for each mo-

tor had to be known. The aforementioned device (RCbenchmark Series 1580 Dynamometer,

see Fig.2.9) was again used for this purpose. This measuring device generates more than four

PWM output signals and can measure the speed of a motor.

Figure 2.9 Motor force measuring device.

The force exerted by the motor can then be expressed as a function of the pulse width in μs.

The obtained measurements are shown in Fig. 2.10. The obtained PWM has a duty cycle 50%.
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Using the curve in Fig.2.10, the relation between the PWM signals and the lift force was

approximated by a polynomial in the lift force fi

Pulse Width(μs) = −13.0701 f 2
i +227.6249 fi

+1036.3 (2.37)

Figure 2.10 Motor force relative to PWM.

The relation between the torque and the force generated by each motor can be determined using

the same device. The motor force and torque measurements are depicted in Fig.2.11.

The curve in Fig.2.11 was used to determine that the force was approximately a linear function

of the torque τi.

fi = 72.17τi−0.047 (2.38)
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Figure 2.11 The relation between force and torque of the motor.

As will be seen later, the three methods used for determining the parameters of the quadrotor

have given approximately the same values of moment of inertia.
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3.1 Abstract

In this paper, a novel robust backstepping-based approach combined with sliding mode control

is proposed for trajectory tracking of a quadrotor UAV subject to external disturbances and

parameter uncertainties associated with the presence of aerodynamic forces and possible wind

force. To enhance robustness, a nonlinear disturbance observer (NDO) is employed alongside

the controller. A sliding surface is introduced which shares intermediate control goals with a

conventional backstepping scheme. The closed-loop system comprising the sliding mode and

backstepping controllers is finally combined with the NDO to track the desired position and

attitude trajectories. Good tracking is achieved in the closed loop if the controller and observer

gains are selected correctly. The system performance exhibits much better robustness than

the existing backstepping control methods which are not equipped with nonlinear disturbance

estimators. The simulation results are confirmed in terms of real laboratory experiments. Prior

to the implementation of the control method the real system has been identified and calibrated.

keywords: Quadrotor UAV; Backstepping control; Sliding mode control; Nonlinear distur-

bance observer (NDO)



35

3.2 Introduction

Quadrotor UAVs have many important applications. It is hence not surprising that the control

problem for quadrotors and other rotorcraft has recently received much attention. A vast litera-

ture exists on this topic in which both linear and nonlinear control schemes have been proposed

for the attitude and position control of the quadrotor. Proportional-Integral-Derivative (PID) at-

titude control and Linear Quadratic Regulator (LQR) attitude control were studied by (Rinaldi

et al., 2014). Robustness properties of the conventional SMC are, however, limited to matched

disturbances and uncertainties; see (Wadoo, 2013) for the definition of matched disturbances.

Unfortunately, there are many important nonlinear system applications in which the matched

disturbance property is invalid (Yu & Kaynak, 2009). The quadrotor UAV systems in (Bouab-

dallah & Siegwart, 2005; Besnard et al., 2012) are leading examples of nonlinear systems that

belong to this category. For this reason alone, most of the existing sliding mode controllers

for quadrotor UAVs predominantly attenuate the uncertainties that are matched to the control

input, i.e. uncertainties that can be instantaneously and directly compensated for by the system

input; (Runcharoon & Srichatrapimuk, 2013; Ton & MacKunis, 2012).

The disturbance matching condition is restrictive and is not met in many practical UAV sys-

tems. In the case of a quadrotor UAV system, the uncertainties comprise perturbations of

model parameters which are combined with the unknown aerodynamic forces and also pos-

sibly the external effects due to atmospheric winds. The latter act on the UAV system via

different channels (enter different state equations of the system). Many of such disturbances

affect state equations with no direct dependence on the control input; (Guo et al., 2016). In

this situation, the application of a conventional sliding mode control (SMC) leads to severe

limitations in achieving asymptotic set point control; the closed loop system can only be stabi-

lized to a neighborhood of a stationary point whose size is commensurate with the magnitude

of the unmatched disturbance; (Yu & Kaynak, 2009). Many authors have hence made ef-

forts of designing sliding surfaces with improved robustness properties; (Silva et al., 2009;

Polyakov & Poznyak, 2011). Classical backstepping and conventional sliding mode control

designs presented in (Bouabdallah & Siegwart, 2005) and (Arellano-Muro et al., 2013) offer
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a robust backstepping control approach based on the concept of the Direction Cosine Matrix

(DCM). The DCM method shown satisfactory robustness properties. A backstepping controller

for complete stabilization of a quadrotor UAV was proposed in (Madani & Benallegue, 2006).

However, the majority of existing control designs are still not sufficiently robust with respect to

unknown dynamics or system perturbations which adversely affects flight control performance.

In many quadrotor models available in the literature, it is assumed that the hover speed of the

quadrotor during its mission is low, so the influence of the external aerodynamic forces and the

torque disturbances can simply be neglected. However, in realistic flight conditions, the non-

linear aerodynamic forces, the wind gusts, and torque disturbances can be powerful enough to

destabilize the vehicle or knock it off the desired trajectory, (Xu et al., 2015). Although the

backstepping control approach, (Das et al., 2009), is a powerful technique to deal with system

nonlinearities, it applies to models of somewhat restricted structure. Moreover, the complex-

ity of conventional backstepping control increases disproportionally with the dimension of the

system to be steered. In this regard, robust versions of the backstepping are much better but

need full state measurement (Sanca et al., 2014). To simplify the implementation of robust

backstepping, direct on-line differentiation of the measured output was proposed to recover the

full state of the system, (Madani & Benallegue, 2007). A command filter was introduced in

(Farrell et al., 2009) to obviate the need to compute analytic derivatives and to create virtual

signals to increase the degree of robustness of the backstepping controller.

Further attempts to increase the robustness of the quadrotor control schemes include a high

order sliding mode controller developed by (Luque-Vega et al., 2012) that is able to reject the

influence of some of the uncertainties in the system. The robust controller of (Luque-Vega

et al., 2012) also attenuates chattering of the traditional sliding mode control approach. The

NDO-SMC control is already widely used in robotics where it can achieve diverse objectives

(Chen et al., 2000). The SMC methods attempt to compensate for the unmatched uncertainties

by utilizing bounds on the disturbances along with bounds on their first derivatives. The most

restrictive requirement encountered in many nonlinear disturbance observers is that the time

derivatives of the disturbances need to approach zero.

In this context, the consensus is that the best control approaches employ nonlinear distur-
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bance observers in conjunction with nonlinear control. In our previous work, (Fethalla et al.,

2017a,b), the proposed UAV control approach employed an NDO in conjunction with two

separated control blocks: using backstepping and SMC. In contrast, the approach presented

here fully combines the actions performed by the NDO, backstepping, and SMC. Additionally,

numerical simulation results are confirmed here by experimental results performed under lab-

oratory conditions.

Recognizing the importance of robustness in practical control of UAVs, a novel observer-based

feedback control design is proposed that comprises three concepts: (1) nonlinear sliding mode

control, (2) robust backstepping as assisted by (3) a nonlinear disturbance observer. The sys-

tematic design procedure carefully combines the interacting translational and rotational control

subsystems by the use of intermediate fictitious control variables. The task of the backstepping

controller is predominantly to stabilize the translational subsystem while the SMC simultane-

ously steers the rotational subsystem. The NDO provides the estimates of all the disturbances

both matched and unmatched insuring very good robustness of the combined feedback con-

trols.

The novel contributions are hence summarized as follows:

• (i) The proposed approach yields the first combined SMC and backstepping controller that

employs an NDO to compensate for all disturbances and model-system error. Although the

same type of NDO was also used by (Yang et al., 2013), its convergence properties were

not assessed fully.

• (ii) In comparison with the work of (Luque-Vega et al., 2012), our results show that the

robustness of the closed-loop control system is increased by the presence of the NDO;

• (iii) Laboratory experiments were preceded by proper identification and calibration of the

real system;

• (iv) The laboratory experiments reproduced the simulation results with high fidelity despite

using a fan to simulate wind gusts.
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The paper is organized as follows: the dynamic model of a quadrotor UAV is presented in

section 3.3. The problem formulation and control objectives are stated in section 3.4. The

design of the NDO and the associated backstepping-sliding mode controller for position and

attitude subsystems are described in sections 3.5.1, 3.5.2, and 3.5.3 respectively. Section 3.6

delivers the stability analysis of the closed loop system. Model parameter identification of

the real quadrotor is described in section 3.7. The performance of the proposed approach is

assessed in simulations in section 3.8 as well as in the experimental laboratory setting in section

3.9 followed by the conclusions in section 3.10.

3.3 Dynamic modeling of a quadrotor

The dynamic model of the considered quadrotor UAV, shown in Fig.3.1, is originally described

in (Hoffmann et al., 2007b) and again employed in (Zheng et al., 2014) and (Alexis et al.,

2012a).
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Let us consider two main reference frames: the earth fixed frame (I) associated with the

unit vector basis (E1,E2,E3) and body fixed frame (B) associated with the unit vector basis

(Eb
1
,Eb

2
,Eb

3
) fixed at the center of mass of the quadrotor, as shown in Fig.3.1. The position of

the center of the quadrotor’s mass is denoted by the vector p = [x,y,z]T . This position vector is

expressed with respect to an inertial frame (I) . The attitude is denoted by Θ = [φ,θ,ψ]. These

three angles are the Euler angles yaw (−π < ψ < π), pitch (−π2 < θ < π
2 ), and roll (−π2 < φ < π

2 )

that define the orientation vector of the quadrotor with respect to the inertial frame (I). De-

fine the angular velocity and acceleration of roll, pitch, and yaw as Ω = [Ωp,Ωq,Ωr]
T with

respect to the body-fixed frame (B), and Θ̈ = [φ̈, θ̈, ψ̈] with respect to the inertia reference frame

I. The linear velocities and accelerations of the translational system are given respectively as

ṗ = [ẋ, ẏ, ż], and p̈ = [ẍ, ÿ, z̈]. The transformation between the body-fixed reference frame B and

the inertial reference frame I in the space orientation of the quadrotor is given by the rotation

matrix R and Euler matrix M(Θ). These matrices are given by

R(Θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
CθCψ S φS θCψ−CφS ψ CφS θCψ+S φS ψ

CθS ψ S φS θS ψ+CφCψ CφS θS ψ−S φcψ

−S θ S φCθ CφCθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M(Θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 −S θ

0 Cφ S φCθ

0 −S φ CφS θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the relationship between Θ̇ and Ω can be described as

Ω = M(Θ)Θ̇ (3.1)

An extended formulation of these transformations can be found in (Alexis et al., 2012a).

The quadrotor dynamic equations will be written in the form of two subsystems corresponding

to translational motion (referring to the position of the center of mass of the UAV) and angular
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motion (referring to the attitude of the UAV). These equations can be stated in the reference

frame (I) as

p̈ =
1

m
R(Θ)Fprop−G+dp(t) (3.2a)

Θ̈ = (IM(Θ))−1[Tprop− IN(Θ, Θ̇)

−Ω× IΩ−Tg]+dΘ(t)

= Φ(Θ, Θ̇)+Ψ(Θ)Tprop+dΘ(t) (3.2b)

where N(Θ, Θ̇) is given by

N(Θ, Θ̇) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−Cθθ̇ψ̇

−S φφ̇θ̇+Cφφ̇ψ̇−S φS θθ̇ψ̇

−Cφφ̇θ̇−S φCθφ̇ψ̇−CφS θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Tg is the resultant torques due to the gyroscopic effects given as

Td =

4∑
i=1

Ω× Jr[0,0, (−1)i+1ωi]
T (3.3)

where Jr is the moment of inertia of each rotor and ωi, i = 1,2,3,4 is the rotary speed of each

motor.

Ψ(Θ) and Φ(Θ, Θ̇) are defined as

Ψ(Θ) = (IM(Θ))−1

Φ(Θ, Θ̇) = −(IM(Θ))−1[IN(Θ, Θ̇)−Ω× IΩ−Tg]

The matrix I = diag(Ix, Iy, Iz) is the inertia matrix of the quadrotor; G = [0,0,−g]T m/s2 is the

gravitational force acting in the z-direction; m denotes the mass of the quadrotor. The terms

dp = [dx dy dz]
T and dΘ = [dφ dθ dψ]T model smooth and bounded external disturbances

along with the aerodynamical disturbances. The functions S (·) and C(·) denote sin(·) and cos(·),
respectively. Assuming that each motor produces thrust and drag that are proportional to the
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square of the motor speed, the force generated by the ith motor is given by fi = bω2
i (i= 1,2,3,4)

where b is the thrust factor. Fprop and Tprop are: the three-dimensional translational force vec-

tor and the three-dimensional reaction moment vector exerted by the propellers, respectively,

as given by

Fprop =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

0

T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ Tprop =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
h( f4− f2)

h( f3− f1)

c
∑4

i=1(−1)i fi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where T =

∑4
i=1 fi is the total thrust, h is distance from the center of mass to the rotor, and c

is the drag factor coefficient. It is easy to verify that equations (3.2a)-(3.2b) can actually be

written as

φ̈ = r1θ̇ψ̇− r2θ̇ω+q1U2+dφ

θ̈ = r3φ̇ψ̇+ r4φ̇ω+q2U3+dθ

ψ̈ = r5θ̇φ̇+q3U4+dψ

ẍ = (CφS θCψ+S φS ψ)
1

m
U1+dx

ÿ = (CφS θS ψ−S φCψ)
1

m
U1+dy

z̈ = −g+ (CφCθ)
1

m
U1+dz

(3.4)

where [U1,U2,U3,U4]T= [T,Tprop]T is the input vector, and

r1 =
Iy− Iz

Ix
,r2 = − Jr

Ix
,r3 =

Iz− Ix

Iy
,r4 =

Jr

Iy
,

r5 =
Ix− Iy

Iz
,q1 =

h
Ix
,q2 =

h
Iy
,q3 =

1

Iz

are inertia related constants and ω = ω4+ω3−ω2−ω1.
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The state vector X can thus be defined as

X = [p ṗ Θ Θ̇]T ∈ R12

3.4 Problem formulation

The dynamic model (3.4) of the quadrotor UAV is now conveniently viewed as a system com-

posed of two subsystems, the position subsystem and the rotational subsystem. It can be noted

that the disturbances dΘ and dz are matched while the rest of the disturbances dx and dy are un-

matched. The idea is to apply a nonlinear disturbance observer to each subsystem separately,

to remove the influence of matched and unmatched disturbances from the state variables in

those subsystems. Considering (3.4), the objective is to design a controller that makes the state

variables [p,ψ] attain and follow their desired reference counterparts [pd,ψd]. We make the

following assumptions about the matched as well as the unmatched disturbances in the model

(3.4).

Assumption 3.1. For each subsystem, it is assumed that, the matched and unmatched pertur-

bations are differentiable with bounded derivatives, i.e.

‖ḋp(t)‖ � Dp, ‖ḋΘ(t)‖ � DΘ t > 0 (3.5)

for some positive constants Dp, DΘ.

3.5 The combined NDO-based backstepping and sliding mode control

3.5.1 Nonlinear disturbance Observer design

In terms of flight performance, uncertainties cannot be neglected. To improve the robustness

and stability of the overall control system, an NDO is employed to estimate the matched and

unmatched external disturbances in the quadrotor system. The NDO is introduced by (Yang
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et al., 2013) and can be employed in a similar form for both subsystems (position and orienta-

tion):

żp = −Lpzp−Lp[Lp ṗ+G+
1

m
Up]

d̂p = zp+Lp ṗ
(3.6a)

żΘ = −LΘzΘ−LΘ[LΘΘ̇+Φ(Θ, Θ̇)−UΘ]

d̂Θ = zΘ +LΘΘ̇
(3.6b)

where Up = R(Θ)E3U1, UΘ = Ψ(Θ)[U2 U3 U4]T , and d̂ j ( j = p,Θ) is the estimation of the

disturbance. The variable z j is the state vector of the observer, and L j = L jI3×3,L j > 0, j = p,Θ,

are the observer gain matrices to be tuned.

The following lemma will be helpful in proving convergence of the observer as well as the

control scheme.

Lemma 3.1. Let ẋ = f (x) be a smooth multivariate dynamic system with x ∈ Rn, with f (0) =

0. Let V be a Lyapunov function that is strictly positive definite, continuously differentiable,

radially unbounded, with V(0) = 0. Let C ⊂ Rn be any given connected, compact set of initial

conditions for the dynamic system. Finally, assume that along any trajectory of the system,

x : R+→ Rn, starting in C , the following differential inequality

d
dt
{V(x(t))} < −αV(x(t))+β for all t ≥ 0 (3.7)

with x(0) ∈ C

is satisfied with β > 0 as a fixed positive constant and α as a positive parameter that can be

tuned. Under these conditions: for every ε > 0 there exist an α∗ > 0 such that for all α ≥ α∗ all

trajectories of the dynamic system starting in C are bounded by the selected value of ε, i.e.

||x(t)||2 ≤ ε, for all t > T ∗, (3.8)
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for a sufficiently large time T ∗.

Proof. It is first convenient to define a function which is the composition of the Lyapunov

function V : Rn → R+ with any given and admissible system trajectory function x : R→ Rn,

x(0) ∈ C, i.e. a function W : R+→ R+ such that

W(t) := V(x(t)); t ≥ 0 (3.9)

It is obvious that inequality (3.7) re-writes as

d
dt

W(t) < −αW(t)+β for all t ≥ 0 (3.10)

for any W(0) :=W0 = V(x0) ∈ V(C) (3.11)

where the image set V(C) is compact as V is continuous hence maps compact sets into compact

sets; in fact it is a compact interval in R+. The dependence of W on x is suppressed here as,

by assumption, inequality (3.10) holds for any trajectory x of system ẋ = f (x) passing through

any initial condition x(0) := x0 ∈ C.

Consider an equation for a different function W∗ : R+→ R+, given by

d
dt

W∗(t) = −αW∗(t)+β; (3.12)

with the same parameters α > 0,β > 0, but with an initial condition W∗(0) := W∗
0
� V(C) that

satisfies

W∗0 > w for all w ∈ V(C) (3.13)



45

Its unique solution valid for all t ≥ 0 is

W∗(t) =W∗0 exp{−αt}+ β
α

[1− exp{−αt}] (3.14)

so W∗(t)→ β

α
as t→∞

We shall now show that any system trajectory, x(t); t ≥ 0, that implicitly satisfies (3.10) - (3.11)

is majorized by the trajectory W∗(t); t ≥ 0, i.e.

W(t) < W∗(t); t ≥ 0 (3.15)

Clearly, W(0) < W∗(0) by virtue of (3.13). The demonstration of (3.15) will be conducted

by contradiction. To this end, if (3.15) were false then there would exist an initial condition

W0 ∈ V(C) and a corresponding trajectory W(t); t ≥ 0, for which the following set is nonempty:

Z := {t ≥ 0 | W(t) ≥W∗(t)} (3.16)

Defining t1 := inf Z, it is clear from (3.13) that t1 > 0. Also

W(t1) =W∗(t1) (3.17)

and W(t) < W∗(t) for t ∈ [0, t1) (3.18)

By virtue of the above (3.17) - (3.18), for sufficiently small, but negative h < 0 the following

inequality holds

W(t1+h)−W(t1)

h
>

W∗(t1+h)−W∗(t1)

h
(3.19)

which, in the limit as h→ 0, implies that

d
dt

W(t1) ≥ d
dt

W∗(t1) (3.20)
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The assumption of the Lemma expressed in the form of (3.10) together with above (3.20) and

(3.12) and (3.17) imply that there exists a trajectory x(t); t ≥ 0, with x(0) ∈ C such that, at some

instant t1 > 0:

−αW(t1)+β >
d
dt

W(t1)

≥ d
dt

W∗(t1) = −αW∗(t1)+β

so W(t1) < W∗(t1) since −α < 0. (3.21)

Inequality (3.21) is a clear contradiction of (3.17). So, Z is empty for all trajectories W(t); t ≥ 0,

starting in V(C). Hence (3.15) holds true, as claimed. It then follows that all system trajectories

that satisfy (3.10) - (3.11) are majorized by (3.14); i.e.

W(t) < W∗0 exp{−αt}+ β
α

[1− exp{−αt}]; t ≥ 0 (3.22)

Now, it is easy to see that for any W∗
0

satisfying (3.13)

W∗0 exp{−αt} ≤ β
α

for all t ≥ T (α) (3.23)

with T (α) :=
1

α
ln

(W∗
0
α

β

)
(3.24)

Combining (3.22) with (3.23) gives

W(t) < 2
β

α
for all t ≥ T (α) (3.25)

along any trajectory of the system x(t); t ≥ 0, with x(0) ∈ C, because the second term of (3.22)

never exceeds β/α. Selecting an arbitrary positive constant R > 0, while setting

α∗ :=
2β

R
; T ∗ := T (α∗) (3.26)
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gives

W(t) < 2
β

α
≤ R for all t ≥ T ∗,α ≥ α∗ (3.27)

Denote a sublevel set of V by

VR := {x | V(x) ≤ R} (3.28)

Since the Lyapunov function V is continuous and radially unbounded its sublevel sets are

bounded so there exists a ball B(0;
√

(ε)) which contains the sublevel set VR. By virtue of

(3.27) it follows that if α ≥ α∗ then for all times t ≥ T ∗ any system trajectory starting from the

set C satisfies W(t) = V(x(t)) ≤ R. This is to say that all such x(t); t ≥ T ∗, remain in the sublevel

set VR , i.e. x(t) ∈ VR ⊂ B(0;
√

(ε)) , which immediately implies that

||x(t)||2 ≤ ε for all t ≥ T ∗ (3.29)

as required.

Remark 3.1. It should be noted that the assumption of Lemma 3.1 is stated as a sharp differen-

tial inequality entirely for the simplicity of the proof and thus can be replaced by a non-sharp

inequality as long as β > 0 because any slightly tighter non-sharp inequality such as

d
dt
{V(x(t))} ≤ −αV(x(t))+

1

2
β for all t ≥ 0 (3.30)

clearly implies a sharp inequality (3.7).

We are now ready to show that the above observers can secure estimates with arbitrarily small

observer errors.

Let estimation error vectors edp(t) and edΘ(t) for the position and attitude subsystems be defined
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as

edp := d̂p−dp edΘ := d̂Θ−dΘ (3.31)

Proposition 3.1. Under Assumption 3.1, there exist observer gains L j > 0, j = p,Θ, that are

high enough to achieve any prescribed asymptotic estimation precision of the observers (3.6a)

- (3.6b); i.e. for every ε > 0 there exist L∗j , j = p,Θ, such that for all L j ≥ L∗j the observer errors

satisfy

||ed j(t)||2 ≤ ε, for all t > T ∗, j = p,Θ (3.32)

for a sufficiently large time T ∗.

Proof. Note that the position and orientation equations in (3.4) can be compactly written as:

p̈ =G+
Up

m
+dp

Θ̈ = Φ(Θ, Θ̇)+UΘ (3.33)

It follows from (3.6) that

˙̂dp = żp+Lp p̈ = −Lpzp−Lp[Lp ṗ+G+
Up

m
]

+Lp[G+
Up

m
+dp] = −Lp[zp+Lp ṗ]+Lpdp

= −Lpedp (3.34)

It is shown similarly that

˙̂dΘ = −LΘedΘ (3.35)
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The derivatives of the estimation errors ed j , j = p,Θ are hence given by

ėd j = −L jed j − ḋ j (3.36)

Since

−2eT
d j

ḋ j ≤ ‖ed j‖2+ ‖ḋ j‖2 (3.37)

because

0 ≤ ‖ed j + ḋ j‖2 = eT
d j

e2+2eT
d j

ḋ j+ ḋ j
T ḋ j

= ‖ed j‖2+ ‖ḋ j‖2+2eT
d j

ḋ j

then, defining

V1 j := eT
d j

ed j j = p,Θ (3.38)

and multiplying (3.36) by 2eT
d j

while using (3.37) together with Assumption 1 yields

V̇1 j = 2eT
d j

ėd j = −2eT
d j

L jed j −2eT
d j

ḋ j

≤ −2eT
d j

L jed j + ‖ed j‖2+ ‖ḋ j‖2

≤ −(2L j+1)eT
d j

ed j +D2
j

< −(2L j+1)V1 j+2D2
j j = p,Θ (3.39)

Inequality (3.39) is clearly of the form (3.7). Hence invoking Lemma 3.1 basically ends the

proof. For complete lucidity, note that in this case, it suffices to pick

L∗j =
2D2

j

ε
− 1

2
(3.40)
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to secure that

V1 j(t) = ||ed j ||2 ≤ ε for all t ≥ T ∗; j = p,Θ (3.41)

as required.
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Figure 3.2 Block diagram of the proposed NDO based

backstepping control design

3.5.2 Backstepping sliding mode control

This section first describes a regular backstepping technique for the position trajectory tracking

control. The backstepping approach is known for its flexibility and capacity to control com-

posite cascade nonlinear systems. With reference to the problem at hand, it will be shown to

guarantee stability of translational and rotational subsystems. On the other hand, sliding mode

control (SMC) can secure a degree of stability robustness of the closed loop. Such robustness

is necessary to compensate for possible model errors and external disturbances so that high-

tracking performance can be achieved. A combination of backstepping, SMC, and disturbance

estimation performed by the NDO will be proved highly successful in achieving the control

goals.
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3.5.2.1 Position subsystem controller design

To design the backstepping control for the position subsystem let p1 = p and p2 = ṗ, then

the position subsystem in (3.2a) can be rewritten in a combined form as

ṗ1 = p2

ṗ2 = −gez+
1

m
Up+dp(t)

(3.42)

Defining the position tracking error

e1 = pr − p1 (3.43)

its time derivative is

ė1 = ṗ1r − ṗ1 = ṗ1r − p2 (3.44)

Defining the velocity tracking error as

e2 = p2r − p2, p2 = p2r − e2 (3.45)

and substituting (3.45) into (3.44) gives

ė1 = ṗ1r − p2r + e2 (3.46)

where p2r is the virtual control law designed to stabilize ė2

p2r = ṗ1r +K1e1, ṗ2r = p̈1r +K1ė1 (3.47)
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where K1 is positive definite matrix.

Substituting (3.47) into (3.46) yields

ė1 = e2−K1e1 (3.48)

Choosing a Lyapunov function candidate as

V2p =
1

2
eT

1 e1+
1

2
eT

2 e2 (3.49)

and taking time derivative of V2p, while using (3.45) we obtain

V̇2p = eT
1 ė1+ eT

2 ė2

= eT
1 (−K1e1+ e2)+ eT

2 (p̈1r +K1ė1− ṗ2) (3.50)

Substituting (3.42) into (3.50), yields

V̇2p = −eT
1 k1e1+ eT

1 e2+ eT
2 (p̈1r +K1ė1−

(−ge3+
1

m
Up+dp))

V̇2p = −eT
1 K1e1+ eT

2 (e1+ p̈1r +K1ė1−
ge3− 1

m
Up−dp)

(3.51)

Now we defined the control input vector as

Up = m[e1+K1ė1−ge3+ p̈1r −K2e2− d̂p] (3.52)

where K2 is another positive definite matrix. The position control law (3.52) has three compo-

nents so UP = [Ux,Uy,Uz]
T . Putting Up = R(Θ)U1E3, the total thrust U1 is obtained as

U1 =
Uz

CφCθ
(3.53)
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and

Ux =
CφsθCψ+S φS ψ

CφCθ
U1 (3.54)

Uy =
CφS θS ψ−S φCψ

CφCθ
U1 (3.55)

In order to implement the compensation for the disturbance dp which is needed for improved

robustness of the control, the nonlinear disturbance observer (3.6a) is employed.

Theorem 3.1. Consider the position error subsystem (3.43) and (3.45) in closed loop with the

disturbance observer designed as in (3.6a)-(3.6b) and the control law designed according to

(3.52) - (3.53). There exist positive definite gain matrices K1, K2 and Lp, such that the closed

loop position error satisfies

||e1||2+ ||e2||2 ≤ ε for all t ≥ T ∗ (3.56)

with any pre-selected precision ε > 0 where T ∗ is sufficiently large.

Proof. Define a Lyapunov function candidate as

V1 = V1p+V2p (3.57)

Considering (3.52), (3.53), and taking the time derivative of (3.57), yields
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V̇1 = V̇1p+ V̇2p

= −eT
1 K1e1+ eT

1 e2+ eT
2 (p̈1r +K1ė1−

ge3+
1

m
Up+dp))

− eT
dp

(Lp− 1

2
I3x3)edp +

1

2
D2

p

= −eT
1 K1e1− eT

2 K2e2+ eT
2 (dp− d̂p)

− eT
dp

(Lp− 1

2
I3x3)edp +

1

2
D2

p

= −eT
1 K1e1− eT

2 K2e2− eT
2 edp

− eT
dp

(Lp− 1

2
I3x3)edp +

1

2
D2

p

≤ −eT
1 K1e1− eT

2 K2e2− 1

2
eT

2 e2− 1

2
eT

dp
edp

− eT
dp

Lpedp +
1

2
eT

dp
edp +

1

2
D2

p

≤ −eT
1 K1e1− eT

2 (K2+
1

2
I3x3)e2

− eT
dp

(Lp− I3x3)edp +
1

2
D2

p

< −δ1V1+D2
p

(3.58)

where

δ1 = min{2λmin(K1),2(λmin(K2)− 1

2
),2(λmin(Lp−1))}

It can be seen that the above gains can be chosen to deliver any magnitude of the tunable

coefficient δ1 > 0. The result of Theorem 3.1 then follows directly from Lemma 3.1.

3.5.3 Attitude controller design

In this section, the NDO, the backstepping, and sliding control strategies are again combined

to deliver attitude control.

In practice, whenever the position of the center of mass of the quadrotor deviates from its
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reference xr or yr the angular position φr and θr also deviate.

The position and attitude control systems are coupled in such a way as to permit the desired

attitude angles φr and θr to be tracked by the attitude controller (see Fig. 3.2) implicitly using

the position control law (3.52). We define the reference trajectory for the attitude subsystem as

Θr = [φr, θr,ψr]
T where it is assumed that ψr is measured directly by a sensor.

The reference angles φr and θr are obtained as follows. Multiplying (3.54) by CφCθCψ and

(3.55) by CφCθS ψ, respectively, yields

UxCφrCθrCψr = (CφrS θrC
2
ψr
+S φrS ψrCψr)U1 (3.59)

UyCφrCθrS ψr = (CφrS θrS
2
ψr
−S φrS ψrCψr)U1 (3.60)

Adding (3.59) to (3.60) and dividing by CφrCθr yields,

UxCψr +UyS ψr = tan(θr)U1 (3.61)

Then θr and φr are obtained from (3.59) - (3.60), and (3.61) as

θr = arctan
(UxCψr +UyS ψr)

U1
(3.62)

φr = arctan
Cθr(UxS ψr −UyCψr)

U1
(3.63)

Let Θ1 = Θ and Θ2 = Θ̇. Then the rotational subsystem of (3.2) can be rewritten in a

combined form as

Θ̇1 = Θ2

Θ̇2 = Φ(Θ, Θ̇)+UΘ +dΘ(t)
(3.64)

Defining the tracking error

e3 = Θ1r −Θ1 (3.65)
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its time time derivative is written as

ė3 = Θ̇1r − Θ̇1 = ẋ3r −Θ2 (3.66)

Defining a sliding surface in terms of the error such as:

s = e4 = Θ2r −Θ2, Θ2 = Θ2r − e4 (3.67)

and substituting (3.67) into (3.66) gives

ė3 = Θ̇1r −Θ2r + s (3.68)

where Θ2r is the virtual control law designed to stabilize ė4 :

Θ2r = Θ̇1r +K3e3, Θ̇2r = Θ̈1r −K3ė3 (3.69)

where K3 is a positive definite matrix.

Substituting (3.69) into (3.68) yields

ė3 = s−K3e3 (3.70)

Choosing a Lyapunov function candidate as

V2Θ =
1

2
eT

3 e3+
1

2
sT s (3.71)

and taking time derivative of V2Θ, gives

V̇2Θ = eT
3 ė3+ sT ṡ

= eT
3 (−K3e3+ s)+ sT (Θ̈1r +K3ė3− Θ̇2) (3.72)
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Substituting (3.64) into (3.72), yields

V̇2Θ = −eT
3 K3e3+ eT

3 s+ sT (Θ̈1r +K3ė3−
(Φ(Θ, Θ̇)+UΘ)−dΘ)

= −eT
3 K3e3+ sT (e3+Θ̈1r +K3ė3−

Φ(Θ, Θ̇)−UΘ−dΘ) (3.73)

Thus the control input vector UΘ can be defined as

UΘ = [e3+K3ė3−Φ(Θ, Θ̇)+Θ̈1r−
d̂Θ +K4s+Asign(s)] (3.74)

where K4 and A are positive definite matrices.

To compensate for dΘ, the same nonlinear disturbance observer (3.6b) is used in the attitude

system.

The discontinuous function sign(.) in the control law (3.74) is replaced by a continuous function

to reduce the effect of the chattering in the control signal. For instance, the signum function

sign(.) can be replaced by the following function (O’Toole et al., 2010b)

sign(s) =
s

‖s‖+ς (3.75)

where ς is a positive tuning parameter that smoothes the discontinuity. It is tuned manually to

attenuate the chattering problem.

We prove the following attitude counterpart of Theorem 3.1.

Theorem 3.2. Consider the attitude error subsystem (3.65) and (3.67) in closed loop with the

disturbance observer designed as in (3.6a)-(3.6b) and the control law designed according to

(3.74). There exist positive definite gain matrices K3, K4, A, and LΘ, such that the closed loop



58

attitude error satisfies

||e3||2+ ||e4||2 ≤ ε for all t ≥ T ∗ (3.76)

with any pre-selected precision ε > 0 where T ∗ is sufficiently large.

Proof. Define a Lyapunov function candidate as:

V2 = V1Θ +V2Θ (3.77)

Considering (3.74), (3.53), and taking the time derivative of (3.77), yields

V̇2 = V̇1Θ + V̇2Θ

= −eT
3 K3e3+ eT

3 s+ sT (Θ̈1r +K3ė3−Φ(Θ, Θ̇)

+UΘ− d̂Θ)+ eT
dΘ(LΘ− 1

2
I3x3)edΘ +

1

2
D2
Θ

= −eT
3 K3e3− sT K4s− sT edΘ − sT A sign(s)

− eT
dΘ(LΘ− 1

2
I3x3)edΘ +

1

2
D2
Θ

≤ −eT
3 K3e3− sT K4s− 1

2
sT s+

1

2
eT

dΘed1

− sT A sign(s)− eT
dΘ(LΘ)ed1

+
1

2
eT

dΘedΘ +
1

2
D2
Θ

≤ −eT
3 K3e3− sT (K4+

1

2
I3x3)s− sT A sign(s)

− eT
dΘ(LΘ− I3x3)edΘ +

1

2
D2
Θ

≤ −eT
3 K3e3− sT ((K4+A sign(s))+

1

2
I3x3)s

− eT
dΘ(LΘ)edΘ +

1

2
D2
Θ

< −δ2V2+D2
Θ

(3.78)
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where

δ2 = min{2λmin(K3),2(λmin(K4+A sign(s))− 1

2
),

2(λmin(LΘ−1)}

It can be seen that the above gains can be chosen to deliver any magnitude of the tunable

coefficient δ2 > 0. The result of Theorem 3.2 then follows directly from Lemma 3.1.

3.6 Stability analysis of the overall closed loop system

In view of the results presented in Theorems 3.1 and 3.2, it is now straightforward to prove

stability for the overall closed loop tracking control system.

Theorem 3.3. Let the position error subsystem (3.43) and (3.45) in closed loop with the dis-

turbance observer designed as in (3.6a)-(3.6b) be controlled according to (3.52) - (3.53). Also,

let the attitude error subsystem (3.65) and (3.67) in closed loop with the disturbance observer

designed as in (3.6a)-(3.6b) be controlled according to (3.74). Under these conditions, there

exists an ensemble of gain matrices K1,K2,K3,K4,A and Lp,LΘ such that the overall closed

loop control error vector [e1,e2,e3,e4] is bounded as follows

||e||2 ≤ ε for all t ≥ T ∗ (3.79)

with any pre-selected precision ε > 0 where T ∗ is sufficiently large.

Proof. Choose the Lyapunov function candidate for the overall closed loop system to be

V = V1+V2 (3.80)
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Differentiating (3.80) and using (3.58) and (3.78) gives

V̇ = V̇1+ V̇2

≤ −δ1V1+
1

2
D2

2−δ2V2+
1

2
D2

1 < −δV +γ
(3.81)

where δ =min{δ1, δ2} and γ = 1
2 D2

1
+D2

2
.

Since the coefficients δ1 and δ2 are both tunable in their respective position and attitude control

subsystems, the δ is also tunable. Hence it again follows from Lemma 3.1, that for any desired

tracking precision ε > 0 there exists an ensemble of gain matrices K1,K2,K3,K4,A,Lp,LΘ such

that the magnitude of both the position and attitude errors do not exceed ε on sufficiently long

control horizons. The quadrotor tracking control design is hence complete.

3.7 Parameter Identification for the Quadrotor Prototype

The quadrotor tracking control design described above was tested by way of computer sim-

ulations as well as on a real quadrotor system in the Control System Laboratory of École de

Technologie Supérieure (ETS), Montreal, Canada.

For the simulation and real flight trajectories to be comparable, the parameters of the real

physical system (see (3.4)) had to be estimated first. To this end we describe the estimation

procedure in detail. The mass of the quadrotor was simply obtained by weighing the device.

However, obtaining the inertia moments was more complex. An RCbenchmark series 1580

dynamometer device was used to determine the relationship between the propellers’ speeds

and the forces exerted by the motors. A commercial quadrotor, S500 Glass Fiber Quadcopter

Frame 480 mm - Integrated PCB was used as the experimental platform (see Figure 3.3).

The measurements necessary for parameter identification were obtained by the use of the solid

modeling CAD software (Solidworks 2017) (see Fig. 3.4). Table 3.1 shows the resulting

estimates of the inertia moments for the quadrotor S500.
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Figure 3.3 The quadrotor used in real flight tests

Figure 3.4 Sildworks 3-D model of quadrotor S500
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In practice, the outputs from the designed controller system are the calculated torques corre-

sponding to the measured orientation of the quadrotor and the lift forces. These were then used

to determine the forces exerted by each motor. However, the forces control the motors indi-

rectly via PWM signals that regulate the motor speeds. Consequently, in order to find a motor’s

thrust coefficients, the relationships between the lifting force and the PWM signal for each mo-

tor had to be known. The aforementioned device (RCbenchmark Series 1580 Dynamometer,

see Fig.3.5) was again used for this purpose. This measuring device generates more than four

PWM output signals and can measure the speed of a motor.

Table 3.1 Inertia moments of quadrotor S500 using

Solidworks

m (kg) Ixx (kg· m2) Ixx (kg· m2) Ixx (kg·m2)

1,354 0.01275 0.01278 0.02271

Figure 3.5 Motor force measuring device
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The force exerted by the motor can then be expressed as a function of the pulse width in μs. The

obtained measurements are shown in Fig. 3.6 Using the curve in Fig.3.6, the relation between

the PWM signals and the lift force was approximated by a polynomial in the lift force fi

Pulse Width(μs) = −13.0701 f 2
i +227.6249 fi+1036.3

fi = 72.17τi−0.047 (3.82)

The relation between the torque and the force generated by each motor can be determined using

the same device. The motor force and torque measurements are depicted in Fig.3.7. The curve

in Fig.3.7, was used to determine that the force was approximately a linear function of the

torque τi.

Figure 3.6 Motor force relative to PWM
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Figure 3.7 The relation between force and torque of the motor

3.8 Simulation results

In order to verify the effectiveness of the proposed method, the simulation results were obtained

considering the physical parameters described in the previous section, where the remaining

constants were set as follows: h = 0.225m, JR = 3.357× 10−5Kgm2, and g = 9.81m/s2. The

quadrotor was required to follow the desired trajectory defined for t ≥ 0 :

[xd,yd,zd] = [0.5sin(2πt/40),0.5cos(2πt/40),1] (3.83)

Furthermore, the yaw angle reference trajectory was set at x5r = 0 rad over the entire simulation

horizon. For the purpose of the simulation, the external disturbance vector was considered as a

“gust of wind” given by the functions

d1 = [dx,dy,dz]
T

= [1.5+2.5sin(4t),1.5+2.5 sin(4t),1.5]N

d2 = [dφ,dθ,dψ]T

= [2.5sin(4t),sin(0.1t),sin(0.1t)]T Nm



65

The position and attitude controller gains are 3×3 matrices: K1 = diag[kx,ky,kz], K2 = diag[kxx,

kyy,kzz], K3 = diag[kφ,kθ,kψ], K4 = diag[kφφ,kθθ,kψψ], and A = diag[Aφ,Aθ,Aψ]. Likewise, the

nonlinear observer gains are 3× 3 matrices: Lp = diag[lx, ly, lz] and LΘ = diag[lφ, lθ, lψ]. All

gains were tuned manually by trial and error in computer simulations. The best values of all

gains, which secure the smallest tracking errors, are shown in Table 2.

Table 3.2 Controller gains.

Gain Value Gain Value Gain Value
kx 2.0313 ly 15 kψψ 10.861

ky 2.0313 lz 15 lφ 20

kz 2.216 kφ 12.861 lψ 20

kxx 0.0313 kθ 12.861 lθ 20

kyy 0.0313 kψ 12.861 Aφ 0.7

kzz 0.216 kφφ 10.861 Aψ 0.7

lx 15 kθθ 10.861 Aθ 0.7

The simulation results are shown in Fig. 3.8 - Fig. 3.13. It can be seen from Fig.3.8 and Fig.

3.9 that the quadrotor can track the desired flight path correctly while compensating for the

disturbances. Fig.3.11 also shows good tracking of the attitude reference trajectory. Further-

more, Fig.3.8 and Fig.3.11 provide the comparison between the tracking results in position and

attitude subsystems obtained using the proposed controller versus the standard backstepping

controller. The proposed control-observer scheme is clearly performing better.

The plots of the errors in the position and attitude subsystems are presented in Fig.3.10 and

Fig. 3.12. It can be seen that the nonlinear disturbance observer can estimate the disturbances

quickly and accurately. The control inputs of rotors are presented in Fig. 3.13.
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Figure 3.8 Position tracking in coordinates (x,y,z). Graph

legend: Green - Reference Trajectory ; Red - Trajectory Obtained

Using the Proposed Controller; Blue - Trajectory Obtained Using

the Standard Backstepping Controllers
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Figure 3.9 3D Position tracking in simulation
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Figure 3.10 Position tracking errors in the (x,y,z) coordinates

Figure 3.11 Attitude tracking (φ,θ,ψ). Graph legend: Green -

Reference Trajectory ; Red - Trajectory Obtained Using the

Proposed Controller; Blue - Trajectory Obtained Using the

Standard Backstepping Controllers
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Figure 3.12 Attitude tracking errors
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Figure 3.13 Inputs generated by controllers during simulation
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3.9 Experimental results

The Pixhawk autopilot was employed as the onboard flight controller to implement the data

fusion algorithm and the proposed flight control strategy. For positioning system, a special

localization sensor/algorithm (Kinect) is used to capture the position of the quadrotor during

the flight. A companion computer (Odroid XU4) is used to interface and communicate with the

pixhawk flight controller using the MAVLink protocol over a serial connection. A connection

is established for the communication between the companion computer and the ground station.

By doing this, the companion computer gets all the MAVLink data produced by the autopilot

and the positioning sensor (Kinect). The controller and estimator parameters employed in the

experiment were those listed in Table 2. In practical applications, the attitude gains are usually

tuned first, followed by the position gains. Based on the permitted overshoot, settling time,

the steady-state error requirements, these gains can be tuned by trial and error in hovering

conditions.

The goal of the laboratory experiment was to demonstrate that the designed controller achieves

good tracking in the presence of external wind gusts. An electrical fan was used to generate the

wind gusts that affect the quadrotor during flight, as shown in Fig. 3.14. It was required that the

quadrotor follows the same trajectory as the one used in computer simulations.The responses

of the position and attitude subsystem under wind gusts are depicted in Fig. 3.15 - Fig. 3.19

together with the respective tracking errors. The results clearly confirm that the proposed

controller is capable of compensating for wind gusts as additional unknown disturbances. The

quadrotor tracks the given trajectory with tracking errors that do not exceed 0.2 m.
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Figure 3.14 The experimental setup used in real flight tests
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Figure 3.15 Real flight test of 3D position tracking by the

proposed controller under the effect of wind gusts
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Figure 3.16 Real flight tracking of three position coordinates by

proposed controller under the effect of wind gusts
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Figure 3.18 Real flight tracking of three attitude angles by

proposed controller under the effect of wind gusts
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3.10 Conclusion

This paper explores a novel approach to robust trajectory tracking control of a quadrotor UAV.

A bank of nonlinear disturbance observers is employed in conjunction with a matching set

of generalized backstepping and sliding mode controllers to compensate the influence of the

unmatched uncertainties affecting the system during the flight.The stability of the system is

guaranteed by designing the backstepping-sliding mode controller combined with the NDO

as demonstrated employing a direct Lyapunov analysis. The validity of the developed ap-

proach was first confirmed by computer simulations. The performance of the observer-based

backstepping-sliding mode control strategy was next extensively validated in real time flight

tests using an experimental platform setup. Furthermore, the localization algorithm (Kinect)

will be extended to use a precise position measurement from a motion capture system to up-

grade the experimental UAV setup. This will enable much better performance of the imple-

mented nonlinear controller.
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4.1 Abstract

This paper presents a novel robust non-linear controller which is inspired from sliding mode

control. To attain a trajectory tracking capability of a quadrotor UAV in the presence of ex-

ternal disturbances and parameter uncertainties associated with the presence of aerodynamic

forces and possible wind force, the structure of the proposed technique is composed of a super-

twisting sliding mode observer (STO) alongside the sliding mode control (SMC). A conven-

tional sliding mode scheme shares intermediate control goals by an introduced sliding surface.

The closed-loop system including the sliding mode controller is finally linked with the STO

to track the desired position and attitude trajectories. The controller and observer gains are

selected properly to achieve good tracking. The system performance exhibits much better

robustness than the existing sliding mode control methods which are not equipped with super-

twisting estimators. Real-time laboratory experiment results performed on hardware testbed

are presented to confirm the simulation results.

keywords: Tracking control, Sliding mode control,Observer, Quadrotor.

4.2 Introduction

Numerous types of non-linear control methods have been developed and applied to the UAV

trajectory tracking problem. The review considered in this section does not claim to be ex-
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haustive. One of the researches that have been extensively studied within UAV control deals

with the development of position and attitude controls for the UAV trajectory tracking prob-

lems. In practice, there are various technical challenges in the control of a quadrotor UAV

that is subjected to unknown external disturbances and model uncertainties. The unknown dis-

turbances in practical aerospace environments include wind gust, noises and etc. The model

uncertainties of a quadrotor UAV are usually induced by the imprecise hydrodynamic coeffi-

cients which arise in the mathematical model of the quadrotor. To tackle the technical issues of

external disturbances and model uncertainties, several methods have been introduced. Among

these introduced methods, adaptive control (Dydek et al., 2013; Bouadi et al., 2015), robust

control (Ramirez-Rodriguez et al., 2014; Zheng et al., 2014), and disturbance observer-based

control (Fethalla et al., 2018; Rashad et al., 2016). In (Dydek et al., 2013), the parametric

uncertainties have been compensated using the adaptive nonlinear control method based on

Lyapunov stability arguments, that has been widely used as a suitable choice. However, a lin-

ear parametrization (LP) condition always required for the classic adaptive control method, and

sometimes, the singularities will accompany the controller (Bouadi et al., 2015). In (Ramirez-

Rodriguez et al., 2014), an integral sliding-mode incorporated with backstepping control to

propose a novel robust controller that is a robust backstepping-based approach for a quadrotor

UAV. Despite the design of backstepping scheme is a very clear procedure and has a standard-

ized proof of the stability, the gains of the controller are not easy for tuning. Sliding mode

control (SMC) scheme is advantageous as it captures the robust nature among the existing non-

linear approaches. SMC has a chattering phenomenon drawback, which reduces the trajectory

tracking smoothness and causes energy losses. To reduce the effect of this phenomenon, some

methods, such as the high-order sliding-mode controller (Zheng et al., 2014) have proposed.

In (Xiong & Zheng, 2014), a terminal sliding mode control designed for fully actuated subsys-

tem while a sliding mode control designed for the under-actuated subsystem. The feasibility

of the terminal sliding mode approach has been shown via simulations. However, this control

approach is known to be very robust, which is a huge benefit. An integral sliding mode con-

troller (ISMC) is proposed in (Mu et al., 2017) for trajectory tracking of the quadrotor. Due
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to the effect of the induced additional error integral term of the ISMC, the trajectory tracking

performance of ISMC is more accurate than the conventional SMC.

The alternative approach to overcome the effect of the external disturbance and uncertainties

is to design an observer to estimate these external disturbances and uncertainties, followed by

the designed controller. Such disturbance observers include a nonlinear disturbance observer

introduced in (Fethalla et al., 2018; Rashad et al., 2016). The validated results have shown

that non-linear disturbance observer (NDO) control can handle disturbances through a faster

dynamic response. In (Besnard et al., 2007), a sliding mode controller based on a sliding mode

observer is proposed for a quadrotor UAV. The observer is introduced to estimate the external

disturbances and to reduce the control gain. Furthermore, many researchers have exploited the

augmentation of integral control with the backstepping technique to limit the effects of para-

metric uncertainties and external disturbances for the trajectory tracking control of quadrotors

(Bouabdallah & Siegwart, 2007), (Raffo et al.). However, the limitation of the integral action

is that the uncertainties or disturbances that could be effectively rejected are exclusive ones,

such as a constant or lumped disturbance. In (Wang et al., 2016), uncertain non-linear systems

considered and a backstepping-based control approach with the help of generalized distur-

bance observer (GDOB) has been proposed. An asymptotic rejection of unmatched general

periodic disturbances as the output feedback form is considered. The unmatched disturbances

are rejected and the asymptotic stability of the system ensured using the proposed disturbance

estimation based scheme. In (Shao et al., 2018), a robust backstepping approach based on ex-

tended state observer (ESO) is introduced. The extended state observer (ESO) combined with

a backstepping controller is derived to estimate the lumped disturbances and the unmeasurable

states in a rotational subsystem simultaneously. However, the proposed scheme has the main

limitation which is the lack of the robustness to various types of the disturbances applied to

the system as it is restrictive to lumped disturbances. The authors in (Aguiar & Hespanha,

2007) presented a backstepping approach for one kind of under-actuated autonomous vehicles.

Based on Lyapunov theory, the problem of global stability is discussed and the tracking error

is guaranteed to converge to a neighborhood of the origin that can be made arbitrarily small.
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The novel contributions are hence summarized as follows: (i) The proposed approach yields

the first SMC and controller that employs a super-twisting observer (STO) to compensate for

matched and unmatched disturbances and model-system error. Although the same type of STO

was also used in (Besnard et al., 2012), its convergence properties were not assessed fully; (ii)

The proof of asymptotic stability for the closed-loop system via the Lyapunov based stability

analysis; (iii) the requirements of the model knowledge for the proposed nonlinear a robust

controller is very limited and it can be implemented easily; its performance is verified via

real-time experiments on quadrotor platform, where the laboratory experiments were preceded

by proper identification and calibration of the real system; (iv) The laboratory experiments

reproduced the simulation results with high fidelity despite using a fan to simulate wind gusts.

The rest of this paper is organized in the following manner. In Section 4.3, we describe the

nonlinear dynamic model of the quadrotor and present the control objective. The super-twisting

observer development is stated in Section 4.4. The tracking control laws for the second-order

systems in vector forms are developed in Section 4.5, the tracking control design development

for quadrotor is provided in Section 4.6, and the observer based tracking control analysis and

the stability of the closed-loop system are proven in Section 4.7. The performance of the

proposed approach is assessed in simulations as well as in the experimental laboratory setting

in section 4.8 followed by the conclusions in section 4.9.

4.3 Dynamical model of a quadrotor

The dynamical model of a quadrotor employed here was originally described in (Hoffmann

et al., 2007b) and used extensively in the literature; see e.g. (Zheng et al., 2014) and (Alexis

et al., 2012a). It is cited here for completeness of exposition. Consider two reference frames:

the earth fixed frame (I) associated with the unit vector basis (E1,E2,E3) and body fixed frame

(B) associated with the unit vector basis (Eb
1
,Eb

2
,Eb

3
) fixed at the center of mass of the quadrotor,

as shown in Fig.4.1.
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The position of the center of the quadrotor’s mass is denoted by the vector p = [x,y,z]T . This

position vector is expressed with respect to an inertial frame (I). The attitude of the quadrotor

in frame (I) is denoted by Θ = [φ,θ,ψ]. These three angles are the Euler angles: yaw (−π <
ψ < π), pitch (−π2 < θ < π

2 ), and roll (−π2 < φ < π
2 ). The angular velocity vector of the quadrotor

in the body-fixed frame (B) is denoted by Ω = [Ωp,Ωq,Ωr]
T . The acceleration vector, with the

acceleration components of roll, pitch, and yaw, respectively, is expressed in the inertial frame

I as Θ̈ = [φ̈, θ̈, ψ̈]. The linear velocities and accelerations of the translational system are given

respectively as ṗ = [ẋ, ẏ, ż], and p̈ = [ẍ, ÿ, z̈].
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Figure 4.1 Quadrotor Airframe And Reference Frames.
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The transformation between the body-fixed frame B and the inertial frame I is carried out by

the use of the rotation matrix R(Θ) and Euler matrix M(Θ) respectively, computed as

R(Θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
CθCψ S φS θCψ−CφS ψ CφS θCψ+S φS ψ

CθS ψ S φS θS ψ+CφCψ CφS θS ψ−S φcψ

−S θ S φCθ CφCθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M(Θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 −S θ

0 Cφ S φCθ

0 −S φ CφS θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the relationship between Θ̇ and Ω is

Ω = M(Θ)Θ̇ (4.1)

The functions S (·) and C(·) denote sin(·) and cos(·), respectively. Detailed derivation of these

transformations can be found in (Alexis et al., 2012a). The quadrotor dynamic equations are

written in the form of two subsystems corresponding to translational motion (referring to the

position of the center of mass of the UAV) and angular motion (referring to the attitude of the

UAV). These equations can be stated in the inertial frame (I) as

p̈ =
1

m
R(Θ)Fprop−G+dp (4.2a)

Θ̈ = (IM(Θ))−1[Tprop− IN(Θ, Θ̇)

−Ω× IΩ−Tg]+dΘ

= Φ(Θ, Θ̇)+Ψ(Θ)Tprop+dΘ

G := [0,0,g]T = gez; (4.2b)

The matrix I = diag(Ix, Iy, Iz) is the inertia matrix of the quadrotor, G is the acceleration due

to gravity, and m denotes the mass of the quadrotor. The terms dp = [dx dy dz]
T and dΘ =



81

[dφ dθ dψ]T represent time-varying unknown disturbance vectors which are assumed smooth

and bounded and include the aerodynamical disturbances. The vector N(Θ, Θ̇) is

N(Θ, Θ̇) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−Cθθ̇ψ̇

−S φφ̇θ̇+Cφφ̇ψ̇−S φS θθ̇ψ̇

−Cφφ̇θ̇−S φCθφ̇ψ̇−CφS θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the matrices Ψ(Θ) and Φ(Θ, Θ̇) are given as

Ψ(Θ) = (IM(Θ))−1

Φ(Θ, Θ̇) = −(IM(Θ))−1[IN(Θ, Θ̇)−Ω× IΩ−Tg]

where Tg models the gyroscopic effects as

Tg =

4∑
i=1

Ω× Jr[0,0, (−1)i+1ωi]
T (4.3)

where Jr is the moment of inertia of each rotor and ωi, i = 1,2,3,4 is the rotary speed of each

motor. Assuming that each motor produces thrust and drag that are proportional to the square

of the motor speed, the force generated by the ith motor is given by fi = bω2
i (i= 1,2,3,4) where

b is the thrust factor. Fprop and Tprop are: the three-dimensional translational force vector and

the three-dimensional reaction moment vector exerted by the propellers, respectively, as given

by

Fprop =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

0

T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ Tprop =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
h( f4− f2)

h( f3− f1)

c
∑4

i=1(−1)i fi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where T =

∑4
i=1 fi is the total thrust, h is the distance from the center of mass to the rotor, and

c is the drag factor coefficient. It is easy to verify that equations (4.2a)-(4.2b) can actually be

written as
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φ̈ = r1θ̇ψ̇− r2θ̇w+q1U2+dφ

θ̈ = r3φ̇ψ̇+ r4φ̇w+q2U3+dθ

ψ̈ = r5θ̇φ̇+q3U4+dψ

ẍ = (CφS θCψ+S φS ψ)
1

m
U1+dx

ÿ = (CφS θS ψ−S φCψ)
1

m
U1+dy

z̈ = −g+
1

m
(CφCθ)U1+dz

(4.4)

where [U1,U2,U3,U4]T= [T,Tprop]T is the control input vector.

r1 =
Iy− Iz

Ix
,r2 = − Jr

Ix
,r3 =

Iz− Ix

Iy
,r4 =

Jr

Iy
,

r5 =
Ix− Iy

Iz
,q1 =

h
Ix
,q2 =

h
Iy
,q3 =

1

Iz

are inertia related constants and ω = ω4+ω3−ω2−ω1.

The entire state vector X of the quadrotor model is defined as

X = [p ṗ Θ Θ̇]T ∈ R12

For transparency of further derivations, it is finally convenient to re-write equations (4.2a)-

(4.2b) (or equivalently those in (4.4)) in the following block compact form

p̈ = −G+Up+dp (4.5)

Θ̈ = Φ(Θ, Θ̇)+UΘ +dΘ (4.6)

with

Up :=
1

m
R(Θ)U1ez; (4.7)

UΘ := Ψ(Θ)[U2 U3 U4]T (4.8)
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4.3.1 Problem statement

The control objective in steering the quadrotor is stated as follows:

Control Objective for the Quadrotor

The goal is to design and analyze the performance of a bank of controllers that enable asymp-

totic tracking of the position of the center of mass and the yaw angle of the quadrotor: (p,ψ)

to prescribed reference trajectories pr(t),ψr(t); t ≥ 0. The designed controllers are required to

be robust with respect to the unknown force and torque disturbances dp,dΘ. The unknown

disturbances are assumed to be uniformly bounded.

For the purpose of control design, the dynamic model (4.4) of the quadrotor is viewed as a sys-

tem composed of two subsystems, the position subsystem (4.5), and the rotational subsystem

(4.6). It is seen that the attitude subsystem is decoupled from the position subsystem and that

it is fully input-output actuated, with the output defined as the attitude vector Θ. Also, its dis-

turbances dΘ are matched to the three components of the propeller torque vector. By contrast,

the position subsystem is underactuated as its only control variable is the thrust force which

can be used to attenuate the disturbance component dz while leaving the disturbances dx, dy

unmatched by the thrust control.

4.4 Super-twisting Sliding Mode Observer

In terms of flight performance, uncertainties cannot be neglected. The disturbance rejection

task of tracking controllers may be much facilitated if the disturbances can be estimated online.

Nonlinear disturbance observers will thus be employed that effectively allow decomposing dp

and dΘ into

dp = d̂p+ edp; dΘ = d̂Θ + edΘ (4.9)

where d̂p, d̂Θ represent the disturbances estimates while edp , edΘ are the observer errors to be

attenuated by the controllers.
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The high gain type observers suggested requiring strict assumptions about the matched as well

as the unmatched disturbances in the model (4.4).

Assumption 4.1. The disturbances dp and dΘ are assumed to be limited to the class of bounded

differentiable functions with bounded derivatives, i.e.

‖ḋp(t)‖ � Dp, ‖ḋΘ(t)‖ � DΘ t > 0 (4.10)

for some positive constants Dp, DΘ.

ˆ̈p = fp(X,T )+ vp (4.11a)

ˆ̈Θ = fΘ(X,Tprop)+ vΘ (4.11b)

where ˆ̈p, and ˆ̈Θ are the estimate of p̈ and Θ̈ respectively. vp and vΘ are the injection terms that

are defined below. The dynamics of estimation errors are derived as

ėp = p̈− ¨̂p = dp− vp, ėΘ = ¨̂Θ− Θ̈ = dΘ− vΘ (4.12)

Therefore, the auxiliary (observer) sliding variables, which dynamics are given by Eq. 4.12 can

be stabilized by the second order sliding mode differentiators (Levant, 1998) that are introduced

for each subsystem as follows:

vp = −λp|ep|1/2sign(ep)+up

u̇p = −αpsign(ep)
(4.13a)

vΘ = −λΘ|eΘ|1/2sign(eΘ)+uΘ

u̇Θ = −αΘsign(eΘ)
(4.13b)

where sign(ep), sign(eΘ) are the extension of the signum function to vectors.

With sufficiently large gains λp, αp, λΘ, and αΘ, the estimation errors ep and eΘ converge to
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zero in finite time. Therefore, the continuous super-twist control injection terms vp and vΘ will

estimate exactly the disturbances dp and dΘ respectively.

d̂p = vp, d̂Θ = vΘ (4.14)

The proposed Lyapunov function of the super-twisting observer written in its quadratic form is

Vs j = ζ
T
j P jζ j, where ζ j = [|e j| 12 sign(e j),v j]

T and P j is a positive definite matrix defined as

P =
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣4α j+λ
2
j −λ j

−λ j 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4.15)

where j = p,Θ. Notice that VS j(ζ j, t) is continuous but not differentiable at e j = 0. In fact it is

positive definite but radially unbounded if � j > 0, i.e.

λmin(P j) ‖ ζ j ‖2≤ VS j(e j,v j) ≤ λmax(P j) ‖ ζ j ‖2 (4.16)

where the Euclidean norm ‖ ζ j ‖2 of ζ j is defined as ‖ ζ j ‖2= |e j|+ v2
j . The time derivative of the

Lyapunov function defined above is

V̇S j = − 1

|e j| 12
ζT

j Q jζ j (4.17)

where

Q j =
λ j

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣2α j+λ
2
j − (

4α j
λ j
+λ j)ι j −λ j−2ι j

−λ j−2ι j 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4.18)

where ι j is positive constant. It can be noted that V̇S j is negative definite if Q j > 0. Furthermore,

from Eq. 4.16, we deduce the following inequality:

|e j| 12 ≤‖ ζ j ‖≤
VS j(ζ j)

1
2

λ
1
2

min(P)

(4.19)
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We can then conclude that V̇S j satisfies

V̇S j ≤ −ς jV
1
2

S j(ζ j) (4.20)

where ς j = (λ
1
2

min(P)λmin(Q)/λmax(P).

The previous result guarantees the finite time convergence of e j to zero and reaches this value at

the bounded time T = (2V
1
2

S j(ζ(0))/ς j, where ζ j(0) is the initial value of ζ j for j = p,Θ. Eq.4.20

can be re-written for both subsystems as

V̇S p ≤ −ςpV
1
2

S p(ζp)

V̇SΘ ≤ −ςΘV
1
2

SΘ(ζΘ)

(4.21)

4.5 Tracking control laws for second order systems in vector form

Towards the design of the tracking control, it is first noted that the attitude and position sub-

systems (4.5) and (4.6) are only coupled by the attitude vector Θ. It is also easy to verify that

the mapping of the four motor forces to the propeller torques and thrust force: [ f1, · · · , f4] �→
[Tprop;T ] is invertible, thus it can be assumed that the position and attitude controls, U1 and

[U2,U3,U4], are acting independently. The attitude subsystem (4.6) is an uncertain second

order system in vector form whose output, the attitude vector Θ, is fully actuated by its three-

dimensional control UΘ. A fortunate property of this subsystem is that the unknown distur-

bances that affect it are fully matched by the controls UΘ. What is implied is that, if known,

the disturbances dΘ can be instantaneously canceled by the action of the control UΘ.

Prior to approaching the tracking control design for the whole quadrotor system, it is hence

justified to present a few results pertaining to the construction of tracking control laws for

general, fully actuated, but uncertain second order systems in vector form. This general system

is important because the Lagrangian equations for the motion of a fully actuated rigid body

are one example of this class. Other, possibly more robust and more flexible methods for



87

the solution of the same problem can be derived adapting the vector stabilization approaches

presented in (Adegas & Stoustrup; Henrion et al., 2003).

The uncertain second order systems considered here are assumed to take the form of a vector

double integrator

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ẋ1

ẋ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0 I

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ x1

x2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0

U

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0

d̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0

ed

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4.22)

y = x1 (4.23)

with, generally, n-dimensional control, disturbance, state and output vectors, i.e. U, d̂,ed,y, xi ∈
R

n ; i = 1,2. It is seen that the above system is fully actuated as an input-output mapping:

U �→ y, and that all disturbances are matched to the controls U. The following will be used :

Lemma 4.1. For all vectors x,y ∈ Rn

|xT y| ≤ 1

2
||x||2+ 1

2
||y||2 (4.24)

Proof. It suffices to prove the inequality for the case when xT y > 0. The result follows imme-

diately by rearranging the quadratic inequality

0 ≤ (x− y)T (x− y) = xT x−2xT y+ yT y (4.25)

Assumption 4.2.

• The disturbance d̂ is considered known while the disturbance ed is an unknown function of

time, which is, however, assumed bounded by a known constant D, i.e.

||ed(t)|| ≤ D for all t ∈ [0,∞) (4.26)

• The reference trajectory to be tracked, denoted by: x1r(t); t ≥ 0, x1r(t) ∈ Rn, is required to

be a twice continuously differentiable vector function of time.
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• The full system state [x1(t), x2(t)]; t ≥ 0, is available for feedback control and the control U

is unconstrained.

Remark 4.1. The known disturbance d̂ can include known nonlinear functions of time and

system states, possibly combined with on-line estimates of unknown system disturbances, if the

latter are available. The unknown disturbance functions ed can represent remaining uncertain-

ties in the system such as estimation errors of any nonlinear disturbance observers employed.

It is also seen that the integrator chains of (4.22) are fully actuated and that the functions d̂

and ed can both be considered as “matched disturbances” in (4.22) controlled by U.

With the control goal of tracking the prescribed reference trajectory x1r(t); t ≥ 0, the following

results analyze basic closed-loop tracking control methods, with and without the effect of the

unknown disturbances. The first method, analyzed in Proposition 4.1, relies exclusively on

the magnitude of the gains to ensure the desired precision of tracking and robustness to distur-

bances (i.e. attenuation of unknown disturbances). The advantage is smooth tracking control.

The second method, analyzed in Proposition 4.2, employs a variant of sliding mode control in

combination with gain tuning to achieve finite time convergence to the second order tracking

manifold, simultaneously featuring stronger robustness properties in asymptotic tracking.

Proposition 4.1. (Smooth high gain tracking control)

Consider a system in vector form (4.22) under Assumptions 4.2.

Part A ( Unknown disturbances are absent i.e. ed ≡ 0 )

Assuming that the disturbance vector d̂ is known, the unknown disturbances are absent, ed ≡ 0,

and the control vector U is unconstrained, the closed loop system (4.22) with the control law

employing any strictly positive gain matrices K1,K2 ∈ Rn×n, K1 > 0.5I, K2 > 0.5I,

UH(x1, x2, x1r, d̂) := (K2+K1)(ẋ1r − x2)

+K2K1(x1r − x1)+ ẍ1r − d̂ (4.27)
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achieves asymptotic tracking of any prescribed vector reference trajectory x1r(t), t ≥ 0, in the

sense that

||x1− x1r|| → 0 and ||ẋ1− ẋ1r|| → 0 as t→∞ (4.28)

Part B ( Unknown disturbances are present )

Assuming that the disturbance vector d̂ is known, the unknown disturbances are bounded by

(4.26), and the control vector U is unconstrained, then for any constant ε > 0, there exist control

gains K1,K2 ∈Rn×n such that the tracking error for system (4.22) in closed loop with the control

law (4.27) is asymptotically bounded as follows

||x1(t)− x1r(t)||2+ ||x2(t)− ẋ1r(t)||2 ≤ ε (4.29)

for all t ≥ T ∗, for a sufficiently large time T ∗ > 0.

Proof. (Part A) Define two new vector variables as functions of the state vectors x1, x2 and the

vector reference trajectory x1r with time derivative ẋ1r :

e1 := x1r − x1 (4.30)

e2 := ẋ1r − x2+K1e1 = ẋ1r − ẋ1+K1e1 (4.31)

= ẋ1r − x2+K1(x1r − x1) (4.32)

for any given strictly positive definite matrix K1 > 0. The following implications then clearly

hold as t→∞:

{e1→ 0} =⇒ {x1→ x1r} (4.33)

{e2→ 0} =⇒ {ẋ1→ ẋ1r} (4.34)
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as is required. To construct a control that results in the above, consider the Lyapunov function

Ve :=
1

2
[eT

1 e1+ eT
2 e2] (4.35)

Definitions (4.30) - (4.31) combined with the system equations (4.22) imply the following ex-

pressions for the derivatives

ė1 = ẋ1r − ẋ1 = −K1e1+ e2 (4.36)

= −K1e1+ (ẋ1r − x2+K1e1) = ẋ1r − x2

ė2 = ẍ1r − ẋ2+K1ė1

= ẍ1r +K1ė1−U − d̂ (4.37)

Hence, using (4.36) - (4.37), gives

V̇e = eT
1 ė1+ eT

2 ė2

= −eT
1 K1e1+ eT

1 e2+ eT
2 (ẍ1r +K1ė1−U − d̂) (4.38)

Let the control U solve

−K2e2 = +ẍ1r +K1ė1−U − d̂ (4.39)

By virtue of (4.30) - (4.32), and (4.36) - (4.37), the solution is

UH := K2e2+K1ė1+ ẍ1r − d̂

= K2[(ẋ1r − x2)+K1(x1r − x1)]+K1[ẋ1r − x2]

+ ẍ1r − d̂ (4.40)

= (K2+K1)(ẋ1r − x2)+K2K1(x1r − x1)

+ ẍ1r − d̂ (4.41)
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From Lemma 4.1

eT
1 e2 ≤ 1

2
||e1||2+ 1

2
||e2||2 (4.42)

Using this fact in (4.38) with control UH yields

V̇e = −eT
1 K1e1+ eT

1 e2− eT
2 K2e2

≤ −eT
1 (K1−0.5I)e1− eT

2 (K2−0.5I)e2 < 0 for t ≥ 0 (4.43)

provided that K1,K2 > 0.5I. Inequality (4.43) then proves (4.33) - (4.34) and thus (4.28) with

the tracking control as in (4.27).

Proof. (Part B) If the unknown disturbance is nonzero then equation (4.37) becomes

ė2 = ẍ1r +K1ė1− ẋ2

= ẍ1r +K1ė1−U − d̂− ed (4.44)

With the control law still satisfying (4.39), the inequality (4.38) involves an additional term

V̇e = −eT
1 K1e1+ eT

1 e2+ eT
2 (ẍ1r +K1ė1−U − d̂− ed)

≤ −eT
1 (K1−0.5I)e1− eT

2 (K2−0.5I)e2− eT
2 ed (4.45)

By Lemma 4.1

− eT
2 ed ≤ 1

2
||e2||2+ 1

2
||ed ||2 (4.46)

Letting Ki, i= 1,2 satisfy Ki−0.5I ≥ kiIn×n, for some constants k1 > 0,k2 > 0.5, inequality (4.45)

combines with (4.46) and the bound (4.26) to yield
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V̇e ≤ −k1eT
1 e1− (k2− 1

2
)eT

2 e2+
D2

2

≤ −αVe+
D2

2
(4.47)

for α := 2 min{k1,k2−0.5}. Invoking Proposition 4.1 proves (4.29).

When the initial conditions of the system (4.22) are far from the reference trajectory the track-

ing control of Proposition 4.1 can be enhanced by introducing an additional sliding mode con-

trol term, as presented and analyzed below. This result does not require separate consideration

of the case with unknown disturbances as the latter can be attenuated by the power of the sliding

mode control alone.

Proposition 4.2. (First order sliding mode tracking control)

Consider a system in vector form (4.22) under Assumptions 4.2. Let the tracking error vari-

ables be defined as in Proposition 4.1.

For simplicity of analysis it will be assumed that the tunable controller gains K1,K2 in the

control law proposed below will take, or else be majorized by, the respective simple forms:

K1 := k1In×n, K2 := k2In×n for some constants k1 > 0.5, k2 > 0 to be selected in specific appli-

cations. Defining a sliding surface as

S (x1, x2) := e2 = 0 (4.48)

the tracking control (4.27) of Proposition 4.2 is augmented by a sliding mode control term as

follows:

US (x1, x2, x1r, d̂) := (K2+K1)(ẋ1r − x2)

+K2K1(x1r − x1)+ ẍ1r − d̂

+A sign[(ẋ1r − x2)+K1(x1r − x1)] (4.49)
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where A := diag{a1,a2, · · · ,an}, ai > D, i = 1, · · · ,n, and for any vector v ∈ Rn, the term A sign(v)

represents a column vector whose components are: aisign(vi), i = 1, · · · ,n.

Under these assumptions, for any initial conditions [x1(0), x2(0)] of the system at t = 0, the

trajectories of the closed loop system using the control law US reach the sliding surface e2 = 0

in finite time t∗ bounded by

t∗ ≤ 2 maxi

{ |e2i(0)|
(ai−D)

}
(4.50)

In the absence of unknown disturbances the closed loop system trajectories remain on the

sliding surface e2 ≡ 0 for all times t ≥ t∗. The system trajectories converge asymptotically to

the desired reference trajectory, i.e. as t→∞ :

{e1→ 0} =⇒ {x1→ x1r} (4.51)

{e2→ 0} =⇒ {ẋ1→ ẋ1r} (4.52)

The equivalent control in sliding mode is derived from the equality Ṡ = 0 (with the disturbance

ed = 0 set to zero) thus

US
eq = ẍ1r +K1ė1− d̂

= ẍ1r +K1[ẋ1r(t)− x2(t)]− d̂ (4.53)

The system dynamics in sliding regime is

d
dt

x1(t) = ẋ1r(t)−K1[x1(t)− x1r(t)];

i..e.
d
dt

e1(t) = −K1e1(t); t ≥ t∗ (4.54)

Proof. Employing the same definitions for the variables e1 and e2 as in (4.30) - (4.31), and the

same Lyapunov function as that in (4.35), its derivative is
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V̇e = eT
1 ė1+ eT

2 ė2 (4.55)

= −eT
1 K1e1+ eT

1 e2 (4.56)

+ eT
2 (ẍ1r +K1ė1−US − d̂− ed)

with ė2 = ẍ1r +K1ė1−US − d̂− ed (4.57)

Let US satisfies

−A sign(e2)−K2e2 = ẍ1r +K1ė1−US − d̂ (4.58)

It follows that

US := K2e2+A sign(e2)+K1ė1+ ẍ1r − d̂

= K2[(ẋ1r − x2)+K1(x1r − x1)]+K1(ẋ1r − x2)

+ ẍ1r − d̂+A sign(e2) (4.59)

= (K2+K1)(ẋ1r − x2)+K2K1(x1r − x1)

+ ẍ1r − d̂

+A sign[(ẋ1r − x2)+K1(x1r − x1)] (4.60)

which confirms (4.49). After substituting US into (4.57)

ė2 = −K2e2−A sign(e2)− ed (4.61)

With e2i,edi; i = 1, · · · ,n, denoting the entries of the vectors e2 and ed, respectively, (4.61) re-

writes componentwise as

ė2i = −k2e2i−ai sign(e2i)− edi; i = 1, · · ·n (4.62)
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Multiplying by e2i gives

e2iė2i =
1

2

d
dt

e2
2i = −k2e2

2i−ai|e2i| − e2iedi;

≤ −k2e2
2i− (ai−D)|e2i| (4.63)

≤ −(ai−D)|e2i| i = 1, · · ·n (4.64)

because k2 > 0 and

− e2iedi ≤ |e2iedi| ≤ D|e2i| (4.65)

with |edi| ≤ ||ed || ≤ D for all i = 1, · · · ,n. (4.66)

From Lemma 4.1

eT
1 e2 ≤ 1

2
||e1||2+ 1

2
||e2||2 (4.67)

so, using (4.63) in (4.56), yields

V̇e = −k1eT
1 e1+ eT

1 e2+ eT
2 ė2

≤ −(k1−0.5)eT
1 e1− (k2−0.5)eT

2 e2 (4.68)

− (ai−D)|e2i| < 0 t ≥ 0 (4.69)

provided that ai > D for all i = 1, · · · ,n and k1 > 0.5, k2 > 0.5.

Without the loss of generality assume that e2i(0) > 0; then (4.63) implies

2e2i
d
dt

e2i ≤ −(ai−D)e2i

i.e
d
dt

e2i ≤ −1

2
(ai−D) (4.70)

Integrating the above on the interval [0, t∗i ] where t∗i is the finite reaching time for component

e2i renders the bound
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e2i(t∗i )− e2i(0) ≤ −1

2
(ai−D)(t∗i −0)

=⇒ t∗i ≤ 2
e2i(0)

(ai−D)
(4.71)

as e2i(t∗i ) = 0. Generalizing to the case of e2i(0) < 0 and taking a maximum over i yields the

total bound (4.50).

Inequality (4.68) then immediately implies the validity of (4.51) - (4.52). The dynamics in the

sliding mode (4.54) is obtained by setting e2 = 0 in (4.32) and the equivalent control (4.53) is

calculated by assuming that ė2 = 0 and ed = 0 in (4.57).

Remark 4.2. In terms of the tracking errors e1 and e2 as defined by (4.30) - (4.31), and with

the ė1 given in (4.36), the expressions for the control laws UH and US of Propositions 4.1 and

4.2, respectively, are given by

UH = K2e2+K1ė1+ ẍ1r − d̂

= K2e2+K1(−K1e1+ e2)+ ẍ1r − d̂

= (K1+K2)e2+ (1+K2
1)e1+ ẍ1r − d̂ (4.72)

US = K2e2+A sign(e2)+K1ė1+ ẍ1r − d̂

= (K1+K2)e2+ (1+K2
1)e1

+A sign(e2)+ ẍ1r − d̂ (4.73)

There are several practical implementations of the signum function in the sliding mode con-

trol (4.49) that allows attenuating the undesirable phenomenon of chattering; (O’Toole et al.,

2010b). Here, a simple saturation function with constant boundary layer was employed.

The output of the sliding mode controller is additionally smoothed by the presence of the in-

ertial term −K2e2 in the sliding mode equation (4.61). This explains the absence of chattering

behavior in simulation results.
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Remark 4.3. The result of Proposition 4.3 indicates that the adverse effect of the unknown

system disturbances can be effectively eliminated by the inherent robustness properties of the

sliding mode control. This can be achieved because the disturbance and control variables

in system (4.22) are fully matched and the disturbances are bounded in magnitude. Similar

disturbance robustness properties are not shared by the smooth high gain tracking control of

Proposition 2 as the disturbances cannot be dominated by any component of that control. By

contrast, such domination is accomplished by the scaled signum function in the sliding mode.

Additionally, the sliding mode control provides a very effective means of adjusting the speed of

convergence to the desired reference trajectory by increasing the gains A and K1, see equations

(4.50) and (4.54).

When smooth control is a priority, the tracking control quality must be traded for limited track-

ing precision and speed of convergence unless the system disturbances are fully known or else

can be estimated with zero asymptotic error.

The disturbance observer developed in the preceding section can prove the following useful

characteristics:

• provide disturbance estimates with a desired bound on the estimation error, hence securing

“double tracking precision” in a closed loop with the smooth control law if its gains are

limited in magnitude ;

• indirectly decrease the bound on the unknown disturbances in a closed loop with the sliding

mode controller; see the decompositions (4.9), thus reducing the control effort (decreasing

the magnitude of the gains) and increasing the speed of convergence.

4.6 Tracking control design for the quadrotor

The position subsystem (4.5) is clearly not in the form of (4.22). Specifically, this is because

the components of the control vector U ∈ R3 of (4.22), now considered as a member of R3,

are explicitely assumed to be functionally independent and unconstrained. By contrast, if the

position subsystem (4.5) were to match the form and assumptions of (4.22), then it would have
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to hold that

U(t) =
1

m
R(Θ(t))T (t)ez for all t ≥ 0 (4.74)

for any desired value of the control vector U(t) and any value of the attitude state vector Θ(t)

of the evolving attitude subsystem. As the value of T (t) is a scalar, this is impossible as the

control vector U(t) is clearly aligned with the vector R(Θ(t))ez for all times t. Implied is also

the fact that in the position subsystem the disturbances are not matched with the control (the

disturbances cannot be cancelled instantaneously by the choice of the thrust force alone).

To find a way in which to resolve these difficulties, hypothesize that the control constraint in

the position subsystem can somehow be relaxed by way of substituting it with

U(t) =
1

m
R(Θr(t))T (t)ez for all t ≥ 0 (4.75)

where Θr(t) := (ψr(t), θr(t),φr(t)), with the yaw angle trajectory imposed as a reference ψr(t)

and the trajectories θr(t),φr(t) to be chosen freely together with the value of the thrust force

T (t) to match any desired value of the right hand side control vector U(t). Then, the position

control law of Proposition 4.2 could be applied to steer the position system as required. By

making the following variable substitutions in the generic second order tracking system (4.22)

with n = 3:

x1 := p; x2 := ṗ; x1r := pr;

d̂ := d̂p+G; UH := Up (4.76)

the control law for tracking a given spatial reference position pr would be given by

Up := (K1p+K2p)(ṗr − ṗ)+K2pK1p(pr − p)

+ p̈r − d̂p−G (4.77)
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where it is assumed that the actual position and velocity vectors p and ṗ would be available

from on-line measurement. The control law Up (4.77) will henceforward be referred to as the

“desired” position control because it would have to be “reconciled” with the U of (4.75) as,

generally, Θ(t) � Θr(t).

On the other hand, the attitude subsystem is fully actuated. As will become clear, the precision,

robustness, and speed of the tracking attitude control will prove primordial towards achieving

the overall tracking goal of combined position and yaw angle of the rotorcraft. Sliding mode

control is hence better suited to attain tracking of the attitude. To this end the disturbance

vector dΘ is considered estimated and the following variable substitutions are made in (4.22)

with n = 3:

x1 := Θ; x2 := Θ̇; x1r := Θr;

d̂ := d̂Θ +Φ(Θ, Θ̇); US := UΘ (4.78)

to deliver the sliding mode tracking law for the entire Θr with suitably chosen gain matrices A,

K3 > 0.5I,K4 > 0.5I as in Proposition 4.3.

UΘ := (K1Θ +K2Θ)(Θ̇r − Θ̇)+K2ΘK1Θ(Θr −Θ)

+Θ̈r − d̂Θ−Φ(Θ, Θ̇)

+AΘ sign[(Θ̇r − Θ̇)+K1Θ(Θr −Θ)] (4.79)

It is again assumed that the angular position and velocity vectors Θ and Θ̇ are available from

on-line measurement.

The discontinuous function sign(.) in the control law (4.79) is replaced by a continuous function

to reduce the effect of the chattering in the control signal. For instance, the signum function

sign(.) can be replaced by the following function (O’Toole et al., 2010b)

sign(s) =
s

‖s‖+ς (4.80)



100

where ς is a positive tuning parameter that smoothes the discontinuity. It is tuned manually to

attenuate the chattering problem.

The above control laws are abstract in the sense that they cannot be applied directly to achieve

the tracking goal as stated in section 4.4, if only for the reason that the “decoupling” virtual

attitude needed in (4.75) is yet undefined. However, the idea is now clear as the number of

the system variables to be tracked (xr,yr,zr,ψr) matches the number of “free” control variables

(U1,U2,U3,U4) so, indirectly, the tracking problem is fully actuated. The “virtual reference

trajectories” θt(t),φr(t); t ≥ 0, for the “free” attitude angles θ and φ can be imposed as to emu-

late independence of the three “desired” position control components (Uxd,Uyd,Uzd) of Up in

(4.77). Exact tracking of full attitude in R3 is feasible because the components of the attitude

control UΘ = [U2,U3,U4] are unconstrained and matched to the unknown disturbances thus

permitting simultaneous tracking of all the three attitude reference trajectories (ψr, θr,φr).

To generate the aforementioned reference trajectories θr and φr, it is first convenient to re-state

the explicit parametrization of the desired control Up = (Uxd,Uyd,Uzd) as given by (4.77):

Uxd = (CφrS θrCψr +S φrS ψr)
U1d

m
(4.81)

Uyd = (CφrS θrS ψr −S φrCψr)
U1d

m
(4.82)

Uzd = (CφrCθr)
U1d

m
(4.83)

where, at this point, U1d has the interpretation of a desired thrust force to be applied to the

system. Multiplying (4.81) and (4.82) by Cψr and S ψr , respectively, and adding the result side

by side yields

CψrUxd +S ψrUyd = (CφrS θr)
U1d

m
= tan(θr)Uzd (4.84)

Similarly, multiplying (4.81) and (4.82) by S ψr and −Cψr , respectively, and adding the result

side by side yields
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S ψrUxd −CψrUyd = S φr

U1d

m
= tan(φr)

Uzd

Cθ
(4.85)

Hence, it follows that, given any desired values of Uxd,Uyd and Uzd � 0, that satisfy (4.77), and

any reference value of the yaw angle ψr, one can impose corresponding “desired values” of the

roll and pitch angles :

θr = arctan
(CψrUxd +S ψrUyd)

Uzd
(4.86)

φr = arctan
Cθr(S ψrUxd −CψrUyd)

Uzd
(4.87)

so that any desired (Uxd,Uyd,Uzd) controls are replaced, albeit indirectly, by the “virtual con-

trols” (θr,φr,U1d) .

The position and attitude control systems are coupled in such a way as to permit the desired

attitude angles φr and θr and to be tracked by the attitude controller (see Fig. 4.2 implicitly

using the position control law (4.77)).

Remark 4.4. It should be noted that the four-quadrant inverse of the tangent function is a

multivalued function comprising three separate branches. The reference angles in (4.86) -

(4.87) will be computed from the principal branch of the arctan function only if the desired

value of Uzd is strictly positive. In that case, the reference angles will lie in the set

R := {(φr, θr)|φr ∈ (−π
2
,
π

2
);θr ∈ (−π

2
,
π

2
)} (4.88)

which corresponds to the singularity free situation in which Cφr > 0,Cθr > 0 that also implies

that:

• the virtual reference trajectories φr(t), θr(t); t ≥ 0, are twice continuously differentiable

functions, as required by Propositions 4.1 and 4.2;

• the control thrust force applied to the quadrotor, denoted here by T A(t), is well defined and

takes positive values for all t > 0.
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Figure 4.2 Block diagram of the proposed slidng mode control

driven by STO design.

As the above conditions need to hold for the tracking control to be implementable, restrictions

need to be imposed on the reference trajectories to be tracked, initial conditions of the system,

as well as the control gains. This will be addressed in the next section.

The structure of the disturbance observer used here was introduced in (Yang et al., 2013), but

its analysis is much more detailed leading to a stronger property. The implementation of the

combined tracking control law for the quadrotor is carried out as follows

Tracking control for the quadrotor

• Given the desired reference vector (pr(t),ψr(t)) and the measured state (p(t), ṗ(t)) at any

time instant t, the right hand side of (4.77) is first computed to yield the value of the desired

control vector (Uxd,Uyd,Uzd)(t) for the position subsystem to track the given reference pr.

• The corresponding virtual reference angles (θr(t),φr(t)) are next computed from the arctan

functions in (4.86) - (4.87).
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• Provided that (θr(t),φr(t)) ∈ R, the actual position tracking control to be applied to the

system, here denoted by UA
p , is then given by; see (4.4):

UA
p (t) =

1

m
R(Θ(t))T A(t)ez (4.89)

where the thrust force function is calculated as

U1d(t) := T A(t) = m
Uzd(t)

Cφr(t)Cθr(t)
> 0 (4.90)

• The attitude control UΘ is computed as in (4.79) with its reference attitude trajectory

Θr(t) = (ψr, θr,φr)(t) (4.91)

and is applied to the system in the form of the torque vector

[U2,U3,U4](t) = Ψ(Θ(t))−1UΘ(t); t ≥ 0 (4.92)

Clearly, the applied position tracking control UA
p is a function of both the measured attitude Θ

and the virtual angles (θr,φr) and also Uzd.

Remark 4.5. Note that Up and UA
p differ as the correct thrust force in Up would be, as required

by Proposition 4.2

T (t) = m
Uzd(t)

Cφ(t)Cθ(t)
(4.93)

rather than that of (4.90).

The difference of the control values UA
p (t) and Up = (Uxd,Uyd,Uzd)(t) is then dependent on the

convergence of the attitude subsystem trajectories to their full attitude reference Θr(t). By the

results of Proposition 4.3, convergence rate to the attitude reference trajectory can be regulated

as desired if the control gains are not limited in magnitude.
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4.7 Observer based tracking control analysis

If the unknown disturbances dp and dΘ are estimated by their respective observers (4.11a)-

(4.11b), the position and attitude closed loop subsystems with all their inaccuracies can be

written as

p̈ =G+UA
p + d̂p+ edp + (Up−UA

p ) (4.94)

Θ̈ = Φ(Θ, Θ̇)+UΘ + d̂Θ + edΘ (4.95)

with the control laws UA
p and UΘ employing the estimates d̂p and d̂Θ as in (4.89), (4.79), with

the total unknown disturbances in the position and atttude subsystems defined as

ep := edp + (Up−UA
p ) (4.96)

eΘ := edΘ (4.97)

For simplicity of the convergence analysis and without much loss of generality it will hence-

forth be assumed that all the controller gains are diagonal as given by:

Kip := kipI3×3; KiΘ := kiΘI3×3; i = 1,2

AΘ := diag{a1,a2,a3} (4.98)

for some positive constants kip,kiΘ,ak; i = 1,2,k = 1,2,3.

As pointed out in Remark 4.4, the tracking control for the quadrotor is implementable only

when the computed, desired altitude control component Uzd of Up is strictly positive for all

times.

Definition 4.1. (Tracking control feasibility)

The tracking control is feasible if the intial conditions of the system, the reference trajectories

to be tracked pr(t),ψr(t); t ≥ 0, the ensemble of system disturbances, and the position controller
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gains kip, i = 1,2, are such that the computed attitude control component, and consequently the

control thrust force satisfy

Uzd(t) > 0, T A(t) > 0; for all t ≥ 0 (4.99)

A brief discussion of sufficient conditions for the tracking control feasibility is in place. Since

the position controller gains are assumed diagonal, the instantaneously desired altitude control

component of Up is computed as

Uzd = (k1p+ k2p)e2p(3)+ (1+ k2
1p)e1p(3)+ z̈r

− d̂z+g (4.100)

e1p(3) = zr − z; e2p(3) = żr − ż+ k1p(zr − z)

see also (4.72), where eip(3), i = 1,2, denote the altitude i.e. z-components of the respective

tracking errors. It is clear that a sufficient condition for Uzd to be positive is that the gravity

term g defined in (4.2b) dominates the sum of all other terms in (4.100) at all times. Such a

condition is clearly too conservative as some of the terms in (4.100) can be positive during

tracking and especially during sustained ascent when e1p(3) > 0, ė1p(3) > 0 and z̈r > 0. The

same terms are, however, equally likely to be negative during descent and then the dominance

of g might require reduction of the controller gains to preserve positivity of the thrust force

during flight. In the case when the vertical disturbance dz is estimated without any error (i.e.

when edp(3) ≡ 0) the vertical component of the tracking error eventually converges to zero, so

Uzd→ z̈r − d̂z+g as t→∞ (4.101)

If, additionally, the reference accelerations in altitude are asymptotically zero, the necessary

condition for tracking control feasibility is the dominance of the vertical disturbance accelera-
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tion by the gravitational one.

g > |d̂z(t)| for all t ≥ 0 (4.102)

Clearly, this condition is generally not sufficient for control feasibility.

Remark 4.6. In conclusion, the feasibility of the tracking control hinges entirely on the altitude

control of the quadrotor. The vertical disturbance force must not exceed the gravitational

force for the tracking control to be feasible, which is obvious from a practical point of view.

Control feasibility is more likely to be lost during descent thus the sign of the calculated desired

vertical component of the position control Uzd can be monitored and corrected by decreasing

the controller gains adaptively during descent, if necessary.

It is now straightforward to characterize the stability of the overall closed-loop tracking control

system.

Theorem 4.1. The quadrotor system in closed loop with the control laws of the form (4.89)

- (4.91), (4.79), and indirectly by the desired law (4.77), when coupled with the nonlinear

estimators (4.11a) - (4.11b) of the unknown disturbances dp and dΘ, achieves the tracking goal

as specified below.

With the assumption that the tracking control problem is feasible as defined in Definition 4.1,

with disturbances limited as in (4.102) , let pr(t) ∈ R3, ψr(t) ∈ R, t ≥ 0, be the twice continu-

ously differentiable position and yaw angle reference trajectories to be tracked asymptotically.

Given an admissible tolerance εtol > 0 for the total asymptotic tracking error in the position

and yaw angle (p,ψ), there exist position controller gains K1p,K2p, attitude controller gains

K1Θ,K2Θ,AΘ, and a time T ∗ > 0 such that

||p(t)− pr(t)||2+ |ψ(t)−ψr(t)|2 ≤ εtol for t ≥ T ∗ (4.103)
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Proof. Since the disturbance observers do not depend directly on the action of the tracking

controllers, let T ∗E > 0 be a time such that both disturbance observer estimation errors satisfy

max {||edp(t)||2, ||edΘ(t)||2} ≤ 0.25εtol; t ≥ T ∗E (4.104)

By construction of the virtual attitude trajectory Θr(t); t ≥ 0, if the tracking control problem is

feasible then θr,φr are analytic functions of their arguments, and since the reference trajectory

ψr is twice differentiable, the following bound holds for the difference between the desired and

applied position controls

|UA
p (t)−Up(t)|

≤ Uzd ||R(Θ(t))ez||
∣∣∣∣∣∣ 1

Cφr(t)Cθr(t)
− 1

Cφ(t)Cθ(t)

∣∣∣∣∣∣ (4.105)

for all t ≥ 0. By continuity of trajectory Θ(t); t ≥ 0, there exists a constant δΘ > 0 such that

|UA
p (t)−Up(t)| <

√
0.25εtol for all t such that

||Θ(t)−Θr(t)|| < δΘ (4.106)

where, without the loss of generality it can be assumed that δΘ <
√

0.5εtol.

As already pointed out, convergence in the attitude tracking is completely independent of the

performance of the position tracking control as the attitude subsystem is decoupled from the

position subsystem and hence can be controlled independently. Given any attitude reference

trajectoryΘr the sliding mode attitude controller (4.79) in closed loop of the attitude subsystem

dynamics can be tuned to deliver asymptotic tracking, in spite of its unknown disturbances eΘ

as in (4.97)

||Θ(t)−Θr(t)|| → 0 as t→∞ (4.107)
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with any desired convergence rate provided the choice of controller gains K1Θ,K2θ and AΘ are

unrestricted to permit full compensation of unknown disturbances. Then let T ∗
Θ
> 0 be such

that

||Θ(t)−Θr(t)||2 ≤ δΘ ≤ 0.5εtol for all t ≥ T ∗Θ (4.108)

It then follows from (4.104) - (4.105) that the total unknown disturbances (4.96) to be compen-

sated for in the position subsystem are bounded by

||ep||2 ≤ ||edp ||2+ |UA
p (t)−Up(t)|2 ≤ 0.5εtol

for all t ≥max{T ∗E ,T ∗Θ} (4.109)

By virtue of Proposition 4.2 there exist controller gains K1p,K2p and a time T ∗p > 0 such that

||p(t)− pr(t)|| ≤ 0.5εtol for all t ≥ T ∗p (4.110)

in spite of the total unknown disturbances ep as in (4.96). The inequality (4.103) then holds for

T ∗ :=max{TE ,T ∗Θ;T ∗p} (4.111)

This completes the convergence analysis of the observer-based tracking control for the quadro-

tor.

Remark 4.7. The control design has so far disregarded constraints. Respecting constraints on

actuators is critical in real flight conditions. Hence, it is imperative that future work focuses

on more realistic and implementable control strategies.

4.8 Results discussion

The quadrotor tracking control design described above was tested by way of computer sim-

ulations as well as on a real quadrotor system in the Control System Laboratory of École de



109

Technologie Supérieure (ETS), Montreal, Canada.

For the simulation and real flight trajectories to be comparable, the parameters of the real phys-

ical system (see Eq. (4.4)) had to be estimated first. To this end, we describe the estimation

procedure in detail.

The mass of the quadrotor was simply obtained by weighing the device. However, obtaining

the inertia moments was more complex. An RCbenchmark series 1580 dynamometer device

was used to determine the relationship between the propellers’ speeds and the forces exerted by

the motors. A commercial quadrotor, S500 Glass Fiber Quadcopter Frame 480 mm - Integrated

PCB was used as the experimental platform (see Figure 4.3). In order to verify the effective-

ness of the proposed method, the physical parameters for the quadrotor UAV are summarized

as :h= 0.225 m, JR = 3.357×10−5 kg m2, g= 9.81m/s2, Ixx =0,0126 kg.m2, Iyy =0,0125 kg.m2,

and Izz =0,0235 kg.m2.

Figure 4.3 The quadrotor used in real flight tests.



110

4.8.1 Numerical Results

In the simulation, the quadrotor was required to follow the desired trajectory defined in Fig.4.4

for t ≥ 0. Furthermore, the yaw angle reference trajectory was set at x5r = 0 rad over the entire

simulation horizon. For the purpose of the simulation, the external disturbance vector was

considered as a “gust of wind” given by the functions

d1 = [dx,dy,dz]
T

= [1.5+2.5sin(4t),1.5+2.5 sin(4t),1.5]N

d2 = [dφ,dθ,dψ]T

= [2.5sin(4t),sin(0.1t),sin(0.1t)]T Nm

The position and attitude controller gains are 3× 3 matrices: K1p = diag[k1x,k1y,k1z], K2p =

diag[k2x,k2y,k2z], K1Θ = diag[k1φ,k1θ,k1ψ], K2Θ = diag[k2φ,k2θ,k2ψ], and A = diag[Aφ,Aθ,Aψ].

Likewise, the super-twisting observer gains are 3 × 3 matrices: λp = diag[λx,λy,λz], λΘ =

diag[λφ,λθ,λψ], αp = diag[αx,αy,αz], and αΘ = diag[αφ,αθ,αψ]

All gains were tuned manually by trial and error in computer simulations. The best values of

all gains, which secure the smallest tracking errors, are shown in Table 4.1.

Table 4.1 Used gains of the controller and observer

Gain Value Gain Value Gain Value
k1x 2.0313 λy 15 k2ψ 10.861

k1y 2.0313 λz 15 λφ 20

k1z 2.216 k1φ 12.861 λψ 20

k2x 0.0313 k1θ 12.861 λθ 20

k2y 0.0313 k1ψ 12.861 Aφ 0.7

k2z 0.216 k2φ 12.861 Aψ 0.7

λx 15 k2θ 12.861 Aθ 0.7

αx 15 αy 12.861 αz 0.7

αφ 15 αθ 12.861 αψ 0.7
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The simulation results are shown in Fig. 4.4 - Fig. 4.8. It can be seen from Fig. 4.4 that the

quadrotor can track the desired flight path correctly while compensating for the disturbances.

Fig. 4.6 also shows good tracking of the attitude reference trajectory.

The plots of the errors in the position and attitude subsystems are presented in Fig. 4.5 and

Fig. 4.7. It can be seen that the nonlinear disturbance observer can estimate the disturbances

quickly and accurately. The control inputs of rotors are presented in Fig. 4.8. The obtained

control inputs commands could easily be applied to the real model. Furthermore Fig. 4.9-Fig.

4.12 provide the estimation of disturbances and their errors for position and attitude systems.
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4.8.2 Experimental Results

The Pixhawk autopilot was employed as the onboard flight controller to implement the data

fusion algorithm and the proposed flight control strategy. For positioning system, a special

localization sensor/algorithm (Kinect) is used to capture the position of the quadrotor during

the flight. A companion computer (Odroid XU4) is used to interface and communicate with

the pixhawk flight controller using the MAVLink protocol over a serial connection. A connec-

tion is established for the communication between the companion computer and the ground

station. By doing this, the companion computer gets all the MAVLink data produced by the

autopilot and the positioning sensor (Kinect). The controller and estimator gains employed in

the experiment were those listed in Table 4.1. In practical applications, the attitude gains are

usually tuned first, followed by the position gains. Based on the permitted overshoot, settling

time, the steady state error requirements, these gains can be tuned by trial and error in hovering

conditions.

Figure 4.13 The experimental setup used in real flight tests.



117

The goal of the laboratory experiment was to demonstrate that the designed controller achieves

good tracking in the presence of external wind gusts. An electrical fan was used to generate the

wind gusts that affect the quadrotor during flight, as shown in Fig. 4.13. It was required that the

quadrotor follows the same trajectory as the one used in computer simulations. The responses

of the position and attitude subsystem under wind gusts are depicted in Fig. 4.14 - Fig. 4.17

together with the respective tracking errors. The results clearly confirm that the proposed

controller is capable of compensating for wind gusts as additional unknown disturbances. From

Figure 4.15, it can be seen that quadrotor tracks the given trajectory with position tracking

errors that do not exceed 0.1 m. From Figure 4.17, it is shown that the attitude tracking errors

are smaller than 0.08°. It is obvious that both the position errors and attitude errors are driven

within a small range quickly.
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proposed controller under the effect of wind gusts
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4.9 Conclusion

This paper explores a novel approach to robust trajectory tracking control of a quadrotor UAV.

A bank of the super-twisting observer (STO) is employed in conjunction with a matching set

of generalized sliding mode controller to compensate the influence of the unmatched uncer-

tainties affecting the position and attitude systems during the flight. The stability of the system

is guaranteed by designing the sliding mode controller combined with the super-twisting ob-

server as demonstrated employing a direct Lyapunov analysis. The validity of the developed

approach was first confirmed by computer simulations. The performance of the observer-based

sliding mode control strategy was next extensively validated in real time flight tests using an

experimental platform setup. The analysis of the tracking control approach, for the first time

carried out with full rigor, leads to the following useful conclusions; (i) The disturbance ob-

server employs excessively restrictive assumptions and cannot be shown to converge to the

correct estimates; more precise estimates can be obtained only by using high gains. (ii) The
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smooth tracking controller employed to achieve tracking in the position subsystem has similar

flaws: it cannot fully compensate for unknown disturbances in the position subsystem, thus

its robustness and precision may be questioned. (iii) The first order sliding mode controller

proves to have superior properties as it is fast and able to reject bounded unknown distur-

bances. Furthermore, the localization algorithm (Kinect) will be extended to use a precise

position measurement from a motion capture system to upgrade the experimental UAV setup.

This will enable much better performance of the implemented nonlinear controller.
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5.1 Abstract

The aim of this article is to present a kernel-based disturbance observer trajectory tracking con-

troller for quadrotor UAV. To assess the performance of the proposed observer in a comparison

manner, two other observer-based feedback control designs in an application of robust trajec-

tory tracking for a quadrotor are introduced. Specifically, the study investigates the utility of

three different disturbance observers: a kernel disturbance observer (KDO), a super twisting

sliding mode observer (STO), and a nonlinear disturbance observer (NDO) in feedback with

a robust sliding mode tracking control. It is assumed that the quadrotor is subject to large

but unknown aero-dynamic disturbances during its flight. The analysis shows that asymptotic

tracking of the full position and the yaw orientation angle is achieved during flight with each of

the disturbance observers. However, the kernel-based observer delivers the fastest convergence

to the desired trajectory and hence is superior despite its heigh computational cost.

5.2 Introduction

Robust control design for quadrotors has attracted much research attention as it has many

important applications. Realistic flight conditions imply the need to compensate for unknown
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disturbances such as wind gusts that may be powerful enough to justify the incorporation of

fast and accurate observers of the aero-dynamical forces involved.

Most of the existing control strategies are designed based on simplified models without com-

pensation for modeling errors or external disturbances; see e.g. (Bouabdallah et al., 2004a;

Herissé et al., 2012). Works that incorporate disturbance observers as a component of the

tracking control system fall into two groups based on the type of the disturbance estimation

employed: (i) continuous time and nonlinear; (ii) hybrid or discontinuous in time. The first

group is represented by observer-based tracking control schemes in which the observers (here

referred to as NDO) are smooth systems that converge rather slowly and necessitate additional

assumptions to be made about the disturbance signals; see (Fethalla et al., 2017b; Cheng et al.,

2018; Yang et al., 2012; Ginoya et al., 2014; Obaid et al., 2016; Zhao et al., 2015) who pro-

poses an integrated adaptive tracking control approach.

When the disturbances are known to be powerful, however, a natural choice is to employ dis-

continuous or hybrid estimation approaches, notably sliding mode observers (SMO) that are

valued for their powerful attributes, such as finite time convergence and low sensitivity to sen-

sor noise; see (Edwards & Spurgeon, 1994; Drakunov & Utkin, 1995; Edwards et al., 2002).

A first order sliding mode observers have been employed in (Besnard et al., 2007, 2012) in

conjunction with regular sliding mode control (SMC); both featuring uncompensated chatter.

An asymptotic super-twisting observer was introduced in (Levant, 2003),(Davila et al., 2005)

while a super-twisting second order disturbance observer (STO) has also been employed in

(Luque-Vega et al., 2012). More powerful higher order sliding mode disturbance observers

have been proposed in (Derafa et al., 2012) that are also combined with on-line differentiators

and exhibit finite time convergence with robustness to measurement noise. A real-time im-

plementation of a super-twisting scheme for attitude tracking of quadrotor is implemented in

(Gonzalez-Hernandez et al., 2017).

Many more contributions can be listed that rely on the combination of disturbance observation

to assist feedback controllers to achieve accuracy and robustness in trajectory tracking applica-
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tions. To the best of our knowledge, however, there are no studies that attempt to compare and

evaluate the attributes of diverse disturbance estimation approaches in integration with feed-

back control of rotorcraft. This being the main motivation for the present contribution, three

different disturbance observers are presented and analyzed here while functioning in tandem

with a dual backstepping-sliding mode tracking control for a quadrotor. While the NDO and

STO have been presented before; see (Fethalla et al., 2017b; Cheng et al., 2018), and (Levant,

1998), the kernel-based disturbance observer (KDO) is new. Although the kernel system rep-

resentation for both LTI and LTV systems has been presented and employed for the purpose

of “almost instantaneous” joint parameter and state estimation in (Ghoshal et al., 2017) and

further discussed with reference to LPV and nonlinear systems (Sinha; Ravichandran, 2018),

it has never been exploited in the context of any specific practical application.

Simulation results presented here demonstrate that although all three observers, the KDO, STO,

and NDO, are able to deliver good matched and unmatched disturbance estimates during the

flight of a quadrotor, the KDO is the fastest of them. However, the KDO is also very compu-

tationally demanding. The next best, as far as speed and robustness to measurement noise is

concerned, is the STO. It is worth mentioning that the robustness properties (with respect to

measurement noise) of the KDO can still be significantly improved as will be demonstrated

elsewhere. The NDO is perhaps the least desired solution as it requires making additional

assumptions about the estimated signal and relies on employing very high gains to achieve

desired asymptotic accuracy and speed.

The paper is organized as follows: the dynamic model of a quadrotor UAV is presented in

Section 5.3. The robust tracking control objective is described in Section 5.4. The KDO,

NDO, and STO disturbance observers are presented and developed in Section 5.5. The asso-

ciated backstepping-sliding mode controller for position and attitude subsystems are described

in Section 5.6. Section 5.7 delivers the stability analysis of the observer-based tracking con-

trol. The performance of the three observers: the KDO, NDO, and STO is then assessed in

simulations in Section 5.8 with reference to some challenging chaotic type disturbances. The

KDO, NDO, and STO observer-based feedback control structures are also evaluated in the
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same section of the paper. The attributes of the compared scheme are discussed and followed

by conclusion in Section 5.9.

5.3 Dynamic modeling of a quadrotor

A dynamic model of a quadrotor UAV, shown in Fig.5.1, was originally adopted in (Hoffmann

et al., 2007b), and subsequently employed in (Zheng et al., 2014) and (Alexis et al., 2012a). It

is again cited here for completeness of exposition.

E 1

f
1

f
2

f
3

f
4

ϕ

θ

ψ

E
b

1

)(B

)(I

x

y

z

E 2

E 3

E
b

2

E
b

3

Figure 5.1 Quadrotor Airframe And Reference Frames

Consider two reference frames: the earth fixed frame (I) associated with the unit vector basis

(E1,E2,E3) and body fixed frame (B) associated with the unit vector basis (Eb
1
,Eb

2
,Eb

3
) fixed

at the center of mass of the quadrotor, as shown in Fig.5.1. The position of the center of the

quadrotor’s mass is denoted by the vector p = [x,y,z]T . This position vector is expressed with

respect to an inertial frame (I) . The attitude is denoted by Θ= [φ,θ,ψ]. These three angles are
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the Euler angles: yaw (−π < ψ < π), pitch (−π2 < θ < π
2 ), and roll (−π2 < φ < π

2 ) that define the

orientation vector of the quadrotor with respect to the inertial frame (I). The angular velocity

and acceleration of roll, pitch, and yaw defined with respect to the body-fixed frame (B) and

the inertial reference frame I respectively as Ω = [Ωp,Ωq,Ωr]
T , and Θ̈ = [φ̈, θ̈, ψ̈]. ṗ = [ẋ, ẏ, ż]

and p̈ = [ẍ, ÿ, z̈] represent the linear velocities and accelerations of the translational system

respectively. The rotation matrix R and Euler matrix M(Θ) denote the transformation between

the body-fixed reference frame B and the inertial reference frame I in the space orientation of

the quadrotor and are given by

R(Θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
CθCψ S φS θCψ−CφS ψ CφS θCψ+S φS ψ

CθS ψ S φS θS ψ+CφCψ CφS θS ψ−S φcψ

−S θ S φCθ CφCθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M(Θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 −S θ

0 Cφ S φCθ

0 −S φ CφS θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where Θ̇ and Ω are related by the following relationship

Ω = M(Θ)Θ̇ (5.1)

These transformations cab found in a detailed formulation (Alexis et al., 2012a).

The equations of motion of the quadrotor can be divided into two subsystems; equations of

motion of the translational subsystem (referring to the position of the center of mass of the

UAV) and equations of motion of the angular subsystem (referring to the attitude of the UAV).

These equations can be stated in the reference frame (I) as
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p̈ =
1

m
R(Θ)Fprop−G+dp(t) (5.2a)

Θ̈ = (IM(Θ))−1[Tprop− IN(Θ, Θ̇)

−Ω× IΩ−Tg]+dΘ(t)

= Φ(Θ, Θ̇)+Ψ(Θ)Tprop+dΘ(t) (5.2b)

where N(Θ, Θ̇) is given by

N(Θ, Θ̇) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−Cθθ̇ψ̇

−S φφ̇θ̇+Cφφ̇ψ̇−S φS θθ̇ψ̇

−Cφφ̇θ̇−S φCθφ̇ψ̇−CφS θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Tprop is the resultant torques due to the gyroscopic effects given as

Tprop =

4∑
i=1

Ω× Jr[0,0, (−1)i+1ωi]
T (5.3)

where Jr is the moment of inertia of each rotor and ωi, i = 1,2,3,4 is the rotary speed of each

motor.

The matrices Ψ(Θ) and Φ(Θ, Θ̇) are defined as

Ψ(Θ) = (IM(Θ))−1

Φ(Θ, Θ̇) = −(IM(Θ))−1[IN(Θ, Θ̇)−Ω× IΩ−Tg]

where I = diag(Ix, Iy, Iz) is the inertia matrix of the quadrotor; G = [0,0,−g]T m/s2 is the gravi-

tational force acting along the z-axis of the inertial frame; m denotes the mass of the quadrotor.

The terms dp = [dx dy dz]
T and dΘ = [dφ dθ dψ]T represent the corresponding aerodynamical

disturbances along with model smooth and bounded external disturbances. S (·) and C(·) denote

the abbreviations of sin(·) and cos(·) functions, respectively. Each motor of quadrotor produces

thrust and drag that are assumed to be proportional to the square of the motor speed. Hence, the

force generated by the ith motor can be derived as by fi = bω2
i (i = 1,2,3,4) where b is motor
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lift coefficient. Fprop and Tprop are: the three-dimensional translational force vector and the

three-dimensional reaction moment vector exerted by the propellers, respectively, as given by

Fprop =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

0

T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ Tprop =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
h( f4− f2)

h( f3− f1)

c
∑4

i=1(−1)i fi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where T =

∑4
i=1 fi is the total thrust, h is distance from the center of mass to the rotor, and c

is he drag factor coefficient. It is easy to verify that equations (5.2a)-(5.2b) can actually be

written as

φ̈ = r1θ̇ψ̇− r2θ̇ω+q1U2+dφ

θ̈ = r3φ̇ψ̇+ r4φ̇ω+q2U3+dθ

ψ̈ = r5θ̇φ̇+q3U4+dψ

ẍ = (CφS θCψ+S φS ψ)
1

m
U1+dx

ÿ = (CφS θS ψ−S φCψ)
1

m
U1+dy

z̈ = −g+ (CφCθ)
1

m
U1+dz

(5.4)

where [U1,U2,U3,U4]T= [T,Tprop]T is the input vector.

r1 =
Iy− Iz

Ix
,r2 = − Jr

Ix
,r3 =

Iz− Ix

Iy
,r4 =

Jr

Iy
,

r5 =
Ix− Iy

Iz
,q1 =

h
Ix
,q2 =

h
Iy
,q3 =

1

Iz

are inertia related constants and ω = ω4+ω3−ω2−ω1.

The state vector X can thus be defined as

X = [p ṗ Θ Θ̇]T ∈ R12
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For transparency of further derivations, it is finally convenient to re-write equations (5.2a)-

(5.2b) (or equivalently those in (5.4)) in the following block compact form

p̈ =G+Up+dp (5.5)

Θ̈ = Φ(Θ, Θ̇)+UΘ +dΘ (5.6)

with

Up :=
1

m
R(Θ)U1ez; (5.7)

UΘ := Ψ(Θ)[U2 U3 U4]T (5.8)

5.4 Observer-based tracking for the quadrotor

Tracking control objective for the quadrotor

The objective is to design and analyse the performance of a closed loop observer-based con-

trol structure that enables asymptotic tracking of the position of the center of mass and the

yaw angle of the quadrotor: (p,ψ) to prescribed reference trajectories pr(t),ψr(t); t ≥ 0. The

designed controllers are required to be robust with respect to the unknown force and torque

disturbances dp,dΘ, hence necessitating the use of a disturbance observer. For the purpose of

control design the dynamic model (5.4) of the quadrotor is viewed as a system composed of

two subsystems, the position subsystem (5.7) and the rotational subsystem (5.8). It is seen that

the attitude subsystem is decoupled from the position subsystem and that it is fully input-output

acuated, with the output defined as the attitude vector Θ. Also, its disturbances dΘ are matched

to the three components of the propeller torque vector. By contrast, the position subsystem

is underactuated as its only control variable is the thrust force which can be used to attenuate

the disturbance component dz while leaving the disturbances dx,dy unmatched by the thrust

control.
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5.5 Disturbance observer designs

Three different observers will be proposed and tested in closed loop tracking control structure.

5.5.1 A kernel disturbance observer (KDO)

The KDO estimates the aerodynamic disturbances by first estimating the states of the quad-

copter. The state estimation employs a moving (observation) window that forwards in time as

new measured system output data becomes available. The measured output is assumed to con-

sist of: full, but possibly noisy, translational position vector [x,y,z], and full angular position

vector [φ,θ,ψ]. The complete state of the quadrotor [x,y,z, ẋ, ẏ, ż,φ,θ,ψ, φ̇, θ̇, ψ̇] and the accel-

erations [ẍ, ÿ, z̈, φ̈, θ̈, ψ̈] are then estimated by the KDO over any current observation window.

The development of the observer is summarized here in the particular context of the quadrotor

system.

To obtain the full estimate of the state, velocity, and acceleration, at a time instant t, the KDO

observer processes output data over a finite observation window preceding t. The actual esti-

mate is calculated as “a state” of a surrogate linear (LTI) model that best fits the measured data

over the observation window. The process of such “fitting” involves estimating the parameters

of the locally defined LTI system that resembles a modified kernel-based moving-horizon ver-

sion of the minimum energy filter which was first briefly introduced in (Ravichandran, 2018)

with reference to a multivariable nonlinear second order system with an unknown model. The

estimation properties of the latter observer were shown to compare favourably with a kernel

adaptation of the Bayesian dynamic regression of (Särkkä, 2013).

The idea behind the kernel observer presented here is the following. First, each component

of the six-dimensional position and orientation vector [x,y,z,φ,θ,ψ], is locally viewed as an

output y(t), t ∈ [tk, tk+1] of a fourth order LTI system with characteristic equation of the form

y(n)(t)+an−1y(n−1)(t)+a2y(2)(t)+a1y(1)(t)

+a0y(t) = 0
(5.9)
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The output y is assumed to be measured over the observation window [tk, tk+1] and is therefore,

generally, a noisy signal. The LTI model (5.9) is considered viable as it can be viewed as a natu-

ral generalization of a truncated Taylor series expansion of a function y; (a truncated expansion

involving n first terms of the Taylor series would obviously satisfy the equation y(n)(t) = 0). A

yet more accurate LTI surrogate model could involve interactions between position variables,

but proved unnecessary for the purpose considered. The order of the surrogate model was cho-

sen to be n = 4 to permit good estimation of higher order derivatives of the quadrotor position

and orientation vectors such as accelerations and jerks as the last can be used to improve mo-

tion prediction accuracy.

Fitting of the model (5.9) to any position or orientation component such as e.g. x(t) over an ob-

servation window [tk, tk+1] requires estimation of the parameter values wk := [a0,a1,a2, · · · ,an−1]k

which is best achieved when (5.9) is represented as an integral equation because integral repre-

sentations do not involve initial conditions for the system, and exact knowledge of such initial

conditions cannot be assumed as the outputs are measured with noise. The procedure so de-

scribed resembles the action of a skilled draftsman who fits a french curve to a cloud of data

points. The kernel expressions for the integral representation of (5.9) are obtained using the

theorems cited from (Ghoshal et al., 2019) for the general case of an LTI system of order n.

Theorem 5.1. Let [a,b] be any interval on R. There exists a kernel function Ky, defined on

[a,b]× [a,b], such that the differential system (5.9) has an equivalent integral representation

for t ∈ [a,b]

y(t) =
∫ b

a
Ky(t, τ)y(τ) dτ (5.10)

Additionally, the kernel Ky is a linear function of the system parameters a0, · · · ,an−1 and is

continuously differentiable n− 1 times. The first n− 1 derivatives of the output y, y(i) for i =

1, · · · ,n−1 , can be calculated recursively from y, as follows:

y(i)(t) =
i−1∑
m=0

f i,m
y (t)y(m)(t)+

∫ b

a
Ki

y(t, τ)y(τ) dτ (5.11)
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where f i
y; i = 0, · · · ,n− 2, are rational functions on [a,b] and the kernels Ki

y are obtained by

direct differentiation of Ky with respect to t.

Since the kernel Ky is linear in the system parameters, the integral representation (5.10) can be

written as

y(t)−gn(t,y) =

n−1∑
i=0

aigi(t,y) (5.12)

gi(t,y) :=

∫ b

a
Ky,i(t, τ)y(τ)dτ i = 0, . . . ,n (5.13)

for some “component kernels" Ky,i of Ky. Taking a := tk, b := tk+1 let sk := {tk
1
, · · · , tkN} ⊂ (tk, tk+1],

be a given discrete set of distinct time instants. The n copies of equation (5.12) for all members

of sk can then be stacked in the form of a matrix equation, where the index k indicates the

dependence on the estimation window [tk, tk+1]

Qk(y) = Pk(y)ā ; y : [tk, tk+1]→ R

Qk(y)
de f
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
q(tk

1
)

...

q(tkN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ; ā
de f
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a0

...

an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ; (5.14)

Pk(y)
de f
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
p1(tk

1
) · · · pn(tk

1
)

. . .

p1(tkN) · · · pn(tkN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
q(tki ) := y(tki )−gn(tki ,y); i = 1, · · · ,N
p j(tki ) := g j(tki ,y); j = 1, · · · ,n (5.15)

Identification and state estimation for system (5.9) of order n = 4, in observation window k,

requires substituting: ā := wk, y(t) = yM(t); t ∈ [tk, tk+1] in the estimation equation (5.14), where

yM denotes the measured system output (any component of the position or orientation vector

of the quadrotor). Under practical identifiability condition ; see (Ghoshal & Michalska, 2019),
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the knots sk are assumed to be such that rank Pk(yM) = n which yields an estimate ŵk :=

Pk(yM)†Qk(yM), in window k, where the pseudo-inverse P†k is the left inverse of Pk(ym). The

corresponding estimates yE ,y
(i)
E , i = 1,2,3, of the output and its derivatives in (5.9) over the

window k, are then be calculated from the equations of Theorem 5.1; specifically

yE(t) =
∫ b

a
Ky(t, τ)yM(τ) dτ dτ (5.16)

y(i)
E (t) =

i−1∑
m=0

f i,m
y (t)y(m)

E (t)+
∫ b

a
Ki

y(t, τ)yM(τ) dτ (5.17)

for i = 1,2,3, where all the functions and kernels depend on the value of the estimated param-

eters ŵk.

It should be noted that the procedure for estimation of a system output and its time derivatives

as outlined above has important advantages:

(i) it is non-asymptotic in that it yields the estimates in finite time ;

(ii) any information about the initial conditions of the system is redundant;

(iii) no assumptions other than differentiability is needed about the estimated signals (the fit-

ted surrogate model can be unstable);

(iv) the KDO has natural noise rejection properties as secured by the presence of the integral

kernel Ky which acts as a low pass filter during the estimation process;

(v) in the absence of noise the estimation error can be made as small as desired by adjusting

the order of the surrogate LTI model and the size of the observation window.

The full derivation of the development of the Double-Sided Kernel for a 4th Order LTI System

can be found in (Ravichandran, 2018).

Once the position, velocity, and acceleration vectors of the quadrotor are estimated as:

[x̂, ŷ, ẑ, φ̂, θ̂, ψ̂];

[ ˆ̇x, ˆ̇y, ˆ̇z, ˆ̇φ, ˆ̇θ, ˆ̇ψ];

[ ˆ̈x, ˆ̈y, ˆ̈z, ˆ̈φ, ˆ̈θ, ˆ̈ψ];
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over any given observation window k, the estimates of the unknown disturbances are obtained

directly from the dynamical equations of the quadrotor (eq. 5.4).

d̂φ = ˆ̈φ− (r1
ˆ̇θ ˆ̇ψ− r2

ˆ̇θw+q1U2)

d̂θ = ˆ̈θ− (r3
ˆ̇φ ˆ̇ψ+ r4

ˆ̇φw+q2U3)

d̂ψ = ˆ̈ψ− (r5
ˆ̇θ ˆ̇φ+q3U4)

d̂x = ˆ̈x−
(
(Cφ̂S θ̂Cψ̂+S φ̂S ψ̂)

1

m
U1

)
d̂y = ˆ̈y−

(
(Cφ̂S θ̂S ψ̂−S φ̂Cψ̂)

1

m
U1

)
d̂z = ˆ̈z−

(
−g+ (Cφ̂Cθ̂)

1

m
U1

)

(5.18)

because the control inputs U1,U2,U3 are known functions of time as produced by the designed

controllers.

5.5.2 A nonlinear disturbance observer (NDO)

The NDO employed here has been previously described and analyzed in (Fethalla et al., 2018).

It has a similar form for each of the two sub-systems of the quadrotor (position and orientation):

żp = −Lpzp−Lp[Lp ṗ+G+
1

m
Up]

d̂p = zp+Lp ṗ
(5.19a)

żΘ = −LΘzΘ−LΘ[LΘΘ̇+Φ(Θ, Θ̇)−UΘ]

d̂Θ = zΘ +LΘΘ̇
(5.19b)

where Up =R(Θ)e3U1, UΘ =Ψ(Θ)[U2 U3 U4]T , and d̂ j ( j= p,Θ) is the estimated disturbance.

z j is the state vector variable of the observer, and L j = l jI3×3, l j > 0, j = p,Θ, are the observer

gain matrices to be tuned.

The full stability analysis of NDO was provided in our previous work (Fethalla et al., 2018).
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5.5.3 A super-twisting sliding mode observer (STO)

The super-twisting sliding mode observer employed here for estimation of the bounded dis-

turbances d j in subsystems (5.5) and (5.6) is cited below following its exposition in (Levant,

1998). To deliver the estimates of the system state vector [p̂, ˆ̇p, Θ̂, ˆ̇Θ] the super-twisting sliding

mode observer assumes the following structure :

ˆ̈p =G+Up+ vp (5.20)

ˆ̈Θ = Φ(Θ̂, ˆ̇Θ)+UΘ + vΘ (5.21)

where ˆ̈p, and ˆ̈Θ are the estimates of p̈ and Θ̈, respectively, and the vectors vp and vΘ represent

the observer injection terms as given below. The observer error dynamics defined by:

ėp = p̈− ˆ̈p ; ėΘ = Θ̈− ˆ̈Θ (5.22)

can be stabilized by second order sliding mode differentiators; see (Levant, 1998) , by employ-

ing the following injection terms in (5.20):

vp = −λp|ep|1/2sign(ep)+up

u̇p = −αpsign(ep)
(5.23a)

vΘ = −λΘ|eΘ|1/2sign(eΘ)+uΘ

u̇Θ = −αΘsign(eΘ)
(5.23b)

where sign(ep) and sign(eΘ) are vector signum functions in which the signum function is ap-

plied to all components of error vectors ep and eΘ.

As is shown in (Levant, 1998), the estimation errors ep and eΘ converge to zero in finite time

provided that the gain constants λp, αp, λΘ, and αΘ, are chosen to be sufficiently large.
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Comparing (5.20) with the sub-system equations (5.5) - (5.6),

[p̂, ˆ̇p, ˆ̈p]→ [p, ṗ, p̈]

[Θ̂, ˆ̇Θ, ˆ̈Θ]→ [Θ, Θ̇, Θ̈]

implying [ep, ėp]→ [0,0]; [eΘ, ėΘ]→ [0,0]

in finite time since the control inputs Up,UΘ are known exactly. The disturbance estimates are

hence delivered immediately as: d̂p = vp, and d̂Θ = vΘ.

5.6 Tracking control designs for the quadrotor

The uncertain second order systems considered here are assumed to take the form of a vector

double integrator

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ẋ1

ẋ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0 I

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ x1

x2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0

U

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0

d̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0

ed

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5.24)

y = x1 (5.25)

with, generally, n-dimensional control, disturbance, state and output vectors, i.e. U, d̂,ed,y, xi ∈
R

n ; i = 1,2. It is seen that the above system is fully actuated as an input-output mapping:

U �→ y, and that all disturbances are matched to the controls U.

Assumption 5.1.

• The disturbance d̂ is considered known while the disturbance ed is an unknown function of

time, which is, however, assumed bounded by a known constant D, i.e.,

||ed(t)|| ≤ D for all t ∈ [0,∞) (5.26)
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• The reference trajectory to be tracked, denoted by: x1r(t); t ≥ 0, x1r(t) ∈ Rn, is required to

be a twice continuously differentiable vector function of time.

• The full system state [x1(t), x2(t)]; t ≥ 0, is accessible for feedback control and the control

U is unconstrained.

Lemma 5.1. For all vectors x,y ∈ Rn

|xT y| ≤ 1

2
||x||2+ 1

2
||y||2 (5.27)

Proof. It suffices to prove the inequality for the case when xT y > 0. The result follows imme-

diately by rearranging the quadratic inequality

0 ≤ (x− y)T (x− y) = xT x−2xT y+ yT y (5.28)

Proposition 5.1. (Smooth high gain tracking control )

Consider a system in vector form (5.24) under Assumption 5.1.

Part A ( Unknown disturbances are absent i.e. ed ≡ 0 )

Assuming that the disturbance vector d̂ is known, the unknown disturbances are absent, ed ≡ 0,

and the control vector U is unconstrained, the closed loop system (5.24) with the control law

employing any strictly positive gain matrices K1,K2 ∈ Rn×n, K1 > 0.5I, K2 > 0.5I,

UH(x1, x2, x1r, d̂) := (K2+K1)(ẋ1r − x2)

+K2K1(x1r − x1)+ ẍ1r − d̂ (5.29)

achieves asymptotic tracking of any prescribed vector reference trajectory x1r(t), t ≥ 0, in that

||x1− x1r|| → 0 and ||ẋ1− ẋ1r|| → 0 as t→∞ (5.30)
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Part B ( Unknown disturbances are present )

Assuming that the disturbance vector d̂ is known, the unknown disturbances are bounded by

(5.26), and the control vector U is unconstrained, then for any constant ε > 0 there exist control

gains K1,K2 ∈Rn×n such that the tracking error for system (5.24) in closed loop with the control

law (5.29) is asymptotically bounded as follows

||x1(t)− x1r(t)||2+ ||x2(t)− ẋ1r(t)||2 ≤ ε (5.31)

for all t ≥ T ∗, for a sufficiently large time T ∗ > 0.

Proof. (Part A) Define two new vector variables as functions of the state vectors x1, x2 and the

vector reference trajectory x1r with time derivative ẋ1r :

e1 := x1r − x1 (5.32)

e2 := ẋ1r − x2+K1e1 = ẋ1r − ẋ1+K1e1 (5.33)

= ẋ1r − x2+K1(x1r − x1) (5.34)

for any given strictly positive definite matrix K1 > 0. The following implications then clearly

hold as t→∞:

{e1→ 0} =⇒ {x1→ x1r} (5.35)

{e2→ 0} =⇒ {ẋ1→ ẋ1r} (5.36)

as is required. To construct a control that results in the above, consider the Lyapunov function

Ve :=
1

2
[eT

1 e1+ eT
2 e2] (5.37)

Definitions (5.32) - (5.33) combined with the system equations (5.24) imply the following ex-

pressions for the derivatives
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ė1 = ẋ1r − ẋ1 = −K1e1+ e2 (5.38)

= −K1e1+ (ẋ1r − x2+K1e1) = ẋ1r − x2

ė2 = ẍ1r − ẋ2+K1ė1

= ẍ1r +K1ė1−U − d̂ (5.39)

Hence, using (5.38) - (5.39), gives

V̇e = eT
1 ė1+ eT

2 ė2

= −eT
1 K1e1+ eT

1 e2+ eT
2 (ẍ1r +K1ė1−U − d̂) (5.40)

Let the control U solve

−K2e2 = +ẍ1r +K1ė1−U − d̂ (5.41)

By virtue of (5.32) - (5.34), and (5.38) - (5.39), the solution is

UH := K2e2+K1ė1+ ẍ1r − d̂

= K2[(ẋ1r − x2)+K1(x1r − x1)]+K1[ẋ1r − x2]

+ ẍ1r − d̂ (5.42)

= (K2+K1)(ẋ1r − x2)+K2K1(x1r − x1)

+ ẍ1r − d̂ (5.43)

From Lemma 5.1

eT
1 e2 ≤ 1

2
||e1||2+ 1

2
||e2||2 (5.44)
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Using this fact in (5.40) with control UH yields

V̇e = −eT
1 K1e1+ eT

1 e2− eT
2 K2e2

≤ −eT
1 (K1−0.5I)e1− eT

2 (K2−0.5I)e2 < 0 for t ≥ 0 (5.45)

provided that K1,K2 > 0.5I. Inequality (5.45) then proves (5.35) - (5.36) and thus (5.30) with

the tracking control as in (5.29).

Proof. (Part B) If the unknown disturbance is nonzero then equation (5.39) becomes

ė2 = ẍ1r +K1ė1− ẋ2

= ẍ1r +K1ė1−U − d̂− ed (5.46)

With the control law still satisfying (5.41), the inequality (5.40) involves an additional term

V̇e = −eT
1 K1e1+ eT

1 e2+ eT
2 (ẍ1r +K1ė1−U − d̂− ed)

≤ −eT
1 (K1−0.5I)e1− eT

2 (K2−0.5I)e2− eT
2 ed (5.47)

By Lemma 5.1

− eT
2 ed ≤ 1

2
||e2||2+ 1

2
||ed ||2 (5.48)

Letting Ki, i= 1,2 satisfy Ki−0.5I ≥ kiIn×n, for some constants k1 > 0,k2 > 0.5, inequality (5.47)

combines with (5.48) and the bound (5.26) to yield

V̇e ≤ −k1eT
1 e1− (k2− 1

2
)eT

2 e2+
D2

2

≤ −αVe+
D2

2
(5.49)

for α := 2 min{k1,k2−0.5}. Invoking Proposition 5.1 proves (5.31).
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Proposition 5.2. (First order sliding mode tracking control)

Consider a system in vector form (5.24) under Assumption 5.1. Let the tracking error variables

be defined as in Proposition 5.1, i.e.

e1 := x1r − x1 (5.50)

e2 := ẋ1r +K1e1− x2

= ẋ1r − ẋ1+K1(x1r − x1) (5.51)

for some positive definite matrix K1 > 0. For simplicity of analysis it will be assumed that

the tunable controller gains K1,K2 in the control law proposed below will take, or else be

majorized by, the respective simple forms: K1 := k1In×n, K2 := k2In×n for some constants k1 >

0.5, k2 > 0 to be selected in specific applications. Defining a sliding surface as

S (x1, x2) := e2 = 0 (5.52)

the tracking control (5.29) of Proposition 2 is augmented by a sliding mode control term as

follows:

US (x1, x2, x1r, d̂) := (K2+K1)(ẋ1r − x2)

+K2K1(x1r − x1)+ ẍ1r − d̂

+A sign[(ẋ1r − x2)+K1(x1r − x1)] (5.53)

where A := diag{a1,a2, · · · ,an}, ai > D, i = 1, · · · ,n, and for any vector v ∈Rn, the term A sign(v)

represents a column vector whose components are: aisign(vi), i = 1, · · · ,n.

Under these assumptions, for any initial conditions [x1(0), x2(0)] of the system at t = 0, the

trajectories of the closed loop system using the control law US reach the sliding surface e2 = 0
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in finite time t∗ bounded by

t∗ ≤ 2 maxi

{ |e2i(0)|
(ai−D)

}
(5.54)

In the absence of unknown disturbances the closed loop system trajectories remain on the

sliding surface e2 ≡ 0 for all times t ≥ t∗. The system trajectories converge asymptotically to

the desired reference trajectory, i.e. as t→∞ :

{e1→ 0} =⇒ {x1→ x1r} (5.55)

{e2→ 0} =⇒ {ẋ1→ ẋ1r} (5.56)

The equivalent control in sliding mode is derived from the equality Ṡ = 0 (with the disturbance

ed = 0 set to zero) thus

US
eq = ẍ1r +K1ė1− d̂

= ẍ1r +K1[ẋ1r(t)− x2(t)]− d̂ (5.57)

The system dynamics in sliding regime is

d
dt

x1(t) = ẋ1r(t)−K1[x1(t)− x1r(t)];

i..e.
d
dt

e1(t) = −K1e1(t); t ≥ t∗ (5.58)

Proof. Employing the same definitions for the variables e1 and e2 as in (5.32) - (5.33), and the

same Lyapunov function as that in (5.37), its derivative is

V̇e = eT
1 ė1+ eT

2 ė2 (5.59)

= −eT
1 K1e1+ eT

1 e2 (5.60)

+ eT
2 (ẍ1r +K1ė1−US − d̂− ed)

with ė2 = ẍ1r +K1ė1−US − d̂− ed (5.61)
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Let US satisfy

−A sign(e2)−K2e2 = ẍ1r +K1ė1−US − d̂ (5.62)

It follows that

US := K2e2+A sign(e2)+K1ė1+ ẍ1r − d̂

= K2[(ẋ1r − x2)+K1(x1r − x1)]+K1(ẋ1r − x2)

+ ẍ1r − d̂+A sign(e2) (5.63)

= (K2+K1)(ẋ1r − x2)+K2K1(x1r − x1)

+ ẍ1r − d̂

+A sign[(ẋ1r − x2)+K1(x1r − x1)] (5.64)

which confirms (5.53). After substituting US into (5.61)

ė2 = −K2e2−A sign(e2)− ed (5.65)

With e2i,edi; i = 1, · · · ,n, denoting the entries of the vectors e2 and ed, respectively, (5.65) re-

writes component wise as

ė2i = −k2e2i−ai sign(e2i)− edi; i = 1, · · ·n (5.66)

Multiplying by e2i gives

e2iė2i =
1

2

d
dt

e2
2i = −k2e2

2i−ai|e2i| − e2iedi;

≤ −k2e2
2i− (ai−D)|e2i| (5.67)

≤ −(ai−D)|e2i| i = 1, · · ·n (5.68)
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because k2 > 0 and

− e2iedi ≤ |e2iedi| ≤ D|e2i| (5.69)

with |edi| ≤ ||ed || ≤ D for all i = 1, · · · ,n. (5.70)

From Lemma 5.1

eT
1 e2 ≤ 1

2
||e1||2+ 1

2
||e2||2 (5.71)

so, using (5.67) in (5.60), yields

V̇e = −k1eT
1 e1+ eT

1 e2+ eT
2 ė2

≤ −(k1−0.5)eT
1 e1− (k2−0.5)eT

2 e2 (5.72)

− (ai−D)|e2i| < 0 t ≥ 0 (5.73)

provided that ai > D for all i = 1, · · · ,n and k1 > 0.5, k2 > 0.5.

Without loss of generality, assume that e2i(0) > 0; then (5.67) implies

2e2i
d
dt

e2i ≤ −(ai−D)e2i

i.e. ,
d
dt

e2i ≤ −1

2
(ai−D) (5.74)

Integrating the above on the interval [0, t∗i ] where t∗i is the finite reaching time for component

e2i renders the bound

e2i(t∗i )− e2i(0) ≤ −1

2
(ai−D)(t∗i −0)

=⇒ t∗i ≤ 2
e2i(0)

(ai−D)
(5.75)
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as e2i(t∗i ) = 0. Generalizing to the case of e2i(0) < 0 and taking a maximum over i yields the

total bound (5.54).

Inequality (5.72) then immediately implies the validity of (5.55) - (5.56). The dynamics in the

sliding mode (5.58) is obtained by setting e2 = 0 in (5.51) and the equivalent control (5.57) is

calculated by assuming that ė2 = 0 and ed = 0 in (5.61).

The position subsystem (5.5) is clearly not in the form of (5.24). Specifically, this is because

the components of the control vector U ∈ R3 of (5.24), now considered as a member of R3,

are explicitly assumed to be functionally independent and unconstrained. By contrast, if the

position subsystem (5.5) were to match the form and assumptions of (5.24), then it would have

to hold that

U(t) =
1

m
R(Θ(t))T (t)ez for all t ≥ 0 (5.76)

for any desired value of the control vector U(t) and any value of the attitude state vector Θ(t)

of the evolving attitude subsystem. As the value of T (t) is a scalar, this is impossible as the

control vector U(t) is clearly aligned with the vector R(Θ(t))ez for all times t. Implied is also

the fact that in the position subsystem the disturbances are not matched with the control (the

disturbances cannot be cancelled instantaneously by the choice of the thrust force alone).

To find a way in which to resolve these difficulties, hypothesize that the control constraint in

the position subsystem can somehow be relaxed by way of substituting it with

U(t) =
1

m
R(Θr(t))T (t)ez for all t ≥ 0 (5.77)

where Θr(t) := (ψr(t), θr(t),φr(t)), with the yaw angle trajectory imposed as a reference ψr(t)

and the trajectories θr(t),φr(t) to be chosen freely together with the value of the thrust force T (t)

to match any desired value of the right hand side control vector U(t). Then, the position control

law of Proposition 2 could be applied to steer the position system as required. By making the
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following variable substitutions in the generic second order tracking system (5.24) with n = 3:

x1 := p; x2 := ṗ; x1r := pr;

d̂ := d̂p+G; UH := Up (5.78)

the control law for tracking a given spatial reference position pr would be given by

Up := (K1p+K2p)(ṗr − ṗ)+K2pK1p(pr − p)

+ p̈r − d̂p−G (5.79)

where it is assumed that the actual position and velocity vectors p and ṗ would be available

for on-line measurement. The control law Up of (5.79) will henceforward be referred to as the

“desired” position control because it would have to be “reconciled” with the U of (5.77) as,

generally, Θ(t) � Θr(t).

On the other hand, the attitude subsystem is fully actuated. As will become clear, the precision,

robustness, and speed of the tracking attitude control will prove primordial towards achieving

the overall tracking goal of combined position and yaw angle of the rotorcraft. Sliding mode

control is hence better suited to attain tracking of the attitude. To this end the disturbance

vector dΘ is considered estimated and the following variable substitutions are made in (5.24)

with n = 3:

x1 := Θ; x2 := Θ̇; x1r := Θr;

d̂ := d̂Θ +Φ(Θ, Θ̇); US := UΘ (5.80)

To deliver the sliding mode tracking law for the entire Θr with suitably chosen gain matrices

A, K3 > 0.5I,K4 > 0.5I as in Proposition 5.2.
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UΘ := (K1Θ +K2Θ)(Θ̇r − Θ̇)+K2ΘK1Θ(Θr −Θ)

+Θ̈r − d̂Θ−Φ(Θ, Θ̇)

+AΘ sign[(Θ̇r − Θ̇)+K1Θ(Θr −Θ)] (5.81)

It is again assumed that the angular position and velocity vectors Θ and Θ̇ are available for

on-line measurement.

The above control laws are abstract in the sense that they cannot be applied directly to achieve

the tracking goal as stated in section 5.4, if only for the reason that the “decoupling” virtual

attitude needed in (5.77) is yet undefined. However, the idea is now clear as the number of

the system variables to be tracked (xr,yr,zr,ψr) matches the number of “free” control variables

(U1,U2,U3,U4) so, indirectly, the tracking problem is fully actuated. The “virtual reference

trajectories” θt(t),φr(t); t ≥ 0, for the “free” attitude angles θ and φ can be imposed as to emu-

late independence of the three “desired” position control components (Uxd,Uyd,Uzd) of Up in

(5.79). Exact tracking of full attitude in R3 is feasible because the components of the attitude

control UΘ = [U2,U3,U4] are unconstrained and matched to the unknown disturbances thus

permitting simultaneous tracking of all the three attitude reference trajectories (ψr, θr,φr).

To generate the aforementioned reference trajectories θr and φr, it is first convenient to re-state

the explicit parametrization of the desired control Up = (Uxd,Uyd,Uzd) as given by (5.79) :

Uxd = (CφrS θrCψr +S φrS ψr)
U1d

m
(5.82)

Uyd = (CφrS θrS ψr −S φrCψr)
U1d

m
(5.83)

Uzd = (CφrCθr)
U1d

m
(5.84)

where, at this point, U1d has the interpretation of a desired thrust force to be applied to the

system. Multiplying (5.82) and (5.83) by Cψr and S ψr , respectively, and adding the result side

by side yields

CψrUxd +S ψrUyd = (CφrS θr)
U1d

m
= tan(θr)Uzd (5.85)
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Similarly, multiplying (5.82) and (5.83) by S ψr and −Cψr , respectively, and adding the result

side by side yields

S ψrUxd −CψrUyd = S φr

U1d

m
= tan(φr)

Uzd

Cθ
(5.86)

Hence, it follows that, given any desired values of Uxd,Uyd and Uzd � 0, that satisfy (5.79), and

any reference value of the yaw angle ψr, one can impose corresponding “desired values” of the

roll and pitch angles :

θr = arctan
(CψrUxd +S ψrUyd)

Uzd
(5.87)

φr = arctan
Cθr(S ψrUxd −CψrUyd)

Uzd
(5.88)

so that any desired (Uxd,Uyd,Uzd) controls are replaced, albeit indirectly, by the “virtual con-

trols” (θr,φr,U1d) .
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Figure 5.2 Block diagram of the controller and observer
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The position and attitude control systems are coupled in such a way as to permit the desired

attitude angles φr and θr and to be tracked by the attitude controller (see Fig. 5.2) implicitly

using the position control law (5.79).

5.7 Observer-based tracking control analysis

If the unknown disturbances dp and dΘ are estimated by their respective observers KDO, NDO,

or STO, the position and attitude closed loop subsystems with all their inaccuracies can be

written as

p̈ =G+UA
p + d̂p+ edp + (Up−UA

p ) (5.89)

Θ̈ = Φ(Θ, Θ̇)+UΘ + d̂Θ + edΘ (5.90)

with the control laws UA
p and UΘ employing the estimates d̂p and d̂Θ. UA

p is then given by; see

(5.4):

UA
p (t) =

1

m
R(Θ(t))T A(t)ez (5.91)

where the thrust force function is calculated as

U1d(t) := T A(t) = m
Uzd(t)

Cφr(t)Cθr(t)
> 0 (5.92)

as in (5.91), (5.81), with the total unknown disturbances in the position and atttude subsystems

defined as

ep := edp + (Up−UA
p ) (5.93)

eΘ := edΘ (5.94)

For simplicity of the convergence analysis and without much loss of generality it will hence-

forth be assumed that all the controller gains are diagonal as given by:
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Kip := kipI3×3; KiΘ := kiΘI3×3; i = 1,2

AΘ := diag{a1,a2,a3} (5.95)

for some positive constants kip,kiΘ,ak; i = 1,2,k = 1,2,3.

Therefore, the tracking control for the quadrotor is implementable only when the computed,

desired altitude control component Uzd of Up is strictly positive for all times.

Definition 5.1. (Tracking control feasibility) The tracking control is feasible if the initial con-

ditions of the system, the reference trajectories to be tracked pr(t),ψr(t); t ≥ 0, the ensemble of

system disturbances, and the position controller gains kip, i = 1,2, are such that the computed

altitude control component, and consequently the control thrust force satisfy

Uzd(t) > 0, T A(t) > 0; for all t ≥ 0 (5.96)

A brief discussion of sufficient conditions for the tracking control feasibility is in place. Since

the position controller gains are assumed diagonal the instantaneously desired altitude control

component of Up is computed as

Uzd = (k1p+ k2p)e2p(3)+ (1+ k2
1p)e1p(3)+ z̈r

− d̂z+g (5.97)

e1p(3) = zr − z; e2p(3) = żr − ż+ k1p(zr − z)

where eip(3), i = 1,2, denote the altitude i.e. z-components of the respective tracking errors. It

is clear that a sufficient condition for Uzd to be positive is that the gravity term g dominates

the sum of all other terms in (5.97) at all times. Such condition is clearly too conservative

as some of the terms in (5.97) can be positive during tracking and especially during sustained

ascent when e1p(3)> 0, ė1p(3)> 0 and z̈r > 0. The same terms are, however, equally likely to be

negative during descent and then the dominance of g might require reduction of the controller

gains to preserve positivity of the thrust force during flight. In the case when the vertical
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disturbance dz is estimated without any error (i.e. when edp(3) ≡ 0) the vertical component of

the tracking error eventually converges to zero, so

Uzd→ z̈r − d̂z+g as t→∞ (5.98)

If, additionally, the reference accelerations in altitude are asymptotically zero, the necessary

condition for tracking control feasibility is the dominance of the vertical disturbance accelera-

tion by the gravitational one.

g > |d̂z(t)| for all t ≥ 0 (5.99)

Clearly, this condition is generally not sufficient for control feasibility.

Remark 5.1. In conclusion, feasibility of the tracking control hinges entirely on the altitude

control of the quadrotor. The vertical disturbance force must not exceed the gravitational

force for the tracking control to be feasible which is obvious from a practical point of view.

Control feasibility is more likely to be lost during descent thus the sign of the calculated desired

vertical component of the position control Uzd can be monitored and corrected by decreasing

the controller gains adaptively during descent, if necessary.

It is now straightforward to characterize the stability of the overall closed loop tracking control

system.

Theorem 5.2. The quadrotor system in closed loop with the control laws of the form (5.79)

and (5.81), when coupled with any of the nonlinear estimators ( KDO, NDO, or STO) of the

unknown disturbances dp and dΘ, achieves the tracking goal as specified below.

With the assumption that the tracking control problem is feasible as defined in Definition 1,

with disturbances limited as in (5.99) , let pr(t) ∈ R3, ψr(t) ∈ R, t ≥ 0, be the twice continu-

ously differentiable position and yaw angle reference trajectories to be tracked asymptotically.

Given an admissible tolerance εtol > 0 for the total asymptotic tracking error in the position
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and yaw angle (p,ψ), there exist position controller gains K1p,K2p, attitude controller gains

K1Θ,K2Θ,AΘ, and a time T ∗ > 0 such that

||p(t)− pr(t)||2+ |ψ(t))−ψr(t)|2 ≤ εtol for t ≥ T ∗ (5.100)

Proof. Since the disturbance observers do not depend directly on the action of the tracking

controllers, let T ∗E > 0 be a time such that both disturbance observer estimation errors satisfy

max {||edp(t)||2, ||edΘ(t)||2} ≤ 0.25εtol; t ≥ T ∗E (5.101)

By construction of the virtual attitude trajectory Θr(t); t ≥ 0, if the tracking control problem is

feasible then θr,φr are analytic functions of their arguments, and since the reference trajectory

ψr is twice differentiable, the following bound holds for the difference between the desired and

applied position controls

|UA
p (t)−Up(t)|

≤ Uzd ||R(Θ(t))ez||
∣∣∣∣∣∣ 1

Cφr(t)Cθr(t)
− 1

Cφ(t)Cθ(t)

∣∣∣∣∣∣ (5.102)

for all t ≥ 0. By continuity of trajectory Θ(t); t ≥ 0, there exists a constant δΘ > 0 such that

|UA
p (t)−Up(t)| <

√
0.25εtol for all t such that

||Θ(t)−Θr(t)|| < δΘ (5.103)

where, without the loss of generality it can be assumed that δΘ <
√

0.5εtol.

As already pointed out, convergence in the attitude tracking is completely independent of the

performance of the position tracking control as the attitude subsystem is decoupled from the

position subsystem and hence can be controlled independently. Given any attitude reference

trajectoryΘr the sliding mode attitude controller (5.81) in closed loop of the attitude subsystem

dynamics can be tuned to deliver asymptotic tracking, in spite of its unknown disturbances eΘ
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as in (5.94)

||Θ(t)−Θr(t)|| → 0 as t→∞ (5.104)

with any desired convergence rate provided the choice of controller gains K1Θ,K2θ and AΘ are

unrestricted to permit full compensation of unknown disturbances. Then let T ∗
Θ
> 0 be such

that

||Θ(t)−Θr(t)||2 ≤ δΘ ≤ 0.5εtol for all t ≥ T ∗Θ (5.105)

It then follows from (5.101) - (5.102) that the total unknown uncertainties (5.93) to be com-

pensated for in the position subsystem are bounded by

||ep||2 ≤ ||edp ||2+ |UA
p (t)−Up(t)|2 ≤ 0.5εtol

for all t ≥max{T ∗E ,T ∗Θ} (5.106)

By virtue of Proposition 2 there exist controller gains K1p,K2p and a time T ∗p > 0 such that

||p(t)− pr(t)|| ≤ 0.5εtol for all t ≥ T ∗p (5.107)

in spite of the total unknown disturbances ep as in (5.93). The inequality (5.100) then holds for

T ∗ :=max{TE ,T ∗Θ;T ∗p} (5.108)

This completes the convergence analysis of the observer-based tracking control for the quadro-

tor.
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5.8 Results and discussion

In order to verify the effectiveness of the proposed methods, the physical parameters for the

quadrotor UAV are summarized as: h= 0.225 m, JR = 3.357 × 10−5 Kg m2, g= 9.81m/s2,

Ixx =0,0126 kg.m2, Iyy =0,0125 kg.m2, and Izz =0,0235 kg.m2. Furthermore, the yaw angle

reference trajectory was set at x5r = 0 rad over the entire simulation horizon. The quadrotor

was required to follow the desired trajectory defined as

For (t < 10):

xd = 6x10−3t2−4x10−4t3

yd = 6x10−3t2−4x10−4t3 for t < 10

zd = 6x10−3t2−4x10−4t3

For (10 < t ≤ 20):

xd = 0.2

yd = 0.2

zd = 0.2

For (20 < t ≤ 30)

xd = 3×10−3(t−20)2−2×10−4(t−20)3

yd = 0.2

zd = 0.2

For (30 < t ≤ 40):

xd = 0.3

yd = 3×10−3(t−30)2−2×10−4(t−30)3

zd = 0.2
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For (40 < t ≤ 50):

xd = 0.3

yd = 0.3

zd = 0.2

For (50 < t ≤ 60):

xd = −3×10−3(t−50)2+2×10−4(t−50)3

yd = −3×10−3(t−50)2+2×10−4(t−50)3

zd = 0.2

For (t > 60):

xd = 0.2

yd = 0.2

zd = 0.2

The position and attitude controller gains are 3×3 matrices:

K1p = diag[k1x,k1y,k1z],

K2p = diag[k2x,k2y,k2z],

K1Θ = diag[k1φ,k1θ,k1ψ],

K2Θ = diag[k2φ,k2θ,k2ψ],

A = diag[Aφ,Aθ,Aψ]

5.8.1 Simulation Results

To exhaustively compare the performance of the KDO, NDO, and STO observers, the simulated

system was subjected to four different disturbances. The disturbances were considered to be
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possible models of a “combination of wind gust and aerodynamics forces". To compare the

effectiveness of the observers in rapidly varying windy environments, the disturbance models

proposed are chaotic in nature. For comparison of the sole convergence rates of NDO and

STO, disturbances which are constant and linear with respect to time were considered. Among

the chaotic models of disturbances, the results of one of these models with worst performance

are considered only. The KDO has not been included in the convergence rate comparison as

it is an “instantaneous” disturbance observer (with the estimation time dictated by the size of

the observation window which, in the case of continuous system output measurements, can be

chosen arbitrarily.

5.8.2 Disturbance model: Chaotic 1

This section presents simulation results pertaining to disturbances labelled “Chaotic 1” which

are of the form,

di = kai(t)sin(ωt−φi) (5.109)

where ai for i = 1, ...,6 are trajectories of two independent Lorenz chaotic systems, (i) first

system idexed ai for i = 1,2,3 and the (ii) second system indexed i = 4,5,6. The evolution of

the Lorenz system in this case is described by :

ȧ1(t) = 0.15
(
σ(a2(t)−a1(t))

)
(5.110a)

ȧ2(t) = 0.15
(
ρa1(t)−a1(t)a3(t)−a2(t)

)
(5.110b)

ȧ3(t) = 0.15
(
a1(t)a2(t)−βa3(t)

)
(5.110c)

with constantsσ= 10, ρ= 28, β= 8/3, k= 0.0.1,ω= 0.5 and initial conditions for ai for i= 1, ...,6

are given by the vector a(0) = [−6,−5,22,−10,−12,24]. The phase shifts values are assumed

to be φ = [25,45,65,10,30,50]. This results in aperiodic and chaotic system disturbances, as

seen in Figures 5.3 and 5.4.

For this set of chaotic disturbances the maximum estimation errors associated with the time

convergence using the three observers are summarized in the Table 5.1. The convergence time
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is the time taken by NDO and STO to have an estimation error within the range ±0.1 when

the observers are initialized at the same point in the observer space ( all components of the

observer initial state selected to be equal to 0.45).

Figure 5.3 Disturbances in position subsystem; Chaotic 1

Table 5.1 Performance comparison of KDO, NDO, STO for

disturbance: Chaotic 1

NDO STO KDO

time (s) max error (m) time (s) max error (m) time (s) max error (m)

dz 7.266 0.112 1.721 0.096 0 8.906∗10−5

dx 8.201 0.147 1.659 0.090 0 1.487∗10−4

dy 4.306 0.361 3.611 0.141 0 2.401∗10−4

dφ 34.08 0.110 1.902 0.041 0 9.453∗10−5

dθ 24.52 0.183 0.650 0.089 0 2.073∗10−4

dψ 20.47 0.260 0.951 0.091 0 1.955∗10−4
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Figure 5.4 Disturbances in attitude subsystem: Chaotic 1

Using Table 5.1, the disturbance estimation with maximum estimation error (one of the worst

cases) for each observer is presented in Fig. 5.5 - Fig. 5.7

From Table 5.1 and Table 5.2, it can be observed that among the two chaotic disturbances, the

attitude and position tracking performance under chaotic model 1 disturbance is the worse in

this case. Therefore, we chose the Chaotic 1 disturbance model to compare the three observers.

The tracking results of the three observers under the effect of Chaotic 1 disturbance model are

presented in Fig. 5.8- Fig. 5.25
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Figure 5.5 Disturbance estimation of yaw angle using NDO;

Chaotic 1

Figure 5.6 Disturbance estimation of y position using STO;

Chaotic 1
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Figure 5.7 Disturbance estimation of yaw angle using KDO;

Chaotic 1
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Figure 5.8 Tracking of x coordinate using NDO
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Figure 5.9 Tracking of x coordinate using STO
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Figure 5.10 Tracking of x coordinate using KDO
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Figure 5.11 Tracking of y coordinate using NDO
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Figure 5.12 Tracking of y coordinate using STO
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Figure 5.13 Tracking of y coordinate using KDO
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Figure 5.14 Tracking of z coordinate using NDO
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Figure 5.15 Tracking of z coordinate using STO
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Figure 5.16 Tracking of z coordinate using KDO
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Figure 5.17 Tracking of roll angle using NDO
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Figure 5.18 Tracking of roll angle using STO
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Figure 5.19 Tracking of roll angle using KDO
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Figure 5.20 Tracking of pitch angle using NDO
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Figure 5.21 Tracking of pitch angle using STO
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Figure 5.22 Tracking of pitch angle using KDO
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Figure 5.23 Tracking of yaw angle using NDO
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Figure 5.24 Tracking of yaw angle using STO
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Figure 5.25 Tracking of yaw angle using KDO

5.8.3 Disturbance model: Chaotic 2

The disturbances are again of the form,

di = kai(t)sin(ωt−φi) (5.111)

where the ai for i = 1, ...,6, are trajectories of two independent Lorenz chaotic systems ai for

i = 1,2,3 and the second system for i = 4,5,6. The Lorenz system in this case is :

a′1(t) = 0.15
(
σ(a2−a1)

)
(5.112a)

a′2(t) = 0.15
(
ρa1−a1a3−a2

)
(5.112b)

a′3(t) = 0.15
(
a1a2−βa3

)
(5.112c)

where the constants σ = 10, ρ = 28, β = 8/3, k = 0.0.1, ω = 0.5 with initial values of ai for

i = 1, ...,6 are given by the vector [−6,−5,22,−10,−12,24], the phase shift values, φi for i =



170

1, ...,6 is given by the vector, [25,45,65,10,30,50]. This results in the applied disturbances to

be non-periodic and chaotic, as seen in Figures 5.26 and 5.27.

Figure 5.26 Chaotic Disturbances 2 in Position Subsystem

Figure 5.27 Chaotic Disturbances 2 in Attitude Subsystem
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For this set of chaotic disturbances the maximum estimation errors associated with the time

convergence using the three observers are summarized in the Table 5.2. The convergence time

is the time taken by NDO and STO to have an estimation error within the range ±0.1 when the

observers are initialized with the initial observer state of 0.45.

Using Table 5.2, the disturbance estimation with maximum estimation error (one of the worst

cases) for each observer is presented in Fig. 5.28 - Fig. 5.30

Table 5.2 Performance comparison of KDO, NDO, STO for

disturbance: Chaotic System 2

NDO STO KDO

time (s) max error (m) time (s) max error (m) time (s) max error (m)

dz 6.03 0.136 3.075 0.551 0 1.422∗10−4

dx 6.55 0.180 3.642 0.116 0 3.446∗10−4

dy 3.12 0.388 2.289 0.136 0 4.137∗10−4

dφ 26.58 0.155 1.204 0.025 0 1.034∗10−4

dθ 15.82 0.194 1.328 0.072 0 3.575∗10−4

dψ 12.34 0.396 2.157 0.086 0 4.893∗10−4

Figure 5.28 Chaotic Disturbances estimation of y component

using NDO
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Figure 5.29 Chaotic Disturbances estimation of y component

using STO

Figure 5.30 Chaotic Disturbances estimation of y component

using KDO
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5.8.4 Disturbance model: Linear

The same quadrotor system was also simulated with disturbances that increased or decreased

with time. The disturbances were of the form,

di = ki.t (5.113)

where i = x,y,z,φ,θ,ψ and the vector k = [1,−3,2,1.5,2.5,−2.5] ∗ 10−3. For the set of linear

disturbances, the estimation results are summarized in Table 5.3. The convergence time is

the time taken by NDO and STO to have an estimation error within the range ±0.1 when the

observers are initialized with the initial observer state of 0.45 for each component.

Table 5.3 Performance comparison of KDO, NDO, STO for

disturbance:Linear disturbances

NDO STO KDO

time (s) max error (m) time (s) max error (m) time (s) max error (m)

dz 22.757 0.005 3.549 0.0005 0 1.002∗10−6

dx 20.254 0.015 5.204 0.0013 0 3.142∗10−6

dy 19.584 0.001 3.420 0.0002 0 2.435∗10−6

dφ 55.234 0.019 2.845 0.0006 0 1.534∗10−6

dθ 46.565 0.045 2.594 0.0006 0 2.532∗10−6

dψ 41.543 0.052 2.487 0.0005 0 2.504∗10−6

5.8.5 Disturbance model: Constant

Similar to the case of applying linear disturbances, linear disturbances were applied to the same

quadrotor system where the disturbances remained constant with time. The disturbances were

of the form,

di = ci (5.114)

where i = x,y,z,φ,θ,ψ and the vector ci = [0.1,0.3,−0.2,−0.05,−0.25,0.15]. For the set of

constant disturbances the estimation results are summarized in Table 5.4. The convergence
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time is the time taken by NDO and STO to have an estimation error within the range ±0.1

when the observers are initialized with the initial observer state of 0.45 for each component.

Table 5.4 Performance comparison of KDO, NDO, STO for

disturbance:Constant disturbances

NDO STO KDO

time (s) max error (m) time (s) max error (m) time (s) max error (m)

dz 10.354 0.359 3.259 0.359 0 3.553∗10−7

dx 10.353 0.153 2.663 0.148 0 1.735∗10−7

dy 15.945 0.642 5.293 0.669 0 2.460∗10−7

dφ 25.394 0.549 3.499 0.530 0 4.163‘∗10−7

dθ 26.903 0.749 5.995 0.719 0 9.702∗10−7

dψ 24.959 0.392 1.639 0.344 0 2.345∗10−7

5.9 Conclusion

In this paper, three disturbance estimation techniques are presented; nonlinear disturbance ob-

server, super-twisting sliding mode observer, and kernel disturbance observer in a comparable

manner. A regular sliding mode control and backstepping control have engaged with all ob-

servers for the quadrotor system. The comparison is made in the presence of external distur-

bances and aerodynamic effects considering the behavior of states and convergence rate. The

kernel disturbance observer performs better than super-twisting sliding mode observer which,

in turn, performs better than the nonlinear disturbance observer under the applied external dis-

turbances. Kernel disturbance observer does not need initial conditions and hence the results

are independent of initial conditions. NDO and STO show longer convergence times in lin-

ear and constant disturbances but have a lower margin of error when compared to the chaotic

disturbances; while the KDO performs better in the linear and constant disturbances on all

parameters of comparison. Further, the kernel disturbance observer is a deadbeat observer by

design, hence the term, "convergence time" for the observer is redundant. Meanwhile, the

super-twisting sliding mode observer shows similar results to a variety of initial controller

gains. This could be the main drawback in real-time flight. KDO is the most computationally
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expensive observer as each iteration requires computation of kernels and the integrals. In ad-

dition, kernel disturbance observer and super-twisting sliding mode observer show a flexible

environment for the initialization of the controller gains. On the other hand, nonlinear distur-

bance observer needs an adjusted controller gains for initialization and does not allow arbitrary

gains. This leads to the fact that practical super-twisting sliding mode observer capability in

the presence of bounded external disturbances result in finite time convergence as compared

to NDO where the convergence is asymptotic, which is appropriate in the disturbed environ-

ment. This endeavor of exploring super-twisting sliding mode observers will be a good starting

point to compare them with other observers of its kind (differential observer). Due to the com-

putational complexity of the KDO, the observer would need to be modified for its practical

implementation as future work.





CONCLUSION AND RECOMMENDATIONS

This thesis work was focused on developing a consistent control technique for a quadrotor

UAV executing a tracking task in coordination. Different nonlinear controllers combined with

observers were simulated and experimentally applied to a quadrotor UAV. To achieve all of the

objectives of this thesis, as a first step, an experimental platform was developed and mounted in

the laboratory of GREPCI-ETS to implement and validate the different designed control laws.

In the second step, several observers for robust tracking control were applied, ensuring that the

desired trajectory can be tracked under parameter uncertainties and external disturbances. The

overall quadrotor system was divided into subsystems. The main results of this project can be

summarized as follows:

• A robust control based on the observer-based approach was modified and applied to an

interconnected quadrotor system; this approach was initially developed for quadrotor with

different controllers. In this work, this technique was combined with different nonlinear

approaches such as the backstepping technique and sliding mode control method. All these

proposed control schemes ensure a good tracking of the desired trajectory under unknown

external disturbances applied to the quadrotor UAV. These unknown disturbances were

firstly estimated by using an observer-based approach. The overall stability of the entire

system was proved based on the stability of each subsystem and the appropriate choice of

the Lyapunov candidate function.

• A comparison between nonlinear control approaches based on the backstepping and slid-

ing mode techniques combined with different observers simulated numerically and imple-

mented experimentally on the experimental platform developed in the laboratory, as ex-

plained above. Signum function was replaced by a continuous function to reduce or limit

the chattering phenomenon of sliding mode technique. The proposed control law ensures

that the position and attitude errors converge to zero asymptotically. Likewise, the stability

of the quadrotor system was proved by using the Lyapunov technique.
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Consequently, we can conclude that the developed control strategies guarantee a good desired

tracking, compensate and suppress the parametric uncertainties and external disturbances ap-

plied to the dynamic system.

Some limitations and problems can be highlighted in this thesis. First, the localization system

has to be enhanced to handle more accuracy than the Kinect such as Opti-track or Vicon sys-

tems. Second, all of the developed control schemes suppose that the environment is known

and do not consider the presence of any obstacle. As the next step for improved achievements,

the use of a more accurate localization system is a promising objective. Furthermore, as a

recommendation for future work, we will consider a more complex and unknown environment

with static and dynamic obstacles. In this case, an algorithm of obstacle avoidance should be

combined with the proposed controller to give the quadrotor more robustness. By considering

these environments, the developed controllers will not be applied only in the laboratory but can

also be implemented on real tasks such as transportation.





APPENDIX I

HARDWARE SET-UP

1. Implementation

The designed controllers are implemented on S500 platform. This section explains the ways to

implement and communicate with this quadrotor platform. Several equipments are necessary

for the proper functioning of experimentation. A control unit is needed to send and receive

information to the quadrotor. A computer with the Ubuntu 14.04 operating system and an Intel

Xeon E3-1200 v3 processor is used. This computer retrieved information from the Kinect to

run the designed algorithm. Then, the received position is filtered to retrieve velocity using a

Kalman filter. The desired trajectory will also be generated by the computer. Eventually, all

required information (the current position, current and desired angles) are sent to the quadrotor.

Control unit

Image processing

Position retrieve

Kalman Filter

Velocity retrieve and filter 

the position

Desired trajectory 

generation

Data recording 

Kinect 2

Quadrotor

Figure-A I-1 Communication of all peripherals
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It can be seen from Figure A I-1 that communication between different devices is crucial to

implement the designed controller. Communication protocols are not necessarily common.

Knowledge of these protocols is required to get the whole system working properly. Several

tasks must be managed simultaneously and must be optimized in order to receive or send

information quickly. ROS is one of the platforms that can be used externally to manage low-

level devices.

1.1 Robot Operating System (ROS)

The ROS platform can handle communications between different devices at a low level. ROS

is, therefore, the intermediary between the communication protocol of a device and the receiv-

ing and transmitting a message. The user must only know how to handle ROS without knowing

any information on how to build the protocol and on addressing. The ROS platform is based

on a server (which can be network or local) ROS (called roscore) where all messages based on

the ROS protocol are received. These messages can be modified (we say that we publish infor-

mation to a message) or received (we say we subscribe to a message) by any device connected

to the ROS server. The procedure to establish the point between the communication protocol

and ROS is called a frame Figure A I-2. The package is given most often by the developer of

the device in question. We can, however, create our own package for any little device that we

know the structure of the communication protocol.

The ROS compatible programming languages are Python, C ++ and Lisp. ROS contains a

library to send any structure of a message (messages for positions, trajectories, Cartesian land-

marks, image reading, reading of inertial centers ...). Hence, no need to know the structure of

the low-level ROS protocol. Several packages have been used for the implementation of the

controller:

• The Iai Kinect 2 package makes it possible to link the communication protocol of the

Kinect 2 and ROS (see https : //github.com/code− iai/iaikinect2). It will then be possible

to recover the images coming from the infra-red sensors and from the camera. We will also

recover the intrinsic parameters of the camera;
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• The Mavros package (available on http://wiki.ros.org/mavros) makes the relationship be-

tween the PX4 communication protocol called Mavlink (documentation is available at

http://qgroundcontrol.org/mavlink/start) and ROS; We will create a package to run the de-

signed algorithm and create ROS messages containing the position, the velocity and the

desired trajectory. The designed controllers will be implemented on the Pixhawk micro-

controller.

ROS Protocol conversion 

For device 1

Communication protocol 

For device 1

Device 1 

Package�

Device 1 

ROS Protocol conversion 

For device 2

Communication protocol 

For device 2

Device 2

Package�

Device 2

ROS Server

Figure-A I-2 Basic operation of ROS

1.2 Controller Implementation on the S500 quadrotor

The S500 drone has been equipped with a Pixhawk and an embedded computer (Odroid XU4)

to validate the designed controller experimentally. A WI-FI router has been used to commu-

nicate with the drone from a control base. The drone uses a communication protocol called

Mavlink. The use of ROS will make the link between this protocol and the control unit.

Mavlink is a protocol used by a variety of firmwares. It offers a protocol structure to control
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different types of quadrotor. Many quadrotors in the industry use this protocol. This also al-

lows different firmware using Mavlink to be compatible with most ground stations. A Mavlink

package can range from 8 to 263 bytes. We can send a data of 256 bytes maximum. Table A

I-1 shows the structure of a Mavlink protocol package.

Table-A I-1 Structure of the Mavlink frame.

Byte Number Name
0 Beginning of the frame

1 Size of the data

2 Frame sequence number

3 the receiving system ID

4 Component ID

5 Message ID

6 to (n+6) Data

(n+7) to (n+8) Control bytes

A documentation (Mavlink, 2015) provides a list of the different MAVLINK messages avail-

able. We will use for our case the messages described in Table A I-2.

Table-A I-2 Used Mavlink Messages.

Message Description
ESTIMATION OF VISION POSITION Send the current position

ESTIMATION OF VISION VELOCITY Send the velocity

SET LOCAL POSITION TARGET NED Sending the desired position, velocity and acceleration

ATTITUDE Retrieves the current angles

ROS has been used to establish the bridge between Mavlink and the drone. The Pixhawk does

not have a WI-FI antenna. We will use the Odroid XU4 embedded computer on the quadrotor

to establish communication between the drone and the control base. We will communicate

with the Odroid using ROS where the server will be on a network Figure A I-3.
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Image processing

(Position, velocity, 

trajectory 

generation)

Kinect 2

Kinect 2 Package

ROS Server

Depth image

Position, Velocity, 

Trajectory
Control Unit

WI-FI Router

Micro-Computer

Odroid-XU4

MAVROS PackagePixhawk

Quadrotor

Figure-A I-3 Communication between the control unit and the

S500 quadrotor
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