
Enhanced Quality Reconstruction of Erroneous Video Streams
Using Packet Filtering Based on Non-desynchronizing Bits and

UDP Checksum-Filtered List Decoding

by

Firouzeh GOLAGHAZADEH

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ph.D.

MONTREAL, MAY 29TH, 2019

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Firouzeh Golaghazadeh, 2019

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

Mr. Stéphane Coulombe, Thesis Supervisor

Department of Software Engineering and IT, École de technologie supérieure

Mr. François-Xavier Coudoux, Thesis Co-supervisor

Department of Electrical Engineering and Computer Science, Université Polytechnique

Hauts-de-France

Mr. Patrick Corlay, Thesis Co-supervisor

Department of Electrical Engineering and Computer Science, Université Polytechnique

Hauts-de-France

Mr. Ammar Kouki, President of the Board of Examiners

Department of Electrical Engineering, École de technologie supérieure

Mr. Carlos Vázquez, Member of the jury

Department of Software Engineering and IT, École de technologie supérieure

Mr. Marco Cagnazzo, External Independent Examiner

LTCI, CNRS, Télécom Paris Tech, Université Paris-Saclay

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON APRIL 10TH, 2019

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

I owe my deepest gratitude to my amazing husband Reza, who has always supported me and

stood by me in my difficult moments. Reza, you gave me the confidence in myself because

you believe in me and care about me. I would also like to extend my deepest gratitude to my

brother and my sisters for their constant encouragements to pursue my academic goals. I’m

deeply indebted to my parents who have sacrificed their own dreams to help me towards mine.

I know this was always your one day dream, so, Mom, Dad, this is for you.

I cannot find the best words to express my thanks to my dear supervisor, Professor Stéphane

Coulombe, for all his valuable advices, continuous encouragements during my long-term PhD

studies. This accomplishment would not have been possible without his mentorship and in-

valuable involvement. Dear Professor Coulombe, I consider myself as a lucky person for the

opportunity I had to work with you and I always consider it as a great honor.

I would like to express my gratitude to my co-supervisors, Professors François-Xavier Coudoux

and Patrick Corlay, for their collaboration in the project and also their hospitality during my

internship in France. Their participation in this project made my PhD experience richer tech-

nically and culturally.

I would like also to thank the members of my dissertation committee: Professors Ammar

Kouki, Carlos Vázquez and Marco Cagnazzo for their time reviewing my thesis.

I would like to thank all my friends in our office, the Video Optimization lab, for their help and

support: François, Luc, Jean-François, Reza, Esmaeil, Deepa, Neda and Nick.

Finally, I would like to thank, the Natural Sciences and Engineering Research Council of

Canada (NSERC) and the Fonds de recherche du Québec – Nature et technologies (FRQNT)

for their financial support.

Qualité améliorée de la reconstruction des flux vidéos avec erreurs à l’aide d’un filtrage
de paquets basé sur des bits non désynchronisants et une approche de décodage en liste

filtrée par la somme de contrôle au niveau UDP

Firouzeh GOLAGHAZADEH

RÉSUMÉ

Les dernières normes de codage vidéo, telles que H.264 et H.265, sont extrêmement vul-

nérables dans les réseaux sujets aux erreurs. En raison de leurs outils sophistiqués de pré-

diction spatiale et temporelle, l’effet d’une erreur ne se limite pas à la zone erronée, mais il

peut facilement se propager spatialement aux blocs voisins et temporellement aux images suiv-

antes. Ainsi, les paquets vidéos reconstruits au décodeur peuvent présenter une dégradation

significative de la qualité visuelle. La dissimulation d’erreurs et les corrections d’erreurs sont

deux mécanismes qui ont été développés pour améliorer la qualité des trames reconstruites en

présence d’erreurs.

Dans la plupart des approches existantes de dissimulation d’erreurs, les paquets corrompus sont

ignorés et seules les informations correctement reçues des zones environnantes (dans l’espace

et/ou dans le temps) sont utilisées pour récupérer la zone erronée. Cela est dû au fait qu’il

n’existe aucun mécanisme de détection d’erreur parfait pour identifier correctement les blocs

reçus dans un paquet corrompu, et aussi au problème de désynchronisation provoqué par les

erreurs de transmission sur le code à longueur variable (VLC). Mais, comme de nombreuses

études l’ont montré, les paquets corrompus peuvent contenir des informations précieuses pou-

vant être utilisées pour reconstruire correctement la zone perdue (par exemple, lorsque l’erreur

est située à la fin d’une tranche).

D’autre part, les approches de correction d’erreur, telles que le décodage en liste, exploitent

les paquets corrompus pour générer plusieurs paquets candidats transmis à partir du paquet

reçu corrompu. Ils sélectionnent ensuite, parmi ces candidats, celui qui présente la probabilité

la plus élevée d’être le paquet transmis sur la base des informations souples disponibles (par

exemple, le rapport log-vraisemblance (LLR) de chaque bit). Cependant, les approches de

décodage de liste souffrent d’un grand espace de solutions de paquets transmis candidats. Cela

est aggravé lorsque les informations logicielles ne sont pas disponibles au niveau de la couche

d’application; un scénario plus réaliste en pratique. En effet, comme on ignore quels bits ont

des probabilités plus élevées d’avoir été modifiés au cours de la transmission, les paquets reçus

candidats ne peuvent être classés par vraisemblance.

Dans cette thèse, nous proposons différentes stratégies pour améliorer la qualité des paquets

reconstruits qui ont été légèrement endommagés lors de la transmission (par exemple au plus

une erreur par paquet). Nous proposons d’abord un mécanisme simple mais efficace pour filtrer

les paquets endommagés afin de conserver ceux qui sont susceptibles de conduire à une très

bonne reconstruction et d’éliminer les autres. Cette méthode peut être utilisée en complément

à la plupart des méthodes de dissimulation existantes pour améliorer leurs performances. La

VIII

méthode est basée sur le nouveau concept de bits non désynchronisants (NDBs) définis dans

le contexte d’une séquence compressée à l’aide de codes à longueur variable (CAVLC) en

H.264, en tant que bit dont l’inversion ne provoque pas de désynchronisation au niveau du

flux binaire ni ne modifie le nombre de macroblocs décodés. Nous établissons que, sur des

trains de bits codés typiques, les NDBs constituent environ un tiers (environ 30%) d’un train

de bits et que l’effet sur la qualité visuelle du renversement de l’un d’eux dans un paquet est

généralement insignifiant. Dans la plupart des cas (90%), la qualité du paquet reconstruit lors

de la modification d’un NDB individuel est presque identique à celle du paquet intact. Nous

démontrons ainsi que conserver, sous certaines conditions, un paquet corrompu en tant que

candidat pour la zone perdue peut fournir une meilleure qualité visuelle que les méthodes de

dissimulation. Nous proposons enfin un cadre de décodage non désynchronisé, qui conserve un

paquet corrompu, à condition de ne pas provoquer de désynchronisation et de ne pas modifier

le nombre de macroblocs attendus. Le cadre peut être combiné avec la plupart des approches de

dissimulation actuelles. L’approche proposée est comparée à la copie de trame (FC) du logiciel

JM (Joint Model) (JM-FC) et à une approche de dissimulation de pointe utilisant le mécanisme

de l’algorithme d’adaptation de limite spatiotemporelle (STBMA), dans le cas d’un bit d’erreur,

et fournit en moyenne respectivement un gain de 3,5 dB et 1,42 dB.

Nous proposons ensuite une nouvelle approche de décodage en liste appelée CFLD (checksum-

filtered list decoding)) qui permet de corriger un paquet au niveau du train de bits en exploitant

la valeur de somme de contrôle du protocole de datagramme utilisateur (UDP) du destinataire.

L’approche proposée permet d’identifier les emplacements possibles d’erreurs en analysant le

modèle de la somme de contrôle UDP calculée sur le paquet corrompu. Cela permet de réduire

considérablement le nombre de paquets candidats transmis par rapport aux approches clas-

siques de décodage en liste, en particulier lorsqu’aucune information souple n’est disponible.

Lorsqu’un paquet composé de N bits contient un seul bit erroné, au lieu de considérer les pa-

quets candidats au nombre de N, comme c’est le cas dans les approches de décodage en liste

conventionnelles, l’approche proposée prend en compte environ N/32 candidats, entraînant une

réduction de 97% du nombre de candidats. Cette réduction peut atteindre 99,6% dans le cas de

deux bits erronés. Les performances de la méthode sont évaluées à l’aide de H.264 et H.265.

Nous montrons que, dans le cas d’une séquence codée H.264, en moyenne, l’approche CFLD

est capable de corriger le paquet 66% du temps. Elle offre également un gain de 2,74 dB sur

JM-FC et des gains de 1,14 dB et 1,42 dB sur STBMA et un décodage par vraisemblance max-

imale en sortie dure (HO-MLD), respectivement. De plus, dans le cas de HEVC, l’approche

CFLD corrige le paquet corrompu 91% du temps et offre des gains de 2,35 dB et 4,97 dB

sur notre mise en œuvre de la dissimulation de FC dans le logiciel de modèle de test HEVC

(HM-FC) pour les séquences des classes B (1920×1080) et C (832×480), respectivement.

Mots-clés: transmission vidéo, H.264, high efficiency video coding (HEVC), H.265, eléments

de syntaxes, bit non désynchronisant (NDB), dissimulation d’erreurs, correction d’erreur vidéo,

décodage en liste, somme de contrôle, protocole de datagramme utilisateur (UDP), checksum-

filtered list decoding (CFLD)

Enhanced quality reconstruction of erroneous video streams using packet filtering based
on non-desynchronizing bits and UDP checksum-filtered list decoding

Firouzeh GOLAGHAZADEH

ABSTRACT

The latest video coding standards, such as H.264 and H.265, are extremely vulnerable in error-

prone networks. Due to their sophisticated spatial and temporal prediction tools, the effect of

an error is not limited to the erroneous area but it can easily propagate spatially to the neigh-

boring blocks and temporally to the following frames. Thus, reconstructed video packets at

the decoder side may exhibit significant visual quality degradation. Error concealment and

error corrections are two mechanisms that have been developed to improve the quality of re-

constructed frames in the presence of errors.

In most existing error concealment approaches, the corrupted packets are ignored and only the

correctly received information of the surrounding areas (spatially and/or temporally) is used to

recover the erroneous area. This is due to the fact that there is no perfect error detection mech-

anism to identify correctly received blocks within a corrupted packet, and moreover because of

the desynchronization problem caused by the transmission errors on the variable-length code

(VLC). But, as many studies have shown, the corrupted packets may contain valuable informa-

tion that can be used to reconstruct adequately of the lost area (e.g. when the error is located at

the end of a slice).

On the other hand, error correction approaches, such as list decoding, exploit the corrupted

packets to generate several candidate transmitted packets from the corrupted received packet.

They then select, among these candidates, the one with the highest likelihood of being the

transmitted packet based on the available soft information (e.g. log-likelihood ratio (LLR) of

each bit). However, list decoding approaches suffer from a large solution space of candidate

transmitted packets. This is worsened when the soft information is not available at the ap-

plication layer; a more realistic scenario in practice. Indeed, since it is unknown which bits

have higher probabilities of having been modified during transmission, the candidate received

packets cannot be ranked by likelihood.

In this thesis, we propose various strategies to improve the quality of reconstructed packets

which have been lightly damaged during transmission (e.g. at most a single error per packet).

We first propose a simple but efficient mechanism to filter damaged packets in order to retain

those likely to lead to a very good reconstruction and discard the others. This method can be

used as a complement to most existing concealment approaches to enhance their performance.

The method is based on the novel concept of non-desynchronizing bits (NDBs) defined, in the

context of an H.264 context-adaptive variable-length coding (CAVLC) coded sequence, as a

bit whose inversion does not cause desynchronization at the bitstream level nor changes the

number of decoded macroblocks. We establish that, on typical coded bitstreams, the NDBs

constitute about a one-third (about 30%) of a bitstream, and that the effect on visual quality of

X

flipping one of them in a packet is mostly insignificant. In most cases (90%), the quality of the

reconstructed packet when modifying an individual NDB is almost the same as the intact one.

We thus demonstrate that keeping, under certain conditions, a corrupted packet as a candidate

for the lost area can provide better visual quality compared to the concealment approaches.

We finally propose a non-desync-based decoding framework, which retains a corrupted packet,

under the condition of not causing desynchronization and not altering the number of expected

macroblocks. The framework can be combined with most current concealment approaches.

The proposed approach is compared to the frame copy (FC) concealment of Joint Model (JM)

software (JM-FC) and a state-of-the-art concealment approach using the spatiotemporal bound-

ary matching algorithm (STBMA) mechanism, in the case of one bit in error, and on average,

respectively, provides 3.5 dB and 1.42 dB gain over them.

We then propose a novel list decoding approach called checksum-filtered list decoding (CFLD)

which can correct a packet at the bit stream level by exploiting the receiver side user datagram

protocol (UDP) checksum value. The proposed approach is able to identify the possible lo-

cations of errors by analyzing the pattern of the calculated UDP checksum on the corrupted

packet. This makes it possible to considerably reduce the number of candidate transmitted

packets in comparison to conventional list decoding approaches, especially when no soft infor-

mation is available. When a packet composed of N bits contains a single bit in error, instead of

considering N candidate packets, as is the case in conventional list decoding approaches, the

proposed approach considers approximately N/32 candidate packets, leading to a 97% reduc-

tion in the number of candidates. This reduction can increase to 99.6% in the case of a two-bit

error. The method’s performance is evaluated using H.264 and high efficiency video coding

(HEVC) test model software. We show that, in the case H.264 coded sequence, on average,

the CFLD approach is able to correct the packet 66% of the time. It also offers a 2.74 dB

gain over JM-FC and 1.14 dB and 1.42 dB gains over STBMA and hard output maximum

likelihood decoding (HO-MLD), respectively. Additionally, in the case of HEVC, the CFLD

approach corrects the corrupted packet 91% of the time, and offers 2.35 dB and 4.97 dB gains

over our implementation of FC concealment in HEVC test model software (HM-FC) in class

B (1920×1080) and C (832×480) sequences, respectively.

Keywords: Video Transmission, H.264, high efficiency video coding (HEVC), H.265, Syntax

Elements, non-desynchronizing bit (NDB), Error Concealment, Video Error Correction, List

Decoding, Checksum, user datagram protocol (UDP), checksum-filtered list decoding (CFLD)

TABLE OF CONTENTS

Page

CHAPTER 1 INTRODUCTION . 1

1.1 Problem statement . 2

1.2 Objectives . 6

1.3 Thesis structure . 7

CHAPTER 2 LITERATURE REVIEW .. 9

2.1 Error concealment . 9

2.1.1 Spatial error concealment . 10

2.1.2 Temporal error concealment . 13

2.1.3 Spatiotemporal error concealment . 22

2.2 Error correction . 28

2.2.1 List decoding . 28

2.2.2 Joint source channel decoding . 30

2.3 Discussion . 33

CHAPTER 3 NON-DESYNC-BASED DECODING FOR H.264 CODED

SEQUENCES . 35

3.1 Non-desynchronizing bits in H.264 syntax elements . 36

3.1.1 Guaranteed non-desynchronizing bits in H.264 syntax elements 38

3.1.2 Contextual non-desynchronizing bits in H.264 syntax elements 48

3.1.3 Other non-desynchronizing bits . 54

3.2 Analysis of the non-desynchronizing bits . 56

3.2.1 Frequency of occurrence of the non-desynchronizing bits 57

3.2.2 Visual quality impact of erroneous non-desynchronizing bits 60

3.3 Proposed non-desync-based decoding framework . 65

3.4 Simulation results . 68

3.5 Discussion . 75

CHAPTER 4 CHECKSUM-FILTERED LIST DECODING . 77

4.1 Internet checksum calculation and properties . 77

4.1.1 Internet checksum definition and mathematical properties 77

4.1.2 User datagram protocol checksum definition and calculation 79

4.2 Exploiting checksum for error correction: relationship between CR and

error location . 83

4.2.1 One-bit error . 84

4.2.1.1 Bit error event (BEE)=1 . 84

4.2.2 Two-bit errors . 86

4.2.2.1 BEE=2 . 87

4.2.2.2 BEE=3 . 88

4.2.2.3 BEE=4 . 90

XII

4.2.2.4 BEE=5 . 91

4.2.3 Three-bit error . 92

4.3 Probability of BEEs given observed checksum pattern types (CPTs) 96

4.3.1 Pr(BEE= i|nbErr=k) . 97

4.3.2 Pr(CPT= j|BEE= i∩ nbErr=k) . 99

4.3.3 Estimation of Pr(BEE= i|CPT= j) .101

4.4 Proposed checksum-filtered list decoding approach for video error

correction .104

4.4.1 Header correction process .105

4.4.2 Video data correction process .106

4.5 Candidate reduction .109

4.6 Experimental results .110

4.6.1 Simulation setup .110

4.6.2 Simulation Results .112

4.6.3 Comparison of CFLD and CFLD+ .123

CONCLUSION AND RECOMMENDATIONS .129

LIST OF REFERENCES .131

LIST OF TABLES

Page

Table 3.1 Examples of EGC mapping values to UGC and SGC. 39

Table 3.2 NDBs of the mb_type syntax element . 42

Table 3.3 NDBs of sub_mb_type syntax element in P–MBs. 43

Table 3.4 NDBs of the total_zeros syntax element as TC=1. 46

Table 3.5 NDBs of run_before based on different zeroLeft values . 49

Table 3.6 NDBs of the level_prefix syntax element based on different value of

TZ . 51

Table 3.7 The NDBs of the TZ when TC=2 . 55

Table 3.8 The NDBs of the TZ when TC=3 . 56

Table 3.9 Average percentage of the all NDBs and its subcategories . 59

Table 3.10 Frequency of occurrence of NDBs in each syntaxes . 60

Table 3.11 Average percentage of “known–NDBs” for different sequences 61

Table 3.12 Comparison of the average peak signal-to-noise ratio (PSNR) (dB)

for different approaches . 70

Table 3.13 Average PSNR (dB) improvement over each error concealment

method . 73

Table 4.1 Values of ŵi,c+wi,c for various error scenarios. 82

Table 4.2 bit error events (BEEs) definitions for one bits in error. 84

Table 4.3 BEEs definitions for two bits in error. 87

Table 4.4 Summary of CPT definitions. 92

Table 4.5 BEEs definitions for three bits in error. 93

Table 4.6 All the possible BEEs in the case of one to three bits in error when

CR=“0000 0000 0010 0000” . 95

XIV

Table 4.7 Array of Pr(BEE= i,CPT= j|nbErr=k) and its approximate value for

large packet size. .102

Table 4.8 Empirical probability value of Pr(BEE= i,CPT= j|nbErr=k) for the

Crew sequence. .103

Table 4.9 Average percentage of zero and one in each column .104

Table 4.10 Average number of candidates for different observed packet lengths

from a simulation using H.264 Baseline packets. .110

Table 4.11 Candidate reduction at each step of the CFLD method for H.264

City sequence, and HEVC BasketballDrive sequence. .113

Table 4.12 Comparison of the average PSNR of reconstructed corrupted frames

for different methods in H.264. .115

Table 4.13 Comparison of the average PSNR of reconstructed corrupted frames

for different methods in HEVC class B sequences. .116

Table 4.14 Comparison of the average PSNR of reconstructed corrupted frames

for different methods in HEVC class C sequences. .117

Table 4.15 Average PSNR and SSIM values, percentage of fully corrected

packets. .119

LIST OF FIGURES

Page

Figure 1.1 Mobile traffic growth between 2016 and 2021, reported by Cisco 1

Figure 1.2 Illustration of error propagation (spatially and temporally). 3

Figure 1.3 Partial error concealment . 5

Figure 2.1 Illustration of the error concealment and error correction

implementation in a real-time video transmission system. 9

Figure 2.2 Bilinear interpolation by four nearest pixels located in the

neighboring undamaged blocks . 11

Figure 2.3 Eight directional edge categories. 12

Figure 2.4 Proposed KDE for spatial error concealment . 14

Figure 2.5 BMA technique illustration . 15

Figure 2.6 Illustration of the SAD approach in motion vector recovery 18

Figure 2.7 Motion vector extrapolation illustration . 21

Figure 2.8 Temporal distortion used in STBMA .. 24

Figure 2.9 Side distortion illustration . 25

Figure 2.10 Illustration of proposed SPR concealment . 27

Figure 2.11 Trellis representation of the corrupted packet . 30

Figure 3.1 run_before syntax element decoding example . 48

Figure 3.2 Percentage of the three different categories of a corrupted slice 58

Figure 3.3 Percentage of “known–NDBs” bits on different frames . 61

Figure 3.4 Percentage of PSNR difference of all NDBs against the intact case

on frame index 44 of the Crew sequence.. 62

Figure 3.5 Percentage of all NDBs along with its two sub-categories of

“known–NDBs” and “other–NDBs” . 63

XVI

Figure 3.6 PSNR of all known–NDBs and other-NDBs on different slices

using box plots . 65

Figure 3.7 General schematic of the proposed approach. 66

Figure 3.8 Schematic of different approaches in the simulation . 68

Figure 3.9 Average PSNR gain of all approaches over JM–FC. 71

Figure 3.10 Average PSNR drop from the intact frame when the two conditions

are met . 72

Figure 3.11 Visual comparison and error propagation effect . 74

Figure 4.1 UDP datagram and pseudo header.. 80

Figure 4.2 UDP checksum calculation example . 83

Figure 4.3 UDP checksum validation procedure example at the reception side 84

Figure 4.4 BEE=1 and its corresponding 32 patterns of CR forming CPT=1.. 85

Figure 4.5 BEE=2 and its corresponding 240 patterns of CR forming CPT=2. 88

Figure 4.6 BEE=3 and its corresponding 32 patterns of CR forming CPT=1.

Bold bits in CPT=1 indicate the error column. 89

Figure 4.7 BEE=4 and its corresponding 240 patterns of CR forming CPT=1,

CPT=2.1 and CPT=3. 91

Figure 4.8 BEE=5 and its only CR pattern forming CPT=4. 92

Figure 4.9 Summary of observed CPTs and their corresponding BEEs for one

and two bits in error. 93

Figure 4.10 Summary of observed CPTs and their corresponding BEEs for the

case of one, two and three bits in error. 94

Figure 4.11 Example of packet division into 16 bits. 98

Figure 4.12 Percentage of bits 0 and 1 in the columns of a slice in the Crew
sequence. .103

Figure 4.13 Proposed CFLD system .105

Figure 4.14 UDP encapsulation for H.264 coded sequences. .106

XVII

Figure 4.15 RTP header format .106

Figure 4.16 Average PSNR gains of HO-MLD, STBMA and CFLD method

over JM-FC for H.264 coded sequences .118

Figure 4.17 PSNR and SSIM distributions on frame 45 of H.264 sequences.120

Figure 4.18 Number of candidates before the first valid candidate in each case

of CFLD and ESLD approach .121

Figure 4.19 Visual comparison of a reconstructed frame with H.264 Ice
sequence at QP=37 by different methods. .122

Figure 4.20 Percentage of the cases that the received corrupted packet satisfies

the two conditions. .124

Figure 4.21 Proposed CFLD+ approach.. .124

Figure 4.22 Number of candidates (extra decodings) before first valid candidate

in CFLD approach. .125

Figure 4.23 Average PSNR (dB) gain over JM-FC for CFLD and CFLD+ on

different sequences at different QP values .126

Figure 4.24 Percentage of the times that error was corrected by the CFLD

approach in two separate cases. .126

LIST OF ABBREVIATIONS AND ACRONYMS

AR Auto Regression

ASO Arbitrary Slice Ordering

AVC Advanced Video Coding

BEE Bit Error Event

BMA Boundary Matching Algorithm

CABAC Context-Adaptive Binary Arithmetic coding

CAVLC Context-Adaptive Variable-Length Coding

CBP Coded Block Pattern

CFLD Checksum-Filtered List Decoding

CPT Checksum Pattern Type

CTU Coding Tree Unit

DCT Discrete Cosine Transform

DMVE Decoder Motion Vector Estimation

EGC Exponential Golomb Code

ESLD Exhaustive Search List Decoding

FC Frame Copy

FMO Flexible Macroblock Ordering

HEVC High Efficiency Video Coding

XX

HM HEVC Test Model

HO Hard Output

HO-MLD Hard Output Maximum Likelihood Decoding

I Intra

IoT Internet of Things

IP Internet Protocol

JM Joint Model

JSCD Joint Source Channel Decoding

KDE Kernel Density Estimation

LCU Large Coding Unit

LLR Log-Likelihood Ratio

LSB Least Significant Bit

MAD Mean Absolute Differences

MAP Maximum a Posteriori

MB Macroblock

MLD Maximum Likelihood Decoding

MSB Most Significant Bit

MV Motion Vector

NAL Network Abstraction Layer

XXI

NDB Non-Desynchronizing Bit

P Inter

PCA Principal Component Analysis

PDE Partial Differential Equation

PPS Picture Parameter Set

PSNR Peak Signal-to-Noise Ratio

QP Quantization Parameter

RTP Real-Time Transport Protocol

SAD Sum of Absolute Differences

SDMCB Sum of Distributed Motion-Compensated Blockiness

SGC Signed-Exponential Golomb Code (EGC)

SO Soft Output

SO-MLD Soft Output Maximum Likelihood Decoding

SO/HO-MLD Soft/Hard Output Maximum Likelihood Decoding

SPR Spiral-like Pixel Reconstruction

SPS Sequence Parameter Set

SSIM Structural Similarity Index Measurement

STBMA Spatiotemporal Boundary Matching Algorithm

TC TotalCoeff

TCP Transmission Control Protocol

XXII

TZ total_zeros

UDP User Datagram Protocol

UDP-Lite Lightweight User Datagram Protocol

UGC Unsigned-Exponential Golomb Code (EGC)

VLC Variable-Length Code

LISTE OF SYMBOLS AND UNITS OF MEASUREMENTS

wi Reliability factor in MAD calculation

α Weighting factor factor in STBMA cost function

S∗ Likeliest packet to the received corrupted packet

Sr Received corrupted packet

St Hypothetically transmitted slice

H A set of all hypothetically transmitted slices (St)

ci, j The j-th codeword in i-the path

s{t,i} The i-th syntax element in a hypothetically transmitted slice (St)

Xi The i-th bit in INFO part of EGC

Yi The i-th transform coefficient

V A set of 16-bit values in hexadecimal format in an Abelian group

e Identity element in Abelian group

Wi The i-th word of the UDP packet

wi,c The c-th bit of word Wi

W i Inverse of word Wi

Ŵ Received version of word W

Wcs Checksum value in the checksum field

Ŵcs Received checksum value in the checksum field

CT Transmission side’s checksum

XXIV

CR Receiver side’s checksum

TZ Total number of bit 0 in the packet

TO Total number of bit 1 in the packet

nzc Number of bit 0 in column c

noc Number of bit 1 in column c

ρ Channel residual bit error rate

CHAPTER 1

INTRODUCTION

In recent years, digital video communication, especially in the form of high quality content de-

livery, has attracted considerable attention in a wide variety of application environments, such

as mobile video streaming, video conferencing, telepresence, real-time monitoring, etc. Ac-

cording to the report published by Cisco (Cisco, 2017), mobile video traffic will grow ninefold

between 2016 and 2021 reaching 38 exabytes1 per month. It has been estimated that by 2021,

mobile video traffic will comprise more than 78% of the mobile data traffic (see Figure 1.1).

This is mostly due to the introduction of the high definition video content streaming (Cisco,

2018).

Figure 1.1 Mobile traffic growth between 2016 and 2021,

reported by Cisco (Cisco, 2017).

Because of the huge size of a raw video file and other existing restrictions related to data

storage, processing power, transmission cost, and communication speed, compression is a vi-

tal step in efficient processing of the video streams. Generally a codec, which stands for the

compression and decompression technique, is responsible for reducing video file sizes while

maintaining a desired level of quality. H.264/MPEG advanced video coding (AVC) (Interna-

1 1 exabyte = 1 billion gigabytes. This represents approximately 245 million DVDs of 4.38GB each.

2

tional Telecommunications Union, 2003) and high efficiency video coding (HEVC) (ISO/IEC

JTC 1/SC 29/WG 11, 2013) are the two well-known video coding standards. In fact, H.264

is currently the most widely deployed video codec in a variety of applications and networks

such as in broadcasting, streaming video sources, video conferencing, etc, due to its ability to

provide a good compromise between coding efficiency and computational complexity (ITU-

T-StudyGroups). HEVC, also known as H.265, is a very complex compression method that

can provide better coding efficiency (50% bit-rate reduction for the same quality compared to

H.264) but requires more computations and thus advanced hardware for deployment.

1.1 Problem statement

The high compression performance of the current video coding standards and moreover, the

motion-compensated prediction techniques employed in the codecs, make the compressed

video streams more vulnerable to transmission errors. In the real world of noisy channel

communications (e.g. mobile networks), transmission errors are inevitable, which for video

transmissions, leads to an unpleasant quality reduction of the reconstructed video sequences.

For instance, a single-bit error in variable-length code (VLC) may cause the decoder to lose

its synchronization with the corresponding encoder, and consequently decode incorrect code-

words which eventually result in spatial error propagation. Even worse, because of the motion

compensation techniques used in compression, the error can propagate from one frame to con-

secutive ones, and lead to severe visual artifacts (Tan et al., 2008). Figure 1.2 illustrates the

error propagation on four consecutive frames of an H.264 coded sequence.

Various error control mechanisms have been proposed to combat the visual quality degrada-

tion caused by transmission errors (Wang et al., 2002). Among them, retransmission is one

of the basic mechanisms for providing reliable communications. However, it is rarely used

in real-time conversational or broadcasting/multicasting applications due to the added delay

or lack of feedback channel involved (Sullivan & Wiegand, 2005). Error resilience, as an an-

other approach, generally injects redundancies to the bitstream during the source encoding to

make the streams more robust against the transmission errors. This may aid the decoder to

3

time

Figure 1.2 Illustration of error propagation (spatially and temporally).

better deal with the loss of information. It is worth noting that the H.264 standard includes

new resilience tools like flexible macroblock orderings (FMO), arbitrary slice ordering (ASO),

redundant slices, data partitioning, etc, which can be used to protect the compressed bitstream

against the burst error or error propagation (e.g. enabling redundant slices tool). However, all

error resilience mechanisms reduce the coding efficiency (by adding redundant bits while the

compression goal is to remove redundancies) or sacrifice bit rate, especially when there is no

transmission error (Wang et al., 2000; Xiao et al., 2013). On the other hand, error concealment

and error correction approaches are the two post-processing mechanisms that strive to alleviate

the effect of the transmission errors at the decoder side. Unlike the resilience techniques, They

have the advantages of neither consuming extra bandwidth nor introducing retransmission de-

lays.

Error concealment attempts to reconstruct the erroneous area by using the information of cor-

rectly received neighbouring areas. Most existing error concealment techniques are based on

utilizing the inherent correlation among adjacent pixels. This can be performed by exploiting

the spatial correlation (Liu et al., 2015) between neighboring pixels in a specific area (block

or slice or frame), the temporal correlation (Lie et al., 2014) between consecutive frames, or

combination of both correlations (Zhou et al., 2017). The advantage of using concealment ap-

proaches is that they utilize the visual quality parameters (i.e. smoothness properties, boundary

matching criteria) directly during the concealment process which makes the result more appeal-

ing for humans. However, the error concealment performance may suffer when lost areas have

4

less correlation (spatial or temporal) with the correctly received surrounding areas or when the

lost regions are large.

Packets partially damaged due to transmission errors may contain valuable information that

can be used to enhance the visual quality of the reconstructed video (Superiori et al., 2006;

Trudeau et al., 2011). This is the case when the error occurs at the end of the packet or when

the residual bit error rate (after channel decoding) is low. A standardized transport protocol,

lightweight user datagram protocol (UDP-Lite), allows partially damaged packets to be deliv-

ered to the application layer instead of having them discarded upon reception (Larzon et al.,

2004). However, the application layer, in this case the decoder, is responsible to decide whether

to keep those corrupted packets or discard them.

Utilizing the corrupted packet in concealment is always a challenge. The idea behind partial

concealment, as shown in Figure 1.3, is to decode the uncorrupted macroblocks (MBs) within

the corrupted packets, i.e. the MBs that are before the error location, and perform the conceal-

ment only on the others (Superiori et al., 2006). Because of the way that video is encoded,

the errors can not be detected at the actual location of their occurrence. Sometimes an error

on a VLC can generate another valid, but wrong, codeword which may be detected later on

by violating the following syntaxes or causing semantic errors. Such a distance between the

error occurrence and error detection location can sometimes lead to a severe distortion on the

reconstructed frame. Therefore, most existing error concealment approaches prefer to discard

the corrupted packet (containing corrupted and uncorrupted MBs) and only utilize the correctly

received information to reconstruct the lost area. Thus, error concealment treats a corrupted

packet as it has been lost. In practice, network congestion results in packet loss, while wire-

less signal attenuation, fading, etc., result in corrupted packets. However, corrupted and lost

packets must be handled differently.

In contrast, the goal of the error correction approaches is to utilize the corrupted packet and re-

pair the errors directly in the bitstream 2. In list decoding correction approaches, this is realized

2 In the context of this thesis, by the term of bitstream, we mean packet bitstream or packet and the

terms have used interchangeably.

5

correctly decoded

error
location

error
detection

wrongly
decoded MBs

concealed
MBs

Slice:

start end

Figure 1.3 Partial error concealment (Superiori et al., 2006).

by generating multiple candidate transmitted packets based on the received corrupted packet

(by flipping the bits) and selecting one of them based on some constraints. This is possible due

to the fact that for any finite length of a packet, there are a limited number of decodable candi-

dates. However, the huge choice of error positions, i.e. high number of candidate bitstreams,

and also defining the constraints to determine the best candidate bitstream are the two major

challenges in correction approaches (Caron & Coulombe, 2015). Generally, in most cases,

the soft information (e.g. log-likelihood ratio (LLR) available at the physical layer which is

providing an indication of the reliability of each received bit), is propagated to the application

layer to help ranking the candidates from most likely to least likely, and finally choosing a most

likely bitstream that is validated by the decoder as the final candidate bitstream (Nguyen et al.,

2010).

Most traditional correction methods relying on the availability of soft information require ex-

haustive changes to the whole protocol stack to propagate such soft information, i.e. a fixed or

floating point LLR value for each bit of the packet, from physical layer to the application layer.

This issue will make them very complex to deploy in practice. This explains why although

very effective correction methods exist in the literature, they are rarely deployed commercially.

The lack of soft information for traditional list decoding approaches means that all the bits

are having the same probability to be flipped; therefore all the candidate bitstreams are having

the same probability. All candidates (without any preference) should go through the video de-

coder for more constraints. Therefore, all these approaches suffer from the major drawback of

having a fairly large solution space for candidate packets, leading to a decoding process with

6

extremely high computational complexity. Indeed, a packet containing N bits has 2N possible

candidates when any number of errors is considered (or N candidates when a single-bit error is

considered).

1.2 Objectives

The ultimate goal of this research project is to enhance the quality of the reconstructed frames

in the presence of the transmission errors, particularly when the packets have been lightly

damaged during the transmission. In order to achieve our goal, the following objectives were

defined:

- The first objective was to study if there is a way to utilize the received corrupted packets

instead of ignoring them at the reception. This requires a packet filtering mechanism which,

under some specific conditions, retains the packet or discards it.

- The second objective was to correct the received packets that are damaged at the bit level,

especially when the soft information (e.g. LLR of bits) is not available. This was targeted

by exploiting other information in the protocol stack such as user datagram protocol (UDP)

checksum value.

The first objective was achieved by exploiting the syntax elements in H.264 context-

adaptive variable-length coding (CAVLC) coded sequences, and defining the concept of non-

desynchronizing bits (NDBs). An NDB is a bit that does not cause any desynchronization at

the bit level and more importantly, that does not have any impact on the number of decoded

macroblocks. Based on this definition and various observations (effect of individual errors on

NDB and visual quality), we proposed two conditions for which, if satisfied, the corrupted

video packets are reliable-enough to be used in the reconstruction of the corrupted frame in-

stead of discarding them and performing concealment. The proposed packet filtering approach

allows the decoder to save not only all the error-free MBs before the error occurrence, but also

the ones after that. This is possible since the error on NDBs does not cause any desynchro-

nization at the bit level or semantic errors. Therefore, the effect of such errors is very small or,

7

in the case of propagation, it will be limited to a small area in the pixel domain. However, the

visual difference from the intact packet in this case is much smaller than the one introduced by

the concealment approaches.

The second objective was addressed by exploiting the receiver side UDP checksum value. The

possible locations of errors in the packet can be identified by analyzing the pattern of the cal-

culated UDP checksum. This allows our proposed checksum-filtered list decoding (CFLD) ap-

proach to alleviate the large solution space problem of conventional list decoding approaches.

For instance, when a packet composed of N bits contains a single-bit error, instead of con-

sidering N candidate bitstreams, as is the case in conventional list decoding approaches, the

proposed approach considers approximately N/32 candidate bitstreams, leading to a reduction

of 97% of the number of candidates. Therefore, it is more likely for the proposed approach to

finally select the best candidate (correct the error) and improve the quality of the reconstructed

corrupted frame.

Both proposed methods (individually and moreover jointly), by utilizing the corrupted packet,

are expected to reduce the area that requires to be concealed. The approaches are also expected

to be more effective when there are only a few transmission errors. By few errors, we mean

that the video stream contains only a small number of errors and each packet contains at most

one-bit error most of the time.

1.3 Thesis structure

In order to facilitate the reading of this thesis, it is organized into three additionned chapters

followed by a conclusion. A brief overview of each chapter is provided as follows:

In chapter 2, we review how the problem of visual quality degradation caused by transmis-

sion errors is addressed in the literature. We provide a comprehensive overview of the two

post-processing approaches (implemented at the decoder side), error concealment and error

correction, in separate subsections. For instance, for concealment, the approaches are more-

over categorized into spatial, temporal and hybrid methods based on the utilized correlation

8

information during the concealing. The correction approaches are also classified into list de-

coding and joint source channel decoding (JSCD) approaches.

In chapter 3, we address our first objective by studying under what conditions it is more effi-

cient to retain the corrupted packet instead of ignoring it. The chapter starts by analyzing and

presenting all the syntax elements (along with their descriptions and role in encoding) in H.264

CAVLC coded sequences to specifically identify their corresponding NDBs. We also present

the frequency of the NDBs in the typical coded sequence and the impact of flipping each NDB

individually on the visual quality. Additionally, our proposed framework based on keeping

corrupted packets (under some conditions), as well as the simulation results on H.264 baseline

profile, are presented in this chapter. A preliminary result of this chapter (limited to a few

syntax elements) has been presented in the 12th International Conference on Signal Processing

and Communication Systems (ICSPCS) 2018 (Golaghazadeh et al., 2018a).

The problem of correcting the corrupted video packet is addressed in chapter 4. The chapter

begins with a detailed introduction to the UDP checksum and its calculation. Then, we explain

how the checksum can be applied to error correction. This is done by defining different bit error

events and calculating their corresponding checksum values. Our proposed CFLD approach is

described in this chapter and it is validated on H.264 CAVLC and HEVC sequences. We have

published a conference paper (Golaghazadeh et al., 2017), a journal paper (Golaghazadeh et al.,

2018b) on this subject. Moreover a provisional patent (Golaghazadeh & Coulombe, 2017) has

been filed on the topic.

CHAPTER 2

LITERATURE REVIEW

In this chapter, we provide a comprehensive overview of two common error control mecha-

nisms which are applied to various video coding standards, such as H.264, H.265. The ultimate

goal of the error control approaches is to alleviate the influence of the transmission errors on

the quality of a reconstructed video sequence. In the following, first, we review video error

concealment techniques in Section 2.1, and then, in Section 2.2, different error correction ap-

proaches are discussed. Figure 2.1 shows the general implementation of these two approaches

in a real-time video communication system.

Video Sequence

Reconstructed
Sequence

Error
Concealment

Unreliable
Channel

Channel
Encoder

Video
Decoder

Video
Encoder

Error
Correction

Channel
Decoder

Figure 2.1 Illustration of the error concealment and error correction implementation

in a real-time video transmission system.

2.1 Error concealment

The error concealment technique estimates lost areas by exploiting the inherent correlation

between adjacent pixels. This can be done by making use of the spatial correlation between

neighboring pixels in one frame or the temporal correlation in pixels or scenes in the successive

10

frames. In the following subsections, we will review the existing concealment techniques in

three distinct groups as spatial, temporal and spatiotemporal error concealment.

2.1.1 Spatial error concealment

Generally, in smooth areas of a natural image, the pixel intensity values are very similar to each

other. Spatial error concealment takes advantage of this smoothness property in neighboring

pixels to reconstruct lost ones. The most basic and popular spatial error concealment technique

performs pixel-wise interpolation, such as bilinear interpolation. Each pixel in the lost mac-

roblock (MB) is interpolated using four nearest intact pixels in all four boundary MBs, (Salama

et al., 1995, 1998; Xiu et al., 2006) as depicted in Figure 2.2. The inverse distance between the

lost pixel and the received corrected neighboring ones is used as interpolation weight in such a

way that the nearest intact pixel has more impact on the interpolation. As defined by Xiu et al.,

the lost pixel P̂ can be estimated from equation 2.1,

P̂ =

PR
dR

+ PL
dL
+ PT

dT
+ PB

dB
1

dR
+ 1

dL
+ 1

dT
+ 1

dB

(2.1)

where Pi, with index i being T, B, L and R indices, denotes the value of the closest intact pixel

to lost pixel, P̂, in the top, bottom, left and right neighboring MBs, respectively. Similarly, di

denotes the distance between the lost pixel P̂ and Pi for the four neighbors. This approach can

work fairly well particularly in the monotone (or low frequency) areas of an image but not in

the high-frequency regions when the intensities change rapidly or edge zones.

Sun & Kwok (1995) proposed to restore the edges in lost areas by considering the existing ones

in large surrounding blocks. The proposed algorithm starts by determining the type of the lost

blocks being a monotone block or an edge block. For the latter case, the edge orientation angle

is calculated by using the Sobel convolution mask. Then, all the discovered edges are classified

into one of the eight directional categories equally spaced in the range of 0–180 degrees (see

Figure 2.3). In order to detect any edge, two parameters of magnitude (G) and angle (θ) are

11

dRdL

dT

dB Lost MB

Top MB

PT

PR
PL

PB Lost pixel
Bottom MB

Right MB
Left MB

Figure 2.2 Bilinear interpolation by four nearest pixels located in the neighboring

undamaged blocks (Xiu et al., 2006).

computed by equation 2.2 for all the adjacent pixels to the lost area:

G =
√

G2
x +G2

y ; θ = arctan(Gy/Gx) (2.2)

where the approximations of the derivatives Gx and Gy are the Sobel operation mask on the

neighboring areas of the lost block, denoted as P, (Note that � is the convolution operation

symbol):

Gx =

⎡
⎢⎢⎢⎣
−1 0 1

−2 0 2

−1 0 1

⎤
⎥⎥⎥⎦�P ; Gy =

⎡
⎢⎢⎢⎣

1 2 1

0 0 0

−1 −2 −1

⎤
⎥⎥⎥⎦�P (2.3)

After classifying all the detected edges in the eight directions, only the predominant edge is

chosen for the interpolation direction (if the line with specific angle passes through the missing

12

region). Finally, an iterative and complex method of projection is applied to reconstruct the

missing monotone block or the edge block with a particular orientation.

0o

22.5o

45o

67.5o
90o112.5o

135o

157.5o

Figure 2.3 Eight directional edge categories (Sun & Kwok, 1995).

The proposed method was optimized and extended in Kwok & Sun (1993) to perform multi-

directional edge interpolation instead of one strongest edge interpolation. Then, an image

mixer step is employed to combine all the features obtained from the different directional in-

terpolations into a single block for the lost area. Besides recovering lost pixels from the limited

edge directional interpolations in the previously mentioned approaches, the major risks are

ignoring a true edge or generating a false edge. Since the human visual system is very sensi-

tive to the edge integrity, it is important in the spatial error concealment methods to deal with

both issues. A considerable amount of research has been performed on spatial error conceal-

ment by focusing on the edge direction detection algorithms, irrespective of the number of

surrounding edges, such as employing Hough transform-based technique to detect the relevant

edges for directional interpolations (Robie & Mersereau, 2000; Gharavi & Gao, 2008; Koloda

et al., 2013b). In the work proposed by Robie & Mersereau, first, a 3×3 MB area around the

lost MB is segmented into three different intensity groups using a clustering algorithm. Then,

the Hough transform is applied to detect the edges in each group separately. A strong edge

that crosses the lost area is used for interpolation. This approach has been extended by Ghar-

avi & Gao to systematically connect the edges in lost areas and accordingly, divide the lost

13

area into different regions for interpolations. Koloda et al. proposed to perform a weighted

pixel by pixel directional interpolation on the visually clearest edge identified by the Hough

transform. The weights are specified individually for each lost pixel based on its introduced vi-

sual clearness parameter. Kim et al. (2006) proposed a fine directional interpolation algorithm

which attempts to extract the spatial direction vector sets from the edge structure in all the

neighbors. Then, a pixel-wise interpolation is used to estimate the lost pixels in the dominant

vector orientations (Kim et al., 2006). Furthermore, a multi-directional interpolation algorithm

was suggested (Asheri et al., 2012) that ignores weak edges (by a fixed threshold value) in

interpolations and only selects the strong edges that pass the adaptive defined thresholds.

Hsia & Hsiao (2016) proposed an algorithm that first classifies the lost blocks into four distinct

groups of blocks based on the neighboring blocks’ features. It then applies different methods

of concealment on each group. As an advantage, the edge recovery process is only performed

on one group of blocks not all the lost blocks. Although it seems they have reduced the compu-

tational complexity compared to the other traditional edge recovery approaches, their proposed

approach brings other overheads from classifying the blocks.

There are some other researches that aim to reconstruct the missing pixels by applying kernel

density estimation (KDE). The KDE approach estimates missing samples (a 2×2 patch shown

as X in Figure 2.4) by considering all the available neighboring pixels whiting a 6× 6 area

centered by X (as identified by Y in Figure 2.4) and utilizing the kernel-based minimum mean

square error. The lost area is reconstructed sequentially from outside toward the center (Koloda

et al., 2014, 2017). The main drawback of this approach is the computational complexity which

the authors have made an effort to reduce in (Koloda et al., 2017).

2.1.2 Temporal error concealment

Temporal error concealment approaches aim to restore the missing areas by exploiting the

temporal redundancy between the adjacent frames. Due to the motion compensation coding,

a lost motion vector can lead to severe visual distortion and it can simply propagate to the

14

XY

Lost area

a) Sample vectors for concealment

b) Reconstruction order from brighter to

darker block

Figure 2.4 Proposed KDE for spatial error concealment (Koloda et al., 2014, 2017).

following frames. The goal of most temporal concealment approaches is to recover the lost

motion vectors. Therefore, a missing block can be substituted by the one that is pointed by the

motion vector in the reference frame.

Generally, the temporal concealment approaches involve two steps: first determining the can-

didate blocks (or in other words, the candidate motion vectors), and then, selecting the best

block among the candidates for the lost area. These two steps can be sequentially performed

on all the blocks in the missing area.

A basic motion vector candidate list was proposed as follows in (Lam et al., 1993).

- the zero motion vector

- the motion vector of the same block in the previous frame

- a motion vector from available neighboring blocks

- the median of all the available neighboring motion vectors

15

- the average of all the available neighboring motion vectors

As the second step, Lam et al. (1993) proposed a technique known as boundary matching

algorithm (BMA) which is a metric to find the best blocks among the candidates. The approach

compares the inner pixels of the candidate block with the outer pixels of the available neighbors

in the lost block. An illustration of the BMA approach is shown in Figure 2.5. This comes from

the fact that there must be a strong correlation between adjacent pixels in a frame. Therefore,

the best motion vector is the one that minimizes the BMA value in equation 2.4. The BMA

value is defined as the squared difference between the inner pixels of candidate blocks and the

external boundary pixels of the lost block.

: Boundary Pixels

: Taking difference

: Correctly received neighborhood block

: Concealed block by a candidate motion vector

Figure 2.5 BMA technique illustration.

16

BMA(x0,y0,mvx,mvy) =
x0+N−1

∑
x=x0

(f (x+mvx,y0 +mvy, t −1)− f (x,y0 −1, t))2

+
x0+N−1

∑
x=x0

(f (x+mvx,y0 +mvy +N −1, t −1)− f (x,y0 +N, t))2

+
y0+N−1

∑
y=y0

(f (x0 +mvx,y+mvy, t −1)− f (x0 −1,y, t))2

+
y0+N−1

∑
y=y0

(f (x0 +mvx +N −1,y+mvy, t −1)− f (x0 +N,y, t))2

(2.4)

where f (x,y, t) and f (x,y, t − 1) stand for the pixel values at coordinate (x,y) for the current

and previous frame, respectively. The pair value of (x0,y0) is the upper left coordinate of the

lost N ×N block and its candidate motion vector is defined as (mvx,mvy).

The BMA was popularly used in the literature with some modifications to consider additional

pixels at the borders or refinement techniques for the replaced motion vector’s block. Chen

et al. (1997) proposed to utilize boundary matching distortion as a criterion along with their

defined overlapped motion compensation weighted technique for the concealment. After find-

ing the candidate block by distortion criteria, instead of directly placing it in the lost area,

the overlapped block motion compensation is used. To do that, the lost block is divided into

four sub-blocks and each sub-block is replaced by the weighted average of three predicted

sub-blocks: one according to the candidate block (from distortion criteria), the second one

according to the motion vector of the horizontally neighboring sub-blocks, and the third one

according to the motion vector of the vertically neighboring sub-blocks. It is worth mention-

ing that the approach considers only the available neighboring motion vectors as the candidate

motion sets, which can perform well only when the all neighbors are correctly received. The

approach performs poorly when there are less neighbors available since they only considered

the motion vectors of the available neighboring blocks as the candidates.

17

Unlike the BMA, which uses spatial correlation as a criterion, another popular approach,

known as decoder motion vector estimation (DMVE), was introduced in (Zhang et al., 2000)

and uses temporal redundancy to recover the motion vectors. The DMVE algorithm employs a

similar process as the encoder motion estimation at the decoder side. Generally, the lost block

will be searched in a window in the previous frame. The best candidate block, in other words,

the best motion vector, is the one that has the smallest sum of absolute differences (SAD) value.

Therefore, SADDMVE can be calculated as it is defined in equation 2.5.

SADDMVE(mvx,mvy) = ∑
(x,y)∈{T,B,L}

|(f (x ,y , t)− f (x+mvx ,y+mvy , t −1)| (2.5)

Where f (x,y, t) is the pixel value of (x,y) coordinate in the current frame. Similarly, f (., ., t−1)

stands for the pixel values in the previous frame. The SAD is calculated on a set of boundary

pixels, two rows and columns pixels of the top (T), bottom (B) and left (L) border, as shown in

the left side of Figure 2.6. Finally, the block with the minimum SADDMVE value is replaced in

the lost area.

More advanced approaches in this category suggested to search for the motion vectors in more

frames or consider more blocks for replacement by SAD calculation. For instance, the multi-

hypothesis concealment proposed in (Song et al., 2007) selects multiple blocks with the lowest

SADDMVE value for replacement, unlike the conventional approach which only retains the

block with minimum SADDMVE value. Then the lost block is reconstructed based on all the

selected blocks with a defined weight factor for each of them. Although these approaches per-

form well compared to the single-hypothesis, they all suffer from the computation complexity.

Wu et al. (2008) proposed a combination method for the motion recovery based on the number

and the position of correctly received neighbors around the lost MB. The spatial correlation of

the neighboring motion vectors is used to calculate the motion tendency between neighboring

blocks. For instance, when more neighbors are available, the horizontal or vertical SAD calcu-

lation is used as a metric (temporal correlation) while in the case of less available neighbors,

the BMA (spatial correlation) is employed.

18

: external boundary pixels

lost macroblock

a) Set of boundary pixels used in SAD

calculation.

t-1

search window

lost macroblock

t

b) Multi-hypothesis in SAD (Song et al., 2007)

Figure 2.6 Illustration of the SAD approach in motion vector recovery (Zhang et al.,
2000; Song et al., 2007).

An adaptive error concealment order determination is proposed in (Qian et al., 2009) to recover

the motion vectors of the corrupted MBs when the lost MBs are connected. The approach is

proposed especially when the flexible macroblock orderings (FMO) feature of the encoder is

not used and the erroneous MBs are attached to each other. This can be observed in the raster

scan mode, wipe scan mode, interleaved FMO, etc. They proposed a confidence factor for

each neighboring blocks to deal with the recovery dependency problem in connected regions.

This factor presents the reliability of a neighboring block based on whether it is a recovered

block or a correctly received one. With the use of mean absolute differences (MAD), the

difference between the M-width external boundaries of the lost block in the current frame and

the reference frame, the best motion vector is estimated as the one that has minimum MAD

value. We have:

MAD(mvx,mvy) = ∑
i∈{T,B,L,R}

wi MADi(mvx,mvy) (2.6)

where wi stands for the reliability factor and the letters T, B, L, and R are the short form of the

top, bottom, left, and right blocks, respectively. Also, MADi for M-width external boundaries

19

of an N ×N lost MB is defined as follows:

MADi(mvx,mvy) = ∑
(x,y)∈{M width boundary of i}

|(f (x ,y , t)− f (x+mvx ,y+mvy , t −1)|/(M×N) (2.7)

It has been observed that the performance of BMA can be affected based on the lost area fea-

tures such as including rotation, zoom, fast/slow scene changes, etc. Therefore, having a fixed

set of candidate motion vectors for all the block types are not suitable. Zabihi et al. suggested

to adaptively employ a different set of motion vectors in BMA based on the information from

the neighboring MBs in the current and previous frames. Different factors have been defined

to evaluate the movement type of a lost block, and determine whether the block belongs to

an object or not. Regarding these factors, the motion vectors of the co-located MB, median

of neighboring motion vectors or a set of neighboring motion vectors are used as the candi-

dates (Zabihi et al., 2017) .

Even though a series of modified BMA, DMVE have been proposed, they still have the draw-

back of not being able to estimate accurately complex motions. For example, when the motion

vector of a lost block differs from its neighbors or fewer neighbors are available. Although

the latter can be solved using the FMO resilience feature provided in the recent video standard

such as H.264, generally, these approaches perform very well in homogeneous areas or when

the motions are linear.

Motion vector extrapolation approaches are proposed and developed in (Peng et al., 2002;

Zhou et al., 2011; Lin et al., 2013a,b). In these approaches, first, the candidate motion vectors

(or extrapolated blocks) are extrapolated from the last decoded frames to the corrupted one, as

depicted in Figure 2.7. Then, for instance, Peng et al. proposed to select the best motion vector

based on the overlapped area between extrapolated block and the lost area. The motion vector

of the most overlapping block is chosen as the motion vector for the lost block. Several metrics

or weights are proposed in the literature for choosing the best motion vectors. Zhou et al.

proposed to interpolate the best motion vector using the motion vectors of extrapolated blocks

for both the lost area and its neighbors and also the available neighboring motion vectors. This

20

approach has been extended in Lin et al. (2013a) to employ the residual information of the

neighboring blocks as a weight, to assess the reliability of the neighboring motion vectors,

in the estimation of the best motion vector. In addition to that, the distance between the lost

block and the available neighbors is further considered as another weight. To alleviate the

blocky artifacts caused by their approach, Lin et al. (2013b) proposed to consider the partition

decisions of the MBs in the previous frames as an extra weight along with the overlapping

weight, for the selection of best motion vector. With this additional weight, they take into

account the object segmentation information in the estimation process (Lin et al., 2013b). In a

recent study, (Lin et al., 2018), the proposed approach of (Zhou et al., 2011) has been modified

in three areas to provide a better technique for motion estimation. Instead of the conventional

raster scan block recovery, the motion vector estimation starts from the corner block with

the highest number of available neighbors and the process continues to estimate the motion

vector of center blocks. Two prediction weights were defined and considered in the calculation

of the best motion vector: first a horizontal and a vertical disparity weight that presents the

consistency (reliability) of the adjacent motion vectors in that direction, and second, a weight

defined as the difference between the motion compensated block and its decoded one for each

neighbor. The authors believe that the motion vector of a block with a higher difference must

have less weight in the prediction process. A combination of these two weights was employed

in their proposed block recovery order approach to estimate the motion vector of each lost

block (Lin et al., 2018).

In another category of motion vector recovery, the lost motion vector is modeled and inter-

polated using the neighboring motion vectors. The idea behind these approaches is that the

adjacent blocks may have the same motion tendency (correlation between motion vector val-

ues). For instance, a second-order polynomial model was proposed by Zheng & Chau (2005)

to describe such a correlation between four neighboring motion vectors. The approach op-

erates on the assumption that in interleaving techniques (such as FMO), all the neighboring

motion vectors are available for interpolation. Lee et al. (2001) proposed utilizing an affine

transform to consider complex motion behavior, like rotation, expansion, and contraction, ad-

21

tt-1t-2

Extrapolated
block

Lost
block

Figure 2.7 Motion vector extrapolation illustration (Peng et al., 2002).

ditional to the shifting as parameters in the transform equation. The approach divides the lost

MBs into triangles and considers six motion parameters. The parameters are estimated based

on BMA on vertexes of the triangular patches. Lie et al. (2014) proposed to look at the BMA

algorithm as an optimization problem for the case when a row of consecutive MBs (a row

slice) is lost. Instead of recovering the motion vector for each MB independently, the proposed

approach estimates globally all the motion vectors of the lost slice by using dynamic program-

ming techniques. Although the motion vector modeling approaches are able to globally solve

the problem, relying on only motion vector values and not considering the border continuity

may cause blockiness artifacts.

In a recent study (Choe et al., 2018), object recognition techniques and scene change features

are used for temporal error concealment. Some characteristic of coded sequences, such as

the number of bit in a frame (as a dynamic threshold), the discrete cosine transform (DCT)

coefficients’ block energy, and inter and intra prediction modes are considered in order to

detect scene changes. The proposed temporal concealment algorithm is based on iteration

on unknown convex set with object recognition principal component analysis (PCA) training

model. Their compound approach was only simulated on low resolution, QCIF, sequences.

22

2.1.3 Spatiotemporal error concealment

Spatiotemporal error concealment approaches aim to reconstruct the lost areas as a combined

approach by employing both spatial and temporal redundancies. For instance, an intra (I)

frame’s block may be better concealed by considering only spatial redundancy. While in the

case of inter (P) blocks or more complex scenes, it is suitable to note all the valuable informa-

tion (whether spatial or temporal) in the concealment process. This category further includes

all the approaches that are using both redundancies in the estimation of the motion vectors.

Atzori et al. (2001) proposed a two-step concealment approach by combining both available

temporal and spatial information. First, the lost block is temporally replaced by BMA. Then, a

mesh-based transformation, based on an affine transformation in the spatial domain, is applied

to best fit the replaced block with its correctly received surrounding area. With a little com-

putational complexity overhead, the approach has better performance compared to the plain

BMA approaches. In other approaches, different techniques are proposed for concealment of

an I or a P frame. For instance, Kung et al. (2006) proposed to conceal an I-frame’s lost MBs

by the directional interpolation technique and a P-frame’s one by temporal linear interpolation

from three previous frames. Since a P frame can be coded with both I and P MBs, the proposed

approach assumes that a lost MB surrounded by more than two I MBs is also an I one, which is

not always true. Besides from that, the proposed approach requires to buffer previous frames, at

least three of them, to track the error variance map of replacing different candidates. A hybrid

concealment approach has been proposed in Xiu et al. (2006), which adaptively decides spa-

tial or temporal concealment based on a boundary matching criteria. The proposed approach

calculates the boundary pixel differences for two spatial techniques (bi-linear interpolation and

average interpolation) and one temporal technique (motion estimation by classifying the mo-

tion relatively), and then selects the technique with a minimum boundary difference. Finally,

an iterative maximum a posteriori (MAP) estimator is used to further smooth the reconstructed

area. The performance of their approach depends on the number of iterations which adds extra

complexity to the system.

23

Gaussian mixture model has also been employed in error concealment to estimate the lost pixel

from the neighboring context (Persson et al., 2008; Persson & Eriksson, 2009). The method

first solves the Gaussian parameters offline and then uses the obtained model to estimate the

lost blocks by considering both spatial and temporal surrounding pixels. A computationally

lighter version of the approach is proposed in Persson & Eriksson (2009) where the parameters

are estimated in an iterative algorithm in the least squares sense, while in (Persson et al., 2008),

the means of the expectation maximization algorithm has been used to compute the parameters.

Moreover, an edge-directed spatiotemporal concealment approach was proposed in Ma et al.

(2010) where strong edges around the lost region are first estimated based on the edges in both

previous and current frames. Then, the lost pixels along the estimated edges are recovered by

using both spatial and temporal surrounding pixel values. Finally, the remaining lost area is

calculated with a patch-based filling approach. They assumed that the lost MB was surrounded

with correctly received MBs. For this matter, the available error resilience technique in H.264,

FMO, has been employed to fulfill the assumption.

To our knowledge, one of the most outstanding methods in the existing literature has been pro-

posed by Chen et al. (2008). The approach describes reasonable boundary matching criteria to

recover a motion vector or the lost area that can preserve both spatial and temporal continuities.

Their proposed spatiotemporal boundary matching algorithm (STBMA) defines a cost function

based on considering both spatial and temporal distortion, in a weighted manner, as follows:

STBMA(mvx,mvy) =α ×Dtemporal +(1−α)×Dspatial (2.8)

Where STBMA(mvx,mvy) presents the total distortion of replacing a candidate MB pointed

to by (mvx,mvy). Dspatial and Dtemporal are the two spatial and temporal distortion functions,

respectively. The weighting factor α is a real number between 0 and 1 to control the blocki-

ness artifacts of direct replacement. The temporal distortion function measures the difference

between external boundaries of a lost block with the external boundary of a candidate block

in the previous frame, as depicted in Figure 2.9. This value determines how well the temporal

continuities are preserved. The spatial distortion function minimizes the gradient field of the

24

reconstructed block in a costly iterative approach. The best motion vector (candidate block) is

chosen by minimizing the STBMA cost function. Moreover, they proposed to refine the dis-

continuity arising from replacing the candidate block by a partial differential equation (PDE)

algorithm. At least ten iterations are required to achieve an acceptable performance which

brings significant complexity to the system.

t-1

lost
macroblock

t

candidate
macroblock

motion vector

external boundary

Figure 2.8 Temporal distortion used in (Chen et al., 2008)

Similar to the previously mentioned approach, Xiang et al. (2011) proposed a more general

distortion function for concealment. Their defined distortion function contains three weighted

distortion terms. The first one, spatial distortion, calculates the distortion between the outer

boundary of lost pixels in the current frame and the internal boundary pixels of candidate block

in the previous frame in all four neighbors. This term is the same as the conventional BMA

distortion measurement, as shown in equation 2.4 and Figure 2.5. Their employed temporal

distortion, the second term, is similar to the one proposed in Chen et al. (2008). As the third

term, they have considered the side match distortion between the lost block and its left neighbor

as depicted in Figure 2.9. The smaller difference between internal and the external boundaries

of the reference block in the previous frame presents the more smoothness at the borders.

25

The best motion vector is the one that minimizes the total distortion function (including three

terms). Finally, the block pointed by the motion vector is replaced in the corresponding lost

area. However, they assumed that the residual information is negligible which will affect the

performance of their approach in low quantization parameter (QP) coded sequences.

t-1

lost
macroblock

t

candidate
macroblock

motion vector

motion vector

external boundary internal boundary

Figure 2.9 Side distortion used in (Xiang et al., 2011)

Zhang et al. (2012) proposed an auto regression (AR) model in concealment by considering

both spatial and temporal information to refine the estimated pixels for the lost area. Their

proposed approach is compatible with any motion vector recovery algorithm such as BMA

or STBMA. After recovering the motion vector, each corrupted pixel, denoted as P̂(x,y) in

equation 2.9, is refined by a weighted summation of the corresponding pixels in a square area

of (2R+1)× ((2R+1)) pixels, pointed by the motion vector in the previous frame. The linear

sparse regression model for estimation of the lost pixels is expressed as:

P̂(x,y) =
R

∑
k=−R

R

∑
l=−R

α(k, l) f (x+mvx + k ,y+mvy + l , t −1) (2.9)

26

where f (x,y, t − 1) is the pixel value of (x,y) coordinate in the previous frame and the value

of R defines the AR range of the surrounding pixels. The weighted AR coefficients α(k, l)

are calculated based on spatial and temporal continuity constraints separately. Finally, the

interpolation results of both coefficients are merged to restore lost pixels.

A similar work to the previous one is presented in (Lin et al., 2017) where the sparse opti-

mization theory and sparse characteristic of the image’s nature are used to predict the weighted

coefficient in equation 2.9. Both spatial and temporal estimated coefficients are combined to

perform better estimation of lost pixels. Unlike Zhang et al.’s approach, the average motion

vector of neighbors are considered as the initial motion vector. The performance of these

approaches is highly dependent on the initial motion vector’s estimation. Additionally the pro-

cessing time for gathering suitable pixels and solving the optimization problem increases the

complexity of these approaches. Koloda et al. (2013a) proposed to use convex optimization in

the calculation of the coefficients’ weights in equation 2.9. In order to reduce the processing

time of optimization, they have modeled the coefficients with an exponential function for fast

estimations. Their sequentially proposed algorithm can automatically decide between spatially,

temporally or mixed approaches and it starts from the area with most available pixels, as shown

in Figure 2.4. It must be noted that the considered pixels in the summations of equation 2.9, is

different for each mode of concealment. For instance, both known and unknown (lost) pixels

in spatially adjacent neighbors, as shown in Figure 2.4, are considered in spatial error conceal-

ment. However, in temporal mode, the pixels from neighboring blocks and the co-located one

in the previous frame are considered. Correspondingly, in combined mode, both the spatial and

temporal pixels are employed in the optimization problem. In the work of Zhou et al. (2017),

the high dimensional video data is considered as a 3rd-order of a tensor model. The proposed

approach consists of two parts: the first part creates a tensor model based on the corrupted

block and its candidate blocks in the reference frames. The candidate blocks are chosen with

the help of a flexible size version of BMA according to the size of the lost area. The second

part estimates the lost pixels by tensor low rank approximation.

27

In a more recent study (Shih et al., 2018), a spiral-like pixel reconstruction (SPR) has been

proposed which compared to the conventional zigzag or scanline mode, is able to reference

more relevant neighboring pixels in the estimation of the lost pixel. In the proposed algorithm,

first, all the edges of 4× 4 blocks surrounding the lost area are identified and matched based

on their similarity directions. Then, all the lost pixels along the highest magnitude edges are

reconstructed. And finally, the pixels in non-edge area part are estimated using the SPR method

in the block. The SPR method starts recovering the pixels from the exterior part to the center in

a clockwise direction as shown in Figure 2.10. Although the approach works well on a single

or multiple edge areas, the grouping edges procedure, determining the similarity of edges, and

ignoring the non-similar edges are still an issue.

edge.1 edge.1

edge.2

edge.2

16x16 lost macroblock

a) Conceptual schematic of edge matching.

…

…

…

…
…

b) Global spiral-like ordering.

Figure 2.10 Illustration of proposed SPR concealment in (Shih et al., 2018).

Clearly, the performance of error concealment approaches reduces when lost areas have less

correlation, whether spatially or temporally, with the correctly received surrounding areas, or

in fast or complex motion scene, or when the lost areas are quite large. Most error concealment

approaches treat a corrupted packet in the same manner as a lost one, where the corrupted pack-

ets are ignored and the missing areas are concealed. In practice, network congestion results in

packet loss, while wireless signal attenuation, fading, etc., result in corrupted packets. How-

ever, corrupted and lost packets must be handled differently. Partially damaged packets may

28

contain valuable information that can be used to enhance the visual quality of the reconstructed

video (Superiori et al., 2006; Trudeau et al., 2011). This is the case when the error occurs at

the end of the packet or when the residual bit error rate (after channel decoding) is low. The

novel user datagram protocol (UDP) such as UDP-Lite has been developed to deliver partially

damaged packets to the application layer (Larzon et al., 2004).

2.2 Error correction

Unlike the error concealment, the goal of video error correction approaches is to utilize the

corrupted packet and recover the originally sent one rather than assuming that the whole packet

is lost. In other words, these approaches attempt to correct errors by modifying the received

bits into a most likely transmitted sequence of bits. A correction process may sometimes be

expressed as an optimization problem. Knowing that the received packet is corrupted, the aim

is to find the best one among the set of all candidates:

S∗ = argmax
St∈H

{P(St |Sr)} ≈ argmax
St∈H

{P(Sr|St)×P(St)} (2.10)

where S∗ is the likeliest packet to the received corrupted packet Sr, and it is chosen among all

the hypothetically transmitted slices St in the solution space, shown as H. The works on this

topic can be categorized as list decoding and joint source channel decoding (JSCD) which will

be deeply described in the following sub-sections.

2.2.1 List decoding

For a received corrupted packet, list decoding approaches generate multiple candidate packets.

Generally, the candidates are produced by flipping individual bits in the corrupted packet. Then

the candidates are ranked from the most likely to the least likely bitstream, based on the soft

information or reliability parameters of each bit provided by the channel decoder. Each candi-

date is then checked for semantic and syntactic errors by the specific video decoder. Finally,

the winning candidate is the first one that passes the decoder semantic verification.

29

A log-likelihood ratio (LLR), which expresses the probability that a bit 1 was sent over the

probability that a bit 0 was sent, given the same noise, is used by the channel decoders to

provide the soft information, as shown in equation 2.11 (Hagenauer et al., 1996):

LLR(bn) = log

(
P(bn = 1|y)
P(bn = 0|y)

)
(2.11)

where LLR(bn) is defined as the soft information of a transmitted bit bn when y represents the

received noisy bit.

Ma & Lynch (2004) used turbo code to provide the soft information of each transmitted bit.

They proposed to choose a limited number of bits with the smallest LLR value as the candidate

flipping bits. Later, their candidate generator flips some or all of the candidate bits to generate

candidate packets. Finally, the first candidate packet, which correctly passes the syntax checker

of the MPEG-4 decoder, is selected as the likeliest packet for the corrupted one.

In (Levine et al., 2007), 300 likeliest candidates are generated based on the soft value of trans-

mitted bits. The candidate packets are ranked based on the smallest sum of soft values of their

flipped bits. Similar to other list decoding approaches, the video decoder, here H.264 context-

adaptive binary arithmetic coding (CABAC) decoder, validates the candidates and chooses the

likeliest one. Their proposed approach was further modified by Nguyen et al. (2010), to ac-

celerate the semantic verification process of the video decoder. This has been performed by

adding a virtual checking step into the proposed system. The virtual checker eliminates some

non-valid candidate packets based on the information of the previously failed candidates. For

instance, if flipping a bit at position k causes a semantic or syntactic error in the following

syntaxes, the virtual checker will drop all the candidate packets that contain a flipped bit at

position k. In this way, the proposed approach can speed up the process of eliminating non-

valid candidates by not verifying all of them by video semantic checker. As it has been seen in

their simulation results, using the virtual checker saves on average 24% of the processing time

compared to when it has not been employed.

30

2.2.2 Joint source channel decoding

In the JSCD approaches, often, the problem of finding the likeliest packet is viewed as a prob-

lem of finding the shortest path, as modeled in Figure 2.11 in such a way that the codewords or

the syntaxes are the nodes of a trellis.

1,1c

2,1c

1,2c 1,3c 1,kc

2,2c 2,3c 2,kc

3,1c 3,2c 3,3c 3,kc

,1mc ,2mc ,3mc ,m kc

Start End

codeWord/syntax

Figure 2.11 Trellis representation of the corrupted packet. ci, j represents

the j-th codeword/syntax in i-the path.

Generally, the Hamming distance between the received corrupted codeword and the candidate

codeword is considered as the weight for each path (Farrugia & Debono, 2008, 2010, 2011).

Since the codewords have different length in bits, the generated paths may have a different

number of codewords or different length as the number of consumed bits. Of course, it is

obvious that some paths may die because of non-existing legal codewords in the variable-length

code (VLC) tables. In order to eliminate the non-valid paths or prevent the exponential growth

of the trellis, various constraints are considered in the literature. Farrugia & Debono (2011)

proposed a trellis decoding strategy that consider M most probable paths with the smallest

Hamming distance at each step of the decoding. In addition, they considered three source

31

constraints to validates the paths. The bitstream length, the number of MBs in the corrupted

slice and the successful syntactic/semantic verification are checked to identify the likeliest path.

In some other works, JSCD was employed to only correct a specific part of the coded bit-

stream, such as residual information (Weidmann et al., 2004; Wang & Yu, 2005) or motion

vectors (Wang & Yu, 2005). In the approach proposed by Weidmann et al., sequential decod-

ing and the soft information provided by the channel decoder is used to find the best path for

the residual coefficients coded with context-adaptive variable-length coding (CAVLC). Their

proposed approach is based on the Extended profile of H.264 coded sequence. Furthermore,

by utilizing its data partitioning feature, they assumed that other partitions are protected (error

free), and only residuals are erroneous. The additional information provided by those pro-

tected partitions, such as packet length in bits and number of MBs in the slice, are used as

the constraints to eliminate the non-valid paths. A MAP-based JSCD approach was proposed

for the decoding of the motion vectors and CAVLC residual bitstream in (Wang & Yu, 2005)

and (Bergeron & Lamy-Bergot, 2004), respectively. In (Wang & Yu, 2005), the authors mod-

eled the neighboring motion vectors as a first order Markov process to utilize their high corre-

lation features, and then, used data partitioning to transmit the horizontal and vertical motion

vectors in separate partitions. Finally, at the decoder side, both motion vector partitions were

decoded by their proposed MAP-Iterative JSCD approach. In (Sabeva et al., 2006), JSCD

combined with soft estimation techniques was adopted for correcting CABAC bitstreams of

H.264 coded sequences. In all the previously-mentioned approaches (Wang & Yu, 2005; Berg-

eron & Lamy-Bergot, 2004; Sabeva et al., 2006), the authors assumed that each packet contains

a whole frame. This has been used as an extra constraint for eliminating the non-valid paths

(since it indicates the number of coded MBs in each packet). However, such an assumption

can dramatically increase the complexity of the approaches especially when the higher texture

resolution sequences are considered and the packet size is extremely large.

Moreover, JSCD has been employed in the correction of the headers. Yen et al. (2012) pro-

posed to exploit the syntaxes in two slice headers in H.264 coded sequences, known as se-

quence parameter set (SPS) and picture parameter set (PPS). Since the type and the number

32

of codewords in these slice headers are limited, therefore the trellis strategy can work well to

find the best path and correct the errors in headers. In a more recent work, Perera et al. (2016)

proposed a technique to correct the header information of high efficiency video coding (HEVC)

coded sequence by using the syntactical conformance verification and soft information of turbo

decoding.

However, all these approaches suffer from the major drawback of having a fairly large solution

space for candidate packets, leading to a decoding process with extremely high computational

complexity. Indeed, a packet containing N bits has 2N possible candidates when any number

of errors is considered. This issue alone restricts the use of these approaches in real-time

applications (Caron, 2013). Recently, a significantly less complex approach has been proposed

in (Caron & Coulombe, 2012, 2013, 2015), where the correction procedure has been considered

at the syntax level instead of the whole slice. In their proposed maximum likelihood decoding

(MLD) approach, the soft information of transmitted bits is used to select optimal syntax at

each step of the decoding instead of listing the candidates for the whole slice. Therefore the

solution space is limited to a set of valid syntaxes for each specific codeword. They extended

the equation 2.10 in such a way that it measures the probability of finding likeliest syntax, s∗i :

s∗i = argmax
s{t,i}∈Ci

{P(Sr|s{t,i})×α ×P(s{t,i}|s{t,i−1},s{t,i−2}, ...,s{t,1})} (2.12)

where the transmitted slice, St = {s{t,1},s{t,2}, ...,s{t,Nt}} is assumed to have Nt number of syn-

taxes. The weighting factor α is considered to compensate for the effect of variable length

syntax candidates. The soft information of the transmitted bits (LLR) along with the chan-

nel bit error rate is used to calculate the first probability term in the equation. To evaluate

the probability of each syntax in the second term, they modeled some of the syntaxes in the

slice header and prediction syntaxes in the slice data and assumed that the non-modeled syn-

taxes (such as the residual syntaxes) have constant probability values. Their proposed greedy

approach used in the correction process keeps only one syntax at each step of the decoding

procedure. Although the greedy technique can further reduce the complexity of the procedure,

33

it increases the risk of reaching to an illegal or non-valid candidate syntax which causes to stop

the correction process. In other words, any mistake in the decoding of a syntax will propagate

to the following ones, and, there is no chance to correct the previously wrong decisions. They

performed the simulations on a fixed packet size, 200 bytes and 300 bytes), and proposed to

stop the correction process when the Hamming distance between the likeliest syntax and the re-

ceived bits is greater than 1. In that case, the STBMA approach (Chen et al., 2008) is integrated

to conceal the remaining (not corrected) blocks. Their simulation results showed that both with

and without soft information, their method referred as soft output (SO)-MLD and hard output

(HO)-MLD respectively, can outperform the state-of-the-art error concealment (Chen et al.,

2008). The simulation results also confirmed that with the additional soft information better

performance is expected compared to the HO-MLD approach. However, because of not mod-

eling the residual syntaxes and utilizing a greedy approach, MLD performance will decrease

with lower QP values or when the packet size is increased.

It is worth mentioning that an important issue with most error correction methods is the access

(or lack of access) to the soft information. Propagating soft information, i.e. a fixed or floating

point LLR value for each bit of the packet, throughout the protocol stack (from the physical up

to the application layer), is complex to implement and deploy in practice.

2.3 Discussion

Although a lot of work was presented on error concealment and error correction approaches,

there is still a lack of research on why keeping corrupted packet is useful and when it is more

efficient to retain a corrupted packet. There are a few works in the literature that attempt to uti-

lize the corrupted packet and perform partial error concealment. The idea is to recover all the

correctly received MB before the error occurrence. This requires an error detection mechanism

at the decoding stage which can be performed by the decoder itself. In the literature, much

of the effort on the syntax analysis has been dedicated to error detection capability of the syn-

taxes (Superiori et al., 2006; Barni et al., 2000). Due to the fact that the sequences are coded

using VLC, an error on a syntax element can create another wrong but valid codeword which

34

makes impossible for the decoder to detect the exact error location. In some cases, the error

can be detected in 15 MBs after the error occurrence (Superiori et al., 2006). Such a distance

between error occurrence location and error detection location will drastically degrade the vi-

sual quality of reconstructed frame and its subsequent frames (since all the MBs between these

two locations are wrongly decoded). Therefore, most error concealment approaches prefer to

ignore the corrupted packet. In the next chapter, in chapter 3, we propose an approach where

the decoder can fully use the corrupted packet for replacement in the lost area, and moreover,

the proposed approach can be integrated with all the existing concealment approaches.

In the case of list decoding error correction approaches, we saw that the approaches suffer from

the high solution space problem. Especially when the soft information is not available, all the

bits have the same probability of being flipped and finding a final candidate is very complex.

In chapter 4, we propose a novel checksum-filtered list decoding (CFLD) that can correct the

corrupted packet by exploiting the UDP checksum value at the receiver side. Moreover, it will

drastically reduce the candidate list compared to the conventional list decoding approaches

from N to N/32 in the case of considering one bit in error.

CHAPTER 3

NON-DESYNC-BASED DECODING FOR H.264 CODED SEQUENCES

In this chapter, we describe how the corrupted packets can be exploited as a complement to

error concealment approaches by filtering (keeping) those deemed to provide good reconstruc-

tion. We start by analyzing the context-adaptive variable-length coding (CAVLC) syntax ele-

ments in H.264 coded sequences and then propose filtering mechanism that can fully use the

corrupted packet (under some conditions) for replacement in lost area.

There are a few works on exploiting syntaxes in the literature. Demirtas et al. (2011) examined

the effect of an isolated error in each syntax element of H.264 on visual quality. By simula-

tion on only low resolution QCIF sequences, they presented which syntax elements are less

sensitive to an isolated error. And based on that, they concluded that if an error occurs on

less sensitive syntax elements, decoding those corrupted packets leads to better quality than

applying a slice level concealment approach. But the real problem is that when a corrupted

packet is received, in most cases, it is not possible to find out which syntax element was ac-

tually hit by the error. Due to using variable-length codes (VLCs), the effect of an error may

be detected in subsequent syntax elements. Therefore, their approach is not reliable. Imagine

a scenario where the error happened on more sensitive syntax elements and detected only on

a less sensitive one. Keeping (or decoding) the corrupted packet in this case will degrade the

visual quality even more than performing concealment. Moreover, as it will be described later

in this chapter, the sensitivity of a syntax to errors depends on how the syntax has been coded

and how the following syntaxes depend on it. For instance, one isolated bit error on a spe-

cific part of an Exponential Golomb Code (EGC) syntax could cause direct desynchronization,

which makes it highly sensitive to errors, while the other bits of the same syntax do not cause

any desynchronization. They also showed that if an error hits these syntax elements, decod-

ing those corrupted packets leads to better quality than using slice level concealment. Unlike

Demirtas et al. (2011), we look for the least sensitive bits of each syntax element, the bits that

errors on them will not cause any desynchronization.

36

In this chapter, the concept of non-desynchronizing bits (NDBs) is defined in the context of

H.264 CAVLC coded sequences. An NDB is a bit that does not cause any desynchronization

at the bit level and more importantly, that does not have any impact on the number of de-

coded macroblocks (MBs). In the first section, we identify the NDBs of most common syntax

elements in H.264 baseline profile coded bitstreams. We determine what are the essential re-

quirements for each bit to behave as an NDB. In the second section, we present the percentage

of NDBs in typical video bitstreams. We then examine the effect of individual errors on the

NDBs to confirm that they have a small impact on visual quality. The frequency of the NDBs

and their effect on visual quality are also investigated. The proposed robust decoding approach,

that retains the corrupted packets for which only NDBs are erroneous, is described in section

three. Finally, the simulation results and a discussion are presented in the last section.

3.1 Non-desynchronizing bits in H.264 syntax elements

After prediction, transform and quantization, the H.264 video signal is represented as a series

of transform coefficients along with prediction parameters. These values must be coded into

a bitstream that can be efficiently transmitted or stored and can be decoded to reconstruct the

video signal. There are several different mechanisms in H.264 to convert parameters into a

compressed bitstream, namely: fixed length binary codes, variable length EGCs, CAVLC and

context-adaptive binary arithmetic coding (CABAC).

As a consequence of the high coding efficiency, compressed bitstreams are extremely vulner-

able to transmission errors. Note that there is no synchronization marker inside the slices,

therefore, incorrect parsing of a codeword may bring desynchronization between the decoder

and the encoder. But what is yet to be investigated is if all the errors on syntax elements lead to

desynchronization. With this in mind, in this section, we look at the syntax elements in H.264

baseline profile to identify their NDBs. We concentrate on this profile since it is used by mobile

terminals, which are more prone to transmission errors. In this work, a bit is identified as an

NDB if after flipping it, it still satisfies the two following conditions:

37

- It does not cause desynchronization of the bitstream. And as will be seen later, this condition

can be extended to the case where the desynchronization is restricted to just a few syntaxes.

- It does not change the number of decoded MBs in the slice.

In this section, we look at the syntax elements in H.264 baseline profile to identify their NDBs.

We also specify the existing prerequisite for each particular syntax element to have an NDB.

To simplify the procedure, note that, we assume that each slice, which is encoded and decoded

independently from the others, contains one row of MBs. This condition will be relaxed later

in this chapter.

It is worth mentioning that a similar analysis has been presented in (Lamy-Bergot & Bergeron,

2012) in which the authors identified some of the bits with less impact on the decoding, as

the interchangeable bits, to use for the ciphering application. Although the concept of find-

ing the NDB is slightly the same, here, we clearly defined the two conditions to determine

an NDB, especially the second condition which we, later on in the following sub-section, ex-

plain its importance. Moreover, in this thesis, we are looking for all the possible NDBs in

each syntax element of the Baseline profile with respect to some specific coding parameters,

while in (Lamy-Bergot & Bergeron, 2012), the authors presented only some of the syntax ele-

ments. Therefore, some of our presented tables for NDBs in the following are exactly the same

as (Lamy-Bergot & Bergeron, 2012) (such as Table 3.4) or slightly similar (such as Table 3.2

and Table 3.5). Since their study was targeting a different application and, more importantly,

there was not any information about their encoding parameters, we are not able to use their

identified sensitive bits results, and it was required to perform our own analysis and simula-

tions based on our objective.

38

3.1.1 Guaranteed non-desynchronizing bits in H.264 syntax elements

The main syntax elements in H.264 are EGCs, which assign shorter codes to the more frequent

values. The general structure of an EGC codeword is as follows:

0 0 0 ... 0 0︸ ︷︷ ︸
N

zero-prefix

1 X1 X2 ... XN︸ ︷︷ ︸
N

INFO

, Xi∈{0,1}, ∀i∈ [1,N]
(3.1)

The codeword starts with N(≥0) zero bits as zero-prefix followed by a bit 1 (called here the

middle bit), and then N bits of information as the INFO part. The complete codeword has

length of 2N + 1 bits. The value of the codeword depending on the type of the EGC being

signed or unsigned, named respectively as signed-EGC (SGC) and unsigned-EGC (UGC), can

be decoded by these following steps (ITU-T SG16 Q.6 & ISO/IEC JTC 1/SC 29/WG11, 2003):

1. Count the number of zeros (N) until the first bit 1.

2. Read N bits after the first bit 1 (INFO).

3. UGC = 2N + INFO−1; SGC = (−1)UGC+1 ×�UGC
2 	

where � 	 is the ceil operator.

Some examples of EGC are presented in Table 3.1. It is obvious that if an error occurs in the

zero-prefix part of an EGC or changes the middle bit “1” into 0, it will directly desynchronize

the bitstream from that point forward because of incorrect parsing of the following syntax

elements. However, an error in the INFO part (shown with Xi in equation 3.1), although

leading to a different decoded value, does not have a direct desynchronization effect on the

bitstream. Thus, all the INFO bits are possible NDBs.

The INFO bits of an EGC are not always categorized as NDBs. Suppose the bits “010” are

related to the mb_skip_run syntax element which is coded by EGC. The value of the syntax

indicates the number of skipped MBs before the next coded one. Note that for a skipped MB,

no prediction or residual information is sent by the encoder. Therefore, in this example, the

39

Table 3.1 Examples of EGC mapping values to UGC and SGC. Bold bits

are the possible NDBs of EGCs.

Bit Pattern UGC SGC Bit Pattern UGC SGC

1 0 0 00110 5 3

010 1 1 00111 6 -3

011 2 -1 0001000 7 4

00100 3 2 0001001 8 -4

00101 4 -2 0001010 9 5

bits “010” means one MB should be skipped. By flipping the third bit “011”, the number of

skipped MB will change into two (as shown in Table 3.1). In this case, although there is no

direct desynchronization at the bitstream level, there will be a shift of the successive MBs’

positions and the extra or reduced number of decoded MBs create a significant problem. This

is often observed when the error happened on the mb_skip_run INFO part at the end of the

slice). Therefore, we should consider this case in our definition of an NDB (as the second

condition in the definition of NDB). Overall, based on the meaning of the syntax and how

the subsequent syntaxes depend on it, the modification of an INFO bit may or may not cause

bitstream desynchronization thereafter and this should be studied individually for each syntax

element.

In the following, we will study the most common syntax elements in H.264 EGC-coded syn-

taxes. These syntax elements are: mb_type (inter/intra), sub_mb_type, intra_chroma_pred_-

mode, coded_block_pattern (inter/intra), mvd_l0 and mb_qp_delta. A good overview of these

syntax elements is presented in (Richardson, 2010).

mb_type: The allowed MB types and their corresponding values for the mb_type syntax ele-

ment in a P-Slice, which includes intra (I) and inter (P) prediction MBs, are listed in Tables 7-8

and 7-10 of the H.264 standard specification respectively (ITU-T SG16 Q.6 & ISO/IEC JTC

1/SC 29/WG11, 2003). In the standard, mb_type values 0 to 4 of unsigned EGC are assigned

to the P–MB type and the values 5 to 30 are specified to the I–MB type syntax elements. Gen-

erally, a non-valid syntax value leads to a decoder crash. However, a valid but wrong mb_type

value may cause syntax/semantic errors. For instance, if the type value describes a P–MB, mo-

40

tion syntaxes will be required at the next step of the decoding process, while there are no such

syntaxes in the I–MB case. Similarly, the motion information in a P-16×16-MB is described

by one motion syntax while for 16×8/8×16 and 8×8 MBs, two and four (without any subpar-

tition block) motion syntaxes must be parsed respectively. For instance, in the mb_type case,

the “00100” pattern describes a P–MB, and motion syntaxes are parsed at the next step of the

decoding process, while no such syntaxes exist following the “00110” pattern, which describes

an I–MB. Therefore, although the bold bit zero in “00100” and the bold bit one in the “00110”

pattern are INFO bits of EGC, they are not categorized as NDBs in this case.

However, there are still some NDBs in mb_type. The bits are shown in Table 3.2 as bold

bits. Consider the following example: flipping the least significant bit (LSB) bit of mb_-

type=010, described as a P–16×8–MB (two blocks of 16×8) which later requires two motion

syntaxes, into mb_type=011, generates another valid syntax with P–8×16–MB requiring also

two motion syntaxes. Thus these two syntax values are interchangeable which makes their

LSB bit categorized as NDBs.

For the case of I–MB, different mb_type values result in different prediction modes, as well as,

different values for the syntaxes related to the transform coefficient such as cbp_chr and cbp_-

luma. The Coded Block Pattern (CBP) value indicates, in the form of binary flags through the

look up table, which transform blocks may have non-zero coefficients. And based on these two

values (cbp_chr, cbp_luma), different syntaxes (such as coeff_token, trailing_ones_sign_flag,

...) must be decoded. Therefore, the NDBs should not cause any modification on the cbp_-

chr and cbp_luma value. In other words, the two interchangeable syntaxes value must have

the same value for cbp_chr and cbp_luma. Moreover, changing the prediction mode may also

result in desynchronization. It is not possible to change a type value from vertical prediction

into horizontal prediction while there is not a left neighboring MB. This is an instance of

semantic error that leads to decoder crash. In our case, only horizontal and DC prediction

mode are interchangeable (since one row of MB is considered in each slice, so there is no top

neighbor for vertical prediction).

41

According to the explanation given above, the mb_type value of 7(0001000) can change to

8(0001001) by flipping the LSB position without causing any desynchronization effect. This

is because their CBP values for chroma and luma components are the same, as well as, their

prediction mode is interchangeable (vertical to DC or vice versa). Therefore, their LSB is

identified as NDBs. The other NDBs for an I–MB is shown in Table 3.2.

Although these NDBs do not have any effect on the bitstream it is obvious that it may cause

some context modification because of the MB type changes but later (in Section 3.2), we will

demonstrate that this modification is insignificant or restricted to a small area.

sub_mb_type: In the H.264 standard, a P–8×8–MB can be split further into smaller block sizes

as sub-partitions. This is addressed by another syntax element known as sub_mb_type (see

Table 3.3). Like the mb_type for a P–MB, the sub_mb_type value implies the number of the

motion vectors associated with the current MB. For example, an 8×8 block requires only one

motion syntax while if it is partitioned into two 8×4 or 4×8 blocks, two motion syntaxes are

needed. Similarly, the number of motion vector adds up to four when the block is split into

four 4×4 sub-blocks. Therefore, only the two cases of sub_mb_type=1 and sub_mb_type=2 are

interchangeable. We categorize their LSB bits as NDBs. These bits are represented in bold

format in Table 3.3.

42

Table 3.2 NDBs of the mb_type syntax element for P–MBs and

I–MBs in P–slices. For an I_16×16, the last column of the table shows

the predMode, cbp_chr and cbp_luma value respectively. For an I–MB

predMode can be Vertical(0), Horizontal(1), DC(2), Plane(3). Bold

bits are NDBs.

mb_type value Bit pattern MB type description

P–MB
0 0 P_L0_16×16

1 010 P_L0_L0_16×8

2 011 P_L0_L0_8×16

3 00100 P_8×8

4 00101 P_8×8ref0

I–MB
5 00110 I_4×4

6 00111 I_16×16_0_0_0

7 0001000 I_16×16_1_0_0

8 0001001 I_16×16_2_0_0

9 0001010 I_16×16_3_0_0

10 0001011 I_16×16_0_1_0

11 0001100 I_16×16_1_1_0

12 0001101 I_16×16_2_1_0

13 0001110 I_16×16_3_1_0

14 0001111 I_16×16_0_2_0

15 000010000 I_16×16_1_2_0

16 000010001 I_16×16_2_2_0

17 000010010 I_16×16_3_2_0

18 000010011 I_16×16_0_0_1

19 000010100 I_16×16_1_0_1

20 000010101 I_16×16_2_0_1

21 000010110 I_16×16_3_0_1

22 000010111 I_16×16_0_1_1

23 000011000 I_16×16_1_1_1

24 000011001 I_16×16_2_1_1

25 000011010 I_16×16_3_1_1

26 000011011 I_16×16_0_2_1

27 000011100 I_16×16_1_2_1

28 000011101 I_16×16_2_2_1

29 000011110 I_16×16_3_2_1

30 000011111 I_PCM

43

Table 3.3 NDBs of sub_mb_type syntax element in P–MBs.

sub_mb_type value Bit pattern sub_MB type description

0 0 P_L0_8×8

1 010 P_L0_8×4

2 011 P_L0_4×8

3 00100 P_4×4

mvd_l0: The motion vector is a key element for exploiting temporal redundancy in a P–MB

and achieves significant compression. It is described as a pair of values to represent horizontal

and vertical displacements of a block or MB, based on its position in the reference frame with

x and y components. It is obvious that the adjacent blocks may have similar movement, which

makes motion vector values correlated. Due to this property, H.264 encodes the difference

motion vector instead of the actual one. The mvd_l0 syntax (also known as mvres) is a pair of

SGCs, one for the x, and the other for the y components, which represents the difference be-

tween actual calculated displacement and the predicted motion vector value from the available

neighbors.

As mentioned previously, a bit error in the INFO part of the EGC (illustrated as Xi in equa-

tion 3.1) does not cause any desynchronization at the bit level. Therefore, all the INFO part bits

of x and y components of the mvd_l0 syntax are categorized as NDBs. However, a wrong mo-

tion vector can propagate to the neighboring motion vectors, since the difference motion vector

has been coded and transmitted, and at the decoder side, the mvd_l0 value extracted from the

bitstream is added to the predicted motion vector value of neighbors (usually the median value

of neighbors). Thus, an erroneous motion vector can easily change the following motion vector

values without having any desynchronization effect on the bitstream. The error can thus affect

significantly the visual quality. This kind of propagation will stop when there is an I–MB or

when its contribution disappears in the median calculation process. This is discussed in detail

in Section 3.2.

coded_block_pattern: After inter/intra prediction, the residual blocks are coded using CAVLC.

The coded_block_pattern syntax element is used to indicate which 8×8 blocks of a MB have

44

at least one non-zero transform coefficient. If there is such an 8×8 block, the CAVLC parsing

process is started for each 4×4 sub-block of it. Although coded_block_pattern uses an EGC

syntax, an error, even on the INFO part, can cause desynchronization. A different coded_-

block_pattern value means assigning the non-zero coefficients to the different 8×8 blocks. This

can have an effect on the nC parameter which is calculated based on the number of non-zero

coefficients in the top and left available neighboring blocks. The nC parameter value is impor-

tant since it is later used in the decoding process to choose the lookup table for the following

coeff_token syntax. In other words, any modification on the coded_block_pattern that changes

the nC parameter may result in a desynchronization of the bitstream. Therefore, we are not

able to identify any bit of the coded_block_pattern as NDB.

coeff_token: The first parsing syntax element present in the block residual is coeff_token. The

corresponding lookup table for decoding is selected between five different VLC tables based

on the nC value. The pair value of the coeff_token syntax, as TrailingOnes and TotalCoeff

(TC), signals respectively the number of coefficients with ±1 values and the total number of

non-zero coefficients (out of 16).

For each ±1 value, a sign flag syntax must be later parsed. And, the rest of non-zero (and non

±1) coefficients must be addressed by other "level" syntax elements. In addition, the value of

TC is later used in the selection of the total_zeros’ lookup table. Due to these dependencies,

any changes in the coeff_token syntax can cause the decoder to lose its synchronization with

the corresponding encoder either from the error position or from the following syntaxes.

trailing_ones_sign_flag (T1): The sign of each TrailingOnes is signaled by a single bit (0/1)

in trailing_ones_sign_flag (T1) syntax. The zero value (bit 0) of the syntax means that the

corresponding coefficient is +1, otherwise, it is -1. Since trailing_ones_sign_flag syntax does

not have any direct or indirect effect on the bitstream, its corresponding bits are categorized as

NDBs.

level_prefix: The value of each remaining non-zero coefficients (TC–T1) is specified by these

two level_prefix and level_suffix syntaxes. The value of the level_prefix is determined from the

45

bitstream by the number of leading zero bits before the first “1”. For example a “0001” bit

patterns means level_prefix is equal to 3. As it can be seen from the example, any modification

on the bits assigned to the level_prefix can easily desynchronize the bitstream from the error

position and cause the error to propagate to the following syntaxes. Given that, we can say

that there is no NDB in the level_prefix syntax. It is worth noting that there is a special case

of modification on level_prefix for which the error propagation will be stopped shortly after

parsing of a few syntaxes if some conditions are satisfied. This will be considered later as a

special case.

level_suffix: In the second step of coefficient level decoding, n bits are read to determine the

value of the level_suffix syntax. The number of bits n, which is called levelSuffixSize in the

standard, depends on the value of the previously decoded syntaxes such as level_prefix and

another parameter SuffixLength which also depends on the coeff_token value (for more detail,

see (International Telecommunications Union, 2003)). However, any modification on the n bits

values themselves of the level_suffix syntax will not have any desynchronization effect on the

bitstream. Thus all level_suffix bits are categorized as NDBs.

total_zeros (TZ): Two different syntaxes, total_zeros (TZ) and run_before, are used to signal

the remaining zero coefficients in each block. Due to the zig-zag scanning, the majority of the

zero coefficients are at the end of the scan (in high frequencies) and H.264 does not actually

code them (since they can be implicitly assigned by having the values of the previously decoded

syntaxes). Only the zero coefficients from the last non-zero coefficients toward the start of

the scanning (low frequencies) are coded and transmitted. The TZ syntax describes the total

number of zeros before the last non-zero coefficient in the scanning order. The corresponding

lookup table for TZ syntax is chosen based on the number of non-zero coefficients (TC value)

in the current block. When there are more than one non-zero coefficients (TC>1), the run_-

before syntax is also required, therefore different values of TZ can cause desynchronization at

the parsing of the following run_before syntaxes. However, the TZ syntax element can have

NDBs if the TC value is equal to 1. In this case, there is one non-zero coefficient and all the

others are zeros. In other words, the TZ value demonstrates how many zeros are before the

46

non-zero coefficient. For instance, TZ=0011 means that there are three zero coefficients before

the non-zero coefficient (Y), therefore twelve of them are after the non-zero coefficient.

0, 0, 0, Y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Flipping the LSB position of the TZ in the example above to TZ=0010 means that there are

four and eleven zero coefficients before and after the non-zero coefficient respectively.

0, 0, 0, 0, Y, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

Therefore such a modification does not cause any desynchronization at the bitstream. Hence,

the LSB of the two TZ cases (0011 and 0010) are categorized as NDBs. Note that, here, no

run_before syntax is parsed. Table 3.4 presents all the identified NDBs of TZ syntax for both

non-chroma-DC (sixteen coefficients of 4×4 blocks) and chroma-DC (four coefficients of 2×2

blocks) cases when TC=1.

Table 3.4 NDBs of the total_zeros syntax element as TC=1.

total_zeros value

Bit pattern

block 4×4

(non-chroma-DC)

block 2x2

(chroma-DC)

0 1 1

1 011 01

2 010 001
3 0011 000
4 0010 -

5 00011 -

6 00010 -

7 000011 -

8 000010 -

9 0000011 -

10 0000010 -

11 00000011 -

12 00000010 -

13 000000011 -

14 000000010 -

15 000000001 -

run_before: When there are more than one non-zero coefficients in the block (and of course

when TZ is bigger than zero), the zero transform coefficients between every two non-zero

47

coefficients are encoded by run_before syntax element. As it can be seen from the example in

Figure 3.1, the TZ value expresses how many zero transform coefficients are present before the

last non-zero coefficient (shown as Y4) in reverse scan order, but it does not determine where

they are exactly located. In the example, the TZ=7 specifies that the run_before can only take

one of the eight values between 0 to 7. This is initialized into a parameter called zerosLeft

(zerosLeft=7). The zerosLeft parameter, which describes the number of zeros preceding each

non-zero coefficients, is used to choose the corresponding lookup table for the run_before

syntax. The "100" bit pattern corresponding to the last column of Table 3.5 shows that the

run_before is equal to 3, which means there are three zero transform coefficients between Y4

and Y3 and they are inserted as it can be seen from the example in Figure3.1. Then, this run_-

before value is subtracted from the zerosLeft value and the result (7-3=4) is re-assigned to the

zerosLeft variable. This process continues until the zerosLeft is equal to zero (which means

there is no other zero transform coefficient) or when we reach the first non-zero coefficient

(Y1). In the example of Figure 3.1, the latter happens. Note that the number of zero coefficients

before Y1 will not be encoded at all, since the final zeroLeft value demonstrates how many zero

coefficients are present before Y1 and they will be inserted.

In the example, we can see the effect of run_before value on zeroLeft parameter which further-

more can result in picking a different lookup table for the next run_before syntax. Thus, only

the last run_before syntax, which decodes the zeros between Y2 and Y1, can have NDBs since

there is no other run_before syntax after that. The NDBs of run_before syntax are represented

in bold format in Table 3.5.

Let us consider another examples with flipping an NDB and non-NDBs of run_before syntax

in Figure 3.1. If we receive the “1001000...” pattern instead of the “1001001...”, the only

difference between this case and the original one is the value of last run_before syntax which

will change to 3 (corresponding “00” bits at zeroleft=3) and accordingly the final zeroLeft will

be 0. This modification does not cause any desynchronization at the bit level but inserts three

zeros between Y2 and Y1 and no zero before Y1 as follows:

Y1, 0, 0, 0, Y2, 0, Y3, 0, 0, 0, Y4, 0, 0, 0, 0, 0.

48

While a received pattern such as “0001001...” instead of “1001001...” can cause unpleasant

desynchronization effect on the following syntaxes due to the remaining extra bits “001”. The

pattern is decoded as follows:

- Initialize zeroLeft=7, with the “0001” pattern, thus run_before=7 (seven zero transform

coefficients are between Y4 and Y3).

- ZeroLeft=7-7=0 (which means there is no other zero transform coefficients).

Y1, Y2, Y3, 0, 0, 0, 0, 0, 0, 0, Y4, 0, 0, 0, 0, 0

“100”
run_before=3

Example:
TC=4; total_zeros =7;
Bitstream: “1001001…”

, 0, 0, 0,, 0,, 0, 0,0,

“10”
run_before=1

“01”
run_before=2

, 0, 0, 0, 0, 0

high frequency

zerosLeft=7

Yi : i-th non-zero coefficient

zerosLeft=4zerosLeft=3zerosLeft=1

coefficients: Y1 Y2 Y3 Y4

Figure 3.1 run_before example, the character Yi specifies the i-th non-zero

coefficient. Only the last run_before syntax can have non-desynchronizing feature.

Its value can change by flipping the bitstream “1001001...” as “1001011...”

(run_before=0) or “1001000...” or (run_before=3) without causing any

desynchronization effect.

3.1.2 Contextual non-desynchronizing bits in H.264 syntax elements

In all the previous cases, the NDBs are considered for each syntax element individually. How-

ever, there is a possibility that the successive syntaxes can compensate for the desynchroniza-

tion caused by each other. Therefore, the bitstream turns to be synchronized again and the

error propagation will be restricted as well. This scenario happens under the condition that a

49

Table 3.5 NDBs of run_before syntax based on different zeroLeft values.

NDBs are presented in bold format. Note that this is valid if the NDBs

occur on the last run_before.

run_before value
zeroLeft

1 2 3 4 5 6 >6

0 1 1 11 11 11 11 111
1 0 01 10 10 10 000 110
2 - 00 01 01 011 001 101
3 - - 00 001 010 011 100
4 - - - 000 001 010 011
5 - - - - 000 101 010
6 - - - - - 100 001

7 - - - - - - 0001

8 - - - - - - 00001

9 - - - - - - 000001

10 - - - - - - 0000001

11 - - - - - - 00000001

12 - - - - - - 000000001

13 - - - - - - 0000000001

14 - - - - - - 00000000001

combination of two or more successive syntaxes together, after one bit in error, still creates a

semantically valid string of syntaxes which obviously should have the same length in total as

pairs. Some of these group syntaxes are investigated in the following to identify their NDBs.

level_prefix and TZ: In fact, the level_prefix syntax element, individually, does not have any

NDBs. However, when it is combined with the TZ syntax, some of its bits can behave as

NDBs. When there is only one non-zero transform coefficient (TC=1) which is not ±1 (co-

eff_token=(0,1)), there is no level_suffix syntax (since its parameter is zero). Therefore, after

level_prefix, the TZ syntax is parsed. For specific values of the TZ, it can compensate the

desynchronization error caused by flipping bits in level_prefix syntax. In other words, some-

times for a pair of (level_prefix, TZ), there is another pair that has the same length with only a

single-bit difference at the bit level. Moreover, the other pair should not have any effect on the

following syntaxes, such as leading to parse a different syntax than the one expected.

50

Let us consider the “00 01 1” bit pattern which describes the following syntaxes under the

condition of coeff_token=(0,1). For the TZ and level_prefix bit patterns and values see Table 3.4

and Table 3.6, respectively.

- “00 01 1” parsed as: level_prefix=3 (“0001”); TZ=0 (“1”) → 5-bit length

The effect of flipping each leading zero bit in the level_prefix=3 is demonstrated here. The goal

is to examine if there is another valid pair of (level_prefix, TZ) that can be replaced without

causing any desynchronization effect.

1. “10 01 1” parsed as: level_prefix=0 (“1”); TZ=3 (“0011”) → 5-bit length

2. “01 01 1” parsed as: level_prefix=1 (“01”); TZ=1 (“011”) → 5-bit length

3. “00 11 1” parsed as: level_prefix=2 (“001”); TZ=0 (“1”) → 4-bit length

4. “00 00 1” parsed as: level_prefix=4 (“00001”) → more than 5-bit length; (need more bits

to decode TZ syntax)

In the first two cases, the desynchronization effect caused by flipping bit in level_prefix syntax

is compensated by the following TZ syntax, and after that point, it remains synchronized at

the bit level. Therefore, these two bits are identified as NDBs in Table 3.6. In other words,

the two pairs of level_prefix=3, TZ=0 (“0001,1”) and level_prefix=0, TZ=3 (“1,0011”) are

interchangeable, and as expected, the two pairs are having the same length which is five bits

here. Therefore, their different bit, first zero in level_prefix=3 and bit one in level_prefix=1, is

identified as NDBs. The bits are shown in bold in the column of TZ=0 and TZ=3 of Table 3.6,

respectively. Following the same logic, second zero bit in level_prefix=3 with TZ=0 and bit 1

in level_prefix=1 with TZ=1 are identified as NDBs.

In the two other cases, flipping bits in level_prefix will cause desynchronization from that

syntax since they have a different length than the pair of (level_prefix=3, TZ=0). As it can

be noticed from the third case, the TZ syntax is not able to terminate the error propagation

51

caused by flipping the third zero bit in level_prefix=3, and thus, the desynchronization effect,

the remained bit ’1’, will continue to the following syntax elements.

The others NDBs for the level_prefix syntax, under the above-mentioned conditions, are pre-

sented in Table 3.6. Note that there is no NDB when the level_prefix value equals to 14 or 15

since it changes the parameter n corresponding to level_suffix syntax to a non zero value, and

therefore the level_suffix syntax, not the TZ one, must be parsed after the level_prefix.

Table 3.6 NDBs of the level_prefix syntax element based on different value of TZ,

if and only if coeff_token=(0,1).

level_prefix
TZ=0 TZ=1 TZ=3 TZ=2k+1 < 15

“1” “011” “0011”
“00...0︸ ︷︷ ︸

k+1

11”

0 1 1 1 1
1 01 01 01 01
2 001 001 001 001
3 0001 0001 0001 0001
4 00001 00001 00001 00001
5 000001 000001 000001 000001
6 0000001 0000001 0000001

...7 00000001 00000001 00000001
8 000000001 000000001 000000001 level_prefix =

13− (k+2)9 0000000001 0000000001 0000000001
10 00000000001 00000000001 00000000001
11 000000000001 000000000001
12 0000000000001

13 00000000000001

mvd_l0 as pair: We have mentioned earlier that a bit error in zero-prefix part of an EGC may

cause desynchronization. But sometimes such error effect may be compensated by subsequent

syntax elements. This can happen in mvd_l0 syntax element. Since the syntax is coded as a pair

value of (x,y), there is a possibility that the desynchronization effect produced by an incorrect

value of the x component be compensated by the y component value. In fact, it is likely that

a combination of two signed EGCs produces another signed EGC pair with the same length.

Consider the following example that shows two pairs of interchangeable signed EGCs for the

52

mvd_l0 syntax.

mvd_l0 = (−12,0) : 000011001,1

mvd_l0 = (−7,−1) : 0001110,011

In this example, an incorrectly received value of -7 (instead of -12) begins desynchronization

on the element x, but the value of -1 for the y component (instead of 0) will prevent the prop-

agation of the bitstream level desynchronization to the following syntax elements. Obviously,

this is because both pairs require the same total number of bits (10 bits) to describe such val-

ues. Therefore, their corresponding different bits (the bold bits shown in this example) can be

identified as NDBs.

This can similarly be observed when two pairs of mvd_l0 syntaxes must be parsed successively

(i.e. in MB type of 16×8 or 8×16). The four successive signed EGCs have the chance to

compensate for the desynchronization effect caused by one of their components, as shown in

the following example.

mvd_l0 = (1,−1); mvd_l0 = (0,0) : 010,011,1,1

mvd_l0 = (0,0); mvd_l0 = (−3,0) : 1,1,00111,1

Thus, in this example, the bold bits behave as the NDBs.

total_zeros and run_before: When two non-zero coefficients (TC=2) are available, the TZ

syntax element and only just one run_before syntax (of course if TZ�=0) are parsed successively

after decoding of the level value syntax elements. Therefore, some bit errors on the TZ syntax

element, which cause desynchronization, may have a chance to be compensated by the next

run_before syntax element. This is demonstrated in the following example (see Fig 3.1 and

Table 3.5 for run_before and Table 3.7 for TZ bit patterns and values).

- “001000001”: TZ = 8 (“0010”); ZeroLeft=8, run_before = 8 (“00001”)

53

- “000000001”: TZ = 14 (“000000”); ZeroLeft=14, run_before = 6 (“001”)

As we see in the first example, the bold bit 1 can behave as an NDB only if the following

run_before syntax element is equal to 8. This is because the remaining bits generate another

valid value for the run_before which is 6, here in the example. In other words, the two pair

values of (TZ=8, run_before=8) and (TZ=14, run_before=6) have the same length of bits, 9

bits, to represent the two syntaxes as bits. Hence, this new run_before value can terminate the

desynchronization caused by an error in TZ, without having any effect on the following syntax

elements. Note that any other value of run_before except 8, can not stop the desynchronization

effect originated by the TZ in the example. Other NDBs of the TZ syntax element for the case

of TC=2, along with the corresponding condition value on the succeeding run_before syntax

elements are presented in Table 3.7.

This is also perceived when TC equals 3. In this case, it is possible again for the TZ to have

NDBs if the two succeeding run_before hold some specific values to end desynchronization at

the bit level. Consider the example below for this matter:

- “01001101”: TZ = 4 (“0100”); ZeroLeft =4, run_before1 = 0 (“11”); ZeroLeft=4, run_-

before2 = 2 (“01”)

- “01101101”: TZ = 7 (“011”); ZeroLeft=7, run_before1 = 4 (“011”); ZeroLeft=3, run_-

before2 = 2 (“01”)

Generally, any modification on TZ syntax element leads to a different value for ZeroLeft pa-

rameter. As a consequence, this may result in choosing different lookup table for the run_-

before (see Table 3.5). But as can be seen from the example, the desynchronization can be

compensated under some specific values of the run_before. Table 3.8 shows the NDBs of TZ

syntax element as TC=3.

Furthermore, the NDBs for the chroma–DC case is presented in Table 3.7. Note that in a

2×2 chroma–DC block, only four transform coefficients exist. Hence, when TC=2, TZ syntax

54

element can take value 0, 1 or 2. From our observation, only the two cases with TZ=1 and

TZ=2 have NDBs, of course if their following run_before syntax element value is equal to

0. Otherwise, the desynchronization effect caused by flipping a bit in the TZ, which leads to

a different lookup table for the succeeding run_before syntax element, will propagate to the

following syntax elements. Similarly, as TC=3, the TZ can only be equal to 0 or 1. If the

TZ=1, it requires run_before syntax element in the following decoding process, while in the

other case (TZ=0) there is no such syntax element. Therefore, it is not possible to find any

NDB in this case.

3.1.3 Other non-desynchronizing bits

Besides all the identified NDBs in the syntax elements presented in the previous sub-

sections 3.1.1 and 3.1.2 as guaranteed and contextual NDBs respectively, there are still some

other bits that irregularly behave as NDBs. In other word, depending on their neighboring

decoded value or coding parameters, the modification of some bits will not cause any desyn-

chronization while in some cases it will. This can be observed in syntax elements such as

coded_block_pattern or coeff_token. Changing a coded_block_pattern value means assigning

the non-zero coefficient to different 8×8 blocks. Depending on the number of non-zero co-

efficients in neighbors, the parameter nC will be calculated for each 4×4 block. nC is used

as a lookup table index for the following coeff_token syntax element. Therefore, if this block

replacement does not result in a different lookup table, then there will not be any desynchro-

nization effect at the bit level. But this is not always the case and often the modification on the

coded_block_pattern can lead to a completely different lookup table for coeff_token. Moreover,

when more residual coefficients are available, the combinations of more than two successive

syntax elements have the possibility to compensate the desynchronization effect caused by one

another. In fact, it is not analytically easy to identify all the NDBs. However, we are still able

to characterize the NDBs of the syntax elements by these definitions. If a bit is flipped and still

satisfies the two conditions in the definition, which imply that 1) the corrupted packet is decod-

55

Table 3.7 The NDBs of the TZ when TC=2 and under some specific value

of the succeeding run_before syntax, as presented.

TZ value if run_before = TZ bit pattern

non chroma-DC coefficients; 4×4 block size

2 1, 2 101
3 2, 3 100
4 — —

5 0, 2, 3, 4, 5 0101
6 0, 1, ..., 4 0100

7
0, 1, 2, ..., 6 0011

7 0011

8
0, 1, 2, ..., 7 0010

8 0010

9
0, 1, 2, ..., 6 00011

7, 8, 9 00011

10
0, 1, 2, ..., 9 00010

6 00010

11 0, 1, ..., 11 000011

12

0, 1, ..., 11 000010
12 000010

6, 7, 8 000010

13
0, 1, ..., 11 000001

12, 13 000001

14

0, 1, ..., 12 000000
13 000000
6 000000

chroma-DC coefficients; 2×2 block size

1 0 01
2 0 00

able, and 2) the number of decoded MBs in the packet is correct, then the bit is categorized as

an NDB. In the following, we name all these bits as “Other NDBs”.

56

Table 3.8 The NDBs of the TZ when TC=3 and under some specific values of

the succeeding run_before syntaxes, as presented.

TZ value if (run_before1, run_before2) = TZ bit pattern

2 (0, 2) 110

3
(0, 0) 101
(1, 2) 101

4 (0, {0,1,2}); (1, {2,3}) 0100

5

(5,-) 0011

(0, {2,3,4}); (1, {0,3,4}); (3, {1,2}); (4, {0,1}) 0011

(2, {0,1,2}); (3, {1,2}); (4, 0) 0011

6
(6, -) 100

(0, 0) 100

7
(0, {4,5,6}); (1, {0,1,2}); (2, {4,5}); (3, {0,1}) 011

(4, {0,1,2}); (5, {1,2}) 011

8
(0, {7,8}); (1, 7) 0010

(4, {0,1,2}); (5, {2,3}); (6, 0) 0010

9

(0, {0,1,..,9}); (1, {0,1,...,8}); (2, {0,1,...,7}); (3,

{2,3,...,6}); (4, {2,3,4}); (5, 3); (6, 0);
00011

(4, {0,5}); (5, {0,1,4}); (6, {1,2}); (7, {1,2}); (8, 0) 00011

10

(0, {7,8,9,10}); (1, {7,8,9}); (2, {4,7}); (3, {0,1}) 00010

(0, {0,1,...,9}); (1, {0,1,...,8}); (2, {0,1,...,7}); (3,

{2,3,...,6}); (4, {0,1,...,4}); (5, {0,1,4,5}); (6,

{0,1,2}); (7, {2,3}); (8, 0)

00010

11
(1, {6,7,8,9}); (3, {6,7,8}); (5, {0,2}); (6, {0,1}); 000001

(1, 10) 000001

12

(1, {6,7}); (3, 6) 00001

(0, {0,1,...,9}); (1, {0,1,...,8}); (2, {0,1,...,7}); (3,

{2,3,...,6})
00001

(0, {7,8,...,11}); (1, {7,8,9}); (2, {4,7}); (3, {0,1});

(4, {7,8}); (5, 7); (7, {2,3,4}); (8, {0,3,4}); (9,

{0,1}); (10, 1)

00001

13
(1, {6,7}); (3, 6); (6, {4,5,6}); (7, {0,1,2}); (8,

{0,1}); (9, 2)
000000

3.2 Analysis of the non-desynchronizing bits

In this section, we will look first at the frequency of NDBs, and then at the effect of flipping

each NDB on visual quality. To measure this, the first 60 frames of the following sequences,

CIF (352×288) (Foreman), 4CIF (704×576) (City, Crew, Ice), 720×480 (Driving, Opening-

57

ceremony, Whale-show) and 720×576 (Walk) are coded in IPPP. . . format (Intra refresh rate of

30 frames) using the H.264 Baseline profile with the Joint Model (JM) software, version 18.5

(Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, 2013). Each slice contains a

single row of MBs, and is encapsulated into real-time transport protocol (RTP) packets.

3.2.1 Frequency of occurrence of the non-desynchronizing bits

In the first simulation, we sequentially invert all bits (flip individual bits one at a time) in each

slice, and then the JM software is used to decode the corrupted packet. Each corrupted packet

falls under one of the following categories:

1. It is not decodable (syntax/semantic error).

2. It is decodable, but the number of decoded MBs is not correct.

3. It is decodable, and the number of decoded MBs is correct.

Note that only the last category contains all the NDBs since it satisfies the two conditions in

the definition of the NDB.

Figure 3.2 shows the percentage of each category for the Crew sequence at different quantiza-

tion parameter (QP) values. As can be seen, flipping a single bit in the packet results in it being

non-decodable in more than half of the cases. In other words, the flipping bit causes semantic

or syntactic errors in the erroneous syntax element or maybe later in the following syntax el-

ements. Nevertheless, this condition alone is not enough to detect the errors. For instance at

QP=32, on average in 10% of the cases, flipping a bit does not cause any syntax or semantic

error (the corrupted packet is decodable), but at the end, there are more or fewer than expected

decoded MBs in the slice. This justifies the necessity for the second condition (decoding the

right number of MBs) in our definition of the NDBs. This is important especially for higher

QP values (for which there are less syntax elements compared to lower QPs), when the effect

of an error can not be captured by only a syntax checker. As it can be seen in Figure 3.2, at

58

QP=37, around 16.3% of the error cases are detected by the second condition and this value

reduces to 1% at QP=22.

On the other hand, on average, more than 30% of the bits belong to the third category, which

means that flipping those individual bits will not cause any desynchronization at the bit level,

and the number of decoded MBs is also correct. Similar percentages are observed for other

video sequences.

0 5 10 15 20 25 30 35
0

20

40

60

80

100

Slice index number

Pe
rc

en
ta

ge
 (%

)

1-non-decodable: 52.5%
2-decodable+extra/less nb MBs: 16.3%

3-decodable+right nb MBs: 31.2%

a) QP=37

0 5 10 15 20 25 30 35
0

20

40

60

80

100

Slice index number

Pe
rc

en
ta

ge
 (%

)

1-non-decodable: 57.5%
2-decodable+extra/less nb MBs: 10%

3-decodable+right nb MBs: 32.5%

b) QP=32

0 5 10 15 20 25 30 35
0

20

40

60

80

100

Slice index number

Pe
rc

en
ta

ge
 (%

)

1-non-decodable: 61.2%
2-decodable+extra/less nb MBs: 6%

3-decodable+right nb MBs: 32.8%

c) QP=27

0 5 10 15 20 25 30 35
0

20

40

60

80

100

Slice index number

Pe
rc

en
ta

ge
 (%

)

1-non-decodable: 64%
2-decodable+extra/less nb MBs: 1%

3-decodable+right nb MBs: 35%

d) QP=22

Figure 3.2 Percentage of the three different categories of a corrupted slice on frame

index 44 of the Crew sequence at different QP values. The average percentage of each

case is shown in the figure’s legend.

Moreover, we divided the third category of “decodable + right number of MBs” into two sub-

categories. The first sub-category includes the syntax bits which we have identified and de-

scribed in the sub-sections 3.1.1 and 3.1.2 as guaranteed and contextual NDBs respectively,

and we refer to them as “known–NDBs”. The second sub-category, “other–NDBs”, contains

59

all the other syntax bits which vary slice-by-slice and they do not constantly behave as NDBs

(described in sub-section 3.1.3). As listed in Table 3.9, for a specific example, the first sub-

category includes a predominant portion of the bits in the third category compared to the one

for the second sub-category. On average on all QPs, 24.4% out of 32.9% of the bitstream be-

longs to the bits that we have identified as NDBs in the previous section (i.e. about 74% of all

NDBs are identified NDBs). On the other hand, on average 8.5% of the bitstream are classified

as the “other–NDBs”. As can be seen, this percentage is higher in low QP values in which

more residual syntax elements are available. This is because the desynchronization due to an

erroneous bit in a residual syntax element is more likely to be canceled out by the following

residual syntax elements. Therefore, the desynchronization will be limited to only a few syn-

taxes without violating the two conditions in the NDB definition. Overall, by averaging over

different QP values for the crew sequence, we see that 32.9% of the bitstreams contain NDBs.

Table 3.9 Average percentage of the all NDBs (third decoding category) in two

sub-categories on different QPs values of the Crew sequence at frame index 44.

Decoding Categories QP Average37 32 27 22
known–NDBs (guaranteed and contextual) 25.4% 24.9% 23.8% 23.3% 24.4%

other–NDBs 5.8% 7.6% 9% 11.7% 8.5%

decodable+right nb of MBs (all NDBs) 31.2% 32.5% 32.8% 35% 32.9%

Furthermore, more detailed percentage values of “known–NDBs” sub-category are consid-

ered. In fact, the frequency of occurrence of each syntax element (i.e. their NDBs) has been

investigated for the Crew sequence with different QP values and the results are presented in

Table 3.10. As shown, the predominant NDBs are different for low and high QP values. For

instance, at low QP values, they originate mostly from the residual syntax (T1), while at higher

QP values the mvd_l0 syntax constitutes the majority of the NDBs. Another noticeable simu-

lation result is that the chroma bits constitute a very small portion of the “known–NDBs” bits,

i.e. luma bits represent a strong majority.

60

Table 3.10 Frequency of occurrence of NDBs in each syntaxes for the Crew
sequence at different QP values on frame index 44.

syntax element name QP
37 32 27 22

guaranteed NDBs

T1 5.1% 7.9% 10.4% 11.3%

mb_type 0.9% 0.8% 0.6% 0.3%

total_zeros 0.6% 1.2% 1.5% 1.2%

run_before 0.5% 1.5% 2.6% 3.5%

level_suffix 0.3% 0.4% 1.2% 3.1%

mvd_l0 17% 11.8% 6.2% 2.7%

nonsigned bit%, signed bit% 11.4%, 5.6% 7.5%, 4.3% 3.8%, 2.4% 1.5%, 1.2%

contextual NDBs

level_prefix and TZ 0.1% 0.1% 0.1% 0.03%

mvd_l0 as pair 0.7% 0.7% 0.5% 0.2%

total_zeros and run_before 0.14% 0.5% 0.86% 1%

known–NDBs 25.4% 24.9% 23.8% 23.3%

Luma%, Chroma% 24.8%, 0.6% 24.2%, 0.7% 22.9%, 0.9% 22%, 1.3%

We have examined the frequency of occurrence of the NDBs in different video sequences and

frames and similar results have been observed. Figure 3.3 presents the percentage value of

“known–NDBs” in different frames of the Crew sequence at QP=32. The curve reveals that

the percentage variation over all the P-frames (as shown for 31th frame to 48th frame) is very

small. Therefore, it confirms that almost a quarter (25%) of the bitstream in the Crew are the

“known–NDBs”.

We conducted the same simulation for several other video sequences, and the percentage of

“known–NDBs” are also presented in Table 3.11. Overall, the “known non-desync” bits con-

stitute on average about 23% of a video bitstream.

3.2.2 Visual quality impact of erroneous non-desynchronizing bits

Although the NDBs do not have any effect on the bitstream level, they may cause some context

modification. In this subsection, we evaluate the effect of flipping NDBs on the visual quality.

An isolated error has been considered individually on each NDB in a coded sequence. Then,

61

30 32 34 36 38 40 42 44 46 48
0

25

50

75

100

Frame index number

Pe
rc

en
ta

ge
 (%

)

known—NDBs

Figure 3.3 Percentage of “known–NDBs” bits on frame index 30 to

48 of the Crew sequence at QP=32. Note that frame index 30 is an

I-frame with the refresh rate of 30 frames while the rests are P-frames.

Table 3.11 Average percentage of “known–NDBs” on frame index 44 for

different sequences and different QP values.

sequence name (frame size)
QP

37 32 27 22
Crew (704×576) 25.4% 24.9% 23.8% 23.3%

City (704×576) 24.3% 24.1% 24.2% 24.6%

Ice (704×576) 25.0% 23.8% 22.9% 23.1%

Foreman (352×288) 26.7% 26.4% 24.0% 23.6%

Opening-ceremony (720×480) 23.0% 22.7% 22.6% 23.8%

Whale-show (720×480) 23.1% 22.2% 22.4% 24.2%

Driving (720×480) 23.8% 23.0% 22.7% 23.0%

Walk (720×576) 20.7% 19.8% 18.7% 19.6%

Mobcal (1280×720) 20.8% 23.7% 23.9% 23.2%

Average 23.7% 23.4% 22.8% 23.2%

Total average 23.3%

the erroneous bitstream has been decoded and analyzed by calculating the peak signal-to-noise

ratio (PSNR)1 on the corrupted frame versus the original one. It is worth mentioning that since

1 In this thesis, by PSNR of a method, we always mean the Y-PSNR with reference to the original

frame.

62

the error is on an NDB, the corrupted packet is decodable and the number of decoded MBs in

the corrupted packet is also correct; therefore the corrupted packet is kept.

Figure 3.4 depicts the percentage of packets having a specific range of PSNR degradation for

each NDB (the difference between the PSNR of the corrupted and the intact frames calculated

both with respect to the original one) in the Crew sequence. For QP values of 22, 27, 32 and

37, respectively, around 96%, 92%, 88% and 90% of the error events still lead to PSNR values

very close to the intact value (with less than a 0.05 dB difference).

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 more
0

10
20
30
40
50
60
70
80
90

100

PSNR difference

Pe
rc

en
ta

ge
 (%

)

QP37
QP32
QP27
QP22

4%

8%

12%

10%

PSNR Di,erence 6 0.05dB

Figure 3.4 Percentage of PSNR difference of all NDBs against the intact case

on frame index 44 of the Crew sequence.

As we can see, there are more cases with higher PSNR drops (>0.05dB) in higher QP values. In

this context, Figure 3.5 represents a more detailed illustration of the PSNR differences for the

case of high QP values such as 37 and 32. The figure depicts that the errors on “known–NDBs”

are collectively more, for instance about 9% versus 3% at QP=32, compared to “other–NDBs”

(since there are more “known–NDBs”). Therefore, it is helpful to look at the PSNR difference

value of flipping each NDB in the syntax elements separately to identify the ones having more

impact on the visual quality of the reconstructed frame.

63

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 more
0

10
20
30
40
50
60
70
80
90

100

PSNR difference

Pe
rc

en
ta

ge
 (%

)

All NDBs
known—NDBs
other—NDBs

PSNR Di,erence6 0.05dB

10%

3%
7%

a) QP=37

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 more
0

10
20
30
40
50
60
70
80
90

100

PSNR difference

Pe
rc

en
ta

ge
 (%

)

All NDBs
known—NDBs
other—NDBs

PSNR Di,erence 6 0.05dB

9%

12%

3%

b) QP=32

Figure 3.5 Percentage of all NDBs along with its two sub-categories of

“known–NDBs” and “other–NDBs” on frame index 44 of the Crew sequence.

From different simulation results, we have observed that the NDBs of the motion vector syntax

element (mvd_l0) are the most sensitive ones as compared to the other syntax elements in terms

of the PSNR degradation. This is demonstrated in Figure 3.6. Correspondingly, we considered

two distinct categories for the “known–NDBs” as (i) motion vector bits and, (ii) all the other

bits (excluding motion vectors (MVs)), to be separately investigated. Furthermore, we divided

the NDBs of the motion vector syntax into three sub-categories: sign bits (LSB), non-Sign bits

and the special cases of mvd_l0 as pair.

As we presented in the previous section, all the INFO bits of a mvd_l0 syntax element are

NDBs. And by knowing the fact that in the SGC, the LSB bit describes the sign value of the

codeword, here in Figure 3.6, all the LSB bits of the mvd_l0 syntax element are named as

the MV-sign bits and all the other INFO bits of the mvd_l0 are grouped as MV-NonSign bits.

Moreover, the zero-prefix bits and middle bit one of a mvd_l0 syntax element can sometimes

behave as the NDBs, as described in sub-section 3.1.2, only when the following mvd_l0 syntax

element compensates for its propagation. Thus, all the NDBs regarding to this category named

as MV-Pair in the figure.

Figure 3.6 shows the PSNR distributions (box plot) of two randomly selected slices in the Crew

sequence for high QP values. As it can be seen in the box plot, an error on a motion vector

(even on its NDBs) may strongly degrade the PSNR. This is because a wrong motion vector

64

value can simply propagate to the following motion vectors, which in turn comes from the fact

that H.264 encodes the difference motion vector values of the adjacent blocks instead of the

actual block movements (the difference between predicted motion vector and the median of the

neighbors). This motion vector bit error propagation effect can be more severe when the error

is on the sign bit. As can be seen for the case of error on the motion vector sign bits, there are

more outliers (as shown with ‘+’ red symbol) in the results, and the quality drops more severely

as compared to the other cases. A wrong motion vector propagation effect can only stop when

there is an I–MB or when the contribution of the wrong motion vector values disappears from

the calculation of a subsequent motion vector.

Thus, an erroneous NDB of an MV, without having any desynchronization effect on the bit-

stream, may significantly affect the visual quality. However, it is worth mentioning that the

percentage of motion vector sign bits is very small versus the whole bitstream, standing at

around 4-6%, even in higher QPs (see the value inside Figure 3.6). Furthermore, not all of

them can result in a significant PSNR degradation. As shown in Figure 3.6, the median value

(red line in the middle of the box) of each box is very close to the intact one; as well, the

lower and higher bands of boxes (25-75 percentile of the data) confirm that the effect of flip-

ping NDBs on the visual quality is small and probably restricted to a very small area. Similar

results as those presented in this section are obtained with other video sequences.

65

All(excl. MV) MV_NonSign MV_Sign MV_Pair Other-NDBs

32.2

32.3

32.4

32.5

32.6

32.7

PS
N

R
 (d

B
)

6.5% 11.2% 6.3% 1.3% 4.4%

a) QP=37, FI44, SI15, Intact_PSNR=32.7 (dB)

All(excl. MV) MV_NonSign MV_Sign MV_Pair Other-NDBs

32.2

32.3

32.4

32.5

32.6

32.7

PS
N

R
 (d

B
)

7.7% 9.3%

5.3%

0.4% 7.0%

b) QP=37, FI44, SI17, Intact_PSNR=32.7 (dB)

All(excl. MV) MV_NonSign MV_Sign MV_Pair Other-NDBs

33.9
34.1
34.3
34.5
34.7
34.9
35.1
35.3
35.5

PS
N

R
 (d

B
)

14.3% 6.5% 4.5% 0.5% 6.4%

c) QP=32, FI44, SI15, Intact_PSNR=35.52 (dB)

All(excl. MV) MV_NonSign MV_Sign MV_Pair Other-NDBs

33.9
34.1
34.3
34.5
34.7
34.9
35.1
35.3
35.5

PS
N

R
 (d

B
)

13.8% 5.9% 4.1% 0.6% 9.6%

d) QP=32, FI44, SI17, Intact_PSNR=35.52 (dB)

Figure 3.6 PSNR of all known–NDBs and other-NDBs on different slice of frame

index 44 of the Crew sequence using box plots. All known–NDBs are depicted

separately into four box plots in each figure. (a) frequency of known–NDBs=25.3%; (b)

frequency of known–NDBs=22.7%; (c) frequency of known–NDBs=25.7%; (d)

frequency of known–NDBs=24.4%. The breakdown percentage of the known–NDBs as

well as the other-NDBs are shown inside the figures.

3.3 Proposed non-desync-based decoding framework

With all the new knowledge we have acquired on NDBs in the previous section, we now pro-

pose a robust decoding framework that retains the corrupted packets if the following two con-

ditions are met:

1. the received corrupted packet is decodable (any non-valid syntax or semantic error will be

detected in our modified decoder), and

2. the number of MBs in the corrupted slices is correct.

66

When those conditions are satisfied, which means there is no syntax or semantic error and

the number of MBs is as expected, we decode and render the received corrupted packet (i.e.

consider it as the best candidate). Otherwise, we discard it and perform error concealment.

The general schematic of the proposed approach is illustrated in Figure 3.7. We propose to

add a new filtering step before each error concealment approach. First, the received corrupted

packet is kept if a corrupted packet satisfies the two conditions (this can be simply validated

by decoding the corrupted packet without any crash or error status), which means that, most

probably, one of the NDBs in the packet is hit by the error. Since it is not likely that multiple

errors each hit an NDB, and the quality associated with an NDB error is good, then we are

pretty sure that quality is good as well. Therefore, we keep the corrupted packet only in this

case instead of discarding it and performing concealment. Otherwise, one of the error conceal-

ment approaches is employed to handle the corrupted packet. It is worth mentioning that the

proposed approach can be combined with any other error concealment approach.

Error
Concealment

Received
Corrupted

video packet

No

Two
cond.
OK?

Yes Keep as best
candidate

Figure 3.7 General schematic of the proposed approach.

In order to investigate the performance of the proposed approach on error concealment, two

well-known error concealment approaches are employed during the simulation: (i) frame copy

(FC) concealment by JM, (ii) a state-of-the-art concealment approach using the spatiotemporal

boundary matching algorithm (STBMA) (Chen et al., 2008). In Figure 3.8, we present various

approaches which will be compared in the next section. The first approach (described as 1©
inside the figure) is the common frame copy concealment by JM in which the corrupted slice is

67

ignored and replaced by the same slice from the previous decoded frame. The second approach

(described as 2© inside the figure) is the proposed approach combined with JM–FC approach

which will be named JM–FC+. The approach 3© is a state-of-the-art concealment approach us-

ing the STBMA, which is a superior but complex method of MB-level error concealment (Chen

et al., 2008). The proposed strategy combined with STBMA is described as 4© in the figure

which will be named as STBMA+ in the following. The proposed design of the approaches

JM–FC+ and STBMA+ helps us to find out the improvement of the proposed approach over

each of those error concealment approaches separately. In other words, it will show how much

gain each error concealment approach, individually, can get by retaining corrupted packets and

our method deems adequate.

Note that when the received corrupted packet satisfies the two mentioned conditions, both

proposed approaches JM–FC+ and STBMA+ are going to have the same performance on that

packet. As another side note, when the corrupted packet does not satisfy the two conditions,

the JM–FC+ performs the same concealment as the JM–FC, therefore the two approaches will

have the same performance on that packet (this is the same for STBMA+ and STBMA).

68

No

Two
cond.
OK?

STBMA

STBMA

Yes
4

3

2

Received
Corrupted video

packet

JM-FC
1

No

Two
cond.
OK?

JM-FC

Yes Keep as best
candidate

Keep as best
candidate

Figure 3.8 Schematic of different approaches that we use in our simulations.

Approach 1© and 3© are concealment by JM–FC and STBMA respectively. The

approach 2© and 4© named as JM–FC+ and STBMA+, respectively, are the two

proposed strategies for keeping a corrupted packet (under the two conditions)

combined with the JM–FC and STBMA concealment respectively.

3.4 Simulation results

Since in our simulations, we coded the sequences with one row of MBs in each slice, we can

easily verify the second condition presented at the beginning of section 3.3. Moreover, the

number of MBs in the slice can be deduced from the information within other slices (the dif-

ference between the value of the first_mb_in_slice syntax element in the consecutive slices).

Therefore, the proposed method applies even in the case where the number of MBs is not con-

stant or known unless consecutive slices are damaged. The decoder validates the first condition

by decoding the corrupted packet to find any syntax or semantic error.

For each QP, a random error (single-bit) is considered. In fact, there are several interleaving

techniques that can combat the problem of burst errors in wireless communication channels by

69

fully randomizing the errors (Shi et al., 2004; Kang & Sha, 2010). A single frame (between

the 30th frame and the 60th frame) is randomly selected for error. Then, we apply a uniform

error distribution on the bits of each packet with a channel residual bit error rate value varying

between approximately 10−7 for small QPs, and 10−6 for large QPs, to obtain one bit in error

when a packet is damaged. These residual bit error rates are much higher than those observed

in some broadcasting systems, such as DVB-H and DVB-SH-A, in recommended operational

conditions (Polák & Kratochvíl, 2011). The simulation is repeated 100 times for each QP, to

ensure that the location of the erroneous bits did not bias our conclusions. The other charac-

teristics of the encoded sequences are the same as mentioned in Section 3.2. Note that in this

simulation, we compare the approaches by assuming that the corrupted packet contains exactly

one erroneous bit. Later on in section 3.5, the effect of having more than one erroneous bit will

be discussed.

Table 3.12 presents the average PSNR values for different error handling approaches. The last

column in the table shows the percentage of times that the received corrupted packet satisfies

the two conditions. As it can be seen, even in randomly applied error in different frames, on

average 34% of the time the received packet was decodable and the number of MBs in the

decoded corrupted packet was correct. As we mentioned earlier in the Section 3.2.2, these

cases have very close PSNR to the intact one. Therefore, it is not reasonable to discard (or

ignore) these good packets which occur frequently. The detailed results show that the proposed

approaches JM–FC+ and STBMA+ outperform respectively JM–FC and STBMA approaches

in all cases. Note that the PSNR difference between each method and JM–FC appears in

parentheses in the table.

Figure 3.9 depicts the average PSNR gains of each approach over JM–FC for different QP

values. We observe that keeping corrupted packets provides significant PSNR gains over JM–

FC for all four QP values. For instance, when it is added to the STBMA approach (described

as approach STBMA+), it is more than 3.44 dB better than JM–FC at QP=22. On average,

over all QPs, it offers a 1 dB gain improvement in approach JM–FC+ and over 2.01 dB gain

improvement in approach STBMA+ over concealment in JM–FC.

70

Table 3.12 Comparison of the average PSNR (dB) of reconstructed corrupted frames

versus the original one for different approaches. The PSNR gain differences between

each method and approach JM–FC appear in parentheses. The last column shows the

percentage of the cases that the received corrupted packet satisfied the two conditions.

Sequence QP Average PSNR (dB) 2 Conds.

Intact JM–FC JM–FC+ STBMA STBMA+
Met

City
(704×576)

22 40.87 36.19 38.38 (2.19) 40.29 (4.10) 40.55 (4.36) 48%

27 36.65 34.28 35.06(0.78) 36.45 (2.17) 36.50 (2.22) 37%

32 33.05 32.04 32.33 (0.29) 32.98 (0.94) 33.00 (0.96) 31%

37 30.05 29.55 29.66 (0.11) 30.01 (0.46) 30.01 (0.46) 25%

Crew
(704×576)

22 41.78 39.21 39.93 (0.72) 40.64 (1.43) 40.97 (1.76) 28%

27 38.53 37.09 37.61 (0.52) 38.03 (0.94) 38.22 (1.13) 38%

32 35.69 34.96 35.23 (0.27) 35.44 (0.48) 35.53 (0.57) 31%

37 33.00 32.64 32.73 (0.09) 32.86 (0.22) 32.89 (0.25) 28%

Ice
(704×576)

22 43.70 39.18 40.58 (1.40) 41.74 (2.56) 42.28 (3.10) 36%

27 41.44 38.00 39.27 (1.27) 40.05 (2.05) 40.52 (2.52) 30%

32 39.00 36.50 37.51 (1.01) 38.15 (1.65) 38.50 (2.00) 35%

37 36.43 34.37 34.95 (0.58) 35.77 (1.40) 35.98 (1.61) 34%

Foreman
(352×288)

22 41.35 37.60 39.00 (1.40) 39.49 (1.89) 40.21 (2.61) 36%

27 37.82 35.79 36.32 (0.53) 36.92 (1.13) 37.04 (1.25) 34%

32 34.67 33.70 33.93 (0.23) 34.19 (0.49) 34.31 (0.61) 30%

37 31.92 31.39 31.55 (0.16) 31.63 (0.24) 31.69 (0.30) 34%

Opening
ceremony
(720×480)

22 39.39 38.37 38.82 (0.45) 38.58 (0.21) 38.93 (0.56) 38%

27 35.38 34.90 35.10 0.20) 35.02 (0.12) 35.16 (0.26) 34%

32 31.39 31.20 31.27 (0.07) 31.26 (0.06) 31.30 (0.10) 33%

37 27.69 27.64 27.65 (0.01) 27.65 (0.01) 27.66 (0.02) 31%

Whale
show
(720×480)

22 41.02 35.61 37.86 (2.25) 36.86 (1.25) 38.56 (2.95) 41%

27 36.37 33.67 34.68 (1.01) 34.38 (0.71) 35.11 (1.44) 37%

32 32.07 30.89 31.30 (0.41) 31.22 (0.33) 31.53 (0.64) 34%

37 28.35 27.89 28.02 (0.13) 28.02 (0.13) 28.10 (0.21) 27%

Driving
(720×480)

22 41.02 34.05 36.85 (2.80) 38.08 (4.03) 39.24 (5.19) 40%

27 37.05 32.59 34.15 (1.56) 35.59 (3.00) 36.05 (3.46) 37%

32 33.29 30.84 31.80 (0.96) 32.64 (1.80) 32.92 (2.08) 40%

37 30.00 28.84 29.26 (0.42) 29.72 (0.88) 29.80 (0.96) 33%

Walk
(720×576)

22 43.19 30.62 34.53 (3.91) 35.33 (4.71) 37.61 (6.99) 31%

27 39.25 30.20 33.25 (3.05) 34.95 (4.75) 36.31 (6.11) 34%

32 35.55 29.30 31.33 (2.03) 33.51 (4.21) 34.03 (4.73) 34%

37 31.98 28.08 29.17 (1.09) 30.88 (2.80) 31.10 (3.02) 35%

Average PSNR gain over JM–FC (dB) 1.00 1.60 2.01 34%

71

22 27 32 37
0

0.5

1

1.5

2

2.5

3

3.5

QP values

A
ve

ra
ge

 P
SN

R
 g

ai
n

(d
B

)

JM-FC+

STBMA

STBMA+

Figure 3.9 Average PSNR gain of all approaches over JM–FC for different QP

values.

As it can be observed from Table 3.12, in some cases in higher QP values such as Walk sequence

at QP=22, the average PSNR value of the proposed approach STBMA+ or JM–FC+ is still far

from the intact one. This PSNR reduction mainly comes from the other 66% of the case, i.e.

from those cases that the received corrupted packet does not satisfy the two conditions and

the integrated concealment approaches such as STBMA or JM–FC are used in the proposed

approach but failed to reconstruct well the lost information.

Figure 3.10 depicts the average PSNR drop in each approach compared to the intact frame

when the received corrupted packet meets the two conditions (on average 34% of the case with

random single-bit error). Note that in this case, approaches JM–FC+ and STBMA+ retain that

packet as best candidate while JM–FC and STBMA will perform the concealment task. It is

clear from the figure that the PSNR drop compared to the intact case, for the proposed strategy

is less than 0.1 dB in all QP values while for a state-of-the-art concealment approach using the

72

STBMA alone it is between 1 dB to 1.8 dB. The reduction is even more, between 2.4 dB to

4 dB, as the basic simple concealment approach, JM–FC, is employed.

As separately presented in Table 3.13, on average on all QPs, the proposed approach brings an

average gain of about 2.82 dB over JM–FC and 1.19 dB over STBMA (in 34% of the cases).

22 27 32 37
0

0.5

1

1.5

2

2.5

3

3.5

4

QP values

 P
SN

R
 d

ro
p

fr
om

 in
ta

ct
 (d

B
)

JM-FC
STBMA
JM-FC+or STBMA+

Figure 3.10 Average PSNR drop from the intact frame in all approaches for

different QP values only when the two conditions are met.

The gain in visual quality is illustrated in Figure 3.11. In this case, a single bit error which

occurred in frame 38, slice 15 and on the coeff_token syntax element. The received corrupted

packet was decodable and the number of decoded MBs was correct (44 MBs in each slice).

Since it satisfies the two conditions in the proposed strategy, both proposed approach JM–FC+

and STBMA+ will keep the corrupted packet as best candidate without doing any conceal-

ment. In contrast, JM–FC and STBMA will ignore the corrupted packet and perform only their

individual concealment. The difference between the reconstructed frame and the intact one is

also provided in the figure. Comparing the reconstructed frames by JM–FC and STBMA con-

73

Table 3.13 Average PSNR (dB) improvement over each error concealment method

(JM–FC and STBMA) after considering to keep corrupted packets as in approach

JM–FC+ and STBMA+ respectively.

QP

Two conditions met All

Percentage

PSNR gain

JM–FC+ over

JM–FC

PSNR gain

STBMA+

over STBMA

PSNR gain

JM–FC+ over

JM–FC

PSNR gain

STBMA+

over STBMA

22 37% 3.97 1.74 1.89 0.92

27 35% 2.84 0.96 1.12 0.44

32 34% 2.28 0.94 0.66 0.22

37 31% 2.17 1.11 0.32 0.09

Avg. 34% 2.82 1.19 1.00 0.42

cealment approaches, it is clear that keeping the corrupted packet is a beneficial choice and it

outperforms the two error concealment approaches. Furthermore, the error propagation effect

is also shown in the figure (right side pictures), which confirms that the quality degrades dras-

tically in the following frames (even after 10 frames) for the cases with error concealment. It is

obvious that, keeping the corrupted packet (if it satisfies the two conditions) has a huge impact

on the visual quality of the reconstructed corrupted frame, and more importantly, reduces the

propagation of errors to subsequent frames due to the predictive coding.

From the results of all figures and tables, it can be inferred that for around one-third of the

cases, the received corrupted packet is valid (satisfies two conditions), going through extra

processes in concealment does not provide better results than the received one. As the results

have shown, the received corrupted but valid packet is going to have a PSNR value very close

to the intact one in most cases and we can not go beyond that. So, as a result, keeping the

corrupted packet provides a significantly higher PSNR value and better quality compared to

error concealment approaches alone. This is important not only for the corrupted frame, but

for the following ones, as fewer visible drifting effects will result as shown in Figure 3.11.

74

a) Intact (36.76 dB) b) Intact (36.26 dB)

e) JM–FC (32.36 dB) f) JM–FC (32.10 dB)

i) STBMA (35.24 dB) j) STBMA (32.74 dB)

m) JM–FC+ or STBMA+ (36.75 dB) n) JM–FC+ or STBMA+ (36.25 dB)

Figure 3.11 Visual comparison of a reconstructed frame in Ice sequence at QP=37

for different methods. In this case, the one bit error occurred in frame 38, slice 15

and on the coeff_token syntax element. The received corrupted packet satisfies the

two conditions (it is decodable and the number of decoded MBs is correct (44 MBs)).

The pictures on the left side of the figure are showing the reconstructed frame 38 by

different approaches. In each case, the difference from intact are also captured by

stream analyzer and provided. The pictures on the right side of the figure are showing

the error propagation in each case. In fact, twenty frames after the corrupted frame,

frame 59 is captured to demonstrate the effect of the error on the following frames.

75

3.5 Discussion

Although in this chapter we have considered the effect of one erroneous bit, the proposed

approach can still work with the case with more erroneous bits in the slice. Due to the fact that

the syntax elements have short lengths, and we are looking at low ρ (channel residual bit error

rate) value, most of the time two different syntax elements will be hit by errors. For instance

when there are two bits in error in a slice, the following cases are possible:

- Both errors are happening on NDBs. Therefore, the decoded corrupted packet must be

decodable with the right number of encoded MBs (the two defined conditions in section 3.3

are met). The proposed approach can keep the corrupted packet. The PSNR drops of

remaining the corrupted packet is still small, since both erroneous bits are on NDBs. As we

presented in sub-section 3.2.1, on average 30% of the bits in a coded packet are belongs to

NDBs, then the probability of having this case would be around (0.3)2 = 0.09.

- Both errors are on the desynchronizing bits (the bits that are not NDBs). Therefore our

modified decoder is able to detect any syntax violation and perform error concealment.

Compared to the other cases, this case is very likely to happen with the probability of

(0.7)2 = 0.49.

- An NDB and a desynchronizing bit are hit by error. In this case with the probability of

2× 0.3× 0.7 = 42, because of that desynchronizing bit, the two defined conditions will

not be satisfied and the proposed approach will ignore the corrupted packet and perform

concealment approach.

It is worth mentioning that, in the last two cases, there are a very small chance that the desyn-

chronizing effect of one error be compensated by the other error, and at the end, the two defined

conditions are met (like the case that we have discussed as “other–NDBs” in sub-section 3.1.3).

Therefore, the error will be restricted to an area between the two bits. But as we shown in sub-

section 3.2.1 this is very rare case even for one-bit in error case.

76

In general, when the bit error rates are higher and the residual error in the slices are more, it

is very less probable ((0.3)n for n bit error) that the two conditions are met. Therefore the

proposed approach will always end up performing concealment. This is reasonable, due to

using VLC in H.264 coded sequences, the bitstreams are extremely sensitive to the errors and

the effect of a wrong decision, even on one bit, can severely degrade the visual quality of the

reconstructed frame. Thus, in higher error case, error concealment is always a better choice

compared to correction approaches. Here in this chapter, we have tried to extract the non/less

sensitive bits in coded sequences and demonstrated under what conditions it is more reliable to

keep the corrupted packets and presented the maximum PSNR gain achieved (which happens

in low bit error rates) by the proposed framework over some known concealment approaches.

In higher error cases, the proposed approach will have the similar performance as the employed

concealment one.

In the next chapter, we propose a correction approach (by exploiting the checksum value) that

can correct erroneous packets, especially when the received corrupted packet is not satisfying

the two conditions (the errors are not on NDBs).

CHAPTER 4

CHECKSUM-FILTERED LIST DECODING

In this chapter, we present our proposed novel list decoding approach for video error correction.

The proposed approach exploits the receiver side user datagram protocol (UDP) checksum

to alleviate the large solution space problem of the conventional list decoding approaches.

We start the chapter with a detailed introduction of the internet checksum, the definition and

properties, and then we focus on the UDP checksum and derive the essential mathematical

expressions related to its definition and calculation. In the second section, we describe how

UDP checksum can be applied to error correction. We define different bit error events, up to

three-bit errors, and calculate their corresponding checksum values. In the third section, we

mathematically prove the most probable bit error events, considering the observed checksum

values. The proposed system for checksum-filtered list decoding (CFLD) is described in the

fourth section. And finally in the last section, the performance of the proposed checksum-based

approach for error correction, compared to other state-of-the-art methods is provided.

4.1 Internet checksum calculation and properties

Internet checksum is used by different standard protocols (Internet protocol (IP), transmission

control protocol (TCP), UDP) for error detection (Braden et al., 1989). Internet checksum,

which is a fixed-length tag added to a message at the transmission side, enables the receiver

to verify the integrity of the delivered message by recomputing the tag and comparing it with

the tag that was sent. In this section, we present how the Internet checksum is computed,

along with its mathematical properties, which will be exploited later. Although the following

principles are applicable to other checksums, we will focus specifically on the UDP checksum.

4.1.1 Internet checksum definition and mathematical properties

The Internet checksum is a 16-bit field within the protocol header, and is defined as one’s com-

plement of the one’s complement sum of all the 16-bit words in the computation data (Braden

78

et al., 1989). More specifically, the Internet checksum is calculated at the transmission side as

follows:

- Divide the data into chunks of 16-bit words. If necessary, pad the data with one byte zero

at the end to make it a multiple of 16 bits.

- Perform one’s complement sum over all the words. If an overflow occurs during any sum,

the ones’ complement sum operation involves an “end-around carry”. The end-around carry

scheme routes the carry-out signal of the most significant bit (MSB) position cn to the least

significant bit (LSB) position, where it is used as a carry-in signal c0 (Fall & Stevens, 2011).

- Flip all the bits of the final sum (one’s complement).

Note that during the calculation of the checksum at the transmission side, the checksum value in

the checksum field is set to zero, and after the calculation of the checksum, it is replaced by the

computed one for transmission. The validation process at the receiver side is performed using

the same algorithm, except that the received checksum field value is used in the computation

of the checksum, rather than zeros. Received data is valid if the recomputed checksum at the

receiver side is zero, otherwise the data is corrupted.

Mathematically, the set of 16-bit values, represented here in hexadecimal for the sake of con-

venience1, V={0000, 0001, . . . , FFFF} and the one’s complement sum operation (denoted as

+), together form an Abelian group (commutative group) (Dean, 1966).

An Abelian group is a set V with a binary operation + satisfying the following properties:

- For any a,b∈V , we have a+b∈V (closure).

- For all a,b,c∈V , we have a+(b+c)=(a+b)+c (associativity).

- For each a∈V , there exists an element e∈V such that a+e=a (identity element).

1 Four-digit numbers in this thesis represents hexadecimal numbers

79

- For each a∈V , there exists b∈V such that a+b=e, where e=FFFF. We denote b=a as

the inverse element of a, which is obtained by performing a one’s complement on element

a (flipping all its bits).

- For all a,b ∈V , we have a+b=b+a (commutativity).

Interestingly, in this Abelian Group, there are two identity elements, 0000 and FFFF, which

correspond to the same zero (+0 and -0) value. In several references, it is mentioned that the

identity element is unique. This is rather a consequence than a rule and since these identity

elements correspond to the same value, the Abelian group’s properties are still met.

There are yet other properties that can be deduced from the Abelian group, namely:

- Property 1: For all a,b∈V , we have a+b=a+b.

Proof: Let c=a+ b → c ∈V (closure property). Thus there is an inverse for c: c+c=e

where e=FFFF (inverse element). Then replacing c by a+b: (a+b)+ a+b= e. Adding

a and b to each side of the equality gives: (a+b)+(a+b)+a+b=(a+b)+e → (a+a)+

(b+b)+a+b=(a+b)+e. Using the inverse and identity properties, the expression leads

to: e+e+a+b=a+b+ e → a+b=a+b.

From Property 1, it follows that:

- Property 2: For all ai∈V , we have ∑
i

ai=∑
i

ai

Proof:

∑
i

ai = ∑
i�=0

ai +a0 = ∑
i�=0

ai +a0 = ∑
i�=0
i�=1

ai +a1 +a0 = ∑
i�=0
i�=1

ai +a1 +a0 = ...= ∑
i

ai

4.1.2 User datagram protocol checksum definition and calculation

The UDP checksum is a 16-bit field in the UDP header, and it is the one’s complement of the

one’s complement sum of the pseudo UDP header, the UDP header and the application data

80

message as it is well-defined in RFC 768 (Postel, 1980). Figure 4.1 shows the UDP datagram

and its 12-byte prefix as a pseudo UDP header. The pseudo UDP header contains the source

and destination IP addresses, the protocol, and the UDP length. This information initially

comes from the IP header. The UDP checksum is calculated over all the segments shown in

Figure 4.1.

Source IP Address (4 bytes)
Destination IP Address (4 bytes)

Zero
(1 byte)

Protocol
(1 byte)

UDP Length
(2 bytes)

Source Port Num
(2 bytes)

Destination Port Num
(2 bytes)

Length
(2 bytes)

UDP Checksum
(2 bytes)

Data (Message)

UDP
header

Pseudo
UDP header

Figure 4.1 UDP datagram and pseudo header.

Like the Internet checksum, the checksum field of the UDP header should also be initialized

to zero before the calculation, and then set to the calculated value prior to transmission. Since

the UDP checksum is optional, a zero transmitted checksum value means that it was disabled.

Therefore if the computed checksum is zero, as it mentioned in the standard, it should be

transmitted as all ones (FFFF) (Postel, 1980). Note that the calculated checksum for a real

packet can never be FFFF (i.e., the sum prior to the final ones’ complement can never be zero)

unless all the words in the packet are zeros (Fall & Stevens, 2011).

Let us assume that the UDP packet has a length of N bits (including padding), which is made

up of m=N/16 16-bit words as {W0,W1, ...,Wcs, ...,Wm−1} and Wcs is the checksum value in the

checksum field. The i-th word and its inverse are respectively defined as:

Wi =
15

∑
c=0

(wi,c ×2c), W i =
15

∑
c=0

(wi,c ×2c); wi,c,wi,c ∈ {0,1} (4.1)

81

where wi,c represents the inverse of wi,c, i.e., wi,c = 1 when wi,c = 0, and wi,c = 0 otherwise.

The transmission side’s checksum (CT) can be expressed as shown in equation 4.2:

CT =
m−1

∑
i=0

Wi =
m−1

∑
i=0
i�=cs

Wi =
m−1

∑
i=0
i�=cs

15

∑
c=0

(wi,c ×2c) (4.2)

The same process is performed at the receiver side to calculate the receiver side’s checksum

(CR), except that instead of using zero in the checksum field (Wcs = 0000), the value of the

received checksum (Ŵcs = ĈT) is used during the calculation of CR, as shown in equation 4.3:

CR =
m−1

∑
i=0
i�=cs

Ŵi +ĈT =
m−1

∑
i=0
i�=cs

Ŵi +CT =
m−1

∑
i=0
i�=cs

Ŵi +
m−1

∑
i=0
i�=cs

Wi =
m−1

∑
i=0
i�=cs

(Ŵi +W i) (4.3)

where the received versions of W and CT are denoted as Ŵ and ĈT , respectively, and assuming

that the 16-bit checksum word is intact (ĈT = CT). The receiver verifies the packet by re-

calculating the checksum. It is obvious from equation 4.3 that if there is no error, which means

Ŵi =Wi, the CR value will be zero:

CR =
m−1

∑
i=0
i�=cs

(Ŵi +W i) =
m−1

∑
i=0
i�=cs

(Wi +W i) = FFFF = 0000 (4.4)

This is because the value of CT , which is the inverse of the one’s complement sum of all

transmitted words, is included in the computation of CR. Therefore, upon reception, when it is

added to the one’s complement sum of all words, the identity element FFFF is obtained. And

after performing the final ones’ complement operation, the final checksum value of a correctly

received packet is turned to zero.

CR from equation 4.3 can be expanded to:

CR =
m−1

∑
i=0
i�=cs

(Ŵi +W i) =
m−1

∑
i=0
i�=cs

15

∑
c=0

(ŵi,c +wi,c)×2c (4.5)

82

Note that here we assumed that the ĈT = CT which means the 16-bit of the checksum are re-

ceived correctly. We will justify this assumption later in our proposed approach. An important

property of the above one’s complement sum with an end-around carry expression is as follows

(where a mod b means a modulo b):

(ŵi,c +wi,c)×2c =

⎧⎪⎨
⎪⎩

2c, if no error in bit c of word i

wi,c ×2(c+1)mod(16), if error in bit c of word i
(4.6)

This has been described in detail in Table 4.1. From the table, it follows that when there is

no error in bit c of word i (wi,c = ŵi,c), then ŵi,c+wi,c=1; in the case of an error though,

ŵi,c+wi,c=0, and a carry will be generated only if wi,c = 0.

Table 4.1 Values of ŵi,c+wi,c for various error scenarios. 0→1

represents a 0 flipped to 1 (and 1→0 the opposite).

wi,c ŵi,c Condition ŵi,c +wi,c Carry

0 0 no error 1 0

0 1 error (0→1) 0 1

1 0 error (1→0) 0 0

1 1 no error 1 0

Figure 4.2 contains an example of the checksum calculation at the transmission side and its

validation procedure at the receiver side. In this example, the entire packet content is consid-

ered as having 32-bit length. The checksum calculation steps are performed to establish the

CT . First, the data is divided into two 16-bit words, and then the ones’ complement sum is per-

formed over all the 16-bit words. Lastly, all the bits of the one’s complement sum are flipped.

As can be seen, at the reception side, the value of CT is used during the calculation of the CR.

The zero value of CR validates the received packet.

83

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Second 16-bit word 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1

First 16-bit word 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0

One's compl. Sum 1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1

Checksum (CT) 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0

Bit Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Packet 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Second 16-bit word 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1

First 16-bit word 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0

One's compl. sum 1 1 1 1 0 0 1 1 0 1 1 0 1 0 0 1

CT 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0

One's compl. sum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Checksum (CR) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Packet 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0

TRANSMISSION

RECEPTION

Figure 4.2 UDP checksum calculation example on a packet data at the transmission

side and its validation process at the reception side (transmission of the checksum is

not shown).

4.2 Exploiting checksum for error correction: relationship between CR and error loca-
tion

The goal of this section is to study the CR values in different error situations in order to demon-

strate how a bit error can affect the CR value and change its zero pattern. This will help deter-

mine the potential error locations based on observed CR values. In the following, we go through

different bit error events (BEEs) and calculate their corresponding CR values. The values are

then grouped into different checksum pattern types (CPTs) based on their similarity patterns.

Different BEEs will create different bit patterns of CR. The better we classify the CR value the

easier it becomes to determine the error locations. Now, we will study all the different BEEs by

considering one, two and three bits in error. This is reasonable since, in practice, the residual

error after channel decoding should be low. In each BEE, two different bit modification cases

are possible:

- 1 j→0 j, which means a bit 1 was flipped to 0 in column j of a word.

- 0 j→1 j, which means a bit 0 was flipped to 1 in column j of a word.

The CR value is calculated for each case of bit modification separately. We start with one bit in

error.

84

4.2.1 One-bit error

The following table shows all the bit error patterns for the case of one bit in error.

Table 4.2 BEEs definitions for one bits in error.

BEEs Definition
BEE=1 1 bit in error (e.g. 1 j→0 j or 0 j→1 j)

4.2.1.1 BEE=1

In this type of event, there is only one erroneous bit in the packet. If 1 j→0 j, where wi, j =1

and ŵi, j=0, as shown in Table 4.1, ŵi, j+wi, j=0 for column j, and for the other columns c �= j,

ŵi,c+wi,c=1. Then CR will have a bit 0 in column j and 1 for the others. By considering the

final one’s complement operation in equation 4.5, which flips all the bits, CR will have a bit 1

in column j and 0 for the others. This is illustrated in the top part of Figure 4.4.

Figure 4.3 contains an example of this case on the same packet of Figure 4.2. A single bit 1 was

flipped to 0 in column 26 of the packet, which corresponds to column 10 of the second word

(26 modulo 16 equals 10). As can be seen, CR has a bit 1 in column 10 and 0 in the others.

Bit Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Packet 1 0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Second 16-bit word 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 1

First 16-bit word 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0

Ones's compl. sum 1 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1

CT 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0

One's compl. sum 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

Checksum (CR) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Bit Position 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Packet 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0

TRANSMISSION

RECEPTION

Figure 4.3 UDP checksum validation procedure example at the reception side on a

received packet data having one bit error at bit position 26.

85

For the case of 0 j→1 j (wi, j =0 and ŵi, j =1), ŵi, j+wi, j =0 for column j with an extra carry

and ŵi,c+wi,c=1 for the other columns (c �= j). The extra carry generated in column j will

affect the value of column (j+1)mod(16) and change its value from 1 to 0 and also generate

a carry which should be added to the next column (j+2)mod(16). This carry propagation will

continue and change all the bits 1 to 0, all the way, up to a column with a zero value. Since

column j has a zero value, the carry propagation will finally stop there, and change its value

from 0 to 1. That means there will be a 1 in column j of CR, while the other columns will

have a 0. Therefore, CR will have a 0 in column j and a 1 for all the other columns. This is

illustrated in the bottom part of Figure 4.4.

All the CR values for these two cases are summarized in Figure 4.4. As can be seen, CR values

for these two cases are the inverse of each other. Depending on the error column, which can

be one of the 16 columns in a word, CR can have different patterns. All the 16 different values

of CR in the case of flipping 1 j→0 j have the similar pattern of fifteen bits 0 and a single bit

1. The column location of the bit 1 in the pattern, signals the potential error locations in the

words. On the other hand, all the 16 different values of CR in the case of flipping 0 j→1 j have

the similar pattern of fifteen bits 1 and a single bit 0. All the 16 patterns of CR for a 1 j→0 j flip,

as well as the 16-bit patterns of CR for a 0 j→1 j flip are grouped as CPT=1. CPT=1 is defined

as the set of all CR patterns that have fifteen bits 0 and a single bit 1, or vice versa.

BEE=1 CPT=1

16 bits

1000000000000000
0100000000000000

0000000000000001

111...101...111

000...010...000

CR

...

0111111111111111
1011111111111111

1111111111111110

...

1j

16
patterns

16
patterns

0j

0j 1j

Column :15 j 0

Figure 4.4 BEE=1 and its corresponding 32 patterns of CR
forming CPT=1. Bold bits in CPT=1 indicate the error column.

86

Let us revisit the example of Figure 4.3. The non-zero value of CR demonstrates that the

received packet is corrupted. In addition, the location of bit 1 in the CR pattern, column 10,

signals that the potential error locations are the 10th bit of each of the words in the packet.

So, in this example, the 10th bit and the 26th bit of the packet (10th bit of the first word and

10th bit of the second word respectively) are the two potential error locations. Moreover, the

observed pattern of CR, fifteen bits 0 and a single bit 1, indicates that a bit 1 was flipped to 0

(see in the top part of Figure 4.4). Then, all the potential error locations having a bit value of

0 will constitute the final set of potential error locations. In this case, only the 26th bit of the

packet has a value of 0, and is the final error location (in large packets, the list of candidates

usually contains more elements).

Therefore, in BEE=1, the potential error location, j, in 16-bit words is indicated by the column

of the bit, which is different from the others in the CR value. In other word:

- If CR has only one bit 1 and zeros for the others, then BEE=1, which indicate that the

potential error location, j, is the column of the bit 1. Moreover, the CR indicates that a bit 1

changed to 0.

- If CR has only one bit zero and ones for the others, then BEE=1, which indicate that the

potential error location, j, is the column of the bit 0. Moreover, the CR indicates that a bit 0

changed to 1.

4.2.2 Two-bit errors

In the case of two-bit error, four different BEEs are possible. Two erroneous bits can be in the

same column or in different columns; as well, the two flipped bits can have the same values

(both 0 or both 1) or have different values (one 0 and the other, 1). Table 4.3 lists the definition

of each BEE for this case.

All these BEEs and their corresponding generated CRs and CPTs are calculated and defined in

the following.

87

Table 4.3 BEEs definitions for two bits in error. j and k are two

different column indexes in modulo 16 for which 0 � j �= k � 15.

Note that, for instance, 1 j1k means 1 j→0 j and 1k→0k.

BEEs Definition
BEE=2 same bit value, different columns, (e.g. 1 j1k , 0 j0k)

BEE=3 same bit value, same column, (e.g. 1 j1 j , 0 j0 j)

BEE=4 different bit values, different columns, (e.g. 1 j0k , 0 j1k)

BEE=5 different bit values, same column, (e.g. 1 j0 j , 0 j1 j)

4.2.2.1 BEE=2

In this type, two same bits in different columns are flipped. If 1 j→0 j and 1k→0k, with j �=k,

ŵi,c+wi,c = 0 for c∈{ j,k}, and for the other columns, ŵi,c+wi,c=1. So, the corresponding

CR will have bits 1 in column j and k and bits 0 in other columns. For the case of 0 j→1 j and

0k→1k, with j �= k, k< j, ŵi,c+wi,c =0 for c∈{ j,k} plus two extra carries in columns k and

j. As explained for BEE=1, an extra carry in column k will propagate and generate zeros all

the way (from column (k+1)mod(16) up to column (j−1)mod(16)), and will stop at column

j by changing its value from 0 to 1. The extra carry in column j also propagates, and will stop

in column k and change its value to 1. Finally, for CR, there should be two 1s in columns j

and k and zeros for the others. In this case, CR will have bits 0 in column j and k, and 1 in the

other columns. Depending on which two columns of the words are hit by errors (2 out of 16

columns), the positions of the two bits 1 in the CR pattern will change. We grouped all the CR

patterns with fourteen bits 0 and two bits 1, which are 120 different patters, (plus their inverse)

as CPT=2, as shown in Figure 4.5. Furthermore, the CPT=2 is divided into two sub-groups,

CPT=2.1 and CPT=2.2, as we will see later, CPT=2.1 will be observed in other BEEs.

The error column in CPT=2 is indicated by the column of the two bits, which are different from

the others in the CR value. Therefore in BEE=2, the potential error location, j, and k can be

identified from CR pattern as follows:

- If CR has only two bits 1 and zeros for the others, the potential error location j and k are the

column of the two bits 1. Moreover in both cases a bit one was changed to 0.

88

CPT=2

1...101...101...1

BEE=2 CR

16 bits

0...010...010...0

0101111111111111
0110111111111111

1111111111111010

104
patterns

104
patterns

1j 0j
1k 0k

0j 1j
0k 1k

Column :15 j k 0j k

1100000000000000
0110000000000000

0000000000000011

...
16

patterns

1000000000000001

CPT=2.1

CPT=2.2

0011111111111111
1001111111111111

1111111111111100

16
patterns

0111111111111110

CPT=2.1

CPT=2.2

1010000000000000
1001000000000000

0000000000000101

...

...

...

|j-k|mod(16)=1

|j-k|mod(16) 1

|j-k|mod(16) 1

|j-k|mod(16)=1

Figure 4.5 BEE=2 and its corresponding 240 patterns of CR forming CPT=2. The

CPT=2 is divided further into two sub-groups as CPT=2.1 and CPT=2.2. All the

patterns with two successive bit 1 (or 0) are grouded as CPT=2.1 and the rest are in

CPT=2.2. Bold bits in CPT=2 indicate the error columns.

- If CR has only two bits 0 and ones for the others, the potential error location j and k are the

column of the two bits 0. Moreover in both cases a bit zero was changed to 1.

4.2.2.2 BEE=3

In this type, two same bits in the same column are flipped. As shown in Figure 4.6, this BEE

generates the same pattern as BEE=1, which is CPT=1. As mentioned earlier, when there is

no error ŵi,c+wi,c=1 for all 16 columns. When two 0 j→1 j, then two extra 1s are obtained

in column j, and this generates an additional carry. Then, column (j+1)mod(16) will receive

the extra carry, and its value will change to 0 with an additional carry. In fact, such a carry

will propagate and change all 1s, al1 the way up to a column with a 0 value. Since the value

of column (j+1)mod(16) is now 0, the carry propagation will stop there and change its value

to 1. Therefore, for CR, all columns should be 0, except for column (j+1)mod(16). In this

case, CR will have a 0 in column (j+1)mod(16) and 1 in the other columns. In the other case,

89

when two 1 j→0 j, we are missing a carry which should have been generated by column j, and

therefore, column (j+1)mod(16) will contain a 0 instead of a 1. The CR value will have a bit 1

in column (j+1)mod(16) and 0 in the other columns. Like the other BEEs, the calculated CR

of the two cases are the inverse of each other (see Figure 4.6).

BEE=3 CPT=1

16 bits

1000000000000000
0100000000000000

0000000000000001

111...101...111

000...010...000

CR

...

0111111111111111
1011111111111111

1111111111111110

...

16
patterns

16
patterns

1j 0j

0j 1j

Column :15 j 0

1j 0j

0j 1j

Figure 4.6 BEE=3 and its corresponding 32 patterns of CR
forming CPT=1. Bold bits in CPT=1 indicate the error column.

It is interesting to note that although this type leads to the same CPT as BEE=1, the location

and type of errors in each case are quite different. For instance, if the observed CR pattern has

a bit 0 in column j and 1 for the others, the potential error column for the case of BEE=3 is the

column (j−1)mod(16), while in the case of BEE=1 the error column is j.

Therefore in BEE=3, the potential error location, j, can be identified from CR pattern as fol-

lows:

- If CR has one bit 1 in column i and zeros for the others, the potential error location, j, is the

column of (i−1)mod(16). Moreover in both error cases a bit one was changed to 0.

- If CR has one bit 0 in column i and ones for the others, the potential error location, j, is the

column of (i−1)mod(16). Moreover in both error cases a bit zero was changed to 1.

90

4.2.2.3 BEE=4

In this type, two different bits in different columns are flipped. If 1 j→0 j and 0k→1k, with

j �= k, then ŵi, j+wi, j = 0 and ŵi,k+wi,k = 0, with a carry in column k, while for the other

columns (c /∈{ j,k}), ŵi,c+wi,c=1. The generated carry in column k will propagate and change

all 1s to 0s, all the way up to the next 0 value, which is in column j, where it will stop by

changing column j’s value into 1. So, for CR, all the bits between columns k and j (moving

circularly from right to left from k to j), excluding j, become 0, while the others remain 1.

In this case, the CR will have | j−k|mod(16) bits 1 between column k and j (including k, but

excluding j) and bits 0 in the others.

Depending on which two columns are hit, CR can have different patterns. If the two columns j

and k are next to each other in modulo 16, i.e., | j−k|mod(16)=1, CR has a single 1 and fifteen

0s, which has been defined as CPT=1. But when | j−k|mod(16)=2, the generated pattern of

CR, which has two bits 1 beside each other and fourteen zero (or vice versa), is the same as

CPT=2.1. In the other cases, when 3� | j−k|mod(16)�13, where there are between three and

thirteen bits 1 between column k and j, the CRs are grouped as CPT=3 (see Figure 4.7).

Therefore in BEE=4, the potential error location k (indicating column of 0k→1k) and j (indi-

cating column of 1 j→0 j) can be identified from CR pattern as follows:

- The location k is the column of first continuous bit ones from the right to the left.

- The location j is the column of first 0 bit after all the consecutive bit ones from right to left.

91

00 … 011 … 1110 … 00

.

.

.

16 patterns1 one

BEE=4

Column : 15 j k 0
CPT=3

CPT=1

j k

1j 0j
0k 1k

1000000000000000

0000000000000010
0000000000000001

...
0100000000000000

16 patterns2 consecutive ones CPT=2.1

1000000000000001

0000000000000110
0000000000000011

1100000000000000

16 patterns3 consecutive ones

1000000000000011

0000000000001110
0000000000000111

...
1100000000000001

16 patterns13 consecutive ones

1000111111111111

0011111111111110
0001111111111111

...
1100011111111111

16 patterns14 consecutive ones CPT=2.1

1001111111111111

0111111111111110
0011111111111111

...
1100111111111111

16 patterns15 consecutive ones CPT=1

1011111111111111

1111111111111110
0111111111111111

...
1101111111111111

...

|j-k|mod(16)=1

|j-k|mod(16)=2

|j-k|mod(16)=1

|j-k|mod(16)=2

3 |j-k|mod(16) 13

|j-k|mod(16)=3

|j-k|mod(16)=13

Figure 4.7 BEE=4 and its corresponding 240 patterns of CR forming CPT=1,

CPT=2.1 and CPT=3. The column of bold bits 0 and 1 indicates the columns of

bit 1→0 and 0→1, respectively.

4.2.2.4 BEE=5

In this type, two different bits in the same column are flipped. When 0 j→1 j and 1 j→0 j, the

first modification will add an extra 1 in column j, while the second one will remove a 1 in

the same column. They will therefore cancel each other’s effect and column j’s value will not

change. Therefore, ŵi, j+wi, j=1 for all columns, and consequently, CR will be zero, which is

grouped as CPT=4 in Figure 4.8. In this case, the observed pattern of CR is exactly the same as

92

the intact one. If information from the other layers shows that the received packet is corrupted,

observing such a pattern indicates that BEE=5 has occurred. Only general information about

the possible locations of the errors is available. We know that the two erroneous bits are in the

same column, and that they are different bits.

BEE=5 CPT=4

00000000000000000000000000000000

CR
1 pattern

1j 0j
0j 1j

Figure 4.8 BEE=5 and its only CR pattern forming CPT=4.

Table 4.4 summarizes the definition of all the observed CPT in one and two bits in error. The

computation of CR for a received corrupted packet leads to one of the CPTs defined in Table

4.4. Based on the CPT value, it is possible to determine the corresponding BEEs, as shown

in Figure 4.9. For each BEE, the CR pattern will indicate the error columns and the type of

modified bits (1→0 or 0→1).

Table 4.4 Summary of CPT definitions.

CPTs Definition
CPT=1 one bit 1 and fifteen bits 0 or vice versa

CPT=2 two bits 1 and fourteen bits 0 or vice versa

CPT=2.1 two (successive) bits 1 and fourteen bits 0 or vice versa

CPT=2.2 two (non-successive) bits 1 and fourteen bits 0 or vice versa

CPT=3 three to thirteen consecutive bits 1 between zeros

CPT=4 sixteen bits 0

4.2.3 Three-bit error

The same process can be followed to describe the behavior of three bits in error. The errors

may occur in the same or different columns, and as well as, the type of the bits in error can

have different patterns. Having all these possibilities in mind, in the case of three bits in error,

seven different BEEs can be defined as presented in Table 4.5.

93

CPT=1

BET=
1

CPT=2 CPT=3 CPT=4

BEE=4

BEE=2 BEE=4 BEE=5

BEE=1

BEE=3

BEE=4
BEE=2

CPT=2.1 CPT=2.2

Figure 4.9 Summary of observed CPTs and their corresponding BEEs for one

and two bits in error.

Table 4.5 BEEs definitions for three bits in error. j, k and l denote the three

different column indexes in modulo 16 for which 0 � j �= k �= l � 15. Note that the

subdivisions have not been considered.

BEEs Definition CPT
–Three different columns

BEE=6 same bit value, (e.g. 1 j1k1l , 0 j0k0l) 3, 5

BEE=7 two same bit value, (e.g. 1 j1k0l , 1 j0k1l , 0 j1k1l , 0 j0k1l , 0 j1k0l , 1 j0k0l) 1, 2, 3, 5

–Two bits in the same columns
BEE=8 with same bit values, (e.g. 1 j1 j1k , 0 j0 j0k) 1, 2

BEE=9 with different bit value than the other column, (e.g. 1 j1 j0k, 0 j0 j1k) 1, 2, 3, 4

BEE=10 with different bits in the same columns, (e.g. 0 j1 j1k , 0 j1 j0k) 1

–Three in the same columns
BEE=11 with same bit values (e.g. 1 j1 j1 j , 0 j0 j0 j) 2

BEE=12 with two same bit value (e.g. 1 j1 j0 j , 0 j0 j1 j) 1

Some of the defined BEEs for three bits in error will map to the defined CPTs, and additional

CPTs will be also observed. Here for simplicity, we categorize all new generated class patterns

as CPT=5. For example in the case of BEE=6, if 1 j→0 j, 1k→0k and 1l→0l , with j �=k �= l, then

ŵi,c+wi,c=0 for c∈{ j,k, l}, and for the other columns, ŵi,c+wi,c=1. So, the corresponding CR

will have bits 1 in columns j, k and l and bits 0 in other columns. BEE=6 can generate 560 (a

3-column combination among 16 columns:
(

16
3

)
=

16!

3!13!
) different patterns. Note that when j,

k and l are three successive columns, which means | j− k|mod(16) = 1 and |l − k|mod(16) =

1, then there will be three successive ones between zeros. These sixteen patterns have been

already defined as part of CPT=3 with | j − k|mod(16) = 3 in Figure 4.7. Therefore BEE=6

generates 16 patterns of CPT=3 (a subdivision of it) and 540 new patterns that we assign to

94

CPT=5. The generated pattern for all the other BEE cases are shown in the last column of

Table 4.5. A more detailed analysis and subdivision should be done to classify the patterns.

For instance, BEE=11 should be mapped to CPT=2.1, but in Table 4.5 we have ignored the

subdivisions on patterns. We ignore the presentation and definition for the new generated

patterns for the case of more than two bits in error because, as will be seen later, the probability

of having more than two bits in error is dramatically less than that of having a single-bit error

in the applications of interest.

Figure 4.10 summarizes all the observed CPTs and their corresponding BEEs for the case up

to three bits in error. When the computed CR for a received corrupted packet leads to one of

the defined CPTs, based on the CPT value, it is possible to determine the corresponding BEEs,

as shown in Figure 4.10. For each BEE, the CR pattern will indicate the error columns and the

type of modified bits (1→0 or 0→1).

CPT=1

BET=
1

CPT=2 CPT=3 CPT=4

BEE=4

BEE=2 BEE=4 BEE=5

BEE=1

BEE=3

BEE=4
BEE=2

CPT=2.1 CPT=2.2
CPT=5

BEE=6,7

BEE=9BEE=6,7,9BEE=7,8,9,11
BEE=7,8,9,

10,12

Figure 4.10 Summary of observed CPTs and their corresponding

BEEs for the case of one, two and three bits in error.

For instance, if the calculated CR is “0000 0000 0010 0000”, which has one bit 1 in column

5, it belongs to CPT=1, as defined in Table 4.4. This pattern can be generated by BEE=1

(considering one bit error), BEE=3 or BEE=4 (considering two bits error), BEE=7, 8, 9, 10 or

12 (considering three bits error) as shown in Figure 4.10. Based on each BEE, the CR pattern

will have different meanings. In the case of BEE=1, the CR pattern indicates that there is a

single-bit error in column 5 of a word, and it is 15→05. Then, all the bits 0 in column 5 are the

potential error locations in this case. In the case of BEE=3, the pattern indicates that there are

95

two bits in error, and both are 14→04, as presented in Figure 4.6. In this case, the number of

candidates is a 2-combination of the number of zeros in column 4. In the case of the BEE=4,

the pattern indicates that there are two bits in error and 16→06; 05→15, as presented in Figure

4.7. The full potential candidate list is presented in Table 4.6.

Table 4.6 All the possible BEEs in the case of one to three bits in error

when CR equals to a pattern in CPT=1 as “0000 0000 0010 0000” (a non-zero

bit in column 5). Note that nzc and noc represent the number of bits 0 and 1

in column c, respectively.

BEEs Error Locations in columns number of candidates
one bit in error

BEE=1 15→05

(
nz5

1

)
two bits in error

BEE=3
14→04

(
nz4

2

)
14→04

BEE=4
16→06

(
nz6

1

)(
no5

1

)
05→15

three bits in error

BEE=7

17→07 (
nz7

1

)(
no6

1

)(
nz5

1

)
06→16

05→15

BEE=8

14→04 (
nz4

1

)(
nz3

2

)
13→03

13→03

BEE=9

16→06 (
nz6

1

)(
no4

2

)
04→14

04→14

BEE=10

15→05 (
nz5

1

) 15

∑
j=0
j �=5

(no j
1

)(nz j
1

)
0 j→1 j;

0≤ j≤15; j �=5
1 j→0 j;

BEE=12

15→05 (
nz5

2

)(
no5

1

)
15→05

05→15

96

As shown in the example, it is possible to have more than one BEE for an observed CPT. In the

next section, we mathematically demonstrate which one of the candidate BEEs is more likely

than the others.

4.3 Probability of BEEs given observed CPTs: Pr(BEE= i|CPT= j)

As can be seen from Figure 4.10, several BEEs can cause the same observed CPT. For instance,

if the observed CR value belongs to the patterns in CPT=1, then it could possibly be due to one

of the three BEEs (BEE=1, 3 or 4) if considering only one and two bits in error. In this section,

we show mathematically the probability of each event to determine which one of these possible

BEEs is more likely. The goal here is to find the probability associated to each BEE based

on the observed CPT, which is defined as Pr(BEE= i|CPT= j). To compute this, we use the

conditional probability and the law of total probability (Pfeiffer, 2013), as shown in equation

4.7.

Pr(BEE= i|CPT= j)=
Pr(BEE= i,CPT= j)

Pr(CPT= j)

=
1

Pr(CPT= j)
×

N

∑
k=0

{
Pr(BEE= i,CPT= j|nbErr=k)×Pr(nbErr=k)

} (4.7)

The probability of having k bits error in a packet of N bits with a channel residual bit error rate

(ρ) can be expressed as:

Pk = Pr(nbErr=k)=ρk×(1−ρ)N−k (4.8)

Assuming that ρ is very small (e.g. ρ ≤10−5), then the probability of having more than two

bits in error (Pk for k>2), even for large packet sizes, will be so small that the terms of the

summation for k>2 can be ignored. That is the reason we ignore considering more than two

bits in error in the rest of the calculation. Accordingly, equation 4.7 can be approximated with

97

equation 4.9:

Pr(BEE= i|CPT= j)≈ 1

Pr(CPT= j)
×

2

∑
k=0

[Pr(BEE= i,CPT= j|nbErr=k)×ρk×(1−ρ)N−k] (4.9)

By using the chain rule (Pfeiffer, 2013), the first probability in the previous equation can be

expressed as:

Pr(BEE= i,CPT= j|nbErr=k)=Pr(BEE= i|nbErr=k)×Pr(CPT= j|BEE= i∩ nbErr=k) (4.10)

Therefore Pr(BEE= i|CPT= j) can be finally expressed as:

Pr(BEE= i|CPT= j)≈ 1

Pr(CPT= j)
×

2

∑
k=0

[Pr(BEE= i|nbErr=k)×Pr(CPT= j|BEE= i∩ nbErr=k)×Pk]

(4.11)

The above two probabilities Pr(BEE= i|nbErr=k) and Pr(CPT= j|BEE= i∩ nbErr=k) will be

calculated in the following sections. Note that Pk will be calculated from the equation 4.8.

4.3.1 Pr(BEE= i|nbErr=k)

Assuming a packet with length of N bits, the packet is divided into words of sixteen bits, as

shown in Figure 4.11. For simplicity, the packet size is considered a multiple of 16 bits. Let

nzc and noc represent the number of bits 0 and 1 in column c, respectively. Therefore we define

TZ and TO as total number of bit 0 and 1 in the packet as follows:

TZ =
15

∑
c=0

nzc; TO =
15

∑
c=0

noc (4.12)

In the following expressions, the probability value of Pr(BEE= i|nbErr=k) is calculated for

the case of one and two bits in error (k=1,2). If we know that there is only one bit in error,

98

0

15 15

0

; TZ TOnz no 16
nz TZ ; no TO

c c

c c
c c

NN

= =

++ = =

= =

:number of 0 in column cnzc
:number of 1 in column cnoc

1101 1001 0100 0011
1011 0110 1001 0001
0001 1010 1101 0000
.
.
.

0111 0100 0111 1000

Col.15 Col.c Col.0

Packet with size N:

Assumption:

; 2nz no 32c c
NTZ TON ≈ ≈≈ ≈

:total number of 0 in packetTZ
:total number of 1 in packetTO

11011001010000111011011010010001000110101 … 0111010001111000

Figure 4.11 Example of packet division into 16 bits.

obviously the BEE=1 was happening. While if two bits were erroneous, the probability of

occurrence of BEE=1 is zero. These have been demonstrated in the following probability

expressions:

Pr(BEE=1|nbErr=1)=1; Pr(BEE=1|nbErr = 2)=0 (4.13)

By definition, all the other BEEs from 2 to 5 are for two-bit error, and therefore, these BEEs

cannot occur when the number of bits in error is one. However, they have values for a two-bit

error. The probability value of each one can be calculated by the definition of each BEE in

Table 4.2 and 4.3 and considering the number of bits 0 and 1 in each column. The following

equations reflect the number of possible combinations of taking two bits, same or different

type, in the same or different columns. Assuming nzc≈noc, which means the number of bits 0

99

and 1 in each column are the same, the expression can, however, be simplified as follows:

Pr(BEE= i|nbErr=1)=0; i∈{2,3,4,5}

Pr(BEE=2|nbErr=2)=
1

2
×

15

∑
c=0

(
nzc
1

)(
TZ−nzc

1

)
+

15

∑
c=0

(
noc
1

)(
TO−noc

1

)
(N

2

) ≈ 15N
32(N−1)

Pr(BEE=3|nbErr=2)=

15

∑
c=0

(
nzc
2

)
+

15

∑
c=0

(
noc
2

)
(N

2

) ≈ N−32

32(N−1)

Pr(BEE=4|nbErr=2)=
1

2
×

15

∑
c=0

(
nzc
1

)(
TO−noc

1

)
+

15

∑
c=0

(
noc
1

)(
TZ−nzc

1

)
(N

2

) ≈ 15N
32(N−1)

Pr(BEE=5|nbErr=2)=

15

∑
c=0

(
nzc
1

)(
noc
1

)
(N

2

) ≈ N
32(N−1)

(4.14)

Note that from the assumption, the value of nzc and noc are replaced by N
32 , and as well as

TZ ≈ TO ≈ N
16 to simplify the probability value of each case.

4.3.2 Pr(CPT= j|BEE= i∩nbErr=k)

Here, the second probability of equation 4.11 will be examined. From the definition of BEE=1

and all its generated patterns from the Figure 4.4, only CPT=1 is observed. Therefore, it is

clear that when there is a single-bit error, the following value is obtained:

Pr(CPT= j|BEE=1∩ nbErr=1)=

⎧⎪⎨
⎪⎩

1 j=1

0 j∈{2,3,4}
(4.15)

For the case of two bits in error, for instance BEE=2 only CPT=2 is generated which has 240

different patterns. As it can be seen from the Figure 4.5, 32 of the patterns belong to the class

100

pattern CPT=2.1 and the others belong to the CPT=2.2.

Pr(CPT= j|BEE=2∩ nbErr=2)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 j=2 =⇒

⎧⎪⎨
⎪⎩

32
240

j=2.1

208
240

j=2.2

0 j∈{1,3,4}

(4.16)

For the case of two bits in error as BEE=3 and BEE=5, the following probability values are

obtained:

Pr(CPT= j|BEE=3∩ nbErr=2)=

⎧⎪⎨
⎪⎩

1 j=1

0 j∈{2,3,4}

Pr(CPT= j|BEE=5∩ nbErr=2)=

⎧⎪⎨
⎪⎩

1 j=4

0 j∈{1,2,3}

(4.17)

And finally for the case of BEE=4,

Pr(CPT= j|BEE=4∩ nbErr=2)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

32
240

j=1

32
240

j=2.1

0 j=2.2

176
240

j=3

0 j=4

(4.18)

BEE=4 comprises 240 different patterns, as shown in Figure 4.7, 32 of which belong to CPT=1.

Hence, the probability of having CPT=1 given BEE=4 is 32/240. Similarly, the probability

values for the other cases can be computed. Note that in BEE=4, there are 32 patterns of

CPT=2.1 and there is not any CPT=2.2.

101

4.3.3 Estimation of Pr(BEE= i|CPT= j)

By substituting the probability values of the two previous sections, Section 4.3.1 and Sec-

tion 4.3.2, into equation 4.11, we obtain the Pr(BEE= i|CPT= j) for each case as follows:

Pr(BEE=1|CPT=1)≈ 1

Pr(CPT=1)
×

[Pr(BEE=1|nbErr=1)×Pr(CPT=1|BEE=1∩ nbErr=1)×P1

+Pr(BEE=1|nbErr=2)×Pr(CPT=1|BEE = 1 ∩ nbErr = 2︸ ︷︷ ︸
∅

)×P2]

≈ 1

Pr(CPT=1)
× [1×1×P1 +0×0×P2]

≈ P1

Pr(CPT=1)

(4.19)

Note that P1 and P2 can be computed from equation 4.8.

Pr(BEE=2|CPT=2.1)≈ 1

Pr(CPT=2.1)
×

[Pr(BEE=2|nbErr=1)×Pr(CPT=2.1|
∅︷ ︸︸ ︷

BEE = 2 ∩ nbErr = 1)×P1

+Pr(BEE=2|nbErr=2)×Pr(CPT=2.1|BEE=2∩ nbErr=2)×P2]

≈ 1

Pr(CPT=2.1)
× [0×0×P1 +

15N
32(N−1)

× 32

240
×P2]

≈ P2

Pr(CPT=2.1)
× N

16(N−1)

(4.20)

The same replacement procedure can be done to calculate the probability for each case. All the

probability values are summarized in Table 4.7. For simplicity, instead of showing the value of

Pr(BEE= i|CPT= j), the value of Pr(BEE= i|CPT= j)×Pr(CPT= j), which equals to

2

∑
k=0

[Pr(BEE= i,CPT= j|nbErr=k)×Pk] (see equation 4.9)

102

are shown in the table. As can be seen from the table, when the first row (BEE=1) is multiplied

by the probability value of P1, and the other rows (BEE=2 to 5) by probability value of P2, the

probability value of Pr(BEE= i|CPT= j)×Pr(CPT= j) is obtained. It should be straightforward

to normalize the latter probabilities within each CPT= j to obtain Pr(BEE= i|CPT= j), but this

is not required since in an error correction scheme, it is the relative probabilities among the

various BEEs which are of interest.

Table 4.7 Array of Pr(BEE= i,CPT= j|nbErr=k) and its approximate value for large

packet size. Multiplying each cell by P1 or P2 gives Pr(BEE= i|CPT= j)×Pr(CPT= j).

BEE CPT =1 CPT =2 CPT =3 CPT =4
CPT =2.1 CPT =2.2

1 1 - - - - ×P1

2 0 N
16(N−1)≈0.063

13N
32(N−1)≈0.406 0 0

×P2
3 N−32

32(N−1)≈0.031 0 0 0 0

4 N
16(N−1)≈0.063

N
16(N−1)≈0.063 0 11N

32(N−1)≈0.344 0

5 0 0 0 0 N
32(N−1)≈0.031

When comparing the two probability values P1 and P2, with the values in Table 4.7, one can

deduce that the probability of having more than two bits in error is dramatically less than that

of having a single-bit error for a small ρ . The table also illustrates that when a CPT=1 is

observed, BEE=1 is much more likely, and BEE=4 or BEE=3 are possible albeit at a very low

probability (about 10/ρ times smaller).

To verify the probability values, we conducted a simulation on different sequences with

different packet sizes. In each bitstream, one or two bits were randomly flipped, and

the simulation was repeated 10,000 times to estimate the empirical probability value of

Pr(BEE= i,CPT= j|nbErr=k). Table 4.8 presents an example of the simulation results for the

Crew video sequence which is encoded by an H.264 codec at quantization parameter (QP) of

27. As can be observed, the simulation results are similar to the values in Table 4.7. Fig-

103

Table 4.8 Empirical probability value of Pr(BEE= i,CPT= j|nbErr=k) for the

Crew sequence encoded by H.264, packet size=1432 bits. ρ=10−6, so P1≈10−6

and P2≈10−12.

BEE CPT =1 CPT =2 CPT =3 CPT =4
CPT =2.1 CPT =2.2

1 1 - - - - ×P1

2 0 0.060 0.409 0 0

×P2
3 0.030 0 0 0 0

4 0.063 0.060 0 0.349 0

5 0 0 0 0 0.029

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f b
it

Column Index

percentage of bit “0” in each column

percentage of bit “1” in each column

average percentage of bit “0”

average percentage of bit “1”

Figure 4.12 Percentage of bits 0 and 1 in each column of slice index 29 and frame

index 32 of the Crew sequence coded by H.264 at QP=27, packet size=1432 bits.

ure 4.12 shows the distribution of bits 0 and 1 in each column of the simulated packet in Table

4.7. These results demonstrate that the assumption of having an equal number of bits 0 and 1 in

each column is a reasonable assumption and, if they are the same on average, then the results

104

will perfectly match the theoretical results. Similar results have been obtained on other video

sequences with different QPs as shown in Table 4.9.

Table 4.9 Average percentage of zero and one in each column. The letters

F and S in the first column show the frame and the slice number in each

case of simulation.

sequence info
average percentage of “0” and “1”

“0” “1”

City_qp37_F35_S17 49 51

Crew_qp27_F32_S29 48 52

Ice_qp32_F39_S10 55 45

Foreman_qp22_F42_S12 52 48

Opening ceremoney_qp27_F37_S20 47 53

Whale show_qp22_F47_S5 47 53

Driving_qp32_F31_S26 51 49

Walk_qp27_F40_S19 52 48

4.4 Proposed checksum-filtered list decoding approach for video error correction

In the previous section, we showed that the UDP checksum of corrupted packets exhibits spe-

cific bit patterns. Observing these specific patterns helps us to identify the potential error

locations. In this section, we present our novel CFLD approach which exploits the receiver

side UDP checksum to remove non-valid candidate bitstreams and alleviate the large solution

space problem of the conventional list decoding approaches. The checksum pattern allows us

to find the potential locations of the erroneous bits in the bitstream, by having the information

about the possible error column(s) in the words and the erroneous value (a 0 or a 1). Figure 4.13

shows the general schematic of the proposed method. When a packet is received, if it is intact

(depending on the UDP checksum value), it will go directly to the video decoder, otherwise it

will go through the error correction process. Since the UDP checksum is calculated over the

pseudo header, the header and the payload, it is helpful to identify whether an error indicated

by CR, is from the headers or from video data. Therefore, the first step of the correction process

is to fix the headers.

105

Decode

Received video packet Yes

No

Fix UDP,
RTP Headers

No

Yes

Decode

Final
candidate

END

Error Concealment
END

No

Decode
using next
candidate
in list

Yes

Yes

No

No

Generate
candidates’ Error
Position from next

BEE in list

Yes Final
candidate

END

Determine BEE list

based on CPT of CR and

sort list from most

likely to least likely

More BEE
in list to
process?

More
Candidates in

list to
process?

Two
cond.
OK?

Two
cond.
OK?

Packet
in

Error?

Figure 4.13 Proposed CFLD system.

4.4.1 Header correction process

Figure 4.14 shows the UDP packet encapsulation in H.264 coded sequences. The size of a UDP

header is 8 bytes and the real-time transport protocol (RTP) header has 12 bytes in length. Since

the CR is calculated over all these bits, it is desirable, to identify if there is an error which is

indicated by CR, whether it is coming from the headers or the video data. So, the first step

of the correction process is to fix the headers. Figure 4.1 and Figure 4.15 show the format

of UDP and RTP headers as they are defined in the standard. Some fields of the UDP/RTP

headers are static during the transmission (e.g., Source/Destination Port Num in UDP header

and almost the first two-byte fields in RTP header), and some other parts are easily predictable

(e.g., Sequence number and Timestamp in RTP header) because of the redundant information

106

in the headers (Postel, 1980; Schulzrinne et al.). The next layer, network abstraction layer

(NAL), has one byte header which consists of three syntaxes: forbidden_zero_bit (1-bit), nal_-

ref_idc (2-bit field) and nal_unit_type (5-bit field) and their corresponding values are fixed for

the same frames and it is possible to be predicted from the other received intact packets.

NAL unitRTP
header

UDP
header

IP
header

8 bytes20 bytes

NAL
header

Slice Data

1 byte

12 bytes

Slice
header

MBs

Figure 4.14 UDP encapsulation for H.264 coded sequences.

V
2

P
1

X
1

CC
4

M
1

PT
7

Sequence number
16

Timestamp
32

Synchronization source (SSRC) identifier
32

Figure 4.15 RTP header format. The numbers are showing the

length of each field.

4.4.2 Video data correction process

The next step after fixing all the headers is to decode the bitstream. Here, we consider two

conditions (as defined in section 3.3) which must be satisfied:

1. the sequence should be decodable (no semantic or syntactical errors are detected),

107

2. and the number of blocks in the corrupted slices should be correct.

This step helps save the sequences which had errors somewhere in the headers, but not in the

video payload. Thus, they are not put through the correction process. It is assumed that the

number of blocks in the packet is known. That is the case in several systems where the number

of macroblocks (MBs) or coding tree units (CTUs) in a packet is constant (for instance, send-

ing a row of MBs in each slice) or can be deduced from the information within other packets

(for instance, the first_mb_in_slice syntax element in H.264). During the simulations, it was

observed that because of the high compression properties of the encoding process, the coded

bitstreams were very sensitive to errors and, in many cases, even a single-bit error can desyn-

chronize the whole packet. This desynchronization creates non-valid syntax or semantic errors

in the decoding process. This property is used to differentiate between decodable and non-

decodable bitstreams. A decodable bitstream has syntactically/semantically valid codewords.

Since it has been observed that decodable bitstreams can nevertheless still be fairly damaged,

the constraint on the number of MBs, in the case of H.264 sequences, or CTUs, in the case of

high efficiency video coding (HEVC) sequences, further eliminates corrupted candidates.

If the sequence does not satisfy the two above-mentioned conditions, that means there are

errors somewhere in the video payload. Consequently, the packet should be further processed

by the following method:

- Based on the observed CPT value of CR, all the possible BEEs are determined and ordered

from most likely to least likely, according to the results of Table 4.7.

- Starting with the most probable BEE, a candidate list is generated. This list includes the

potential error locations, based on the observed CPT, which provides the potential error

column(s) and the type of flipped bits at issue (1→0 or 0→1). For each potential error

location, a candidate bitstream is generated.

- Each candidate bitstream passes through the video decoder until one is found that satisfies

the two conditions (the sequence is decodable; and the number of MBs, in the case of H.264

108

sequences, or the number of CTUs, in the case of HEVC, is correct), and from that the final

candidate bitstream is determined.

- If none of the candidate bitstreams meets these two conditions, we restart the process of

generating a candidate list of potential error locations with the next most probable BEE.

In summary, the method finds the first candidate bitstream that satisfies the two conditions,

starting with the most probable BEEs. When there is no probable BEEs, or none of the can-

didate bitstreams meet two conditions of the decoder, the approach falls back to error con-

cealment. Note that any error concealment approach can be employed. There could be a case

where, at the end, more than one candidate bitstream would satisfy the decoder’s conditions.

The system could thus possibly be modified to have an extra step for ranking the bitstreams

that satisfies these conditions by likeliness. For instance, a pixel domain approach, such as

boundary matching or border checking, could help in selecting a final candidate between those

candidates that meet the decoder’s conditions.

The difficulties of accessing soft information at the application layer in existing video com-

munication systems make the approaches using only hard information very appealing to build

robust video error correction systems. But ignoring the soft information in traditional list

decoding approaches makes them highly inefficient (as the following simulations will show).

Indeed, since all the bits then have the same probability of being flipped, as a result, all the can-

didate bitstreams have the same probability of being the final one. The final candidate would

then be chosen through an exhaustive (brute force) search on all the candidates without any

order preference. We name this method as exhaustive search list decoding (ESLD) approach.

In the following simulations, we used ESLD approach as another benchmark for comparison

against the proposed CFLD to represent the performance of list decoding methods that would

not have access to soft information to order their candidates.

109

4.5 Candidate reduction

Using the checksum value in the error correction process provides a notable reduction in the

number of candidates to be considered in list decoding approaches. The receiver side’s check-

sum value allows the determination of the potential error column in the words and in the type

of the flipped bits (a bit 0 changed to 1 or a bit 1 changed to 0). The total number of candidates

depends on the packet size (or the number of words in the packet) and on the number of errors.

Generally, in list decoding approaches (e.g. ESLD), for a packet of containing N bits, there are

N possible candidate bitstreams for the case of a single-bit error, whereas our CFLD approach

will reduce it to only an average of N/32 candidates. This is because the CR value provides

extra information about the error column in the words and the type of the flipped bit. Since the

packet is divided into 16-bit words, there are N/16 bits in each column and, assuming that half

of the bits in each column are zeros and half of them are ones, the total number of candidates

will therefore be approximately N/32. This means that in the case of a single-bit error, there is

a 97% reduction in the number of candidate bitstreams, and only about 3% should be consid-

ered, as compared to other list decoding approaches. This reduction is even higher when the

number of bits in error is increased. For instance, in the case of a two-bit error, about 99.6%

of non-valid candidates can be eliminated by considering the CR validation process in the pro-

posed CFLD approach. Note that for a packet of N bits, there are
N(N−1)

2 candidates in the

case of a two-bit error (generally N!
K!(N−K)! candidates for a k-bits error). Table 4.10 presents

the average number of candidates for different packet lengths in the cases of one and two bits

in error by using the checksum verification.

110

Table 4.10 Average number of candidates for different observed packet lengths

from a simulation using H.264 Baseline packets.

Packet length
One-Bit Error Two-Bit Errors

Average number of candidates by

ESLD CFLD ESLD CFLD

272 272 9 36856 142

880 880 28 386,760 1526

1112 1112 35 617,716 2549

2240 2240 70 2,507,680 9,531

5272 5272 165 13,894,356 56,991

Eliminated candidates(%) 97% 99.6%

4.6 Experimental results

In this section, we present the experimental results of our proposed approach. We only consider

a single-bit error since for small values of ρ (e.g., 10−6), the probability of having two or

more bits in error is extremely low. After describing the experimental setup in detail, we

will demonstrate the superior performance of the proposed approach in comparison with other

state-of-the-art approaches. To illustrate this point, the approaches are compared from the

standpoint of visual quality and complexity. In the simulations, we assume that the checksum

is intact and the error is in the video payload. This is reasonable for 10,000-bit video packets

since we will have 1 chance out of 625 (i.e., 10000/16) that the checksum is hit instead of the

video payload. Furthermore, in the last subsection, we will consider adding the complementary

approach proposed in the previous chapter (if the received corrupted packet is decodable and

the number of decoded MBs is right, keep that as the final candidate) into the CFLD approach

to determine how much improvement it will bring to CFLD. Therefore, if only the checksum

is erroneous, the two conditions will be met and the packet will be kept.

4.6.1 Simulation setup

We carry out the simulations using the H.264 Baseline profile, which is typically used in con-

versational services and mobile applications, and the HEVC Low Delay P Main profile. We

use the Joint Model (JM) software, version 18.5 (Joint Video Team (JVT) of ISO/IEC MPEG

111

and ITU-T VCEG, 2013) for H.264 and the HEVC Test Model (HM) software, version 15

(HEVC Test Model Software, 2016), for HEVC. The first 60 frames of NTSC (720×480) se-

quences (Driving, Opening-ceremony, Whale-show), 4CIF (704×576) sequences (City, Crew,

Ice), CIF (352×288) sequence (Foreman) and PAL (720×576) sequence (Walk) are coded with

JM 18.5. The sequences are coded in IPPP... format (Intra refresh rate of 30 frames) at a 30 Hz

frame rate. Each slice contains a single row of MBs, and is encapsulated into RTP packets.

We also carry out the simulation on HEVC sequences. The first 50 frames of five class B

(1920×1080) sequences (BasketballDrive, BQTerrace, Cactus, Kimono and ParkScene) and

four class C (832×480) sequences (BasketballDrill, BQMall, PartyScene and RaceHorses) are

coded by HM. The slicing mode is chosen to fix the number of CTUs in a slice. One row of

64×64 CTUs is considered per slice. All the sequences are encoded with different QP values,

namely, 22, 27, 32, and 37.

For each QP, a single frame is randomly selected for error. Then, we apply a uniform error

distribution on the bits of each packet with a ρ value varying between approximately 10−7 for

small QPs to 10−6 for large QPs to obtain one bit in error. These residual bit error rates are

much higher than those observed in some broadcasting systems, such as DVB-H and DVB-

SH-A, in recommended operational conditions (Polák & Kratochvíl, 2011). Moreover, for this

range of bit-error rates, having more than one bit in error is extremely infrequent. To simplify

the simulations, we just consider the errors in the payload part. Also, the UDP checksum is

only calculated on the UDP payload, which is an RTP packet. In our transmission simulations,

the corrupted slices are identified prior to their decoding by verifying the checksum. The

simulation is repeated 100 times for each QP value, to ensure that the location of the erroneous

bits does not bias our conclusions.

In H.264 cases, four different approaches are then used to handle the corrupted sequences: (i)

frame copy (FC) concealment by JM (in which a corrupted slice is replaced by the same collo-

cated slice from the previous frame), (ii) state-of-the-art spatiotemporal boundary matching al-

gorithm (STBMA) (Chen et al., 2008), (iii) error correction using hard output maximum likeli-

hood decoding (HO-MLD) (Caron & Coulombe, 2015), and (iv) the proposed CFLD approach.

112

The first 30 frames are kept intact to allow the HO-MLD approach to gather video statistics.

When the CFLD approach falls back to error concealment, here we consider STBMA to be fair

with other approaches (HO-MLD relies on STBMA when it can not correct the packet). How-

ever, our method never reached the point of calling error concealment during the simulations.

In the case of HEVC sequences, the corrupted packets are handled by (i) implemented FC error

concealment in HM and (ii) the CFLD approach.

Like all other list decoding approaches, the generated candidate bitstreams should go through

additional constraints. First, all the candidate bitstreams should be checked for syntax or se-

mantic errors. We perform this by decoding each candidate bitstream to see whether or not it

is decodable. Secondly, we check whether or not the number of MBs or CTUs in the decoded

bitstream is valid (Nguyen et al., 2010; Farrugia & Debono, 2011). Since we coded the se-

quence with one row of MBs (or fixed number of CTUs) in each slice, we already know about

the second condition. Moreover, the number of MBs in the slice can be deduced from the in-

formation within other slices (for instance, the first MB in slice syntax element in H.264 coded

sequence). The first bitstream that satisfies these two mentioned constraints is considered as

the final candidate.

4.6.2 Simulation Results

Table 4.11 shows the candidate reduction at each step of the proposed approach, for H.264 and

HEVC sequences. As can be observed, with the CFLD method, the checksum helps eliminate

about 97% of the candidates. Then, as a complementary step, the two conditions are succes-

sively applied on candidate bitstreams. The last two columns in the table present the extent

to which the two conditions are excluding non-valid candidates. There are some cases where,

at the end of the process, more than one candidate is present. We observed that this happens

less frequently in HEVC, where sequences are coded using context-adaptive binary arithmetic

coding (CABAC), versus with H.264 context-adaptive variable-length coding (CAVLC). We

conjecture that the use of CABAC is the reason why HEVC is much more sensitive to errors

(easier to desynchronize) than the H.264 Baseline. We expect that the H.264 Main profile,

113

using CABAC, would be more sensitive to errors than the Baseline profile, and therefore, lead

to the elimination of more candidates.

Table 4.11 Candidate reduction at each step of the CFLD method for H.264

City sequence, and HEVC BasketballDrive sequence. The letters F, S, B in the

first column showing the frame, slice and bit that are hit by an error.

Error location Packet size Number of candidates with valid...
1 =

checksum
2 = 1 +

syntax/
semantic

2 +

number of
MBs/CTUs

(bits)

H.264, City, QP=27 and 44 MBs per slice
F35_S7_B2872 2952 87 4 1

F53_S16_B4312 4384 134 54 52

F35_S34_B2784 2856 96 1 1

F52_S22_B3925 4000 126 3 1

F35_S22_B823 3760 113 1 1

F51_S32_B3475 3544 110 2 1

F48_S13_B4675 4712 138 61 44

F42_S23_B304 2160 66 1 1

F44_S10_B400 2392 84 1 1

F41_S1_B1251 1360 51 19 3

HEVC, BasketballDrive, QP=22 and 30 CTUs per slice
F25_S8_B11190 18016 564 3 1

F46_S10_B57355 58232 1815 51 2

F40_S7_B33218 55328 1758 21 2

F37_S7_B11757 19968 616 4 1

F45_S2_B5339 9520 294 2 1

F4_S3_B13211 28304 891 10 1

F38_S12_B19672 25496 820 13 1

F14_S11_B428 26152 815 365 1

F38_S4_B4266 6680 221 1 1

F13_S8_B10614 16192 517 7 1

For performance evaluation, we calculated the peak signal-to-noise ratio (PSNR)2 of the cor-

rupted frames after reconstruction, using various approaches in order to compare their objec-

tive video quality. The structural similarity index measurement (SSIM) (Wang et al., 2004)

2 In this thesis, by PSNR of a method, we always mean the Y-PSNR with reference to the original

frame.

114

was also evaluated as it is well-known that SSIM is better correlated to human visual judgment

than PSNR. Table 4.12, Table 4.13 and Table 4.14 display the average PSNR value for different

error handling approaches on H.264, HEVC class B and C sequences, respectively. The col-

umn 1© in the tables demonstrates the percentage of times the proposed CFLD approach was

able to fully correct the packet (in other words the bit in error was corrected). This percent-

age value was affected by considering the first valid candidate as the final one in the proposed

CFLD approach and, of course, this could be higher if more than one candidate were consid-

ered. Moreover, the last column, named as 2©, shows the percentage of times that the PSNR

of the reconstructed bitstream is almost the same as the intact one (with less than a 0.01 dB

difference). This latter value will confirm that although in some cases the bit error was not

corrected, at the end, the first valid candidate by CFLD has satisfactory results in most cases.

The simulation was repeated 100 times for each sequence for different QP values. The results

for the H.264 sequences indicate that the proposed approach outperforms JM-FC, STBMA and

HO-MLD in all cases.

Figure 4.16 shows the average PSNR gains of each approach in the case of H.264 coded se-

quences at different QP values. We observe that the proposed approach provides significant

PSNR gains over JM-FC for all four QP values. For instance, it is more than 5 dB better than

JM-FC at QP=22. As shown in Table 4.12 for the H.264 case, on average, over all QPs, the

CFLD approach was able to correct the bitstream 66% of the time compared to HO-MLD with

only 6% in our simulations. Also, it offers a 2.74 dB gain over JM-FC and 1.14 dB and 1.42 dB

gains over STBMA and HO-MLD, respectively, as shown in Table 4.12.

In the case of HEVC, the CFLD approach corrects the corrupted bitstream 91% of the time,

and offers 2.35 dB and 4.97 dB gains over HM-FC in class B and C sequences, respectively

(see Table 4.13 and Table 4.14).

115

Table 4.12 Comparison of the average PSNR of reconstructed corrupted frames for

different methods in H.264. The differences between each method and the JM-FC appear

in parentheses. The column 1© shows the percentage of packets that were fully corrected

by CFLD approach and the column 2© shows the percentage of the cases with less than

0.01 dB PSNR difference between CFLD and Intact (with respect to the original one).

Seq. QP Average PSNR of reconstructed corrupted frame CFLD

Intact JM-FC STBMA HO-MLD CFLD 1 2

City
(704×576)

22 40.87 36.19 40.29 (+4.10) 39.27 (+3.08) 40.77 (+4.58) 51% 84%

27 36.65 34.28 36.45 (+2.17) 35.65 (+1.37) 36.55 (+2.27) 61% 85%

32 33.05 32.04 32.98 (+0.94) 32.66 (+0.62) 33.00 (+0.96) 66% 72%

37 30.05 29.55 30.01 (+0.46) 29.91 (+0.36) 30.01 (+0.46) 76% 82%

Crew
(704×576)

22 41.78 39.21 40.64 (+1.43) 40.28 (+1.07) 41.76 (+2.55) 71% 89%

27 38.53 37.09 38.03 (+0.94) 37.90 (+0.81) 38.52 (+1.43) 59% 86%

32 35.69 34.96 35.44 (+0.48) 35.36 (+0.40) 35.66 (+0.70) 69% 81%

37 33.00 32.64 32.86 (+0.22) 32.85 (+0.21) 32.99 (+0.35) 72% 83%

Ice
(704×576)

22 43.70 39.18 41.74 (+2.56) 41.66 (+2.48) 43.56 (+4.38) 69% 82%

27 41.44 38.00 40.05 (+2.05) 40.07 (+2.07) 41.25 (+3.25) 71% 75%

32 39.00 36.50 38.15 (+1.65) 38.08 (+1.58) 38.95 (+2.45) 74% 80%

37 36.43 34.37 35.77 (+1.40) 35.71 (+1.34) 36.42 (+2.05) 83% 88%

Foreman
(352×288)

22 41.35 37.60 39.49 (+1.89) 39.05 (+1.45) 41.01 (+3.41) 63% 71%

27 37.82 35.79 36.92 (+1.13) 36.74 (+0.95) 37.65 (+1.86) 72% 82%

32 34.67 33.70 34.19 (+0.49) 34.09 (+0.39) 34.58 (+0.88) 71% 73%

37 31.92 31.39 31.63 (+0.24) 31.65 (+0.26) 31.88 (+0.49) 77% 83%

Opening
ceremony
(720×480)

22 39.39 38.37 38.58 (+0.21) 38.67 (+0.30) 39.32 (+0.95) 60% 90%

27 35.38 34.90 35.02 (+0.12) 35.06 (+0.16) 35.34 (+0.44) 62% 85%

32 31.39 31.20 31.26 (+0.06) 31.26 (+0.06) 31.38 (+0.18) 70% 86%

37 27.69 27.64 27.65 (+0.01) 27.64 (+0.00) 27.69 (+0.05) 80% 94%

Whale
show
(720×480)

22 41.02 35.61 36.86 (+1.25) 36.86 (+1.25) 40.63 (+5.02) 53% 64%

27 36.37 33.67 34.38 (+0.71) 34.42 (+0.75) 35.11 (+1.44) 60% 74%

32 32.07 30.89 31.22 (+0.33) 31.13 (+0.24) 32.06 (+1.17) 65% 81%

37 28.35 27.89 28.02 (+0.13) 27.98 (+0.09) 28.33 (+0.44) 74% 85%

Driving
(720×480)

22 41.02 34.05 38.08 (+4.03) 37.39 (+3.34) 40.96 (+6.91) 58% 77%

27 37.05 32.59 35.59 (+3.00) 34.75 (+2.16) 36.79 (+4.20) 62% 71%

32 33.29 30.84 32.64 (+1.80) 32.17 (+1.33) 33.22 (+2.38) 57% 74%

37 30.00 28.84 29.72 (+0.88) 29.49 (+0.65) 29.96 (+1.12) 63% 76%

Walk
(720×576)

22 43.19 30.62 35.33 (+4.71) 34.65 (+4.03) 42.87 (+12.25) 65% 74%

27 39.25 30.20 34.95 (+4.75) 33.93 (+3.73) 39.21 (+9.01) 63% 78%

32 35.55 29.30 33.51 (+4.21) 32.50 (+3.20) 35.42 (+6.12) 64% 75%

37 31.98 28.08 30.88 (+2.80) 30.38 (+2.30) 31.95 (+3.87) 64% 83%

Average PSNR gain over JM-FC 0 +1.60 +1.32 +2.74 66% 80%

116

Table 4.13 Comparison of the average PSNR of reconstructed corrupted frames for

different methods in HEVC class B sequences. The differences between the CFLD

and HM-FC methods appear in parentheses. The column 1© shows the percentage of

packets that were fully corrected by the proposed approach and the column 2© shows

the percentage of the cases with less than 0.01 dB PSNR difference between CFLD

and Intact, both computed with respect to the original one.

Seq. (class B) QP Average PSNR of reconstructed corrupted frame CFLD

(1920×1080) Intact HM-FC CFLD 1 2

BQ Terrace

22 38.89 35.16 35.76 (+0.60) 58% 58%

27 36.30 34.32 35.68 (+1.36) 82% 82%

32 33.76 32.37 33.66 (+1.29) 92% 92%

37 31.17 30.26 31.15 (+0.89) 98% 98%

Basketball

Drive

22 39.89 32.53 38.49 (+5.95) 84% 84%

27 38.23 32.28 37.67 (+5.39) 90% 92%

32 36.70 31.81 36.47 (+4.66) 96% 96%

37 34.80 31.51 34.80 (+3.29) 100% 100%

Cactus

22 39.20 36.82 37.89 (+1.07) 76% 76%

27 36.74 34.59 36.25 (+1.66) 88% 88%

32 34.65 33.56 34.59 (+1.03) 98% 98%

37 32.31 31.55 32.03 (+0.48) 96% 96%

Kimono

22 42.15 36.69 41.62 (+4.93) 90% 92%

27 40.04 36.10 39.81 (+3.71) 96% 96%

32 38.20 34.78 38.07 (+3.29) 98% 98%

37 35.30 33.40 35.30 (+1.90) 98% 98%

Park Scene

22 40.11 37.39 39.63 (+2.24) 82% 82%

27 37.33 35.42 37.19 (+1.77) 96% 96%

32 34.83 33.86 34.74 (+0.88) 94% 94%

37 32.17 31.58 32.17 (+0.59) 100% 100%

Average PSNR gain over HM-FC

All

Sequences

22 - 0 +2.96 78% 78%

27 - 0 +2.78 90% 91%

32 - 0 +2.23 96% 96%

37 - 0 +1.43 98% 98%

Average - 0 +2.35 91% 91%

As mentioned earlier, in the proposed system, we select the first candidate which satisfies the

two conditions but it is not always the optimal one, i.e., the one with a corrected bitstream.

Some of the first valid candidates have very low PSNR values, which has a negative impact on

the average PSNR values shown in Table 4.12, Table 4.13 and Table 4.14.

117

Table 4.14 Comparison of the average PSNR of reconstructed corrupted frames for

different methods in HEVC class C sequences. The differences between the CFLD

and HM-FC methods appear in parentheses. The column 1© shows the percentage of

packets that were fully corrected by the proposed approach and the column 2© shows

the percentage of the cases with less than 0.01 dB PSNR difference between CFLD

and Intact, both computed with respect to the original one.

Seq. (class C) QP Average PSNR of reconstructed corrupted frame CFLD

(832×480) Intact HM-FC CFLD 1 2

Basketball

Drill

22 40.44 31.90 39.91 (+8.01) 94% 94%

27 37.41 30.84 37.06 (+6.22) 94% 94%

32 34.66 30.07 34.56 (+4.49) 98% 98%

37 32.11 29.21 32.00 (+2.80) 98% 98%

BQ Mall

22 39.84 31.04 39.16 (+8.12) 92% 94%

27 36.91 30.03 36.23 (+6.20) 92% 94%

32 33.86 29.69 33.48 (+3.79) 94% 94%

37 30.68 27.83 30.50 (+2.67) 92% 94%

Party Scene

22 38.14 32.57 35.00 (+2.43) 72% 72%

27 34.66 31.32 33.52 (+2.20) 84% 84%

32 31.07 29.38 30.98 (+1.60) 96% 96%

37 27.76 26.94 27.47 (+0.53) 94% 94%

Race

Horses

22 39.29 26.01 35.94 (+9.93) 70% 74%

27 36.21 25.48 35.16 (+9.68) 90% 90%

32 32.60 25.80 32.18 (+6.38) 92% 94%

37 29.44 24.98 29.32 (+4.34) 96% 96%

Average PSNR gain over HM-FC

All

Sequences

22 - 0 +7.12 82% 83%

27 - 0 +6.08 90% 90%

32 - 0 +4.07 95% 96%

37 - 0 +2.59 95% 95%

Average - 0 +4.97 91% 91%

For further analysis, we also perform some simulations based on the brute force search or

ESLD approach. In the ESLD approach, all candidates will sequentially go through the video

decoder and the first candidate that satisfies the decoder’s two conditions is chosen as the final

candidate. The candidates are generated by sequentially flipping the bits of the received packet

from the first to the last one. We use the same order for CFLD but only considering the potential

bit error locations.

118

22 27 32 37
0

1

2

3

4

5

QP values

A
ve

ra
ge

 P
SN

R
 (d

B)

CFLD

STBMA

HO-MLD

Figure 4.16 Average PSNR gains of HO-MLD, STBMA and CFLD method over

JM-FC for different QP values of H.264 sequences on different frames.

Figure 4.17 presents the PSNR and SSIM distributions (box plots) of four sequences having a

low percentage of fully corrected slices in Table 4.12. As can be observed from the figures, for

all the sequences, the median value (red line in the middle of the box) of PSNR and SSIM for

CFLD is exactly the same as the intact one and also the lower and higher bands of boxes (25-75

percentile of the data) confirm that in most cases the CFLD has the same or closest value to

the intact one which is obviously higher than the other approaches. This has a huge impact

on the visual quality of the reconstructed corrupted frame and, more importantly, prevents the

propagation of errors to subsequent frames due to the predictive coding. In fact, a few decibels

PSNR difference on the reconstructed corrupted frame increases to several dBs on subsequent

frames due to this drift. Since in the simulations, we choose the first satisfied candidate as the

final one, there are some outliers (as shown with ‘+’ red symbol) in the CFLD results.

The detailed information of this simulation for 100 runs is presented in Table 4.15. From the

table, we observe that the CFLD can outperform ESLD approach in all cases. As an instance,

the ESLD perfectly corrects damaged H.264 packet 36% and 32% of the time for Foreman

119

and Ice sequences, respectively, while the values for CFLD are 66% and 61%. On top of that,

the CFLD search is much less complex than the ESLD search and it significantly reduces the

number of candidates from N (for ESLD) to N/32. This is shown in Figure 4.18. For example,

in the case of Foreman sequence at QP 22, there are 100 to 500 non valid candidates (detected

by decoding semantic errors) before reaching the first valid candidate while in CFLD it can

be achieved by only 5 to 15 decoding of candidates. In fact, if CFLD fails to fully correct the

packet, for sure ESLD will fail. This is because ESLD will always retain a candidate that either

comes before that of CFLD or the same one. Therefore, it is not possible for ESLD to select a

fully corrected packet without CFLD also selecting it.

Table 4.15 Detailed information of the box plot of Figure 4.17: average PSNR

and SSIM values, percentage of fully corrected packets.

Seq. Intact JM-FC STBMA HO-MLD ESLD CFLD

Foreman
QP=22

PSNR 41.37 38.47 39.78 39.41 41.14 41.33

SSIM 0.0.9691 0.9632 0.9663 0.9659 0.9687 0.969

fully corrected packets (%) – 36% 66%

less than 0.01 dB PSNR difference (%) 6% 61% 79%

less than 0.05 dB PSNR difference (%) 9% 80% 93%

Ice
QP=27

PSNR 41.53 38.06 40.00 39.96 41.28 41.33

SSIM 0.9833 0.9802 0.9821 0.982 0.9831 0.9832

fully corrected packets (%) – 32% 61%

less than 0.01dB PSNR difference (%) 15% 66% 70%

less than 0.05dB PSNR difference (%) 15% 80% 80%

City
QP=32

PSNR 33.43 32.01 33.36 33.04 33.06 33.38

SSIM 0.954 0.9435 0.9535 0.9511 0.9513 0.9537

fully corrected packets (%) – 19% 69%

less than 0.01dB PSNR difference (%) 8% 47% 79%

less than 0.05dB PSNR difference (%) 30% 59% 88%

Driving
QP=37

PSNR 29.61 28.45 29.34 29.04 29.50 29.57

SSIM 0.8908 0.8768 0.8876 0.8841 0.8897 0.8904

fully corrected packets (%) – 22% 56%

less than 0.01dB PSNR difference (%) 1% 51% 69%

less than 0.05dB PSNR difference (%) 1% 77% 87%

A visual quality inspection of the results is illustrated in Figure 4.19. The figure depicts the gain

in subjective quality of frame 45 of Ice sequence at QP 37 for different approaches. Compar-

120

33
34
35
36
37
38
39
40
41

Intact JM-FC STBMA HO-MLD ESLD CFLD

PS
N

R
 (d

B
)

a) PSNR, Foreman, QP=22

0.959

0.961

0.963

0.965

0.967

0.969

Intact JM-FC STBMA HO-MLD ESLD CFLD

SS
IM

b) SSIM, Foreman, QP=22

34

35

36

37

38

39

40

41

Intact JM-FC STBMA HO-MLD ESLD CFLD

PS
N

R
 (d

B
)

c) PSNR, Ice, QP=27

0.977

0.979

0.981

0.983

Intact JM-FC STBMA HO-MLD ESLD CFLD

SS
IM

d) SSIM, Ice, QP=27

31

32

33

Intact JM-FC STBMA HO-MLD ESLD CFLD

PS
N

R
 (d

B
)

e) PSNR, City, QP=32

0.934

0.939

0.944

0.949

0.954

Intact JM-FC STBMA HO-MLD ESLD CFLD

SS
IM

f) SSIM, City, QP=32

26

27

28

29

Intact JM-FC STBMA HO-MLD ESLD CFLD

PS
N

R
 (d

B
)

g) PSNR, Driving, QP=37

0.866

0.871

0.876

0.881

0.886

0.891

Intact JM-FC STBMA HO-MLD ESLD CFLD

SS
IM

h) SSIM, Driving, QP=37

Figure 4.17 PSNR and SSIM distributions of 100 runs on frame 45 of H.264 sequences.

ing the reconstructed frame and the luminance difference, it is clear that the CFLD approach

121

Foreman, QP22 Ice, QP27 City, QP32 Driving, QP37
0

200
500

1,000

1,500

2,000

2,500

3,000

3,500

4,000
N

um
be

r
of

 c
an

di
da

te
s b

ef
or

e
fir

st
 v

al
id

a) ESLD

Foreman, QP22 Ice, QP27 City, QP32 Driving, QP37
0

10
20

40

60

80

100

120

N
um

be
r

of
 c

an
di

da
te

s b
ef

or
e

fir
st

 v
al

id

b) CFLD

Figure 4.18 Number of candidates before the first valid candidate in each case of

CFLD and ESLD approach.

outperforms the other approaches and further confirms the robustness and superiority of the

proposed method.

From the results of all figures and tables, it can be inferred that the proposed CFLD approach

can effectively remove non-valid candidates in comparison to conventional list decoding ap-

proaches, leading to a reduction of 97% of the number of candidates for the case of one bit error

and in nearly 88% of the cases in H.264, and 91% of the cases in HEVC, the reconstructed se-

quence can have very close PSNR value to the intact one. So, as a result, the proposed CFLD

provides a significantly higher PSNR value and better quality compared to other approaches.

This is important not only for the corrupted frame, but for the following ones, as fewer visible

drifting effects will result. As we mentioned, since the first candidate which satisfies the two

conditions is kept as the final one, there are some cases with low PSNR value. However, we

believe that most cases which have very low PSNR, can be eliminated by adding an additional

pixel-domain step (such as boundary matching or border checking) in our system. Indeed, in-

stead of selecting the first candidate which satisfies the two conditions, we could rank all can-

didates satisfying the two conditions using a yet-to-be-defined pixel-domain likeliness measure

or other likeliness measure based on the decoded information (e.g., motion vectors). For in-

122

a) Intact

b) JM-FC c) Luminance Difference JM-FC from Intact

d) STBMA e) Luminance Difference STBMA from Intact

f) HO-MLD g) Luminance Difference HO-MLD from Intact

h) CFLD i) Luminance Difference CFLD from Intact

Figure 4.19 Visual comparison of a reconstructed frame with H.264 Ice sequence at

QP=37 by different methods. One bit was flipped in frame 45, slice 22 and bit 381.

The packet contains 472 bits. The proposed checksum provides 11 candidates. The

first valid candidate which satisfies the two mentioned conditions is picked as CFLD

output and the error in the packet is perfectly corrected. The PSNR and SSIM values of

each approach are as follows, respectively: Intact (36.49 dB, 0.9681), JM-FC

(34.12 dB, 0.9649), STBMA (34.37 dB, 0.9659), HO-MLD (34.39 dB, 0.966) and

CFLD (36.49 dB, 0.9681).

stance, for all the candidates satisfying the two conditions, we could use a pixel-domain metric

such as the one based on the sum of distributed motion-compensated blockiness (SDMCB)

proposed in (Trudeau et al., 2011) to rank them. We thus could select the candidate having

123

the highest likeliness (e.g., lowest SDMCB value). But this is outside the scope of the current

work.

4.6.3 Comparison of CFLD and CFLD+

Our observation on the received corrupted packet from the simulations on H.264 sequences

reveal that in more than 30% of the case, the received corrupted packets, from different se-

quences at different QPs, were decodable and the number of decoded MBs were right (see

Figure 4.20). Therefore, in those cases, we can keep the corrupted packet as the final candi-

date instead of going through the CFLD approach. In this subsection, the same error patterns

used in the previous simulations on H.264 sequences are used to compare the performances of

the CFLD approach when it integrates with the proposed method in the previous chapter (sec-

tion 3.3). The integrated proposed CFLD approach is described here as CFLD+ as follows:

when a corrupted packet is received, if it satisfies the two conditions (decodable and having the

correct number of decoded MBs), it is kept as the final candidate; otherwise the final candidate

is chosen by the CFLD approach. Note that in the previous simulations, all the corrupted pack-

ets (no matter if the conditions are met on the received corrupted packet or not) went through

the CFLD approach to find the final candidate.

We compare the two mentioned approaches from the complexity and PSNR viewpoints. For the

complexity comparison, the number of non-valid candidates, in other words, number of extra

decodings, before finding the first valid candidate, is considered for each approach. Figure 4.22

presents the number of non-valid candidates before the first valid one, in the CFLD approach

for two different H.264 coded sequences. From the left box plot of the Foreman sequence, it

seems that in 25-75 percentile of the cases (the lower and higher bands of boxes), the number

of non-valid candidates of CFLD is between 5-45 candidates, with a median of 15 candidates.

In order to better compare the approaches, the left box plot is divided into two separate cases

based on if the received corrupted packet meets the conditions or not. The middle box plot

depicts the number of candidates for CFLD, when the received corrupted packet satisfies the

two conditions and the right box plot (shown as “Others”) depicts when it does not meet the

124

City Crew Ice Foreman Opening Whale Driving Walk
0

10

20

30

40

50

60

70

80

90

100

Sequenec name

Pe
rc

en
ta

ge
 (%

)

QP37

QP32

QP27

QP22

Figure 4.20 Percentage of the cases that the received corrupted

packet satisfies the two conditions.

Received
Corrupted

video packet

No

Two
cond.
OK?

CFLD

Yes Keep as
best cand.

Figure 4.21 Proposed CFLD+ approach.

two conditions. As it can be seen in Figure 4.21 and explained before, the two approaches

behave differently only when the received corrupted packet meets the conditions. Thus the

middle box plot identifies their difference in complexity. As can be observed from the middle

box plot, when the received corrupted packet meets the two conditions, the CFLD finds the first

valid candidate sooner than in the other cases, this will bring overhead of, on average, three

extra decoding compared to CFLD+ approach in around 30% of the cases.

From the performance viewpoint, the CFLD+ approach can also improve the quality (PSNR)

of the reconstructed frame, overall on all sequences, by around 0.3 dB at QP=22 to 0.1 dB at

QP=37, specifically when the two conditions are met (see Figure 4.23). Note that in the case

125

0

20

40

60

80

100

120

All 2Cond.Met Others

N
um

be
r

of
 c

an
di

da
te

s b
ef

or
e

fir
st

 v
al

id

a) Foreman, QP22

0

10

20

30

40

50

60

70

80

All 2Cond.Met Others

N
um

be
r

of
 c

an
di

da
te

s b
ef

or
e

fir
st

 v
al

id

b) Driving, QP37

Figure 4.22 Number of non-valid candidates (extra decodings) before the first valid

candidate in CFLD approach. The left box plot contains all the cases for 100 run

simulations and is further divided into two separate box plots: when the received

corrupted packet meets the two conditions (middle box plot) and when it is not (right

box plot).

of the CFLD approach, when the received corrupted packet satisfies the two conditions at the

reception, it is very unlikely to correct the error (unless the error is at the very beginning of

the packet). Therefore CFLD will end up with a candidate that has two bits in error while,

in the CFLD+ approach, the final candidate has only the one bit error (the actual received

erroneous one). For example, in Ice sequence at QP=27, as illustrated in Figure 4.24, from

100 simulations, in 30 cases, the received corrupted packet satisfies the two conditions and the

CFLD approach was able to (fully) correct error in only 4 cases. In the remaining 70 cases

(“Others”), where the two conditions are not meet, the packet was perfectly corrected in 67

cases. Similar results have been observed for the other sequences and QP values. The results

support that the two conditions constitute a proper constraint to remove non-valid candidates

provided by the checksum while, when the received corrupted packet is decodable and the

number of MBs is right, the two constraints for filtering non-valid candidates will not perform

very well. But remember that, as we presented in the previous chapter, if the received corrupted

packet satisfies the two conditions, in more than 90% of the case for one bit in error, it has very

close PSNR to the intact one therefore there is not need to process further the packet.

126

22 27 32 37
0

1

2

3

4

5

QP values

A
ve

ra
ge

 P
SN

R
 (d

B
)

CFLD

CFLD+

a) Two conditions met at first

22 27 32 37
0

1

2

3

4

5

QP values

A
ve

ra
ge

 P
SN

R
 (d

B)

CFLD

CFLD+

b) All cases

Figure 4.23 Average PSNR (dB) gain over JM-FC for CFLD and CFLD+ on different

sequences at different QP values.

Foreman, QP22 Ice, QP27 City, QP32 Driving, QP37
0

10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 (%

)

Total “Others”
Total “2 Cond.Met”
Corrected error in “Others”
Corrected error in “2 Cond.Met”

Figure 4.24 Percentage of the times that error was corrected by the CFLD approach

in two separate cases: when the received packet meets two conditions (1% at QP=22,

4% at QP=27, 7% at QP=32 and 3% at QP=37) and when it does not, described as

“Others”, (62% at QP=22, 67% at QP=27, 59% at QP=32 and 60% at QP=37).

The same strategy can be used when there are more than one bit in error. As we have discussed

in section 3.5 for two bits in error, the probability of having both errors on non-desynchronizing

bits (NDBs) is very low, but even in those cases, CFLD+ can have better performance com-

127

pared to CFLD. In other words, retaining the corrupted packet as a final candidate is better

than going through the correction process of CFLD since There are more chances that the

CFLD will damage more (not able to fix the errors then add other errors) than fix the packet.

Moreover, as the results have shown, when the received packet is not satisfying the conditions,

it is more likely that the CFLD will be able to fix the errors. This is because, the non-valid

candidates will flip other bits (adding more errors in the packet) which increases the chances

of desynchronization and non-valid syntaxes. Therefore, more non-valid candidates will be

filtered by the two conditions and probably the final one would be the best candidate.

CONCLUSION AND RECOMMENDATIONS

In this thesis, we presented two different mechanisms to enhance the quality of reconstructed

corrupted frames in the presence of transmission errors. This has been achieved by proposing

different methods applicable in the context of error concealment and error correction. Our

contributions can be summarized as follows:

- We have addressed the reliability of received corrupted video packets in concealment.

We have identified the most common NDBs syntax elements in H.264 CAVLC coded se-

quences. It was observed that, on average, the NDBs make up one-third of all bitstreams.

The simulation results revealed that the effect of NDBs on context modification is insignif-

icant and that the majority of them (90%) provide PSNR values that are highly comparable

to the intact value. Our proposed approach keeps the corrupted packets if only the NDBs

are erroneous. The visual difference from intact in this case is much smaller than the one

introduced by concealment approaches. The main advantage of the proposed approach is

that it can be combined with any available concealment approach and moreover it can re-

duce the complexity of the complex concealment approaches by up to 30%, by decoding

the received corrupted packet, and lead to a better quality. In this work, we were more

focused on the Baseline profile of H.264, but the method can be applied to other profiles

with CABAC coded sequences. However, the corrupted packets in those cases may more

likely cause desynchronization at the bit level. Moreover, the NDBs can be useful in actual

error correction at the bit level such as list decoding. If the received corrupted packet satis-

fies the proposed conditions, most probably only the NDBs are erroneous and the received

corrupted packet can become a candidate in list decoding approaches.

- Our proposed CFLD can correct the received corrupted packet with the use of receiver

side UDP checksum value. Unlike the other existing list decoding approaches, it does not

require soft information (e.g. log-likelihood ratio (LLR) of bits) during the correction.

130

The proposed approach can reduce the problematically large solution space of the conven-

tional list decoding approaches. For instance, when a packet composed of N bits contains a

single-bit error, instead of considering N candidate bitstreams, as is the case in conventional

list decoding approaches, the proposed approach considers approximately N/32 candidate

bitstreams, leading to a reduction of 97% of the number of candidates. For two bits in

error, this reduction reaches 99.6%. Such a filtering of the candidates as proposed, supple-

mented by checksum information dramatically reduces the complexity of the list decoding

approaches. Although, current applications do not typically have access to soft information,

the proposed CFLD approach can also be applied to that context, allowing it to perform even

better by enabling it to exploit the soft information to rank the candidate bitstreams in each

BEE. We also expect a further increase in performance by exploiting pixel domain informa-

tion to select the best decodable candidate rather than selecting the first decodable candidate

which can be the subject of future research.

LIST OF REFERENCES

Asheri, H., Rabiee, H. R., Pourdamghani, N. & Ghanbari, M. (2012). Multi-directional spatial

error concealment using adaptive edge thresholding. IEEE Transactions on Consumer
Electronics, 58(3), 880-885.

Atzori, L., De Natale, F. G. & Perra, C. (2001). A spatio-temporal concealment technique using

boundary matching algorithm and mesh-based warping (BMA-MBW). IEEE Transac-
tions on Multimedia, 3(3), 326–338.

Barni, M., Bartolini, F. & Bianco, P. (2000). On the performance of syntax-based error de-

tection in H.263 video coding: a quantitative analysis. Electronic Imaging, SPIE Conf.
Image and Video Communications, 3974, 949–957.

Bergeron, C. & Lamy-Bergot, C. (2004). Soft-input decoding of variable-length codes applied

to the H.264 standard. Proc. IEEE 6th workshop Multimedia Signal Process., pp. 87–90.

Braden, R. T., Borman, D. A. & Partridge, C. (1989). Computing the internet checksum. IETF,

RFC 1071, [Online]. Available: https://www.rfc-editor.org/rfc/rfc1071.txt.

Caron, F. (2013). A maximun likelihood approach to video error correction applied to H.264
decoding. (Ph.D. thesis, École de Technologie Supérieure, Montreal, Canada).

Caron, F. & Coulombe, S. (2012). A maximum likelihood approach to video error correction

applied to H.264 decoding. Proc. IEEE 6th Int. Conf. Next Gen. Mob. Appl., Serv.,
Technol., pp. 1–6.

Caron, F. & Coulombe, S. (2013). A maximum likelihood approach to correcting transmission

errors for joint source-channel decoding of H.264 coded video. Proc. IEEE 20th Int.
Conf. Image Process., pp. 1870–1874.

Caron, F. & Coulombe, S. (2015). Video Error Correction Using Soft-Output and Hard-Output

Maximum Likelihood Decoding Applied to an H.264 Baseline Profile. IEEE Trans.
Circuits Syst. Video Technol., 25(7), 1161–1174.

Chen, M. J., Chen, L. G. & Weng, R. M. (1997). Error concealment of lost motion vectors

with overlapped motion compensation. IEEE Trans. Circuits Syst. Video Technol., 7(3),

560–563.

Chen, Y., Hu, Y., Au, O. C., Li, H. & Chen, C. W. (2008). Video error concealment us-

ing spatio-temporal boundary matching and partial differential equation. IEEE Trans.
Multimedia., 10(1), 2–15.

Choe, G., Nam, C. & Chu, C. (2018). An effective temporal error concealment in H. 264

video sequences based on scene change detection-PCA model. Multimedia Tools and
Applications, 1–15.

132

Cisco. (2017). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,

2016–2021 White Paper.

Cisco. (2018). Cisco Visual Networking Index: Forecast and Trends, 2017–2022. Accessed:

2018-12-12.

Dean, R. A. (1966). Elements of abstract algebra. John Wiley & Sons Inc.

Demirtas, A., Reibman, A. & Jafarkhani, H. (2011). Performance of H.264 with isolated bit

error: Packet decode or discard? Proc. IEEE 18th Int. Conf. Image Process., pp. 949–

952.

Fall, K. R. & Stevens, W. R. (2011). TCP/IP illustrated, volume 1: The protocols. Addison-

Wesley.

Farrugia, R. A. & Debono, C. J. (2010). A hybrid error control and artifact detection mecha-

nism for robust decoding of H. 264/AVC video sequences. IEEE Transactions on Cir-
cuits and Systems for Video Technology, 20(5), 756–762.

Farrugia, R. A. & Debono, C. J. (2011). Robust decoder-based error control strategy for

recovery of H.264/AVC video content. IET Communications, 5(13), 1928–1938.

Farrugia, R. A. & Debono, C. J. (2008). Robust transmission of H.264/AVC sequences us-

ing list decoding and source constraints. IEEE 14th Mediterranean Electrotechnical
Conference (MELECON), pp. 885–889.

Gharavi, H. & Gao, S. (2008). Spatial interpolation algorithm for error concealment.

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 1153–1156.

Golaghazadeh, F. & Coulombe, S. (2017). Checksum-filtered decoding, checksum-

aided forward error correction of data packets, forward error correction of data

using bit erasure channels and sub-symbol level decoding for erroneous fountain

codes. PCT/CA2017/051046, 2017-09-07, [Available] https://patents.google.com/

patent/WO2018045459A1/en.

Golaghazadeh, F., Coulombe, S., Coudoux, F. & Corlay, P. (2017). Low complexity H.264 list

decoder for enhanced quality real-time video over IP. IEEE 30th Canadian Conference
on Electrical and Computer Engineering (CCECE), pp. 1-6.

Golaghazadeh, F., Coulombe, S., Coudoux, F. & Corlay, P. (2018a). The Impact of H.264

Non-desynchronizing Bits on Visual Quality and its Application to Robust Video De-

coding. Presented in IEEE 12th International Conference on Signal Processing and
Communication Systems (ICSPCS).

Golaghazadeh, F., Coulombe, S., Coudoux, F. & Corlay, P. (2018b). Checksum-Filtered List

Decoding Applied to H.264 and H.265 Video Error Correction. IEEE Transactions on
Circuits and Systems for Video Technology, 28(8), 1993-2006.

133

Hagenauer, J., Offer, E. & Papke, L. (1996). Iterative decoding of binary block and convolu-

tional codes. IEEE Transactions on information theory, 42(2), 429–445.

HEVC Test Model Software. (2016) (Version 15) [Software]. Consulted at https://hevc.hhi.

fraunhofer.de/svn/svn_HEVCSoftware/branches/.

Hsia, S.-C. & Hsiao, C. H. (2016). Fast-efficient shape error concealment technique based on

block classification. IET Image Processing, 10(10), 693–700.

International Telecommunications Union. (2003). ITU-T Recommendation H.264: Advanced

video coding for generic audiovisual services.

ISO/IEC JTC 1/SC 29/WG 11. (2013). High Efficiency Video Coding [Recommendation].

ITU-T H.265.

ITU-T SG16 Q.6 & ISO/IEC JTC 1/SC 29/WG11. (2003). ITU-T Recommendation H.264: Ad-
vanced video coding for generic audiovisual services (Report n◦International Telecom-

munications Union).

ITU-T-StudyGroups. ITU-T SG 16 standardization on visual coding – the Video Cod-

ing Experts Group (VCEG). [Online; accessed 20-January-2018]. Available: https:

//www.itu.int/en/ITU-T/studygroups/2017-2020/16/Pages/video/vceg.aspx.

Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG. (2013). H.264/AVC JM Ref-

erence Software (Version 18.5) [Software]. Consulted at http://iphome.hhi.de/suehring/

tml/.

Kang, K. & Sha, L. (2010). An interleaving structure for guaranteed QoS in real-time broad-

casting systems. IEEE Trans. Computers, 59(5), 666–678.

Kim, W., Koo, J. & Jeong, J. (2006). Fine directional interpolation for spatial error conceal-

ment. IEEE Transactions on Consumer Electronics, 52(3), 1050–1056.

Koloda, J., Ostergaard, J., Jensen, S. H., Sanchez, V. & Peinado, A. M. (2013a). Sequential er-

ror concealment for video/images by sparse linear prediction. IEEE Trans. Multimedia.,
15(4), 957–969.

Koloda, J., Sánchez, V. & Peinado, A. M. (2013b). Spatial error concealment based on edge

visual clearness for image/video communication. Circuits, Systems, and Signal Process-
ing, 32(2), 815–824.

Koloda, J., Peinado, A. M. & Sánchez, V. (2014). Kernel-based MMSE multimedia signal

reconstruction and its application to spatial error concealment. IEEE Transactions on
Multimedia, 16(6), 1729–1738.

Koloda, J., Seiler, J., Peinado, A. M. & Kaup, A. (2017). Scalable kernel-based minimum mean

square error estimator for accelerated image error concealment. IEEE Transactions on
Broadcasting, 63(1), 59–70.

134

Kung, W.-Y., Kim, C.-S. & Kuo, C.-C. (2006). Spatial and temporal error concealment tech-

niques for video transmission over noisy channels. IEEE transactions on circuits and
systems for video technology, 16(7), 789–803.

Kwok, W. & Sun, H. (1993). Multi-directional interpolation for spatial error concealment.

IEEE Trans. Consumer Electronics, 39(3), 455–460.

Lam, W. M., Reibman, A. R. & Liu, B. (1993). Recovery of lost or erroneously received

motion vectors. Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 5, 417–420.

Lamy-Bergot, C. & Bergeron, C. (2012). Video H.264 encryption preserving synchronization

and compatibility of syntax. US Patent 8,160,157, Apr. 17, 2012, https://www.google.

com/patents/US8160157.

Larzon, L. A., Degermark, M., Pink, S., Jonsson, L. E. & Fairhurst, G. (2004). The lightweight

user datagram protocol (UDP-Lite). https://www.rfc-editor.org/rfc/rfc3828.txt. IETF,

RFC 3828.

Lee, S.-H., Choi, D.-H. & Hwang, C.-S. (2001). Error concealment using affine transform for

H. 263 coded video transmissions. Electronics Letters, 37(4), 218–220.

Levine, D., Lynch, W. E. & Le-Ngoc, T. (2007). Iterative Joint Source-Channel Decoding of

H.264 Compressed Video. Proc. IEEE Int. Symp. Circuits Syst., pp. 1517-1520.

Lie, W.-N., Lee, C.-M., Yeh, C.-H. & Gao, Z.-W. (2014). Motion vector recovery for video

error concealment by using iterative dynamic-programming optimization. IEEE Trans-
actions on Multimedia, 16(1), 216–227.

Lin, T.-L., Chen, W.-C. & Lai, C.-K. (2013a). Recovery of lost motion vectors using encoded

residual signals. IEEE Transactions on Broadcasting, 59(4), 705–716.

Lin, T.-L., Yang, N.-C., Syu, R.-H., Liao, C.-C. & Tsai, W.-L. (2013b). Error concealment

algorithm for HEVC coded video using block partition decisions. Signal Processing,
Communication and Computing (ICSPCC), 2013 IEEE International Conference On,

pp. 1–5.

Lin, T.-L., Ding, T.-L., Fan, C.-Y. & Chen, W.-C. (2017). Error concealment algorithm based

on sparse optimization. Multimedia Tools and Applications, 76(1), 397–413.

Lin, T.-L., Wei, X., Wei, X., Su, T.-H. & Chiang, Y.-L. (2018). Novel pixel recovery method

based on motion vector disparity and compensation difference. IEEE Access, 44362-

44375.

Liu, J., Zhai, G., Yang, X., Yang, B. & Chen, L. (2015). Spatial Error Concealment With an

Adaptive Linear Predictor. IEEE Trans. Circuits Syst. Video Technol., 25(3), 353–366.

Ma, M., Au, O. C., Chan, S. G. & Sun, M. T. (2010). Edge-directed error concealment. IEEE
Trans. Circuits Syst. Video Technol., 20(3), 382–395.

135

Ma, X. F. & Lynch, W. E. (2004). Iterative joint source-channel decoding using turbo codes

for MPEG-4 video transmission. Acoustics, Speech, and Signal Processing, 2004. Pro-
ceedings.(ICASSP’04). IEEE International Conference on, 4, iv–iv.

Nguyen, N. Q., Lynch, W. E. & Le-Ngoc, T. (2010). Iterative Joint Source-Channel Decoding

for H.264 video transmission using virtual checking method at source decoder. Proc.
IEEE 23rd Can. Conf. Electr. Comput. Eng., pp. 1–4.

Peng, Q., Yang, T. & Zhu, C. (2002). Block-based temporal error concealment for video

packet using motion vector extrapolation. Communications, Circuits and Systems and
West Sino Expositions, IEEE 2002 International Conference on, 1, 10–14.

Perera, R., Arachchi, H. K., Imran, M. A. & Xiao, P. (2016). Extrinsic information modification

in the turbo decoder by exploiting source redundancies for HEVC video transmitted over

a mobile channel. IEEE Access, 4, 7186–7198.

Persson, D. & Eriksson, T. (2009). Mixture model-and least squares-based packet video error

concealment. IEEE Transactions on Image Processing, 18(5), 1048–1054.

Persson, D., Eriksson, T. & Hedelin, P. (2008). Packet video error concealment with Gaussian

mixture models. IEEE Transactions on Image Processing, 17(2), 145–154.

Pfeiffer, P. E. (2013). Concepts of Probability Theory: Second Revised Edition (ed. 2). New

York, United states: Dover Publications Inc.

Polák, L. & Kratochvíl, T. (2011). DVB-H and DVB-SH-A performance and evaluation of

transmission in fading channels. IEEE 34th Int. Conf. Telecommunications and Signal
Processing (TSP), pp. 549-553. doi: 10.1109/TSP.2011.6043669.

Postel, J. (1980). User datagram protocol, RFC 768. Consulted at https://www.rfc-editor.org/

rfc/rfc768.txt.

Qian, X., Liu, G. & Wang, H. (2009). Recovering connected error region based on adaptive

error concealment order determination. IEEE Transactions on Multimedia, 11(4), 683–

695.

Richardson, I. E. (2010). The H.264 advanced video compression standard (ed. 2nd). West

Sussex, United Kingdom: John Wiley & Sons Ltd.

Robie, D. L. & Mersereau, R. M. (2000). The use of Hough transforms in spatial error con-

cealment. IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 4, 2131–2134.

Sabeva, G., Jamaa, S. B., Kieffer, M. & Duhamel, P. (2006). Robust decoding of H.264

encoded video transmitted over wireless channels. Proc. IEEE 8th workshop Multimedia
Signal Process., pp. 9–13.

136

Salama, P., Shroff, N. B., Coyle, E. J. & Delp, E. J. (1995). Error concealment techniques

for encoded video streams. IEEE International Conference on Image Processing, 1995.
Proceedings.,, 1, 9–12.

Salama, P., Shroff, N. B. & Delp, E. J. (1998). Error concealment in encoded video streams.

In Signal Recovery Techniques for Image and Video Compression and Transmission
(pp. 199–233). Springer.

Schulzrinne, H., Casner, S., Frederick, R. & Jacobson, V. RTP: A transport protocol for real-

time applications. IETF, RFC 3550, Jul. 2003. [Online]. Available: https://www.rfc-

editor.org/rfc/rfc3550.txt.

Shi, Y. Q., Zhang, X. M., Ni, Z.-C. & Ansari, N. (2004). Interleaving for combating bursts of

errors. IEEE Circuits and Systems Magazine, 4(1), 29–42.

Shih, H.-C., Wang, C.-T. & Huang, C.-L. (2018). Spiral-Like Pixel Reconstruction Algorithm

for Spatiotemporal Video Error Concealment. IEEE Access, 6, 6370–6381.

Song, K., Chung, T., Kim, C.-S., Park, Y.-O., Kim, Y., Joo, Y. & Oh, Y. (2007). Efficient

multi-hypothesis error concealment technique for H. 264. Circuits and Systems, 2007.
ISCAS 2007. IEEE International Symposium on, pp. 973–976.

Sullivan, G. J. & Wiegand, T. (2005). Video compression-from concepts to the H.264/AVC

standard. Proceedings of the IEEE, 93(1), 18–31.

Sun, H. & Kwok, W. (1995). Concealment of damaged block transform coded images using

projections onto convex sets. IEEE Trans. Image Process., 4(4), 470–477.

Superiori, L., Nemethova, O. & Rupp, M. (2006). Performance of a H.264/AVC Error Detec-

tion Algorithm Based on Syntax Analysis. Proc. MoMM, pp. 49–58.

Tan, W. T., Shen, B., Patti, A. & Cheung, G. (2008). Temporal propagation analysis for

small errors in a single-frame in H.264 video. IEEE 15th Int. Conf. Image Process.,
pp. 2864–2867.

Trudeau, L., Coulombe, S. & Pigeon, S. (2011). Pixel domain referenceless visual degradation

detection and error concealment for mobile video. Proc. 18th IEEE Int. Conf. Image
Process., pp. 2229–2232.

Wang, Y., Wenger, S., Wen, J. & Katsaggelos, A. K. (2000). Error resilient video coding

techniques. IEEE Signal Process. Mag., 17(4), 61–82.

Wang, Y., Ostermann, J. & Zhang, Y. Q. (2002). Video processing and communications.

Prentice Hall Upper Saddle River.

Wang, Y. & Yu, S. (2005). Joint source-channel decoding for H.264 coded video stream. IEEE
Trans. Consum. Electron., 51(4), 1273–1276.

137

Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. (2004). Image quality assessment:

from error visibility to structural similarity. IEEE Trans. Image Process, 13(4), 600–612.

Weidmann, C., Kadlec, P., Nemethova, O. & Al Moghrabi, A. (2004). Combined sequential

decoding and error concealment of H.264 video. Proc. IEEE 6th workshop Multimedia
Signal Process., pp. 299–302.

Wu, J., Liu, X. & Yoo, K. Y. (2008). A temporal error concealment method for H.264/AVC

using motion vector recovery. IEEE Trans. Consum. Electron., 54(4), 1880–1885.

Xiang, Y., Feng, L., Xie, S. & Zhou, Z. (2011). An efficient spatio-temporal boundary matching

algorithm for video error concealment. Multimedia Tools and Applications, 52(1), 91–

103.

Xiao, J., Tillo, T., Lin, C., Zhang, Y. & Zhao, Y. (2013). A real-time error resilient video

streaming scheme exploiting the late-and early-arrival packets. IEEE Trans. Broadcast.,
59(3), 432–444.

Xiu, X., Zhuo, L. & Shen, L. (2006). A hybrid error concealment method based on H.264

standard. IEEE 8th International Conference on Signal Processing, 2. doi: 10.1109/I-

COSP.2006.345630.

Yen, K., Sun, S., Sethakaset, U., Tan, P. H., Li, Z. & Zheng, J. (2012). A joint source-channel

decoder for h. 264 sps and pps headers. Wireless Personal Multimedia Communications
(WPMC), 2012 15th International Symposium on, pp. 443–447.

Zabihi, S. M., Ghanei-Yakhdan, H. & Mehrshad, N. (2017). Adaptive temporal error con-

cealment method based on the MB behavior estimation in the video. Computer and
Knowledge Engineering (ICCKE), 2017 7th International Conference on, pp. 193–198.

Zhang, J., Arnold, J. F. & Frater, M. R. (2000). A cell-loss concealment technique for MPEG-2

coded video. IEEE Transactions on Circuits and Systems for Video Technology, 10(4),

659–665.

Zhang, Y., Xiang, X., Zhao, D., Ma, S. & Gao, W. (2012). Packet video error concealment with

auto regressive model. IEEE Transactions on Circuits and Systems for Video Technology,

22(1), 12–27.

Zheng, J. & Chau, L.-P. (2005). Efficient motion vector recovery algorithm for H. 264 based

on a polynomial model. IEEE Transactions on Multimedia, 7(3), 507–513.

Zhou, J., Yan, B. & Gharavi, H. (2011). Efficient motion vector interpolation for error con-

cealment of H.264/AVC. IEEE Trans. Broadcast., 57(1), 75–80.

Zhou, Z., Dai, M., Zhao, R., Li, B., Zhong, H. & Wen, Y. (2017). Video error concealment

scheme based on tensor model. Multimedia Tools and Applications, 76(14), 16045–

16061.

