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OPTIMISATION DU TRANSPORT POUR LA COLLECTE                                       
DES VÉHICULES EN FIN DE VIE 

Ahmed KHABOU 

 
RESUMÉ 

 
Les entreprises impliquées dans l’achat des véhicules en fin de vie ont d’importants défis à 

relever en raison du fait que la plupart des véhicules achetées doivent être collectés 

efficacement afin de réduire leurs coûts de transport. Dans ce projet, nous étudions un 

problème de logistique inverse d’une entreprise Canadienne qui ramasse des véhicules en fin 

de vie de différents vendeurs et les accumule à son entrepôt pour la revente des pièces ou pour 

des fins de recyclage. Ce problème peut être modélisé comme un problème de tournées de 

véhicules avec différentes contraintes. Bien que des recherches antérieures aient apporté des 

contributions substantielles pour modéliser et résoudre différentes variantes du problème de 

tournées de véhicules, le problème spécifique dans ce projet envisage la résolution d’une 

nouvelle combinaison de contraintes, telles que l’affectation de clients à une flotte privée ou à 

un transporteur externe, les fenêtres de temps, les routes multiples et les séquences de 

chargement. Nous proposons un modèle de programmation linéaire mixte en nombres entiers 

ainsi qu’une heuristique capable de trouver la planification des itinéraires qui minimisent les 

coûts totaux de transport. Le rendement des méthodes proposées est évalué à l’aide de données 

recueillies auprès de l’entreprise. 

 

Mots-clés : Logistique inverse, problème de tournées de véhicules, heuristique, fenêtres de 

temps, flotte hétérogène, routes multiples, plusieurs transporteurs externes, séquences de 

chargement. 
 
 





 

TRANSPORTATION OPTIMIZATION FOR THE COLLECTION                             
OF END-OF-LIFE VEHICLES 

 
Ahmed KHABOU  

 
ABSTRACT 

 
 
Firms operating in the purchasing of end-of-life vehicles (ELVs) have significant challenges 

related to the fact that most of the purchased ELVs must be collected efficiently in order to 

minimize their transportation costs. In this project, we study a reverse logistics problem of a 

Canadian firm that collects ELVs from a group of dealers and accumulates them at its 

warehouse for part resale or recycling. This problem can be modeled as a vehicle routing 

problem (VRP) with different side-constraints. Although prior research has made several 

contributions to model and solve different variants of the VRP, the specific issue in this project 

considers solving a VRP with a new combination of constraints, such as customer assignment 

to the private fleet or an external carrier, time-windows, multi-trip, and loading sequences. We 

propose a mixed-integer linear programming (MILP) model as well as a heuristic algorithm 

capable of finding the routes’ planning that minimizes the total transportation costs. The 

performance of the proposed methods is assessed by generated instances using the data 

obtained from the company.  

 

Keywords: Reverse logistics, vehicle routing problem, heuristic algorithm, time-windows, 

heterogeneous fleet, multi-trip, multiple external carriers, loading sequences. 
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INTRODUCTION 
 

Traditionally, supply chains have been considered the linear movement of goods through 

distribution channels from suppliers to manufacturers, wholesalers, retailers, and finally to 

consumers. Recently, the flow of material has been proven to go in an upstreaming way during 

the production, distribution and consumptions stages which create a whole new are of logistics 

management, called as the reverse logistics (Cruz-Rivera & Ertel, 2009).  

 

The role of reverse logistics has been developed a lot such that it now plays a significant part 

in the success of many different companies and organizations. From an economic point of 

view, the reverse logistics represent direct incomes from reduced consumption of raw 

materials, from adding value to recovered material and from cost reduction on waste treatment. 

For this reason, many companies are encouraged to become active in this new area of 

management (Schultmann, Zumkeller, & Rentz, 2006).  

 

In recent years, the research field of supply chain management has been extended by tasks 

referring to reverse logistics flow such as product recovery, refurbishing, or recycling. These 

tasks constitute the end-of-life phase of products and complement the traditional supply chains 

by closing the loop to have the so-called, closed-loop supply chains. Intensive research has 

been focused on supply chain management and reverse logistics, trying to modify supply 

chains to form closed-loop supply chains (Schultmann et al., 2006). 

 

In this project, we focus on a collection problem of end-of-life vehicles (ELVs), which is faced 

by a Canadian firm involved in product recovery and recycling. More specifically, we try to 

optimize the routes’ planning for ELV collection using operation research tools. The problem 

of route planning is known by the research community as the Vehicle routing problem (VRP).  

The VRP is one of the most widely studied combinatory in operation research. The high interest 

of the research community in the different variants of VRP is not only motivated by its 

difficulty as combinatorial optimization problem but also by its practical relevance (Stefan 

Irnich, Toth, & Vigo, 2014). The main objective of this project is to achieve more efficiency 
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in the reverse logistics activities related to the collection of ELV and to help in the economic 

success of recycling these types of products.  

 

This report is composed of six chapters, as follows: 

 

The first chapter, research problem, presents the research problem, objectives as well as the 

research methodology.  

 

The second chapter, literature review, gives an overview of the research literature related to 

our project. First, we provide a brief review of the relevant VRP variants to our problem. 

Second, the different solution methods to solve the VRP are presented. Finally, we give a 

classification of the literature and present its limitations along with our contributions in this 

project.  

 

The third chapter, experimental data, focuses on the information obtained from a Canadian 

company involved in the collection of end-of-life vehicles as well as on real instances’ 

generation for the mathematical model and heuristic testing.  

 

The fourth chapter, mathematical model, describes in details the formulation of our 

mathematical model, including the presentation of main inputs and assumptions. After that, we 

validate the model and presents its limitations.  

 

The fifth chapter, heuristic development, presents in details our developed heuristic and gives 

the principal assumptions and steps for its execution.  

 

The sixth chapter, computational results, presents the testing results of the mathematical model 

and the heuristic using the generated instances. 



 

 
 
 

RESEARCH PROBLEM 

In this chapter, we first present the research problem. Then, we describe the research specific 

objectives. Finally, we give the research methodology followed in this project.  

 

1.1 Research problem 

In this project, we consider the reverse supply chain of vehicles, which is integrated within the 

end-of-life phase of these products (Figure 1.1). In fact, companies are now profitably and 

legally motivated to incorporate this life phase into their existing supply chain. Take the 

example of the treatment of ELVs, there is component disassembly and resale which 

constitutes the profit-oriented motivation, and there is recycling quotas imposed by 

governments which represent the legally oriented motivation (Cruz-Rivera & Ertel, 2009). 

 

In the literature, several papers studied related problems with ELVs. For instance, Ene & 

Öztürk (2015) developed a mathematical model for managing reverse flows in ELVs’ recovery 

network. Their main objective was to maximize revenue and minimize pollution at the end of 

life product operations. Besides, Demirel, Demirel, & Gökçen (2016) developed a 

mathematical model to optimize the reverse logistics activities of ELVs in Turkey. This model 

includes the different actors taking part in ELVs’ recovery system.  

 

Cin & Kusakcı (2017) did an exhaustive literature review on the logistics networks and 

modeling in the context of ELVs. They have studied 23 scientific works between 2005 and 

2017 related to the field of reverse logistics network design for vehicles that have completed 

their life cycle. Their analyzations are based on the objective functions, the decision variables, 

the constraint handling method and the optimization methods used in the various papers. 

Kuşakcı, Ayvaz, Cin, & Aydın (2019) developed a fuzzy mixed integer location-allocation 

model for a reverse logistics network of ELVs. This study uses a novel approach and assumes 

that ELV supply in the network is uncertain. The merit of the proposed mathematical model is 
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proved on a real-world scenario addressing the reverse logistics design problem for ELVs 

generated in the metropolitan area of Istanbul. The model is developed to be conformed to the 

existing directives in Turkey. Simic (2019) developed an interval-parameter conditional value-

at-risk two-stage stochastic programming model for management of end-of-life vehicles. He 

conducted a case study to illustrate the potentials and applicability of the formulated model. 

He concluded that the presented model provides an important and contemporary tool for waste 

managers. Besides, it could be applicable across vehicle recycling industry that processes 

dozens of millions of ELVs every year.  

 

  
 

Figure 1.1 Closed loop supply chain for vehicles 
Taken from (Cruz-Rivera & Ertel, 2009) 
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The reverse flow of ELVs consists mainly in the collection of crashed and medium-aged cars 

from customers and the transportation of these cars for recycling, reuse or disposal. For this 

reason, we focus on the vehicle routing aspect in the collection networks.  

 

The optimization of transportation costs and distances becomes a crucial issue for many 

companies operating in the collection activities (Beullens, Van Oudheusden, & Van 

Wassenhove, 2004). In this context, Schultmann et al. (2006) model the reverse logistic tasks 

within closed-loop supply chains of the automotive industry in order to enhance ELV recycling 

in Germany. Reverse logistics modeling is done by vehicle routing planning and solved using 

a tabu search algorithm. Aras, Aksen, & Tuğrul Tekin (2011) studied the reverse logistics 

problem of durable goods firm that aims to collect cores from its dealers. They formulate a 

mathematical model for this problem, and they refer to it as the selective multi-depot VRP with 

pricing. They solved the problem using a tabu search algorithm which gives good quality 

results. For more details about the subject of collection and vehicle routing issues in reverse 

logistics, we refer the reader to the paper of Beullens et al. (2004). 

 

In this project, we consider a real case study of a Canadian company involved in the purchasing 

and collection of ELVs. The company lives an extreme growth (more than 100,000 ELVs 

purchased every year), and one of the significant challenges is related to the fact that 80% of 

the purchased ELVs have to be collected efficiently to minimize the operational costs. At the 

moment, the process of purchasing and collection of ELVs is managed manually based on the 

operators’ experience. This leads to an increase in transportation costs, inconvenient delays to 

suppliers, as well as losing many business opportunities to rival companies. Therefore, there 

is a need for the development of the suitable optimization techniques to increase transportation 

efficiency with respect to the company’s business requirements. Indeed, designing the 

appropriate routes that maximize the recovered vehicles while minimizing the total traveled 

distance will reduce the complexity related to the ELVs transportation. 
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1.2 Research objectives 

This project considers the vehicle routes planning in the context of reverse logistics. The VRP 

is a widely studied optimization problem that arises in many practical contexts such as 

transportation, freight collection, distribution, and reverse logistics. It deals with a whole class 

of problems that try to find the optimum delivery routes for a fleet of vehicles to serve a number 

of customers. The extension of the basic VRP by adding different constraints such as capacity 

and time windows constraints lead to a large number of variants (Stefan Irnich et al., 2014). 

While the VRP was widely studied in the literature, the specific case study of ELVs collection 

in this project regroups many constraints together to form a multi-attribute or rich VRP. The 

main constraints of our problem are:  

• Customers assignment: customers may either be served by the company’s private fleet or 

by an external carrier, which serves them directly at a predefined cost.  

• Time-widows: the routes should be synchronized with the time-windows already specified 

in advance. 

• A Heterogeneous fixed fleet of vehicles: the fleet has different types of trucks with various 

capacities and costs.  

• Multi-trip: Due to the limited number and capacities of the vehicles, the model should 

consider performing multi-trip routing. 

• Loading sequences: Loading sequences of the different ELVs should be considered in the 

generation of the routes and the vehicle assignment. 

 

In this project, our main objective is to optimize the collection of ELVs with respect to the 

above constraints. This objective can be achieved in two steps: First, we need to develop a 

suitable mathematical model able to respect the specific characteristics of the problem.  

Second, we need to develop a heuristic algorithm able to obtain good quality results in 

reasonable computation time.  
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1.3 Research methodology 

The research methodology shows the significant efforts that have been made to achieve our 

research objectives, and it is divided into four steps as follow: 

• Problem analysis and characterization: The first step is the analysis and characterization of 

our problem through a detailed literature review. This will help us to define the 

specification and requirements to respect throughout the project. 

• Mathematical model development:  A mixed integer linear mathematical model that 

considers the problem specific constraints is developed. It is tested and validated with small 

instances to make sure that all important requirements are respected. 

• Heuristic development: A heuristic solution is developed to solve large instances of the 

problem in a reasonable computational time. This method can have good-quality solutions 

(feasible solutions) close to optimality.  

• Testing and evaluation: The final step is to test the efficiency of our developed model and 

the heuristic algorithm. To achieve this, we have collected information from the company 

to generate different instances for the testing. 





 

 
 
 

LITERATURE REVIEW 

This chapter gives an overview of the literature related to our problem. First, since we are 

dealing with VRPs, our literature review mainly includes the line of research on the different 

variants of VRP and the main solution methods used by researchers to solve this kind of 

problems. After that, we make a classification for the most relevant works in the literature to 

our problem. Finally, we specify the limitations of the literature and we describe our main 

contributions.    

 

2.1 The vehicle routing problem  

Dantzig & Ramser (1959) introduced the ‘‘Truck Dispatching Problem” modeling how a fleet 

of homogeneous trucks could serve the demand for oil of a number of gas stations from a 

central hub and with a minimum traveled distance. After five years, Clarke & Wright (1964) 

generalized this problem to a linear optimization problem as follow: how to serve a set of 

customers geographically dispersed around the central depot, using a fleet of trucks with 

varying capacities. This became known as the Vehicle Routing Problem (VRP), one of the 

most widely studied topics in the field of operations research, supply chain management, graph 

theory, and computer sciences to optimize transportation, logistics, distribution and delivery 

systems (Braekers, Ramaekers, & Van Nieuwenhuyse, 2016). 

 

The VRP is the generalization of the Travelling Salesman Problem (TSP) where a salesman 

wants to visit each of a set of towns exactly once, starting from and returning to his home town 

in the shortest possible way (Jünger, Reinelt, & Rinaldi, 1995). The TSP and the VRP are 

among the most widely studied combinatorial optimization problems. A vast number of books 

deal with these problems such as Gutin & Punnen (2002), Toth & Vigo (2001) and Toth & 

Vigo (2014). An excellent state of the art classification and review of the VRP is provided by 

Braekers et al. (2016). Nowadays, VRP problems incorporate real-life constraints such as time 
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windows, number of depots, type of vehicles and many others. A classification of side 

constraints occurring in real-life VRPs is provided by Van Breedam (1995). 

 

2.1.1 Capacitated VRP 

2.1.1.1 Problem statement 

The Capacitated Vehicle Routing Problem (CVRP) is the most classical version of VRPs. The 

problem can be structured on a directed graph 𝐺 = (𝑉, 𝐴) where 𝑉 = 0 ∪ 𝑁 = {1,2, … , 𝑛} is 

the set of vertices (or nodes) and 𝐴 = {(𝑖, 𝑗) ∈ 𝑉 × 𝑉: 𝑖 ≠ 𝑗} is the set of arcs. In the CVRP, 

the transportation requests consist of the distribution of goods from a single depot, denoted as 

point 0, to a given set of 𝑛 other points, denoted as customers, 𝑁 = {1,2, … , 𝑛}. The amount 

that has to be delivered to customer 𝑖 ∈ 𝑁 is the customer’s demand, 𝑞௜ ≥ 0, with 𝑞଴ = 0 for 

the depot. The fleet 𝐾 = {1,2, … , |𝐾|} is assumed to be homogeneous, meaning that |𝐾| 
vehicles are available at the depot, all have the same capacity 𝑄 > 0. A vehicle moving from 

node 𝑖 to node 𝑗 incurs the travel cost 𝑐௜௝ for (𝑖, 𝑗) ∈ 𝐴. A route is a sequence 𝑟 =(𝑖଴, 𝑖ଵ, 𝑖ଶ, … , 𝑖௦, 𝑖௦ାଵ) with 𝑖଴ = 𝑖௦ାଵ = 0, in which the set 𝑆 = {𝑖ଵ, … , 𝑖௦} ⊆ 𝑁 of customers is 

visited. The route 𝑟 is feasible if the capacity constraint, 𝑞(𝑆) = ∑ 𝑞௜ ≤ 𝑄௜∈ௌ , holds and no 

customer is visited more than once: 𝑖௝ ≠ 𝑖௞ ∀ 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑠. Therefore, a solution to a CVRP 

consists of |𝐾| feasible routes, one for each vehicle 𝑘 ∈ 𝐾, of minimum route cost 𝑐(𝑟), such 

that every vertex is serviced exactly by one vehicle, each route starts and ends at the depot and 

the total demand serviced by a route does not exceed vehicle capacity (Stefan Irnich et al., 

2014). In the following, we present a mixed integer mathematical model for the CVRP. 

 

2.1.1.2 Mathematical model  

This formulation uses two binary variables 𝑥௜௝௞  and 𝑦௜௞: The first one, 𝑥௜௝௞  equals 1 if and only 

if a vehicle 𝑘 traverses an arc (i, j) ∈ A, 0 otherwise. The second one, 𝑦௜௞ takes 1 if customer i is served by vehicle 𝑘 and takes 0 otherwise. Moreover, for a customer subset 𝑆 ⊆ 𝑁, we 
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define 𝑟(𝑆) as the minimum number of vehicle routes needed to serve 𝑆. A lower bound often 

used instead of 𝑟(𝑆), is given by ሾ𝑞(𝑆)/𝑄ሿ. The following formulation is taken from Toth & 

Vigo (2001): Minimize ෍ 𝐶௜௝ 𝑥௜௝௞(௜,௝)∈஺,௞∈௄  (2.1) 

 

 

Subject to  ෍ 𝑦௜௞ = 1    ∀ i ∈ 𝑁 ௞∈௄  (2.2) 

෍ 𝑦଴௞ = 𝐾௞∈௄  (2.3) 
 ෍ 𝑥௜௝௞ =    ෍ 𝑥௝௜௞௝∈௏  =  𝑦௜௞    ∀ i ∈ 𝑉, 𝑘 ∈ 𝐾     ௝∈௏  (2.4) 

෍ 𝑥௜௝௞ ≥  𝑟(𝑆)     ∀ S ⊆ N, S ≠ 0   ௜∈ௌ,௝∉ௌ,௞∈௄  (2.5) 

𝑥௜௝௞ ∈  {0,1},   ∀ (i, j) ∈ 𝐴, 𝑘 ∈ 𝐾 (2.6) 𝑦௜௞ ∈  {0,1},       ∀ i ∈ 𝑉, 𝑘 ∈ 𝐾 (2.7) 
 

The objective function (2.1) minimize of the total routing costs. Constraints (2.2) and (2.3) 

impose that each customer is visited exactly once and that |𝐾| vehicles leave the depot. 

Constraints (2.4) are the flow connectivity constraints, i.e. the same vehicle enters, and leaves 

a given customer. Constraints (2.5) serve at the same time as capacity constraints and subtour 

elimination constraints (SECs): First, consider an infeasible route over the cluster 𝑆 ⊆ 𝑁 with 

a demand 𝑞(𝑆) > 𝑄. Due to 𝑟(𝑆) > 1, at least two routes must connect 𝑆 with its complement 𝑉 ∖ 𝑆, so that any capacity-infeasible route is excluded. Second, any subtour over a non-empty 

subset 𝑆 ⊆ 𝑁 (S ≠ 0) fulfills ∑ 𝑥௜௝௞௜∈ௌ,௝∉ௌ,௞∈௄ = 0. Due to 𝑟(𝑆) ≥ 1 this subtour is also 

eliminated (Stefan Irnich et al., 2014). Finally, constraints (2.6) and (2.7) impose binary 

conditions on the decision variables. 
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Using (2.5) as SECs, the number of constraints grows exponentially with the number of nodes, 

which means that is practically impossible to solve directly the linear programming relaxation 

of problem (2.1) - (2.7). This problem can be remedied using the  MTZ-formulation as 

introduced by Miller, Tucker, & Zemlin (1960) for the TSP. The new formulation consists of 

replacing the SECs (2.5) by another set of constraints using additional variables. The additional 

variables 𝑢 = (𝑢ଵ௞, … , 𝑢௡௞)் indicate the accumulated demand 𝑢௜௞ already distributed by the 

vehicle k when arriving at customer i ∈ 𝑁. Thus, constraints (2.5) can be replaced by (2.8) and 

(2.9), which are respectively the MTZ-specific SECs and capacity constraints (Stefan Irnich et 

al., 2014). 𝑢௜௞ − 𝑢௝௞ + 𝑄 𝑥௜௝௞ ≤ 𝑄 − 𝑞௝        ∀ (i, j) ∈ 𝐴, 𝑘 ∈ 𝐾 (2.8) 𝑞௜ ≤ 𝑢௜௞ ≤ 𝑄     ∀ i ∈ 𝑉, 𝑘 ∈ 𝐾 (2.9) 

 

Note that 𝑥௜௝௞ = 1 implies 𝑢௝௞ ≥ 𝑢௜௞ + 𝑞௝ > 𝑢௜௞. Hence, the presence of a subtour (𝑖, 𝑗, … , 𝑖) 

not containing the depot leads to the contradiction 𝑢௜௞ > 𝑢௝௞ > ⋯ > 𝑢௜௞. The advantage of the 

MTZ-constraints is that it has polynomial cardinality of variables and constraints sets (Stefan 

Irnich et al., 2014).  

 

2.1.2 VRP with Time-Windows 

The VRP with Time Windows (VRPTW) is an extension of the CVRP in which the service of 

each customer must be within a time interval, called a time-window. The depot is represented 

by the two vertices 0 and 𝑛 + 1 with reference to a source vertex and a sink vertex, 

respectively. Thus, we define the set 𝑁 = 𝑉 ∖ {0, 𝑛 + 1} as the set of customer vertices. A 

feasible solution for the VRPTW is obtained by an elementary path from the source to the sink. 

The converse path, however, may not represent a feasible route as it can violate the time-

window (Desaulniers, B.G. Madsen, & Ropke, 2014). 

 

The time window is defined as an interval ሾ𝑎௜, 𝑏௜ሿ where 𝑎௜ and 𝑏௜ are the earliest possible 

departure time from node 𝑖 and the latest possible arrival time at node 𝑖, respectively. We also 
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define the travel time, 𝑡௜௝, for each arc (i, j) ∈ A and the service time 𝑠௜ for each customer 𝑖. 
The service of each customer must start within the associated time-window and the vehicle 

must stop at the customer location for 𝑠௜ time instants. In addition, there is a time variable 𝑇௜௞ 

specifying the start of service time at vertex 𝑖 when serviced by vehicle 𝑘 (Toth & Vigo, 2001).  

 

Time windows can be classified into two types (Desaulniers et al., 2014):  

• Hard time windows: in which a vehicle that arrives early at a customer must wait until the 

customer is ready to begin service. Usually, waiting for the service to start does not incur 

additional costs.  

• Soft time windows: in which the time interval may be not respected by the drivers, but this 

will incur a penalty cost each time the specified window is violated. 

 

2.1.3 Heterogeneous VRP  

The Heterogeneous VRP (HVRP) considers a group of vehicles that can differ in capacity, 

variable and fixed costs, speeds, and the customers that they can access. In HVRP, we have a 

fleet of vehicles made up of |𝑃| different vehicle types, i.e., the fleet 𝐾 is partitioned into 

subsets of homogeneous vehicles 𝐾 = 𝐾ଵ ∪ 𝐾ଶ ∪ … ∪ 𝐾|௣|. Each vehicle type 𝑝 = 1, … , |𝑃| 
has capacity 𝑄௣, and may also have a fixed cost 𝐹𝐶௣ and a specific traveling cost 𝑐௜௝௣  along 

each arc modeling the route. The selection of an appropriate vehicle for each route has an 

impact on the total cost of the solution (Stefan  Irnich, Schneider, & Vigo, 2014). 

 

2.1.4 VRP with loading constraints  

The VRP with loading constraints considers the way that the items should be loaded within the 

vehicles in addition to the routing optimization. Usually, in the CVRP, the demand of 

customers is expressed by the total weight of items. However, in VRP with loading constraints, 

we consider the shape and dimensions of items. This gives rise to new variants of VRP such 

as VRP with two-dimensional Loading constraints (2L-VRP) and VRP with three-dimensional 
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Loading constraints (3L-VRP). For such cases, restrictions imposing a feasible packing of the 

goods in the loading space have to be added to the weight constraints. In addition, the order of 

item’s loading and unloading is also important in some cases. This also gives rise to other VRP 

variants such as VRP with Last-In-First-Out (LIFO) loading and VRP with First-In-First-Out 

(FIFO) loading (Iori & Martello, 2010).   

 

2.1.5 Multi-trip VRP 

The CVRP could also be extended to have a multi-route aspect and become known as multi-

trip VRP (MTVRP). While in the CVRP each vehicle can only perform one route, in the 

MTVRP, vehicles may perform several routes over a planning horizon 𝑇. Given some routes 

with durations 𝑇ଵ, 𝑇ଶ, … , 𝑇௣, a single vehicle may perform them if 𝑇ଵ + 𝑇ଶ + ⋯ + 𝑇௣ ≤ 𝑇 holds. 

This situation is imposed, especially when the vehicle capacity is limited, or other constraints 

impose a small number of services per route, such as the number of available vehicles. Hence, 

feasible solutions with a limited fleet can only be achieved when vehicles are reused (Stefan 

Irnich et al., 2014).  

 

2.1.6 VRP with private fleet and external carriers 

Our problem considers the outsourcing option of some of the dealers to an external carrier if 

there are not enough private vehicles to serve them. This variant is known as VRP with private 

fleet and external carrier (VRPPC) or VRP with outsourcing (Archetti, Speranza, & Vigo, 

2014). A single-depot routing problem with outsourcing options was first introduced by Chu 

(2005). The problem considers a private fleet of vehicles with limited capacity and a set of 

customers with known demand. Each customer can be served either by the private fleet which 

then incurs travel costs as in standard VRP or outsourced to a common carrier and in such a 

case, only fixed service costs must be paid. The objective is to minimize the total cost involving 

fixed costs for vehicles, variable travel costs, and fixed costs for orders performed by the 

common carrier. Our problem adds new features to the problem of Chu (2005) as it considers 
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multiple external carriers that can have different costs depending on the customer’s region. 

Hence, the cost of the external carrier should be considered in the global routing decision. 

 

2.2 Solution methods 

Solution methods for the VRP can be classified as exact, heuristic and metaheuristic 

algorithms. In recent years, heuristics and metaheuristics became the preferred methods for 

researchers to solve many variants of VRPs. While they are not always able to prove the 

optimality of solution they find, heuristics methods are often capable of finding solutions 

whose quality is good, particularly for real-world applications, which usually have high 

degrees of complexity (Gendreau & Potvin, 2010).  

 

2.2.1 Exact methods 

Exact methods are used to obtain optimal solutions by reducing the solution space and using 

as a base the developed mathematical model of the VRP. The main exact methods for VRP are 

branch-and-bound (and their extensions: branch-and-but, branch-and-price, branch-and-cut-

and-price), set covering, integer programming and dynamic programming. Since the VRP with 

or without side-constraints is proven by Lenstra & Kan (1981) to be NP-hard, relatively large 

instances cannot be solved (in reasonable amount of time) using exact methods and only small 

instances can be solved to optimality. Therefore, we need to develop a heuristic algorithm to 

obtain good-quality results in reasonable computation time for large instances (Laporte, Ropke, 

& Vidal, 2014).  

 

2.2.2 Heuristics 

Heuristics are solution methods that can often find feasible solutions relatively quickly with 

no guarantee regarding solution quality. Thus, the test of these solutions is empirical, and their 

performances are judged by their computational results. Heuristics can be classified into two 

main families: constructive heuristics and improvement heuristics. Classification of the main 
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heuristics used for the VRP is presented in Figure 2.1 (Toth & Vigo, 2001). In the following, 

we explore the main algorithms and concepts used for these solution methods. 

 
Figure 2.1 Classification of the main heuristic methods for the VRP 

Taken from (Toth & Vigo, 2001)  
 

2.2.2.1 Constructive heuristics 

Constructive heuristics are usually employed to provide a starting solution to an improvement 

heuristic. The two most widely used algorithms for constructing VRP solutions are:  

• The Clarke & Wright (1964) savings algorithm: which is based on merging existing routes 

using a saving criterion. More specifically, merging the two routes (0, … , 𝑖, 0) 

and (0, 𝑗, … ,0) into a single route (0, … , 𝑖, 𝑗, … ,0) generates a saving 𝑠௜௝ = 𝑐௜଴ + 𝑐଴௝ − 𝑐௜௝. 
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• The insertion algorithm of Mole & Jameson (1976): which is based on gradually assigning 

vertices to the vehicles' routes using an insertion cost. This algorithm has many variants 

such as inserting the vertex yielding the minimum extra distance, that the vertex yielding 

the smallest sum of distances between two neighbors’ nodes or inserting the furthest vertex 

from the depot. 

 

2.2.2.2 Improvement heuristics 

Most of the improvement heuristics are based on the notion of local search, which is a central 

concept in most successful heuristics for the VRP. Local search algorithms are based on 

neighborhoods. Let 𝜑 be a finite set of feasible solutions to a given VRP instance and let 𝑐: 𝜑 →ℝ be a function that maps from a solution to the cost to this solution. Taking the example of a 

cost minimization, our goal is to find a solution 𝑠∗ for which 𝑐(𝑠∗) ≤  𝑐(𝑠) for all 𝑠 ∈ 𝜑. 

However, with heuristics, we are willing to find a solution that might be slightly inferior to 𝑠∗. 

Let 𝑃(𝜑) be the set of subsets of solutions in 𝜑. We define a neighborhood function as a 

function 𝑁: 𝜑 → 𝑃 that maps from a solution 𝑠 to a subset of solutions 𝑁(𝑠) called as the 

neighborhood of 𝑠. A solution 𝑠 is said to be locally optimal with respect to a neighborhood 𝑁(𝑠)  if 𝑐(𝑠) ≤  𝑐(𝑠ᇱ) for all 𝑠ᇱ ∈ 𝑁(𝑠).   

 

Using the above definitions, we can describe a steepest descent algorithm (see Algorithm 2.1). 

The algorithm takes an initial solution 𝑠 as input. At each iteration, it finds the best solution 𝑠ᇱ 
in the neighborhood 𝑁(𝑠) of the current solution 𝑠 (line 4). If 𝑠ᇱ is better than 𝑠 (line 5) then 𝑠ᇱ replaces 𝑠 as the current solution (line 6). Lines 3–8 are repeated as long as 𝑠ᇱ is an improved 

solution. When the loop stops, the algorithm returns 𝑠 as the best solution found. 

 

In the following, we review the main improvement heuristics used for the VRP. These 

algorithms, which are based on local search, explore solution space using neighborhoods and 

can be divided into two categories: Single route (or intra-route) improvements in which a single 

route is changed compared to the initial solution and multi-route (or inter-route) improvements 
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in which solutions are obtained by moving customers between two or more routes (Desaulniers 

et al., 2014). 

Algorithm 2.1 Steepest Descent 
Taken from (Desaulniers et al., 2014) 

 

Steepest Descent - Taken from (Desaulniers et al., 2014) 

 

Input:     Initial solution 𝑠 ∈ 𝜑  

Output:   𝑠 as the best solution found 

 

1     Input: Initial solution 𝑠 ∈ 𝜑 

2     done = false 

3     while done ≠ true do 

4     𝑠ᇱ ∈ arg min௦ᇲᇲ∈ ே(௦) (𝑐(𝑠ᇱᇱ)) 

5     if 𝑐(𝑠ᇱ) ≤ 𝑐(𝑠) then 

6        𝑠 = 𝑠ᇱ  
7     else 

8              done = true 

9     return 𝑠 

 

 Single-route improvements 
 

Most VRP intra-route improvements are based on λ-opt mechanism of Shen Lin (1965). Here, 

λ edges are removed from the route and the λ remaining segments are reconnected in all 

possible ways. The algorithm identifies any profitable reconnection and implements it. It stops 

when no further improvement can be obtained and so a local optimum is reached. S. Lin & 

Kernighan (1973) modified the original procedure and tried to move λ dynamically throughout 

the search to have better results than the static version. Another popular method, called as Or-
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opt method (Or, 1976), consists of displacing strings of three, two, or one consecutive vertices 

to another location.  

 

 Multi-route improvements  
 

In this types of improvements, Thompson & Psaraftis (1993) describes a general b-cyclic, k-

transfer scheme in which a circular permutation of b routes is considered and k customers from 

each route are shifted to the next route. Some of the widely particular techniques of this general 

scheme are 2-opt*, string exchange and string relocation. The 2-opt* is defined similarly to the 

2-opt, but its solutions are derived by modifying two routes instead of one. In string exchange, 

two sub-paths are selected, and their positions are exchanged. Finally, in string relocation, 

solutions are obtained by relocating a sub-path from one route to another one. 

 

2.2.3 Metaheuristics 

Metaheuristics are solution methods that encapsulate several heuristics. They are powerful 

algorithms that combine the power of local improvement procedures and higher-level 

strategies to create a process capable of performing a robust search of a solution space. Current 

metaheuristics for the VRP can be classified into local search algorithms and population-based 

algorithms. Classification of the main metaheuristics used for the VRP is presented in Figure 

2.2. Readers interested in an overview of metaheuristic principles are referred to the handbook 

of metaheuristics of Gendreau & Potvin (2010). 

 

2.2.3.1 Local search algorithms 

These algorithms are based on local search and neighborhood techniques. They start from an 

initial solution 𝑥ଵ and move at each iteration 𝑡 from the current solution 𝑥௧ to another solution 𝑥௧ାଵ in its neighborhood 𝑁(𝑥௧). These methods are also called as single trajectory because they 

generate a sequence of solutions that can be seen as a trajectory through the solution space. In 

this type of algorithms, only the current solutions are used to determine the next one. However, 
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care must be taken to avoid cycling, i.e. have the same solution at each iteration (Laporte et 

al., 2014). 

 

 

Figure 2.2 Classification of the main metaheuristic methods for the VRP 
Taken from (Toth & Vigo, 2014) 

 

2.2.3.2 Population-Based Algorithms 

Population-based algorithms are based on the idea of maintaining a pool of solutions, called a 

population, which evolve at each iteration of the solution process. Unlike the single trajectory 

algorithms which have been inspired by the necessity of escaping from local optima and 

avoiding cycling, population-based methods take their inspiration from natural concepts, e.g., 
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the evolution of species for genetic algorithm and the behavior of social insects foraging for 

ant colony algorithm. These algorithms use a guidance strategy based on a pool of solutions 

represented as chromosomes for genetic algorithm, or pheromone matrices for ant colony 

algorithm (Gendreau & Potvin, 2010).  

 
2.3 Classification of the literature  

In this section, we classify the main research papers from the literature, that have similar 

problems to ours, with respect to the VRP variants and to the solution methods.  

 

2.3.1 Classification based on VRP variants  

Table 2.1 presents a classification of the relevant research papers in the literature with respect 

to the VRP variants. We notice that all papers consider the capacitated VRP variant and most 

of them consider the time-window variant. In addition, some of the works define a maximum 

limit on the permitted time of the vehicles’ route. This is due, for example, to the working 

shifts of drivers or the maximum allowable time for vehicles to operate. Moreover, most of the 

articles use a limited private homogenous fleet of vehicles, whereas others include the variant 

of heterogenous fleet in their works. Furthermore, for the VRP with the outsourcing variant, 

some papers consider multiple external carriers, whereas the others consider only a single 

common carrier for all customers. Finally, some authors consider the multi-trip aspect in their 

problems.  

 

2.3.2 Classification based on solution methods 

Table 2.2 presents a classification of the relevant research papers in the literature with respect 

to the used solution method. In this classification, we review mainly the papers that use 

heuristics and metaheuristics as solution methods, as we are interested in the different 

techniques used by researchers to develop our heuristic algorithm. For each research paper, we 
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give the name of the heuristic, the heuristic used to build the initial solution, the different 

neighborhoods used by the algorithm, and the local search technique. 
 

Table 2.1 Classification of research papers based on VRP variants 
 

Paper 
VRP variant 

Capacity Time-
windows 

Time 
limit Private fleet Carriers Multi-

trip 

(Petch & Salhi, 2003) x x x Limited 
Homogenous  x 

(Chu, 2005) x   Limited 
Homogenous Single  

(Bolduc, Renaud, & 
Boctor, 2007) x   Limited 

Heterogeneous Single  

(Olivera & Viera, 2007) x  x Limited 
Homogenous  x 

(Krajewska & Kopfer, 
2009) x x x Limited 

Homogenous Multiple  

(Battarra, Monaci, & 
Vigo, 2009) x x x Limited 

Homogenous  x 

(Ceschia, Di Gaspero, 
& Schaerf, 2011) x x x Limited 

Heterogeneous Multiple  

(Potvin & Naud, 2011) x   Limited 
Homogenous Single  

(Stenger, Vigo, Enz, & 
Schwind, 2013) x  x Limited 

Homogenous Multiple  

(Wang, Liang, & Hu, 
2014) x x x Limited 

Homogenous  x 

(Despaux & Basterrech, 
2014) x x x Limited 

Heterogeneous  x 

(Anaya-Arenas, 
Chabot, Renaud, & 
Ruiz, 2016) 

x x x Limited 
Homogenous  x 

(Euchi, 2017) x   Limited 
Homogenous Single  

(Wu, Chu, & Hsu, 
2017) x x x Limited 

Homogenous Single  

(Gahm, Brabänder, & 
Tuma, 2017) x   Limited 

Homogenous Multiple  

(Sun, Wang, Lang, & 
Zhou, 2018) x x x Limited 

Heterogeneous  x 

Our work x x x Limited 
Heterogeneous Multiple x 
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We notice that different heuristic algorithms are used by researchers such as tabu search, 

variable neighborhood search, adaptive memory programming and other specific heuristics. 

Concerning initial solutions, several heuristics are also used such as CS (Customer Selection) 

and MCW (Modified Clarke and Wright) algorithm, sweep algorithm and different kind of 

insertion algorithms. Each heuristic uses several techniques for both intra-route and inter-route 

neighborhoods such as 2-opt, 3-opt, 4-opt*, Or-opt, 1-E (one exchange), 2-E (two exchanges), 

1-T (one transfer), 2-T (two transfers), 1-S (one swap), 2-S (two swaps), cyclic-E (cyclic 

exchange), EC (Ejection Chains), 1-I (one insertion), 2-I (two insertions) and LKH-2 (Lin 

Kernighan Heuristic). Finally, the main used local search technique are SS (Sequential Search), 

BI (Best Improvement) and FI (First improvement), Allowing IS (Infeasible Solutions), 

reduction techniques, adaptive guidance approach and using penalties.  

 

Table 2.2 Classification of research papers based on solution methods 
 

Paper 
Heuristic/Metaheuristic 

Name Initial 
solution 

Name Local search Intra-route Inter-route 
(Petch & 
Salhi, 2003) 

Multi-phase 
constructive 
heuristic 

Saving based 
construction, 
Bin-packing. 

 Meiosis,  
Exchange, 
2- opt, 3-opt  

SS, guided 
neighborhood.  

(Chu, 2005) TL–LTL CS, MCW  1-E and 2-E 1- and 2-E SS, BI 
(Bolduc et 
al., 2007) 

Selection, 
routing, 
insertion 

MCW  1-E, 2-E, 2-
T, 4-opt*  

SS, BI  

(Olivera & 
Viera, 
2007) 

Tabu search 
and adaptive 
memory 

Sweep 
algorithm. 

 1-E, 1-T Allow IS, reduction 
technique and route 
pool updating. 

(Krajewska 
& Kopfer, 
2009) 

Tabu search Two-phase 
construction 
and insertion.   

 1-T,1-E and 
2-E 

SS, Allow IS, 
Intensification 
through restarts. 

(Battarra et 
al., 2009) 

Vehicle 
routing 
heuristic  

Sequential and 
parallel 
insertion. 

 2-opt Adaptive guidance 
allow IS, critical 
intervals. 
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Table 2.2 Classification of research papers based on solution methods (continued) 

 

Paper 
Heuristic/Metaheuristic 

Name Initial 
solution 

Name Local search Intra-route Inter-route 
(Ceschia et 
al., 2011) 

Tabu search Random 
construction 
heuristic 

1-S 1-T and 1-S Token-ring search 
Allow partial IS, 
tabu dynamics. 

(Potvin & 
Naud, 
2011) 

Tabu search CS, least-cost 
and convex 
hull insertion 

 1-T, 2-E, 4-
opt* and EC 

SS, Allow IS, self-
adapting penalties 

(Stenger et 
al., 2013) 

Adaptive 
Variable 
neighborhood 
search (VNS) 

CS, MCW 2-Opt, Or-
Opt  

cyclic-E, 1-
E and 2-S 

SS, FI, Allow IS, 
virtual vehicle, hill-
climbing, roulette 
wheel selection 

(Wang et 
al., 2014) 

Adaptive 
memory  

Optimal 
splitting.  

 1-S, 1-T SS, BI, Route pool 
updating  

(Despaux & 
Basterrech, 
2014) 

Simulated 
annealing   

Solomon 
insertion 

Order 
reversing  

1-T, 2-T, 2-
E and route 
partition 

ad-hoc local search 
and allow IS.  

(Anaya-
Arenas et 
al., 2016) 

Schedule 
construction 
heuristic   

 1-T  Multi-start 
technique  

(Euchi, 
2017) 

Tabu search CS, specific 
insertion.  

 1-E, 2-E, 2- 
opt and EC 

SS, Allow IS. 

(Wu et al., 
2017) 

VRPTWLTL MCW 1-S, 1-I, 2-I 1-E, 2-E 
 

Allow partial IS, SS 
BI 

(Gahm et 
al., 2017) 

Variable 
neighborhood 
search 

CS, MCW 2-opt  LKH-2, 1-
E, 2-E, 3-E, 
4-E and 5-E  

BI and FI, Virtual 
vehicle, explicit 
shaking.  

(Sun et al., 
2018) 

Tabu search Nearest-
neighbour 

2-E  Allow IS 

Our Work Heuristic 
algorithm 

Routes’ 
construction 
heuristic 

1-S, 1-T 1-S SS, BI 
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2.4 Limitations of the literature and contributions  

As can be seen from Table 2.1, no paper considers the variant with external carriers and the 

variant with multi-trips at the same time. In our problem, in addition to the capacity, time-

windows, time-limit and heterogeneous fleet constraints, we consider the multi-trip and 

outsourcing aspects together in the same mathematical model and heuristic development. We 

also notice that the VRP literature that considers the outsourcing and multi-trip aspects do not 

generally deal with loading constraints. In our problem, in addition to the mentioned variants, 

we also treat a specific type of loading constraints that considers the type of cars to be collected 

and their sequence of loading on the vehicles.  

 

Concerning solution methods, most of the literature considers metaheuristics development.  

Since our problem is considered to be more restrictive compared to many reviewed works from 

the literature and given the limited size of our problem, we consider developing a specific 

heuristic algorithm to deal with the complicated nature of our constraints as well as to obtain 

a good solution in the smallest computational time. In our algorithm, we use a combination of 

different concepts and techniques that have already proven to be effective in the literature such 

as insertion algorithms, different intra-route and inter-route neighborhoods, assignment and 

scheduling algorithms, etc.  

 





 

 
 
 

EXPERIMENTAL DATA 

In this chapter, we focus on the information collection process and the structure of the collected 

data from the company as well as the generation of the instances for the mathematical model 

and the heuristic algorithm.  

 

3.1 Information collection process 

In this project, our objective consists of automatizing and optimizing the manual planning of 

routes of ELVs’ collection for a Canadian Company using a mathematical model and a 

heuristic algorithm. However, before beginning the routes’ planning optimization, we need to 

characterize our problem and generate the different instances for the testing of our solution 

methods by collecting the necessary data on the transportation network of the firm. To achieve 

that, a survey was developed to identify the type and class of the VRP to model and its different 

constraints by collecting the following information: 

• Type of offered service. 

• The number of warehouses and dealers and their locations.  

• Hours of operation of the warehouse and the dealers. 

• Work schedule of the vehicles. 

• The time required to load and unload the items on the vehicles.  

• Characteristics of the fleet of vehicles. 

• Characteristics of the third-party logistics service providers. 

• Types and status of the items to be transported. 

• Quantity of transported items.  

• Type of costs taken into consideration by the company. 

 

After obtaining the above information, we have two main steps. The first step is to organize 

and prepare the raw collected data. This step is important before beginning the development 
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of our solution methods and it takes us a lot of time because the raw data is unorganized and 

cleaning it from the additional information is time consuming. After that, we use the prepared 

data to generate the different instances. 

 

3.2 Data structure  

In this part, we give the structure of the collected data from the company in order to use it for 

the instances’ generation.  

 

3.2.1 Locations  

In this project, we are interested in optimizing the route planning of the company within the 

Greater Montreal region. Figure 3.1 displays some geolocated dealers and the depot of the 

company within the Greater Montreal region (area in green) using their zip codes. The firm 

has several depots located within the province of Quebec. However, we are interested in 

optimizing the route of each depot separately (a route begins and ends at a given depot after 

visiting some dealers).  

 

3.2.2 The private fleet of vehicles and external carriers  

The company has a fixed fleet of vehicles (auto-carriers) for collection activities at each one 

of its warehouses. This fleet is composed of different type of vehicles where each type has its 

own capacity and costs. In addition, the company may need the service of an external carrier 

if the demand of the day exceeds the capacity of the fleet. Table 3.1 displays an example of 

internal vehicles and external carriers used by the firm. Considering the capacity of the 

vehicles, we can divide our fleet into two types of trucks, ones with a capacity of three cars 

and the others with a capacity of two cars. Vehicles with a capacity of three cars can hold two 

cars on their platform and the third is towed (Figure 3.2), whereas vehicles with a capacity of 

two cars can hold only one car on the platform and the other is towed (Figure 3.3).  
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Figure 3.1 Example of geolocated depot and dealers  
 

Table 3.1 List of internal vehicles and external carriers used by the company 
 

Private fleet 
External carriers 

Truck Capacity 

R-9 3 cars W.V. AUTO 

R-23 3 cars DURAFLEX 

R-27 3 cars S.S REMORQUAGE 

R-30 2 cars V.I.P REMORQUAGE 

R-31 2 cars REMORQUAGE ICEBERG 

T-154 2 cars MAXIM 
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Figure 3.2 A vehicle with a capacity of 3 cars 
 

 

Figure 3.3 A vehicle with a capacity of 2 cars 
 

3.2.3 Internal fleet and carriers’ costs  

In this project, we consider the minimization of the total cost of collecting cars from the dealers. 

The total cost can be divided into two main costs as follow:  

• The internal cost which is composed of fixed and variable costs. The fixed cost is the cost 

of activating one internal vehicle from the private fleet to do a route and the variable cost 

is the unit cost per distance traveled by the internal vehicle. The evaluation of these costs 

is based on the operation costs of the company, as the depreciation cost of the vehicle, fuel 

costs, drivers’ costs, repair and maintenance costs, insurance costs and finally license costs, 

and they are determined by the operations manager.   

• The external cost which is the cost of using an external carrier to collect the cars. The 

carriers have a fixed cost for each region, so this cost depends on the region where the 

dealers will be visited.  

 

Table 3.2 displays the costs defined for the internal vehicles and for the external carriers. For 

the internal vehicles with a capacity of three cars, they have a variable cost equals to 2,6$/km 

and a fixed cost equals to 75$, whereas, for the internal vehicles with a capacity of two cars, 
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they have a variable cost equals to 2,4$/km and a fixed cost equal to 65$. The cost of the 

external carriers generally varies between 50$ and 150$ depending on the region where the 

customer is visited. 

Table 3.2 Costs of internal vehicles and external carriers used by the company 
 

 Type Variable cost Fixed cost 

Internal vehicles 1 (capacity = 3) 2,6$/km 75$ 

Internal vehicles 2 (capacity = 2) 2,4$/km 65$ 

External carriers - [50$,150$] - 

 

 

3.2.4 Cars characteristics 

In order to respect the loading constraints of the vehicles, we have to consider the 

characteristics of the cars collected by the company. This is done by building a database in 

which we classify the cars with respect to their length (or size), status and driveline. The car-

size can be small, medium or large, the car status can be for example new, burned, damaged, 

without wheels, etc., and the driveline can be for example 4x4, 2x4, 4x2, etc. These different 

characteristics allow us to define the adequate loading sequences that should be respected in 

the generation of the routes. Table 3.3 gives the correspondence between the car length and 

size. For instance, a Volkswagen Beetle has a length of 4,28 meters, so it is considered as a 

small-size car, whereas, a Porsche Cayenne has a length of 4,85 meters, so it is considered as 

a large-size car. 

Table 3.3 Classification of towed cars by size and length 
 

Car size Car length 

Small vehicles [ 0, 4.33 m [ 

Mid-size vehicles [4.33 m, 4.72 m [ 

Large vehicles [4.72 m, ∞ [ 
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3.3 Generation of the instances 

In our problem, the company needs to collect the cars from the dealers and transport them to 

the depot every single day. For this reason, one instance corresponds to one day of collection 

activities and our solutions methods will be used to provide an optimized daily planning. In 

the following, we give an example of data for one instance, then we give the different generated 

instances for the testing.  

 

Table 3.4 Example of main data for a generated instance 

 

Data Example 

Number of dealers  5 

Number of available vehicles with a capacity of 3 cars 1 

Number of available vehicles with a capacity of 2 cars 1 

Number of permitted routes per vehicles 3 

Number of available externa carriers 2 

 

Table 3.5 Example of data for locations 
 

ID Name Demand Opening Closing Loading Unloading 

0 Depot 0 8 a.m. 8 p.m. - - 

1 Dealer 1 1 8 a.m. 12 p.m. 20 minutes - 

2 Dealer 2 1 12 p.m. 4 p.m. 25 minutes - 

3 Dealer 3 1 12 p.m. 4 p.m. 20 minutes - 

4 Dealer 4 1 4 p.m. 8 p.m. 20 minutes - 

5 Dealer 5 1 4 p.m. 8 p.m. 30 minutes - 

6 Depot 0 8 a.m. 8 p.m. - 15 minutes 
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Table 3.4 presents an example of the main data needed for an instance generation which include 

the number of dealers, number of available vehicles, number of the maximum permitted routes 

per vehicle and number of the external carriers.  

 

Table 3.5 shows an example of data for the depot and the dealers. We consider a single depot 

for all generated instances that is duplicated to a start depot and an end depot for testing 

purposes. We consider that the demand of the dealers is only one car at a time. If a dealer has 

more than a car to sell, say for instance two cars, then it will be treated as two dealers who are 

in the same location. The opening and closing times for the depot and the dealers are also 

presented. For the end depot, we give an example of an unloading time of 10 minutes, whereas 

for the dealers, the loading time varies depending on the type of the car to collect. 

 

Table 3.6 Example of data for cars 
 

Dealer Car length Car status Driveline 

1 Medium Body 2x4 

2 Large Damaged, Have only front wheels 4x4 

3 Small New, with wheels 4x2 

4 Medium Burned, have only back wheels 4x4 

5 Large Have only front wheels 4x2 

 

Table 3.7 Example of brokers cost 
 

Dealer Broker cost 

1 100 

2 80 

3 95 

4 110 

5 70 
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Table 3.8 Example of data for vehicles 
 

Vehicle Capacity Working schedule Fixed cost Variable cost 

1 3 12 hours 75$ 2,6 $/km 

2 2 12 hours 60$ 2,4 $/km 

 

Table 3.6 describes the characteristics of the cars to be collected from the dealers. Table 3.7 

specifies the brokers cost for each dealer in case a dealer is visited by this broker. Finally, 

Table 3.8 depicts the characteristics of the available vehicles for this instance such as their 

capacities, working schedules, fixed costs and variable costs. Note that the only missing 

elements in this example are the matrices of distances and travel times between all defined 

locations. 

Table 3.9 Generated instances for the mathematical model 
 

Instances Dealers 
Vehicles 𝒒𝒗 = 𝟑 𝒒𝒗 = 𝟐 

I-1 5 1 0 

I-2 5 1 1 

I-3 7 1 1 

I-4 7 1 2 

I-5 10 1 0 

I-6 10 1 1 

I-7 10 1 2 

I-8 12 1 0 

I-9 12 1 1 

I-10 15 2 1 

I-11 15 1 1 

I-12 15 1 0 

I-13 20 1 1 
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Following the previous example, we generate 43 different instances ranging from small ones 

with only five dealers to bigger ones with 59 dealers. The first 13 small instances are generated 

for the testing and validation of the mathematical model as it takes a lot of time to solve this 

complex problem (Table 3.9). To assess the performance of our heuristic algorithm, we use it 

to build the routes’ planning of the company for November 2018. Table 3.10 depicts the 30 

generated instances of November 2018 which are bigger than the ones generated for the testing 

of the mathematical model. The internal fleet used for the testing of these instances is 

composed of three vehicles: two vehicles with a capacity of three cars and one vehicle with a 

capacity of tow cars. 

Table 3.10 Generated instances for the heuristic algorithm 
 

Instances Dealers Instances Dealers 

D-1 49 D-16 45 

D-2 53 D-17 40 

D-3 32 D-18 22 

D-4 34 D-19 51 

D-5 40 D-20 45 

D-6 45 D-21 49 

D-7 48 D-22 55 

D-8 38 D-23 49 

D-9 40 D-24 25 

D-10 33 D-25 23 

D-11 28 D-26 48 

D-12 52 D-27 40 

D-13 43 D-28 59 

D-14 50 D-29 58 

D-15 39 D-30 42 





 

 
 
 

MATHEMATICAL MODEL 

This chapter is based on our paper presented during the CIGI QUALITA conference (see 

ANNEX II). We first describe the inputs and the assumptions of our problem and then we 

present the developed mixed-integer linear mathematical model. Next, we validate the 

developed model by showing a detailed example of its execution over a generated instance. 

Finally, we present the limitations of using the model to solve large instances.  

 

4.1 Problem statement 

In this part, we propose a mixed-integer linear mathematical model that takes into account the 

company’s specific requirements. The company needs daily planning for their operations. 

Thus, it must run the optimization every day after having a number of dealers to visit. For that 

reason, our model is considered as a single-period deterministic model because the number of 

dealers is known in advance, and the optimization horizon is only one day. Figure 4.1 presents 

an illustration of our VRP problem. In this example, we have the depot of the company, seven 

dealers, and one broker. The dealers can be served either by the private vehicle, that goes out 

from the depot, or the broker, which is an external logistics service provider that deals with the 

company. Our objective is to determine which dealers will be served by the private fleet and 

which dealers will be served by the brokers as well as the generation of a set of optimized 

routes for the private vehicles such that total internal costs plus total external costs are 

minimized.  

 

Moreover, we need to respect some constraints and hypothesis imposed by the company, as 

shown in Figure 4.1:  

• Each dealer can either be assigned to one broker or visited exactly by one route and one 

vehicle. In other words, a vehicle cannot visit a dealer two times or a dealer cannot be 

visited by two vehicles. In the example, we have five dealers serviced by the private fleet, 

which are 1, 2, 3, 5 and 7, and the dealers 4 and 6 are serviced by the broker.  



38 

• We optimize the route only for the private fleet. For example, we do not optimize the route 

for the broker to collect the cars from dealers 4 and 6. Instead, they are directly assigned to 

the cheapest broker depending on their locations.  

• Each route starts and ends at the same depot after finishing the service for the last dealer. 

In the example, we have two routes, 0-3-1-0 and 0-2-5-7-0 (0 denotes the depot).  

• The sum of the demands of the dealers in any route does not exceed vehicle capacity. This 

means that we cannot use a vehicle with a capacity of two cars to serve three dealers in one 

route.  

• The total duration of the routes assigned to the same vehicle does not exceed the vehicle 

working time. 

• Each dealer should be visited within a predefined time window. In our example, we have 

two time-windows which are from 8 a.m. to 12 p.m and from 12 p.m. to 4 p.m. 

• The specific loading constraints of each vehicle should be respected. In the example, this 

is done by respecting the characteristics of the cars such as small, special, regular, 4x4, etc.  

 

 

Figure 4.1 Illustration of our VRP problem 
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4.2 Inputs and assumptions  

In this section, we present the main inputs and assumptions to formulate our mathematical 

model.  

 

4.2.1 Network 

Given a complete graph 𝐺 = (𝐼, 𝐴), where 𝐼 = {0,1, … 𝑛, 𝑛 + 1} is the set of nodes (locations) 

and 𝐴 = {(𝑖, 𝑗): 𝑖 < 𝑛 + 1; 𝑗 > 0; 𝑖 ≠ 𝑗} is the set of arcs connecting each node. Node 0 

corresponds to the depart depot and node 𝑛 + 1 corresponds to the end depot which is a 

duplication of the depart depot, whereas vertices 𝑁 = {1, … 𝑛} correspond to the 𝑛 dealers to 

be visited. A distance 𝑑௜௝ ≥ 0 and a travel time 𝑡௜௝ ≥ 0 are associated with each arc (𝑖, 𝑗) ∈ 𝐴. 

Each location 𝑖 ∈ 𝐼 has its service time 𝑠௜ ≥ 0 (𝑠௜ is the loading time for 𝑖 ∈ 𝑁, 𝑠଴ = 0 and 𝑠௡ାଵ is the unloading time) and each location should be visited within a predefined time 

window ሾ𝑜௜, 𝑐௜ሿ (0 ≤ 𝑜௜ ≤ 𝑐௜) with 𝑜௜ and 𝑐௜ are respectively the opening time and the closing 

time of the time-window for location 𝑖 ∈ 𝐼. The service of the dealers must start within the 

time-window, but the vehicle may wait at a dealer’s location if it arrives before the beginning 

of the time-window. Note that the time-window for the depot is limited by the work schedule 

of the vehicle 𝑣. 

 

4.2.2 Fleet and routes   

The set of vehicles is donated by 𝑉. The set is composed of a fixed heterogeneous fleet of 

vehicles where each vehicle 𝑣 ∈ 𝑉 has a maximum capacity 𝑞௩, duration of working day 𝑇௩, 

fixed operating cost 𝑓௩ for each time a vehicle leaves the depot and variable cost rate per 

distance unit 𝑐௩. In this model, we suppose that we have two vehicle types: We donate the 

vehicle type with 𝑞௩ = 3 as the set 𝑉ଵ and the vehicle type with q୴ = 2 as the set Vଶ and 𝑉ଵ ∪𝑉ଶ = 𝑉. 
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Vehicles may perform several routes on the same day. This is due to the limited vehicle 

capacity 𝑞௩ and to the limited number of available vehicles. Thus, feasible solutions with a 

limited fleet of size |𝑉| can only be achieved when vehicles are reused to perform several 

routes. The set of routes is denoted as 𝑅. A route 𝑟 ∈ 𝑅 has a duration 𝑇௥ and a single vehicle 

may perform several routes with durations 𝑇ଵ, 𝑇ଶ, … , 𝑇௥ if 𝑇ଵ + 𝑇ଶ + ⋯ + 𝑇௥ ≤ 𝑇௩ holds.  

  

4.2.3 Pickups 

The number of cars that need to be collected from a dealer 𝑖 ∈ 𝑁 consists of 𝑎௜ cars. Each 

request for pickup can be fulfilled by two transportation options: The first option is to use an 

internal vehicle. The other transportation option is offered by a set of brokers or external 

carriers. The set of brokers is donated by 𝐵. The assignment of a dealer 𝑖 to a broker 𝑏 ∈ 𝐵 

incurs a cost 𝑝௜௕ that depends on the broker to be used and the location of the dealer to be 

served. In our model, we suppose that the brokers do not have any capacity limits but accept 

every subcontracted quantity. 

 

4.2.4 Parameters 

𝑓௩: Unit vehicle operating cost (fixed cost) 𝑐௩: Cost per unit distance traveled for a vehicle 𝑣 (variable cost) 𝑞௩ : Capacity of vehicle 𝑣 𝑇௩: Duration of the working day for a vehicle 𝑣 𝑑௜௝: Distance between location 𝑖 and location 𝑗 𝑡௜௝: Time required to travel from location 𝑖 to location 𝑗 𝑎௜: Number of cars to be collected from dealer 𝑖  𝑠௜ : Service time for location 𝑖  ሾo୧, 𝑐୧ሿ: Time window for location 𝑖  𝑝௜௕: Cost of assignment of a dealer 𝑖 to broker 𝑏 𝑑௜: Takes 1 if a dealer 𝑖 has 4x4 car (also known as Four-Wheel Drive car), 0 otherwise 
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𝑛𝑤௜: Takes 1 if a dealer 𝑖 has a body, burnt, damaged or without wheels car, 0 otherwise  𝑔௜: Takes 1 if a dealer 𝑖 has a large car, 0 otherwise 𝑚𝑖𝑑௜: Takes 1 if a dealer 𝑖 has a medium car, 0 otherwise 𝑀: A large number 

 

4.2.5 Variables 

𝑥௜௝௥௩ : Takes 1 if arc (𝑖, 𝑗) ∈ 𝐴 is used on route 𝑟 by vehicle 𝑣, 0 otherwise. 𝑦௜௥௩: Takes 1 if a dealer 𝑖 is visited on route 𝑟 by vehicle 𝑣, 0 otherwise. 𝐴𝑇௜௥௩ : Arrival time of vehicle 𝑣 for location 𝑖 on route 𝑟. 𝑢௜௥௩ : Load of the vehicle 𝑣 before reaching a dealer 𝑖 on a route 𝑟. 𝑧௜௕: Takes 1 if a dealer 𝑖 is assigned to the external borker 𝑏, 0 otherwise.  

 

Note that this formulation makes use of the additional variables 𝑢௜௥௩  to model the Miller–

Tucker–Zemlin (MTZ) subtour elimination constraints.  

 

4.3 Mathematical model 

In this part, we give the mathematical formulation of our model which includes the objective 

function and the constraints of our problem. 

 

4.3.1 Objective function  

 ෍ ෍ ෍ 𝑓௩𝑥଴௝௥௩୴∈௏୰∈ோ୨∈ே∪{௡ାଵ} + ෍ ෍ ෍ ෍ 𝑐௩୰∈ோ௩∈௏௝∈ே∪{௡ାଵ}௝ஷ௜௜∈ே∪{଴} 𝑑௜௝𝑥௜௝௥௩
+ ෍ ෍ 𝑝௜௕𝑧௜௕௕∈஻௜∈ே  

 

(4.1) 
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The objective function (4.1) minimizes the total cost which is the sum of three parts as follow: 

The first and second parts calculate the total fixed costs and the total variable costs of the 

internal vehicles, respectively. The third part calculates the cost of assigning the dealers to the 

external brokers.  

 

4.3.2 Loading constraints  

𝑢௜௥௩ − 1 ≤ 𝑀(1 − 𝑑௜ × 𝑦௜௥௩)  𝑖 ∈ 𝑁,  𝑣 ∈ 𝑉,  𝑟 ∈ 𝑅 (4.2) 𝑢௜௥௩ − 2 ≤ 𝑀(1 − 𝑛𝑤௜ × 𝑦௜௥௩)   𝑖 ∈ 𝑁,  𝑣 ∈ 𝑉ଵ,  𝑟 ∈ 𝑅 (4.3) 𝑢௜௥௩ − 1 ≤ 𝑀(1 − 𝑛𝑤௜ × 𝑦௜௥௩)   𝑖 ∈ 𝑁,  𝑣 ∈ 𝑉ଶ,  𝑟 ∈ 𝑅 (4.4) 𝑥௝௟௥௩ ≤ 𝑀൫1 − 𝑥଴௝௥௩൯         𝑣 ∈ 𝑉ଵ,  𝑟 ∈ 𝑅,  𝑗, 𝑙 ∈ 𝑁, 𝑖 ≠ 𝑗, 𝑔௝ = 𝑔௟ = 1; or 𝑔௟ = 1 𝑎𝑛𝑑 𝑚𝑖𝑑௝ = 1;  or 𝑔௝ = 1 𝑎𝑛𝑑 𝑚𝑖𝑑௟ = 1 
(4.5) 

 

Constraints (4.2) states that if a dealer 𝑖 ∈ 𝑁 has a 4x4 car then it should be visited first on a 

route 𝑟 ∈ 𝑅 using a vehicle 𝑣 ∈ 𝑉. Constraints (4.3) and (4.4) state that if a dealer 𝑖 ∈ 𝑁 has a 

body, burnt, damaged or without wheels car then it should be visited either first or second on 

a route 𝑟 ∈ 𝑅 if 𝑣 ∈ 𝑉ଵ and first if 𝑣 ∈ 𝑉ଶ (i.e. The vehicle should be on the platform of the 

vehicle). Constraints (4.5) state that vehicle 𝑣 ∈ 𝑉ଵ cannot hold two large cars or one large and 

one medium on the platform at the same time. 

 

4.3.3 Flow and capacity constraints 

෍ ෍ 𝑦௜௥௩୰∈ோ୴∈௏ + ෍ 𝑧௜௕ = 1ୠ∈஻         𝑖 ∈ 𝑁 (4.6) 

෍ 𝑥௜௝௥௩ = ෍ 𝑥௝௜௥௩ =   𝑦௝௥௩             ௜∈ே∪{௡ାଵ}௜ஷ௝௜∈ே∪{଴}௜ஷ௝
𝑗 ∈ 𝑁, 𝑟 ∈ 𝑅, 𝑣 ∈ 𝑉 (4.7) 

෍ 𝑥଴௝௥௩௝∈ே ≤ 1      𝑟 ∈ 𝑅, 𝑣 ∈ 𝑉 (4.8) 
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෍ 𝑎௜𝑦௜௥௩௜∈ே ≤ 𝑞௩    𝑟 ∈ 𝑅, 𝑣 ∈ 𝑉 (4.9) 

෍ 𝑥଴௝(௥ାଵ)௩ ≤ ෍ 𝑥଴௝௥௩    ௝∈ே௝∈ே 𝑟 ∈ {1, … ,  |𝑅| − 1} , 𝑣 ∈ 𝑉 (4.10) 

 

Constraints (4.6) ensure that a dealer 𝑖 ∈ 𝑁 is either visited exactly once (by one route 𝑟 ∈ 𝑅 

and one internal vehicle 𝑣 ∈ 𝑉) or it is assigned to an external broker 𝑏 ∈ 𝐵. Constraints (4.7) 

are known as the flow conservation constraints which ensure that if a vehicle 𝑣 visits a location 𝑗 ∈ 𝐼 on route 𝑟 ∈ 𝑅, then it should leave this location after service completion to have a 

balanced flow. Constraints (4.8) state that at most one vehicle 𝑣 ∈ 𝑉 can go out from the depart 

depot on a route 𝑟 ∈ 𝑅. Constraints (4.9) ensure that the total demand of the dealers on a route 𝑟 ∈ 𝑅 should not exceed the vehicle capacity. Constraints (4.10) ensure that with respect to a 

vehicle 𝑣 ∈ 𝑉, its (𝑟 + 1)௧௛ route is realized only if its 𝑟௧௛  route has been realized. 

 

4.3.4 Subtour elimination constraints  

𝑢௜௥௩ − 𝑢௝௥௩ + 𝑞௩𝑥௜௝௥௩ + ൫𝑞௩ − 𝑎௜ − 𝑎௝൯𝑥௝௜௥௩ ≤ 𝑞௩ − 𝑎௝   𝑖, 𝑗 ∈ 𝑁,  𝑖 ≠ 𝑗,  𝑟 ∈ 𝑅,  𝑣 ∈ 𝑉 
(4.11) 

𝑢௜௥௩ ≤ 𝑞௩          𝑖 ∈ 𝑁,  𝑟 ∈ 𝑅,  𝑣 ∈ 𝑉 (4.12) 𝑢௜௥௩ ≥ 𝑎௜ × 𝑦௜௥௩            𝑖 ∈ 𝑁,  𝑣 ∈ 𝑉,  𝑟 ∈ 𝑅 (4.13) 
Constraints (4.11) are the MTZ subtours elimination constraints which are used together with 

lower and upper bounds on 𝑢௜௥௩  variables. Constraints (4.12) and (4.13) ensure that the load 

of the vehicle 𝑣 ∈ 𝑉 on route 𝑟 ∈ 𝑅 right after departing from dealer 𝑖 ∈ 𝑁 must be at least 

equal to the number of cars picked up from that dealer and should not exceed vehicle capacity. 

 

4.3.5 Time constraints  

𝐴𝑇௜௥௩ + 𝑠௜ + 𝑡௜௝ − 𝐴𝑇௝௥௩ ≤ 𝑇௩ ൫1 − 𝑥௜௝௥௩൯  𝑖 ∈ 𝑁 ∪ {0}, 𝑗 ∈ N ∪ {𝑛 + 1},  r ∈ 𝑅, v ∈ V 
(4.14) 



44 

𝑜௜ × 𝑦௜௥௩ ≤ 𝐴𝑇௜௥௩ ≤ 𝑐௜ × 𝑦௜௥௩    𝑖 ∈ 𝑁,  𝑣 ∈ 𝑉,  𝑟 ∈ 𝑅 (4.15) 𝑜௜ ≤ 𝐴𝑇௜௥௩ ≤ 𝑐௜       𝑖 ∈ {0, 𝑛 + 1}, 𝑣 ∈ 𝑉,  𝑟 ∈ 𝑅 (4.16) 𝐴𝑇଴௥௩ ≥ 𝐴𝑇(௡ାଵ)௩(௥ିଵ) + 𝑠(௡ାଵ)   𝑣 ∈ 𝑉,  𝑟 ∈ {2, … ,  |𝑅|} (4.17) 𝐴𝑇(௡ାଵ)௥௩ − 𝐴𝑇଴ଵ௩ ≤ 𝑇௩           𝑣 ∈ 𝑉,  𝑟 ∈ 𝑅 (4.18) 
 

Constraints (4.14) calculate the arrival time to location 𝑗 ∈ 𝑁 ∪ {𝑛 + 1} after visiting its 

predecessor 𝑖 ∈ 𝑁 ∪ {0} and ensure that the arrival time of the location 𝑗 is greater than the 

sum of the arrival time of location 𝑖 plus the traveling time plus the service time of that same 

location. Constraints (4.15) and (4.16) ensure that the arrival time for location 𝑖 ∈ 𝐼 is within 

the time-window of that location. Constraints (4.17) ensure that the starting time of the 𝑟௧௛ 

route from the depart depot is greater than the arrival time of the (𝑟 − 1)௧௛ route to the end 

depot plus the unloading time at the end depot. Constraints (4.18) states that the duration of 

routes performed by vehicle 𝑣 should not exceed its working time limit. 

 

4.3.6 Variable definition constraints  

 𝑥௜௝௥௩ = {0,1}     (𝑖, 𝑗) ∈ A,  v ∈ 𝑉, 𝑟 ∈ 𝑅 (4.19) 
 𝑦௜௥௩ = {0,1}     𝑖 ∈ N, v ∈ 𝑉, 𝑟 ∈ 𝑅 (4.20) 
 𝐴𝑇௜௥௩ ≥ 0       𝑖 ∈ 𝐼,  v ∈ 𝑉, 𝑟 ∈ 𝑅 (4.21) 
 𝑢௜௥௩ ≥ 0       𝑖 ∈ N,  v ∈ 𝑉, 𝑟 ∈ 𝑅 (4.22) 
 𝑧௜௕ = {0,1}     𝑖 ∈ N,  𝑏 ∈ 𝐵 (4.23) 

 

Constraints (4.19) - (4.23) define the variables of the model. 

 

4.4 Model validation  

To validate the model, we present the results of its execution over a generated instance in Table 

4.1. This example includes 10 dealers and uses 2 vehicles (one vehicle of each type) and no 
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more than 2 routes per vehicle. There are 4 routes in total and no vehicle works more than 

twelve hours per day. In this example, all 10 dealers are visited by the internal fleet. The arrival 

time is written below the number of the dealer. Time windows are not presented, but they are 

all respected. Loading and unloading times are also respected. The column ‘Duration’ 

represents the total time of one route (length of the route). Next to the number of dealers, 

between brackets, we find the type of the car to be collected in order to help us verify that the 

loading sequences are also respected by the model (L refers to a large size car, M refers to mid-

size car, NW refers to a car without wheels, 4x4 refers to a four-wheel drive car). 

 

Table 4.1 Results for model validation 
 

Vehicle Start Dealers End Duration 

1 

Route 1 
8:00 

8 [4x4] 

8:53 

7 [L] 

10:23 

2 

11:46 
12:35 4h35 

1 

Route 2 
12:55 

9 [4x4] [M] 

13:58 

6 [NW] [M] 

14:49 

10 

15:35 
16:23 3h28 

2 

Route 1 
12:00 

3 [L] 

13:21 

5 [L] 

14:44 
 15:26 3h26 

2 

Route 2 
15:46 

11 [4x4] 

16:47 

4 [M] 

17:33 
 18:41 2h55 

 

4.5 Limitations of the mathematical model  

Since the VRP is known from the literature as an NP-hard problem and our problem is a 

generalization of the basic VRP variant by adding other side-constraints, then our problem is 

also considered to be NP-hard. Therefore, when the size of our mathematical formulation 

increases, it generates a huge number of variables and constraints that cannot be solved to 

optimality in polynomial computation time. Taking the example of a real generated instance 

with 20 dealers, 3 routes and 2 vehicles. Since the proposed instance is relatively large, our 

model can only obtain a feasible solution, within a limit of three hours of computation, with a 
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gap of 29% from the theoretical optimal solution proposed by the solver. This proves the 

limitation of the mathematical model to solve this kind of complex problems, especially on an 

industrial scale. Thus, we need to develop a heuristic algorithm to minimize the computation 

time while guaranteeing good-quality feasible solutions. 



 

 
 
 

HEURISTIC DEVELOPMENT 

In this chapter, we present our developed heuristic for this project. First, we give an overview 

of the heuristic along with our different assumptions. Then, we present the main steps of the 

heuristic in details.  

 

5.1 Heuristic overview  

This heuristic is used to provide good-quality feasible solutions to our problem. It is a problem 

specific combination and adaption of the procedures described in Gahm et al. (2017) and 

Anaya-Arenas et al. (2016). Both works did not consider loading constraints and the work of 

Anaya-Arenas et al. (2016) did not consider the outsourcing aspect. The main difference with 

the idea of Gahm et al. (2017) lies in how to explore the space of the solutions in the first phase 

of the algorithm. In Gahm et al. (2017), the solution space is divided from the beginning into 

two sub-groups, one for the dealers who are going to be served by the internal vehicles and the 

other for external dealers. However, in our heuristic, we explore the whole space of solutions 

to search for optimal routes for the private fleet and the potentially unassigned customers are 

left to be served by the external carriers.  

 

Our heuristic is an iterative procedure composed of three phases that are executed sequentially 

until all the dealers are assigned to the internal fleet and to the external carriers. It starts with a 

routes’ construction phase in which the dealers are used to generate the set of routes. The 

second phase is about improving the generated routes in the first phase with the help of a local 

search procedure using different types of neighborhood structures. The final phase is about the 

assignment of a subset of the improved routes to the internal vehicles and potentially 

unassigned dealers are left to be served by the external carriers. Algorithm 5.1 presents the 

main course of action of our heuristic. 

 

In the moment of heuristic development, we have respected the following assumptions:  
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• Dealers who are near each other are preferred to build a feasible route, i.e. routes that 

minimize the total distance and time. 

• We maximize the utilization of the fleet, even if the total cost of the solution becomes 

higher.  

• We build routes that comply with the capacities of the available vehicles. 

• Because all constraints are considered throughout the algorithm execution, the solution is 

always feasible 

Algorithm 5.1 Main course of action of the heuristic algorithm 
 

Heuristic Algorithm  
 
1 Routes construction phase (See section 5.2.1) 

Sort the set of dealers N in ascending order of earliest time window (𝑜௝) of the dealers. 

Define R as the set of routes to be generated, 𝐴𝑇௝௥ as the arrival time at node 𝑗 ∈ 𝑁 with 

route 𝑟 ∈ 𝑅, 𝑆௥ the starting of route 𝑟 ∈ 𝑅 and 𝐹௥ as the finishing time of route 𝑟 ∈ 𝑅. 

1.1 Routes initialization 

Let 𝑟 = 1 be an empty route which begins from the depot 𝑖.  
While there are still routes to generate then, 

1.2 Dealers assignment to the routes 

While there still eligible dealers in 𝑁 that can be added to the route 𝑟 then, 

For 𝑗 in 𝑁 do, 

Select the first 𝑗 such that it satisfies the constraints of the problem. 

Add 𝑗 to the route 𝑟. 

Update 𝐴𝑇௝௥ = max{𝐴𝑇௜௥ + 𝑠௜ + 𝑡௜௝;  𝑜௝}. 

If  𝑗 is the first visited node by route 𝑟, then  

Update 𝑆௥ = 𝑜௝ − 𝑡଴௝. 

The route is closed, and the vehicle returns to the depot 𝑖.  
Update 𝐹௥ = 𝐴𝑇௝௥ + 𝑠௝ + 𝑡௝௡ାଵ + 𝑠௡ାଵ. 𝑟 = 𝑟 + 1.  
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2 Routes improvement phase (See section 5.2.2) 

Define 𝑁(𝑟) as the neighborhood of a route 𝑟 ∈ 𝑅. 

For 𝑟 in 𝑅 do, 

While it is still possible to improve 𝑟 do 𝑟ᇱ ∈ arg min௥ᇲᇲ∈ ே(௥) (𝑐𝑜𝑠𝑡(𝑟ᇱᇱ)) 

If 𝑟 is feasible and 𝑐𝑜𝑠𝑡(𝑟ᇱ) ≤ 𝑐𝑜𝑠𝑡(𝑟)  

then 𝑟 = 𝑟ᇱ  
Return 𝑟. 

 

3 Routes assignment phase (See section 5.2.3) 

Sort the set of vehicles 𝑉 into decreasing order of their fixed operating cost. 

Define 𝑉𝑆௩ as the vehicle starting time and 𝑉𝐹௩ as the vehicle finishing time. 

3.1 Routes classification and vehicle selection 
Classify the routes in ascending order by the Ratio = Loss / Time. 

Let 𝑣 = 1 be the first selected vehicle from 𝑉. 

While there are still not used vehicles then,    

3.2 Routes assignment to the vehicle 

Let 𝑅 be the set of routes obtain by step 2.  

While the maximum capacity of 𝑣 is not reached,  

Assign a subset of routes to 𝑣 using an exact mathematical formulation. 

Delete all routes that contain already visited dealers by 𝑣 from 𝑅.  𝑣 = 𝑣 + 1. 

3.3 Routes assignment to the external carriers  
If all vehicles are used and there are still not assigned routes, then the dealers of these 

routes are assigned to the external carriers. 

 

5.2 Heuristic description 

In this part, we describe the main phases of the heuristic which are routes construction, routes 

improvement and routes assignment.  
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5.2.1 Routes construction  

The routes construction phase considers all available dealers in one day and respects all the 

constraints of the problem. We donate 𝐴𝑇௝௥ as the arrival time at node 𝑗 with route 𝑟. We also 

define 𝑆௥ and 𝐹௥ as the starting and finishing time of route 𝑟, respectively. The set of dealers 𝑁 is sorted in ascending order of the earliest time window (𝑜௝) of the dealers. In this phase, we 

define a limit on the number of routes to be generated as there are a lot of combinations and 

the process can be very time-consuming. 

 

Step 1: Routes initialization 
 
We suppose that we are going to generate |𝑅| routes in total. Let 𝑟 = 1 be an empty route 

which begins from the depot 𝑖.  
 

Step 2: Dealers assignment to the routes 
 

Selects the first dealer 𝑗 ∈ 𝑁 to be visited from 𝑖 that satisfies the following constraints:  

i. The dealer 𝑗 has not been visited by route 𝑟. 

ii. Time-window constraint: 

 It is possible to arrive at dealer 𝑗 before the end of its time window (𝐴𝑇௝௥ + 𝑠௝ +𝑡௜௝ ≤  𝑐௝). 

iii. Duration constraint: 

 After visiting 𝑗 at 𝐴𝑇௝௥ = max{𝐴𝑇௜௥ + 𝑠௜ + 𝑡௜௝;  𝑜௝}, it is possible to return to the 

depot. 

iv. Loading constraint type 1: 

 If a dealer has a 4 × 4 car then it should be visited first on the route.  

v. Loading constraint type 2: 

 If 𝑣 ∈ 𝑉ଶ: If a dealer 𝑗 has a body, burnt, damaged or without wheels car then it 

should be visited first on the route. 
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 If 𝑣 ∈ 𝑉ଵ: If a dealer 𝑗 has a body, burnt, damaged or without wheels car then it 

should be visited either first or second on the route. 

vi. Loading constraint type 3: 

 If 𝑣 ∈  𝑉ଵ and if 𝑗 is the second dealer on the route, then 𝑗 cannot be either large nor 

medium car if the first dealer has a large car, and 𝑗 cannot be large if the first dealer 

has a medium car. 

 

If 𝑗 satisfies the above constraints, then it will be added to the route 𝑟. If two dealers have the 

same opening time-window (𝑜௝), then the one who minimizes the total distance of the route is 

chosen. Update 𝐴𝑇௝௥ as the earliest possible arrival time to dealer 𝑗, 𝐴𝑇௝௥ = max{𝐴𝑇௜௥ + 𝑠௜ +𝑡௜௝;  𝑜௝}. If  𝑗 is the first visited node by route 𝑟, then the starting time of route 𝑟 is set in such 

a way that the vehicle arrives at 𝑗 at the beginning of its time window 𝑜௝ (𝑆௥ = 𝑜௝ − 𝑡଴௝). Also, 

the visit time of node 𝑗 is set as 𝐴𝑇௝௥ = 𝑜௝. 𝑗 becomes the current position in the route 𝑟 and 

the next potential visit is evaluated using step 2. When none of the dealers in 𝑁 are eligible to 

be added to the route, the route is closed, and the vehicle returns to the depot. Update the route 

finishing time, 𝐹௥ = 𝐴𝑇௝௥ + 𝑠௝ + 𝑡௝௡ାଵ + 𝑠௡ାଵ (we consider that the time of the route finishes 

with the unloading operation at the depot). If there are still routes to generate, go to step 1 to 

initiate a new route 𝑟 = 𝑟 + 1. Otherwise, the algorithm goes to the next phase of routes 

improvement.  

 

5.2.2 Routes improvement 

After the routes’ construction phase, we obtain a set of routes where each one of them has a 

total travel cost. The total travel cost of a route is the total cost per unit distance. Thus, the 

objective of this phase is to optimize the generated routes by minimizing their distances. To 

achieve this, an iterative local improvement procedure is developed using different 

neighborhood structures. 
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5.2.2.1 Neighborhood structures 

Neighborhood structures are based on transformation rules, which define the transformation of 

a solution to obtain another solution. A feasible solution 𝑟 in our case is a route obtained by 

the first phase. The neighborhood 𝑁(𝑟) of a current solution 𝑟 is composed of all feasible 

solutions that can be obtained by applying to 𝑟 one of the specified intra-route and inter-routes 

moves defined below. If the move leads to distance reduction, the feasibility of the neighboring 

solution is verified. 

 

 Intra-route neighborhoods 
 

Two intra-route moves are used in this algorithm: intra-swap move for swapping two dealers 

belonging to the same route and intra-shift move for changing the position of a dealer in the 

same route. Figure 5.1 presents an example of intra-swap neighborhood: Given a route 𝑟, the 

intra-swap move is obtained by replacing arcs (2, 4) and (1, 3) with arcs (1, 2) and (3, 4). Figure 

5.2 presents an example of intra-shift neighborhood: For each node 1 and a route 𝑟, the intra-

shift move corresponds to its insertion after node 3, is obtained by removing arcs (0, 2), (3, 1) 

and (1, 4) and replacing them with arcs (0, 1), (1, 2) and (3, 4). 

 

 

Figure 5.1 Intra-swap neighborhood 
Taken from (Chu, 2005) 
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Figure 5.2 Intra-shift neighborhood 
Taken from (Chu, 2005) 

 

 Inter-routes neighborhood 
 

One inter-route move is used in this algorithm: inter-swap move for swapping two dealers 

belonging to two different routes. Figure 5.3 presents an example of inter-swap neighborhood: 

For each node 2 on route 1, the inter-swap move corresponds to its exchange with node 5 on 

route 2, are obtained by removing arcs (1, 5), (5, 3), (4, 2) and (2, 6), and replacing them with 

arcs (1, 2), (2, 3), (4, 5) and (5, 6). 

 

 

Figure 5.3 Inter-swap neighborhood 
Taken from (Chu, 2005) 
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5.2.2.2 Local search procedure  

Our local search procedure involves executing the inter-routes and the two intra-route 

neighborhoods sequentially using all possible permutations of the available routes. The 

improvement strategy used in this algorithm is the best-improvement strategy. This strategy 

evaluates all possible solutions defined by each of the neighborhood structure and returns the 

best of these solutions. To extract and insert dealers from and into a route, we use a local-

search mechanism that extracts randomly chosen dealers and inserts them individually. To 

insert the dealers, the feasible position with the lowest cost is calculated for insertion. At each 

local search iteration, a neighborhood solution is generated from the current solution using one 

of the described neighborhoods. Neighbor solution is tested for cost improvement and 

feasibility and if the conditions are met, then it will be accepted as the new solution. This 

process continues until no improvement for the different neighborhoods is found. This phase 

generates a set of new optimized routes to be used in the routes’ assignment phase.  

 

5.2.3 Routes assignment  

The goal of this phase is the assignment of the improved routes to the vehicles and the external 

carriers. This phase has both the character of a job scheduling problem and an assignment 

problem. The vehicles can be viewed as a set of heterogeneous machines and the routes can be 

viewed as the jobs that need to be executed by the machines. The goal is to find valid planning 

for one day for the vehicles respecting the constraints of the problem. The result planning must 

indicate which route should be carried out by which vehicle, when the routes should begin, and 

finish as well as what is the routes execution sequence for each vehicle.  

 

In this problem, we have two objectives: The first one is to assign as much as possible of routes 

to the vehicles by minimizing the spare time. The spare time is defined as the time when the 

vehicle is not used. The second objective is to minimize the cost of the schedule by assigning 

the routes that have the least cost. Since the cost of the brokers is usually lower than the costs 

of using the company’s fleet and with the condition of using the internal fleet to its maximum 
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capacity, we use a penalty cost for non-using the vehicles to their maximum capacity in a given 

day.  

 

This phase is composed of three steps that are executed sequentially until all the routes are 

assigned to the internal fleet and the external carriers. Given the set of routes 𝑅, obtained by 

the routes’ improvement phase. At each iteration, a subset of the routes is assigned to one 

vehicle 𝑣 ∈ 𝑉 until the maximum capacity of the vehicle is reached. The process stops when 

all the fleet’s vehicles are used. The potential remaining dealers are automatically assigned to 

the external carriers.  

 

In order to use the internal fleet to its maximum capacity and to speed up the resolution time, 

we use an exact mathematical formulation for the construction of the schedule of each vehicle. 

In this problem, each route 𝑟 ∈ 𝑅 has a duration which is equal to the sum of the travel times 

between each node of the route plus the loading times at the dealers plus the unloading time at 

the depot. An early starting time which is equal to the opening of the time-window of the first 

dealer. A late starting time which is equal to the minimum between the closing of the time-

window of the first dealer and the closing of the time-window of the last dealer minus the 

traveling time from the first dealer to the last dealer on the route minus the loading times of 

the previously visited dealers. Each route must be completed within a time window larger than 

its processing time. Finally, there is different types of routes (routes of two dealers or routes 

of three dealers).  

 

The number of vehicles is fixed. Each vehicle can handle only one route at a time and a route 

should be completed before starting another one. Each vehicle has defined workday limits 

which means it only works during this time. As well, vehicles have a depot from which they 

start and end their routes. Working overtime is not allowed due to increased work costs for the 

company. Furthermore, we consider that vehicles may have spare time between the execution 

of the routes or at the beginning and the ending of their schedule. We want to precise also that 

if the selected vehicle has a capacity of three places, then it is possible to assign routes of three 
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or two dealers with a priority to routes of three dealers. However, if the selected vehicle has a 

capacity of two places, then it is only possible to assign routes of two dealers.  

 

In the following, we present the steps of our third and final phase for this heuristic.  

 

Step 1: Routes classification and vehicle selection 
 

In this phase, we try to have a limited number of routes from the improved routes of the 

previous phase in order to speed up the assignment model. To achieve that, we classify the 

improved routes in ascending order by a ratio defined as Ratio = Loss / Time. The Loss is 

defined as Loss = Total travel cost - Total broker cost. This ratio will help us to choose the 

cheapest and fastest routes for the assignment model as well as prioritize the assignment of the 

best-quality routes to the vehicles. After that, we sort the set of vehicles 𝑉 into decreasing order 

of their fixed operating cost. In fact, we consider the largest available vehicle 𝑣 ∈ 𝑉 at each 

iteration. Let 𝑣 = 1 be the first selected vehicle from the ordered set of vehicles.  

 

Step 2: Routes assignment to the vehicle 
 

This step is about the construction of the schedule of the selected vehicle using an exact 

mathematical formulation. In this problem, we consider a set 𝑇 = {1, … , 𝑡} of available time-

slots of one vehicle, a set 𝑅 = {1, … , 𝑟} of the routes to be assigned to the time-slots and a set 𝑁 = {1, … , 𝑛} of dealers. For each route 𝑖 ∈ 𝑅 is associated with a loss 𝑐௜ (Loss = Total travel 

cost - Total broker cost), an early arrival time 𝑒୧, a late arrival time 𝑙୧, a duration 𝑑୧. We also 

have a binary parameter 𝑦௞௜ which states if dealer 𝑘 ∈ 𝑁 is visited by route 𝑖 ∈ 𝑅 or not. In 

addition, we use a penalty cost 𝑞 which is defined as the cost of non-using the time-slots at 

their maximum capacities. Furthermore, we consider four variables as follow:  

 𝑥௜௝: Equals 1 if route 𝑖 ∈ 𝑅 is assigned to time slot 𝑗 ∈ 𝑇, 0 otherwise. 

 𝑠௝: Starting time of a time-slot 𝑗 ∈ 𝑇. 

 𝑓௝: Finishing time of a time-slot 𝑗 ∈ 𝑇. 

 𝑝௝: Spare time of a time-slot 𝑗 ∈ 𝑇. 
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Equations (5.1) - (5.12) present the mathematical formulation of the problem:  

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ෍ ෍ 𝑐௜𝑥୧୨୨∈୘୧∈ୖ + ෍ 𝑞 𝑝୨୨∈୘   (5.1) 

෍ 𝑥୧୨୨∈ୖ  ≤ 1  𝑖 ∈ 𝑅 (5.2) 

෍ 𝑥୧୨୧∈ୖ  ≤ 1  𝑗 ∈ 𝑇 (5.3) 

෍ ෍ 𝑦௜௞𝑥୧୨୨∈୘୧∈ୖ ≤ 1  𝑘 ∈ N (5.4) 

෍ 𝑥୧୨୧∈ୖ 𝑒୧ + ൭1 −  ෍ 𝑥୧୨୧∈ୖ ൱ 𝑠଴ ≤  𝑠௝  ≤ ෍ 𝑥୧୨୧∈ୖ 𝑙୧ + ൭1 −  ෍ 𝑥୧୨୧∈ୖ ൱ 𝑓௠    𝑗 ∈ 𝑇 (5.5) 

𝑓௝ =  𝑠௝ + ෍ 𝑥୧୨୧∈ୖ 𝑑୧ + 𝑝௝   𝑗 ∈ 𝑇 (5.6) 𝑠௝ାଵ ≥ 𝑓௝  𝑗 ∈ 𝑇 (5.7) 𝑠ଵ ≥ 8 (5.8) 𝑓௧ ≤ 20 (5.9) 𝑠௝ ≥ 0  𝑗 ∈ 𝑇 (5.10)  𝑓௝ ≥ 0  𝑗 ∈ 𝑇 (5.11) 𝑥୧୨ = {0,1}  𝑖 ∈ 𝑅 , 𝑗 ∈ 𝑇  (5.12) 

The objective function (5.1) minimize the total loss of the assigned routes to the time-slots plus 

the total cost of non-using the time-slots at their maximum capacities. Constraints (5.2) and 

(5.3) ensure that a route can be only assigned to only one time-slot and a time-slot could have 

only one route, respectively. Constraints (5.4) ensure that a dealer is visited only once in all 

the time-slots. Constraints (5.6) and (5.6) calculate, respectively, the starting time and the 

finishing time of a time-slot 𝑗 ∈ 𝑀.  Constraints (5.7) states that the starting time of the (𝑗 + 1)௧௛ time-slot is longer than or equal to the finishing time of the 𝑗௧௛. Constraints (5.9) and 

(5.9) ensure that the starting time of the first slot is bigger than 8 a.m. and the finishing time 
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of the last slot is less than 8 p.m. Constraints (5.10) - (5.12) defines the variables of the 

problem.  

 

After solving the mathematical model, we have an optimized vehicle schedule which contains 

as mush as possible of routes, within the allowed working time limit, and with a minimized 

cost. Thus, we update the calculated vehicle starting time 𝑉𝑆௩ = 𝑠଴ and the vehicle finishing 

time 𝑉𝐹௩ = 𝑓௠. Delete all the routes that contain the already visited dealers from the set of 

routes 𝑅. If there are still routes not assigned to any vehicle, a new vehicle 𝑣 is considered 

from the list of vehicles and this phase is repeated until all vehicles are used.  

 
Step 3: Routes assignment to the external carriers  
 

If all vehicles are used and there are still not assigned routes, then the dealers of these routes 

are assigned, using a least cost assignment, to the external carriers.  

 
5.3 Heuristic validation 

To validate the heuristic, we present the results of its execution over some generated instances 

in Table 5.1 and we compare its performance to the performance of the mathematical model. 

The details of the instances can be found in Table-A I-1 of the ANNEX I. The used fleet here 

is composed of two vehicles from each type (V1 has a capacity of 3 cars and V2 has a capacity 

of 2 cars). The first column in the table shows the name of the instance and the number of 

dealers in each one. The next three columns present the results of the mathematical model, the 

heuristic algorithm without using a penalty cost and the heuristic algorithm using a penalty 

cost. The three columns include the routes obtained for each instance, the dealers assigned for 

the external carriers and total cost of the solution. Besides, the two columns of the heuristic 

include the percentage gap of their solutions from the optimal solution of the mathematical 

model. The routes include only the visited dealers and each route is displayed with the vehicle 

that performs it (for example V2 R1 means that vehicle number 2 performs route number 1).  
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Table 5.1 Model performance vs. heuristic performance 
 

Instance Mathematical Model 
Heuristic without 

penalty 
Heuristic with a 

penalty 

J-1 
(5 dealers) 

Carriers: 1, 2, 3, 4, 5 

Total cost = 335 $ 

Carriers: 1, 2, 3, 4, 5 

Total cost = 335 $ 

Gap = 0% 

Carriers: 1, 2, 3, 4, 5 

Total cost = 335 $ 

Gap = 0% 

J-2 
(10 dealers) 

V1 R1: 7–2–10 

Carriers: 1, 3, 4, 5, 6, 8, 

9 

Total cost = 633,4 $ 

Carriers: 1, 2, 3, 4, 5, 6, 

7, 8, 9, 10 

Total cost = 650 $ 

Gap = 2,6% 

V1 R1: 7–10 

V2 R1: 8–4 

Carriers: 1, 2, 3, 5, 6, 9 

Total cost = 778,8 $ 

Gap = 23% 

J-3 
(15 dealers) 

V1 R1: 1–13–15 

V2 R1: 7–11 

Carriers: 2, 3, 4, 5, 6, 8, 

9, 10, 12, 14 

Total cost = 919,2 $ 

V1 R1: 7–13–15 

Carriers: 1, 2, 3, 4, 5, 6, 

8, 9, 10, 11, 12, 14 

Total cost = 964,9 $ 

Gap = 5% 

V1 R1: 7–13–2 

V1 R2: 1–14–15 

V2 R1: 4–10 

Carriers: 3, 5, 6, 8, 9, 

11, 12 

Total cost = 1064,7 $ 

Gap = 15,8% 

J-4 
(20 dealers) 

V1 R1: 16–7–11 

Carriers: 1, 2, 3, 4, 5, 6, 

8, 9, 10, 12, 13, 14, 15, 

16, 18, 19, 20 

Total cost = 1205,6 $ 

V1 R1: 7–16–19 

V2 R1: 4–18 

Carriers: 1, 2, 3, 5, 6, 8, 

9, 10, 11, 12, 13, 14, 

15, 17, 20 

Total cost = 1237,3 $ 

Gap = 2,6% 

V1 R1: 13–7–16 

V1 R2: 2–19–15 

V1 R3: 18–14 

V2 R1: 8–4 

V1 R2: 10–20 

Carriers: 1, 3, 5, 6, 9, 

11, 12, 17 

Total cost = 1407,1 $ 

Gap = 16,7% 
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Figure 5.4 Routes of the first vehicle of the instance J-4 using the heuristic 
 

Before beginning our analysis, we want to note that the solution of the instance (J-4) using the 

mathematical model is feasible as opposed to the solutions of the other three instances which 
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are optimal. This is because we have limited our computation time to only one hour and it takes 

more time for the model to obtain an optimal solution for the instance with 20 dealers.  

 

From Table 5.1, we can validate our heuristic, as the performance of the algorithm without a 

penalty cost is as good as the performance of the mathematical model.  In fact, the percentage 

gaps of the heuristic’s solutions from the optimal solutions are small: 0% for J-1, 2,6% for J-

2, 5% for J-3 and 2,6% for J-4. Also, we can validate that the heuristic works better for bigger 

instances because for the instance J-4, even if the cost of the heuristic solution is slightly higher, 

we obtain a better-quality solution (better fleet utilization) for less computation time. 

Concerning the heuristic performance with a penalty cost, we notice that the gaps from the 

optimal solutions are higher (23% for J-2, 15,8% for J-3 and 16,7% for J-4) as the penalty 

forces the algorithm to consider more alternatives in order to use the internal fleet better. Note 

that the gap can be reduced by allowing more time to the algorithm to be executed.  

 

Finally, Figure 5.4 shows an example of routes’ planning on google maps of the first vehicle 

of the instance J-4 using the heuristic algorithm with a penalty. The presented routes of this 

vehicle are: R1: 13–7–16, R2: 2–19–15 and R3: 18–14. Thus, the whole trip is: 0–13–7–16–0–

2–19–15–0–18–14–0, where 0 is the depot of the company located in H7E4P2 (the red point 

on the map). 





 

 
 
 

COMPUTATIONAL RESULTS 

This chapter is devoted to the numerical experiments carried out using the generated instances 

in order to assess the performance of the mathematical model and the heuristic algorithm.   

 

6.1.1 Used material for the development  

For mathematical model development, we use LINGO15.0 solver and for heuristic 

development, we use Python 2.7.13 as a programming language. In addition, we call either 

CPLEX12.8 or ECOS_BB or CBC for the resolution of the exact problem defined in the 

assignment phase of the heuristic, depending on the availability of the solver in the machine. 

Our used desktop computer for the testing has the following characteristics: Windows 7 

Enterprise 2009 (64 bits) as the operating system, Intel Core, i7-2600, 3.4GHerz as a processor 

and 16GB for the memory RAM.  

 

6.1.2 Testing parameters 

To give a realistic estimation of the distances and the traveling times between the different 

locations, we use the Open Source Routing Machine (OSRM). OSRM is an implementation of 

a high-performance routing engine for shortest paths in road networks. It combines 

sophisticated routing algorithms with open and free road network data of the Open Street Map 

(OSM) project. OSRM is able to compute and output a shortest path between any origin and 

destination. It uses Dijkstra's algorithm to calculate the short paths along with different speed-

up techniques to optimize the computational time. OSRM uses basic vehicle profile to calculate 

the traveling time and use different approximation techniques to adjust the average speed of 

the vehicle on each segment of the route ("Open Source Routing Machine," 2018). However, 

it does not consider the variation of the traveling times during the day for the same path caused 

by the different rush hours, especially in the early morning or the late afternoon. To have a 
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better estimation of the traveling time and to take congestion into consideration, we analyzed 

real-time routing data from google maps in different hours of the day and compared them with 

the data obtained with OSRM. Then, we did a linear regression to adjust the OSRM data along 

with the collected google maps data. Using OSRM, we were able to obtain distances with an 

average gap of ±11% from the google maps distances and travel times with an average gap of ±26% from the google maps traveling times. Using the linear regression technique, we were 

able to approximately generate real travel times between the different location of the problem 

by decreasing the gap from ±26% to approximately ±15%. 

  

Each vehicle has a working schedule of 12 hours from 8 a.m. to 8 p.m. and the dealers have 

different predefined time-windows. The loading time is considered to be 20 minutes for each 

car plus 10 minutes extra-loading time for cars that have specific conditions and are difficult 

to collect. The unloading time at the depot is considered to be 10 minutes for each car. For 

vehicles of type 𝑣ଵ, 𝑓௩= 75$ (fixed cost) and 𝑐௩= 2,6 $/km (variable cost) meanwhile for 

vehicles of type 𝑣ଶ, 𝑓௩= 60$ and 𝑐௩= 2,4 $/km. We consider seven brokers who have different 

costs depending on the region to be visited. For each postal code, we choose the external 

carriers that have the lowest towing cost. Thus, if a dealer is geolocated within a specific postal 

code, then it will be served by a carrier that has the lowest towing cost. Finally, the parameters 

of the car, i.e. length, status and driveline, are generated for each collected car following the 

data provided by the company.  

 

6.1.3 Mathematical model testing  

Table 6.1 presents the tests done on the 13 small generated instances using the mathematical 

model within the allowed time limit of 3 hours or equivalently 10800 seconds. Each instance 

is tested three times using different groups of dealers all of them located in the Greater 

Montreal region. The column ‘Cost ($)’ represents the average cost obtained by the different 

test results. The average ‘Gap (%)’ is calculated by the following formula: GAP (%) = 

|Objective value – best objective| / (best objective) × 100. The best objective used to calculate 
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the gap is the best theoretical value that can be obtained by the solver. The column ‘CPU(s)’ 

represent the average computational time in seconds.  

Table 6.1 Test results using the mathematical model 
 

Instances Dealers 
Vehicles 

Routes Cost($) GAP(%) CPU(s) 
qv=3 qv=2 

I-1 5 1 0 1 181 0 0,6 
I-2 5 1 1 1 202 0 1,4 
I-3 7 1 1 1 347 0 2,1 
I-4 7 1 2 1 305 0 6 
I-5 10 1 0 1 572 0 23 
I-6 10 1 1 2 547 0 58 
I-7 10 1 2 1 615 0 129 
I-8 12 1 0 3 646 0 838 
I-9 12 1 1 2 685 0 7365 
I-10 15 2 1 1 767 9 10800 
I-11 15 1 1 2 785 10 10800 
I-12 15 1 0 3 718 11 10800 
I-13 20 1 1 3 1215 29 10800 

 

We notice that the mathematical model can obtain optimal solutions only for the small 

instances with 5, 7, 10 and 12 dealers, respectively, within the allowed time limit. For the 

instances with 15 dealers, the model can only obtain feasible solutions within the allowed time 

limit. The average percent deviation from the best objective of these solutions is between 9% 

and 11%. For the instance with 20 dealers, the gap increases to 29%. We limit our testing to 

the instances with 20 dealers as we notice that the gaps are going to be much higher and more 

computational time is needed to obtain good results.  

 

6.1.4 Heuristic testing  

For the testing of our heuristic algorithm, we use the 30 generated instances of November 2018 

and we compare the results of the manual planning with the results of our algorithm. While in 

the mathematical model, we fix the number of routes in advance, the heuristic finds the optimal 
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number of feasible routes that could fit into the vehicle’s schedule. This is done to use the 

internal fleet at its maximum capacity. In addition, based on the collected information from the 

company, we estimate that the average cost of using an internal vehicle for one day is equal 

450$. Thus, we calculate our penalty cost for non-using an internal vehicle at its maximum 

capacity 𝑞 = 450$ 720 𝑚𝑖𝑛𝑢𝑡𝑒𝑠⁄ = 0,625 $/𝑚𝑖𝑛𝑢𝑡𝑒, meaning that each minute a vehicle is 

not used, a cost of 0,625$ is incurred.  

 

Table 6.2 presents the optimized routing results for November 2018 at the warehouse of Laval 

using the heuristic algorithm. The first column displays the name of the 30 generated instances 

for the testing. The second column shows the number of dealers for each day. The next column 

‘routes for each vehicle’ presents for each vehicle, the number of routes done in a given day. 

The used fleet is composed of two vehicles with a capacity of three places (v1 and v2) and one 

vehicle with the capacity of two places (v3). The next two columns show the number of internal 

and external dealers, respectively. These two parameters will help us in determining the 

percentage of using the internal fleet in the routing. Finally, the total travel cost and the brokers’ 

cost are presented in the last two columns. The sum of the two latter costs gives us the total 

cost of the solution.  

 

The heuristic resolution time is between 20 minutes to 40 minutes for each day. The part that 

is the most time consuming is the routes generation and improvement as there are many routes 

combinations, whereas the assignment of the different routes takes only a few seconds with a 

limit of 1 minute. Note that it is almost impossible to report the exact computation time for the 

algorithm as python is an interpreted language and so other tasks performed by the computer 

can influence the speed of the algorithm execution.  

 

Table 6.3 shows the difference between the results of manual planning versus the results of the 

optimization method. Considering the manual planning, we notice that 20% of dealers were 

served using internal vehicles and 80% are served using the external brokers. However, using 

the optimization algorithm, we notice that 54% of dealers are served internally and 46% are 
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served by the external carriers. This means that the utilization of the internal fleet is increased 

as required by the company.  

Table 6.2 Test results using the heuristic algorithm 
 

Instances Dealers 
Routes for each 

vehicle Internal 
dealers 

External 
dealers 

Travel 
cost ($) 

Broker 
cost ($) 

v1 v2 v3 
D-1 49 4 3 2 25 24 1468,5 1555 
D-2 53 3 3 3 24 29 1349,3 1970 
D-3 32 2 2 1 14 18 876,5 1215 
D-4 34 3 3 2 22 12 1398,8 805 
D-5 40 4 2 3 24 16 1644,8 1105 
D-6 45 3 1 4 19 26 1231,7 1730 
D-7 48 4 3 2 25 23 1435,4 1600 
D-8 38 3 3 2 22 16 1324,1 995 
D-9 40 3 3 2 22 18 1221,6 1255 
D-10 33 4 2 2 21 12 1296,8 780 
D-11 28 3 1 1 14 14 870,9 965 
D-12 52 4 4 2 28 24 1409,2 1590 
D-13 43 3 3 2 22 21 1475,9 1255 
D-14 50 4 4 2 28 22 1400,9 1450 
D-15 39 3 3 3 23 16 1416,4 1070 
D-16 45 4 3 4 29 16 1675,4 1025 
D-17 40 3 3 1 20 20 1306,3 1305 
D-18 22 3 1 2 16 6 1224,4 380 
D-19 51 4 2 4 26 25 1398,5 1670 
D-20 45 3 3 2 22 23 1417,4 1370 
D-21 49 4 3 2 25 24 1381,2 1690 
D-22 55 4 4 3 30 25 1796,5 1670 
D-23 49 3 3 2 22 27 1316,4 1855 
D-24 25 3 1 1 14 11 893,5 730 
D-25 23 3 2 2 19 4 1243,5 265 
D-26 48 4 4 2 28 20 1581,3 1350 
D-27 40 3 3 2 22 18 1315,9 1190 
D-28 59 3 3 2 22 37 1215,1 2450 
D-29 58 4 4 5 34 24 1893,7 1675 
D-30 42 2 3 3 21 21 1161,4 1390 
Total 1275 100 82 70 683 592 40641,3 39355 
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We also notice that the percentage of using each one of the vehicles is increased from 8% to 

23% for v1, from 12% to 19% for v2 and from 0,3% to 11% for v2. In addition, we notice that 

the average collected cars per day are also increased for each of the vehicles. Indeed, we can 

collect up to 10 cars per day using v1 instead of 3, we can collect up to 8 cars per day using v2 

instead of 4 and we can collect up to 4 cars per day using v3 instead of almost not using the 

vehicle. Furthermore, we remark that the utilization of the vehicles is decreased from v1, which 

is the most used one, then v2, then v3, which is the least used vehicle. This is because our 

heuristic works sequentially and affect a higher number of dealers to the first vehicles to be 

used. This can be solved by adding a balancing aspect between the utilization of each vehicle 

to the algorithm. However, due to the limited time of the project and the irrelevance of this 

constraint to the company, we chose not to implement it. Finally, we observe that the total cost 

for the whole month is minimized by 16091,7$ from 96088$ to 79996,3$ which constitute a 

saving of 16,7%. 
 

Table 6.3 Manual planning vs. Optimization method results 
 

  Manual planning Optimization method 

Total number of collected cars 1275 1275 

Total number of internally collected cars 259 (20%) 683 (54%) 

Total number of externally collected cars 1016 (80%) 592 (46%) 

Total collected cars by v1 100 (8%) 299 (23%) 

Total collected cars by v2 148 (12%) 244 (19%) 

Total collected cars by v3 4 (0,3%) 140 (11%) 

Average internally collected cars per day  8,6 22,8 

Average externally collected cars per day  33,9 19,7 

Average collected cars per day by v1 3,3 10,0 

Average collected cars per day by v2 4,9 8,1 

Average collected cars per day by v3 0,1 4,7 

Total cost ($) 96088 79996,3 
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Another thing we have observed when executing the heuristic using a ten-time bigger penalty 

cost scenario, is that even if the fleet utilization becomes higher, with 62% utilization 

percentage instead of 54%, the total cost of the solution also becomes much higher, to be at 

91291,3 $, which constitutes a saving of only 5% compared to the manual planning scenario. 

The cost is higher because instead of the cheaply assigning the dealers to the external carriers, 

the internal vehicles are now doing expensive routes (routes with longer travel times and less 

dealers). Thus, in order to minimize the total cost and have optimized routes, it is better 

sometimes to assign some dealers to the external carriers even if an internal vehicle is available. 

 

Furthermore, to better explore the effect of the penalty cost on the solution, we have used three 

different instances (small, medium and large instances) to study the variation of the percentage 

of the internal fleet usage (Figure 6.1) and the variation of the time percentage usage of the 

same fleet with respect to the penalty increase (Figure 6.2).  

 

 

Figure 6.1 Variation of the percentage of using the internal fleet with respect to the penalty 
cost for three instances 
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In Figure 6.1, we notice that for medium and large instances the percentage of internal fleet 

usage is approximately constant when the varying the penalty cost, with a value of 70% and 

40% respectively for the medium and large instances. However, we notice for the small 

instance that increasing the penalty cost led to an increase in the percentage utilization of the 

internal fleet. This can be explained by the fact that for the large and medium instances, we 

don’t have a room for further optimization as the maximum capacity of the fleet is easily 

reached in all cases. In Figure 6.2, we notice that increasing the penalty cost led to an increase 

in the time use percentage of the internal fleet for the three instances. We notice also that there 

is a gap between the small instance and the large and medium instances. This is because there 

is fewer number of dealers to visit by the internal fleet for the small instance compared to the 

two other ones. Finally, we can see that the fleet is almost 100% used for the large instance 

with nearly no effect when varying the penalty cost. This explains another time that the penalty 

does not have a big impact on the result when dealing with large instances and the algorithm 

is always capable of using the internal fleet at its maximum capacity in this case. 

 

 

Figure 6.2 Variation of the time percentage of using the internal fleet with respect to the 
penalty cost for 3 instances 
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Next, we try to modify some of our initial hypothesis in order to see the outcomes of these 

changes and test the stability of our heuristic. To achieve that, we have conducted a sensitivity 

analysis using the instance D-10. The details of this instance are presented in Table-A I-2 of 

the ANNEX I. In this analysis, we proposed 10 new scenarios (Table 6.4) and each one is 

characterized by a change in one parameter (the first scenario is the original one with no 

changes in his parameters). The column ‘Broker extra cost’ donates the change in the initial 

brokers’ costs. The column ‘Vehicles’ shows the number and capacity of the vehicles used in 

each scenario. For example, [3, 3, 2] means that we use three vehicles which have capacities 

of 3 cars, 3 cars and 2 cars, respectively. The final column ‘Vehicles costs’ displays the fixed 

and variable costs for each type of vehicles.  

 

Table 6.4 Scenarios for sensitivity analysis 
 

Scenario Dealers Broker extra cost Vehicles Vehicles costs 

1 (original) 33 0 [3, 3, 2] {2: (60 $, 2.4$), 3: (75$, 2.6$)} 

2 33 +10$ [3, 3, 2] {2: (60$, 2.4$), 3: (75$, 2.6$)} 

3 33 - 10$ [3, 3, 2] {2: (60$, 2.4$), 3: (75$, 2.6$)} 

4 33 0 [3, 3, 2] {2: (65$, 2.4$), 3: (80$, 2.6$)} 

5 33 0 [3, 3, 2] {2: (60$, 2.7$), 3: (75$, 2.9$)} 

6 33 0 [3, 3, 2] {2: (55$, 2.4$), 3: (70$, 2.6$)} 

7 33 0 [3, 3, 2] {2: (60$, 2.1$), 3: (75$, 2.3$)} 

8 33 0 [3, 2] {2: (60$, 2.4$), 3: (75$, 2.6$)} 

9 33 0 [3, 3, 2, 2] {2: (60$, 2.4$), 3: (75$, 2.6$)} 

10 33 0 [3, 2, 2] {2: (60$, 2.4$), 3: (75$, 2.6$)} 

11 33 - [2, 2] {2: (60$, 2.4$), 3: (75$, 2.6$)} 

 

 

For example, {2: (60 $, 2.4$), 3: (75$, 2.6$)} means that the vehicle with a capacity of two 

cars has a fixed cost equals to 60$ and a variable cost equals to 2,4$/km, and the vehicle with 

a capacity of three cars has a fixed cost equals to 75$ and a variable cost equals to 2,6$/km. 
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In Table 6.5, we present the results of the proposed scenarios. First, for the scenarios 2 and 3, 

we notice that adding 10$ for brokers’ costs increases the fleet utilization by 15%, but the 

solution is a little bit deteriorated as the total cost increases by 1,1%. On the contrary, reducing 

the brokers’ costs by 10$ decreases the fleet utilization by 6%, but the solution cost is improved 

by 1,4%. Thus, we show again the importance of using cheap brokers sometimes in the place 

of using the fleet which can be expensive. Besides, we see from scenarios 4 and 6 that changing 

the fixed costs leads to an improvement of the solution. Indeed, increasing the fixed cost leads 

to consider cheaper broker in the solution and decreasing them leads to a cheaper use of the 

fleet.  

Table 6.5 Results of the sensitivity analysis 
 

Scenario 
Routes Total 

routes 
Internal 
dealers 

Fleet 
utilization 

gap 

Travel 
cost 
gap 

Total 
cost 
gap v1 v2 v3 v4 

1 4 2 2 - 8 21 - - - 

2 3 3 4 - 10 26 15% 15,7% 1,1% 

3 3 2 2 - 7 19 -6% -6,1% -1,4% 

4 3 2 2 - 7 19 -6% -6,0% -0,5% 

5 4 2 1 - 7 19 -6% -4,6% 1,6% 

6 4 2 2 - 8 21 0% -0,7% -1,9% 

7 3 4 1 - 8 23 6% 5,7% -7,0% 

8 4 3 - - 7 17 -12% -13,4% -0,8% 

9 4 2 2 3 11 27 18% 19,5% 4,0% 

10 4 3 4 - 11 25 12% 12,6% 5,0% 

11 5 3 - - 8 16 -15% -13,3% 3,6% 

 

In addition, we notice from scenarios 5 and 7 that changing the variable costs affect more the 

solution than varying the fixed costs. In fact, the increase in the variable costs (scenario 5), 

leads to a fleet utilization reduction by 6% and a cost augmentation by 1,6%, whereas, the 
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decrease in variable costs (scenario 7), leads to a contrary effect as the fleet utilization grows 

by 6% and the cost improves by 7%. This is explained by the fact that the distances of the 

routes are more relevant to consider in the minimization of the total cost than the type of vehicle 

to use for each trip.   

 

Moreover, we remark that eliminating a vehicle (scenario 8) decreases the fleet utilization by 

12% and the number of served dealers by 4. However, adding a vehicle (scenario 9) increases 

the fleet utilization by 18% and the number of served dealers by 7. Interestingly, we observe 

that when changing the capacity of the second vehicle from three cars to two cars (scenario 

10), the fleet utilization is improved. The reason is that the fleet can do more routes of two 

dealers that doing routes of three dealers as the routes with two dealers are more flexible. But 

this is not always true as other instances might have fewer flexible schedules and more 

constraints to satisfy. Finally, using two vehicles with a capacity of 2 cars (scenario 11), we 

see that the number of routes did not change compared to the original scenario with three 

vehicles, but the number of visited dealers is reduced by 5. From these scenarios, we 

recommend the company to keep its actual private fleet and try to balance its assignments 

between the fleet and the external carriers in a way that minimizes their operational costs. 

Another suggestion is, if the company wants to modify its private fleet, then it should consider 

adding one vehicle with a capacity of three cars as this is the best scenario with respect to the 

fleet utilization and the cost of the solution.  

 

In conclusion, we can say that our heuristic algorithm performs well and obtain good-quality 

results that satisfy the business requirement of the company. In fact, the heuristic optimizes the 

fleet utilization (54%) in comparison with manual routing (20%). In addition, it minimizes the 

total routing cost by 11% with an optimized assignation of the dealers between the private fleet 

(54%) and the external carriers (46%). From the sensitivity analysis, we can conclude that 

changing the initial hypothesis led to variations in the final solution. This can help the decision-

makers in choosing the best scenario for their routes’ planning. Also, we can see that our 

heuristic has stable performance and obtain the predicted results for the proposed scenarios. 

Finally, in comparison with the mathematical model, the heuristic performs much better for 
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solving larger instances in shorter computation time as it can solve a whole day of routing with 

a big number of dealers in only one hour.  



 

CONCLUSION 
 

In this project, we studied a reverse logistics vehicle routing problem of a Canadian company 

that collects the end-of-life vehicles (ELVs) from a group of dealers and accumulates them at 

its warehouse for parts resale or waste recycling. At the moment, the planning process of ELVs 

collection is managed manually based on the operators’ experience. The recent increase in the 

number of ELVs to collect leads to an increase in transportation costs and inconvenient delays 

to suppliers. Therefore, there was a need for the development of the appropriate optimization 

techniques to minimize the transportation costs and reduce the complexity of routes planning 

related to the collection of ELVs. 

 

This project helped us to make decisions about the following main issues: (i) what is the 

minimum cost to serve all dealers using the internal fleet and the external carriers, (ii) What 

dealers should be served by the internal fleet and what dealers should be served by the external 

carriers and, (iii) in which sequence should the vehicles visit the dealers. This problem can be 

considered as multi-attribute or rich VRP since it regroups many variants of the classical VRP 

problem into one complex problem such as capacitated VRP, VRP with time-windows, 

heterogeneous VRP, VRP with loading constraints, multi-trip VRP, and VRP with private fleet 

and external carriers. To the best of our knowledge, this problem was not considered until now 

in the literature, as all the current versions of VRPs do not consider multi-trip aspect, private 

fleet and multiple external carriers’ assignments and loading constraints together in the same 

mathematical model or heuristic algorithm. Besides, although the cars’ length has been 

included in auto-carrier loading optimization, the specific characteristics of ELVs (body, 

burned, without wheels, etc.) have not been considered before in the VRP literature. 

 

We propose a mixed-integer linear programming formulation which can be solved by a state-

of-the-art commercial solver such as LINGO for small instances. We tested our mathematical 

model using 13 small-generated instances ranging from instances with 5 dealers to instances 

with 20 dealers. We notice that the model can obtain optimal solutions only for the small 

instances with 5, 7, 10 and 12 dealers, respectively, within three hours of computation time. 
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For the instances with 15 dealers, the LIINGO solver can only obtain feasible solutions within 

the allowed time limit of three hours. The average percent deviation from the best objective of 

these solutions is between 9% and 11%. For the instance with 20 dealers, the gap increases to 

29% from the theoretical optimal solution proposed by the solver. This proves the limitation 

of the exact solution to solve this kind of complex problems, especially on an industrial scale. 

Thus, we develop a heuristic algorithm to minimize the computation time while guaranteeing 

good-quality feasible solutions even for large instances. 

 

To assess the performance of our heuristic, we conducted a case study that consists of 

optimizing the routes’ planning of the company for November 2018. We used the 30 different 

instances of the month and we compared the results of the manual planning with the results of 

our algorithm. The heuristic took between 20 minutes and 40 minutes to solve each instance 

depending on the number of dealers to be served. Concerning the results, we noticed that the 

utilization of the internal fleet is increased by 34% compared to manual planning currently 

used by the firm. In addition, the assignment of the dealers between the private fleet and the 

external carriers is also optimized as it goes from 20% and 80%, respectively for the dealers 

visited by the private fleet and the external carriers, to 54% and 46%. Also, the total cost, which 

is the sum of the travel cost plus the external carriers’ cost, is minimized by 16091,7$ for the 

30 days which constitutes a saving of 16,7%.  

 

Finally, we performed a sensibility analysis by proposing different scenarios in which we 

change some of the initial hypothesis imposed by the company. In each scenario, we change 

the value of one parameter to see the outcome of this variation on the final solution and test 

the stability of our heuristic. The analysis proves the excellent performance of our algorithm 

as it obtains the predicted results and it can help the company to know the degree of flexibility 

of their restrictive hypothesis. Also, based on some scenarios, we recommend the company not 

to use the fleet to its maximum capacity and should consider outsourcing more customers to 

the external carriers to minimize the total transportation cost. This is because, at some point, 

the internal vehicles will begin in doing expensive routes (routes with longer travel times and 
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fewer dealers) and it is more advantageous for the company, in this case, to deal with the 

carriers who usually have cheaper prices. 

 

Before finishing, we present some limitations of our study, which can be explored in future 

researches. First, our problem considers only one single depot in the generation of the routes. 

We can extend the model to consider a multi-depots problem in which vehicles start and end 

their routes at different depots. In addition, we may consider that the vehicles do not return to 

the depot after servicing the last customer on the route, which gives us the idea of using the 

open VRP variant. Second, in our study, we do not optimize the routes of the external carriers. 

This problem can be addressed by considering the outsourced dealers in the generation of our 

routes. Third, we can take into account the environmental perspective in our problem by 

incorporating the energy conception and the pollutant emissions of the vehicles in the routing. 

This variant is known as green VRP.  

 

Furthermore, our problem is considered to be a single-period deterministic problem as we 

perform daily planning and the demand is known in advance. In future research, we can explore 

a multi-period model that can optimize the routing of several days at the same time. Also, we 

can extend the model to be dynamic or stochastic instead of deterministic. In dynamic VRP, 

some data is not known in advance but becomes available during operation. If some data are 

not known in advance but are described by a random variable with a given probability 

distribution, the VRP is stochastic. 

 

As for solution methods, we can consider using a known metaheuristic algorithm such as Tabu 

Search and integrate our developed heuristic into the metaheuristic for solution construction 

and improvement. This will help us in the future to consider more complex problems and solve 

larger instances. 

 





 

ANNEX I 
 
 

INSTANCES FOR HEURISTIC VALIDATION AND SENSITIVITY ANALYSIS 

We present here the instances J-1 (5 dealers), J-2 (10 dealers), J-3 (15 dealers) and J-4 (20 

dealers) for the heuristic validation in Table-A I-1. Also, we display the instance D-10 for the 

sensitivity analysis in Table-A I-2. For both tables, the columns ‘Start date’ and ‘End date’ are 

the time windows. The column ‘4x4’ shows if the car has a four-wheel-drive driveline. The 

column ‘Car type’ displays the type of the car: G (big), M (medium) and S (small). The column 

‘Can be towed’ states that if it is not obligatory to use the platform of the vehicle to collect the 

car. The column ‘Broker price’ shows the minimum broker cost that can be assigned to that 

dealer if it is served by an external carrier.   

Table-A I-1 Instances for heuristic validation 
 

Instance Dealer 
Towing 

Zip 

Start 
Date 

End 
Date 

4x4 
Car 
type 

Can be 
towed 

Broker 
Price 

 1 H7P 5H5 08:00:00 12:00:00 NO G YES 65 

 2 H7A 0C3 08:00:00 12:00:00 NO G YES 80 

 3 J7M 1J5 12:00:00 16:00:00 NO G YES 70 

 4 J6Z 1K8 12:00:00 16:00:00 NO M NO 60 

J-1 5 H9H 2R9 16:00:00 20:00:00 NO G YES 60 

 6 J7R 6G4 08:00:00 12:00:00 NO G YES 50 

 7 H1R 1X3 08:00:00 12:00:00 NO M NO 65 

 8 J5Z 3A4 12:00:00 16:00:00 YES M YES 65 

 9 J0N 1P0 12:00:00 16:00:00 NO G NO 60 

J-2 10 H9S 2E6 16:00:00 20:00:00 NO M NO 75 

 11 H1Y 2L3 12:00:00 16:00:00 NO G YES 65 

 12 J7P 3N6 12:00:00 16:00:00 NO G YES 50 

 13 H1A 1C9 08:00:00 12:00:00 NO S YES 65 
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Table-A I-1 Instances for heuristic validation (continued) 
 

Instance Dealer 
Towing 

Zip 

Start 
Date 

End 
Date 

4x4 
Car 
type 

Can be 
towed 

Broker 
Price 

 14 J7K 3C2 16:00:00 20:00:00 NO S YES 65 

J-3 15 J7K 3Y5 16:00:00 20:00:00 NO G YES 75 

 16 H2C 2C8 08:00:00 12:00:00 NO M YES 70 

 17 J7R 4K3 12:00:00 16:00:00 NO G YES 75 

 18 H7J 1G7 16:00:00 20:00:00 NO M YES 60 

 19 H3W 2E9 16:00:00 20:00:00 NO S YES 50 

J-4 20 H9A 2N2 16:00:00 20:00:00 NO M YES 50 

 
Table-A I-2 Instance D-10 for sensitivity analysis 

 

Dealer 
Towing 

Zip 

Start 
Date 

End 
Date 

4x4 
Car 
type 

Can be 
towed 

Broker 
Price 

1 H4E3B9 08:00:00 12:00:00 NO S YES 80 

2 H8Z3E1 08:00:00 12:00:00 NO M YES 75 

3 H1L4N3 08:00:00 12:00:00 NO M YES 65 

4 H7H1A6 08:00:00 12:00:00 NO S YES 50 

5 H1Z3A3 08:00:00 12:00:00 NO M YES 65 

6 H8Z2X9 08:00:00 12:00:00 NO M YES 75 

7 H1E2X1 08:00:00 12:00:00 NO M YES 65 

8 H3A3G5 08:00:00 12:00:00 NO G YES 80 

9 H9H5N3 08:00:00 12:00:00 NO S YES 75 

10 H1B2N2 08:00:00 12:00:00 NO G YES 65 

11 H7X2S2 08:00:00 12:00:00 NO M YES 60 

12 H3S1B8 08:00:00 12:00:00 NO M NO 70 

13 H7R4N1 09:30:00 12:00:00 NO G YES 60 
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Table-A I-2 Instance D-10 for sensitivity analysis (continued) 
 

Dealer 
Towing 

Zip 

Start 
Date 

End 
Date 

4x4 
Car 
type 

Can be 
towed 

Broker 
Price 

14 H1G5J5 12:00:00 16:00:00 NO M YES 65 

15 H4E3W4 12:00:00 16:00:00 NO S NO 80 

16 H1G1K4 12:00:00 16:00:00 NO S YES 65 

17 J7K1C5 12:00:00 16:00:00 NO G NO 60 

18 H7P1L5 12:00:00 16:00:00 NO M YES 60 

19 H4N3H9 12:00:00 16:00:00 NO S NO 70 

20 H1Z3M4 12:00:00 16:00:00 NO G VRAI 65 

21 J6W3S9 12:00:00 16:00:00 NO S YES 65 

22 H7N3L2 12:00:00 16:00:00 NO M YES 50 

23 J7H1H3 12:00:00 16:00:00 NO G YES 65 

24 H3N2J4 12:00:00 16:00:00 NO G YES 70 

25 J6X2N9 12:00:00 16:00:00 NO M YES 70 

26 H2P1Z3 16:00:00 20:00:00 NO S YES 65 

27 H4M1S4 16:00:00 20:00:00 NO S YES 70 

28 H1H0A3 16:00:00 20:00:00 NO G YES 65 

29 J7A1P2 16:00:00 20:00:00 NO M YES 60 

30 H1M2X4 16:00:00 20:00:00 NO G YES 65 

31 H7L4W7 16:00:00 20:00:00 NO M YES 50 

32 J7M1W5 16:00:00 20:00:00 NO M NO 80 

33 H7C2C8 16:00:00 20:00:00 NO G NO 50 
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Solving a reverse logistics routing problem for the 
collection of end-of-life vehicles  
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Ecole de Technologie Supérieure 

Montreal, Canada 
1 Ahmed.Khabou.1@ens.etsmtl.ca, 2 amin.chaabane@etsmtl.ca , 3 Mustapha.Ouhimmou@etsmtl.ca 

Abstract— Firms operating in the purchasing of end-of-life 
vehicles (ELVs) have significant challenges related to the fact that 
most the purchased ELVs must be collected efficiently to maximize 
their operational costs. In this paper, we study the reverse logistics 
problem of such a firm that aims to collect ELVs from its dealers 
and we called as the reverse logistics vehicle routing problem 
(RLVRP). We propose a mixed-integer linear programming 
(MILP) model to solve the RLVRP. Although prior research has 
made some crucial contributions to model and solve the VRP, the 
specific case study in this paper combines different types of 
constraints such as customer assignment to the private fleet or an 
external carrier, time-windows, multi-trip and loading sequences. 
Numerical experiments were carried out on real case data 
collected from a Canadian company operating in the collection of 
ELVs. 

Keywords— Reverse logistics, vehicle routing problem, time-
windows, heterogenous fleet, multi-trip, multiple external carriers, 
loading sequences. 

1. Introduction  

Traditionally, supply chains have been considered as the 
linear movement of good through distribution channels from 
suppliers to manufacturers, wholesalers, retailers, and finally to 
consumers (Cruz-Rivera & Ertel, 2009). In recent years, the 
research field of supply chain management has been extended 
by tasks referring to reverse logistics flow such as product 
recovery, refurbishing or recycling. These tasks are part of the 
end-of-life phase of products and complement the traditional 
supply chains by closing the loop to have the so called, closed-
loop supply chains (Schultmann et al., 2006). 

Nowadays, the role of reverse logistics has been developed 
a lot such that it now plays a major part in the success of many 
companies. From an economic point of view, the reverse 
logistics represent direct incomes from reduced consumption of 
raw-materials, from adding value to recovered material and from 
cost reduction on waste treatment. This is encouraged different 
companies to become active in this new area of management 
(Schultmann et al., 2006). 

In this paper, we consider a part of the reverse supply chain 
of vehicles which is the collection of ELVs. More specifically, 
we try to optimize the routes planning for ELVs collection. The 
problem of route planning is known by the research community 
as the vehicle routing problem (VRP).  The VRP is one of the 

most widely studied combinatory problem in operation research. 
The high interest of the research community in the different 
variants of VRP is not only motivated by its difficulty as 
combinatorial optimization problem but also by its practical 
relevance. Large number of real-world applications has shown 
that solving the VRP yields to substantial savings in 
transportation costs (Stefan Irnich et al., 2014).  

Our objective is to propose a suitable model for route 
planning of ELVs collection that takes into account the 
following company-specific constraints: 

• Customers assignment: customers may either be served 
by the company’s private fleet or by an external carrier, 
which serves them directly at a predefined cost.  

• Time-widows constraints : the routes should be 
synchronized with the time windows already specified 
in advance. 

• Heterogeneous fixed fleet of vehicles: the fleet has 
different types of vehicles (auto-carriers) with different 
capacities. 

• Multi-trip: Due to the limited number and capacities of 
auto-carriers, the model should consider performing 
multi-trip routing. 

• Loading constraints: loading sequences of the different 
ELVs should be considered in the generation of the 
routes and the vehicle assignment. 

The rest of the paper is organized as follows. A brief 
literature review on the used variants of vehicle routing problem 
in this paper is provided in Section 2. A mathematical 
programming formulation is given in Section 3. Section 4 
reports the results of the computational tests. Finally, conclusion 
is in Section 5. 

2. literature review 

In this paper, we focus on a collection problem of ELVs 
called as reverse logistics vehicle routing problem (RLVRP), 
which is faced by a firm involved in product recovery. The firm 
is mainly interested in the transportation of the ELVs from 
dealers to the depot using capacitated vehicles. This problem can 
be considered as rich or multi-attribute VRP as it regroups many 
variants of the classical VRP into one single problem. Thus, our 
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literature review mainly includes the line of research on these 
different variants of VRP. 

(Dantzig & Ramser, 1959) introduced the ‘‘Truck 
Dispatching Problem” modeling how a fleet of homogeneous 
trucks could serve the demand for oil of a number of gas stations 
from a central hub and with a minimum traveled distance. After 
five years, (Clarke & Wright, 1964) generalized this problem to 
a linear optimization problem as follow: how to serve a set of 
customers geographically dispersed around a central depot, 
using a fleet of trucks with varying capacities. This became 
known as the Vehicle Routing Problem, one of the most widely 
studied topics in the field of operations research. The VRP is the 
generalisation of the Travelling Salesman Problem (TSP) where 
a traveling salesman wants to visit each of a set of towns exactly 
once, starting from and returning to his home town in the 
shortest possible way (Jünger et al., 1995). 

The most classical version of VRP, known as the capacitated 
VRP (CVRP), consists of finding a set of routes of minimum 
cost such that every customer is serviced exactly by one vehicle, 
each route starts and ends at the depot and the total demand 
serviced by a route does not exceed vehicle capacity (Fig. 3.1). 
Nowadays, VRP problems incorporate real-life constraints such 
as time windows, number of depots, nature of demand, type of 
vehicles and many others. A classification of side constraints 
occurring in real-life VRPs is provided by (Van Breedam, 1995). 
A very large number of papers and books deal with the TSP and 
VRP  such as (Gutin & Punnen, 2002), (Toth & Vigo, 2001) and 
(Toth & Vigo, 2014). An excellent state of the art classification 
and review of the VRP is provided by (Braekers et al., 2016). 

The VRP with time-windows (VRPTW) is an extension of 
the CVRP in which the service of each customer must be within 
a time interval, called a time-window. The depot is represented 
by the two nodes 0 and n+1 with reference to a source node and 
a sink node, respectively. A feasible solution for the VRPTW is 
obtained by an elementary path from the source to the sink. The 
converse path however may not represent a feasible route as it 
can violate the time-windows (Desaulniers et al., 2014).  

Another extension to the CVRP, known as the 
heterogeneous VRP (HVRP), considers a group of vehicles that 
can differ in capacity, variable costs, fixed costs and speed. In 
HVRP, we have a fleet of vehicles made up of |P| different 
vehicle types, i.e. the fleet K is partitioned into subsets of 
homogeneous vehicles K = K1 ∪ K2 ∪ … ∪ K|P|. Each vehicle 
type p = 1,…,|P| has capacity Qp, and may also have a fixed cost 
FCp and a specific traveling cost cp

ij along each arc modelling 
the route of our problem (Stefan  Irnich et al., 2014). A 
comprehensive review of the existing work on HVRPs is 
presented by (Koç, Bektaş, Jabali, & Laporte, 2016). 

The CVRP could be also extended to have a multi-route 
aspect and become known as multi-trip VRP (MTVRP). While 
in the CVRP each vehicle can only perform one route, in the 
MTVRP, vehicles may perform several routes over a planning 
horizon T. Given some routes with durations T1, T2,…,Tp, a 
single vehicle may perform them if T1 + T2 +…+ Tp ≤ T holds. 
This situation is imposed especially when the vehicle capacity is 
limited, or other constraints impose a small number of services 
per route such as the number of available vehicles. Hence, 

feasible solutions with a limited fleet of size |K| can only be 
achieved when vehicles are reused (Stefan Irnich et al., 2014). 
(Chabot, 2015) studied a multi-attribute VRP in the context of 
biomedical simples’ transportation. He provided a mathematical 
formulation considering different VRP constraints such as time-
windows and maximum time limit for a route along with the 
multi-trip aspect. His objective was to minimize the total fixed 
cost plus the total variable cost of the vehicles. Our model 
considers new constraints that have not been studied in (Chabot, 
2015) such as customer assignments to a private fleet or an 
external carrier, and the loading sequences. Moreover, our 
objective function considers the cost of using the external 
carriers in addition to the fixed and variable costs of the vehicles. 

Finally, our problem considers the outsourcing option of 
some of the dealers to an external carrier if there are not enough 
private vehicles to serve them. This variant is known as VRP 
with private fleet and external carrier (VRPPC) or VRP with 
outsourcing (Archetti et al., 2014). A single-depot routing 
problem with outsourcing options was first introduced by (Chu, 
2005). The problem considers a private fleet of vehicles with 
limited capacity and a set of customers with known demand. 
Each customer can be served either by the private fleet which 
then incurs travel costs as in standard VRP or outsourced to a 
common carrier, and in such a case only fixed service costs must 
be paid. The objective is to minimize the total cost involving 
fixed costs for vehicles, variable travel costs, and fixed costs for 
orders performed by the common carrier. Our problem adds new 
features to the problem of (Chu, 2005) as it considers multiple 
external carriers that can have different costs depending on the 
customer’s region. Hence, the cost of the external carrier should 
be considered in the global routing decision. In addition, the 
external carrier is called only after utilizing the maximum 
capacity of the company’s internal fleet. 

3. Mathematical model 

In the following, we describe the inputs and the requirements 
of our problem and we present the developed mathematical 
model for the RLVRP. We use the term vehicle to denote an 
auto-carrier, the term car to donate the transported item on the 
vehicle, the term dealer to denote a customer who want to sell 
his car, and the term broker to donate the external carrier that we 
will use to collect some of the cars. 

3.1 Network 
Given a complete graph G = (I, A), where I ={0, 1,…, n, 

n+1} is the set of nodes (locations) and A={(i, j): i < n+1; j > 0; 
i ≠ j} is the set of arcs connecting each node. Node 0 corresponds 
to the depart depot and node n+1 corresponds to the end depot 
which is a duplication of the depart depot, whereas vertices N = 
{1,…, n} correspond to the n dealers to be visited. A distance dij 
≥ 0 and a travel time tij ≥ 0 are associated to each arc (i, j) ∈ A 
and respectively satisfy the triangle inequality i.e. tij  + tjk ≥ tik 
and dij + djk ≥ dik. We suppose also that dij = dji  and tij = tji ,∀ (i, 
j) ∈ A. Each location i ∈ I has its service time si ≥ 0 (si  is the 
loading time for i ∈ N, s0=0 and s(n+1) is the unloading time) and 
each location should be visited within a prespecified time 
window [oi, ci] (0 ≤ oi ≤ ci) with oi and ci are respectively are the 
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Fig. 3.1. Example of a classic VRP with 9 clients and 3 routes 

opening time and the closing time of the time-window for 
location i ∈ I. Customer service must start within the time-
window, but the vehicle may wait at a customer location if it 
arrives before the beginning of the time window. Note that the 
time-window for the depot is limited by the work schedule of 
the vehicle v which is from 8 a.m to 8 p.m that correspond to a 
total of twelve hours each day. 

3.2 Fleet and routes   
The set of vehicles is donated by V. The set is composed of 

fixed heterogeneous fleet of vehicles where each vehicle v ∈ V 
has a maximum capacity qv, duration of working day Tv, fixed 
operating cost fv for each time a vehicle leaves the depot and 
variable cost rate per distance unit cv. In this model, we suppose 
that we have two vehicle types: We donate the set of vehicle 
types with qv= 3 as the set V1 ⊆ V  (Fig. 3.2) and the set of 
vehicle type with qv= 2 as the set V2 ⊆ V (Fig. 3.3). Vehicles of 
type v1 can hold two cars on their platform and the third is towed, 
whereas vehicles of type v2 can hold only one car on the platform 
and the other is towed.   

Vehicles may perform several routes in the same day. This 
is due to the limited vehicle capacity qv and to the limited 
number of available vehicles. Thus, feasible solutions with a 
limited fleet of size |V| can only be achieved when vehicles are 
reused to perform several routes if necessary. The set of routes 
is denoted as R. A route r ∈ R has a duration Tr and a single 
vehicle may perform several routes with durations T1, T2,…, Tr 
if T1 + T2+…+ Tr ≤ Tv holds.  

3.3 Pickups 
The number of cars that need to be collected from a dealer i ∈ N consists of ai cars (we suppose that ai = 1, i ∈ N and a0 = 

a(n+1) = 0). Each car is characterised by a length (large, medium 
or small), a specific driveline (4x4, 2x4, 4x2, etc.), a car status 
(damaged, new, burned, etc.) and a wheel’s status (with wheels, 
without wheels, have only front wheels, etc.). These different 
statuses allow us to define the adequate loading sequences that 
should be respected in the generation of the routes. In our 
problem, we have three loading constraints that should be 
respected:  

• A 4x4 car should be on the first position for both vehicle 
types v1 and v2. 

• A body, burnt, damaged or without wheels car should 
be on the platform of the vehicle (either first or second 
position if v ∈ V1 or on first position if v ∈ V2) 

• A vehicle v1 cannot hold two large cars (or one large and 
one medium) on the platform at the same time. 

Each request for pickup can be fulfilled by two 
transportation options: The first option is to use an internal 
vehicle. The other transportation option is offered by a set of 
brokers (logistic service providers or freight forwarding 
companies). The set of brokers is donated by B. The assignment 
of a dealer i to a broker b ∈ B incur a cost  pib that depends on 
the broker to be used and the location of the dealer to be served. 
In our model, we suppose that the brokers do not have any 
capacity limits but accepts every subcontracted quantity and that 
the internal fleet should be used to its maximum capacity before 
giving the opportunity to brokers to collect the cars.   

3.4 Requirements 
Our problem calls for the assignment of dealers to be served 

either by an internal vehicle or an external broker as well as the 
determination of a set of optimized routes for the internal 
vehicles such that the total internal costs plus total external costs 
are minimized, and the following conditions are satisfied: 

• Each dealer can either be assigned to one broker or 
visited exactly by one route and one vehicle. 

• Each route starts and ends at the same depot after 
finishing the service for the last dealer. 

• The sum of the demands of the dealers in any route does 
not exceed vehicle capacity.  

• The total duration of the routes assigned to the same 
vehicle does not exceed the vehicle working time. 

• Each dealer should be visited with a prespecified time 
window.  

• The specific loading constraints of each vehicle should 
be respected. 

3.5 Parameters 
fv: Unit vehicle operating cost (fixed cost) 

cv: Cost per unit distance traveled for a vehicle v (variable 
cost) 

 
Fig. 3.2. Example of vehicle of type v1 

 
Fig. 3.3. Example of vehicle of type v2 

qv: Capacity of vehicle v 

Tv: Duration of the working day for a vehicle v 
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dij: Distance between location i and location j 

tij: Time required to travel from location i to location j 

ai: Number of cars to be collected from dealer i  

si: Service time for location i  

[oi, ci]: Time window for location i  

pib: Cost of assignment of a dealer i to a broker b 

di: Takes 1 if a dealer i has 4x4 car (known also as Four- 
Wheel Drive car), 0 otherwise 

nwi: Takes 1 if a dealer i has a body, burnt, damaged or 
without wheels car, 0 otherwise  

gi: Takes 1 if a dealer i has large car, 0 otherwise 

midi: Takes 1 if a dealer i has medium car, 0 otherwise 

M: A large number 

3.6 Variables 
xijrv: Takes 1 if arc (i, j) ∈ A is used on route r by vehicle v, 

0 otherwise. 

yirv: Takes 1 if a dealer i is visited on route r by vehicle v, 0 
otherwise. 

ATirv: Arrival Time of vehicle v for location i on route r. 

uirv: Load of the vehicle v right after departing from location 
i on the route r. 

zib: Takes 1 if a dealer i is assigned to to the external borker 
b, 0 otherwise.  

Note that this formulation makes use of the additional 
variables uirv to model the  Miller–Tucker–Zemlin (MTZ) 
subtour elimination constraints introduced by (Miller et al., 
1960) for the TSP. The advantage of the MTZ-formulation is 
that it has O(n2) variables and constraints. 

3.7 Model 
Minimize ෍ ෍ ෍ 𝑓௩𝑥଴௝௥௩୴∈௏୰∈ோ୨∈ே∪{௡ାଵ}  

+ ෍ ෍ ෍ ෍ 𝑐௩୰∈ோ௩∈௏௝∈ே∪{௡ାଵ}௝ஷ௜௜∈ே∪{଴} 𝑑௜௝𝑥௜௝௥௩ + ෍ ෍ 𝑝௜௕𝑧௜௕௕∈஻௜∈ே  
   (1) 

Subject to: ෍ ෍ 𝑦௜௥௩୰∈ோ୴∈௏ + ෍ 𝑧௜௕ = 1ୠ∈஻         𝑖 ∈ 𝑁 (2) 

෍ 𝑥௜௝௥௩ = ෍ 𝑥௝௜௥௩ =  𝑦௝௥௩ ௜∈ே∪{௡ାଵ}௜ஷ௝௜∈ே∪{଴}௜ஷ௝
   𝑗 ∈ 𝑁, 𝑟 ∈ 𝑅,

𝑣 ∈ 𝑉 

(3) 

෍ 𝑥଴௝௥௩௝∈ே ≤ 1        𝑟 ∈ 𝑅, 𝑣 ∈ 𝑉 (4) 

෍ 𝑎௜𝑦௜௥௩௜∈ே ≤ 𝑞௩    𝑟 ∈ 𝑅, 𝑣 ∈ 𝑉 (5) 

෍ 𝑥଴௝(௥ାଵ)௩ ≤ ෍ 𝑥଴௝௥௩    ௝∈ே௝∈ே       𝑟 ∈ {1, … ,  |𝑅| − 1} , 𝑣
∈ 𝑉 

(6) 

𝑢௜௥௩ − 𝑢௝௥௩ + 𝑞௩𝑥௜௝௥௩ + ൫𝑞௩ − 𝑎௜ − 𝑎௝൯𝑥௝௜௥௩≤ 𝑞௩ − 𝑎௝       𝑖, 𝑗 ∈ 𝑁,  𝑖 ≠ 𝑗,  𝑟 ∈ 𝑅,  𝑣 ∈ 𝑉 

(7) 

𝑢௜௥௩ ≤ 𝑞௩                         𝑖 ∈ 𝑁,  𝑟 ∈ 𝑅,  𝑣 ∈ 𝑉 (8) 𝑢௜௥௩ ≥ 𝑎௜ × 𝑦௜௥௩            𝑖 ∈ 𝑁,  𝑣 ∈ 𝑉,  𝑟 ∈ 𝑅 (9) 𝐴𝑇௜௥௩ + 𝑠௜ + 𝑡௜௝ − 𝐴𝑇௝௥௩ ≤ 𝑇௩ ൫1 − 𝑥௜௝௥௩൯      𝑖 ∈ 𝑁 ∪ {0},   𝑗 ∈ N ∪ {𝑛 + 1},  r ∈ 𝑅, v ∈ V 
(10) 

𝑜௜ × 𝑦௜௥௩ ≤ 𝐴𝑇௜௥௩ ≤ 𝑐௜ × 𝑦௜௥௩           𝑖 ∈ 𝑁,  𝑣 ∈ 𝑉,  𝑟 ∈ 𝑅 (11) 𝑜௜ ≤ 𝐴𝑇௜௥௩ ≤ 𝑐௜                      𝑖 ∈ {0, 𝑛 + 1}, 𝑣 ∈ 𝑉,  𝑟 ∈ 𝑅 (12) 𝐴𝑇଴௥௩ ≥ 𝐴𝑇(௡ାଵ)௩(௥ିଵ) + 𝑠(௡ାଵ)  𝑣 ∈ 𝑉,  𝑟 ∈ {2, … ,  |𝑅|} (13) 𝐴𝑇(௡ାଵ)௥௩ − 𝐴𝑇଴ଵ௩ ≤ 𝑇௩                                𝑣 ∈ 𝑉,  𝑟 ∈ 𝑅 (14) 𝑢௜௥௩ − 1 ≤ 𝑀(1 − 𝑑௜ × 𝑦௜௥௩)        𝑖 ∈ 𝑁,  𝑣 ∈ 𝑉,  𝑟 ∈ 𝑅 (15) 𝑢௜௥௩ − 2 ≤ 𝑀(1 − 𝑛𝑤௜ × 𝑦௜௥௩)    𝑖 ∈ 𝑁,  𝑣 ∈ 𝑉ଵ,  𝑟 ∈ 𝑅 (16) 𝑢௜௥௩ − 1 ≤ 𝑀(1 − 𝑛𝑤௜ × 𝑦௜௥௩)    𝑖 ∈ 𝑁,  𝑣 ∈ 𝑉ଶ,  𝑟 ∈ 𝑅 (17) 𝑥௝௟௥௩ ≤ 𝑀൫1 − 𝑥଴௝௥௩൯          𝑣 ∈ 𝑉ଵ,  𝑟 ∈ 𝑅,  𝑗, 𝑙 ∈ 𝑁, 𝑖 ≠ 𝑗, 𝑔௝ = 𝑔௟ = 1 or 𝑔௟ = 1 𝑎𝑛𝑑 𝑚𝑖𝑑௝ = 1 or 𝑔௝ = 1 𝑎𝑛𝑑 𝑚𝑖𝑑௟ = 1 

(18) 

𝑥௜௝௥௩ = {0,1}     (𝑖, 𝑗) ∈ A,  v ∈ 𝑉, 𝑟 ∈ 𝑅 (19) 𝑦௜௥௩ = {0,1}            𝑖 ∈ N, v ∈ 𝑉, 𝑟 ∈ 𝑅 (20) 𝐴𝑇௜௥௩ ≥ 0                  𝑖 ∈ 𝐼,  v ∈ 𝑉, 𝑟 ∈ 𝑅 (21) 𝑢௜௥௩ ≥ 0                 𝑖 ∈ N,  v ∈ 𝑉, 𝑟 ∈ 𝑅 (22) 𝑧௜௕ = {0,1}                       𝑖 ∈ N,  𝑏 ∈ 𝐵 (23) 

Objective function (1) minimizes the total cost which is the 
sum of three parts as follow: The first and second parts 
calculates the total fixed costs and the total variable costs of the 
internal vehicles, respectively. The third part calculates the cost 
of assigning the dealers to the external brokers.  

Constraints (2) ensure that a dealer i ∈ N is either visited 
exactly once (by one route r ∈ R and one internal vehicle v ∈ V) 
or it is assigned to an external broker b ∈ B. Constraints (3) are 
known as the flow conservation constraints which ensure that if 
a vehicle v visits a location j ∈ I on route r ∈ R, then it should 
leave this location after service completion to have a balanced 
flow. Constraints (4) state that at most one vehicle v ∈ V can go 
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out from the depart depot on a route r ∈ R. Constraints (5) ensure 
that the total demand of the dealers on a route r ∈ R should not 
exceed the vehicle capacity. Constraints (6) ensure that with 
respect to a vehicle v ∈ V, its (r+1)th route is realized only if its 
rth route has been realized. Constraints (7) are the MTZ subtours 
elimination constraints which are used together with lower and 
upper bounds on uirv variables. Constraints (8) and (9) ensure 
that the load of the vehicle v ∈ V on route r ∈ R right after 
departing from dealer i ∈ N must be at least equal to the number 
of cars picked up from that dealer and should not exceed vehicle 
capacity. Constraints (10) calculate the arrival time to location j ∈ N ∪ {n+1} after visiting its predecessor i ∈ N ∪{0} and ensure 
that the arrival time of the location j is greater than the sum of 
the arrival time of location i plus the traveling time and service 
time of that same location. Constraints (11) and (12) ensure that 
the arrival time for location i ∈ I is within the time-window of 
that location.  Constraints (13) ensure that the starting time of 
the rth route from the depart depot is greater then the arrival time 
of the (r-1)th route to the end depot plus the unloading time at the 
end depot. Constraints (14) states that the duration of routes 
performed by vehicle v should not exceed its working time limit. 
Constraints (15) states that if a dealer i ∈ N has a 4x4 car then it 
should be visited first on a route r ∈ R using a vehicle v ∈ V. 
Constraints (16) and (17) state that if a dealer i ∈ N has a body, 
burnt, damaged or without wheels car then it should be visited 
either first or second on a route r ∈ R if  v ∈ V1 or first if v ∈ V2  
(i.e. The vehicle should be on the platform of the vehicle). 
Constraints (18) state that vehicle v ∈ V1 cannot hold two large 
cars or one large and one medium on the platform at the same 
time. Finally, constraints (19) - (23) define the variables of the 
model. 

4. Computational results  

In this section, we first describe how we generate the 
instances of the problem. Then, we report the results of our 
computations for the developed model. The model was solved 
using LINGO 15.0 solver. 

4.1 Instances generation 
To generate our instances, we have three major parameters: 

the number of dealers, the number of vehicles for each type and 
the number of routes that can be performed by each vehicle. 
Using these parameters, we generate 13 different instances 
ranging from small ones with only 5 dealers to bigger ones with 
20 dealers as can be seen in Table 4.1. The depot and the dealers 
are located within the province of Quebec and particularly in the 
great area of Montreal. They are directly geolocated using their 
postal code with the help of the software Supply Chain Guru. 
Hence, the coordinates and the matrix distance are also 
generated automatically for the testing. The time matrix is 
calculated from the distance matrix by dividing the distances by 
the average speed of the vehicle on the route which is considered 
to be 60 km/hour. The loading and unloading times are 
generated from a discrete uniform distribution in the intervals 
[20, 40] and [15, 30] minutes, respectively. There are three time-
windows AM (morning) from 8 a.m. to 12 p.m., PM (afternoon) 
from 12 p.m. to 4 p.m. and EV (evening) from 4 p.m. to 8 p.m. 
The time limit of the working day of vehicles is fixed at 12 
hours.   

Table 4.1. GENERATED INSTANCES 

Instances Dealers Routes 
Vehicles 

qv = 3 qv = 2 
I-1 5 1 1 0 
I-2 5 1 1 1 
I-3 7 1 1 1 
I-4 7 1 1 2 
I-5 10 1 1 0 
I-6 10 2 1 1 
I-7 10 1 1 2 
I-8 12 3 1 0 
I-9 12 2 1 1 
I-10 15 1 2 1 
I-11 15 2 1 1 
I-12 15 3 1 0 
I-13 20 3 1 1 

 

The fixed and variable costs for each type of the vehicles are 
calculated by the company and include the vehicle depreciation 
cost, maintenance cost, insurance cost, fuel cost, driver cost, etc. 
For vehicles of type v1, fv= 75$ (fixed cost) and cv= 2,6 $/km 
(variable cost) meanwhile vehicles of type v2, fv= 60$ and cv= 
2,4 $/km. Finally, the number of brokers depends on the number 
of vehicles to be collected i.e. the broker is used when needed, 
and the broker cost depend on the region to be visited (the cost 
usually varies between 50$ and 150$ per car). 

4.2 Results 
In this part, we present detailed results of a single instance 

for model validation and then we provide the testing results of 
all generated instances of the problem.  

4.3 Model validation  
To validate the model, we present the results of an example 

from instance I-6 in Table 4.2. This example includes 10 dealers 
and uses 2 vehicles (one vehicle for each type) and no more than 
2 routes per vehicle. There are 4 routes in total and no vehicle 
works more than twelve hours per day. In this example, all 10 
dealers are visited by the internal fleet since the model try to use 
the internal trucks at their maximum 

Table 4.2. RESULTS OF THE INSTANCE I-6 

Vehicle Start Dealers End Duration 

1 
Route 1 8:00 

8 
[4x4] 
8:14 

7 
[L] 
8:52 

2 
9:15 9:45 1h45 

1 
Route 2 10:00 

9 
[4x4] 
[M] 

10:28 

6 
[NW] 
[M] 

10:35 

10 
11:17 12:00 2h 

2 
Route 1 8:00 

3 
[L] 

8:21 

5 
[L] 
8:44 

 9:28 1h28 

2 
Route 2 9:43 

11 
[4x4] 
10:23 

4 
[M] 

11:09 
 12:00 2h17 
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capacities before assigning the dealers to an external broker. The 
arrival time is written below the number of the dealer. Time 
windows are not presented to save space, but they are all 
respected. Loading and unloading times are also respected. The 
column ‘Time’ represent the total time of one route (length of 
the route). 

4.4 Model testing  
Table 4.3 presents the tests done within the allowed time 

limit of 3 h or equivalently 10800 seconds using LINGO 15.0 
solver. Each instance is tested five times using different groups 
of dealers all of them located in the Montreal-Laval region. The 
column ‘Cost ($)’ represent the average cost obtained by the 
different test results. The ‘Gap (%)’ is calculated by the 
following formula: Gap (%) = |Objective value – best objective| 
/ (best objective) × 100. The column ‘CPU(s)’ represent the 
average computational time in seconds.  

Finally, the column ‘NoD’ represents the number of dealers 
visited by the internal fleet (the remaining nodes are 
automatically assigned to the external brokers). 

We notice that LINGO can obtain optimal solutions only for 
the small instances with 5, 7, 10 and 12 dealers, respectively, 
within the allowed time limit. For the instances with 15 dealers, 
the model can only obtain feasible solutions within the allowed 
time limit.  

The average percent deviation from the best objective of 
these solutions is between 9% and 11%. For the instance with 
20 dealers, the gap begins to increase to 29% which explains the 
limitation of the mathematical models to solve this kind of 
complex problems especially on an industrial scale. 

5. Conclusion 

In this paper, we study the reverse logistics vehicle routing 
problem (RLVRP) of a company that collects end-of-life 
vehicles from a group of dealers and accumulates them at its 
warehouse for part resale or for recycling. This study helped us 
to make decisions about the following three issues: (i) What is 
the minimum cost to serve all dealers using the internal fleet and 
the external carriers, (ii) What dealers should be served by the 
internal fleet and what dealers should be served by the brokers 
and, (iii) How many vehicles from the private fleet should be 
used for collection and in what sequence should they visit the 
dealers. This problem can be considered as multi-attribute or 
rich VRP since it regroups many variants of the classical VRP 
problem into one complex problem. To the authors’ knowledge, 
this problem was not considered before in the literature, as all 
the existing versions of VRPs does not involve VRP richness 
aspect with private fleet and multiple external carriers’ 
assignments. 

We propose a mixed-integer linear programming formulation 
for the problem which can be solved by a state-of-the art 
commercial solver such as LINGO. However, since the VRP 
with or without side-constraints is proven to be NP-hard 
(Lenstra & Kan, 1981), relatively large instances cannot be 
solved in this way and only small instances can be solved to 
optimality. Therefore, as a continuation of this study, we need to 
develop a heuristic algorithm to obtain good-quality results in a 
reasonable computation time for large instances. 

Table 4.3. TEST RESULTS FOR THE GENERATED INSTANCES 

Instances Dealers Cost($) Gap(%) CPU(s) NoD 

I-1 5 381 0 0,6 3 
I-2 5 402 0 1,4 5 
I-3 7 547 0 2,1 6 
I-4 7 505 0 6 7 
I-5 10 772 0 23 3 
I-6 10 747 0 58 10 
I-7 10 815 0 129 9 
I-8 12 846 0 838 9 
I-9 12 885 0 7365 10 

I-10 15 967 9 10800 8 
I-11 15 985 10 10800 10 
I-12 15 918 11 10800 9 
I-13 20 1415 29 10800 15 
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