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ParallelLCA: CALCULATEUR PARALLÈLE D’ANALYSE DE CYCLE DE VIE 
PRENANT COMPTE DE L’AVANT PLAN 

 
 François SAAB  

 
RÉSUMÉ 

 
L’analyse du cycle de vie (ACV), qui vise à évaluer les impacts environnementaux au 
cours du cycle de vie d’un produit (par exemple, la production d’aluminium au Québec) 
ou d’un système de produits, peut être utilisée pour comparer différents systèmes utilisant 
différents types de matériaux afin de déterminer celui qui est le moins dommageable pour 
l'environnement. Le calcul d’ACVreprésente un défi de calcul car il dépend de la taille du 
système de produit, du nombre d'itérations dans la simulation de Monte-Carlo, et du 
nombre de variables incertaines dans le système. Tout d'abord, la résolution d'un système 
linéaire, de dimensions dans l’ordre de 10 000 équations par 10 000 variables inconnues 
pour le cas de base. Deuxièmement, la construction d'un arbre, de nature itérative, avec 
des dimensions minimales de 10 000 nœuds. Troisièmement, la simulation de Monte-
Carlo nécessitant plusieurs milliers d’itérations pour converger. Finalement, une analyse 
de sensibilité, qui nécessite le calcul des millions de corrélations vecteur-vecteur, dans 
laquelle chaque vecteur a une dimension qui est équivalente aux nombres des itérations 
qui sont effectués lors de la computation de Monte-Carlo.  
 
Pour résoudre au mieux les défis informatiques présents dans l’ACV, la recherche 
bénéficie des bibliothèques standards pour la résolution de systèmes linéaires creux et du 
calcul sur des matrices creuses. En outre, la recherche a adoptée des optimisations 
mathématiques qui ont par exemple supprimé l’inverse matriciel de l’analyse de 
contribution qui est très coûteuse, ainsi que des optimisations algorithmiques qui ont pu 
enlever une grande partie d’analyse du calcul matriciel. De plus, la recherche a 
expérimenté avec des librairies, qui permettent de paralléliser le calcul, telles que 
OpenMP, MPI, et Apache Spark.  
 
Dans un premier temps, ce mémoire abordera la littérature de ces opportunités de calcul. 
Deuxièmement, il présentera un calculateur d’ACVpour mettre en œuvre un calcul 
efficace. Enfin, il décrira les performances du calcul des différentes phases de l’ACV 
pour différentes dimensions du système (S) et se terminera par des suggestions 
d’améliorations et de développement futur. 
 
Mots-clés: Analyse de Cycle de Vie (ACV), solveur hybride ACV, ACV parallèle, ACV 
distinguant l’avant plan 
 





 

ParallelLCA: A FOREGROUND AWARE PARALLEL CALCULATOR FOR LIFE 
CYCLE ASSESSMENT 

 
 François SAAB  

 
ABSTRACT 

 
Life Cycle Assessment (LCA), which aims to assess the environmental impacts during the 
life cycle of a system product (S) (e.g., production of aluminum in Quebec), can be used to 
compare different systems built with different types of materials to determine which is the 
least harmful to the environment. The calculation in LCA represents a computational 
challenge as it is dependent on the size of the system, the number of iterations in the Monte-
Carlo simulation, and the number of uncertain variables in the system. First, the solving of a 
linear system of dimensions in the order of 10,000 equations by 10,000 unknown variables is 
required for the base case. Second, the building of a graph iterative in nature with minimum 
dimensions of 10,000 vertices. Third, the computing of a Monte-Carlo simulation requiring 
several thousands of iterations to converge is to be computed. Finally, a sensitivity analysis 
which requires the computing of millions of correlations between vectors each having a 
dimension that is proportional to the number of iterations in the Monte-Carlo simulation. 
 
To best solve the computational challenges present in LCA, this research benefits from well-
established libraries that solve large sparse linear systems and performs large sparse matrix 
computing. Also, this thesis adopted mathematical optimizations that removed the matrix 
inverse step from the contribution analysis module, which is very expensive, as well as other 
algorithmic optimizations that removed the large and variant part of the LCA supply-chain 
from the matrix component of the various calculation phases. Furthermore, this research 
experimented with libraries such as OpenMP, MPI, and Apache Spark to parallelize the 
computation. 
 
First, the thesis will discuss the literature regarding these computational opportunities. 
Second, it will present a proposed LCA calculator for implementing an efficient LCA 
computation. Finally, it will present the performance of computing the different phases of 
LCA for various dimensions of the system (S) and concludes with suggestions for 
improvement and future development. 
 
Keywords: Life cycle assessment (LCA), LCA Hybrid Solver, Parallel LCA, Foreground 
aware LCA 
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INTRODUCTION 
 

The use of products (e.g. the use of buildings or cars) exchanges materials with the 

environment either through extraction from nature (e.g., water and minerals) or through 

emissions into the air (e.g., CO2). Products that we use daily are created in factories by a 

chain of manufacturing processes (e.g., energy production, mining, and transport activities). 

This chain of processes extracts materials from nature, transforms those materials into 

complexes, and by doing this, generates pollutants that have various impacts in various areas 

of the environment (e.g., on human health, on climate change).  

 

LCA (Life Cycle Assessment) is an established framework which aims at assessing the 

environmental impacts of a given product on the different areas in the environment by 

quantifying the impact of the life cycle of that product on the environment, highlighting 

impactful underlying industrial processes on a specific impact area. A series of iterative 

development phases in LCA has provided with LCA databases where industrial activities are 

represented as processes producing and consuming products through what is called 

intermediate exchanges. Also, each process exchanges elementary flows with the 

environment (e.g., CO2, water). 

 

 Research Context 
 

A standard procedure is usually adopted to assess the impact of using a given product. This 

procedure can consist of: 

 

1. The building of a graph interconnecting the different LCA processes (i.e., Figure 0.1) 

based on the information provided in the adopted LCA database. This algorithm is 

iterative and requires database access in each iteration; 

2. The traversing of the created graph, which may be cyclic, and the aggregating of the 

processes individual impact scores to assess the total impact. Alternatively, this step can 

be replaced by transforming the network into a system of linear equations which if solved 
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and scaled, can give the total impact scores of the involved activities. When the Matrix 

Method is used, additional matrix operations, namely matrix-matrix and matrix-vector 

multiplications, are necessary to replace the graph aggregation operation. This 

Calculation Kernel is the core of this research project; 

3. The inverse of a matrix representing the created LCA graph is another type of expensive 

matrix operation to consider; 

4. A Monte-Carlo simulation that requires several, tens, or hundreds of thousands of 

iterations to converge, wherein each iteration the aforementioned Calculation Kernel is 

executed; 

5. A global sensitivity analysis which involves millions of vector-vector correlations to be 

computed. The central role of the sensitivity analysis is to identify significant 

contributors to the uncertainty of the output result. 

 

 

Figure 0.1 LCA Graph 
 

Two kinds of processes interconnections are essential to distinguish in LCA: The background 

layer graph contains processes with cyclic interconnections, and the foreground layer (or 

front layer) graph consists of an acyclic graph of interconnections with mostly no Elementary 
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Flows exchanges. When modelling the lifecycle of “the use of a product” (e.g., phone or 

building) the different constituents of that product (e.g., screen, keyboard, electronics) are 

modelled as a hierarchical foreground graph that connects to processes from the background 

layer. 
 
 Research challenges 
 
A primary goal in this research is the development of algorithms that provide scientifically 

correct results (e.g., similar to other standard LCA calculators). In addition to this functional 

requirement, other non-functional computational challenges make an essential constituent of 

this research, such as: 

 

1. The efficient instant loading of a database that changes in content and increases in size to 

up to hundreds of thousands of elements in the foreground layer; 

2. The fast computation of the LCA graph which can increase in size. Building the graph (g) 

is a challenging task because: 

 

A. The exchanges database can become large enough which makes the queries execution 

inefficient; 

B. The graph can be very deep (i.e., composed of thousands of layers) and therefore, the 

corresponding complexity will depend on the number of layers in the graph, the 

number of activities per layer, and the size of the exchanges database. 

 

3. The implementation of a fast Calculation Kernel which consists of the traversal and 

transformation of the graph (g) into a set of matrices for performing the solving of a 

linear system (i.e., A x = b) as well as the fast computation of Matrix-Vector product 

operations which is essential in LCA equations; 

4. The fast computation of a matrix inverse with dimensions proportional to the number of 

processes in the graph (g). 
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In addition to the aforementioned kernel calculation steps, this research is required to 

generate reports that provide insights allowing for the interpretation of the foundational LCA 

results such as: 

 

1. The process-based contribution analysis reports, which allow assessing the contribution 

of each process to the totals of the inventory and environmental impact results; 

2. The process-based upstream contribution analysis reports, which provides the 

contribution of each activity upstream chain to the total computed impact score vector. 

This report involves other expensive operations such as the computation of a matrix 

inverse and the translation of the cyclic graph into an acyclic one; 

3. The fast and scalable implementation of a Monte-Carlo simulation consisting of several 

thousands of iterations. Each of those iterations consists of sampling a large number of 

objects (i.e., hundreds of thousands), and applying the aforementioned Calculation 

Kernel; 

4. The fast and scalable implementation of a global sensitivity analysis (GSA) calculator, 

which involves the computation of millions of correlations, each involving vectors with 

dimensions starting from multiples of at least 1,000 elements. 

 

 Methods and thesis plan 
 
The thesis considered two design decisions for solving these computational challenges. First, 

it experimented with parallel frameworks that support parallel data processing, parallel task 

execution, and parallel matrix computing. Second, the thesis adopted a myriad of 

mathematical and algorithmic optimizations to achieve faster response times. 

 

The thesis presents, in Chapter 1, the literature review and focuses on topics such as 

computational LCA, parallel computing, and sparse matrix computing. In Chapter 2, the 

calculator prototype design and implementation decisions are presented. Finally, Chapter 4 

describes the different conducted experiments and then concludes with an interpretation of 

these experiments results. 
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Figure 0.2 Thesis plan 
 



 

 

CHAPTER 1 
 
 

LITERATURE REVIEW 

This literature review aims at covering the background behind the different domains of this 

research project, which includes computational LCA, linear algebra, numerical matrix 

computing, efficient computing, parallel computing, and parallel computing frameworks. The 

literature review provides all the necessary background information that is used in the 

remainder of this thesis with a focus on the practical aspects (i.e., algorithms, programming 

methods, software frameworks) of the research. 

 

1.1 Life cycle assessment algorithms 

1.1.1 Concepts and definitions 

LCA (Life Cycle Assessment) is a systemic framework to assess the environmental footprint, 

from cradle to grave, of the life cycle of a product, which includes the raw material 

acquisition, the product manufacturing, the distribution, the use of the product, and the final 

disposal. The lifecycle of a product can be modelled as a Network (or a Graph) of connected 

processes. A Process, also called activity, is a step in the life cycle of a product (e.g., 

material extraction activity during electricity production). Intermediate Flows are the 

interconnections between the different processes of the lifecycle of a product (e.g., electricity 

production process connection to the process of crude oil). The interactions between an LCA 

process and its surrounding Biosphere are called Elementary Flows (e.g., extracting or 

emitting substances into nature, like CO2). An Inventory contains the total quantities of 

Elementary Flow exchanges with nature. Impacts on the environment are classified in 

corresponding Impact Categories, based on the concerned damaged area (e.g., water, air, 

human life), The step of converting the elementary flows inventory into impact categories 

scores is called Characterization. This step uses a list of Impact Factors which map each 
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elementary flow inventory into an impact score in a given impact category. Impact Methods 

represent, in LCA databases, a higher container for Impact Categories. Each impact method 

is responsible for several impact categories (ISO, 2006). 

 

LCA consists of four phases. First, in the scope and definition phase, a Functional Unit, 

which is the definition of the function (or functions in the case of multi-functional LCA) 

provided by a product life cycle, is established. Second, in the inventory phase or LCI (Life 

Cycle Inventory), the totals of the different emissions and extractions with the environment 

(i.e., Elementary Flows) are quantified: each elementary flow exchange is assigned a total 

quantity. Third, in the impact assessment phase or LCIA (Life Cycle Impact Assessment), the 

inventories (e.g., 1 kg of wood), are characterized into respective impact categories and 

impact methods using the corresponding Impact Factors. Finally, in the interpretation phase, 

the framework assesses the contribution of each of the activities in the life cycle of a product 

to the total impacts and the total inventory results. Also, the interpretation phase may assess 

the uncertainty of the output results through what is called Uncertainty Propagation analysis. 

Following the uncertainty propagation analysis is a sensitivity analysis that can be performed 

to assess the effect of uncertainty in input parameters on the uncertainty in output results 

(ISO, 2006). 

 

1.1.2 The Sequential Method for LCA 

Jolliet, Soucy, and Houillon (2010) explained that a typical LCA calculation method, also 

called the Sequential Method, follows a series of steps for evaluating the inventory and the 

environmental impacts of a product lifecycle. It starts by identifying the Functional Unit 

(e.g., production of 1 kg diesel) of the system to analyze. It then identifies the demand-supply 

interconnections and scales the included processes to meet the requirement of the functional 

unit. The scaling of the processes scalars consists of propagating the Functional Unit from 

the root process in the downstream direction until reaching the leaf nodes or non-demanding 

processes. 
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After scaling the processes, the inventory is calculated as in equation 1.1 and characterized 

into Impact Categories using their Impact Factor coefficients as in equation 1.2. 

 

 𝐿𝐶𝐼௙ , the inventory of an elementary flow f is computed as an aggregation, as given by 

equation 1.1, over the array of all the LCA processes that exchange that flow with the 

environment. 

 

 𝐿𝐶𝐼௙ = ෍ 𝑠𝑐𝑎𝑙𝑎𝑟௣௥௢௖௘௦௦ ∗ 𝑈𝑛𝑖𝑡𝑎𝑟𝑦 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦௙௣௥௢௖௘௦௦௘௦  (1.1) 

 

 𝐿𝐶𝐼𝐴௖ , the impact score of an impact category c can be computed as an aggregation, as 

given by equation 1.2, over the inventory vector previously obtained from equation 1.1. 

 

 𝐿𝐶𝐼𝐴௖ = ෍ 𝐿𝐶𝐼௙ ∗ 𝐼𝑚𝑝𝑎𝑐𝑡 𝐹𝑎𝑐𝑡𝑜𝑟௙,௖஺௟௟ ௙,௖  (1.2) 

 

A significant challenge when using the Sequential Method is the possible presence of 

feedback loops (i.e., circular connections) in the network interconnecting the different LCA 

processes of the background layer. Those circular connections will cause the traversal of the 

graph never to finish. Several solutions to this problem have been proposed, such as:  

 

“Interrupting a branch after a specified number of loops, interrupting a branch when 

the last round has added less than a specified amount, replacing process data by 

corrected process data in which feedback loops have been accounted for, and the use 

of infinite geometrical progression.” (Heijungs and Sun, 2002) 

 

1.1.3 The Matrix Method for LCA 

The Matrix Method, first introduced by Heijungs (1994) and further developed in Heijungs 

and Sun (2002), came to propose a new structure for computational LCA. This new structure 
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consists of converting the graph traversal and aggregations of equations 1.1 and 1.2 into 

matrix operations. In the following section, the thesis presents the main components of the 

Matrix Method and its internal operations. 

 

Matrix A, the Technology Matrix, contains the unitary quantities of the intermediate 

exchanges (i.e., rows) associated with the LCA processes (i.e., columns) of a product 

lifecycle. Matrix B, the Biosphere Matrix, contains the unitary quantities of the elementary 

flows (i.e., rows) associated with the LCA processes (i.e., columns) of a product lifecycle. 

Matrix Q, the Impact Factors, has in its rows the Elementary Flows and in its columns the 

Impact Categories. Vector f, the Demand Vector, has all its cells set to zeros except one cell 

set to the functional unit quantity.  

 

Vector s, the Scalars Vector, results from scaling the intermediate exchanges (i.e., rows in A) 

to produce the desired demand vector f. The scalars vector s can be computed using equation 

1.3.  

 

 𝐴 𝑠 = 𝑓 , 𝑠 = 𝐴ିଵ 𝑓 (1.3) 

 

Vector g, the inventory vector, contains the total inventories of the elementary flows 

generated or extracted by a given product, and it is computed as in equation 1.4.  

 

 𝑔 = 𝐵 𝑠 = 𝐵 𝐴ିଵ  (1.4) 

 

Vector h, the Impact Scores vector, contains the total impacts of the impact categories 

belonging to the impact method understudy, and it is computed as in equation 1.5. 

 

 h = Q g (1.5) 
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An important variable in matrix-based LCA is the inverse of the Technology Matrix A. Su 

and Heijungs (2007) provided the development of the matrix inverse method in LCA using 

power series expansion, as shown in equation 1.6.  

 

 𝐴ିଵ = 𝐼 ൅ ሺ𝐼 − 𝐴ሻ ൅ ሺ𝐼 − 𝐴ሻଶ ൅  ሺ𝐼 − 𝐴ሻଷ ൅ ⋯  = 1 ൅ 𝑍 ൅ 𝑍ଶ ൅  𝑍ଷ ൅⋯   (1.6) 

 

The individual column cells in A-1 represent the total output that each unitary process (i.e., 

matrix cells), in that given column, must produce to satisfy the reference flow of the process 

associated with the same column in A. 

 

The process-based contribution to the total inventory of producing one unit of a given 

process P is given by first computing equation 1.7 and then selecting the column, in the 

resulting matrix, which position is equal to the position of process P in the original matrix A. 

  𝐿𝐶𝐼஺௚௚௥௘௚௔௧௘ =  𝐵 𝐴ିଵ (1.7) 

 

Similarly, the process-based contribution to the total environmental impact of producing one 

unit of a given process P is given by first computing equation 1.8 and then selecting the 

column in the resulting matrix which position is equal to the position of process P in matrix 

A. 

 𝐿𝐶𝐼𝐴஺௚௚௥௘௚௔௧௘ =  𝑄 𝐵 𝐴ିଵ (1.8) 

 

1.1.4 Uncertainties and Data Quality Indicators (DQI) in LCA databases 

We begin our exploration of uncertainties by listing some related definitions: 

 

1. A population is a domain from which one observation is sampled; 

2. A Probability Density Function (PDF) is a graphical representation that maps an 
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observation from the possible domain of observations to a probability value; 

3. Uncertainty can be caused by either a Random Variation or a Bias. A Random Variation 

corresponds to the randomness in the values of a given variable. A Bias is a skewness 

that was introduced to the observation because of a systemic measurement error. 

 

 Table 1.1 Lognormal, normal, uniform, and triangular distributions  

𝑓(𝑥)  =  1𝑥 𝜎 √2 𝜋  𝑒ି( (௟௡ ௫ ି ఓ)మଶ ఙమ ) 𝑓(𝑥)  =  1𝑥 𝜎 √2 𝜋  𝑒ି( ( ௫ ି ఓ)మଶ ఙమ ) 

𝑓(𝑥)  =  1( 𝐵 − 𝐴 ) 𝑓(𝑥) = ⎩⎪⎨
⎪⎧ 2(𝑥 − 𝐴)(𝐵 − 𝐴)(𝐶 − 𝐴)             𝑓𝑜𝑟𝐴 ≤ 𝑥 ≤ 𝐶2(𝐵 −  𝑥)(𝐵 − 𝐴)(𝐵 −  𝐶)          𝑓𝑜𝑟𝐶 ≤ 𝑥 ≤ 𝐵0                                 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒  

 

Several statistical measures are to be considered when assessing uncertainties. The arithmetic 

mean is the sum of observation values divided by the count of the observations. The error is 

the deviation of an observation from the mean of its population. The variance is the sum of 

the squares of the error divided by the population size. The standard deviation is the root 

square of the variance. The median is the value that splits the population distribution in half. 

The mode is the most likely occurred observation. A two-sided confidence interval (e.g., 

95%) is the central part of the distribution that is obtained by excluding a certain percentage 

(e.g., 2.5%) from both sides of the distribution.  

 

Current LCA databases use four principal statistical distributions: the uniform, the triangular, 

the normal, and the lognormal distributions. These distributions are represented in different 

forms. The mathematical representation will give a formula for the PDF as in Table 1.1. The 

EcoSpold format provides the following fields for each of the uncertainty types: 

UncertaintyType, mean value, minValue, maxValue, most likely value, and 

standardDeviation95. The representation in the EcoSpold format is what is widely used in 
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current LCA databases. 

 

In addition to the basic uncertainties, current LCA databases such as Ecoinvent provide Data 

Quality Indicators (DQI) that allows for the fine-tuning of the basic uncertainty to provide a 

more reliable PDF. Based on the provided DQI, additional uncertainties can be added to the 

lognormal representation of the initial PDF to provide with a Pedigree transformed PDF. 

 

Table 1.2 Pedigree Matrix, Version 2 
Taken from Mutel (2013) 

 
Indicators Ranks (𝒖𝒊) 

1 2 3 4 5 

Reliability 1 1.54 1.61 1.69 1.69 

Completeness 1 1.03 1.04 1.08 1.08 

Temporal Correlation 1 1.03 1.1 1.19 1.29 

Geographical Correlation 1 1.04 1.08 1.11 1.11 

Further Technological Correlation 1 1.18 1.65 1.08 2.8 

 

The Data Quality Indicators (DQI) are computed based on a ranking system that involves the 

use of expert domain judges. The Expert judges assess data sources with uncertainties 

according to five independent characteristics as listed in Table 1.2. Each of the characteristics 

is ranked, in a system of five quality levels, with a score between one and five. After the DQI 

scores are attributed based on a given uncertainty source information, a normal uncertainty 

distribution is computed for each of the DQI characteristics. Each of these distributions has a 

mean value of zero, and a variance as shown in Table 1.3. The uncertainty of the given 

source is then computed, as shown in equation 1.9. (Weidema et al., 2013) 

 

𝜎ଶ = 𝜎௕ଶ  + ෍𝜎௜ଶହ
௜  

(1.9) 
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Table 1.3 Pedigree Matrix, Variances 
Taken from Weidema et al. (2013) 

 
Indicators 
  

Variances (𝒖𝒊) 

1 2 3 4 5 

Reliability 0 0.0006 0.002 0.008 0.04 

Completeness 10 0.0001 0.0006 0.002 0.008 

Temporal Correlation 10 0.0002 0.002 0.008 0.04 

Geographical Correlation 0 2.5 10-5 0.0001 0.0006 0.002 

Further Technological Correlation 0 0.0006 0.008 0.04 0.12 

 

In addition to the pedigree for lognormal distributions, Muller et al. (2016a) provided 

equations and a procedure to compute the additional variances for distributions other than the 

lognormal. 

 

1.1.5 Sensitivity Analysis methods for LCA 

As explained by Groen, Bokkers, Heijungs, and de Boer (2017), several methods are 

commonly used for performing sensitivity analysis in LCA. We focus on the exploration of 

the sampling-based and correlation-based methods as they are part of the functional 

requirements for this research project.  

 

For the Correlation-Based methods, the literature distinguishes two methods, among others: 

the Pearson Correlation Coefficient and the Spearman rank-order correlation coefficient. The 

Pearson Correlation Coefficient provides the correlation between two sample vectors 𝑝௜and 𝑔௝ as in equation 1.10 below. 

 

 𝑟௜ = ∑(𝑝௜ − 𝑝) ൫𝑔௝ − 𝑔൯ටቀ∑(𝑝௜ − 𝑝)ଶ ∑൫𝑔௝ − 𝑔൯ଶቁ 
(1.10) 
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An alternative to the Pearson correlation coefficient method is the Spearman rank-order 

correlation coefficient (SCC) method, which measures the linear dependence between 

variables 𝑝௜and 𝑔௝. To compute the ranked correlation coefficient, the variables pi and 𝑔௝ are 

replaced by their respective ranked vectors. Equation 1.11 applied to the ranked vectors gives 𝑟௜ௌ஼஼. The sensitivity index, using this method, would be computed as in equation 1.12. 

 

 𝑆௝ௌ஼஼ = ൫𝑟௜ௌ஼஼൯ଶ (1.11) 

 

For the Variance-based methods, the Sobol method relies on calculating two main indexes, 

the Sobol Main Effect, and the Sobol Total Effect. The Sobol algorithm in LCA consists of 

repeating a sampling of three matrices in several iterations followed by the computation of 

output variable g or h to finally calculate the indexes in equation 1.12 and equation 1.13. The 

sampling step consists of first generating a matrix P containing the values of all input 

parameters pij. A second matrix Q is generated in the same way. Finally, for each column 

from Q a third matrix R is generated by adopting that column from Q, and all other columns 

from P. Following this sampling, the output variables g or h are computed for each selection 

of a column from Q and for several iterations. The Sobol Main Effect 𝑆௝ௌொ  , equation 1.12, 

measures the influence, on the output variable g or h, of the event of “fixing the parameter pij 

and making all other parameters variant”. The Sobol Total Effect 𝑆௝ௌ்ா, equation 1.13, 

measures the influence on the output variable g of the event of “making all parameters fixed 

but parameter pij variable”. 

 

 𝑆௝ௌொ =  𝑣𝑎𝑟 ቀ𝐸൫𝑔ห𝑝௝൯ቁ𝑉𝑎𝑟(𝑔) = 1𝑁∑ 𝑔(𝑄)௜ ቀ𝑔൫𝑅௝൯௜ − 𝑔(𝑃)௜ቁ1𝑁 ቀ∑ {𝑔(𝑃)௜ଶ − (1𝑁∑ 𝑔(𝑃)௜௜௜ }ቁଶ 
(1.12) 

 

 𝑆௝ௌ்ா =  12𝑁∑ ቀ𝑔(𝑝) − 𝑔൫𝑅௝൯௜ቁଶ௜1𝑁∑ (𝑔(𝑃)௜)ଶ − ቀ1𝑁∑ (𝑔(𝑃)௜ ௜ ቁଶ௜  
(1.13) 
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Other methods that are available are based on the linear regression formulation and First 

Order-Taylor expansion.  

 

According to the theory of multiple linear regression, the output g can be expressed as in 

equation 1.14. The coefficients 𝑐଴, 𝑐௝, and 𝑒௝ are the intercept, the slope, and the error terms 

respectively. The sensitivity index of g would be as in equation 1.15. 

 

 𝑔 = 𝑐଴ + ෍൫𝑐௝  𝑝௜௝൯ + 𝑒௝ (1.14) 

 

 𝑆௝ௌோ஼ = 𝑉𝑎𝑟൫𝑝௝൯𝑉𝑎𝑟(𝑔)  𝐶௝ଶ 
(1.15) 

 

Finally, for the Key-issue analysis methods, a commonly used method is the First-order 

Taylor expansion. Applying this method to LCA will give an expression of the output 

variable g using Taylor expansion as in equation 1.16. Using Taylor expansion, the 

sensitivity index would be calculated as in equation 1.17: 

 

 𝑔௝ = 𝑔൫𝑃௝൯ = 𝑔൫ 𝑝ఫഥ ൯ + 𝜕 𝑔൫𝑝ఫഥ ൯𝜕 𝑝௝ ൫𝑝௝ − 𝑝ఫഥ ൯ (1.16) 

 

 𝑆௝ௌ஼஼ = 𝑉𝑎𝑟൫𝑝௝൯𝑉𝑎𝑟(𝑔)  ቆ𝜕𝑔𝜕𝑝௝ቇଶ 
(1.17) 

 

1.1.6 Uncertainty propagation in LCA 

A system can be modelled as a function Y of independent variables ( 𝑥ଵ, 𝑥ଶ, . . . , 𝑥௞). If there 

is uncertainty in the independent variables 𝑥௜ , two main points of concerns are raised. A first 

question is concerning the amount of uncertainty that is induced in the output variable 

because of the uncertainty in the input variables. This first question implies another equally 



16 

important question, which is how to propagate the uncertainty from input variables to output 

variables in order to assess the output uncertainty. A second question concerns the 

contribution of the uncertainty of a given input variable 𝑋௜ to the total uncertainty of the 

output variable Y. This section discusses the literature concerning these questions. 

 

1.1.6.1 Analytical uncertainty propagation for LCA 

The analytical approach of uncertainty propagation consists of treating the system as a 

function of input variables and applying differential calculus to propagate the uncertainty.  

Supposing Z is a function of variables x and y that represent the system; then, as explained in 

Heijungs and Sun (2002), the variance of Z is calculated as in equation 1.18.  

 

 𝑉௭  ≈ ൬𝜕௭𝜕𝑥൰ଶ .𝑉௫ +  ൬𝜕௭𝜕𝑦൰ଶ .𝑉௬ + 2 𝜕௭𝜕௫   𝜕௭𝜕௬  𝐶𝑂𝑉 (𝑥, 𝑦)   

(1.18) 

 

In the case where Z is dependent on more than two inputs, and if we ignore the correlation 

between the input variables, the variance is calculated as in equation 1.19 as a sum of the 

product of the Sensitivity Coefficient SC (equation 1.20) of a given parameter and the 

variance of that parameter. 

 

 𝑌௝ = 𝑓( 𝑋ଵ, … ,𝑋௡), 𝑉(𝑌)௜௝  ≈෍𝑆𝐶௜௝ଶ  .𝑉௜௡௣௨௧(𝑋௜) 
(1.19) 

 

 𝑆𝐶 =  ∆௓∆௑  ≈    𝜕௓𝜕௑  (1.20) 

 

As explained by MacLeod, Fraser, and Mackay (2002), for the particular case of input 

variables with lognormal distributions, which is very common in the sciences and LCA 

databases, the propagation of uncertainty can be approximated as in equation 1.21. The 

quantity GSD2 is the Confidence Factor (CF) characterizing a 95% confidence interval of the 
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variables x and y. Sx,h is the sensitivity of parameter x relative to the output result h and is 

computed as in equation 1.22.  

 

 (𝑙𝑛 𝐺𝑆𝐷௛ଶ)ଶ  = ෍𝑆௫,௛ଶ  (ln𝐺𝑆𝐷௫ଶ)ଶ (1.21) 

 

 𝑆௫,௛ = 𝜕ℎ𝜕𝑥 𝑥ℎ  (1.22) 

 

 𝐾௫,௛ = 𝑆௫,௬ଶ  ln𝐺𝑆𝐷௑ଶ ଶln𝐺𝑆𝐷௛ଶ ଶ 
(1.23) 

 

The contribution of the uncertainty in the input variable x (i.e., GSDଡ଼ଶ) to the uncertainty in 

the output variable y (i.e., ln𝐺𝑆𝐷௒ଶ ) is given by equation 1.23. 

 

1.1.6.2 Sampling-based uncertainty propagation methods for LCA 

As explained by E. A. Groen, Heijungs, Bokkers and de Boer (2014) and by Peters (2007a), 

Monte-Carlo sampling (MCS), a widespread sampling method, will first define a 

compuTable format of the uncertainties in input parameters as PDFs (Probability Density 

Function). Second, MCS will proceed to the generation of pseudo-random samples for the 

uncertain cells in 𝐴௜௝, 𝐵௠௡, and 𝑄௞௟ based on their PDF definitions. Third, it will use the 

generated samples in equations 1.3, 1.4, and 1.5 to propagate the uncertainty from input 

parameters to the output result. 

 

 

 

 

 



18 

Algorithm 1.1 Monte-Carlo Sampling. 
Based on (Peters, 2007a) 

 
 

Latin Hypercube Sampling (LHS) is a variant of the MCS, which employs a stratified 

sampling approach instead of pseudo-random sampling one. In random sampling, random 

numbers are picked independently and at random for the different independent variables Xi. 

As explained in Helton and Davis (2002), LHS will first identify the range of each variable 

and then divide that range into n LHS intervals with equal probability. Second, an array of 

random variables is generated with values are computed by randomly sampling one variable 

from each LHS interval. This process is repeated to select another N values for the 

independent variable Xi+1, and so on. The N values of Xi are paired at random and without 

replacement with the values of Xi+1 to create LHS pairs of two variables. This array of pairs 

will then be combined with the LHS values of a third variable Xi+2 to form a triplet of LHS 

values. The process will be repeated for all uncertain independent variables. (Helton and 

Davis, 2002). 

 

Quasi MCS (QMCS) is another variant of MCS with the difference of not using the default 

the random number sampling. QMCS uses quasi-random numbers to sample from the 

distribution functions. As shown in Saltelli et al. (2007), MCS pseudo-number generated 

samples tend to have clusters and gaps. When using independent variables with Clusters, 

functions that exist in the vicinity of that cluster are overemphasized in statistical analysis. 

On the other hand, when independent variables have gaps, the function values that are 
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dependent on these variables will not be sampled. Quasi-random generators produce 

sequences having the property of near uniformity, where clusters and gaps are eliminated. 

The process of generating quasi-random numbers consist of generating deterministic 

sequences of numbers taking into consideration the position of previously sampled points 

(Tarantola, Becker and Zeitz, 2012). 

 

1.1.7 Aggregated dataset uncertainty propagation for LCA 

In a study published by Qin and Suh (2017), unitary process-level exchanges PDFs were 

sampled. This sampling was repeated 1,000 times for all of the exchanges of each process 

independently. For each process, 1,000 samples of 1,000 exchanges were selected, which 

sums up to a million samples per process. This study tries to find the distribution that best fits 

aggregate LCI at the level of each unitary LCA process. In finding the best fit, the research is 

trying to find an approximate PDF to represent the unitary processes aggregate LCI. This 

study found that most of the aggregate LCIs in the Ecoinvent 3.1 database follow a 

lognormal distribution. Consequently, the study suggested that using lognormal PDF 

approximations of aggregated LCI, the sampling is only needed on the approximate PDFs 

and that evaluating the detailed supply-chain of each process can be avoided.  

 

In a reply letter to Qin and Suh (2017) paper, Heijungs, Henriksson and Guinée (2017)) 

reasoned that in a comparative LCA, uncertainty has to be deduced from samples generated 

dependently and that using pre-calculated distributions of complete systems generated from 

samples that are generated independently will lead to a large overestimation when assessing 

the uncertainty of the final output results. 

 

Qin and Suh (2017) re-visited their study and re-published a related paper. In this revision 

and according to empirical results, they show that the use of pre-calculated LCIs “leads to a 

slight underestimation rather than an overestimation.” Furthermore, they considered that the 

error in the GSDs of the LCI arrays generated from either pre-calculated LCIs or full MCS is 
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negligible and that “in practice, pre-calculated LCIs can be used in understanding the 

uncertainties of both non-comparative and comparative LCA.”  

 

Finally, Lesage et al. (2018) conducted a study comparing the results of using pre-calculated 

aggregated LCI when using independent and dependent sampling. The research concluded 

that “independent sampling should not be used for comparative LCA” and that dependently 

pre-sampled and aggregated LCIs provides quick and correct results. The method of Lesage 

et al. (2018) consists of first sampling the uncertain cells dependently, second iterating over 

all the Ecoinvent activities and calculating the quantities g and h. Finally, it saves the results 

as 2D arrays. The researchers in this paper argue that while this method provides results with 

a minimal error when compared to full MCS, it also allows performing Monte-Carlo without 

re-evaluating the Ecoinvent background layer activities, and solving the corresponding linear 

system for each MCS iteration as it is the case of full MCS shown in algorithm 1.1. 

 

1.2 Parallel computing 

Parallel computing provides a set of models, architectures, and frameworks to achieve 

parallel processing at the data and task levels. This section will present the models and 

architectures behind parallel computing. In addition, in this section, we will provide a 

background review of three widely used parallel frameworks: MPI, OpenMP, and Apache 

Spark. This review will begin by exploring the basic concepts in parallel computing, and then 

it will switch the focus to more practical programming-oriented aspects which are heavily 

used in this research project. 

 

1.2.1 Parallel computing models 

The Fork-Join model, implemented in POSIX (Nichols, Buttlar and Farrell, 2013) and 

OpenMP (Chapman, Jost and Pas, 2008) among others, is a model composed of two phases: 

fork and join. In the fork phase, the work is initially divided into smaller tasks that can be 
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computed independently and therefore executed in parallel. In the join phase, using a 

synchronization point, results of the parallel tasks are reduced or joined into one result.  

 

The Message Passing Model, implemented in MPI (Geist et al., 1996) for example, is a 

model where each processor uses a private memory to store its variables, which cannot be 

accessed by other processors. A processor can exchange messages with other processors 

using inter-process communication. The two main primitives for messages exchanging are 

Send and Receive, which can be done either synchronously or asynchronously. 

 

The Data flow model, implemented for instance, in Apache Spark (Zaharia et al., 2016), 

transforms the program tasks into a graph of dependent and independent tasks. Dependent 

tasks must be executed sequentially (i.e., one at a time) and independent tasks can take 

advantage of parallel. 

 

1.2.2 Bulk Synchronous Parallel (BSP) model 

Bulk Synchronous Parallel (BSP) is an abstract model that was introduced in (Valiant, 1990) 

to find a hardware-software bridge for the parallel programs similar to what the Von-Neuman 

model provided for sequential programs. BSP allows for the design of parallel algorithms by 

dividing the program to compute in several super-steps (i.e., iterations in an iterative 

program). Each super-step will follow a protocol defined by BSP. First, in the concurrent 

computation step, components of the computation are allowed to run locally in parallel. 

Second, in the communication step, processes exchange messages through routers and share 

data using various communication primitives. Third, in the synchronization barrier step, 

processes cannot proceed before all processes have reached the barrier. The synchronization 

step can happen for each period L, also called the Periodicity Parameter. 
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1.2.3 Parallelism levels and granularity 

There are three primary levels of parallelism. The Instruction Level Parallelism (ILP), is 

where instructions are executed on a Vector of data in parallel in the CPU registers. 

Instruction level parallelism must be enabled at the hardware level through the availability of 

CPU architectures, and code compilers need to generate explicit vectorized code that can run 

on such hardware architectures (e.g., matrix-matrix multiplication). The Data Level 

Parallelism (DLP) is found in applications where a large amount of data is available, the data 

is split into chunks, and a single processor works only on a single chunk instead of the whole 

dataset (e.g., massive datasets queries). Finally, Task Level Parallelism (TLP) is adopted 

when different tasks need to be run in parallel by different processors on different streams of 

data (multi-processing programming using MPI).  

 

Also, parallelism can be applied at different frequencies. In Fine-grained parallelism, the 

data transfers are frequent and occur at the instruction level between the involved processors. 

In Mid-grained parallelism, data transfer is less frequent and occurs at a higher level 

between the program sub-tasks. In Coarse-grained parallelism, data transfers only occur 

when parallel processors finish their work and want to join the individual results into a final 

result. 

 

1.2.4 Parallel instructions stream  

The execution model of a sequential computer is based on the Von Neumann machine (Von 

Neumann, 1993) and is characterized by a single instructions stream in which one instruction 

is applied on a single data item. However, in parallel computing, a program at the low-level 

physical layer consists of one or many instruction streams acting on one or many data 

streams.  
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Table 1.4 Flynn model for parallel computers 
Taken from Flynn (1972) 

Instruction / 

Data 

Single Multiple 

Single SISD (e.g., uniprocessor or 

sequential computers) 

MISD (e.g. systolic arrays) 

Multiple SIMD (e.g., vector and data-

parallel architectures) 

MIMD (Multi-processes running 

each on its own data stream) 

 

Flynn (1972) introduced four architectures for parallelism based on how instructions are 

being applied on data streams, as shown in Table 1.4. These architectures can be described as 

follows: 

• SISD (Single Instruction Single Data): this type of architecture is widespread in 

traditional CPUs where each instruction is executed on a single stream of data; 

• SIMD (Single Instruction Multiple Data): this type of architecture is what operates vector 

computers, for example. In this type of computers, multiple processors are executing the 

same instruction on data items spread across multiple CPUs; 

• MISD (Multiple Instruction Single Data): implemented in systolic arrays (Kung & 

Leiserson, 1978); 

• MIMD (Multiple Instruction Multiple Data): in this model of computers, different 

datasets are spread across multiple CPUs where each executes its own stream of 

instructions. 

 

1.2.5 Architectures for parallel computing 

The literature distinguishes between two types of parallel computer architectures: Symmetric 

Shared-memory multiprocessor (SMP) and Distributed Memory Architecture (Nielsen, 

2016). 
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SMP architecture considers all cores as independent computing units sharing the same 

memory. The various types of shared memory being used influence the performance in this 

model. The following are the different types of memory types from fastest to slowest: 1) 

processors register memory 2) L1, L2, L3 cache memories, 3) hard-disk drives, and 4) 

remote disks on a network. 

 

Distributed Memory Architecture is a model where each process stores its variables in a 

private memory that is not accessible to other processors. Data can be shared only by 

exchanging messages between processors, and therefore, the network communication 

properties such as Latency, Bandwidth, and Topology are the most influencers in this model. 

Latency is the time to initiate message passing. Bandwidth is the rate of exchanging 

messages. Topology is how the different processes are interconnected (i.e., star, grid, etc.).  

 

1.2.6 The laws of parallelism 

Let Tseq denote the time for running a program serially, TP the time taken to run an equivalent 

parallel program using P processors, and T1 the execution time of that parallel version using a 

single processor. Three useful metrics are essential to measuring the performance of a 

proposed parallel algorithm: 1) Scalability, 2) Speedup, and 3) Efficiency. 

 

Scalability is the ratio between the computation time when running on P’ processors versus 

the computation time when running on P processors where P’< P. This metric gives insights 

on how the performance changes when adding one processor at a time to the pool of 

resources running a given program. 

 

The speedup is the ratio between the execution time of scenario “B” consisting of running the 

same parallel version on a single processor denoted by t1, and the execution time of scenario 

“A” consisting of running a given parallel version of a program on P processor denoted by tp. 

Speedup increases with the addition of new processing units only when tp continue in 

decreasing. 
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Figure 1.1 Scalability, Efficiency, and Speedup 
 

Efficiency is the ratio of the Speedup when using P processors over the number of processors 

P. This number provides an insight on the efficiency of adding more cores to the simulation. 

Usually, efficiency drops when adding more parallelism due to the overhead of parallelism 

caused by threads synchronization or processors communication. 

 

1.2.6.1 Amdahl’s Law: Fixed-size speedup 

The time to run a program in parallel can be modelled as consisting of two portions, a 

parallel portion denoted by 𝛼௣ and sequential portion denoted by s. This model is 

characterized by 𝛼௣ + 𝑠 = 1. The speedup for this model, as described by the Amdahl law, is 

calculated as in equation 1.24 (Amdahl, 1967). 

 

 

 𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑃) = 1𝑠 +  𝛼 ௉௔௥𝑃  (1.24) 

 

Based on this law, the speedup is upper bounded by αseq (i.e., the non-parallelizable code) as 

in equation 1.25. Hence, the speedup is highly dependent on the sequential part of the 

program. 
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 Lim௉→ஶ𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑃)  =  1𝛼௦௘௤ (1.25) 

   

 

 

Figure 1.2 Amdahl speedup vs. the number of cores. 
Based on equation 1.24 

 

1.2.6.2 Gustafson’s Law: Scaled Speedup 

Gustafson re-evaluated Amdahl’s law by studying the influence of increasing both the 

number of processors P and the size of data or tasks n being processed by the P processors. 

This revaluation introduced a new speedup called the scaled speedup, as presented in 

equation 1.26 (Gustafson, 1988). 

 

 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 ீ௛௨௦௧௔௙௦௢௡(𝑃) = 𝛼ௌ௘௤ + 𝑃 𝛼௉௔௥௔௟௟௘௟ (1.26) 

 

The scaled speedup studies practical situations where the software application uses more 

computing resources when the size of data or tasks increases.  
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 Lim௉→ஶ𝑆𝑝𝑒𝑒𝑑𝑢𝑝 ீ௛௨௦௧௔௙௦௢௡(𝑃)  =  𝑃 𝛼௉௔௥௔௟௟௘௟ (1.27) 

 

1.2.7 OpenMP 

OpenMP (Dagum and Menon, 1998), is a well-known standard in shared memory parallel 

programming which promotes code annotations (i.e., compiler directives) that is translated by 

specialized compilers into parallel code. OpenMP provides the user with compiler directives 

to configure thread scheduling, to specify parallel and synchronization regions, and to define 

variables scope (e.g., shared or private). 

 

1.2.7.1 Thread scheduling 

OpenMP allows defining parallel regions with one of the pre-configured types of scheduling. 

As explained in Chapman et al. (2008), when the first parallel region is encountered, the 

master and workers thread is created, and the work is split among the different threads based 

on the preconfigured type of scheduler. When a parallel region execution is finished, the 

worker threads switch to Sleep mode, and the Master thread remains active. When the next 

parallel region is encountered, the idle worker's threads are reused instead of created as new 

threads. 

The most common scheduling types can take on the following values: 

o Static: In this scheduling type, OpenMP divides the work into chunks of size chunk-size 

(i.e., given as a parameter), and schedules the execution of these chunks by the available 

threads in a circular order; 

o Dynamic: In this scheduling mode, OpenMP splits the work into chunks of size chunk-

size, and each thread executes a chunk of the work and then requests additional chunks 

until the work is done; 

o Guided: In this scheduling mode, which is similar to the dynamic mode, the chunk size is 

controlled by the OpenMP framework for better load balancing; 
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o Auto: In the auto-scheduling type, OpenMP delegates the decision of the scheduling 

mode to the compiler or the runtime system; 

o Runtime: In the runtime scheduling type, OpenMP defers the decision about the 

scheduling until runtime. 

 

1.2.7.2 Variables sharing  

OpenMP allows for the creation of variables as private to individual threads or as shared 

among threads. The following is a list of supported variables scopes: 

 

o private: A variable is considered as private if it is initialized and owned by one of the 

OpenMP threads. Each thread can do its modification to its own private variables without 

the requirement to synchronize with other threads. Private variables cannot be accessed 

from outside of the OpenMP context; 

o firstprivate: Similar to private variables, firstprivate variables get their values initialized 

when copied from the master thread to the inside of an OpenMP context; 

o lastprivate: Similar to private variables, This type of variables get its value assigned by 

the last running thread; 

o shared: shared variables are used as shared storage for the OpenMP team of threads. The 

OpenMP CriticalSection provides exclusive write access in shared variables. 

 

1.2.7.3 OpenMP Execution Constructs 

OpenMP provides the following execution constructs: 

 

o “pragma omp parallel”: This construct is essential for code to run in parallel. Without this 

construct, procedures in OpenMP are by default, executed sequentially. When a parallel 

region is encountered, a team of threads is created by OpenMP runtime where each 

thread is assigned a unique thread number or thread id. The assigned thread id allows for 

designing a differed execution plan unique for each thread. At the end of the parallel 
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region, there is an implied synchronization barrier at which all worker threads will stop 

running, and only the Master thread will continue executing; 

o “#pragma omp for”: distribute the for-loop iterations among the available threads; 

o “#pragma omp section”: distribute independent unit of code, declared by the “section” 

annotation, among the available threads; 

o “pragma omp single”: allows configuring sections of the code with single-thread access. 

 

1.2.7.4 OpenMP Synchronization Constructs 

OpenMP provides the following synchronization constructs: 

 

o “#pragma omp barrier”: At the defined barrier, all threads in the team wait for each other. 

No proceeding is possible until all threads have reached that point; 

o “#pragma omp ordered”: allows to execute the configured section in the same order as 

defined in the for-loop construct; 

o “#pragma omp critical”: allows to define a section that is executed by only a single thread 

at a time; all remaining threads are forbidden from accessing this section. 

 

1.2.8 MPI 

The Message Passing Interface v2 (MPI) (Geist et al., 1996), is a standard and a 

programming interface that allows the building of parallel programs requiring the exchange 

of messages between computer processes. 

 

1.2.8.1 Communication groups 

As explained by Nielsen (2016), MPI provides a set of primitives for message 

communications between different computer processes belonging to specific communication 

group through various communicators. In MPI, to inter-communicate, computer processes 

are first added to a communication group and then associated with a rank in that group. 
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Communication groups are then connected by communicators to allow the communication to 

take place. Communication groups are hierarchical having MPI_COMM_WORLD as the top 

root group, which includes all the processes of an MPI cluster. 

 

MPI provides primitives that allow the retrieval of a computer process’s properties inside 

their communication groups. The MPI_Comm_size allows to retrieve the number of 

processes in a given communication group, and the  MPI_Comm_rank allows to get a given 

process rank in that group. 

 

1.2.8.2 Communication primitives 

MPI provides four basic communication primitives. Broadcast allows for a one to all 

communication allowing to send a message to all other processes in the same communication 

group. Scatter allows sending a set of messages for each of the processes in the same 

communication group. Gather allows the collecting of a set of messages from each of the 

processes in the communication group. Finally, Reduce allows the aggregation of a set of 

messages received from the sending processes. 

 
 

  

  

Figure 1.3 MPI Communication primitives 
 

Also, MPI provides the following primitives that allow for inter-processes communication: 

 

o MPI_SEND: Allows to send an array of elements into a destination process; 



31 

o MPI_RECEIVE: Allows to receive an array of elements from a sending process; 

o MPI_BCAST: Allows the broadcasting of messages from the calling process to the rest 

processes in the same communication group; 

o MPI_Reduce: Allows the reduction of several data values received by a process into one 

value using a reduction function; 

o MPI_Scatter: Allows to split an array into chunks and then sends each of the chunks into 

the processes of the same group; 

o MPI_Gather: Allows for the joining of chunks of data, sent by other processes in the 

same group, into one array. 

 

1.2.8.3 BOOST::MPI 

Boost::MPI (Dawes, Abrahams and Rivera, 1998) is a C++ library, from the Boost family of 

libraries, that provide access to MPI primitives through OOP functions instead of C/Fortran 

primitives. BOOST::MPI provides an equivalent function for each of the native MPI 

primitives (send, receive, reduce, etc.) with the significant ability to use those primitives 

while operating on custom made C++ class objects instead of only primitives data types (e.g., 

int, double, array, vector). 

The following are the main features BOOST::MPI provides and that this research project is 

heavily based upon. Using the namespace “boost::mpi” the library provides access to both 

mpi::environment and mpi::communicator. The mpi::communicator class allows access to 

the process rank through mpi::communicator::rank(). Also, the library provides for blocking 

communication through the functionality of boost::mpi::send and boost::mpi::recv which 

support sending and receiving complex C++ datatypes. For non-blocking communications, 

boost::mpi provides asynchronous sending and receiving using the primitives 

boost::mpi::isend and boost::mpi::irecv. The asynchronous primitives allow sending 

messages in a for loop iteration without waiting for the receiving of the message to happen 

before passing to the next iteration. The asynchronous communication needs to be 

synchronized with the primitive boost::mpi::wait_all.  
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Figure 1.4 Example of serialization for BOOST:: MPI. 
Taken from Dawes et al. (1998) 

 

Most importantly, “boost::mpi” allows for exchanging complex custom data types by 

enabling serialization in their class code, as shown in Figure 1.4 (from boost::mpi 

documentation). A serialize procedure needs to be implemented, and that defines how the 

class attributes will be serialized. This serialization mechanism allows for the serialization of 

complex data types, including complex nested classes. 

 

1.2.9 Apache Spark 

Apache Spark (Zaharia et al., 2016) introduces a new parallel and fault-tolerant framework, 

based on Resilient Distributed Datasets (RDD), for processing large and massive data sets. 

Spark is implemented using the Scala programming language and the JVM platform. 

 

1.2.9.1 RDD: Resilient Distributed Datasets 

An RDD is a distributed data structure for storing a massive data set of objects in cluster 

memory. RDD provides a set of transformations that serves as a plan of execution. These 

transformations are lazy, which means that upon their creation, a plan is created to be 

executed later on. To materialize the transformations, Spark provides a set of actions on 

RDDs. 
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When a transformation is executed, a lineage is created to the previously existing RDD. After 

a set of transformations are executed, a lineage would have been created connecting all the 

RDDs from the first to the last current one. When an RDD along that lineage is lost, Spark is 

able to restore that RDD by recomputing its lineage. Hence the resilient character of RDDs in 

Apache Spark. 

 

1.2.9.2 Execution model 

In Spark, an application program consists of a driver program and executors launched locally 

or on a Spark cluster. A driver program plays the role of a controller that runs the “main” 

function of the application in which it creates a SparkContext that launches jobs on a cluster 

of workers. Based on the mode of clustering, a driver can run on a local machine or remotely 

in the Spark cluster. A worker node hosts the execution of tasks on the Spark cluster with 

Spark executors. An executor is a process launched by an application master on a worker 

node to run tasks scheduled for execution. Running queries in Spark is implemented by 

launching Spark jobs each time an action (i.e., execution of a transformation) is required to 

run. A job is then analyzed, and a DAG of tasks is built and possibly split into stages of tasks. 

Tasks inside stages can run in parallel on different partitions of an RDD. Each stage pipelines 

its input RDD through a series of transformations (i.e., tasks), and the resulting RDD 

becomes the input data of the next stage (Zaharia et al., 2016). 

 

1.2.9.3 RDD transformations and actions 

Apache Spark provides a set of data transformations that can be applied to RDDs. A 

transformation is a lazy call, which means that when applied, it does not result in executing 

an operation, but rather, it results in a lineage of RDDs. 

 

As explained in Apache Spark (2017), the framework provides a list of data transformations 

and actions. The following are the most commonly used transformations: 
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• map: Takes an input RDD of type RDD[T] and applies a function F to each of its 

elements to convert the input RDD into a new RDD of type RDD[U]; 

• filter: Takes an input RDD of type T and returns a new RDD[T] of the same type 

containing only the elements that return True when F is applied (i.e., RDD[T] => 

RDD[T]); 

• flatMap: Similar to a map, but in flatMap, each element of the input RDD is mapped to 

an array of elements not necessarily from the same type (RDD[T] => RDD[U]); 

• mapValues: In contrast with the map transformation, which may change the key of a pair 

RDD, the mapValues passes each value in the (key, value) pair RDD through F without 

changing the keys (RDD [(K, V)] => RDD [(K, U)]); 

• groupByKey: Takes an RDD of type RDD[(k,v)], groups the tuples (k,v) by the key field 

k and returns a new RDD of type RDD[(K, Seq[V])]; 

• reduceByKey: Works on pair RDD by grouping the values by keys and applying an 

aggregate function locally in each executor. The aggregate function transforms an 

RDD[(K, V)] into RDD[(K, V)]. This transformation provides a considerable reduction to 

shuffling as it performs a first aggregation step on the data available on a single executor 

data partition; 

• cogroup: For each key in two given pair RDDs of type RDD[(K, V)] and RDD[(K, W)]  

return a new RDD of type RDD[(K,(Seq[V], Seq[W]))], where each entry in that RDD 

contains a tuple of the key K and the sequences of values, having the key field equal to K, 

extracted from both of the input RDDs; 

• Join: Given two pair RDDs of type RDD[(K, V)] and RDD[(K, W)], return a new RDD 

of type RDD[(K, (V, W))] containing all pairs of elements with matching keys in both 

RDDs. This transformation may involve a considerable amount of shuffling. 

 

An action must be called on the transformation lineage RDD to execute the transformation 

associated with that lineage. Below is a list of the actions that Apache Spark provides: 
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• reduce: Reduce all elements of an RDD using the provided function F to one element, 

and return it to the driver program (i.e., RDD[T] => T); 

• collect: Convert the given RDD into a local array (i.e., RDD[T] => Array[T]); 

• count: Return the number of elements in the given RDD (i.e., RDD[T] => Long). 

 

1.3 Solving linear systems: General concepts and software libraries 

A system of linear equations can be written in matrix form as in equation 1.28 below: 

 

 A x = b (1.28) 

 

where A is a matrix of coefficients, x is a vector of unknowns and b is a right-hand side 

vector or matrix of multiple columns. The matrix A of the linear system comes with different 

characteristics such as dense or sparse, triangular or diagonal, invertible or singular, 

symmetric or un-symmetric, and square or rectangular. 

 
Several methods are presented in the literature that solve systems of linear equations, such as 

the direct methods for solving a dense linear system, the direct methods for solving a sparse 

linear system, the iterative methods for solving sparse linear systems, and the method of 

matrix inverse followed by matrix multiplication (e.g., x = A-1 b).  

 

In this research, we focus on the exploration of the concepts and the state-of-the-art libraries 

for sparse matrix computing. 

 

1.3.1 Linear systems solving concepts 

In this section, different methods for solving general matrix equations will be discussed. We 

begin by discussing Gaussian elimination, and later, two matrix factorization techniques that 

allow for the solving with further processing. 
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As explained by Walter (2014), solving systems with triangular matrices can be 

accomplished using backward or forward substitution algorithms. Backward substitution 

applies to upper triangular systems of the form U x = b. Forward substitution, on the other 

hand, applies to lower triangular systems of the form L x = b. 

 

Gaussian elimination transforms the system in equation 1.28 into an upper triangular system 

U x = v. The algorithm replaces each row of both sides of equation 1.28 by a linear 

combination of other rows applied to both sides of each row in equation 1.28. This triangular 

system is then solved using the backward substitution algorithm (Walter, 2014). 

 
Similar to Gaussian elimination, LU factorization with full pivoting allows for converting the 

system in equation 1.28 into L U x = b, which can be solved using forward and backward 

substitution algorithms. LU factorization needs only the matrix A as an input variable in 

contrast with Gaussian elimination, which needs both inputs A and b. When the LU 

components are produced, they can be stored and used to solve equation 1.28 even if the 

right-hand side changes. The triangular system L U x = b can be solved as follows: 

 

1. Forward substitution to find Y by solving L Y=b; 

2. Back-substitution to find X by solving U X = Y.  

 

Another form of LU factorization is LU factorization with partial pivoting, which consists of 

permuting the rows of both A and b to avoid zero pivots using a permutation matrix as in 

equation 1.29 (Walter, 2014). 

 

 P A x = P b (1.29) 

 

Equation 1.30 presents the forward and backward substitution methods to solve the system in 

equation 1.29. 

 

 LU x = P b, Ly = Pb and Ux = y (1.30) 
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In addition to the LU factorization, the system in equation 1.28 can be rewritten using the QR 

factorization as in equation 1.31. 

 

 R x = QT b (1.31) 

 

In equation 1.31, Q is an (n ×n) orthonormal matrix, and R is an (n × n) invertible upper 

triangular matrix. This new system can be solved by back-substitution. Contrary to LU 

factorization, QR factorization can be applied to both square and rectangular matrices 

(Walter, 2014). 

 

1.3.2 Concepts and methods for solving sparse linear systems 

As explained in (T. A. Davis, Rajamanickam and Sid-Lakhdar, 2016), four phases 

characterize direct sparse solvers. First, an ordering phase consists of re-ordering the pivots 

to reduce fill-in and enhance parallelism. Fill-in is a well-known issue that matrix solving 

algorithms face. It consists of reducing the transitions from zero to non-zero while executing 

the algorithm by performing row or column permutations. There are specific algorithms that 

would provide the best re-ordering, such as the minimum degree (MD) and the METIS re-

ordering algorithm. Second, a symbolic phase analyses the matrix structure and determines a 

proper pivot sequence that significantly reduces both memory and CPU requirement. Third, a 

numerical factorization phase uses the pivot sequence determined in the symbolic phase to 

factorize the matrix numerically. Fourth, a solve phase that operates on triangular systems 

using numerical algorithms such as forward elimination and back-substitution is used to 

solve the system. 

 

The separation of these phases is beneficial when solving practical problems such as the ones 

found in LCA. A linear system in which the Left Hand Side(LHS) is not changing can be 

solved by computing the analysis and factorization phases only once; the solve phase is 

repeated for each Right Hand Side(RHS). An LCA system solver can be designed to build 
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the system represented by matrix A and apply the phases of analysis and factorization on it. 

Afterwards, when calculation requests come with different demand vectors b, only the solve 

phase would need to be executed on each calculation request. 

 

An iterative algorithm is an algorithm that tries to find an approximate solution to the matrix 

equation 1.28 by minimizing the approximating error on each iteration. As explained in 

Walter (2014), the general concept relies on first decomposing the matrix A into a sum of two 

matrices, as shown in equation 1.32. Given that matrix A is invertible, equation 1.32 can be 

rewritten to give the iterative equation 1.33. The decomposition of matrix A will be optimal if 

matrices M and v in equation 1.33 result in convergence when k tends to infinity.  

 

 𝐴 = 𝐴ଵ + 𝐴ଶ, 𝐴ିଵ   𝑒𝑥𝑖𝑠𝑡𝑠 (1.32) 

 

 𝑥 =  −𝐴ଵିଵ 𝐴ଶ 𝑥 + 𝐴ଵିଵ 𝑏 = 𝑀 𝑥 + 𝑣, 𝑥௞ାଵ =  𝑀 𝑥௞ + 𝑣 (1.33) 

 

Several methods are presented in the literature that implements this logic, such as Jacobi, 

Gauss-seidel, and successive overrelaxation. These methods differ by how matrix A is 

decomposed. In the specific case of Jacobi, the iterative process can be described as in 

equation 1.34, where D is the diagonal matrix. Equation 1.35 implies that the iteration in 

equation 1.35 would become as expressed in equation 1.36. 

 

 𝑥௞ାଵ  =  − 𝐷ିଵ (𝐿 + 𝑈) 𝑥௞  +  𝐷ିଵ 𝑏 (1.34) 

 𝐿 + 𝑈 =  𝐴 − 𝐷 (1.35) 

 𝑥௞ାଵ  =  (𝐼 −  𝐷ିଵ 𝐴) 𝑥௞  +  𝐷ିଵ 𝑏 (1.36) 

 

The solution of the system (i.e., x*), which is equal to 𝐴ିଵ 𝑏, cannot be computed directly. 

Similarly, the error 𝛿 𝑥௞ which is equal to 𝑥௞ − 𝑥∗ cannot be computed. Therefore, to 
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measure the quality of the solution, we use the residual as in equation 1.37. Normalizing 

equation 1.36 will give an iterative formulation of the solution as in equation 1.38. 

 

 𝑟௞ = 𝑏 − 𝐴𝑥௞ =  −𝐴 𝛿 𝑥௞ (1.37) 

 

 𝑥௞ାଵ = 𝑥௞ +  𝑟௞,             𝑟௞ାଵ =  𝑟௞ − 𝐴 𝑟௞ (1.38) 

 

As explained in Walter, 2014), based on the Krylov subspace analysis, the following 

properties hold: 

 

1. Each subspace 𝐾௞ is within a higher subspace: 𝐾௞ିଵ; 

2. The next larger subspace 𝐾௠ାଵ can be obtained using a matrix product with previous 

subspace matrix (i.e., line 6 of Figure 1.5); 

3. If 𝑥 ∈  𝐾௠, then 𝑥 =  𝐾௠ 𝑍 where Z is an approximate solution at iteration m. 

 

 

Figure 1.5 Krylov solving example 
 

These properties of the Krylov subspace allows for the design of very efficient solving 

algorithms. Figure 1.5 presents an algorithm to calculate an approximate solution by 

minimizing a convex function. Using the Krylov methods, the solver will start with a small 

domain 𝑘଴, and progressively, through matrix multiplication, it will pass to a larger space to 

search for a solution. This makes the search space, at any given time, to be restricted to a 

certain sub-space and therefore, it will faster to compute. Section 1.3.4 will present state-of-
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the-art libraries, implementing Krylov methods, and that can solve very large systems in a 

few seconds. 

 

1.3.3 Concepts and methods for computing the matrix inverse 

The literature identifies several methods for calculating a matrix inverse, mainly Gauss-

Jordan elimination, Cramer’s Determinant Cofactor, and matrix factorization methods 

(Walter, 2014).  

 

An n-by-n square matrix is invertible (also non-singular or non-degenerate) if there exists an 

n-by-n square matrix Ainv such that equation 1.39 is satisfied. In denotes the n-by-n identity 

matrix. Ainv is uniquely determined by A and is called the inverse of A, denoted by A−1. 

 

 A Ainv = Ainv A = In (1.39) 

 

Gauss-Jordan elimination uses pivoting and row or column permutations to transform the 

original matrix into its Reduced Echelon Form. The algorithm will iteratively operate on the 

augmented matrix [A|I] to convert it into the identity-inverse augmented matrix [I|A-1]. 

 

The Cramer’s Determinant consists of calculating the (n+1) matrix determinant of size (n x 

n) which each takes O (n!) giving a total of O (n x n!). Cramer’s method is highly inefficient, 

and the literature advises against it. 

 

Several methods of matrix decomposition allow for the calculation of the inverse of a matrix 

such as LU decomposition, Singular Value Decomposition (SVD), and QR decomposition. 

 

The LU decomposition method will decompose the original matrix A into a product of two 

matrices: L and U, where L is a lower triangular matrix, and U is an upper triangular matrix. 

Matrix inverse operations follow this factorization step as in equation 1.40. 
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 𝐴 = 𝐿𝑈,  𝐴ିଵ = 𝑈ିଵ𝐿ିଵ (1.40) 

 

The QR decomposition approach first decomposes the matrix A in equation 1.28 into a 

product of an orthogonal matrix Q and an upper triangular matrix R, and second, it carries 

out the inverse and transposes operations as shown in equation 1.41. 

 

 𝐴 = 𝑄𝑅,  𝐴ିଵ =  𝑅ିଵ 𝑄் (1.41) 

 

The rank k Singular Value Decomposition (SVD) factorizes the original matrix A of 

dimensions m × n into U, V, and 𝜎 . Vector U holds the Right-Singular vectors and is of 

dimensions m × k, V holds the Left-Singular vectors and is of dimension n × k, and 𝜎 is a k 

× k diagonal matrix, which holds the singular values of matrix A. 

 

 𝐴 = 𝑈 𝜎 𝑉் ,  𝐴ିଵ =  𝑉 𝜎ିଵ 𝑈் (1.42) 

 

After computing the factors, the SVD approach will carry out the transpose and diagonal 

inverse operations. 

 

1.3.4 Matrix computing libraries 

In this section, we provide a review of the state-of-the-art matrix libraries that are currently 

available in the literature. We omit the libraries that are designed for hardware or devices that 

we did not have access to (e.g., GPU or Vector machines) or the libraries that require 

commercial licensing. We focus instead on Open Source libraries that have support for sparse 

matrix computing. 

 

Spark MLlib (Spark MLlib, 2017), is a library for machine learning built on top of Apache 

Spark. MLlib comes with support for local and distributed matrix computing. The library 

performance is enabled by the use of distributed computing for large matrices and by the use 

of low-level BLAS, through the jblas interface implemented in Breeze, for local matrix 
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computation. As explained in Spark MLlib (2017), the library supports local and distributed, 

dense and sparse, matrices and vectors using: 

 

1. A RowMatrix implementation which distributes the matrix rows in RDD [vector]; 
2. An IndexedRowMatrix implementation which distributes the matrix rows into 

RDD[IndexedRow] where an IndexedRow is a tuple of (rowIndex, Vector); 
3. A coordinate matrix implementation which distributes the matrix entries into an RDD of 

type RDD[(i: Long, j: Long, value: Double)], where i is the row index, j is the column 

index, and value is the matrix cell value; 

4. A BlockMatrix implementation where the matrix entries are grouped into matrix blocks 

of type MatrixBlock. The list of blocks is distributed in RDD[Matrix]. Each MatrixBlock 

is comprised of two components grouped in a tuple of ((Int, Int), Matrix). The (Int, Int) is 

the index component of the block, and Matrix is the portion of the matrix or sub-matrix 

that resides at the position given by the 2D index. Each Matrix will have the same size 

conFigured by two parameters: rowsPerBlock and colsPerBlock. 

 

ParallelColt (Wendykier and Nagy, 2010), from the CERN laboratory, provides support for 

dense and sparse parallel matrix computation. This library does not provide for advanced 

sparse matrix direct system solving. However, it provides for wrappers to the Krylov 

subspace iterative solver methods by using the MTJ (Matrix Toolkit for Java) library. 

ParallelColt provides wrappers for: 

1. Iterative solvers such as BiConjugate Gradients (BiCG), BiConjugate Gradients 

stabilized (BiCGStab), Conjugate Gradients (CG), Conjugate Gradients Squared (CGS), 

Generalized Minimal Residual using restart (GMRES); 

2. Preconditioners such as Diagonal, Incomplete Cholesky without fill-in (ICC), Incomplete 

LU without fill-in (ILU), Incomplete LU with fill-in (ILUT), Symmetrical Successive 

Overrelaxation (SSOR), and Algebraic Multigrid (AMG); 

3. Formats such as multi-dimensional arrays in Java, sparse and dense 2D, and 3D matrices, 

and both CSR and CSC sparse matrix formats. 
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UMFPACK (T. A. Davis, 2004), is a package which consists of a list of procedures 

specializing in the solving of unsymmetric sparse linear systems, using an un-symmetrical 

multi-frontal method written in Fortran. UMFPACK has installation options to use the many 

versions of the BLAS or no BLAS at all. As explained by the Umfpack user guide (T. A. 

Davis, 2011), five primary UMFPACK routines are required to factorize A or solve A x = b: 

 

• umfpack_di_symbolic has as a principal function is to pre-order the columns of A to 

reduce fill-in. It returns a pointer of type void* to the Symbolic object. The Symbolic 

object will next be fed as input into the next phase of solving, which is the numerical 

factorization; 

• umfpack_di_numeric takes as input the Symbolic object and numerically scales and then 

factorizes the sparse matrix of equation 1.9 in the product LU. In its turn, this procedure 

will give a Numeric object as a pointer of type void* which is fed as input to the solver 

routine umfpack_di_solve; 

• umfpack_di_solve solves equation 1.28, using the numeric factorization embedded in the 

Numeric object computed by umfpack_di_numeric; 

• umfpack_di_freesymbolic performs a safe freeing of the Symbolic object created by 

umfpack_di_symbolic; 

• umfpack_di_freenumeric allows the user to free the Numeric object created by 

umfpack_di_numeric. 
 

Eigen (Gaël and Benoit, 2017) is a C++ library that provides support for dense and sparse 

matrix operations with a variety of numeric types (integers, complex and custom numeric 

types) of operations. Eigen++ performance is provided by using BLAS and Lapack 

subroutines for dense matrix components, explicit vectorization for a range of processor 

architectures, and the use of BlockMatrix formats which allows for the use of parallel 

computation on large matrices. Eigen provides the following features used in LCA 

algorithms: 
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1. Wrappers for major sparse direct solvers such as Umfpack, SuperLU, and Paradiso; 

2. An Implementation of sparse iterative solvers such as BiCGStab, CG, and CGS; 

3. An Implementation for matrix decomposition methods such as LU, QR, and SVD; 

4. An Implementation for vectorized matrix-matrix and matrix-vector multiplications and 

additions using VectoXd, Matrix, and SMatrx data types. 

 

Explicit vectorization is provided with graceful fallback to non-vectorized code. Various 

architectures are supported: SSE, AVX, ARM NEON, PowerPC AltiVec/VSX, ZVector 

SIMD instruction sets. 

 

MUMPS (L’Excellent, 2017), or Multi-Frontal Massively Parallel Sparse Direct Solver, was 

developed by the University of Lille, France. It focuses on HPC big sparse matrix computing 

and provides support for the solution of large symmetric positive definite sparse matrices as 

well as general symmetric and unsymmetrical matrices. MUMPS provides support for 

parallelism in factorization and solving phases. The library relies on the Distributed Multi-

Frontal Solver with shared memory OpenMP directives, and Dynamic Distributed 

Scheduling with MPI. 

ViennaCL (Rupp et al., 2016) implemented in C++ provides for a wide variety of sparse 

matrix computing such as matrix-matrix and matrix-vector multiplication, iterative solvers, 

direct solvers, and a variety of preconditioners. Moreover, it allows access to objects from 

other libraries such as Eigen, Armadillo, MTL4, uBLAS. It also provides support for CUDA, 

OpenCL, and OpenMP. When none of the parallel systems is available on the target machine, 

the library falls to a single-threaded execution. ViennaCL provides for porTable performance 

by using an internal database of a configuration suitable for each target device.  

 

SuperLU (Li, 2005), is a set of C subroutines for the solving of large sparse symmetric and 

unsymmetric systems. The algorithms implement a Gaussian elimination algorithm that takes 

advantage of the sparsity of the matrix and the available parallelism of the test machine. 

SuperLU comes in three versions: 
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1. SuperLU is a sequential version without parallelism; 

2. SuperLU_MT is designed for Shared Memory Processors which use multi-threading to 

speed up the computation. Extensions in C are developed to provide parallelism through 

OpenMP or PThreads; 

3. SuperLU_DT uses MPI to disburse the computation on processors distributed across 

cluster computers. 

 

PETSc (Balay et al., 2014), the Portable Extensible Toolkit for ScientficComputing, is a 

suite of algorithms and data structures for solving large scale systems using parallel 

computing. PETSc is implemented in C and therefore accessible from C++. It also provides 

an interface for Fortran access. PETSc uses MPI for message passing between parallel 

processes. The library provides a high-level MPI collective: the user does not need to make 

MPI calls to exchange messages. Some of the functionalities of PETSc includes Krylov 

subspace methods, distributed matrices, and vectors. Finally, PETSc allows interoperability 

with major matrix libraries such as MUMPS, Hypre, and Trilinos, among others. 

 

We highlight the following GPU based and intel-based commercial libraries that are at the 

top of every performance benchmark. These libraries and others in their categories were 

omitted from our research experimentations due to the research scope: 

 

Paradiso (Schenk and Gartner, 2014), a commercial library developed by Intel, specializes 

in sparse matrices on CPUs and it allows for the solving of symmetric and unsymmetrical 

real or complex systems, the LU decomposition with complete pivoting, and the parallelism 

on SMP (Shared Memory Processors) and distributed SMP. 

 

cuSparse (Naumov, 2011), the Nvidia Cuda Sparse Matrix library supports Blocked CSR 

sparse matrix and dense CSR, COO, CSC storage formats, levels one, two and three sparse 

and dense matrix-vector operations and sparse by sparse matrix addition/multiplication 

operations, sparse triangular solve and finally incomplete factorization preconditioners ilu0 

and ic0. 
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1.4 Libraries and calculators review 

In this section, we provide a review of some of the recent experiments conducted on major 

parallel frameworks such as MapReduce, Apache Spark, MPI, and OpenMP. We focus our 

review on iterative and matrix computing libraries. 

 

Also, we provide a comparison between the features adopted in ParallelLCA0.1 and other 

major Open Source calculators. 

 

1.4.1 Parallel framework review 

Gopalani and Arora (2015) compared two implementations of K-Means algorithms using 

MapReduce and Apache Spark MLlib. The experiments were conducted for two datasets of 

sizes 62MB and 1240MB. The three experiments that were conducted are indicated on the x-

axis of Figure 1.6: the 62MB using one node, the 1240 MB using one node, and the 1240MB 

using two nodes. The research shows that Apache Spark, with its in-memory processing 

framework, can provide an enhancement of almost two times for the iterative K-Means 

algorithm when compared to MapReduce. 

 

 

Figure 1.6 Spark vs. MapReduce for K–Means  
Taken from Gopalani and Arora (2015) 
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Reyes-Ortiz, Oneto, and Anguita (2015) compared the performance of two machine learning 

algorithms when using MPI/OpenMP versus Apache Spark. The algorithms are KNN and 

Pegasos. Figure 1.7 is an extract of this experiment for the KNN algorithm. Similar 

conclusions can be found for the Pegasos algorithm.  

 

 

Figure 1.7 MPI vs. Apache Spark for KNN. 
Taken from Reyes-Ortiz, Oneto and Anguita (2015) 

 

The experiment concluded that the MPI/OpenMP implementation can be as much as ten 

times faster than the Apache Spark implementation and that the difference tends to decrease 

with the increase of dataset size. With smaller dataset sizes, Apache Spark falls way behind. 

This is shown in Figure 1.7, where MPI/OpenMP overpasses Apache Spark for smaller 

datasets. 
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1.4.2 Matrix libraries performance review 

1.4.2.1 Direct solvers review 

Considering the sparse LU factorization problem, a comparative study published by Gupta 

and Muliadi (2000) for a set of state-of-the-art sparse direct solvers, namely MUMPS, S+, 

SPOOLES, SuperLU, UMFPACK, and WSMP was published. The experimentation was 

conducted on twenty sparse matrices generated in different scientific domains. The 

dimensions of the matrices range from 16,783 to 659,033 number of rows and from 145,149 

to 2,374,001 non-zero elements. The results highlighted WSMP as the fastest and most 

memory efficient serial solver; the parallel version was yet not developed. Among the 

parallel libraries, MUMPS was shown to have the best overall performance. 

 

As shown in a paper published by Gould, Hu, and Scott (2005) comparing sparse solvers for 

thirty matrices with minimum dimensions of 10,000 rows, the clear winners were: MA57 and 

PARADISO. Of the remaining solvers, BCSLIB-EXT and unsymmetrical MUMPS perform 

the best. From this study, we ignore MA57 and BCSLIB-EXT as they are designed for 

symmetric matrices only (i.e., LCA matrices are unsymmetrical), as well as Paradiso as it is 

commercial. We retain MUMPS. 

 

A study, published by Tracy, Oppe, and Engineer U.S.A (2005), aimed at comparing the 

performance between a set of sparse matrix solvers. The solvers tested in this study are 

SuperLU, UMFPACK, and other domain-specific libraries (e.g., Bansol, SSGETRF, 

SSGETRS, SSTSTRF, SSTSTRS). This experimentation was tested on matrices, generated out 

of the CGWave software, which comes in different dimensions: small (130,255) nodes, 

medium (265,119 nodes), and large (496,286 nodes). This paper concluded that the Umfpack 

solver outperforms the SuperLU solver. 
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Table 1.5 Time of direct sparse solvers of the Eigen++ library. 
 Taken from Gaël and Benoit (2017) 

Rows NNZ Umfpack 
(Seconds) 

superLU 
(Seconds) 

pastixLU 
(Seconds) 

160,000 1,750,416 3.46381 5.89542 16.1594 

19,788 308,232 0.0280053 0.0194402 0.268747 

12,855 72,069 0.0288333 0.0225195 0.0750265 

 

A study made by Eigen++, published by Gaël and Benoit (2017), compares major sparse 

direct solvers supported in the library. An extract of that study is shown in Table 1.5. The 

results show that the Umfpack library provided better performance than the SuperLU and 

pastixLU. 

 

1.4.2.2 Iterative solvers review 

The literature shows that the fastest algorithms used for unsymmetrical sparse systems 

solving and implementing the Krylov subspace methods are the Conjugate Gradient Squared 

(CGS), the Generalized Minimum Residual Method (GMRES), and the Biconjugate Gradient 

Stabilized (BiCGStab) algorithms. Specialized libraries have been developed over time that 

implements these Krylov algorithms. 

 

An extract of the experiment published by Eigen++ (2017) comparing several sparse solvers 

is shown in Table 1.6. It shows that for 160,000 rows and 1,750,416 non-zero elements, 

BiCGStab was able to solve the system in 1.49 seconds. 
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Table 1.6 Time of sparse iterative solvers in the Eigen++ library. 
 Taken from Gaël and Benoit (2017) 

Rows NNZ BiCGSTAB 
(Seconds) 

BiCGSTABILU 
(Seconds) 

GMRESILUT 
(Seconds) 

CG 
(Seconds) 

160,000 1,750,416 1.49473 3.34948 3.54288 - 

19,788 308,232 0.037642 0.0186552 0.0238484 - 

12,855 72,069 0.249916 1.39486 1.42741 0.239551 

 

A benchmark comparison between ViennaCL and PETSc was published in Rupp et al. 

(2016) comparing the solving time of large matrices. Table 1.7 shows the order of magnitude 

of execution per solver iteration on AMD FirePro W9100 for linear systems starting from 

100,000 rows or columns. 

 

Table 1.7 ViennaCL vs. PETSc time per solver iteration benchmark. 
Taken from Rupp et al. (2016) 

Order/ 
Iteration 

CG GMRES BiCGStab 

Size ViennaCL PETSc ViennaCL PETSc ViennaCL PETSc 

103 10-4 10-5 10-4 10-4 10-4 10-4 

104 10-4 10-3 10-4 10-3 10-4 10-3 

105 10-4 10-3 10-3 10-3 10-3 10-2 

 

Similarly, for larger matrices and several types of matrices, Rupp et al. (2016) show that for 

matrices having at least 11 million entries and at most 37 million entries, the execution time 

will vary between 0.94 and 8.92 milliseconds per solver iteration. Similar execution times 

have been shown when using the “Nvidia Tesla K20m” hardware. 

 

Solving a large linear system, as indicated in Table 1.8, requiring tens of iterations may take 

a few hundred milliseconds to compute or a few seconds when using the many processors 

available on hardware like the “AMD FirePro W9100” or the “Nvidia Tesla K20m”. 



51 

Table 1.8 ViennaCL performance for large matrices. 
Based on (Rupp et al., 2016) 

Name 
 

Rows Cols NNZ Solver Time(ms) / 
Iteration 

KKT 

POWER 
2,063,494 

 

2,063,494 
 

12,771,361 
 

GMRES 6.17 

RM07R 381,689 
 

381,689  
 

37,464,962 GMRES 8.92 

KKT 

POWER 
2,063,494 

 

2,063,494 
 

12,771,361 
 

BICGSTAB 6.5 

RM07R 381,689 
 

381,689  
 

37,464,962 BICGSTAB 8.05 

PWTK 217,918 
 

217,918  
 

11,524,432 CG 1.19 

SHIPSEC 140,874 
 

140,874  
 

3,568,176 CG 0.94 

 

1.4.2.3 Matrix inverse libraries review 

A paper published by Xiang, Meng, and Aboulnaga (2014), presented a scalable matrix 

inversion algorithm based on LU decomposition for large size matrices. The experimentation 

consisted of running the proposed algorithm with matrices of different sizes as in Table 1.9.  

 

Table 1.9 MapReduce matrix inversion experiment setup. 
Taken from Xiang, Meng and Aboulnaga (2014b) 

Matrix type Order Non-zero size (billion) 

M1 20,480 0.42 

M2 32,768 1.07 

M3 40,960 1.68 

 

All experiments were performed on Amazon’s Elastic Compute Cloud (EC2 instances), 

having 3.7 GB of memory, one virtual core with 2 EC2 compute units (i.e., similar to -era 

1.0–1.2 GHz AMD Opteron or Xeon processor). The resulting execution time takes 20 

minutes, 38.6 minutes, to 1.5 hours for the matrices M1, M2, M3 respectively. 
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Figure 1.8 Matrix inverse on Spark vs MPI vs MapReduce. 
Taken from Yang Liang et al. (2016) 

 

In a paper published by Yang Liang, Liu, Cheng Fang and Ansari (2016) in late 2016, the 

researchers compared MPI, Apache Spark, and MapReduce when implementing a scalable 

matrix inversion algorithm based on LU decomposition for large size matrices. In this paper, 

the experiments were tested on a cluster of commodity servers. Each server had 64GB 

memory and two 2.1GHz Intel Xeon CPUs, summing to a total of 12 physical cores. The 

storage used eight 7200 RPM hard disks. The servers were connected by Gigabit switches. 

 

The experiment shows that with respect to performance, MPI, Apache Spark, and 

MapReduce came first, second, and third, respectively. The difference between MPI and the 

other two JVM technologies increases when the order of the matrices increases. Figure 1.8 

shows the results obtained on a seven-server cluster for a matrix of size 40,960 rows and 

31GB in file size. 
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1.4.3 LCA calculators review 

Table 1.10 shows a comparison for linear system solving, with regard to the adopted matrix 

libraries, among the calculators Brightway2.0, ParallelLCA0.1 and OpenLCA7. 

 

Table 1.10 Calculators—matrix computing libraries 

Research/Calculators Direct solving Iterative solving 

OpenLCA7 Eigen++ SuperLU Eigen++ BiCGStab 

Brightway2 SuperLU – Umfpack - Paradiso SciPy CGS 

ParallelLCA0.1 Umfpack - MUMPS Eigen++ BiCGStab 

 

Table 1.11 shows a comparison in the adopted methods for computing Monte-Carlo and the 

GSA algorithms among the calculators Brightway2.0, ParallelLCA0.1 and OpenLCA7. 

OpenLCA provides OAT (One at A time) sensitivity analysis only. 

 

Table 1.11 Calculators—Monte-Carlo and GSA methods 

Research/Calculators Monte-Carlo GSA 

OpenLCA7 Sequential – Java based Not available 

Brightway2 Parallel - using 

Multiprocessing  

Python library 

Kendal Tau 

ParallelLCA0.1 Parallel - using OpenMP 

and MPI 

Parallel LCA using OpenMP 

and MPI 

 

Table 1.12 provides a feature comparison between ParallelLCA and other major Open 

Source LCA calculators. Currently, ParallelLCA0.1 does not support reading directly from 

the Ecoinvent database or geo-localization. 
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Table 1.12 Calculators—features comparison. 
Comparing ParallelLCA0.1 to Brightway2.0 and OpenLCA7 

 

Research/Feature OpenLCA7 Brightway2 ParallelLCA0.1 

Static basic LCA    
Static phase - Hybrid solver    
Contribution analysis     
Monte-Carlo    
Monte-Carlo- Hybrid solver    
HPC Monte-Carlo    
Parallel Monte-Carlo    
Parallel Database    

GSA    

Pre-calculated aggregated datasets    

Geo-Localization    

Distributed Monte-Carlo    

Ecoinvent support    

Parallel in-memory Database    

Parallel GSA    

Distributed GSA    

Pre-Sampling Monte-Carlo    

 

1.5 Conclusion 

This chapter provided a review of LCA algorithms, state-of-the-art parallel computing 

frameworks, and matrix libraries adopted in the industry. 
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As explained in section 1.1, two methods are commonly used for LCA calculation. The 

Sequential Method uses a graph traversal and aggregation approach. The Matrix Method 

translates the graph interconnection into a system of linear equations, which can be solved 

with different methods, as explained in section 1.3. 

 

Using matrix-based methods for linear system solving and matrix inverse computing that are 

designed for generic dense matrices requires the use of a considerate amount of computing 

resources to reach a reasonable execution time. However, using specialized sparse matrix 

solvers, direct or iterative, provides the solution within tens or hundreds of milliseconds for 

mid-size problems and in seconds for large systems.  

 

Apache Spark provides a convenient API for data-parallel operations over large data sets. 

OpenMP provides for a multi-threading computing framework using a declarative syntax 

allowing, with minimal effort, to access state-of-the-art parallel computing research. Finally, 

MPI allows for implementing multi-processes algorithms that can be local or distributed 

across a cluster of servers. 

 

The research will experiment with Apache Spark and assesses its relevance for LCA 

algorithms. However, as shown in the literature, the combination of MPI/OpenMP provided 

much better performance for computing algorithms similar to those found in LCA (i.e., 

iterative and matrix inverse algorithms). 

 

Current LCA calculators implement their algorithms predominantly by using the matrix only 

approaches, and they provide limited features using the Sequential Method. When analyzing 

large systems with hundreds of thousands of LCA processes, the use of GPUs and a cluster 

of computing resources is inevitable for algorithms based on matrix computing. The research 

will provide a calculator with parallelism enabled in the different levels of the LCA 

algorithms. In addition, the research will try to find alternatives that replace the matrix 

algorithms to minimize the number of resources needed for large systems. 

 



 

 

CHAPTER 2 
 
 

PARALLEL FOREGROUND AWARE LCA 

The project began with the requirement to develop an LCA calculator specially designed for 

the construction industry (i.e., reading Revit digitalized building plan files as an input). Later, 

a decision was made to extend the scope of work and allow for the processing of text files 

containing generic LCA data generated by a companion project. 

 

This chapter describes the required functional outcomes and the proposed methods to reach 

them.  

 

2.1 Prototype Scope and Goals 

2.1.1 Research scope 

The calculator is tested with data from the OpenLCA database. During the validation of the 

results, we discovered that OpenLCA has inconsistencies in using the pedigree method for 

Monte-Carlo sampling. In addition, the test data lacked a precise linking between the demand 

and supply processes. The validation of the results obtained using our calculator has to be 

accomplished, taking into consideration this limitation. 

 

2.1.2 Functional requirements 

In this section, we present the functional requirements of the prototype by describing the data 

views that the calculator is required to generate, which are: 

 

1. The LCI – Process contribution data report shows a Table with the following fields: Flow 

Id, Total Value, ProcessId, Process Contribution; 
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2. The LCIA - Process contribution data report shows a Table of the following fields: 

Impact Id, Impact Score, ProcessId, Process Contribution, Unit; 

3. The Hierarchical Aggregate Contribution report provides the cumulative contribution of 

individual activities to the total impact of a given impact category. By cumulative we 

mean the aggregation over all the processes which are involved in the production of a 

given process; 
4. The LCIA uncertainty report shows a Table with the following fields: Impact Id, Mean, 

STD, 2.5 %, 5 %, 25 %, 75%, 95%, 97.5%; 

5. The Global Sensitivity Analysis report shows, for each impact category, the top 100 input 

variables that contribute the most to its uncertainty. This report shows a table consisting 

of the following columns: OutputVariableId, Input Parameter Type, InputVariableId, 

SROCC (Spearman Rank Order Correlation Coefficient). 

 

2.2 Calculator modules overview 

In this section, we present the different modules that a request for calculation traverses from 

its arrival at the REST service to the exit point, where the calculator returns a JSON message 

to the calling client program containing the HTTP links of the generated reports. 

 

ParallelLCA provides the following modules: 

 

1. The REST Service module, which consists of a set of web methods (e.g., calculate, 

GetFile) implemented using the Play framework, presented in section 2.3; 

2. The LCA Database module, presented in section 2.4; 

3. The Calculator Data loading presented in section 2.5; 

4. The LCA parameters module, presented in section 2.6; 

5. The graph factory feature for building the LCA processes (g) presented in section 2.7; 

6. The parsing of the graph (g) and the building of the matrices A, B, Q and demand vector 

f, described in section 2.8; 

7. Computing the scalars vector s, presented in sections 2.9, 2.10, 2.11, and 2.12; 
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8. Computing the inventory vector g (equation 1.4), and the impact vector h (equation 1.5); 

9. Building contribution reports for LCI and LCIA and the hierarchical upstream LCIA 

report (described in sections 2.14, 2.15, and 2.16); 

10. The Stochastic calculation modules: 

A. An MCS simulator to generate input and output samples; 

B.  An Uncertainty Propagation utility to analyze the uncertainty at the output 

variables (described in sections 2.17, 2.18, and 2.20); 

C. A Global Sensitivity Analysis module to analyze the contribution of input 

variables uncertainties to the uncertainties in output variables (described in 

sections 2.17, 2.19, and 2.20). 

 

 

Figure 2.1 ParallelLCA calculator steps. 
Vertical steps can run in parallel 

 

The calculator steps, shown in Figure 2.1, are split into four categories that are executed in 

order: 

 

1. An Initialization step that includes building the LCADB, loading the CalculatorData 

object, and constructing the graph (g) entities; 
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2. The Foundational LCA kernel step that includes loading matrices A, f, solving 

equation 1.3, computing the inventory g vector and the impact scores h vector; 

3. The contribution analysis step, which consists of the generation of process-based 

contribution reports; 

4. The stochastic phase step, which includes performing Monte-Carlo Sampling (MCS) 

followed by the generation of the uncertainty propagation report and the global 

sensitivity analysis report. 

 

Steps 2, 3, and 4 can be executed in parallel after that step 1 has finished executing. The 

sensitivity analysis can start computing while MCS is running, but needs the output of MCS 

to be completed. 

 

Before launching the calculator algorithms implemented in a C++ library, a layer written in 

Scala communicates with the library functionalities of ParallelLCA. This JVM-C++ 

communication is enabled using the  Java Native Interface(JNI).  

 

 

Figure 2.2 The REST service – ParallelLCA communication 
barrier architecture 
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An AppSettings object holding the settings of the current application settings is passed 

created in the Scala layer and passed to ParallelLCA. LCASingle is a Scala class that initiates 

the LCADB creation through a direct JNI call. Also, LCASingle launches the calculation 

functions in ParallelLCA through the LCACalculator static and stochastic JNI wrappers. 

 

ParallelLCA0.1 implements LCA algorithms in various forms. One example of this variety is 

found in the implementation of Monte-Carlo sampling, where the calculator provides an 

implementation using OpenMP and another one using MPI. ParallelLCA0.1 provides each of 

the implementations in a specialized package such as Caclualtors_MPI, 

Calculators_OpenMP, Calculators_Foreground, Calculators_Presampling, etc. This modular 

separation between the various implementations allows the user of ParallelLCA to choose 

which package to use for a given project and therefore, to minimize the amount of code to 

manage and maintain. 

 

 

Figure 2.3 Calculator model architecture 
 

The various calculator implementations follow similar architecture, as shown in Figure 2.3. 

This architecture can be described as follows: 
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1. The libs package plays the role of interfacing between the REST service and the inner 

calculator functionalities; 

2. The StaticCalculator class implements the different phases of static LCA; 

3. The SensitivityCalculator class defines how the ranking and the correlations operations 

are parallelized; 

4. The MonteCarloCalculator class defines how the Monte-Carlo iterations are launched. It 

is in this class that the type of parallelism is defined to use OpenMP or MPI. The 

Simulator class defines how a single Monte-Carlo iteration is implemented. 

 

The calculator implements classes for the LCA graph components, the parameter evaluation 

entities, the different uncertainties representations, and the pedigree method levels. This 

implementation is shown in Figure 2.4. 

 

 

Figure 2.4 Calculator class models 
 

Before the calculation starts, the different calculator implementations create, in an 

initialization step, objects that are necessary for their functioning. Several factories, as shown 

in Figure 2.5, have been provided for that purpose, such as for the creation of the LCA graph 

object, the different matrices in LCA, and the CalculatorData object. 



62 

The LCADB class represents the database object of the calculator. The objects in LCADB are 

shown in Figure 2.4 in the LCAModels package. For each of these classes, a corresponding 

builder class is provided. For example, for the Exchange class, an ExchangeBuilder class 

creates the Exchange object and inserts it in a collection of exchanges, as explained in section 

2.4. The different builders of LCADB objects are implemented as classes in the DAL (Data 

Access Layer) package. 

 

 

Figure 2.5 Object Factory models 
 

The different factories, reports, and calculators use functionalities implemented in the 

Utilities package classes. Different utilities are provided in this package such as for graph 

building and traversal, for LCA upstream computing, for pedigree uncertainty computing, 

and for other functionalities such as file and string manipulation. 

 

 

Figure 2.6 Utility functions 
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After the static and stochastic results are computed as arrays or matrices, specific reports 

modules are executed to generate CSV files from these arrays and to save the generated 

reports to disk. Figure 2.7 lists the various reporting classes provided in the calculator. 

 

 

Figure 2.7 Reporting module 
 

2.3 REST Service 

The client program (i.e., the front-end) may interact with the proposed LCA calculator 

through a REST service by sending HTTP GET/POST requests, which allow running a 

specific calculator functionality (e.g., static LCA, stochastic LCA, etc.). 

 

Upon receiving a request, the REST service will parse its arguments, save its uploaded files, 

and pass that request to the calculator through the various steps, from step 1 to step 7 as 

shown in Figure 2.8, until finally returning a response to the calling program as a JSON 

object containing an array of the generated CSV report’s HTTP links. 

 

First, in an initialization phase, when the service receives a request for an LCA calculation, it 

parses the parameters in the HTTP request and creates a CalculationSettings class object, 

which serves as a data bag to be passed to all subsequent function calls. The 

CalculationSettings consists of properties such as the phases that the calculator is required to 

compute or to skip (i.e., LCIA, Monte-Carlo or Sensitivity), various entities identifiers (i.e., 

ProjectId, CalculationId, Version, ImpactId, RootProcessId, SolvingMethod, SystemID), and 

other properties such as Monte-Carlo_Iterations, RootPath, OutputQuantity. 
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Figure 2.8 Program Flow 
 

Second, the service stores the uploaded differential files in a file structure, shown in Figure 

2.9, which consists of a set of folders to organize the storing of the received delta files. After 

the delta files are stored, the service initiates a call to the calculator to load or update a 

database in memory, LCADB, with the newly stored delta files as presented in section 

2.4.The file structure adopted in ParallelLCA0.1 is described as follows: 

 

• The DBTemplates folder contains LCADB templates. A template is a ground database for 

building an LCA Database. We are currently using a database template extracted from the 

OpenLCA MySql database; 

• The Projects folder contains all the projects files. Each project directory contains the 

different project version files where the delta files are stored. Consequently, to access a 

delta file, a path of the form “{projected}/DBVersions/{version}/deltas/{delta files}” is 

adopted; 

• The Calculations folder contains the results files of each of the calculations. Each 

calculation directory will contain the generated reports files as well as other files, such as 

error logs generated during the calculation. 
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Figure 2.9 Calculator Files Structure 
 

2.4 Parallel LCADB 

Before initiating an LCA calculation, the calculator parses the delta files line by line, 

performs a data processing on each line to generate objects from LCAModels package, and 

inserts or updates those objects into respective LCADB data structures. The data processing 

is computed in parallel using a team of OpenMP threads. 

 

 

Figure 2.10 LCADB Differential Model 
 

The process of applying different versions of data modifications into LCADB is shown in 

Figure 2.10. The DBTemplate layer is the ground zero layer. The first received delta files 
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constitute the first layer on top of DBTemplate. Each subsequent new version of delta files 

comes on top of the previously existing stack of layers. 

 

 

Figure 2.11 Database Loading Workflow 
 

More precisely, as shown in Figure 2.11, if LCADB is already loaded with a project version, 

ParallelLCA applies the received delta files directly on the latest version, and therefore there 

the reload from the DBTemplate can be avoided. If LCADB is not loaded, then the algorithm 

loads DBTemplate first and then applies the delta files sequentially starting on top of 

DBTemplate. At any time, if an error occurs, LCADB will be reset, and an error message will 

be returned to the user. 

 

The parsing of delta files into LCADB objects consists of three phases: 1) the building of the 

objects listed in annex VII from CSV files; 2) the building of indexes for LCADB 

collections; 3) the building of pedigree-based PDF for the objects.  

 

We designed a parallel algorithm for loading large CSV deltas files such as the 

exchangesDiff, ProcessesDiff, and FlowsDiff. First, the algorithm loads the large delta file 
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into memory as a Vector<string>, where each entry represents one line of the file. Second, it 

launches a team of OpenMP threads and splits large files into a number of chunks equal to 

the available number of threads. Each thread will be working on a chunk of the large delta 

file. The processing of each chunk will consist of the aforementioned steps of entity object 

creation, pedigree-based PDF creation, and indexes loading. Third, when a thread has 

finished executing, it merges its results into LCADB in an OpenMP critical section. 

 

 

Figure 2.12 Loading LCADB using OpenMP 
 

Table 2.1 LCADB Store Structure 

Category Collection name 

Technosphere map<long, Exchange> exchanges 

map<long, Process> processes 

map<long, Flow> intermediateFlows 

Biosphere map<long, ImpactCategory> impactCategories 

map<long, UnitOfMeasurement> unitOfMeasurements 

map<std::pair<long, long>, CalcImpactFactor> impactFactors 

map<long, long> impatCategoriesUnits 

 map<long, vector<long>> impactMethodCategories 

 map<long, Flow> elementaryFlows 
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The program converts the uploaded delta file (in .csv format) line by line into a collection of 

objects in memory, more precisely in a Map<Id, Object>. The Id is of type Long, and the 

object is saved as a custom class (e.g., Exchange, ImpactFactor, Parameter or Process) from 

the LCAModels package. Table 2.1 shows a list of Maps to store the objects by their Ids. 

 

Table 2.2 LCA Indexes Structure 

Index key Index variable 

ProcessId 

 

map<long,vector<long>> in_exch_Map_p 

map<long,vector<long>>out_exch_Map_p 

map<long,vector<long>>elem_flow_Map_p 

OutputIntermediateFlowId map<long, vector<long> > producer_Map_f 

 

The algorithm then computes the indexes shown in Table 2.2, to allow for Approximatively 

Constant Time of objects retrieval from LCADB. More precisely, the index 

elem_flow_Map_p fetches the elementary flows exchanges by processId field, the index 

in_exch_Map_p fetches the intermediate input exchanges by processId field, and similarly, 

out_exch_Map_p stores output intermediate exchanges by processId field. Finally, the index 

producer_Map_f fetches producerExchanges by input exchangeId. 

Table 2.3 Supported Uncertainties 

Uncertainty Type Uncertainty Fields 

Lognormal Geometric mean, Geometric standard deviation 

Normal Arithmetic mean, standard deviation 

Triangular Minimum, Mode, Maximum 

Uniform Minimum, Maximum 

 

Third, the calculator computes a PDF (Probability Density Function) for each of the LCADB 

objects containing uncertain information. The PDF is created by applying pedigree to the 

provided uncertainty information.  
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Applying pedigree alters the entities’ variance or standard deviation by using the pedigree 

Matrix v2 in Table 2.3 and equation 2.1 from Jolliet et al. (2010). A separate script was also 

developed using the equations in the work of Muller et al. (2016b). 

 

𝑆𝐷௚ଽହ = 𝐸𝑥𝑝 ෍ lnଶ 𝑢௜ହ
ଵ + lnଶ 𝑢௕  

(2.1) 

 

A final step is to construct a Random Number Generator (RNG) object based on the 

calculated PDF and store it in each object. ParalellLCA supports lognormal, uniform, normal, 

and triangular uncertainties types. Table 2.3 lists the data fields for each uncertainty type. We 

are using the “random” package from C++ stdlib to generate RNGs for each distribution 

type. 

 

2.5 Calculator data loading 

The calculator data loading step is where the data is transferred from LCADB to a format that 

is best suitable for the calculator algorithms. The calculator will use CalculatorData as a 

temporary object that exists only for the duration of a calculation request. Building the 

CalculatorData object aims at preparing and storing vectors and dictionaries of entities for 

later access in the calculation lifecycle. This phase can be executed on each calculation 

request, or it can be skipped when a calculation request has no changes to the system. 

 

These objects are classified as vectors containing matrices raw data objects, only static raw 

data objects, only uncertain raw data objects, matrices indexes, and system parameters. These 

objects are as follows: 

 

1. The A_exchanges, B_exchanges, Q_cells contain all the matrices raw data objects of the 

current calculation request 

2. The A_foreground_exchanges and A_background_exchanges provides the raw data for 

the foreground and background layers separately; 
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3. The A_static_exchanges and B_static_exchanges contain the static exchanges of the 

system; 

4. The A_uncertain_exchanges and B_uncertain_exchanges contain the stochastic 

exchanges of the system; 

5. The parameter dictionary implemented as a map<long, Parameter> maps a parameter id 

to its Parameter class instance; 

6. The LCAIndexes provides indexes for each of the collection of objects in CalculatorData 

that is a raw data for matrices loading. The first index is a vector containing the object Ids 

and the second is a map<long, long> that maps each Id to a matrix column or row index.  

 

2.6 Parameters module using EXPRTK 

The purpose of the Parameters module is to manage the loading of parameters into memory, 

the access of these parameters, and the evaluation of mathematical expressions dependent on 

parameters. This module allows the LCA analysis of a parametrized system of products. One 

requirement that this module answers is the evaluation of a mathematical formula 

F( 𝑥ଵ, 𝑥ଶ, . . . , 𝑥௡) whose variables are both static, stochastic, and dependent on other 

formulas. 

 

The thesis adopted the library EXPRTK (Arash Partow, 2010) for formula evaluation. 

EXPRTK relies on data structures such as: 

 

1. The Expression_t, that represents an expression to evaluate; 

2. The Symbol_t that represents a parameter and its value; 

3. The Symbol_Table_t that represents a collection of Symbol_t instances.  

 

Figure 2.13 shows the loading process for parameters and expressions. The parameters or 

symbols are saved in a symbol table, which is an instance of symbol_Table_t type and stored 

in a map symbolTableMap< key: Long, Symbol_Table_t> indexed by “scope_owner” as key. 

Similarly, the expressions are created as instances of Expression_t type, and then they are 
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registered in an instance of symbol_Table_t type. Each instance of expression_t is stored by 

the “Scope_OwnerId” key in the expressionsTableMap map, which is an instance of 

Map<key, Expression_t >, where the “scope” is either Global or Process and OwnerId 

represents the Id of the LCA process owning a parameter. The parameters can be stored per 

LCA process or globally based on this architecture. 

 

 

Figure 2.13 Symbols, expression, and symbols Table 
 

When a parameter value is dependent on an expression, the parameter is created as a 

“function” class. When the parameter value is given, it is created as a “variable” class or as a 

“constant” class. The evaluation of a parameter expression is achieved in the EXPRTK Eval 

function either by reading the value of the “variable” or “constant” based object or by 

executing the “function” class.  

 

The “function” class allows us to define a custom method for the evaluation of expressions 

that is specific to our research project. When the parameter is stochastic, we use the function 

stochasticFunction that inherits from the “function” class, and that specializes in sampling 

parameters PDFs based on the corresponding uncertainty information. When the parameter is 

static and expression-based, we use the function staticFunction whose role is to make static 

parameter expression evaluations. The staticFunction class allows for evaluating a chain of 

expressions (i.e., formulas whose variables are formulas) through recursive. 
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Our implementation supports the evaluation of parameters with formulas relying on static 

variables and on stochastic variables. In addition, it allows evaluating parameters with 

formulas relying on a graph of formulas whose evaluation depends on other static or 

stochastic variables, as shown in Figure 2.14. 

 

 

Figure 2.14 Supported expression evaluation 
 

As a result of the supported evaluation modes, when calculating a formula that depends on 

several other stochastic variables, its independent stochastic variables are first evaluated by 

sampling, and then the given formula is applied on the generated samples. This evaluation is 

represented in equation 2.2, where the symbol “ ’ ” represents sampling. 

 

 F’ (x1, x2, …, xn) = F (x1’, x2’,…, xn’) (2.2) 

 
2.7 Parallel LCA graph building using OpenMP 

Our implementation of building the graph (g) consists of creating and connecting the client 

and supply processes, in a layered graph, as shown in Figure 2.15. The resulting algorithm 

consists of an iterative process that starts at the root node and finishes when it reaches a layer 

of non-demanding LCA processes. Building each supply layer is implemented by dividing a 

client layer into chunks of processes that are processed in parallel. 
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While building (g), an elementary operation or kernel, shown in Figure 2.15, is repeated on 

each of the LCA activities of each chunk of processes. First, the demands (i.e., input arrows) 

of each client process are fetched from LCADB, using the indexes in Table 2.2, as a 

Vector<InputIntermediateExchange>. Second, for each of the exchanges fetched in step 1, a 

list of producers (i.e., supply activities) is computed based on the information available in 

LCADB and using the indexes in Table 2.2. Third, a unique producer (i.e., red rectangle in 

Figure 2.16) must be selected for each of the exchanges in step 2. Fourth, a connection (edge) 

between a parent process and a supply process is created as an Edge object class.  

 

 

Figure 2.15 Layered Cyclic LCA Graph 
 

The unique producer selection consists of selecting a single producer out of the set of 

candidate producers fetched from LCADB in step 2. As shown in Algorithm 2.1, the program 

will select a producer that is first the defaultProvider of the demanding client activity or 

second, tagged as preferred for the client activity or otherwise has a specific geographical 

location. 

 

Algorithm 2.1 is designed to use “#pragma parallel for” from OMP to build supply layers for 

large client layers. As shown in Figure 2.17, the algorithm will split each graph layer into 

batches of activities, then it computes in parallel their producers (i.e., access to LCADB) and 
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selects unique ones using an OpenMP team of threads. When the parallel threads finish 

executing, the unique producers of each thread are joined, in a synchronization step, into one 

vector of unique producers. The step of connecting demand processes to their unique 

producers is executed sequentially. This process is repeated until the full graph is built. 

 

 

 Figure 2.16 Graph building kernel  
 

 

Figure 2.17 Parallel iterative graph building using OpenMP 
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Algorithm 2.1 Parallel and iterative graph building 

 
 

Algorithm 2.1 connects the tuple (demandProcess, uniqueProducer) by sequentially 

traversing the Vector <(demandProcess, uniqueProducer )> and creating a link (i.e., edge) 

connecting the two nodes demandProcess, uniqueProducer. When connecting a 

demandProcess to its supplyProcess, checking is made on whether the producer is already in 

the graph so that it will be reused; otherwise, a new process node will be created for the 

supply process. After repeating this step for all the processes of the demand layer, a new 

layer of supply processes is created and fully connected to the demand layer. The algorithm 

can use this newly created layer to iterate again to create yet another supply layer. This 

iterative process is repeated until it reaches a layer with no demand processes. 
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When the graph is fully built, a GraphData structure will have been built with the properties 

edgesListCompact as a map<Long, LCAEdgeCompact> and nodesInfoMap as map<Long, 

NodeInfo> representing the edges and the nodes of the graph respectively. 

 

Foreground aware graph building 
 

While building the graph, a set of data structures is created to store the graph nodes and their 

connections. The building of the graph (g) produces data structures designed to serve as a 

memory store for later computations. Also, additional data structures are created to describe 

the foreground-background layer nature of the graph. The graph data structures consist of 

dictionaries to store the graph information, indexes to store the Ids information of the graph, 

and dictionaries to describe the barriers connecting the foreground to the background layers. 

 

The graph dictionaries store the list of processes and their interconnections: 

 

1. The nodesInfoMap (i.e., map<long, NodeInfo>) is a dictionary storing information about 

the processes in the graph. NodeInfo has properties such as processId, scalar, 

isBackgrounLayer, isBarrier, etc; 

2. The edgesListComapct (i.e., map<long, LCAEdgeCompact>) maps an edge id to an 

LCAEdgeCompact class instance. The LCAEdgeCompact class contains information 

such as InputExchangeId, ProducerExchangeId, ProcessSrcId, ProcessDestId, 

InputCalculatedValue, OutputCalculatedValue, InputScalar, OutputScalar, and FlowId. 

 

The graph Indexes store the list of processes residing in either the foreground layer, 

background layer or in any of their barriers: 

 

1. The fronttLayerNodes (i.e., vector<long>) contain the process ids of the foreground layer 

processes; 
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2. The backgroundLayerNodes (i.e., vector<long>) contain the process ids of the 

background layer processes; 

3. The frontLayerBarrierNodes (i.e., vector<long>) contain the process ids of foreground 

barrier processes; 

4. The backgroundLayerBarrierNodes (i.e., vector<long>) contain the process ids of 

background barrier processes. 

 

The graph barrier dictionaries fully describe the foreground and background barriers: 

 

1. The foregroundNodesScalars (i.e., map<long, double>): map a foreground barrier process 

to its scalar; 

2. The barrier_demand: maps each foreground barrier process to its demand connections 

from the background layer. 

 

 

 Figure 2.18 Solving kernel on establishing a connection 
 

While building the graph, the foreground layer can be solved in the step of connecting a 

demanding process to its supply process. As shown in Figure 2.18, the solving kernel section 

consists of scaling the supply process scalar to satisfy the total demand. When the graph is 

built, the foreground would have been solved (i.e., scaled) to satisfy the functional unit. 
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2.8 Calculator Kernel 

2.8.1 Loading the Matrices: A, B, and Q and their indexes 

After the graph (g) is built, an LCAGraph object is returned, and the loading of matrices A, B, 

Q, and the demand vector f can start.  

 

Our proposed algorithm for building the matrices consists of three steps: 

 

1. The Building, for each of the matrices A, B, and Q, of two kinds of collections: An Index 

of ids as a Vector<Id: Long> and a corresponding Index Indices dictionary as Map<Id, 

IdPosition: Long> which map each id to a matrix row or column position. This 

dictionary structure will be accessed when assigning values in corresponding matrices 

cells; 

2. The Fetching of the matrices raw data from LCADB as a Vector<(rowIdPosition, 

columnIdPosition, object)> or for brevity Vector<(i, j, object)>. The object represents 

either Exchange (i.e., A or B) or ImpactFactor (i.e., Q) entities; 

3. The Assigning of (i, j, object.value) into matrices cells (i,j). This step involves 

aggregating cell values pointing to the same position (i, j). 

 

The demand vector f is created as a sparse vector that contains the functional unit quantity, at 

the position of the processId, of the functional unit process (i.e., root node in the graph (g)). 

 

 

 Figure 2.19 matrix A building 
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When loading matrix A, the rows should correspond to unique tuples of (process, flow); the 

flowId cannot be used alone otherwise we will get a rectangular matrix as in the case of the 

example shown in Figure 2.19.  

 

2.8.2 LCA activities scalars computing 

At this point in the calculation, all the objects needed for solving equation 1.3 are built, and 

therefore, the computation of these equations can start. We implemented the system solving 

equation 1.3 in three methods: 

 

1. Direct solving: using Umfpack, as introduced in section 2.11; 

2. Iterative solving: using Eigen++ BiCGStab and ParallelColt CGS, discussed in section 

2.11; 

3. Hybrid Solver: By solving the foreground layer sequentially and using a Matrix Method 

(e.g., BiCGStab from Eigen++) to solve the background layer, discussed in section 2.10. 

 

We also experimented with implementations for computing the matrix inverse, adopted by 

OpenLCA, such as the solving of 𝐴 𝐴ିଵ  =  𝐼 to get A-1, and the use of BLAS primitives to 

compute the matrix inverse 𝐴ିଵ. 

 

2.9 Foreground-Background LCA: Optimization for large systems 

The use of the foreground layer (acyclic) connected to processes from the background layer 

(cyclic) is widespread in LCA systems. We model this pattern using: 1) foreground layer 

barrier (i.e., yellow band), 2) background layer barrier (i.e., blue band) and 3) the 

connections of the foreground layer barrier processes to background layer barrier processes. 
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Figure 2.20 Foreground-Background layers connection 
 

Computational LCA should take into consideration the foreground-background layers 

separation pattern because it allows for the design of several efficient algorithms for system 

solving by reducing or eliminating the matrix component. We are using this separation 

patterns in two places in our research: 

 

1. Algorithm 2.2 which solves the foreground layer using graph traversal reducing the 

matrix component of equation 1.3 to the dimensions of the background layer; 

2. An extension of algorithm 2.2 is the algorithm 2.9, which aggregates the background 

layer and thus allows the complete removal of the matrix component. 

 

2.10 Hybrid Algorithm for solving the Foreground-Background layers 

As discussed in section 1.1, there are two methods used to solve LCA systems: the sequential 

iterative method and the Matrix Method. In this section, we present an equivalency model 

that serves as a foundation for a hybrid solving algorithm which we are proposing for LCA 
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systems. This algorithm solves the foreground layer of the graph, which is the large part, 

using a graph traversal approach (i.e., Sequential Method) and the background layer of the 

graph using the Matrix Method. 

 

 

Figure 2.21 Foreground layer collapsing – equivalent LCA system 
 

The Hybrid Solver in algorithm 2.2, will solve the system in equation 1.3 by: 

1. First, scaling the foreground layer processes and collapsing it to a single node which we 

call the Collapsed Foreground. The Collapsed Foreground has demands equivalent to 

the total demands that the foreground layer requires from the background layer; 

2. Second, it loads a new matrix A(CollapsedForeground + BackgroundLayer), containing the background 

layer and the collapsed foreground layer single node as shown in Figure 2.22; 

3. Third, it solves equation 1.3 by replacing matrix A with A(Collapsed Foreground+BackgroundLayer) to 

get the scalars of the background layer; 

4. Fourth, it loads the background layer elementary flow exchanges in matrix B, and finally, 

calculates LCI and LCIA using equations 1.4 and 1.5. 

 𝑁ୡ୭୪୪ୟ୮ୱୣୢ ୫୭ୢୣ୪ = 𝑁௕௔௖௞௚௥௢௨௡ௗ ௟௔௬௘௥  + 1    (2.3) 
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Figure 2.22 The new matrix A(Collapsed Foreground + Background Layer) 

 

As a result of this method, the graph in the Collapsed Foreground model, in Figure 2.22, is 

translated into a constant number of equations and unknowns, as shown in equation 2.3. A 

foreground layer with an increasing size will not affect the matrix component in the 

calculation as a single node always represents the foreground layer. 

 

Algorithm 2.2 Hybrid solving algorithm. 
collapsing the foreground layer 
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2.11 Matrix-based solving scripts 

2.11.1 Direct and iterative sparse system solving 

Solving the LCA system of equation 1.3 is implemented in two methods: one method 

consists of loading the whole system into a matrix, the technological matrix A, and solving 

equation 1.3. This method is presented in this section. A second method consists of using a 

combination of the Sequential Method and the Matrix Method, which we call the hybrid 

solver. The hybrid solver is presented in section 2.10.  

 

Two state-of-the-art libraries for sparse matrix solving, or sparse matrix inverse computation, 

are being adopted. The first, using UMFPACK, implements a direct sparse solving approach, 

the second, using Eigen++ BiCGSTAB, implements an iterative sparse solving approach. 

For UMFPACK, the solving script first transforms the raw exchanges data into the CSC 

(Compressed Sparse Column) format consisting of three arrays of rows: offset Ap, column 

indices Ai, and values Ax. Second, it factorizes the matrix in an analyze phase. Finally, it 

will find the system solution in the “solve” phase of UMFPACK. A sample code used for 

Umfpack is provided in Annex VI. 

 

 

Figure 2.23 Eigen++ BiCGSTAB solving implementation. 
Based on Gaël and Benoit (2017) 
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For the Eigen++ BiCGSTAB, the calculator will traverse the matrices raw data and generate 

three arrays with the COO sparse format: the RowIndices, the ColumnIndices, and the values 

arrays. Those arrays are fed as parameters into the function in Figure 2.23. The function will 

first build the matrices from the COO arrays, and then an analysis phase will be performed, 

followed by a solve phase that will solve the system iteratively. 

 

2.11.2 Matrix inverse experimentation 

The literature highly recommends against computing the matrix inverse and encourages 

finding alternatives for it. Our research did not implement scripts for computing the matrix 

inverse, but instead, it developed an algorithm to avoid computing the matrix inverse. 

However, the research has experimented with the code developed by OpenLCA to compute 

the matrix inverse, including: 

 

o The solving of 𝐴 𝐴ିଵ = 𝐼, which requires solving a set of linear systems of size equal to 

the number of processes in the graph (GreenDelta, 2017b); 

o The use of the low-level BLAS primitives for matrix inverse (GreenDelta, 2017a). 

 

2.12 LCI and LCIA vectors 

2.12.1 The Traditional Matrix Method 

This method is essential for cases where the background layer changes between calculation 

requests. After computing the scalars vector s, the calculator will proceed to calculate the 

inventory vector g and the impact scores array h using a matrix product as shown in 

equations 1.4 and 1.5.  

 

We have implemented matrix multiplication using the methods below: 

1. Multithreaded matrices multiplication using Parallel-Colt; 

2. Distributed Spark-based matrices multiplications; 
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3. Vectorized SIMD-enabled matrices multiplication using Eigen++ which provided the 

best performance for the examples in this project. 

 

2.12.2 The Hybrid computing of LCI and LCIA 

This method consists of collapsing the foreground layer and analyzing LCA based on a new 

system, the Collapsed Foreground, explained in section 2.7. The matrix component in 

equation 1.4 and 1.5, using this method, is reduced to only include the background layer plus 

one node representing the Collapsed Foreground layer. 

 

2.12.3 The Hybrid-Aggregation method 

This method is beneficial for cases where the background layer is not changing, and its 

details can be omitted from the LCA reports. With this method, when a request for 

calculation hit the calculator, only the foreground layer get solved, and the background layer 

unitary inventories and scores are read from memory. 

 

 

Figure 2.24 Aggregated background layer. 
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The method, in a first initialization step (i.e., not during the calculation), computes and stores 

the unitary inventory and scores of the individual background layer processes, as shown in 

equation 1.7 and 1.8. In a second step, when the foreground layer is solved, the scalars of the 

foreground barrier and the unitary demands of this barrier are read to compute the total 

inventory vector g and total impact scores h as shown in equations 2.4 and 2.5. 

 

 ℎ =  𝑄𝐵𝐴ିଵ  ∗ 𝑆𝑐𝑎𝑙𝑎𝑟ி௚஻௔௥௥௜௘௥஺௖௧௜௩௜௧௬   ∗  𝑑𝑒𝑚𝑎𝑛𝑑 ி௚஻௔௥௥௜௘௥஺௖௧௜௩௜௧௬ (2.4) 

 

 𝑔 =  𝐵𝐴ିଵ  ∗  𝑆𝑐𝑎𝑙𝑎𝑟ி௚஻௔௥௥௜௘௥஺௖௧௜௩௜௧௬   ∗  𝑑𝑒𝑚𝑎𝑛𝑑ி௚஻௔௥௥௜௘௥஺௖௧௜௩௜௧௬ (2.5) 

 

Algorithm 2.3 LCIA scores for the collapsed-aggregated system 

 
 

As shown in Figure 2.25, the foreground layer is collapsed to a single node, and the 

background layer is represented only by the processes to which the foreground layer 

connects. The impact scores of this new system are computed using the algorithm 2.3 by 

aggregating the scores over the two layers of supply and demand. 
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Figure 2.25 Collapsed-Aggregated LCA system 
 

2.13 Aggregate upstream computation 

2.13.1 Aggregate upstream reformulation: matrix inverse avoidance and 
dimensionality reduction 

Figure 2.26 shows a reformulation of aggregate LCA given by equation 1.8, in which the 

matrix inverse is removed. Instead of computing matrix inverse, which is very expensive, the 

upstream quantities can now be calculated by solving a set of sparse linear systems as in 

equation 2.6.  

 

 

Figure 2.26 Aggregate LCIA Re-formulation. 
Matrix inverse removal 
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Solving the system in equation 2.6 is equivalent to solving a linear system with multiple RHS 

(Right Hand Side), which in turn can be computed by solving the LHS (Left Hand Side) for 

each column in the RHS independently (i.e., in parallel) and then stacking each obtained 

solution vector in a shared 2D matrix variable. 

 

The transformation to equation 2.6 provided two significant optimization opportunities. First, 

the number of systems to solve in equation 2.6 is equal to the number of impact categories 

required in the calculation (e.g., 18 impact categories for Recipe midpoint 2008 (I)). Second, 

these independent systems can be solved in parallel. 

 𝐴௧ 𝑥௧ =  (𝑄𝐵)௧ (2.6) 

 

 

Figure 2.27 Upstream aggregation optimization. 
Eliminating the need for matrix inverse computation 

 

The number of impact categories is the smallest dimension in an LCA problem. The 

dimensions in LCA problems are, from the largest to the smallest as follows: 1) the number 

of intermediate exchanges in the supply chain, 2) the number of supply chain processes, 3) 

the number of elementary flows that are exchanged with the biosphere, and 4) the number of 

impact categories to analyze. Therefore, equation 2.6 reduces the problem dimensions 

proportionally to the number of impact categories we are studying.  
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Consequently, this dimensionality reduction is reflected as a reduction in the number of 

threads and cores needed in the parallelism of solving the independent linear systems. If we 

are to parallelize 𝐴 𝐴ିଵ = 𝐼, we will need a number of threads that is equal to the number of 

LCA processes in the graph (g). However, in our method, and because of equation 2.6, we 

need a degree of parallelism equal to the number of threads in the system. 

 

2.13.2 Parallel aggregate upstream: MUMPS-MPI and Eigen++-OMP 

o Using Eigen++ BiCGStab and OpenMP: 

 

To parallelize the tasks of solving the aforementioned independent systems in section 2.13.1, 

we have implemented a parallel version that computes equation 2.6 using OpenMP. In this 

implementation shown in Figure 2.27, the linear systems solving tasks are executed in 

parallel in an OpenMP FOR loop, and the stacking of the solution columns are computed 

sequentially. The solving of the system for each column is computed using Eigen++ 

BiCGStab. 

 

 

Figure 2.28 Parallelizing QBA-1 using OpenMP 
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In Figure 2.28, each green box is solving equation 2.6 for one of the columns in its RHS. 

When the different solvers finish their work, they join their solutions in a shared 2D matrix 

variable that will give 𝑥். A transpose is applied to 𝑥் , which gives the solution matrix x. 

 

o Using MUMPS transpose solving and MPI:  

 

MUMPS allows for the solution of equations similar to equation 2.6 with the form  𝐴 𝑥 =  𝐵௧ and with special configurations. The MUMPS solver starts by initializing a data 

structure representing the current operations as a “DMUMPS_STRUC_C id.” The 

“DMUMPS_STRUC_C” data structure allows accessing configuration flags to set up various 

properties of the calculation. The configuration starts by setting up id.job as -1 to indicate an 

initialization phase, id.par to indicate serial or parallel computing using MPI, and id.sym=0 

for unsymmetric solving. At this step, the configuration is sent to the MUMPS using 

“dmumps_c(&id).” 

 

Next, an ordering algorithm needs to be chosen among metis (5), port (4), AMD (0), AMF 

(2), and QAMD (6). We chose the Metis ordering. As we are computing QBA-1, id.icntl[8] 

needs to be set to “0”. To specify a sparse RHS, the flag id.icntl(20) needs to be set to “1”. 

 

After the initialization phase, we started by loading the LHS and RHS. The LHS is loaded in 

coordinate format and the RHS in CSC (Compressed Sparse Column). Finally, a solve 

command is triggered by setting id.job to “6”. The result will be 𝑥௧ which needs to be 

transposed to get the aggregated scores or 𝑄𝐵𝐴ିଵ. 

 

2.14 Process contribution to LCI and LCIA 

In addition to the inventory and impact scores arrays, the calculator generates analytical 

reports that allow assessing the process contribution information. 
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The LCI – Contribution report provides the contribution of each process in the LCA graph to 

the total inventory of each elementary flow. To generate the LCI - Process Contribution 

report, the prototype proceeds first to aggregate (i.e., grouping followed by summing) the 

elementary flows exchanges of each process by (processid, flowid) which yields a vector of 

<(processid, flowid), aggregatedValue>, then the resulting aggregatedValue is multiplied by 

the process scalar which yields the contribution of each process to each elementary flow 

<(processid, flowid), TotalProcessContribution>. 

 

The LCIA – Contribution report provides the contribution of each process in the LCA graph 

to the total impact scores. The process-to-flow contribution represented by 

<(processid,flowid), contribution> is mapped into an environmental impact category by 

multiplying the contribution value of a given category characterization factor to yield 

<(processid,impactid), CharacterisedContribution>. Second, the characterized contribution 

is then aggregated by (processid, impactid) to yield the total impact contribution of a process 

to a particular impact category represented by <(processid,impactid), 

TotalCharacterisedContribution>. 

 

2.15 Parallel LCIA upstream for multiple impact targets using OpenMP 

The upstream LCIA report provides, for a given process p, the cumulative contribution of all 

the processes in its supply chain. Conceptually, computing the upstream quantities of a 

process “p” and an impact category “c” consists of traversing and aggregating the impact 

scores of “c” on all the upstream paths originating from the leaf nodes of the graph and 

arriving at the process p. This approach works well for an acyclic graph. However, it has a 

significant computational challenge when applied to the background layer because of the 

presence of feedback loops, which makes the upstream traversal circular.  

 

Our approach to computing this report will proceed as follows, similar to the OpenLCA 

implementation (GreenDelta, 2017c): 
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1. Compute the upstream quantities for all the processes and all the impact categories of the 

given impact method; 

2. Next, the cyclic graph needs to be transformed into an acyclic graph (or network) as 

shown in Figure 2.30, to meet the requirement presented in section 2.1.2; 

3. The upstream quantities computed in step 1 will be applied to the acyclic graph computed 

in step 2. A final phase is the rendering of the acyclic graph with upstream quantities in a 

CSV file. 

 

 

Figure 2.29 Cyclic LCA Graph 
 

We followed the same methods implemented in OpenLCA to get the same results, which is a 

requirement. However, the following sections will show how we implemented these methods 

using tools and optimizations, which significantly enhances performance. 

 

2.15.1 Computing cyclic upstream 

A matrix-based formulation that computes the upstream quantities is presented in (Heijungs 

and Sun, 2002) and (Qin and Suh, 2017) and shown in equation 2.6. Equation 2.6 contains a 

matrix inverse operation, which is very expensive. We designed an algorithm that will 

compute the same aggregate upstream but using a different formula presented in equation 
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2.6. Also, we have parallelized the computation of equation 2.6 using OpenMP and MPI, as 

explained in section 2.13.2. 

 

2.15.1.1 Hybrid aggregate upstream 

The matrix-based upstream implementation tends to give an exponentially increasing time 

delay when tested with large foreground layers. The Hybrid aggregate algorithm, presented 

in this section, comes to solve this problem. It uses the Matrix Method for the background 

layer portion of the graph and uses reverse graph propagation of LCIA scores for the 

foreground layer. 

 

Algorithm 2.4 Upstream aggregate LCIA by reverse graph propagation  
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Algorithm 2.4 is an iterative algorithm, which starts from the foreground barrier layer and 

aggregates the LCIA scores per process while moving in the upstream direction toward the 

root process. 

 

The scores of the background layer, using this method, are first computed (lines 1 to 5) and 

then propagated through the foreground layer barrier to reach the root node (lines 6 to 19). 

When on the foreground barrier, the upstream of the background barrier processes is 

transferred to its process in line 13. 

 

2.15.2 Cyclic to acyclic graph transformation 

In this section, we describe the step of transforming the cyclic graph (g) into an acyclic 

graph. The acyclic target graph consists of a graph of linear branches with no cyclic 

connections. Algorithm 2.5 has been designed to transform the cyclic graph, which is built in 

section 2.71 into an acyclic graph, as shown in Figure 2.30.  

 

 

 Figure 2.30 Non-repetitive Acyclic Network  
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Algorithm 2.5 iterates over the graph processes starting from the left side of the graph and 

going in the downstream direction. It has two major concepts: 

 

o Non-cyclic linking: When creating a link to an existent process in the acyclic graph, a 

copy of the existing process node is added to the graph; 

o Non-repetitive expanding: To meet the requirement in section 2.1.2, if the same process 

is met for a second time, then it will be included in the graph, but it will not be expanded 

for a second time. 

 

Algorithm 2.5 Acyclic non-repetitive graph building 

 
 

Line 5 of algorithm 2.5, checks whether the node is already added to the acyclic graph. In 

case it is already handled (i.e., added previously to the graph), a new copy of that process 

will be added to the graph in line 12; otherwise, it will be added, in line 7, to a queue for 

further processing. 

 



96 

2.15.3 Acyclic upstream LCIA 

The total upstream on the acyclic graph can be given by equation 2.7 below: 

 𝑇𝑜𝑡𝑎𝑙𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚(௣,௖) =  𝑈𝑛𝑖𝑡𝑎𝑟𝑦𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚(௣,௖)  ∗ 𝑆𝑐𝑎𝑙𝑎𝑟௣ (2.7) 

 
To transform the total upstream on the acyclic graph to a total upstream, the mathematical 

development of equations 2.8, 2.9, and 2.10, taken from GreenDelta (2017c), would need to 

be applied. 

 

The share of a branch connecting a supply node B to a demand node A is equal to the 

fraction of supply node B that it is responsible for. 

 𝑆ℎ𝑎𝑟𝑒௡ௗ = 𝑠𝑐𝑎𝑙𝑎𝑟௖௛௜௟ௗ ∗ 𝑠𝑢𝑝𝑝𝑙𝑦௖௛௜௟ௗ𝑠𝑐𝑎𝑙𝑎𝑟௣௔௥௘௡௧ ∗ 𝑑𝑒𝑚𝑎𝑛𝑑௣௔௥௘௡௧  , 𝑆ℎ𝑎𝑟𝑒௥௢௢௧ = 1 (2.8) 

 

The CompoundShare of a given node Nd is a quantity that results from multiplying all node 

shares from the root node until reaching the Nd. A compound share gives the fraction of 

supply that a branch segment is providing. 

 Compound𝑆ℎ𝑎𝑟𝑒௡௢ௗ௘ୀா = 𝑆ℎ𝑎𝑟𝑒(௥௢௢௧ୀ஺) ∗ 𝑏1 ∗ 𝑒1 (2.9) 

 

The total upstream of a branch segment would be equal to multiplying the segment fraction 

(i.e., CompoundShare) by the TotalUpstream of a process p. 

 𝑇𝑜𝑡𝑎𝑙𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚(௡ௗ,௖) =   𝑇𝑜𝑡𝑎𝑙𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚(௣,௖) ∗ 𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑆ℎ𝑎𝑟𝑒(௣→௡ௗ) (2.10) 

 

This arithmetic calculation must be applied on each node in the acyclic network and for each 

impact category of the given impact method. We designed a parallel algorithm that will apply 

the aforementioned formulas for the different impact categories, as shown in Figure 2.31. 
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Each thread will apply the formulas on the acyclic network for a chosen impact category and 

will generate and save a corresponding CSV file. 

 

 

Figure 2.31 Parallel upstream aggregated hierarchical graph 
 

2.16 Stochastic prototypes 

Figure 2.32 presents the architecture of the stochastic module. The call to run the stochastic 

reports originates from a “libStochastic” class. If OpenMP is to be used, the call is routed 

directly to the respective class. If MPI is to be used, the call needs first to pass through a 

“main” class compiled as a computer process. 

 

 

Figure 2.32 Stochastic module architecture 
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2.16.1 Main Features of the Prototypes 

The research designed and developed a variety of prototypes for computing Monte-Carlo and 

GSA. These prototypes are built around four main types of features described below. 

 

A. Parallelism and Data Exchanges 
 

The simulation is split into a batch of iterations executed in parallel. The iterations inside 

each batch run sequentially. The parallelism is provided by either using the OMP 

PARALLEL FOR loops feature or by using the multi-processes MPI (i.e., master-slave 

topology) feature. 

 

  

Figure 2.33 MCS input and output samples 
 

At the end of each batch of iterations, the resulting input or output variables are exchanged 

with a master node (i.e., thread or process) to form a 2D vector (Figure 2.33) in which 

columns are the aforementioned variables, and rows are the different iterations. 

 

In our OpenMP-based implementation, each thread enters a critical section when it finishes 

execution, and where it exchanges its 2D vector of input or output variables with a Master 

thread. Each exchanged 2D vector is stacked in a globally shared 2D vector, which will 

contain the samples from all the iterations and for all the variables of each variable type. 
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Each type of output or input variable has a global 2D vector, which makes a total of three 2D 

vectors for A, B, and the output LCIA. In our MPI-based implementation, the processes 

exchange their input or output 2D vector variables with the Master process asynchronously 

when they finish execution. 

 

 

Figure 2.34 2D Vectors exchanging in OpenMP/MPI 
 

Another form of data exchange is letting each batch of iterations save its results using the 

grid shown in Figure 2.33. The size of rows and columns can be configured dynamically. 

 

B. In-sampling vs. pre-sampling 
 

The pre-sampling of an LCA system consists of, in an initializing step, dependently sampling 

its exchanges in a Monte-Carlo simulation. Those samples are stored in memory, or on disk, 

along with their ranked vectors for later calculation requests.  
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Figure 2.35 Pre-sampling parallelism 
 

When a new calculation request for a Monte-Carlo simulation arrives, the samples are read 

from memory instead of sampled randomly. If sensitivity analysis is needed, the ranked 

vectors in memory are read instead of re-computed. The avoidance of ranking the system 

exchanges for each calculation request is very beneficial. 

 
In an initialization step, the cluster on the left of Figure 2.35 performs the sampling and 

ranking of the system and sends the sampled 2D vectors to the “main” application process. 

When a calculation request is received, the stored 2D vectors will be sent to the individual 

threads or processes of the calculation cluster on the right of Figure 2.35. 

 

C. Solving methods 
 
Two main solving methods are present: 

 

o The Matrix Method, where the whole system is loaded into a matrix object and equation 

1.3 would be solved using Eigen++ BiCGStab; 

o The Hybrid Solver, where only the background layer is solved using Matrix Method. 
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D. Background layer representations 
 

There are two representations of the background layer:  

 Des-aggregated background layer where the details of the background layer are taken into 

consideration while solving and reporting; 

 Aggregated background layer where the background layer impact scores are aggregated 

and stored by impactId and processId. 

 

The aggregated background layer feature consists of two designed modules the 

“AggregateSampler (MPI)” and the “CalculatorsAggregated (OpenMP)”. The 

AggregateSampler, explained in section 2.12, will pre-sample and pre-rank the input 

variables, and aggregate the impact scores for the background layer processes. The 

CalculatorsAggregated, explained in section 2.12, will read the aggregated scores generated 

by the AggregateSampler and use those scores in the Monte-Carlo iterations to skip 

analyzing the background layer. 

 

2.16.2 Prototypes for Parallel Monte-Carlo and Parallel GSA 

The different prototypes are: 

 

1. Calculators_OpenMP: an in-sampling Monte-Carlo with parallelism using OpenMP; 

2. Calculaors_MPI: an in-sampling Monte-Carlo with parallelism using MPI; 

3. Calculators_PreSampling: uses pre-sampling with MPI and Monte-Carlo; 

4. Calculators_Foreground: allows the use of a hybrid solver and OpenMP features; 

5. AggregateSampler and CalculatorsAggregated prototypes: use the pre-calculated 

aggregated datasets feature. 
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2.17 Monte-Carlo sampling (MCS) and uncertainty propagation 

This section presents the in-sampling and pre-sampling MCS prototypes using the des-

aggregated background layer features. Both in-sampling and pre-sampling can work with 

either the Matrix Method or the Hybrid Solver methods. 

 

2.17.1 In-sampling MCS 

In LCA, as per Peters (2007b), uncertainty propagation through MCS can be accomplished 

by sampling the input matrices A, B, and Q by using RNGs created based on the uncertainty 

information in the matrices, then computing the LCA output variables g and h and finally, 

saving the output variables for N iterations for later statistical analysis. After MCS is 

complete, the uncertainty is propagated and presented to the output variables. The uncertainty 

on the output variables can be assessed by computing statistical metrics such as the median, 

variance, and percentiles. Furthermore, the output variable samples can be drawn to visualize 

the shape of the PDF at the output of MCS. 

 

Our proposed implementation of MCS is described in Algorithm 2.6. The implementation 

proceeds as follows: create static only matrices (i.e., A, B, Q) outside of the iterations loop; 

second, create, inside the loop, the sample matrices (i.e., A’, B’) containing uncertain cells; 

third, merge the static matrices and the sampled matrices using vectorized matrix addition 

and finally, compute equations 1.3, 1.4 and 1.5 to generate vectors g and h. The samples of 

output and input variables are accumulated (Figure 2.33) in 2D arrays for each of the 

matrices A, B, and Q. 

 

The evaluation of Exchanges or ImpactFactors in the static phase is equivalent to directly 

reading static values or interpreting formulas dependent on a tree of parameters. On the other 

hand, the evaluation in the stochastic phase is equivalent to directly sampling a known PDF. 

In both situations and when formulas are present, EXPRTK is adopted as described in section 

2.6.  



103 

 

After the simulation is finished, the different threads or processes running the simulation will 

exchange their 2D matrices of output variables with uncertainties into a global 2D matrix. 

The columns of this global matrix, which are impact categories, will be the subject of 

statistical analysis, as described earlier in this section.  

 

Algorithm 2.6 Monte-Carlo proposed implementation 

 
 

This statistical analysis is developed in parallel using OpenMP. The different columns are 

spread across the available threads, and each thread will perform its statistical analysis and 

store it in ImpactStat object. At the end of each thread work, an ImpactStat object will be 

exchanged and joined into a final vector (i.e., vector[ImpactStat]) containing the statistical 

metrics of all the impact categories under study. 
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2.17.2 Pre-sampling MCS 

When adopting the pre-sampling feature, lines five and seven now read from memory instead 

of entities sampling. Also, lines 14 and 17 would consist of accumulating and saving only the 

output variable g. 

 

2.18  SCC based GSA  

To perform GSA using SCC, an algorithm implemented in most scientific libraries may 

proceed as follows: first, it will iterate over all the input and output variables, and for each 

(input, output) instance, it will compute SCC using the library provided functions. Second, it 

will compute the contribution coefficients based on the computed correlations. Finally, it will 

sort the contributions and select top contributors. 

Our first implementation of the SCC-based GSA relied on using statistical libraries (e.g., 

MLlib Spearman, gsl Spearman, etc.) to perform the Spearman correlations. These libraries 

are designed to make individual correlations, which requires that those libraries are fed with 

a cartesian product of (input, output) variables. This cartesian product results in a re-

computation of the Spearman ranks of input variables for every output variable. In LCA, the 

number of output variables is in the order of magnitude of 10th of elements (e.g., 18 variables 

for Recipe Midpoint I 2008), and the input variables are in order of magnitude of 100,000th 

of elements (e.g., 273,000 for “Production of aluminum in Quebec”). This ordinality resulted 

in the hundreds of thousands of input variables being re-ranked tens of times. 

 

2.18.1 In-ranking SCC 

To overcome the cartesian ranking, we designed and implemented our custom version of 

SCC in algorithm 2.7, that mainly separates the ranking step from the correlation step. This 

separation results in a ranking that happens only once for each of the input and output 
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variables. The algorithm uses gsl Spearman rank for the ranking, and we have implemented 

our version of Pearson correlation, as shown in Figure 2.36.  

 

In the ranking section of algorithm 2.7, each input and output vector is ranked only once 

using OMP For loops. In the correlation section, the input and output variables are cross-

correlated. Each of lines 3 to 5 is a call to a gsl ranking function. Lines 7 to 9 are executed 

serially for joining the computed ranks into 2D shared memory. In the contribution section, 

the contributing factors are computed, sorted, and the top 100 contributors are selected.  

 

Algorithm 2.7 SCC proposed algorithm 
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Our implementation of the Pearson correlation uses implicit vectorization to provide efficient 

computation, as shown in Figure 2.36. 

 

 

Figure 2.36 Pearson implementation – implicit vectorization 
 

2.18.2 Pre-ranking SCC 

When adopting the pre-ranking feature, the ranks are pre-calculated, and therefore, the 

“RankingSection” of algorithm 2.7 will consist of ranking the output variables. 

 

2.19 Aggregated datasets based MCS 

The solving of an LCA system by using pre-calculated aggregated datasets is based on the 

model shown in Figure 2.37. Based on this model, solving an LCA system is accomplished 

by first solving the foreground layer using the Sequential Method; then reading the unitary 

pre-calculated scores of the background layer barrier processes from pre-calculated arrays 

and finally, scaling the background layer barrier processes unitary aggregated scores by the 

total demands of the scaled foreground layer barrier processes. 
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Figure 2.37 Aggregated background layer graph model 
 

To accomplish this model, we designed algorithm 2.8 to aggregate each background layer 

process, which allows for replacing its LCA graph with a single node. Figure 2.38 presents 

the process of generating an aggregated score for each process and impact category. The 

algorithm consists of creating a system of one root process, demanding all the background 

layer processes and then iterating a Monte-Carlo simulation to generate arrays of aggregated 

LCI or LCIA scores for each background layer process.  

 

 

Figure 2.38 Aggregating background layer 
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Algorithm 2.8 Background layer scores aggregation 

 
 

Algorithm 2.9 will first load the system in Figure 2.32 into matrices A, B and Q. Second, it 

computes QBA-1 in each iteration to generate the arrays of aggregated scores for each impact 

category and LCA process. Finally, it saves the computed arrays to a store (i.e., in memory, 

on disk, or SS3). 

 

The research adopted algorithm 2.9 to use the pre-calculated aggregated scores arrays in a 

Monte-Carlo simulation. This algorithm first traverses the background layer barrier to read 

its LCIA scores. Second, it solves the foreground layer to calculate the total demands at the 

foreground barrier. Finally, it aggregates the total LCIA scores. This algorithm provides 

considerable performance enhancement over algorithm 2.6 because it eliminates the step of 

sampling the background layer exchanges, and the step of solving the background layer 

matrix equation in each iteration. Instead, it solves the foreground layer (i.e., using the 

Sequential Method) and scales the aggregated scores of the background layer barrier 

processes. 
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 Algorithm 2.9 LCIA scores for the collapsed-aggregated system 

 
 

Algorithm 2.9 allows the complete removal of the matrix component by replacing the 

sampling and solving of the background layer by a read from an array of pre-calculated data. 

Figure 2.25 shows the equivalent model provided by algorithm 2.9, where the foreground 
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layer is solved and collapsed into a single node. The background layer barrier scores are read 

from the pre-calculated arrays generated in algorithm 2.7. 

 

2.20 Conclusion 

This chapter presented the algorithms that we have adopted to implement the requirements of 

this research project.  

 

The program starts by loading the database, which involves loading the DBTemplate, second 

it applies the newly received differential files, and third, it loads and stores RNG for each of 

the uncertain entities in the system. After loading the database, the program proceeds to build 

the LCAGraph interconnecting the different LCA processes. Serial and parallel versions were 

implemented for this step.  

 

After building the graph, the prototype proceeds to load the matrices and their indexes. The 

prototype then computes equations 1.3, 1.4, and 1.5. We experimented with several Matrix 

Methods, namely UMFPACK, for direct solving and Eigen++ BiCGSTAB for iterative 

solving. Also, a hybrid algorithm was proposed to solve the foreground layer using the 

Sequential Method and the background layer using the Matrix Method. 

 

The research implemented uncertainty propagating using Monte-Carlo sampling followed by 

uncertainty assessment. Two main optimizations were proposed. First, algorithm 2.6 consists 

of separating certain and uncertain cells and accumulating output results in memory. Second, 

algorithm 2.9 allows performing the sampling and the aggregation of the background layer 

before running the simulation. This allows Monte-Carlo to avoid the sampling and the 

solving of the background layer in each iteration of the simulation. 

 

The prototype, to perform GSA using SCC, proposes an algorithm which consists of 

separating the ranking from the correlation steps. This proposed algorithm allows for the 

ranking, in parallel, of a series of variables to be determined only once. 



 

 

CHAPTER 3 
 
 

LIFE CYCLE ASSESSMENT ON APACHE SPARK 

This project started by studying the opportunities provided by using the Apache Spark data-

parallel distributed computing framework for implementing LCA calculation algorithms. 

While experimenting with some of the Spark features, and by applying them to our project 

functionalities, we found that the Spark features are not aligned with what we are trying to 

implement. Also, we have found that the programming methodologies provided by 

traditional programming languages, as explained in Chapter 2, provide much better 

performance gains. In this chapter, we speak about our experimentation with Apache Spark 

and provide recommendations for its use in the context of an LCA project. 

 
3.1 Apache Spark static LCA kernel implementation 

The implementation of the calculator kernel on Apache Spark is based on using lazy 

transformations over CSV files loaded into Spark Dataframes/RDDs. A series of 

transformations are adopted to transform the CSV files into various LCA objects such as 

LCA graph and LCA matrices (i.e., A, B, and Q). The objects creation is then followed by an 

LCA calculation step. The schemas of the CSV files are provided in Annex VII. 

 

 Graph building 
 

Prior to building the graph (g), an initialization phase is necessary for loading the CSV files 

into Spark data frames. The data frames that we will be using are: 

 

1. df_exchanges is a Dataframe containing the exchanges CSV file; 

2. df_exchangesIn is a Dataframe containing the input exchanges CSV file; 

3. df_exchangesOut is a Dataframe containing the output exchanges CSV file.  
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The graph building implementation in Apache Spark, as shown in Figure 3.1, consists of 

applying a series of transformations in each iteration of the graph building algorithm. 

 

 

Figure 3.1 LCA Graph building on Apache Spark. 
Each iteration represents a graph layer 

 

Each iteration will consist of the following RDDs transformations: 

 

1. For a given layer, distribute its processes in an RDD, named currentProcessesVIDS; 

2. Append, using a union transformation, the currentProcessesVIDS to a global variable 

storing all the created processes ids, AllProcessesVids; 

3. Compute the demands of currentProcessesVIDS as another RDD named 

inputIntermediateRDD. The input demand exchanges are computed by executing a Join 

on the exchangesIn RDD with the currentProcessesVIDS RDD; 
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4. Compute the producers of the input demands by executing a join between the 

ExchangesOut RDD and the inputIntermediate RDD; 

5. Connect the demand and producers’ layer: Join the allProcessedVIds RDD and the 

producers RDD followed by a MapPartitions to create an RDD Vertices and Edges 

named vertices_edges. The vertices_edges RDD will be appended, after the graph is 

built, to a global RDD AllVerticesEdges using a Union operation; 

6. Step 5 is followed by an additional MapPartition to convert the vertices_edges RDD into 

NexProcessLayer RDD. 

 

When joining with a small processIds dataframe, a BroadcastHashJoin is used to broadcast 

the relatively small Dataframes to the running executors to avoid shuffling while executing 

join operations. Also, when calculating producers which involve two data frames with the 

same key, a pre-partition by the key will re-distribute the dataframe in a way that the joining 

will occur inside the executor memory without the need to shuffle data with other executors 

spread across the cluster. Also, the algorithm caches the entities NextLayerProcessesVIds, 

AllProcessedVIds, and vertices_edges because the NextLayerProcessesVIds RDD represents 

the entity on which the next iteration will process, second, the AllProcessedIds is used in all 

subsequent iterations, and third, the vertices_edges RDD represents the result of processing 

each layer. 

 

 Matrices Loading 
 

Figure 3.2 shows the loading of the Technosphere matrix in Apache Spark. The algorithm 

uses the All_vertices_edges RDD, output of the graph building algorithm, to construct the 

raw data of matrix A. The algorithm in Figure 3.2 constructs the output and input 

intermediate exchanges as tpls_out and tpls_in RDDs using MapPartitions transformations. 

These two RDDs will be merged using the union transformation to form the tplsA RDD or 

the full exchanges of matrix A. The exchanges in tplsA may contain entries with similar keys; 

those will be aggregated using the reduceByKey Spark transformation to give tplsA_merged 
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RDD. Following this, the algorithm will group the entries in the tplsA_merged RDD by their 

rows index to create the IndexedRows RDD representing the rows of matrix A. 

 

 

Figure 3.2 Loading A in Apache Spark 
 

Figure 3.3 shows the loading of the biosphere matrix in Apache Spark. The algorithm uses 

the exchanges dataframe and the processesIds vector to construct the raw data of matrix B. 

The algorithm for building matrix B starts by creating the elementaryFlows RDD, which is 

the result of filtering the exchanges dataframe by the exchangeFlowType and processId 

fields. The elementaryFlows RDD is later followed by an initial MapPartition transformation 

to build the elementaryFlowsIds dataset and a reduceByKey to build the 

elementaryFlowsMerged RDD. The merged dataset is finally transformed using a 

reduceByKey transformation by its rows indices to create the IndexedRow dataset from 

which an IndexedRowMatrix can be formed. 

 

The LCI and LCIA steps are computed by matrix multiplication using the Apache Spark 

BlockMatrix distributed matrix multiplication feature. 
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To solve the system of linear equations in equation 1.3, we experimented with the following 

two methods: 

• Parallel LU factorization on Apache Spark to solve a linear system (Apache_Spark, 

2017); 

• SVD decomposition, followed by matrix inverse (StackOverflowCommunity, 2017). 

 

 

 

Figure 3.3 Loading B in Apache Spark 
 

3.2 The validity of Apache Spark for LCA projects 

The research analysis shows that in an LCA project, there are very few places for Apache 

Spark to be efficient. In this section, we discuss the opportunities where Apache Spark can be 

adopted for the different modules of this research project. 
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 Graph and Matrices Building 
 

We found that Spark is most useful when building the graph (g) and matrices A and B based 

on an extensive database. Such a database would contain, for example, activities and 

exchanges for a large number of system products or projects from different places on the 

planet (i.e., UniversalLCADB).  

 

To build (g), an algorithm based on treating LCADB as a set of Spark data frames needs to 

access the DB to build the different activities and their connections iteratively. Loading the 

matrices A and B may also require accessing UniversalDB, and therefore querying the 

database using Apache Spark may be useful. 

 

When trying to select producers for a given demand, a data query may need to be executed 

on a large centralized dataset containing a large dataset of producers. This would be an 

excellent opportunity for BigData applications. Accessing a large dataset of producers would 

need to be done during the building of the graph and not at an initialization step, and 

therefore graph building would be implemented using traditional methods, but the queries 

that get producers would be executed on Apache Spark. 

 

 LCA for multiple systems is a task-parallel and not a data-parallel computation 
 
Even in the extreme case of UniversalLCADB, the different underlying projects or system of 

products are usually registered under a certain projectID or a certain systemId, and therefore, 

each project can be extracted using the Spark Filter transformation. This filtered RDD would 

then be collected on the Spark driver and transferred to calculators like the ParallelLCA0.1 

calculator for LCA computation. LCA algorithms do not have to be designed for Apache 

Spark when the required data can be extracted and separated from the whole database. 

Apache Spark should only be used for cases where the subset of data cannot be extracted 

from the whole store. Also, the step of loading matrices can be avoided because once the 
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graph (g) is built, it can hold all the necessary information required to build matrices A and 

B. 

 

 

Figure 3.4 Subset extraction 
 

The case of analyzing the buildings of a large city or the set of buildings across the globe is a 

task-expensive problem and not a BigData problem. The buildings can be analyzed 

independently, and therefore, the analysis would consist of analyzing the different buildings 

(i.e. which are not BigData models) in parallel, where each building analysis can be done 

with calculators like ParallelLCA0.1. 

 
 Updating LCADB 
 

Applying deltas on the main DBTemplate is a process that requires inserting new records as 

well as also updating and deleting records in-place. Apache spark does not provide an in-

place operations for the update/delete operations. The way Apache Spark introduces changes 

on datasets (i.e., RDDs, Datasets, Dataframes) is by applying transformations on the initial 

datasets. For the delete scenario, cells in the RDD need to be excluded using the Filter 

transformation. As for the update operation, a Map transformation is commonly used.  

 

As we saw in Chapter 2, using traditional programming methods like C++ HashMap, the 

cells can be simply deleted from memory without transforming the whole HashMap. Also, an 

update operation could consist of simple memory access and value alteration. 
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 Calculation phase  
 
Given the fact that a given project can be extracted from the BigData store and sent to 

ParallelLCA0.1 for processing, the following modules are better developed in specialized 

scientific computing libraries rather than with Apache Spark: 

 

1. Parsing the graph (g) to solve the foreground layer, solving the background layer, and 

computing LCI, LCIA; 

2. Computing the LCI and LCIA contribution reports; 

3. Computing the upstream contribution report; 

4. As a result of points one and two, the calculation kernel in Monte-Carlo. 

 

 Sensitivity analysis 
 
The dimensions of variables at the output of Monte-Carlo simulation, which are the input to 

the sensitivity analysis, are not BigData. Based on Jolliet et al. (2010), in the context of LCA 

Monte-Carlo simulations, LCA systems need between 1,000 and 300,000 iterations to 

converge. Also, by consulting the published research papers with respect to Monte-Carlo 

simulation, we found that the maximum number of iterations that are being used do not 

exceed tens of thousands of iterations. The upper limit of 300,000 iterations is equivalent to a 

vector of numbers of size 2.4 megabytes, which is a fraction of the smallest partition size in 

the Hadoop/Spark default configurations (i.e., 128 MB is the default size of the atomic data 

partition). If we extend the number of maximum iterations to one million, this will result in a 

vector of eight megabytes, which is still far from being considered an application for Apache 

Spark. 

 

The following are the operations applied to the aforementioned variables: 

1. Uncertainty propagation: median, variance, and percentile are computed independently 

on each of the output variables. This can be computed using multithreading, or parallel 

hardware; 
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2. Global sensitivity analysis using Spearman ranking: this operation consists of the ranking 

of input and output variables independently and then correlating output to input variables. 

It is operating independently on vectors of maximum sizes of a few megabytes, which is 

better accomplished using sequential or multithreaded programs on single machines. 

 

3.3 Conclusion 

This chapter discusses our experimentation with Apache Spark in implementing traditional 

LCA algorithms. The research found that, in most of the cases, LCA problems are not Big 

Data issues even when analyzing a large number of systems. The opportunities for Big Data  

arise when access to large environmental databases is needed, and Apache Spark and the 

Hadoop ecosystem can be of better use. 

 

When exploring the capabilities of Spark, we found that it lacks the support for specialized 

matrix computing. Spark provides matrix factorization and solving algorithms for mainly 

dense matrices. 

 



 

 

CHAPTER 4 
 
 

RESULTS AND DISCUSSION 

As indicated in the introduction chapter, the goals of this research are the scientific validity 

of results and the implementation of scalable algorithms that can benefit from the availability 

of a pool of resources.  

 

This chapter will present in section 4.1.1 the validation of the calculation on processes from 

Ecoinvent 3.3 and in section 4.1.2 the validation of calculation processes representing 

examples of custom LCA examples (e.g. building models) on the foreground layer processes 

chain. The performance and the scalability of each phase of the calculation will be presented 

in section 4.2. 

 

4.1 Results Validation - Comparison with OpenLCA and Brightway 

A significant accomplishment of this research is to be able to provide results similar to other 

LCA software, namely OpenLCA and Brightway. 

 

4.1.1 Use Case of “Aluminium Production in Quebec” from Ecoinvent 3.3 Database 

In this section, we compare the thesis calculator (i.e., ParallelLCA) results with OpenLCA7 

and Brightway2 results for the static and stochastic phases of an LCA calculation.  

 

4.1.1.1 Static phase validation with OpenLCA7 

Figure 4.1 presents the ratio of the LCIA results obtained when using ParallelLCA vs. 

OpenLCA to analyze the process “aluminum production, primary, ingot | aluminum, primary, 

ingot | cut-off, U–CA-QC” from Ecoinvent 3.3. This experiment shows a 100 % accordance 
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when comparing LCIA scores to OpenLCA7. The raw data for this report is provided in 

Annex III. 

 

 

Figure 4.1 Ratio of LCIA scores for 
 OpenLCA7 vs. ParallelLCA 

 

4.1.1.2 Stochastic phase validation with Brightway2 

The validation of the uncertainty propagation report uses Brightway2 due to an incorrect 

implementation of the Pedigree approach in OpenLCA7.0. However, we are still using the 

data generated from an OpenLCA7.0 database. An OpenLCA database is created by 

importing an EcoInvent3.3 into OpenLCA software. 

 

Figure 4.2 shows the error (i.e., Difference) in the PDF statistical metrics when comparing 

BrightWay2 to the ParallelLCA. Annex IV provides the raw experimental data for both 
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calculators. In this experiment, we highlight a majority of impact categories that are in 

accordance.  

 

 

Figure 4.2 Error in the uncertainty of Thesis calculator. 
Brightway2 vs. Thesis calculator for RECIPE Midpoint I 

 

We validated the Spearman rank results by comparing and making sure of the similarity of 

the correlations obtained using our implementation in algorithm 2.7 with those obtained 

when using an equivalent Spark.MLlib implementation. 

 

4.1.2 Use Case of Front layer Added to the Background Layer 

In this section, we test the calculator on examples having a foreground layer that is using 

processes from EcoInvent3.3. Table 4.1 shows two models that the calculator received as test 

models. 

 

We conducted the validation, in section 4.1.2.1, for only the static phase given that the 

foreground layers in the test examples are all static. Also, the models in Table 4.1 are only 
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available in the OpenLCA7 database, and therefore, the validation will be restricted to 

OpenLCA7. 

Table 4.1 Foreground examples 

Descriptor Description 

Poly Foreground layer, connected to one background process 

Habitations Foreground layer, connected to many background processes 

 

In addition to the validation in the static phase, we will show in section 4.1.2.2 a study 

comparing algorithm 2.6 (i.e., Full Monte-Carlo sampling) and algorithm 2.9 (i.e., pre-

calculated aggregated datasets). 

 

4.1.2.1 Static phase validation for systems with foreground layer with OpenLCA7 

Figure 4.3 below shows a comparison of the obtained LCIA results when using ParallelLCA 

Hybrid Solver from algorithm 2.2 against OpenLCA7 implementation. As shown in Figure 

4.3, the Hybrid Solver provides the same results as those provided when using the Matrix 

Method of OpenLCA. 

 

 

Figure 4.3 Ratio of LCIA scores: OpenLCA7 vs. ParallelLCA Hybrid Solver 
 for the “poly” example 
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4.1.2.2 Stochastic LCA comparison of algorithm 2.8 and algorithm 2.5 

In Figure 4.4, we compare the results obtained when using algorithm 2.9 (pre-sampled 

aggregated datasets), instead of algorithm 2.6 (Full Monte-Carlo simulation). We ran Monte-

Carlo for 6,000 iterations. 

 

 

Figure 4.4 Error in the LCIA scores for 6,000 iterations for  
Aggregated vs. Full Monte-Carlo of the “Habitations” example. 

 

The experiment shows that by using the Aggregated Scores for the background layer, the 

median error in all the metrics is in the order of 10-6. Annex V provides the raw data for this 

experiment. Figure 4.4 shows that our implementation of algorithm 2.9 can provide an 

uncertainty propagation with a small error when compared to Full Monte-Carlo sampling. 
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4.2 Calculator Performance Characteristics 

In the following sections, the performance profile of the different modules in ParallelLCA 

will be presented. In addition, we will present the scalability of the calculator with a variable 

number of Monte-Carlo iterations, a system with increasing size, and a variable number of 

cores to run the computation. 

 

4.2.1 Simulation Setup, Benchmarking tools, and Graphics generation 

The research has developed benchmark scripts that can be re-run to reproduce the results 

presented here. The scripts, written in Scala, make calls through a JNI interface to the 

calculator API functions written in C++. To reproduce the research, the user will need to 

follow the instructions in the GIT links provided in Annex II to install the calculator 

environment before running the Scala benchmark scripts. 

 

The tests were conducted on two test servers whose characteristics are shown in Table 4.2. 

Table 4.2 Test Servers Characteristics 

 Server characteristic label Server characteristic value 

Leda Host OS - Docker OS Linux Centos 7 - Linux Ubuntu 

CPU - RAM 64 GB, 16 cores @ 2.4 GHZ 

AWSC-4.9-XLARGE Host OS - Docker OS Linux Ubuntu - Linux Ubuntu 

CPU - RAM 64 GB, 36 cores @ 2.9 GHZ 

 

The raw execution time data can be obtained by running the benchmark scripts provided in 

Annex II. 
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4.2.2 Performance of the Calculator for Ecoinvent 3.3 Database  

In this section, the performance of the calculator in the main phases of static and stochastic 

LCA for randomly chosen processes from the Ecoinvent 3.3 database will be presented. 

 

4.2.2.1 Parallel Graph Building 

The thesis started by developing an algorithm for graph building on Apache Spark, as 

described in Chapter 3. An average execution time of 500 milliseconds is needed to build a 

single layer. A graph in Ecoinvent 3.3 takes a total build execution time of 20 seconds using 

our implementation with Apache Spark. Based on the Spark performance, a decision was 

made to develop the graph building algorithm using traditional parallel frameworks that are 

used in HPC. 

 

 

Figure 4.5 Building (g) in Memory, serial vs. parallel versions 
 

Figure 4.5 shows the performance of our implementation, using OpenMP to parallelize the 

graph building. For 100 randomly chosen processes from Ecoinvent 3.3, we show the 
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execution time for the parallel and sequential versions of the graph building algorithm. The 

parallel version, presented in section 2.7, provides a gain of almost three times that of the 

serial version. 

 

4.2.2.2 Static Phase 

The next experiment consists of running foundational static LCA over 100 randomly chosen 

processes from EcoInvent3.3. Figure 4.6 presents a breakdown of the execution time, in 

milliseconds, for the foundational static phase. The most expensive part is the system solving 

amounting for a median of 14 milliseconds using the BiSGStab solver. The total execution 

time accounts for a median of 28 milliseconds.  

 

 

Figure 4.6 Foundational LCA performance profile 
 

Figure 4.7 shows the performance of the static LCA contribution reports for “Recipe 

Midpoint (I) 2008” and 100 selected processes from Ecoinvent 3.3. The computation takes 
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500 milliseconds, 670 milliseconds, and 715 milliseconds for the computation of LCI, LCIA, 

and upstream LCIA contributions report respectively. 

 

 

Figure 4.7 Contribution reports performance 
  

4.2.2.3 Stochastic Phase 

 Monte-Carlo simulation 
 

Figure 4.8 shows the execution time for running sequential Monte-Carlo; the number of 

iterations, on the x-axis, is variable between 1,000 and 100,000 iterations. For 1,000 

iterations the calculator needs up to 46 seconds to finish executing at a rate of 21 iterations 

per second. For 100,000 iterations the calculator finishes the computation in 82 minutes. 

 

To better understand the numbers provided by Figure 4.8, we provide a detailed stochastic 

performance profile in Figure 4.9. Figure 4.9 presents the execution time in milliseconds for 

the stochastic kernel running inside each Monte-Carlo (i.e., Algorithm 2.6) iteration. The 
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experiment consists of running the stochastic kernel serially over 1,000 iterations for the 

same example of the production of aluminum in Quebec.  

 

 

Figure 4.8 Execution time for serial Monte-Carlo of the activity 
 production of Aluminum in Quebec 

 

 

Figure 4.9 Stochastic LCA kernel performance profile 
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As shown in Figure 4.10, the solving amounting for a median of 8 milliseconds for Eigen++ 

BiCGSTAB (i.e., with initial guess). The total execution time is up to 40-45 milliseconds. 

 

 

Figure 4.10 Execution time for parallel Monte-Carlo using OpenMP. 
 

Table 4.3 Execution time for Monte-Carlo OpenMP of Figure 4.10 

Number of iterations Time (Seconds) 

1,000 2.8 

5,000 11.4 

10,000  23.5 

 

Figure 4.10 shows the trend of the execution time of parallel Monte-Carlo using OpenMP 

when varying both the number of iterations and the number of cores. We distinguish in 

Figure 4.10 between three main phases concerning the slope of the trend. In the first phase, 

the gain is at its peak with the steepest slope of the curve. In the second phase, the 

performance keeps on enhancing but loses its initial slope with the addition of more cores. In 

the third phase, the gain is at its minimum.  
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A second observation that can be made is concerning the time delay for the simulations with 

a varying number of iterations. For 1,000 iterations, the calculator needs up to 2.8 seconds to 

finish executing at a rate of 357 iterations per second. For 5,000 and 10,000 iterations, the 

calculator finishes execution in 11.4 seconds, and 23.5 seconds respectively. 

 

Figure 4.11 shows the trend of the execution time of our implementation of full MCS when 

using MPI compared to OpenMP. Both implementations follow a similar trend for a small 

number of cores. However, when the degree of parallelism increases, MPI takes more time to 

finish executing the same number of iterations. 

 

 
Figure 4.11 MPI vs. OpenMP for full MCS On the Leda server 

 

Next, the thesis will study the system when using OpenMP for a higher number of iterations, 

50,000 and 100,000 iterations, and for a varying number of executing cores. Figure 4.12 

shows that for 50,000 iterations, and by adding the first 6 cores to the simulation; 82.5 % of 

the initial serial execution time is being reduced. Furthermore, by adding 16 cores, 92.5 % of 

the initial time is being reduced. Finally, when adding the full 35 cores, only 4.8% of the 

initial serial time remains, amounting for 108.6 seconds. 
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Also, Figure 4.12 shows that for 100,000 iterations, there is a similar reduction from the 

serial execution time. By adding the first 6 cores to the simulation, 82.5 % of the initial serial 

execution time is being reduced. Furthermore, after adding 16 cores, 93.11 % of the initial 

time is being reduced. Finally, when adding the full 35 cores, only 4.67% of the initial serial 

time remains amounting to 115 seconds. 

 

Table 4.4 Execution time for Monte-Carlo on OpenMP of Figure 4.12 

Number of iterations Time (Seconds) 

50,000 108.06 

100,000 215.127 

 

 

Figure 4.12 Monte-Carlo using OpenMP for a large number of iterations. 
 

In the next study, we consider the performance obtained when using algorithm 2.9. The 

corresponding time delays, shown in Table 4.5, are in order of a fraction of a second or real-

time. 
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Table 4.5 Execution time for pre-aggregated datasets Monte-Carlo 

Number of iterations Time (Seconds) 

1,000 0.088 

3,000 0.24 

6,000 0.36 

10,000 0.87 

 

 Spearman rank correlation GSA 
 
In Figure 4.13, the thesis presents the trend of the GSA execution time when the number of 

MCS iterations increases. In this experiment, we measure the time taken by ranking 217,800 

uncertain input vectors and 18 uncertain output vectors, in addition to performing 3,920,400 

Pearson correlations. The experiment is conducted on the full server capacity (i.e. 35 cores) 

The number of iterations on the x-axis of Figure 4.14 increases for up to 5,000 iterations. The 

ranking executing time appears to increase linearly with the number of iterations. 

 

Figure 4.14 shows the evolution of the execution time of the ranking phase when increasing 

the number of cores. The ranking phase is showing a similar trend to the Monte-Carlo 

sampling phase of the calculation. 

 

The ranking is further optimized by using pre-sampling and pre-ranking features of the 

unchanged uncertain cells. In this case, the output variables are ranked, but the un-changed 

input exchanges ranks are instead read from memory. This reduces the ranking time of 

Figure 4.13 to less than 200 milliseconds. 
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Figure 4.13 Spearman ROCC vs iteration size 
 

 

Figure 4.14 Spearman ranking OpenMP on multicore 
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4.2.3  Variant Size Performance Benchmark 

In this section, the procedure for generating LCA systems with variant size foreground layer 

is discussed. Also, the benchmarks of our different algorithms for these systems is presented. 

We conducted all the tests in this section on the LEDA server. 

 

4.2.3.1 Foreground generation Procedure 

The variant size benchmark consists of testing the different components of the system over a 

range of foreground layer sizes. This experimentation consists of: 

1. Generating different process delta files where each corresponds to a certain number of 

processes in the foreground layer as well as generating corresponding exchanges and 

flows delta files; 

2. From these delta files, a graph is built with a foreground layer on top of a background 

layer. The size of the background layer is invariant; 

3. Computing all LCA phases based on the graph built-in step 2. 

 

The generation of delta files, as presented in step 1, can be described as follows: 

1. The algorithm starts at layer two as current layer l. Layer 1 is the root node layer; 

2. For each previous layer l-1, generate n processes for layer l-1 and k input intermediate 

flows for each of the processes in layer l-1; 

3. For each of the k input intermediate flows in layer l-1, generate k output intermediate 

flows where each has a flow-id that matches one of the input intermediate flows in layer 

l-1; 

4. Increase layer count and go back to step 2. 

 

The last layer connecting to the background layer has its connections with uncertainties. The 

rest of the exchanges in the foreground layer are static. 
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4.2.3.2 Pre-calculation phases 

Before the calculation takes place, an initialization phase is computed, which consists of 

three steps: 1) the LCADB loading, 2) the CalculatorData loading, and 3) the graph building. 

Figure 4.15 shows the trend of execution time in milliseconds for these phases. The LCADB 

scales very well with the increase of the size of the foreground layer. However, the graph 

building and the CalculatorData loading execution time increases with the increase in the size 

of the foreground layer. The total computation time for one million processes in the 

foreground layer is up to nine seconds.  

 

The total time is spread into 5.8 seconds for loading the CalculatorData object, one second 

for loading LCADB and up to 2.8 seconds for the graph building. Each of the graph building 

and the CalculatorData loading tasks was under one second for up to 162 layers in the 

foreground layer (i.e., 162,000 LCA processes). 

 

 

Figure 4.15 Pre-calculation phases Time (milliseconds) for variant size foreground 
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4.2.3.3 Static Phases 

In this section, we are studying the influence on the Calculation Kernel performance profile 

when using large foreground layers. Figure 4.16 shows the solving step, and Figure 4.17 

shows the remaining phases. The solving step is not scaling with the addition of layers to the 

foreground layer. The execution time is up to 32 milliseconds for two layers (i.e. 2000 

processes in the foreground layer), 2.3 seconds for 162 layers. Also, Figure 4.14 shows the 

total execution time, which is dominated by the solver execution time. 

 

 

Figure 4.16 Performance for variant size foreground layer 
for the Calculation Kernel using the Matrix Method 

 

Figure 4.17 shows the other phases of the calculation, in which it appears that loading A is 

the most expensive part, and the only affected part by the increase of foreground layer sizes. 

All other phases scale well or are not influenced by the addition of large foreground layers. 

Matrix A loading starts with five milliseconds for two layers of foreground processes and 

finishes with up to 18 milliseconds for 162,000 processes in the foreground layer. 
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Figure 4.17 Other phases of the kernel solving using the Matrix Method 
 

The trend caused by the solver phase renders the matrix-based kernel useless for Monte-

Carlo, where the solving phase needs to be repeated thousands of times. To solve the delay of 

the solving phase, algorithm 2.2 proposes a Hybrid Solver that solves the foreground layer, 

which is the large part of the graph, using a graph traversal. Figure 4.18 shows the 

performance of the Calculation Kernel when using this new solving algorithm. The trend of 

execution time spans the interval between 38 milliseconds for two foreground layers and 128 

milliseconds for 1,000 layers (i.e. one million processes in the foreground layer). The total 

execution for one million process accounts for 150 milliseconds. Also, as it is shown in 

Figure 4.18, the remaining phases are invariant with the size of the foreground layer. A 

difference from Figure 4.15 is that for the Hybrid Solver algorithm, the increase of the 

foreground layer size does not influence the phase of loading the matrix A. 
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Figure 4.18 Variant size foreground layer performance - the Hybrid Solver 
 

Another significant module which is influenced by the foreground layer size is the 

aggregated upstream presented in section 2.15. Figure 4.19 shows the performance of that 

module for a variant size foreground layer. 

 

 

Figure 4.19 Variant size foreground layer influence on the performance 
of the matrix-based upstream module 
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The execution time starts with a few seconds for up to 42,000 processes in the foreground 

layer. However, when adding half a million processes to the foreground layer, the execution 

time increases to 47 seconds.  

 

Algorithm 2.4 allows reducing the matrix component of computing equation 2.9. When 

testing it on the same foreground sizes, a considerate reduction of execution time is observed. 

For instance, it provides with a reduction of the execution time from 47 seconds to 9.3 

seconds for 500 foreground layers. 

 

4.2.3.4 Stochastic phases 

The next study assesses the influence on Monte-Carlo performance when varying the size of 

the foreground layer. Figure 4.20 shows the stochastic kernel performance for variant 

foreground layer size. Each iteration takes 105 milliseconds to compute. The main phase 

influencing the time delay is the solving phase. The size of the foreground layer is not 

influencing the remaining phases. 

 

 

Figure 4.20 The influence of a variant size foreground layer 
 on Monte-Carlo performance using algorithm 2.9 
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4.3 Discussion 

Table 4.6 lists the execution times for the analysis of processes from the Ecoinvent 3.3 

database, and 1,000 iterations. 

 

Table 4.6 Phase performance for Ecoinvent 3.3 process. 
Production of Aluminium in Quebec 

Phase Time 

LCADB loading 1.5 seconds 

CalculatorData loading 1.5 seconds 

Graph building 500 milliseconds 

foundational static LCA 30 milliseconds 

Contribution reports 2 seconds 

Parallel Monte-Carlo – full sampling 1,000 iterations / 2.8 seconds. 48 

milliseconds/iteration 

Parallel SCC (1,000 iterations, 

217,800 input, 

18 output) 

2 seconds 

 

Table 4.7 Stochastic Phases performance for Pre-calculated background layer. 
1,000 uncertain exchanges on the barrier 

Phase Time 

Monte-Carlo  1 second 

SCC (The background layer ranks are pre-

loaded instead of ranked) 

 (1 second for ranking the barrier) +  

(1 second for the correlations) 

Total 3 seconds 
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Table 4.7 shows the performance profile of pre-aggregated datasets, which provided an 

almost real-time performance for Monte-Carlo and SCC. 

 

Table 4.8 shows the performance of the different phases, with 0.5 million activities added in 

the foreground layer. The sensitivity analysis for 1,000 iterations is almost invariant with the 

addition of the 1,000 uncertain cells of the foreground layer. The phases that are most 

influenced by the size of the foreground layer are Monte-Carlo and aggregate upstream 

reports. 

 

Table 4.8 Performance for Variant size graph, 1,000 iterations, and 
 0.5 million nodes in the foreground layer 

Group Phase Time 

Initialization 

 

LCADB loading 1seconds 

CalculatorData loading 5.5 seconds 

Graph building 3 seconds 

Static foundational static LCA 150 milliseconds 

 LCI and LCIA Contribution 

reports 

~2 seconds 

LCIA Aggregate 

Contribution reports 

~ 10 seconds / 18 impact 

categories 

Stochastic Monte-Carlo ~ 20 seconds 

Parallel SCC (1,000 

iterations, 

217,800 inputs (background 

layer) + (1,000 from 

barriers connections), 

18 outputs) 

5 seconds 
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4.3.1 Algorithms validation 

As shown in Figure 4.1, the calculator was able to provide with results similar to those of 

OpenLCA7. Also, Figure 4.3 shows the validation of our algorithms when using a 

foreground layer on top of the background layer. The validation is done with OpenLCA7, 

that uses the matrix method to perform the computation. This proves the validity of the 

following steps presented in section 4.3.1: 

 

1. The Graph building; 

2. The Graph traversal and the matrices loading; 

3. The Matrix computing of equations 1.3, 1.4 and 1.5; 

4. The LCI and LCIA calculation. 

 

As shown in Figure 4.2, the stochastic phase is similar to Brightway2.0 except for some 

outliers. The difference is explained by the fact that using THE OpenLCA7 database will 

lead to some differences at the level of adopted impact factors and the uncertainty parameters 

that are being used. 

 

By using algorithm 2.9, we can get statistical analysis that is with error in the order of 10-6, 

which is a typical error that can occur when running two different Full Monte-Carlo 

simulations. This study confirms that our implementation can be used for uncertainty 

propagation based on pre-calculated aggregated scores. As will be shown later in this 

chapter, algorithm 2.9 can finish up to 10,000 iterations in less than one second. Having this 

performance enhancement; Figure 4.4 comes to show the validity of using algorithm 2.9. 
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4.3.1 Algorithms performance 

 Upstream report 
 

Figure 4.7 shows the Upstream contribution report taking 2.4 seconds to complete for 

EcoInvent3.0 processes. However, all traditional methods of computing matrix inverse show 

an execution time in order of minutes. Our solution provides much better performance than 

OpenLCA that implement the same report. Table 4.6 shows experimentations when running 

the scripts used by OpenLCA7 to compute the matrix inverse. To provide additional 

confirmation on the measured execution time, we developed a script written in SciPy python, 

and that computes the matrix inverse using “Scipy.linalg.in.”  

 

Table 4.9 Traditional A-1 scripts performance 

 
Time \ Method 

OpenLCA7 SciPY 

A A-1 = I BLAS Scipy.linalg.inv 

Time (minutes) 5-10 3.5 3 

 

A significant reduction in the execution time was brought using the optimization in equation 

2.9, OpenMP parallelism, and the Eigen++ BiCGStab solver, as shown below in Table 4.10 

and Table 4.9. Table 4.10 shows our continuous optimization for this problem.  

 

Table 4.10 Thesis QBA-1 solvers performance for Recipe Midpoint I 

 MUMPS MUMPS-MPI Eigen++ 
BICGStab 

BICGStab-
OpenMP 

T [RHS] 4 s  28 ms  

T [ 18 RHS] 1 m 20 seconds 2 s 170 ms 

 

As explained in section 2.2.8, our approach to computing this report consists of the following 

numbered steps shown on the x-axis of Figure 4.21: 
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1. Computing QBA-1 in parallel using OpenMP and BiCGStab; denoted by “mt” in Figure 

4.21; 

2. Transforming the cyclic graph into a non-repetitive acyclic graph sequentially; denoted 

by “lg” in Figure 4.21; 

3. For each of the impact categories, applying the values of step 1 on the acyclic graph, 

generating and saving the report in parallel using OpenMP; denoted by “shares” in Figure 

4.21. 

 

 

Figure 4.21 Upstream report sub-sections 
 

To analyze the obtained performance, we first provide a breakdown of the Upstream report 

phases, as shown in Figure 4.21. The parallel algorithm and the optimization in equation 2.6 

allowed for a reduction of performance from minutes (Table 4.10) to 120 milliseconds. This 

performance is attained because of the dimensionality reduction brought by equation 2.9. 
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Figure 4.22 Aggregate upstream subsections  
 for a large foreground layer 
 

Figure 4.19 shows a performance of 47 seconds for the upstream report when using a 

foreground layer of 502 thousand LCA processes. To understand this performance, Figure 

4.22 provides a dissection of execution time over the report subsections. As it can be seen in 

this dissection, the phases that need optimization is the phase of computing QBA-1. The time 

delay seen in Figure 4.22 is directly related to the matrix component that is still present in 

phase 1. With the increase of the foreground layer, the matrix component delay of equation 

2.6 increases exponentially, which explains the jump of phase 1 from 170 milliseconds to 40 

seconds. 

 

The graph-based upstream method, in algorithm 2.24, removes the foreground layer from the 

matrix component in equation 2.9 by reverse propagating the scores on the graph. Algorithm 

2.4 computes the upstream of a 0.5 million processes foreground layer in up to 4.8 seconds. 

The remaining phases remain unchanged. The total execution time of all the phases amounts 

for 9.3 seconds. 

 

 

 

 



147 

Monte-Carlo  
 

To analyze the performance of the Monte-Carlo OpenMP implementation, we present below 

the scalability in Figure 4.23, the speedup of the computation in Figure 4.24, and the 

efficiency in Figure 4.25.  

 

As explained in section 1.2.6, the Scalability is the ratio between the computation time when 

running on P’ processors versus when running on P processors (i.e., P’ is strictly less than P). 

In Figure 4.23, it is observed that when adding more threads, the scalability decays from an 

average of 5.5 (maximum scalability) to almost one (minimum scalability). This decay is due 

to the exchange a higher number of matrices by the MCS simulators with the increase of 

number of cores being utilized. 

 

 

Figure 4.23 Scalability of Monte-Carlo OpenMP 
 

The Speedup is the ratio between the execution time of scenario “A” running on P processors 

and the execution time of scenario “B” running on a P=1 processor. Figure 4.24 shows the 
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speedup of several Monte-Carlo simulations for a different number of iterations. Using our 

implementation of Parallel Monte-Carlo and when running on 35 cores 2.9 GHz server, we 

were able to get a speedup of up to 22 times faster for 100,000 iterations and 16 times faster 

for 1,000 iterations. From this experience, we observe that the speedup follows an initial 

linear trend and then, in a second phase, its acceleration deviates slightly from the first linear 

acceleration. 

 

The speedup is 16 to 22 times faster for 1,000 and 100,000 iterations respectively. This 

speedup is associated with very good theoretical speedups, as shown in Figure 1.2 of the 

Amdahl speedup (Amdahl, 1967). Also, our experimental results are in accordance with the 

Gustafson law of accelerated speedup, which says that the speedup of an algorithm increases 

with an increase of the workload (i.e., the number of iterations) when using more computing 

resources. As shown in Figure 4.25, the higher it is the number of iterations, the higher it will 

be the speedup. 

 

 

Figure 4.24 Speedup of Monte-Carlo OpenMP. 
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Figure 4.25 Efficiency of Monte-Carlo OpenMP 
 

The Efficiency is the ratio of the speedup, when using P processors, over the number of 

processors P. Figure 4.25 shows that the speedup is at most reduced by half with the addition 

of more computing resources. For less than 16 cores, efficiency is the closest to one due to 

the linear speedup in that same interval, as shown in Figure 4.24. 

 

 Spearman rank-order sensitivity analysis  
 

Figure 4.12 shows the performance of the sensitivity analysis. Algorithm 2.6 takes a total 

time of 35 seconds for the Spearman rank GSA of the example of “Production of aluminum 

in Quebec, Recipe Midpoint I, 5,000 iterations”. This total time is split between six seconds 

for the correlations of 3,920,400 vectors and 27.5 seconds for the ranking of 217,800 vectors 

with the size of 5,000 iterations each.  

 

The ranking execution time is parallelized using OpenMP. The correlations are computed 

serially by applying equation 1.10 using the implementation in Figure 2.32 on the ranked 
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vectors. This implementation can compute a Pearson correlation of two vectors of 5,000 

length in 1.5 microseconds (i.e. 6 Seconds / 3,920,400 Pearson correlations). 

 

 Variant size foreground layer: the use of the hybrid solver 
 

Algorithm 2.6 presented a method to solve an LCA system using a hybrid solver, reducing 

the matrix component in equation 1.3. As shown in Figure 4.16, this new algorithm provides 

an order of magnitude enhancement in the performance while solving the linear system in 

equation 1.3. When analyzing a system with 0.5 million processes in the foreground layer, 

the solving phase is computed in under 110 milliseconds. This solver allows the solving of 

extensive LCA systems using single threads and providing with similar execution times using 

matrix libraries that use multi-processes or GPU to reduce the execution time. 

 

 Pre-calculated aggregated datasets: the use of the hybrid solver 
 
Table 4.5 shows execution times for running algorithm 2.9 for processes from the 

background layer. If the foreground layer is static, the Monte-Carlo simulation will consist of 

solving the foreground layer only once and reading the background layer barrier scores in 

each iteration. This makes the Monte-Carlo simulation consist of mainly reading background 

layer barrier scores from memory and scaling the barrier processes, as explained in lines 3-9 

of algorithm 2.8. When using algorithm 2.8, the computation complexity of each iteration 

will be equal to 𝑇 ௦௢௟௩௜௡௚ ௙௢௥௘௚௥௢௨௡ௗ ௟௔௬௘௥  +  𝑇 ௦௖௔௟௜௡௚ ௕௚௟_௕௔௥௥௜௘௥. Scaling the background 

layer complexity will be as in equation 3.1 below. 

 

 𝑁ி௅஻௔௥௥௜௘௥ ∗  𝑁ி௅஻௔௥௥௜௘௥஽௘௠௔௡ௗ௦  ∗  𝑁ூ௠௣௔௖௧஼௔௧௘௚௢௥௜௘௦  ∗   𝑇ௌ௖௔௟௜௡௚ ௉௥௢௖௘௦௦௘ ௌ௨௣௣௟௬ (3.1) 

 

For processes from the background layer, equation 3.1 will become equal to 𝑁௜௠௣௔௖௧ ௖௔௧௘௚௢௥௜௘௦ ∗  𝑇௥௘௔ௗ௜௡௚ ௕௚௟ ௣௥௢௖௘௦௦ ௦௖௢௥௘ . This operation is computed in order of 

hundreds of hundreds of microseconds or a factor of milliseconds. Having that this operation 
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needs to be repeated Monte-Carlo iterations times, this will lead to the execution time in the 

order shown in Table 4.5. 

 

4.4 Conclusion 

This chapter presented the results of the research, which are summarized as follows: 

 

1. A graph parallel vs. a sequential implementation for building the graph (g) shows an 

enhancement of two factors when using parallelism with OpenMP. The graph is built in 

under one second for EconIvent 3.3 processes; 

2. The foundational LCA for Ecoinvent 3.3 can be solved in less than 30 milliseconds using 

Eigen++ BiCGSTAB; 

3. The aggregate upstream report is computed in under one second for Ecoinvent 3.3 

processes; 

4. The experiment of running Monte-Carlo in parallel using OpenMP shows a reduction of 

execution time by 95% when using the full capacity of the server; 

5. SCC takes up to five seconds for Recipe MidPoint I with vectors of 1,000 iterations in 

size; 

6. Using our Hybrid Solver algorithm, a Monte-Carlo simulation of 1,000 iterations, and for 

up to 0.5 million processes in the foreground layer, is computed in 20 seconds; 

7. Using our implementation of MCS based on pre-calculated datasets, it can take up to one 

second for the stochastic analysis of activities from the background layer. 

 



 

CONCLUSION 

 

We summarise below our methods and their outcomes: 

 

1. Design of a parallel algorithm for graph building that can build EcoInvent 3.0 database 

activities network in up to 500 milliseconds; 

2. Design of a static calculation kernel that can return in up to 30 milliseconds for 

EcoInvent 3.0 database activities (i.e., an iterative matrix solving algorithm is being 

used); 

3. Design of scalable upstream calculation that computes in up to two seconds for 

EcoInvent 3.0 database activities. This algorithm contains a mathematical optimization 

which allows for the removal of matrix inverse; 

4. Design of scalable Monte-Carlo simulation that computes in up to 2.8 seconds for 1,000 

iterations; 

5. Design of scalable sensitivity analysis using Spearman rank that computes in up to 5 

seconds for 1,000 iterations. 

 

A unique component in our research is the design of a Hybrid Solver, which while solving 

the scalars of the graph (g), treats the foreground layer differently than the background layer. 

This newly designed algorithm solves the foreground layer using graph traversal and the 

background layer using an iterative or direct sparse solving library. This algorithm allows the 

removal of the foreground layer from the matrix computing component of the calculation 

kernel.  

 

Having that the foreground layer is the component that increases in size and the background 

layer is the component that is always constant, the Hybrid Solver is providing with a solution 

for the problem of solving large LCA networks using traditional matrix methods. It returns in 

up to 110 milliseconds for one million LCA activity in the foreground layer using single 

threading.  
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This HybridSolver is equally used in all the other aforementioned modules. For basic LCI 

and LCIA, the inventory and scores of the foreground layer are aggregated while building the 

graph. Similarly, for the contribution reports, the calculator aggregates the inventory and 

impact scores per LCA activity while building the foreground layer. As for the Upstream 

contribution report, the foreground layer is removed from the matrix inverse, and instead, the 

cumulative scores are propagated by reverse graph traversal. 

 

This single-threaded algorithm, the hybrid solver, allows for using the available computing 

resources to parallelize Monte-Carlo iterations, using multi-threading or multiprocessing, 

instead of for solving large linear systems. The research also used the Hybrid Solver 

algorithm along with recent research (Lesage et al., 2018) to design a newly proposed Monte-

Carlo simulation algorithm based on pre-calculated aggregated datasets. This new algorithm 

can return in less than one second for EcoInvent 3.0 database activities and for several 

thousands of iterations. 

 





 

ANNEX I 
 
 

Simulation environment: Detailed CPU Information 

LEDA lscpu: 

 

Architecture:          x86_64 

CPU op-mode(s):        32-bit, 64-bit 

Byte Order:            Little Endian 

CPU(s):                32 
On-line CPU(s) list:   0-31 

Thread(s) per core:    2 
Core(s) per socket:    8 
Socket(s):             2 
NUMA node(s):          2 

Vendor ID:             GenuineIntel 

CPU family:            6 

Model:                 63 

Model name:            Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz 

Stepping:              2 

CPU MHz:               1201.218 

BogoMIPS:              4798.91 

Virtualization:        VT-x 

L1d cache:             32K 

L1i cache:             32K 

L2 cache:              256K 

L3 cache:              20480K 

NUMA node0 CPU(s):     0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30 

NUMA node1 CPU(s):     1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31  
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AWSC-4.9XLARGE : lscpu 
 
Architecture:        x86_64 

CPU op-mode(s):      32-bit, 64-bit 

Byte Order:          Little Endian 

CPU(s):              36 

On-line CPU(s) list: 0-35 

Thread(s) per core:  2 

Core(s) per socket:  9 

Socket(s):           2 

NUMA node(s):        2 

Vendor ID:           GenuineIntel 

CPU family:          6 

Model:               63 

Model name:          Intel(R) Xeon(R) CPU E5-2666 v3 @ 2.90GHz 

Stepping:            2 

CPU MHz:             3259.475 

CPU max MHz:         3500.0000 

CPU min MHz:         1200.0000 

BogoMIPS:            5800.18 

Hypervisor vendor:   Xen 

Virtualization type: full 

L1d cache:           32K 

L1i cache:           32K 

L2 cache:            256K 

L3 cache:            25600K 

NUMA node0 CPU(s):   0-8,18-26 

NUMA node1 CPU(s):   9-17,27-35 



 

ANNEX II 
 
 

Calculator setup, code, and demos 

 

Please refer to one of the following code source repositories for the calculator setup, code, 

and the thesis defence demos. 

Table-A II-1 Calculator source code 

Github 

(Permanent) 

https://github.com/fsaab/ParallelLCA 

 





 

ANNEX III 
 
 

Static LCIA Raw Data 

Table-A III-1 LCIA of Aluminium Production in Quebec. 
using Ecoinvent 3.3 and for Recipe Midpoint I 2008 

Impact Category ParallelLCA OpenLCA Results Unit 

Agricultural land occupation 0.132708 0.132708 m2*a 

Climate change 5.434604 5.434604 kg CO2 eq 

Fossil depletion 0.896965 0.896965 kg oil eq 

Freshwater ecotoxicity 0.171363 0.171363 kg 1,4-DB eq 

Freshwater eutrophication 0.001265 0.001265 kg P eq 

Human toxicity 0.514999 0.514999 kg 1,4-DB eq 

Ionising radiation 0.068914 0.068914 kg U235 eq 

Marine ecotoxicity 0.109736 0.109736 kg 1,4-DB eq 

Marine eutrophication 0.000864 0.000864 kg N eq 

Metal depletion 0.214003 0.214003 kg Fe eq 

Natural land transformation 0.00911 0.00911 m2 

Ozone depletion 4.29E-07 4.29E-07 kg CFC-11 eq 

Particulate matter formation 0.013761 0.013761 kg PM10 eq 

Photochemical oxidant 

formation 0.018496 0.018496 kg NMVOC 

Terrestrial acidification 0.040403 0.040403 kg SO2 eq 
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Table-A III-1 (Follows) 

Impact Category ParallelLCA OpenLCA Results Unit 

Terrestrial ecotoxicity 0.00029 0.00029 kg 1,4-DB eq 

Urban land occupation 0.042176 0.042176 m2*a 

Water depletion 119.9292 119.9292 m3 

 

 



 

 

Table-A III-2 LCIA of BuildingMD example raw data 

Impact category Open LCA Thesis Unit 

Agricultural land 

occupation 88243.58 88243.6 m2*a 

Climate change 3207.859 3207.86 kg CO2 eq 

Fossil depletion 890.2247 890.225 kg oil eq 

Freshwater ecotoxicity 28.174 28.174 kg 1,4-DB eq 

Freshwater 

eutrophication 0.868838 0.868838 kg P eq 

Human toxicity 151.9568 151.957 kg 1,4-DB eq 

Ionising radiation 131.9615 131.961 kg U235 eq 

Marine ecotoxicity 18.32533 18.3253 kg 1,4-DB eq 

Marine eutrophication 0.925293 0.925293 kg N eq 

Metal depletion 209.6124 209.612 kg Fe eq 

Natural land 

transformation 10.45321 10.4532 m2 

Ozone depletion 0.000362 0.000362 kg CFC-11 eq 

Particulate matter 

formation 10.70907 10.7091 kg PM10 eq 

Photochemical oxidant 

formation 21.65869 21.6587 kg NMVOC 

Terrestrial acidification 15.80366 15.8037 kg SO2 eq 

Terrestrial ecotoxicity 0.971627 0.971627 kg 1,4-DB eq 

Urban land occupation 1074.446 1074.45 m2*a 

Water depletion 9823.229 9823.23 m3 

 

 





 

ANNEX IV 
 

Stochastic LCIA Raw Data 

Table-A IV-1 Aluminium Quebec - Uncertainty 1000 iterations. 
Thesis Calculator 

Impact category Mean SDV Median 

Marine ecotoxicity 0.170753489 0.15231693 0.05359716 

Freshwater eutrophication 0.002147747 0.001554231 5.55E-04 

Climate change 5.882832511 0.69429764 4.248995303 

Natural land transformation 0.010669925 0.005567146 0.001861205 

Urban land occupation 0.056444958 0.011248932 0.032664483 

Ionising radiation 0.167214782 0.309454863 0.01338972 

Terrestrial acidification 0.04577539 0.006661772 0.030965991 

Metal depletion 0.253858314 0.039375393 0.157817017 

Photochemical oxidant 

formation 0.022895299 0.006739409 0.011938956 

Ozone depletion 5.70E-07 1.91E-07 2.67E-07 

Terrestrial ecotoxicity 4.15E-04 1.04E-04 2.17E-04 

Fossil depletion 1.009617571 0.147184932 0.663442434 

Freshwater ecotoxicity 0.245909241 0.155172162 0.110190731 

Particulate matter formation 0.015679701 0.001879907 0.011322448 

Marine eutrophication 0.001044466 2.19E-04 5.41E-04 

Water depletion 120.8707739 9.620452755 93.76178327 

Human toxicity 0.887839723 1.56483666 0.301459297 

Agricultural land 

occupation 0.19083448 0.062691394 0.088950498 
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Table-A IV-2 Uncertainty Aluminium QC - Percentiles - 1000 iterations. 
Thesis Calculator 

Impact 
category 2.5% 5% 25% 75% 95% 97.5% 

Marine 

ecotoxicity 7.17E-02 7.67E-02 1.02E-01 1.90E-01 3.92E-01 4.64E-01 

Freshwater 

eutrophication 7.70E-04 8.83E-04 1.29E-03 2.47E-03 4.93E-03 6.14E-03 

Climate 

change 4.71E+00 4.87E+00 5.40E+00 6.33E+00 7.10E+00 7.31E+00 

Natural land 

transformation 3.45E-03 4.29E-03 6.71E-03 1.33E-02 2.16E-02 2.56E-02 

Urban land 

occupation 3.94E-02 4.12E-02 4.88E-02 6.26E-02 7.62E-02 8.39E-02 

Ionising 

radiation 2.42E-02 2.78E-02 5.08E-02 1.80E-01 4.73E-01 8.16E-01 

Terrestrial 

acidification 3.62E-02 3.77E-02 4.13E-02 4.89E-02 5.79E-02 6.10E-02 

Metal 

depletion 1.87E-01 1.97E-01 2.26E-01 2.75E-01 3.24E-01 3.40E-01 

Photochemical 

oxidant 

formation 1.50E-02 1.57E-02 1.88E-02 2.51E-02 3.50E-02 3.87E-02 

Ozone 

depletion 3.34E-07 3.55E-07 4.40E-07 6.61E-07 9.39E-07 1.02E-06 

Terrestrial 

ecotoxicity 2.79E-04 2.95E-04 3.43E-04 4.58E-04 6.14E-04 6.66E-04 

Fossil 

depletion 7.63E-01 7.92E-01 9.03E-01 1.10E+00 1.27E+00 1.32E+00 
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Table-A IV-2 (Follows) 

Impact 
category 2.5% 5% 25% 75% 95% 97.5% 

Freshwater 

ecotoxicity 1.32E-01 1.38E-01 1.73E-01 2.71E-01 4.61E-01 5.70E-01 

Particulate 

matter 

formation 1.28E-02 1.31E-02 1.44E-02 1.67E-02 1.89E-02 1.97E-02 

Marine 

eutrophication 7.14E-04 7.56E-04 8.90E-04 1.16E-03 1.45E-03 1.60E-03 

Water 

depletion 1.04E+02 1.06E+02 1.14E+02 1.28E+02 1.37E+02 1.40E+02 

Human 

toxicity 3.61E-01 3.91E-01 5.35E-01 9.08E-01 1.61E+00 2.13E+00 

Agricultural 

land 

occupation 

1.13E-01 1.19E-01 1.49E-01 2.15E-01 3.11E-01 3.53E-01 

 

Table-A IV-3 Aluminium Quebec - Uncertainty 1000 iterations. 
Brightway2 

Impact category Mean SDV Median 

water depletion 0.00612882 0.00127021 0.00593436 

metal depletion 0.253632 0.0379391 0.249927 

particulate matter formation 0.0156401 0.00194614 0.0153995 

ozone depletion 5.73E-07 1.92E-07 5.32E-07 

terrestrial ecotoxicity 0.000411882 0.000105904 0.000394007 

human toxicity 0.781327 0.379053 0.690922 

climate change 5.88899 0.638525 5.85579 

terrestrial acidification 0.0458141 0.00732057 0.0444359 
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Table-A IV-3 (Follows) 

Impact category Mean SDV Median 

marine ecotoxicity 0.122843 0.108319 0.0931855 

freshwater eutrophication 0.00212048 0.00149014 0.00170793 

urban land occupation 0.0571928 0.0120781 0.0552276 

photochemical oxidant formation 0.0233231 0.00733524 0.0215735 

marine eutrophication 0.00503042 0.0010372 0.00484095 

freshwater ecotoxicity 0.130003 0.110021 0.100005 

natural land transformation 0.0108157 0.00635225 0.00917953 

fossil depletion 1.06587 0.155183 1.05053 

agricultural land occupation 0.193462 0.0727514 0.178731 

ionising radiation 0.161193 0.229809 0.0869785 

 

Table-A IV-4 Uncertainty Aluminium QC - Percentiles - 1000 iterations. 
Brightway2 

Name 0.025 0.05 0.25 0.75 0.95 0.975 

water depletion 4.23E-03 4.43E-03 5.25E-03 6.82E-03 8.40E-03 8.97E-03 

metal depletion 1.91E-01 1.99E-01 2.26E-01 2.77E-01 3.18E-01 3.34E-01 

particulate matter 

formation 1.27E-02 1.30E-02 1.43E-02 1.66E-02 1.93E-02 2.01E-02 

ionising 

radiation 2.31E-02 2.69E-02 5.16E-02 1.71E-01 5.30E-01 7.73E-01 

ozone depletion 3.28E-07 3.57E-07 4.54E-07 6.43E-07 9.00E-07 1.04E-06 

terrestrial 

ecotoxicity 2.73E-04 2.87E-04 3.45E-04 4.52E-04 6.00E-04 6.41E-04 

human toxicity 3.78E-01 4.11E-01 5.42E-01 9.26E-01 1.43E+00 1.67E+00 

climate change 4.74E+00 4.88E+00 5.45E+00 6.30E+00 6.99E+00 7.29E+00 

terrestrial 

acidification 3.64E-02 3.75E-02 4.09E-02 4.88E-02 5.94E-02 6.41E-02 
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Table-A IV-4 (Follows) 

Name 0.025 0.05 0.25 0.75 0.95 0.975 

marine 

ecotoxicity 3.74E-02 4.36E-02 6.29E-02 1.41E-01 3.00E-01 4.22E-01 

freshwater 

eutrophication 7.33E-04 8.24E-04 1.28E-03 2.47E-03 4.54E-03 5.81E-03 

urban land 

occupation 3.98E-02 4.14E-02 4.88E-02 6.36E-02 7.97E-02 8.52E-02 

photochemical 

oxidant 

formation 1.48E-02 1.58E-02 1.86E-02 2.58E-02 3.74E-02 4.30E-02 

marine 

eutrophication 3.47E-03 3.68E-03 4.32E-03 5.58E-03 6.87E-03 7.46E-03 

 

Table-A IV-5 Uncertainty Aluminium QC - Percentiles - 1000 iterations. 
Brightway2 

Name 0.025 0.05 0.25 0.75 0.95 0.975 

freshwater 

ecotoxicity 4.29E-02 4.74E-02 6.86E-02 1.49E-01 3.12E-01 4.27E-01 

natural land 

transformation 3.23E-03 3.82E-03 6.54E-03 1.32E-02 2.36E-02 2.82E-02 

fossil 

depletion 8.11E-01 8.44E-01 9.55E-01 1.16E+00 1.33E+00 1.42E+00 

agricultural 

land 

occupation 1.13E-01 1.21E-01 1.52E-01 2.14E-01 3.09E-01 3.61E-01 
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Table-A IV-6 Uncertainties metrics Difference. 
Brightway2 vs. Thesis calculator for the “Water Depletion” category 

Impact Category AVG STD Median 2.5 5 25 75 95 97.5 
water depletion 121  9.62 121 104 106 114 128 137 140 

 

 



 

 

ANNEX V 
 
 

Aggregated Scores Error 

Rows are the impact categories, X-Axis of Figure 4.4. 

 

Table-A V-1 Error in using aggregated datasets Monte-Carlo 
 Raw data of Figure 3.4  

AVG STD Median 

1.3010e-05 3.12310e-05 2.8960e-05 

9.4000e-07 7.69400e-07 9.3100e-07 

2.3200e-11 6.12240e-11 2.8920e-11 

4.1710e-06 8.35700e-06 4.0720e-06 

1.8000e-06 5.70000e-05 3.0870e-05 

1.0190e-03 2.19110e-03 9.1900e-04 

5.6270e-07 7.90270e-06 8.8800e-08 

7.5100e-07 2.11100e-07 8.7000e-07 

6.5600e-05 3.60460e-04 2.4080e-04 

1.5437e-07 4.94960e-07 1.0735e-07 

3.2800e-04 3.41000e-05 3.0740e-04 

3.9730e-08 4.22900e-08 6.1560e-08 

1.1600e-05 2.86900e-05 9.5500e-05 

2.7720e-05 1.05410e-04 9.2900e-06 

1.7010e-06 1.98070e-06 1.5990e-06 

3.2500e-09 1.36702e-07 2.9540e-08 

8.6600e-06 5.75750e-03 1.4520e-06 

3.8560e-05 1.55200e-05 4.6100e-05 
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Table-A IV-2 Error in using the aggregated datasets algorithm for Monte-Carlo. 
Raw data of Figure 4.4 

2.5 % 5 % 25 % 75 % 95 % 97.5 % 

4.9280e-06 8.5600e-07 1.712e-05 2.5770e-05 1.4990e-05 2.5200e-06 

1.0341e-06 1.0288e-06 3.745e-07 8.4600e-07 1.5030e-06 2.7170e-06 

1.7180e-11 5.6400e-12 2.082e-11 3.4440e-11 3.8450e-11 5.2900e-12 

2.9560e-06 3.1050e-06 3.349e-06 2.7660e-06 2.1860e-06 2.5130e-06 

8.2660e-05 5.9440e-05 7.458e-05 3.3940e-05 1.2420e-04 9.3400e-05 

1.5470e-03 1.0800e-03 9.460e-04 7.4900e-04 9.0400e-04 6.0300e-04 

2.4590e-07 2.8290e-07 2.426e-07 3.4280e-07 4.9780e-07 2.1388e-06 

1.4240e-07 5.3750e-07 2.285e-07 1.1360e-06 1.2140e-06 2.0120e-06 

2.1200e-04 9.8500e-05 8.200e-06 2.2140e-04 3.7220e-04 1.1130e-04 

6.4181e-08 9.3460e-08 3.509e-08 1.3563e-07 1.7020e-07 6.8640e-07 

2.8970e-04 3.1140e-04 2.109e-04 3.3350e-04 1.8540e-04 4.4370e-04 

1.1700e-09 5.8000e-10 4.188e-08 5.3650e-08 8.3300e-08 6.3720e-08 

6.3800e-05 3.9800e-05 1.940e-05 7.2400e-05 1.3670e-04 1.8360e-04 

1.1982e-06 3.5600e-08 1.742e-06 7.8300e-06 2.9555e-04 4.6253e-04 

2.0000e-08 8.1500e-07 1.118e-06 1.6870e-06 4.7460e-06 7.8480e-06 

4.4116e-08 4.0218e-08 1.006e-08 3.2320e-08 4.8300e-09 3.4850e-08 

7.2000e-07 3.3330e-07 2.147e-06 5.9930e-05 2.8947e-04 9.5420e-04 

5.4620e-05 9.2760e-05 3.676e-05 2.3710e-05 1.0831e-04 5.1180e-05 

 



 

ANNEX VI Matrix solving code samples 

 

 

Figure-A VI-1 Umfpack solving code 
 



 

 

ANNEX VII CSV Files and LCA model schemas 

Exchange { 
 long _exchangeId,long _processId ,long _flowId ,bool _input , double 
_conversionFactor,double  _amount ,string _amountFormula ,int _uncertaintyType,double 
_parameter1 ,double _parameter2 , double _parameter3 ,string _parameter1Formula,string 
_parameter2Formula,string _parameter3Formula,int _flowType ,long 
_defaultProviderId,string processType_,bool _isBackground, int _unitid 
} 
 
Flow {long _flowId,int _flowType,string _flowUid } 
 
ImpactCategory { 
int ICId; string ICName; string ICDescription; string ICReferenceUnit; int ICImpactMethod; 
} 
 
CalcParameter{ 
int param_id_,string ref_id_,string name_,long f_owner_,string scope_,bool input_, 
conversionFactor_,double value_, string formula_, int uncertaintyType_, double 
parameter1_, double parameter2_,double parameter3_, string parameter1Formula_,string 
parameter2Formula_,string parameter3Formula_ 
} 
 

CalcImpactFactor{ 
long id; int imactCategoryId; long flowId; double conversionFactor; double amount; string 
amountFormula;  
int uncertaintyType; double parameter1; double parameter2; double parameter3; string 
parameter1Formula; string parameter2Formula; string parameter3Formula; 
int impactMethod = 0; int unitid = 0; 
 } 
 
Process { 
long ProcId;string Name; string Process_Type;string ref_id; bool IsBackgroundLayer; 
}  
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struct UnitOfMeasurement { 
 
int UnitId; string UnitRefId; string SourceUnitName;double Factor; int DestinationUnitId; 
string DestinationUnitRefId; string DestinationUnitName; 
 
} 
 
 
 



 

 

ANNEX VIII LCAIndex schema 

 

 
LCAIndexes{   
 
vector<long> ElementaryFlowsIndex; 
unordered_map<long, long> ElementaryFlowsIndexIndices; 
 
vector<long> IntermediateFlowsIndex; 
unordered_map<long, long> IntermediateFlowsIndexIndices; 
vector<long> ProcessesIndex; 
 
unordered_map<long, long> ProcessesIndexIndices; 
vector<long> FrontLayer_ProcessesIndex; 
 
unordered_map<long, long> FrontLayer_ProcessesIndexIndices; 
vector<long> BackgroundLayer_ProcessesIndex; 
unordered_map<long, long> BackgroundLayer_ProcessesIndexIndices; 
vector<long> FrontLayer_IntermediateFlowsIndex; 
unordered_map<long, long>FrontLayer_IntermediateFlowsIndexIndices; 
vector<long> BackgroundLayer_IntermediateFlowsIndex; 
unordered_map<long, long>BackgroundLayer_IntermediateFlowsIndexIndices; 
vector<long> FrontLayerBarrier_ProcessesIndex; 
vector<long> BackgroundLayerBarrier_ProcessesIndex; 
 
vector<long> ImpactCategoryIndex; 
unordered_map<long, long> ImpactCategoryIndexIndices; 
 
 } 
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