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INTRODUCTION 
 
Mechanical ventilation assists or controls the inhalation of oxygen into the lungs and the 

exhalation of carbon dioxide. Many variables need to be monitored during mechanical 

ventilation. Some of these variables are: expiratory minute volume, expiratory tidal volume, 

mean airway pressure, peak airway pressure, measured frequency, level of dyspnea, respiratory 

rate, heart rate, blood pressure, patient-ventilator synchrony, arterial blood gas, oxygen 

saturation. One of the important variables that the clinician wishes to monitor and control 

during mechanical ventilation, to ensure it remains within an acceptable range, is the oxygen 

saturation (SpO2). The SpO2 variable should ideally be maintained between 92% and 97%, at 

all time, during mechanical ventilation. One of the ways to control the SpO2 is by tweaking 

some setting variables during mechanical ventilation. The setting variables that we considered 

in this study, are: oxygen concentration (FiO2) setting, Positive End-Expiratory Pressure 

(PEEP) setting and Tidal Volume setting. One of the challenges the clinician faces when it 

comes to monitoring and controlling the SpO2 variable, is being able to forecast the effect that 

a change in one or more setting variable(s) will have on the SpO2. Although the time for 

stabilization of SpO2 following a setting change depends on the changes in setting variables, 

the SpO2 is considered to reach steady state five (5) minutes after the setting change is made. 

Hence, given the values of measured variables, the setting variables, as well as any change(s) 

in the values of one or more setting variable(s), at a given time step during mechanical 

ventilation, the clinician would want to be able to predict the value of SpO2, within a range of 

acceptable precision, five (5) minutes after the setting change(s) is/are made.  At any given 

time during mechanical ventilation, the clinician may need to decide, based on various 

respiratory variables, the values by which to tweak the setting variables.  These modifications 

in one or more of the setting variable(s) are intended to allow the SpO2 variable to remain 

within its acceptable range (92-97%).   

 

In the aim of developing a Clinical Decision Support System (CDSS) for the management of 

mechanical ventilation, we attempted to create a system that predicts SpO2 when a modification 

in mechanical ventilation settings is performed.  Therefore, the motivation of this research 
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project is to propose a method which is intended to support the clinician in her/his decision-

making process when it comes to the settings of FiO2, PEEP and PIP/Tidal Volume variables.  

This is achieved via the use of a machine learning model (classifier) capable of successfully 

predicting values of SpO2 based on values of other biological signals, combined with any 

changes in setting variables made by the clinician.  The predictive model used would ideally 

make it possible for the clinician to have an accurate prediction of the effect any change in the 

setting variables would have on the SpO2, five minutes after the change is made.  As revealed 

in the previous paragraph, this five-minute duration was prescribed by the clinician as the 

minimal SpO2 settling time, following a setting change. 

The mechanical ventilation expert cannot reasonably be expected to always be present at the 

patient’s bedside.  The development of artificial intelligence (AI) in medicine provides 

caregivers with assistance in the management of mechanical ventilation variables.  The use of 

AI is intended to improve patient management in intensive care, as well as mechanical 

ventilation teaching to respiratory therapists and physicians. Several expert systems have been 

developed based on medical knowledge to help clinicians in the management of mechanical 

ventilation.  However, only a few of them are commercialized and none have been widely in 

use in intensive care.  Another approach is to model patient reaction to mechanical ventilation 

settings modifications to predict its impact on oxygenation and on CO2 removal, using 

physiological algorithms rather than supervised learning algorithms.  Some physiological 

algorithms have been developed, but none has been validated for this indication. In the aim of 

developing a CDSS for the management of mechanical ventilation, we propose a method 

through which the SpO2 variable can be classified within a predefined set of class labels, when 

any modification in mechanical ventilation settings is performed.  The method we propose is 

based on machine learning algorithms to develop predictive models via the extraction of 

patterns from large amounts of available data. 

 
To ensure the feasibility of this study, a large amount of data was required.  Therefore, the data 

for 610 patients were extracted from the CHU Sainte-Justine research database, as per inclusion 
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criteria specified by the clinician.  The CHU Sainte-Justine research database contains 

mechanical ventilation data that were collected over a period of over 2 years.  The data of all 

children (age under 18) admitted to the Pediatric Intensive Care Unit (PICU) of Sainte-Justine 

Hospital that were mechanically ventilated with an endotracheal tube (invasive ventilation) 

between May 2015 and April 2017 were included. Exclusion criteria were 2 or more vasoactive 

drugs (epinephrine, norepinephrine, dopamine or vasopressin) at the same time or an 

uncorrected cyanotic heart disease (defined by SpO2 always below 97% during PICU stay).  

For each included patient, the vital signs and ventilatory data, collected every 5 and 30 seconds 

during PICU stay, were extracted from the CHU Sainte-Justine research database.  The main 

elements of this study were: formatting and pre-processing the raw data obtained from the 

research database, training a machine learning predictive model through supervised learning, 

ie., using target variable class labels on a subset of the pre-processed data, and then using the 

trained model to make predictions on the values of SpO2 five minutes after any setting change 

is performed by the clinician, on new data (test set).  In summary, once the data are pre-

processed, the machine learning model is trained and fitted on a portion of the data (the training 

set) and then tested on new data (test set). 

 

Among the multiple classifiers we tested in throughout the study, the ones which yielded the 

most satisfactory classification performances were the Artificial Neural Network (ANN), also 

referred to as Multi-Layer Perceptron (MLP), and the Bootstrap Aggregation (short: 

“Bagging”) ensemble method applied to complex trees (will be referred to as complex tree 

“Bagging” or “Bagged” trees).  The ability of the model to accurately represent data on which 

it has never been trained (generalization capability) is evaluated using the following metrics:  

confusion matrices, precision-recall (for classification precision of the different classes 

involved), f1-score, and the Cohen’s Kappa statistic. 

 

This study was made up of three (3) main phases: data extraction and pre-processing, training 

and testing of machine learning classifiers using the available training and testing data, 

evaluation and comparison of the classifiers based on the classification results they yielded.  In 

the data pre-processing phase, a major task consisted in formatting the data to prepare it to be 
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used for classifier supervised training and testing.  Once the data was formatted and cleaned 

up with the aim of being used for machine learning supervised training, all nineteen of the 

input variables (or features) which represent the respiratory signals, including the three setting 

signals, were normalized to values in the range [0, 1].  This was deemed necessary due to the 

high variability in the value ranges of the input variables.  The pre-processing phase also 

included the definition as well as the data balancing.  The necessity to attempt data balancing 

was made evident by the unsatisfactory results that were obtained, after a few training/testing 

cycles using a few different supervised learning models, including the ANN and the Ensemble 

of Bagged Complex Trees.  The severe imbalance in the data is caused by the fact that more 

than 90% of the observations belonged to class-label “3”.  This imbalance in the data causes 

significant bias in the learning of the various class labels by the classifier.  This means that a 

high classification accuracy would not necessarily be representative of the classification 

accuracy of any of the various class-labels.  In simple terms, with such a high degree of data 

imbalance, the classifier can learn the majority class very well, but doesn’t get enough samples 

of the other class-labels (minority classes) to be able to learn them well enough.  The data 

balancing process used in this study, consisted in combinations of down-sampling and up-

sampling techniques.  A down-sampling of the majority class and an over-sampling using the 

Synthetic Minority Oversampling Technique, (SMOTE) of the minority classes were needed 

to balance the three (3) classes of the data involved.  

 

The aim of this study was to find a way to use machine learning models, through supervised 

learning, to extract knowledge from research data to predict the effect any setting change made 

by the clinician would have on the SpO2 signal five minutes later.   

 

Some significant contributions were made throughout this research project, namely: 

• Large amounts of data from an ICU research database were exploited for SpO2 prediction 

via machine learning classification models, which, as per the literature reviewed, doesn’t 

seem to have been done up to this date. 
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• To render the available ventilatory data compatible with machine learning supervised 

training methods, a data formatting process was proposed.   

• To counter the imbalanced nature of the data, various combinations of different data 

balancing techniques were proposed. 

• Supervised machine learning algorithms were proposed for attempting to extract knowledge 

from large amounts of patient mechanical ventilation data in the aim of predicting the 

behavior of SpO2, based on values of other variables and those of any setting changes made 

by the clinician. 

 
 





 

CHAPTER 1 
 

LITERATURE REVIEW 
 

The development of machine learning algorithms in the field of AI presents countless promises 

to the medical field.  A medical intervention during which data can be stored about the 

evolution of the intervention and of the patient’s state, offers the possibility of the integration 

of machine learning algorithms which could assist the clinician(s) involved in the decision-

making process throughout the intervention.  The ICU mechanical ventilation is an area, among 

possibly many other areas of the medical field, to which AI could potentially contribute 

remarkable progress.  However, based on the available information which we have reviewed 

from research papers, no study which addresses the possibility of SpO2 prediction via machine 

learning has been undertaken by any research group, yet.  Nonetheless, the following section 

presents a literature review, which includes a study in which an expert system was developed 

to assist in the mechanical ventilation weaning process.  It also presents a review of studies 

that address topics regarding some data balancing methods used in this study, in the data pre-

processing phase.  The general conclusion section provides a review of the study by 

summarizing the essential elements of it and the results it yielded, as well as some 

recommendations for future work. 
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• Physiologic Cardiorespiratory Simulators, which can reproduce cardiorespiratory 

physiology and provide arterial blood gas values.  An example is the MacPuf simulator 

developed by C.J Dickinson, 1977. The Dickinson model considers blood circulation, 

the gas exchange system, ventilation control, and tissue metabolism.  It simulates gas 

exchange and respiratory mechanics according to the alveolar ventilation and gas-

exchange time, as well as in terms of respiratory rate, compliance, lung capacity, and 

oxygen saturation.  It requires the setting of 26 parameters to simulate the evolution of 

the state of the targeted sub-parts of the respiratory system.  Another simulator is known 

as VentSim [22].  It includes a ventilator component, ie., a volume-cycled, constant-flow 

ventilator, an airway component, and a circulation component. This simulator includes 

arterial and venous blood gases.  It has been validated on simulated patients and showed 

a good match between the blood gas it provided and that of clinical range. However, a 

comparative assessment with data from actual ventilated patients is missing, and the 

ability to simulate unstable patients, which are frequently encountered in ICU’s has not 

sufficiently been evaluated. SOPAVent [23] developed a simulator based on a 3-

compartment physiological model. A significant limitation of this model is that it 

presently only works with stable patients, which is not a realistic expectation given the 

reality of ICU’s. 

 

• Simulators for Ventilation Management Recommendations: A model that includes 

oxygen and carbon dioxide gas exchange and storage modelling and a linear model of 

lung mechanics, has been developed by Intelligent Ventilator: Rees et al.  [19]. The 

model uses a decision theory approach for lung mechanics simulation.  It is combined 

with penalty functions which allow it to line up with clinical preferences, given the goals 

and side effects of lung mechanics.  

 

 The above-mentioned models all share the limitation of not being suited to learn from 

ever-growing sets of clinical research data, and potentially improve their simulation 

performances.  This is a major reason for which a machine learning approach to the 
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problem of lung mechanics modeling should be given much attention, as it could prove 

to be a means by which a CDSS could be rendered reliable enough to provide significant 

support to ICU physicians.  In this study, we propose a method for predicting SpO2 via 

a supervised machine learning algorithm, using patient data which we extracted from 

CHU Ste-Justine Hospital research database. 





 

CHAPTER 2 
USING MACHINE LEARNING MODELS TO PREDICT OXYGEN SATURATION 

FOLLOWING VENTILATOR SUPPORT ADJUSTMENT IN CRITICALLY ILL 
CHILDREN: A SINGLE CENTER PILOT STUDY 

ABSTRACT 
Clinical experts in mechanical ventilation are not continuously at each patient’s bedside in an 
intensive care unit to adjust mechanical ventilation settings and to analyze the impact of 
ventilator settings adjustments on gas exchange. The development of clinical decision support 
systems analyzing patients’ data in real time offers an opportunity to fill this gap. The objective 
of this study was to determine whether a machine learning predictive model could be trained 
on a set of clinical data and used to predict hemoglobin oxygen saturation 5 min after a 
ventilator setting change. Data of mechanically ventilated children admitted between May 
2015 and April 2017 were included and extracted from a high-resolution research database. 
More than 7.105 rows of data were obtained from 610 patients, discretized into 3 class labels. 
Due to data imbalance, four different data balancing process were applied and two machine 
learning models (artificial neural network and Bootstrap aggregation of complex decision 
trees) were trained and tested on these four different balanced datasets. The best model 
predicted SpO2 with accuracies of 76%, 62% and 96% for the SpO2 class “< 84%”, “85 to 
91%” and “> 92%”, respectively. This pilot study using machine learning predictive model 
resulted in an algorithm with good accuracy. To obtain a robust algorithm, more data are 
needed, suggesting the need of multicenter pediatric intensive care high resolution databases. 
  

Sam Ghazal1, Michael Sauthier MD2, David Brossier MD2, Wassim Bouachir PhD3, Philippe Jouvet MD PhD2, Rita Noumeir PhD1 
1Laboratoire de traitement de l'information en santé (LATIS) - École de Technologie Supérieure (ÉTS), 
2Centre Hospitalier Universitaire Sainte-Justine (CHUSJ), 3LICEF research center - TÉLUQ University 

 
Research paper published: Ghazal S, Sauthier M, Brossier D, Bouachir W, Jouvet PA, 
Noumeir R; Using machine learning models to predict oxygen saturation following ventilator 
support adjustment in critically ill children: A single center pilot study: PLoS ONE 14(2): 
e0198921. https://doi.org/10.1371/journal.pone.0198921, published : February 20, 2019 
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2.1 Introduction 
In case of respiratory failure, mechanical ventilation supports the oxygen (O2) diffusion into 

the lungs and the carbon dioxide (CO2) body removal. As an expert in mechanical ventilation 

cannot reasonably be expected to be continuously present at the patient’s bedside, specific 

medical devices aimed to help in ventilator settings adjustments may help to improve the 

quality of care. Such devices are developed using either algorithms based on respiratory 

physiology/medical knowledge that adapt ventilator settings in real time based on patients’ 

characteristics but are not accurate enough to be used widely in clinical practice, especially in 

children [1, 2]; or physiologic models that simulate cardiorespiratory responses to mechanical 

ventilation settings modifications but none was validated for this indication [3]. The above-

mentioned models all share the limitation of not being suited to learn from ever-growing sets 

of clinical research data, and potentially improve their performances.  To overcome this 

drawback, another avenue is the development of algorithms using artificial Intelligence to 

provide caregivers with support in their decision-making tasks. In this study, we assessed 

machine learning methods to predict transcutaneous hemoglobin saturation oxygen (SpO2) of 

mechanically ventilated children after a ventilator setting change using a high-resolution 

research database.  
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2.2 Materials and Methods 
This study was conducted at Sainte-Justine Hospital and included the data collected 

prospectively between May 2015 and April 2017 of all the children, age under 18 years old, 

admitted to the Pediatric Intensive Care Unit (PICU) who were mechanically ventilated with 

an endotracheal tube. Patients’ data were excluded if the patient was hemodynamically 

unstable defined as 2 or more vasoactive drugs delivered at the same time (ie., epinephrine, 

norepinephrine, dopamine or vasopressin) or with an uncorrected cyanotic heart disease 

defined by no SpO2 > 97% during all PICU stay. All the respiratory data from included patients 

were extracted from the PICU research database [4], after study approval by the ethical review 

board of Sainte-Justine hospital (number 2017 1480). 
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Figure 2.1 Schematic description of the analysis process and items involved  

EMR: electronic Medical Record, FiO2: inspired fraction of Oxygen, Vt: tidal volume, PEEP: Posit ive 
end expiratory pressure, PS above PEEP: pressure support level Above PEEP, PC above PEEP: pressure 
control level above PEEP, MVe: expiratory minute volume, I:E Ratio: inspiratory time over expiratory 
time, Measured RR: respiratory rate measured by the ventilator, PIP: positive inspiratory pressure ie 
maximal pressure measured during inspiration. 5mi nSpO2: SpO2 observed 5 min after PEEP, FiO2,  tidal 
volume, PS above PEEP, PC above PEEP change, ML: machine learning, ANN: artificial neural network, 
BACDT: Bootstrap aggregation complex decision trees. 
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 2.3 Methodology 
2.3.1 Data extraction  

To determine the data that will be extracted for each child, an item generation was conducted 

by three physicians (PJ, MS, DB). The resulting items are presented in Fig 2.1 within their 

sources, means of extraction and a schematic of the main components of the study. The 

predictive SpO2 value was the SpO2 5 minutes after a change of a ventilator setting. The delay 

of 5 min corresponded to the shortest period of time to reach a steady state after modification 

of a ventilator setting [5]. 

 

2.3.2  Data Categorization 

SpO2 levels at 5min were classified into three categories (Table 2.1). The thresholds were 

selected according to clinical value: a SpO2 < 92% is a target to increase oxygenation in 

mechanically ventilated children [6]. The critical level of 85% SpO2 is used as an alarm of 

severe hypoxemia in intensive care [7].  
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The SpO2 variable (target) has been classified in three categories to correspond to clinically 

relevant values.   
 

 
2.3.3 Data formatting 

The extraction of data from the patient database produces data files with a format which does 

not allow for classifier training.  This is mainly because, in these initial data files, the 

respiratory variables are not separated in columns, which would become the input and output 

vectors during model training.  Moreover, a significant proportion of rows in the initial files 

do not represent data which are measured within mechanical ventilation time intervals.  Thus, 

it is necessary for the formatted files which are to be used for classifier training to be rid of any 

unnecessary rows, which do not contain mechanical ventilation readings. 

 

The classifiers used to predict (classify) the SpO2 values are built when mathematical models 

are trained on a set of data which displays the relevant variables in a table format.  The table 

must be arranged as follows: the respiratory signals (variables) represent the labels of the 

various columns and the data storing times and patient codes represent the rows.  The data 

formatting process described herein consists basically in making the data format machine 

learning friendly.  Below are the steps taken to format and pre-process the raw data to make it 

suitable for classifier training. Many of the data pre-processing criteria have been established 

by the clinicians involved in this study. 

• Read content of initial data file into a Python (Pandas library) data frame: The data 

contained in the initial files are stored into data frames which are used to manipulate and 

preprocess the data. 

Table 2.1: Definition of SpO2 class labels specifications 

SpO2 classification SpO2 range 
(%)  

Rows number 
(n) 

1  < 84 17,112 
2 85 to 91 29,869 
3 92 to 100 729,746 
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• Strip away the microseconds part from the data storing times in the initial files, as it 
is not contextually relevant:  Following this step, the storing times are represented in the 

following form: “year:month:day:hours:minutes:seconds” 

• Pivot the data that were stored in the data frames: This step transforms the data from 

the linear format in the initial files into a table, where the biological variables are the 

column labels and the patient codes and storing times are the row labels.  

• Align the data of the variables in the pivoted table within mechanical ventilation time 

slots: Since the readings for the various variables involved are not all set at the same 

frequency, the data for the different variables are not aligned along the rows (time-steps).  

Therefore, it is necessary to align the data readings for the various variables (along any 

given row within a mechanical ventilation interval), to prepare the data to be used for 

classifier training.  This data formatting step ensures the alignment of the data for “FC”, 

“SpO2”, “Pulse”, "Pressure Support Level Above PEEP" and "Pressure Control Level 

Above PEEP" variables with the data of the other variables, for any given time-step within 

mechanical ventilation time-slots. 

• Fill cells of “Tidal Volume Setting” variable with the values given by “Expiratory 

Minute Volume” / “Measured Frequency” x 1000, as per clinician`s requirement. 

• Drop rows with any empty cell(s): Once alignment of the data is completed, all rows 

containing empty readings are to be dropped to ensure that only time-slots of mechanical 

ventilation readings are preserved. 

• Create 3 new variables which represent the changes made to the setting variables 
(one for each setting variable): Run through all the rows in the data frame, and for any 

of the 3 setting variables (FiO2, PEEP, Tidal Volume), if the value at any time-step is NOT 

EQUAL to the value at the previous time-step, then calculate the difference between the 

values at both time-steps and place the results in new columns, called “Delta FiO2 Setting”, 

“Delta PEEP Setting” and “Delta Tidal Volume Setting”.  This step allows the creation of 

three (3) new variables: “Delta FiO2 Setting”, “Delta PEEP Setting” and “Delta Tidal 

Volume Setting” which are deemed very significant for the prediction of SpO2 (5 min. 

following the change in at least one of the setting variables).  For each patient section (as 

per the patient code), whenever the readings show that at least one of the three (3) setting 

variables (FiO2, PEEP, Tidal Volume) is modified from one row (time-step) to the next, 
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the values of the differences are stored in the new columns created (“Delta FiO2 Setting”, 

“Delta PEEP Setting” and “Delta Tidal Volume Setting”).  This means that only the time-

steps at which at least one of the setting variables is modified are to be preserved in the 

data file to be used for classifier training.   

 

There are two main conditions for this step:  

1) To verify that the data of different patients are treated separately, as per the patient codes 

which these data are grouped by.  This ensures that the readings for different patients are 

not mixed up.  In other words, the various sections of rows which are grouped by the 

patient codes are to be treated separately.  

2) To verify that the change in “FiO2 Setting” does not exceed 20%, as per clinician’s 

requirement. 

 

Copy the value of “SpO2” at the row 5 minutes following the current examined row, into the 

current row, in a column assigned to this variable: “SpO2 in 5 min.”.   

• Create a new column called “Binned SpO2” in the data frame and fill it with values 
as per the binning criteria in table 1.  This variable is to be used as the target variable:  

 The target variable is created by binning the data of variable “SpO2 in 5 min.” into three 

classes (see table 2.1).  The binning of the target variable data into three classes allows for 

better classification performance, since it reduces the size of the range of values that the 

trained model would have to predict from.  This naturally implies that it increases the 

amount of observations per target class label, which allows the classification model to 

extract more information per class label, during the training process. 

• For all time-steps, verify the accuracy of “FC” readings by making sure that they are 
within ± 10 of “Pulse”: All rows containing “FC” readings which do not respect this 

condition are dropped.   

• All rows in data frame where “Peak Airway Pressure” ≤ 5 are dropped.    
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• Add “Age” and “Weight” data of all patients to the data frame: Using the Patient-specific 

data file and the data frame which represents the data file which is used to train the predictive 

model, the age and the weight of every patient are added to the data frame in which the data is 

being formatted.  The weight and the age of each patient, at the time of undergoing mechanical 

ventilation, are inserted in their newly created columns, at the appropriate rows, in the data 

frame.  The data frame containing the formatted data is copied into a comma-separated file 

(csv) file. 

Figure 2.2 Data cleaning and formatting for supervised ML 
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Figure 2.2 presents a visual overview of how we performed cleaning and 

formatting of the data to prepare it for supervised learning. 

 

2.3.4 Feature standardizing and scaling 

The predictive model’s training/testing trials have been carried out both on standardized and 

on scaled input data.  These data pre-processing steps were deemed necessary, since the input 

variables have ranges of values which are very dissimilar. 
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The standardization (z-score normalization) transforms the various data vectors (variables) in 

such a way that they’ll have the properties of a standard normal distribution with µ = 0 and σ 

= 1.  Standardizing the variables so that they are centered around zero with a standard deviation 

of 1 is not only important when measurements that have different units are compared, but it is 

also a general requirement for many machine-learning algorithms, including ANNs. The 

standardization is performed (ie., the z-score is computed) for every observation xi of a variable 

X, using the mean µ(𝑿)   of the variable and its standard deviation 𝜎(𝑿). 

 

The data rescaling, on the other, allows for the conversion of the different input variable ranges 

to a common range, namely [0,1].  Feature data rescaling is performed as follows: 

 𝑥 =                                                             (2.1) 

 

In equation 2.1, xi is the feature value at observation i, xmin and xmax are the minimum and 

maximum values of feature X, respectively. 

 

For the data involved in this study, feature rescaling yielded better results than feature 

standardizing on model training and testing performances.  Therefore, all the results presented 

in this paper are the ones obtained via training and testing of the classifiers on the rescaled data 

(eq. 2.1). 

 
2.3.5  Data Balancing 

 
The data analysis showed a severe imbalance with most SpO2 at 5min above 92%.  This is 

logical as caregivers want to maintain SpO2 in normal range during child PICU stay. In such 

condition, the classifier learns the majority class label (class 3) (Table 2.1) but doesn’t learn 

the minority class labels (classes 1 and 2) [8]. The data balancing process aims to allow the 

classifier to learn from all class equally. The data balancing process used in this study included 

a combination of down-sampling and up-sampling techniques: to balance the three classes of 

the data involved, a down-sampling of the SpO2 class 3 using TOMEK algorithm [9] and an 
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over-sampling of SpO2 class 1 and 2 using Synthetic Minority Oversampling Technique 

(SMOTE) [10] were performed.  
 

The very imbalanced nature of the studied data presented a significant challenge.  A data 

balancing process was required prior to training and classification.   As previously mentioned, 

the range of values of the target variable is binned into three class labels (table 2.1).  The severe 

imbalance in the data is caused by the fact that most observations belonged to the class labelled 

“3”, since most SpO2 readings happen to be 92% or above.  This imbalance in the data causes 

significant bias in the learning of the various class labels by the classifier.  This means that a 

high classification accuracy would not necessarily be representative of the classification 

accuracy of any of the various class labels.  In simple terms, with such a high degree of data 

imbalance, the classifier can learn the majority class very well.  However, it doesn’t get enough 

samples of the minority class labels to be able to learn them well enough. The data balancing 

process used in this study included a combination of down-sampling and up-sampling 

techniques.  To balance the three classes of the data involved, a down-sampling of the majority 

class and an over-sampling of the minority classes were performed.   

 

The down-sampling process was made up of the following steps: 

1) TOMEK algorithm used to detect TOMEK links throughout the whole dataset, for all three 

classes, and remove them.  TOMEK links are the links between any two observations 

considered nearest neighbors, but which belong to different classes, ie., have different 

class- labels [17] 

2) Remainder of points to be removed are selected at random. 

 

The oversampling process consisted of using the Synthetic Minority Oversampling Technique 

(SMOTE).  The SMOTE algorithm, as its name indicates, creates synthetic points between a 

point and its nearest neighbors (the number of nearest neighbors used for each observation 

depends on the proportion by which the cardinality of the minority class is to be increased).  

These synthetic points replace the original points (observations) that belonged to the minority 

class being oversampled.  The fact that the points created by SMOTE are synthetic does not 
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necessarily hinder the generalization capability of the classifier, because all the synthetic points 

are placed between the original observation and a number k of its nearest neighbors [10]. The 

creation of synthetic data points by SMOTE can be formulated as follows: 

 

 

In equation (2.2), xsyn represents the synthetic data point, xi represents the original instance, 

xknn represents the nearest neighbor data point which is randomly picked among the k nearest 

neighbors, and δ is a random number in [0,1] which determines the position of the created 

synthetic data point along a straight line joining the original data point xi and its chosen nearest 

neighbor xknn. 

 

Sections 2.3.6 presents the two mathematical models that have yielded the most satisfying 

results in SpO2 value predictions, five minutes following any change in at least one of the 

setting variables. 

 

2.3.6 SpO2 Classification 

To identify the best machine learning classification method, we tested various classification 

models on the four balanced datasets, of which the two (2) that yielded the best results were 

considered: artificial neural network and bagged complex decision trees. 

 

2.3.6.1   Artificial Neural Network (ANN) Training and Testing 

Once the data has been formatted and pre-processed, a machine learning predictive model can 

be trained on a sub-set of labeled training data. The model is then used to predict the target 

variable values on a testing subset where the class labels are hidden.  We used Artificial Neural 

Networks (ANN) to make predictions of the SpO2 variable, based on the values of other 

variables of interest.  The values of the three setting variables and the changes applied to them 

were also used by the model as predictor variables.  Through the function approximation that 

the ANN performs, it is possible to make predictions of SpO2 variable, based on the input data.  

  𝑥 =  𝑥 + (𝑥 −  𝑥 )  ×  𝛿                                        (2.2) 
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For SpO2 classification categories, please refer to table 2.1. 

 

The ANN is trained on a set of training data, using the backpropagation algorithm, as follows: 

• It takes in the values of all input variables of interest. 

• It tunes its weights and creates a non-linear decision boundary to classify the response. A 

non-linear decision boundary is necessary to classify a target variable that varies in a non-

linear fashion with respect to its explanatory variables, the input variables.  In other terms, 

a non-linear decision boundary is required when the output cannot be reproduced from a 

linear combination of the inputs, which is very often the case.  An activation function, 

such as the sigmoid, allows to model this nonlinear relationship between the input 

variables and the target variable.  Without an activation function, an ANN only provides 

a linear transformation, ie., the outputs of a layer multiplied by the weights of their 

connections with the next layer [3].  

• The output (SpO2) is predicted based on the series of linear transformations followed by 

the creation of a non-linear decision boundary via the combinations of these 

transformations with the activation function(s) used. 

 The learning algorithm runs through all the rows of data in the training data set and 

compares the predicted outputs with the target outputs found in the training data set. 

• The weights are adjusted via supervised learning, in a manner to minimize the error of 

predicted SpO2 vs target SpO2.  

• The process is repeated until the error is minimized. 

 

The training of the ANN is carried out using a portion of the data available (ie., a training set).  

Once the training is completed, the model is tested on a test set, which is the data that was 

excluded during the training phase.  The test set serves to validate the generalization of the 

model, meaning its ability to accurately predict output data based on new input data.  The 

results obtained by this method of training/testing are presented in table 2.2. 

 

The ANN classifier was implemented through cycles of forward propagation followed by 

backward propagation through the network’s layers.  The backpropagation algorithm is used 
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for performance optimization.  It fine-tunes the weights which, initially, are randomly set, so 

that the error function is minimized. The error function computes the difference between the 

ANN’s output and its expected output, after an input example has been propagated through it.  

For instance, when the normalized data is presented to the ANN, the 18 inputs whose values 

are in [0, 1] are presented to the ANN, through the input units.  These values, along with a bias 

value inserted into the ANN as input, are processed through the units with the sigmoid 

activation function, making up the middle layers of the ANN.  Then, an output is produced 

representing the estimation, or prediction in the set {“1”, “2”, “3”}, of the SpO2 value five 

minutes after the change in settings.  The weights of the ANN are modified at each run through 

the training data, in the aim of minimizing the classification error.  The loss function used for 

classification by the MLP is cross-entropy. 

 

For a given number of classes K > 2, the cross-entropy error can be formulated as shown in eq. 

2.3, where {Wi}i is the matrix of weights between the neuron layers, ri is the target value. yi is 

the value generated by the ANN, ie., its output. 

                Et( Wi i|𝑥 , 𝑟 ) = - ∑ 𝑟 𝑙𝑜𝑔 𝑦                                       (2.3) 

The outputs of the ANN are: 𝑦 =  ∑                                                        (2.4) 

 

Using stochastic gradient-descent (SGD) for error minimization, the update rule for the ANN 

weights, is: 

∆𝑤 = 𝑛(𝑟 −  𝑦 )𝑥                                             (2.5)

 

In equation 2.5, η is the learning rate which, when SGD is used, decreases as the error is 

minimized. During ANN training, each observation, comprised of an input vector and a target 

output, is denoted (xt, rt), with rt ϵ {“1”, “2”, “3”}.  The reason why the cross-entropy (eq. 2.3) 
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is used instead of the Least Square Error (LSE) is to avoid long periods of training, due to the 

ANN going through stages of slow error reduction, ie., SGD local minima. The MLP classifiers 

were implemented with the use of the Scikit-Learn package within the Python programming 

language [http://scikit-learn.org]. 

Figure 2.3 Schematic representation of ANN supervised training 

 

2.3.6.2 Bootstrap Aggregation of complex decision trees training and testing 
Bootstrap aggregating (acronym: bagging) was proposed by Leo Breiman in 1994 to improve 

classification by combining classifications of randomly generated training sets [8].  “Bagging” 

allows for the creation of an aggregated predictor via the use of multiple training sub-sets taken 

from the same training set, hence the term “bootstrapping”.  In other words, multiple versions 

of a predictor are created through the bootstrapping of the various training subsets.  This 

aggregation of predictors generally allows for more accurate predictions (or classifications) 

than can be obtained through a single predictor.  Thus, it can be considered as a wonderful 

technique used for improving a classifier’s performance.  It is noteworthy to mention that this 

method (bootstrap aggregation or “bagging”) doesn’t always improve the given classifier’s 

performance, but it does most of the time. 
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Let {𝑻𝒊} denote the replicate training sub-sets bootstrapped from the training set T.  These 

replicate sub-sets each contain N observations, drawn at random and with replacement from T.  

For each of these sub-sets of N observations, a prediction model (classifier) is created.  The 

computational model used for “bagging” was “complex decision trees”.  This means that, for 

each bootstrapped sub-set of training data, a complex decision tree is trained and thus a 

classifier is created.  If i = 1, …, n, then n classifiers are created through the “bagging” process. 

 

A decision tree is a flowchart computational model which can be used for both regression and 

classification problems.  Paths from the root of the tree to its various leaf nodes go through 

decision nodes in which decision rules are applied in a recursive manner, based on values of 

input variables.  Each path represents an observation (X, y) = (x1, x2, x3, …, xn, y), where the 

label assigned to the target y is given in the leaf node, at the end of the path (ie., classification). 

 

In the aim of maximizing the model’s generalization capability during the training process, the 

Bagged Complex Trees’ performance is tested via k-fold cross-validation.  A value k = 10, 

which is common practice, was used in this study.  The training using k-fold cross-validation 

is carried out as described in algorithm 2.1:  

 

Algorithm 2.1 k-fold cross-validation 
• The data set is first divided into two parts; the training-set and the test-set. 

• The training of the “Bagged” Complex Trees includes a k-fold cross-validation, 

which is performed as follows: 

 Randomly partition the data-set into k equal-sized subsets (folds). 

 For each of the k equal-sized subsets: 

 Train/fit the model on the elements contained in the other (k-1) subsets. 

 Test the model’s accuracy on the given subset. 

 Iterate over the k subsets, until each one has been used once for testing the 

model’s performance during its training. 

 The training validation score consists of the average score obtained by 

validating the model on all k subsets. 
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The mathworks Matlab R2016b Machine Learning toolbox was used for the creation of the 

ensemble of “Bagged” complex trees model. 

2.4 Assessment of performances of classifiers 

We evaluated the performances of the classifiers based on the metrics including testing 

confusion matrix, average accuracy, precision, recall and F score [14] with a 5minSpO2 

prediction expected above 0.9 for each class. 

• Test confusion matrix : 

In a confusion matrix, the diagonal made up of the intersections of target and predicted SpO2 

is where the rates of correct classifications are provided.    

 

• Cohen’s Kappa (eq. 2.6)                       Ƙ =                                                                   (2.6) 

 

In labeling problems involving a number of class-labels n > 2, it is generally appropriate to 

estimate the agreement between the classifier and ground truth using a statistic known as 

Cohen’s Kappa (κ), which is in [0, 1], with 1 being perfect agreement and 0, no agreement 

whatsoever b.  In equation 2.6, po is the observed agreement and pe (eq. 2.7) is the hypothetical 

probability of agreement by chance, based on the distribution of the data among the n classes. 

In other words, pe is the agreement expected by chance. In equation 2.7, N is the number of 

observations, with nk1 as the number of times class-label k appears in ground truth, and nk2 as 

the number of times the classifier predicted class-label k, with k = 1,…,n .     𝑝 = ∑ 𝑛 𝑛                                                         (2.7) 

 

• Accuracy (eq. 2.8): 
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                                  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = #   #                                (2.8) 

 

• Precision (eq. 2.9):  

                𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = #     #                            (2.9) 

 

The Precision (eq. 2.9) is the ratio of all correct classifications for class i to all instances labeled 

as class label i by the model.  In a non-normalized confusion matrix, this would mean dividing 

the number of instances classified in class label i by the total of instances in column  i.  

 

• Recall (eq. 2.10): 
                         𝑅𝑒𝑐𝑎𝑙𝑙 = #     #                                       (2.10) 

 

Recall (eq. 2.10) is the ratio of the number of instances classified in class label i to the number 

of true class i labels.  Again, in a non-normalized matrix, this would require dividing the 

number of instances classified in class label i by the total of row i. 
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F1-score (eq. 2.11) :                                                𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =                            (2.11) 

 

The F1-score (eq. 2.11) provides a single measure of classification performance of the 

model used.  In the case of class-imbalanced datasets, the F1-score is better than the 

accuracy metric, which is simply the ratio of correctly predicted observations to the total 

number of observations. Mathematically, it is the harmonic mean H, computed using 

Precision and Recall (eq. 2.12).   In equation 2.12,  x1 to xn represent n positive real numbers. 

For the F1-score (eq. 2.11), n = 2, x1 and x2 are the values of Precision and Recall. 
                                                          𝐻 = ∑ , 1 < 𝑖 < 𝑛                                 (2.12) 

 

The values of these performance metrics for our eight experiments are presented in table 

2.2. 
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DATASET 1 DATASET 2 DATASET 3 DATASET 4 

Training set:  
975,036 samples 
 
Test set: 193,528 
samples 
 
Class Balancing: 
TOMEK applied to 
dataset (before 
dataset has been 
split into training & 
test set) to remove 
tomek links, 
random 
undersampling 
applied to class 3 
once dataset is split 
into training and 
testing sub-sets, 
then SMOTE 
applied to classes 1 
and 2 to make their 
cardinalities equal 
to that of class 3 
(325,012). 

Training set: 
2,293,119 samples 
 
Test set: 201,926 
samples 
 
Class Balancing: 
SMOTE applied to 
classes 1 & 2 to 
make their 
cardinalities equal 
to that of class 3 
(764,373). 

Training set: 
487,464 samples 
 
Test set: 106,028 
samples 
 
Class Balancing: 
TOMEK applied to 
dataset 
(before dataset has 
been split into 
training & test set) 
to remove tomek 
links, random 
undersampling 
applied to class 3 
once dataset is split 
into training and 
testing sub-sets, 
then SMOTE 
applied to classes 1 
and 2 to make their 
cardinalities equal 
to that of class 3 
(162,488). 

Training set: 
1,462,503 samples 
 
Test set: 281,028 
samples 
 
Class Balancing 
TOMEK applied to 
dataset (before 
dataset has been 
split into training & 
test set) to remove 
tomek links, 
random 
undersampling 
applied to class 3 
once dataset is split 
into training and 
testing sub-sets, 
then SMOTE 
applied to classes 1 
and 2 to make their 
cardinalities equal 
to that of class 3 
(487,501). 

Figure 2.4 Details on balancing procedures 
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Table 2.2 Classification performance metrics results for MLP and bagged tree classifiers 

D
at

as
et

 

(fi
gu

re
 2

.5
) 2

. 

 

MLP Bagged Trees 

precision recall f1-score Cohen’s Kappa precision recall f1-score Cohen’s Kappa 

D
at

as
et

 1
 Label 1 0.12 0.70 0.21 

0.16 

0.80 0.76 0.78 

0.68 
Label 2 0.16 0.43 0.23 0.61 0.56 0.59 

Label 3 0.96 0.67 0.79 0.97 0.98 0.97 

Avg/total 0.88 0.65 0.73 0.94 0.94 0.94 

D
at

as
et

 2
 Label 1 0.09 0.72 0.16 

0.13 

0.77 0.72 0.74 

0.66 
Label 2 0.09 0.47 0.16 0.57 0.53 0.55 

Label 3 0.98 0.70 0.81 0.98 0.99 0.98 

Avg/total 0.93 0.69 0.78 0.96 0.97 0.97 

D
at
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et

 3
 Label 1 0.16 0.68 0.25 

0.20 

0.80 0.76 0.78 

0.70 
Label 2 0.26 0.42 0.33 0.67 0.62 0.65 

Label 3 0.92 0.60 0.72 0.95 0.96 0.96 

Avg/total 0.80 0.58 0.65 0.91 0.91 0.91 

D
at
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et

 4
 Label 1 0.09 0.69 0.16 

0.13 

0.80 0.74 0.77 

0.66 
Label 2 0.12 0.47 0.19 0.58 0.54 0.56 

Label 3 0.97 0.68 0.80 0.98 0.98 0.98 

Avg/total 0.92 0.67 0.76 0.96 0.96 0.96 
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For the ANN, or MLP, the variation of the number of hidden layers and number of neurons per 

hidden layer did not seem to have a significant effect on the model’s classification 

performance. As for the Bagged complex trees, the variation of the number of complex trees 

did not yield significant changes in classification performance. However, the experiments 

revealed that the data balancing processes had significant influence on SpO2 classification 

accuracy. 
 
As the classification metrics and the confusion matrices presented in table 2.2 and figures 2.5 

and 2.6 reveal, the ensemble of bagged complex trees model has performed significantly better 

than the ANN.  The darker colors in a confusion matrix represent the higher levels of accuracy 

obtained.  According to what has been previously mentioned in the “related work” section 

regarding Bagging being generally a successful technique for medical data classification [8], 

it is not surprising that tree Bagging fared better than the other classifiers used in this study.  It 

is noteworthy however to mention that the gaps in performance results between the training 

and testing confusion matrices are relatively higher in the case of bagged trees model than in 

that of the MLP.  This seems to indicate that, although the bagged trees model was capable of 

learning very well from the data, there’s still room for improvement in the generalization, 

especially for class-label “2” data. 

 

The classification performance metrics (table 2.2) show that the bagged trees classifier trained 

on dataset #3 has yielded the best classification performance on the test sets.  The interpretation 

of the results of this training/testing is provided in the following paragraphs. 

 

In equation 2.6, po is the relative observed agreement among raters, or the ground truth labels 

and the classifier’s labels, and pe (eq. 2.7) is the hypothetical probability of chance agreement, 

using the observed data to calculate the probabilities of each observer randomly picking each 

class.  If the raters are in complete agreement, then κ = 1. If there is no agreement among the 

raters other than what would be expected by chance, as given by pe, κ ≈ 0.  This would simply 

mean that the classifier being tested is useless for classifying the given data.  A value of 0.70 
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for the Cohen’s Kappa statistic was obtained by the bagged trees model trained on training set 

#3. This is representative of the rate of agreement between the two raters, or between ground 

truth labels and a machine learning predictive model.  In equation 2.7, n is the number of 

classes, N is the number of instances classified by each rater which, in our case, is ground truth 

vs classifier, and nki represents the number of times rater i predicted class label k. The 

confusion matrix of the ensemble of bagged trees shows that it could correctly classify 76% 

of class- label “1” data, 62% of class-label “2”, and 96% of class-label “3”.  This considerable 

variation in classification performances of the three class labels can be explained by the huge 

variation in the numbers of observations available for each of the class labels in the data used 

in this study. Refer to section A for details on patient sub- population studied.  

 

The SMOTE algorithm is designed in such a way that should theoretically not affect the 

generalization of the trained model.  In cases of extreme data imbalance, however, as is the 

case in this study, the over-sampling within the data space of a given minority class label, used 

for increasing the cardinality of the class label’s set, is also likely to be extreme.  This may 

render the data space of this class relatively dense with respect to the rest of the data, made up 

of real data points of the studied patient sub-population.  This may potentially explain the 

classification model’s relatively poor generalization for class-labels “1” and “2” with respect 

to the generalization for class-label “3”.  Another important consideration to make, in an 

attempt to explain the hindering effect that the over-sampling seems to have on the 

generalization of the classifier, is the following: since SMOTE generates synthetic data points 

by interpolating between existing minority class instances, it can obviously increase the risk of 

over-fitting when classifying minority class labels, since it may duplicate minority class 

instances, ie., data points.  The fact that the training confusion matrix shows extremely high 

classification performances for the minority class labels “1” and “2”, as opposed to those 

shown in the testing confusion matrix, suggests that the over-sampling of the minority class 

labels using SMOTE could have caused some overfitting for these classes, but this would have 

to be further investigated.  
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The accuracy (eq. 2.8) of the ensemble of bagged complex trees in classifying SpO2 for dataset 

#3 is 91%.  This metric is very misleading, as it does not consider the imbalance in the numbers 

of instances of each of the three (3) class labels.  This high accuracy (91%) can be, in a 

considerable part, explained by the fact that class-label “3” makes up 83% of all instances in 

the testing dataset, and that 96% of class-label “3” data are correctly classified.  In other terms, 

there are 84,171 correct classifications for class-label “3” alone, out of 106,028 observations 

in the test set.  The total number of correct classifications for all 3 class-labels is 96,667 out of 

a total number of observations of 106,028, ie., an accuracy of 91%.  It is thus easy to see why 

this percentage of correct classifications is not representative of the model’s accuracy in 

classifying the data of the three (3) classes involved.  Clearly, the accuracy metric is not 

reliable for the evaluation of the performance of our model, hence the importance of the other 

metrics presented herein. 

 

The F1-score for our model reveals that the model performed very well when predicting class-

label “3”.  Although the model also performed significantly well for class-label “1”, some over-

fitting seems to have occurred for classes “1” and “2”, the minority classes, during the training 

phase.  Therefore, some recommendations for improvement in classification accuracy for the 

minority classes will be provided in the following section. 

 

2.5 Results and Discussion 
      We developed and assessed the performances of two machine learning classifiers on four 

different balanced datasets to predict SpO2 at 5 min after a ventilator setting change (ie FiO2, 

PEEP, Vt/Pressure), in 610 mechanically ventilated children. In Fig 4 and Table 2.2, we report 

the performances of these two classifiers. Using the classification performance metrics, the 

bagged trees classifier trained on dataset #3 (see Fig 2.2) has yielded the best classification 

performance on the test sets (Table 2.2). The confusion matrix of the whole bagged trees shows 

that SpO2 at 5 min could correctly predict in 76% of class “1” data, 62% of class “2”, and 96% 

of class “3” (Fig 2.4).  This huge variation in classification performances of the three class 
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labels can be explained by the large variation in the numbers of observations available for each 

of the class-labels in the initial dataset that has limited the machine learning (Table 2.1). 

 

Table 2.3 Absence of impact on performance of the increase of neurons and hidden layers for 
artificial neural network (ANN). Example of the performance assessed by the F score on the 
balanced dataset 3 (see fig 2.2) 

ANN 

Hidden layers (n) 1 2 3 

Neurons/hidden layer (n) 10 50 100 10 50 100 10 50 100  

F-score 
5minSpO2 class 1 25 25 25 25 25 25 22 22 19 

5minSpO2 class 2 33 33 33 33 33 33 33 33 32 

5minSpO2 class 3 72 72 72 72 72 72 69 69 69 

 
 
Table 2.4 Absence of impact on performance of the number of complex trees for bootstrap 
aggregation of complex decision trees (BACDT). Example of the performance assessed by the 
F score on the balanced dataset 3 (see Fig 2.2) 

 BACDT 

 n = 30 n=50 

F-score 
5minSpO2 class 1 78 78 

5minSpO2 class 2 65 65 

5minSpO2 class 3 96 96 

 

In agreement with previous studies regarding bagging being a better method for medical data 

classification, tree Bagging fared better than the artificial neural network used in this study 

[12].  It is noteworthy however that the gaps in performance results between the training and 

testing confusion matrices are relatively higher in the case of bagged trees model than in that 

of the artificial neural network (Fig 2.5).  This seems to indicate that, although the bagged trees 

model was capable of learning very well from the data, there’s still room for improvement in 

the generalization. The SMOTE algorithm is designed in such a way that should theoretically 

not affect the generalization of the trained model.  In cases of extreme data imbalance, 

however, as is the case in this study, the over-sampling within the data space of a given 
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minority class label, used for increasing the cardinality of the class label’s set, is also likely to 

be extreme.  This may render the data space of this class relatively dense with respect to the 

rest of the data, made up of real data points of the studied patient sub-population.  This may 

potentially explain the classification model’s relatively poor generalization for 5minSpO2 class 

“1” and “2” with respect to the generalization for 5minSpO2 class “3”. Also, since SMOTE 

generates synthetic data points by interpolating between existing minority class instances, it 

can obviously increase the risk of over-fitting when classifying minority class labels, since it 

may duplicate minority class instances.  The fact that the training confusion matrix shows 

extremely high classification performances for the minority 5minSpO2 class “1” and “2”, as 

opposed to those shown in the testing confusion matrix, suggests that the over-sampling of the 

minority 5minSpO2 class using SMOTE could have caused some overfitting for these classes, 

but this would have to be further investigated.  

 

The strengths of this study include a large clinical database of mechanically ventilated children 

used with more than 7.105 rows. In a recent similar study in PICU, 200 patients were included 

with 1.15.103 rows [15]. However, the volume of data is clearly insufficient. To use such 

machine learning predictive models, the pediatric intensive care community needs to combine 

multicenter high-resolution database. In addition, children data could be pooled to neonatal 

and adult intensive care data, when possible, such as MIMIC III database [16]. The other 

strength is the process used to transform the data into a usable format and to correct a variety 

of artifacts. In health care, there is a significant interest in using clinical databases including 

dynamic and patient-specific information into clinical decision support algorithms. The 

ubiquitous monitoring of critical care units’ patients has generated a wealth of data which 

presents many opportunities in this domain. However, when developing algorithms domains, 

such as transport or finance, data are specifically collected for research purposes. This is not 

the case in healthcare where the primary objective of data collection systems is to document 

clinical activity, resulting in several issues to address in data collection, data validation and 

complex data analysis [17]. A significant amount of effort is needed, when data have been 

successfully archived and retrieved, to transform the data into a usable format for research. 
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This study has several limitations. The limited row number reduced the SpO2 classification for 

machine learning predictive model to three clinically relevant classes. SpO2 is a continuous 

variable and the use of three class is probably insufficient, especially when high SpO2 range is 

suggested as potentially harmful [18, 19]. Instead of the classification model, the next step 

could be to test regression models’ performance. SpO2 was predicted at 5min after ventilator 

setting change, a clinically relevant delay. However, the delay between ventilator setting 

change and oxygenation steady state is not well defined and vary from 1 to 71 minutes 

according to the parameter set (FiO2, PEEP or other parameters that change mean airway 

pressure) and clinical conditions studied [15, 20, 21]. This needs further research and probably 

more sophisticated clinical decision support systems using machine learning predictive models 

should consider these factors. Finally, we excluded hemodynamic unstable patients using a 

treatment criteria (≥ 2 vasoactive drugs infused) because this condition decreases pulse 

oximeter reliability [22, 23]. The validation and electronic availability of reliable markers of 

hemodynamic instability in children such as plethysmographic variability indices could be 

helpful [24]. 

 

2.6 Conclusion 
This pilot study using machine learning predictive model resulted in an algorithm with good 

accuracy. To obtain a robust algorithm with such a method, more data rows are needed, 

suggesting the need of multicenter pediatric intensive care high-resolution databases. 
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CHAPTER 3 
GENERAL CONCLUSION AND FUTURE WORK 

 
The aim of this study was to create a model that would provide predictions of the SpO2 variable, 

using the data of other biological variables as well as the changes in the setting variables 

(oxygen concentration (FiO2) setting, Positive End-Expiratory Pressure (PEEP) setting and 

Tidal Volume setting).  The ultimate objective of this undertaking was to find a way to exploit 

PICU mechanical ventilation research data via supervised machine learning to model SpO2 

behavior, based on other biological variables and any setting changes made by the clinician.  

Various supervised machine learning algorithms have been trained on the available data.  The 

models built via the algorithm training process, were used to label (classify) the SpO2 variable 

for all the observations (instances) provided in a test set made up of data which were not 

presented to the model during the supervised training.  The target variable (SpO2) was 

discretized (binned) into three (3) class-labels.  The classifiers tested on the data, the Artificial 

Neural Network (ANN) and the Bootstrap Aggregation of complex decision trees (“Bagged” 

Trees) yielded the most satisfactory results.  Of these two classifiers, the latter was the final 

choice, as it clearly outperformed the ANN. 

 

The severe imbalance of the data required the incorporation of data balancing procedures in 

the study. The ANN and ensemble of Bagged trees were trained and tested, each on four 

different datasets, obtained from four different data balancing procedures.  We used 

performance metrics which were deemed informative in the context of the study to evaluate 

and compare the SpO2 classification performances of the various machine learning models 

tested.  The results of this study have proven to be very promising and have thus revealed that 

supervised machine learning can effectively be used to provide the ICU medical practitioners 

with support in estimating SpO2 reactions to setting changes, given the states of other biological 

data. 
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Some significant contributions were made throughout this research project, namely: 

• To render the available ventilatory data compatible with machine learning supervised 

training methods, a data formatting process was proposed. 

• Large amounts of data from an ICU research database were exploited for SpO2 prediction 

via machine learning classification models, which, as per the literature reviewed, doesn’t 

seem to have been done up to this date. 

• To counter the imbalanced nature of the data, various combinations of different data 

balancing techniques were proposed. 

• Supervised machine learning algorithms were proposed for attempting to extract knowledge 

from large amounts of patient mechanical ventilation data in the aim of predicting the 

behavior of SpO2, based on values of other variables and those of any setting changes made 

by the clinician. 

  
Considering that this was a first attempt to create a model for SpO2 classification via machine 

learning supervised training, the results obtained can be deemed satisfactory from a perspective 

of providing some medical support in the decision-making process involved.  However, a few 

different approaches to this problem could be considered in the aim of improving prediction 

performance.   

 

Various approaches and methods may be considered, in the aim of improving SpO2 

classification, or prediction in the case of regression models.  The undertaking which seems 

the least challenging would be to attempt reducing the over-fitting, which is potentially the 

cause for classification performances which can be considered relatively poor for class-labels 

“1” and “2”, with respect to that of class-label “3”.  This could be achieved by one or more 

approaches.  

 

One approach would be to try different class balancing algorithms and combinations of 

algorithms, from those applied and presented in this study. Instead of class balancing, some 

class-weighted training models can be tested.  These are called cost-sensitive classifiers.  



43 

Examples of such classifiers are the cost-sensitive decision tree and cost-sensitive Support 

Vector Machine (SVM).  Bootstrap-based SVM aggregation could also be a viable option. 

 

Any ML model which would increase or, at the very least, maintain the classification 

performance presented in this document, while also allowing a number of class-labels greater 

than three (3) for the SpO2 variable, would be worth implementing.  With what has just been 

said in mind, we propose that Deep Learning (DL) models which can create abstract 

representations of the patient’s respiratory state through time are to be prioritized for future 

work.  DL models would very likely yield greater predictions and eliminate one of the main 

challenges that our approach brought with it, namely the data class-imbalance as well as the 

need for class-labelling.  For this purpose, we specifically propose the use of DL models 

designed to be trained on sequences of data which are represented through time.  Intuitively, 

DL architectures that can create a representation of the context within which a data point at a 

given time-step ti seem to make the most sense.  For instance, Recurrent Neural Networks 

(RNN) with Bi-Directional Long Short-Term Memory (Bi-LSTM) would take into account 

historical data at time-steps ti-n, …,  ti-n with respect to any time-step ti as well as data at  ti-n, 

…,  ti+n.   
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This allows it to render representations of underlying spatial variable relations through time, 

which makes sense for biomedical data. 

 

The RNN/LSTM approach would make it possible to predict future values of the setting 

variables instead of the effect of setting change on SpO2.  With the implementation of a CDSS 

in mind, this approach seems very appropriate.   

 

 
 

 

 

 

 

 

 

 
Figure 3.1 Data arrangement for RNN/Bi-LSTM sequence generation for setting variables; 
prediction of m time-steps for setting variables, given n past time-steps of all input variables, 
which include the setting variables 
 

As shown in figure 3.1 above, the goal would be for the model to be able to predict m time-

steps of S1, S2, S3, the setting variables, given the data points for time-steps Ti-n to Ti.  Every 

data point would include all variables available, including SpO2 as well as all setting variables. 

This is important because any variable, however unimportant it may be deemed by any expert, 

may in reality contribute valuable information in high-dimensional space and through time, 

which cannot be visualized by the human mind.   

 

The training of the RNN/Bi-LSTM neural network would likely allow for significantly better 

spatial representation of the data than a feedforward ANN or any classifier incapable of 

representational learning due to absence of memory units.  The Bi-LSTM allows the model to 

create abstract representations of the data, preserving a memory of a representation for a given 

 V1 … VN S1 S2 S3 
Ti-n       
…       
…       
…       
Ti       
Ti+1       
…       
…       
Ti+m       
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number of past time-steps.  Moreover, the Bi-directional property allows the model to learn a 

data point at time-steps Ti, considering past and future data points.  This means that for every 

training epoch, a sliding window trains the ANN on a data point, considering given number of 

past time-steps as well as future ones (see fig. 3.2) 

                                                                   

 

Figure 3.2 Sliding window for RNN/Bi-LSTM; learning data point at time-step Ti based 
on past as well as future data 

 

 

 
Figure 3.3 Prediction of a sequence of m data points by RNN/Bi-LSTM given data 
point at time-step Ti and its n past data points 

 

 

Figure 3.4 below shows a simple representation of how an RNN/Bi-LSTM model would be 

used for the considered application.  

 

 

 

 

 

 

 

 

 

Figure 3.4 RNN/Bi-LSTM for setting variable sequence predictions 

 

 

Ti-n,…, Ti-1 Ti Ti+1,…, Ti+n 

Ti-n,…, Ti-1 Ti Ti+1,…, Ti+m 
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