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Modèles d’optimisation pour la planification de réseaux logistiques inverses durables 
sous incertitudes 

 
 

Julien TROCHU  
 

RÉSUMÉ 
 
Le terme développement durable est un terme utilisé pour désigner un développement qui 
intègre les trois considérations fondamentales : la dimension économique, environnementale 
et sociale. Un développement durable se réfère généralement à : « Un développement qui 
répond aux besoins du présent sans compromettre la capacité des générations futures de 
répondre aux leurs ». Les chaînes d’approvisionnement se trouvent aujourd’hui face au défi 
majeur de faire évoluer leurs pratiques traditionnelles afin d’appliquer ce concept à leurs 
opérations. Cette thèse vient appuyer cet effort visant à assurer la durabilité des opérations de 
la chaîne d’approvisionnement dans les années à venir, en proposant des modèles quantitatifs 
d’aide à la décision pour la conception de réseaux logistiques inverses performants. 
 
Ma thèse, intitulée « Modèles quantitatifs pour la conception de réseaux logistiques inverses 
durables sous incertitude », souligne l'importance de développer des modèles décisionnels 
intégrant les incertitudes critiques inhérentes aux opérations de logistique inverses dans 
l'industrie. Ce travail de recherche étudie également les compromis nécessaires à la 
conception de réseaux logistiques inverses efficaces, tout en tenant compte de divers aspects 
environnementaux, améliorant ainsi les chances de progresser vers un développement 
durable. Dans les trois articles présentés ci-dessous, l'industrie de la construction, de la 
rénovation et de la démolition (CRD) est utilisée comme référence pour valider nos modèles 
au travers de plusieurs études de cas.  
 
Le premier article de cette thèse présente une étude de cas détaillée qui traite des défis liés à 
la gestion des débris de matériaux de bois de CRD au Québec, Canada. Dans cet article, le 
modèle d’optimisation proposé détermine les emplacements et les capacités des centres de 
collecte qui assurent le tri des matériaux afin d’être en accord avec la règlementation locale 
sur l’enfouissement du bois. Nous formulons le problème sous la forme d'un modèle de 
programmation linéaire en nombres entiers mixtes (MILP), afin de minimiser le coût total du 
de recyclage du bois au sein du réseau de logistique inverse et de rendre son élimination 
moins attractive financièrement. Nous proposons une approche basée sur divers scénarios 
afin de redéfinir le réseau de logistique inverse actuel en fonction des incertitudes sur les 
emplacements des sites de collecte, la quantité et la qualité du bois collecté. Les résultats 
montrent que le réseau de logistique inverse optimal dans un scénario donné peut s’avérer 
obsolète dans d’autres scénarios, dépendamment de la réalisation des paramètres incertains. 
Bien que seule l’aspect économique soit considéré dans cet article, cela représente un premier 
pas vers des opérations de logistique inverse durables par l’optimisation des opérations de 
gestion des débris dans un secteur qui compte parmi les plus grands générateurs de déchets 
au monde. 
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Ainsi, dans le deuxième article et dans le but de répondre aux problèmes causés par les 
incertitudes, nous présentons une nouvelle formulation plus avancée qui traite simultanément 
un nombre élevé de scénarios. De cette manière, nous sommes capables d’optimiser nos 
espérances en terme de profits sur un horizon de planification multi-période. Dans ce second 
article, non seulement nous optimisons la conception du réseau de logistique inverse pour la 
gestion des débris, mais nous évaluons également l’impact de l’intégration de plateformes 
logistiques appelées centres de séparation à la source, que nous utilisons pour effectuer une 
première séparation des débris avant leur expédition vers les centres de collecte certifiés. De 
plus, nous réalisons une analyse de sensibilité sur le nombre de sources d’approvisionnement 
(générateurs de déchets) afin de comparer les zones de collecte rurales à faible densité par 
rapport aux zones urbaines à forte densité, où il est souvent plus complexe de réaliser des 
activités de collecte. La flexibilité offerte par ces plates-formes dynamiques atteint son plein 
potentiel dans les zones urbaines à haute densité. Les résultats suggèrent des ajustements 
significatifs du réseau de logistique inverse entraînant une augmentation du profit moyen 
espéré ainsi que de la quantité de matériaux recyclés. 
 
Enfin, dans le troisième article, nous adaptons le modèle stochastique du précédent article en 
intégrant la dimension environnementale, par le biais d’une deuxième fonction objectif qui 
minimise la quantité de matériaux éliminés par enfouissement. Dans cette recherche, nous 
optimisons la conception du réseau de logistique inverse pour le recyclage des débris de bois 
provenant de l'industrie de CRD, sous contraintes à la fois de restrictions d'enfouissement et 
de contrôle des émissions par un système de plafonnement et d'échange, tel que celui en 
vigueur au Québec. Une fois encore, l’importance de la stratégie de séparation à la source est 
soulignée dans cet article, et nous établissons la relation entre l’incertitude sur la qualité du 
bois collecté et la difficulté de respecter les objectifs de recyclage fixés par le gouvernement. 
En effet, en comptabilisant les émissions libérées par les différents processus de recyclage, il 
s'avère que l'enfouissement des débris de bois se révèle parfois être la meilleure option selon 
le niveau de qualité des déchets collectés.  
 
En résumé, le premier article permet d’établir et de quantifier l’impact des incertitudes sur 
l’efficacité du réseau de logistique inverse, hautement dépendante des valeurs des paramètres 
incertains. Sur la base de cette constatation, nous développons dans le deuxième article un 
modèle stochastique qui vise à établir le meilleur compromis afin de faire face à un grand 
nombre de scénarios simultanément. Enfin et pour finir, dans le troisième article nous 
adaptons ce dernier modèle à l’étude de cas sur le recyclage des débris de bois. Les émissions 
de gaz à effet de serre provenant des processus de recyclage du bois sont comptabilisées, et la 
réglementation relative aux restrictions de l’enfouissement est également appliquée. 
 
Mots-clés : Chaîne d'approvisionnement durable, logistique inverse, conception de réseau, 
modèles d’aide à la décision, optimisation stochastique et multi-objectifs, industrie de CRD, 
gestion des déchets, recyclage du bois, réglementations environnementales. 
 



 

Optimization models for sustainable reverse logistics network planning under 
uncertainty 

 
 

Julien TROCHU 
 
 

ABSTRACT 

 
Nowadays, evolving toward sustainable operations among supply chains is a critical need for 
the near future and the well-being of the upcoming generations. The term sustainability 
commonly refers to the interactions between the economic, environmental and social 
dimensions of development. A sustainable development usually refers to: “A development 
that meets the needs of the present without compromising the ability of future generations to 
meet their own needs". Practitioners and academics all over the world are working toward 
this goal since the last three decades. Thus, this thesis comes to complement this effort 
toward achieving sustainability in supply chain operations.  
 
My dissertation, entitled “quantitative models for sustainable reverse logistics network 
design under uncertainty”, focuses on the importance of developing decision-making models 
that include critical uncertainties inherent to the reverse logistics operations in the industry. It 
studies more specifically the trade-offs that are necessary to design efficient reverse logistics 
networks while considering various environmental aspects, thus improving our chances to 
take this step toward sustainability. In the three articles presented below, we will use the 
construction, renovation and demolition (CRD) industry as a reference to validate our models 
through several case studies. 
 
The first article, titled “Reverse logistics network redesign under uncertainty for wood waste 
in the CRD industry” presents a detailed case study of the challenges related to the wood 
building material waste management in Quebec, Canada. In this paper, the main objective is 
to determine the location and the capacities of the sorting facilities to ensure compliance with 
the regulation and prevent the wood from being massively landfilled. We formulate the 
problem as a mixed-integer linear programming model (MILP) to minimize the total cost of 
the wood recycling processes collected from CRD sites. We start from the real collection 
centers’ locations from the Quebec CRD industry and we propose a scenario-based approach 
to redesign the reverse logistics network based on various realizations of the randomness 
targeting the uncertain parameters. The results demonstrate that efforts toward obtaining 
accurate information about the supply sources’ locations, the collected wood quantity and its 
quality would guarantee a more efficient reverse logistics network redesign. Although 
environmental and social considerations are not addressed in this article, it represents a first 
step toward sustainability by optimizing waste management operations in a sector that is 
among the biggest waste generators worldwide. 
 
Thus, in the second article, titled “A two-stage stochastic optimization model for reverse 
logistics network design under dynamic suppliers’ locations”, we introduce a new advanced 
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model formulation that addresses multiple scenarios at the same time in order to cope with 
uncertainty in the best manner over a multi-period planning horizon. The availability of each 
material collected from the supply sources and the recycling rates at the collection centers are 
the main sources of uncertainty considered in this study. This time, not only we optimize the 
reverse logistics network design, but we also evaluate the integration of logistics platforms 
called source-separation centers (SSC), that we use to perform source-separation of the 
materials before shipping them to the main collection centers. We perform a sensitivity 
analysis on the number of supply sources (i.e. waste generators) to compare low-density rural 
collection zones versus high-density urban areas, where the waste collection activities are 
often more challenging. Although the SSC improve the network performance in both rural 
and urban zones, the flexibility provided by these dynamic platforms reaches its best 
efficiency in the high-density urban areas. The results suggest significant RLND adjustments 
that lead to increase both the average expected profit and the amount of materials recycled 
through the reverse logistics channel.  
 
Finally, in the third article, titled “A carbon-constrained stochastic model for eco-efficient 
reverse logistics network design under environmental regulations in the CRD Industry”, we 
adapt the stochastic model of the previous article to include environmental considerations by 
adding a second objective function. In this research, we evaluate the optimal eco-efficient 
reverse logistics network design for the wood waste recycling from the CRD industry under 
both landfilling restrictions and emission control by a cap-and-trade system, such as the one 
effective in Quebec these days. In this paper, we emphasize the importance of the source 
separation strategy to address the challenge caused by the unpredictable quality of the wood 
collected and its impact on the efficiency of the recycling processes. Indeed, by accounting 
the emissions released by the various recycling processes, it turns out that the landfilling 
option may be the best option depending on the quality level of the collected waste. Finally, 
in this paper we establish the relation between the quality level uncertainty of the collected 
materials and the difficulty to comply with governmental recycling targets.  
 
Overall, the scenario-based approach in the first article allows establishing the problematic of 
multiple uncertainties for designing an optimal reverse logistics network that performs under 
each scenario. Based on this finding, in the second article we develop a two-stage stochastic 
model in order to find the best expected RLND to cope with a large number of possible 
scenarios in a multi-period planning horizon. Lastly, in the third article we adapt this model 
to fit with the reality of the CRD industry for the wood waste recycling case study. Such 
adaptations imply emissions accounting from the wood recycling processes and complying 
with the legal framework regarding the recycling targets. 
 
Keywords : Sustainable supply chain, reverse logistics, network design, quantitative 
decision-making models, stochastic and multi-objective optimization, CRD industry, waste 
management, wood recycling, environmental regulations. 
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INTRODUCTION 
 
Research context 
 
Sustainable supply chain management has become a critical matter in nowadays society. 

Practitioners and academics have demonstrated an increased interest in the environmental 

damage caused by the supply chains activities worldwide. Indeed, the last two decades of the 

20th century marked a real change regarding the awareness of the international communities 

of the environmental threat caused by traditional industrial practices. During the third Earth 

Summit of June 1992 in Rio de Janeiro, 182 states and more than a thousand organizations 

met and discussed measures to be adopted to preserve the environment. This unprecedented 

meeting contributed to the collective awareness and the start of the Sustainable development 

era. Today, a widely accepted definition of sustainable development is: “a development that 

allows the needs of the present generation to be met without compromising the ability of 

future generations to meet their own”. Since the emergence of the sustainable supply chain 

triple bottom-line concept in the literature (Elkington, 1998), considering supply chains as 

entities converting raw materials into finished products to satisfy customer requirements have 

changed (Benita and Beamon, 1999). Figure 01 illustrates the triple-bottom-line concept. 

 

 

Figure 0 1   The triple bottom line of sustainable development 
(adapted from Elkington, 1998) 
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In fact, some of the major environmental concerns were discovered a long time ago. Among 

them, acid rain and atmospheric pollution were already established in 1872 (Cowling, 1982), 

climate change and global warming issues were noticed a few years later (Arrhenius, 1896), 

and the same goes for the ozone layer related problems in 1913 (Solomon, 1999). However, 

all these matters became of an increased interest in the late 1900s only, partly because of the 

evolution of the trends in the global industry. Nowadays, the rapidity of technology evolution 

implies an increasing variety of products with short lifecycles, thus reaching obsolescence 

faster than before (Hilletofth et al., 2018). As a consequence, the global market demand has 

increased dramatically for a wide variety of products and services in the past century (Rajeev 

et al., 2017). Moreover, since 2011, the emergence of what is called the « industry 4.0 » era 

and all the associated opportunities that will be offered to the logistics systems and 

industries, we can safely assume that this trend is going to remain in the following years. 

Indeed, we can expect to witness the emergence of supply chains that are faster and more 

performant than ever before (Hofmann and Rüsch, 2017). As a result, nowadays the natural 

resources consumption by the supply chains far exceeds the earth capacity on a long-term 

horizon. In the meantime, a population in constant growth and an industry in perpetual 

evolution in developing countries increase the risks of disruption.  

 

The supply chains worldwide being huge resource consumers and massive polluters, they 

have a major role to play in the evolution toward more sustainable practices to preserve our 

environment for future generations. Thus, the social and environmental impacts of supply 

chain activities have become key targets that cannot be ignored anymore. For that purpose, in 

the early 1970s we see the emergence of the well-known “3R” concept (see figure 02 below). 

The “3R” stand for « Reduce the waste created », « Reuse the products and materials that 

can have a future purpose » and « Recycle the items if you can » (Environmental Protection 

Agency, EPA). However, the emergence of this new state of mind in doing business also 

implies new challenges for the supply chain managers around the world, moving from a 

profit-oriented management to a more sustainable vision of operations. From this point, we 

witnessed the emergence of new challenging activities that are part of many supply chains’ 

operations these days such as : energy consumption monitoring (Shen et al., 2017), carbon 
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management (Chaabane et al., 2012, Rezaee et al., 2017), lifecycle assessment of products 

(Blass and Corbett, 2018), products’ design for end of life purposes (Zhu and He, 2017; 

Kianpour et al., 2017), clean technology investments (Chan et al., 2018), among other 

numerous topic of interest. Nowadays, considering that the above-mentioned elements play a 

role in the decision-making process, « thinking sustainable » often leads to complex supply 

chains with larger structures, many assets and multiple stakeholders involved in the process. 

 

 

       Figure 0 2   The 3R-hierarchy for sustainable development 
 

Reverse logistics opportunities 
 
Among the well-known examples of the 3R inclusion in nowadays’ society, the field of 

reverse logistics (RL) has become a critical expertise among supply chains all over the world 

(Govindan et al., 2015). It is also one of the most popular field in the academic literature on 

sustainable supply chains (Min and Kim, 2012; Agrawal et al., 2015). The term reverse 

logistics refers to activities related to the management of products that have reached the end 

of their useful life to the consumers in any way to give them an added value (Guide and Van 

Wassenhove, 2009). Usually, we qualify the standard logistics activities that convert the raw 

materials into finished products for customers as forward supply chain (FSC). On the other 

hand, among the RL operations we commonly find the collection, transportation, sorting, 
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refurbishing, recycling, reusing and also the landfilling activities (Fleischmann et al., 1997; 

Alshamsi and Diabat, 2017). Typically, in FSC management, the supply chain decision-

making process can be divided into three (3) main categories: the strategic, tactical and 

operational decision levels. While the strategic decisions focus on the supply chain 

configuration, the tactical decisions evaluate the best ways to satisfy the demand of the 

customers through aggregate operation planning. The operational decisions find ways to ship 

the orders to meet the due dates (Chopra et Meindl, 2004). These decision levels also apply 

to RL planning. Strategic decisions mainly focus on the reverse logistics network design 

(RLND), such as facility location and capacity allocation, technology acquisition and other 

long-term costly decisions, while tactical decisions focus on the flow allocation between 

logistics units such as collection centers, recycling centers and landfills. Finally, operational 

issues usually focus on lot-sizing problems, vehicle routing decision or disassembly planning 

operations (Souza, 2013). 

 

In this thesis, we will mainly focus on reverse logistics network design problems. Although 

facility location problems were introduced a long time ago (Weber, 1909), the first studies 

addressing network design problems in RL appeared around 20 years from now (Barros et 

al., 1998). From this point, we denote an increased variation in the RLND models with focus 

interests on various aspects of reverse logistics operations such as the collection (Kumar and 

Putnam, 2008), inspection and sorting (Loomba and Nakashima, 2012), disposition of the 

products (Mutha and Pokharel, 2009) and so on. In the articles proposed in this thesis, we 

will focus on the strategic RL network configuration and the tactical flow routing decisions 

through the reverse logistics channel. Indeed, as RLND decisions imply long-term costly 

strategic management that might affect the performance of the whole supply chain for the next 

decades, the supply chain managers should address them very carefully. Indeed, no matter 

how well the tactical decisions, poor choices regarding facility locations and capacity 

allocation will lead to a low RL network efficiency that fails to be sustainable (Daskin et al., 

2005). However, although it is widely recognized that sustainable reverse logistics network 

design is a topic of high interest toward seeking supply chains sustainability, the decision 

makers are often struggling with the complexity of this process that bring many challenges 
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(Govindan and Bouzon, 2018). Figure 03 provides an overview of the numerous challenges 

faced by the supply chains managers by including RL operations in their activity. 

 

 

Figure 0 3   The complexity of CLSC management (integrated FSC & RL) 
 

As a contribution, the research articles presented in this thesis aim to develop innovative 

decision-making models for sustainable supply chain management. Based on mathematical 

formulations, these quantitative models will help assisting the supply chain managers by 

providing the best decisions for RLND. We mentioned before the significance of the 3R 

actions toward sustainability. In this research, we will position on the last one, by developing 

mathematical programming models to help the decision-makers with the recycling process of 

the materials at the end of their useful life for the initial consumer. Lately, there is a critical 

need for the development of quantitative decision-making models to improve the recycling 

operations in industries, specifically in those being huge waste generators and represent 

environmental burdens for the society (Brandenburg et al., 2014). 
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Problem statement 
 
The incentives are numerous to introduce reverse logistics operations into a supply chain. 

Nowadays, there is a growing concern among customers about “buying green” and people 

think in a different way than before about the environmental consequences of their actions 

(Gunasekaran et al., 2015). From a company perspective, the fear of reputation loss and the 

pressures from customers, stakeholders and governments sure encourage to take this step 

toward the adoption of reverse logistics operations (Seüring and Müller, 2008). However, the 

complexity of the associated decisions combined with a highly uncertain environment is 

often a turn-off, putting the companies in difficult positions in many ways. To prevent the 

companies from being discouraged and giving up the inclusion of reverse logistics practices 

into their business, the governments are enforcing more and more regulations worldwide to 

ensure the global transition toward a sustainable industry.  Indeed, a wide variety of sectors is 

impacted, such as the electric and electronic equipment (Gu et al. 2016; Salhofer et al. 2017), 

the automotive (Wang et al. 2017), chemical industry (Wallbank et al. 2017), the durable 

products (Huang et al. 2017), the packaging (Arnaud, 2017), the construction industry 

(Trochu et al., 2018), among others. Compliance to these governmental laws and programs is 

one of the main reasons for the growing attention toward reverse logistics among supply 

chains lately. Indeed, refusing to comply implies at least penalty costs for the company 

(Fahimnia et al., 2015), and in the worst-case scenario the end of business activities (Koh et 

al., 2012). 

 

Among the main targets of these emerging regulations, the waste management practices are 

receiving an increased attention these days. Thus, in the sectors that are considered as huge 

waste generators, supply chains are constrained to find better ways to comply with waste 

management policies. Among the sectors under the radar of the authorities in many countries 

including Canada, the construction, renovation and demolition industry (CRD) has partly 

motivated the research presented in this thesis (Trochu et al., 2018). More specifically, the 

wood building material recovery process is increasingly controlled due to its many recycling 

opportunities. Indeed, if the CRD sector is responsible for less than 10 % of the total annual 
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waste quantity in countries such as Thaïland (Kofoworola and Gheewala, 2009), usually it is 

more common to exceed a 20 % level. For example, the CRD industry in Spain generates 

about 25 % of the total waste of the country (Rodriguez et al., 2015),  the United States reach 

a 29 % level (Falk and McKeever, 2012), while Canada generates about one third of the 

annual national waste in this unique sector (Yeheyis et al., 2013). In practice, there is no 

well-defined methodology to deal with CRD waste in an effective manner internationally. 

Each country has different average quantities of waste generated, and according to the 

different geographic areas a nation might deal with various compositions and proportions for 

each type of building materials (General Building Contractors Association, GBCA).  For 

example, southern countries such as Spain and Portugal use more concrete primary building 

structures whereas northern nations such as Finland, Sweden and Denmark are more likely to 

use wood building structures. With a very large territory and a lot of forest lands, the Canada 

is one of the countries with the highest wood building material rate inside its buildings, thus 

showing a particularly high quantity of wood in the CRD waste traditional composition 

(Yeheyis et al., 2013), as it is also the case in the province of Quebec. 

 

However, although plenty of wood building material is collected on the CRD sites in Quebec, 

today the market demand for recycled wood materials exceeds the supply coming from the 

collection centers. One of the main reasons of this problem is that although the wood is 

considered a renewable resource, a large amount of this material is landfilled when leaving 

the CRD sites (RECYQ-QUEBEC, 2014). Unfortunately, this can be partly explained by the 

poor performance of the RL network in this industry, which results in difficulties being 

competitive with the low cost of landfilling applicable in this area (MDDELCC).  

 

If the recycling of the wood building material is a complex process and the reverse logistics 

network in Quebec is not efficient, it is mainly due to the multiple uncertainties inherent to 

the RL operations in the CRD industry. Designing a performant RLND necessitate reliable 

information in order to make the best configuration decisions. In this case, we face major 

uncertainty regarding the amount of waste generated on the CRD sites, and by extension the 

amount of wood among the debris. In addition, the quality of the collected wood is also 
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highly uncertain, which greatly impact the recycling opportunities of this material. Finally, 

and not the least, the reverse logistics performance in this sector is affected by the dynamic 

nature of its collection zones (also called supply sources in this thesis). Indeed, the reverse 

logistics network is often designed in a way that minimizes the transportation distances to 

recover the materials in order to reduce transportation costs (Kara et al., 2007) and the total 

transportation time (Krishnamurthy et al., 2008), which becomes a complex task when the 

collection zones are moving from one period to another. 

 

Therefore, to ensure an effort toward sustainability in the CRD industry in Quebec, the local 

authorities are strengthening the legal framework targeting the waste management activities. 

This sector is facing waste elimination prevention measures and carbon emissions control in 

many industries, including the wood recycling processes (MDDELCC, 2016). The authorities 

in charge have already approved a regulation preventing the wood from being landfilled, 

which is expected to become effective in the near future (RECYQ-QUEBEC report, 2014). 

The main objective of this governmental action is to redirect all the wood building material 

collected from the CRD sites to certified collection centers. This way, it is expected that the 

amount of wood at the entrance and at the exit of these facilities will experience a strong 

growth in the near future, thus possibly giving an opportunity to the recycled wood products 

industry, while preventing the use of virgin wood materials when possible. However, the 

same type of legislation banning the wood material from the landfills has already been 

implemented in other countries before. This experience proved that the reverse logistics 

network for waste management has to be well-prepared to welcome such a development. 

Infrastructures’ locations and capacity allocation to deal with an increased volume of 

incoming wood are concerns that must be addressed carefully. Indeed, if the network design 

is not suitable, it may lead to illegal dumping or some containers with wood could be 

landfilled in bordering countries or provinces, as it has been the case in the past in the state of 

Massachusetts in 2006. In order to face the upcoming regulations in the best conditions in 

Quebec and learn from the past mistakes, some attention should be given to designing a 

sustainable reverse logistics network for the wood waste material in the CRD industry. 
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Below, we summarize the information provided above and make the assumptions that 

motivate this research: 

 

Assumption 1 

Considering the huge amount of waste generated in the Canadian CRD industry, there is a 

need to introduce efficient RL operations that will enable this sector to face the low 

landfilling costs and to become more sustainable in the future. 

 
Assumption 2 

Efficiency in RL activities cannot be achieved without a suited reverse logistics network 

design. 

 
Assumption 3 

Because of the multiple uncertainties targeting the wood recycling process in the CRD 

industry, the decision-makers are facing difficulties to design and operate a performant RL 

network and they would clearly beneficiate some valuable insights for this purpose. 

 
Assumption 4 

Considering the increasing number of regulations and programs targeting the CRD industry, 

a performant RLND has become a necessity to ensure sustainability in this sector. 

 
 
Thesis objectives 
 
The main objective of this thesis is to provide the supply chain decision-makers with a set of 

decision support tools for sustainable reverse logstics network design and evaluation. This 

way, by applying the proposed models to the CRD industry case study, we propose a way for 

evolving toward sustainable waste management by introducing performant RL design and 

operations. In the meantime, these quantitative decicion-support models will help supply 

chains to comply with the regulations and programs of this sector in the best possible way, 

being a mandatory requirement.  
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To fulfill these objectives, we aim to answer the following research questions:  

 

• Q1:     How are the optimal reverse logistics network configuration and performance 

 affected by the presence of dynamic supply sources and multiple uncertainties 

 targeting the collected wood waste volume and quality in the CRD industry ? 
 

• Q2:      What role can play the source-separation centers and what is the impact of the 

 source-separation strategy on the reverse logistics network configuration and 

 performance under uncertainty in the CRD industry ? 

 

• Q3:   What are the impact of environmental regulations on the reverse logistics 

 network design and performance under multiple uncertainties in the CRD 

 industry? and how does the source-separation strategy impact the compliance 

 with the regulations ? 
 

 
Figure 0 4   Thesis objectives 
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Proposed methodology 
 
To address these research questions and reach the objectives of this thesis, we will follow 

three (3) main steps as synthesized in figure 05 below. In the first step called problem 

identification, rather than solving the problem we aim to highlight the challenge faced by the 

supply chain managers when dealing with the reverse logistics operations in the CRD 

industry. In step 2 called the need for resilience, we will propose a decision-making model 

that will offer solutions to cope with the challenges previously established in step 1. This 

second step ensures the RL network design efficiency under uncertainty in an economic 

perspective (i.e. long-term economic viability).  Finally, step 3 includes the environmental 

dimension in the strategic decision-making process in order to provide a second aspect of 

sustainability: the eco-efficiency of the reverse logistics network. 

 

 

Figure 0 5   Methodological approach 
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Step 1.   Problem identification 
 

We will start by developing a scenario-based approach to evaluate and compare several RL 

network configurations and performances. These scenarios will present variations in key 

uncertain parameters that are a concern for the supply chain managers in the CRD industry. 

We will validate our model by performing experiments on a case study in the recycled wood 

CRD industry in Quebec. At this point, various performance indicators will be set to evaluate 

the impact of uncertainties on the optimal RL network configurations for the wood recycling 

process under environmental regulation. This first step represents a valuable contribution as 

the majority of the data used to conduct the case study was gathered from major players of 

the CRD recycled wood industry. Thus, the results could provide valuable insights to both 

supply chain decision-makers and to the legal entities that set the regulation parameters. 
 

Step 2.   The need for resilience 
 

In this step, we will develop a model that allows setting a resilient network that will provide 

the best configuration for a multi-period planning horizon while considering simultaneously 

a large number of scenarios (i.e. randomness outcomes). We will also introduce flexibility in 

the RL activities by allowing an alternative sorting method: the source separation. Indeed, we 

will show how this alternative sorting strategy impact the efficiency of the RL operations, 

and the comparison will be performed for low-density rural zones versus highly populated 

urban areas. To achieve network resilience, a two-stage stochastic model is developed that 

ensures coordination between highly strategic network design decisions and tactical flow 

routing matters between the collection zones, the source-separation centers, the main 

collection centers and the building material recyclers. The main objective of this second step 

is to propose a solution to face uncertainty in an economically viable manner in this sector. 

 

Step 3.   Toward eco-efficiency 
 
Finally, as an additional step toward a sustainable reverse logistics network design, we will  
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extend the previous mathematical formulation to consider the environmental regulations that 

target the wood recycling process in Quebec. The main goal of this final step is to highlight 

the trade-offs that need to be done between the economic viability of the RL operations and 

the eco-efficiency of the wood recycling process. The proposed multi-objective stochastic 

model helps understand that the source-separation strategy shows some benefits for both 

economic and environmental aspects of the supply chain operations. 

 
Thesis outline 
 
The rest of this thesis is organized as follows. In the first chapter, we review the literature on 

sustainable RLND with a specific focus on quantitative models with uncertainty. This way, 

we will highlight the theoretical gaps that we aim to fill with our own contributions. 

 

In chapter #2, we present a scenario-based approach to evaluate the impact of uncertainties 

on the RLND best decisions. We formulate the problem as a mixed-integer linear program 

that minimizes the total cost of the wood recycling process and we validate this model trough 

a case study in the Quebec CRD industry. The objective is to determine the location and the 

capacities of the sorting facilities to ensure compliance with the wood landfilling prevention 

regulation and prevent the wood from being massively landfilled. The results of this study 

show that the adjustment of the reverse logistics network leads to the reduction of wood 

recycling cost due to the improved efficiency of sorting facilities and the economy of scale 

achieved under the new policy.  

 

In chapter #3, instead of addressing the scenarios one by one, we will present a two-stage 

stochastic programming model for reverse logistics network design under uncertainty. We 

solve this model with a Sampling Average Approximation procedure, being an approach 

allowing to deal with a significant number of scenarios simultaneously. By doing so, the 

model provides the optimal RLND over multiple outcomes for the random parameters in a 

multi-period planning horizon. However, in this paper we emphasize the importance of 

including the SSC to address the challenge of the dynamic supply sources and the uncertain 
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quality of the materials. Indeed, source separation and shipments consolidation are performed 

at the SSC to increase the productivity level at the collection centers. We compare the 

efficiency of using the source-separation strategy in low-density rural collection zones versus 

in high-density urban areas, where the waste collection activities are often more challenging. 

The results indicate that the flexibility provided by the SSC improves the performance of the 

RL network, especially in the case of high-density urban areas. 

 

In chapter #4, we develop a novel multi-period, multi-echelon and multi-objective two-stage 

stochastic model under environmental constraints for eco-efficient RLND. This last article 

includes the environmental dimension of sustainability as a second objective of the model. 

This way, we will be able to evaluate the trade-offs between the profits of recycled materials’ 

selling versus the environmental impact of the RL operations under both landfilling and 

greenhouse gases emission constraints. Indeed, the case study on the wood recycling 

processes in the CRD industry reveals that under quality uncertainty, recycling the wood can 

be harmful to the environment. In addition, as we include an emission control system in this 

last model, recycling poor quality wood leads to additional costs that penalize the RL 

network efficiency. The experiments demonstrate the difficulty for the network to achieve 

both regulation compliance and eco-efficiency in the meantime in an uncertain environment. 

 

Finally, concluding remarks are given at the end of this work, along with a discussion of the 

future potential research related to our topics. 

 

Research contributions 
 

Article 1 (Chapter #2). To the best of our knowledge, analyses that consider variations in the 

locations of the supply sources while making reverse logistics network design decisions are 

unavailable.  Indeed, this characteristic is very specific to the CRD industry, a sector that has 

been neglected in terms of reverse logistics studies (Govindan and Bouzon, 2018). Moreover, 

a second contribution is proposed by validating the model in the Quebec CRD industry, using 

real data gathered from the major players of the recycled wood industry in this area.  
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Article 2 (Chapter #3). In the first article, we establish that the RLND is very sensitive to the 

uncertainty targeting the suppliers’ location, the material quality and the volume of material 

collected. To our knowledge, no stochastic model addresses the RLND problem considering 

this combination of uncertainty over a multi-period horizon. By developing this model, we 

aim to provide valuable insights to the supply chain decision-makers in this industry that will 

allow them to build a resilient RLND over many possible outcomes in the future. 

 

Article 3 (Chapter #4). In this article, we extend the formulation presented in article 2 to 

include a second objective function and additional constraints related to the environmental 

regulations. To the best of our knowledge, there is no advanced multi-objective stochastic 

formulation that captures the characteristics of the CRD industry for eco-efficient reverse 

logistics network design purposes. Moreover, traditionally objective functions (OF) are profit 

or cost-oriented, however, in this article we study an innovative OF that minimizes the 

landfilling flows to adapt to a new environmental regulation. Finally, usually the process of 

controlling the emissions targets the product design and procurement (Ren et al., 2015), 

manufacturing processes and technologies (Chaabane et al., 2012), the RL facilities in use 

(Kannan et al., 2012), but mainly the transportation activities (John and Sridharan, 2017). 

However, in this study, we account for the emissions of the customers’ activities, being an 

entity that is often neglected in the emissions accounting process, although we believe it is 

relevant since we consider a supply chain collaboration perspective toward sustainability. 

 

The work presented in this thesis has led to the publication and submission of three (3) peer-

reviewed journal articles, which are presented in detail in chapters #2 (Resources, 

Conservation & Recycling Journal), chapter #3 (Waste Management Journal) and chapter #4 

(Journal of Cleaner Production). In addition, our research findings and contributions were 

submitted, accepted and presented to seven (7) international conferences including the 

International Conference on Modeling, Optimization and Simulation (MOSIM), the 

conference on International Logistics Systems (ILS), European Conference on Operational 

Research (EURO), International Conference on Advanced Logistics and Transport (ICALT) 

and the international conference on industrial engineering (CIGI), among others. 
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CHAPTER 1 
 
 

LITERATURE REVIEW 

1.1 Fundamentals of reverse logistics in sustainable supply chains 

Nowadays, it is widely acknowledged that reverse logistics has a leading role to play toward 

seeking sustainable supply chains. The term reverse logistics refers to operations related to 

the management of products that have reached the end of their useful life to the consumers in 

any way to give them an added value (Guide and Van Wassenhove, 2009). Reverse logistics 

practices have been recognized to be a powerful mean to reduce materials and products’ 

waste at their end of life, mainly by reusing some parts, repairing, refurbishing or recycling 

others, and ultimately by eliminating the unusable parts in a proper way (Fleischmann et al., 

1997). Thus, today reverse logistics is a critical area of expertise among supply chains. This 

increased popularity explains why RL is one of the most popular fields in the literature on 

sustainable supply chains over the past decade. Indeed, this field is constantly evolving and 

providing the supply chain managers with innovative decision-making models to support 

them in their quest of sustainability (Min and Kim, 2012; Agrawal et al., 2015; Govindan and 

Bouzon, 2018). 

 

In this chapter, we will focus on the theoretical background on reverse logistics in sustainable 

supply chains. Although this review has not the pretention to be exhaustive, our goal is to 

provide a representative overview of the existing models that address RLND decision-

making among supply chains. Although the first part of this review addresses reverse 

logistics topics in general, the second part, however, will be more focused on strategic 

reverse logistics network design models. The last part of this analysis provides specific 

emphasis on the range of applications of RL in the construction industry, as it will allow 

highlighting our contributions. Finally, we will conclude this review by identifying the 

research gaps we aim to fill with this thesis. 
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1.1.1 Incentives toward reverse logistics 

Today, factors that influence RL adoption are numerous (Seüring and Müller, 2008). While it 

is often perceived as an initiative to look for a positive brand image of green supply chain 

(Srivastava, 2007), some firms actually manage to realize profits through the RL operations 

(Cline et al., 2015). Indeed, nowadays, there is a growing consciousness among customers 

toward “buying green”. A recent survey declares that more than 80% of the responders are 

actually considering the product “greenness” when making purchasing decisions (Hong and 

Guo, 2018). Moreover, an increasing number of customers (nearly 3 out of 4) are willing to 

pay higher fees or taxes for buying green (Zhao et al., 2014).  

 

In addition from the economic incentives coming from their customers, companies are facing 

pressures from stakeholders (Schaltegger and Burritt, 2014; Meixell and Luoma, 2015). For 

example, Mathivathanan et al., (2018) proposed a framework model based on DEMATEL 

methodology (Decision Making Trial and Evaluation Laboratory method) to cope with 

multiple stakeholders’ perspectives in the Indian automotive industry. The authors claim that 

the evaluation of the similarities and differences between the multiple supply chain 

stakeholders leads to increase the chances of success to reach sustainability in supply chain 

management. Supply chains are also facing pressures from various environmental groups 

(Luthra et al., 2016). Again, quantitative methods have been developed to tackle this problem 

such as the structural equation model (SEM) proposed by Yang, (2018) that analyses the 

effects of institutional pressures on the green supply chain performance in the container 

shipping industry. Finally, the main source of pressure probably comes from the authorities 

(Rajeev et al., 2017). Indeed, an increasing number of regulations are emerging such as the 

extended producer responsibility framework targeting multiple product categories, for 

example electronics (Temur and Bolat, 2017), vehicles (Demirel et al., 2016), plastics (Bing 

et al., 2015), construction material waste (Trochu et al., 2018) and so on. The goal of these 

legislations is to force supply chains to move toward sustainable practices in their business 

activities. 
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1.1.2 Reverse logistics decision levels 

The pressures coming from these various institutions are forcing supply chains either to 

anticipate, or at least to react and find their own way toward sustainability. Adopting RL 

practices among companies represent an opportunity to improve the brand image, satisfy the 

multiple stakeholders and comply with the legal framework (Seüring and Müller, 2008). 

However, there is a wide range of decisions to be made in the field of reverse logistics. As it 

is the case in the classical forward supply chain management, these decisions are traditionally 

divided into three (3) main decision levels: the strategic, tactical and operational levels. 

Regarding reverse logistics, strategic decisions mainly focus on the network design, such as 

facility location and capacity allocation decisions, the technology acquisition and other long-

term costly decisions. The tactical decisions focus on the flow allocation between logistics 

units such as collection centers, recycling centers and landfills. Finally, operational issues 

focus on lot-sizing, vehicle routing or disassembly planning operations (Souza, 2013). 

 

All three decision levels have been explored in the literature, especially in the past decade. 

Among the strategic models, reverse logistics network design is a field of great importance 

that has been addressed by many authors (Kannan et al., 2012; Soleimani and Govindan, 

2014; Govindan et al., 2016; Fattahi and Govindan, 2017; Trochu et al., 2018). For a more 

exhaustive review of RLND models, the reader is referred to (Akçali et al., 2009; 

Chanintrakul et al. 2009; Sheriff, 2012; Eskandarpour et al; 2015). The RLND decisions are 

among the most important in order to ensure the whole supply chain sustainability. Indeed, 

these are long-term costly decisions that will impact the network behavior and performance 

over many years, even decades. No matter how well the tactical and operational levels are 

managed, if the network configuration is not adapted, it will affect the whole supply chain 

performance and the chances of success toward reaching sustainability. Except the network 

design problems, the other main strategic topic addressed in the models is the investment 

decisions into green technologies (Hu et al., 2015; Saberi et al., 2018). Some models also 

address network design and technology selection at the same time (Rezaee et al., 2017; Rad 

and Nahavandi, 2018). 
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We also denote a large number of models addressing tactical concerns. Among them, the 

very large majority are targeting the physical flows going through the network (Lieckens and 

Vandaele 2012; Demirel et al., 2016; Bal and Satoglu, 2018). An extended review of the 

tactical RL decision models is provided by Govindan et al., (2015). It is important to denote 

that some of the strategic models consider the network design and the tactical flow routing 

decisions simultaneously (Yu and Solvang, 2016; Rezaee et al., 2017; Trochu et al., 2018). 

 

As we mentioned, network design and flow routing through the reverse logistics networks are 

the main decisions addressed in the strategic and tactical levels respectively. However, it is 

more difficult to extract a predominant topic from the literature targeting operational models. 

Indeed, operational decision-making models address pricing decisions between supply chain 

partners (Atasu et al., 2013), production rates and lot sizing for products returns (Feng et al., 

2013; Sifaleras and Konstantaras, 2017; Zouadi et al., 2018), optimal order quantitites 

(Abdallah et al., 2012; Panagiotidou et al., 2013;  Shekarian et al., 2016; Zeng and Hou, 

2018), inventory related decisions (Alinovi et al. 2012; Kaya and Urek, 2016; Hiassat et al., 

2017), routing decisions or trucks loading issues (Gamberini et al. 2010; Kassem and Chen, 

2012; Niknejad and Petrovic, 2014; Zhalechian and Tavakkoli-Moghaddam, 2016; Qiu et al., 

2018), among other topics. 

 

1.1.3 Reverse logistics activities among supply chains 

For all the decision level assessed by the models, their goal is usually to provide the supply 

chain managers with useful insights regarding the best reverse logistics decisions. Multiple 

RL activities benefit from such decision-making tools, among them one of the most popular 

topics in the RL literature is the management of product returns through the reverse logistics 

channel (Agrawal et al., 2015). Indeed, forecasting product returns has a great impact on the 

best reverse logistics network design and various quantitative models have been developed 

for this purpose, using for example simplex theory (Chen and he, 2010), flow analysis (Yu et 

al., 2010), analytic models (Shih et al., 2012), Bayesian estimation (Krapp et al., 2013), or 

fuzzy methods (Temur et al., 2014). In addition, many stochastic models consider the return 



21 

of the products as an uncertain parameter so that they can deal with it in the best manner 

under many possible outcomes (Ayvaz et al., 2015; Jeihoonian et al., 2016;  Fattahi and 

Govindan, 2017; Srinivasan and Khan, 2018). After the estimation of product returns and 

their collection in the RL channel, several RL operations can be performed. The products and 

parts can be reused if their quality level allows it, they can be repaired or remanufactured in 

case of a lower quality, or finally they may be recycled for another purpose. If no additional 

value can be obtained from the returned materials, their disposition is the last recourse. Thus, 

optimization models are developed to help with each of these operations in order to make the 

best decisions. Some of them cope with the reusing activities (Diabat et al., 2013; Dai and 

Wang, 2014; Cole et al., 2018), repairing and remanufacturing operations (Ramezani et al., 

2013; Lieckens et al., 2013; Eskandarpour et al., 2014; John and Sridharan, 2017; Liao, 

2018), the recycling processes (Zeballos et al., 2012; Lundkvist et al., 2013; Subulan et al., 

2015; Demirel et al., 2014; Ardjmand et al., 2015; Zhang and Ding, 2017; Rahimi and 

Ghezavati, 2018; Trochu et al., 2018), and ultimately some models address the disposition 

decisions for the collected products and parts (Hazen et al., 2012; Agrawal et al., 2016; Singh 

and Agrawal, 2018). Again, regardless of the decision level of the above-mentioned models, 

it is important to note that a majority of these problems consider the transportation decisions 

through the RL channel. 

 

1.2 Focus on sustainable RL network design optimization models 

The previous section provided the reader with an overview of the various activities part of 

the RL processes among supply chains. We reviewed the quantitative models developed to 

help the managers making decisions to perform these operations, from either a strategic, 

tactical or an operational perspective. Moreover, we started by explaining the various 

incentives that may lead supply chains to include reverse logistics practices into their 

business. However, in the following section, we focus on recent quantitative optimization 

models for sustainable RL network design, as it falls into the category of models that we 

present in chapters 2, 3 and 4. 
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1.2.1 Deterministic reverse logistics network design models 

As the interest toward RL has grown recently, we denote a significant number of academic 

publications that address RLND matters. Our goal here is not to provide an exhaustive 

review of these models, but rather to highlight some of the trends among those that were 

recently published. To do so, we selected what we believe to be 10 representative research 

papers and we analysed their content. These models were selected based on three (3) criteria: 

they are all reverse logistics network design models (1), single objective and deterministic 

MILP (2), and published in peer-reviewed journals in the last three years 2016-2017-2018 (3). 

More advanced multi-objective and stochastic models will be reviewed in the next sections. 

Below, table 1.1 synthesizes the information regarding the selected content. 

    
Table 1.1   Recent quantitative models for sustainable RLND (2016-2017-2018) 

 

 

Authors (year) Focus Commodities Periods Sector Contribution to sustainability

Demirel el al., (2016) Recycling 
operations

SC MP Automotive An innovative model for vehicle recycling 
regulation compliance in Turkey

Keirkah and Rezai (2016) Cross-docking 
operations

MC SP General Evaluation of cross-docking operations in the 
context of reverse logistics

Zandieh and Chensebli (2016) Products collection 
& recovery

SC SP General Development of an original metaheuristic for 
solving NP-hard RLND problems

Alshamsi and Diabat (2017) Products 
remanufacturing

MC MP Household 
appliances

Development of an new efficient Genetic 
Algorithm to solve large-scale problems

Budak and Ustundag (2017) Waste collection & 
disposal

MC MP Healthcare Case study for waste treatment optimization in 
the healthcare sector in Turkey

Guo et al., (2017) E-waste recycling MC MP E-commerce  Application of combined heuristics to reduce 
the recycling costs of E-products in Shangaï

Kannan et al., (2017) E-waste recycling MC MP E-commerce Analyzing the benefits of using 3PRL to 
minimize the cost of RLND for recycling

Li et al., (2017) Collection & repair 
operations

SC SP General Development of a performant algorithm for 
enhanced local search for large-scale RLND

John et al., (2018) Products collection 
& recovery

MC MP Refrigerators Innovative model for the recovery of used 
parts of refrigerators in India

Trochu et al., (2018) Recycling 
operations

MC SP CRD industry An innovative model for wood recycling under 
regulation compliance in Canada

SC: Single Commodity; MC: Multiple Commodities; CRD: Construction, Renovation & Demolition; RLND: Reverse Logistics Network Design; 
3PRL: Third Party Reverse Logistics Providers; E-Waste: Electronic Waste; NP: Non-Polynomial
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As our first paper (later presented in chapter #2), matches the above-mentioned criteria, we 

decided to include it in table 1.1.  Overall, MILP is the most popular modelling technique for 

optimizing reverse logistics network design activities. Among them, a majority presents 

multi-product networks while the proportion of single versus multi-period models is quite 

similar. Although the trend suggests that waste collection and recycling are the main topic 

under study (Demirel et al., 2016; Guo et al., 2017; Kannan et al., 2017; Trochu et al., 2018), 

a wide variety of other RL activities have been considered such as the recovery (Zandieh and 

Chensebli, 2016; John et al., 2018) the repairing (Li et al., 2017), the remanufacturing 

(Alshamsi and Diabat, 2017) and also the disposal of the products that are not reusable in any 

way (Budak and Ustundag, 2017).  

 

In the past, the trend was to build generic models. Indeed, these formulations were applicable 

to many industries and as a result, there was a lack of quantitative models that were able to 

capture the characteristics of specific sectors (Brandenburg et al., 2014). However, as 

suggested in table 1.1, lately we witnessed an increased number of optimization models 

applied to specific sectors. One of the main reasons for this evolution is the growing number 

of environmental regulations and programs targeting supply chains in many countries. Thus, 

because the requirements of these legislations are targeting specific sectors and commodities, 

there is a need for the models to adapt and be more industry-related in the meantime. As we 

can see in table 1.1, increasing recycling rates of products under regulation is an increasingly 

popular contribution of the research papers toward sustainability (Demirel et al., 2016). 

 

1.2.2 RL network design under uncertainty: a focus on stochastic models 

Uncertainty being a major concern in RL optimization, an increasing number of models are 

considering it in order to be more realistic. Although there are various approaches for 

uncertainty modeling such as fuzzy methods (Govindan et al., 2016; Soleimani et al., 2017) 

or robust optimization (Entezaminia et al., 2017; Haddadsisakht and Ryan, 2018), this section 

essentially reviews stochastic optimization models applied to sustainable RLND problems, as 

the research presented in chapters 3 and 4 fall into this category. 
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Stochastic optimization models are usually divided into two (2) different approaches. The 

first one is known as the two-stage stochastic modeling, which uses two types of decision 

variables. The first type is fixed before observing the uncertainty outcome and is called first-

stage decision variables, while the second type is released only after the realization of the 

randomness and known as second-stage decision variables or recourse actions (Birge and 

Louveaux, 1997). Multi-stage stochastic programming modeling with recourse is a 

formulation that extends the two-stage stochastic models by allowing the revision of the 

decisions at each stage, based on the realization of the uncertainty. In multi-stage stochastic 

models, the focus is on the decisions to be made today considering current resources, future 

outcomes and possible corrective actions in the future (Kall and Wallace 1994, Kall and 

Mayer 2005). In this section, we will focus on recent contributions that use stochastic models 

for RLND using the two-stage or the multi-stage stochastic approaches.  

 

A major concern or RLND is the uncertainties related to the market demand for new and 

recycled products and/or the quantity of goods returned by the consumers that will be treated 

through the reverse logistics channel (Baptista et al., 2012; Zeballos et al., 2014; Srinivasan 

and Khan, 2018). This trend inevitably leads to consider critical issues such as uncertainty in 

the pricing of the new or recycled products and parts (Soleimani and Govindan, 2014; Fattahi 

and Govindan, 2016; Yu and Solvang, 2017) and the capacity of the reverse logistics supply 

chain to process the potential returned flows (Chouinard et al., 2008; Ramezani et al., 2013). 

Although there is a growing concern about developing innovative stochastic models that 

include a wider variety of unknown parameters, few studies focused on the uncertainty in the 

quality of the products and materials collected through the RL channel (Kara and Onut, 2010; 

El-Sayed et al., 2010; Zeballos et al., 2012). For instance, Ayvaz et al. (2015) are one of the 

first studies that developed a generic two-stage stochastic RLND formulation that includes 

the unknown returned product quantity, the uncertain sorting ratio at the collection facilities 

and the uncertain transportation costs between the nodes of the network. However, 

information about the material waste quality is a critical element in many sectors in order to 

manage RL activities properly. This is especially true in the CRD industry, where the 

returned materials are often suffering extensive damage (Sobotka and Czaja, 2015).  
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More recently, the design of sustainable reverse logistics networks has become a significant 

challenge. Therefore, new stochastic models have been developed that consider uncertainty 

regarding social and environmental parameters such as greenhouse gases (GHG) emissions 

levels (Pishvaee et al., 2012) and carbon tax rates (Haddadsisakht and Ryan, 2018). The 

model of Yu and Solvang (2016) takes into consideration both economic performance and 

environmental impacts in the decision-making process. The environmental impacts are 

evaluated in terms of carbon emissions and the optimal solutions are generated for a case 

study in the WEEE industry. Another work from Yu and Solvang (2017) also consider 

uncertainty targeting the profits and government subsidies for repairing and recycling the 

products in the RL channel. 

 

1.2.3 Multi-objective reverse logistics network design models 

Instead of simply including environmental and social parameters in the mathematical 

formulations, some efforts toward sustainability are also made by considering additional 

objective functions. This way, it allows giving more importance to the environmental or 

social criteria if required by the supply chain decision-makers. During the past decade, a 

growing attention has been payed to multi-objective optimization models. In practice, 

decision-making in RL involves several objectives that can be in conflict with one another. In 

such problems, the multi-objective approach is used to balance the trade-off among the 

different conflicting objectives. In multi-objective optimization, the optimal trade-off 

between the objective functions is called the “Pareto optimal solution”, also called the 

efficient solution. It actually represents the set of solutions that cannot be improved without 

decreasing the performance of at least one of the objectives of the model (Mavrotas, 2009).  

 

Multi-objective optimization has been used in recent research problems in order to include 

more than the only economic dimension of sustainability. For example, network design 

problems have been addressed while considering both costs and GHG emission minimization 

objectives (Chaabane et al., 2012). The work of Devika et al., (2014) even compared 

solutions to a multi-objective CLSC network design problem integrating the three 
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dimensions of sustainability. Yu and Solvang (2016) present a multi-objective MILP that 

selects facility locations for treatment, recycling and disposal sites. The model also makes 

decisions regarding the technology choice for hazardous waste treatment and transportation 

flows. Two objective functions are presented, minimizing both the costs of the network 

operations and the risk of the local residents regarding hazardous waste treatment. Another 

multi-objective MILP in the area of hazardous waste management is developed by Yilmaz et 

al., (2017) that minimizes the cost of transportation, while minimizing the risks on both the 

public health and the environment. Soleimani et al., (2017) considered profit optimization, 

reduction of the lost working days due to occupational accidents, and maximizing the 

responsiveness to customer demand. Based on these, the proposed CLSC network design 

model makes decisions regarding product, components and raw material recycling through 

the RL channel. In the electronic sector, Tosarkani and Amin (2018) propose a multi-

objective model to maximize the total profit, green practices, and on-time delivery while 

minimizing the rate of defect in the RL channel. Finally, in the home appliance sector, 

Zarbakhshnia et al., (2019) present a multi-objective model, which first objective is to 

minimize the operation costs, processes, transportation, and fixed costs. The second objective 

is to minimize the amount of emissions, and a third objective function optimizes the number 

of machines required in the production line. 

 

1.2.4 Advanced multi-objective stochastic formulations 

Even though a lot of progress has been made developing RLND models during the last two 

decades, very few of them address multiple objectives and uncertainty at the same time. 

Indeed, while the first quantitative models for reverse logistics network design problems 

emerged in the 1990s (Fleischmann et al., 1997), more advanced formulations such as multi-

objective stochastic models (MOSM) are still recent. Among the first research to propose 

such models, Amin and Zhang (2012) developed a MOSM for strategic decisions regarding 

plants and collection centers’ locations for product recovery, and tactical flow decisions. The 

objective functions minimize the total cost while maximizing the use of friendly materials 

and clean technologies at plants. In this work, the ε-constraint and the weighted-sums 
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methods are compared. The demand and return of the products in the RL channel are 

considered as uncertain parameters. The proposed example in the copier remanufacturing 

industry shows the superiority of the ε-constraint method.  

 

While most of the consider the demand parameter as the main source of randomness, there 

are still few of them that consider uncertainty related to the quality issues (Vahdani and 

Mohammadi, 2015; Azadeh et al., 2016) while it is an aspect that can impact the feasibility 

of the network design decisions (Trochu et al., 2018). In addition, although the large majority 

of the models are cost or profit-oriented, recently some authors felt the need to address 

different types of goals such as maximization of on-time delivery or waiting time 

minimization (Amin and Zhang, 2012), maximization of the service level (Feito-Cespon et 

al., 2017), risk minimization (Zeballos et al., 2016) and GHG emissions minimization 

(Ameknassi et al., 2016; Yuexin and Yunwei, 2017). Very recently, Fatollahi-Fard and 

Hajiaghaei-Keshteli, (2018) developed a MOSM that considers a cost-minimization function 

and a social objective function quantifying the risk of work injuries and job opportunities.  

 

In addition, the model developed in Tosarkani and Amin (2019) apply a MOSM for 

optimizing the CLSC network design in a case study in the region of Winnipeg in Canada. 

Different scenarios are proposed to maximize the profits, while maximizing the 

environmental compliance of suppliers, plants, and battery recovery centers in the meantime. 

Finally, models including the three dimensions of sustainability are emerging. The work of 

(Feitó-Cespón et al., 2017) integrates economic, environmental and social objectives to 

support the strategic facility location decisions, the material flow and the transportation mode 

selection. The environmental impact objective is assessed through the LCA methodology 

using the Eco-indicator 99 approach. In addition, the research of Rahimi and Ghezavati 

(2018) presents a model including three simultaneous objectives, being the profits and the 

social impact maximization along with the environmental effect minimization. In this paper, 

the network design problem has a stochastic demand for the recycled products and for the 

rate on investment. In order to cope with the uncertainty, the authors consider a risk averse 

two-stage stochastic formulation, where the conditional value at risk (CVaR) is measured. 
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1.3 Reverse logistics in the construction industry 

After providing the basic concepts of RL activities, we focused on the quantitative RLND 

models and highlighted their critical importance toward pursuing sustainability in supply 

chain operations. However, in the next section, we will bring specific attention to the main 

topics addressed in the CRD waste management literature. Although waste management is 

part of the RL activities, we will highlight the lack of studies that consider a logistics 

perspective in this sector, being one of the gaps filled by the models developed in this thesis. 

 

1.3.1 Legal framework: a sector under the radar of the authorities 

As the CRD companies worldwide are increasingly controlled, many of them are trying to 

improve the recovery rates of building materials. The reasons for this are very similar to the 

traditional incentives toward RL adoption among companies as mentioned in section 1.1.1. 

According to a survey conducted on 74 building companies in Spain, those reasons are 

mainly costs reduction (55%), increasing the firms’ competitiveness (65%), sustainability 

commitment (70%), trying to improve the companies’ image (75%). Finally, over 80% of the 

respondents mention their goal is to comply with environmental regulations (Gangolells et 

al., 2014).  

 

Indeed, the CRD industry has its own legal framework. Mainly, we denote a few recurrent 

regulations in this industry internationally. The most popular scheme is the requirement of a 

minimum recycling rate after leaving the CRD sites. It is the case for example in the 

European Union, targeting a 70% recovery level to building contractors (Pacheco-Torgal, 

2014). To get the approval of the authorities, the contractors have to prepare a recycling plan 

specifying how building material waste is going to be recovered (European Union Waste 

Framework Directive, EU-WFD). In addition, many countries have their own legislations 

regarding specific recycling policies. Among the recurrent programs that aim to reduce the 

CRD waste, we denote an increasing popularity for the banishment of some specific 

materials from landfilling, such as asphalt, brick, pavement, gypsum and wood. Sometimes, 
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building materials are still landfilled incurring a simple tax, but lately the trend is to strictly 

forbid these practices. Finally, more and more countries are starting to encourage the reuse of 

CRD waste in new building constructions through the development of some recycled product 

standardizations. It was the case for the use of recycled concrete made with a mix of waste 

aggregates in Finland (2011) and in Germany (2012). Although the recycled aggregates are 

mainly used for concrete production (Silva et al., 2014), it is also an option for other matters 

such as geotechnical applications (Cardoso et al., 2016), mortars (Katz and Kulisch, 2017), 

paved bike lanes (Tavira et al., 2018) and so on. Although lately there is a discussion 

regarding the possibility to impose recycled building material rates into the new building 

constructions. However, to the best of our knowledge this type of policy has not been legally 

implemented yet (Galvez-Martos et al., 2018). To conclude, the CRD sector is facing its own 

challenges in terms of reverse logistics requirements and regulations. Unfortunately, the next 

sections will show that it has been neglected in terms of RLND modelling efforts. 

 

1.3.2 Estimation of the waste quantity generated 

A few topics are recurrent in the literature on CRD waste management. One of them refers to 

the efforts that are made for waste quantity estimations. Indeed, one of the particularities of 

this sector is that it is very difficult to anticipate the amount of building material waste in 

advance. Among the papers addressing this problem, Solis-Guzman et al., (2009) used a 

hundred real CRD projects to develop a model calculating three key coefficients.  Thus, they 

estimated the expected packaging volume left on site, the demolished volume, and the 

volume of debris generated. The developed formulas were applied to two (2) real case studies 

in Spain to prove the efficiency of this model. Later, Lage et al., (2010) managed to estimate 

the expected waste quantity of a specific geographic area by studying real data on the surface 

of new buildings, renovation and demolition sites. The authors used their work to estimate 

the waste generation per surface for several building materials and anticipate the quantities 

and proportions of CRD debris in the region of Galicia for the year 2011. Only for the 

construction sites this time, Katz and Baum (2011) monitored several building constructions 

and developed a predictive model allowing calculating the waste accumulation during the 
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process. This work underlines an interesting correlation between the duration of the project 

and the amount of waste generated. Indeed, the authors found that for large building 

constructions (7000 m2 and more), the waste quantity generated was growing exponentially 

in the time. Al-Sari et al., (2012) also focused on construction projects only and used a 

regression model evaluating correlation between waste generation and sustainability 

commitment of the CRD managers in Palestine. In addition, along with the behaviour of the 

contractor, the surface area of the construction site was proved a determinant factor while 

estimating the expected amount of debris generated. Finally, a very recent work from Li et al. 

(2016) proposed a quantitative construction waste estimation model using the mass balance 

principle, work breakdown structure, wastage levels of different building materials and so on. 

The authors claim that this model allows improving the accuracy of construction waste 

generation estimation. Ram and Kalidindi (2017) determined waste generation rates through 

a regression analysis in order to estimate the CRD waste generated in the Indian city of 

Chennai based on 45 case studies. The authors claim their estimation method could be useful 

for the local authorities to estimate CRD waste in case of a lack of available data on site. 

Finally, Saez et al., (2018) state that the waste quantity estimation techniques for building 

renovation can be quite different than in the case of new constructions. Thus, the authors 

used two (2) pilot sites to collect the necessary data to estimate waste generation ratios and 

highlight the differences between material types among the waste generated. 

 

1.3.3 Evaluating the recovery opportunities for the collected material waste  

A second topic of interest is the recovery process and the recycling opportunities of building 

materials. Indeed, collecting real data from building companies in Spain, Mercante et al., 

(2012) studied the life cycle of CRD waste including storage in containers, recovery process 

and landfilling. Based on different impact category factors, the authors showed that the 

environmental impact of the CRD waste is severely affected by 3 activities in particular: 

transportation, sorting, and landfilling. Yuan and Shen (2013) analyses different waste 

management strategies by applying S.W.O.T (Strength, Weakness, Opportunity and Threat) 

methodology in a case study in China. Based on data mainly collected from governmental 
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reports, literature review and group meetings, this work aims to provide construction 

stakeholders with a better understanding of the opportunities and threats of the immature 

market for recycled products in this specific geographic zone. Udawatta et al., (2015) 

published a case study in Australia. Based on interviews and surveys of building contractors 

in the region, the authors present a mixed qualitative and quantitative approach minimizing 

on-site waste generation. Several factors such as the providing of waste management 

guidelines, building supervision and innovation in recovery decisions suggest that two (2) 

parameters have a great influence on waste generation: the technology used and the 

managers’ attitude toward sustainability. Di Maria et al. (2016) used a new methodology 

based on image analysis technique to evaluate the size range of CRD aggregates entering the 

sorting centers. This method was tested in a sorting plant and allowed achieving recovery 

rates up to 85% for the recycled aggregates. This recovery rate revealed to be above the 

quality achievable with manual sieving or laser diffraction. As there are still promising 

recycling and recovery opportunities to be discovered in the future for building material 

waste, this field is in constant evolution in the literature (Jin et al., 2017; Tavira et al., 2018). 

 

1.3.4 Facility location assessment 

Among the research addressing facility locations in the CRD industry, Banias et al., (2010) 

used multi-criteria analysis to evaluate the optimal location for the facilities. The proposed 

approach takes into consideration the three dimensions of sustainability: economic, 

environmental and social. As part of the data set was estimated by the authors, a sensitivity 

analysis is performed on the key indicators: the financial viability, the environmental quality 

and the acceptance of the local citizens. The proposed framework is applied to a case study in 

Greece. Another multi-criteria analysis is proposed by Dosal et al., (2012) in the region of 

Cantabria in Spain. The goal of this work is to help local building contractors to comply with 

the European EU-WFD imposing 70% recovery rates for the waste leaving the CRD sites. 

Once again, the authors chose to consider the three dimensions of sustainable development to 

make a decision regarding the potential locations of the recycling units. The conclusion of 

this paper underlines the importance of considering uncertainties while making a location 
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decision due to the very high investments required to operate such an infrastructure. Also in 

Europe, Coelho and de Brito (2013) present a CRD waste recycling plant optimal location 

problem in Portugal. Still under the EU-WFD framework, this work studies the location and 

the design of a recycling facility considering the expected building material proportions at 

the entrance. The building material types considered are concrete aggregates, wood, glass, 

plastics, paper and cardboards, iron, steel, and insulating materials. The optimal location 

decision method uses the average transportation distances and waste quantities involved 

according to the population density of the geographic zone.  

 

Although not focused on facility location, the work of Rodriguez et al., (2015) studies the RL 

network for CRD waste management in Spain. This work promotes the use of recycled 

aggregates into new building constructions. However, the authors performed very thorough 

analyzes on the characteristics making recycling plants more performant. What emerges from 

the conclusion of this work is the importance to classify CRD waste into quality categories, 

the maximum reasonable transportation distance from a recycling facility of around 30 km, 

and the need for more governmental implication and incentives to help the recycling industry 

to develop in this country. Finally, a MILP model is proposed by de Andrade et al., (2018) to 

assess the best RLND and minimize the costs for waste management in the CRD industry. 

With a specific focus on the recycling plants, a case study in the Lisbon Metropolitan Area 

shows that the landfilling still remains an attractive option compared to highly technological 

recycling plants that are not economically viable. 

 

1.4 Discussion on the research gaps 

The construction, renovation and demolition industry is responsible for nearly 10% of total 

water use, 40% of the global energy consumption, 40% of raw materials extraction, thus 

representing around 32% of the world resources consumption and 35% of the global 

industrial waste generation (Construction Materials Recycling Association, 2005). Moreover, 

the CRD sector accounts for almost 25% of total virgin wood use, which makes it a major 

player in terms of potential environmental damage (GBCA, 2009).  
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The implementation of sustainable waste management practices is, indeed, a hotspot for this 

industry. However, although a performant reverse logistics network design is essential to the 

success of sustainable waste management operations, the CRD industry has not been payed 

enough attention yet in this domain compared to sectors such as automotive, electrics and 

electronics, food, or packaging’s among others (Souza, 2013; Agrawal et al., 2015). Indeed, 

from a general perspective, there is a lack of quantitative models that address the specific 

needs of industries being an environmental burden for the society (Brandenburg et al., 2014).  

 

As the CRD industry is among the biggest waste generators in many countries, some 

important efforts have been made to estimate the amount of waste generated and the recovery 

opportunities for the collected CRD materials. Thus, it is legitimate to evaluate the network 

configuration that will provide the best performance in terms of waste collection, process, 

transportation and distribution. However, we deplore a lack of advanced mathematical 

formulations that take into consideration the specificities of this sector in order to make the 

best decisions toward RL network design and performance. The supply chain decision-

makers could really use such formulations that capture the key uncertainties, challenges and 

constraints of this sector. By filling these gaps, these decision-support models could also 

provide useful insight to the authorities about the potential risks of setting environmental 

targets that are too ambitious and could endanger the sustainability of the reverse logistics 

operations. 
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Abstract 
 
This paper addresses the reverse logistics network (RLN) design problem under 

environmental policies targeting recycled wood materials from the construction, renovation 

and demolition (CRD) industry. The main objective is to determine the location and the 

capacities of the sorting facilities to ensure compliance with the new regulation and prevent 

the wood from being massively landfilled. We formulated the problem as a mixed-integer 

linear programming model (MILP) to minimize the total cost of the wood recycling process 

collected from CRD sites. The main contribution lies in the consideration of important 

uncertain factors such as supply sources locations, the available quantity of recycled wood at 

the collection sites, and the various quality grades of the collected wood. A scenario-based 

analysis is conducted to evaluate the impact of uncertainties on the RLN design. In addition, 

the proposed MILP model has been applied for a case study in the CRD industry within the 

province of Quebec, Canada. The results of this study show the adjustment of the reverse 

logistics network leads to the reduction of wood recycling cost due to the improved 

efficiency of sorting facilities and the economy of scale achieved under the new policy. 

Moreover, sorting facilities are now located near the CRD collection points and not close to 

landfilling site as for the actual situation. Finally, the study demonstrates that efforts to obtain 

accurate information about the supply sources locations and the expected wood quantity 

recovered from sorting facilities will guarantee a more efficient RLN redesign. 
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2.1 Introduction 

Nowadays, environmental regulations are emerging in many countries worldwide. The 

European Union Waste Framework Directive (EU-WFD) imposes a minimum of 70% 

collection of material waste in the construction industry (Supino et al., 2016). Turkey has 

recently seen the enforcement of the Waste on Electrical and Electronics Equipment (WEEE) 

regulation on its territory (Amin et al, 2017) and India is facing an increasing number of air 

and water pollution legislations (Greenstone and Hanna, 2014). Indeed, this is probably the 

most efficient solution to achieve more sustainable operations and force managers to take 

action to reduce the damage to the environment and avoid social problems caused by supply 

chain activities (Seüring and Müller, 2008). Waste management and recycling activities are 

usually connected with environmental regulations and many countries are putting a lot of 

effort into improving their efficiency in this area. Thus, we notice the emergence of many 

closed-loop supply chains (CLSC) in the past few years. The objective of CLSC is to 

combine the classical forward logistics flows with reverse logistics (RL) activities, which are 

becoming very popular fields among practitioners and academics, both of whom are trying to 

find better strategies to be in compliance with waste management policies. 

  

This research addresses the specific problem of the management of wood waste by the 

construction, renovation, and demolition (CRD) industry. CRD is the first industrial waste 

generator in Canada, being responsible for a third of the total national waste generation 

(RECYQ-QUEBEC, 2012). Wood is frequently used as a building material in many 

countries, and more specifically in cold environments due to the advantages that are provided 

such as modularity, energy efficiency, etc. This is why countries such as Sweden, Denmark 

or Canada present a very high rate of usage of wood materials in their buildings (Sathre, 

2014). In addition, with a very large territory and a lot of forest land, Canada is one of the 

countries with the highest rate of wood material inside its buildings (Yeheyis et al., 2013). 

Thus, wood is the first building material in terms of waste generated during the construction, 

renovation and demolition processes, often exceeding 30% of the total debris collected 

(Yeheyis et al., 2013). The recycled wood sector is facing some important challenges in 



37 

Quebec. Today, more than 60% of wood generated at CRD sites is landfilled, partly because 

the recycling process is more expensive than the landfilling cost (RECYQ-QUEBEC, 2012). 

  

Efficient RL networks have a major role to play in increasing the recovery rate of the 

recycled wood from the CRD industry. Indeed, in order to manage the wood recycling 

process in an efficient manner, we should be able to adequately locate the sorting facilities 

and decide on their annual treatment capacity. Dealing with transportation activities and 

building material flow between the collection sites and sorting facilities is usually a difficult 

task.  It is even more complex in the CRD industry because of uncertainties in the reverse 

supply chain network. First, the location of the supply sources is variable over time, which 

means that they are different from one year to another making it complicated to locate the 

sorting facilities to minimize transportation distances. Secondly, the amount of wood 

material collected is highly unpredictable. Thus, the treatment capacity decision that must be 

allocated to each sorting facility to process the recycled wood is also a concern. Finally, 

according to the construction decisions that were made decades ago during the design stage 

of the buildings, the quality level of the collected wood on the CRD sites is highly 

unpredictable. The uncertainty of the location, quantity and quality level of wood generated 

in the CRD industry makes the recycled wood RL network design problem challenging. 

  

Thus, the main objective of this research is to build a quantitative model for RL network 

redesign under an environmental policy that targets the recycled wood material from the 

CRD industry. To the best of our knowledge, this is the first study that addresses this specific 

problem targeting the CRD industry in this geographical area from a reverse logistics 

perspective. This research could be beneficial for the local authorities providing some useful 

insights about the expected impact of the environmental policy targeting the recycled wood 

material from the CRD industry, thus possibly preventing illegal dumping and border 

landfilling under the regulation.  

 

To reach this goal, we propose a MILP formulation that allows making decisions at a 

strategic facility level such as 1) Should an existing sorting facility be closed or not? 2) 
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Should we expand the treatment capacity of an existing facility? and 3) Should we relocate 

some of the existing facilities to decrease transportation distances in the RL network? Also, 

our model considers the RL tactical flow decisions between logistics units. The contribution 

of this work lies in two particularities. First, the model is able to capture both dynamic 

change in supply sources locations and also the variations in the quality levels of the 

collected wood materials. A scenario-based approach is proposed in this study to assess the 

potential impacts of these sources of uncertainty by selecting relevant discrete values of the 

uncertain parameters. The applicability of the model is illustrated with a case study in the 

province of Quebec, Canada. 

  

The remainder of this paper is structured as follows. Section 2.2 presents the relevant 

literature review in the reverse logistics field. Section 2.3 presents in detail the mathematical 

formulation of the proposed model. Section 2.4 introduces the case study for the recycled 

wood from the CRD industry in the province of Quebec. Section 2.5 discusses some 

managerial insights based on the main findings. Finally, conclusions and future research 

perspectives are derived in Section 2.6. 

 

2.2 Literature review 

We have recently noted an increased number of research papers addressing RL problems and 

several literature reviews were also published in this field: Pokharel and Mutha (2009), 

Agrawal et al. (2015), Govindan et al. (2015). The first studies addressing network design 

problems in RL appeared less than 20 years ago (Barros et al., 1998). From this point, we 

denote an increased variation in the RLN design models with collection centers and 

refurbishing facilities’ location with multiple products consideration. Kara and Onut (2010) 

proposed a stochastic programming model to select a long-term strategy under uncertainties 

regarding the facility locations and the optimal flow in an RL network design problem with 

an application in the paper industry. Lieckens and Vandaele (2012) developed a mixed-

integer nonlinear program (MINLP) considering uncertainties on the collected quantities and 

quality of the products parts in order to make decisions about collection facility location. 
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Lickens et al. (2013) also proposed a MINLP that helps make decisions on reverse facility 

locations, capacity allocation and flow between the network nodes. The study of Toso and 

Alem (2014) investigates both deterministic and stochastic capacitated facility location 

model considering discrete time intervals. Another stochastic programming model is 

presented in Dai et al. (2014) that investigates the impact of uncertain collected quantity and 

secondary market demand for the returned products. A genetic algorithm is used to decide on 

collection point locations and flow decisions in the RL network. Later, Jeihoonian et al. 

(2016) also considered the unknown amount of returned products in a multi-stage stochastic 

model in order to locate the collection facilities in the reverse network. A scenario clustering 

decomposition is proposed to solve the multi-period model and its utility is illustrated in the 

sector of large household appliances. Fattahi and Govindan (2016) used a two-stage 

stochastic formulation to address the uncertainty related to new products demand and 

potential returns of used products. The proposed model is solved using a novel simulated 

annealing algorithm for large-sized problems. Finally, Nakatani et al. (2017) propose a robust 

multi-period formulation to address the optimal flow decisions in the context of uncertain 

demand and material prices. Table 2.1 shows that facility location and flow are the most 

common decision variables. Moreover, capacity expansion decisions are not very common in 

RL and CLSC models. The main sources of uncertainties are the demand and the collected 

quantity of the returned products in the RL network. Very few papers address quality issues 

of collected products. However, to the best of our knowledge, studies that consider variation 

in the supply sources locations while making reverse network design decisions are 

unavailable.  Indeed, this characteristic is very specific to the CRD industry. It is difficult to 

predict where the building materials collection points will be located in the future. Such 

feature has a real impact on the RLN design decision. Indeed, transportation distances play a 

major role on the recovery rate of building materials as the building contractors will not 

accept to travel too far to the nearest sorting facility. Finally, we denote a significant number 

of decision models that are applied to industrial case studies, sometimes for a specific sector 

or from a more general perspective, without targeting a particular product category. In Table 

2.2, we reviewed 104 papers in the RL and CLSC fields by industrial sector. 
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Table 2.1   Recent RL and CLSC decision models considering uncertainties (2007-2017) 

 
 

Proposed 
case study

SSL CV MQ FL CE FD SP MP FD CS Industry
Salema et al. (2007) MILP × × × × × ‒
Chouinard et al. (2008) 2 stage ST × × × × × Medical
Pishavee et al. (2009) ST program × × × × × × ‒
Lee et al. (2010) 2 stage ST × × × × × Electronics
Kara and Onut (2010) 2 stage ST × × × × × Paper
Gomes et al. (2011) MILP × × × × × Electronics
Gomes et al. (2011) 2 stage ST × × × × × × ‒
Pishavee et al. (2011) Robust × × × × × ‒
Lieckens et al. (2012) MINLP × × × × × × ×
Cardoso et al. (2013) MILP Else × × × × ‒
Lieckens et al. (2013) MINLP Else × × × × Manufacturing
Toso and Ahem (2014) ST program × × × × × Residential
Dai and Wang (2014) ST program × × × × × ‒
Zeballos et al. (2014) Multi-stage ST Else × × × × ‒
Subulan et al. (2015) Fuzzy Else × × × × Automotive
Jeihoonian et al. (2016) Multi-stage ST × × × × × × Electronics
Sun and Chen (2016) Robust × × × × × × Electronics
Nakatani et al. (2017) Robust Else × × × × Plastics
Amin and Baki (2017) Fuzzy Else × × × × Electronics
Amin et al. (2017) MILP × × × × × Automotive
Proposed model MILP × × × × × × × × CRD
SSL: Supply Sources Location; CV: Collected Volume; MQ: Material Quality; FL: Facility Location; CE: Capacity Expansion; FD: Flow 
Decisions; SP: Single Period; MP: Multi-Period; FD: Fictive Data; CS: Case Study; ST: Stochastic

Uncertain     
parameters

Decision variables 
of the model

Planning 
horizon

Type of data 
setModel 

formulation
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Table 2.2   RL and CLSC papers by sectors (2007 – 2017) 

 
 

2.3 Model development 

2.3.1 Assumptions 

In order to build a model adapted to the reality of the wood building-material recycling 

supply chain, we consider a RL network that includes the main actors of this industry. First, 

Sector Proportion Published papers

General 29,8%

Zikopoulos and Tagaras (2007) Lieckens and Vandaele (2007) Salema et al. (2007) Zhu et al.
(2008) Francas and Minner (2009) Xiaofeng and Tijun (2009) Pishvaee et al. (2009) Salema et al.
(2010) Pishvaee and Torabi (2010) Wongthatsanekorn et al. (2010) Chen and He (2010) Gomes
et al. (2011) Pishvaee et al. (2011) Cardoso et al. (2013) Dai and Wang (2014) Zeballos et al.
(2014) Amin and Zhang (2012) Diabat et al. (2013) Huang and Su (2013) Ramezani et al. (2013)
Vahdani et al. (2013) Lieckens et al. (2013) Gu and Tagaras (2014) Niknejad and Petrovic
(2014) Eskandarpour et al. (2014) Demirel et al. (2014) Wei et al. (2015) Tan and Chanchaichujit
(2016) Zhalechian et al. (2016) Esmaeili et al. (2017) Battini et al. (2017)

Electronics 19,2%

Hammond and Beullens (2007) Lee and Dong (2008) Kumar et Putnam, (2008) Lau and Wang
(2009) Xiaofeng and Tijun (2009) Tsai and Hung (2009) Janse et al. (2010) Gomes et al. (2011)
Lieckens and Vandaele (2012) Rahman and Subramanian (2012) Daim et al (2012) Chiou et al.
(2012) Kissling et al. (2012) Krapp et al. (2013) Kilic et al. (2015) Ayvaz et al. (2015) Jeihoonian
et al. (2016) Guarnieri et al. (2016) Sun and Chen (2017) Amin and Baki (2017)

Manufacturing 13,5%

Xanthopoulos and Iakovou, (2009) Atasu et al. (2010) Kapetanopoulou and Tagaras (2011)
Sharma et al. (2011) Millet (2011) Drake et al. (2012) Rahman and Subramanian (2012) Lieckens
et al. (2013) Jaber et al. (2013) Mittal and Sangwan (2014) Abdulrahman et al. (2014) Galvez et
al. (2015) Otay et al. (2016) Bazan et al. (2017)

Materials 10,6%
Kara and Onut (2010) Zeballos et al. (2012) Kannan et al. (2012) Giannetti et al. (2013)
Lundkvist et al. (2013) Schweiger and Sahamie (2013) Bing et al. (2014) Bing et al. (2015)
Kumar et al. (2016) Alshamsi et al. (2017) Nakatani et al. (2017)

Automotive 7,7%
Gerrard and Kandlikar (2007) Zhu et al. (2007) González-Torre et al. (2010) Gołebiewski et al.
(2013) Mahmoudzadeh et al. (2013) Demirel et al. (2014) Subulan et al. (2015) Amin et al.
(2017)

E-waste 4,8% Gomes et al. (2008) Kannan et al. (2009) Dat et al. (2012) Liu et al. (2014) Agrawal et al. (2014)

Agri-food 3,8% Hasani et al. (2012) Kim et al. (2014) Accorsi et al. (2016) Banasik et al. (2017)
Cell phones 2,9% Hanafi et al. (2007) Mitra (2007) Geyer and Blass (2010)
Packagings 1,9% Silva et al. (2013) Edgar et al. (2014)
Hazardous 1,9% Ardjmand et al. (2015) Shojaeipour et al. (2015)
Containers 1,9% Francesco et al. (2009) Meng and Wang (2011)

Paper ~ 1% Zhou and Zhou (2010)
Construction ~ 1% Sinha et al. (2009)
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we assume that a set of CRD sites, also referred to as collection sites or supply sources are 

available. Collection activities are performed at these nodes. Mixed building-material waste 

is collected into containers and loaded onto trucks. Then, there is a choice to make between 

two possibilities: the landfilling or the recycling option. The materials moved to the landfills 

have reached the end of their useful life and are ultimately disposed. On the other hand, each 

container shipped to a sorting facility increases the opportunity to extract wood to be sold 

and used by final customers: the wood material recyclers. In this work, we assume that 

capacities and locations of existing sorting facilities are known in advance, as well as the 

location for the new potential sorting facilities and the recyclers demand for each grade (gi) 

of recycled wood. The main assumptions regarding the building-material containers are 

synthesized in Figure 2.1 below. 

 

 

Figure 2.1   Main assumptions regarding the containers collected at CRD sites 

 

2.3.2 Mathematical formulation 

We formulated the RL network design problem of recycled wood from the CRD industry as a 

mixed-integer linear program (MILP). The proposed formulation helps in making decisions 

regarding the sorting centers operation, facilities relocation, capacity expansion and material 

flow decisions between the network nodes under the environmental policy. The structure of 

the RL network is illustrated in Figure 2.2. 
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Figure 2.2   RL network for the recycled wood material from the CRD industry 

 

The sets, parameters, decisions variables, objective function and the constraints of the model 

are listed below. The nodes of the network ሼ𝑖, 𝑗ሽ represent any CRD site, sorting facility, 

landfilling area and the demand markets of wood recyclers.  
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Sets 
 𝑖, 𝑗        ∈ 𝑁    Nodes of the network 𝑠 ∈ 𝑆   ⊂ 𝑁    Set of supply sources 𝑓  ∈ 𝐹 ⊂ 𝑁   Set of existing sorting facilities 𝑓′ ∈ 𝐹 ⊂ 𝑁   Set of potential sorting facilities 𝑘 ∈ 𝐾              Set of possible existing facility sizes 𝑘′ ∈ 𝐾             Set of available sizes for expanded sorting facilities  𝑙 ∈ 𝐿    ⊂ 𝑁   Set of landfilling areas 𝑐 ∈ 𝐶   ⊂ 𝑁   Set of customers (i.e. building material recyclers) 𝑚 ∈ 𝑀            Set of collected materials 𝑔 ∈ 𝐺              Set of various quality grades for the materials  𝑧 ∈ 𝑍               Set of geographic zones 𝑢 ∈ 𝑈              Set of scenarios 

 

Parameters 𝑡௜௝   =    Transportation cost for shipping one metric ton of materials between node 𝑖𝜖𝑁 and 

   node 𝑗𝜖𝑁  𝜉௜௝   =    Transportation distances between node 𝑖𝜖𝑁 and node 𝑗𝜖𝑁 𝜔    =    Loading capacity of the trucks 𝑑௠௚௖ = Annual demand for material m∈M of grade g∈G at customer c∈C ℎ௙௞   =   Annual treatment capacity at sorting facility 𝑓∈𝐹 of size 𝑘∈𝐾 ℎ′௙௞  =   Added capacity in case sorting facility 𝑓∈𝐹 of initial size 𝑘∈𝐾 is expanding 𝑟௠     =   Recycling rate at sorting facilities for material type m∈M 𝑐௠௅    =   Unit landfilling cost for one ton of material 𝑚∈𝑀 at a landfilling area 𝑐௠ோ    =   Unit recycling cost for one ton of material 𝑚∈𝑀 at the sorting facilities Ω௙௞  =   Fixed annual operating cost for an existing sorting facility 𝑓∈𝐹 of size 𝑘∈𝐾 Ω௙ᇱ௞ᇱ =  Fixed annual operating cost for a potential sorting facility 𝑓’∈𝐹 of size 𝑘’∈𝐾 
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δ௙௞௞ᇱ =  Expansion cost of sorting facility from size 𝑘∈𝐾 to size 𝑘′∈𝐾    𝜋௙௞௭ =   Opening cost for sorting facility 𝑓∈𝐹 of size 𝑘∈𝐾 in geographical zone 𝑧∈𝑍 

𝛹௠    =  Target proportion of material type 𝑚∈𝑀 that must be sent to sorting facilities 𝐿𝑆௨ ሺ𝑥௨, 𝑦௨ሻ  =  Coordinates of the supply sources of the network in scenario 𝑢∈𝑈 𝑉௠௚௦௨ = Quantity of material 𝑚∈𝑀 of quality grade 𝑔∈𝐺 collected at supply source 𝑠∈𝑆 in 

    scenario 𝑢∈𝑈 𝑄௠௚௨  =   Proportion of quality grade g∈G in one ton of collected material m∈M at supply   

    sources in scenario u∈U 

 
Decision variables 
 𝑋௠௚௦௙௨ =   Flow of material of type 𝑚∈𝑀 of quality grade 𝑔∈𝐺 transported from supply   

        source 𝑠∈𝑆 to sorting facility 𝑓∈𝐹 in scenario 𝑢∈𝑈 𝑋௠௚௦௟௨  =   Flow of material of type 𝑚∈𝑀 of quality grade 𝑔∈𝐺 transported from supply   

        source 𝑠∈𝑆 to landfilling area 𝑙∈𝐿 in scenario 𝑢∈ 𝑋௠௚௙௖௨ =    Flow of material of type 𝑚∈𝑀 of quality grade 𝑔∈𝐺 transported from sorting 

         facility 𝑓∈𝐹 to customer 𝑐∈𝐶 in scenario 𝑢∈𝑈 𝑋௠௚௙௟௨  =    Flow of material of type 𝑚∈𝑀 of quality grade 𝑔∈𝐺 transported from sorting 

         facility 𝑓∈𝐹 to landfilling area 𝑙∈𝐿 in scenario 𝑢∈𝑈 𝑁௦௨  =           Number of trucks required to perform collection activities on supply site 𝑠∈𝑆 in 

         scenario 𝑢∈𝑈  𝛽௙௞௨    =    ቄ1   if sorting facility 𝑓 ∈ 𝐹 of size 𝑘 ∈ 𝐾 is operating in scenario 𝑢 ∈ 𝑈    0   if not                                                                                                                          
 

𝛼௙௞௞ᇱ௨ =  ൞ 1   if sorting facility 𝑓 ∈ 𝐹 should expand its treatment capacity  to size 𝑘ᇱ ∈ 𝐾 in scenario 𝑢 ∈ 𝑈                                                                                               0   if not                                                                                                               
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𝜃௙ᇱ௞௭௨   =    ൞1   if a new sorting facility 𝑓ᇱ ∈ 𝐹 of size 𝑘 ∈ 𝐾 should open in geographical zone 𝑧 ∈ 𝑍  in scenario 𝑢 ∈ 𝑈                                                                                                      0   if not                                                                                                         
 
Objective function 

 

The objective function minimizes the total reverse supply chain operation cost as follows: 

Min = Transportation costs + Recycling costs + landfilling costs + operating costs + 

expansion costs + opening costs  

𝑀𝑖𝑛  ෍ ෍෍෍𝑡௜௝  𝜉௜௝  𝑋௠௚௜௝௨௝∈௃௜∈ூ௚∈ீ௠∈ெ + ෍ ෍෍𝑐௠ோ௦∈ௌ௚∈ீ௠∈ெ ቎෍𝑋௠௚௦௙௨௙∈ி + ෍  𝑋௠௚௦௙ᇱ௨௙ᇱ∈ி ቏ 
                              + ෍ ෍෍𝑐௠௅௟∈௅௚∈ீ௠∈ெ ቎෍𝑋௠௚௦௟௨௦∈ௌ + ෍  𝑋௠௚௙௟௨௙∈ி + ෍  𝑋௠௚௦௙ᇱ௨௙ᇱ∈ி ቏                                    

+ ෍෍ ෍ ൥ Ω௙௞ + ෍(𝜋௙௞௭ + Ω௙ᇱ௞ᇱ) 𝜃௙௞௭௨௭∈௓ +  δ௙௞௞ᇲ௨ 𝛼௙௞ᇲ௨൩                         (2.1)௞ᇱ∈௄௞∈௄௙∈ி  

 

Subject to the following constraints 

Demand satisfaction  ෍𝑋௠௚௙௖௨௙∈ி ≤ 𝑑௠௚௖       ∀𝑢 ∈ 𝑈,∀𝑚 ∈ 𝑀,∀𝑔 ∈ 𝐺  ,∀𝑐 ∈ 𝐶                (2.2) 

Flow conservation at the supply sources  𝑉௠௚௦௨ = ෍𝑋௠௚௦௙௨௙∈ி + ෍𝑋௠௚௦௟௨௟∈௅         ∀𝑢 ∈ 𝑈,∀𝑚 ∈ 𝑀,∀𝑔 ∈ 𝐺  ,∀𝑠 ∈ 𝑆         (2.3) 

Environmental policy target  

෍𝑋௠௚௦௙௨௙∈ி ≥  𝛹௠ 𝑉௠௚௦௨       ∀𝑢 ∈ 𝑈,∀𝑚 ∈ 𝑀,∀𝑔 ∈ 𝐺  ,∀𝑠 ∈ 𝑆           (2.4) 
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Flow conservation at sorting facilities  

෍𝑋௠௚௦௙௨௦∈ௌ =  ෍𝑋௠௚௙௖௨ +௖∈஼ ෍𝑋௠௚௙௟௨௟∈௅      ∀𝑢 ∈ 𝑈,∀𝑚 ∈ 𝑀,∀𝑔 ∈ 𝐺  ,∀𝑓 ∈ 𝐹    (2.5) 

 

Flow conservation at potential sorting facilities  

෍𝑋௠௚௦௙ᇱ௨௦∈ௌ =  ෍𝑋௠௚௙ᇱ௖௨ +௖∈஼ ෍𝑋௠௚௙ᇱ௟௨௟∈௅      ∀𝑢 ∈ 𝑈,∀𝑚 ∈ 𝑀,∀𝑔 ∈ 𝐺  ,∀𝑓ᇱ ∈ 𝐹     (2.6) 

Achievable recycling rates at sorting facilities 

෍𝑋௠௚௦௙௨௦∈ௌ . 𝑟௠ ≥  ෍𝑋௠௚௙௖௨௖∈஼       ∀𝑢 ∈ 𝑈,∀𝑚 ∈ 𝑀,∀𝑔 ∈ 𝐺  ,∀𝑓 ∈ 𝐹           (2.7) 

Achievable recycling rates at potential sorting facilities 

෍𝑋௠௚௦௙ᇱ௨௦∈ௌ . 𝑟௠ ≥  ෍𝑋௠௚௙ᇲ௖௨௖∈஼     ∀𝑢 ∈ 𝑈,∀𝑚 ∈ 𝑀,∀𝑔 ∈ 𝐺  ,∀𝑓ᇱ ∈ 𝐹           (2.8) 

Treatment capacity at sorting facilities 

෍ ෍෍𝑋௠௚௦௙௨௦∈ௌ௚∈ீ௠∈ெ ≤  ℎ௙௞ 𝛽௙௞௨ +  ℎᇱ௙௞ 𝛼௙௞ᇲ௨      ∀𝑢 ∈ 𝑈,∀𝑘,𝑘ᇱ ∈ 𝐾  ,∀𝑓 ∈ 𝐹       (2.9) 

Treatment capacity at potential sorting facilities 

෍ ෍෍𝑋௠௚௦௙ᇱ௨௦∈ௌ௚∈ீ௠∈ெ ≤  ℎ௙ᇲ௞ 𝜃௙ᇲ௞௭௨       ∀𝑢 ∈ 𝑈,∀𝑧 ∈ 𝑍,∀𝑓ᇱ ∈ 𝐹  ,∀𝑘 ∈ 𝐾       (2.10) 

Trucks loading capacity  

෍ ෍𝑉௠௚௦௨  ≤ ௚∈ீ௠∈ெ  𝜔 𝑁௦௨          ∀𝑢 ∈ 𝑈,∀𝑠 ∈ 𝑆                           (2.11) 
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Integrity and binary constraints  𝑋௠௚௜௝௨ ∈  ℝା Where  ℝା=ሼ𝑥 𝜖 ℝ, 𝑥 ≥ 0ሽ,   ∀𝑚 ∈ 𝑀,∀𝑔 ∈ 𝐺  ∀𝑖𝜖𝑁,∀𝑗𝜖𝑁,∀𝑢 ∈ 𝑈     (2.12) 

𝑁௦௨  ∈  ℕ    Where ℕ = ሼ𝑥 𝜖 ℝ, 𝑥  𝑖𝑛𝑡𝑒𝑔𝑒𝑟ሽ,         ∀𝑠 ∈ 𝑆,∀𝑢 ∈ 𝑈          (2.13) 𝛽௙௞௨,𝛼௙௞௞ᇱ௨,𝜃௙ᇱ௞௭௨  𝜖  ሼ0,1ሽ      ∀𝑢 ∈ 𝑈,∀𝑓𝜖𝐹,∀𝑘,𝑘ᇱ𝜖𝐾,∀𝑧 ∈ 𝑍            (2.14) 

 

The objective function in (2.1) minimizes the total cost. The latter includes the transportation 

costs, the recycling and landfilling costs, and facility-related costs for operation, expansion 

and new openings. Finally, the additional cost incurred in case of poor quality materials is 

also included. Constraint (2.2) ensures that customer demand is not exceeded for each 

material type and quality grade. Constraint (2.3) guarantees that all the materials are 

collected from the supply sources to be either landfilled or shipped to a sorting facility, while 

constraint (2.4) imposes the compliance with the government policy target in terms of 

material flow shipped to certify sorting infrastructure. Constraints (2.5) and (2.6) ensure that 

all the materials leaving a sorting facility (existing or new) are either landfilled or shipped to 

a customer while respecting the recycling rates mentioned in constraints (2.7) and (2.8). 

Constraints (2.9) and (2.10) guarantee the treatment capacities of the sorting and the potential 

new sorting facilities are not exceeded. Constraint (2.11) limits the amount of collected 

materials that can be loaded on a truck. Finally, constraints (2.12) to (2.14) ensure flow 

decision variables positivity or integrity and that the operating, expanding and opening 

decisions are binary variables.  

 

2.4 Case study description and data collection 

The province of Quebec is the largest Canadian province with a territory of 1,667,441 km2. 

Moreover, there are a relatively small number of inhabitants, barely exceeding 8 million 

people, thus implying a very low average density population of around 5 inhabitants per km2. 

Although the average population density seems very low, it is however unequally distributed 

and almost 52% of the inhabitants are concentrated in 3 regions out of 17 (see Figure 2.3). 
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For example, the north of Quebec is characterised by a density of 0.1 inhabitant per km2 

while a city like Montreal has 5,500 inhabitants per km2 (Statistical Institute of Quebec, 

2014). These characteristics make the redesign of the RL network for the recycled wood that 

can efficiently serve the entire territory a real challenge. 

 

For the purpose of this study, we used several sources of data for the recycled wood industry 

in Quebec: Statistical Institute of Quebec, RECYQ-QUEBEC and historical data provided by 

wood recyclers. These data were used to estimate the annual quantity of CRD waste 

generated in the province and the proportions of each grade of recycled wood. With an 

average of 0.65 tons of waste generated per inhabitant per year, the average of building-

material waste to be collected on the CRD sites in the province of Quebec is estimated to 

reach 5.3 million annually. As the historical data about the exact number and locations of 

CRD sites are not available, we divided the amount of waste generated into 203 collection 

sites taking into account the population density of each region. Table 2.3 gives more details 

about the characteristics and the geographical configuration of the different regions. 

 

 

Figure 2.3   Repartition of Quebec provinces into regions 
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Table 2.3   Annual estimated CRD waste generation by administrative region in Quebec 

Administrative 
region 1 2 3 4 5 6 7 8 9 

Population         
(K-inhabitants) 200 277 732 267 320 1 988 383 148 95 

CRD waste 
generated (K-tons) 130 180 476 174 208 1 292 249 96 62 

Number of CRD 
sites per region 4 5 15 5 6 61 7 3 2 

Administrative 
region 10 11 12 13 14 15 16 17 Total 

Population         
(K-inhabitants) 44 92 420 421 492 586 1 508 240 8 213 

CRD waste 
generated (K-tons) 29 60 273 274 320 381 980 156 5 338 

Number of CRD 
sites per region 1 3 8 8 10 12 46 7 203 

 

We identify 38 sorting centers dealing with CRD building-material waste today in Quebec 

(as listed in Appendix I). The treatment capacity varies from 10,000 to 400,000 tons per year. 

Moreover, in order to redesign the RL network, we assume that each sorting facility is able to 

increase its annual treatment capacity (i.e. capacity expansion) by a factor of 2. Also, 51 

potential locations are selected for opening new sorting facilities based on the population 

density of each region. Each new sorting facility has three possible treatment capacities, 

either of 20,000 tons, 50,000 tons or 100,000 tons per year. We also considered 36 registered 

certified landfill sites. We assume that sorting facilities receive mixed-waste containers from 

the building contractors. After that, wood has to be extracted from these containers before 

being redirected to the recyclers. We consider that every landfill site has an infinite capacity 

for a one-year planning horizon. Thus, the proposed RL network is composed of 343 nodes 

including collection sites, sorting facilities, landfilling areas and finally the recyclers of 

building materials (customers). For the transportation of waste collected at CRD, we assume 

that containers have a capacity of 20 tons each, and the cost structure is defined in a way that 

the shipping cost is correlated with the travelling distance and vehicle load.  
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Three quality levels (grades) of collected wood are considered in this study. “Grade 1” is free 

of contaminants with a very high demand. “Grade 2” is slightly contaminated, sometimes 

simply by contact with other building materials (painting, chemical treatment against 

moisture, insects) or simply by time degradation. Grade 2 accounts for 65% to 70% of the 

total wood quantity. Finally, “Grade 3” is highly contaminated, sometimes with dangerous 

substances which are potentially harmful to the environment and/or for human health. This 

type wood is likely to be landfilled all the time. In this case study, the annual demand for 

grade 1 and grade 2 is shared between 15 recyclers (customers) according to the proportions 

shown in Table 2.4 (3R-MCDQ, 2013). Among the recycled wood products, only the 

particleboard manufacturing requires grade 1. Grade 2 wood is good enough for the 

remaining customers. 

 

Table 2.4   Annual market demand for recycled wood material in Quebec 

 
 
 
2.5 Experimental evaluation and managerial insights 

In order to deal with the reality of the wood recycling process, the experimental evaluation 

considers the reverse logistics redesign under wood waste-management constraint and the 

importance of uncertain parameters by adopting a scenario-based approach (Soleimani et al., 

2016). Indeed, the strategic decisions to be made regarding the RLND are very dependent on 

numerous parameters, and some of them are highly unpredictable: the location of the 

collection sites, the availability of recycled materials (i.e. the supplied quantity) and finally 

the quality level of collected wood for recycling. In order to evaluate the impact of these 

uncertainties, we built multiple scenarios considering three (3) discrete values for each of 

these parameters based on historical data analysis.  
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Let’s consider 𝐿𝑆ଵ (𝑥ଵ,𝑦ଵ), 𝐿𝑆ଶ (𝑥ଶ,𝑦ଶ) and  𝐿𝑆ଷ (𝑥ଷ,𝑦ଷ) three different locations for the set 

of supply sources s ∈ 𝑆.  Let’s define also Vl o w, Vavg, and Vhigh the possible values for the 

total quantity of CRD building-material waste collected annually. As mentioned previously, 

an average of 5.3 million tons (Vavg) of building-material waste is generated in Quebec 

annually. We suppose that this value can vary more or less 20% and we use these values for 

the realisations of Vlow and Vhigh. Finally, we define Qlow, Qavg, and Qhigh as the potential 

quality levels for the collected wood. The difference between the various quality levels is 

related to the rates of Grades 1, 2 and 3 of recycled wood inside the container. Considering 

the different combinations, we obtain 27 scenarios as depicted in Appendix II. Scenario 1 

(SC1) uses the combination of the mean values for the quality and volume parameters (Qavg, 

Vavg) and the first set of supply sources 𝐿𝑆ଵ. To evaluate the impact of environmental 

legislations, we conduct the experiments with the following methodological steps:  

• Step 1.   Baseline scenario. As a first step, we run the optimization model to obtain 

the optimal reverse logistics network without any waste management policy 

constraint (Constraint 3 is not active).  

 
• Step 2.  Scenario 1. For this scenario, we run the optimization but constraint 3 is 

active (70% of recycled wood shipped to sorting centers). We use the first set of 

supply sources LS1 and the mean values of uncertain parameters V and Q are used to 

obtain the new reverse logistics network design (fixed network).  

 
• Step 3.    SC2 to SC27. Solving all the scenarios without any change in the reverse 

logistics configuration obtained in SC1. 
 

• Step 4.    SC2* to SC27*. Solving to optimality all the remaining scenarios allowing 

the adjustment of RLN design decisions obtained in SC1.   
 

• Step 5.    Experiments and insights. At this level, the objective is to evaluate the 

impact of the uncertain parameters on RLND optimal decisions and analyse the 

managerial insights. 
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2.5.1 Redesign of the current reverse logistics network 

As a baseline scenario, the behaviour of the Quebec network before applying the waste 

management policy is evaluated. The results show that the overall utilisation rate of sorting 

facilities barely exceeds half of their global treatment capacities (58%). The landfilling 

activities represent a huge proportion of the collected wood because the recycling process is 

not competitive compared to the “low” landfilling cost. These results are very representative 

of the current situation of the recycled wood industry in the province of Quebec where some 

sorting facilities are closed for some periods within a year. Indeed, a significant quantity of 

mixed waste containers from CRD sites is not shipped to the sorting centers. Moreover, 

175,000 tons of collected wood are recycled. Thus the service level for the wood recyclers is 

very low, with 16.8% for grade 2 and 12.2% for grade 1. In this scenario, the model suggests 

that only 28 sorting centers among the 38 available are operating and neither expansion nor 

new sorting facility openings are required.  

 

As the annual demand for recycled wood material is estimated to be around 1.15 million tons 

in Quebec (3R-MCDQ, 2013), almost 15% of this quantity is provided from the Quebec 

CRD sites. Thus, the majority of the recycled wood used by the recyclers is imported from 

the US. The remaining demand is satisfied by using virgin wood fibre and implies a 

significant increase in procurement costs (about three times the price paid for the recycled 

wood material at the exit of the sorting centers). In the second phase, and in order to comply 

with the waste management regulation, we run the decision model and we observe many 

adjustments compared to the network obtained for the baseline. The optimal network for 

scenario 1 (SC1), named “fixed network” for the rest of the study, is now composed of 38 

sorting centers. Many sorting facilities (26 sites) have expanded their capacities and five (5) 

new facilities are added in strategic locations in order to minimize transportation distances. 

These adjustments require an investment of 35 M$. The main features of the baseline 

scenario and SC1 are illustrated by Table 2.5. The reader is referred to appendix III for 

additional graphical content. 
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Table 2.5   Baseline scenario versus scenario 1 (fixed network) 

Activity Criteria Baseline scenario 
Scenario 1 

(fixed network) 

 

 

Sorting 

facilities 

 

 

Expansion (new opening) - 26 (5) 

Number of sorting centers 28 from 38 38 

Facility investments (M$) 21.2 56.2 

Sorting facility use 58% 96.5% 

Avg. distance to recycle  116 km 75.4 km 

Wood recycling cost ($) 
17,780,000  

($101.6/ton) 

74,493,086  

($85.2/ton) 

Customers 

Recycled wood (tons) 175,166 874,332 

Service level – Grade 1 12.2% 54% 

Service level – Grade 2 16.8% 84.7% 

Landfills 

Landfilling (tons) 1,426,234 727 068 

Number of sites used 33 from 36 26 from 36 

Average distance to landfills  27.9 km 38.9 km 

RL network Total Cost ($) 268,699,279  359,830,582 

 

 

The first observation from Table 2.5 is that the adjustment of the reverse logistics network 

leads to the reduction of wood recycling cost from $101.6/ton in the baseline scenario to 

$85.2/ton. This value considers facility processing costs and average distance traveled by the 

containers in the RL network. The reduction achieved is mainly due to the improved 

efficiency of sorting facilities (usage of 96.5 %) and the economy of scale achieved in 

scenario 1. As the quantity treated by sorting centers increases, the fixed costs are spread out 

between the larger quantities of wood recycled. Also, the new RLN allows the relocation of 

sorting centers in order to reduce the average distance to travel in order to treat CRD waste at 

the recyclers. Finally, many landfilling sites are not used with scenario 1 and the average 

distance to travel for CRD waste increases. Thus, under the environmental policy, the sorting 

facilities are located near the CRD collection points and not close to landfilling site as for the 

baseline scenario. 
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2.5.2 Reverse logistics configuration under collection sites location change 

In SC1, we used the first set of supply sources location  LSଵ (xଵ, yଵ) and we obtained the RL 

network named “fixed network”. Since these locations might change from one period to 

another, we evaluate the possible changes in the RL network under uncertainty. On average, 

the total travelling distance for recycled wood increases when the CRD sites locations 

change. Initially, the trucks travelled an average of 75.4 km to recycle one ton of wood 

building material against 91.6 km for 𝐿𝑆ଶ and 88.1 km for 𝐿𝑆ଷ (see appendix IV). Although 

the second location presents the worst results in terms of average recycling distances, it is 

however the best one regarding the landfilling options with an average of 34.4 km travelled. 

These distances increase up to 35.7 km and 42.3 km for the first and the third locations 

respectively. The increase in the average transportation distances could be explained mainly 

due to two reasons. First, sorting facilities are not well located regarding the CRD collection 

points, and forced to move containers over long distances to reach the nearest sorting facility. 

Usually, such configuration is suitable when landfilling of CRD waste is the privileged 

option. However, the environmental policy prevents such behaviour and obliges the 

contractors to move CRD waste containers to sorting centers. The second reason is that 

sorting centers receive different quantities of grade 1 and grade 2. As grade 1 wood demand 

is difficult to fulfil, it may be supplied from more distant facilities than in the first scenario. 

 

Also, it is important to mention that for the baseline scenario, it was an advantage to locate 

sorting centers very close to the landfilling sites considering the significant amount of 

building materials to eliminate (see Table 2.5). However, under the environmental policy, it 

is less costly when the sorting centers are located near the CRD. Indeed, as 70% of the 

building material waste collected must be shipped to a certified sorting facility, in this case, 

there is a need to adjust the network design in order to minimize the related travelling 

distances in scenario 1. The overall transportation cost using the data set of 𝐿𝑆ଵ (𝑥ଵ, 𝑦ଵ) is 

$41,926,882. This cost increases by 18.2% using 𝐿𝑆ଶ (𝑥ଶ,𝑦ଶ) locations named SC10 and by 

21.2% with 𝐿𝑆ଷ (𝑥ଷ,𝑦ଷ) locations named SC19. The total reverse logistics cost increases by 

4.9% in SC10 and by 6% in SC19 when compared with scenario 1. Table 2.6 illustrates the 
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impact of changing the CRD site locations in terms of travelling distances between the 

supply sources and the sorting centers. 

 

Table 2.6   Potential impact of a change in collection sites locations 

CRD Location set LS1 LS2 LS3 

Criteria SC1 SC10 SC10* SC19 SC19* 
Distance travelled for 

recycling (km) 75.4 91.6 70.2 88.1 76.7 

Distance travelled for 
landfilling (km) 34.4 35.7 31.8 42.3 36.5 

Transportation cost ($)  
(∆ %) 

41,926,882 49,557,574 
(+ 18.2 %) 

37,520,366 
(- 10.5%) 

50,815,380 
 (+ 21.2 %) 

44,755,851 
(+ 6.7 %) - 

Number of expanded 
sorting centers 26 - 25 - 29 

New openings 5 - 5 - 3 

Total cost  ($) 359,830,582 377,709,715 353,511,880 381,722,441 364,772,979 

 

 

In a second phase, SC10 and SC19 were solved to optimality offering the possibility to make 

adjustments within the RL network: capacity expansion and opening new sorting facilities. 

These two scenarios are named SC10* and SC19*. The optimized network using LS2 data set 

leads to a configuration of twenty-five (25) expansions and new opening for five (5) sorting 

centers. Finally, using data set of LS3, the model suggests twenty-nine (29) expansions and 

three (3) new openings. It is interesting to denote that in SC10*, the optimized network 

configuration allows achieving a better result than the one obtained in SC1. Indeed, the slight 

decrease in the average distances travelled for recycling and landfilling reduces the total 

transportation cost from 8.9% compared to scenario 1. However, SC19* shows a slight 

increase in both recycling and landfilling distances compared to SC1, thus leading to a total 

transportation cost increase of 6.7%. This is mainly due to the fact that only 3 sorting centers 

are opening instead of 5 under the fixed network. Overall, this analysis underlines the 

advantages of allowing RL redesign under CRD sites location changes when compared with 
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SC10 and SC19. The potential total cost reduction for the RL network is 6.8% with 

SC10*and 4.6% for SC19*. Indeed, the policy makers could use such model to relocate or 

expand strategically some sorting facilities closer to supply sources in order to minimize the 

transportation distances and make the building materials landfilling option less attractive. 

 

2.5.3 Reverse logistics configuration under recycled wood quality uncertainty 

The quality of the recycled wood collected on the CRD sites plays an important role in 

fulfilling the needs of the recyclers. On the one hand, it is difficult to estimate the quality 

level of the wood to be recycled in the collection centers in advance. On the other hand, poor 

quality lots imply lower recycling rates at the sorting facilities and ultimately also a lower 

service level for the wood recyclers. Thus, the main goal of this section is to evaluate the 

impact of the recycled wood quality uncertainty on the overall RL network behaviour and 

performance. To do so, we used the first set of supply sources location (LS1) and an average 

collected quantity at CRD sites, and we compared the average, high and low-quality 

scenarios (i.e. SC1, SC2 and SC3 respectively). Then, in a second time, we analyse the 

results of scenarios SC2* and SC3* in order to highlight the loss of performance caused by 

using a fixed network for the various quality realisations. The results of these experiments 

are illustrated in Table 2.7. The performance of the network is expressed in terms of network 

configuration, overall facility use, recycling and landfilling proportion and average distances, 

recyclers’ service level, and all the related costs.  

 

First, we note that in case of high-quality scenario, the number of opening sorting centers 

increases from 5 in the fixed network to 8 facilities in SC2*. Indeed, as there is a significant 

increase of good quality wood suitable for recycling, it is well-advised to open a few sorting 

centers in strategic areas in order to minimize the transportation distances to reach the closest 

facility from the CRD sites. If grade 2 wood service level is not impacted a lot when 

comparing SC1 and SC2, the fixed network can however only fulfil 55% of the demand in 

SC3. This value can be increased to 69.8% with the optimized network as proposed in SC3*. 

In a second time, we can see that grade 1 recycled wood service level is highly influenced by 
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the predefined network design. Indeed, allowing the change in the RL network leads to the 

fulfilment of 81.1% of the grade 1 demand instead of 65.2% in SC2* and SC2 respectively. 

However, in the case of low-quality scenario, the service level achieves 28.4% for grade 1 

with scenario SC3* instead of 19.1% with SC3. It is also important to mention that for 

scenario 1, twenty-six (26) landfills are active, while only twenty-one (21) are active in 

SC2*. The number of active landfills achieves thirty (30) sites with SC3* due to the 

significant amount of poor quality wood waste, and which is not usable. 

 

The total RL network cost increases by 8.3% from SC1 to SC2 which is mainly due to the 

fact that recycling is more expensive than landfilling. Finally, an optimized RL network 

allows improving the total cost from 5.2% in the case of high-quality scenario from SC2 to 

SC2*, but this improvement is reduced to 2% in the case of poor quality scenario from SC3 

to SC3*. Thus, an effort toward improving the quality level and better estimation will lead to 

an improvement in the RLN design process and to a better control in the investment and 

opening decisions. Plus, in terms of network facilities investments and average recycling cost 

per ton of wood building-material, redesigning the RLN allows some economies of scale that 

would be revealed significant on a longer planning horizon. 
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Table 2.7   Potential impact of a change in collection sites locations 
 

Activity Criteria 

Avg. Quality  High Quality Low Quality  
SC1 (fixed 
network) 

 
SC2 SC2* 

 
SC3 SC3* 

 
 

Sorting 
facilities 

 
 

Expansion  
( opening ) 26 (5) 

 
- 25 (8) 

 
- 23 (4) 

Number of sorting 
centers 38 

 
- 38 

 
- 38 

Sorting facility use 96.5% 
 

98.2% 94.7% 
 

94.9% 89.9% 

Recycled wood 
(tons) 874,332 

 
905,199 959,980 

 
732,589 795,685 

Wood recycling 
cost (M$) / 

Avg. cost per ton 

74,5 
($85.2/ton) 

 
77,1 

($85.2/ton) 
 

 
75,5 

($78.6/ton) 
 

 
62,4 

($85.2/ton) 
 

72,8 
($91.5/ton) 

Avg. distance to 
recycle one metric 

ton (km) 
75.4 

 
75.4 59 

 
75.4 91.3 

Customers 

Service level  
Grade 1 54% 

 
65.2% 81.1% 

 
19.1% 28,4% 

Service level  
 Grade 2 84.7% 

 
89.9% 89.9% 

 
55% 69.8% 

Landfills 

Landfilling (tons) 727 068 
 

696,201 641,420 
 

868,811 805,715 

Number of sites 
used 26/36 

 
- 21/36 

 
- 30/36 

Average distance to 
landfills (km) 38.9 

 
38.9 43.6 

 
38.9 34.4 

RL 
Network 

Total Cost (M$) 359,8 
 

389,7 
 

370,6 
 

 
357,0 

 
349,7 

 

Facility investments 
(M$) 56.2 

 
56.2 61.5 

 
56.2 49.9 
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2.5.4 RLND under joint waste quantities and collection sites locations change 

The quantity of the building material collected at the CRD sites is one of the most influential 

parameters on the RL configuration (expansion, new openings). Plus, the variability in the 

collected quantity impacts greatly the recycled wood service level offered to the recyclers. 

Only the scenarios with high quantity realisations allow satisfying entirely the demand of the 

recyclers. While low volume scenarios provide around 1.2 million tons of recycled wood 

from the collection sites, high volume scenarios exceed 2.1 million tons supply which means 

that the recycling rate increases but also the landfilling quantity increases in the meantime. 

Table 2.8 presents the sorting facility expansion decisions, new openings and the associated 

initial investments required to adjust the RLN design. Plus, it provides the total network 

capacity and the variation compared to the fixed network from scenario 1. The scenarios 

depicted in this table are respectively SC4*, SC13* and SC22* (different locations with low 

volume collected); SC1* (fixed network), SC10* and SC19* (different locations with 

average volume collected); SC7* SC16* and SC25* (different locations with high volume 

collected). All the scenarios proposed in this table consider an average quality realisation.  

 

The optimization model suggests 11 to 13 expansions plus 1 or 2 new facility openings with 

a 20,000 ton-capacity in the case of low collected quantity scenarios. For an average quantity 

scenario, between 25 to 29 expansions and 3 to 5 openings are recommended. In this case, 

only the new sorting centers 13 and 47 have 100,000-ton treatment capacity and the 

remaining are 20,000-ton facilities. Finally, a complete reconfiguration is required in case we 

face the high quantity scenarios with 29 to 31 expansions and 10 to 14 openings with a 

majority of facilities with 100,000-ton treatment capacity. Depending on the scenario the 

investment cost required for network optimal configuration varies from 10.5 M$ up to 68.7 

M$. However, the required investments are not proportional to the additional capacity of the 

network. Indeed, it is less expensive to expand some existing sorting facilities than to build 

new ones. Thus, as the increasing quantity of debris collected also implies additional sorting 

center openings, if the collected waste at the CRD sites increases, the average investment 

required per ton of material increases in the meantime. We also denote that the RL network 
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increases its capacity on average from 28.4% from low quantity to average quantity 

scenarios, and from 24.7% from average quantity scenarios to high ones. In the case of low 

volume scenarios, the optimization allows saving around 30% capacity compared to the fixed 

network. However, high volume scenarios require an increase in the overall treatment 

capacity from 27.9% to 35.5% from the fixed network in order to guarantee regulatory 

compliance. Depending on the collected quantity at the CRD sites, the optimal RL network 

suggests between 11 and 31 sorting facility expansions and between 2 and 14 new openings. 

Thus, we denote a very significant difference with the fixed network proposing 26 

expansions and 5 openings. 

 

Table 2.8   Optimal RLND according to the CRD sites locations and waste quantity 

   SSL     SF.E      SF.O          CAP          CV/FN        T.INV             U.RC 
Low collected quantity scenarios 

LS1 11 2 2 755 000 t (-) 28,4 11,2 M$ 92,3 $/t 

LS2 13 1 2 703 500 t (-) 29,7 11,1 M$ 96,7 $/t 

LS3 11 2 2 685 000 t (-) 30,2 10,5 M$ 93,5 $/t 

Average collected quantity scenarios 

LS1 26 5 3 845 000 t N/A 34,7 M$ 85,2 $/t 

LS2 25 5 3 995 000 t (+) 3,9 36,1 M$ 87,1 $/t 

LS3 29 3 3 770 000 t (-) 2,1 32,2 M$ 89,4 $/t 

High collected quantity scenarios 

LS1 30 13 5 105 000 t (+) 32,7 67 M$ 72,4 $/t 

LS2 29 14 5 210 000 t  (+) 35,5 68,7 M$ 69,5 $/t 

LS3 31 10 4 920 000 t  (+) 27,9 65,8 M$ 76,9 $/t 

SSL: Supply Sources Location; SF.E: Sorting Facility Expansions; SF.O: Sorting Facility 
Openings; CAP: Network Capacity; CV/FN: Capacity Variation compared to the Fixed 
Network; T.INV: Total Investment; U.RC:  Unit Recycling cost per 1 metric ton of wood 
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In summary, in order to guarantee a more efficient RLN redesign in the CRD industry, there 

is a real need to get more accurate information about the supply sources locations and the 

expected wood quantity recovered from sorting facilities.  

 

2.6 Conclusion 

This paper addresses the reverse logistics network redesign for wood waste in the CRD 

industry under the environmental policy, based on a case study conducted on recycled wood 

building-materials in Quebec, Canada. The key decisions are the relocation and capacity 

investment of sorting facilities. A MILP model has been developed in order to analyse the 

direct impact of different key uncertain parameters on RL network design decisions under the 

waste management policy. The objective is to minimize the total cost under such restrictions. 

Although existing sorting facilities were not used at their full capacity in the baseline 

scenario, results from this study show clearly that the enforcement of environmental policy 

will lead to increase in the RL network efficiency and reduce the cost of recycling. Indeed, 

using the proposed model, the decision makers could ensure maintaining a wood recycling 

cost under the cost of virgin wood fibre procurement, estimated at around 120$ per ton. 

Moreover, under the uncertainty of parameters, the different RLN configurations are quite 

different. A precise estimation of the location and the available quantities of wood in future 

CRD collection sites will lead to efficient investment and relocation decisions that will 

reduce transportation costs and decrease landfilling activities. Efforts towards the 

improvement of the quality level of the collected wood (sorting at CRD sites, reducing 

material contamination in the construction process, etc.) will increase the service level for 

customers and avoid importing recycled wood or use of virgin wood. In the model 

assumptions, we assume demand for each grade of recycled wood is known in advance. The 

concept of wood quality grades was used to classify demand of the different recyclers. The 

uncertainty in demand is also a parameter that might be included in future research especially 

with the development of new opportunities to use recycled wood in new emerging industrial 

activities regardless of the quality level.  
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With the proposed case study in the province of Quebec, these results provide valuable 

insights on the importance of implementing efficient reverse logistics network as an incentive 

to reducing landfilling from the CRD industry. Practically, this paper provides a decision 

support for policy makers involved in CRD waste recycling management. It offers some 

useful logistics insights before setting new regulations that could be an issue for the recycled 

wood industry and non-sustainable in terms of environmental impacts. Although the paper 

focused on a case study for wood recycling from CRD in the province of Quebec, Canada, 

the application of this model is not limited to this country. Also, the model can be applied to 

a reverse supply chain for waste recycling in general. 

  

In this work, we present various optimal RLN designs according to the uncertainty outcomes. 

However, in practice, the decision makers will have to choose a unique network 

configuration for the coming years that will efficiently handle various supply sources 

locations, waste collected quantities, and quality of the building materials. Although the 

scenario-based approach is efficient to handle uncertainty in the decision model, it is based 

essentially on the discrete realisation of uncertainty, which considerably reduces the number 

of tractable scenarios. As a future research direction, we suggest the development of a 

stochastic programming version of this model to avoid this limitation and propose the best 

supply chain configuration for a longer planning horizon. For the coming years, trends 

related to the uncertain parameters may be estimated using historical CRD data (Kalcher et 

al., 2016). Finally, it would be of major interest to include an environmental evaluation after 

policy implementation in the decision model as a future work. 

 

Acknowledgments 

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and 

the Interdisciplinary Research Center in Sustainable Development (CIRODD) for their full 

collaboration and financial support for this research. We are also very grateful to RECYC-

QUEBEC and 3R-MCDQ organisations for the information about the WMP 2016-2020 and 

the wood landfilling regulation they provided to us during this study.  

 





 

CHAPTER 3 
 
 

A TWO-STAGE STOCHASTIC OPTIMIZATION MODEL FOR REVERSE 
LOGISTICS NETWORK DESIGN UNDER DYNAMIC SUPPLIERS’ LOCATIONS 

Julien Trochu a, Amin Chaabane b, Mustapha Ouhimmou c , 
a, b, c Department of Automated Manufacturing, École de Technologie Supérieure,  

1100 Rue Notre-Dame West, Montreal, Quebec, Canada H3C 1K3  

Article submitted for publication in Waste management, October 2018 

 

Abstract 
 
In this paper, we present a two-stage stochastic programming model for reverse logistics 

network design (RLND) under uncertainty with dynamic supply sources’ locations. The 

primary goal of this optimization model is to maximize the expected profit generated by 

selling the materials collected from the supply sources to the secondary markets for recycling 

in order to make the landfilling option less attractive. The decision model identifies the best 

strategies to operate and adjust the processing capacity of the existing collection centers, 

while opening new ones with the appropriate size and suitable location. However, in 

comparison with the previous stochastic optimization models in this area, which mainly 

focus on the expected optimal value, this paper emphasizes the importance of source 

separation centers to address the challenge of the dynamic supply sources. Indeed, source 

separation and shipments consolidation of collected materials are performed at the SSC to 

increase the productivity level at the collection centers. The availability of each material 

collected from the supply sources and the recycling rates at the CC are the primary sources of 

uncertainty considered in this study. We adopt the Sample Average Approximation (SAA) 

procedure to solve the stochastic model and perform sensitivity analyses on the number of 

supply sources, the sample size and the level of uncertainty targeting the random parameters. 

The variation in the number of supply sources is mainly used to compare low-density rural 

collection zones versus high-density urban areas, where the waste collection activities are 

often more challenging. Managerial implications are discussed through a case study in the 
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construction, renovation and demolition industry (CRD) in the province of Quebec, Canada. 

Although the SSC improve the network performance in both rural and urban zones, the 

flexibility provided by these dynamic platforms reaches its best efficiency in the case of 

high-density urban areas. The results suggest significant RLND adjustments that lead to 

increase the average profit by 17.6% and recycle around 29% of additional building 

materials. 

 
3.1 Introduction 

Waste management and reverse logistics (RL) have become areas of particular interest in the 

supply chain literature over the past decades (Agrawal et al., 2015). Nowadays, industries 

worldwide are making efforts to implement RL practices among their supply chains (Mangla 

et al., 2016; Bing et al., 2016). The term reverse logistics refers to the management of 

products that have reached the end of their useful life for the consumers in order to give them 

an added value (Guide and Van Wassenhove, 2009). Converting raw materials into finished 

products and deliver to customers is known as forward supply chain (FSC). On the other 

hand, the collection, sorting, recycling, reusing and landfilling processes are part of the 

reverse logistics (RL) supply chain operations (Fleischmann et al., 1997, Alshamsi and 

Diabat, 2017). To deal with uncertainty, stochastic models for RLND can generate a network 

that will perform well in the future under different expected scenarios (Salema et al., 2007). 

Indeed, if the uncertainty is not considered at the design stage, the chances are very high to 

face demand shortages and service levels decrease that will affect the overall supply chain 

performance and profitability. To avoid such issues, the goal of this research is to propose a 

new generic RLND model that considers key uncertain parameters that are recurrent in 

several industries dealing with the challenges of RL activities. In addition, we aim to 

consider the uncertainty related to suppliers’ location, a problem particularly faced by the 

construction, renovation, and demolition (CRD) industry (Trochu et al., 2018). For instance, 

we will consider three types of uncertainty in this study: the “volume” of collected material 

at the supply sources, the “quality” of the materials received at the collection centers (CC), 

and the “dynamic location of the suppliers” that are moving over time. Indeed, suppliers’ 



67 

location has a direct impact on the RL network configuration (Schmitt and Snyder, 2012). To 

cope with this problem, the decisions to be made target the utilization and possible capacity 

expansion of the existing CC (allowed during each period), and also the opening and location 

of new CC along with their capacity allocation. In addition, setting dynamic (or mobile) 

source separation centers (SSC) is also a potential option considered in this research. Source 

separation centers are dynamic and flexible facilities (not permanent) that can be opened or 

closed in order to be relocated closer to the supply sources and deal with waste separation 

near to the sources of waste (suppliers). Indeed, separation of recyclables at source is more 

efficient than the recovery of recyclables from mixed waste, as source separation produces 

cleaner materials of higher quality for recycling (Bennagen et al., 2002; Owusu et al., 2013). 

We assume that SSC relocation is possible due to the low cost of operating these facilities, as 

they do not require too much infrastructure and equipment (Moh, 2017). Moreover, using the 

SSC, transportation improvements can be achieved through shipments’ consolidation of the 

appropriate materials before being redirected to the recycling centers (Kheirkhah and Rezaei, 

2016). By separating good quality materials from poor quality or hazardous ones at an early 

stage of the recycling process, we manage to increase the recycling rates and improve the 

quality of the materials transported to the CC (Quebec Association of CRD materials 

recyclers, 2014). Finally, shipments’ consolidation with the SSC strategy reduces the 

congestion that might be caused by the transportation activities around the CRD sites located 

in the city. In practice, source separation centers can be operated by the municipalities to 

encourage materials recycling and prevent waste elimination on their territory due to the low 

cost of landfilling (Kinobe et al., 2015).   
     
In a previous study, we established that the RLND is very sensitive to the uncertainty 

targeting the suppliers’ location, the material quality and the volume of material collected 

(Trochu et al., 2018). However, to the best of our knowledge, no stochastic model addresses 

the RLND problem considering these criteria over a multi-period horizon, which is essential 

in this case given the dynamic behavior related to the suppliers' locations. By developing the 

proposed quantitative model, we aim to answer the following research questions:  
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• What is the optimal RLND for material recycling under dynamic suppliers’ locations 

and uncertainties in the volume and the quality of the collected materials? 

 

• What role can the SSC play and what are their impacts on the RLND performance 

under the uncertainties of the quantity and the quality of collected materials? 

 

The structure of this paper is as follows. Section 2 reviews the literature on RLND models 

under uncertainty. In section 3, we present the formulation of the model and the solution 

procedure. Section 4 synthesizes our experiments and main results while providing the reader 

with useful managerial insight regarding the SSC by conducting sensitivity analyses. Finally, 

conclusions and future research directions are discussed in section 5.  

 

3.2 Literature review 

Stochastic models can be classified into two (2) different approaches. The first one is known 

as the two-stage stochastic modeling, which uses two types of decision variables. The first 

type is fixed before observing the uncertainty outcome and is called first-stage decision 

variables, while the second type is released only after the realization of the randomness and 

known as second-stage decision variables or recourse actions (Birge and Louveaux, 1997). 

Multi-stage stochastic programming modeling with recourse is a formulation that extends the 

two-stage stochastic models by allowing the revision of the decisions at each stage, based on 

the realization of the uncertainty. In multi-stage stochastic models, the focus is on the 

decisions to be made today considering current resources, future outcomes and possible 

corrective actions in the future (Kall and Wallace 1994, Kall and Mayer 2005). In this 

section, we will summarize recent studies that use stochastic models for RLND using the 

two-stage or the multi-stage stochastic approaches. The reader is referred to Pokharel and 

Mutha (2009), Govindan et al. (2015) and Agrawal et al. (2015) for a more exhaustive review 

of RLND models. The primary concern for RLND is the uncertainties related to the market 

demand for new and recycled products and/or the quantity of goods returned by the 

consumers that will be treated through the reverse logistics channel (Listes, 2007; Lee and 
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Dong, 2008; Baptista et al., 2012; Zeballos et al., 2014; Srinivasan and Khan, 2018). This 

trend inevitably leads to consider some critical issues such as uncertainty in the pricing of the 

new or recycled products and parts (Soleimani and Govindan, 2014; Fattahi and Govindan, 

2016; Yu and Solvang, 2017) and the capacity of the reverse logistics supply chain to process 

the potential returned flows (Chouinard et al., 2008; Ramezani et al., 2013).  

 

More recently, the design of sustainable reverse logistics networks has become a significant 

challenge. Therefore, new stochastic models have been proposed to take into consideration 

the uncertainty regarding environmental parameters such as greenhouse gases (GHG) 

emissions levels (Pishvaee et al., 2012) and carbon tax rates (Haddadsisakht and Ryan, 

2018). Although there is a growing concern about developing innovative stochastic models 

that include a wider variety of unknown parameters, few studies focused on the uncertainty 

in the quality of the products and materials collected through the RL channel (Kara and Onut, 

2010; El-Sayed et al., 2010; Zeballos et al., 2012). For instance, Ayvaz et al. (2015) are one 

of the first studies that developed a generic two-stage stochastic RLND formulation that 

includes the unknown returned product quantity, the uncertain sorting ratio at the collection 

facilities and the uncertain transportation costs between network nodes. However, 

information about the material waste quality is a crucial element in the CRD industry in order 

to manage reverse logistics activities properly (Sobotka and Czaja, 2015). Thus, there is a 

need for further consideration of this aspect in quantitative models in the field of reverse 

logistics, being one of the contributions of this article. Table 3.1 synthesizes some additional 

information on two-stage and multi-stage stochastic programming models for RLND. To the 

best of our knowledge, no stochastic model includes SSC location decisions to cope with the 

uncertain quantity and quality of the collected materials coming from dynamic supply 

sources over time. Moreover, there is a lack of quantitative reverse logistics models that 

present some applications in industries that represent a huge environmental burden for the 

society, being the case of the CRD industry (Brandenburg et al., 2014; Chileshe et al., 2018. 

In this study, the originality of the model lies in the dynamic locations of the collection 

points (suppliers) for the collected materials. This situation is a mainly a challenge for the 

CRD industry where the collection sites locations are changing continuously over time. 
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Indeed, it has been established in previous studies that waste management efficiency is 

impacted by the locations of the waste collection zones, especially in high-density urbanized 

areas (Ghiani et al., 2015). Moreover, in this research, we introduce the SSC that contributes 

to transportation consolidation and better source separation (sorting) of the materials. Thus, 

we consider a direct correlation between the RL network design decisions and the recycling 

rates at the collection centers. 

 
Table 3.1   Review of two-stage & multi-stage stochastic optimization models for RLND 
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3.3 Model description 

In the following section, we will present the mathematical formulation including the 

notations such as the sets, parameters, objective function as well as the constraints of the 

model. Let T be the set of periods and S be the set of dynamic supply sources of the model. 

Thus, we consider a binary matrix 𝜑௦௧, with values equal to 1 if supply source 𝑠 ∈ 𝑆 is 

visited during the period 𝑡 ∈ 𝑇, and 0 if not. We assume that each collection point is 

available only once (the materials are collected in one single period) during the planning 

horizon. In this study, the locations [(𝑥ଵ,𝑦ଵ), … , (𝑥௦,  𝑦௦)] of the supply sources are randomly 

generated, and we apply the following steps to build the matrix 𝜑௦௧: 
  

- Step 1: We generate random coordinates (𝑥௦,  𝑦௦) in the Euclidian plan for each of the 

supply sources. 

 

- Step 2: For each collection point generated in step 1, we generate a random value 

between 0 and 1 and assign these values to the supply sources. All supply sources 

with a value between 0 and 0.2 are collected in period 1, those between 0.2 and 0.4 

are collected in period 2, and so on until period 5 for the values between 0.8 and 1. 

 

- Step 3: Based on step 2, we build the binary matrix 𝜑௦௧. Therefore, each supply 

source is operating only once in the planning horizon.  

 

Figure 3.1 illustrates the methodological steps for random generation of the dynamic supply 

sources with an illustrative example using 50 collection points and 5 periods. The materials 

collected from the supply sources are sorted, processed, and finally sold to the secondary 

markets. We assume that the demand for recycled materials is known and stationary over 

time. Indeed, before reaching the final markets, the materials must be shipped either to an 

existing or potential (to be open in predefined site) collection center 𝑓 ∈ 𝐹. The processing 

facilities are responsible for materials sorting and recovery before being shipped to the 

markets. However, we consider that the quality of the materials collected at the suppliers is 
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unpredictable and affects the recycling rates at the collection centers. Thus, this parameter 

(i.e., recycling rates at CC) is uncertain in the model formulation. In order to cope with the 

challenge of supply sources locations (SSL), we allow the opening of SSC on a set of 

predefined locations. These logistics units are used for source separation of mixed materials 

and trucks consolidation that allows shipping single-material containers (SMC) to the 

collection centers. If mixed-material containers (MMC) are sent to SSC before reaching the 

CCs, then we assume that we can achieve better recycling rates. Thus, by introducing the 

SSC, we consider that a correlation exists between the source separation of the collected 

materials at the SSC and the achievable recycling rates at collection centers. This reasoning 

is based on the following facts. First, we assume that source separation of the materials will 

avoid poor mix and limit the degradation of the materials’ quality sent to the CC. Secondly, 

we suppose that the operations at CCs are more efficient with the treatment of SMC rather 

than with MMC (Quebec building material recyclers, personal communication, 2016).  

 

 

Figure 3.1   Methodology for SSL random generation (example with S=50 and T=5) 
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Thus, let’s consider  𝑟௠௧௨ and  𝑟̃௠௧௨ the recycling rates we can achieve at the collection 

centers in case the materials are shipped directly from the supply sources (dealing with 

MMC) or if they have been processed at the source separation centers (thus dealing with 

SMC) respectively. Both uncertainties on the recycling rates (i.e. 𝑟௠௧௨ and  𝑟̃௠௧௨) are 

randomly generated in each scenario and follow uniform distributions such as  𝑟௠௧௨ ∈  [𝛼 ;𝛽] 
and 𝑟̃௠௧௨ ∈  ൣ𝛼෤ ;𝛽෨൧ with  𝛼 ൏  𝛼෤  and 𝛽 ൏ 𝛽෨. Also, in addition to the quality of the materials 

received at the collection centers, we assume that uncertainty has an impact on the volume 

collected from the supply sources. We denote 𝑣௠௦௧௨ the volume of each material 𝑚 ∈ 𝑀 

collected at the supply source 𝑠 ∈ 𝑆 during each period 𝑡 ∈ 𝑇 in the scenario 𝑢 ∈ 𝑈. We 

assume that v_mstu is normally distributed such as 𝑣௠௦௧௨ ~ N (μ ,σ2).  The proposed reverse 

logistics network structure is illustrated in figure 3.2. 

 

 

      Figure 3.2   A Generic framework for RLND under dynamic suppliers’ locations 
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3.3.1 Model notations 

Sets 𝑖, 𝑗         ∈ 𝑁          Nodes of the network 𝑠 ∈ 𝑆    ⊂ 𝑁          Set of supply sources 𝑜 ∈ 𝑂   ⊂ 𝑁          Set of potential source separation centers 𝑘 ∈ 𝐾ை                       Set of potential source separation centers capacities 𝑓 ∈ 𝐹 =  𝐹ா + 𝐹௉  Set of collection centers 𝐹ா ⊂ 𝐹                    Set of existing collection centers 𝐹௉ ⊂ 𝐹                    Set of potential collection centers 𝑘 ∈ 𝐾ா                         Set of additional capacities for collection centers expansions 𝑘 ∈ 𝐾௉                    Set of opening collection centers capacities 𝑙 ∈ 𝐿    ⊂ 𝑁            Set of landfilling areas 𝑐 ∈ 𝐶   ⊂ 𝑁           Set of customers  𝑧 ∈ 𝑍                           Available truck sizes (small and large) 𝑚 ∈ 𝑀                    Set of collected materials 𝑡 ∈ 𝑇                      Set of time periods 𝑢 ∈ 𝑈                     Set of scenarios 

 

Parameters 
 𝑝௨ =   Probability of scenario 𝑢 ∈ 𝑈 𝑡௜௝ =   Transportation cost for shipping one metric ton of materials between origin node                 𝑖 ∈ 𝑁  and destination node 𝑗 ∈ 𝑁   𝜉௜௝  =    Transportation distances between origin node 𝑖 ∈ 𝑁  and destination node 𝑗 ∈ 𝑁  𝜔௭   =    Loading capacity of a truck with a size 𝑧 ∈ 𝑍   𝑑௠௖௧ = Demand for material m∈M at customer c∈C at period 𝑡 ∈ 𝑇 𝑑௠௧  =  Selling price of one unit (1 metric ton) of material m∈M at period 𝑡 ∈ 𝑇 
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𝑔௙௧   =   Annual processing capacity at collection center 𝑓∈𝐹 at period 𝑡 ∈ 𝑇 ℎ௙௞ா   =  Additional capacity if collection center 𝑓∈𝐹ா is expanding to capacity 𝑘∈𝐾ா ℎ௙௞௉ =    Available capacity in case of new collection center 𝑓∈𝐹௉ is open with a size 𝑘∈𝐾௉ ℎ௢௞௧ை =  Available capacity in case of source separation center o∈O is open with a size                     𝑘∈𝐾ை at period 𝑡 ∈ 𝑇 𝜓   =    Minimum filling rate at a source separation center in order to keep it open 𝑟௠௜௡ = Minimum mandatory recycling rate to achieve (recyclers’ service level)  𝑐௠௧௅   =  Landfilling cost of one ton of material 𝑚∈𝑀 at a landfilling area at period 𝑡 ∈ 𝑇 𝑐௠௧ோ  =   Recycling cost of one ton of mixed material 𝑚∈𝑀 at the collection center at period 

              𝑡 ∈ 𝑇 𝑐̃௠௧ோ  =   Recycling cost of one ton of single material 𝑚∈𝑀 at the collection center at period 

              𝑡 ∈ 𝑇 Ω௙   =   Fixed operating cost for an existing collection center 𝑓∈𝐹 during the planning horizon    δ௙௞  =   Expansion cost of existing collection center 𝑓∈ 𝐹ா to size 𝑘∈𝐾ா    𝜋௙௞ =    Opening cost for potential collection center 𝑓∈𝐹௉of size 𝑘∈𝐾௉  𝜎௢௞  =    Fixed setting cost for source separation center 𝑜 ∈ 𝑂 of size 𝑘∈𝐾ை  𝜆௢௧  =   Variable unit operating cost for source separation center 𝑜 ∈ 𝑂  at period 𝑡 ∈ 𝑇 𝜂௢௧  =    Closing cost for source separation center 𝑜 ∈ 𝑂  at period 𝑡 ∈ 𝑇 

𝜑௦௧  =  ൝  1   if supply source 𝑠 ∈ 𝑆  is operating at period 𝑡 ∈ 𝑇                                                                                           0   if not                                                                                                                                                
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Uncertain parameters 
 𝑟௠௧௨  =   Recycling rate at the collection center for material type m∈M at period 𝑡 ∈ 𝑇         

              in scenario u ∈U without source separation   𝑟̃௠௧௨  =  Recycling rate at the collection center for material type m∈M at period 𝑡 ∈ 𝑇        

              in scenario u ∈U with source separation  𝑣௠௦௧௨ =  Supply capacity of material 𝑚∈𝑀 collected at supply source 𝑠∈𝑆 at period      

               𝑡 ∈ 𝑇 in scenario u ∈U 

 

Decision variables 

 

First stage variables 

 𝛽௙   = ൝ 1   if sorting center  𝑓 ∈ 𝐹  is operating during the planning horizon                                            0   if not                                                                                                                              
 𝛼௙௞௧ = ൝  1   if CC  𝑓 ∈ 𝐹ா  should be expanded to size 𝑘 ∈ 𝐾ா  at period 𝑡 ∈ 𝑇                                                                                                      0   if not                                                                                                                    
 

𝜃௙௞  = ൝   1   if a new collection center  𝑓 ∈ 𝐹௉ of size 𝑘 ∈ 𝐾௉ should be opened                                                                                                                        0   if not                                                                                                                      
 

𝛻௢௞௧ =  ൝   1   if a SSC 𝑜 ∈ 𝑂  of size 𝑘 ∈ 𝐾𝑂 should be opened at period 𝑡 ∈ 𝑇                                    0   if not                                                                                                                 
 𝜁௢௧  =  ൝    1   if a source separation centers o ∈ O  should be closed at period t ∈ T                                                                          0   if not                                                                                                                                                                   
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Second stage variables 
 𝑋௠௜௝௧௨ =Flow of material type 𝑚 ∈ 𝑀 transported from origin node 𝑖𝜖𝑁 to destination node                   𝑗 ∈ 𝐽  at period 𝑡 ∈ 𝑇 in scenario u ∈ U 

 𝑁௦௧௨ =Number of required trucks to perform collection activities on supply site 𝑠∈𝑆 at period                  𝑡 ∈ 𝑇 in scenario u ∈ U    

 𝑁௢௧௨ = Number of required trucks to perform consolidation activities at source-separation  

  centers o ∈ O at period 𝑡 ∈ 𝑇 in scenario u ∈ U 

 

3.3.2 Objective function – Maximizing the profits 

𝑍 = ෍𝑝௨ ቎෍ ෍෍ ෍ 𝑑௠௧  𝑋௠௙௖௧௨௙∈ிಶ∪ ிು  ௧∈்௖∈஼௠∈ெ ቏  − ෍ 𝛺௙ ෍ ൭෍𝛿௙௞𝛼௙௞௧௧∈் + 𝜋௙௞𝜃௙௞൱௞∈௄ಶ∪ ௄ು௙∈ிಶ∪ ிು௨∈௎
−  ෍   ෍ ෍ (𝜎௢௞∇௢௞௧ + 𝜂௢௧  𝜁௢௧௞∈ ௄ೀ௧∈்௢∈ை )
−  ෍𝑝௨ ቎෍ ෍𝑐௠௧ோ௧∈்௠∈ெ ቌ ෍ ෍𝑋௠௦௙௧௨ ௦∈ௌ௙∈ிಶ∪ ிು ቍ௨∈௎
+ ෍ ෍𝑐̃௠௧ோ௧∈்௠∈ெ ቌ ෍ ෍𝑋௠௢௙௧௨ ௢∈ை௙∈ிಶ∪ ிು ቍ
+  ෍ ෍𝑐௠௧௅௧∈்௠∈ெ ෍ቌ෍𝑋௠௦௟௧௨ + ௦∈ௌ ෍ 𝑋௠௙௟௧௨ + ௙∈ிಶ∪ ிು ෍𝑋௠௢௟௧௨௢∈ை ቍ௟∈௅
+  ෍෍𝜆௢௧ ෍ ෍𝑋௠௦௢௧௨௦∈ௌ௠∈ெ௧∈்௢∈ை + ෍෍𝑡௜௝  𝜉௜௝ ෍ ෍𝑋௠௜௝௧௨௧∈்௠∈ெ௝∈௃௜∈ூ ቏                               (3.1) 
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The first part of the objective function represents the expected profit made by selling the 

recycled materials to the secondary markets. The second part involves the first stage decision 

variables of the model, related to existing and potential collection center opening and 

operating decisions. Finally, the last part of the objective function represents the expected 

costs related to :1) the recycling activities at collection centers depending on the container 

type (i.e. mixed versus single materials), 2) the landfilling costs of the remaining materials, 

3) the opening, operating and closing costs of the source separation centers and lastly 4) the 

expected transportation costs over the entire planning horizon. The goal is to maximize the 

expected value generated by selling the recycled materials to the secondary markets while 

considering the recycling rates at collection centers and the quantity of collected materials at 

supply sources as uncertain parameters. The next part of this section further details the 

constraints of this two-stage stochastic model. 

 

3.3.3 Constraints of the model 

Demand satisfaction  

𝑟௠௜௡ 𝑑௠௖௧ ≤ ෍ 𝑋௠௙௖௧௨௙∈ிಶ∪ ிು ≤ 𝑑௠௖௧       ∀𝑚 ∈ 𝑀,∀𝑐 ∈ 𝐶,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈        (3.2) 

 

Flow conservation at the supply sources  

𝑣௠௦௧௨ .𝜑௦௧ = ෍ 𝑋௠௦௙௧௨௙∈ிಶ∪ ிು + ෍𝑋௠௦௟௧௨௟∈௅  + ෍𝑋௠௦௢௧௨௢∈ை    
∀𝑚 ∈ 𝑀,∀𝑠 ∈ 𝑆,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈       (3.3) 

Flow conservation at collection centers 

෍𝑋௠௦௙௧௨௦∈ௌ + ෍𝑋௠௢௙௧௨௢∈ை = ෍𝑋௠௙௖௧௨ +௖∈஼ ෍𝑋௠௙௟௧௨௟∈௅       
∀𝑚 ∈ 𝑀,∀𝑓 ∈ 𝐹ா ∪  𝐹௉,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈     (3.4) 
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Flow conservation at potential source separation centers 

෍𝑋௠௦௢௧௨௦∈ௌ = ෍ 𝑋௠௢௙௧௨ +௙∈ிಶ∪ ிು ෍𝑋௠௢௟௧௨௟∈௅    ∀𝑚 ∈ 𝑀,∀𝑜 ∈ 𝑂,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈     (3.5) 

Achievable recycling rates at collection centers without source-separation 

൭෍𝑋௠௦௙௧௨௦∈ௌ ൱  𝑟௠௧௨ ≥  ෍𝑋௠௙௖௧௨௖∈஼     ∀𝑚 ∈ 𝑀,∀𝑓 ∈ 𝐹ா ∪  𝐹௉,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈        (3.6) 

 

Achievable recycling rates at collection centers with source separation 

൭෍𝑋௠௢௙௧௨௢∈ை ൱  𝑟̃௠௧௨ ≥  ෍𝑋௠௙௖௧௨௖∈஼     ∀𝑚 ∈ 𝑀,∀𝑓 ∈ 𝐹ா ∪  𝐹௉,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈        (3.7) 

 

Treatment capacity at the existing collection centers 

෍ ෍𝑋௠௦௙௧௨௦∈ௌ௠∈ெ + ෍ ෍𝑋௠௢௙௧௨௢∈ை௠∈ெ ≤  𝑔௙௧ 𝛽௙ + ℎ௙௞ா  𝛼௙௞௧ ∀𝑘 ∈ 𝐾ா   ,∀𝑓 ∈ 𝐹ா ,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈        (3.8) 

Treatment capacity at potential collection centers 

෍ ෍𝑋௠௦௙௧௨௦∈ௌ௠∈ெ + ෍ ෍𝑋௠௢௙௧௨௢∈ை௠∈ெ ≤  ℎ௙௞௉  𝜃௙௞     ∀𝑘 ∈ 𝐾௉,∀𝑓 ∈ 𝐹௉,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈       (3.9) 

 

Treatment capacity at potential source separation centers 

෍ ෍𝑋௠௦௢௧௨௦∈ௌ௠∈ெ ≤  ℎ௢௞௧ை  𝛻௢௞௧         ∀𝑘 ∈ 𝐾ை  ,∀𝑜 ∈ 𝑂,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈          (3.10) 

 

Throughput flow at potential source separation centers (minimum filling rate) 

 (ℎ௢௞௧ை  𝜓)𝛻௢௞௧ ≤ ෍ ෍𝑋௠௦௢௧௨௦∈ௌ௠∈ெ ≤  ℎ௢௞௧ை  𝛻௢௞௧      ∀𝑜 ∈ 𝑂  ,∀𝑘 ∈ 𝐾ை,∀𝑡 ∈ 𝑇          (3.11) 
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Source separation centers opening and closing constraints 

𝜁௢௧ +  ෍  𝛻௢௞௧ ௞∈௄ೀ ≤ 1         ∀𝑜 ∈ 𝑂  ,∀𝑡 ∈ 𝑇                                    (3.12) 

 

Collection centers expansions are limited to 1 per facility 

෍  ෍𝛼௙௞௧௧∈் ≤ 1௞∈௄       ,∀𝑓 ∈ 𝐹                                               (3.13) 

 

Trucks loading capacity at supply sources 

෍ 𝑣௠௦௧௨௠∈ெ  ≤෍𝜔௭ ௭∈௓ 𝑁௦௧௨     ∀𝑠 ∈ 𝑆,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈                               (3.14) 

 

Trucks loading capacity at source separation centers 

෍ ෍𝑋௠௦௢௧௨௦∈ௌ௠∈ெ  ≤෍𝜔௭ ௭∈௓ 𝑁௢௧௨      ∀𝑜 ∈ 𝑂,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈                          (3.15) 

 

Integer and binary constraints  

 𝑋௠௜௝௧௨ ∈  ℝା Where  ℝା= ሼ𝑥 𝜖 ℝ, 𝑥 ≥ 0ሽ,    ∀𝑚 ∈ 𝑀,∀𝑖𝜖𝐼,∀𝑗𝜖𝐽,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈        (3.16) 

𝑁௦௧௨,𝑁௢௧௨ ∈ ℕ ,     ∀𝑚 ∈ 𝑀,∀𝑖𝜖𝐼,∀𝑗𝜖𝐽,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈                   (3.17) 𝛽௙ ,  𝛼௙௞,𝜃௙௞, 𝜑௦௧ ,𝛻௢௞௧ , 𝜁௢௧   ∈  ሼ0,1ሽ       ∀𝑓 ∈ 𝐹ா ∪  𝐹௉,∀𝑘 ∈ 𝐾ா ∪  𝐾௉,  
∀𝑜𝜖𝑂,∀𝑠𝜖𝑆,∀𝑡𝜖𝑇,∀𝑢𝜖𝑈        (3.18) 

 

The first constraint (3.2) ensures that we ship the recycled materials from the collection 

centers to the secondary market only if this is profitable. Indeed, we have no obligation to 

fulfill the totality of the recyclers’ demand. However, there is a minimum mandatory 
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recycling rate that we need to meet for environmental reasons, mainly to avoid massive 

landfilling on the territory. The second constraint (3.3) regulates the flow of materials leaving 

the supply sources either by shipping them to an existing or a new CC, a SSC or a landfilling 

area. Constraints (3.4) and (3.5) ensure the incoming flows at CC are redirected either to 

secondary markets or landfills and that the incoming flow at SSC is shipped either to CC or 

landfills. Constraints (3.6) and (3.7) set the maximum recycling rates at both existing and 

potential CC per material for single and mixed containers. This constraint sets the recycling 

limitations due to quality issues of the materials. Constraints (3.8) to (3.10) are the CC, 

potential CC, and potential SSC capacity constraints. Constraint (3.11) sets the capacity of 

the SSC and the minimum utilization rates. Constraint (3.12) is related to the binary variables 

for opening and closing the SSC. Constraint (3.13) limits the number of expansions for the 

CC during the planning horizon. Constraints (3.14) and (3.15) establish the truck 

requirements to perform the collection activities at suppliers and consolidation at the SSC. 

Finally, (3.16) - (3.18) are the integer and binary constraints for the decision variables. 

 

3.3.4 Solution procedure 

As both the uncertain collected volume of materials and the recycling rates follow continuous 

distributions, we have to deal with a potentially very large number of outcomes in this 

problem. Thus, we perform a SAA procedure for solving it, a well-known method to consider 

a large number of scenarios (Kleywegt et al., 2002). The sampling average approximation 

(SAA) is a well-known approach to solve stochastic optimization problems. The efficiency of 

this methodology applied to supply chain network design has been proven by many 

researchers (Chouinard et al. 2008; Ayvaz et al. 2015). Using this technique based on Monte 

Carlo simulations, we aim to approximate the expected objective function of the stochastic 

problem by an SAA derived from a random sample. Afterward, we solve the problem 

repeatedly obtained with various samples to get statistical estimates of the optimality gaps 

(see appendix V). This sampling technique presents advantages such as good convergence 

and benefits regarding numerical implementation, but mainly it allows considering a higher 

number of scenarios than many resolution methods (Santoso et al. 2005). 
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The sampling average approximation procedure 
 

Let us consider the following well-known compact two-stage stochastic formulation:  𝑚𝑖𝑛 𝑓(𝑦) =  𝑐்𝑦 + 𝔼  [𝑄(𝑦, 𝜉)]                                                (3.19)  
 

Where vector 𝑐்represents the supply chain network investment costs, 𝑦 𝜖 ሼ0,1ሽ represents 

the binary variables for the facility settings, 𝜉 (𝑞,𝑑, 𝑠,𝑀) is a random cost vector, and 𝑄(𝑦, 𝜉) is the optimal value of the following problem:  

 𝑚𝑖𝑛 𝑞்𝑥 + ℎ்𝑧                                                                  (3.20) 

s.t.  𝑁𝑥 = 0,                                                                      (3.21) 𝐷𝑥 + 𝑧 ≥ 𝑑,                                                                 (3.22) 

  𝑆𝑥 ≤ 𝑠,                                                                      (3.23) 

  𝑅𝑥 ≤ 𝑀𝑦,                                                                   (3.24) 

  𝑥 𝜖 ℝା,                                                                     (3.25) 

 

Vector q corresponds to the processing and transportation costs of the model and x to the 

flow in the network. The matrices N, D, and S are used to define the supply chain network 

classical flow conservation, demand and supply constraints respectively. Also, R is the 

matrix for the processing requirements at each node while M is the matrix setting the nodes 

capacities in the network. Note that any particular realization of random vector 𝜉 (𝑞,𝑑, 𝑠,𝑀) 

is called a scenario of the uncertain parameters and that the probability distribution of 𝜉 is 

supposed to be known. Typically, the vector 𝑦 represents the network configuration decision 

(i.e. first stage variables). The cost element ℎ்𝑧 and the variable 𝑧 respectively in (3.20) and (3.22) represent the penalty incurred in the two-stage model. Depending on the nature of the 

stochastic formulation, the nature of the penalty costs is variable (for example, penalties due 

to lost sales, additional delays, re-allocation of resources and so on).  

Thus, (3.19) - (3.25) is a typical compact two-stage formulation whose objective is to 

minimize the configuration investments 𝑐்𝑦 and the expectation of the future operating costs 
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represented by 𝔼 [𝑄(𝑦, 𝜉)]. As it is well established that 𝔼 [𝑄(𝑦, 𝜉)] is a convex non-linear 

function of 𝑦 (Santoso et al. 2005), the problem presented in (3.19) is often difficult to solve, 

especially in case of continuous distribution of  𝑄(𝑦, 𝜉). For this reason, the aim of the SAA 

methodology is helping with the evaluation of 𝔼 [𝑄(𝑦, 𝜉)] by generating N scenarios of a 

random vector 𝜉ଵ, … , 𝜉ேin order to build an approximation of the following function:  

𝑁ିଵ  ෍ 𝑄(𝑦, 𝜉௡)ே௡ୀଵ                                                        (3.26) 

 

Thus, that means the problem: 𝑚𝑖𝑛 𝑓(𝑦) =  𝑐்𝑦 + 𝔼  [𝑄(𝑦, 𝜉)] described in (3.19) will, in 

fact, be approximated by the following one: 

𝑚𝑖𝑛௬ ൝ N̂f (𝑦) = 𝑐்𝑦 + 1𝑁  ෍𝑄(𝑦, 𝜉௡)ே
௡ୀଵ ൡ                                  (3.27) 

 

To reach this goal, we need to solve the problem (3.27) multiple times by generating 

independent samples. These are the main steps of the SAA procedure in practice: 

 

Step 1.    Generate M independent samples of size N: (𝜉ଵଵ, … , 𝜉ெே ), and solve the SAA 

problem in (3.27) for each sample generated. We use the notations 𝜐ே௠ and ˆm
Ny  (with m = 

1,…,M) for the optimal objective value and the optimal solution of this problem respectively. 

 
Step 2.    We compute:  
                  𝜐̅ே,ெ =  ଵெ  ∑ 𝜐ே௠ெ௠ୀଵ  and  𝜎జഥಿ,ಾଶ =  ଵ(ெିଵ)ெ  ∑ (𝜐ே௠ − 𝜐̅ே,ெ)ଶ    ெ௠ୀଵ               (3.28) 
 

As it is known that 𝐸[ 𝜐ே] ≤  𝜐∗ , with 𝐸[ 𝜐ே] being the expected value of 𝜐ே and 𝜐∗ being 

the optimal value of the problem (Norkin et al., 1998; Mak et al., 1999), then we have 𝐸ൣ𝜐̅ே,ெ ൧ ≤ 𝜐∗ which implies 𝜐̅ே,ெ is a lower bound (LB) for optimal value 𝜐∗ with 𝜎జഥಿ,ಾଶ  as 

an estimated variance.  
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Step 3.    We select a feasible solution of the initial problem in (3.27) that we call 𝑦ത, and        

we use it to obtain an estimation of the objective value f (𝑦ത) such as:  

𝑓ேᇱ෪ (𝑦ത) = 𝑐்𝑦ത + 1𝑁′  ෍𝑄(𝑦ത, 𝜉௡)   ேᇱ
௡ୀଵ                                        (3.29) 

 

Here, the randomly generated sample 𝜉ଵ, … , 𝜉ேᇱ of size 𝑁ᇱ is independent of the initial 

sample that has been used to find the solution 𝑦ത. Typically the SAA procedure suggests that 𝑁ᇱ >> 𝑁. It is well-known that 𝑦ത being a feasible solution to (3.27), then 𝑓(𝑦ത) ≥  𝜐∗ (Santoso 

et al. 2005). Thus, this time 𝑓ேᇱ෪ (𝑦ത) represents an upper bound (UB) for the optimal solution 𝜐∗ and the sample variance can be estimated by:  

 

𝜎ேᇲଶ (𝑦ത) =  1(𝑁′ − 1)𝑁′  ෍ቀ𝑐்𝑦 ഥ +  𝑄(𝑦ത, 𝜉௡) −  𝑓ேᇱ෪ (𝑦ത)ቁଶ                     ேᇱ
௡ୀଵ (3.30) 

 

Later in appendix V, we provide lower and upper bounds confidence intervals. Thus, we 

have four values (2 for each bound) called the lower-lower bound (LLB), lower-upper bound 

(LUB), upper-lower bound (ULB) and finally, the upper-upper bound (UUB). 

 

Step 4.    Using steps 2 and 3, we can compute an estimate of the optimality gap (OG) of       

solution 𝑦ത using (3.28) and (3.29) such as: 

 𝑂𝐺ே,ெ,ேᇲ(𝑦ത) =  𝑓ேᇱ෪ (𝑦ത) −  𝜐̅ே,ெ                                              (3.31) 

 

We estimate the variance of this gap by:  

𝜎௚௔௣ଶ =  𝜎ேᇲଶ (𝑦ത) + 𝜎జഥಿ,ಾଶ                                                   (3.32) 
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Finally, assuming that 𝑧ఈ = (1 −  𝛼)Фିଵ represents the cumulative distribution of the 

standard normal distribution we calculate the confidence interval for the OG as follows: 

𝑓ேᇱ෪ (𝑦ത) −  𝜐̅ே,ெ + 𝑧ఈට𝜎ேᇲଶ (𝑦ത) + 𝜎జഥಿ,ಾଶ                                          (3.33) 

 

In order to obtain a good quality solution, we repeat this procedure until the estimated OG is 

reasonable by increasing the sample size N. The next section will present the main findings 

of this research by applying the SAA to our two-stage stochastic model. 

 

3.4 A case study in the construction, renovation and demolition (CRD) industry 

In this section, we present an application of the proposed model for the design of the reverse 

logistics network in the CRD industry in the Canadian province of Quebec. This sector is 

known to be one of the biggest industrial waste generators and sometimes represent up to 

40% of the total industrial waste of a country (General building contractor association, 2012). 

Moreover, the amount and the quality of the materials collected at the CRD sites are often 

highly uncertain, especially in the case of a demolition process where the materials usually 

incur significant damages (Jeffrey, 2011). In this sector, it is also challenging to obtain a 

precise estimation regarding the future location of the CRD sites (i.e., the supply sources). 

Indeed, if the construction and renovation projects can last several years at the same place, 

the same building, however, cannot be demolished twice, which implies changing locations 

for many waste collection sites from one year to another. These characteristics make the 

design of an efficient network a challenging task. If the reverse logistics network is designed 

to perform under a specific data set at period t ∈ 𝑇, it is likely that this same configuration is 

not as efficient under the new characteristics of the next time periods (t+1, t+2 … t+n).  

The elements mentioned above making the proposed model suitable for this application. 

Thus, we use our stochastic formulation to cope with uncertainty in this environment and 

provide the optimal RLND for recycling the materials from the CRD industry in Quebec, 

Canada. Indeed, this province currently faces some issues with the low landfilling costs that 
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make this option too attractive compared to the recycling process. Thus, in order to avoid 

excessive landfilling on the territory, we aim to optimize waste management operations. The 

primary data used to conduct our experiments are summarized in Table 3.2. 

 

Table 3.2   Main data used in the CRD industry case study 
 

Number supply sources (S) 10,50,100,250 Average total supply 

(weight) 

4 million tons 

Number existing CC 8 Recycling rate ( 𝑟௠௧௨) [45 % ; 75 %] 

Number potential CC 5 Recycling rate (  𝑟̃௠௧௨) [65 % ; 95 %] 

Number of SSC 7 Container (weight) 20 tons, 40 tons 

Number landfills 8 SSC filling rate (min) Ψ = 50 % 

Number of secondary markets 5 Number of batches M = 20 

Number of material types 3 Sample size  N = 10,30,60,90 

Time Periods 5 Confidence interval α = 95% 

 
 

3.4.1 Reverse logistics network configuration under uncertainty 

As shown in table 3.2, the number of supply sources (S) and the sample sizes (N) vary in our 

experiments. Indeed, we will see that given the combination (S, N) of the scenario, the 

optimal RLND can change significantly, and so does the overall reverse logistics network 

performance. A small number of supply sources with a large volume of collected materials is 

usually the case of rural areas or countryside with the low density of construction sites. 

However, in the urban area with high population density and infrastructure, the number of 

CRD sites is higher than in the rural zones but the waste generated at each site is also 

relatively smaller. Thus, while the experiments with 10 and 50 supply sources reflect the 

behavior of low-density rural areas, the instances with 100 and 250 supply sources, however, 

represent higher-density urban zones. For the case study in Quebec Province, the comparison 

between these two configurations is of particular interest due to the unequally populated 
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regions, going from 0.1 in the North of Quebec, up to 5500 inhabitants per square kilometer 

in a dense city like Montreal (statistical institute of Quebec, 2014).  

 

The main results obtained for each combination (S, N) are summarized in Table 3.3. The 

preliminary analyses show that both the number of collection points and the sample size of 

the problem are critical parameters. Indeed, in low-density rural areas with a few collection 

points and a large amount of materials per site, we manage to obtain a higher expected profit 

by using and expanding some of the existing CC, and also by opening strategically two (2) 

new CC in locations that minimize the distances for the collection activities. Moreover, we 

notice that the scenarios with a low number of supply sources are those with the lowest SSC 

utilization rates (<40%). However, when the number of CRD sites is increasing to 100 or 250 

collection points, the average utilization rate of the SSC increases up to 89% and 94% 

respectively. Indeed, the SSC are extensively used to cope with the high number of dynamic 

collection points that increase the average distance to move the recycled materials in urban 

areas (>20% distance increase). Therefore, it is more profitable to invest in new CC closer to 

the collection sites rather than expanding existing ones that are not appropriately located. 
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Table 3.3   Summary of the optimal RLND features according to (S,N) Variations 
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In addition, we observe that depending on the number of supply sources considered, 

increasing the sample size does not lead to similar improvements. For example, the 

comparison between scenarios (S, N) = (10, 10) and (S, N) = (10, 90) shows very close results 

both in terms of RLND and supply chain performance. For instance, with 10 supply sources, 

a sample size of N = 10 is enough to obtain a valuable solution. However, the more we 

increase the number of supply sources, the more we observe significant variations in the 

RLN design and performance. From S=10 to S=250, we travel an average of almost 30 

additional kilometers to recycle one ton of material. Besides, the initial facility investment is 

2.5 times the initial value, which decreases the average expected profits significantly on the 

planning horizon, even though we manage to recycle more building materials from the CRD 

sites (+17% in average) and sell them on secondary markets. However, such investments 

would be easily justified by considering a longer planning horizon, thus helping meet waste 

management targets in the meantime. Finally, when comparing the instances with an 

identical number of CRD sites, increasing the sample size can yield some benefits, especially 

in large-sized problems. For example, if we consider 250 collection points, increasing the 

sample size from N=10 to N=90 allows recycling an additional 618,411 tons of building 

materials, while decreasing the average transportation distance from 7.7%. Indeed, with a 

sample size of N=90, the optimal RLND suggests 1 more CC opening, 1 more CC expansion 

and 1 more CC operating compared to the case N=10. Finally, by increasing the sample size 

and the number of CRD sites, the average utilization rate of the SSC also increases from 21% 

and 60% respectively. 

 

3.4.2 Impact of the source-separation centers on the network design performance 

Source-separation centers operations: measuring the improvements 

 
In this section, we identified six (6) performance criteria that are impacted by the activation 

of the SSC in the RLND solution (see table 3.4).  
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                      Table 3.4   Criteria selected to conduct the sensitivity analysis 

C 1  The recycled quantity of materials (Million tons, Mt)  

C 2  The recycling cost per metric ton of material ($/ton) 

C 3  The traveled distance to recycle one ton of material (km)  

C 4  The total number of shipments required for RLN operations (units) 

C 5  The proportion of SMC shipped to the collection centers (%)  

C 6  The expected profit ($)  

 

 

The analysis is performed for (S,N) = (10,10) and (S,N) = (250,90) and the main results are 

summarized in tables 3.5 and 3.6 respectively. First, we notice that the SSC solution 

improves waste management in both types of zones: high-density urban areas and low-

density rural ones. Overall, we manage to increase the quantity of materials recycled through 

the RLN in both cases. However, this improvement is amplified in urban areas due to the 

high utilization rate of the SSC (94% against 34% in rural zones). Indeed, we achieve better 

average recycling rates at the CCs by shipping near 40% single material containers to these 

facilities, being significantly higher than the usual rate of SMC shipped to the CCs in urban 

zones in Quebec. Moreover, poor quality and damaged materials are shipped from the SSC to 

the closest landfill at an early stage of the recovery process, thus avoiding useless 

transportation of materials that the CCs would not be able to recover. In addition, trucks 

consolidation into SMC decreases the total number of shipments along with the overall 

distance traveled in the meantime. Overall, these results suggest that the flexibility offered by 

the SSC could be of great help in both rural and urban geographic areas, increasing the 

expected profits from 5.4% up to 17.6% respectively. The opportunity offered by the 
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relocation of the SSC over time, the elimination of damaged materials with source separation 

and the treatment of an increased number of single material containers at the CCs are all key 

factors that improve the RLND performance in the case of dynamic supply sources. This is 

particularly true in the CRD industry where the demolition processes often induce a 

significant amount of damaged materials that need to be identified in the early stages of 

reverse logistics operations (Bernardo et al., 2016). 

 
Table 3.5   Main improvements reached through the SSC operations (S=10; N=10) 

 
 

Table 3.6   Main improvements reached through the SSC operations (S=250; N=90) 

 
 

 
Sensitivity analysis on the level of uncertainty 
 

In this section, we aim to analyze the network strategy including the SSC and see how it 

reacts to uncertainty. To do so, we will consider various uncertainty levels for the following 

parameters: the dynamic supply sources’ locations (SSL), the collected volume at the CRD 

sites (CV), and the quality of collected materials (MQ). As synthesized in table 3.7, these 

parameters are attributed discrete realizations with the letters L, A, and H standing for Low, 

Average and High uncertainty levels respectively. The data selected for the average values 

are equal to those used in section 5.1 of this research and considered as a baseline scenario. 

Also, we assume that the standard deviation for the collected volume is such as  𝜎ᇱଶ < 𝜎ଶ <𝜎ᇱᇱଶ. Using the information in table 3.7, we build a scenario-based approach in which we 

compare the results based on the same six (6) criteria already presented in Table 3.4. Note 

SSC C 1 C 2 C 3 C 4 C 5 C 6
No 2,03 Mt 86 $/ton 78,4 km 198 771 units 19% 55 091 660 $
Yes 2,21 Mt 91 $/ton 66,1 km 191 691 units 28% 58 055 911 $

Delta (Δ) 8,8% 5,8% 15,7% 3,6% 9% 5,4%

SSC C 1 C 2 C 3 C 4 C 5 C 6
No 1,92 Mt 99 $/ton 99,6 km 199 916 units 16,10% 22 105 662 $
Yes 2,49 Mt 115 $/ton 78,7 km 175 544 units 39% 26 834 016 $

Delta (Δ) 29,7% 16,1% 21% 12,2% 23% 17,6%
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that, in each scenario, a single parameter (SSL, CV or MQ) varies and the other two remain 

stable at their average value. Also, each scenario is duplicated and evaluated twice: the first 

time without the use of the SSC (graphs (a)) and then allowing the source-separation strategy 

(graphs (b)). The primary goal of this experimental design is to evaluate the impact of 

different uncertainty levels in both cases (without and with SSC). The results are shown in 

figures 3.3 to 3.8 below, one figure assessing a unique criterion from table 3.4 (C1 to C6). 

 

Table 3.7   Scenario generation for the variation in the level of uncertainty 

Parameters  Low (L) Average (A) High (H) 

 

Collected volume (CV) 

 𝑣௠௦௧௨ ~ N’ (μ ,σ’ 2) 

 𝑣௠௦௧௨ ~N (μ ,σ 2)  

 𝑣௠௦௧௨ ~ N’’ (μ ,σ’’ 2) 

Material quality (MQ) 
from the CRD sites 
U [ α , β ]  

 

[65 % ; 75 %] 

 

 

[45 % ; 75 %] 

 

 

[25 % ; 75 %] 

 

Material quality (MQ) 

from the SSC 

U [ ᾱ , 𝛃ഥ] 

  

[85 % ; 95 %] 

 

 [65 % ; 95 %] 

 

 [45 % ; 95 %] 

Dynamic supply sources 

locations (SSL) 

 𝑠ௗ ⩽ 50 

 

50 < 𝑠ௗ ⩽ 150 

 

150 <  𝑠ௗ 
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Criterion C1: The recycled quantity of materials 

 

Figure 3.3   Impact of the uncertainties on the total recycled quantity of materials (C1) 

 

Overall, the uncertainty in the quantity of materials collected is the primary concern and has 

a direct impact on the total amount of material recycled. For both cases (with and without 

SCC), high uncertainty on material collected volume generate the lowest total recycled 

quantity. Indeed, facilities are fully exploited during some periods but underused during 

others. For the case without SCC, some adjustments are necessary to decrease the treatment 

capacity of the network. Using the SCC, the total amount of recycled materials is increased 

due to the flexibility to adjust the RL network capacity. On the other hand, low uncertainty of 

the collected volume guarantees high utilization rates of infrastructures and allows the RLND 

to be very efficient. In the case of highly uncertain scenarios targeting SSL and MQ, the 

impact on the total recycled quantity is moderated. Indeed, even under high uncertainty, 

thanks to the SSC we manage to obtain better results than in the case of average uncertainty 

level without SSC. Besides, it is clear that for the SCC strategy, and even with high 

uncertainty in SSL and MQ, we still manage to recycle more than the base case scenario. 

However, with high uncertainty in the collected volume, the recycled quantity is less than the 

baseline without the SCC.  Finally, when comparing graphs (a) and (b), we denote that under 
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low uncertainty for SSL and CV, the amount of materials recycled only slightly increases by 

using SSC. However, the source separation strategy provides better results for MQ. 

 

Criterion C2: The Recycling Cost per Metric Ton of Material 

 

Figure 3.4   Impact of the uncertainty level on the recycling cost per ton (C2) 

 

The average recycling cost per ton of material, however, is increasing with the inclusion of 

the SSC. The main reason for this is the fact that operating such infrastructure implies 

additional expenses for setting, closing and relocating, source separation of the materials and 

trucks consolidation. Although transportation distances and shipments number are both 

decreasing, it is insufficient to avoid a slight cost increase of the overall recycling process. 

However, although we incur extra fees to operate the SSC, in the meantime, source 

separation offers the opportunity to make additional profit by providing more building 

materials to the final recyclers. The uncertainty related to the CV does not significantly 

impact the results and we observe the same behavior (see Figure 3.4 (a) and (b). However, 

the SSL causes some issues in the three uncertainty configurations (low, average and high). 

Also, we conclude that a high change in SSL leads to an extensive use of SSC and average 

recycling cost increase by 19.4% in the worst case scenario (high uncertainty in SSL with 

SSC strategy).  
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Criterion C3: The traveled distance to recycle one ton of material 

 

Figure 3.5   Impact of the uncertainty level on the distance to recycle (C3) 

 

This criterion shows one of the most significant improvements observed with the SSC 

strategy. This time, the MQ presents the same behavior in figure 3.5 (a) and (b) regardless of 

the uncertainty variations, with an average of 25.9% decrease in the distance traveled to 

recycle the materials. However, highly uncertain SSL or CV increase the average 

transportation distance when the SSC option is not active. Indeed, for both parameters, we 

expect an average of 139 km to recycle under high uncertainty, a value that could be 

decreased to 98 km and 82 km respectively under the SSC strategy. In the case of highly 

uncertain CV, shipments’ consolidations at the SSC help to cope with the large range of 

incoming containers. Also, under high uncertainty of the supply sources locations, we 

observe the relocation of SSC closer to big CRD waste generators, being, in the meantime, at 

a short distance from the landfilling areas, which also decreases the average distance for 

building materials’ elimination by landfilling. 
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Criterion C4: The total number of shipments required for RLN operations 

 

Figure 3.6   Impact of the uncertainty level on the total number of shipments (C4) 

 

As expected, figure 3.6 shows that the total number of shipments involved in the waste 

management activities through the reverse logistics network is impacted by the volume of 

materials collected at the CRD sites. Usually, having fewer shipments is perceived positively 

since the reduction in the transportation activities would reduce greenhouse gas emissions 

and avoid road congestion. However, in this particular case, the number of shipments can be 

very low because of the lack of materials available for collection and recycling. In the end, 

this situation leads to underused CCs and profit loss because of unfulfilled demand. 

However, uncertainty targeting SSL and MQ show slightly the same results, with an average 

decrease of 5.5% in the total number of shipments, going from 2.3% up to 11.7%. It is 

interesting to note that in the case of low uncertainty, there is almost no change in the number 

of shipments between both strategies in (a) and (b). Indeed, source separation reduces the 

number of shipments by the consolidation of MMC into SMC. Nevertheless, the adoption of 

source separation strategy increases the number of shipments between the CCs and the 

secondary markets due to the availability of more materials for recycling as shown in figure 

3.3 (Criterion C1). 
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Criterion C5: The proportion of SMC shipped to the collection centers (%) 

 

Figure 3.7   Impact of the uncertainty level on the proportion of SMC (C5) 

 

Processing mixed materials containers at collection centers is a challenging task if we 

compare with the single-material containers due to the different treatments necessary before 

getting material ready to ship to final users of recycled materials. This is a real concern in the 

CRD industry where a wide range of materials are mixed and involve some specific 

treatments to improve the quality of recycled materials. The SSC strategy helps in increasing 

the number of SMC performing source separation of the materials by eliminating many poor 

quality batches. Thus, figure 3.7 shows that an increase in the proportion of single material 

containers in the network is observed with SCC activation regardless of the level uncertainty 

considered in the parameters SSL, CV, and MQ. However, we notice that the main factor of 

influence is the quality level of the collected materials. Indeed, in the baseline scenarios, the 

proportion of SMC in the network reaches 39% with the SSC but only 16.1% without source 

separation. The most significant improvement occurs in the case of a highly uncertain MQ 

where the proportion of SMC is increased. Finally, the proportion of SMC is always better in 

the case of SCC activation compared to the strategy where SSC are not used and even for the 

high uncertainty in SSL, CV, and MQ.  
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Overall, the experiments highlight the value of flexibility achieved through the use of SSC 

and under the uncertain reverse logistics environment. Indeed, with a high level of 

uncertainty, flexibility can play an important role to perform efficient waste management for 

the CRD sector. Profit improvement is mainly due to the benefits provided by the source 

separation of the building materials at an early stage of the recycling process. Moreover, 

transportation activities are jointly optimized with the SSC adoption which offers the 

opportunity to have access to source separation in high-density urban zones, where the lack 

of available space sometimes compromises on-site sorting. However, previous analysis 

revealed that the potential improvements in reverse logistics operations due to the SSC 

adoption is limited in the following specific cases: 1) the collected volume of material is too 

low (under 60-65% utilization rate of the existing collection centers), 2) the recycling rate 

improvement achieved with source separation is below 8-12% (depending on the volume of 

materials collected), and 3) the average distance between the supply sources and the 

collection centers is very low (< 35 km). Although the SSC strategy is more efficient under 

highly uncertain scenarios, obviously we reach the highest expected profits when we face 

low uncertainty (see figure 3.8). In these cases, the accuracy of the information regarding 

SSL, CV, and MQ allows setting the best RLND, optimizing waste management operations. 

Ideally, to obtain the best profit, supply chain managers should try to put additional efforts 

for better estimation of SSL, CV, and MQ in order to avoid high variability of these 

parameters. For instance, in the CRD industry, the use of building information modeling 

(BIM) in the future can contribute to better quality data and parameters estimation during the 

early stages of the reverse logistics network configuration (Akinade et al. 2018). 
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Criterion C6: The average expected profits 
 

 

Figure 3.8   The impact of the uncertainty level on the average expected profits (C6) 

 
3.5 Conclusion and further research 

In this article, we developed a two-stage stochastic model for reverse logistics network 

design under uncertainty. We proposed an application of our model through a case study in 

the CRD industry in the Canadian province of Quebec, being a sector where the efficiency of 

waste management activities is critical for sustainability purposes. We adopted a sampling 

average approximation procedure in order to deal with a high number of scenarios 

simultaneously. The main contribution of this work lies in the setting of the SSC to cope with 

the dynamic nature of the supply and the quality issues of the materials. Indeed, these 

characteristics are the major concerns for the design of an efficient RL network that optimize 

waste management operations, particularly in high-density urban zones where the collection 

and sorting operations can be quite challenging. We demonstrated that the SSC provide a 

potential solution to design a resilient network under various uncertainty levels, especially in 

case the parameters are highly uncertain. The CRD industry is an excellent example to 

illustrate the impact of dynamic supplies on waste management efficiency. 
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Although the two-stage stochastic approach proposed in this article provides good results, the 

quality of the solution could be improved by using a multi-stage stochastic approach that 

allows corrective actions at the beginning of each period. However, the SAA procedure 

showed its limitations as the computational running time can exceed 3 hours for the largest-

sized problems (S = 250 and N = 90). If the number of supply sources exceeds 250, or if we 

increase the sample size significantly, exact resolution approaches could fail to solve 

complex formulations such as two-stage or multi-stage stochastic programming models. In 

this case, it may be necessary to develop new advanced resolution techniques such as 

decomposition or meta-heuristics in order to solve the problem faster.  

 

Finally, this research is the first step toward sustainability by improving material waste 

management through the reverse logistics channel. Indeed, although the proposed model 

addresses an economic objective rather than discussing environmental impacts, it focuses on 

the efficiency of uncertainty management that ultimately leads to increasing the quantity and 

the quality of recycled materials while preventing the landfilling option. However, the 

environmental dimension related to the RLND is not quantified yet in this article. As it is a 

recurrent issue regarding waste management (Rahimi and Ghezavati 2018, Edalatpour et al. 

2018), an eco-efficient stochastic model that takes into account both the profit and the 

environmental impact of RL activities will be the subject of future research directions. 
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Abstract 
 
This paper addresses a novel multi-period, multi-echelon and multi-objective two-stage 

stochastic model (MOTSM) under environmental constraints for eco-efficient reverse 

logistics network design (RLND). The goals of this optimization model are to maximize the 

expected profit and minimize landfilling activities to encourage the recycling of the 

materials. In comparison with the previous stochastic optimization models in this area, which 

mainly focus on the expected optimal value, this paper emphasizes the importance of source-

separation of the materials under both landfilling and greenhouse gases emission (GHG) 

constraints. To address this challenge, our model includes source separation centers (SSC) 

that allow the separation of the collected materials and shipments consolidation at an early 

stage of the reverse logistics channel. The quantity of materials collected and the recycling 

rates at collection centers (CC) are uncertain due to quality issues. We solve this problem 

using a Sampling Average Approximation procedure (SAA) to deal with uncertainty, and we 

use the ε-constraint method to cope with multiple objective functions. An application of the 

model is illustrated through a case study of wood waste recycling from the construction, 

renovation and demolition (CRD) industry in the province of Quebec in Canada. This 

research reveals that the flexibility provided by the source-separation strategy allows 

reducing the impact of multiple uncertainties on the environmental performance of the 

network. The experiments highlight the necessity to carefully implement environmental 
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policies and demonstrate the complexity for the reverse logistics network to achieve both 

compliance and eco-efficiency in the meantime under an uncertain environment. 

 
4.1 Introduction and context 

The past century has seen the global market demand increase dramatically for a wide variety 

of products and services (Rajeev et al. 2017). This is partly the result of a population in 

constant growth and an industry in perpetual development around the world. Consequently, 

in the 21st century, natural resources consumption by mankind exceeds the earth capacity on 

a long-term horizon. Thus, there is indisputably the need to pay more attention to emerging 

critical matters such as energy use, technology efficiency, consumption of raw materials and 

waste management practices such as recycling, only to mention a few. Unsurprisingly, 

supply chains have a major role to play in this evolution toward more sustainable operations 

as they are huge polluters and resources consumers. To ensure the transition of the global 

industry toward sustainability, lately we witness the emergence of an increasing number of 

governmental programs targeting supply chains all over the world. Indeed, many sectors are 

impacted by these governmental regulations, among them, the electric and electronic 

equipments (Gu et al. 2016; Salhofer et al. 2017), the automotive (Wang et al. 2017), 

chemical industry (Wallbank et al. 2017), durable products (Huang et al. 2017), packagings 

(Arnaud, 2017) and finally in the case of this research, the construction, renovation and 

demolition (CRD) industry (Trochu et al. 2018). Compliance to these governmental 

legislations is one of the main reasons for the growing attention toward reverse logistics (RL) 

lately, and more specifically in the past decade if we refer to academic publications (Min and 

Kim, 2012; Govindan et al. 2015). Nowadays, it is commonly recognized that supply chains 

can make a difference by improving RL operations, beginning with the network design, 

being highly strategic decisions that affect the network performance on a long-term horizon. 

 

As the CRD industry is considered to be one of the biggest industrial waste generators in 

many countries (General Building Contractor Association, annual report 2012), research 

efforts are required to help increasing the amount recycled materials from this sector when 
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the elimination by landfilling is still overused (Kinobe et al. 2015). It is a real concern in the 

case of the wood material recycling in Canada, firstly because of the significant amount of 

wood used in the buildings (Yeheyis et al., 2013), but mainly because wood is a type of 

material with promising recovery opportunities (Sathre et al., 2014). Therefore, the CRD 

industry in the province of Quebec has been recently the target of both wood landfilling 

restrictions and GHG emissions control with a cap-and-trade system. The objective of the 

authorities is to prevent excessive wood landfilling on the territory and promote the recycling 

of the wood building materials. However, some uncertain factors such as the amount of wood 

collected from the CRD sites and the quality of the collected batches are major concerns that 

put the eco-efficiency of the recycling process at danger. Indeed, performing the recycling 

activities with low-quality wood (with paint, moisture, insect treatment and so on) in order to 

avoid landfilling systematically may be harmful to the environment. Thus, it appears some 

trade-offs are inevitable and the RL network must be designed to cope with uncertainty in 

order to make the best decisions.  

 

An effective way to succeed in doing so is to develop innovative decision-making models 

that provide the practitioners with useful insights regarding RLND decisions. Although 

research progress have been made in the field of reverse logistics, there is still a gap toward 

modelling the characteristics of sensitive sectors being environmental burdens for the society 

(Brandenburg et al., 2014), such as the CRD industry. In addition, the inclusion of 

uncertainty in the modelling process is still scarce in the literature (Agrawal et al. 2015). 

Thus, in this article we develop an innovative advanced MOTSM for reverse logistics 

network design that captures some key challenging characteristics of the CRD industry, such 

as the unknown available amount of materials at the collection sites, the variable quality of 

the building wood material collected and the dynamic collection zones (i.e. CRD sites) that 

are moving from one location to another over time. 
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The goal of this new model formulation is to answer the following research questions: 

 

•   What is the optimal RLND for the recycled wood material in the CRD industry under 

uncertainty and environmental regulations?  

 

•   What is the impact of the source separation of the collected materials on the RLND 

performance and how does it serve eco-efficiency?  

 

•   How quality uncertainty does affect the network behavior under environmental 

regulations?  

 

To the best of our knowledge, there is no advanced multi-objective stochastic formulation 

that captures the characteristics of the CRD industry for eco-efficient RLND purposes. 

Moreover, usually objective functions (OF) are profit or cost-oriented, however in this work 

we propose an innovative OF that minimizes landfilling flows to adapt to a new 

environmental regulation. This paper is structured as follows. Section 2 provides a theoretical 

background related to recent MOTSM applications. In section 3, we present the development 

and the formulation of the model. Section 4 synthesizes our experiments and main results 

regarding the recycled wood case study in the Canadian province of Quebec. Finally, 

conclusions and future research directions are derived in section 5. The reader is referred to 

chapter #3, section 3.3.4 (page 91) for detailed information regarding the SAA resolution 

procedure used to solve the MOTSM. 

 

4.2 Literature review 

Nowadays, sustainable supply chain management is a serious preoccupation for both 

practitioners and academics. In order to achieve sustainability, it is imperative for supply 

chains’ operations to be performed in an eco-efficient way, being one of the fundamental 

pillars of sustainability (Elkington, 1998). Even though a lot of progress have been made 

developing RLND models during the last decades, very few of them address multiple 
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objectives and uncertainty in the meantime (Agrawal et al. 2015; Govindan et al. 2015). 

Indeed, while the first quantitative models for RLND problems emerged in the 1990s 

(Fleischmann et al., 1997), more advanced formulations such as multi-objective stochastic 

models (MOSM) are still very recent. In this literature review, we will focus on the previous 

applications of MOSM in the field of reverse logistics network design.  

 

Among the first research to propose such models, Amin and Zhang (2012) developed a 

MOSM to make strategic decisions regarding plants and collection centers’ locations for 

product recovery and tactical decisions for the flows going through the network. The 

objective functions minimize the total network cost while maximizing the use of friendly 

materials and clean technologies at plants. In this work, two well-known approaches for 

solving multi-objective models are compared, namely the ε-constraint and the weighted-sums 

methods. The demand and return of the products in the reverse logistics channel are 

considered as uncertain parameters. The proposed example in the copier remanufacturing 

industry shows the superiority of the solutions obtained with the ε-constraint method. It also 

underlines the necessity of considering a higher number of scenarios for more conclusive 

results, which is one of the reasons why we chose a SAA resolution approach in this work.  

 

Table 4.1 synthesizes the information on recent MOSM. In this table, we notice that the 

totality of the papers include uncertainty targeting the demand parameter. However, there is 

still few of them considering uncertainty related to the quality issues (Vahdani and 

Mohammadi, 2015; Azadeh et al., 2016) while it is an aspect that can impact the feasibility 

of the network design decisions (Trochu et al., 2018). In addition, although the large majority 

of the models present cost or profit-oriented objective functions, recently some authors felt 

the need to address different types of goals such as maximization of on-time delivery or 

waiting time minimization (Amin and Zhang, 2012; Vahdani and Mohammadi, 2015), 

maximization of the service level (Feito-Cespon et al., 2017), risk minimization (Zeballos et 

al., 2016), and recently the models start including environmental objective functions (Yuexin 

and Yunwei, 2017; Rahimi and Ghezavati, 2018; Fatollahi-Fard and Hajiaghaei-Keshteli, 

2018).  
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     Table 4.1   Main features of the previous multi-objective stochastic models for RLND 

 
SP: Single Period; MP: Multi-Period. 

Overall, in the field of RLND, very few advanced formulations address multiple objectives 

and uncertainty simultaneously (Agrawal et al. 2015). In addition, it has been noticed 

recently that there is a lack of quantitative modelling approaches targeting industries that 

represent an environmental burden for the society (Brandenburg et al., 2014). The CRD 

sector has been neglected until now although it is considered as one of the biggest waste 

Authors (year) Horizon Products Uncertain parameters Objectives Case Study

Amin and Zhang 
(2012) SP Multi demand

Min costs - Min defect 
rates - Max on-time 

delivery
Computers

Amin and Zhang 
(2013) SP Multi demand and returns

Min costs - Max clean 
technology use - Max use 

of friendly materials
Copiers

Ramezani et al. 
(2013) SP Multi demand - selling price - cost 

of processing products

Max profits - Max 
responsiveness - Max 

quality
General

Ashfari et al. 
(2014) MP Multi demand - recovery rates - 

warehouses capacity

Min transportation and 
inventory costs - Max 
customer satisfaction

Automotive

Subulan et al. 
(2015) SP Multi demand - returns - disposal 

rates
Min costs - Max demand 

satisfaction Acid Industry

Vahdani and 
Mohammadi SP Multi demand - returns - recycling 

rates
Min costs - Min waiting 

times General

Zeballos et al. 
(2016) MP Multi supply and demand Max profits - Min risks General

Ameknassi et al. 
(2016) MP Multi demand - facility capacities - 

transportation costs
Min costs - Min GHG 

emissions Microwaves

Azadeh et al. 
(2016) MP Single demand - parts' quality - 

transportation time
Min costs - Max products 

quality General 

Yuexin and 
Junwei (2017) SP Multi demand - returns - sales 

price - POCD costs
Min costs - Min GHG 

emissions General

Feito-Cespon et 
al. (2017) SP Multi demand - rate of waste Min costs - Max SEI - Max 

service level Plastic recycling

Rahimi and 
Ghezavati (2018) MP Multi demand - rate on 

investments
Max profits & social impact 
- Min environmental impact CRD waste

Fathollahi-Fard 
and Hajiaghaei-
Keshteli (2018)

SP Single demand - purchasing and 
manufacturing costs

Min costs and risks - Min 
environmental impact General

Proposed model MP Multi
Collected quantity & 

quality   Recycling rates
Max profits and Min 

landfilling flows CRD industry
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generators in the industry, being responsible for nearly 40% of the global raw material 

extraction worldwide (Yeheyis et al. 2013). None of the proposed models in table 4.1 would 

fit the CRD industry characteristics, especially regarding the dynamic nature of the suppliers’ 

locations. In addition, there is a need to address innovative objective functions in order to 

comply with emerging environmental regulations in this sector. Thus, the model developed in 

this article could provide useful insights to the CRD industry decision-makers to take a step 

toward an eco-efficient reverse logistics network design. 

 

4.3 Model development 
 

4.3.1 Proposed methodology 

To address the gap highlighted in the literature review regarding the decision models, we 

develop in our work an advanced MOTSM based on a mixed-integer linear programming 

formulation. The behavior of the reverse logistics network we consider is detailed below. 

 

Network structure 

 

In the following, let S be the set of dynamic supply sources of the model. Here, the term 

“dynamic” means that we consider a set of time periods T and that the location of the 

material collection points are changing from one period 𝑡௡ to the next one 𝑡௡ାଵ. For this 

reason, we consider a binary matrix 𝜑௦௧, which values are equal to 1 if supply source s∈S is 

operating during the period t∈T, and 0 if not. We assume that each supply source is visited 

only once during the planning horizon (i.e. for each supply source, the totality of the 

materials are collected in a single period). The materials collected from the supply sources 

are shipped, sorted, processed, and finally sold to the recyclers which demand is assumed to 

be known and stationary over time. However, before reaching the recyclers, the materials go 

through a collection center f∈F (an existing center  𝐹ா ⊂ 𝐹,  or a potential one 𝐹௉ ⊂ 𝐹 to be 

open in a predefined location). These processing facilities are responsible for the material 

sorting and recovery before shipping the containers to the recyclers. In this model, we 
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consider two different container sizes: small for 20 tons and large for 40 tons capacity. As the 

large trucks often have difficulties reaching the urban supply sources, we use the 40 tons 

containers at the source separation centers (SSC) for shipments consolidation. The next 

section details the use of the SSC in our network. 

 

Source Separation centers (SSC) 

 

In this research, we consider that the quality level of the materials collected at the supply 

sources is uncertain and affects the recycling rates at the collection centers. Thus, we assume 

this parameter (i.e. recycling rates at collection centers) is uncertain in the current model 

formulation. In addition, in order to cope with the dynamic supplies, we allow the opening of 

SSC in a set of predefined locations. These logistics units are used for source-separation of 

the mixed materials and shipments consolidation that allow shipping single-material 

containers (SMC) to the collection centers. If a mixed-material container (MMC) is sent to a 

source separation center before reaching the CCs, then we assume that we achieve higher 

recycling rates. Thus, by introducing the SSC activities, we induce a correlation between the 

source-separation of the collected materials and the achievable recycling rates at the CCs. 

This reasoning is based on the following assumptions: 

 

• Source-separation of the materials avoids poor mix and limits their quality 

degradation during the shipments 

 

• The sorting operations at the CCs are more efficient with SMC than with MMC. 

  

For these reasons, in the proposed experiments we consider  𝑟௠௤௧௨ and  𝑟̃௠௤௧௨  respectively 

the recycling rates we can achieve at the collection centers in case the materials are shipped 

directly from the supply sources (dealing with MMC) or if they have been processed at the 

source separation centers (thus dealing with SMC). Both uncertain parameters on the 

recycling rates (𝑟௠௤௧௨ and  𝑟̃௠௤௧௨) are randomly generated in each scenario u∈U and follow 

uniform distributions such as 𝑟௠௤௧௨ ∈  [𝛼 ;𝛽] and 𝑟̃௠௤௧௨ ∈  ൣ𝛼෤ ;𝛽෨൧ with 𝛼 <  𝛼෤ and 𝛽 < 𝛽෨.   
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Finally, we assume that the quantities of materials collected from the supply sources at each 

time period along with their quality level repartition are also uncertain. We use a single 

uncertain parameter  𝑣௠௤௦௧௨ to denote the volume of material m∈M of quality level q∈Q 

collected at the supply source s∈S during period t∈T in scenario u∈U. We assume that 𝑣௠௤௦௧௨ is normally distributed such as 𝑣௠௤௦௧௨ ~ N (μ ,σ2).    

 

Material recyclers 

 

One of the contributions of our model is to consider the various emissions released during the 

different recycling processes. Indeed, in the proposed MOTSM, we consider a set of 

recycling activities a∈A that can be performed with the recycled materials depending on their 

quality levels. We associate the emission factor 𝑒௔௠௤ோ  for performing activity a∈A with one 

metric ton of material m∈M of quality level q∈Q at the recyclers. This way, the same 

recycling activity performed with the same material type will release more carbon emissions 

if the recyclers receive low-level quality batches. As some recycling processes require 

specific quality standards, we consider the binary matrix Ѵ௔௠௤, equal to 1 if activity a∈A can 

be performed with material type m∈M of quality level q∈Q, and 0 if not. With, the same 

reasoning, we use parameter 𝑑௠௤௔௥௧  as the demand for material m∈M of quality level q∈Q to 

perform activity a∈A at recycler r∈R during period t∈T. In the model, we assume that the 

demand satisfaction is not a hard constraint and the materials reach the recyclers only in case 

it is profitable. The structure of the proposed reverse logistics network is depicted in figure 

4.1 below. 
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Figure 4.1   Reverse logistics network configuration in the CRD industry 

 

4.3.2 Multi-objective stochastic formulation 

This section describes the MOTSM notations. It provides insights regarding the economic 

and environmental parameters, the first-stage and second-stage decision variables, the 

objective functions and the constraints of the model, both economic and environmental. 

 

SETS 𝑖, 𝑗…𝑛  ∈ 𝑁          Nodes of the network 𝑠 ∈ 𝑆    ⊂ 𝑁          Set of supply sources 𝑜 ∈ 𝑂   ⊂ 𝑁          Set of potential source separation centers 
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𝑘 ∈ 𝐾ை                       Set of potential sizes of source separation centers 𝑓 ∈ 𝐹 =  𝐹ா + 𝐹௉  Set of collection centers 𝐹ா ⊂ 𝐹                    Set of existing collection centers 𝐹௉ ⊂ 𝐹                    Set of potential collection centers 𝑘 ∈ 𝐾ா                         Set of additional capacities for collection center expansions 𝑘 ∈ 𝐾௉                    Set of opening collection center capacities 𝑙 ∈ 𝐿    ⊂ 𝑁            Set of landfilling areas 𝑟 ∈ 𝑅   ⊂ 𝑁           Set of material recyclers  𝑧 ∈ 𝑍                           Available truck sizes (small and large) 𝑚 ∈ 𝑀                    Set of collected materials 𝑞 ∈ 𝑄           Set of quality levels for the materials 𝑎 ∈ 𝐴           Set of activities performed with the recycled materials  𝑡 ∈ 𝑇                      Set of time periods 𝑢 ∈ 𝑈                     Set of scenarios 

 
 
Parameters 
 
• Economic parameters 

 
Supply sources related parameters 

 𝜑௦௧   =  ൝  1   if supply source 𝑠 ∈ 𝑆  is operating at period 𝑡 ∈ 𝑇                                                                                            0   if not                                                                                                                                                 

 

Source Separation centers related parameters 
 𝜎௢௞  =    Fixed setting cost for source separation center 𝑜 ∈ 𝑂 of size 𝑘∈𝐾ை   𝜆௢௧   =   Variable unit operating cost for source separation center 𝑜 ∈ 𝑂  at period 𝑡 ∈ 𝑇 𝜂௢௧  =     Closing cost for separation center 𝑜 ∈ 𝑂  at period 𝑡 ∈ 𝑇 𝑀   =     Minimum filling rate at a source separation center in order to maintain it open 
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ℎ௢௞௧ை =    Available capacity in case source separation center o∈O is opening with a   

     size 𝑘∈𝐾ைat period 𝑡 ∈ 𝑇 

Collection centers related parameters 

 𝑐௠௧ோ  =   Recycling cost of one ton of mixed material 𝑚∈𝑀 at the collection center at   

   period 𝑡 ∈ 𝑇 𝑐̃௠௧ோ  =   Recycling cost of one ton of single material 𝑚∈𝑀 at the collection center at   

   period 𝑡 ∈ 𝑇 Ω௙    =   Fixed operating cost for an existing collection center 𝑓∈𝐹 during the planning horizon   δ௙௞   =   Expansion cost of existing collection center 𝑓∈ 𝐹ா to size 𝑘∈𝐾ா    Θ௙௞   =   Closing cost of existing collection center 𝑓∈ 𝐹ா to size 𝑘∈𝐾ா    𝜋௙௞   =   Opening cost for potential collection center 𝑓∈𝐹௉of size 𝑘∈𝐾௉  𝑔௙௧   =   Annual processing capacity at collection center 𝑓∈𝐹 at period 𝑡 ∈ 𝑇 ℎ௙௞ா   =  Additional capacity if collection center 𝑓∈𝐹ா is expanding to capacity 𝑘∈𝐾ா ℎ௙௞௉ =    Available capacity in case new collection center 𝑓∈𝐹௉ is opening with a size 𝑘∈𝐾௉ 
 

Landfilling related parameters 𝑐௠௧௅  =   Landfilling cost of one ton of material 𝑚∈𝑀 at a landfilling area at period 𝑡 ∈ 𝑇 

 

Recyclers related parameters 𝑑௠௤௔௥௧ = Demand for material m∈M of quality level q∈Q to perform activity a∈A at recycler   

      r∈R during period 𝑡 ∈ 𝑇 𝑏௠௧   =  Selling price of 1 metric ton of material m∈M at period 𝑡 ∈ 𝑇 

Ѵ௔௠௤   =  ൝  1   if activity 𝑎 ∈ 𝐴  can be performed with material 𝑚 ∈ 𝑀 𝑜𝑓 quality level 𝑞 ∈ 𝑄                                      0   if not                                                                                                                                                 
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Transportation related parameters 𝑡௜௝ =   Transportation cost for shipping one metric ton of materials between origin node  𝑖 ∈𝑁  and destination node 𝑗 ∈ 𝑁   𝜉௜௝  =   Transportation distances between origin node 𝑖 ∈ 𝑁  and destination node 𝑗 ∈ 𝑁  𝜔௭   =   Loading capacity of a truck with a size 𝑧 ∈ 𝑍   

 

• Environmental parameters 
 

Emission and landfilling limitations 
 𝐸௧௠௔௫ = Maximum emission quotas allocated by the government for period 𝑡 ∈ 𝑇 𝐿௠௧௠௔௫  = Maximum landfilling quantity of material 𝑚 ∈ 𝑀 allowed for period 𝑡 ∈ 𝑇 𝐸௧௧௢௧   = Total amount of emissions released during period 𝑡 ∈ 𝑇 𝑐𝑟௧ା    = Unit price of selling one emission credit in the cap-and-trade market 𝑐𝑟௧ି    = Unit price of buying one emission credit in the cap-and-trade market 

 
Transportation related emissions 

 𝜀௭௜௝௧ =   Emission per km for a shipment of materials with a truck of size 𝑧 ∈ 𝑍 between node 𝑖 ∈ 𝑁   
  and node 𝑗 ∈ 𝑁 at period 𝑡 ∈ 𝑇 (tCO2e) 
 

We calculate 𝜀௭ =  𝑒௭ா் + ቂ(𝑒௭ி் − 𝑒௭ா்). ቀ∑ ∑ ௑೘೜೔ೕ೟ೠ೜∈ೂ೘∈ಾ ఠ೥ ቁ ቃ,∀𝑧𝜖𝑍,∀𝑖𝜖𝐼,∀𝑗𝜖𝐽,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈.  

With  𝑒௭ா்  =   Emission factor per km for an empty truck of size 𝑧 ∈ 𝑍 (tCO2e) 

and    𝑒௭ி்   =   Emission factor per km for a fully loaded truck of size 𝑧 ∈ 𝑍 (tCO2e) 

 

Collection and sorting related emissions 𝑒௜௧ி      =  Fixed emissions released when using node 𝑖 ∈ 𝑁 at period 𝑡 ∈ 𝑇 𝑒௜௧௏    = Variable emissions released when processing 1 metric ton of material at node 𝑖 ∈ 𝑁 

  at period 𝑡 ∈ 𝑇 
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Recyclers’ activities and landfilling related emissions 𝑒௔௠௤ோ  = Emission factor for performing activity 𝑎 ∈ 𝐴 with one metric ton of material 𝑚 ∈ 𝑀 

  of quality level 𝑞 ∈ 𝑄 at recyclers (tCO2e) 𝑒௠௅ =  Emission factor for landfilling  one metric ton of material 𝑚 ∈ 𝑀 (tCO2e) 

 
 

• Uncertain parameters 
 
 𝑝௨      =   Probability of scenario 𝑢 ∈ 𝑈 𝑟௠௤௨  =   Recycling rate at the collection centers for material type m∈M of quality level       

     q∈Q in scenario u ∈U without source separation   𝑟̃௠௤௨  =   Recycling rate at the collection centers for material type m∈M of quality level       

     q∈Q in scenario u ∈U with source separation  𝑣௠௤௦௧௨ = Collected quantity of material 𝑚∈𝑀 of quality level q∈Q at supply source 𝑠∈𝑆        

     at period 𝑡 ∈ 𝑇 in scenario u ∈U 

 

• First-stage decision variables 
 

 𝛽௙    =  ൝ 1   if sorting center  𝑓 ∈ 𝐹  is operating during the planning horizon                                 0   if not                                                                                                                   
 
 𝛼௙௞௧ =  ൝  1   if collection center  𝑓 ∈ 𝐹ா  should be expanded to size 𝑘 ∈ 𝐾ா  at period 𝑡 ∈ 𝑇                                                                                                     0   if not                                                                                                                                               

 
 𝜓௙௞௧  =  ൝  1   if collection center  𝑓 ∈ 𝐹ா𝑜𝑓 size 𝑘 ∈ 𝐾ாshould be closed at period 𝑡 ∈ 𝑇                                                                                                     0   if not                                                                                                                                               
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𝜃௙௞   =  ൝  1   if a new collection center  𝑓 ∈ 𝐹௉ of size 𝑘 ∈ 𝐾௉ should be opened                                                                                                                      0   if not                                                                                                                       
 
 𝛻௢௞௧  = ൝ 1   if  SSC 𝑜 ∈ 𝑂  of size 𝑘 ∈ 𝐾𝑂 should be opened at period 𝑡 ∈ 𝑇                                   0   if not                                                                                                              
 
 𝜁௢௧   =  ൝ 1   if  SSC 𝑜 ∈ 𝑂  should be closed at period 𝑡 ∈ 𝑇                                   0   if not                                                                                
 
 𝑁௜௧   =  ൝ 1   if a network node 𝑖 ∈ 𝑁  is used at period 𝑡 ∈ 𝑇                                                                   0   if not                                                                                                                   
 
 
• Second-stage decision variables 

 𝑋௠௤௜௝௧௨ = Flow of material of type 𝑚∈𝑀 of quality level q∈Q transported from origin  

       node 𝑖𝜖𝑁 to destination node j∈J at period 𝑡 ∈ 𝑇 in scenario u∈U 

 𝑁௦௧௨ =       Number of trucks required to perform collection activities on supply site 𝑠∈𝑆        

      at period 𝑡 ∈ 𝑇 in scenario u∈U    

 

  𝑁௢௧௨ =       Number of required trucks to perform consolidation activities at source  

        separation center o∈O at period 𝑡 ∈ 𝑇 in scenario u∈U     

 𝐸𝑀௧௨ା   =   Excess quantity of carbon credits sold at the end of period 𝑡 ∈ 𝑇 in scenario 

      u∈U    

 𝐸𝑀௧௨ି  =   Deficit quantity of carbon credits that must be purchased at the end of period   

      𝑡 ∈ 𝑇 in scenario u∈U    
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Economic objective (O1) 

 
The main objective of our multi-objective stochastic model is to maximize the profits made 

by selling the recycled materials to the secondary markets.  

 

Revenues of the materials selling to the recyclers 

 𝑅𝐸𝑉ெ஺் = ෍ ෍෍෍ ෍ 𝑏௠௧ 𝑋௠௤௙௥௧௨௙∈ிಶ∪ ிು  ௧∈்௥∈ோ௤∈ொ௠∈ெ           ∀𝑢 ∈ 𝑈                         (4.1) 

 
• Facility related costs (FRC): Opening + Closing + Expansions 

At collection centers (existing and potential)  

𝐹𝑅𝐶஼஼ = ෍ 𝛺௙ + ෍ ൭෍𝛿௙௞𝛼௙௞௧௧∈் + Θ௙௞𝜓௙௞௧ + 𝜋௙௞𝜃௙௞൱௞∈௄ಶ∪ ௄ು௙∈ிಶ∪ ிು                    (4.2) 

 

At the source separation centers 

𝐹𝑅𝐶஼஽ = ෍   ෍ ෍ (𝜎௢௞∇௢௞௧ + 𝜂௢௧ 𝜁௢௧௞∈ ௄ೀ௧∈்௢∈ை )                                  (4.3) 

 

• Sorting operation costs at existing and potential collection centers 

 

Without source separation (mixed material containers MMC) 

𝑆𝑂𝑅𝑇ெெ஼ = ෍ ෍𝑐௠௧ோ௧∈்௠∈ெ ቌ෍ ෍ ෍𝑋௠௤௦௙௧௨ ௦∈ௌ௙∈ிಶ∪ ிು௤∈ொ ቍ              ∀𝑢 ∈ 𝑈         (4.4) 
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With source separation (single material containers SMC) 

𝑆𝑂𝑅𝑇ௌெ஼ = ෍ ෍𝑐̃௠௧ோ௧∈்௠∈ெ ቌ෍ ෍ ෍𝑋௠௤௢௙௧௨ ௢∈ை௙∈ிಶ∪ ிು௤∈ொ ቍ               ∀𝑢 ∈ 𝑈        (4.5) 

Landfilling costs  

𝐿𝐷 = ෍ ෍𝑐௠௧௅ ෍෍ቌ෍𝑋௠௤௦௟௧௨ +௦∈ௌ ෍ 𝑋௠௤௙௟௧௨ + ௙∈ிಶ∪ ிು ෍𝑋௠௤௢௟௧௨௢∈ை ቍ௟∈௅௤∈ொ௧∈்௠∈ெ   ∀𝑢 ∈ 𝑈   (4.6) 

 

Source Separation centers’ operations 

𝐶𝑅 =  ෍෍𝜆௢௧ ෍ ෍෍𝑋௠௤௦௢௧௨       ∀𝑢 ∈ 𝑈                  (4.7)௦∈ௌ௤∈ொ௠∈ெ௧∈்௢∈ை  

Transportation costs 

𝑇𝐶 = ෍෍𝑡௜௝ 𝜉௜௝ ෍ ෍ ෍𝑋௠௤௜௝௧௨௧∈்௠∈ெ௤∈ொ௝∈௃௜∈ூ     ∀𝑢 ∈ 𝑈             (4.8) 

Carbon credits management costs 

𝐶𝐶 =  ෍𝑐𝑟௧ି 𝐸𝑀௧௨ି௧∈் −  ෍𝑐𝑟௧ା𝐸𝑀௧௨ା௧∈்          ∀𝑢 ∈ 𝑈             (4.9) 

As the network decisions 𝐹𝑅𝐶஼஼  and 𝐹𝑅𝐶஼஽ include first-stage decisions variables, they are 

not scenario-dependant. The remaining costs are second-stage decision variables. Thus, the 

profit-maximizing function of the reverse logistics network can be written as follow: 

𝑴𝒂𝒙 𝑶𝟏 = ෍𝑝௨(௨∈௎ 𝑅𝐸𝑉ெ஺்)  − (𝐹𝑅𝐶஼஼ + 𝐹𝑅𝐶஼஽) 

−෍𝑝௨(௨∈௎ 𝑆𝑂𝑅𝑇ெெ஼ + 𝑆𝑂𝑅𝑇ௌெ஼ + 𝐿𝐷 + 𝐶𝑅 + 𝑇𝐶 + 𝐶𝐶)                   (4.10) 
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To achieve eco-efficiency, we need to limit the emissions released by the RL network. To do 

so, we consider 4 major sources of emissions. First, we calculate the transportation emissions 

for the material shipments through the network. Then, we take into account the collection 

activities at the supply sources and the sorting operations at the SSC and the CC. In addition, 

one of the contributions of this model is to consider the emissions caused by the recycling 

processes we can perform according to the quality of the materials. Finally, we account for 

the landfilling emissions. For each scenario, we calculate the emissions as follow:  

 

Transportation emissions  

𝐸𝑀்ோ =  ෍෍𝜉௜௝  ෍෍𝜀௭௜௝௧௧∈்௭∈௓௝∈௃௜∈ூ               ∀𝑢 ∈ 𝑈          (4.11) 

 

Collection and sorting emissions  

𝐸𝑀஼ௌ = ෍෍𝑒௜௧ி  𝑁௜௧  +௧∈்௜∈ூ ෍෍𝑒௜௧௏ ෍ ෍෍𝑋௠௤௜௝௧௨௤∈ொ௝∈௃௠∈ெ  ௧∈்௜∈ூ      ∀𝑢 ∈ 𝑈       (4.12) 

 

Emissions associated to recycling activities 

𝐸𝑀ோ஺ =  ෍ ෍ ෍𝑒௔௠௤ோ௤∈ொ௠∈ெ௔∈஺ ෍෍෍𝑋௠௤௜௝௧௨௧∈்௝∈௃௜∈ூ           ∀𝑢 ∈ 𝑈       (4.13) 

 

Landfilling emissions 

𝐸𝑀௅஽ =  ෍ 𝑒௠௅௠∈ெ ෍෍෍𝑋௠௤௜௝௧௨௧∈்௝∈௃௜∈ூ                  ∀𝑢 ∈ 𝑈       (4.14) 

 

In order to control the emissions of the reverse logistics network, we calculate the total 

emission level by:    𝐸௧௧௢௧ =   𝐸𝑀்ோ + 𝐸𝑀஼ௌ + 𝐸𝑀ோ஺  +  𝐸𝑀௅஽                  ∀𝑢 ∈ 𝑈       (4.15)  

 



119 

There are two goals into minimizing the emissions of the network. First, it allows complying 

with the governmental GHG emission limitation. In addition, it represents an economic 

advantage regarding the cap-and-trade system for carbon credits. 

 

Landfilling restriction objective (O2) 
 
The second concern in order to achieve eco-efficiency of the RL network is to minimize the 

landfilling flows. The latter are composed of the flows coming from the supply sources, the 

flows from the SSC after source-separation and finally the flows from the collection centers. 

For each scenario, the calculation of the landfilling flows is as follow: 

 

Landfilling from the supply sources 

𝐿𝐴ௌ =  ෍ ෍෍෍෍𝑋௠௤௦௟௧௨௧∈்௟∈௅௦∈ௌ௤∈ொ௠∈ெ              ∀𝑢 ∈ 𝑈      (4.16) 

 

Landfilling from the source separation centers  

𝐿𝐴ை =  ෍ ෍෍෍෍𝑋௠௤௢௟௧௨௧∈்          ∀𝑢 ∈ 𝑈       (4.17)௟∈௅௢∈ை௤∈ொ௠∈ெ  

 

Landfilling from the collection centers 

𝐿𝐴ி =  ෍ ෍ ෍ ෍෍𝑋௠௤௙௟௧௨       ∀𝑢 ∈ 𝑈       (4.18)௧∈்௟∈௅௙∈ிಶ௎ ிು௤∈ொ௠∈ெ  

 

In order to minimize the landfilling flows of the reverse logistics network and over all the 

scenarios, we consider the second objective function: 

 𝑴𝒊𝒏 𝑶𝟐  =   ෍𝑝௨ (𝐿𝐴ௌ  +  𝐿𝐴ை  +  𝐿𝐴ி)                     (4.19)௨∈௎  
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Subject to the following constraints  
 
Demand satisfaction  

෍ 𝑋௠௤௙௥௧௨௙∈ிಶ∪ ிು ≤ ෍𝑑௠௤௔௥௧ Ѵ௔௠௤௔∈஺    ∀𝑚 ∈ 𝑀,∀𝑞 ∈ 𝑄,∀𝑟 ∈ 𝑅,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈  (4.20) 

 

Flow conservation at the supply sources  

𝑣௠௤௦௧௨ .𝜑௦௧ = ෍ 𝑋௠௤௦௙௧௨௙∈ிಶ∪ ிು + ෍𝑋௠௤௦௟௧௨௟∈௅  + ෍𝑋௠௤௦௢௧௨௢∈ை            
∀𝑚 ∈ 𝑀,∀𝑞 ∈ 𝑄,∀𝑠 ∈ 𝑆,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈                   (4.21) 

 

Flow conservation at collection centers 

෍𝑋௠௤௦௙௧௨௦∈ௌ + ෍𝑋௠௤௢௙௧௨௢∈ை = ෍𝑋௠௤௙௥௧௨ +௥∈ோ ෍𝑋௠௤௙௟௧௨௟∈௅       
∀𝑚 ∈ 𝑀,∀𝑞 ∈ 𝑄,∀𝑓 ∈ 𝐹ா ∪  𝐹௉,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈                  (4.22) 

 

Flow conservation at potential source separation centers 

෍𝑋௠௤௦௢௧௨௦∈ௌ = ෍ 𝑋௠௤௢௙௧௨௙∈ிಶ∪ ிು + ෍𝑋௠௤௢௟௧௨௟∈௅       
∀𝑚 ∈ 𝑀,∀𝑞 ∈ 𝑄,∀𝑜 ∈ 𝑂,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈                  (4.23) 

 

Achievable recycling rates at collection centers without source separation 

൭෍𝑋௠௤௦௙௧௨௦∈ௌ ൱  𝑟௠௤௨ ≥ ෍𝑋௠௤௙௥௧௨ ௥∈ோ     ∀𝑚 ∈ 𝑀,∀𝑞 ∈ 𝑄,∀𝑓 ∈ 𝐹ா ∪  𝐹௉ ,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈    (4.24)     
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Achievable recycling rates at collection centers with source separation 

൭෍𝑋௠௤௢௙௧௨௢∈ை ൱  𝑟̃௠௤௨ ≥  ෍𝑋௠௤௙௥௧௨௥∈ோ      
∀𝑚 ∈ 𝑀,∀𝑞 ∈ 𝑄,∀𝑓 ∈ 𝐹ா ∪  𝐹௉,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈        (4.25) 

 

Treatment capacity at the existing collection centers 

෍ ෍൭෍𝑋௠௤௦௙௧௨ + ෍𝑋௠௤௢௙௧௨௢∈ை௦∈ௌ ൱௤∈ொ௠∈ெ ≤  𝑔௙௧ 𝛽௙ + ℎ௙௞ா  𝛼௙௞௧ ∀𝑘 ∈ 𝐾ா   ,∀𝑓 ∈ 𝐹ா ,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈                     (4.26) 

 
 

Treatment capacity at potential collection centers 

෍ ෍൭෍𝑋௠௤௦௙௧௨ + ෍𝑋௠௤௢௙௧௨௢∈ை௦∈ௌ ൱௤∈ொ௠∈ெ ≤  ℎ௙௞௉  𝜃௙௞ 

∀𝑘 ∈ 𝐾௉  ,∀𝑓 ∈ 𝐹௉,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈                     (4.27) 

 

Treatment capacity at potential source separation centers 

෍ ෍෍𝑋௠௤௦௢௧௨௦∈ௌ௤∈ொ௠∈ெ ≤  ℎ௢௞௧ை  𝛻௢௞௧       ∀𝑘 ∈ 𝐾ை  ,∀𝑜 ∈ 𝑂,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈       (4.28) 

 

Throughput flow at potential source separation centers (minimum filling rate) 

 (ℎ௢௞௧ை  𝑀)𝛻௢௞௧ ≤ ෍ ෍෍𝑋௠௤௦௢௧௨௦∈ௌ௤∈ொ௠∈ெ ≤  ℎ௢௞௧ை  𝛻௢௞௧      ∀𝑜 ∈ 𝑂  ,∀𝑘 ∈ 𝐾ை,∀𝑡 ∈ 𝑇     (4.29) 
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Source Separation centers’ opening and closing constraints 𝜁௢௧ +  ∑  𝛻௢௞௧ ௞∈௄ೀ ≤ 1        ∀𝑜 ∈ 𝑂  ,∀𝑡 ∈ 𝑇          (4.30) 

 
 

Collection centers expansions are limited to 1 per facility 

෍  ෍𝛼௙௞௧௧∈் ≤ 1௞∈௄ ,       ∀𝑓 ∈ 𝐹                   (4.31) 

Trucks loading capacity at supply sources 

෍ ෍𝑣௠௤௦௧௨௤∈ொ௠∈ெ  ≤෍𝜔௭ ௭∈௓ 𝑁௦௧௨         
 ∀𝑠 ∈ 𝑆,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈                       (4.32) 

Trucks loading capacity at source separation centers 

෍ ෍෍𝑋௠௤௦௢௧௨௦∈ௌ௤∈ொ௠∈ெ  ≤෍𝜔௭ ௭∈௓ 𝑁௢௧௨      ∀𝑜 ∈ 𝑂,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈        (4.33) 

 

Compliance to the environmental constraints 

 

• Emission cap-and-trade system implemented by the authorities 

  ෍෍𝜉௜௝  ෍𝜀௭௜௝௧௭∈௓௝∈௃௜∈ூ + ෍𝑒௜௧ி  𝑁௜௧ +௜∈ூ ෍𝑒௜௧௏ ෍ ෍෍𝑋௠௤௜௝௧௨௤∈ொ௝∈௃௠∈ெ  ௜∈ூ +  ෍ ෍ ෍𝑒௔௠௤ோ௤∈ொ௠∈ெ௔∈஺  ෍෍𝑋௠௤௜௝௧௨௝∈௃௜∈ூ  

+ 𝐸𝑀௧௨ି  -  𝐸𝑀௧௨ା   ≤ 𝐸௧௠௔௫                    ∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈                             (4.34) 

 

• Maximum landfilling quantities  

෍෍෍𝑋௠௤௦௟௧௨௟∈௅௦∈ௌ௤∈ொ + ෍෍෍𝑋௠௤௢௟௧௨ +௟∈௅௢∈ை௤∈ொ ෍ ෍ ෍𝑋௠௤௙௟௧௨ ௟∈௅௙∈ிಶ௎ ிು௤∈ொ  ≤  𝐿௠௧௠௔௫  
∀𝑚 ∈ 𝑀,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈          (4.35)  



123 

Integer and binary constraints  𝑋௠௤௜௝௧௨ ∈  ℝା Where  ℝା= ሼ𝑥 𝜖 ℝ, 𝑥 ≥ 0ሽ,         ∀𝑚 ∈ 𝑀,∀𝑞 ∈ 𝑄,∀𝑖𝜖𝐼,∀𝑗𝜖𝐽,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈           (4.36) 

 𝑁௦௧௨,𝑁௢௧௨,𝐸𝑀௧௨ି,𝐸𝑀௧௨ା   ∈ ℕ ,       ∀𝑠𝜖𝑆,∀𝑜𝜖𝑂,∀𝑡 ∈ 𝑇,∀𝑢 ∈ 𝑈            (4.37)  

  𝛽௙ ,  𝛼௙௞௧ ,𝜃௙௞, 𝜑௦௧ ,𝛻௢௞௧ , 𝜁௢௧,𝑁𝑖𝑡 ,Ѵ௔௠௤  𝜖  ሼ0,1ሽ               ∀𝑓 ∈ 𝐹ா ∪  𝐹௉,∀𝑘 ∈ 𝐾ா ∪  𝐾௉ ,∀𝑜𝜖𝑂,∀𝑠𝜖𝑆,∀𝑡𝜖𝑇,∀𝑎𝜖𝐴,∀𝑚𝜖𝑀,∀𝑞𝜖𝑄             (4.38) 

 

The first constraint (4.20) ensures that the recyclers receive at most the desired amount of 

recycled materials with the specific quality level from the collection centers during each 

period to perform all the activities required. The second constraint (4.21) regulates the flow 

of materials leaving the supply sources at each period either by shipping them to an existing 

or a new CC, a source separation center or a landfilling area. Constraint (4.22) and (4.23) 

ensure the incoming flows at collection centers are redirected either to a recycler or a landfill, 

and that income flow at the SSC are shipped to both CC and landfills. Constraints (4.24) and 

(4.25) set the maximum achievable recycling rates at both existing and potential collection 

centers per material and quality levels in both cases of source-separated or mixed material 

containers. Constraints (4.26) to (4.28) are the collection centers, potential CC and potential 

SP capacity constraints. Constraint (4.29) sets the capacity of the SSC and the minimum 

utilization rate required for each period. Constraint (4.30) is related to the binary variables for 

opening and closing the SSC. Constraint (4.31) limits the number of expansions for the 

collection centers. Constraints (4.32) and (4.33) establish the truck resources required to 

perform collection activities at supply sources and consolidation at the SSC. Constraint 

(4.34) ensures the respect of the cap-and-trade system. Depending on the emissions released 

during each time-period under each scenario, carbon credits will be sold or purchased on the 

carbon market. Constraint (4.35) sets the limit quantity landfilled for each material at each 

time-period. Finally, constraints (4.36) - (4.38) are the integer and binary constraints.  
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In our mathematical formulation, constraint (4.35) defines the maximum landfilling amount 

of materials tolerated and will be used as the ε-constraint in the resolution process. The ε-

constraint method is a well-known technique for solving optimization problems with multiple 

objectives. Usually, in this type of problem, there is no optimal solution that can optimize all 

the objectives at the same time. This is the reason why the decision-makers are often looking 

for the best possible trade-offs among the various objectives. We refer to these trade-offs as 

the “Pareto-optimal” or “efficient” solutions of the problem. This set of solutions is called 

efficient because a single objective function cannot be improved without a deterioration of at 

least one of the other objectives (Mavrotas, 2009). This resolution approach has been used to 

solve supply chain multi-objective optimization problems repeatedly in the past decade (Yue 

and You, 2013; Ameknassi et al., 2016), only to name a few. Basically, the ε-constraint 

consists in prioritizing one of the objective functions while using the other ones as constraints 

of the model. Then, by performing a sensitivity analysis on the value of epsilon, we manage 

to obtain the Pareto-front. In our case, we want to maximize the economic benefits while 

minimizing the landfilling. Let us consider the following bi-objective optimization problem:  

 ൜   𝑚𝑎𝑥 𝑓ଵ(𝑥)  min 𝑓ଶ(𝑥)  ൠ  subject to 𝑥 ∈ 𝑅                                           (4.39) 

 

Where 𝑓ଵ(𝑥) and 𝑓ଶ(𝑥) are the objectives functions of the problem. We name 𝑥 the vector of 

decision variables and R the feasible region of solutions. If we refer specifically to our 

model, the first objective function is to maximize the profits of the material selling to the 

recyclers and the second objective is to minimize the total flow of materials that end up 

landfilled. As it is often the case in multi-objective problems, we decide to prioritize the 

economic objective and we set the environmental one as a constraint of the model 

(Eskandarpour et al., 2015). Thus, (4.39) becomes:  

 𝑚𝑎𝑥 𝑓ଵ(𝑥) 

                                             subject to       𝑓ଶ(𝑥) ≤  ε 𝑥 ∈ 𝑅                                                                    (4.40) 
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From this new problem, we obtain the set of Pareto-optimal solutions by variation of the 

epsilon value. In our case, the value of epsilon will vary around the governmental target in 

terms of landfilling quantities proposed in the case study. Thus we have the following: 

     𝑚𝑎𝑥 𝑂ଵ(𝑥) 

subject to     𝑂ଶ(𝑥) ≤  ε                                                                    𝑥 ∈ 𝑅                                                                  (4.41) 

 

4.4 The case study of wood waste recycling from the CRD industry 

In this section, we propose an application of our model for the design of the reverse logistics 

network to optimize the wood recycling process from the CRD industry in the Canadian 

province of Quebec. With a very large territory and many forests, Canada is among the 

countries with the highest wood material rate inside its buildings. Indeed, it is common to 

reach between 25% to 30% of wood among the total CRD waste collected at the CRD sites 

(Yeheyis et al., 2013). These days, the recycled wood sector is facing some important 

challenges in Quebec. Usually, over 60% of the wood waste collected at the CRD sites is not 

recovered, partly because the recycling process is more expensive than the cost of 

elimination by landfilling (RECYQ-QUEBEC, 2012). This concern led the local authorities 

to enforce regulations in order to encourage the recycling of CRD materials and prevent 

excessive landfilling in this area, while monitoring the carbon emissions associated to the 

recycling process in the meantime for sustainability purposes. 

 

The province of Quebec is the largest Canadian province with a territory of 1,667,441 km2, 

however unequally populated with almost 52% inhabitants concentrated in 3 regions out of 

17. These characteristics make the RLND for recycling the wood from the CRD industry a 

challenge to serve adequately the entire territory. For the purpose of this study, some 

information was collected from key industry players in Quebec, such as historical data 

provided by wood recyclers (3R-MCDQ). In addition, other entities such as the SIQ 

(Statistical Institute of Quebec) or RECYQ-QUEBEC organizations, in charge of waste 
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management in the province, were used as additional sources to obtain accurate data. With an 

average of 0.65 tons of waste generated per inhabitant annually in Quebec, the building 

material waste collected on the CRD sites was estimated around 5.3 million tons per year. 

Thus, we assumed that we collect an average of 1.326 million tons of wood (~ 25%) in a 

time-period of one year. Three quality levels of collected wood are considered in this study. 

Quality level 1 is free of contaminants and presents a very high demand due to its high 

recycling potential. However, quality level 2 is usually slightly contaminated, sometimes by 

contact with other building materials or by previous treatments (painting, chemical treatment 

against moisture, insects) or simply by time degradation. Quality level 2 accounts for 65% to 

70% of the total wood collected. Finally, quality level 3 is a highly contaminated wood, 

sometimes with dangerous substances, being potentially harmful to the environment and/or 

for human health. This type wood is likely to be landfilled all the time and is very difficult to 

recycle.  

 

As the historical data about the exact number and locations of CRD sites were not available, 

we divided the total amount of waste generated into 250 collection sites taking into account 

the population density of the regions. Among the recurrent wood recycling activities in 

Quebec, we mainly find energy cogeneration (52%), particleboard manufacturing (25%), 

cellulosic ethanol fabrication (11%), cement manufacturing (6%), logs and pellets (5%), and 

the remaining 1% for other applications (3R-MCDQ, 2014). However, each recycling 

activity has its own requirements in terms of wood quality in order to be performed. Data 

regarding the emission factors used to calculate the carbon released by the wood recycling 

network was carefully selected from different reliable sources such as the French 

Environment and Energy Management Agency (ADEME), the Quebec Ministry of 

Environment and the Canadian Federal Emissions Inventory for Climate Change. Below, 

figure 4.2 illustrates the main features of the reverse logistics network for the wood recycling 

process from the CRD industry in Quebec.  
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           Figure 4.2   Reverse logistics network for wood building material recycling 
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In order to evaluate the network behavior under landfilling restrictions and emission control, 

the first step of our analysis is to establish the Pareto-front (see figure 4.3 below). 

 

 

Figure 4.3   Trade-offs between profits and landfilling – Pareto-front 

 

This diagram provides useful information regarding the impact of landfilling restrictions on 

the network performance. First, we see that the optimal network suggests a landfilling level 

at 36% (point A). Thus, recycling more than 64% of the wood is decreasing the value of the 

solution, being the case for example under the regulation compliance where we have to 

recycle at least 70% (point B). We also notice an infeasible region for this problem due to 

recycling rates limitation of the wood because of its quality. Indeed, the recycling rates 

achievable at the CCs limit the wood recycling at a maximum of 82%. Moreover, recycling 

under 34% of the wood, there is no possibility for making profits as the costs of logistics 

infrastructures and operations exceed the recycled wood selling. 
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Based on this Pareto-front, we propose to evaluate three main scenarios in the following 

experiments that will provide a better understanding of the network behavior: 

 

1) evaluation of the optimal network for wood recycling (point A); 

2) evaluation of the “compliance network” with landfilling limitations (point B); 

3) and finally, the evaluation of this same “compliance network” but this time without the 

possibility to use the source separation centers. 

By following these methodological steps, we will show how the landfilling regulation 

actually decreases the value of the solution and affects the performance of the reverse 

logistics network. Moreover, we will highlight the importance to consider the source 

separation strategy to maintain a good quality solution under the legislation. 

 

4.4.1 Optimal reverse logistics network design for wood recycling 

As a comparison reference, the reader will find in figure 4.4 the current average repartition of 

the recycled wood use in the province of Quebec. 

 

 

Figure 4.4   Current wood recycling in the Province of Quebec 
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As previously shown in figure 4.3, the best solution for wood waste recycling in the CRD 

industry suggests we recycled 64% of the collected wood (point A). To do so, 6 existing CC 

are operating and among them, 4 should increase their treatment capacity. In addition, 3 new 

CC are opening in appropriate locations. In this optimal RLND, the SSC are used 

extensively, with 29 of them operating out of a maximum of 35 (7 source separation centers 

per period and 5 time periods). Under the optimal configuration, we reach excellent average 

utilization rates with 79% for the CC and 96% at the SSC. More accurate information about 

the network emissions is provided in figure 4.5, with a specific focus on the decomposition 

of the emissions associated with the recycling activities.  

 

 

Figure 4.5   Optimal network design characteristics 
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4.4.2 Enforcing the landfilling regulation: the new “compliance network” 

According to the recent waste management plan in the province, the building contractors 

have to recycle a minimum of 70% of the building material waste generated during CRD 

activities. However, in case of the wood building material and considering the high emissions 

caused by low-quality batches, recycling this much is decreasing the efficiency of the 

network (24.7% profit loss). The network still operates 6 of the existing collection centers, 

however only 2 are expanding compared to 4 in the optimal configuration. As we need to 

provide extra capacity to recycle more wood in this scenario, 3 new collection centers are 

opening but with larger capacities than before. Part of the wood flow from the supply sources 

are redirected to these new large facilities, thus implying the opening of 22 source separation 

centers instead of the 29 SSC operating in the optimal scenario. Therefore, complying with 

the landfilling regulation forces the recycling of some low quality batches to meet the target, 

which increases the overall level of emissions of the network. In the meantime, the 

proportion of wood used for each recycling activity has changed due to the 79,500 additional 

tons of wood recycled. Compared to the optimal network, the regulation raises the overall 

emission level from 8.9%, showing a significant increase in the emissions associated to the 

recycling processes. Figure 4.6 summarizes the information regarding the compliance 

network. 
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Figure 4.6   Compliance network design characteristics 

 

4.4.3 The role of the source separation centers in the CRD industry 

In this part, we evaluate again the network behaviour under compliance (i.e. point B in the 

Pareto diagram, figure 4.3), however this time without the possibility to operate the SSC. The 

immediate impact of this constraint is that a significant quantity of poor quality wood is 

redirected to the CCs instead of being eliminated at an early stage of the reverse logistics 

network. Moreover, the collection centers have to process a lot more mixed material 

containers, which impacts the recycling rates in a negative way. To deal with this extra 

volume of CRD materials, we operate 1 additional existing CC and we locate 1 extra CC. 

This time, failing to eliminate low-quality batches raises the overall emission level by 16.4% 

compared to the optimal scenario, being 6.8% higher than when we use the source separation 

strategy (see figure 4.7 below). 
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Figure 4.7   Compliance network without using the source separation strategy 
 
Without the source-separation strategy, the recycling activities now represent the main source 

of emissions of the reverse logistics network with 46%, being almost equivalent to the 

combination of the landfilling and transportation emissions (48%). As a significant number 

of shipments containing poor quality wood reach the CCs in this scenario, a larger quantity of 

this wood reaches the recyclers and increases the total emissions compared to the previous 

scenario. The results suggest that source-separation represents a promising solution to reduce 

the carbon footprint of the wood recycling process in the CRD industry. It is also interesting 

to observe that the wood recycling activities in this last case (i.e. compliance network without 

SSC) show a very similar repartition compared to the current use of recycled wood in 

Quebec (figure 4.4). Thus, the analysis of these three scenarios could provide useful insights 

to the Quebec authorities regarding the potential issues of imposing recycling targets for 
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materials under uncertain quality. In addition, the results of the optimal scenario could be 

helpful to adjust the repartition of the recycling activities that would allow reducing the 

associated emissions. The reader is referred to appendix VI for additional details regarding 

the reverse logistics network metrics for the three (3) scenarios evaluated in this section. 

 

4.4.4 Sensitivity analyses on the uncertainty for the recycled wood quality 

The previous experiments highlight the importance of carefully selecting recycling targets, 

especially in the case of building materials for which the quality level is unpredictable. 

Indeed, depending on the quality of the collected lots, it is sometimes the best decision to 

landfill more wood instead of performing recycling processes that would be harmful to the 

environment by releasing toxic emissions. To assess the impact of the uncertainty targeting 

the wood quality on the reverse logistics network, we established different Pareto-diagrams 

(figure 4.8), each one of them associated to a different scenario: Poor Quality (S1), Medium 

Quality (S2) and Superior Quality (S3).  

 

In each of these scenarios, we assume that we observe a variation in the trend regarding the 

quality of the collected batches during the planning horizon. The data used to conduct these 

experiments are shown in table 4.2 below. 

 

Table 4.2   Sensitivity analyses on the impact of the quality of the collected wood 
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Figure 4.8   Impact of the uncertain wood quality on the optimal landfilling level 
 

In figure 4.8, scenario S2 is the one we already presented in figure 4.3, which is used as a 

baseline for the comparison with the other scenarios, although here we represent only the 

range with profits. First, we observe an extension of the “profitable area” when the quality of 

the wood increases (i.e. the green area). Indeed, an enhanced quality implies higher average 

recycling rates at the CCs, meaning that we manage to reduce the infeasibility region by 

recycling up to 91% of the collected wood in superior quality scenarios. However, under the 

poor quality scenarios, the maximum amount of recycled wood decreases down to 66%. The 

maximum proportion of wood landfilling however is less sensitive and remains between 63% 

to 69% in any scenario. Indeed, if the amount of wood eliminated exceeds 70% there is not 

enough selling on the secondary markets to support the costs of the reverse logistics network. 
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The optimal recycling rates vary from 53% to 72%. Any deviation from the optimal solutions 

implies a profit loss, either by landfilling acceptable quality wood that would be usable in a 

recycling process, or by recycling too much low-quality wood that releases toxic emissions, 

thus being penalized by the cap and trade system in place. Moreover, in the poor quality 

scenario, we are in the impossibility to comply with the recycling target of 70%. Indeed, 

complying with the regulation would require shipping poor quality wood to the recyclers that 

would be unacceptable to perform the recycling operations.  

 

The main reverse logistics network characteristics for the three (3) optimal configurations 

under each scenario are synthesized in table 4.3. We observe that significant facility 

investments such as CCs expansions or new openings are not an option under scenario 1. 

However, when the wood quality increases, such investments are encouraged in order to 

optimize the reverse logistics operations for wood recycling. In case of the poor quality 

scenario (S1), we observe an extensive use of the SSC, which can be explained by the 

necessity to eliminate a maximum of unusable wood instead of shipping it to the CCs, thus 

avoiding pointless transportation activities. In addition, the operating SSC are mostly located 

closer to the landfills, which decreases the average elimination distance by 26.6% compared 

to the baseline scenario (S2). However, in scenario 3, the set of active source-separation 

centers is quite different from the one used under scenario 1, this time operating the SSC that 

are strategically located to reach the collection centers. Overall, compared to the baseline 

scenario, we incur a 28.3% profit loss under scenario 1, whereas scenario 3 allows a 16.2% 

increase in the average expected profit. 
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Table 4.3   Optimal networks’ characteristics under wood quality variation 

 
 

4.5 Conclusion 

In this article, we present a multi-objective stochastic model to optimize the reverse logistics 

network design decisions for waste management purposes. We apply this model in the 

context of wood material recycling in the CRD industry in Quebec, being a sector targeted by 

emerging environmental regulations. The results show the complexity of setting recycling 

targets without affecting the reverse logistics network performance, especially in an uncertain 

environment where the unpredictable quality of the materials affects the efficiency of the 

recycling processes and its emission level. As a promising solution to reduce the 

environmental impacts caused by the uncertainty related to the materials’ quality, the source-

separation strategy is tested and provides the opportunity to eliminate poor quality lots at an 

early stage of the RL channel. Moreover, by performing container consolidation into single 

material shipments, the source-separation operations increase the average recycling rates at 

the collection centers, thus diverting materials from the landfills and decreasing the overall 

emission level in the meantime. 

 

In this research, our model addresses both the economic and the environmental aspects of 

supply chain management, being two of the three pillars of sustainability (Elkington, 1998). 

However, the inclusion of social aspects in the model would help dealing with waste 

Scenarios CC operating 
(existing)

CC 
expansions

CC utilization 
rate

CC opening 
(new)

SCC 
operating 

Poor quality (S1)  7/8  0/6 59%  1/5  33/35

Medium quality (S2)  6/8  4/6 79%  3/5  29/35

Superior quality (S3)  6/8  5/6 88%  4/5  21/35

Scenarios
Avg. distance 

to recycle
Avg. distance 

to landfill
Source 

separation
Optimal 

recycling level
Overall 
profits

Poor quality (S1) 80,8 km 41,1 km 41% 53% 29,7 M$

Medium quality (S2) 91,1 km 56,3 km 34% 64% 41,4 M$

Superior quality (S3) 101,5 km 68,6 km 31% 72% 48,1 M$
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management operations in a sustainable way. In addition, the experiments showed that for the 

local authorities it can be a difficult decision to set some recycling targets for the materials in 

an uncertain environment. Thus, we believe that a sensitivity analysis on the legislation 

parameters can be an interesting study, providing insights to the governments before 

enforcing recycling targets in a specific area that could affect the potential of reverse logistics 

operations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CONCLUSION 

 
Nowadays, designing sustainable supply chains has become a critical matter for the well-

being of the future generations. To this aim, the design of efficient reverse logistics networks 

that allow performing sustainable RL operations is a topic of great interest. Unfortunately, 

although it is acknowledged that a suitable RLND is critical toward seeking sustainability, 

the decision-makers in the industry are often struggling with the complexity of this process 

involving many challenges. Indeed, evolving from an economic-oriented business to a vision 

that includes environmental and/or social considerations is not an easy task. Usually, it 

suggests supply chain reengineering and some compromises that require advanced skills and 

knowledge, which are often difficult to find among companies. Thus, to ensure the transition 

toward sustainability, an increasing number of legislations and programs are enforced by 

governments that leave no choices to the companies but to comply and take a step forward.  

 
Contribution 
 
To serve this purpose, the research presented in this thesis contributes to the development of 

innovative decision-making models that help with the design of efficient RL networks. Our 

work comes to enrich the literature of quantitative models applied to RLND problems, a very 

popular topic during the past two decades. The idea behind the models presented in this 

thesis is to integrate strategic and tactical decisions to assist the supply chain managers into 

building efficient RL networks and being able to measure their performance with various 

metrics. Thus, the proposed formulations address the decisions regarding facility locations 

and capacity allocations, facility relocation or closing decisions, potential expansions, and 

flow management through the reverse channel. By making the best-related decisions, our 

optimization models suggest ways of improving waste management operations and cope with 

the legal framework. To ensure the realistic nature of this work and its transferability to the 

industry, case studies are presented in the construction, renovation and demolition industry in 

the Canadian province of Quebec. Indeed, we found that there was a gap in assessing the best 

decisions for waste management in this sector from a logistics perspective while considering 

key aspects that make the RL network design a complex task in this industry. 
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The models developed in this work were used to answer the following research questions: 

 

• How are the optimal reverse logistics network configuration and performance 

affected by the presence of dynamic supply sources and multiple uncertainties 

targeting the collected wood waste volume and quality in the CRD industry ? 
 

• What role can play the source-separation centers and what is the impact of the source-

separation strategy on the reverse logistics network configuration and performance 

under uncertainty in the CRD industry ? 

 

• What are the impact of environmental regulations on the reverse logistics network 

design and performance under multiple uncertainties in the CRD industry ? and how 

does the source-separation strategy impact the compliance  with the regulations ? 
 
Main findings 
 

In the first article (Chapter #2), we presented a mixed-integer linear programming model to 

minimize the total cost of the wood recycling process in the CRD industry in Quebec. By 

adopting a scenario-based approach and evaluating the variations of critical uncertain factors, 

we demonstrated that the performance of a RL network configuration can vary significantly 

from one scenario to another. In addition, we highlighted that these significant differences 

between the networks’ efficiency can be problematic under the regulation setting recycling 

targets in this region. However, in practice, the decision-makers must choose a unique 

network configuration that will efficiently handle various supply sources locations, waste 

collected quantities, and quality of the materials. Although the proposed scenario-based 

approach is efficient to highlight the issues caused by the uncertainty, it essentially based on 

the discrete realisation of the random parameters, which considerably reduces the number of 

tractable scenarios. As a future research direction, we suggested the development of a 

stochastic version of this model to avoid this limitation and propose the best supply chain 

configuration for a longer planning horizon over multiple randomness outcomes.  
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Thus, in the second article (Chapter #3), we developed a two-stage stochastic model for 

reverse logistics network design under uncertainty. The proposed SAA resolution approach 

allowed considering a large number of scenarios simultaneously and to design the best-

expected reverse logistics network over a multi-period planning horizon. The decisions taken 

by this model are quite similar to those presented in the first article, except that this work 

emphasizes the importance of performing source separation at some dynamic platforms that 

can be relocated during the planning horizon. In this paper, we showed that the source 

separation strategy is an effective way to reduce the impact of uncertainty by providing more 

flexibility to the RL operations, especially in the case of high-density urban collection zones 

where the sorting process can be quite challenging. By performing sensitivity analyses, we 

demonstrated that the source separation centers provide a potential solution to design a 

resilient network under various uncertainty levels. However, the proposed model addresses 

only an economic objective rather than discussing environmental impacts. The latter being a 

recurrent issue regarding waste management practices, the 3rd article of this thesis presented 

an eco-efficient stochastic version of the model that takes into account both the profit and the 

environmental impacts of the reverse logistics activities. 

 

In this last article (Chapter #4), the stochastic programming formulation presented in chapter 

#3 was extended to a multi-objective stochastic formulation. Compared to the network 

presented in paper #2, we included a second objective function that seeks to minimize the 

amount of materials that are ultimately eliminated by landfilling after leaving the collection 

sites. In addition, we added a second environmental constraint regarding the greenhouse 

gases emissions monitoring and control via a cap-and-trade system, being quite similar to the 

one effective in the Quebec province these days. In this last contribution, we maintained the 

opportunity to use the source-separation platforms as it was allowed in article #2. What 

mainly emerged from this article is the importance of considering the environmental 

objective in this problem. Indeed, with the previous stochastic model, the optimal RLND led 

to recycling more materials in order to seek the maximum profits, however the damage 

caused by the toxic emissions released while recycling the wood was neglected. By including 

this concern in the multi-objective formulation, we showed that when facing uncertainty 
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targeting the quality of the recycled materials, some trade-offs had to be made to obtain the 

optimal network configuration and performance. Moreover, these experiments highlight the 

necessity to carefully implement environmental policies and demonstrate the complexity for 

the reverse logistics network to achieve both compliance and eco-efficiency in the meantime 

under an uncertain environment. 

 

Overall, despite the critical need to increase the recycling of used products and materials to 

encourage the transition toward sustainability, this research provides some warnings against 

seeking extensive recycling at all costs. Indeed, in an uncertain environment it appeared that, 

sometimes, recycling more actually implies more harm to the environment. In addition, 

another concern is the complex choices regarding the recycling targets while setting new 

environmental laws. Thus, some governmental regulation and programs initially enforced to 

reduce the environmental damages might have the opposite effect if the objectives are not 

chosen carefully. This observation applies even more when facing multiple uncertainties 

targeting key parameters such as the materials’ quality. 

 

Managerial insights 
 

We believe that the research presented in this thesis may be useful to understanding the 

importance of designing a resilient reverse logistics network under an uncertain environment. 

We highlighted the fact that the supply chains’ quest for sustainability can be significantly 

impacted, not only by multiple uncertainties, but also by a legal framework that is too 

stringent. Thus, from one hand, the supply chain decision-makers could benefit these results 

to anticipate the potential outcomes of an upcoming regulation in order to adjust the reverse 

logistics network accordingly for compliance purposes. On the other hand, the authorities 

could use these results to anticipate the potential impacts of a new regulation on the supply 

chains under compliance and wonder if it could endanger sustainability. From our point of 

view, nowadays there are still too many environmental laws enforced without conducting any 

logistics analysis beforehand. This situation sometimes leads to undesirable outcomes that 

are harmful for both the environment and the society. As it is close to the case studies 
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proposed in our work, we will quote the example of the wood landfilling regulation in the 

state of Massachusetts in 2006, which turned out to be a total logistics failure as the RL 

network could not deal properly with the amount of recycled wood involved. 

 

Limitations and further research leads 
 
While taking a step back, we would discuss the following limitations to this research: 

 

• First, in this thesis we developed our reflexion based on the need for evolving toward 

sustainability among supply chains, which we seek through enhancing the efficiency 

of the reverse logistics network design. However, if we literally refer to the definition 

of what should be “a sustainable reverse logistics network design”, then our models 

should include somehow the social dimension that is missing in our research. Models 

quantifying the social impacts of supply chain decisions are still very scarce in the 

literature, and in this work, we chose to focus on both economic and environmental 

aspects of the RLND on purpose.   

 

• In addition, regarding the stochastic model formulations presented in Chapter 3 and 4, 

they were both applied to case studies involving at most 250 waste collection sites, 

however we are aware that increasing the size of the problem could significantly 

complicate the resolution process. Powerful computational capacity would certainly 

be required to solve instances going up to 1,000 collection points, while alternative 

resolution approaches such as metaheuristics could be required if this number 

increases even more. 

 

• Moreover, regarding the uncertain parameters we chose to consider in our models, we 

are convinced that other choices could have been of great relevance to the research 

toward sustainability while designing RL networks. However, for complexity and 

feasibility purposes, we cannot study all of them in the same model. For example, we 

established that the legislation targets are a sensitive matter while enforcing a law. 
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Thus, considering uncertainty on the target of a potential regulation appears to be a 

topic of interest. Instead of adopting a supply chain perspective that tries to adapt to a 

governmental program, we could adopt the authorities’ perspective and evaluate what 

environmental target would not endanger sustainability in a first place. 

 

• In addition, a few assumptions that we made could be modified to fit even more the 

reality faced by companies. For example, the carbon market parameters are not 

changing during the planning horizon, however we know that the carbon metric ton 

selling/buying price is not a static parameter and is updated on a trimester (or a year) 

basis. Moreover, if we adopt a governmental perspective, a multi-stage stochastic 

model that would allow adjusting the recycling targets based on the observation of the 

randomness in the quality of the materials at each stage is a promising lead. Indeed, 

based on a declaration from the companies listing what they received on a year basis, 

the government could decide to lower the recycling mandatory targets for the next 

year to avoid toxic emissions release in case of poor quality batches. The interest of 

such model is that the government would adjust mandatory requirements in a 

preventive way, instead of having the supply chain managers adjusting the reverse 

logistics operations and the recycling decisions in a corrective manner. 

 

• Finally, we presented case studies in the CRD industry, being initially motivated by 

one of the specificities of this sector: the dynamic nature of the waste collection 

points over time. We believed that this aspect presented a challenge for the supply 

chain managers in terms of designing a suitable reverse logistics network design for 

recycling operations, a fact that contributed to justify this research. However, the 

large majority of industrial sectors are used to deal with static suppliers. Indeed, most 

of the time companies are setting their waste deposits (i.e. collection points) in 

advance and their locations are not necessarily changing. Thus, we understand that 

the models presented in chapters 2, 3 and 4 might not be suitable for a wide variety of 

sectors. However, this research could provide valuable insights to the supply chain 

managers in the CRD industry that aim for sustainable reverse logistics operations. 
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APPENDIX I  

LISTING OF THE 38 FACILITIES USED IN THE CASE STUDY  

Facility Street address Postal code Coordinates (lon - lat) 
1 220 rue de Rotterdam G3A 1T4 46,75883 -71,45950 
2 11450 boulevard industriel G9A 5E1 46,40551 -72,71264 
3 1060 rue Fréchette J0K 2M0 45,54464 -73,48161 
4 3525 Boulevard Laurier Est J2R 2B2 45,63755 -72,90979 
5 75 rue Savard G4W 0H9 48,82813 -67,57264 
6 435 Montée Cushing J8G 1B9 45,61129 -74,42559 
7 815 rue Vernon J9J 3K4 45,45237 -75,80691 
8 5 rang Moreau J0A 1M0 45,92999 -71,99627 
9 146, rang 9 J1A 2S1 45,42871 -72,69650 

10 225 rue du progrès J0K 3K0 45,52472 -75,49257 
11 118 rue des équipements G5R 3Z3 47,83659 -69,50282 
12 3200 Boulevard industriel J3L 4X3 45,41083 -71,96439 
13 61 rue Montcalm J0K 1A0 45,89935 -73,66577 
14 1985 rue Jean Marie Langlois J5R 5Z8 45,39876 -73,50248 
15 315 rue Jackson G1N 4C4 46,80277 -71,26341 
16 18055 rue Gauthier G9H 2A6 46,28879 -72,55064 
17 16795 rue Oakwood H9H 5C9 45,46329 -73,86731 
18 1131 rue Principale J0E 1A0 45,41943 -72,77021 
19 2400 montée Saint François  H7E 4P2 45,70740 -71,46118 
20 493, deuxième Avenue G8L 1V3 46,62997 -72,70915 
21 3389, quatrième rue G9T 5K5 46,07887 -71,94941 
22 365 Boulevard Bonaventure G6P 6V7 48,22094 -79,01307 
23 303 Boulevard Industriel J6J 4Z2 45,88973 -72,54540 
24 1005 rue Réha J2B 8A9 45,62751 -73,51838 
25 10930 rue Sherbrooke Est H1B 1B4 45,46930 -73,43318 
26 5431 rue Jonergin J3Y 2S1 45,65137 -73,68278 
27 3030 montée Saint François H7E 4P2 45,42565 -75,73352 
28 31 boulevard Saint Joseph H8S 2K9 45,61913 -73,56715 
29 9501 boulevard Ray Lawson H1J 1L4 46,28537 -73,38358 
30 1752 rue Saint Cléophas J0K 2N0 45,38869 -72,74561 
31 530 rue Édouard J2G 3Z6 46,15706 -70,61171 
32 8191 route 204 G6B 2S1 45,68790 -74,15601 
33 6000 route Sir Wilfrid-Laurier J7N 2Z8 45,68687 -74,15662 
34 4 chemin du Tremblay J4B 6Z5 45,55504 -73,43128 
35 3878 Boulevard Frontenac Est G6H 4G2 46,12434 -71,24602 
36 17245 rang Sainte-Marguerite J7J 2E9 45,75559 -73,94137 
37 9990 Boulevard Métropolitain  H1B 1A2 45,62651 -73,54706 
38 107 chemin Maine central J0B 1J0 45,48808 -71,57484 

 lon: Longitude; lat: Latitude. 
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APPENDIX II  

SCENARIO-BASED APPROACH UNDER UNCERTAINTIES 
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APPENDIX III  

BASELINE SCENARIO VS SCENARIO 1: RECYCLING & LANDFILLING FLOWS 

 

Graphs from Supply Chain Guru Software (LLamasoft Company) 
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APPENDIX IV  

RECYCLING DISTANCE INCREASE WITH SUPPLIERS LOCATIONS LS2 & LS3 

 

Graphs from Supply Chain Guru Software (LLamasoft Company) 
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APPENDIX V  

BOUNDS AND OPTIMALITY GAPS ACCORDING TO THE SAMPLE SIZE 
(EXAMPLE WITH S=10, 50, 100 AND 250) 
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APPENDIX VI  

SUMMARY OF THE 3 MAIN RLN CHARACTERISTICS 

Facilities' metrics CC operating 

(existing) 

CC 

expansions 

CC utilization 

rate 

CC opening 

(new) 

SCC 
operating 

Optimal RLND 6/8 4/6 79% 3/5 29/35 

RLND under 

regulation (With SSC) 

6/8 2/6 66% 3/5 22/35 

RLND under 

regulation (No SSC) 

7/8 2/6 72% 4/5 N/A 

Δ1 (%) 0% 50% 13% 0% 20% 

Δ2 (%) 12,5% 0% 6% 20% N/A 

Network metrics Avg. distance 

to recycle 

Avg. distance 

to landfill 

Source 

separation 

Recyclers’ 

service level 

Overall 

profits 

Optimal RLND 91,1 km 56,3 km 34% 76% 41,4 M$ 

RLND under 

regulation (With SSC) 

104,9 km 62,6 km 26,1% 82% 33,2 M$ 

RLND under 

regulation (No SSC) 

122 km 79,7 km N/A 61% 19,1 M$ 

Δ1 (%) 15,1% 11,2% 23,2% 6% 19.8% 

Δ2 (%) 16,3% 27,3% N/A 21% 42.4% 

 
CC: Collection centers; SCC: Source-separation centers; RLND: Reverse logistics network 
design; Avg: Average; Δ1: Variation between the optimal RLND and the RLND under 
regulation; Δ2: Variation between the RLND under regulation with and without SSC.  
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