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Une fonction de coût surfacique pour la segmentation des images médicales

Jihene BOUCHTIBA

RÉSUMÉ

Ces dernières décennies ont été témoins d’une expansion sans précédent des données médi-

cales dans divers systèmes complexes et à grande échelle. Malgré toutes les réussites dans

la resolution de nombreux problèmes médicaux complexes, il reste encore des défis à relever.

Le déséquilibre des classes est l’un des problèmes répandus pour la segmentation des images

médicales. Il se produit lorsqu’il y a une distribution de classe sévèrement inégale, par ex-

emple, lorsque la taille de la région cible est beaucoup plus petite (parfois négligeable) que

la taille de la région de fond. Dans de tels problèmes, les fonctions de coût typiques utilisées

pour la segmentation avec des réseaux neuronaux convolutionnels (CNN) ne parviennent pas à

produire de bonnes performances.

Les fonctions de coût couramment utilisées sont basées sur des termes régionaux et supposent

que toutes les classes sont réparties de façon équitable. Ainsi, elles tendent à favoriser la classe

majoritaire et à mal classifier la classe cible. Pour résoudre ce problème, le principal objectif de

ce travail est de construire une fonction de coût surfacique, basée sur la distance entre les fron-

tières et non sur les régions. Nous soutenons qu’une fonction de coût surfacique peut atténuer

les problèmes des pertes régionales en introduisant une information complémentaire basée sur

la distance. Notre fonction de coût est inspirée des techniques d’optimisation discrètes (basées

sur des graphes) pour calculer les flux de gradient de l’évolution des courbes.

Suivant une approche intégrale pour calculer les variations des frontières, nous exprimons une

distance non symétrique L2 sur l’espace des formes en tant qu’intégrale régionale, ce qui évite

les calculs différentiels complètement locaux. Notre fonction de coût est la somme des fonc-

tions linéaires des sorties régionales de probabilité Softmax du réseau. Par conséquent, elle

peut être facilement combinée avec des fonctions de coût régionales et intégrée dans n’importe

quelle architecture existante de réseau profond pour la segmentation à N dimensions (N-D).

Nos expérimentations sont menées sur trois bases de données de référence correspondant à

des problèmes de segmentation de plus en plus déséquilibrés : segmentation multimodale de

la tumeur cérébrale (BRATS17), lésion ischémique cérébrale (ISLES) et hyperintensité de la

matière blanche (WMH). Utilisée en conjonction avec la fonction de Dice généralisé (GDL)

basée sur la région, notre fonction de coût améliore considérablement les performances par rap-

port à GDL seul, atteignant jusqu’à 8 % d’amélioration du score de Dice et 10 % d’amélioration

du score de Hausdorff. Elle a également aidé à mieux stabiliser le processus d’apprentissage.

Mots-clés: Fonction de coût surfacique, segmentation déséquilibrée, apprentissage profond,

techniques d’optimization discrètes





Surface loss for medical image segmentation

Jihene BOUCHTIBA

ABSTRACT

Last decades have witnessed an unprecedented expansion of medical data in various large-

scale and complex systems. While achieving a lot of successes in many complex medical

problems, there are still some challenges to deal with. Class imbalance is one of the common

problems of medical image segmentation. It occurs mostly when there is a severely unequal

class distribution, for instance, when the size of target foreground region is several orders of

magnitude less that the background region size. In such problems, typical loss functions used

for convolutional neural networks (CNN) segmentation fail to deliver good performances.

Widely used losses,e.g., Dice or cross-entropy, are based on regional terms. They assume that

all classes are equally distributed. Thus, they tend to favor the majority class and misclassify

the target class. To address this issue, the main objective of this work is to build a bound-
ary loss, a distance based measure on the space of contours and not regions. We argue that

a boundary loss can mitigate the problems of regional losses via introducing a complemen-

tary distance-based information. Our loss is inspired by discrete (graph-based) optimization

techniques for computing gradient flows of curve evolution.

Following an integral approach for computing boundary variations, we express a non-symmetric

L2 distance on the space of shapes as a regional integral, which avoids completely local differ-

ential computations. Our boundary loss is the sum of linear functions of the regional softmax

probability outputs of the network. Therefore, it can easily be combined with standard re-

gional losses and implemented with any existing deep network architecture for N-dimensional

segmentation (N-D).

Experiments were carried on three benchmark datasets corresponding to increasingly unbal-

anced segmentation problems: Multi modal brain tumor segmentation (BRATS17), the is-

chemic stroke lesion (ISLES) and white matter hyperintensities (WMH). Used in conjunction

with the region-based generalized Dice loss (GDL), our boundary loss improves performance

significantly compared to GDL alone, reaching up to 8% improvement in Dice score and 10%

improvement in Hausdorff score. It also yielded a more stable learning process.

Keywords: Boundary loss, imbalanced segmentation, deep learning, discrete optimization

techniques
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INTRODUCTION

Problem statement

Driven by the revolution of big data and computing power, deep learning techniques have

shown their ability to deliver outstanding performances in different fields where machines be-

come more suitable than humans dealing with a huge amount of data in a comprehensive way.

The medical field is one of the fields where deep learning had the largest impact.

Last years have witnessed a revolution in medical imaging that has broken paradigms and

seems to open new possibilities in the field. Recent studies estimate that medical images cur-

rently account for at least 90 % of medical data, which is an overwhelming amount on human

scale. The detection, classification and segmentation of specific medical patterns, e.g organs,

tissues, tumors are the main key steps for diagnosis, treatment or monitoring of different dis-

eases progression. For instance, an accurate delineation of one or multiple structures is essen-

tial to derive important clinical parameters such as ventricular volume, ejection fraction, and

myocardial mass for cardiac images or lesion volume for brain images. However, the man-

ual segmentation of these structures is complex, time consuming and requires multiple expert

opinions. In some cases, the annotation may not be possible due to the absence of experts or

due to the rarity of the disease or lesion to be segmented. To address this problem, deep neural

networks have shown their ability to deliver outstanding performances in such tasks.

Recently, a substantial growth in the number of deep learning techniques has been witnessed.

However, while achieving a lot of successes in many complex medical problems, researchers

have realized that there are still some challenges to deal with. One of them is the data unbalance

problem, which occurs for instance when the size of target foreground region is several orders

of magnitude less than the background region size. Such problem occurs mostly in cases of ab-

normalities detection/segmentation, e.g tumors ( M.Havaei et al. (2015); Pereira et al. (2016);
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Menze et al. (2014); Hwang & Kim (2016); Bellver et al. (2017)), the breast ( Kallenberg et al.

(2016); Wang et al. (2016); Hassanien et al. (2014)), the lungs (Kalinovsky & Kovalev (2016);

Mi et al. (2014); Skourt et al. (2018)), etc. For example, in the characterization of white mat-

ter hyperintensities (WMH) of presumed vascular origin, the foreground composed of target

regions may be 500 times smaller than the background (see the typical example in Fig 0.1).

In such case, common approaches, assuming that all the patterns are evenly distributed, fail to

deliver good segmentation performance. The issue is that they tend to favour the majority class

and, then, misclassify the target class.

Figure 0.1 A visual comparison that shows the positive effect of our boundary loss on a

validation data from the WMH dataset. Our boundary loss helped recovering small

regions that were otherwise missed by the generalized Dice loss (GDL). Best viewed in

colors.

Research hypotheses and objectives

All common proposed strategies to re-balance class prior distributions are region-based. In this

work, our objective is to propose a boundary loss that takes the form of a distance metric on the

space of contours (or shapes), not regions. We argue that a boundary loss can mitigate the issues

related to regional losses in highly unbalanced segmentation problems. Rather than using un-

balanced integrals over the regions, a boundary loss uses integrals over the boundary (interface)
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between the regions. Furthermore, a boundary loss provides information that is complimentary

to regional losses. It is, however, challenging to represent the boundary points corresponding

to the regional softmax outputs of a CNN. This difficulty may explain why boundary losses

have been mostly avoided in the context of deep segmentation networks. Our boundary loss is

inspired by techniques in discrete (graph-based) optimization for computing gradient flows of

curve evolution (Boykov et al., 2006). Following an integral approach for computing boundary

variations, we express a non-symmetric L2 distance on the space of shapes as a regional in-

tegral, which avoids completely local differential computations involving contour points. Our

boundary loss is the sum of linear functions of the regional softmax probability outputs of the

network. Therefore, it can be easily combined with standard regional losses and implemented

with any existing deep network architecture for N-D segmentation.

Figure 0.2 Thesis outline
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Thesis outline

This document is organized as shown in Fig.0.2 . Chapter one introduces the literature review

where we report some basics of CNNs and discuss their major impact on medical image anal-

ysis, showing both successes and current challenges. In the second chapter, we propose a new

boundary loss for highly unbalanced problems, and explain in details the methodology that we

followed. The next chapter is dedicated to the experimental protocol, where we show our re-

sults on different datasets. Finally, we conclude with a summary of the work and a discussion

of some possible future directions.



CHAPTER 1

LITERATURE REVIEW

In this chapter , we introduce the literature review. First, we discuss some traditional techniques

used for medical image segmentation. Then, we report some basics of convolutional neural

networks. In the following section, we give an overview of the fast-growing place of deep

learning techniques in medical image analysis, showing various successes and also discussing

two main challenges faced by current research: lack of annotations and unbalanced problems.

1.1 Traditional approaches for medical image segmentation

Image segmentation is the process of delineating one or multiple semantic structures in the im-

age. It is one of the most active research tasks in medical image processing where it facilitates

the extraction of useful informations for diagnostic medicine and biomedical imaging applica-

tions such as pathology localization, analysis of the anatomical structure and computer-assisted

surgery. Several traditional approaches have been introduced in the literature and can be di-

vided into four main categories: thresholding-based methods, atlas-guided methods, statistical

approaches and deformable models.

Based on the assumption that target objects can be identified by their intensity values, thresh-

olding, as a region-based technique, has been largely used to segment medical images. The

idea is to apply a threshold value on pixels intensities to extract the target. Typically, this value

corresponds to a peak in the histogram that divides an image into two different parts: pixels

with intensities greater than a given threshold T correspond to a first class while remaining

pixels belong to a second class.

The main advantage of thresholding is its simplicity and rapidity. However, global thresholding

assumes that the image has a bimodal histogram, which is not the case in many medical images,

especially when the background is not homogeneous or the object presents a lot of intensity

variation.
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To address that, local thresholding has been introduced (N & S (2016); Aja-Fernández et al.

(2015)). Authors in (Wu et al. (1995); Manikandan et al. (2014); Xie & Bovik (2013)) proposed

the so-called Otsu’s method for an automated selection of the threshold. One of the common

weaknesses of thresholding approach is its strong dependence to the database. Also, threshold-

ing does not take into account the spatial information, which leads to poor segmentation results

especially with noisy images. Another popular approach to segment medical images is the use

of atlases. The idea is to build a reference model from some training data and then register

the unseen image to the reference model. Registration is the process of aligning the image so

that corresponding features can be easily related and distances can be computed. Although

they often deliver good performances, atlas-based methods suffer from complex registration

steps. Furthermore, it is not easy to cover all the anatomical variability of target objects e.g.,

rare diseases or anatomical abnormalities. Thus, atlas-based methods can fail to deliver good

performances when dealing with huge deformations.

Over the last decades, the explosion of medical datasets called for new solutions. In that con-

text, statistical approaches propose a parametric model, which describes the variability of the

target object (shape, texture, size, etc). Training data is used during the learning process. De-

spite their success in various medical applications, such techniques can lead to an over fitting

problem when the size of data is limited comparing to the number of parameters. Unlike statis-

tical techniques, deformable models do not need a training data. They are defined as dynamic

contours that evolve to fit a target shape via an energy-minimization strategy. Deformable

models can be divided into two main categories; parametric and geometric models. In the

first category, we find the well known active contours widely used for medical image seg-

mentation ( McInerney & Terzopoulos (1996); Yushkevich et al. (2006); Wang et al. (2009);

He et al. (2008). In a different strategy, geometric models use a distance transformation to

describe the target shape. In other words, they rely on the so-called level-set based shape

representation (Zhang et al. (2008); Droske et al. (2001); Lin et al. (2003); Li et al. (2011);

Mitiche & Ben Ayed (2011)). The most straightforward advantage of deformable models is

their flexibility and their usefulness in specific tasks, e.g., object tracking. However, they are
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still sensitive not only to the initialization but also to the presence of noise, when the initial

boundary is far from the target, they might get stuck in a local minima.

1.2 Convolutional neural networks (CNNs): basic concepts

In image analysis, one common idea between traditional approaches is that they all need to

extract features in a separated way before applying another method for classification. A logical

next step is to let the machine learn these features in an automatic fashion. This is the key idea

behind most deep learning techniques. In simple words, deep neural networks (DNNs) are

models composed of many successive layers in order to transform an input data to an output

while learning increasingly higher level features. Convolutional neural networks (CNNs) are

among the most successful models for image analysis, in general, and for image segmentation

particularly.

Figure 1.1 Illustration of a feature map

(Taken from: http://https://www.quora.com/

What-is-meant-by-feature-maps-in-convolutional-neural-networks)

A CNN is a multilayer perceptron (mlp) designed to use a fewer amount of parameters than a

fully connected network by taking advantage of the spatial relationships between neighboring

pixels in an image. Typically, the network is a set of convolutional and fully connected layers.

It can also include the so-called pooling layers.
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Each convolutional layer is composed of small neuron collections (called receptive fields)

which process portions of the input image and produce a set of outputs called feature maps

(see Fig. 1.1 ). A feature map is obtained by a local convolution operation using a linear filter

K, adding a bias term and then applying an activation function.

After introducing discrete convolution, we discuss the basic components of a CNN.

1.2.1 Discrete convolution

Discrete convolution is a powerful mathematical tool used in many areas of math and engineer-

ing, including computer vision. Applied to image analysis, the idea is to use a kernel (or filter)

K and slide it over the image I. For each position of the kernel, we multiply the overlapping

values of the kernel and image together, and add up the results. This sum of products will be

the value of the output image (see Fig. 1.2 ). The discrete convolution of an image I with a

  *                    = 
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15 17 20 10 10 

15 10  10 10 10 
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77 

           Input image                                      Filter  (3×3)                         Convolution output  

Figure 1.2 Discrete convolution

kernel K of size (2h1 +1)× (2h2 +1) can be given by:

(I ∗K)p,q :=
h1

∑
u=−h1

h2

∑
v=−h2

Ku,vIp+u,q+v (1.1)
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Where the filter K is given by:

K =

⎛
⎜⎜⎜⎝

K−h1,−h2 ... K−h1,h2

... K0,0 ...

Kh1,−h2 ... Kh1,h2

⎞
⎟⎟⎟⎠ (1.2)

1.2.2 Distinguishing features of CNNs

The first question that can be asked about CNNs is the following: What is the difference

between a CNN and an MLP?

A CNN is an MLP with fewer parameters and a special structure that aims to reduce computa-

tional complexity and ensure a spatial invariance, i.e., the network perform the input regardless

its spatial location in the image. In other words, a car is a car regardless its position in the

image. Convolutional neural networks have two main distinguishing features.

Local connectivity: In the case of high-dimensional inputs such as images, a fully connected

hidden layer would have unmanageable parameters. Also, computing activation functions in

respective neurons would be very expensive. In order to avoid these problems, CNNs take

advantage of the local spatial coherence property of images and enforce a local connectivity

pattern between neurons of adjacent layers. In other words, neurons in one layer are only

connected to neurons in the next layer that are spatially close to them (see Fig. 1.3). Basically,

we assume that two distant pixels have less significant relationship that close pixels.

Parameter sharing: The idea behind weights sharing is the convolutional concept of layers.

The idea behind this property is to control and reduce the number of parameters by making an

assumption: certain neurons are aggregated together and share the parameters matrix (weighted

connections) forming, then, a feature map. This concept allows features to be detected regard-

less of their position in the image. Parameter sharing reduces the number of free parameters,

achieving better generalization and computation performance.
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Figure 1.3 Local connectivity in CNN

1.2.3 Layers

Convolutional layer

The convolutional layer is the core building block of a CNN. It is designed to learn hierarchical

features from the image. In general, the input is a feature map. For the first layer, it would be

the initial image. Let layer l be a convolutional layer. Then, the input layer contains m(l−1)
1

feature maps, each of size m(l−1)
2 ×m(l−1)

3 . The output of layer l consists of m(l)
1 feature maps,

each of size m(l)
2 ×m(l)

3 . The i(th) feature map in layer l, denoted Y (l)
i is computed as:

Y (l)
i = B(l)

i +
m(l−1)

1

∑
j=1

K(l)
i, j ∗Y (l−1)

i (1.3)

Where B(l)
i is the bias matrix introduced as an external input. K(l)

i, j is the filter of size (2h(l)1 +

1)× (2h(l)2 + 1) used to connect the jth feature map in layer l − 1 with the ith feature map in

layer l.

The size of output feature maps is influenced by borders effect. In other words, the discrete

convolution can be applied only on pixels where the sum of equation (1.3) is defined properly.
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Thus, output feature maps have size

m(l)
2 = m(l−1)

2 −2h1 +2p and m(l)
3 = m(l−1)

3 −2h1 +2p (1.4)

Where p denotes the amount of zero padding used.

Pooling and sub-sampling layer

Another important feature in CNNs is the pooling operation. It aims at reducing the size of

extracted feature maps via a non linear subsampling function. Max-pooling is the most com-

mon used function. As illustrated in Fig. 1.4, max-pooling consists in partitioning the input

feature map into a set of non-overlapping rectangles. For each rectangle, the maximum value

is retained as output. Max pooling is then, useful for two reasons; first, it reduces computa-

tion for the next layers. It assures also a form of local translation invariance by eliminating

non-maximal values. In addition to this technique, pooling can also be performed with other

functions such as average pooling which takes the average value in each rectangle.

1 0 2 3
4 6 6 8
3 1 1 0
1 2 2 4

6 8

3 4

Figure 1.4 Max-Pooling with a 2x2 filter

ReLu layer

In order to improve processing efficiency, a ReLu (Rectified linear Unit) layer is typically

used. It is a layer of neurons with the non-saturating activation function f (z) = max(0,z). This
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rectifier has been argued to be more practical than many other functions since it adds a non

linearity to the network while allowing faster and effective training for deep neural architectures

on large and complex datasets.

Fully connected layer

After alternating between several convolutional and pooling layers, the final classification is

typically done via fully connected layers. Neurons in a fully connected layer l have connections

with all neurons in the previous layer l −1, as seen in multi-layer perceptrons. Generally, one

or more fully connected layers are used for classification purposes based on computed features

in previous convolutional layers.

Dropout layer

Neural networks contain many non linear layers and a lot of parameters to adjust during train-

ing. With a limited training data, an overfitting problem can occur. It consists in a poor pre-

dictive performance; the system overreacts to small fluctuations in the training data. Thus, the

system is not able to perform well on unseen data. To solve this problem, the dropout technique

was proposed by ( N.Srivastava et al. (2014)) as a simple method to prevent neural networks

from overfitting. The idea is illustrated in Fig. 1.5. In a given layer, some neurons are dropped

out, that is set to zero. For each training example, a different set of neurons to drop is randomly

chosen. This technique is used only in the training step. At test time, all units are used.

1.2.4 Activation functions

There is a variety of common activation functions used in neural networks. They can be divided

into two main categories:

- Linear functions, e.g, the identity:

f (z) = z (1.5)
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Figure 1.5 Droptout method as introduced by

N.Srivastava et al. (2014) (Taken from the same paper )

When used in a multilayer architecture, linear functions make the network equivalent to a

single-layer model and fail to solve complex non-linear problems.

- Non linear functions: For classification purposes, Sigmoid functions are often used. In

fact, a sigmoid function is a bounded differentiable function defined for all real input values

and has an ’S’ shaped curve. Thus, a large variety of sigmoid functions have been used

as activation functions including the logistic and hyperbolic tangent functions which are

linearly-related by:

2 f (z) = 1+ tanh(
z
2
) (1.6)

where f is the logistic function defined as:

f (z) =
1

1+ exp(−z)
(1.7)
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and tanh is the hyperbolic function:

tanh(z) =
1− exp(−2z)
1+ exp(−2z)

(1.8)

Softsign is another activation function:

f (z) = z/(1+ |z|) (1.9)
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Figure 1.6 Activation functions

In deep learning, the choice of the activation function is a challenging task since it affects the

training quality and the hole system performance. A comparative study between activation
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functions in deep architectures is presented in (Glorot & Bengio (2010)). Experiments show

that logistic and hyperbolic functions are less suited for deep learning due to their fast saturation

and their slow convergence. Better performance is reported with softsign function.

The network seems to be more robust to the initialization procedure. Although these smooth

non linear functions were mathematically inspired by the biological neuron behavior, most of

current methods are using the ReLU function f defined by:

f (z) = max(0,z) (1.10)

Authors in (Skourt et al. (2018); Paszke et al. (2016)) argue that it achieves better results in deep

networks as it makes the activation sparse and more efficient. However, the horizontal line of

the function ( where z < 0 ) causes some problems when the activation function stacks in this

region. In such case, the gradient of corresponding neurons will be zero and corresponding

weights would not be adjusted during descent. This is called the Dying ReLU problem. To

mitigate that, a modified version called Leaky RELU (LReLU) was proposed by Xu et al.

(2015) introducing a light slope in the negative part of the function.

1.2.5 Basic Loss functions

Network training is an important task in supervised learning. It consists in approximating the

network parameters (weights) using a training dataset composed of N labelled samples:

TN := (In,gn) : 1 ≤ n ≤ N (1.11)

where In is the network input and gn is the desired output.

The objective is to adjust the network parameters θ in order to minimize the so-called loss function

that evaluates the gap between the network output sθ ,n and the desired output gn for each train-

ing sample In. The loss function is used to compute the network errors. Commonly used
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mathematical expressions include the mean squared loss (MSL), the cross entropy(CE) and

more recently the Dice loss (DL).

The mean squared error measure is given by :

MSL(θ) =
1

N

N

∑
n=1

d

∑
k=1

(sθ ,n,k −gn,k)
2 (1.12)

where d is the number of labels per sample. In practice, the mean squared (or quadratic)

measure gives good results. However, if the sigmoid activation function is used, the quadratic

loss would converge slowly to the final output. To resolve this problem, the CE was proposed:

CE(θ) =− 1

N

N

∑
n=1

d

∑
k=1

gn,k log(sθ ,n,k) (1.13)

More recently (Milletari et al. (2016)), the Dice measure, initially used as a similarity metric to

evaluate the segmentation quality, was introduced as a loss function for two-class segmentation

problem. It is defined as:

DL = 1− ∑N
n=1 sθ ,ngn + ε

∑N
n=1 sθ ,n +gn + ε

− ∑N
n=1(1− sθ ,n)(1−gn)+ ε
∑N

n=1 2− sθ ,n −gn + ε
(1.14)

Where ε is a small constant to avoid the problem of dividing by zero.

1.3 Deep learning for medical image segmentation: Overview, successes and challenges

1.3.1 Deep learning: from natural to medical imaging

The few last decades have witnessed a digital revolution and fast technical advances in medical

imaging with the explosion of new imaging modalities, e.g, X ray computed tomography (CT),

magnetic resonance imaging (MRI) and ultrasound (US). Hence, experts are no longer able

to manually process the huge amount of data and extract useful informations. Searching for

new paths, the medical image community has been attracted by the astonishing successes of
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deep learning techniques in natural imaging and have applied a lot of these findings to improve

medical image analysis for different tasks including classification, detection, segmentation and

registration. Image segmentation is a one of the most important tasks in medical image analy-

sis. It consists of partitioning the image into different segments that often correspond to organs,

tissue categories, pathologies or other biological structures. An accurate delineation allows ef-

ficient quantitative analysis of important clinical measures related to volume or shape as in

cardiac or cerebral image analysis. Such measures are very useful for diagnostic medicine and

clinical interventions.

Recently, deep learning methods have shown their ability to deliver excellent performances in

such task. Many methods have been proposed for segmentation of specific organs or other sub-

structures, e.g, brain ( Pereira et al. (2016); Brébisson & G.Montana (2015); M.Havaei et al.

(2015); Chen et al. (2018); Ganaye et al. (2018)) , heart cavities and muscles ( M.Havaei et al.

(2015); Yu et al. (2017a); Avendi et al. (2016)), vertebrae (Chen et al. (2015)), bone (Min-

nema et al. (2018); Zhang et al. (2010); Klein et al. (2018)) or abnormalities such as tumors

(M.Havaei et al. (2015); Pereira et al. (2016); Menze et al. (2014)) or lesions (Hwang & Kim

(2016); Bellver et al. (2017)). During the last years, thousands of new papers have been pub-

lished. However, it is worth to note that most of them suffer from reproducibility problems.

This can be either a problem of methodology or also lack of details in the published paper as

the use of hyper-parameters or heuristics specific to a particular dataset. In some cases, re-

searchers can validate their method only on some selected scans and omit the rest which biases

their results. One way to guarantee a fair and direct comparison of proposed methods on the

same dataset and evaluation procedure is to organize public challenges. From 2007, around 36

public challenges1 and 118 hidden ones have been organized to deal with specific medical im-

age analysis problems, e.g., brain lesion segmentation (BRATS2(2012-2018), ISLES3, WMH4,

1 https://grand-challenge.org/stats

2 http://braintumorsegmentation.org/

3 http://www.isles-challenge.org/

4 http://wmh.isi.uu.nl
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MSSEG5), cardiac image segmentation (ACDC6, LVSC 7, MM-WHS 20178, CETUS20149 ),

liver segmentation (CHAOS10), etc. Deep neural networks have been the winners of most of

the challenges.

The typical idea of a DNN-based approach is to train one or more deep networks to assign

each pixel (2d input) or voxel (3D input) to its corresponding anatomical region based on dif-

ferent input features. As the architectural choice is an important key for a good segmentation,

dozens of different designs have been introduced. Initially, the common used strategy was

patch-based ( Avendi et al. (2016); Pereira et al. (2016); Brébisson & G.Montana (2015)). It

consists in the use of the neighborhood of each pixel in the image as input ( for example: 3x3

or 5x5 window centered on the pixel, called a patch). A variety of features was proposed: 2D

and 3D intensity patches (Brébisson & G.Montana (2015); Lai (2015); Kleesiek et al. (2016)),

orthogonal views of MRI scans (A.Prasoon et al. (2013)). One straightforward drawback of

a sliding-window strategy is that it doesn’t take into account the global context of the image

which is needed to segment medical images. By changing the last fully connected layers by

convolutional ones, the DNN becomes able to process the entire image in a single forward pass

and produce a probability map. This was the idea of a fully convolutional neural network pro-

posed by (J.Long et al. (2015)) for natural image segmentation. Influenced by the FCNN idea,

Ronneberger et al. (Ronneberger et al. (2015a)) have proposed the famous U-net architecture

to segment biomedical images. Authors combined a regular FCNN with an up-sampling path

where "deconvolutions" are applied to build an output of the same size than the input. The par-

ticularity of a U-net is the insertion of "skip connections" to connect opposing; convolutional

and deconvolutional, layers between the down-sampling and up-sampling paths. To exploit

the volumetric context of medical data, an extension to 3D U-Net was suggested (Çiçek et al.

5 https://portal.fli-iam.irisa.fr/msseg-challenge/overview

6 https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html

7 http://www.cardiacatlas.org/challenges/lv-segmentation-challenge/

8 http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/

9 https://www.creatis.insa-lyon.fr/Challenge/CETUS/index.html

10 https://chaos.grand-challenge.org/
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(2016a)). Milletari et al. (Milletari et al. (2016)) have proposed an other variant of U-Net

for 3D prostate segmentation. In this study, authors used a loss function based on the Dice

coefficient to mitigate the problem of imbalanced data.

1.3.2 Lack of annotated data

Fully supervised approaches (Çiçek et al. (2016b); J.Long et al. (2015); Avendi et al. (2016);

Brébisson & G.Montana (2015); M.Havaei et al. (2015); LC.Chen & G.Papandreou (2015))

rely on available ground truth sets derived generally from comprehensive manual annotations

by experts. Initially, the majority of researches have focused on supervised deep learning.

However, they require huge training dataset, which is not easy to meet in the medical field.

The non-availability of large and high-quality labeled data still be the biggest barrier for the

performance of deep learning in medical imaging. In fact, an accurate annotation is a difficult

and time consuming task. An expert may spend 3 or 4 days to segment a full brain. On the other

hand, manual annotations require multiple expert opinions to get over the human error. In some

cases, annotation may not be possible due to the absence of experts or due to the rarity of the

target disease or lesion. To address this problem, different methods and techniques have been

proposed, e.g. transfer learning (Tran (2016); Shin et al. (2016); Yu et al. (2017a); Ghafoorian

et al. (2017); Tajbakhsh et al. (2019)) and data augmentation (Asperti & Mastronardo (2018);

Vasconcelos & Vasconcelos (2017); Tran (2016); Pereira et al. (2016); Vasconcelos & Vascon-

celos (2017)).

Transfer learning is a common strategy that has shown its usefulness especially in cases of lim-

ited labeled data. The basic idea is to use a pre-trained network on a large dataset and re-apply

it on another dataset. Typically, a fine-tuning step is performed to adapt the network to the

given task of interest. In (Yu et al. (2017a)), authors use dynamic CNNs to segment fetal left

ventricle in echocardiographic sequences. Initially, a pre-trained model is fine-tuned by a deep

tuning using the first annotated frame then a shallow tuning for the remaining frames. Con-

ducted on 51 echocardiographic sequences, dynamic networks achieve good results in terms of

Dice accuracy of 94.5%. As another way to mitigate the lack of annotations, recent methods
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have focused more on semi and weak supervision. A variety of weak labels such as image tags

(Pathak et al. (2015); Papandreou et al. (2015)), partial labels, bounding boxes (Shah et al.

(2018); Dai et al. (2015); Papandreou et al. (2015)) and scribbels (Wang et al. (2017a,b); Ker-

vadec et al. (2019)) have been used. In a very recent work, Kervadec et al. (2019) exploit weak

annotations, e.g., scribbles and dots for semantic segmentation. They have proposed new con-

strained losses based on anatomical priors (shape, size) to guide the learning process during

training. Validated on three medical applications, the method showed promising results close

to full supervision performances.

1.3.3 Class unbalanced problems

While achieving a lot of successes in many complex medical problems, researchers have real-

ized that there are still some challenges with deep learning techniques to deal with. In addition

to lack of annotations discussed previously, another major issue is the data unbalance that oc-

curs when the target is underrepresented in the image. This is very common in health field,

for instance, when the task consists in segmenting abnormalities, rare diseases or small re-

gions. For example, to segment a brain cancer, the frequency of the target class (cancer) can

be 1000 times less than the majority class (healthy patient). Assuming that all the classes are

equally distributed, classic classifiers are highly biased toward the majority class and fail to

deliver good segmentation performances. To combat this problem, three main strategies have

been suggested; methods operating directly on the data via down-sampling or over-sampling,

methods operating on the learning process and methods introducing specific loss functions.

A common solution; which falls into the first category, is to re-balance the data by down-

sampling frequent labels (Havaei et al. (2017); Valverde et al. (2017)). Others perform a data

augmentation on target samples (Kamnitsas et al. (2017); Litjens et al. (2016); Pereira et al.

(2016)).

From a different point of view, authors in (M.Havaei et al. (2015)) propose a two-phase train-

ing for brain tumor segmentation; the first is performed using equi-probable patches to adjust

lower layers parameters. Then, in a second step, they re-train only the output layer to take into
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account the unbalanced nature of real patches. The same strategy was used in (Minnema et al.

(2018)) to segment bone in CT scans. A considerable number of recent works has focused on

the adaptation of the loss function to alleviate data imbalance issue. A common practice is

to assign weights to the different classes, inversely proportional to the frequency of the cor-

responding labels (Brosch et al. (2015); Ronneberger et al. (2015b); Kamnitsas et al. (2017);

Yu et al. (2017b)). In (Ronneberger et al. (2015b)), the standard cross entropy (CE) loss is

modified by adding weights that assign more importance to the rare class than to the major-

ity class. In a distinguished way, Sudre et al. (Sudre et al. (2017)) generalized the Dice loss

(GDL) initially proposed by Milletari et al. (Milletari et al. (2016)). To have better trade-off

between precision and recall, some recent works(Salehi et al. (2017))investigated losses based

on the Tversky similarity index. Inspired by the concept of focal loss (Lin et al., 2018), Dice

and Tvserky losses have been extended to integrate a focal term, which is parameterized by a

value that controls the importance between easy and hard training samples (Abraham & Khan

(2018); Wong et al. (2018); Hashemi et al. (2018)).





CHAPTER 2

BOUNDARY LOSS FOR HIGHLY UNBALANCED SEGMENTATION

In the present chapter, we propose a new method that tackle imbalanced medical segmentation

problems. First, we describe the motivation behind the idea of our method. Then, we explain

the proposed methodology via a detailed mathematical background.

2.1 Motivation

During the last decades, fully deep neural networks have shown their great potential to de-

liver the best performances in medical image analysis. However, one of the major challenges

encountred is the data unbalance problem where the size of target region is several orders of

magnitude less than the background size. Such problem occurs mostly in cases of abnormal-

ities detection/segmentation, e.g tumors segmentation (brain ( M.Havaei et al. (2015); Pereira

et al. (2016); Menze et al. (2014); Hwang & Kim (2016); Bellver et al. (2017)), breast ( Kallen-

berg et al. (2016); Wang et al. (2016); Hassanien et al. (2014)), lung (Kalinovsky & Kovalev

(2016); Mi et al. (2014); Skourt et al. (2018)), etc). For example, to segment a brain cancer, the

frequency of the target class (cancer) can be 1000 times less than the majority class (healthy

patient). In such cases, common approaches, assuming that all patterns are evenly distributed,

fail to deliver good segmentation performance. The issue is that they tend to favour the majority

class and, then, misclassify the target class.

As discussed previously in section (1.3.3), similarity loss functions have been proposed to

mitigate the unbalance problem, e.g., weighted cross entropy (Ronneberger et al. (2015b)) and

the generalized dice loss (GDL) (Sudre et al. (2017)). Although effective for some unbalanced

problems, weighted cross entropy may undergo serious difficulties when dealing with highly

unbalanced datasets. The CE gradient computed over the few pixels of infrequent labels is

typically noisy, and amplifying this noise with a high class weight may lead to instability.

To address this problem, many recent researches (Sudre et al. (2017); Milletari et al. (2016)

relied on GDL as an alternative. Despite the improvements over CE , the dice loss has some
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limitations in a highly unbalanced problem. Initially defined as an overlap measure to evaluate

the network performance, the dice coefficient accounts only the correctly classified pixels/

voxels without taking into account the spatial distribution. As shown in Fig.2.1 and Fig.2.2,

Dice coefficient gives same values in both cases regardless the distance that separates segments.

Thus, when used as a loss function, the information of how far is the prediction from the

ground truth is missing. Moreover, regional dice losses still be not convenient for small region

segmentation such as lesions, tumors or small structures. In fact, the probability of low overlap

between two small regions is high. In such case, dice loss would give a small value regardless

of how far regions are from each other.

Based on all the above-mentioned limitations of region-based losses, we propose a new bound-

ary loss that takes the form of a distance metric on the space of contours (or shapes), not re-

gions. We argue that a boundary loss can mitigate the issues related to regional losses in highly

unbalanced segmentation problems. Moreover, it provides information that is complimentary

to regional losses.

Figure 2.1 Case of zero Dice
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Figure 2.2 Same Dice with spatial variance

2.2 Methodology

2.2.1 Proposed boundary loss

Here, we introduce the formulation of the new proposed loss. Let I : Ω ⊂R
2,3 →R be an input

image with spatial domain Ω, and g : Ω → {0,1} a binary ground-truth segmentation of the

image: g(p) = 1 if pixel/voxel p belongs to the target region G ⊂ Ω (foreground region) and

0 otherwise. Let sθ : Ω → [0,1] denotes the softmax probability output of a deep segmenta-

tion network, and Sθ ⊂ Ω the corresponding segmentation region:z Sθ = {p ∈ Ω |sθ (p) ≥ δ}
for some threshold δ . Widely used segmentation loss functions involve a regional integral

for each segmentation region in Ω, which measures some similarity (or overlap) between the

region defined by the probability outputs of the network and the corresponding ground-truth.

In the two-region case, we have an integral of the general form
∫

Ω g(p) f (sθ (p))d p for the

foreground, and of the form
∫

Ω(1−g(p)) f (1− sθ (p))d p for the background. The generalized

Dice loss (GDL) (Sudre et al. (2017)) involves regional integrals with f = 1, subject to some

normalization, and is given as follows for the two-region case:

LGD(θ) = 1−2
wG

∫
p∈Ω g(p)sθ (p)d p+wB

∫
p∈Ω(1−g(p))(1− sθ (p))d p

wG
∫

Ω[sθ (p)+g(p)]d p+wB
∫

Ω[2− sθ (p)−g(p)]d p
(2.1)
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where coefficients wG = 1/
(∫

p∈Ω g(p)d p
)2

and wB = 1/(
∫

Ω(1−g(p))d p)2 are introduced to

reduce the well-known correlation between the Dice overlap and region size.

Now, our objective is to build a boundary loss Dist(∂G,∂Sθ ), which takes the form of a dis-

tance metric on the space of contours (or region boundaries) in Ω, with ∂G denoting a repre-

sentation of the boundary of ground-truth region G (e.g., the set of points of G, which have

a spatial neighbor in background Ω \G) and ∂Sθ denoting the boundary of the segmentation

region defined by the network output. On the one hand, a boundary loss should be able to

mitigate the above-mentioned difficulties for unbalanced segmentations: rather than using un-

balanced integrals within the regions, it uses integrals over the boundary (interface) between

the regions.

The main challenge here is how to represent this surface between the two boundaries ∂Sθ and

∂G as a differentiable function that can accommodate standard stochastic optimizers such as

SGD. This challenge might explain why distance-based losses have been, to the best of our

knowledge, largely avoided in the context of deep segmentation networks.

(a) Differential (b) Integral

Figure 2.3 The relationship between differential and

integral approaches for evaluating boundary variation.
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Our boundary loss is inspired from discrete (graph-based) optimization techniques for comput-

ing gradient flows of curve evolution ( Boykov et al. (2006)). Similarly to our problem, curve

evolution methods aim to evaluate boundary variations. The typical solution to compute the

distance between contours is based on a variational method where we should compute each

pixel’s local differential motion (see illustration in Fig.2.3). However, similarly to any contour

distance invoking directly points on boundary ∂S, the computed distance can not be used as

a loss function. For that, we propose to use an approximation that expresses the differential

boundary variation as a regional integral:

Dist(∂G,∂S) = 2

∫
ΔS
|φG(p)|d p (2.2)

where ΔS denotes the region between the two contours and φG : Ω → R is a level set represen-

tation of boundary ∂G: φG(p) evaluates a signed distance between point p ∈ Ω and the nearest

point z∂G(p) on contour ∂G: φG(p) = −‖p− z∂G(p)‖ if p ∈ G and φG(p) = ‖p− z∂G(p)‖
otherwise. Fig. 2.3.b illustrates this integral framework for evaluating the boundary distance.

Thus, the non-symmetric L2 distance between contours can be expressed as a sum of regional

integrals: ∫
S

φG(p)d p−
∫

G
φG(p)d p =

∫
Ω

φG(p)s(p)d p−
∫

Ω
φG(p)g(p)d p (2.3)

where s : Ω → {0,1} is binary indicator function of region S: s(p) = 1 if p ∈ S belongs to the

target and 0 otherwise. Now, for S = Sθ , i.e., replacing binary variables s(p) in Eq. (2.3) by

the softmax probability outputs of the network sθ (p), we obtain the following boundary loss

which, up to a constant independent of θ , approximates boundary distance Dist(∂G,∂Sθ ):

LB(θ) =
∫

Ω
φG(p)sθ (p)d p (2.4)

Notice that we omitted the last term in Eq. (2.3) as it is independent of network parameters.

The level set function φG is pre-computed directly from the ground-truth region G. In practice,

our boundary loss in Eq. (2.4) is the sum of linear functions of the regional softmax probability
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outputs of the network. Therefore, it can be easily combined with standard regional losses

and implemented with any existing deep network architecture for N-D segmentation. In the

experiments, we tested our boundary loss as a stand alone loss in a first step. Unfortunately,

we did not get competitive results. We believe that this is due to the following technical facts.

In theory, the global optimum of our boundary loss corresponds to a negative value (when the

softmax probabilities correspond to a non-empty foreground). However, an empty foreground

(null values of the softmax probabilities almost everywhere) corresponds to low gradients.

Therefore, this trivial solution is close a local minimum or a saddle point. To avoid getting

stuck in such trivial solution, we propose to use our loss in conjunction with the regional

Generalized Dice loss:

αLGD(θ)+(1−α)LB(θ) (2.5)

Finally, it is worth noting that our boundary loss uses ground-truth boundary information via

pre-computed level-set function φG(p), which encodes the distance between each point p and

∂G. In Eq. (2.4), the softmax for each point p is weighted by the distance function. Such

distance-to-boundary information is omitted in widely used regional losses, where all the points

within a given region are treated equally, independently of their distances from the boundary.

2.2.2 Scheduling strategy

In our work, we propose to combine the new boundary-loss with the GDL as it has shown good

results when dealing with unbalanced problems (Nie et al. (2018); Shen et al. (2018); Horváth

et al. (2018); Górriz et al. (2018)). The task of finding the ideal combination between the two

losses is not obvious. We argue that it is not very convincing to use an empirical fixed weight.

For that, we propose to use a simple scheduling strategy. During training, the value of α in Eq.

(2.5) is initialized to 1, then decreased by 0.01 after each epoch until reaching 0.01. Thus, we

give more importance to the GDL in first epochs then we gradually increase the impact of our

boundary loss.
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2.2.3 Network architecture

It is worth to note that the choice of the network architecture is important for medical image

image segmentation. To validate our method, we employed UNet (Ronneberger et al. (2015b))

as a deep learning architecture. In fact, the network is initially designed as a combination of a

regular FCNN with an up-sampling path where "deconvolutions" are applied to build an output

of the same size than the input. As shown in Fig. 2.4, the particularity of a U-net is the insertion

of "skip connections" to connect opposing; convolutional and deconvolutional, layers between

the down-sampling and up-sampling paths.

Figure 2.4 Original UNet architecture

(taken from ( Ronneberger et al. (2015b))





CHAPTER 3

EXPERIMENTS AND RESULTS

3.1 Datasets

To evaluate our proposed method, we selected three challenging public datasets for brain lesion

segmentation where classes are highly unbalanced: the ischemic stroke lesion (ISLES), white

matter hyperintensities (WMH) and Multi modal brain tumor segmentation (BRATS17). WMH

and ISLES segmentation correspond to binary problems while BRATS segmentation is a multi-

class problem.

WMH

The public dataset of White Matter Hyperintensities (WMH) 1 MICCAI 2017 challenge is

composed of 60 subjects for training and 110 subjects for testing. Images are acquired from five

different scanners belonging to three different vendors in three various hospitals. Each subject

has 3D T1-weighted scan and 2D multi-slice FLAIR. The ground truth of the 60 subjects

of training set is defined only on FLAIR images. From a total of 60 subjects, training was

performed on 48 subjects while validation on the 12 remaining ones. Patients were chosen

randomly from three scanners and with equal proportions in order to have representative sets.

The percentage of lesions in the validation fold ranges from 0.01 % to 0.43% of voxels, with a

mean of 0.25% between patients, std of 0.32% and median of 0.04%.

ISLES

The training dataset provided by the ISLES organizers is composed of 94 ischemic stroke

lesion multi-modal scans. In our experiments, we split this dataset into training and validation

sets containing 74 and 20 examples, respectively. Each scan contains Diffusion maps (DWI)

1 http://wmh.isi.uu.nl
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and Perfusion maps (CBF, MTT, CBV, Tmax and CTP source data), as well as the manual

ground-truth segmentation. More details about the data can be found in the ISLES website2.

BRATS

The public dataset for the Multimodal Brain Tumor Segmentation Challenge 2017 (BRATS17)3

is composed of multi-modal scans acquired from different 19 institutions. Provided scans are

divided into two categories; subjects with high grade Glioblastoma (HGG) and subjects with

Low Grade Glioblastoma (LGG). Manual annotations cover three different regions; non en-

hancing tumor (NET), Peritumoral Edema (ED) and Enhacing Tumor (ET). Our experiments

were performed on the training set of a total of 285 cases that were split into 80 % for training

and 20 % for validation.

3.2 Experimental protocol

3.2.1 Data Pre-processing

Before training the network, a pre-processing step was perfomed. While the scans are provided

as 3D images, we process them as a stack of independent 2D images, which are fed into the

network. During the pre-processing, all scans are normalized between 0 and 1 and saved as a

set of 2D matrices. As mentioned before, WMH scans are from different scanners and with

different sizes. Thus, all scans are re-scaled to a uniform size 200×200 pixels via cropping/-

padding operations. On the other hand, BRATS scans are normalized and saved as 2D matrices

of 240×240 pixels. To test the impact of our loss on a very basic setting, We did not use any

data augmentation during experiments.

2 http://www.isles-challenge.org

3 https://www.med.upenn.edu/sbia/brats2017/data.html
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3.2.2 Implementation details

In our experiments, we employed Adaptive Moment Estimation (Adam) (Kingma & Ba (2014))

optimizer with a batch size of 10 and an initial learning rate equal to 0.001. We trained a UNet

model over 200 epochs for WMH and ISLES datasets and 100 epochs for BRATS without an

early stopping. Distance maps or level-set functions φG in Eq. ((2.4)) were computed using

standard SciPy functions 4. In case of slices with only background (no target class), we used a

zero-distance map, assuming that the GDL, used alone, is more suitable in those cases.

3.3 Results for binary problems

We trained and validated our network on WMH and ISLES training datasets. Table 3.1 reports

the Dice score (DSC) and the Hausdorff distance (HD) performance for our experiments using

GDL alone and the loss we proposed in Eq. (2.5). We note that adding our boundary loss

jointly with GDL ameliorates efficiently the segmentation performance which is reflected in

significant better values of DSC and HD. On the WMH dataset, we had an improvement of

around 2% of the DSC while it achieves 8% on the ISLES segmentation task. The same

behaviour is observed for the HD metric with a larger gain on ISLES dataset.

Table 3.1 DSC and HD values achieved on ISLES and

WMH validation subsets. The values represent the mean

performance (and standard deviation) of 2 runs for each

setting.

ISLES WMH
Loss DSC HD (mm) DSC HD (mm)
LGD 0.575 (0.028) 4.009 (0.016) 0.727 (0.006) 1.045 (0.014)

LGD +LB 0.656 (0.023) 3.562 (0.009) 0.748 (0.005) 0.987 (0.010)

Figure 3.1 shows the learning process behaviour of validation metrics (DSC and HD) over

200 epochs. The learning curves show the gap in performance of the GDL with respect to the

4 https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.morphology.distance_

transform_edt.html
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Figure 3.1 Evolution of DSC and HD values on WMH/ISLES validation subsets. The

blue curve shows the performance of the network trained using the GDL loss, while the

red curve represents the optimization process with the GDL combined with our proposed

boundary loss.

GDL with boundary loss, where the difference becomes significant at convergence. In addition

to outperforming GDL, we can also observe that the boundary loss term helps stabilizing the

training process, yielding a much smoother curve as the network training converges. This

behaviour is consistent for both metrics and both datasets, which clearly shows the efficiency

of our proposed boundary term.

3.4 Results for multi-class problem

To investigate the behaviour of our boundary loss in a multi-class imbalanced problem, we

trained and validated the same network on BRATS database for brain tumour segmentation.

Quantitative results are reported in table 3.2. We note that, in a multi-class problem, our
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boundary loss jointly with GDL was also able to ameliorate the segmentation performance.

Significant better values of the Dice score and the Hausdorff distance are achieved. The mean

DSC over classes improves of around 9%. The same behaviour is noted for the Hausdorff

distance.

Table 3.2 DSC and HD values achieved on BRATS

validation subset. The values represent the mean

performance of 2 runs.

BRATS
Loss DSC HD(mm)

N.enh. ED ET N.enh. ED ET
LGD 0.73 0.66 0.66 1.32 2.23 1.69

LGD +LB 0.75 0.75 0.78 1.43 1.98 0.97

Figure 3.2 Evolution of DSC and HD values on BRATS validation

subset. The blue curve shows the performance of the network trained

using the GDL loss, while the red curve represents the optimization

process with the GDL combined with our proposed boundary loss.
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Figure 3.3 Qualitative segmentation results on BRATS validation set.

Colors correspond to different tumour regions: Red for edema (ED),

green for Non enhancing tumor (NET). Best viewed in colors.

3.5 Discussion

Qualitative evaluation

Inspecting qualitative results (for both binary and multi-class problems) illustrated by Fig. 3.5

and Fig.3.3, we note that there are two main types of improvements when using our boundary

loss. First, as mentioned previously, region-based losses ( e.g. GDL) do not include the in-

formation of how far is the prediction from the ground truth. Thus, a close detected object is

treated equally than a totally missed one. However, as our boundary loss is based on the dis-
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Figure 3.4 Effect of our boundary loss on false positives/ negatives.

Best viewed in colors.

tance map from the ground-truth boundary ∂G, it will penalize much more such cases, helping

to recover small and far regions. This effect is best illustrated in Fig. 0.1, Fig.3.5 (third row)

and Fig 3.4. False positives (first row in Fig. 3.5, second and third row in 3.4) will be far away

from the closest foreground, getting a much higher penalty than with the GDL alone. This

helps in reducing the number of false positives.
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Figure 3.5 Visual results from WMH and ISLES validation sets..

Behaviour of boundary loss alone

As mentioned in 2.2.1, the boundary loss (used alone) is not able to give competitive results in

a highly imbalanced problem. To investigate its behaviour on a less imbalance level, we trained

the network only on positive samples (where the target is present). In that way, we decreased

the imbalance rate of the whole dataset. Preliminary results, depicted in Fig. 3.6 show that,

when trained only on positive samples, our boundary loss gives smooth contours. We might

explain this behaviour with the following fact. In theory, distance maps used in our boundary

loss give, on the contrary of typical ground truth images, non binary values but real ones. In
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other words, pixels which are close to the foreground boundary are less penalized than far ones.

This results in a more regular segmentation.

Figure 3.6 Visual results for our boundary loss as a stand alone loss

trained only on positive samples on WMH dataset





CONCLUSION AND RECOMMENDATIONS

Summary of contributions

In this work, we tackled a common issue in medical image processing, the class imbalance

problem. This problem occurs mostly when there is an unequal class distribution. In chapter

1, we briefly presented the main classic approaches used for medical image segmentation.

We then reported some basics of deep CNNs and discussed both their successes and current

challenges. In chapter 2, we introduced our methodology. We proposed a new boundary loss

that takes the form of a distance metric on the space of contours, not regions. We argue that

a distance-based loss can mitigate the issues related to regional losses in highly unbalanced

segmentation problems. Rather than using unbalanced integrals over the regions, a boundary

loss uses integrals over the boundary (interface) between the regions. Also, our loss provides a

new information which is missing in regional losses.

Conducted on both binary and multi-class highly imbalanced problems, our experiments showed

the great impact of including a distance based loss. Results demonstrated a good improvement

not only on segmentation performance but also on the training stability.

Limitations and recommendations

Even though experiments have shown good results on three challenging medical problems, we

argue that there are still some limitations and recommendations left for a future work. Thus,

we suggest the following recommendations for the next steps in our research problem:

- In our main experiments, we used the boundary loss only as a joint loss. Motivated by

preliminary results illustrated by Fig.3.6, it would be interesting to investigate the loss be-

haviour, when used alone, in other problems with different levels of imbalance and with

careful initialisations.
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- Although our experiments were limited to 2-D segmentation problems, the proposed frame-

work can be trivially extended to 3-D, which could further improve the performance of deep

networks, as more context is analyzed. We just need to compute distance transform func-

tions in 3D and use it with any choice of 3-D framework.

- In order to compare to other state-of-the-art methods for these particular applications, future

works will evaluate on testing sets of the challenges.
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