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Mécanisme de mise à jour logicielle écoénergétique pour les appareils IoT à base de
composants en réseau

Ngoc Hai BUI

RÉSUMÉ

En raison de problèmes de sécurité et des exigences supplémentaires des utilisateurs, les logi-

ciels des appareils IoT doivent être changés fréquemment pour améliorer les fonctionnalités

existantes ou pour corriger les bogues. La mise à jour de logiciels est devenue une tâche inté-

grale des systèmes IoT afin de maintenir des opérations efficaces. Récemment, l’architecture

du système logiciel commun des périphériques IoT avancés est basée sur des composants qui

peuvent être mis à jour au moment de l’exécution. Dans de tels réseaux IoT, les appareils

peuvent télécharger des composants mis à jour à partir de nœuds voisins, permettant ainsi un

déploiement rapide des mises à jour. Dans ce contexte, la distribution des composants logi-

ciels doit prendre en compte deux problèmes principaux: i) comment fournir des mises à jour

de tous les périphériques de manière écoénergétique, et ii) comment déployer rapidement des

mises à jour pour éviter de longues périodes d’inactivité du réseau.

Dans ce mémoire, nous proposons un mécanisme qui planifie les mises à jour de tous les ap-

pareils d’un réseau de appareil IoT dans le but de minimiser la consommation d’énergie, en

tenant compte de la contrainte du délai pour la mise à jour de l’ensemble du réseau. Contraire-

ment aux études précédentes sur les mises à jour logicielles basées sur des composants IoT, qui

traitent souvent de la manière dont un composant est remplacé dans le système d’exploitation,

nous nous concentrons sur la distribution des composants dans le réseau et étudions le proces-

sus de mise à jour intervenu dans la mémoire flash d’un périphérique, dans lequel l’ordre de

réécriture des composants dans la mémoire est déterminant pour la consommation d’énergie.

Nous introduisons un nouveau modèle énergétique du processus de mise à jour à l’intérieur

d’un appareil en nous concentrant sur l’opération de réécriture du memoire flash, qui con-

somme une quantité d’énergie importante dans le processus de mise à jour. Ensuite, nous

formulons un modèle d’optimisation mathématique pour le problème de la planification des

mises à jour écoénergétiques.

En raison de la grande complexité du problème, nous proposons ensuite un algorithme ap-

pelé ESUS, qui se rapproche du ordonnancement optimal pour la mise à jour de tous les pé-

riphériques du réseau. Pour évaluer notre algorithme de planification, nous comparons les

résultats d’ESUS aux solutions optimales données par un solveur mathématique. Les résul-

tats de la simulation montrent l’efficacité de notre méthode qui est proche de la solution de

planification optimale avec un temps d’exécution beaucoup plus court que celui du solveur.

Mots-clés: efficacité énergétique, mise à jour de logiciel, dispositif IoT, logiciel IoT à base de

composants
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ABSTRACT

Due to security issues and incremental user requirements, software in IoT devices needs to be

changed frequently to improve existing functionalities or to fix bugs. Software updates have

become an integral task of IoT systems to maintain effective operations. Recently, the common

software architecture in advanced IoT devices is component-based, in which components can

be updated at run time. In such IoT networks, devices can download updated components from

neighbor nodes, enabling quick deployment of updates. In this context, there are two main

issues in the distribution of software components that needed to pay attention: i) how to deliver

updates to all devices in an energy-efficient way, and ii) how to quickly deploy updates to avoid

long network downtime.

In this thesis, we propose a mechanism that schedules updates on all devices in an IoT edge

network with the goal to minimize the energy consumption, taking into account the deadline

constraint for updating the entire network. Unlike previous studies on IoT component-based

software update, which often focus on how a single component is replaced in the operating

system, we focus on the distribution of components in the network and investigate the update

process happened in the flash memory of a device, in which the order of re-written components

into the memory is decisive for energy consumption.

We introduce a novel energy model of the update process inside a device, focusing on the flash

re-writing operation which consumes a significant amount of energy in the update process.

Then, we formulate a mathematical optimization model for the problem of energy efficient

update scheduling.

Because of the high complexity of the problem, we then propose an algorithm called ESUS

to approximate the optimal schedule for updating all devices in the network. To evaluate our

scheduling algorithm, we compare the results of ESUS to the optimal solutions given by a

mathematical solver. Simulation results show the efficiency of our method, which is close to

optimal scheduling solution with much lower execution time compared to the solver.

Keywords: energy efficiency, software update, IoT device, component-based IoT software
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CHAPTER 1

INTRODUCTION

1.1 Context and motivation

The Internet of things (IoT) is a convergence of Internet with advanced wireless communica-

tions, sensor and smart objects, where everyday objects can interact with each another to access

all kinds of real-world information and provide various intelligent services and applications

(Al-Fuqaha, Guizani, Mohammadi, Aledhari & Ayyash, 2015). In order to adapt incremental

user requirements of IoT applications, software in IoT devices need to be changed frequently

to improve existing functionalities or to fix revealed bugs, and the need to update the running

software of IoT devices arises. For this reason, software updates must become an integral part

of IoT systems to maintain effective operations.

With the IoT boom, the number of smart devices is growing fast, and advanced functionalities

are developed increasingly, which brings many challenges to deployment and management.

Although IoT networks are often deployed in large scales, IoT devices are usually highly

resource constrained, with small memory storage, low processing power and limited energy

capacity, and they have to strictly follow low-cost requirements. The large scale of device net-

works, together with the limited communication bandwidth, the low capacity of every node,

and the deployment in high access cost environments, makes the task of updating these systems

extremely challenging. Therefore, in spite of the fact that software updates are common in all

kinds of systems, updating IoT device networks comes with additional difficulties.

Various approaches have been developed to distribute and install new software in deployed

IoT/wireless sensor systems. Each of them is suitable for one kind of IoT device software,

including full system image replacement (Hui & Culler, 2004), image differencing approaches

(Panta, Bagchi & Midkiff, 2011), virtual machines (Koshy & Pandey, 2005a), and runtime-

loadable code modules as in Contiki and SOS (Hahm, Baccelli, Petersen & Tsiftes, 2016). Re-

cently, the common execution environment in advanced IoT devices is component-based, such
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as Contiki and SOS, in which software is partitioned into small blocks, so-called components,

which can be added or updated at run-time. In such an environment, only parts of the entire

software need to be changed during the update process, allowing to reduce the amount of data

needed to be transferred. Therefore, there have been many studies investigating component-

based software systems of IoT devices to improve the update process (Ruckebusch, De Poorter,

Fortuna & Moerman, 2016),(Munawar, Alizai, Landsiedel & Wehrle, 2010), (Amjad, Sharif,

Afzal & Kim, 2016).

Prior research on component-based software for IoT devices often focused on the ways a com-

ponent is replaced and did not consider thoroughly how updates are distributed, especially

when multiple components are required to be deployed at the same time. In this thesis, we in-

vestigate the case of distributing updates to the entire network, focusing on the typical type of

IoT edge networks consisting of a number of devices with the same component-based software

connected to a gateway, and a set of components needs to be updated to all devices. In this kind

of networks, a peer-to-peer manner can help reduce the time to deliver the update to the entire

network, enabling quick update deployment, since a device can download updated components

from multiple neighbor nodes at the same time through cheap communication technologies

(e.g., Bluetooth or WiFi) without having to rely on a more expensive communication with the

gateway.

An example of such a network is presented in Fig. 1.1, where each device is running Contiki

and has to send temperature information to a gateway every ten minutes. Device software

consists of four components a,b,c and d with specific roles as follows: component a reads

temperature data from sensors, component b processes the data, component c sends the data

and component d is the main task control. When the programmer wants to change the data

processing algorithm and the transport protocol (e.g., from UDP to TCP), he will generate

only two new components b′ and c′ to replace b and c, respectively, instead of the entire new

software as in legacy devices. These components are typically compiled as Executable and

Linkable Format (ELF) files (Ruckebusch et al., 2016). They can be downloaded and stored in

a buffer such as an EEPROM, then the Contiki core will link them to existing components and
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load them into the flash memory in run-time. As shown in Fig. 1.1, component b′ is transferred

from the gateway to devices 1 and 3, then it is sent to device 2 from 1. In contrast, component

c′ is transmitted from the gateway to 3, from 3 to 2 and from 2 to 1, consecutively.

b c

Software components

path of updating component b

 path of updating component c

1

2

3

update control message

0

a d

component dependency

Gateway

IoT device

Communications layer

Software
components

Network
information

Update
scheduler

Update controller
architecture

Figure 1.1 Example of an IoT network with a gateway

which is responsible to update IoT devices

In this context, there are two issues that require our attention. The first one is the problem

of energy consumption, which is the classical issue of IoT/sensor devices as well as of any

embedded systems in general. Because most of edge devices are powered by battery power

supply with very limited energy capacity and difficult to be replaced in the deployed envi-

ronment, minimizing energy consumption is always a crucial task to prolong the operational

lifetime of the network. Hence, deploying software updates in an energy efficient way is a

significant requirement for every IoT operator. Although there have been many dissemination

protocols proposed to deliver updates with low energy consumption, such as Varuna (Panta,

Vintila & Bagchi, 2010) and Triva (Saginbekov & Jhumka, 2014), these protocols only con-
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sider the communication cost between nodes and do not take into account the update process

happening inside device memories. In a device running component-based software system, a

key operation that consumes a significant amount of energy in the update process is flash re-

writing (Panta et al., 2011), in which the order of re-writing components into the memory is

decisive for energy consumption, as will be explained in the following section. So, determin-

ing an optimal component update order is substantial for reducing energy consumption in the

device software update operation.

The second issue we should consider is the time required to update the entire network. Due to

the Quality of service(QoS) requirements of different IoT applications, the downtime of update

operation should be minimized. Therefore, quickly deliver updates to the whole network is

another important requirement that can bring benefits to both users and service providers.

The aforementioned issues raise a problem of update scheduling in which we can find a proper

update schedule that minimizes the energy consumed during the update operation while satis-

fying a deadline constraint for updating the entire network. A schedule is a plan which specifies

two decisions: First, each device should download a component from which node? And sec-

ond, when each component can be downloaded?

1.2 Problem statement

We continue to describe our scheduling problem by illustrating more details with the network

example in Fig. 1.1. Inside an IoT device, software components are written in a sequence in

flash memory as shown in Fig. 1.2, from low addresses to high addresses. Each component

may reside in several memory pages. When a component is updated (assume its size changes),

its memory pages need to be re-written completely, and all the components placed next to it

in the memory have to be shifted to other addresses (Dong et al., 2015). Therefore, all these

components also need to be re-written. In that context, different orders could result in different

numbers of re-written blocks, which leads to different amounts of energy consumption. For

instance, two components b and c in Fig. 1.2, account for 3 and 2 pages in the flash, respec-
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Figure 1.2 Software components in flash memory of an IoT device

b and c are updated by b’ and c’

tively. We update both b and c by the new components b′ and c′ that have both 4-page size.

In the first case, if the update order is (c,b), we have to re-write 4 pages of c′ and pages of

component a that is located after c, then 4 pages of b′, 4 pages of c′ and finally a has to be

re-written again. Hence, the total number of re-written pages are 12 plus twice the size of a.

This update order example is illustrated in Fig. 1.3a. Now, let consider a better way to do in

this situation, as shown in Fig. 1.3b. If we update b first, we have to re-write 4 pages of b′,

only 2 pages of current size of c and pages of a, then 4 pages of c′ and pages of a again, so the

total pages are 10 plus twice the size of a, that is smaller than the first case.

Furthermore, in component-based software systems, some components may call the others

during their execution (Ruckebusch et al., 2016). This dependency leads to an update order

constraint, in which a component can only be updated when the components it depends on had

all been updated. Otherwise, an inconsistency error would be experienced. This constraint has
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Figure 1.3 Different number of re-written pages with

different component update orders

to be taken into account when we make an update schedule for the network. Some work (Dong,

Chen, Bu & Huang, 2013a) also mentioned the update order constraint, however, the constraint

and its impact on energy have not been well-considered in previous studies.

Fig. 1.4 shows two different examples of update schedules, in which the components b and c

are distributed in the network with diverse paths and different download time. That leads to

various component update orders in devices, which results in a difference in the total amounts

of energy consumed.
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path of updating component b

 path of updating component c

update order c,b

update order b,c

update order b,c
update order b,c

update order c,b

update order c,b

(a) Schedule 1 (b) Schedule 2

Consumes E1
Consumes E2

Figure 1.4 Different update schedules result in different amounts energy consumption

In our work, we propose a mechanism that determines update schedules for all devices with

the goal to minimize the total energy consumption of the update process, taking into account

the component update orders, the component dependencies and the deadline constraint for

updating all the devices in the network. Our mechanism optimizes the update schedule while

satisfying the five constraints:

- The dependency order of components.

- The topology constraint of the network.

- The constraint that a device can only send a component after having it.

- The constraint that a device can download at most one component from one source at a

time.

- The deadline constraint of updating the entire network.

In terms of complexity, for a single device, finding the best component update order is equiva-

lent to finding the best topological order of the component dependency graph (as in Fig. 4.1b),
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which is known to be NP-hard in general. Hence, with a large number of devices in the net-

work, and with the aforementioned additional constraints, our scheduling problem would be

more complex. For this reason, finding the optimal update schedule is not a trivial task.

1.3 Research questions

In order to make an optimal schedule for delivering updates to all devices in an IoT network, so

that the total energy consumption is minimized while satisfying the update order constraint of

software components as well as the deadline for updating the entire network, we have to deal

with the following research questions:

• RQ1. How can we model the energy consumption of the update process in a component-

based IoT device, according to the computing resource consumption?

With the goal of minimizing the energy consumption of updating all devices in the network,

the first step is calculating the energy consumed in each device, and the parameters that

affect the energy need to be defined. We should consider the effect of the component update

order and the component dependency on the energy consumption of the update process. The

proposed model has to take into account the specific characteristics of IoT devices such as

hardware architecture, program memory and program loader.

• RQ2. How can we optimize the total energy consumption of the update process in the entire

network?

The purpose is to formulate an optimization model with the objective function is the total

energy to update the entire network. The model needs to take into account all the constraints

of the system, including network topology, bandwidth and component dependency.

• RQ3. How to compute the energy efficient update schedule in polynomial time?

In IoT context, fast deployment is required to quickly adapt incremental user requirements

or to promptly solve revealed issues. So the computation time of an exact optimal method

is not practical because a solver often needs hours or even days to find the optimal solution.
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Hence, It is necessary to design a fast algorithm to give near-optimal solutions in order to

achieve faster computation time.

1.4 Objectives

The main objective of this thesis is to propose a mechanism that schedules updates on all

devices to minimize the energy consumption, taking into account the component dependencies

and the deadline constraint for updating the entire network. This objective can be divided into

three specific objectives based on previous research questions.

• SO1. Build an energy model of the update process in a component-based IoT device.

A model is necessary to understand the sources of energy consumption and how parameters

affect the energy consumed during the update process. From the energy model, we can find

a way to reduce the energy of each device as well as of the entire network.

• SO2. Build an optimization model for the energy efficient update scheduling problem.

In order to bring energy efficiency to the update process, we need to formulate our opti-

mization problem with a clear objective function and constraints.

• SO3. Propose an efficient algorithm to solve our optimization problem.

In our system model, the update controller is deployed in a gateway, it can take very long

time (days) to find an optimal schedule with a solver, that leads to a waste of time and

computing resources. Moreover, in some cases, application providers want to deploy new

applications as soon as possible to adapt to new user requirements. Finding solution in short

time can help quickly adapt to new requirements of IoT applications.

1.5 Plan

The thesis is divided into five main chapters, followed by a conclusion and perspectives for

further research, the chapters are organized as follows:
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• The first chapter is the introduction. We first present the context and motivation of this

study, then, the problem statement, the research questions and objectives are presented.

• The second chapter summarizes the technical background related to our research. In this

chapter, we discuss IoT networks, device hardware architecture, and run-time technolo-

gies of IoT devices. In terms of run-time technologies, we focus more on devices with

component-based software architecture, which is investigated in this research.

• The third chapter discusses the related work. We present a review of the prior research

in IoT device update, which is divided into three sub topics, update dissemination, data

minimization and run-time environments.

• The fourth chapter presents to the methodology. According to our objectives, the first part of

this chapter is dedicated to the system modeling, in which we describe the software system

model of each device and the IoT network system under consideration. In the second part,

we introduce the proposed energy model and the optimization model. Then, we present the

ESUS algorithm to solve the optimization model in the last part of this chapter.

• The fifth chapter presents the experimental setup and simulation scenarios, and then dis-

cusses the simulation results.



CHAPTER 2

BACKGROUND

In this chapter, we present the technical background related to our study. We first introduce the

concepts of IoT edge networks and the existing update mechanisms of IoT devices. Then, we

present the typical hardware architecture of devices in IoT edge networks to give some basic

ideas about the update process and how energy is consumed during the process. Finally, we

introduce the existing device’s software run-time technologies, which are crucial for the ways

to update IoT devices.

2.1 IoT edge networks

2.1.1 Overview of IoT edge networks

An IoT edge network typically involves IoT devices such as sensors, actuators and gateways

that connect and communicate with each other and with the IoT platform (Leukert, Kubach,

Eckert, Tsutsumi, Crawford & Vayssiere, 2016). The network scale ranges from small deploy-

ment with a few sensor devices directly connected to an IoT platform running on the cloud to

a large factory with all production tools with extensive communication components. An edge

network can include a separate local network or networks where devices connect by various

protocols and via several routers to an edge gateway. The network can use different topologies

for internal connections between devices as well as connections from devices to the gateway,

such topologies can be either star, in which all communications within the local network go

through the edge gateway, or mesh, in which some IoT devices have routing ability.

In our work, we consider the type of edge network including a local network connected to a

gateway. The gateway works as a broker between the local network of devices and a wide

area network (WAN) which connect to the platform. It is responsible for managing devices

of the local network and isolating the edge devices from the WAN. IoT devices may directly

communicate to the edge gateway or connect through routers, and there may be routes of
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connections between devices that do not pass through the gateway. Fig. 2.1, which is taken

from (Leukert et al., 2016), presents a typical IoT edge network.

Figure 2.1 Example of an IoT edge network

Devices in an edge network consist of distributed sensors and actuators. An IoT device is a

small embedded system that are typically equipped with one or more sensors to carries out

some individual tasks (such as measuring temperature or humidity, or turning on/off a light or

a machine), performs at low power so that it can run on battery or employ energy harvesting.

IoT devices are often small and low cost, with very restricted computing/storage capacity and

limited energy resources, so they can be deployed in a large scale.

2.1.2 IoT device hardware

In this subsection, we introduce the common IoT device’s hardware architecture, in order to

give understanding about the software update process. We focus on the processing unit, which

is the main part that executes the software update operation.
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2.1.2.1 Hardware architecture of IoT sensor devices

Most sensor devices are typically very small, low energy consumption, autonomous and adap-

tive to the environment. A device often has four basic components which are sensing unit,

processing unit, transceiver unit and energy unit (McGrath & Scanaill, 2013). In this research,

we investigate the update process which happens in the processing unit. The processing unit

stores application code and data, it has the duty to manage, process data and control other com-

ponents in the sensor device. This unit is typically a microcontroller that includes a processor

and some small storage memories, microcontrollers are often used for sensor devices because

they are low cost, easy to program, and consumes little energy.

Program Memory
(Flash)

Processor
Data Memory

(RAM)

Figure 2.2 Overview of the Harvard architecture

Most microcontrollers of IoT sensor devices employ Harvard architecture (Healy, Newe & Lewis,

2008) with memories usually include two independent memory areas that are Flash and RAM.

Flash memory is used for storing installed application code and it is the main location of the

update process, while RAM is used for storing input/output data and temporary computations.

The overview of Harvard architecture in sensor devices is presented in Fig. 2.2. In our prob-

lem, we assume that all IoT devices in the network have the same Harvard architecture of

microcontrollers, which is seen in many common IoT device platforms such as Arduino family

(Arduino.cc, 2019) and Mica sensor family (Karray, Jmal, Garcia-Ortiz, Abid & Obeid, 2018).
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2.1.2.2 Flash memory of sensor devices

A flash memory is a non-volatile memory component that can store saved data even when no

power supply is available. The flash memory of an IoT device works like the hard disk to store

installed applications, this memory supports at least 10,000 erase/write cycles. Unlike RAM,

where the smallest memory block of read and write operations can be a byte or a word, the

basic unit of such operations in flash memory is a page, which is the smallest granularity of

data addressable by the flash. A flash page is continuous memory space, typical size ranging

from 512Bytes to 4 Kilobytes(KB), this is the smallest flash unit that can be erased and written

(Park, Kim, Urgaonkar, Lee & Seo, 2011).

Writing into flash is performed in a page-by-page manner, because partial writing or erasing a

page is not accepted, that means any modification of any byte in a page will result in the entire

page needs to be re-written. Data for every single page have to be stored in a temporary buffer

before writing to the flash. In addition, if a page already contains some data, it must be erased

before being re-written again because flash memory does not provide the overwriting feature.

Flash re-writing operation is performed by the bootloader as the following (Koshy & Pandey,

2005b). First, the bootloader stores the new content of the page in a buffer such as RAM or

EEPROM. Second, the page is erased and finally, the content is written to the blank page.

Flash re-writing consumes more energy than other operations, this feature was mentioned in

many previous studies such as (Panta et al., 2011), (Koshy & Pandey, 2005b) and (Heo, Gu,

Eo, Kim & Jeon, 2010), it needs to be minimized as much as possible to reduce the energy

consumption during program loading/updating process.

2.2 Existing update mechanisms for IoT edge networks

In an IoT edge network, there are two traditional approaches to update devices: centralized and

Peer-to-Peer (P2P) (Brown & Sreenan, 2013).
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Figure 2.3 Centralized update mechanism

2.2.1 Centralized mechanism

The centralized model, also called client-server, is a traditional update delivery mechanism of

IoT networks as well as of the Internet, in which every node in the network connects to a server

to get updates, as shown in Fig. 2.3. The centralized server is responsible for managing and

delivering the new software. It typically employs some complex algorithms and protocols to

perform the update process. It stores the updates, collects information about states of devices

(e.g. software version), pushes data to devices when new updates are available or schedule the

time to update for devices (Kolomvatsos, 2018). A server can be a local gateway or a cloud

node running in a datacenter on the Internet. To fulfill the task, the server should be aware

of all connected nodes in the network and monitor statuses of nodes. With the centralized

mechanism, the number of nodes is a challenge, because it is difficult for the server to manage

and serve all the nodes in a huge network. On the device side, an update agent is used in each

device to execute the update, the agent has duties to receive updates from server, apply the

update and reset the device (if needed).
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2.2.2 Peer-to-Peer mechanism

Another typical update mechanism of IoT/sensor networks is peer-to-peer(P2P), that is illus-

trated in Fig. 2.4, in which devices directly distribute updates to each other. In this mechanism,

nodes are more autonomous compared to the centralized model. Originally, software is also

stored on a server (also called base station, or sink node), when a new update is available, the

server broadcast an advertisement message to the network, some nodes receive the message

and check their current version, then contact the server to get new code. After that, nodes also

broadcast their own messages to others, to advertise about the software versions they have. By

receiving messages, a node compares the version of it with others, then decides to get the new

version or not. In case a node receives multiple advertisement messages of the same version,

it will select the source to download the update based on a certain strategy. The way nodes

contact each other to distribute updates is called dissemination protocol, it is a broad topic in

IoT networks as well as in Wireless Sensor Networks (Taherkordi, Loiret, Rouvoy & Eliassen,

2013).

In the literature, update dissemination protocols have been designed with the goal to optimize

the update process of the device network. These protocols need to satisfy two key requirements.

The first is energy efficiency. Because wireless communication is high energy consuming, and

most devices are powered by very limited energy sources which are difficult to be replaced in

the operational environment, energy efficiency is the most important requirement of IoT/sensor

networks, and minimizing energy consumption is an integral task to extend the operational

lifetime of the system. The second requirement of any protocol is dissemination latency. While

the new software is being distributed in the network, devices may have erroneous and useless

states which cause downtime of the entire system, as cooperating nodes may have different

software versions running. In this case, the update time is useless, which must be minimized.

Therefore, an advantageous dissemination protocol should also distribute updates quickly in

order to reduce the downtime.
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Figure 2.4 Peer-to-Peer update mechanism

2.3 IoT software run-time technologies

Many different execution environments have been developed to run on IoT sensor devices,

ranging from virtual machines to component-based systems. Some run-time environments

come with the purpose to facilitate programming (Boulis, Han, Shea & Srivastava, 2007), oth-

ers are motivated by the potentiality of reducing energy costs for updating applications (Khan,

Belqasmi, Glitho, Crespi, Morrow & Polakos, 2015). The choice of the run-time environment

directly impacts on the format and size of data needed to transfer to an IoT device as well as

the way software in this device can be updated. In this section we discuss four different mech-

anisms for executing program code in IoT sensor devices, including script languages, virtual

machines, image-based and component-based systems.
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2.3.1 Script environments

Script run-time environment is the kind of environments in which programs are loaded as

scripts (e.g Python, Unix bash) and interpreted at run-time. These devices allow the execu-

tion of script languages by employing an interpreter to run the statements of scripts. There

are many script run-time environments for embedded devices that have been introduced. For

instance, Python is a well-known language which has been ported to microcontrollers (Norris,

2016). SensorWare (Boulis et al., 2007) is another example, this framework provides a script-

ing environment and supports programming using a script language called TCL. In addition,

the LiteOS operating system (Cao, Abdelzaher, Stankovic & He, 2008) provides a lightweight

version of the Unix bash environment that has designed for sensor IoT platforms. However,

Due to the string representation of script statements, script runtime environments require a

significant amount of memory and CPU resources Ruckebusch et al. (2016).

2.3.1.1 Software update in script environment

Thanks to the runtime interpretation, in this kind of system, software can be updated after

installation by adding or altering the scripts. Some frameworks like SensorWare also provides

an algorithm to distribute the new scripts to IoT nodes. Furthermore, scripts can be inserted by

external users and can contain replicate commands that allow a script to be replicated on other

devices.

2.3.2 Virtual machines

Virtual machines are a kind of software systems which provides a run-time environment to

execute intermediate code, that is high level CPU independent instructions. In such systems,

software is written in intermediate code and translated to machine code at run-time by the

virtual machine. Because intermediate code is in a high level of abstraction, the program code

for virtual machines is often smaller than the native program code for physical machines, which

reduces the data needed to transfer when deploying new applications to the devices.
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However, due to the code translation at run-time, virtual machines present a substantial higher

resource consumption compared to performing native machine code. In addition, because of

the limitation of device memory, virtual machines are often optimally designed for specific

applications rather than supporting many different application domains.

2.3.2.1 Software update for virtual machine

Virtual machines are a common approach in Wireless Sensor Network as well as in IoT devices,

to reduce the cost of distributing new application code in the situation that the cost of data

transmission is high. Because for devices running such environments, the new program code

needed to transfer when updating is more compact than the physical machine code. Hence,

many solutions have been proposed for IoT sensor devices that provide code updating using

virtual machines such as Maté (Levis & Culler, 2002), Agilla (Fok, Roman & Lu, 2009) and

VM Star (Razzaque, Milojevic-Jevric, Palade & Clarke, 2015).

Maté is one of the most well-known virtual machines for wireless sensor devices, which runs

on top of TinyOS Amjad et al. (2016). Maté program code is divided into 24 code capsules,

bigger programs can be provided using subroutine capsules. With Maté, updated code capsules

are marked as self-forwarding and distributed to the network by Trickle dissemination protocol

(Levis, Patel, Culler & Shenker, 2004). Each node broadcasts the information of its capsule

version to its neighbours using a random timer. If a node hears a same version, it ignores

the message and does not send any information; if it hears an older version than itself, it will

broadcast the newer code capsules to the others. This broadcasting continues even after the

whole network is updated.

2.3.3 Image-based software systems

This software system is an execution environment in which all source code, including soft-

ware applications together with the operating system, is compiled into a single image and then

installed on devices. In such systems, not like in virtual machines, native machine code can
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be executed directly by the micro-controller of the constrained devices and no interpretation

is required at run-time, allowing to avoid the high run-time overhead of both virtual machines

and script execution. For this reason, image-based is preferred in the kind of devices with lim-

ited hardware and energy resources. However, installing native machine code on a device is

more complex than loading code for a virtual machine because the native code uses physical

addresses which typically need to be updated before the program can be executed.

2.3.3.1 Software update in image- based software systems

The update method for image-based systems is replacing the software image. Originally, the

common way to replace images in image-based sensor devices is to compile a complete new

image and overwrite the existing one, such as in Deluge (Hui & Culler, 2004). Full image

replacement does not require extra processing of the new software image before it is loaded

into the device, since the new image will be placed at the same physical address in the flash

memory with the previous one.

Recently, instead of creating and distributing the whole new image, binary differencing tech-

niques are often used to make the image replacement process more efficient. In these tech-

niques, the delta file – the difference between the existing image and the new one is computed

and delivered to devices, allowing to reduce the update size. When a device receives the delta,

it processes and constructs the new image based on the delta and the old one, then starts the

updated system. Differencing techniques are very effective for small updates in the software

system. However, this approach often requires additional processing at the devices. There

have been many image differencing methods are proposed in the literature, such as Hermes

(Panta & Bagchi, 2012) and R3 (Dong et al., 2013b).

2.3.4 Component-based software systems

Recently, the common execution environment in advanced IoT devices is component-based,

in which software is partitioned into a set of loadable components, which can be added or
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updated at run-time. With component-based systems, only parts of the entire software need to

be replaced during the update process, enabling to reduce the amount of data needed to transfer.

In addition, the downtime is also lower because component-based approach does not require

system reboot and the running state can be maintained during updates.

Typically, updating software components require support from the operating system in the

devices. In such systems, the software always has a static part (e.g core OS kernel), and a

dynamic part that includes a set of loadable components. A component includes native machine

code and represents a functional module that provides a specific task of the overall system. So,

the installation of new functionality or a bug fix is usually limited to a single or a small number

of components. Nevertheless, the disadvantage of this execution environment is, it requires to

disseminate symbol tables and relocation tables together with the component itself for linking

and relocating steps (see 2.3.4.2), which can increase the amount of transferred data.

In this research project, we focus on the type of devices with component-based software sys-

tem, because this kind of software is more and more popular in modern IoT devices.

2.3.4.1 Component dependency

In component-based systems, there are natural dependencies between software components in

which some components may call the others during their execution. It is an important feature

that needed to consider when updating every component, because an inconsistency error could

occur if we update a component when the components it depends on have not all been updated.

Hence, the order of updating components needs to satisfy all the dependencies.

2.3.4.2 Software update process in component based software systems

Run-time loadable software components are typically compiled and distributed as Executable

and Linkable Format (ELF) files (Ruckebusch et al., 2016). An ELF file normally includes the

compiled code and data section of a component. During the update process, spaces in flash

and RAM memory must be allocated for the new component, the relative addresses in the code
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and data need to be replaced by the real physical address by relocation activity. If the code

and data contain some undefined symbols (e.g. calling to functions or data declared in other

components), a linking step is also required and each undefined symbol will be linked to the

exact physical address.

A software program is written in Flash memory of devices as shown in Fig. 1.2 in Introduc-

tion chapter, components are arranged from low addresses high addresses. Each component

accounts for a number of pages, which is the smallest unit that can be erased and written. It

means that, even if only some bytes in a page need to be modified, the entire page needs to be

re-written. When the device receives a component, it buffers the component in EEPROM (or

RAM), then the flash pages are erased, and the corresponding new pages are transferred from

EEPROM to the flash. When a component is updated, normally, the component size grows or

shrinks, making a code shift that all the components lie after it in the flash need to be moved to

other addresses. So not only the updated one, all those components have to be re-written de-

spite the fact that they do not change anything in their functionalities. This code shift problem

often consumes significant amounts of energy (Reijers & Langendoen, 2003).

2.4 Conclusion

This chapter introduced the background related to our work in this thesis. We have presented

the concepts of IoT edge networks and the existing update mechanisms of IoT device, the typ-

ical hardware architecture of devices in IoT edge networks and the existing device’s software

run-time technologies.
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LITERATURE REVIEW

In this chapter, we summarize some previous work on software update for sensor/IoT networks,

which can be categorized into three kinds that are dissemination protocols, data minimization

and software run-time environments (Brown & Sreenan, 2013).

3.1 Update dissemination protocols

Data dissemination protocols focus on the ways to deliver software updates in the network,

this topic often employs peer-to-peer communication between IoT devices, in which devices

receive updates and transfer to others. Various protocols for update dissemination have been

developed with the goal to minimize energy consumption of the entire network update process.

The typical pattern of a dissemination protocol includes three steps: (i) the advertisement of

new software ; (ii) the selection of download sources; and (iii) the downloading of the target

nodes.

In (Dong & Yu, 2015), the authors propose an Adaptive Code Dissemination Protocol (ACDP)

that employs random linear coding to reduce unnecessary computation and transmission cost.

This protocol distributes the whole updated software image to sensor devices. A neighbor

discovery scheme is proposed together with a source selection strategy, that allows a device to

explore its neighbors to exchange data. Moreover, the protocol also provides a network coding

technique to minimize the amount of data needed to transfer.

Before disseminating packets into the network, a node randomly generates a number N coef-

ficients and calculates the linear combination of N packets, with N is defined as the size of

coding window. An IoT sensor device gets a sufficient number (which is greater than or equal

to N) of encoded packets and computes the original packets. ACDP reduces traffic by using the

adaptive coding window in which a device dynamically chooses the size of its coding window

based on the number of neighbors. The optimal value of N is a function of the network density.
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The protocol also provides an effective load balancing feature that helps extend not only the

lifetime of the entire network, but also the lifetime of each individual sensor device.

Triva (Saginbekov & Jhumka, 2014) is an other update dissemination protocol which focuses

on event-based networks where data are sent in the network only when an event is detected.

This protocol also aims to optimize the communication between devices to perform the update

process with the goals to save both time and energy. Conceptually, Triva is a combination of

Trickle (Levis et al., 2004) and Varuna (Panta et al., 2010) protocols. It works in such a way

so as to enable nodes to update their code quickly, very much like in Trickle. However, the

difference is it does not consume much energy in the steady state, like in Varuna, when there is

no new update in the network.

In Triva, when a node n1 completes downloading the new software, it tries to quickly deliver

the update to its neighbors. n1 broadcasts advertisement messages at random time in a given

period. If, during this period, a neighbor node n2 requests the new update, n1 sends it to n2. If

n1 obtains an advertisement with the same software version from a node n2, it will save the ID

of n2 in its neighborhood table. After broadcasting advertisement messages for a given period,

the node stops broadcasting and change to the steady state to save energy, like in Varuna. The

steady period is when all the nodes in the network have the same software version and no

dissemination is performed.

3.2 Update minimization methods

Besides software dissemination protocols, data minimization is also an important topic in IoT

device updating. Data minimization focuses on reducing the size of updates, it has a direct

impact on the communication and processing energy used, and therefore it both helps extend

sensor network lifetime, and decrease time for new software deployment. Many methods are

proposed based on the idea of transferring only delta files, the differences between the old and

the new software versions, to reduce the transmitted data.
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The authors in (Panta et al., 2011) introduce a software update scheme called Zephyr. It de-

creases the delta size by using a function table for indirect function calls, that mitigates the

impact of code shifts in flash memory and increases the similarity between the two software

versions. Then it compares the two versions at the byte level to generate a small delta file.

Zephyr improves data size minimization by performing the modifications of the update soft-

ware on application-level. Zephyr employs a modified version of the Rsync algorithm (Panta

et al., 2011) to create delta files, which is the differences between the old and new software

versions. The overview of Zephyr is described in Fig. 3.1, which is from (Panta et al., 2011).

Figure 3.1 Overview of the Zephyr update scheme

Dissemination in Zephyr has two stages: first all the sensor devices are requested to reboot

the component that need to be updated, then a dissemination protocol is used to deliver the

update to all nodes. After the update has been applied to construct the new image, and this new

image is loaded into the flash memory, all indirect function calls are replaced by direct ones to

improve performance. The devices then need to reboot to start the new image. Zephyr does

not specifically support for autonomous update, but it emphasizes a very significant reduction

in data size that makes software updates are more flexible in general.

Hermes (Panta & Bagchi, 2012) is another update scheme built over Zephyr. Not only focusing

on reducing impacts of code shifts, Hermes also mitigates the effects of data shifts in RAM
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by first fixing variables to the same locations by source code level modifications, and then

propose two different approaches for reducing data shifts. This scheme scans through the

program source code before calling the compiler, it puts initialized and uninitialized variables

into assigned structures, so that their order is preserved when the compiler creates the two

sections .data (for initialized variables) and .bss (for uninitialized variables). The overview

of Hermes is described in Fig. 3.2 (Panta & Bagchi, 2012), with the dashed rectangles are

presenting the new features of Hermes compared to Zephyr.

Figure 3.2 Overview of the Hermes scheme

We note that both Zephyr and Hermes can be used in component-based software architecture

of IoT devices. Similar to Zephyr, Hermes performs software comparison on byte level to

generate the delta files. However, different from Zephyr, Hermes also provides a transparent

update feature, in which a new version of a software component can run in parallel with the

old one until it collects enough states to transparently take over the operation. This feature

provides a smooth update process to software components, which support autonomous update.

3.3 Software update in different component-based execution environments

The execution environment such as virtual machine (Kovatsch, Lanter & Duquennoy, 2012),

image-based and component-based (Taherkordi et al., 2013), also has a significant impact on
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how the software in an IoT device can be updated. Recently, there are many studies (Rucke-

busch et al., 2016), (Munawar et al., 2010) investigate on component-based software systems,

to improve the update process.

Figure 3.3 Overview of the Gitar architecture

Gitar (Ruckebusch et al., 2016) is an example, this architecture is built on top of Contiki OS

to reduce operation overhead during updating components. Gitar also enables software in both

application and network levels is updated in an efficient way. As shown in Fig. 3.3 (taken from

(Ruckebusch et al., 2016)), Gitar architecture includes three levels: system level, kernel level

and component level. The system level is partitioned into two layers, a hardware abstraction

(HAL) layer and a hardware interface (HIL) layer, in order to improve software portability.

This level involves the operating system and hardware drivers is static and can only be up-

dated by replacing the entire software image. On the other hand, the software components at

the component level (i.e. network protocol and application components) are flexible and can

be dynamically updated at runtime. Finally, the kernel level is the middle level between the

system and component levels. Gitar uses a loosely coupled binding model in which compo-
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nents are called indirectly through their references, that allows each component can be updated

separately without affecting other components.

.

Figure 3.4 Comparison between Gitar and Remoware

In another work (Taherkordi et al., 2013), a component-based middleware for IoT sensor de-

vices named RemoWare is proposed. This middleware mitigates the cost of software update

deployment on devices by the notion of in situ reconfiguration and provides a component-based

programming abstraction in order to facilitate the development of IoT applications. It has rich

features to support dynamic software update including component distribution and runtime

linking that allows to make changes only in individual components, thus saving resource usage

overhead and energy consumption. The main difference between RemoWare and Gitar is the

way of function calls, which is illustrated in Fig. 3.4 (Ruckebusch et al., 2016).

In RemoWare, all the function pointers are stored in a dynamic invocation table (DIT) with a

one-to-one mapping relation with function IDs. The calls to the function pointers are actually
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performed by the kernel. RemoWare combines a strict binding model for system level and

a loosely coupled binding model in the dynamic component level, the combination of both

models cause a fixed memory overhead for operating the system functions regardless of the

number of software components.

3.4 Discussion

In this section, we present a brief summary of the relevant studies mentioned above and then

compare the characteristics of those studies to our research. The table 3.1 highlights the main

differences between these searches and their limitations.

Unlike the prior studies above, our work focuses on optimizing the total energy consumption

of the update process in the entire network, considering the case that multiple software com-

ponents are updated. We focus on the flash re-writing of the update process inside a device,

which is a main energy consuming operation (Koshy & Pandey, 2005b) (Heo et al., 2010), and

take into account the component update order in every IoT device.
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Table 3.1 Comparison of previous work

Research work Objective Methodology Limitations
ACDP

(Dong & Yu,

2015)

Minimize unnecessary

computation and com-

munication cost of up-

date process in the de-

vice network.

A neighbor discovery

scheme and a source

selection strategy, to-

gether with a random

linear network coding

method to reduce un-

necessary computation

and transmission cost.

Devices need to com-

municate and exchange

a lot of messages. Does

not consider the update

process inside a device.

Triva (Sagin-

bekov & Jhumka,

2014)

Minimize both the time

and energy consump-

tion of the update pro-

cess in even-based net-

works.

A combination of

Trickle and Varuna

protocols to reduce

energy consumed in the

steady phase.

Devices still need to

exchange advertise-

ment messages. Does

not consider the update

process inside a device.

Zephyr (Panta

et al., 2011)

Reduce size of delta

files, mitigate impact

of code shifts in flash

memory.

Comparing the two

software versions at the

byte level to increase

the similarity and

generate a small delta

file.

Only the software in a

single device is consid-

ered. Does not consider

updating multiple com-

ponents.

Hermes

(Panta & Bagchi,

2012)

Reduce size of delta

files, mitigate impact

of code shifts in flash

memory and data shifts

in RAM.

Based on Zephyr, but

it fixes variables to

the same locations by

source code level modi-

fications.

Only the software in a

single device is consid-

ered. Does not consider

updating multiple com-

ponents.

Gitar (Rucke-

busch et al.,
2016)

Facilitate the replacing

of a component, reduce

operation overhead.

Using a loosely coupled

binding model in which

components are called

indirectly through their

references.

Does not optimize the

entire network. Does

not consider the flash

re-writing. Does not

consider updating mul-

tiple components.

RemoWare

(Taherkordi

et al., 2013)

Facilitate the replacing

of a component, reduce

operation overhead.

Combining a strict

binding model for sys-

tem level and a loosely

coupled binding model

in the dynamic compo-

nent level.

Does not optimize the

entire network. Does

not consider the flash

re-writing and the case

of updating multiple

components.



CHAPTER 4

METHODOLOGY

This chapter presents the methodology of our research project. We first introduce the sys-

tem description, which includes the illustrations of the component-based software system in

IoT devices and the IoT networks under consideration. Then, the energy model of the update

process inside a device is presented, followed by the optimization formulation of our schedul-

ing problem. Finally, we introduce our proposed algorithm, called ESUS, to approximate the

optimal update schedule in polynomial time.

4.1 System description

4.1.1 Assumptions

In this subsection, we summarize the assumptions that are made in our study. We consider the

case in which a gateway downloads software updates from a server running on the cloud, and

then sends to a number of devices of the same type (i.e., having the same hardware and software

configuration) which employ the component-based software architecture. A device does not

need to update all new components at a time, but one by one. During the update period, the

device can maintain operation with both old and new components, in other words, at a moment,

some components are completely updated, and some others are still keeping the old version.

Since a component may call some others, their dependency causes the order constraints that

need to be satisfied by the update schedule, in which a component can only be updated when

the components it depends on had all been updated.

A device receives components from both the gateway and other devices in a P2P manner. It

can download from or send to multiple nodes at the same time, but can only download at most

one component from one corresponding node at a time. A device can only send a component

to other devices after it completes downloading this component. We assume that the network

is stable during the update period, it means that no new nodes come and the connections are
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unchanged. The installation time is constant for each component, and therefore this time can

be skipped and is not considered in our model. In the update process in the flash memory of a

device, we assume the energy consumption in a flash re-writing operation is much bigger than

other operations, and is proportional to the number of re-written pages in this operation.

For simplicity, we also assume that all the devices use the same low-energy communication

technology (e.g. Zigbee) in the same environment conditions, and the distances between them

are not much different (such as in smart homes). Therefore, the energy consumed during data

transmission is not significantly affected by the distances and is proportional to the amount

of data. Hence, the total communication energy cost of the network can be considered as

constant because the total amount of transmitted data is fixed and does not depend on the

update schedule. The more realistic assumptions will be taken into account in our future work.

4.1.2 IoT component-based software model

The component-based software system in each IoT device can be considered as a directed

acyclic graph D =<VD,AD > with VD is the set of components and AD is the set of arcs which

presents component dependencies. The graph D can be represented by a matrix MD = {cm,n}
where each binary entry cm,n (m,n ∈VD) with value 1 denotes an arc (m,n) ∈ AD, means that a

component m is called by component n. An example of such a graph is presented in Fig. 4.1b.

In this example, component d calls three components a,b and c, and the device can update

component d only after completing the updates of three others.

As we mentioned in the previous chapters, each component occupies a number of memory

pages (Fig. 4.1a), which is the smallest unit that can be erased and written. The modification

of any byte in a page will result in the entire page needs to be re-written. We describe an

re-writing flash operation by an example in Fig. 4.2, a set of components a,b,c and d that are

located in a sequence in the flash. When c is updated, suppose that the new size of c increases

compared to the previous size (c′ is bigger than c), it leads to a code shift in which all the

components lie after c in the memory will have to be shifted to higher addresses. Thus, even
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Figure 4.1 Software components in flash memory of an IoT device

and the corresponding component dependency graph

if a is not in the update list, it will be re-written in a new location. There is a call from d to

a, the address of this call instruction needs to be altered and the corresponding page - the page

number 4 in Fig. 4.2 has to be re-written. By minimizing code shifts - the number of flash

pages need to be re-written, we can reduce the energy consumed in the update process.

4.1.3 System model

We focus on a model of an IoT edge network including a number of connected component-

based IoT devices and a gateway. A software update is a set of components which is distributed

from the gateway to all devices in a P2P manner, that is devices can exchange components with

others after receive from the gateway. The gateway manages IoT devices and is responsible for

scheduling updates for the devices. By caching the update in the gateway (Brown & Sreenan,

2013), devices do not have to get the new software from the Internet.
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Figure 4.2 Re-written pages when updating component c

We illustrate the network system by a graph G =< VG,EG > in which both the gateway and

devices are considered as “nodes”, with VG is the set of vertices and EG is the set of edges

representing nodes and links, respectively. Let VG = {i| i = 0,1, . . . |VG|}, in which i = 0 repre-

sents the gateway, and IoT devices are corresponding to i > 0. We represent G by a symmetric

matrix MG = {bi, j} where each entry bi, j specifies the bandwidth of the link between two

nodes i and j. We denote by bi, j = 0 if there is no link between the two nodes. An example of

such graph with the corresponding matrix is shown in Fig. 4.3.

The update process of the entire network is implemented as follows: At the beginning, the

gateway stores all components, it calculates the schedule and follows this schedule to control

the update process. At each scheduled time, the gateway sends a message to each assigned

device to specify that the device can download which component from which source. The

process finishes when every node has all the new components. Since the total update time is
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Figure 4.3 A graph presenting an IoT edge network

with the corresponding matrix

also important, it is necessary to limit the amount of time to perform the update in the entire

network by a deadline Tmax.

In our scheduling problem, we need to find an optimal update schedule for the update process

in the entire network, which minimizes the total energy consumption while satisfying the five

constraints: (i) the dependency order of components, (ii) the network topology, (iii) a device

can only send a component after having it, (iv) a device can download at most one component

from one source at a time, and (v) the deadline constraint of updating the entire network. Such

an optimized schedule is computed by a centralized controller running in the gateway (Barcelo,

Correa, Llorca, Tulino, Vicario & Morell, 2016), as presented in Fig. 1.1 in chapter 1.
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4.2 Problem formulation

In this section, we present the energy model for the update process in a component-based IoT

device and the optimization model of our energy-efficient software-update scheduling problem.

4.2.1 Decision variables

We define two sets of decision variables used in our optimization model. Let ai, j,m be a binary

variable that equals to 1 if device i downloads component m from gateway/device j, and let

xi,m be the start time at which device i downloads component m. The update schedule of each

device i is characterized by the sets {ai, j,m} and {xi,m}.

Fig. 4.4 shows a part of an update schedule corresponding to the downloading of two compo-

nents of device 3. The device downloads components b and c from the gateway 0, so a3,0,b and

a3,0,c are both equal to 1. The start times to download are 4 and 0, respectively, then we have

x3,b = 4 and x3,c = 0.

4.2.2 Energy consumption model

This sub-section is dedicated to addressing the SO1, we give details about the energy con-

sumption model of the update process. As mentioned in the Introduction chapter, each new

component is buffered in a dedicated space in EEPROM and then written to the flash. We

denote the size of the update of a component m ∈ VD by snew
m , and the size of m before update

by sold
m . The duration of device i to completely download component m can be calculated as

follows:

ti,m =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, i = 0,

snew
m

∑
j∈VG

ai, j,mbi, j
, i > 0.

(4.1)

In (4.1), ti,m is 0 if device i is the gateway, otherwise ti,m is calculated by dividing the size of m

by the corresponding bandwidth. The amount of energy consumed when a device i updates a
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Figure 4.4 Decision variables correspond to

downloading 2 components of a device

component m can be calculated by multiplying the energy for writing one flash page with the

number of re-written pages, as follows:

Ei,m = e×
(

snew
m
ρ

+λm

(
∑

h∈α(m)

size(h)
ρ

+ ∑
h∈α(m)

∑
k∈β (m)

ch,k

))
, (4.2)

where e is the energy consumption for writing one page, ρ is the size of one page, λm is a binary

indicator that equals to 1 if snew
m �= sold

m , because if m does not change its size (snew
m = sold

m ), we

do not need to shift the following components. α(m) is the set of components lie after m and

β (m) =VD \ (α(m)∪m) is the set of components lie before m in the flash memory. The binary

indicator ch,k is an entry in the matrix MD that equals to 1 if the arc (h,k) ∈ AD, means that k

depends on (calls) h; in this case, when shifting h to new address, we need to re-write the (one)

page in k that contains the instruction calling h. And size(h) is the size of component h at the

moment of updating m, i.e., size(h) is snew
h if h is updated before m, otherwise size(h) is sold

h .
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We calculate size(h) as:

size(h) = snew
h δh,m + sold

h (1−δh,m), (4.3)

where the variable δh,m indicates that h is updated before m or not:

δh,m =

⎧⎪⎨
⎪⎩

1 xi,h + ti,h < xi,m + ti,m,

0 otherwise.
(4.4)

Given a device with a fixed number of components, we can see that the quantity ∑
h∈α(m)

∑
k∈β (m)

ch,k

in equation (4.2) is constant and does not depend on the update order. Since we want to find an

optimal update order to reduce the number of re-written pages, we can skip this quantity with-

out affecting our scheduling solutions. Also, with the assumption that component sizes always

change, means that snew
m �= sold

m ,∀m ∈ VD, so λm is always 1, then we can have the simplified

form of Ei,m as:

Ēi,m =
e
ρ

(
snew

m + ∑
h∈α(m)

(
snew

h δh,m + sold
h (1−δh,m)

))
. (4.5)

The value of Ēi,m depends on each component h ∈ α(m) is updated before or after updating m.

The energy Ei consumed when device i updates all new components is:

Ei = ∑
m∈VD

Ēi,m. (4.6)

In Eq. 4.6, Ei is a function of {ai, j,m} and {xi,m}.

4.2.3 Optimization model

In this sub-section, we tackle the sub-objective SO2 by illustrating our optimization model for

the energy efficient scheduling problem. For the convenience of discussion, we summarize the

mathematical notations used in our model in table 4.1.
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Table 4.1 Notation

Notation Description
VG Set of nodes (gateway and IoT devices)

VD Set of software components

snew
m New size of component m

sold
m Current size of component m

Tmax The deadline for all devices complete updating

ti,m Duration that a node i completely downloads component m

bi, j Bandwidth of the link between two devices i and j

cm,n Binary indicator indicating component n calls component m

Decision variables

ai, j,m Binary variable equals to 1 if device i downloads component

m from device/gateway j

xi,m Start time device i downloads component m

In our model, the objective function aims to minimize the total energy consumption of all the

devices during the update process, as in the following expression:

min
|VG|
∑
i=1

Ei. (4.7)

Constraint (4.8) indicates that each start time needs to be greater or equal to 0.

xi,m ≥ 0, ∀i ∈VG, i > 0,m ∈VD. (4.8)

The gateway gets new software from the cloud, and then it acts as a source to distribute the

updated software to the whole network. It means that the gateway does not download from any

nodes in the network, as presented in condition (4.9).

x0,m = 0, ∀m ∈VD. (4.9)
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During the update process, a device only downloads each component m once from another

node, this specification is indicated in Eq. (4.10).

∑
j∈VG

ai, j,m = 1, ∀i ∈VG, i > 0,m ∈VD. (4.10)

Constraint (4.11) is the network topology constraint, a device i can download from device/-

gateway j only if there is a link (i, j);

ai, j,m ≤ φ(bi, j), ∀i, j ∈VG, i > 0,m ∈VD. (4.11)

where φ(bi, j) = 1 if bi, j > 0, means that link (i, j) exists, otherwise φ(bi, j) = 0 if bi, j = 0.

A device i can only download a component from a device j after j completes downloading this

component, this constraint is described in condition (4.12)

ai, j,m(xi,m − (x j,m + t j,m))≥ 0, ∀i, j ∈VG, i > 0,m ∈VD. (4.12)

where the download duration t j,m is calculated by formula (4.1).

In our problem, we suppose that in a certain link (i, j), there is at most one component is

transferred at any moments.In other words, a device can only download one component from

each other node at a time, it is stated in constraint (4.13)

ai, j,mai, j,n(xi,m − xi,n − ti,n)(xi,n − xi,m − ti,m)≤ 0,

∀i, j ∈VG,m �= n ∈VD. (4.13)

For the software component dependency, as mentioned before, a device can update a compo-

nent m if and only if all the component called from m are already updated. So, we have the

constraint (4.14) indicates that the component download order of each device needs to satisfy
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the component dependency graph.

cm,n(xi,n − (xi,m + ti,m))≥ 0, ∀i ∈VG,m,n ∈VD. (4.14)

And finally, condition (4.15) is the deadline constraint, means that all the component down-

loads need to complete before a deadline Tmax.

xi,m + ti,m ≤ Tmax, ∀i ∈VG,m ∈VD. (4.15)

Due to the constraints (4.12), (4.13) and the discrete objective function, our optimization prob-

lem is an Integer Non Linear Programming (INLP) problem. Since the complexity is very high,

finding the optimal solution with a solver is very time consuming, we design an algorithm to

solve the problem in the next section.

4.3 Proposed Algorithm

This section addresses the sub-objective SO3, which is about building a fast algorithm for our

scheduling problem. We design an algorithm called ESUS, which stands for Energy-efficient

Software Update Scheduling, to approximate the optimal solution of our optimization problem.

Our proposed algorithm employs a procedure P1 to generate an initial update schedule without

taking the deadline constraint Tmax into consideration. In case Tmax is violated by the initial

solution given by P1, ESUS uses another procedure, called P2, to properly adjust the schedule

to reduce the overall update time. These two steps are repeated in a number of iterations with

the purpose to find a near-optimal solution that satisfies the deadline.

4.3.1 Procedure P1

The outline of P1 is described in Algorithm 4.1, this procedure is based on the idea of dividing

the schedule into steps. At a single step, each device i maintains a list of downloadable com-

ponents Li, it is the set of components that the device can update at this moment; and a list of

possible sources Si (other devices or the gateway), where the device can get those components.
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The two lists can be represented as a bipartite graph Bi with each edge join a component m in

Li with a node j in Si, indicating that i can download component m from j. A matching of Bi

represents an assignment of sources-to-components at this step, that is corresponding to a set

of values of ai, j,m.

Algorithm 4.1 Procedure P1 - Generate an initial schedule

1 Input: Network matrix MG, software component matrix MD, software component
sizes {snew

m } and {sold
m }

2 Output: final set of download assignments {ai, j,m}, final set of download time{xi,m}
3 repeat
4 Each step, do
5 for each device i do
6 Construct the bipartite graph Bi ;

7 Do Matching the bipartie graph Bi ;

8 With {m} is the set of downloaded components given by Matching, set each

xi,m is the finishing time of the previous step, then adjust {xi,m} so that

{xi,m + ti,m} has the order as in the flash;

9 end
10 Calculate the finishing time of this step;

11 until all nodes complete downloading all components;

Algorithm 4.2 Matching algorithm

1 Input: Bipartite graph Bi with list of downloadable components Li and list of
available source Si

2 Output: a matching of Bi with maximum number of downloaded component
3 Sort component list in ascending order by number of available sources

4 for each component m in the list Li do
5 if There are some sources that are other devices then
6 Choose the best source (highest bandwidth) between these devices and match

with this component;
7 end
8 end
9 if There are some components that can only be downloaded from gateway then

10 Randomly choose one among these components;

11 end

P1 uses a function to find a matching of Bi with the aim to maximize the number of components

can be downloaded in the step. To do that, the Matching function sequentially chooses the
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component that has the smallest number of sources, then randomly assigns a source to this

component and updates source lists of other components, as described in Algorithm 4.2. After

matching, P1 calculates xi,m for each downloaded component m so that the order of download

complete time (that is xi,m + ti,m) is same as the order of components in the flash, that helps

reduce the number of re-written pages. This idea is based on the update order example in

Introduction chapter.

An example of a bipartite graph is shown in Fig. 4.5, at this step, device 2 has three download-

able components a, b, and c that lie in its flash as in Fig. 4.1a. With this graph, it can get all

the components by downloading a from the gateway, b from device 1 and c from device 3. In

this case, P1 adjusts x2,a, x2,b and x2,c so that the device 2 completes downloading b first, then

c and a, according to the order in the flash.

Figure 4.5 A bipartite graph presenting

downloadable components of device 2

4.3.2 Procedure P2

The procedure P2 does not change the assignments of download sources (i.e. the variables

ai, j,m). Instead, it analyzes the current schedule and shifts the download time xi,m to the earliest

as possible. P2 sequentially executes on each component m, it checks the routes of dissemi-

nating m in the network. For each device i that downloads m, P2 checks if the start download
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Algorithm 4.3 Procedure P2 - Adjust a schedule

1 Input: A schedule S , component dependency graph D
2 Output: A schedule S ′ that has the finishing time less than S
3 Find a topological order of components in graph D
4 for each component m in the topological order do
5 Tm is the tree presents paths of distributing m in the network

6 Traverse Tm by Breadth-first search and sequentially add visited nodes in a list Vm
7 for each node i in the list Vm do
8 if the time {xi,m} can be moved to an earlier moment then
9 Adjust {xi,m} to the earliest as possible

10 end
11 end
12 end

time xi,m can be moved to an earlier one. That is, if the source of i has m sooner than xi,m, and

if i have updated all the necessary components called by m before xi,m, then P2 shifts xi,m to

the earliest as possible. P2 iterates the components in a topological order, it means that when

considering a component m, all the components that m depends on have been already adjusted.

The outline of P2 is presented in Algorithm 4.3.

Algorithm 4.4 ESUS Algorithm

1 Input: Number of iterations N, deadline Tmax, network matrix MG, software
component matrix MD, software component sizes {snew

m } and {sold
m }

2 Output: final set of download assignments {ai, j,m}, final set of download time{xi,m}
3 for t from 1 to N do
4 Generate schedule St by P1;

5 if St does not satisfy T max then
6 Adjust St by P2;

7 end
8 if St still does not satisfy T max then
9 Start new iteration t +1;

10 end
11 else
12 if St is better than current best solution then
13 Update the best solution is St ;

14 end
15 end
16 end
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4.3.3 ESUS algorithm

Our main algorithm - ESUS is presented in Algorithm 4.4. Due to the randomness of P1,

ESUS performs the two procedures in a number N of iterations and selects the best solution.

The bipartite graph construction procedure has complexity O(M2 ×N) with M is the number

of components and N is the number of nodes. The matching procedure requires O(M ×N)

steps. And the procedure P2 requires O(M2 ×N) steps. So, in general, ESUS algorithm has

polynomial complexity.

4.4 Conclusion

In this chapter, we have presented the research methodology. We first introduced the descrip-

tions of the component-based software system in IoT devices and the IoT networks under

investigation. Then, we proposed an energy model of the update process inside a device, based

on the analysis of updating a component-based software system in the flash memory. The en-

ergy model is followed by the optimization formulation of our scheduling problem, with the

objective of minimizing the total energy consumption of updating the entire network, while

satisfying a deadline constraint. Finally, we presented our proposed algorithm to find a near

optimal update schedule in polynomial time.





CHAPTER 5

EVALUATION RESULTS

This chapter is dedicated to the simulation results of our research project, in which we examine

the proposed scheduling algorithm in different network instances. We first describe our evalu-

ation methodology, after that, the network settings and the optimization parameter settings are

presented. Then, we illustrate different experimental scenarios, together with corresponding

results and discussions.

5.1 Evaluation methodology

We evaluate the efficiency of ESUS in three typical network topologies of IoT that are tree,

partial mesh and full mesh. For each topology, we define different network configurations

by varying the number of IoT devices from 10 to 30, and randomly creating various software

component sets from 5 to 9 components. These configurations are suitable for common IoT

applications such as smart buildings or smart homes.

To evaluate results of ESUS algorithm, we use the CPLEX solver (CPLEX, 2019) to obtain the

optimal update schedules on all the network configurations. The optimal results are compared

to the solutions given by ESUS. We additionally evaluate the running time of our algorithm

and the solver to examine the algorithm’s time complexity.

Besides the optimal results, we also employ CPLEX to find a random feasible schedule for

each network configuration. A feasible schedule is a schedule that satisfies all the constraints

but does not minimize the energy objective function. We consider the random scheduling is

a simple method for finding update schedules and can be used as a baseline to evaluate our

algorithm. We calculate the energy consumption of those random schedules and compare them

to results of ESUS. The gap between the results of our algorithm and random scheduling can

show the efficiency of our approach.
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Our evaluation method can assess the proposed algorithm in significant aspects. First, it can

show that if ESUS algorithm can compute schedules that are close to the optimal ones. Second,

the evaluation method can evaluate the running-time efficiency of ESUS compared to the solver

when solving a high complexity problem. And finally, the network configurations used in the

simulations help us to see if our algorithm can work effectively in practical network topologies

that simulate real IoT applications.

The proposed algorithm ESUS is implemented in Java, it takes as input all the matrices repre-

senting the network and component dependency graphs, together with the old and new com-

ponent size arrays. The outputs of the algorithm are the sets {ai, j,m} and {xi,m} for each IoT

device. The optimization model is written in OPL and running in the CPLEX IDE. Both the

CPLEX studio and ESUS Java program are run on a desktop computer with 3 GHz 4-core

processor with 8 Gb RAM.

5.2 Simulation settings

5.2.1 Network settings

The number of nodes |VG| is set from 10 to 30. For simplicity, we set the bandwidth of every

connection between a device and the gateway by bg = 4 Kilobytes per second (KB/s), and the

bandwidth of each connection between two devices is set by bd = 8 KB/s. That is, bi, j = bg

if i = 0 or j = 0, and otherwise bi, j = bd . These bandwidth values are suitable for real cases

that devices have low processing and communication capacities, and are located far from each

other. In terms of topology, we define three typical topologies of IoT networks, that are tree,

partial mesh and full mesh. The purpose is to see the effectiveness of our algorithm in different

kinds of network connectivity.
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5.2.2 Optimization settings

The deadline Tmax is set to 100 seconds, the number of iteration N in ESUS algorithm is set to

20 and the page size ρ is set to 4 KB, which is a common page size of flash memory (Feng,

Feng, Yu, Tong & Liu, 2017). Our selected parameters are summarized in Table 5.1.

Table 5.1 Parameter settings in simulations

Parameter ρ bg bd sold
m Tmax N

Value 4KB 4KB/s 8KB/s 8KB 100 s 20

5.2.3 Software component sets

The number of software components |VD| is varied from 5 to 9. Given that the popular sizes of

Contiki components range from 2KB to 40 KB (Ruckebusch et al., 2016), in our simulation,

we set every sold
m to the same fixed size of 8 KB for each component set, and the corresponding

snew
m is set by a multiplication of sold

m and a random number ranging from 1 to 4. A constraint

graph D is also randomly created for each set of components. An example of component sizes

is illustrated in Table 5.2, the nine components of this set are coupled in a constraint graph as

shown in Fig. 5.1.

Table 5.2 An example of sizes of a 9-component set used in the simulation

Component a b c d e f g h k

snew
msnew
msnew
m (kB) 16 32 32 24 32 32 32 16 16

sold
msold
msold
m (kB) 8 8 8 8 8 8 8 8 8
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Figure 5.1 The component dependency graph

of the 9-component set in Table. 5.2

5.3 Examination of tree topology

5.3.1 Scenario description

In the first scenario, we consider a typical topology of IoT networks in which device connec-

tions form a tree rooted at the gateway. The network includes ten nodes and is represented in

Fig. 5.2, three nodes 1,2 and 3 are directly connected to the gateways and other nodes com-

municate with the gateway through these nodes. We perform our algorithm and the solver with

different component sets as described above.

5.3.2 Results

Fig. 5.3 shows the results corresponding to the software component sets. The energy consump-

tion is calculated by multiplying the total number of re-written pages with 92.57 μJ, which is

the energy for re-writing one 4 KB flash page, according to (Park et al., 2011). We can ob-

serve that results of ESUS are close to the minimal solutions given by CPLEX, with 12.8%

difference on average and the closest is 4.1% different. We can also see that ESUS’s results

are better than the random schedules in most cases, it shows that our algorithm can reduce a
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Figure 5.2 The tree topology in the first simulation scenario
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Figure 5.3 Energy consumption with different

component sets in the tree topology

significant amount of energy consumed during the update process. Note that, the total energy

of the network in the case using the 7-component set can be greater than the 8-component
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one, because we have to take into account the significant effects of component sizes and the

dependency graphs, which are both randomly generated.

5.4 Examination of partial mesh topology

5.4.1 Scenario description

In the second scenario, we define a partial mesh topology as shown in Fig. 5.4. In this network,

IoT devices have more connections compared to the tree topology, device 2 can connect directly

to 1 and 3, also 4 and 5, 6 and 7, 8 and 9 can connect to each other.

1

2
3

0

4 5 6 7 8 9

Figure 5.4 The partial mesh topology in the second

simulation scenario

5.4.2 Results

The corresponding results of this network instance are represented in Fig. 5.5, with the same

component sets as in the first scenario. The optimal results of CPLEX are the same as in the

tree network. Besides, we can see that the results of ESUS are closer to optimal ones, compared

to its results in the tree topology, with 7.0% difference on average. The reason for this is, when
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nodes have more connections, ESUS can be easier to find efficient scheduling solutions. We

can also observe that our algorithm are better than the random schedules in all cases.
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Figure 5.5 Energy consumption with different

component sets in the partial mesh topology

5.5 Examination of full mesh topology

5.5.1 Scenario description

In the last scenario, we evaluate a mesh topology in which all devices can connect to each other

as well as connect to the gateway, so the graph G presenting the network is a complete graph.

Such topology can be common in smart homes and smart buildings applications.

5.5.2 Evaluation of different software component sets

Fig. 5.6 shows the results on a network instance of 10 nodes with the same software component

sets as in the two first scenarios. We remark that the optimal results are still unchanged, and

the results of ESUS are almost the same as in the second scenario, with 7.1% difference on
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average and the closest is only 3.2% different. Fig. 5.6 also shows that ESUS outperforms the

random schedules, with up to 30.8 % energy saved.
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Figure 5.6 Energy consumption with different component

sets in the full mesh topology with 10 nodes

5.5.3 Evaluation of different number of nodes

In another sub-scenario, we fix the component set is the one represented in Table 5.2 and

Fig. 5.1, and examine the results with full mesh networks of different numbers of nodes. As

shown in Fig. 5.7, ESUS can approximate the optimal solutions in all cases, and its results

are better than random schedules in most cases. We also see that both ESUS solutions and the

optimal ones are almost linearly related to the number of nodes, that is because of the full mesh

topology in our simulation.

5.5.4 Effect of the deadline

In this sub-scenario, we fix the number of nodes in the full mesh topology to 10 and examine

the results with different values of Tmax. The component set used in this simulation is a set
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Figure 5.7 Energy consumption with different number

of nodes in the full mesh topology

Figure 5.8 Energy consumption with different Tmax
in the 10-node full mesh topology

of 7 components. The results are illustrated in Fig. 5.8, the missing value indicates that the

solution is infeasible. The optimal solution remains unchanged (71.65 mJ) with the values 40,
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50 and 100 of Tmax, and it increase slightly to 72.20 mJ when Tmax downs to 30. As for ESUS,

its result is the same for Tmax = 50 and 100, it also increase a little when Tmax = 40. However,

with Tmax = 30, ESUS could not find a feasible solution.

5.5.5 Running time evaluation

We also evaluate our algorithm in terms of performance, the running time of ESUS and CPLEX

are compared. We perform on three different sets from 7 to 9 components with full mesh

networks of different numbers of nodes and Tmax = 100s. The results are shown in Table 5.3,

let TESUS be the average time taken by ESUS to find optimal solutions, and TCPLEX be the

average elapsed time by CPLEX solver. We can observe that ESUS runs much faster than

CPLEX, especially when the number of nodes increases. Note that, in case of finding random

schedules, the running time of CPLEX is significantly reduced because it only has to search

for a feasible solution.

Table 5.3 Comparison between average running time of ESUS algorithm and CPLEX

Number of Nodes 10 15 20 25 30

TCPLEXTCPLEXTCPLEX (s) 9.43 94.15 642.72 787.84 8734.43

TESUSTESUSTESUS (s) 0.044 0.053 0.084 0.099 0.142

5.6 Discussion

In this chapter, we have presented the simulation results of our update scheduling method in

different network instances. Various component sets and different numbers of nodes were

taken under investigation. The results of ESUS were compared to the optimal solutions and

the random schedules given by CPLEX solver. We also evaluated our algorithm in terms of

running time, to show the efficiency of it compared to the solver, which often takes a lot of

time to generate the optimal solution.
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In summary, our proposed algorithm could reduce a notable number of pages needed to be

re-written during the update process, compared to random schedules, that helps to save a sig-

nificant amount of energy consumption. The results of ESUS were close to the minimal energy

consumed in optimal schedules given by CPLEX solver. Note that in all cases, the deadline

Tmax was always satisfied by the schedules given by ESUS. Moreover, our algorithm performs

much faster than the solver to give the solution. This advantage can be exploited to quickly

adapt new requirements of IoT applications.

The simulation results show the efficiency of our update method to minimize the energy con-

sumption of updating component-based IoT device networks. They also show the advantage of

P2P update mechanism with centralized control by a gateway.





CONCLUSION AND RECOMMENDATIONS

In the technological revolution represented by the Internet of Things (IoT), a massive number

of IoT devices can interconnect and provide various intelligent services and applications. With

the IoT boom, software update is one of the most important tasks of IoT systems in order to

adapt incremental user requirements and to maintain effective operations. The scale of IoT

brings two main challenges to software update management in IoT device networks. The first

is, how to delivery updates to IoT devices in an energy efficient way. And second, how to avoid

long system downtime during the update process.

In this thesis, we addressed the problem of energy efficient software update scheduling in IoT

device networks, focusing on the kind of devices that employ the component-based software

system. In order to solve the problem, we introduced a novel energy model of the update

process inside a single device, taking into account the component update order. After that, we

formulated the scheduling problem as an optimization problem in the form of integer non-linear

programming (INLP), with the objective function to minimize the total energy consumption of

the update process in the entire network.

Due to the high complexity of the problem, we then proposed the ESUS algorithm to find

a near-optimal schedule for updating all devices in the network. Our algorithm divides the

schedule into steps and tries to assign the downloads of each device in the best way. To evaluate

our method, we employed the CPLEX solver to obtain optimal schedules and random ones,

then compared these results to the outputs of ESUS. Different network instances and various

software component sets were examined. Through simulation results, we showed that our

algorithm can effectively approximate the optimal solution given by CPLEX solver with much

lower running time.

Our main contributions in this research project are as follows:
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- A novel energy model of the update process of component-based IoT devices, considering

the component update order.

- A mathematical model of the optimization problem for scheduling updates over an IoT

network, that minimizes the total energy consumption of devices during the update.

- An algorithm to approximate the optimal schedule for updating all devices in the network.

In the future, we will extend our work by considering different application demands, so that

devices have different software component sets which make more complexity for the update

management. Also, other kinds of software execution environments such as virtual machines or

image-based will be taken into account. In addition, we are interested in extending the research

problem by considering multiple gateways in the network. In this context, the network can have

different sources of updates and an efficient collaboration scheme between gateways needs to

be proposed.



APPENDIX I

ARTICLES PUBLISHED IN CONFERENCES

This thesis is related to two papers published in conferences:

- "Energy Efficient Scheduling for Networked IoT Device Software Update". CNSM 2019

(short paper), Halifax, Nova Scotia, Canada. Published in October 2019.

- "Energy Efficient Software Update Mechanism for Networked IoT Devices". IEEE Globe-

com 2019, Waikoloa, Hawaii, USA. Published in December 2019.
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