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Détection, sur les plates-formes de distribution des applications mobiles, des opinions
frauduleuses, évaluation de l’utilité des avis des utilisateurs et extraction des aspects

qualité en utilisant des techniques d’apprentissage automatique

Necmiye GENC

RÉSUMÉ

Alors que les appareils mobiles ont dépassé l’accès Internet fixe, les applications mobiles et

les plates-formes de distribution ont pris de l’importance. Ces plates-forme de distribution

permettent aux utilisateurs de rechercher et d’acheter des applications mobiles, puis de donner

leurs opinions sous forme d’avis et de notes. Un avis peut contenir des informations critiques

sur l’expérience utilisateur, les demandes de fonctionnalités et les rapports de bogues. Les avis

des utilisateurs sont précieux non seulement pour les développeurs et les éditeurs de logiciels

intéressés à connaître l’opinion de leurs clients, mais également pour les utilisateurs potentiels

désireux de savoir ce que les autres pensent de l’application mobile.

Bien que certains chercheurs aient répertorié les techniques et méthodes d’analyse d’opinion,

aucune étude systématique de la littérature n’a encore fait état de problèmes d’extraction

d’opinion et de détection des opinions frauduleuses dans une plate-forme de distribution d’appli-

cations mobiles.

L’extraction d’opinions nécessite un pré-traitement au niveau du texte et du contenu, y compris

le filtrage du contenu sans opinion et l’évaluation de la fiabilité et de l’authenticité des critiques.

La prédiction de l’utilité des applications mobiles et les problèmes de détection des opinions

frauduleuses n’ont guère retenu l’attention de la littérature universitaire. De plus, la pertinence

des fonctionnalités extraites n’a pas fait l’objet d’une validation croisée avec les principaux

concepts de génie logiciel.

Ce projet de recherche a d’abord fait une revue systématique de la littérature sur l’évaluation

des études d’extraction des opinions sur les plates-formes de distribution d’applications mo-

biles. Pour combler les lacunes identifiées dans cette revue de littérature, nous avons ensuite

utilisé un réseau de neurones convolutifs pour apprendre à représenter des documents pour la

détection de révisions frauduleuses en caractérisant un jeu de données d’avis d’utilisateurs sur

des plates-formes de distribution d’applications mobiles, ce qui inclut des analyses de vérités

et de fraudes. Nos résultats ont révélé que notre méthode de détection basée sur un réseau

de neurones atteignait une précision de 82,5%, tandis qu’un modèle de classification de type

Machine Support Vector Machine (SVM) n’atteint que 70% de précision, malgré l’utilisation

de diverses combinaisons de fonctions.

Nous avons ensuite comparé quatre modèles de classification afin d’évaluer l’utilité des avis

des utilisateurs d’une plate-forme de distribution pour proposer un modèle prédictif reposant

sur des méta-données des avis, ainsi que sur des caractéristiques structurelles et lexicales pour

la prédiction de l’utilité fonctionnelle de ces avis.
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Dans la dernière partie de cette étude, nous avons construit un jeu de données annotées des

opinions sur des applications mobiles pour la tâche d’extraction d’aspects de qualité, basé sur

la norme ISO 25010 - Normes d’évaluation de la qualité des produits et logiciels. Nous avons

ensuite utilisé deux modèles de réseau neuronal profond pour l’extraction d’aspects à partir des

avis d’utilisateurs: bidirectionnel long-court avec mémoire de termes et champ aléatoire condi-

tionnel (Bi-LSTM + CRF) et réseaux de neurones à structure profonde et champ aléatoire con-

ditionnel (CNN + CRF). Les deux modèles ont obtenu un score F1 de près de 80% (moyenne

pondérée de la précision et du rappel, qui prend en compte à la fois les faux positifs et les faux

négatifs) avec l’appariement exact d’aspects, et un score F1 de 86% dans l’appariement partiel.

Mots-clés: Ingénierie des exigences, apprentissage automatique, exploration de textes, appli-

cations mobiles, détection de spam, évaluation de l’utilité des revues, l’extraction des aspects

qualité



Detection of Spam Review on Mobile App Stores, Evaluation of Helpfulness of User
Reviews and Extraction of Quality Aspects Using Machine Learning Techniques
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ABSTRACT

As mobile devices have overtaken fixed Internet access, mobile applications and distribution

platforms have gained in importance. App stores enable users to search and purchase mobile

applications and then to give feedback in the form of reviews and ratings. A review might

contain critical information about user experience, feature requests and bug reports. User re-

views are valuable not only to developers and software organizations interested in learning the

opinion of their customers but also to prospective users who would like to find out what others

think about an app.

Even though some surveys have inventoried techniques and methods in opinion mining and

sentiment analysis, no systematic literature review (SLR) study had yet reported on mobile

app store opinion mining and spam review detection problems. Mining opinions from app

store reviews requires pre-processing at the text and content levels, including filtering-out non-

opinionated content and evaluating trustworthiness and genuineness of the reviews. In addition,

the relevance of the extracted features are not cross-validated with main software engineering

concepts.

This research project first conducted a systematic literature review (SLR) on the evaluation of

mobile app store opinion mining studies. Next, to fill the identified gaps in the literature, we

used a novel convolutional neural network to learn document representation for deceptive spam

review detection by characterizing an app store review dataset which includes truthful and spam

reviews for the first time in the literature. Our experiments reported that our neural network

based method achieved 82.5% accuracy, while a baseline Support Vector Machine (SVM) clas-

sification model reached only 70% accuracy despite leveraging various feature combinations.

We next compared four classification models to assess app store user review helpfulness and

proposed a predictive model which makes use of review meta-data along with structural and

lexical features for helpfulness prediction.

In the last part of this research study, we constructed an annotated app store review dataset

for the aspect extraction task, based on ISO 25010 - Systems and software Product Quality

Requirements and Evaluation standard and two deep neural network models: Bi-directional

Long-Short Term Memory and Conditional Random Field (Bi-LSTM+CRF) and Deep Con-

volutional Neural Networks and Conditional Random Field (CNN+CRF) for aspect extraction

from app store user reviews. Both models achieved nearly 80% F1 score (the weighted average

of precision and recall which takes both false positives and false negatives into account) in

exact aspect matching and 86% F1 score in partial aspect matching.
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INTRODUCTION

Customers now buy a very large number of goods and services directly from online websites

and digital distribution platforms. They often rely on others’ reviews or recommendations,

either from online purchase web sites or review sites, to finalize their purchasing decisions.

Given the sheer volume of reviews, reading and interpreting them all and analyzing the opinions

and sentiments within the text would be time consuming and, sometimes, deceptive for end-

users because of low-quality and opinion spam reviews.

Mobile devices bring significant advantages to their users in terms of portability, location

awareness and accessibility. Improvements in hardware and software capabilities of hand-

held devices and decreases in prices have led to a huge expansion of such devices and related

markets. Individual developers or software organizations can easily distribute their applica-

tions via app stores. All major mobile operating system vendors, including Apple, Google and

Microsoft, run their own app stores that give them control over the applications on their soft-

ware distribution platforms. The increasing demand for various kinds of mobile apps running

on different devices has led to a corresponding increase in the number of mobile developers

and competition in app stores.

Searching mobile app stores is, for users, the preferred way of discovering new apps. Accord-

ing to Google (2015): (i) search is a driver of app discovery, and (ii) recommendations and also

interest and fun level are top reasons to download an app. Given that the number of available

apps in app stores is around 7 million Statista (2018), it gets more difficult for users to find the

exact app they are looking for.

Ratings and reviews are therefore considered valuable tools that help users decide which apps

to download. In addition, understanding user feedback, anticipating user experience and ac-

ceptance of the app may be a key success factor for mobile app developers and software orga-

nizations.
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App stores provide a user feedback capability that is particularly useful and interesting in terms

of software requirements evolution. User ratings and reviews are user-driven feedback that

may help improve software quality and address missing application features. Besides, devel-

opers and software organizations build their app store reputation based on reviews and ratings.

Hence, over the past several years, various techniques and automated systems have been pro-

posed to mine, analyze and extract user opinions and sentiments from app store review text.

Opinion mining and sentiment analysis have long attracted researchers’ interest. However,

it is only after the early 2000s that it became a major part of the decision-making processes

with the growing availability and popularity of opinion-rich resources such as online review

sites, personal blogs and social media. The increasing interest in opinion mining and sentiment

analysis is partly due to the variety of its application areas: business intelligence, recommen-

dation systems and human-computer interactions with a wide range of problems to be solved

such as lexicon creation, subjectivity and sentiment classification, aspect extraction and topic

summarization.

A number of researchers have studied opinion mining since the late 90s; however, the in-

troduction of machine learning techniques and annotated datasets such as customer review

datasets Hu & Liu (2004), Ding et al. (2008), pros and cons dataset Ganapathibhotla & Liu

(2008), Amazon product review dataset Jindal & Liu (2008) and blog author gender classifi-

cation dataset Mukherjee & Liu (2010) have accelerated the research in the domain. With the

emergence of different opinion mining domains such as social media (Twitter, app ecosystems,

micro blogs, etc.), the focus of the studies has since shifted into short-length texts, contradiction

analysis and spam detection.

Mobile app store reviews have some characteristics that set them apart from other kinds of texts,

such as being short, informal and ungrammatical, consisting of incomplete sentences, elonga-

tions and abbreviations that make them difficult to handle. Traditional text mining techniques,
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ranging from Part Of Speech (POS) tagging to dependency parsing, cannot be applied to this

kind of short text. Besides, as short texts usually do not possess sufficient signals to support

statistical text processing techniques based on term counts and term-by-document frequencies,

new approaches must be introduced to better handle them.

Given the impact of user reviews on purchasing decisions and strong incentives of fraudsters

to game the rating system, detecting opinion spam has become more critical than ever to pro-

tect product reputation. A deceptive opinion spam is a review with fictitious opinions that is

deliberately written to appear authentic where the intention ranges from self-promotion to de-

stroy a competitor’s reputation. Within the corpus of mobile app stores, scammers use a great

many bogus user accounts or computer bots in order to download applications multiple times

and write fraudulent reviews. In this way, the applications begin appearing improperly on the

top charts and have greater visibility in an app store search. In addition, there are numerous

websites for purchasing reviews, such as Appthurst 1, AppSally 2 and Mobiaso 3.

Even though spam and deceptive reviews are widespread and may have significant manipula-

tive effects on app store success, it is only recently that app store regulators have begun to crack

down on spam reviews Ahn (2016). On the other hand, most of the time deceptive reviews are

not easily identifiable by human readers; consequently, there are few good sources of labeled

data for research purposes. Indeed, in the absence of a gold-standard dataset, earlier studies

have had to utilize non-standard evaluation procedures Ott et al. (2011).

Unbiased or non-spam user reviews may be numerous but of varying quality. The terms such

as ‘Liked’, ‘Not recommend’, ‘OK app’ do not convey any information about why users like an

application or which aspects they like the most. Secondly, most reviews are poorly written and

1 https://appthurst.com

2 https://www.appsally.com

3 https://mobiaso.com
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the information they contain is often not useful, or highly personal and device- or technology-

specific. Sophisticated ranking schemes, such as found in the Apple app store and Google

Play, measure reviews by their ‘helpfulness’ as rated by users. In the Apple app store, the

button under each user review allows other users to vote on whether the review is helpful or

not: reviews may also be sorted from Most Helpful to Less Helpful based on these voting

results. However, for newly written reviews or less popular applications, there would not be

enough ‘helpfulness’ voting to be of any use.

Users prefer having comparisons of specific features of different products available rather than

having to gather isolated opinions about a single product themselves. In addition to average

rating on a five-star scale and corresponding ranking on the app store, users prefer learning

about others’ experience with the app, including which aspects/features they liked or disliked

most. Each user has his/her own preferences and while one user might feel strongly about

appearance, others may focus on functional or technical aspects. Hence, there is a need to

extract and rate individual application features. However, to be able to make such comparisons,

domain knowledge (ability to spot features) is required.

This doctoral research mine user opinions and extract targeted software features from app store

user reviews for the use of both developers and end-users. To do these, we first develop:

- A model to detect opinion spam (deceptive) user reviews.

- A model to evaluate review usefulness.

- An automated system to extract application aspects for both user and developers.
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These models aim to help:

- App ecosystem operators to identify spam and deceptive reviews as well as ranking frauds.

- Users to come up with an informed decision about applications.

- Developers to obtain users’ feedback about most liked or expected features and bugs in

mobile apps.

This research thesis is structured as follows:

- Chapter 1 summarizes the literature review results. It is based on five research questions to

search the literature and evaluation criteria to select the relevant studies.

- Chapter 2 presents the problem statement, research motivation and objectives of the thesis.

This chapter also presents the overall research methodology including the phases:

1. Development of an app store crawler to populate the dataset.

2. Construction of a model to identify opinion spam (deceptive) reviews.

3. Development of a review helpfulness assessment model.

4. Development of a deep learning model for aspect extraction mobile app features.

- Chapter 3 presents the details of opinion spam review detection model including:

1. Background Information on Word Embeddings and Convolutional Neural Networks

(CNN).

2. Research Methodology.

3. Implementation.

4. Experiments and Results.
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- Chapter 4 presents the development and the details of automatic assessment of review help-

fulness, including the following steps:

1. Feature Generation.

2. Selection of the Model.

3. Model Refinement.

4. Experiments and Results.

- Chapter 5 presents the app aspect extraction task that includes:

1. Background Information on Aspect Extraction and ISO 25010.

2. Research Methodology.

3. Annotation of Mobile App Aspects.

4. Details of Aspect Extraction Models.

5. Implementation.

6. Experiments and Results.

- Chapter 6 presents a summary of the key contributions and suggests some future work.



CHAPTER 1

LITERATURE REVIEW

The success of the Apple app store has led to the launch of other similar stores and services,

with an exponential growth both in the number of applications and revenues. Data mining and

opinion aggregation from these platforms has therefore become an important research topic.

1.1 Need for a systematic review

There is quite a number of survey studies on opinion mining and sentiment analysis in the liter-

ature. Pang & Lee (2008) made a comprehensive contribution to opinion mining and sentiment

analysis survey studies by covering applications, major tasks of opinion mining, extraction

and summarization, sentiment classification and also the common challenges in this new re-

search field. Tsytsarau & Palpanas (2012) surveyed the development of sentiment analysis and

opinion mining research studies including spam detection and contradiction analysis. Their

survey study provided 26 additional papers compared to Pang & Lee (2008)’s preliminary sur-

vey. The survey of Tang et al. (2009) had a narrower scope, examining the opinion mining

problem only for customer reviews on the web sites that couple reviews with e-commerce

like Amazon.com or from sites that specialize in collecting user reviews in a variety of areas

like Rottentomates.com. Cambria et al. (2013) revealed the complexities involved in opinion

mining with respect to current use along with future research directions.

Even though some surveys have reviewed the techniques and methods in opinion mining and

sentiment analysis from text, no Systematic Literature Review (SLR) had yet reviewed the

literature regarding mobile app store data mining, opinion aggregation and spam detection.

Martin et al. (2015) provided an initial survey into the literature from 2000 to November 2015;

however their survey is not a SLR and they were particularly interested in the studies that

combine technical (Application Program Interface (API) usage, size, platform version, etc.)

and non-technical attributes (category, rating, reviews, installs, etc.) of mobile apps.
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The goal of our SLR was to methodically review and gather research results for specific re-

search questions and to develop evidence-based guidelines for app store practitioners. We

developed a set of five research questions to guide the literature review process and performed

an extensive search to find publications that answer the research questions.

The objectives of this systematic literature review are to identify:

- Proposed solutions for mining online opinions in app store user reviews.

- Challenges and unsolved problems in the domain.

- Any new contributions to software requirements evolution, and

- Future research directions.

1.2 Systematic review methodology

The SLR was conducted following the guidelines of Kitchenham (2004). The activities per-

formed in the course of the SLR were structured into three phases: (1) planning, (2) conducting

the review, and (3) reporting- see Figure 1.1. The individual tasks performed in each activity

are described in sub-sections 1.2.1–1.2.3.

1.2.1 Planning

The planning phase clarified the specific objectives of the SLR, that is: to identify mobile app

store studies, the challenges faced when mining app store data, how these challenges have been

overcome, and any unsolved challenges. In addition, we specified the following five research

questions and the motivations behind the questions.

1.2.1.1 Research questions RQ)

RQ1: Which specific data mining techniques are used for reviews on software distribution

platforms?
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Motivation: App stores provide a wealth of information in the form of customer reviews.

Opinion mining and sentiment analysis systems have been applied to various kinds of texts

including newspaper headline, novels, emails, blogs, tweets and customer reviews. Different

techniques and automated systems have been proposed over the years by researchers to ex-

tract user opinions and sentiments within the text over the years. Unlike documents or long

length text, mobile app store reviews have some unique characteristics such as being short,

informal and sometimes even ungrammatical consisting of incomplete sentences, elongations

and abbreviations that make them difficult to handle. This RQ1 question targets approaches

and techniques proposed particularly for app store user review mining and opinion extraction

problems.

RQ2: How do the studies address the ‘domain dependency’ challenge for app store reviews?

Motivation: Vocabulary varies within different contexts and domains, and the same term might

mean different opinions. An opinion classifier trained using opinionated words from one do-

main might perform poorly when it is applied to another domain: Not only the words and the

phrases, but also that the language structure could differ from one domain to another. Hence,

the language structure and linguistic context of opinion and sentiments terms play a key role in

opinion mining: domain adaptation methods are also required to be considered while dealing

with app store user reviews. This RQ2 question aims to identify how mobile app store opinion

mining studies tackle the domain dependency problem.

RQ3: What criteria make a review useful?

Motivation: Quality varies from review to review and low quality reviews might not convey

any signal to be used for information extraction. To tackle spam identification problem, it is

critical to have a mechanism or criteria to assess the quality of reviews and to filter out low-

quality or noisy reviews. While review helpfulness is assessed manually by users in mobile app

stores, there also exists some automated systems to assess and rank reviews in accordance with

their usefulness or helpfulness. This RQ3 question aims to identify the methods or criteria used

to differentiate useful app store reviews from the others. Furthermore, this research question

also searches for automated systems that evaluate review usefulness and helpfulness.
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Phase 1:
Plan Review

1. Specify Research Questions

2. Develop Review Protocol

3. Validate Review Protocol

4. Identification of Relevant Studies

5. Selection of Primary Studies

6. Extraction of Required Data

7. Information Synthesis

Phase 2:
Conduct Review

8. Writing Review Report

9. Validation of Review Report

Phase 3:
Reporting the review

Figure 1.1 SLR Process

RQ4: How can spam reviews be differentiated from legitimate reviews?

Motivation: With the number of online reviews increasing, the number of fraudsters who
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produce deceptive or untruthful reviews increases as well. It is an essential task to identify and

filter out the opinion spam. Different studies and techniques have been proposed for the spam

review detection problem. The opinion spam identification task has great impact on industrial

and academia communities. Our objective with this RQ4 research question is to investigate

spam review and ranking fraud detection methods and techniques for online stores and mobile

app stores.

RQ5: Does the study extract targeted/desired software features from application reviews?

Motivation: Apart from app’s average rating over a 5-star scale and its corresponding ranking

in app store, users would like to learn about others’ experience with the app and which aspect-

s/features they liked or disliked most. The information obtained from mobile app reviews

is also valuable for developers to get users’ feedback about most liked or expected features

(e.g., requirements elicitation) as well as bugs in the application (e.g., software quality and

software evaluation). This RQ5 research question focuses on aspect-based opinion mining

studies extracting application features and aims to identify the studies that make automated

application feature extraction from user reviews.

1.2.1.2 Development and validation of the review protocol

The review protocol defines the activities required to carry out the literature review. A review

protocol helps reduce researchers’ biases and defines the source selection and searching pro-

cesses, the quality criteria and the information synthesis strategies. This subsection presents

the details of our review protocol.

The following digital libraries were used to search for primary studies:

- Science Direct

- IEEExplore

- ACM Digital Library
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- Citeseer library (citeseer.ist.psu.edu)

- Springer Link

- Google Scholar

Our research covered the period between January 2010 and November 2017. The following

search query was created by augmenting the keywords with possible synonyms. While con-

ducting the review, we examined the reference list of primary studies to determine if there were

additional studies not captured by our research query.

((mobile OR software) OR ((apps OR app OR application) OR (market OR ecosystem OR

AppStore OR store))) AND ((data OR (online OR review) OR user OR (text OR comment OR

vocabulary)) OR rating OR (opinion OR sentiment) OR (mining OR analysis OR processing)

OR (feature OR requirement) OR request OR expectation OR (bug OR quality OR complain

OR issue) OR (usefulness OR helpfulness))

Study Selection Procedure: We systematically selected the primary studies by applying the

following four steps:

1. We examined the paper titles to eliminate studies unrelated to our research focus.

2. We reviewed the abstracts and keywords in the remaining studies. If either the abstracts or

keywords did not provide the necessary information, we reviewed the results and conclu-

sion sections to determine if the study was relevant.

3. We filtered the remaining studies in accordance with the inclusion and exclusion criteria

given in Table 1.1.

4. We double-checked the reference list of the initial primary studies to identify additional

studies that might be relevant to our search.
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Table 1.1 SLR inclusion and exclusion criteria

Inclusion criteria Exclusion criteria
Case studies and surveys of text analy-

sis, opinion mining and sentiment analysis

from app store reviews

Papers that present opinions without suf-

ficient and reliable supporting evidence.

Preliminary analysis of mobile app store

reviews, vocabulary, trends.

Studies not related to the research ques-

tions.

Papers searching application feature re-

quests and bug reports within review text.

Papers that do not comply with the evalu-

ation criteria in Table 1.2.

Papers that describe the criteria of what

makes a review useful and helpful for read-

ers.

Preliminary conference papers of journal

papers by same author(s).

Papers that distinguish fake reviews and

spams from legitimate ones.

Table 1.2 SLR quality checklist (Adapted from Keele (2007))

No Question /Criteria
1 Are the aims of the study stated clearly?

2 Is the basis of evaluative appraisal clear?

3 How defensible is the research design?

4 Are data collection methods described adequately?

5 Has the approach to, and formulation of, analysis been con-

veyed adequately?

6 Has the diversity of perspectives and contexts been explored

7 Has the approach to, and formulation of, analysis been con-

veyed adequately?

8 Is the reporting clear and coherent?

9 Has the research process been documented adequately?

10 Could the study be replicated?

We evaluated the quality of the primary studies using the checklist adapted from Keele (2007).

Each study was evaluated according to the quality checklist questions given in Table 1.2. The

studies that provided a ‘yes’ answer to at least seven questions from the checklist were selected.



14

1.2.2 Conducting the review

1.2.2.1 Identification and selection of relevant studies

We followed Wohlin (2014) snowballing procedure in order to identify relevant studies. In

the first step called database search, we identified the keywords and formulated search string

as given in subsection 1.2.1.2. Our research with the search query generated more than 500

hits to build up our start set. After examining the paper title, abstract, keywords, results and

conclusions (if necessary) to filter out unrelated studies, 63 studies remained as the start set.

We used the reference list of our start set papers to identify new papers to include. Afterwards,

we went through the reference list and excluded the papers that did not fulfil the basic criteria

such as title, language and publication venue. We also performed forward snowballing to

identify new papers based on those papers citing the paper being examined. Each candidate

citing the paper was examined by screening the information provided in Google Scholar. If this

information was not sufficient for a decision, the citing paper was examined in more details.

After implementing backward snowballing and forward snowballing steps, we ended up with

45 research papers. Using the inclusion and exclusion criteria and the quality checklist, the

examination of the remaining literature produced 24 primary studies.

1.2.2.2 Extraction of data

We used the data extraction form in Table 1.3 to extract data from the 24 primary studies.

Even though the same data items were searched with RQ1 and RQ4, opinion mining and spam

analysis studies respectively, the results obtained are presented in distinct tables. See Tables

1.1 and 1.2 of Appendix I.
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Table 1.3 SLR data extraction form

Search
Focus

Data Item Description

General

Identifier Reference number given to the article

Bibliography Author, year, title, source

Type of article Journal/conference/technical report/etc.

Study aims Aims or goals of the study

RQ1 /

RQ4

Text and data mining methods and

techniques used

Algorithms, models and measures

Selected or obtained review features The subset of text features used or

identified in the study

Dataset List of chosen applications, number of

reviews

Performance/Results Precision, recall, accuracy/Obtained

results

RQ2 Domain-specific text and data mining

techniques used for app store reviews

App store and app review specific

algorithms, methods

Specific features used for app store

reviews

App store and app review specific text

features

Performance improvement Performance improvement compared to

conventional opinion mining studies

RQ3 User review helpfulness/usefulness

assessment framework

Predictors, variables, features that

specify review quality

Model used for automated usefulness

task

Algorithms, models and measures

Selected features Subset of text features used in the study

Performance Precision, recall, accuracy

RQ5 Extracted app features Mobile app features retrieved from

online review text

Method Approaches, techniques used for

automatically extracting application

features

Performance Precision, recall, accuracy

1.2.2.3 Information synthesis

We read the 24 selected studies noting the methods and findings that were repeated. Incon-

sistencies and contradictions in the information were also recorded and are presented in the

discussion and principal findings sections.
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1.2.3 Reporting the review

Data extracted from the primary studies were used to answer our five research questions. The

guidelines of Kitchenham (2004) were closely followed in the reporting of results.

1.3 Results

1.3.1 RQ1: Which specific data mining techniques are used for the reviews on software
distribution platforms?

The analysis of the 24 primary studies identified a number of specific opinion mining and

opinion extraction techniques used for reviews on software distribution platforms.

Chen & Liu (2011) identified useful app features:

- (i) static (e.g., application name, provider),

- (ii) dynamic (e.g., current rate, update date),

- (iii) comment (e.g., user rate, comment content)) to predict app popularity and trained a

model for an automated popularity prediction task.

To create the dataset, they sampled 102,337 applications and a list of dynamic features were

accumulated for the top 200 paid and free applications by tracking their daily ranking. They

used a Classification and Regression Tree (CART) model as a popularity prediction model and

leveraged static (app name, provider, category, etc.), dynamic (current rank, all version count,

all version rate, etc.) app and app store features and also comment features (user rate, comment

title and comment content). As a result, they found that the top-ranked (e.g., the search ranking

on the app store that factors in average app store rating, rating/review volume, download and

install counts and app usage statistics) paid applications were not closely related to customer

ratings.
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Vasa et al. (2012) and Hoon et al. (2012) made a preliminary analysis of mobile app user

reviews. They initially analyzed the data using summary statistics with a one-way ANOVA

test, box plots and cumulative distribution charts to confirm their hypothesis that rating and

category have an effect on the length of the review. They analyzed 8.7 million reviews from

17,330 app. According to their analysis, users take the time to express their discontent by

writing longer reviews, in contrast to short reviews when content with the application. The

researchers also identified a strong correlation between positive-negative sentiments and one-

and five- star ratings. Unexpectedly, more than 50% of the two and three-star rated user reviews

did not include any sentiment.

Harman et al. (2012) mined the Blackberry app store using Spearman’s Rank Correlation

method and identified a strong correlation between application rating and number of down-

loads, whereas there was no correlation between price and rating, nor price and number of

downloads. They tested their approach on the 32,108 non-zero priced apps. Iacob & Harrison

(2013) manually analyzed reviews and identified nine classes of feedback: positive, negative,

comparative, price related, request for requirements, issue reporting, usability, customer sup-

port and versioning. They first randomly chosed 169 apps and collected 3279 user reviews

and then manually examined and classified reviews based on their content and then coded the

categories, for example: aesthetics, company, comparison, feature/functionality, model, per-

missions, money, etc. They observed a correlation between review positivity and feature or

functionality request.

Ha & Wagner (2013) manually analyzed Android users’ reviews to see what they write about

when reviewing Google Play applications. They crawled Google Play to collect information

about 202,264 free applications and they selected 60 free applications with 556 reviews. As

a result, they found a small subset of reviews addressing privacy and security implications,

whereas the majority of the reviews focused on the quality of the applications.

Wano & Iio (2014) performed a manual text analysis and determined that review styles differ

with software categories. Their study used the search API and also used Rich Site Summary
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(RSS) Feed Generator by Apple. The number of targeted software was 500 and for each soft-

ware, the targeted reviews are restricted up to 50 because of the API restriction. They concluded

that consumers should pay attention to bias in reviews.

Gómez et al. (2015) mined reviews with LDA and error-suspicious permission patterns with

the J48 decision tree algorithm (a Weka implementation of the C4.5 algorithm), identifying

potential correlations between error-sensitive permissions and error-related reviews over time.

They built a dataset that consists of a random sample of all the mobile apps available on Google

Play Store. They collected 500 applications from 27 different categories.

Mojica Ruiz et al. (2015) made an overall evaluation of app stores and user rating schema and

concluded that the current store rating of apps was not dynamic enough to capture the changing

user satisfaction levels along with evolving application versions. Their dataset was extracted

by crawling Google Play and this resulted in 242,089 app versions of 131,649 mobile apps.

After the filtration, they ended up with 238,198 versions of 128,195 apps. They used hexbin

plots to examine whether there would be a noticeable change in the store-rating of an app given

a rise or drop in the rating of a specific version of that app.

Most studies identified within this research question are preliminary researches and based on

either manual or statistical analysis of user reviews. The researchers used either the research

API and RSS Feed Generator by Apple store or some scrapers script to collect app store data.

The datasets are mostly created with random sampling of all the mobile apps available and

there is not any specific or common app category preferred by researchers. Since Martin et al.

(2015) presented empirical evidence that indicates that the partial nature of data available on

App Stores could pose an important threat to the validity of findings, the obtained results from

different App Store research studies could not be compared with one another. Star rating,

category and review content are most common features collected within 87.5% of the studies.

We could not obtain any data regarding the average length of a review considered in the studies;

however the dataset by Vasa et al. (2012) showed that user review length is highly skewed with

an average of 110 characters. On the other hand, Fu et al. (2013) reported that the average
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length of the comments is 71 characters, and median length is 47 characters. If the datasets

used in these research studies would have been publicly available, it would have been feasible

to validate these numbers. For this reason, researchers need to augment their findings with

an argument to convince the reader that any sampling bias is unlikely to affect their research

findings and conclusions. One of very recent studies by Gu & Kim (2015) indicated this app

store sampling phenomenon as a threat to validity.

Table 1.1 of Appendix I presents the list of these 9 studies with their methods, details of

datasets, features and performance as a response to RQ1.

1.3.2 RQ2: How do the studies remedy the ‘domain dependency’ challenge for app store
reviews?

RQ2 looks at how domain dependency affects opinion mining from reviews. For example,

a classifier trained in using opinionated words from one domain might perform poorly when

applied to another domain, since the language structure in addition to words and phrases, may

differ from one domain to another.

From the primary studies it was noted that while some researchers labelled data for the new

domain and created their own dataset from scratch, other researchers used labelled data from

one domain and unlabelled data from the target domain, and then made the domain adaptation

by using general opinion words (Aue & Gamon (2005), Yang et al. (2006), Blitzer et al. (2007),

Pan et al. (2010)). In order to overcome the domain barrier in opinion extraction, Cosma et al.

(2014) proposed a generalized methodology by considering a set of grammar rules for the

identification of opinion-bearing words.

In addition, online reviews have distinctive text features, including short length, unstructured

phrases and abundant information. Short reviews bring new challenges to traditional research

topics in text analytics, such as text classification, information extraction and sentiment analy-

sis. In contrast to standard texts that include many words and phrases and their corresponding
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statistics, short texts consist of few phrases and sentences. Several traditional text analytics

methods have been proposed to tackle this data sparseness problem:

- The first is surface representation that uses phrases in the original text from different prod-

uct aspects to maintain the contextual information. However, this method fails to produce

a deep understanding of the text and the method does not make use of external knowl-

edge, which has been found useful in dealing with the semantic gap in text representation

Hu & Liu (2012). For example, this review from the app store: “This iOS 9 update. App

crashing and ugly font”, does not contain any words or phrases related to the reason for the

crash and possible user interface (UI) design problem, while the words ‘crash’ and ‘font’

are related to software engineering concepts. Hence, it is difficult to use bag-of-words based

models and methods to build semantic connections between the review text and software

characteristics.

- Another approach is to enrich the context of basic text segments by searching the external

sources. Such methods have been found effective in narrowing the semantic gap for differ-

ent tasks (Gabrilovich & Markovitch (2007), Ureña-López et al. (2001). In the app store

corpus, these external sources would be app crash reports, tweets, community blogs and

code repositories.

Another important characteristic of online text, particularly in online reviews, is the use of col-

loquial language. When composing a review, users might use abbreviations or acronyms that

seldom appear in conventional text. As an example, the phrases “superb” “Good 2go” “you do

not buy the guarskldj; al b bbbbbbbbb„„„,wke;” make it very difficult to identify the semantic

meaning. With research question RQ2, we sought to discover how researchers tackled domain

adaptation problems, how they dealt with distinctive features of the review text and what spe-

cific methods or algorithms and text features were used to improve performance. To answer

this research question, we reviewed the primary studies to identify the training datasets, meth-

ods, text features and performance comparisons. The mobile app store researchers mentioned

in Table 1.3 of Appendix I used their own annotated dataset rather than leveraging existing



21

online review datasets. Since they preferred to use conventional text mining methods such as

Latent Dirichlet Allocation (LDA), Aspect and Sentiment Unification Model (ASUM), Naive

Bayes classifier and statistical analysis, we cannot report any new method developed specifi-

cally for app store corpus. No new solutions or methods were proposed for examining the text

characteristics (e.g., short length, unstructured phrases and colloquial language and challenges)

of app store user reviews in the primary studies.

As in many real-word applications, topics revealed by LDA and ASUM must be verified by

experts to ensure they are semantically meaningful within the domain analysis. Hence, four

studies out of 24 leveraged truth sets to understand if the extracted features align with real app

features and to minimize this threat to validity. Galvis Carreño & Winbladh (2013) used the

manually classified data as a truth set. Since the second author is not a domain expert or is not

involved in software development, they reported that the process is error-prone. Chen et al.

(2014) collected the group truth labels of the training pool and test set according to pre-defined

rules. Guzman & Maalej (2014) and Gu & Kim (2015) also used the truth set that was created

with systematic assessment of review samples by human coders.

However, manual validation could dominate the time and cost of building high-quality topic

models. To overcome this problem, some researchers proposed measuring topic quality with

topic coherence and statistical methods (Mimno et al. (2011), Newman et al. (2009)). To

tackle this problem, incorporating domain knowledge into Topic Modelling via Dirichlet Forest

Priors Andrzejewski et al. (2009) would be useful. Dirichlet Forest Priors, when combined

with LDA, allows the user to encode domain knowledge (must-links and cannot-links between

words) into the prior on topic-word multi nominal P (word | topic). In this way, app store

domain knowledge could be expressed by a set of Must-Links (e.g., two words u, v have

similar probability within any topic) and Cannot-Links (e.g., two words u, v should not both

have large probability within any topic).
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1.3.3 RQ3: What criteria make a review useful?

Review quality varies from reviewer to reviewer, and low-quality reviews might not convey

any useful information. App store regulators allow users to vote on the helpfulness of each

review and then rank the reviews based on votes. While review helpfulness is usually assessed

manually, there are automated systems that do this. For the manual review of usefulness, there

are no defined criteria among users, so a review that appears helpful to one user may not

be helpful for others, since they might be searching for different information or have differing

priorities or biases. On the other hand, defined criteria would be valuable to differentiate useful

reviews from others and reviews ranked in accordance with these criteria would provide better

information extraction capability.

Studies examining online review helpfulness with manual assessments are as follows:

- Cheung et al. (2008) measured review quality in terms of completeness, timeliness, accu-

racy and relevance.

- Mudambi & Schuff (2010) found that review depth had a positive effect on the helpfulness

of the review but product type affected the perceived helpfulness of reviews

- Pan & Zhang (2011) analyzed a large sample of reviews from Amazon to identify what

determined information helpfulness and they reported that there was a high correlation be-

tween review length, positivity level of reviews and review usefulness.

- Korfiatis et al. (2012) reported that review readability and positive ratings affected the num-

ber of helpfulness votes given by users.

Studies on automatically assessing review helpfulness:

- Kim et al. (2006) trained an SVM (Support Vector Machine) regression model to learn the

helpfulness function and then applied it to rank unlabelled reviews. They reported that the

most important features were the length of the review, its uni-grams and its product rating.
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- Liu et al. (2008) also modelled the helpfulness of reviews. They reported that helpful-

ness of a review depends on three important factors: reviewer expertise, writing style, and

timeliness.

- Ghose & Ipeirotis (2011) used a Random Forest-based classifier and examined the relative

importance of three feature categories: (i) reviewer related, (ii) reviewer subjectivity, and

(iii) review readability. They reported that using any of the three feature category results

provided the same performance as using all available features.

- Moghaddam et al. (2012) used a probabilistic graphical model based on Matrix Factoriza-

tion and Tensor Factorization. These models are based on the assumption that the observed

review ratings depend on latent features of the reviews, reviewers, raters and products. They

reported that the latent factor models outperformed state-of-the-art approaches using textual

and social features.

Even though the user review helpfulness evaluation problem has been studied for various plat-

forms such Amazon, Yelp, TripAdvisor, we could not find any study that assessed review help-

fulness either manually or automatically for the mobile app store corpus. As app store users

could mark any review for any app as: ’Helpful’, ’Unhelpful’ and ’Spam’ and the reviews could

be ranked per their helpfulness at Google Play, some of App Store mining researchers such as

Chen et al. (2014) and Park et al. (2015) from Table 1.6 preferred using only Helpful reviews

or filter Unhelpful reviews out to train their models. According to Pagano & Maalej (2013)’s

dataset only 67,143 (5.96% ) reviews are rated by other users regarding their usefulness. From

these, 38,519 (57.37%) are considered 100% helpful. Interestingly, 16,671 (24.83%) are rated

completely useless. Even though we could not get enough information about the percentage

of helpful or unhelpful reviews in other datasets, the need for filtering these reviews has been

apparent for increasing data mining and information extraction capabilities.
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1.3.4 RQ4: How could the spam reviews be differentiated from legitimate reviews?

As consumers increasingly rely on user reviews and ratings, there is greater incentive to create

fraudulent reviews in order to boost sales and to damage competitor reputations on the market.

Fraudulent reviews not only mislead customers into poor purchase decisions, but also degrade

users’ trust in online reviews. According to the study of Luca & Zervas (2016), 20% of all

online reviews on Yelp.com are fake.

Most of the earlier research focused on detecting email and web spam. As the number of online

reviews increases, as well as the number of fraudsters, additional studies and techniques have

been proposed to detect spam reviews. Two main approaches are being used for opinion spam

detection: behavioural and textual features. Behavioural features correspond to features such

as review date, rating, and geo-location of the reviewer, while textual features refer to methods,

such as part-of-speech patterns, word frequency, n-grams and cosine similarity.

Dellarocas (2000), the first to work on immunizing online reputation systems against unfair

ratings and discriminatory behaviour, proposed a set of ‘exception handling’ techniques such

as ‘controlled anonymity’ and ‘cluster filtering’.

Kim et al. (2006) used SVM regression on different classes of features including structural

(e.g., HTML tags, punctuation, review length), lexical (e.g., n-grams), syntactic (e.g., percent-

age of verbs and nouns), semantic and meta-data (e.g., star rating) features.

Jindal & Liu (2008) observed that spammers tended to create a small number of review tem-

plates and then copy them to spam a single product or several different products. To identify

the replicated spam reviews, they used the two-gram review content comparison method, as in

Kim et al. (2006).

Lim et al. (2010) trained a linear regression model to use four different spamming behaviour

models as target products and groups, general rating deviation and early rating deviation. Wang

et al. (2011) proposed a heterogeneous graph model to capture relations between reviewers,

reviews and stores. Sandulescu & Ester (2015) presented two methods: (i) a semantic similarity
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measure by extracting specific parts-of-speech (POS) patterns and (ii) an LDA model using

bag-of-words and opinion phrases.

Within the corpus of mobile app stores, scammers use a great many bogus user accounts or

bots in order to download applications multiple times and write fraudulent reviews. In this

way, the applications begin appearing on the top charts and have greater visibility in an app

store search. In addition, numerous sites allow purchasing of reviews: one example is the

Fiverr site. Even though fake and opinion spam reviews are widespread and have significant

manipulative effects on app store success, regulators have only recently begun to crack down

on fake reviews Clover (2014). We found only a single app store review spam identification

study in the literature:

- Chandy & Gu (2012) compared latent class graphical and decision tree models for classifi-

cation of app spam and analyzed the preliminary results for clustering reviews. They used

linear Gaussian parameterization on the labelled data, which achieved higher accuracy than

a baseline decision tree model. As a result, they proposed a latent class model for the spam

identification task. The details of this study are presented in Table 1.2 of Appendix I

1.3.5 RQ5: Extracted Application Features from User Reviews

App stores provide a user feedback capability that is particularly useful and interesting from

the software requirements engineering point of view. User ratings and reviews correspond to

user-driven feedback that may help improve software quality and address missing features.

With regard to extracted application features from app store user reviews, Iacob & Harrison

(2013) identified nine different classes of feedback: positive, negative, comparative, price

related, missing requirements, issue reporting, usability, customer supports and versioning.

Galvis Carreño & Winbladh (2013) adopted the ASUM, which incorporates both topic mod-

elling and sentiment analysis, to obtain constructive feedback from user comments. They ex-

tracted various topics such as updates, features and developers from review text.
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Pagano & Maalej (2013) identified topics in user app store reviews by grouping the information

as follows:

- Community: References to other reviews or other applications.

- Requirements: All request types such as feature, content, improvement requests, shortcom-

ings and bug reports.

- Rating: User intention to change his/her idea given certain improvements.

- User experience: Helpfulness in terms of application features and user interface.

In addition, they pointed out the correlation between overall app ratings and number of user

reviews, app price and amount and type of feedback the application received. Fu et al. (2013)

identified 10 top factors that affect the success of an app on mobile application ecosystems:

attractiveness, stability, accuracy, compatibility, connectivity, cost, telephony, picture, media

and spam. In addition, they identified 0.9% inconsistencies between user review texts and

rating that may be caused by careless mistakes or intention to mislead.

Oh et al. (2013) developed a review digest system (using a SVM classifier) which was tested

on 1,711,556 reviews mined from 24,000 Google Play apps. They automatically categorized

user reviews into functional and non-functional requests, bug reports and produced a digest fea-

turing the most informative reviews in each category. Chen et al. (2014) compared LDA and

ASUM and reported that LDA presented many “non-informative or redundant topics” How-

ever, they validated their results on user reviews of only four Android apps, and it is not clear

that the framework will attain similar good results when applied to other Android apps or other

app stores.

Guzman & Maalej (2014) used topic-modelling techniques to group fine-grained explicit fea-

tures into high-level features using topic modelling LDA and weighted-average techniques.

In addition, they compared the relevance of the extracted features with app requirements and

concluded that for the top 10 popular extracted features, the words (e.g., upload photo, file
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exchange – for Dropbox, board pin, time search – for Pinterest) usually described actual app

features and conveyed some clues about how the app was used. McIlroy et al. (2015b) and its

counterpart studies Khalid (2013) and Khalid et al. (2015) automatically labelled the types of

user issues raised in mobile app reviews, such as additional cost, functional complaint, com-

patibility issue, crashing, feature removal request, network problem, privacy and ethical issue,

resource heaviness, response time, uninteresting content, update issue and user interface. They

manually labelled a statistically representative sample of user reviews from the Apple app store

and Google Play.

Vu et al. (2015) pursued a keyword based approach to collect and mine user opinion from app

stores by extracting, ranking and grouping keywords based on semantic similarity. In addition,

they provided a visualization tool that showed the occurrence of keywords over time and re-

ported any unusual patterns. Park et al. (2015) developed a topic model AppLDA designed for

use on app descriptions and user reviews. Their proposed method enables developers to inspect

the reviews and find out important app features of apps. Panichella et al. (2015) presented a

system for automatically classifying user reviews based on a predetermined taxonomy, in or-

der to support software maintenance and requirements evolution. Gu & Kim (2015) proposed

a SUR-Miner that is a review summarization and categorization tool, which evaluated 2000

sentences from the reviews of 17 Google Play apps. In addition to these studies, McIlroy et al.

(2015a) examined this research problem from developers’ respective and observed that there

are positive effects to responding the reviews (users changed their earlier ratings 37.8% of the

time) with a median increase of 20% in the rating.

Table 1.3 of Appendix I presents the list of studies relevant to RQ5 and identifies the related

methods, extracted app features and performance.

1.4 Discussion

The mobile app ecosystem and user reviews contain a wealth of information about user expe-

rience and expectations. Developers and app store regulators could leverage the information
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to better understand their audience. Mining app store data, and in particular user reviews, may

provide valuable information for users to reach an informed decision about applications and

their features; similarly, it would be valuable for developers to receive user feedback about

most liked or expected features, as well as reported bugs in the applications. Mining opinions

from app store reviews still requires pre-processing at the content level, including filtering out

non-opinionated content and identifying the trustworthiness and genuineness of the opinion

and its source. Even though, there is a limited number of research studies analyzing mobile

app reviews, the direction and results obtained are promising. Hence, from the perspective of

software requirements engineering, with further research, it is expected that app store meta-

data will provide a more accurate picture of user choices and expectations. Developers and app

store regulators could leverage reviews to better understand their audience. Here we present

our principal findings from the SLR.

1.4.1 Principal Findings

- App store ecosystem is a new form of software repository with finer granularity including

the information such as customer ratings and reviews, app price, version and features and

app store user feedback mining has begun to attract the attention of researchers. Most of

the studies were of an exploratory nature, based on manual classification and correlation

analysis. The number of high-quality app store studies was very limited: we retrieved nine

app store mining studies and only one app store spam identification study.

- The automated extraction of app features in online reviews does not consider the nature of

the review text. As online app reviews have distinctive features of text (e.g., short length,

unstructured phrases, colloquial language and abundant information), there is a need to

develop a model specific for app store reviews in order to extract targeted app features

rather than use conventional methods and techniques developed for different domains and

contexts.

- Furthermore, the information requested by users and developers are different. Users are

more interested in the opinion and experience of others about the application and which
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aspects/features they liked or disliked most. Developers have a different point of view

when using reviews to:

• extract usability and user experience information,

• elicit missing requirements and define requested application features, and

• improve software quality.

- To deal with abundant information in reviews, external sources such as app crash reports,

tweets, community blogs and code repositories could be used to enrich the data. In addition,

integration of text from different data sources (such as social media profiles) would be

helpful to ensure context level opinion mining, since in terms of preferences and needs,

opinions are specific to each person or group.

- Opinion spam or fake review detection is one of the largest problems in the domain. In

addition to spam reviews, there are various kinds of user reviews, some of which do not

include any useful data for information extraction. Hence, it is necessary to merge multiple

criteria not only to identify suspicious reviews but also to differentiate useful reviews from

others so that reviews complying with the usefulness criteria can be processed for informa-

tion extraction. Even though some automated systems have been introduced to identify fake

and spam reviews and to evaluate review usefulness, these systems are very limited and not

yet mature.





CHAPTER 2

PROBLEM STATEMENT & RESEARCH METHODOLOGY

2.1 Problem Statement

The greater variety of mobile apps and the ever-rising demand for the apps running on different

mobile systems create a corresponding increase of mobile developers and a big competition in

mobile app markets. With so much competition in the market, it gets more difficult for de-

velopers and software organizations to achieve the success they have targeted. The empirical

studies mentioned in the previous chapter have shown that app store reviews include infor-

mation that is useful to mobile app developers and analysts in regards to users requirements,

bug reports, feature requests, and documentation of user experiences with specific app features

Genc-Nayebi & Abran (2017). Hence, understanding users’ feedbacks and anticipating users

experience and user acceptance of the app are becoming key success drivers in app stores.

Since 2010, app store user feedback mining has begun to attract the attention of researchers.

One of the challenges in app store opinion data mining is vocabulary, which can vary even

with a single term having different meanings in different contexts and domains. As online app

reviews have features distinctive of text (e.g., short length, unstructured phrases, colloquial

language and abundant information), there is a need to develop app store specific model in

order to extract targeted app features rather than using conventional methods and techniques

developed for different domains and contexts.

Whereas app users rely on the reviews and ratings of others to formulate an informed decision

about applications and their features before downloading them, reading all the reviews is time

consuming and occasionally deceptive due to misleading or spam reviews. In addition to spam

reviews, some reviews do not include useful data for information extraction. Even though

some automated systems have been introduced to identify fake and spam reviews and evaluate

usefulness, these systems are limited.
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Lastly, extracted features relevance has not been cross-validated with main software engineer-

ing concepts: for example, a user comment about the app’s simplicity and easy to use manner

could imply ‘user experience’ and ‘usability’ of the software, while user’s expectancy about a

feature that makes the app contextual and relevant could refer to ‘requirements analysis’ and

‘use cases’ Genc-Nayebi & Abran (2018). Hence, these aspects or topic modelling results

would make more sense if they were mapped to software engineering concepts such as use-

cases, software maintenance, quality assurance, Graphical User Interface (GUI) design, user

experience, usability, etc.

2.1.1 Research Motivation

Our literature review study exposed that the app store ecosystem is a new form of software

repository with finer granularity, since the information such as customer ratings and reviews,

app price, version and features information makes app ecosystem a good place for data mining

and empirical analysis. Also the limited number of studies identified in the literature did not

focus on the domain and context dependency of the problem. Due to the unstructured nature

of user reviews and colloquial language used, it is a challenging, but also a promising, task to

extract information from app store user reviews.

Opinion spam or fake reviews is one of the biggest problems in the domain. As consumers

increasingly rely on user reviews and ratings, there has been a strong incentive to create fraud-

ulent reviews in order to boost sales and damage competitors’ reputations. Since we found only

a single app store review spam identification study in the literature, our research study will be

one of the very first studies examining opinion spam detection problem for mobile app stores.

In addition to fake reviews, there exist various kinds of user reviews, some of which do not con-

vey any useful data; also, unbiased or non-spam user reviews may be numerous but of varying

quality. Hence, it would be helpful to automatically assess and rank reviews in accordance with

their usefulness or helpfulness.
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During the literature review it was also discovered that most of the studies are of an exploratory

nature that are conducted for formulating app store opinion mining problem based on prelim-

inary analysis of the data and unstructured research design. The studies that automatically

extract app features do not provide enough related information from a requirements engineer-

ing point of view, because:

- user reviews often convey implicit information,

- new feature requests, quality issues and application aspects are not written explicitly in the

reviews.

From the users’ point of view, they would like to learn about others’ experience with the app,

what aspects/features they liked or disliked most and the features that distinguish the app from

similar apps in the market. Each user has his/her own preferences and while one user might

feel strongly about the appearance, others may focus on functional or technical aspects. Hence,

app features that are extracted from review text should be presented differently to developers

and users.

2.1.2 Research Objectives

The four objectives of this research are described through the following research hypotheses:

- H0a – It is possible to classify app store user review’s legitimacy (being spam or truthful)

by automatically discovering distributed feature representation of review data.

- H1a – All user reviews do not include useful information in regards to merits and drawbacks

of the mobile app.

- H0b – Analysis of app store user reviews provides necessary information for software qual-

ity.

- H1b – It is possible to automatically retrieve app aspects from the review text.
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To investigate the research hypotheses, this doctoral study will develop the following research

tools:

- A deep learning model to classify deceptive and benign user reviews.

- A model to evaluate review usefulness.

- A deep learning model to extract app aspects from user reviews for the use of both devel-

opers and app users.

2.1.3 Target audiences

The targeted audiences for this research are the following:

- Mobile app users,

- Application design and development professionals,

- Software organizations,

- App store regulators,

- Artificial intelligence and machine learning researchers

- Human-Computer Interaction researchers,

- User experience design professionals and usability evaluation experts.

2.2 Research Methodology

This research study explores the hypotheses and the approaches regarding app store opinion

mining, opinion spam detection and feature extraction problems by executing the following

research phases:
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- Phase 1: Development of an app store crawler

- Phase 2: Identification of opinion spam (deceptive) reviews

1. Construction of a spam review dataset

2. Development of an opinion spam detection model

3. Performance evaluation of the opinion spam detection model

- Phase 3: Automatic assessment of review helpfulness

1. Feature generation

2. Selection of the model

3. Model refinement

- Phase 4: Development a model to extract targeted app features

1. Collection of Review Dataset

2. Filtering Spam and Non-Helpful Reviews

3. Annotation of Mobile App Aspects

4. Development of aspect extraction models

5. Performance evaluation of aspect extraction models

This research study begins with Phase 1: development of an app store crawler to populate mo-

bile app store meta-data and user reviews. Crawled artifacts will be the inputs of the following

phases.

Phase 2 proposes a deep learning model for opinion spam identification task.

Phase 3 presents an automatic helpfulness assessment of app store user reviews.

After filtering out non-opinionated content and evaluating the trustworthiness of the user re-

views, Phase 4 of this research study proposes an aspect extraction model for the use of app

developers and end-users.
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Figure 2.1 presents an overview of the research methodology including the inputs, phases and

outputs. The following subsections in this chapter provide more details about each phase of

this research.

Figure 2.1 Research Methodology

2.2.1 Phase 1: Development of an app store crawler

In this first phase of the doctoral research, two crawlers, one for Apple App Store and the

another one is for Google Play are developed to collect user reviews and app meta-data such as

appId, description, version, genres, etc. from the subject app stores.

Apple provides different iTunes RSS feeds that retrieve varying results depending on the media

type. One of the feeds is for retrieving customer reviews that require the following variables:
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CODE (App Store territory code), APPID (9 digit number unique for each app) and FILETYPE

(either Extensible Markup Language (XML) or Javascript Object Notation (JSON)) as given

in the following URL format.

https://itunes.apple.com/CODE/rss/customerreviews/page=1/id=APPID/sortby=mostrecent/

FILETYPE

1 [ {
2 id: ’3237000149’,
3 userName: ’J_L_P_A_0_1’,
4 userUrl:

’https://itunes.apple.com/us/reviews/id467774835’,↪→

5 version: ’1.134.1’,
6 score: 3,
7 title: ’The new version is horrible’,
8 text: ’I love this game but the update that I just

install on 9/27/18 I hate it. It doesn’t allow
you to play the game anymore as soon as you
swipe. The computer already generate a new move
for you, if doesn’t made you think about your
next move. I like it when it will give you 5 to
10 seconds before the computer help you on a
move. This way it allows you to play the game the
way that you think it’s best. Can you return that
option to the original settings’

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

9 } ]

Listing 1: Example of a review result for a specific app store application

Our iTunes crawler first fetches complete RSS response in JSON format and then parses it into

the following data fields as id (10 digit number unique for each review), userName (reviewer

user name), userURL, version (app version), score (rating given by the user), title (title of the

review) and text (review body) for further analysis of the meta-data and the reviews.

On the other hand, Google Play (GP) loads data for customer reviews via AJAX requests to the

URL https://play.google.com/store/getreviews using the HTTP POST method.
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The data returned in JSON format are parsed into the following fields as id (review unique

ID), userName (reviewer name), userImage (reviewer profile image), date (date of the review),

score (rating given by the user), title (title of the review), text (review body), replyDate (date

of developer response to review), replyText (developer response to review) by our Google Play

crawler.

2.2.2 Phase 2: Identification of opinion spam (deceptive) reviews

Phase 2 of the research study focuses on automatically identifying deceptive user reviews. The

following sub-sections present the detailed information about:

- Construction of a spam review dataset,

- Development of an opinion spam detection model,

- Performance evaluation of the opinion spam detection model

2.2.2.1 Construction of a spam review dataset

Data is a major part of any machine learning based model, and even though a massive volume

of app reviews is available on the app stores, collecting and labeling a sufficient number of

reviews to train a deceptive review classifier is a difficult task. Besides, it is hard to manually

label a review as deceptive or benign by simply reading the review, because a spammer can

carefully craft a non-legitimate review to promote or to degrade the reputation of the app.

To generate spam user reviews, we first tried a text bot, the Markov-bot, that relies on Markov

Chains stochastic model Gilks et al. (1996). However, the obtained results are not realistic (an

example of Markov-bot generated reviews is presented as follows):

I always use my gift card and then when I click on *just* that hyperlink. Today this op-

tions it just closes the app always works for the app multiple times with no improvement to

performance.
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Thus, we develop a three-step review synthesis method including the following steps:

1. First a review repository for the target application is created. The reviews that belong

to the target app and 4 other apps from the same app category (e.g., Shopping, Game,

Entertainment) are crawled from App Store.

2. Afterwards, our review synthesizer breaks the reviews into individual sentences per spe-

cific topic and then mixes them up to generate a new review as minimum 100 and maxi-

mum 300 characters long, given that the average length is 170 characters for app store user

reviews.

3. Finally, human evaluators are asked to read generated reviews and identify whether the

reviews appear realistic or not.

2.2.2.2 Development of an opinion spam detection model

The objective of a spam identification task is to distinguish whether the review is spam or a

truthful, a 2-category classification problem. To tackle the spam identification task behavioural

and textual features are typically being used within supervised machine learning models. Be-

havioural features correspond to features such as review date, rating and geo-location of the

reviewer, while textual features refer to methods, such as part-of-speech patterns, word fre-

quency, n-grams and cosine similarity. Most related studies focus on designing effective fea-

tures to enhance the classification performance. Even though feature engineering is useful and

brings strong performance to the classifier, the sparsity of the features makes it difficult to

capture non-local semantic information over a sentence or discourse.

Neural network based models in Natural Language Processing (NLP) tasks currently achieve

highly competitive results Kim (2014), Kalchbrenner et al. (2014), Johnson & Zhang (2015).

Neural models use dense hidden layers for automatic feature combinations: they can capture

complex global semantic information that is difficult to express by using traditional discrete

manual features. Hence, in this part of the doctoral research we will investigate empirically the
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effectiveness of learning dense document representations with convolutional neural networks

for opinion spam detection task. In the first stage of our convolutional neural network system,

sentence representations are produced from word representations, while a document represen-

tation is constructed from the sentence vectors in the second stage of the system. Finally, this

document representation is used as features to identify app store opinion spams.

2.2.2.3 Performance evaluation of the opinion spam detection model

The performance of our neural network based spam classification will be compared with a

baseline classification model, SVM, by creating different feature combinations. The classifi-

cation results of two groups of experiments (CNN and Support Vector Machine (SVM)) are

evaluated for the accuracy measure in 5-fold cross validation. The features extracted and then

leveraged within the SVM model are presented in Table 2.1 :

Table 2.1 Text features extracted and then leveraged

within the SVM model

Review-centric features Details
Structural features Length of the review, average word

length, number of sentences, average sen-

tence length, percentage of numerals, per-

centage of capitalized words.

POS percentages The percentage of each POS tagging in

each review.

Semantic features The percentages of positive and negative

opinion-bearing words in each review.

n-grams Top 100 uni-grams and bi-grams that have

the most different percentages (in terms

of ratios) in fake and non-fake reviews.

2.2.3 Phase 3: Automated assessment of review helpfulness

In Phase 3 of this research study, the task of automatically predicting app store user reviews’

helpfulness is investigated. Different aspects of a review text such as lexical, sentential and
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meta-data and their effects on influencing perceived usefulness (helpfulness) of the reviews

are explored. We will first formulate the learning task and then investigate several features for

assessing review helpfulness.

2.2.3.1 Feature Generation

The dataset of reviews is populated and filtered with noise removal, stemming, tokenization

and stop-word removal processes in this part of the research study. Afterwards, various features

organized in three classes as Structural, Lexical, and Meta-data are extracted:

- Structural: Structural features are observations on the document structure and formatting.

Properties such as review length and average sentence length are hypothesized to relate

structural complexity to helpfulness.

- Lexical: Lexical features capture the words observed in the reviews. We will experiment

with two sets of features:

Unigram (UGR): The tf-idf statistic of each word occurring in a review.

Bigram (BGR): The tf-idf statistic of each bigram occurring in a review.

- Meta-Data Features: Meta-data features capture observations which are independent of

the text (i.e., unrelated with linguistic features).

2.2.3.2 Selection of the model

This part of the research explores the different binary classifiers and assess how good or how

accurate the model is at predicting the class label of each instance (e.g., in this study, applica-

tion) in the test dataset.
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2.2.3.3 Model Refinement

New features are added to the existing feature set to enhance the prediction performance. The

model parameters are set through grid search and cross-validation results obtained with new

feature set are also presented in this part of our research study.

2.2.4 Phase 4: Extraction of Mobile App Features

The objective of Phase 4 is to automatically extract application features (aspects) from user

reviews.

2.2.4.1 Collection of a Dataset of Reviews

In this part of the research, a dataset of reviews is populated from Apple App Store and Google

Play. Both app stores categorize mobile apps and games into different categories based on the

main function or subject matter of the app. The rationale behind populating the review dataset

through different app stores and categories is to evaluate our aspect extraction models against

the reviews that contain different vocabularies, and describing various app aspects.

2.2.4.2 Filtering Opinion Spam and Non-Helpful Reviews

In this part of the research, the reviews are first classified as truthful and deceptive with opinion

spam detection model that was trained in Phase 2. Afterwards, the helpfulness of the reviews

are predicted with the review helpfulness evaluation model earlier presented in Phase 3.

2.2.4.3 Development of Aspect Extraction Models

Deep neural network models can learn text representations from data without careful engineer-

ing of features and capture semantic relations between aspect and context words in a more

scalable way. Hence, we employ two deep neural net models that can generalize well even

when limited training data is available in this part of the research.
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2.2.4.4 Performance Evaluation

In the last part of our research study, we evaluate the proposed aspect extraction techniques

where precision, recall, and F1-score are employed as our evaluation criteria.





CHAPTER 3

OPINION SPAM DETECTION

3.1 Introduction

Neural network based models in Natural Language Processing (NLP) tasks currently achieve

highly competitive results Kim (2014), Kalchbrenner et al. (2014), Johnson & Zhang (2015).

Neural models use dense hidden layers for automatic feature combinations: they can capture

complex global semantic information that is difficult to express by using traditional discrete

manual features. Hence, in this research phase, we investigate empirically the effectiveness of

learning dense document representations with CNNs for opinion spam detection task. In the

first stage of our CNN system, sentence representations are produced from word representa-

tions, while a document representation is constructed from the sentence vectors in the second

stage of the system. Finally, this document representation is used as features to identify app

store opinion spams.

Most of the time deceptive reviews are not easily identifiable by human readers; consequently,

there are a few sources of labeled dataset for the research purposes. Indeed, in the absence

of a standard dataset, earlier studies have been forced to utilize non-standard evaluation pro-

cedures Ott et al. (2011). Thus, one of the contributions of this research study is the creation

of first large-scale and publicly available electronic dataset that contains 400 truthful and 400

deceptive reviews for the research on app store opinion spam problem.

This chapter which addresses Phase 2 of our research study is structured as follows: Section

3.2 presents background information about the necessary concepts including word embedding

and neural networks. Section 3.3 describes the details of our methodology. Section 3.4 presents

the details of the implementation. Section 3.5 reports on the performance results of our neural

network model against a SVM baseline model. Section 3.6 presents the implications of this

opinion spam detection model.
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3.2 Background Information

3.2.1 Spam Review Detection

There are various data and features pertaining to a review that can be used to detect opinion

spam, such as:

- review content,

- meta-data including reviewer’s identity, time of the review and information about the prod-

uct Liu (2012).

A variety of methods and techniques have been proposed by researchers to leverage these data

and features for the review spam detection problem. The very first technique proposed by

Jindal & Liu (2008) studies the duplication of review content (body) to detect spam reviews.

A probabilistic language model was proposed next by Lai et al. (2010) to calculate a similarity

score between two reviews to figure out if one review was generated from another.

Ott et al. (2011) reported that using content-based features, such as Linguistic Inquiry and

Word Count (LIWC) with bi-grams, significantly improve the performance of spam reviews

detection methods. The fake reviews used in this study were generated by an Amazon Me-

chanical Turk (AMT) crowd sourcing service.

Sun et al. (2013) reported on a review synthesis method that automatically generates fake

reviews from a collection of truthful reviews. The authors claim that not only human judges,

but also state-of-the-art review spam detection techniques, had over 40% error in detecting

synthesized reviews task.

Li et al. (2011) used review features and reviewer features as two views in employing a co-

training algorithm to detect spam reviews. Mukherjee & Liu (2010) classified individual re-

viewers into spam and non-spam groups by using a frequent-pattern mining technique and var-
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ious spamming behaviours and spam indicators, such as content similarity between members,

number of reviews in a time interval, deviation of product rating, etc.

While detection of email spam and opinion spam for rating sites (e.g., Yelp, TripAdvisor) or

marketplaces (e.g., Amazon) has received considerable attention from researchers, there has

been little work to date within the app store corpus. We found only a single app store review

spam identification study in the literature where Chandy & Gu (2012) compared latent class

graphical and decision tree models for classification of app store spam reviews and analyzed the

preliminary results for clustering reviews. Their study used linear Gaussian parameterization

on the labelled data and they reported higher accuracy than their baseline decision tree model.

3.2.2 Convolutional Neural Networks (CNNs)

CNNs are a family of deep networks that can exploit the spatial structure of data (e.g., images

and texts) to learn about the data, so that the algorithm could provide an useful output. Neural

network models have also been exploited to learn dense feature representation for a variety

of NLP tasks such as part-of-speech tagging (POS), chunking, name entity recognition and

sentence modeling Collobert et al. (2011), Kalchbrenner et al. (2014) and as well as for text

classification Yin et al. (2017). Distributed word representations Mikolov et al. (2013) have

been used as the basic building block by most models for NLP tasks. However, as convolutions

and pooling operations lose information about the local order of words, POS Tagging or Entity

Extraction is harder to fit into a pure CNN architecture without adding positional features to

the input Chiu & Nichols (2015).

Since deceptive opinion spam detection is a complex text classification task due to reviews’

short length and varied quality, deep features of the deceptive review text are required to be

extracted along with textual semantics and emotional polarity features that have been widely

used in text analytics. Hence, deceptive opinions detection is now an important application

of CNN models and they have been used extensively in recent years due to their superiority in
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terms of good fault tolerance, parallel processing and self-learning abilities for the spam review

detection task Ren & Ji (2017), Li et al. (2017).

3.2.3 One-Layer CNN for Text Classification Task

The architecture of a typical one-layer CNN for text classification task that is depicted in Figure

3.1. It consists of three consecutive operations:

- convolution layer with activation function,

- pooling,

- softmax function for classification.

Figure 3.1 A typical one-layer CNN for text classification task

(Adapted from Kim (2014))
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Convolution later acts like a sliding window function applied over the sentence matrix that

filters the current region where the calculated value of the matrix depends upon the activation

function used. The activation function maps the feature value to a specific continuous real

value range. Activation functions usually range from element wise matrix multiplication to

non-linear functions such as the Rectified Linear Unit or hyperbolic tangent (tanh) chosen as

the activation function in our CNN.

The resultant matrix of the filters applied on convolutional layer is not uniformed in size: hence,

pooling is applied to get the uniform output. At subsequent classification layer (e.g., fully

connected softmax layer) outputs N by using the softmax activation function, the number of

class labels in the classification problem, where spam review detection task N=2. The function

in Equation 3.1 adapted from Bishop (2006) gives the probabilistic value of the classes to which

an input text belongs.

P(y = j|x) = exT w j

∑K
k=1 exT wk

(3.1)

3.2.4 Pre-trained Word Embeddings

Word embedding is building a low-dimensional vector representation from a corpus of text,

which preserves the contextual similarity of words. Since word embeddings are numerical rep-

resentations of contextual similarities between words in regards to e.g., gender, tense and ge-

ography, they can be manipulated arithmetically just like any other vectors. Thus word embed-

dings provide a good generalization to unseen words and they could capture general syntactic as

well as semantic properties of words. Word embedding techniques include Word2Vec, GloVe,

FastText two of which, Word2Vec and GloVe are discussed in the following sub-sections.
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3.2.4.1 Word2Vec Model

One of the best known algorithms for producing word embedding models is Word2Vec which

is a predictive model used to produce distributed representations of words. Word2Vec contains

two distinct models, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram model

Mikolov et al. (2013) as presented in Figure 3.2.

Algorithmically, these models are similar, except that CBOW predicts target words (e.g. ’phone’)

from source context words (’ I just got a new phone’), while the skip-gram does the inverse

and predicts source context-words from the target words.

Figure 3.2 CBOW Architecture vs Skip-gram Architecture (Taken

from Mikolov et al. (2013))

3.2.4.2 GloVe Model

The GloVe proposed by Pennington et al. (2014) is essentially a log-bilinear model with a

weighted least-squares objective. The training objective of GloVe is to learn word vectors

such that their dot product equals the logarithm of the words’ probability of co-occurrence.
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Since the logarithm of a ratio equals the difference of logarithms, this objective associates (the

logarithm of) ratios of co-occurrence probabilities with vector differences in the word vector

space. Because these ratios can encode some form of meaning, this information gets encoded

as vector differences as well.

For instance, consider the co-occurrence probabilities for target words ice and steam with var-

ious probe words from the vocabulary. As presented in Table 3.1 1, ice co-occurs more fre-

quently with solid than it does with gas, whereas steam co-occurs more frequently with gas

than it does with solid. Both words co-occur with their shared property water frequently, and

both co-occur with the unrelated word fashion infrequently. Only in the ratio of probabilities

does noise from non-discriminative words like water and fashion cancel out, so that large val-

ues correlate well with properties specific to ice, and small values correlate well with properties

specific of steam. In this way, the ratio of probabilities encodes some raw form of meaning as-

sociated with the abstract concept of thermodynamic phase.

Table 3.1 Some words’ actual probabilities from a 6 billion word corpus

Probability and Ratio k=solid k=gas k=water k=fashion
P(k | ice) 1.9×10−4 6.6×10−5 3.0×10−3 1.7×10−5

P(k | steam) 2.2×10−5 7.8×10−4 2.2×10−3 1.8×10−5

P(k | ice) / P (k | steam) 8.9 8.5×10−2 1.36 0.96

3.3 Methodology

Our research methodology for opinion spam detection includes three main tasks: (i) Automated

Review Generation, (ii) Implementation and (iii) Experiments steps as presented in Figure 3.3.

In following sub-sections, we present the details of automated spam review generation method

and neural network based models to learn document representation for deceptive spam review

detection.

1 https://nlp.stanford.edu/projects/glove/
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Figure 3.3 Opinion Spam Detection Methodology (Phase 2)

3.3.1 Automated Review Generation

To generate deceptive user reviews, we first tried a text bot, the Markov-bot, that relies on a

stochastic model, Markov Chains Gilks et al. (1996). However, the obtained results are not

realistic as seen below; therefore, we develop our own three-steps review synthesis method:
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I always use my gift card and then when I click on *just* that hyperlink. Today this op-

tions it just closes the app always works for the app multiple times with no improvement to

performance.

1. First, a review repository for the target application is created. The reviews that belong

to the target app and 4 other apps from the same app category (Shopping, Game, Enter-

tainment etc) are crawled from App Store. The list of 10 mobile apps from which we

populated truthful user reviews, is presented in Table 3.2. For each app, 40 positive and

40 negative user reviews are chosen by random sampling. Table 3.3 presents the list of

40 apps (10 x 4 apps per category) from which we generated deceptive user reviews. Our

synthesizer generated 40 positive deceptive and 40 negative deceptive reviews for each

reference application.

2. Next, whole reviews are split into sentences by topic and our review synthesizer mixes

the sentences from the review repository for each topic to generate full review text that

is minimum 100 and maximum 300 characters long, given that the average length is 170

characters for app store user reviews.

3. Finally, 2 human annotators are allocated to evaluate the generated user review. Our human

evaluators are asked to read generated reviews and identify whether they are realistic or

not. One of the human annotators is PhD student with 10 years of software development

expertise, while the second human annotator, a Post Doctoral researcher, has 15 years of

software development expertise.

As a result, per our human evaluators’ assessment:

- Only 37.5% of automatically generated reviews by following our review synthesis method

are categorized as unrealistic,

This result indicates that an opinion spam detection task is challenging not only for machines

but for human evaluators as well.
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Table 3.2 List of the apps for truthful review dataset

ID Category Name Version # Truthful
Positive
Reviews

# Truthful
Negative
Reviews

1 Shopping Amazon - Shop-

ping made easy

11.14.0 40 40

2 Game Battlelands

Royale

0.5.8 40 40

3 Books Audible: Listen

to audio books

2.36 40 40

4 Health-

Fitness

Fitbit 2.75 40 40

5 Game Holeio: Daily

Brain Games

1.3.1 40 40

6 Food-Drink Uber Eats: Food

Delivery

1.149.

10001

40 40

7 Finance Paypal 6.28.0 40 40

8 Entertain-

ment

TikTok 8.4.0 40 40

9 Magazine The New York

Times

7.2.0 40 40

10 Photo-Video Youtube 13.33 40 40

Table 3.3 List of the apps for deceptive review dataset

Ref App & Category Apps from the Cate-
gory

Version # Positive
Deceptive
Reviews

# Negative
Deceptive
Reviews

Amazon - Shopping

1.a Groupon 18.10

1.b OfferUp - Buy. Sell.

Simple.

2.55.0 40 40

1.c Poshmark 2.124

1.d Wish - Shopping

Made Fun

4.9.0

Battlelands Royale -

Game

2.a Bumper.io 1.1.4

2.b Hello Stars 1.7.7 40 40

2.c Tomb of the Mask 1.5.1

2.d Ultra Sharp 1.0

Audible - Books

3.a Amazon Kindle 6.9

3.b Hooked 3.10.6 40 40

3.c Wattpad 6.85.0

3.d OverDrive: eBooks

& audiobooks

3.7.5

Fitbit - Health - Fitness

4.a MyFitnessPal 18.7.5

4.b BetterMe 2.5.4 40 40

4.c 30 days fitness chal-

lenge

3.3.19

4.d Sweatcoin 9.1
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Table 3.3 List of the apps for deceptive review dataset (continued)

Ref App & Category Apps from the Cate-
gory

Version # Positive
Deceptive
Reviews

# Negative
Deceptive
Reviews

Holeio - Game 5.a Go Fish! 1.0.3 40 40

5.b Axe Climber 1.6

Holeio - Game 5.c Baseball Boy! 1.7.1 40 40

5.d 8 Ball Pool 4.0.1

Ubereats - Food -

Drink

6.a McDonaldś 1.2.9

6.b DoorDash 3.0.93 40 40

6.c Starbucks 4.11

6.d Grubhub: Local

Food Delivery

7.11

Paypal - Finance

7.a Cash App 2.30

7.b Venmo: Send & Re-

ceive Money

7.20.1 40 40

7.c Chase Mobile 2.675

7.d Bank of America

Mobile Banking

7.8

TikTok - Entertainment

8.a Netflix 11.4.0

8.b Hulu: Watch TV

Shows & Movies

5.27 40 40

8.c Amazon Prime 5.7.1

8.d Celebrity Voice 2.0.7

The New York Times -

Magazine

9.a The Wall Street Jour-

nal

11.7.1

9.b USA TODAY 5.11.0 40 40

9.c PressReader 5.3.3

9.d B&W Photography

Magazine

6.0.0

Youtube

- Photo -

Video

10.a Snapchat 10.37.1.1

10.b 1 Second Everyday:

Video Diary

2.0.12 40 40

10.c Twitch: Live Game

Streaming

6.6

10.d Unfold — Create

Stories

3.3.2

3.3.2 Two-layer CNN Architecture

We propose to use two-layer CNN architecture as depicted in Figure 3.4 for opinion spam re-

view detection task. The first convolution layer produce sentence representations from word

representations, while the second convolutional layer of the model which is called the docu-

ment convolution transforms sentence vectors into a document vector. Finally the soft-max
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classification layer use the document vector representation as features to identify deceptive

spam review.

We first create the word embeddings that are low dimensional, continuous and real-valued

vectors and pre-trained from a large corpus of text with a learning algorithm. Denote a sen-

tence consisting of n words as {w1,w2, . . . ,wi, . . .wn} where each word w1 is mapped to the

embedding representation e(wi) ∈ RD.

Let D1,D2,D3 be the width of the convolutional filters. We set D1 = 1, D2 = 2 and D3 = 3

for representing uni-grams, bi-grams and tri-grams, respectively. Taking D1 for example, the

input of a linear layer is the concatenation of word embeddings in a fixed-length window size

D1, which is denoted as I1,i = [e(wi) ; e(wi+1) ; . . . ; e(wi+D1−1)]εRDxDl:

H1,i = W1 · I1,i +b1 (3.2)

where W1εRlocxDxD1 is the output size of the linear layer.

Average pooling layer is used to merge the varying number of outputs
{

H1,1,H1,2, . . . ,H1,n

}
from convolution layer into a vector with fixed dimensions.

H1 =
1

n

n

∑
i=1

H1,i (3.3)

To incorporate nonlinearity, an activation function tanh is used to obtain the output O1 of this

filter.

O1 = tanh(H1) (3.4)

Similarly, O2 and O3 are obtained for the other two convolutional filters with width 2 and 3,

respectively. The outputs of three filters are lastly averaged to generate sentence representation.
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Figure 3.4 CNN Architecture for deceptive opinion spam detection

(Adapted from Li et al. (2017))

The document convolution transforms sentence vectors s1, s2, .., sm into a document vector.

Finally, we use the document representation as features for identifying deceptive opinion spam.

More specifically, a linear layer is added to transform the document vector into a real-valued

vector, whose length is class number C. A softmax function is added to convert real vector to

conditional probability for document classification.

3.4 Implementation

The model was implemented in Tensorflow, an open-source software library for dataflow pro-

gramming across a range of tasks. Tensorflow can break up the graph of computations into
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several chunks and run them in parallel across multiple CPUs and GPUs. Our computations

for CNN model are run on CPU 3.1 GHz Intel Core i7.

We first build the vocabulary of our dataset and also a list that contains the number of words

in each review. We then reconstruct the input vector representation by replacing each word in

sentence by its Word2Vec representation with Tensorflow’s embedding lookup function. The

function takes in two arguments, one for the embedding matrix, and one for the ids of each of

the words which is the input data in our case.

Next a convolution, max pooling and a tanh activation are created for each filter width. The

result of each filter width is concatenated and then a dropout is added to that. We finally obtain

the output: the vector representation of each of the sentence.

The document convolution layer is similar to the sentence convolution layer and the output of

the document convolution layer gives us the document vector representation. On the top of

the document convolution layer, we add a softmax classification layer to identify the deceptive

spam review.

3.4.1 Hyper-parameters

Hyper-parameters for deep neural networks are the variables which determine the network

structure e.g., number of hidden units and the variables which determine how the network is

trained e.g., learning rate. Table 3.4 presents the hyper-parameters for our two-layer CNN

opinion spam detection model.

Table 3.4 Hyper-Parameters of the Two-Layer CNN Model

Argument Explanation Value
wordVectors The Word2Vec model Google News

dataset

embedding_size The number of convolutional fil-

ters for the sentence convolution

layer

300



59

Table 3.4 Hyper-Parameters of the Two-Layer CNN Model (continued)

Argument Explanation Value
filter_widths_sent_-

conv

An array that contains the widths

of the convolutional filters for

the sentence convolution layer

[3,4,5]

num_filters_sent_conv The number of convolutional fil-

ters for the sentence convolution

layer

100

filter_widths_doc_conv An array that contains the widths

of the convolutional filters for

the document convolution layer

[3,4,5]

num_filters_doc_conv The number of convolutional fil-

ters for the document convolu-

tion layer

100

dropout_keep_prob The probability of any given

neuron’s output to be preserved

(as opposed to dropped, that is

zeroed out.)

0.5

l2_reg_lambda lambda value defined for l2 reg-

ularizer for final prediction layer

0

learning method Kingma & Ba (2014) ADAM

learning rate The amount that the weights are

updated during training

0.001

num_epochs The number of complete passes

through the training dataset

100

batch_size The number of training sam-

ples to work through before the

model’s internal parameters are

updated

32

3.4.2 Training and Evaluation Corpora

We used the review dataset depicted in sub-section 3.3.1 that consists of:

- 400 truthful positive and 400 truthful negative reviews crawled from App Store,

- 400 deceptive positive and 400 deceptive negative reviews generated as explained in Section

4.3.
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Our dataset is split into 80% training (the sample of data used to fit the model), 10% validation

(the sample of data used to provide an unbiased evaluation of a model fit on the training dataset

while tuning model hyperparameters) and 10% test (the sample of data used to provide an

unbiased evaluation of a final model fit on the training dataset) subsets.

3.4.3 Performance Measures

We use accuracy, precision, recall and F1 as the evaluation metrics to evaluate the performance

of opinion spam detection model Powers (2011). Accuracy, precision and recall are then de-

fined as:

Accuracy =
T p+T n

T p+T n+F p+Fn
(3.5)

Precision =
T p

T p+F p
(3.6)

Recall =
T p

T p+Fn
(3.7)

where T p is the number of items correctly labeled as belonging to the positive class, T n is

the number of items correctly labeled as belonging to the negative class, F p is the number of

items where the model incorrectly predicts the positive class. And a Fn is an outcome where

the model incorrectly predicts the negative class.

The F1 Score is the weighted average of Precision and Recall. Therefore, this score takes both

false positives and false negatives into account.

F1 = 2� ( Recall � Precision) /( Recall + Precision ) (3.8)
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3.5 Experiments and Results

We compare the performance of our CNN based opinion spam detection model with a baseline

SVM model using the same review dataset. The features extracted and then used in the SVM

model are presented in Table 3.5.

Table 3.5 Text features extracted and used in the SVM model

Review-centric features Details
Structural features Length of the review, average word

length, number of sentences, average sen-

tence length, percentage of numerals, per-

centage of capitalized words.

POS percentages The percentage of each POS tagging in

each review.

Semantic features The percentages of positive and negative

opinion-bearing words in each review.

N-grams Top 100 uni-grams and bi-grams that have

the most different percentages (in terms

of ratios) in fake and nonfake reviews

LIWC dimensions Self-references (I, me, my), Social words,

Overall cognitive words, Articles (a, an,

the), Big words (> 6 letters)

Table 3.6 shows the results obtained from the SVM baseline method, the human evaluators as

well as our CNN model. SVM model gets the best result with n-grams, structural and LIWC

features, while the human evaluators accuracy to spot the deceptive opinion reviews are inferior

not only to SVM model but also to our neural network model.

Table 3.6 SVM, Human Evaluators and CNN performance results

Model Features Accuracy P R F1

(n-grams + struc-

tural features)

0.6750 0.6842 0.65 0.6667

SVM (POS + n-grams) 0.5813 0.5844 0.5625 0.5732

(n-grams + LIWC) 0.6938 0.7067 0.6625 0.6839
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Table 3.6 SVM, Human Evaluators and CNN performance results (continued)

Model Features Accuracy P R F1

SVM (n-grams + struc-
tural features + LI-
WCs)

0.70 0.80 0.6667 0.7273

n-grams + LIWC +

semantic features

0.6438 0.6625 0.6625 0.6503

Human Evaluators
Evaluator 1 0.7125 0.6932 0.7625 0.7262

Evaluator 2 0.7250 0.7143 0.75 0.7317

CNN 0.8250 0.8514 0.7875 0.8182

Per our human evaluators assessment as presented in Table 3.7 and Table 3.8, only the 37.5%

(in average) of the synthesized reviews are categorized as unrealistic (spam):

- Evaluator 1 has predicted 32 reviews as True Negative out of 80 spam reviews (%40),

- Evaluator 2 has predicted 28 reviews as True Negative out of 80 spam reviews (%35),

while, 21.875% (in average) of the truthful reviews are classified also unrealistic (spam) by the

same evaluators in average:

- Evaluator 1 has predicted 19 reviews as False Positive out of 80 truthful reviews (%23.75),

- Evaluator 2 has predicted 16 reviews as False Positive out of 80 truthful reviews (%20),

On the other hand, our CNN model with optimized hyperparameters achieved 82.5% accuracy

that gives better results by capturing relationships between local sentences.

3.6 Conclusion

App store user reviews are very diverse in form and most of the time no language structure is

followed: people tend to use slangs, short forms and emoji. Therefore, it is difficult to use hand-

crafted text features derived through tedious feature extraction and feature extraction processes
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Table 3.7 Confusion Matrix for Evaluator 1

(N=160)

Actual

Truthful Spam Total

Prediction
Truthful 61 48 109

Spam 19 32 51

Total 80 80 160

Table 3.8 Confusion Matrix for Evaluator 2

(N=160)

Actual

Truthful Spam Total

Prediction
Truthful 64 52 116

Spam 16 28 44

Total 80 80 160

for use of traditional text classification algorithms. Hence, the deep learning techniques have

potential for effective text classification problems like spam detection since these models work

effectively on raw data by learning high level features on its own.

In the second phase of our research study, we proposed to use a novel convolutional neural

network to learn document representation for deceptive spam review detection. Furthermore,

we characterized a review dataset including truthful and spam reviews acquired by crawling

App Store and synthesized automatically for the first time. Additionally, we do the comparison

between neural network based method and baseline classification model, SVM, by making

different feature combinations: from the reported experiments, our two-layer CNN model gives

a higher Accuracy (82.5%) in comparison to the SVM classifier (70%).

Traditional machine learning methods require huge amount of training data and subsequently

absence of enough training data brings a higher risk of overfitting, a common problem in ma-

chine learning. As we employ text synthesis method to generate reviews and use them for both

training and test, our deep learning model might have memorized the peculiarities in the data

that leads to our model to achieve super-human performance on the datasets.
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Besides, deep learning models require a lot of hyper-parameter tuning, and the values of these

hyper-parameters can make the difference between the state of the art and a nonfunctioning

model. Tuning hyper-parameters in a deep learning application can be a challenging process

given that it requires not only the execution of an experiment but the evaluation of the results

against other versions of the model. Since we pursued a manual tuning process based on trial

and error experiments to finalize the hyper-parameters, the exact unconditional P values for

non-inferiority (superiority) of our DL model to other state of the art models could not be

validated completely.



CHAPTER 4

AUTOMATED ASSESSMENT OF REVIEW HELPFULNESS

4.1 Introduction

User-supplied reviews are widely and increasingly used to enhance online retail and other

websites. However, the quality of the reviews has usually suffered from the anonymity of

reviewers and absence of repercussion of what they write. As the reviews are numerous and

varying in quality, it becomes more critical to detect low-quality reviews and eliminate their

possible negative effect on customers’ purchasing decision Ghose & Ipeirotis (2011).

Online retailers also have an increasing interest in displaying high-quality or helpful reviews

more prominently than low-quality ones. A key challenge when ranking reviews is to determine

which reviews the customers find helpful. To tackle this challenge, some retailers such App

Stores, Amazon.com, Yelp, etc. let users rate the reviews as Helpful or Unhelpful and then

provide them the capability to sort the reviews according the categories such as Most Helpful,

Most Recent, etc.

Helpfulness is often assessed manually by human evaluators who are asked for their opinion

by posing the question: “Was this review helpful to you?”, as shown in Figure 4.1. However,

this kind of manual assessment suffers from a number of limitations including:

- Biases: Human review evaluators are subject to a number of biases. For instance, reviews

with many positive helpfulness votes are displayed prominently: that results in being read

by many users and receiving even more helpfulness votes. Hence, the “winner circle”

phenomenon makes it hard for new reviews to be ranked appropriately Liu et al. (2007).

- Sparseness: Many reviews have received no helpfulness votes at all; many more have not

received enough votes to reliably compute their helpfulness.
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- No Instant Evaluation: After a review has been posted, it takes a significant amount of

time until it has been evaluated by a sufficient number of other users. As a consequence, it

is impossible to immediately rank a review in terms of its helpfulness.

Figure 4.1 Review helpfulness rating option for an App

Store app

On the other hand, user review helpfulness evaluation problem has been studied for various

platforms such Amazon, Yelp, TripAdvisor; however, no study that assessed review helpfulness

either manually or automatically for the mobile app store corpus has been identified in our

systematic literature review presented in Section 1.3.3.

To overcome these limitations, we first populate a mobile app store user review dataset in-

cluding helpful and non-helpful labelling. Afterwards, a binary review helpfulness classifier

is trained and tuned using the grid parameter and k-fold validation for the review helpfulness
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assessment task. The performance of the binary classification model predicting the helpfulness

of reviews is improved by adding text features capturing the presence and occurrence frequen-

cies of the app aspects (features) as given in app store description of the mobile app. Thus, app

store regulators and user would be able to obtain a helpfulness assessment result automatically

for every single review, at the moment it is posted and less affected by human biases.

This chapter which addresses the phase 3 of our research study is structured as follows: Sec-

tion 4.2 presents the workflow of our methodology for automated assessment of review useful-

ness. Section 4.3 describes the details about pre-processing including dataset creation, dataset

cleaning and feature generation steps. Section 4.4 presents the details of benchmarked binary

classifiers of Logistic Regression, AdaBoosting, Gaussian Naive Bayes and Support Vector

Machine (SVM). Section 4.5 evaluates the performance of the chosen binary classifier. Section

4.6 presents the implications of automated app store review helpfulness assessment model.

4.2 Methodology

Our research methodology for automated assessment of review helpfulness includes the main

tasks: (i) Pre-Processing, (ii) Selection of Appropriate Classifier and (iii) Classifier Refinement

steps as presented in Figure 4.2:

4.3 Pre-Processing

The pre-processing phase includes (i) dataset creation, (ii) dataset cleaning, (iii) feature gener-

ation steps as follows:

4.3.1 Dataset Creation

The dataset used for this part of the research is populated with the app store crawler developed

in Section 2.2.1. In Apple App Store and Google Play, reviews could be retrieved sorted by

their Helpfulness (Most Helpful), Post Date (Most Recent) and Rating. The crawlers are run
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Figure 4.2 Automatic Assessment of Review Helpfulness

Methodology (Phase 3)

twice: first to pull the most helpful reviews and then the most recent user reviews. Hence, the

entire review dataset includes both Helpful and Non-Helpful reviews as tagged by users.

The data retrieved in JSON format is converted to a pandas data frame for the use of following

sections. Each review in the data frame has the following information:
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- id - ID of the review, e.g. 2182577253

- userName - userName of the reviewer, e.g. Mmmmmmmmmhhhhhhhhhhhhhhhhz

- userUrl - url for the reviewer

- version - app version, e.g. 1.118.0

- score - rating given by the user

- title - title of the review

- text - review body

4.3.2 Dataset Cleaning

The dataset is cleaned through the following steps: (i) noise removal e.g., whitespace, punc-

tuation and non-text characters such as HTML tags, (ii) stemming, (iii) tokenization and (iv)

stop-word removal. Afterwards, the data columns that will not be used as model features are

removed, only the reviewText to generate text features, the score to generate the Meta-Data

feature and the helpfulness score (0 or 1) to generate classification labels are kept.

The pre-processing steps are detailed as follows:

- Noise Removal: The text is converted to lower case and also whitespace and non-text

characters such as HTML tags are removed.

- Stemming: Stemming means removing morphological affixes from words, leaving only the

word stem e.g., words such as "download" and "downloading" would both be represented as

"download" that allows classification algorithms to be more accurate at finding trends in the

meanings of sentences and stemming also reduces the total amount of features generated.

- Tokenization: Token is a single entity (words) that is building blocks for sentence or para-

graph. Given a character sequence and a defined document unit, tokenization is the task of
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chopping it up into pieces, called tokens, perhaps at the same time throwing away certain

characters, such as punctuation.

- Stop-word removal: A stop word is a commonly used word (such as “the”, “a”, “an”,

“in”) that a search engine has been programmed to ignore, both when indexing entries

for searching and when retrieving them as the result of a search query. Natural Language

Toolkit (NLTK) Loper & Bird (2002) English corpus stop-word list is used to remove the

stop-words from review corpus along with tokenization.

4.3.3 Feature Generation

Machine learning approaches heavily rely on features selection apart from the choice of ma-

chine learning algorithm and data. Therefore, in machine learning based opinion mining and

sentiment analysis studies, it is necessary to convert a piece of text into a feature vector in order

to represent the most salient and important features available.

In this part of our research, various features organized in three classes are extracted: Structural,

Lexical, and Meta-data.

- Structural Features: Structural features are observations of the document structure and its

formatting:

• Length (LEN): The total number of tokens in a syntactic analysis of the review.

• Sentential (SEN): Observations of the sentences, including the number of sentences,

the average sentence length, the percentage of question sentences, and the number of

exclamation marks.

- Lexical Features: Lexical features capture the words observed in the reviews and two sets

of lexical features are examined in this research study:

• Uni-gram (UGR): The Term Frequency – Inverse Document Frequency (TF-IDF) statis-

tic of each word occurring in a review.
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• Bi-gram (BGR): The Term Frequency – Inverse Document Frequency (TF-IDF) statis-

tic of each bigram occurring in a review.

Term Frequency – Inverse Document Frequency (TF-IDF) features that is the product of

two statistics, term frequency (Equation 4.1) and inverse document frequency (Equation

4.2) as given in Equation 4.3.

tf(t,d) = ft,d (4.1)

idf(t,D) = log
N

|{d ∈ D : t ∈ d}| (4.2)

tidf(t,d,D) = tf(t,d) · idf(t,D) (4.3)

with:

- N: total number of documents in the corpus N = |D|,
- |{d ∈ D : t ∈ d}| number of documents where the term t appears (i.e.,tf(t,d) �= 0) .

If the term is not in the corpus, this will lead to a division-by-zero. It is therefore

common to adjust the denominator to 1+ |{d ∈ D : t ∈ d}|.

4.4 Selection of Appropriate Classifier

At this step of the research, the review data is shuffled and split the data into 80% training and

20% testing that allows the simulated evaluation of how well the model is performing before

using it in the real world to make predictions. Afterwards, the performances of different binary

classifiers are evaluated for the features generated in Section 4.3.3.

The following sub-sections present the details of chosen binary classifiers:

- Logistic Regression
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- AdaBoosting

- Gaussian Naive Bayes

- Support Vector Machine (SVM)

4.4.1 Logistic Regression

Logistic Regression is one of the most used machine learning algorithms for binary classifi-

cation that outputs the probability of occurrence of an event as its prediction Hosmer Jr et al.

(2013).

Logistic regression can be expressed as:

log

(
p(X)

1− p(X)

)
= β0 +β1X (4.4)

where, the left hand side is called the logit or log− odds function where p(x)/(1− p(x)) is

called as odds. The odds signifies the ratio of probability of success to probability of fail-

ure. Therefore, in Logistic Regression, the linear combination of inputs are mapped to the

log(odds) where the output being equal to 1.

The inverse of the function Equation 4.4 gives a Sigmoid function with a S-shaped curve that

always gives a probability ranging from 0 < p < 1:

p(X) =
eβ0+β1X

1+ eβ0+β1X
(4.5)

The regression coefficients are usually estimated using maximum likelihood estimation as ex-

pressed in the following function:
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L (β ;y) =
N

∏
i=1

(
πi

1−πi

)yi

(1−πi) (4.6)

4.4.2 AdaBoosting

AdaBoost classifier Freund & Schapire (1995) is a meta-estimator that begins by fitting a clas-

sifier on the original dataset and then fits additional copies of the classifier on the same dataset

but where the weights of incorrectly classified instances are adjusted such that subsequent clas-

sifiers focus on more difficult cases.

Given a data set containing n points, where -1 denotes the negative class, while 1 represents a

positive one:

xi ∈ R
d,yi ∈ {−1,1} (4.7)

Initialize the weight for each data point as:

w(xi,yi) =
1

n
, i = 1, . . . ,n (4.8)

For iteration m=1,. . . ,M:

(1) Fit the weak classifiers to the data set and select the one with the lowest weighted classifi-

cation error:

εm = Ewm

[
1y�= f (x)

]
(4.9)

(2) Calculate the weight for the m−th weak classifier:

θm =
1

2
ln

(
1− εm

εm

)
(4.10)
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(3) Update the weight for each data point as:

wm+1 (xi,yi) =
wm (xi,yi)exp [−θmyi fm (xi)]

Zm
(4.11)

where Zm is a normalization factor that ensures the sum of all instance weights is equal to 1.

After M iterations, the final prediction is obtained by summing up the weighted prediction of

each classifier.

4.4.3 Gaussian Naive Bayes

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ the-

orem with the “naive” assumption of conditional independence between every pair of features

given the value of the class variable Zhang et al. (2015). Bayes’ theorem states the following

relationship, given class variable y and dependent feature vector x1 through xn :

P(y|x1, . . . ,xn) =
P(y)P(x1, . . .xn|y)

P(x1, . . . ,xn)
(4.12)

Using the naive conditional independence assumption that:

P(xi|y,x1, . . . ,xi−1,xi+1, . . . ,xn) = P(xi|y) (4.13)

for all i, this relationship is simplified to

P(y|x1, . . . ,xn) =
P(y)∏n

i=1 P(xi|y)
P(x1, . . . ,xn)

(4.14)

Since P(x1, . . . ,xn) is constant given the input, the following classification rule is used:



75

P(y|x1, . . . ,xn) ∝ P(y)
n

∏
i=1

P(xi|y) (4.15)

ŷ = argmax
y

P(y)
n

∏
i=1

P(xi|y) (4.16)

and we can use Maximum A Posteriori (MAP) estimation to estimate P(y) and P(xi | y), the

former is then the relative frequency of class y in the training set. The different naive Bayes

classifiers differ mainly by the assumptions they make regarding the distribution of P(xi | y).

The likelihood of the features is assumed to be Gaussian:

P(xi | y) = 1√
2πσ2

y

exp

(
−(xi−μy)

2

2σ2
y

)
(4.17)

The parameters σy and μy are estimated using maximum likelihood.

4.4.4 Support Vector Machine (SVM)

Support vector machines (SVMs) are a set of supervised learning methods used for classifica-

tion, regression and outliers detection. A Support Vector Machine (SVM) performs classifica-

tion by finding the hyperplane that maximizes the margin between the two classes. The vectors

(cases) that define the hyperplane are the support vectors Vapnik (1995).

SVM training involves the minimization of the error function:

1

2
wT w+C

N

∑
i=1

ξi (4.18)

subject to the constraints:
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yi
(
wT φ (xi)+b

)≥ 1−ξi and ξi ≥ 0, i = 1, . . . ,N (4.19)

where C is the capacity constant, w is the vector of coefficients, b is a constant, and represents

parameters for handling non-separable data (inputs). The index i labels the N training cases.

Note that y ∈ ±1 represents the class labels and xi represents the independent variables.

The kernel is used to transform data from the input (independent) to the feature space. It should

be noted that the larger the C, the more the error is penalized. Thus, C should be chosen with

care to avoid over fitting.

4.4.5 Performance Measure

The area under the Receiver Operating Characteristic (ROC) curve, or Area Under Curve

(AUC), is used as the measure of performance of our supervised classification models.

The ROC curve is created by plotting the True Positive rate (TPR) against the False Positive

rate (FPR) at various threshold settings. The probabilistic interpretation of ROC score is that if

a positive case and a negative case are randomly chosen, the probability that the positive case

outranks the negative case according to the classifier is given by the ROC. An example of a

plot of a ROC curve for a specific class is represented in Figure 4.3.
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Figure 4.3 ROC Curve example for a specific class

4.4.6 Evaluation Results

Each of the algorithms listed above in Section 4.4 are tested using the train/test split (%80 /

%20 ) and five different sizes of data (1000, 5000, 10000, 15000, 21064) and the results are

given in Figure 4.4.

Per classification results summarized in Table 4.1, the Logistic Regression is the best algorithm

in terms of ROC for the test sizes 1000, 5000, 10000, 15000 and 21064. However, its final score

for the area under the ROC curve = 0.7588 is the same with Support Vector Machine (SVM)

model.

The training speed and prediction speed:

- 0.1924 seconds and 0.0032 seconds respectively for Logistic Regression with a sample size

of 21064.

- 1723.9000 seconds and 42.6865 seconds respectively SVM with a sample size of 21064.
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Figure 4.4 Comparison of Different Review Helpfulness Classification Models

As the automatic review helpfulness assessment system needs to consider the trade off be-

tween accuracy and speed, the Logistic Regression algorithm seems to be the ideal model for

our benchmark. Surprisingly, the Gaussian Naive Bayes algorithm did quite poorly in our tests

and is less accurate than the AdaBoost algorithm.

Table 4.1 Benchmarking Results for Binary Classifiers

Model Training
Size

Training
Time (sec)

Prediction
Time (sec)

ROC_AUC
for Training
Set

ROC_AUC
for Test Set

GaussianNB

1000 0.0135 0.0603 0.8778 0.5560

5000 0.0618 0.0650 0.8147 0.6423

10000 0.1194 0.0498 0.7597 0.6715

21064 0.2367 0.1345 0.7385 0.6842

AdaBoost

1000 0.4974 0.2315 0.9693 0.6415

5000 3.3465 0.0898 0.8357 0.6708

10000 6.2303 0.1450 0.7916 0.7141

21064 11.9485 0.1406 0.7621 0.7076

SVM

1000 3.8297 3.1750 0.0802 0.2995

5000 76.9110 12.5610 0.8166 0.7353

10000 325.0635 30.2081 0.8006 0.7522
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Table 4.1 Benchmarking Results for Binary Classifiers (continued)

Model Training
Size

Training
Time (sec)

Prediction
Time (sec)

ROC_AUC
for Training
Set

ROC_AUC
for Test Set

SVM 21064 1723.90 42.6865 0.7876 0.7588

Logistic

Regression

1000 0.0038 0.0038 0.9612 0.6999

5000 0.0281 0.0035 0.8580 0.7402

10000 0.0619 0.0036 0.8226 0.7546

21064 0.1924 0.0032 0.7984 0.7588

4.5 Experiments

This section gives the details of new features added to the existing feature set, grid search

procedure to generate all possible parameter combinations and cross-validation results obtained

with (i) new feature set and (ii) optimized model parameters.

4.5.1 Adding Meta-data Features

In order to improve our results, our feature set is updated by adding the following meta-data

features:

- App Features: The features of apps that are written in app store description and occur in

the review text , e.g., stream music, connect and share for Youtube. This feature counts the

number of lexical matches that occur in the review for each app feature.

- General-Inquirer (GIW): Positive and negative sentiment words describing products or

product features (e.g., “easy to share music” and “amazing design”). The intuition is that

reviews that analyze product features are more helpful than those that do not. We try to cap-

ture this feature by extracting sentiment words using the publicly available list of positive

and negative sentiment words from the General Inquirer Dictionaries 1.

1 http://www.wjh.harvard.edu/ inquirer/homecat.htm



80

4.5.2 Grid Search

The grid search technique works by generating a grid of all possible provided parameter com-

binations. It then evaluates a model using a validation set based on every combination of

parameters in the grid. It is used to find the optimum set of parameters for a learning algorithm

given a data set.

The k-folds validation training technique creates multiple testing and training sets and trains a

model on each, averaging the results. The splitting method is to divide the data into separate

bins (for example k = 5), train on bins 1 to k-1 and test on bin k. The next fold trains on bins 2

to k and tests on bin 1 and so on, until all of the bins have acted as a test bin. This effectively

trains and tests the models on all of the data without over-fitting to the data.

The best classifier is tuned using a parameter grid and tested with k=5-fold validation. After-

wards, the obtained results are compared to the label results generated in Section 4.4.6 using

the AUC_ROC.

4.5.3 Results

Per 5-fold cross-validation results, our optimized logistic regression model using Structural +

Lexical and Meta-Data Features was able to score a value of 0.8158 for the area under the ROC

curve. Compared to initial benchmark model scoring 0.7588, 6% improvement was achieved

with grid-search and addition of meta-data features. Figure 4.5 presents the ROC curves for

optimized logistic model with and without meta-data features. Optimized logistic model with

structural, lexical features obtained the area under the ROC value = 0.7781, while same model

was able to score a value of 0.8158 for the area under the ROC curve with addition of meta-data

features.
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Figure 4.5 ROC curve for Review Helpfulness evaluation model

with meta-data features

4.6 Conclusion

Online product review helpfulness modelling is a multi-faceted task that involves using text

content and context information to understand the components of the helpfulness. Although

significant advances have been made on finding hand-crafted features for helpfulness predic-

tion, effective comparisons between proposed approaches have been hindered by the absence

of standard evaluation datasets, well-defined baselines, and feature extraction studies.

In this third phase of our research study, we built (i) a dataset including app store reviews with

helpful and non-helpful labels and (ii) a baseline binary review helpfulness classifier that can

help app store regulators to understand the components of review helpfulness. In addition, the

model provides an automated review assessment capability for every single review regardless

of its publication date and time and its given helpfulness votes for the use of both mobile app

users, app store owners and regulators.

As indicated in results, adding app related and GIW features to the feature set improved the

performance of our classifier 6% compared to initial benchmark model. The evoked ROC gain
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in prediction performance shows that the distribution of mobile app aspect words in the review

text is an indicator of the perceived helpfulness of the review by users.



CHAPTER 5

EXTRACTION OF MOBILE APP FEATURES

5.1 Introduction

Sentiment analysis, known as opinion mining, is a NLP research topic that has received much

attention in the past few years. With the advent of user-generated content as a rich source of

subjective information, there has been active research to analyze and classify the nature and

opinion polarity of written text to fine-grained levels. Aspect extraction is one of the key tasks

in fine-grained sentiment analysis that aims to extract entity aspects on which opinions have

been expressed Liu (2012).

Previous works for aspect extraction can be categorized into three: frequency-based, super-

vised, and unsupervised approaches. The most well-known approach featuring the frequency-

based approach for aspect detection task was proposed by Hu & Liu (2004) to find the most

comprehensive reviews with respect to a certain aspect by their frequencies. However, a major

shortcoming of most of the frequency-based methods is that nouns and noun phrases that natu-

rally have a high frequency can be mistakenly seen as aspects. Scaffidi et al. (2007) addressed

this limitation by comparing the frequency of a prospective aspect with baseline statistics gath-

ered from a corpus of 100 million words.

Supervised learning approaches that are characterized by the use of classifiers built from lin-

guistic resources within the text have dominated the research landscape for some time. A

substantial number of studies in SemEval 2014 1 and SemEval 2016 2 leveraged popular clas-

sifiers such as Maximum Entropy (ME), Conditional Random Field (CRF) and Support Vector

Machine (SVM) for aspect and sentiment polarity detection tasks. While supervised learning

approaches are quite efficient to solve aspect based sentiment analysis problems, they have

certain weaknesses including the requirement of relatively large annotated datasets, reliance

1 alt.qcri.org/semeval2014/

2 http://alt.qcri.org/semeval2016/
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on manually crafted features and annotated training data and non-replicable results for other

domains Fernández-Gavilanes et al. (2016).

Most of unsupervised machine learning approaches proposed for aspect based sentiment anal-

ysis use LDA, a topic model proposed by Blei et al. (2003) and its variants Titov & McDonald

(2008), Brody & Elhadad (2010). One of the main drawbacks of LDA models is that the gen-

erated topics are unlabeled, preventing a direct correspondence between topics and specific

aspects or entities. In addition, since LDA was initially designed to operate on the document

level, employing it for fine-grained aspect based sentiment analysis is not a straightforward

task Schouten & Frasincar (2016).

Deep learning (DL) architectures and algorithms have already made impressive advances in the

fields of computer vision and pattern recognition. Following this trend, NLP research is now

increasingly focusing on the use of new deep learning methods. In the past few years, neural

networks based dense vector representations have been producing superior results on various

NLP tasks Collobert et al. (2011), Lample et al. (2016), Yin & Schütze (2015), Rush et al.

(2015). Deep neural network models can learn text representation from data without careful

engineering of features and capture semantic relations between aspects and context words in a

more scalable way than feature-based supervised models Young et al. (2017).

Mobile app stores allow users to provide feedback in form of ratings and reviews towards

installed apps, which actually serve as an effective communication channel between app devel-

opers and users. Mobile app stores receive enormous amounts of reviews every day making the

manual analysis unfeasible and it is necessary to develop automated methods for mining the

review text. App store opinion mining techniques usually rely on the textual attributes of user

reviews to classify them into fine-grained aspects such as feature requests and bug reports.

The techniques applied to app store user review mining range from detecting the presence and

absence of certain terms (e.g.,’crash’,’bug’) to more computationally expensive methods that

rely on topic modelling and supervise or unsupervised classification techniques. However, the

approaches proposed for mobile app aspect extraction task do not usually consider the nature
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of the review text and the relevance of the extracted features has not been cross-validated with

the main software engineering concepts Genc-Nayebi & Abran (2017). Considering the huge

amount of user reviews and the distinctive features of the review text text (e.g., short length,

unstructured phrases, colloquial language and abundant information), there is a certain need to

leverage deep neural networks in order to extract targeted app aspects.

App Store aspect extraction studies use different techniques, review datasets and annotation

guidelines; therefore, the results reported in earlier studies are not directly comparable to each

other. In addition, when the extracted aspects contain many short and frequent app aspects that

are easy to detect but not enough informative not only for the developers but also for the app

users, the evaluation results would be artificially high. A large amount of manually annotated

corpora is available for fine-grained sentiment analysis and opinion mining in other domains

e.g., Amazon reviews by Hu & Liu (2004), movie reviews by Maas et al. (2011) and SemEval

datasets. However, there is no standard app review dataset that clearly identifies the mobile app

aspects.

To address these challenges, we first annotate a review dataset that follows the dataset annota-

tion guideline of SemEval Pontiki et al. (2015). The annotated aspects are based on ISO/IEC

25010:2011, the quality model that determines which quality characteristics will be taken into

account when evaluating the properties of a software product. Second, we employ two deep

neural net models: (i) Bidirectional Long Short Term Memory (bi-LSTM) Recurrent Neu-

ral Network (RNN) with Conditional Random Fields (CRF), (ii) a deep Convolutional Neural

Network (CNN) model with CRF that can generalize well even when limited training data is

available.

This chapter which addresses the phase 4 of our research study is structured as follows: Section

5.2 presents the necessary definitions and related work. Section 5.3 presents the details of

our research methodology and aspect extraction models. Section 5.4 presents the details for

implementation. Section 5.5 reports the experiment results. Lastly, Section 5.6 presents the

implications of our mobile app feature extraction model.
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5.2 Definitions and Related Work

This section first presents the definitions adopted in this chapter, followed by the related work.

5.2.1 Definitions

Functional Requirement: specifies a function that a system or system component must be

able to perform.

Non-Functional Requirement: are any other requirement than functional requirements. These

are the requirements that specify the criteria that can be used to judge the operation of a system,

rather than specific behaviours.

Functional Suitability: This characteristic represents the degree to which a product or system

provides functions that meet stated and implied needs when used under specified conditions.

This characteristic is composed of the following sub-characteristics: (i) Functional complete-

ness, (ii) Functional correctness, (iii) Functional appropriateness. (ISO/IEC 25010:2011)

Performance Efficiency: This characteristic represents the performance relative to the amount

of resources used under stated conditions. This characteristic is composed of the following

sub-characteristics: (i) Time Behaviour, (ii) Resource Utilization, (iii) Capacity. (ISO/IEC

25010:2011)

Compatibility: Degree to which a product, system or component can exchange information

with other products, systems or components, and/or perform its required functions, while shar-

ing the same hardware or software environment. (ISO/IEC 25010:2011)

Usability: The extent to which a system, product or service can be used by specified users to

achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of

use. (ISO/IEC 25010:2011)
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Reliability: Degree to which a system, product or component performs specified functions

under specified conditions for a specified period of time. This characteristic is composed of the

following sub-characteristics: (i) Maturity, (ii) Availability, (iii) Fault tolerance, (iv) Recover-

ability. (ISO/IEC 25010:2011)

Portability: Degree of effectiveness and efficiency with which a system, product or component

can be transferred from one hardware, software or other operational or usage environment to

another. This characteristic is composed of the following sub-characteristics: (i) Adaptability,

(ii) Installability, (iii) Replaceability. (ISO/IEC 25010:2011)

Praises and Complaints: We refer to a positive sentence as a praise. The sentence might have

a positive connotation with supplemental information, answering the question of why a topic

or aspect is positive. Similarly, We refer to a negative sentence as a complaint.

Feature Request: denotes a request to add a new function to the software or to modify the

existing functionality.

Bug Reports: describe problems with the app which should be corrected, such as a crash or

an erroneous behaviour.

5.2.2 Related Work

Several sentiment analysis competitions have been organized in the context of workshops and

conferences focusing on different sentiment analysis problems in recent years. Such com-

petitions provide training datasets and the opportunity for direct comparison of different ap-

proaches on common test sets Pontiki et al. (2014), Pontiki et al. (2015), Pontiki et al. (2016).

Aspect Based Sentiment Analysis (ABSA) detects fine-grained opinions expressed about dif-

ferent aspects of a given entity, on user-generated comments. The need for identifying aspect

terms and their respective polarity have given rise to research in ABSA. Following this partic-

ular interest and sentiment analysis competitions, the technology performing ABSA becomes

more and more mature.
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Most of the systems dedicated to ABSA use machine learning algorithms e.g., Conditional

random fields (CRFs) Toh & Wang (2014), Liu et al. (2015) and SVMs Chang & Lin (2011)

which are often combined with semantic lexical information, n-gram models, and sometimes

more fine-grained syntactic or semantic information. Both of these approaches have their own

limitations: they are in need of a large number of features to work well. The syntactic or

semantic features need to be crafted by hand, and they crucially depend on the grammatical

accuracy and completeness of the sentences.

Deep neural networks have been applied to learn better features for supervised aspect extrac-

tion, e.g., using LSTM first introduced by Hochreiter & Schmidhuber (1997) and attention

mechanism Wang et al. (2016). Convolutional Neural Networks (CNN), a category of neural

networks, have become more popular in the past few years. The approaches using deep CNNs

showed significant performance improvement over the state-of-the-art methods on the tasks

such as part-of-speech (POS) tagging, semantic role labeling and sentence and text classifica-

tion Collobert et al. (2011), Kim (2014), Zhang et al. (2015), Gehring et al. (2017). For ABSA

task, Poria et al. (2016) used CNN together with manual features to extract aspect terms. Liu

et al. (2015) proposed a general class of discriminative models based on recurrent neural net-

works (RNNs) and word embeddings. Xu et al. (2018) enhanced a pure CNN-based sequence

labeling model with double embedding mechanism (general-purpose embeddings and domain-

specific embeddings) for aspect extraction.

Similar to conventional online markets (e.g., Amazon and eBay) and customer review sites

(e.g., Yelp, Tripadvisor), app stores enable their customers to share their app experience in the

form of user reviews and star ratings. Realizing the technical and business value of app stores

feedback, research on mining user reviews in mobile app stores has noticeably advanced in the

past few years. The main objective of this line of research is to extract useful information that

can help app developers in software maintenance and release planning tasks.

Various methods and tools are proposed to automatically analyze user reviews with the aim of

acquiring valuable information from the app store user reviews. However, the aspects or topics
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extracted from user reviews vary depending on the choice and scope and also the methodology

used by the researcher. (See Table 1.3, Appendix I). We are aware of two studies that have

classified user reviews in accordance with quality aspects, and these researches by Groen et al.

(2017) and Lu & Liang (2017) were published nearly simultaneously to our SLR, presented

earlier in Section 1. Groen et al. (2017) used manual tagging and language patterns to iden-

tify quality attributes, while Lu & Liang (2017) did feature engineering and leveraged three

machine learning algorithms Naive Bayes, J48, and Bagging to classify user reviews.

In addition, we identified two published annotation guidelines associated with annotated app

review datasets. Guzman & Maalej (2014) annotation guideline defines an app feature as (i) a

description of specific app functionality visible to the user (such as uploading files or sending

emails), (ii) a specific screen of the app, (iii) a general quality of the app (such as time needed

to load or size of storage) or (iv) a specific technical characteristic (e.g. a network protocol

or HTML5). The annotation guideline prepared by Sänger et al. (2016) is in German and

the annotated aspects in the study are both app features, subjective phrases and relationships

between them. On the other hand, since we target to identify ISO/IEC 25010:2011 quality

attributes within the review text, the annotated validation dataset proposed by and Sänger et al.

(2016) could not be used in our study.

5.3 Methodology

Our research methodology for extraction of mobile app aspects includes the main research

steps of: (i) collection of review dataset, (ii) filtering of non-helpful and spam reviews with the

pre-trained models proposed in Chapter 4 and Chapter 5, (iii) annotation of review dataset, (iv)

aspect extraction with Bi-LSTM +CRF and a Deep CNN+CRF models as presented in Figure

5.1. The details of each step are presented in the following sub-sections.
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Figure 5.1 Extraction of Mobile App Features Methodology (Phase 4)

5.3.1 Collection of Review Dataset

Our review dataset consists of user reviews that are collected from Apple App Store and Google

Play. Both app stores categorize mobile apps and games into different categories such as Books,

Business, Entertainment, etc. based on main function or subject matter of the app. As of
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the date of this writing, App Store has 25 different categories, while Google Play offers 30

categories of apps and 17 categories for games.

We chose 25 apps by random sampling from each app category in Apple App Store, Canada.

On the other hand, 24 apps are sampled out of 320 apps (from 32 app categories) and 1 game

is sampled out of 170 games (from 17 game categories) that makes 25 apps in total for Google

Play, Canada. Table 5.1 and Table 5.2 show category, name, version, price tag (free or paid),

total number of English reviews as of December, 31 2018 and number of reviews retrieved for

the selected apps.

Table 5.1 List of App Store apps (N=25)

ID Category Name Version Free or
Paid

Total Re-
views (En-
glish)

#Reviews Re-
trieved

1 Overall Fitbit 2.84 Free 99,600 20,000

2 Overall Instagram 75.0 Free 846,658 20,000

3 Books Google Play

Books

5.1.1 Free 4,060 4,060

4 Business Indeed Job

Search

11 Free 15,661 15,661

5 Education Lumosity: Daily

Brain Games

9.50.1 Free 31,446 20,000

6 Entertain-

ment

Face Secret –

Face Reader

2019

1.5.5 Free 1,176 1,176

7 Finance Debt Manager 1.7.1 Paid 686 686

8 Food & Drink SkipTheDishes -

Food Delivery

3.9.11 Free 1,984 1,984

9 Games Fortnite 7.10.1 Free 279,302 20,000

10 Health & Fit-

ness

vívofit jr 3.3 Free 1,020 1,020

11 Lifestyle Live Wallpapers

Now

3.0.0 Free 10,040 10,040

12 Magazines &

Newspapers

Black Box -

Movie Listing

2.6.10 Free 220 220

13 Medical Maple - 247 On-

line Doctors

3.8.0 Free 56 56

14 Music FL Studio Mobile 3.2.05 Paid 1,324 1,324

15 Navigation Google Maps -

Transit & Food

5.7 Free 156,979 20,000

16 News CBC News 4.2.11 Free 4,547 4,547

17 Photo &

Video

Facetune 2.7.3 Paid 14,045 14,045
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Table 5.1 List of App Store apps (N=25) (continued)

ID Category Name Version Free or
Paid

Total Re-
views (En-
glish)

#Reviews Re-
trieved

18 Productivity Fantastical 2 for

iPhone

2.10.3 Paid 9,842 9,842

19 Reference Bible 8.7.1 Free 355,610 20,000

20 Shopping Flipp - Weekly

Shopping

9.3.1 Free 12,665 12,665

21 Social Net-

working

Messenger 196.0 Free 344,445 20,000

22 Sports Hockey Score-

board - Universal

Hockey Score-

keeping

2.0.5 Paid 130 130

23 Travel MarineTraffic -

Ship Tracking

3.9.2 Paid 3,626 3,626

24 Utilities AdBlock 4.1 Paid 7,706 7,706

25 Weather CARROT

Weather

4.9 Paid 1,716 1,716

Table 5.2 List of Google Play Apps (N=25)

ID Category Name Version Free or
Paid

Total #
Reviews
(English)

# Reviews
Retrieved

26 Overall Netflix 2018.12.13 Free 481,876 20,000

27 Casual-

Games

Candy Crush

Saga

1.140.0.5 Free 1,680,209 20,000

28 Art & Design ibis Paint X 5.5.5 Free 2,733 2,733

29 Beauty Hairstyle Try On

- Hair Styles and

Haircuts

5.1 Free 66 66

30 Books & Ref-

erence

YouVersion Bible

App + Audio &

Daily Verse

8.7.0 Free 119,825 20,000

31 Business Uber Driver 2018.12.18 Free 57,092 20,000

32 Comics How To Draw

Comics

1.0.11 Free 981 981

33 Communica-

tions

WhatsApp Mes-

senger

2018.12.13 Free 4,720,021 20,000

34 Education Toca Life: Neigh-

borhood

1.0.1-play Paid 346 346

35 Events Ticketmaster

Event Tickets

1.27.2 Free 12,717 12,717

36 Finance RBC Mobile 2018.12.10 Free 10,825 10,825
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Table 5.2 List of Google Play Apps (N=25) (continued)

ID Category Name Version Free or
Paid

Total #
Reviews
(English)

# Reviews
Retrieved

37 House &

Home

Universal Smart

TV / IR TV

Remote Control

PREMIUM

1.0.16 Paid 41 41

38 Libraries &

Demo

SYMA-FPV 5.2 Free 562 562

39 Lifestyle Hue Pro 2.4.11 Paid 918 918

40 Maps & Navi-

gation

BackCountry

Navigator TOPO

GPS PRO

2018.12.21 Paid 2,702 2,702

41 Medical Monash Uni Low

FODMAP Diet

2.0.7 Paid 544 544

42 Music & Au-

dio

djay 2 2.3.4 Paid 2,147 2,147

43 Parenting FamilyAlbum -

Easy Photo &

Video Sharing

2018.12.27 Free 620 620

44 Personali-

zation

ZEDGE Ring-

tones & Wallpa-

pers

2018.12.19 Free 179,198 20,000

45 Productivity Plague Inc: Sce-

nario Creator

1.1.6 Paid 373 373

46 Shopping Kijiji: Buy, Sell

and Save on Lo-

cal Deals

2018.12.19 Free 25,379 20,000

47 Sports iHunter Ontario 2.0.41 Paid 46 46

48 Tools Google Translate 2018.11.08 Free 258,018 20,000

49 Travel & Lo-

cal

Road to Hana

GyPSy Drive

Tour

2.2 Paid 266 266

50 Video Players

& Editors

Video & TV Cast

| Ultimate Edition

1.1 Paid 246 246

The reason of populating the review dataset through different app stores, categories and price

points is to evaluate our approach against reviews that contain diverse vocabularies, describing

different app aspects, and written by different users. Since users of a broad spectrum of mobile

apps have different expectations and interactions with technology in various manners, they

would possibly express their opinions and experiences in different ways. In addition, choosing

popular apps from top charts increases the probability that the human annotators would be

familiar with the apps that reduces the manual feature extraction effort and minimize the errors.
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Given that popular apps are also more likely to have more reviews, an automated analysis for

these apps would provide more realistic and useful aspects.

As earlier explained in Section 2.2.1, we collect review id, userName, version (app version),

score, title and review text for the analysis of the meta-data and user reviews with the Apple

Store and Google Play crawlers. The crawlers are run between the period of 01 June 2018 and

31 December 2018 for the apps depicted in Table 5.1 and 5.2.

Apple Store iTunes RSS feeds returns only a list of 50 reviews up to 10 pages (500 reviews

in total) and Google Play app page displays 40 reviews at most, we were not able to retrieve

enough amount of user reviews for some apps. To overcome this limitation, we use App-

bot3 service which tracks mobile app store reviews and ratings for all versions since their first

launch. Even though our Appbot subscription has another limitation that a maximum 20,000

reviews per app could be exported (as in Table 5.1 and 5.2), the number and the quality of

reviews is sufficient for aspect based sentiment analysis.

5.3.2 Filtering Opinion Spam and Non-Helpful Reviews

In this part of the research, we first classified the reviews as truthful and deceptive with the

CNN based opinion spam detection model that was trained in Section 3. We then predict the

helpfulness of the reviews with the logistic regression model earlier presented in Section 4.

Table 5.3 presents the number of App Store user reviews filtered by our opinion spam detection

and user review helpfulness assessment models per app.

Table 5.3 Number of App Store Reviews Before and After Filtering

ID #Total Reviews #Deceptive Reviews #Non-Helpful Reviews #Final Reviews
1 20,000 95 1,017 18,888

2 20,000 153 1,346 18,501

3 4,060 51 244 3,765

4 15,661 92 442 15,127

5 20,000 83 570 19,347

3 https://appbot.co/
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Table 5.3 Number of App Store Reviews Before and After Filtering (continued)

ID #Total Reviews #Deceptive Reviews #Non-Helpful Reviews #Final Reviews
6 1,176 51 173 952

7 686 7 271 408

8 1,984 68 193 1,723

9 20,000 1,671 1,307 17,022

10 1,020 50 144 826

11 10,040 452 2,098 7,490

12 220 7 53 160

13 56 0 5 51

14 1,324 99 306 919

15 20,000 363 2,471 17,166

16 4,547 150 328 4,069

17 14,045 386 4,352 9,307

18 9,842 461 1,693 7,688

19 20,000 58 1,057 18,885

20 12,665 73 907 11,685

21 20,000 161 1,486 18,353

22 130 1 9 120

23 3,626 11 312 3,303

24 7,706 36 562 7,108

25 1,716 41 306 1,369

Total 230,504 4,620 21,652 204,232

Table 5.4 shows the number of Google Play user reviews filtered by our opinion spam detection

and user review helpfulness assessment models for each app.

Table 5.4 Number of Google Play Reviews Before and After Filtering

ID # Total Reviews # Deceptive Reviews # Non-Helpful Reviews # Final Reviews
26 20,000 201 2,051 17,748

27 20,000 150 3,131 16,719

28 2,733 68 782 1,883

29 66 1 25 40

30 20,000 94 2,028 17,878

31 20,000 182 1,837 17,981

32 981 4 76 901

33 20,000 262 2,865 16,873

34 346 5 72 269

35 12,717 16 2,295 10,406

36 10,825 90 1,728 9,007

37 41 2 11 28

38 562 11 164 387

39 918 24 281 613

40 2,702 32 486 2,184

41 544 7 89 448
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Table 5.4 Number of Google Play Reviews Before and After Filtering (continued)

ID # Total Reviews # Deceptive Reviews # Non-Helpful Reviews # Final Reviews
42 2,147 29 361 1,757

43 620 13 264 343

44 20,000 82 2,223 17,695

45 373 6 95 2,72

46 20,000 338 5,197 14,465

47 46 2 19 25

48 20,000 212 3,577 16,211

49 266 0 23 243

50 246 5 54 187

Total 196,133 1,836 29,734 164,563

5.3.3 Annotation of Mobile App Aspects

The software requirements are distinguished into three categories: (i) functional requirements

(FRs), (ii) constraints and (iii) quality requirements or non-functional requirements (NFRs)

Pohl (2010). According to Khalid et al. (2015), FRs could be refined by analyzing online re-

views for complaints and praises, while new requirements can be derived from feature requests

Villarroel et al. (2016). Constraints that affect and limit software projects and application are

often beyond the user’s awareness or explanation capabilities Groen et al. (2017), Palomba

et al. (2017). Since app users are directly affected by quality characteristics of the app such

as performance efficiency, reliability, and portability, it is possible that online reviews contain

statements about product qualities.

To investigate the assumption that app store user reviews contain statements about FRs and

quality characteristics, the preliminary analysis of user reviews are performed by 2 software

development experts through manual analysis. 1250 reviews (25 reviews per app) have been

chosen with random sampling and the software development experts are asked to categorize the

topic presented in the review. As the examples for topic types, ISO/IEC 25010:2011 quality

characteristics: (i) Functional suitability, (ii) Performance Efficiency, (iii) Compatibility, (iv)

Usability, (v) Reliability , (vi) Security, (vii) Maintainability, (viii) Portability and the other

aspects reported by earlier studies (See Section 1) (ix) Feature Request, (x) Praises and Com-

plaints, (xi) Questions and also (xii) Price are given to the software development experts. If
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the aspect in the review does not fit into any of these categories, the evaluators are asked to

chose the aspect ’Other’. Since the review could contain more than one aspect, evaluators are

not restricted to choose single aspect per review.

Table 5.5 Descriptive Statistics: Occurrence of the aspects for 50 apps

Quality Aspect Mean Median Standard Dev Range Min Max
Functional Suitability 5.7 5 3.54 14 0 14

Performance Efficiency 0.62 0 1.05 5 0 5

Compatibility 0.42 0 1.29 7 0 7

Usability 1.86 1 1.86 8 0 8

Reliability 2.72 1.5 3.13 12 0 12

Security 0.1 0 0.30 1 0 1

Maintainability 0 0 0 0 0 0

Portability 0.98 1 1.60 10 0 10

Feature Request 1.16 1 1.34 5 0 5

Praises & Complaints 9.86 9 4.90 25 0 25

Questions 0.3 0 0.84 4 0 4

Price 1.06 0 2.71 14 0 14

Other 1.86 1.5 2.15 12 0 12

As a result, the evaluators report that the top 5 topics in the user reviews are "Praises and

Complaints" (%37), "Functional Suitability" (%21), "Reliability" (%10), "Usability" (%7) and

"Other" (%5). The reviews categorized as "Other" are not directly to the app but the service or

very specific concerns or comments e.g., "Why can’t children not have a Fitbit?" or simply do

not convey any useful information e.g., "My business address is not right and I put the correct

one this is a xx". There is no review identified only for the maintainability aspect among the

other aspects. Figure 5.2 shows the distribution of the topics explored in user reviews. Table

5.5 gives the preliminary analysis descriptive statistics for the occurrence of aspects in sampled

25 reviews within 50 apps and Table 5.6 presents the examples of each type of NFRs topics.

Table 5.6 Examples of Each Type of NFRs and Others

NFR Type Example from User Reviews
Functional Suitability "It hardly sends me notification for messages and

phone calls."
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Table 5.6 Examples of Each Type of NFRs and Others (continued)

NFR Type Example from User Reviews
Reliability "The app loaded but the screen froze and I could

neither access my library nor my ebooks."
Performance Efficiency "I’m trying to edit my resume too much too slow

and I can not take it."
Compatibility "I can’t use this app with my Viano Smart TV."
Usability "What an easy app to use!"
Portability "It is bad because it only works on certain devices

which is really silly"
FR Type Example from User Reviews
Feature Request "There’s no option for overtime on the periods slot

for the customization. Please fix asap"
Other Example from User Reviews
Praises and Complaints "Do not waste your time on this app, unless you

want to spend money and time."

The preliminary analysis results in Figure 5.2 indicate that significant amount of user reviews

are related to quality attributes (aspects) of the app and also "Feature Requests", it is useful

to automatically extract these aspects from the review text for the use of both developers and

app users. However, as every machine learning model needs data for training, validation and

testing, the following sections provide the details on how these datasets are prepared for the

use of our deep neural network aspect extraction models explained in Section 5.3.4.

5.3.3.1 Annotation Task

Annotation was performed by two human annotators, one of the annotators is PhD student

while the second annotator is a post doctoral researcher. The training of the the annotators

and optimization of the app review annotation guideline (Section 5.3.3.2) has been conducted

in two iterations. In each iteration, 50 reviews were randomly sampled from the complete

review corpus and given to the annotators. In the first iteration, the agreement between the

annotators reached a value of %64. After the first round, the problems and ambiguities in the

annotations of were discussed with the annotators. An agreement of %88 has been achieved

in the second iteration. After completion of this training phrase, the actual annotation was
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Figure 5.2 Distribution of the topics explored in user reviews with preliminary analysis

performed. The annotation took place in December 2018 and February 2019 over a period of

six weeks. Annotators were asked to identify the aspect terms, aspect term polarity and aspect

category and document them in XML format as presented as in Listing 2.

Each annotator worked on 2,000 reviews (total 4,000) randomly sampled among 368,795 re-

views to obtain sufficient amount of annotated aspect in each category. As a result, 2170 aspects

in 7 categories covered within 1685 sentences are annotated by our annotators.

5.3.3.2 App Review Annotation Guideline

For a given target entity which is a mobile app, the task of the annotator is to identify the

following types of information:
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1 <sentence id="1-2:10">
2 <text>The android wear maps would not

load and the function was buggy and
unusable.</text>

↪→

↪→

3 <Opinions>
4 <Opinion target="function"

category="RELIABILITY#QUALITY"
polarity="negative" from="45"
to="53"/>

↪→

↪→

↪→

5 </Opinions>
6 </sentence>

Listing 2: Example of an annotated review where the aspect term is function, aspect category is

RELIABILITY, the aspect term polarity is negative and the aspect term expands between the

character positions 45 and 53.

Aspect terms: Single or multiword terms naming particular aspects of the target entity. For ex-

ample, in “It’s the most reliable app on my phone! The design is simple and effective and easy

to read”, the aspect terms are “app”, and “design”; in “User interface is cluttered. Impossible

to adjust goals without losing all old data” the only aspect term is “user interface”.

Aspect term polarity: Each aspect term has to be assigned one of the following polarities

based on the sentiment that is expressed in the sentence about it:

- positive

- negative

- neutral (neither positive nor negative sentiment)

Aspect category: The task of the annotator is to identify the aspect categories discussed in a

sentence given the following five aspect categories:

- Functional Suitability

- Reliability
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- Performance Efficiency

- Compatibility

- Usability

- Portability

- Feature Request

A sentence may be classified into one or more aspect categories based on its overall meaning.

For example, the sentence “Design is ok; usually opens up fast enough and reacts quickly”

discusses the aspect categories USABILITY and PERFORMANCE.

What should be annotated as aspect term?: Nominal phrases explicitly mentioning aspects.

Notice that in (i) the aspect term is “inaccurate time error”, not simply “error”. In (ii) there is

only one aspect term: the “quality of the photos & documents”, since this is a single aspect,

rather than two separate aspect terms “quality of the photos” and “quality of the documents”.

(i) No matter how many times i’ve updated it will give inaccurate time error even my

mobile time was accurate.

(ii) Since last update, it is reducing the quality of the photos & documents that we send.

What should NOT be annotated as aspect term?

(A) References to the target entity as a whole, mentions of other entities and service associ-

ated with the app. No aspect term should be annotated in the following sentences.

(i) Great video streaming service.

(ii) This is better than Messenger.

(B) The name or the type of the app (e.g., “Netflix”, “Whatsup”) or the name of the devices.

No aspect term should be annotated in the following sentences:
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(i) I use a Galaxy Tab S2 for most of my media consumption, and it recently had

some severe issues that I was only able to fix with a custom ROM

(ii) My Netflix just stopped working on the phone.

(C) Pronouns (e.g.,“it”, “they”, “this”) even if they refer to an aspect. For example, “it”

should not be annotated below.

(i) I love this app, it is amazing.

5.3.4 Aspect Extraction Models

5.3.4.1 Bi-directional LSTM+CRF Model

Our first model relies on the deep learning architecture proposed in (Ma & Hovy (2016),

where the authors combine two aspects previously exploited in different studies: i) the use

of a character-level representation Chiu & Nichols (2015); ii) the additional output layer based

on CRF Huang et al. (2015).

The overall architecture of Bi-directional LSTM+CRF model is presented in Figure 5.3. The

character-level representation is computed by the CNN, as shown in Figure 5.3. Then the

character-level representation vector is concatenated with the word embedding vector to feed

into the Bi-directional LSTM network. Finally, the output vectors of Bi-directional LSTM are

fed to the CRF layer to decode the best label sequence. Dropout layers are applied on both the

input and output vectors of Bi-directional LSTM to prevent overfitting Srivastava et al. (2014).

The details for individual layers are presented in the following paragraphs.

5.3.4.1.1 CNN for Character-level Representation

CNN and LSTM are often being used to construct character-level word embeddings in the

literature Ma & Hovy (2016), Lample et al. (2016). Since the CNN has fewer parameters to

train than BiLSTM network that is better in terms of training efficiency, we use CNN to extract
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Figure 5.3 Bi-directional LSTM+CRF Model (Adapted from Ma & Hovy (2016))

character-level representation of a given word (Figure 5.4) as in the original architecture of

Ma & Hovy (2016).

A dropout layer as indicated with dashed arrows is applied before feeding the CNN with char-

acter embeddings Srivastava et al. (2014). Then the character embeddings are concatenated

with the word embeddings to form the input for the Bi-directional LSTM layer.

5.3.4.1.2 Bi-directional LSTM Network

LSTM networks are a specialized type of recurrent neural network (RNN)—a neural network

architecture used for modelling sequential data and often applied to NLP tasks. The advantage

of LSTMs over traditional RNNs is that they retain information for long periods of time, allow-

ing for important information learned early in the sequence to have a larger impact on model

decisions made at the end of the sequence.

Figure 5.5 illustrates the architecture of LSTM with more focus on a standard LSTM cell.
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Figure 5.4 The convolution neural network for extracting

character-level representations of words (Adapted from Ma & Hovy

(2016))

Figure 5.5 Detailed schematic of a Long Short-Term Memory block

(Adapted from Greff et al. (2015))
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In a standard LSTM cell:

- First, the forget gate controls what information is maintained from the previous state. This

takes in the previous cell output ht−1 and the current input xt band applies a sigmoid acti-

vation layer (σ) to get values between 0 and 1 for each hidden unit. This is followed by

element-wise multiplication with the current state.

- Next, an update gate updates the state based on the current input. This passes the same input

ht−1 and xt into a sigmoid activation layer (σ) and into a tanh activation layer and performs

element-wise multiplication between these two results. Next, element wise addition is per-

formed with the result and the current state after applying the forget gate to update the state

with new information.

- Finally, output gate controls what information gets passed to the next state. We run the

current state through activation layer tanh and perform element-wise multiplication with

the cell input ht−1 and xt and run through a sigmoid layer (σ) that acts as a filter on what

we decide to output. This output ht−1 is then passed to the LSTM cell for the next input of

our sequence and also passed up to the next layer of our network.

More formally, each cell in LSTM is computed as follows:

ft = σ
(
Wf · [ht−1,xt ]+b f

)
(5.1)

ht = ot ∗ tanh(Ct) (5.2)

it = σ (Wi · [ht−1,xt ]+bi) (5.3)

C̃t = tanh(WC · [ht−1,xt ]+bC) (5.4)

Ct = ft ∗Ct−1 + it ∗C̃t (5.5)

ot = σ (Wo [ht−1,xt ]+bo) (5.6)

ht = ot ∗ tanh(Ct) (5.7)
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where Wi,Wf ,Wo ∈R
d×2d are the weighted matrices and bi,b f ,bo ∈R

d are biases of LSTM to

be learned during training, parameterizing the transformations of the input, forget and output

gates respectively. σ is the sigmoid function and ∗ stands for element-wise multiplication. xt

includes the inputs of LSTM cell unit and the vector of hidden layer is represented with ht .

We regard the last hidden vector hN as the representation of sentence and put hN into a softmax

layer after linearizing it into a vector whose length is equal to the number of class labels.

Bi-directional LSTM networks Schuster & Paliwal (1997) are extensions to single LSTM net-

works. They are capable of learning long-term dependencies and maintain contextual features

from past and future. They comprise two separate hidden layers that feed forward to the same

output layer (Figure 5.3). A Bi-directional LSTM calculates the forward hidden sequence�h,

the backward hidden sequence
←
h and the output sequence y by iterating over the following

equations:

�ht = σ
(

Wx�hxt +W�h�h
�ht−1 +b�h

)
(5.8)

←
ht = σ

(
W

x
←
h

xt +W←
h
←
h

←
ht−1 +b←

h

)
(5.9)

5.3.4.1.3 Conditional Random Fields (CRF)

For sequence labeling (or general structured prediction) tasks, it is beneficial to consider the

correlations between labels in neighbourhoods and jointly decode the best chain of labels for a

given input sentence. We thus feed the outputs of the previous bidirectional LSTM layer into a

CRF layer as the unary potentials.

Given an input sentence x = 〈x1,x2, . . . ,xT 〉 and a label sequence y = 〈y1,y2, . . . ,yT 〉 the score

of the label predictions for x is calculated as:
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score(x,y) =
T

∑
t=0

Tyt ,yt+1
+

T

∑
t=1

Ht,yt (5.10)

where T is the transition matrix denoting the probabilities of one tag transiting to another, and

H is the matrix stacked by the Bi-LSTM outputs.

The probability for the label sequence y given x is then computed from score (x,y) using a

softmax transformation.

p(y|x) = es(x,y)

∑ŷ∈Yx es(x,ŷ) (5.11)

where Yx is the set containing all conceivable assignments of sequence labels for X.

The network parameters are chosen to minimize the negative log-likelihood of the gold tag

sequence for an input x:

L(θ) =−∑
x,y

log(p(y|x)) (5.12)

While inferencing, we find the best label sequence Y∗ that gives a maximum probability, which

can be calculated efficiently by Viterbi algorithm.

5.3.4.2 Deep CNN+CRF Model

A CNN is a neural-based approach which represents a feature function that is applied to con-

stituting words or n-grams to extract higher-level features. The resulting abstract features have

been effectively used for sentiment analysis, machine translation, and question answering,

among other tasks. Collobert & Weston (2008) are among the first researchers to apply CNN-

based frameworks to NLP tasks. The goal of their method was to transform words into a vector
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representation via a look-up table, which resulted in a primitive word embedding approach that

learn weights during the training of the network (Figure 5.6).

Figure 5.6 CNN framework used to perform word wise

class prediction (Taken from Collobert & Weston (2008))

In order to perform sentence modelling with a basic CNN, sentences are first tokenized into

words, which are further transformed into a word embedding matrix (i.e., input embedding

layer) of d dimension. Then, convolutional filters are applied on this input embedding layer

which consists of applying a filter of all possible window sizes to produce what is called a
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feature map. This is then followed by a max-pooling operation which applies a max operation

on each filter to obtain a fixed length output and reduce the dimensionality of the output. And

that procedure produces the final sentence representation.

The ultimate goal of word-level classification is generally to assign a sequence of labels to the

entire sentence. In such cases, structured prediction techniques such as conditional random

field (CRF) are employed to better capture dependencies between adjacent class labels and

finally generate a cohesive label sequence giving a maximum score to the whole sentence.

The window approach proposed by Collobert et al. (2011) assumes the tag of a word depends

mainly on its neighbouring words. As the features of an aspect term depend on its surrounding

words, we use a window of 5 words around each word in a sentence. We formed the local

features of that window and considered them to be features of the middle word. Then, the

feature vector was fed to a CNN. Our CNN network that is borrowed from Poria et al. (2016)

contains one input layer, two convolution layers, two max-pool layers, and a fully connected

CRF layer for the output. The output of each convolution layer is computed using a non-linear

function: in our case it is the hyperbolic tangent.

5.4 Implementation

The models are implemented in Tensorflow, an open source software library for numerical

computation and fine-tuned large scale machine learning. Tensorflow can break up the graph

of computations into several chunks and run them in parallel across multiple CPUs and GPUs.

The computations for both models are run on CPU 3.1 GHz Intel Core i7.

5.4.1 Hyper-parameters

In the following sub-sections, the hyper-parameters set for our two deep learning models are

presented.
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5.4.1.1 Bi-directional LSTM+CRF Model

Word Embeddings: Pre-trained word embeddings are meant to be particularly useful on prob-

lems where little training data is available. Hence, we use pre-computed GloVe embeddings 4

from 2014 English Wikipedia that contains 300-dimensional embedding vectors, 840B tokens

and 2.2M vocabulary from Pennington et al. (2014).

Character Embeddings: Character embeddings are initialized with uniform samples from[
−
√

10
dim ,+

√
10

dim

]
, where dim is set as 100.

Weight Matrices and Bias Vectors: Matrix parameters are randomly initialized with uniform

samples from
[
−
√

6
r+c ,+

√
6

r+c

]
where r and c are the number of rows and columns in the

structure Glorot & Bengio (2010). Bias vectors are initialized to zero, except the bias for the

forget gate in LSTM, which is initialized to 0.1 Jozefowicz et al. (2015).

Optimization Algorithm: Adam optimizer Kingma & Ba (2014) is used to minimize the

loss with initial learning rate 0.001. Due to the relatively small size the training and develop-

ment sets, overfitting poses a considerable challenge for our system. To make sure that our

model learns significant representations, we resort to dropout Srivastava et al. (2014) to miti-

gate overfitting. We find that dropout with a fixed rate of 0.5 decreases overfitting and improves

the overall performance of our system. We also employ early stopping Graves et al. (2013) to

mitigate overfitting by monitoring the model’s performance on the development set.

Tuning Hyper-Parameters: Table 5.7 summarizes the chosen hyper-parameters for Bi-directional

LSTM+CRF model including charactering embedding layer (CNN). We tune the hyper-parameters

on the development sets by random search. Due to time constrains it is unfeasible to do a ran-

dom search across the full hyper-parameter space. We initially set the state size of LSTM to

300, tuning this parameter did not significantly impact the performance of our model. For

character embedding layer, we set charEmbeddingsSize (the dimension for characters) = 30,

charFilterSize (filter Size) = 30, charFilterLength (the filter length) = 3.

4 https://nlp.stanford.edu/projects/glove/
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Table 5.7 Bi-directional LSTM+CRF Model Hyper-Parameters

Layer Hyper-Parameter Value

CNN
charFilterLength 3

Number of filters 100

charEmbeddingsSize 30

charFilterSize 30

LSTM

Word embedding dimension 300

Initial state 0

Dimension of hidden layer 300

Learning method ADAM

Learning rate 0.001

Dropout 0.5

Number of Epochs 200

Batch Size 32

5.4.1.2 Deep CNN+CRF Model

Word Embeddings: We use pre-computed GloVe embeddings 5 from 2014 English Wikipedia

that contains 300-dimensional embedding vectors, 840B tokens and 2.2M vocabulary Penning-

ton et al. (2014).

Optimization Algorithm: Adam optimizer Kingma & Ba (2014) is used to minimize the loss

with initial learning rate. To make sure that our model learns significant representations, we

resort to dropout Srivastava et al. (2014) to mitigate overfitting. We also employ early stopping

Graves et al. (2013) to mitigate overfitting by monitoring the model’s performance on the

development set.

Tuning Hyper-Parameters: Table 5.8 summarizes the chosen hyper-parameters for deep

CNN+CRF model. We tune the hyper-parameters on the development sets by random search.

Due to time constrains it is infeasible to do a random search across the full hyper-parameter

space.

5 https://nlp.stanford.edu/projects/glove/
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Table 5.8 Deep CNN +CRF Model Hyper-Parameters

Layer Hyper-Parameter Value

CNN - Layer 1
Window size [1, 2, 3]

Number of filters 300

CNN - Layer 2
Window size 5

Number of filters 300

Word embedding dimension 300

Learning method ADAM

Learning rate 0.001

Dropout 0.5

Number of Epochs 100

Batch Size 32

5.4.2 Training and Evaluation Corpora

For training and evaluation of the model, we use the corpora presented in Section 5.3.3. Our

dataset is split into 80% training, 10% validation and 10% test subsets.

The annotations in the corpora is encoded according to IOB2, a widely used coding scheme for

representing sequences. In this encoding, the first word of each chunk starts with a “B-Type”

tag, “I-Type” is the continuation of the chunk and “O” is used to tag a word which is out of

the chunk. In our experiments, we are interested to determine whether a word or chunk is an

aspect, so we only have “B–A”, “I–A” and “O” tags for the words. Figure 5.7 presents an

example of IOB2 tags.

5.5 Experiments and Results

In this part of the research, validation and prediction (testing) performance of our aspect ex-

traction models are evaluated. We use the Precision (P), Recall (R), F1 measures that are

widely-used in prior aspect extraction studies to evaluate the prediction performance of aspect

extraction models. We also report partial matches score that holds true positive if actual and

prediction overlap by at least one token.
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Figure 5.7 An example of an IOB2 tag

Figure 5.8 depicts the training loss graphs for Bi-LSTM+CRF and Deep CNN+CRF models.

At Epoch 57 out of 200, the training has been stopped as there was not any further improvement

happening for Bi-LSTM+CRF model. The training has been stopped for Deep CNN+CRF

model at Epoch 73 out of 200.

Figure 5.9 presents the validation precision values per epoch for Bi-LSTM+CRF and Deep

CNN+CRF models.

Figure 5.10 presents the validation recall values per epoch for Bi-LSTM+CRF and Deep

CNN+CRF models.

Figure 5.11 presents the validation F1 values per epoch for Bi-LSTM+CRF and Deep CNN+CRF

models.

Table 5.9 Test Results for Aspect Extraction Models
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Model P R F1 Partial P Partial R Partial
F1

Bi-

LSTM+CRF

80.73 76.70 78.67 91.75 81.90 86.12

Deep

CNN+CRF

80.19 78.37 79.27 90.60 83.47 86.62

5.6 Conclusion

Traditional approaches to aspect extraction relied on hand-crafted features, regular expressions

and word dictionaries. Conditional random fields (CRF) and support vector machines (SVM)

have been widely used to tackle the aspect extraction problem. At the moment deep learning

methods are seen as the most promising choice for NLP. Distributed word representations are

becoming a standard tool in the field of natural language processing. Such representations are

able to capture semantic features of words and significantly improve results for different tasks.

In this fourth phase of our research study, we first created an annotated app store review dataset

for the aspects extraction task, based on ISO 25010 - Systems and Software Product Quality

Requirements and Evaluation standard. Next, we applied current state of the art neural network

based (Bi-LSTM+CRF) model for mobile app aspect extraction problem. The proposed model

consists of three main layers: character embedding which was built using convolutional neural

networks (CNN), bi-directional LSTM and CRF. Our experiments demonstrated that the Bi-

LSTM+CRF model was slightly better than the Deep CNN+CRF baseline model. To the best

of our knowledge, this is the first study that reports on a deep neural network models for aspect

extraction of app reviews.
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Figure 5.8 Training Loss for Bi-LSTM and Deep

CNN+CRF Models

Figure 5.9 Validation precision values per epoch for

Bi-LSTM+CRF and Deep CNN+CRF models
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Figure 5.10 Validation recall values per epoch for

Bi-LSTM+CRF and Deep CNN+CRF models

Figure 5.11 Validation F1 values per epoch for

Bi-LSTM+CRF and Deep CNN+CRF models



CHAPTER 6

CONTRIBUTIONS AND FUTURE WORK

This chapter presents a summary of the key contributions of this study and proposes some

future work.

6.1 Contributions

The key contributions in this this doctoral research are the followings:

1. Proposing an app store opinion spam detection model: our systematic literature review has

revealed that there was only one single publication in the literature specifically targeting

the app store opinion spam detection problem. This publication dates back to 2012. Since

app stores and deep neural networks have evolved tremendously over the last 7 years,

our research has filled the gap in the literature by proposing a novel deep neural network

architecture for spam review detection.

2. Construction and validation of four different machine learning based review helpfulness

assessment models: Even though the user review helpfulness evaluation problem has been

studied for various platforms such Amazon, Yelp, TripAdvisor, our SLR could not identify

any study that assessed review helpfulness either manually or automatically for the mobile

app store corpus.

Our research study builds (i) a dataset including app store reviews with helpful and non-

helpful labels and (ii) a baseline binary review helpfulness classifier that can help app store

regulators to predict the helpfulness of the every single review regardless of its publication

date and time and its given helpfulness votes.

3. Creation of an annotated app store review dataset for the aspect extraction task, based on

ISO 25010 - Systems and software Product Quality Requirements and Evaluation standard:

the systematic literature review has revealed that earlier app store aspect extraction studies
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used different techniques, review datasets and annotation guidelines; therefore, the results

reported in earlier studies are not directly comparable to each other.

4. Construction and validation of two Deep Neural Network Models: Bi-LSTM+CRF and

Deep CNN+CRF for aspect extraction from app store user reviews. To the best of our

knowledge, this research is the first study that reports on deep neural network models for

aspect extraction of app store reviews.

5. The proposed models can be used to address individual app store problems of spam review

detection, review helpfulness prediction and extraction of mobile app features. But also

the combination of app store crawlers and three individual models would form a complete

app review processing platform, as the retrieved app store reviews would be first filtered

out by their helpfulness and authenticity. Then only helpful and non-spam reviews would

be processed to extract significant app aspects from the review text (Figure 6.1 - Outputs).

The initial findings of the phases 1 and 4 of this research have been published in the

following articles:

- Genc-Nayebi, N. & Abran, A. (2017). A systematic literature review: Opinion mining

studies from mobile app store user reviews. Journal of Systems and Software, 125,

207–219.

- Genc-Nayebi, N. & Abran, A. (2018). A Measurement Design for the Comparison

of Expert Usability Evaluation and Mobile App User Reviews. 28th International

Workshop on Software Measurement (IWSM) and the 13th International Conference

on Software Process and Product Measurement (MENSURA), IWSM-Mensura 2018,

Beijing, China, September 18-20, 64-76.

- Genc-Nayebi, N. & Abran, A. (2019). An Empirical Study on the Comparison of

Expert Usability Evaluation and Mobile App User Reviews. Empirical Software Engi-

neering. (Submission:EMSE-D-18-00342)
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Figure 6.1 Outcomes of the Research Study

6.2 Future Work

Our research has concentrated on using different machine learning algorithms and mining use-

ful features from either the content or the “meta-data” of the reviews. We investigated a variety

of features from Apple store reviews, and found that structural (e.g., review length), lexical

(e.g., inverse term frequency of uni-grams and bi-grams) and also meta-data features (e.g., app

description) are most useful in measuring review helpfulness. As presented in Sections 3 and

5, many researchers have shown that deep learning methods are effective on a variety of NLP
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tasks. As a future work, we will explore the possibility of employing a deep neural network

model to assess review helpfulness.

Most of modern NLP architectures adopted word embeddings and giving up bag-of-word

(BoW), LDA, LSA, etc. We also leveraged Word2Vec and Glove embeddings in our opinion

spam detection and mobile app feature extraction models presented in Chapter 3 and Chapter 5.

ELMo is a new deep contextualized word representation that models complex characteristics of

word use and how these uses vary across linguistic contexts Peters et al. (2018). Adding ELMo

to existing NLP systems could significantly improve the performance of many state-of-the-art

NLP models. Thus, we intend to investigate ELMo embeddings in our opinion spam detection

and aspect extraction models in the near future.

There is a growing demand for Artificial Intelligence (AI), which not only performs well,

but is also transparent, interpretable and trustworthy. However, understanding neural-network

predictions is notoriously difficult due to the fact that each prediction arises from a web of

decisions made by hundreds to thousands of individual nodes. In our research, the proposed

models are primarily evaluated by how much time they take to run, and by the accuracy of

their resulting decision. As a future research direction, we would like to explore our models’

resilience to corrupted or inconsistent training data and transparency of the resulting decisions.



CONCLUSION AND RECOMMENDATIONS

User reviews and ratings are an important source of information to support buying decisions

for app users. Developers and development companies build their app store reputation based

on reviews and ratings. The quantity of opinionated text data on web and mobile app stores

increases tremendously along with other types of big data. While the volume of the big data

increases, so do the complexity and relationships underneath the data.

As consumers increasingly start to rely on user reviews and ratings, the incentives also increase

to create fraudulent reviews to boost sales and to damage competitors’ reputation on the market.

Fraudulent reviews not only mislead customers into wrong purchase decisions, but also degrade

users’ trust in online reviews. In addition, review quality varies from reviewer to reviewer and

low quality reviews might not convey any necessary information. Thus, collecting opinions

requires concept or semantic level processing and filtering out non-opinionated text data.

Automated systems are useful to identify, classify and summarize the opinions and extract

application features and also to detect opinion spams in the review text. On the other hand, NLP

has advanced over the past several years primarily due to advances in unsupervised Learning

approaches that create word embeddings which is a continuation of the Word2Vec and Glove

approaches.

This research study has aimed to explore and test the following hypotheses:

- H0a – It is possible to classify app store user review’s legitimacy (being spam or truthful)

by automatically discovering distributed feature representation of review data:

Our two-layers novel CNN model using Word2Vec embedding (low dimensional and dis-

tributed representations of the text) gave superior result (%82.5 accuracy) compared to

baseline SVM model for spam review detection. Per the experiment results, it is possi-

ble to classify app store user review’s legitimacy (being spam or truthful) by automatically
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discovering distributed feature representation of review data without any feature engineer-

ing.

- H1a – All user reviews do not include useful information in regards to merits and drawbacks

of the mobile app:

The preliminary analysis of user reviews performed by 2 software development experts

through manual analysis shows that top 5 topics in the user reviews are "Praises and Com-

plaints" (%37), "Functional Suitability" (%21), "Reliability" (%10), "Usability" (%7) and

"Other" (%5). The reviews categorized as "Other" are not directly to the app but the service

or very specific concerns. Hence, this true hypothesis claims that all user reviews do not

include useful information in regards to merits and drawbacks of the mobile app.

- H0b – Analysis of app store user reviews provides necessary information for software re-

quirement evolution:

Distribution of the topics explored in user reviews with the preliminary analysis proves that

analysis of app store user reviews provides necessary information for quality characteristics

e.g., functional suitability, performance efficiency, compatibility, usability.

- H1b – It is possible to automatically retrieve app aspects from the review text:

In the course of this research study, two deep neural network models developed for the

extraction of mobile app aspects have achieved nearly 80% F1 score in exact aspect match-

ing and 86% F1 score in partial aspect matching. Hence, the models and obtained results

demonstrate that it is possible to automatically retrieve app aspects from the review text.

To achieve our research objectives, the following research phases have been followed:

Phase 0 - Identification of app store opinion mining studies: A systematic literature review

has been conducted to identify earlier mobile app store opinion mining studies and related ar-
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tifacts. The SLR methodology, the studies and techniques identified for each research question

and the principal findings were presented in Chapter 1.

Phase 1- Development of an app store crawlers: Two app store crawlers, one for Apple App

Store and the another one is for Google Play were developed to collect user reviews and app

meta-data such as appId, description, version, genres, etc. from the subject app stores. The

details for the app store crawlers are presented in sub-section 2.1.

Phase 2- Detection of opinion spam (deceptive) reviews: For deceptive spam review de-

tection task, a two-layer CNN model was leveraged to learn document representation from

sentence representations. The performance of the model was investigated against a baseline

SVM model. The CNN model which does not require any annotated review dataset and hand-

crafted features has better prediction performance compared to the baseline SVM model. A

review dataset including truthful and spam reviews was acquired by crawling Apple Store and

synthesized with a novel but an affective approach. Chapter 3 provides the details of two-layer

CNN model and also the baseline SVM model along with the features used in the model.

Phase 3- Assessment of Review Helpfulness: Four different machine learning classification

models have been examined to construct a review helpfulness prediction model. The best

performing model was tuned using the grid search and then its performance has been enhanced

by adding meta-data features which capture the presence and occurrence frequencies of the

app aspects (features) given in app store description of the mobile app. Chapter 4 provides

the details of the investigated classification models, the experiment results for grid search and

meta-data features.

Phase 4- Extraction of Mobile App Features: An annotated app store review dataset was

created for the aspect extraction task, based on ISO 25010 - Systems and software Product

Quality Requirements and Evaluation standard. The Bi-LSTM+CRF model that was originally
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developed for sequence tagging in the aspect extraction task was investigated in the extraction

of mobile app features. The model performance was compared against a deep CNN model

that has obtained good performance results for the task of aspect extraction. To the best of our

knowledge, this is the first study that reports a deep neural network models for aspect extraction

of app reviews. Chapter 5 presents the details for Bi-LSTM+CRF and Deep CNN+CRF models

and also the experiment results.
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a b s t r a c t 

As mobile devices have overtaken fixed Internet access, mobile applications and distribution platforms 

have gained in importance. App stores enable users to search for, purchase and install mobile applications 

and then give feedback in the form of reviews and ratings. A review might contain information about 

the user’s experience with the app and opinion of it, feature requests and bug reports. Hence, reviews 

are valuable not only to users who would like to find out what others think about an app, but also to 

developers and software companies interested in customer feedback. 

The rapid increase in the number of applications and total app store revenue has accelerated app store 

data mining and opinion aggregation studies. While development companies and app store regulators 

have pursued upfront opinion mining studies for business intelligence and marketing purposes, research 

interest into app ecosystem and user reviews is relatively new. In addition to studies examining online 

product reviews, there are now some academic studies focused on mobile app stores and user reviews. 

The objectives of this systematic literature review are to identify proposed solutions for mining online 

opinions in app store user reviews, challenges and unsolved problems in the domain, any new contribu- 

tions to software requirements evolution and future research direction. 

© 2016 Published by Elsevier Inc. 

1. Introduction 

With the rapid development of web and mobile devices, cus- 

tomers can now buy goods and services directly from online web- 

sites and digital distribution platforms. Users often rely on oth- 

ers’ reviews or recommendations either from online purchase web 

sites or review sites to finalize their purchasing decisions. How- 

ever, reading all reviews is time consuming and, sometimes, de- 

ceptive for users because of misleading or spam reviews. There- 

fore, researchers are looking into developing automated systems to 

identify, classify and summarize the opinions or sentiments and 

also to detect spam in an online text. Various researchers have 

studied opinion mining since the late 90s; however, the introduc- 

tion of Machine Learning techniques and annotated datasets such 

as customer review datasets ( Hu and Liu, 2004; Ding et al., 2008 ), 

pros and cons datasets Ganapathibhotla and Liu (2008) , Amazon 

product review data ( Jindal and Liu, 2008 ) and blog author gen- 

∗ Corresponding author. 

E-mail addresses: necmiye.genc.1@ens.etsmtl.ca (N. Genc-Nayebi), 

alain.abran@etsmtl.ca (A. Abran). 

URL: https://www.etsmtl.ca (A. Abran) 

der classification dataset ( Mukherjee and Liu, 2010 ) accelerated the 

research in the domain. With the emergence of different opinion 

mining domains such as social media (Facebook, Twitter, Insta- 

gram, App Store), app ecosystems, micro blogs, etc.), the focus of 

studies has since shifted into short-length texts, spam detection 

and contradiction analysis. 

There also exists quite a number of survey studies on opin- 

ion mining and sentiment analysis in the literature. Pang and Lee 

(2008) made a comprehensive contribution into opinion mining 

and sentiment analysis survey studies by covering applications, 

major tasks of opinion mining, extraction and summarization, sen- 

timent classification and also the common challenges in the re- 

search field. Tsytsarau and Palpanas (2012) surveyed the develop- 

ment of sentiment analysis and opinion mining research studies 

including spam detection and contradiction analysis. Their survey 

study provided 26 additional papers compared to Pang and Lee’s 

(2008) preliminary survey. The survey of Tang et al. (2009) has 

a narrower scope, examining the opinion mining problem only 

for customer reviews on the web sites that couple reviews with 

e-commerce like Amazon.com or the sites that specialize in col- 

lecting user reviews in a variety of areas like Rottentomates.com. 

Cambria et al. (2013) revealed the complexities involved in opinion 

http://dx.doi.org/10.1016/j.jss.2016.11.027 

0164-1212/© 2016 Published by Elsevier Inc. 
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mining with respect to current demand along with future research 

directions. 

Along with internet and world wide web, mobile devices have 

gained popularity because of their portability, accessibility, and lo- 

cation awareness. Concurrently, the ever increasing demand for 

various kinds of mobile apps running on different devices has led 

to a corresponding increase in mobile developers and competitive 

mobile app markets. App ecosystem opinion mining studies did not 

start until the early 2010s, soon after the launch of the Apple app 

store, the first application distribution platform, in July 2008. The 

success of the Apple app store has led to the launch of other simi- 

lar stores and services, with an exponential growth both in number 

of applications and revenue. The Apple app store generated over 10 

billion dollar in revenue for developers in 2014 and currently offers 

about three million apps ( Statista, 2014 ). Data mining and opinion 

aggregation from these platforms has therefore become a serious 

research topic. 

User ratings and reviews are user-driven feedback that may 

help improve software quality and address missing application fea- 

tures. However, it is difficult for an individual to read all the re- 

views and reach an informed decision due to the ever growing 

amount of textual review data. Hence, over the last several years, 

various techniques and automated systems have been proposed to 

mine, analyze and extract user opinion and sentiment from app 

store review text. Our first research question aims to reveal the 

data mining techniques used for reviews on software distribution 

platforms. 

One challenge in app store opinion data mining is vocabulary, 

which can vary, with the same term having different meanings in 

different contexts and domains. For example, even though “unpre- 

dictable’ may have a positive meaning for a movie or book review, 

it could indicate a negative opinion in a mobile app review and be 

associated with a possible bug or a quality issue. Since the linguis- 

tic context of terms used in reviews plays a key role in opinion 

mining, domain adaptation and transfer learning aspects should 

also be considered. Secondly, the reviews found in app ecosystems 

are relatively short (71 characters on average) and have different 

vocabulary compared to other commodity marketplaces ( Fu et al., 

2013 ). Harman et al. (2012) have pointed out that app ecosystems 

are a new form of software repository and very different from tra- 

ditional repositories. The granularity in an app store ecosystem is 

finer and the information collected (such as price, customer rat- 

ing, number of downloads and application features, in addition to 

user reviews) allows empirical analysis. Our second research ques- 

tions looks for research studies that explore this domain depen- 

dency challenge. 

Unbiased or non-spam user reviews may be numerous but of 

varying quality. The terms such as ‘Liked’, “Not recommend’, “OK 

app” do not convey any information about why users like an ap- 

plication or which aspects they like the most. Secondly, most re- 

views are poorly written and the information they contain often 

not useful, or highly personal and device- or technology-specific. 

Sophisticated ranking schemes, as found in the Apple app store 

and Google Play, measure reviews by their “helpfulness” as rated 

by users. In the Apple app store, the button under each user re- 

view allows other users to vote on whether the review is helpful or 

not; reviews may also be sorted from Most Helpful to Less Helpful 

based on these voting results. However, for newly written reviews 

or less popular applications, there would not be enough “helpful- 

ness” voting to be of any use. Our third research question searches 

for studies that automatically asses and rank reviews in accordance 

with their usefulness or helpfulness. 

As consumers increasingly rely on user reviews and ratings, 

there has been a stronger incentive to create fraudulent reviews in 

order to boost sales and damage competitors” reputations. Fraudu- 

lent reviews not only mislead customers into poor purchase deci- 

sions, but also degrade user trust in online reviews. Various stud- 

ies and techniques have been proposed for detecting spam reviews. 

In an app ecosystem, spam app developers and opinion spammers 

(including those who would like to gain monetary profit or leak 

valuable user data such as contact lists or credit card information) 

tend to post spam reviews using Internet bots and puppet user ac- 

counts ( Chandy and Gu, 2012 ). Despite some existing studies on 

opinion spam, the identification of spam in app stores has become 

another promising topic for researchers. Our fourth research ques- 

tion investigates spam identification and ranking fraud detection 

methods and techniques. 

Users prefer having comparisons of specific features of different 

products available rather than having to gather isolated opinions 

about a single product themselves. In addition to average rating on 

a five-star scale and corresponding ranking on the app store, users 

prefer learning about others’ experience with the app, including 

which aspects/features they liked or disliked most. Each user has 

his/her own preferences and while one user might feel strongly 

about the appearance, others may focus on functional or techni- 

cal aspects. Hence, there is a need to extract and rate individual 

application features. However, to be able to make such compar- 

isons, domain knowledge (ability to spot features) and common- 

sense knowledge about how to identify text polarity are required. 

Our last research question searches for aspect-based opinion min- 

ing studies extracting application features from mobile app store 

reviews. 

Even though some surveys have reviewed the techniques and 

methods in opinion mining and sentiment analysis from text, no 

SLR has reviewed the literature regarding mobile app store data 

mining, opinion aggregation and spam detection. Martin et al. 

(2016) provided an initial survey into literature that covers the pe- 

riod of 20 0 0 to November 27,2015, however their survey is not a 

SLR and they particularly interested in studies that combine tech- 

nical (Application Program Interface (API) usage, size, platform ver- 

sion and etc) and non-technical attributes (category, rating, re- 

views, installs and etc) of mobile apps. The goal of our SLR is 

to methodically review and gather research results for specific re- 

search questions and to develop evidence-based guidelines for app 

store practitioners. We developed a set of five research questions 

to guide the literature review process and performed an extensive 

search to find publications that answer the research questions. 

The rest of this paper is structured as follows. 

Section 2 presents our research methodology, including the 

research questions. Section 3 presents the results obtained by our 

SLR and identifies the challenges and avenues in this new field. 

Section 4 presents discussions about the mobile app store opinion 

mining studies. 

2. Research methodology 

The SLR was conducted following the guidelines of Kitchenham 

(2004) . The activities performed in the course of the SLR were 

structured into three phases: (1) planning, (2) conducting the re- 

view, and (3) reporting. See Fig. 1 . The individual tasks performed 

in each activity are described in Sections 2.1 –2.3 . 

2.1. Planning 

The planning phase clarified the specific objectives of the SLR, 

that is, to identify mobile app store studies, the challenges faced 

when mining app store data, how these challenges have been over- 

come, and any unsolved challenges. In addition, we specified the 

following five research questions and the motivations behind the 

questions. 



N. Genc-Nayebi, A. Abran / The Journal of Systems and Software 125 (2017) 207–219 209 

Fig. 1. SLR process. 

2.1.1. Research questions 

RQ1: Which specific data mining techniques are used for re- 

views on software distribution platforms? 

Motivation: App stores provide a wealth of information in the 

form of customer reviews. Opinion mining and sentiment analy- 

sis systems have been applied to various kinds of texts including 

newspaper headline, novels, emails, blogs, tweets and customer 

reviews. Different techniques and automated systems have been 

proposed by researchers to extract user opinions and sentiments 

within the text over the years. Unlike documents or long length 

text, mobile app store reviews have some unique characteristics 

such as being short, informal and sometimes even ungrammatical 

consisting of incomplete sentences, elongations and abbreviations 

that make them difficult to handle. This question targets to present 

approaches and techniques proposed particularly for app store user 

review mining and opinion extraction problems. 

RQ2: How do the studies remedy the ‘domain dependency’ 

challenge for app store reviews? 

Motivation: Vocabulary varies within different context and do- 

mains, and same term might mean different opinions. An opin- 

ion classifier trained using opinionated words from one domain 

might perform poorly when it is applied to another domain. The 

reason is that not only the words and the phrases, but also the 

fact that language structure could differ from one domain to an- 

other. Hence, language structure and linguistic context of opinion 

and sentiments terms plays a key role in opinion mining, domain 

adaptation methods are also required to be considered while deal- 

ing with app store user reviews. This research question aims to re- 

veal how mobile app store opinion mining studies tackle domain 

adaptation problem. 

RQ3: What criteria make a review useful? 

Motivation: Quality varies from review to review and low qual- 

ity reviews might not convey any necessary signals to be used for 

information extraction. To tackle spam identification problem, it is 

critical to have a mechanism or a criterion that assesses the quality 

of reviews and filter out low-quality/noisy reviews. While review 

helpfulness is assessed manually by users in mobile app stores, 

there also exists some automated systems that assess and rank re- 

views in accordance with their usefulness or helpfulness. This re- 

search question aims to expose the methods or criteria used to dif- 

ferentiate useful app store reviews from the others. Besides, this 

research question also searches for automated systems that evalu- 

ate review usefulness and helpfulness. 

RQ4: How can spam reviews be differentiated from legitimate 

reviews? 

Motivation: As number of online reviews increased and fraud- 

sters who produce deceptive or untruthful reviews emerged, tit is 

an essential task to identify and filter out the opinion spam. Dif- 

ferent studies and techniques have been proposed for spam re- 

view detection problem. The opinion spam identification task has 

great impacts on industrial and academia communities. Our objec- 

tive with this research question is to investigates spam review and 

ranking fraud detection methods and techniques for online stores 

and mobile app stores. 

RQ5: Does the study extract targeted/desired software features 

from application reviews? 

Motivation: Apart from app’s average rating over 5-star scale 

and its corresponding ranking on app store, users would like 

to learn about others’ experience with the app and which as- 

pects/features they liked or disliked most. The information ob- 

tained from mobile app reviews is also valuable for developers to 

get user feedback about most liked or expected features (Require- 

ments Elicitation) and bugs on the application (Software Quality 

and Software Evaluation). This research question focuses on aspect- 

based opinion mining studies extracting application features and 

aims to reveal the studies that make automated application feature 

extraction and rating in the face of user reviews. 

2.1.2. Development and validation of the review protocol 

The review protocol defines the activities required to carry out 

the literature review. A review protocol helps reduce researcher 

bias and defines the source selection and searching processes, 

quality criteria and information synthesis strategies. This subsec- 

tion presents the details of our review protocol. 

The following digital libraries were used to search for primary 

studies: 

• Science Direct 
• IEEExplore 
• ACM Digital Library 
• Citeseer library (citeseer.ist.psu.edu) 
• Springer Link 
• Google Scholar 

The following search query was created by augmenting the key- 

words with possible synonyms. While conducting the review, we 

examined the reference list of primary studies to determine if 

there were additional studies not captured by our research query. 

((mobile OR software) OR ((apps OR app OR application) OR 

(market OR ecosystem OR AppStore OR store))) AND ((data OR (on- 
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Table 1 

Inclusion and exclusion criteria. 

Inclusion criteria Exclusion criteria 

Case studies and surveys of text analysis, opinion mining and sentiment 

analysis from app store reviews. 

Papers that present opinions without sufficient and reliable supporting 

evidence. 

Preliminary analysis of mobile app store reviews, vocabulary, trends. Studies not related to the research questions. 

Papers searching application feature requests and bug reports within review 

text. 

Papers that do not comply with the evaluation criteria in Table 2 . 

Papers that describe the criteria of what makes a review useful and helpful for 

readers. 

Preliminary conference papers of journal papers by same author(s). 

Papers that distinguish fake reviews and spams from legitimate ones. 

Table 2 

Quality checklist Keele (2007) . 

No Question 

1 Are the aims of the study stated clearly? 

2 Is the basis of evaluative appraisal clear? 

3 How defensible is the research design? 

4 Are data collection methods described adequately? 

5 Has the approach to, and formulation of, analysis been 

conveyed adequately? 

6 Has the diversity of perspectives and contexts been explored 

7 Are there any links between data, interpretation and 

conclusions? 

8 Is the reporting clear and coherent? 

9 Has the research process been documented adequately? 

10 Could the study be replicated? 

line OR review) OR user OR (text OR comment OR vocabulary)) OR 

rating OR (opinion OR sentiment) OR (mining OR analysis OR pro- 

cessing) OR (feature OR requirement) OR request OR expectation 

OR (bug OR quality OR complain OR issue) OR (usefulness OR help- 

fulness)) 

Study Selection Procedure: We systematically selected the pri- 

mary studies by applying the following four steps: 

1. We examined the paper titles to eliminate studies unrelated to 

our research focus. 

2. We reviewed the abstracts and keywords in the remaining 

studies. If either the abstracts or keywords did not provide the 

necessary information, we reviewed the results and conclusion 

sections to determine if the study was relevant. 

3. We filtered the remaining studies in accordance with the inclu- 

sion and exclusion criteria given in Table 1 . 

4. We double-checked the reference list of the initial primary 

studies to identify additional studies that might be relevant to 

our search. 

We evaluated the quality of the primary studies using the 

checklist adapted from Keele (2007) . Each study was evaluated ac- 

cording to the quality checklist questions given in Table 2 . The 

studies that provided a ‘yes’ answer to at least seven questions 

from the checklist were selected. 

2.2. Conducting the review 

2.2.1. Identification and selection of relevant studies 

We followed Wohlin’s (2014) snowballing procedure in order to 

identify relevant studies. In the first step called database search, 

we identified the keywords and formulated search string as given 

in Session 2.1.2. Our research with the search query generated 

more than 500 hits that will build up our start set. After exam- 

ining the paper title, abstract, keywords, results and conclusions 

(if necessary) to filter out unrelated studies, 63 studies remained 

as start set. We used the reference list of our start set papers to 

identify new papers to include. Afterwards, we went through the 

reference list and exclude the papers that do not fulfil the ba- 

sic criteria such as title, language and publication venue. We also 

performed forward snowballing to identify new papers based on 

those papers citing the paper being examined. Each candidate cit- 

ing the paper is examined by screening the information provided 

in Google Scholar. If this information is not sufficient enough for 

a decision, the citing paper is examined in more details. After im- 

plementing backward snowballing and forward snowballing steps, 

we ended up with 45 research papers. Using the inclusion and ex- 

clusion criteria and quality checklist, examination of the remaining 

literature produced 24 primary studies. 

2.2.2. Extraction of data 

We used the data extraction form in Table 3 to extract data 

from the 24 primary studies. Even though the same data items 

were searched with RQ1 and RQ4, opinion mining and spam anal- 

ysis studies respectively, the results obtained are presented in dis- 

tinct tables. See Tables 4 and 5 in the Appendix. 

2.2.3. Information synthesis 

We read the 24 selected studies noting the methods and find- 

ings that were repeated. Inconsistencies and contradictions in the 

information were also recorded and are presented in the discus- 

sion and principal findings sections. 

2.3. Reporting the review 

Data extracted from the primary studies were used to an- 

swer our five research questions. The guidelines of Kitchenham 

(2004) were closely followed in the reporting of results. 

3. Results 

3.1. RQ1: Which specific data mining techniques are used for the 

reviews on software distribution platforms? 

Analysis of the 24 primary studies identified a number of spe- 

cific opinion mining and opinion extraction techniques used for re- 

views on software distribution platforms. 

Chen and Liu (2011) identified useful app features ((i) static 

(e.g., application name, provider), (ii) dynamic (e.g., current rate, 

update date) and (iii) comment (e.g., user rate, comment content)) 

to predict app popularity and trained a model for an automated 

popularity prediction task. To create the dataset, they sampled 

102,337 applications and a list of dynamic features were accumu- 

lated for top 200 paid and free applications by tracking their daily 

ranking. They used a Classification and Regression Tree (CART) 

model as a popularity prediction model and leveraged static (app 

name, provider, category, etc.), dynamic (current rank, all version 

count, all version rate, etc.) app and app store features and also 

comment features (user rate, comment title and comment con- 

tent). As a result, they found that the top-ranked (the search rank- 

ing on the app store that factors in average app store rating, rat- 

ing/review volume, download and install counts and app usage 
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Table 3 

Data extraction form. 

Search focus Data item Description 

General Identifier Reference number given to the article 

Bibliography Author, year, title, source 

Type of article Journal/conference/technical report/etc. 

Study aims Aims or goals of the study 

RQ1 / RQ4 Text and data mining methods and techniques used Algorithms, models and measures 

Selected or obtained review features The subset of text features used or identified in the study 

Dataset List of chosen applications, number of reviews 

Performance/Results Precision, recall, accuracy/Obtained results 

RQ2 Domain-specific text and data mining techniques used for 

app store reviews 

App store and app review specific algorithms, methods 

Specific features used for app store reviews App store and app review specific text features 

Performance improvement Performance improvement compared to conventional opinion 

mining studies 

RQ3 User review helpfulness/usefulness assessment framework Predictors, variables, features that specify review quality 

Model used for automated usefulness task Algorithms, models and measures 

Selected features Subset of text features used in the study 

Performance Precision, recall, accuracy 

RQ5 Extracted app features Mobile app features retrieved from online review text 

Method Approaches, techniques used for automatically extracting 

application features 

Performance Precision, recall, accuracy 

Table 4 

List of mobile app store data mining studies. 

No Reference Study Name Method Features Dataset 

Performance 

Results 

1 Chen and Liu 

(2011) 

Predicting Popularity of 

Online Distributed 

Applications 

CART Static features, Dynamic features, 

Comment features 

200 paid applications 

sampled from 

102,237 applications 

Preliminary 

observations 

were presented 

as results 

2 Vasa et al. 

(2012) , Hoon 

et al. (2012) 

A Preliminary Analysis of 

Mobile App User 

Reviews, A preliminary 

analysis of vocabulary in 

mobile app user reviews 

Summary statistics, Box 

plots, Distribution 

charts 

Word frequencies 8.7 million reviews 

from 17,330 apps 

Top 20 most 

frequent words 

were presented 

as results 

3 Harman et al. 

(2012) 

App Store Mining and 

Analysis: MSR for App 

Stores 

Correlation analysis 

and greedy algorithm 

for extraction and 

grouping of features 

Price, Rank of downloads, Rating 

mean 

32,108 non-zero priced 

apps 

Correlation 

between 

customer rating 

and the rank of 

app downloads is 

presented 

4 Iacob et al. 

(2013) 

What Are You Complaining 

About: A Study of Online 

Reviews of Mobile 

Applications 

Manual analysis Positive, negative, comparative, 

price related, missing 

requirements, issue reporting, 

usability, customer supports and 

versioning 

Randomly selected 161 

apps and 3279 

reviews from Google 

Play Store 

Distribution of code 

classes is given 

in results 

5 Ha and Wagner 

(2013) 

Do Android Users Write 

About Electric Sheep? 

Manual classification PAdjective (positive/negative), ads 

(positive/negative), aesthetics, 

company, comparison, 

feature/functionality, model, 

money, permissions, preinstalled, 

recommendations, resources, 

tips, uninstalled, used to be, 

work/doesn’t work 

556 reviews from 59 

applications 

Results include 

percentage of 

how often broad 

topics appeared 

in reviews 

6 Wano and Iio 

(2014) 

Relationship between 

Reviews at App Store and 

the Categories for 

Software 

Manual text analysis N/A 500 applications from 

various categories 

Review styles are 

different with 

software 

categories 

7 Gómez et al. 

(2015) 

A Recommender System of 

Buggy App Checkers 

LDA (for topic mining) 

and J48 for learning 

patterns 

N/A User reviews from 

46,644 reviews 

N/A 

8 Mojica Ruiz 

et al. (2015) 

An Examination of the 

Current Rating System 

used in Mobile App 

Stores 

Hexbin plot N/A 242,089 app versions of 

131,649 

Store rating is very 

resilient to 

changes in the 

version rating 
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Table 5 

List of mobile app store spam identification studies. 

No Reference Study Name Method Features Dataset Performance/Results 

1 Chandy and Gu (2012) Identifying Spam in 

the iOS App Store 

CART Decision tree 

model and latent 

class graphical 

model 

User average rating, user number of 

reviews, application average rating, 

app number of reviews, number of 

instances with 2, 3, 4 stars, developer 

number of applications, developer 

average rating, binary class indicators 

6.4% classification error 

with false positive rate 

6.3% and false negative 

rate 40.9. 

statistics) paid applications were not closely related to customer 

ratings. 

Vasa et al. (2012) and Hoon et al. (2012) made a prelimi- 

nary analysis of mobile app user reviews. They initially analyzed 

the data using summary statistics with a one-way ANOVA test, 

box plots and cumulative distribution charts to confirm their hy- 

pothesis that rating and category have an affect on the length of 

the review. They analyzed 8.7 million reviews from 17,330 app 

and according to their analysis, users take the time to express 

their discontent by writing longer reviews, in contrast to short re- 

views when content with the application. They also identified a 

strong correlation between positive-negative sentiments and one- 

and five- star ratings. Unexpectedly, more than 50% of the two and 

three-star rated user reviews did not include any sentiment. 

Harman et al. (2012) mined the Blackberry app store using 

Spearman’s Rank Correlation method and identified a strong cor- 

relation between application rating and number of downloads, 

whereas there is no correlation between price and rating, nor 

price and number of downloads. They tested their approach to 

the 32,108 non-zero priced apps. Iacob and Harrison (2013) man- 

ually analyzed reviews and identified nine classes of feedback: 

positive, negative, comparative, price related, request for require- 

ments, issue reporting, usability, customer support and versioning. 

They first randomly choose 169 apps and collected 3279 user re- 

views and then manually examined and classified reviews based 

on their content and then coded the categories, for example: aes- 

thetics, company, comparison, feature/functionality, model, permis- 

sions, money, etc. They observed a correlation between review pos- 

itivity and feature or functionality request. 

Ha and Wagner (2013) manually analyzed Android users’ re- 

views to see what they write about when reviewing Google Play 

applications. They crawled Google Play to collect information about 

202,264 free applications and they selected 60 free applications 

with 556 reviews. As a result, they found that small subset of re- 

views had pointed privacy and security implications, whereas the 

majority of the reviews focused on the quality of the applications. 

Wano and Iio (2014) performed a manual text analysis and deter- 

mined that review styles differ with software categories. The study 

used the search API and also used RSS Feed Generator by Apple. 

The number of targeted software is 500 and for each software, the 

targeted reviews are restricted up to 50 because of the API restric- 

tion. They concluded that consumers should pay attention to bias 

in reviews. 

Gómez et al. (2015) mined reviews with LDA and error- 

suspicious permission patterns with the J48 decision tree algo- 

rithm (a Weka implementation of the C4.5 algorithm), reveal- 

ing potential correlations between error-sensitive permissions and 

error-related reviews over time. They built a dataset that consists 

of a random sample of all the mobile apps available on Google Play 

Store. They collected 500 applications from 27 different categories. 

Mojica Ruiz et al. (2015) made an overall evaluation of app 

stores and user rating schema and concluded that the current store 

rating of apps was not dynamic enough to capture the changing 

user satisfaction levels along with evolving application versions. 

Their dataset was extracted by crawling Google Play and this re- 

sulted in 242,089 app versions of 131,649 mobile apps. After the 

filtration, they ended up with 238,198 versions of 128,195 apps. 

They used hexbin plots to examine whether there would be a no- 

ticeable change in the store-rating of an app given a rise or drop 

in the rating of a specific version of that app. 

Most of studies identified within this research question are pre- 

liminary researches and based on either manual or statistical anal- 

ysis of user reviews. The researchers used either the research API 

and RSS Feed Generator by Apple store or some scrapers script to 

collect app store data. The datasets are mostly created with ran- 

dom sampling of all the mobile apps available and there is not any 

specific or common app category preferred by researchers. Since 

Martin et al. (2015) presented empirical evidence that indicates 

that the partial nature of data available on App Stores could pose 

an important threat to the validity of findings, the obtained re- 

sults from different App Store research studies could not be com- 

pared with one another. Star rating, category and review content 

are most common features collected within 87.5% of the studies. 

We could not obtain any data regarding average length of a re- 

view considered in the studies, however the dataset by Vasa et al. 

(2012) showed that user review length is highly skewed with an 

average of 110 characters. On the other hand, Fu et al. (2013) stated 

in their paper that average length of the comments is 71 charac- 

ters, and median length is 47 characters. If the datasets used in 

the research studies would be publicly available, we will have the 

chance to validate these numbers. For this reason, researchers need 

to augment their findings with an argument to convince the reader 

that any sampling bias is unlikely to affect their research find- 

ings and conclusions. One of very recent studies by Gu and Kim 

(2015) indicated this app store sampling phenomenon as a threat 

to validity. 

Table 4 presents the list of 9 studies with their methods, details 

of datasets, features and performance as a response to RQ1. 

3.2. RQ2: How do the studies remedy the ‘domain dependency’ 

challenge for app store reviews? 

RQ2 looked at how domain dependency affects opinion min- 

ing from reviews. A classifier trained in using opinionated words 

from one domain might perform poorly when applied to another 

domain since not only words and phrases but also language struc- 

ture may differ from one domain to another. 

From the primary studies it was noted that some researchers 

labelled data for the new domain and created their own dataset 

from scratch, whereas other researchers used labelled data from 

one domain and unlabelled data from the target domain, and then 

made the domain adaptation by using general opinion words ( Aue 

and Gamon, 2005; Yang et al., 2006; Blitzer et al., 2007; Pan et al., 

2010 ). In order to overcome the domain barrier in opinion ex- 

traction, Cosma et al. (2014) proposed a generalized methodol- 

ogy by considering a set of grammar rules for the identification 

of opinion-bearing words. 
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In addition, online reviews have distinctive text features, includ- 

ing short length, unstructured phrases and abundant information. 

Short reviews bring new challenges to traditional research topics 

in text analytics, such as text classification, information extrac- 

tion and sentiment analysis. As opposed to standard texts, which 

include many words and phrases and their corresponding statis- 

tics, short texts consist of few phrases and sentences. Several tra- 

ditional text analytics methods have been proposed to tackle the 

data sparseness problem: 

• The first is surface representation that uses phrases in the orig- 

inal text from different product aspects to maintain the contex- 

tual information. However, this method fails to produce a deep 

understanding of the text and the method does not make use 

of external knowledge, which has been found useful in deal- 

ing with the semantic gap in text representation ( Hu and Liu, 

2012 ). For example, this review from the app store: “This iOS 

9 update. App crashing and ugly font”, does not contain any 

words or phrases related to the reason for the crash and possi- 

ble user interface (UI) design problem, while the words ‘crash’ 

and ‘font’ are related to software engineering concepts. Hence, 

it is difficult to use bag-of-words based models and methods to 

build semantic connections between the review text and soft- 

ware characteristics. 
• Another approach is to enrich the context of basic text seg- 

ments by searching the external sources. Such methods have 

been found effective in narrowing the semantic gap for differ- 

ent tasks ( Gabrilovich and Markovitch, 2007; Alfonso Ureña- 

López et al., 2001 ). In the app store corpus, these external 

sources would be app crash reports, tweets, community blogs 

and code repositories. 

Another important characteristic of online text, particularly in 

online reviews, is the use of colloquial language. When com- 

posing a review, users might use abbreviations or acronyms 

that seldom appear in conventional text. As an example, the 

phrases “superb” “Good 2go” “you do not buy the guarskldj; al b 

bbbbbbbbb„„„,wke;” make it very difficult to identify the seman- 

tic meaning. With research question RQ2, we sought to discover 

how researchers tackled domain adaptation problems, how they 

dealt with distinctive features of the review text and what spe- 

cific methods or algorithms and text features were used to im- 

prove performance. To answer this research question, we reviewed 

the selected studies to identify the training datasets, methods, text 

features and performance comparisons. The mobile app store re- 

searchers mentioned in Table 6 used their own annotated dataset 

rather than leveraging existing online review datasets. Since they 

preferred to use conventional text mining methods such as Latent 

Dirichlet Allocation (LDA), Aspect and Sentiment Unification Model 

(ASUM), Naive Bayes classifier and statistical analysis, we cannot 

present any new method developed for the app store corpus. No 

new solutions or methods were proposed for examining the text 

characteristics (e.g., short length, unstructured phrases and collo- 

quial language and challenges) of app store user reviews. 

As in many real-word applications, topics revealed by Latent 

Dirichlet Allocation (LDA) and Aspect and Sentiment Unification 

Model (ASUM) are needed to be verified by experts to ensure they 

are semantically meaningful within the domain analysis. Hence, 

4 studies out of 24 leveraged truth sets to understand if the ex- 

tracted features align with real app features and to minimize the 

threat to validity. Galvis˜Carreño and Winbladh (2013) used the 

manually classified data as a truth set. Since the second author is 

not domain expert or not involved in software development, they 

reported that the process is error-prone. Chen et al. (2014) col- 

lected the group truth labels of the training pool and test set ac- 

cording to pre-defined rules. Guzman and Maalej (2014) and Gu 

and Kim (2015) also used the truth set that was created with sys- 

tematic assessment of review samples by human coders. 

However, manual validation could dominate the time and cost 

of building high-quality topic models. To overcome this problem, 

some researchers proposed measuring topic quality with topic co- 

herence and statistical methods ( Mimno et al., 2011; Newman 

et al., 2009 ). We propose incorporating domain knowledge into 

Topic Modelling via Dirichlet Forest Priors ( Andrzejewski et al., 

2009 ). Dirichlet Forest Priors, when combined with LDA, allows 

the user to encode domain knowledge (must-links and cannot- 

links between words) into the prior on topic-word multi nomi- 

nal P(word| topic). In this way, app store domain knowledge could 

be expressed by a set of Must-Links (Two words u, v have simi- 

lar probability within any topic) and Cannot-Links (Two words u, v 

should not both have large probability within any topic). 

3.3. RQ3: What criteria make a review useful? 

Review quality varies from reviewer to reviewer, and low- 

quality reviews might not convey any useful information. App store 

regulators allow users to vote on the helpfulness of each review 

and then rank the reviews based on votes. While review helpful- 

ness is usually assessed manually, there are automated systems 

that do this. For the manual review of usefulness, there are no de- 

fined criteria among users. A review that appears helpful to one 

user may not be helpful for others, since they might be search- 

ing for different information or have differing priorities or biases. 

On the other hand, standard defined criteria would be valuable to 

differentiate useful reviews from others. Reviews chosen in accor- 

dance with these criteria for data mining and opinion extraction 

studies would yield the maximum capability for information ex- 

traction. Studies examining online review helpfulness are as fol- 

lows: 

• Cheung et al. (2008) measured review quality in terms of com- 

pleteness, timeliness, accuracy and relevance. 
• Mudambi and Schuff (2010) found that review depth had a pos- 

itive effect on the helpfulness of the review but product type 

affected the perceived helpfulness of reviews. 
• Pan and Zhang (2011) analyzed a large sample of reviews from 

Amazon to identify what determined information helpfulness 

and found that review length and positive reviews had a direct 

correlation with review usefulness. 
• Korfiatis et al. (2012) discovered that review readability and 

positive ratings affected the number of helpfulness votes. 

Studies on automatically assessing review helpfulness: 

• Kim et al. (2006) trained an SVM (Support Vector Machine) re- 

gression model to learn the helpfulness function and then ap- 

plied it to rank unlabelled reviews. They found that the most 

important features were the length of the review, its unigrams 

and its product rating. 
• Liu et al. (2008) also modelled the helpfulness of reviews. They 

showed that helpfulness of a review depends on three impor- 

tant factors: reviewer expertise, writing style, and timeliness. 
• Ghose and Ipeirotis (2011) used a Random Forest-based classi- 

fier and examined the relative importance of three feature cat- 

egories: (i) reviewer related, (ii) reviewer subjectivity, and (iii) 

review readability. They found that using any of the three fea- 

ture category results provided the same performance as using 

all available features. 
• Moghaddam et al. (2012) used a probabilistic graphical model 

based on Matrix Factorization and Tensor Factorization. These 

models are based on the assumption that the observed review 

ratings depend on latent features of the reviews, reviewers, 

raters and products. They reported that the latent factor models 

outperform state-of-the-art approaches. 
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Table 6 

List of mobile app feature extraction studies. 

No Reference Study Name Method Extracted app features Performance/Results 

1 Iacob and 

Harrison 

(2013) 

Retrieving and Analyzing Mobile 

Apps Feature Requests from 

Online 

LDA positive, negative, comparative, price 

related, missing requirements, issue 

reporting, usability, customer support 

and versioning 

N/A 

2 Galvis˜Carreño 

and 

Winbladh 

(2013) 

Analysis of User Comments: An 

Approach for Software 

Requirements Evolution 

ASUM They presented sample topics 

identified per application. As an 

example for Facebook: ‘Updates’, 

‘Developer’, ‘Messages’, ‘Photos’ 

For K = 24 Precision: 62.5 Recall: 

20.83 F-Measure: 31.44 For K = 48 

Precision: 86.67 Recall: 54.16 

F-Measure: 66.64 K = 150 

Precision: 90 Recall: 75 

F-Measure: 80 

3 Pagano and 

Maalej (2013) 

User Feedback in the AppStore: An 

Empirical Study 

Statistical Analysis Community, requirements, rating, user 

experience 

“Rating” is revealed as most 

frequent them with the 

frequency of over 77%. 

Requirements-30%, Community - 

13%. 

4 Fu et al. (2013) Why People Hate Your App –

Making Sense of User Feedback 

in a Mobile App Store 

Statistical Analysis Attractiveness, stability, accuracy, 

compatibility, connectivity, cost, 

telephony, picture, media and spam 

91% (Precision), 73% (Recall) 

5 Oh et al. (2013) Facilitating developer-user 

interactions with mobile app 

review digests 

SVM Functional Bug, Functional Demand, 

Non-functional Request 

0.8981 (Precision), 0.8165 (Recall), 

0.8553 (F-Measure) 

6 Chen et al. 

(2014) 

AR-Miner: Mining Informative 

Reviews for Developers from 

Mobile App Marketplace 

EMNB (Expectation 

Maximization for 

Naive Bayes) 

They presented sample topics 

identified per application. As an 

example for Swiftkey: ‘more theme’, 

‘swype feature’, ‘space bar’, ‘more 

option’, ‘like keyboard’ and etc. 

F-measure: 0.764 - SwiftKey 0.877 

- Facebook 0.797 - TempleRun2 

0.761 -TopFish 

7 Guzman and 

Maalej (2014) 

How Do Users Like This Feature? A 

Fine Grained Sentiment Analysis 

of App Reviews 

LDA Functionality related topics were 

extracted 

0.59 (Precision), 0.51 (Recall) 

8 McIlroy et al. 

(2015a) 

Analyzing and Automatically 

Labelling the Tyes of User Issues 

that are Raised in Mobile App 

Reviews 

Naïve Bayes, 

Decision Tree, 

SVM 

Additional cost, functional complaint, 

compatibility issue, crashing, feature 

removal, feature request, network 

problem, privacy and ethical Issue, 

resource heavy, response time, 

uninteresting content, update issue, 

user interface 

Average 59% (Accuracy), 44 percent 

(Exact Match), 65 percent 

(Precision), 64% (F-measure 

micro) and 56% (F-measure 

macro)) 

9 Khalid (2013) On Identifying User Complaints of 

iOS Apps 

Manual Tagging Hidden Cost, Functional Error, 

Compatibility, App Crashing, Feature 

Removal, Feature Request, Network 

Problem, Privacy and Ethical, 

Resource Heavy, Unresponsive App, 

Uninteresting Content, Interface 

Design 

N/A 

10 Khalid et al. 

(2015) 

What Do Mobile App Users 

Complain About? 

Manual Tagging App Crashing, Compatibility, Feature 

Removal, Feature Request, Functional 

Error, Hidden Cost, Interface Design, 

Network Problem, Privacy and Ethics, 

resource Heavy, Uninteresting 

Content, Unresponsive App 

N/A 

11 Vu et al. (2015) Mining User Opinions In Mobile 

App Reviews 

Keyword extraction, 

grouping and 

ranking 

Battery, versioning, unrecoverable error, 

snapchat, authentication, facebook 

Average: 83.11% Accuracy 

12 Park et al. 

(2015) 

Leveraging User Reviews to 

Improve Accuracy for Mobile App 

Retrieval 

AppLDA Top Topics by LDA: log, upgrade, 

purchase, note, account, battle, 

refund, support 

NDCG (Normalized Discounted 

Cumulative Gain) @3 = 0.651, 

@5 = 0.656, @7 = 0.627, @20 = 0.634 

13 Panichella et al. 

(2015) 

How Can I Improve My App? 

Classifying User Reviews for 

Software Maintenance and 

Evolution 

Bayes, SVM, 

Logictic 

Regression, J48 

and ADTree 

Information Giving, Information 

Seeking, Feature Request, Problem 

Discovery, Others 

Precision = 0.79, Recall = 0.719, 

F-Measure = 0.672, best results 

obtained with the features 

Natural Language Processing 

(NLP), Text Analysis (TA) and 

Sentiment Analysis (SA) 

14 Gu and Kim 

(2015) 

What parts of your apps are loved 

by users? 

SUR-Miner (POS 

tag, Parsing Tree 

and Semantic 

Dependence 

Graph (SDG) 

Aspect Evaluation, Praises, Feature 

Request, Bug Reports and Others 

F1-score = 0,81 

For the mobile app store corpus, we could not find any study 

that assessed app store review helpfulness either manually or au- 

tomatically. As app store users could mark any review for any 

app as: ’Helpful’, ’Unhelpful’ and ’Spam’ and the reviews could be 

ranked per their helpfulness at Google Play, some of App Store 

mining researchers such as Chen et al. (2014) and Park et al. 

(2015) from Table 6 preferred using only Helpful reviews or fil- 

ter Unhelpful reviews out to train their models. According to 

Pagano and Maalej (2013) ’s dataset only 67,143 (5.96% ) reviews are 

rated by other users regarding their usefulness. From these, 38,519 

(57.37%) are considered 100% helpful. Interestingly, 16,671 (24.83%) 

are rated completed useless. Even though we could not get enough 
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information about the percentage of helpful or unhelpful reviews 

in other datasets, the need for filtering these reviews has been ap- 

parent to maximize the information extraction capability. 

3.4. RQ4: How could the spam reviews be differentiated from 

legitimate reviews? 

As consumers increasingly rely on user reviews and ratings, 

there is greater incentive to create fraudulent reviews in order to 

boost sales and to damage competitor reputations on the market. 

Fraudulent reviews not only mislead customers into poor purchase 

decisions, but also degrade user trust in online reviews. According 

to a Harvard Business School study ( Luca and Zervas, 2013 ), 20% of 

all online reviews on Yelp.com are fake. 

Most of the earlier research focused on detecting email and web 

spam. As the number of online reviews increases, as well as the 

number of fraudsters, different studies and techniques have been 

proposed to detect spam reviews. Two main approaches are being 

used for opinion spam detection: behavioural and textual features. 

Behavioural features correspond to features such as review date, 

rating, and geo-location of the reviewer, while textual features re- 

fer to methods, such as part-of-speech patterns, word frequency, 

n-grams and cosine similarity. 

Dellarocas (20 0 0) , the first to work on immunizing online repu- 

tation systems against unfair ratings and discriminatory behaviour, 

proposed a set of ‘exception handling’ techniques such as ‘con- 

trolled anonymity’ and ‘cluster filtering’. Kim et al. (2006) used 

SVM regression on different classes of features including structural 

(e.g., html tags, punctuation, review length), lexical (e.g., n-grams), 

syntactic (e.g., percentage of verbs and nouns), semantic and meta- 

data (e.g., star rating) features. 

Jindal and Liu (2008) observed that spammers tended to cre- 

ate a small number of review templates and then copy them to 

spam a single product or several different products. To identify the 

replicated spam reviews, they used two-gram review content com- 

parison method, as in Kim et al. (2006) . 

Lim et al. (2010) trained a linear regression model to use 

four different spamming behaviour models as target products and 

groups, general rating deviation and early rating deviation. Wang 

et al. (2011) proposed a heterogeneous graph model to capture re- 

lations between reviewers, reviews and stores. Sandulescu and Es- 

ter (2015) presented two methods: (i) a semantic similarity mea- 

sure by extracting specific parts-of-speech (POS) patterns and (ii) 

an LDA model using bag-of-words and opinion phrases. 

Within the corpus of mobile app stores, scammers use a great 

many bogus user accounts or bots in order to download applica- 

tions multiple times and write fraudulent reviews. In this way, the 

applications begin appearing on the top charts and have greater 

visibility in an app store search. In addition, there are numerous 

sites that allow purchasing of reviews. One example such a site is 

Fiverr. Even though fake and opinion spam reviews are widespread 

and have significant manipulative effects on app store success, reg- 

ulators have only recently begun to crack down on fake reviews 

( Clover, 2014 ). We found only a single app store review spam iden- 

tification study in the literature: 

• Chandy and Gu (2012) compared latent class graphical and de- 

cision tree models for classification of app spam and analyzed 

the preliminary results for clustering reviews. They used linear 

Gaussian parameterization on the labelled data, which achieved 

higher accuracy than a baseline decision tree model. As a result, 

they proposed a latent class model for the spam identification 

task. The details of this study are presented in Table 5 . 

3.5. RQ5: extracted application features from user reviews 

App stores provide a user feedback capability that is particularly 

useful and interesting from the software requirements engineering 

point of view. User ratings and reviews are user-driven feedback 

that may help improve software quality and address missing fea- 

tures. 

With regard to extracted application features from app store 

user reviews, Iacob and Harrison (2013) identified nine different 

classes of feedback: positive, negative, comparative, price related, 

missing requirements, issue reporting, usability, customer supports 

and versioning. Galvis˜Carreño and Winbladh (2013) adopted the 

Aspect and Sentiment Unification model (ASUM), which incorpo- 

rates both topic modelling and sentiment analysis to obtain con- 

structive feedback from user comments. They extracted various 

topics such as updates, features and developers from review text. 

Pagano and Maalej (2013) identified topics in user app store re- 

views by grouping the information as follows: 

• Community: References to other reviews or other applications. 
• Requirements: All request types such as feature, content, im- 

provement requests, shortcomings and bug reports. 
• Rating: User intention to change his/her idea given certain im- 

provements. 
• User experience: Helpfulness in terms of application features 

and user interface. 

In addition, they pointed out the correlation between overall 

app ratings and number of user reviews, app price and amount and 

type of feedback the application received. Fu et al. (2013) identified 

10 top factors that affect the success of an app on mobile appli- 

cation ecosystems: attractiveness, stability, accuracy, compatibility, 

connectivity, cost, telephony, picture, media and spam. In addition, 

they identified 0.9% inconsistencies between user review texts and 

rating that may be caused by careless mistakes or intention to mis- 

lead. 

Oh et al. (2013) developed a review digest system (SVM clas- 

sifier) which was tested on 1,711,556 reviews mined from 24,0 0 0 

Google Play apps. They automatically categorized user reviews into 

functional and non-functional requests, bug reports and produced 

a digest featuring the most informative reviews in each category. 

Chen et al. (2014) compared the Latent Dirichlet Allocation (LDA) 

and Aspect and Sentiment Unification Model (ASUM) and found 

that LDA presented many “non-informative or redundant topics”

However, they validated their results on user reviews of only four 

Android apps, and it is not clear that the framework will attain 

similar good results when applied to other Android apps or other 

app stores. 

Guzman and Maalej (2014) used topic-modelling techniques to 

group fine-grained explicit features into high-level features using 

topic modelling LDA and weighted-average techniques. In addition, 

they compared the relevance of the extracted features with app 

requirements and concluded that for the top 10 popular extracted 

features, the words (e.g., upload photo, file exchange – for Drop- 

box, board pin, time search – for Pinterest) usually described ac- 

tual app features and conveyed some clues about how the app 

was used. McIlroy et al. (2015a) and its counterpart studies Khalid 

(2013) and Khalid et al. (2015) automatically labelled the types of 

user issues raised in mobile app reviews, such as additional cost, 

functional complaint, compatibility issue, crashing, feature removal 

request, network problem, privacy and ethical issue, resource heav- 

iness, response time, uninteresting content, update issue and user 

interface. They manually labelled a statistically representative sam- 

ple of user reviews from the Apple app store and Google Play. 

Vu et al. (2015) pursued a keyword based approach to collect 

and mine user opinion from app stores by extracting, ranking and 

grouping keywords based on semantic similarity. In addition, they 
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provided a visualization tool that showed the occurrence of key- 

words over time and reported any unusual patterns. Park et al. 

(2015) developed a topic model AppLDA that is designed for use 

on app descriptions and user reviews. Their proposed method en- 

ables developers to inspect the reviews and find out important 

app features of apps. Panichella et al. (2015) presented a system for 

automatically classifying user reviews based on a predetermined 

taxonomy, in order to support software maintenance and require- 

ment evolution. Gu and Kim (2015) proposed a SUR-Miner that is 

a review summarization and categorization tool, which evaluated 

20 0 0 sentences from the reviews of 17 Google Play apps. In ad- 

dition to these studies, McIlroy et al. (2015b ) examined this re- 

search problem from different perspective, developers’ respective 

and observed that there are positive effects to responding the re- 

views (users changed their earlier ratings 37.8% of the time) with 

a median increase of 20% in the rating. 

Table 6 presents the list of studies that apply to RQ5 and iden- 

tifies the related methods, extracted app features and performance. 

4. Discussion 

The mobile app ecosystem and user reviews contain a wealth 

of information about user experience and expectations. Developers 

and app store regulators could leverage the information to better 

understand their audience. Mining app store data, and in particular 

user reviews, may provide valuable information for users to reach 

an informed decision about applications and their features; simi- 

larly, it would be valuable for developers to receive user feedback 

about most liked or expected features, as well as reported bugs in 

the applications. Mining opinions from app store reviews still re- 

quires pre-processing at the content level, including filtering out 

non-opinionated content and identifying the trustworthiness and 

genuineness of the opinion and its source. Even though, to date, 

there is a limited number of research studies analyzing mobile app 

reviews, the direction and results obtained are promising. Hence, 

from the perspective of software requirements engineering, with 

further research, it is expected that app store meta-data will pro- 

vide a more accurate picture of user choices and expectations. De- 

velopers and app store regulators could leverage reviews to better 

understand their audience. Here we present our principal findings 

from the SLR. 

4.1. Challenges 

Challenges in mining app store reviews fall into two main cat- 

egories: 

• The unstructured nature of user reviews and the colloquial lan- 

guage used make the task of extracting application features and 

user issues from those reviews a challenge, albeit potentially 

rewarding. Even though some studies useful for data mining 

user opinion and application features from review texts exist 

in the literature, the domain and context dependency aspect of 

the opinion mining problem has not yet been studied for the 

app ecosystem. Furthermore, the relevance of extracted features 

has not been cross-validated with the main software engineer- 

ing concepts. 
• Whereas app users rely on the reviews and ratings of others 

to formulate an informed decision about applications and their 

features before downloading them, reading all the reviews is 

time consuming and occasionally deceptive due to misleading 

or spam reviews. In addition to spam reviews, some reviews do 

not include useful data for information extraction. Even though 

some automated systems have been introduced to identify fake 

and spam reviews and evaluate usefulness, these systems are 

limited and not yet mature. 

4.2. Principal findings 

• App store user feedback mining has begun to attract the at- 

tention of researchers. Most of the studies selected were of an 

exploratory nature, based on manual classification and correla- 

tion analysis. The number of high-quality app store studies was 

very limited: we retrieved nine app store mining studies and 

only one app store spam identification study. 
• The automated extraction of app features in online reviews 

does not consider the nature of the review text. As online app 

reviews have distinctive features of text (including short length, 

unstructured phrases, colloquial language and abundant infor- 

mation), there is a need to develop a unique model specific 

for app store reviews in order to extract targeted app features 

rather than use conventional methods and techniques devel- 

oped for different domains and contexts. 
• Furthermore, the information requested by users and devel- 

opers are different. Users are more interested in the opinion 

and experience of others about the application and which as- 

pects/features they liked or disliked most. Developers have a 

different point of view when using reviews to: 

– extract usability and user experience information, 

– elicit missing requirements and define requested application 

features, and 

– improve software quality. 
• To deal with abundant information in reviews, external sources 

such as app crash reports, tweets, community blogs and code 

repositories could be used to enrich the data. In addition, inte- 

gration of text with different data sources (such as social me- 

dia profiles) would be helpful to ensure context level opinion 

mining, since in terms of preferences and needs, opinions are 

specific to each person or group. 
• Opinion spam or fake review detection is one of the largest 

problems in the domain. In addition to spam reviews, there are 

various kinds of user reviews, some of which do not include 

any useful data for information extraction. Hence, it is neces- 

sary to merge multiple criteria not only to identify suspicious 

reviews but also to differentiate useful reviews from others so 

that reviews complying with the usefulness criteria can be pro- 

cessed for information extraction. Even though some automated 

systems have been introduced to identify fake and spam re- 

views and to evaluate review usefulness, these systems are very 

limited and not yet mature. 

4.3. Future research directions 

Our predictions about future of mobile app stores are as follow- 

ing: 

We envision that the scale of opinionated text data on Web 

and mobile app stores will increase tremendously along with other 

types of big data. While the volume of the big data increases, so do 

the complexity and relationships underneath the data. Collecting 

opinions requires concept or semantic level processing and filtering 

out non-opinionated text data. Users generally prefer to compare 

specific features of different products. To make such comparisons, 

researchers need to construct comprehensive common-knowledge 

bases to spot product features and text polarity. Future opinion- 

mining systems need broader and deeper commonsense knowl- 

edge bases. 

On the other hand, the ubiquity of sentiment or opinion anal- 

ysis as a service (SaaS or OaaS) will make it easy and cheap to 

embed a SaaS into every application, mobile device and digital 

experience. Opinion mining and sentiment analysis are inextrica- 

bly bound to the affective sciences that understand human emo- 

tions. Hence, neuroscience and cognitive sciences will inform how 

opinion mining researchers should measure, analyze and report the 
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emotions within the text. As there will be more data about a per- 

son under one single index, opinion mining will be more specific 

to user’s preferences and needs, predictive sentiment analysis will 

be another research area to denote the approach in which senti- 

ment analysis is used to predict the changes in the phenomenon 

of interest. 

Our predictions about future of mobile app stores are as follow- 

ing: 

Cross-platform and Cross-device Development Creating mo- 

bile apps that work easily on multiple platforms (iOS, Android and 

etc) and devices is presently a challenging task that will not be al- 

lowed to persist. Although there is no “one size fits all” approach 

for mobile app development, we envision the rise in cross-platform 

mobile development tools. As HTML5 evolves and matures in last 

couple of year, the future of mobile app development will also 

make greater use of it to build hybrid mobile apps that will work 

well across different platforms and devices. 

Mobile App Development for Internet of Things (IoT): The fu- 

ture of mobile app development will not be simply about mobile 

phones and tables, but IoT. As the example of IoT products such 

as the self-driving cars, the thermostats, the fridges that read the 

tweets and etc increases and devices start to get more intercon- 

nected, the opportunity for software to add value to these smart 

devices will become even greater. 

Search Ads in the App Store: Apple recently began inviting de- 

velopers to test the App Store’s new Search ads that will come to 

the U.S App Store with IOS 10 in Fall 2016. The introduction of App 

Store Search Ads will give developers another way to have their 

apps appear at the top of the results through paid advertisement. 

This change also brings forward the concern that larger developers 

could bid more often and win more search ads that will lead their 

apps to the higher ranks than small developers ” apps. However, it 

is apparent that app users will need others’ feedback and reviews 

more than before to understand if the mobile app really appeals to 

them, since actual search results will be modified via paid search 

ads. 
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Abstract. Usability and user experience (U&UX) as important components of 
software quality are now more critical than ever for mobile app store success. 
Usability experts use different protocols to evaluate the usability of mobile apps 
while app store user reviews also produce valuable related information. Our re-
search study proposes a measurement design to compare user reviews and expert-
based usability evaluation results that includes an exploratory analysis and topic 
modeling of user reviews.  This design is structured to investigate whether mobile 
app usability features extracted from user reviews align with subject-matter ex-
pert usability evaluation results.   
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1 Introduction 

Usability evaluations have been performed traditionally by subject-matter experts and 
end users, usually in laboratory and field contexts. However, such evaluations can cover 
only a limited time-span of the applications and re-doing the same usability evaluation 
for all available app versions would typically lead to large evaluation costs. Further-
more, evaluating some usability dimensions, such as understandability or learnability, 
requires more complex procedures and indicators [1]. In addition, studies have demon-
strated that both experts and end-users are effective in revealing different usability 
problems [2,3].  

With the advent of mobile ecosystems including mobile apps and related meta-data 
such as ratings and user reviews, app stores now contain a wealth of information about 
user experience and expectations. However, it is difficult to manually extract this in-
formation due to various factors such as the large quantity of reviews, their lack of 
structure and varying quality.  

In this paper, we present a measurement design to compare the findings from sub-
ject-matter expert usability evaluations and corresponding app store user reviews. The 
measurement design proposes two different approaches: one is through an exploratory 
analysis and the other is through, first, a semi-supervised topic modeling to extract 
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1 Introduction 

Usability evaluations have been performed traditionally by subject-matter experts and 
end users, usually in laboratory and field contexts. However, such evaluations can cover 
only a limited time-span of the applications and re-doing the same usability evaluation 
for all available app versions would typically lead to large evaluation costs. Further-
more, evaluating some usability dimensions, such as understandability or learnability, 
requires more complex procedures and indicators [1]. In addition, studies have demon-
strated that both experts and end-users are effective in revealing different usability 
problems [2,3]. 

With the advent of mobile ecosystems including mobile apps and related meta-data 
such as ratings and user reviews, app stores now contain a wealth of information about 
user experience and expectations. However, it is difficult to manually extract this in-
formation due to various factors such as the large quantity of reviews, their lack of 
structure and varying quality.  

In this paper, we present a measurement design to compare the findings from sub-
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usability aspects from user reviews and next, comparing these findings with the results 
from a prior expert-based usability evaluation. To the best of our knowledge, our work 
is the first to propose topic modeling techniques to automatically extract usability and 
user experience (U&UX) information from app store user reviews and to compare us-
ability evaluation results of experts and end-users.  

2 Related Work 

Usability evaluation of mobile apps is an emerging research area that faces a variety of 
challenges due to the limitations of mobile devices such as processing capacity, screen 
size, connectivity, and a lack of a consensus on a usability evaluation methodology [4]. 
Over the years, different methods and techniques have been proposed for usability eval-
uation. The leading traditional methods fall into two main categories: inspection  meth-
ods  without  end  users  and  test methods with  end  users [5]. 

App stores are valuable repositories of app and user data where app users can give 
feedback about different aspects of an app such as its functionality, design or value. A 
previous study has reported that app store user reviews are valuable to understand user 
experience and usability aspects [6], while another study reported that 13%-49% of the 
content of user reviews contains U&UX information that could be used to improve the 
software quality [7]. However, these reviews permit a limited number of studies on end-
user evaluation of usability. For example:  

• mining the app store review corpus identified nine different classes of feedback: 
positive, negative, comparative, price related, missing requirements, issue reporting, 
usability, customer supports and versioning [8];  

• using a support vector machine (SVM) algorithm to classify five main dimensions 
of usability: memorability, learnability, efficiency, errors/effectiveness and satisfac-
tion [9].  

However, we could not identify any related work comparing user reviews and expert-
based usability evaluation results. 

3 Measurement Design 

The first objective of the proposed measurement design is to extract usability related 
information from user reviews. The second objective is to compare expert-based usa-
bility results with user usability evaluation through reviews.  

The overview of the proposed measurement design is presented in Figure 1 where 
Parts 1 and 2 address the first research objective and Part 3 the second research objec-
tive.  Pre-defined usability keyword frequency analysis of a corpus of reviews was per-
formed in Part 1, while topic modeling was performed in Part 2 to automatically extract 
usability related topics. The outputs obtained in Parts 1 and 2 and prior subject-matter 
expert usability evaluation findings are compared in Part 3. The details of the proposed 
measurement design are presented in the following sub-sections. 
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Fig. 1. Overview of the measurement design 

3.1 Part 1. Preliminary Analysis of User Reviews for a Set of Apps 

In the first part of the research, a preliminary data analysis was performed to discover 
usability related keyword frequencies in the review corpus through the following four 
steps: 

• Step 1. Selection of apps with the information available to build a review corpus. A 
reference review corpus was identified and selected, which contained for the same 
apps both the results of expert-based usability evaluation and user reviews.  

• Step 2. Converting usability attributes to aspect words. After the review corpus was 
populated for the selected versions of the apps, the usability attributes or heuristics 
were converted into a bag-of-words (BOW). Step 3. Stemming. The Porter stemming 
algorithm [10] was run to remove affixes from the words and then stemmed versions 
of the aspect words were searched in the review corpus. 

• Step 4. Querying the review corpus. The stemmed words were next queried within 
individual review corpuses per app and their term frequencies recorded. Query re-
sults (e.g., usability aspect term frequencies) were analyzed to understand if (i) user 
reviews convey good information about usability aspects and (ii) user reviews align 
with expert-based usability evaluation results. 

3.2 Part 2. Usability Topic Modeling 

In part 2 of the measurement design, a topic modeling technique was used to help iden-
tify individual topics in the document and understand the document corpora in an au-
tomated manner. However, unsupervised topic models often lead to topics that are not 
completely meaningful and/or topics discovered in an unsupervised way that may not 



match the true topics in the data. To address this limitation, we leveraged the guided 
latent Dirichlet allocation (LDA) topic model [11] given in Eqs. 1 to 3 that use Gibbs 
sampling as an inference method and usability related seed words to improve topic-
word distribution.  

Step 1: For    (1) 

(a) Choose regular topic    

(b) Choose seed topic   

Step 2: For each seed set   (2) 

       (a)   Choose group-topic distribution        

Step 3: For each document   (3) 

(a) Choose a binary vector  of length S 

(b) Choose a document-group distribution ) 

(c) Choose a group variable  

(d) Choose  

(e) For each token  

(1) Select a topic  
(2) Select an indicator  
(3) If is 0 

Select a word      //choose from LDA style 
topic 

(4) If is 1 
Select a word  

The generative process for a document collection D under the guided LDA model is as 
follows – see Figure 2: 

1. First, the T topic-word distribution  and group-topic distribution  were gener-
ated.  

2. Then for each document, a list of seed sets allowed for the document, represented as 
a binary vector  was generated, and then 

3.   was populated based on the document words, and hence treated as an observed 
variable.   
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Fig. 2. Graphical model representation of a guided LDA [12] 

Step 1. Pre-Processing on Review Corpus.  
The review corpus generated in Part 1 was used in the topic modeling. To reduce the 

dimensionality of the document term matrix, certain data pre-processing and cleaning 
steps were carried out before proceeding with topic modeling. This pre-processing con-
sisted of:  

I. tokenization to segment the review corpus into its atomic elements using the 
Natural Language Toolkit (NLTK)  tokenize.regexp module; 

II. lower case conversion; and  
III. stop-word (e.g. ‘the’, ‘and’, ‘or’, ‘a’), punctuation and non-alphabetic phrase 

removal.  

Step 2.  Guided LDA Modeling 
The guided LDA library1 developed in Python was used in this study. The document 

term matrix that was generated in the pre-processing step was given as an input to the 
LDA model. The training step required the input parameters, such as seed topics, seed 
confidence, be set at 0.15 to bias the seeded words by 15% towards the seeded topic, 
the number of topics be set at 5, 10 and 20, chunksize at 2000, refresh at 20 and itera-
tions at 100.  

                                                        
1 https://github.com/vi3k6i5/GuidedLDA 
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Step 3.  Model Accuracy 
The guided LDA model performance was tested on a complete review corpus where 

(i) the number of topics K = 5, 10 and 15 and (ii) LDA model was taken as the baseline. 
The topic model was run on individual corpuses per app. 

3.3 Part 3. Evaluation of Results 

In this part of the research, usability aspects extracted from user reviews were compared 
with expert-based usability evaluation results for the most frequent and the less frequent 
usability attributes:  

• If the user reviews had more positive associations for the usability term, its user 
review evaluation rating were accepted as positive, corresponding to 4-5 stars given 
by usability experts in prior evaluations.  

• If the user reviews had more negative associations for the usability term, its user 
review evaluation rating was accepted as negative, corresponding to 1-2 stars given 
by usability experts in prior evaluations.  

• Equal numbers of positive and negative reviews were given a neutral evaluation 
rating, corresponding to 3 stars given by usability experts in prior evaluations. 

4 Work in Progress and Future Work 

In this proposed measurement design, usability aspects for expert-based usability eval-
uation questionnaires were first extracted and then converted into a BOWs in order to 
trace them back in user reviews. In addition, a guided LDA topic modeling was devel-
oped to automatically capture usability aspects intrinsic to the review texts. Expert-
based usability evaluation results were compared with user evaluations expressed 
through reviews and the identified alignment and differences reported. We believe that 
this proposed measurement design is useful for supporting developers, U&UX design-
ers and researchers to better understand user experience and opinion on mobile appli-
cation usability aspects, which, finally, can lead to improved software quality. 

In future work, we will explore the performance of our guided LDA topic model vs 
LDA topic model as baseline. Our topic model will also be run on individual review 
corpuses per app to find the percentage of clustered words that are directly related to 
usability and usability aspects such as efficiency, errors/effectiveness, etc. Next, for the 
top 10 and 10 lowest frequency terms identified with preliminary analysis in Part 1 and 
topic modeling in Part 2, user and expert evaluation ratings will be compared to deter-
mine possible alignments or differences between two different usability evaluation 
methods. A reference review corpus has already been selected which contains for the 
same apps both the results of expert-based usability evaluation as well as user reviews. 
This is the app dataset from [13] that includes a set 99 mobile apps evaluated by three 
usability experts. Since 19 out of the 99 apps from the study are no longer available in 
the Apple app store and there is no review available for five (5) other mobile apps 
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within this reference set, our review corpus will be populated with 75 mobile app se-
lected versions of the app dataset.  
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1

Abstract The rapid deployment of mobile devices and the proliferation of mobile
apps have dramatically heightened competition in the development of high-quality
applications. Usability and user experience (U&UX), already important compo-
nents of software quality, have become even more critical for app marketplace
success. While app store user reviews include valuable information about U&UX
issues, it is usually difficult to extract this information because of the large quan-
tity of unstructured user reviews where usability is often an implicit aspect of
quality well hidden within the review text.

This paper reports on the empirical analysis using the earlier research design
that is based on two different approaches, exploratory and guided topic modelling
to extract usability aspects from user reviews. First, a corpus of reviews for 70
mobile apps are analyzed in terms of word frequencies to verify whether or not the
corpus contains useful information about usability aspects. Next, U&UX related
issues and users’ praises are extracted automatically with a guided Latent Dirichlet
Allocation (LDA) model by incorporating sets of seed words (lexical priors) that
usability experts find useful as representative of the usability topics in a corpus. In
this way, the LDA model improves word-topic distributions and topic-document
distributions towards usability. Finally, exploratory analysis and topic modelling
results are compared with usability evaluation of the experts for same mobile app
versions.

From the analysis of over fifty thousands user reviews in the reference dataset,
only 14% of user reviews were directly associated with the usability aspects of
mobile apps. Results show that user reviews address usability aspects similar to
those reported in earlier expert usability evaluation studies. Analyzing user reviews
as an end-user think-aloud protocol identifies more obstacles to functionality and
task performance while expert evaluations reveal more general interface and design
problems. In addition, the lexical priors, usability seed words, incorporated into
our topic modelling significantly improved word clustering performance.

Keywords app store mining · usability evaluation · user experience · user
feedback · topic modelling

1 Introduction

Mobile devices and applications provide significant advantages to their users, such
as portability, accessibility and location awareness, while at the same time being
constrained by limited resources, including screen size, hardware and network con-
nectivity. These limitations, together with varying usability needs, lead to complex
usability requirements that are more critical than ever for app store success.

Usability evaluations have traditionally been performed by subject-matter ex-
perts and end-users, usually in laboratory and field contexts. However, such eval-
uations typically cover only a limited time-span within the application’s life, and
the cost of re-doing the same evaluation for subsequent versions would be costly.
Furthermore, evaluating some aspects of usability such as understandability or
learnability not only requires more complex procedures and indicators but also is
more time consuming [1]. Studies have also demonstrated that while both experts
and end-users are effective in revealing usability problems, they capture different
usability perspectives [2] [3].
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2

Mobile ecosystems contain valuable information such as bug reports, feature
requests or user experience [4]. However, it is difficult to extract this information
manually, due to various factors such as the large quantity of reviews, on the order
of thousands per day for some popular mobile applications, their lack of structure
and their varying quality.

Usability aspects are usually not referred to explicitly in user reviews, while
other aspects such as cost, network problem or functional error often are [5]. When
users are asked to express their experience with an app and their opinion on
usability, they do not use direct terms such as effectiveness, efficiency or cognitive
load [6]. Hence, different information extraction approaches need to be developed
to extract implicit usability-related aspects from the review text.

Since reading and analyzing huge amount of review corpora is labor intensive,
topic models have great potential for helping users understand the corpora. How-
ever, this potential is often impeded by the purely unsupervised nature of the topic
models that often leads to non-contexual topic results [7]. The researchers address
this problem by proposing various statistical models to extract and categorize as-
pect terms automatically given some seeds in the user interested categories [8],[9],
[10].

This paper presents an empirical analysis results using the earlier research
design [11] that is based on two different approaches, one exploratory, , the other
a guided topic modelling to extract usability aspects from user reviews. A corpus
of reviews for a reference dataset is analyzed by querying usability related terms
to verify whether or not the corpus contains useful information about usability
aspects in the first part of this empirical study.

Next, U&UX related issues and users’ praises are extracted automatically with
a guided Latent Dirichlet Allocation (LDA) model in the second part of the em-
pirical study. Guided LDA model incorporates sets of seed words (priors) that
usability experts find useful as representative of the usability topics in a corpus.
In this way, our LDA model leverages seed words to improve word-topic distribu-
tions and topic-document distributions through usability.

Finally, the exploratory analysis and topic modelling results are compared
with usability evaluation of the experts for the same mobile apps. To the best of
our knowledge, our work is the first (i) to leverage topic modelling techniques to
automatically extract U&UX information from app store user reviews and (ii) to
compare evaluation results of expert and end-user usability information extracted
from user reviews.

Our contributions in this empirical study are three-fold:

1. Usability aspects are extracted from an expert based usability evaluation ques-
tionnaire and then converted into a bag-of-words (BOWs) to be able to trace
them back to user reviews.

2. A guided LDA topic modelling is developed to automatically capture usability
aspects that are often implicit in the review text.

3. Expert based usability evaluation results are compared with user evaluations
that are expressed through reviews, and the identified alignment and differences
are reported.

The paper is structured as follows. Section 2 introduces the related work, in-
cluding the definitions adopted in this paper. Section 3 describes the details of our

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



3

proposed research method. Section 4 discusses the results of the empirical analysis
and related findings. Finally, Section 5 presents our conclusions.

2 DEFINITIONS AND RELATED WORK

This section first presents the definitions adopted in this paper, followed by the
related work.

2.1 Definitions

For this research the following definitions are adopted:

Usability: The extent to which a system, product or service can be used by spec-
ified users to achieve specified goals with effectiveness, efficiency and satisfaction
in a specified context of use [12].

User experience: A person’s perceptions and responses that result from the use
and/or anticipated use of a product, system or service [12].

User evaluation: As a part of usability evaluation, users are invited to offer their
opinions on the application or system being evaluated. User evaluations are im-
portant because they measure how the app is perceived by the end-user, whose
opinion matters a great deal.

Expert evaluation: Examination of specific aspects of a system interface, related
to its effective, efficient and satisfactory interaction with users, by experts in the
field. Expert evaluation is also called heuristic evaluation.

Usability attributes: Usability attributes are those features representing usability
concepts such as learnability, efficiency, memorability, errors or satisfaction. A
usability feature is called an attribute when the feature is evaluated by usability
experts.

Usability aspects (features): Aspect-based opinion mining systems take an input
text corpus about a product and mine the aspects (features) of the product [13].
A usability feature is referred to as an aspect when it is mined from a corpus of
reviews.

2.2 Related Work

Usability attributes are various features used to measure the quality of applica-
tions. Based on the ISO 9241 standard, human-computer interaction handbooks,
and existing usability studies on mobile applications, nine generic usability at-
tributes have been identified [14].

Over the years different methods and techniques have been proposed for usabil-
ity evaluation. The leading methods fall into two main categories: (i) inspection
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4

methods without end users and (ii) test methods with end users [15]. Usability
evaluation of mobile apps is an emerging research area that faces a variety of chal-
lenges due to the limitations of mobile devices such as processing capacity, screen
size and connectivity, as well as lack of an agreed usability evaluation method-
ology. Nayebi [16] proposed a model and related criteria for usability evaluation
of iOS applications that included the artifacts Apple human interface guidelines
(iOS HIG), related ISO standards and literature defined usability measures and
standardized usability questionnaires.

App stores are valuable repositories of app and user data where users can
give feedback about different aspects of the app such as functionality, design or
value. A previous study has shown that app store user reviews are valuable to
understand user experience and usability aspects [5], while another study found
that 13%-49% of the user review content contains U&UX information that could
be used to improve the software quality [17]. However, there are only a limited
number of studies that capture end-user evaluation of usability from the reviews;
these include:

– Iacob and Harrison [18] mined the app store review corpus and identified
nine different classes of feedback: positive, negative, comparative, price re-
lated, missing requirements, issue reporting, usability, customer supports and
versioning.

– Bakiu and Guzman [19] used support vector machine (SVM) to classify the
five main dimensions of usability memorability, learnability, efficiency, errors
and effectiveness and satisfaction.

– Genc-Nayebi and Abran [11] proposed a measurement design to compare user
reviews and expert-based usability evaluation results. This design proposed (i)
automatic usability aspect extraction and (ii) a comparison procedure without
testing it with empirical data.

3 PROPOSED METHOD

3.1 Research Objectives

The first objective of this study was to extract usability related information from
user reviews. To accomplish this objective, the following research activities are
defined:

– preliminary analysis of user reviews through term frequency analysis,
– topic modelling to automatically extract usability-related topics from a corpus

of reviews.

The second objective of this empirical study was to compare expert based us-
ability results with users’ evaluation through reviews. The overview of the research
method proposed earlier in [11] is presented in Figure 1 and the details are given
in Section 3.2 and 3.3.

3.2 Preliminary Analysis of User Reviews

In the first part of the research, a preliminary data analysis was performed after
converting usability attributes to a BOWs in order to search for them in the
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5

Fig. 1 Overview of Research Method [11]

review corpus and find their normalized term frequency which is the number of
times a word appears in a document, divided by the total number of words in
that document. Query results (usability aspects’ term frequencies) were analyzed
to understand whether or not:

– user reviews convey good piece of information about usability aspects,
– user reviews align with expert based usability evaluation results.

The overview of our 5-step research process for the preliminary analysis of user
reviews is presented in Figure 2.

3.2.1 Step 1: Review Corpus Generation

The app dataset from an earlier study [16] that included a set 99 mobile apps was
selected as the reference set for this study. A number of leading usability heuris-
tics were structured into a questionnaire. See Appendix I, Table 4 for usability
evaluation.

Our review corpus was generated by populating it with the user reviews from
the same set used in [16]. The reviews were exported from appbot1 which tracks
app store reviews and ratings for all versions since their first launch. Since at the
time of our study 14 out of the 99 apps were no longer available in the Apple App
Store and there was no review available for fifteen (15) other mobile app versions,
only 70 mobile apps had all of the information necessary for our study and were
therefore used for populating our review corpus.

3.2.2 Step 2: Converting Usability Attributes to Aspect Words

After the review corpus was populated for the selected versions of the apps, the
usability attributes or heuristics were converted into a BOWs. As an example, the

1 https://appbot.co/
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6

question A.1 (‘If App uses visual weight and balance to show users the relative
importance of onscreen elements”) which is related to the simplicity heuristic was
converted into the aspect words simple (A.1) and balance (A.1) and then traced
in the user reviews. If an aspect word is derived from multiple questions, this
is indicated within parentheses such as (C.0, D.1) or if it is associated with an
explicit negative meaning in the question, this is shown with a Negative tagging.
In the end, 157 terms were obtained under 21 usability attribute categories.

3.2.3 Step 3: Stemming

The Porter stemming algorithm [20] was run in Step 3 to remove affixes from
the terms and then the stemmed versions of the aspect words are searched in the
review corpus rather than querying all the different forms of the same words.

3.2.4 Step 4: Querying Review Corpus

The stemmed words in the review corpus were next queried by app and their
normalized term frequencies are recorded (Step 4).

3.2.5 Step 5: Comparison of Results

In this part of the research usability aspects extracted from user reviews were
compared with expert-based usability evaluation results, as presented in Figure 1,
for (i) most frequent usability attributes, (ii) the apps with every good (5 star) or
very bad (1 star) expert usability evaluation ratings.

– If the user reviews had more positive associations for the usability term, its
user review evaluation rating is accepted Positive, which corresponds to 4-5
stars given by usability experts in the prior evaluation.

– If the user reviews had more negative associations for the usability term, its
user review evaluation rating is accepted Negative, which corresponds to 1-2
stars given by usability experts in the prior evaluation.

– Equal number of positive and negative reviews led to an evaluation rating
Neutral, which corresponds to 3 stars given by usability experts in the prior
evaluation.

3.3 Usability Topic Modeling

In the second part of this empirical study, topic modelling was used to identify
individual topics in the document in order to understand the document corpora
in an automated manner. However, unsupervised topic models often lead to topics
that are not completely meaningful and also topics discovered in an unsupervised
way may not match the true topics in the data. Hence, we leverage guided latent
Dirichlet allocation (LDA) topic model [10] that uses Gibbs sampling as an infer-
ence method, and usability related seed words to improve topic-word distribution.

In the following sub-sections, the details of:
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7

Fig. 2 The 5-step process of the preliminary analysis of user reviews

– LDA Topic Model,
– Guided LDA Model,
– Performance Measure Selection are presented.

3.3.1 LDA Topic Model

Manual elicitation of usability aspects from user reviews is possible but very time-
intensive. Hence LDA, a generative probabilistic topic model, was used [21] to
extract the topics from the corpus. The basic idea behind the model is that doc-
uments are represented as random mixtures of latent topics, where each topic is
characterized by a distribution over words. The plate notation of this model is
shown in Figure 3. The generative process for a collection D of documents (e.g. a
corpus) under the LDA model is as follows:

1. Choose N ∼ Poisson(ξ).
2. Choose θ ∼ Dir(α).
3. For each of the N words wn:

(a) Choose a topic zn ∼ Multinomial(θ).
(b) Choose a word wn from p(wn | zn, β), a multinomial probability conditioned
on the topic zn.

The key problem in topic modelling is posterior inference. This refers to re-
versing the defined generative process and learning the posterior distributions of
the latent variables in the model given the observed data.

Gibbs sampling [22], one of the leading inference techniques for LDA models, is
based on sampling from conditional distributions of the variables of the posterior.
Implementing an LDA collapsed Gibbs sampler is straightforward as it involves
setting up the requisite count variables, randomly initializing them and then run-
ning a loop over the desired number of iterations where on each loop a topic is
sampled for each word instance in the corpus as given in Equation 1.
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Fig. 3 Plate Notation of LDA [21]

P (zi = j | z−i, wi, di) =
CWT

wij + η∑W
w=1 C

WT
wj +Wη

× CDT
dij + α∑T

t=1 C
DT
dit

+ Tα
(1)

where:

P (zi = j) : The probability that token i is assigned to topic j
z−i : Represents topic assignments of all other tokens
wi : Word (index) of the ith token
di : Document containing the ith token
CWT :Word-topic matrix, the wt matrix we generated.∑W

w=1 C
WT
wj : Total number of tokens (words) in document i.

η : Parameter that sets the topic distribution for the words, the higher the
parameter value the more spread out the words will be across the specified
number of topics (K).
α : Parameter that sets the topic distribution for the documents, the higher
the parameter value the more spread out the documents will be across the
specified number of topics (K).
W : Total number of words in the set of documents
T : Number of topics, equivalent of the K we defined earlier.

3.3.2 Guided LDA Model

Due to the unsupervised nature of LDA topic modelling, a user has no way to
specify the intended topics in the corpus. To address this problem, seed topics and
a guided-LDA model that improves the topic-word probability and document-topic
distribution was leveraged in this part of the empirical research.

The guided-LDA model [10] has similar variables semantic as the LDA, pre-
sented earlier in Section 3.3.1:

1. For each k = 1 · · · T,
(a) Choose regular topic φr

k ∼ Dir (βr).
(b) Choose seed topic φs

k ∼ Dir (βs).
(c) Choose πk ∼ Beta(1, 1).

2. For each seed set s = 1 · · · S,
(a) Choose group-topic distribution ψs ∼ Dir(α).

3. For each document d,
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Fig. 4 Graphical model representation of Guided LDA [10]

(a) Choose a binary vector
#»

b of length S.
(b) Choose a document-group distribution ζd ∼ Dir(τ

#»

b).
(c) Choose a group variable g ∼ Mult

(
ζd
)
.

(d) Choose θd ∼ Dir (ψg).
(e) For each token i = 1 · · ·Nd:

(i) Select a topic zi ∼ Mult (θd).
(ii) Select an indicator xi ∼ Bern (πzi).
(iii) if xi is 0

– Select a word wi ∼ Mult (φr
zi
)

(iv) if xi is 1
– Select a word wi ∼ Mult (φs

zi
)

The generative process for a document collection D under the guided-LDA
model is as follows – see Figure 4:

1. The T topic-word distribution φk and group-topic distribution ψds.
2. Then for each document, a list of seed sets that are allowed for the document is

generated. This is represented as
#»

b and this binary vector is treated as observed
variable, and

3.
#»

b is then populated based on the document words and hence it is treated as
an observed variable.

3.3.3 Performance Measure Selection

There are different measures used to evaluate topic models in the literature [23].
The most common evaluation measure is the log-likelihood of a held-out test
set. For an LDA model, a test set is a collection of unseen documents wd and
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the model is described by the topic matrix φ and the hyper-parameter α is for
topic-distribution of documents. Another LDA parameter θ is not taken into con-
sideration as it represents the topic-distributions of documents from the training
set, and can therefore be ignored while computing the log-likelihood of unseen
documents. The log-likelihood of a model is represented by Equation 2:

L(w) = log p(w|Φ, α) =
∑
d

log p(wd|Φ, α). (2)

Another evaluation indicator for topic models that is derived from log-likelihood,
is the perplexity of held-out documents wd. Perplexity quantifies the modelling
power by calculating the inverse log-likelihood of unobserved documents that leads
to a decreasing function where tthe higher the likelihood the better the model. Per-
plexity is defined by Equation 3 for test sample size N .

perplexity(test set w) = exp

{
− L(w)

count of tokens

}
(3)

However, [7] have shown that predictive likelihood or perplexity and human
judgment are often not correlated, and even sometimes slightly anti-correlated.
Hence, we chose to rely on user judgment to evaluate our guided LDA model
performance:

– the model was run on our complete review dataset,
– the top five frequent words in each topic were taken,
– one of the five was replaced with a word that occurs very low in the sequence

and
– a human evaluator was asked to spot the ‘intruder-one-out’ as in [7]

In this way, the model precision turns out to be the fraction of subjects agreeing
with the model – Equation 4:

MPm
k =

∑
s

1
(
imk,s = wkm

)
/S (4)

where wm
k is the index of the intruding word among the words generated from

the kth topic inferred by model m, imk,s is the intruder selected by subject s on

the set of words generated from the kth topic inferred by model m, S denotes the
number of subjects.

3.4 Topic Modeling Implementation

The review corpus generated in section 3.2.1 was used in our topic modelling.
Since the results of topic models are completely dependent on the features (terms)
present in the corpus, reducing the dimensionality of the document term matrix
can improve the performance of topic modelling. To reduce the dimensionality of
our document term matrix, certain data pre-processing and cleaning steps were
pursued before proceeding with topic modelling. Our pre-processing consisted of:

– Noise Removal: The text was converted to lower case and also whitespace,
punctuation and non-text characters such as HTML tags and punctuations are
removed.
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– Tokenization: A tokenizer divided text into a sequence of tokens, which
roughly correspond to words.

– Lemmatization: Lemmatization means removing morphological affixes from
words, leaving only the word stem, e.g. words such as “download” and “down-
loading” would both be represented as “download”. This reduced the total
number of unique words in the dictionary and the number of columns in the
document-term matrix.

3.4.1 LDA Implementation

Scikit-learn [24] LatentDirichletAllocation topic model which implements an
online variational Bayes algorithm and supports both online and batch update
method was used in the study.

When LatentDirichletAllocation is applied on a “document-term” matrix, the
matrix is decomposed into a “topic-term” matrix and a “document-topic” matrix.
While “topic-term” matrix is stored as components in the model, “document-
topic” matrix can be calculated from transform method. To initialize the model,
the initial parameters presented Listing 1 wee set and the results as Log Likeli-
hood= -12.7482 and Perplexity= 1042.69 obtained with following parameters:

– batch size: 128,
– doc topic prior: None,
– batch size: 128,
– evaluate every: -1,
– learning decay: 0.7,
– learning method: online,
– learning offset: 10.0,
– max doc update iter: 100,
– max iter: 10,
– mean change tol: 0.001,
– n components: 20,
– n jobs: -1,
– n topics: None,
– perp tol: 0.1,
– random state: 100,
– topic word prior: None,
– total samples: 1000000.0,
– verbose: 0

3.4.2 Grid Search

The most important tuning parameter for LDA models is n components (number
of topics) and search learning decay which controls the learning rate. Hence, these
parameters were tuned with grid search that then constructs multiple LDA models
for all possible combinations of parameter values in the param grid dictionary.

As a result of grid search, best model parameters are determined as learn-
ing decay:0.9 and n components:10 as presented in Figure 5 and as a result of
grid search, Log Likelihood= -4.5810 and Perplexity= 882.13 values were signifi-
cantly improved.
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Fig. 5 Grid Search Results for LDA Model

3.4.3 Guided LDA Implementation

The guided LDA library2 was used in this empirical study to improve topic genera-
tion and increase accuracy in topic-word distribution. The document-term matrix
generated in the pre-processing step was used as an input to our guided LDA
model. The model required the following input parameters:

– seed topics presented in Appendix I, Table 3,
– seed confidence= 0.15 (to bias the seeded words by 15% more towards the

seeded topic),
– number of topics=10, 15, 20 and 25,
– chunk size=2000,
– refresh=20,
– iterations=100.

The model performance was tested on the complete review corpus where (i)
the number of topics topics=10, 15, 20 and 25 and (ii) the non-supervised LDA
model is taken as baseline. The best precision result was obtained through the
guided LDA model for 10 topics, as presented in Table 1.

Table 1: Model Performance LDA vs Guided LDA

Topic
Model

Number of
Topics

Precision Log Likeli-
hood

Perplexity

LDA

10 0.560 -4.581 882.13
15 0.725 -4.693 926.20
20 0.618 -4.766 964.39
25 0.535 -4.844 997.98

Guided LDA

10 0.794 -3.056 918.61
15 0.715 -3.076 918.10
20 0.630 -3.061 926.32
25 0.695 -3.057 926.42

4 RESEARCH RESULTS

4.1 Exploratory Analysis Results

The review corpus is first analyzed to identify unique tokens and also the frequency
of usability terms within the corpus. As a result:

– 14825 unique tokens out of 104443 total (%14) are directly associated with
usability aspects. The statistics for total unique tokens and usability terms for
70 apps is presented in Figure 6.

– The most frequent usability terms (out of 157 terms in total) in the review
corpus were related to Ease of user input data, Searching and Physicality and

2 https://github.com/vi3k6i5/GuidedLDA
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Fig. 6 Usability Terms vs Unique Tokens statistics for review corpus

Realism; whereas less frequent usability terms belong to the concepts that re-
quire more detailed expert judgment and evaluation such as Linguistic clarity,
Understandability, User interface consistency and User interface structure etc.
- see Table 2.

Next, user reviews were searched to find the occurrence and associated senti-
ment (positive or negative or neutral) value for specific usability terms:

Table 2: High Frequency, Top-10 Explicit and Low Frequency Us-
ability Terms

Usability Term Usability Attribute
Group

High Frequency

Easy (A.1,E.1 ) A.1-Simplicity, E.1- Ease
of user input data

List (E.2, I.3) E.2-Ease of User Input
Data, I.3-Searching

Form (E.4, M.3) E.4- Ease of User Input
data, M.3-Physicality and
realism

Documentation (R.2) R.2-Help
View (B.4) B.4-User control and navi-

gation
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Design (N.5) N.5-Aesthetic integrity
Missing Feature (V.1) V.1-Missing functionali-

ties
Search (I.1) I.1-Searching
Information (E.1) E.1- Ease of user input

data
Accurate (K.4) K.4-User interface struc-

ture

Top-10 Explicit

Accurate (K.4) K.4-User interface struc-
ture

Information (E.1) E.1- Ease of user input
data

Search (I.1) I.1-Searching
Missing Feature (V.1) V.1-Missing functionali-

ties
Design (N.5) N.5-Aesthetic integrity
User Interface (K.1) K.1-User interface struc-

ture
Screen (C.5) C.5- Understandibility
Bug (S.1) S.1- Error Correction and

Prevention
UI Control (L.6) L.6- User Interface Con-

sistency
Color Code (N.3) N.3-Aesthetic Integrity

Low Frequency

Abbreviations (D2) D2-Linguistic clarity
Hierarchy (C.5) C.5-Understandability
Non-Interactive (L.7) L.7- User interface consis-

tency
Shortcut (K.3) K.3-User interface struc-

ture
Silhouette (M.3) M.3-Physicality and real-

ism
Context (R.4) R.4-Help
Grammar (J.1) (J.1-Application descrip-

tion
Input Validation (E.4) E.4-Ease of user input

data
Aesthetic (N.1) N.1-Aesthetic integrity
Phrase (D.1) D.1-Linguistic clarity

– For the comparison of user and expert usability results, we did not go through
157 term x 70 apps. Instead, we identified 30 mobile apps (out of 70) for
which top 10 explicit usability features are more frequent in the review cor-
pus. When user and expert evaluation ratings are compared for these usability
attributes/aspects, a 68% alignment is observed in terms of the evaluation
results. The details of selected mobile apps and the comparison results are
presented in Appendix 1, Table 5

– Another set of 25 mobile apps was identified to which usability experts gave
either Very Good (5 star) and Very Bad(1 Star) or Bad (2 Star) ratings for
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top 10 explicit usability terms. The first subset of the entire dataset contains
10 individual apps with Very Bad (1 Star) or Bad (2 Star) expert evaluation
rating, while the second subset comprises 15 individual apps with Very Good
(5 Star) expert evaluation rating. Within these

(i) For the first subset, the vast majority (%80) of user reviews related to
the usability aspects were Positive opposing to expert usability evalua-
tion results.

(ii) For the second subset, %87.7 of user reviews related to the usability
aspects were Positive that are in alignment with expert usability eval-
uation results.

(iii) As the usability term frequency for the second subset was %25 higher
than the second subset, this might indicate that the presence of an us-
ability attribute is identified by end-users more easily than its absence.

(iv) Finally, a 60% match was observed between user and expert evaluation
results for the entire set.

The details of selected mobile apps and the comparison results are presented
in Appendix 1, Table 6.

4.2 Topic Modeling Results

Topic-word distributions and document-topic distributions of the topic modelling
were visualized with PyLDAVis [25], a Python library for interactive topic model
visualization as shown in Figure 7.

The circles in the left panel shows the top 10 topics, while the bar chart in
the right panel displays the top 30 most salient terms in blue and estimated term
frequency within the selected topic in red. The relevance of a term to a topic
is determined by a weight parameter λ - small values of λ (near 0) highlights
potentially rare, but exclusive terms for the selected topic. The distance between
the center of circles indicate the similarity between topics, the topics.

The results obtained were in alignment with our earlier experiments and Find-
ing #1 in Section 4.1:

– Only 12% of the topic-words were directly related to usability. The most preva-
lent usability aspects were about (i) Errors, (ii) Satisfaction (iii) Efficiency
and (iv) Simplicity.

– Significant amount of the other topic-words, 55% was about Functionality
(praises and complaints), Feature Demand and Task Performance.

– %33 of topic-words could not be assigned to any specific topic.

– There were no specific topic detected for (i) Learnability and (ii) Memora-
bility aspects of usability. Figure 8 shows the the overlapping usability topics
retrieved from user reviews and expert usability evaluation results.
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Fig. 7 Usability topics visualized and interpreted with PyLDAvis

Fig. 8 Usability Topics Venn Diagram

4.3 Threat to Research Validity

The validity of our study is discussed based on two types of threats: construct and
external validity. Since our data was extracted from Apple app stores, we relied
on reviewers and app store regulators for the reliability of our raw data. As an
example, customers may, for various reasons, inappropriately leave deceptive re-
views and ratings that do not reflect their true opinions and app store regulators
may not have detected or removed these deceptive reviews from their app stores.
Therefore, inaccuracies and imprecision in the data may have affected some of our
conclusions.

In addition, as the apps subject to this study were selected by usability experts
in a prior evaluation, we need to address another type of construct validity due to
possible biased selection of the apps, i.e. sampling bias [26]. Even though our app
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dataset covers a high degree of diversity in application type, domain and size, we
cannot claim that our results generalize beyond the usability subject studied.

4.4 Further Research

In future work, we will investigate app store the deceptive review detection problem
to address the construct validity issue. When deceptive reviews are removed from
the total app review corpus, the impact of inaccuracies and imprecision in the data
to our conclusions will likely diminish. Furthermore, we will expand our guided
LDA model to identify other app aspects such as request for requirements, issue
reporting, etc. from the review text.

5 CONCLUSION

Usability has become a significant quality dimension to determine the success of
mobile applications in app stores, while user ratings and reviews are user-driven
feedback that may help improve software quality and address missing application
dimensions. However, it is difficult for users to read all the reviews and reach an
informed decision due to the ever growing volume of textual review data. In ad-
dition, usability is often an implicit aspect well hidden within the review text,
and while both experts and end users are effective in revealing different usabil-
ity perspectives, extracting usability features from the review text requires new
approaches and validation.

The first objective of this empirical study was to extract usability related
information from user reviews. Hence, we used two approaches: one was usability
term frequency analysis, another was guided topic modelling to extract usability
information from app store user reviews. Next, in order to accomplish our second
research objective, the results were compared with expert evaluations of the same
artifacts from a previous research study. We provided only partial information
rather than high-level supervision for the topic modelling task in this study. Lexical
priors (seed words) were incorporated to guide the model in a certain direction,
namely usability. From our empirical analysis, it was found that seed words can
improve word clustering performance significantly.

Our empirical research reveals that 55% amount of user reviews addresses func-
tionality, bug/error and feature request related issues and praises, while only 12%
of user reviews are directly associated with usability aspects of the app. Also, user
usability evaluation highly matches with expert-based evaluation, particularly in
terms of identifying existing usability features. In addition, expert evaluations re-
vealed more general interface design problems, while user reviews identified more
bugs, functional requirements and obstacles to task performance. We believe that
our approach can be useful for supporting developers, U&UX designers and re-
searchers to better understand user experience and opinion on mobile application
usability aspects and finally improve software quality.
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learning. PhD Thesis, École de technologie supérieure (2015)
17. S. Hedegaard, J.G. Simonsen, in Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems (ACM, New York, NY, USA, 2013), CHI ’13, pp. 2089–2098. DOI
10.1145/2470654.2481286. URL http://doi.acm.org/10.1145/2470654.2481286

18. C. Iacob, R. Harrison, in Proceedings of the 10th Working Conference on Mining Software
Repositories (IEEE Press, Piscataway, NJ, USA, 2013), MSR ’13, pp. 41–44. URL http:
//dl.acm.org/citation.cfm?id=2487085.2487094

19. E. Bakiu, E. Guzman, in 2017 IEEE 25th International Requirements Engineering Con-
ference Workshops (REW) (2017), pp. 182–187. DOI 10.1109/REW.2017.76

20. M.F. Porter, (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997), pp.
313–316. URL http://dl.acm.org/citation.cfm?id=275537.275705

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



19

21. D.M. Blei, A.Y. Ng, M.I. Jordan, J. Lafferty, Journal of Machine Learning Research 3,
2003 (2003)

22. T.L. Griffiths, M. Steyvers, Proceedings of the National Academy of Sciences 101(suppl
1), 5228 (2004). DOI 10.1073/pnas.0307752101. URL http://www.pnas.org/content/
101/suppl_1/5228

23. H.M. Wallach, I. Murray, R. Salakhutdinov, D. Mimno, in Proceedings of the 26th Annual
International Conference on Machine Learning (ACM, New York, NY, USA, 2009), ICML
’09, pp. 1105–1112. DOI 10.1145/1553374.1553515. URL http://doi.acm.org/10.1145/
1553374.1553515

24. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, E. Duchesnay, J. Mach. Learn. Res. 12, 2825 (2011). URL
http://dl.acm.org/citation.cfm?id=1953048.2078195

25. C. Sievert, K. Shirley, in Proceedings of the Workshop on Interactive Language Learning,
Visualization, and Interfaces (Association for Computational Linguistics, 2014), pp. 63–
70. DOI 10.3115/v1/W14-3110. URL http://aclweb.org/anthology/W14-3110

26. W. Martin, M. Harman, Y. Jia, F. Sarro, Y. Zhang, in Proceedings of the 12th Working
Conference on Mining Software Repositories (IEEE Press, Piscataway, NJ, USA, 2015),
MSR ’15, pp. 123–133. URL http://dl.acm.org/citation.cfm?id=2820518.2820535

27. p. 1–5 (2009)
28. L. Hasan, A. Morris, S. Probets, Behaviour & Information Technology 31(7), 707 (2012).

DOI 10.1080/0144929X.2011.596996. URL https://doi.org/10.1080/0144929X.2011.
596996

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



20

6 Appendix I

Table 3: Seed words for guided LDA model

Topic Usability Attribute Seed Words

0 Simplicity [’easy’, ’simple’, ’function’, ’save’, ’control’, ’focus’,
’extra’, ’content’, ’balance’]

1 User control-navigation [’view’, ’back’, ’button’, ’control’, ’state’, ’marker’,
’cancel’, ’navigation’, ’exist’]

2 Understandability [’screen’, ’understand’, ’content’, ’tap’, ’area’, ’con-
trol’, ’manual’, ’consistent’, ’purpose’, ’navigate’, ’hi-
erarchy’]

3 Linguistic Clarity [’word’, ’clear’, ’phrase’, ’abbreviation’]

4 Ease of user input data [’easy’, ’list’, ’format’, ’information’, ’text’, ’field’, ’ta-
ble’, ’view’, ’data’]

5 Collaboration and Con-
nectedness

[’location’, ’share’, ’progress’, ’opinion’, ’score’, ’sta-
tus’]

6 Settings [’setting’, ’configuration’]

7 Branding [’brand’, ’logo’]

8 Searching [’list’, ’search’, ’data’, ’local’, ’sort’, ’result’, ’filter’]

9 Application description [’error’, ’description’, ’spell’, ’capital’, ’letter’, ’gram-
mar’]

10 User interface structure [’accurate’, ’user’, ’interface’, ’ui’, ’text’, ’size’, ’tap’,
’area’, ’order’, ’content’, ’title’, ’label’, ’orientation’,
’shortcut’]

11 User Interface consistency [’user’, ’interface’, ’ui’, ’control’, ’custom’, ’color’,
’graphic’, ’style’, ’control’, ’button’, ’icon’, ’consis-
tent’, ’gesture’]

12 Physicality and Realism [’form’, ’background’, ’control’, ’shape’, ’silhouette’]

13 Aesthetic integrity [’design’, ’ratio’, ’color’, ’clear’, ’clarity’, ’display’,
’quality’, ’icon’, ’view’, ’aesthetic’]

14 Subtle Animation [’builtin’, ’animate’, ’interaction’]

15 Gestures [’task’, ’complex’, ’gesture’]

16 Rapidity [’fast’, ’navigate’, ’rapid’, ’quick’]

17 Help [’documentation’, ’current’, ’task’, ’context’, ’help’]

18 Error correction and pre-
vention

[’bug’, ’error’, ’fix’]

19 In App Purchases [’purchase’, ’app’, ’store’]

20 Missing Functionalities [’missing’, ’feature’, ’function’]
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1

Table 4: List of Mobile App Feature Extraction Studies

Usability Attributes Criteria Aspect Words Aspect Words after
Stemming

Simplicity A.1 App uses visual weight and balance to show users
the relative importance of onscreen elements. (Pareto
Guideline)
A.2 The UI is appropriate for the user’s task and skill
level, makes it easy to focus on the main task by ele-
vating important content or functionality.
A.3 App does not ask user to save when it is not nec-
essary
A.4 Always an obvious and safe way to exit a modal
task is provided, to reassure users that their work is
safe when they dismiss a modal view.
A.5 The number and prominence of controls is min-
imized, in order to decrease their weight in the UI.
(Hick-Hyman Law)

simple (A.1), bal-
ance (A.1), <easy
to focus> (A.2),
content (A.2), func-
tionality (A.2),
save (A.3), closed
(A.4), <without
saving> (A.4),
<extra control>
(A.5, Negative)

simpl(A.1), bal-
anc(A.1), easy
(A.2), content
(A.2), <easy to
focu> (A.2), func-
tion (A.2), save
(A.3), close(A.4),
sav (A.4), <extra
control> (A.5,
Negative)

User control-navigation B.1 The path of navigation is predictable, and mark-
ers, such as the back button, are provided to inform
users where they are and how to retrace their steps.
B.2 The user can leave an unwanted state via clearly
marked cancel/exit points and without having to em-
bark on an extended UI interaction.
B.3 The user knows where he is in the app, how he got
there, and where he can go via a navigation controller
stack and accurate view names.
B.4 A back button or gesture returns the app to a
previous view without loss of data.

control (B.1),
navigation (B.1),
markers (B.1),
<back button>
(B.1), <unwanted
state>, Negative,
(B.2), cancel (B.2),
exist (B.2), navi-
gation controller
(B.3), <view>
(B.4)

control (B.1), navig
(B.1), marker (B.1),
<back button>
(B.1), <unwanted
st, Negative> (B.2),
cancel (B.2), exist
(B.2), navigation
control (B.3),
<view> (B.4)
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Understandability C.1 The number of controls from which the user must
choose is minimized.
C.2 The app’s purpose and usage area can be readily
understood from the start. C.3 The user doesn’t need
to use workarounds or manuals.
C.4 All the views are displayed consistently, so that
users can apply knowledge gained in one part of the
app to the system as a whole.
C.5 The app is consistent with the usage paradigms
of built-in apps, with the same screen navigation hi-
erarchy, content listing style, and mode switching ca-
pability using the tab bar.

understand (C.1,
D.1), <number
of controls>(C.1,
Negative), pur-
pose (C.2), usage
(C.2), workaround
(C.3, Negative),
manual (C.3, Neg-
ative), consistent
(C.4), screen (C.5),
navigation (C.5),
hierarchy (C.5),
<content listing>
(C.5), <mode
switch> (C.5),
<tab bar> (C.5)

understand (C.1,
D.1), <number
of control>(C.1,
Negative), purpos
(C.2), usag (C.2),
workaround (C.3,
Negative), manual
(C.3, Negative),
consist (C.4), screen
(C.5), navig (C.5),
hierarchi (C.5),
<content list>
(C.5), <mode
switch> (C.5),
<tab bar> (C.5)

Linguistic Clarity D.1 Understandable terminology is used in app, that
is, words and phrases that are appropriate for the tar-
geted user groups, in all text-based communications.
D.2 Abbreviations and acronyms are not used in an
app, unless they are straightforward and easily under-
stood.

clear (D.1) word
(D.1), phrase (D.1),
abbreviations
(D.2, Negative),
acronyms (D.2,
Negative)

clear (D.1) word
(D.1), phrase (D.1),
abbrevi (D.2, Nega-
tive), acronym (D.2,
Negative)
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Ease of user input data E.1 The requested user input is balanced with what
the app offers the user in return, providing as much
information or functionality as possible for each piece
of information entered by the user.
E.2 Making choices is easy for the user, e.g. by pro-
viding a table view or a list picker component instead
of a text field.
E.3 Required fields are made clear to the user via vi-
sual indicators.
E.4 The app validates the information that the user
enters data forms, informing him if it is not in an ac-
ceptable format.
E.5 Information from the device is obtained when it
makes sense to do so, so that users aren’t obliged to
provide information that is easily accessible by the
app.
E.6 The app supports undo and redo.

easy (E.1, R.1),
input (E.1), infor-
mation (E.1, E.6,
Negative), <text
field> (E.2, Nega-
tive), <table view>
(E.2), list (E.2),
field (E.3), <data
format> (E.4),
<input validation>
(E.4), format (E.4)

easi (E.1, R.1),
input (E.1), in-
form (E.1, E.6,
Negative), <text
field> (E.2, Nega-
tive), <table view>
(E.2), list (E.2),
field (E.3), <data
format> (E.4),
<input valid>
(E.4), format (E.4)

Collaboration and Con-
nectedness

F.1 Users are able to easily share information that is
important to them, like their location, opinions, and
high game scores, when it is appropriate.
F.2 The app keeps the user informed about the
send/receive status of content via a progress indica-
tor.

share (F.1), loca-
tion (F.1), opinion
(F.1), <game
score> (F.1), status
(F.2), progress
(F.2)

share (F.1), locat
(F.1), opinion (F.1),
<game scor> (F.1),
statu (F.2), progress
(F.2)

Settings G.1 Settings about preferred app behaviours and in-
formation that users rarely want to change in the app
included only when it is appropriate to do so.
G.2 Users can easily set their preferred behaviours by
using the configuration options in the app.

setting (G.1), con-
figuration (G.1)

set (G.1), con-
figur(G.1)
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Branding H.1 Brand colors or images presented appropriately in
a subtle and understated way for greatest effect.

brand (H.1) brand (H.1)

Searching I.1 Local data is live-filtered, so that the app can dis-
play results more quickly, narrowing them as the user
continues to type.
I.2 Remote data is filtered while the user types when
possible, informing him that he can opt out if the re-
sponse time is likely to delay the results by more than
a second or two.
I.3 Search bars displayed above lists, or lists have in-
dex.
I.4 Search function featured as a distinct mode if it is
a primary function in the app, and search tabs pro-
vided only in special circumstances.
I.5 Placeholder content and partial results are dis-
played as they become available to give users prompt
access.
I.6 Scope bar is provided if the data sort naturally
into different categories, as this allows users to specify
locations or rules in a search, or to filter objects by
specific criteria.

search (I.1), <local
data> (I.1), results
(I.1), <remote
data> (I.2), filter
(I.2), response time
(I.2), bar (I.3), list
(I.3), index (I.3),
¡prompt access¿
(I.5), <score bar>
(I.6), sort (I.6),
criteria (I.7)

search (I.1), <local
data> (I.1), result
(I.1), <remote
data> (I.2), filter
(I.2), response tim
(I.2), bar (I.3), list
(I.3), index (I.3),
<prompt access>
(I.5), <score bar>
(I.6), sort (I.6),
criteria (I.7)

Application description J.1 There is not any spelling, grammatical, and punc-
tuation errors, to avoid creating a negative impression
of an app’s quality.
J.2 All-capital-letter words kept to a minimum, as
they can make text very difficult to read.

description (J.1),
spelling (J.1),
grammar (J.1),
punctuation (J.1),
error (J.1), <capital
letter> (J.2, Nega-
tive)

descript (J.1),
spell(J.1), grammar
(J.1), punctuat
(J.1), error (J.1),
<capital lett> (J.2,
Negative)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45



2
5

User interface structure K.1 Information is conveyed in a condensed, headline-
type style, so that users can absorb it quickly and
easily.
K.2 The most frequently used (usually higher level)
information are placed near the top, and in the fol-
lowing order: from general to specific, and from high
level to low level.
K.3 Shortcuts have been developed for the most fre-
quently used parts of the app.
K.4 Labels and titles are consistent throughout the
app, and accurately define the tasks to be performed
in the app.
K.5 Focus on the primary content is maintained in all
orientations, so that users feel they have control over
the app and the content they care about.
K.6 Tappable elements in an app have a target area
of about 44 x 44 points, as this size is important for
ease of use. (Fitts Law)
K.7 Tappable and untappable areas of the app are
clearly recognizable.
K.8 App responses to text size changes properly.

<user interface>
(K.1, L.1), order
(K.2), <high level>
(K.2), <low level>
(K.2), shortcut
(K.3), label (K.4),
title (K.4), accurate
(K.4), <primary
content> (K.5),
orientation (K.5),
tap (K.6), area
(K.6), <tappable
area> (K.6, K.7),
<untappable area>
(K.7), <text size>
(K.8)

<user interfac>
(K.1, L.1, L.4),
order (K.2), <high
level> (K.2),
<low level> (K.2),
shortcut (K.3),
label (K.4), titl
(K.4), accur (K.4),
<primary cont>
(K.5), orient (K.5),
tap (K.6), area
(K.6), <tappable
area> (K.6, K.7),
<untappable area>
(K.7), <text siz>
(K.8)
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User Interface consistency L.1 Short labels or well-understood symbols are given
to controls, so that users know what they are doing at
a glance.
L.2 Standard controls and gestures are appropriately
and consistently used, so that they behave the way
the user expects them to.
L.3 The appearance of a controls that perform stan-
dard actions is not changed radically, as users will
spend time discovering how to use them and wonder
what, if anything, this control does that the standard
one does not.
L.4 The UI conforms to the user’s expectations, in
that it meets the predictable contextual needs of the
user and respects commonly accepted conventions.
L.5 Standard buttons and icons did not used to mean
something else.
L.6 UI controls are customized and they are integrated
with app’s graphical style, and can be discovered and
understood without being conspicuous.
L.7 App avoids using the same color in both interac-
tive and noninteractive elements

consistent (L.1),
label (L.1), <short
label> (L.1),
symbol (L.1),
<standard control>
(L.2), gesture
(L.2), control (L.3),
<standard button>
(L.5), icon (L.5),
<UI control> (L.6),
custom (L.6), style
(L.6), <graphical
style> (L.6), <same
color> (L.7), in-
teractive (L.7),
noninteractive (L.7)

consist (L.1), la-
bel (L.1), <short
label> (L.1),
symbol (L.1),
<standard control>
(L.2), gestur (L.2),
control (L.3),
<standard button>
(L.5), icon (L.5),
<UI control>
(L.6), custom
(L.6), style (L.6),
<graphical styl>
(L.6), ¡same color¿
(L.7), interact
(L.7), noninteract
(L.7)
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Physicality and Realism M.1 Similar UI controls are grouped close to each
other. Similarity occurs when objects look similar to
one another, and can be perceived as part of a group
or pattern.
M.2 Related UI controls placed close to eachother.
Proximity occurs when elements are placed close to-
gether, and can be perceived as belonging to a group.
M.3 Figures (forms, silhouettes, and shapes) are dif-
ferentiated from background (the surrounding area).

real (M.1), <similar
control> (M.1),
forms (M.3, Neg-
ative), silhouette
(M.3, Negative),
shape (M.3, Nega-
tive), background
(M.3)

real (M.1), <similar
control> (M.1),
form (M.3, Neg-
ative), silhouett
(M.3, Negative),
shape (M.3, Nega-
tive), background
(M.3)

Aesthetic integrity N.1 The look of high-quality or precious materials are
replicated and materials look realistic and valuable.
N.2 Relevant metaphors representing real-life objects
are used when needed to help the user understand,
and learn, the task.
N.3 Color coding is used for clarity where appropriate.
N.4 The number of colors is limited to 3-4. N.5 Beau-
tiful, high-resolution artwork and icons have designed
and used in application in accordance with Fibonacci
sequence.
N.6 Views are designed in compliance with the rule of
thirds and golden ratio guidelines hence UI controls
are placed in proper positions.
N.7 App supports retina display

Aesthetic (N.1),
high-quality (N.1),
realistic (N.1),
valuable (N.1),
<color coding>
(N.3), clarity (N.3),
color (N.4), high-
resolution (N.5),
artwork (N.5),
icon (N.5), design
(N.5), views (N.6),
<golden ratio>
(N.6), ratio (N.6),
<retina display>
(N.7)

Aesthet (N.1),
high-quality (N.1),
realist (N.1), valu-
able (N.1), <color
cod> (N.3), clarity
(N.3), color (N.4),
high-resolution
(N.5), artwork
(N.5), icon (N.5),
design (N.5), view
(N.6), <golden
ratio> (N.6), ra-
tio (N.6), <retina
display> (N.7)
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Subtle Animation O.1 App makes custom animation consistent with
built-in animation when it is appropriate.
O.2 Animations are used consistently throughout the
app, so that users can rely on the experience it gives
them.
O.3 Uses animation and interactivity to engage users
and help them learn by doing

animation (O.1,
O2), <built-in
animation> (O.1),
interaction (O.3),
gesture (P.1),
complex (P.2, Neg-
ative), task (P.2)

anim (O.1, O2),
<built-in anim>
(O.1), interact
(O.3), gestur (P.1),
complex (P.2, Neg-
ative), task (P.2)

Gestures P.1 The actions associated with the standard gestures
that users know are not changed.
P.2 Complex gestures, or less common ones like swipe
or pinch open, are applied as shortcuts to expedite a
task, not as the only way to perform a task.

gesture (P.1), com-
plex (P.2), task
(P.2)

gesture (P.1), com-
plex (P.2), task
(P.2)

Rapidity Q.1 A launch image is displayed which closely resem-
bles the first screen of the app, to decrease the app’s
perceived launch time.
Q.2 Displaying an About window or a splash screen is
avoided, to ensure that users are not prevented from
using the app immediately.
Q.3 The login requirement is delayed for as long as
possible, to enable users to navigate through much of
the app and access some of its functionality without
logging in.
Q.4 App restores its state when restartes, so that users
don’t have to remember how they had reached it in
the first place.
Q.5 App avoids asking people to supply setup infor-
mation
Q.6 App is fast and responsive to touch events

rapid (Q.1),
<launch time>
(Q.2), about (Q.2),
<splash screen>
(Q.2), login (Q.3),
navigate (Q.3), re-
store (Q.4), set-up
(Q.5), fast (Q.6),
responsive (Q.6)

rapid (Q.1),
<launch tim>
(Q.2), about (Q.2),
<splash screen>
(Q.2), login (Q.3),
navig (Q.3), restor
(Q.4), set-up (Q.5),
fast (Q.6), respons
(Q.6)
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Help R.1 The app provides easily accessible help to users
when needed.
R.2 The Help documentation is properly prepared,
and is both appropriate and informative.
R.3 The user can easily move between Help and the
current task.
R.4 Help is context-based, and addresses all the nec-
essary contexts.

help (R.1), docu-
mentation (R.2),
<current task>
(R.3), necessary
(R.4), context (R.4)

help (R.1), doc-
ument (R.2),
<current task>
(R.3), necessari
(R.4), context (R.4)

Error correction and pre-
vention

S.1 Specific bug fixes that customers have been wait-
ing for are specified in the description of a new version
of an app.

error (S.1), bug
(S.1, Negative),
<bug fix> (S.1),
description (S.1)

error (S.1), bug
(S.1, Negative),
<bug fix> (S.1),
descript (S.1)

In App Purchases T.1 App offers in App Purchases (Achat integre)
T.2 In app purchases affects the usability

<app purchase>
(T.1)

<app purchas>
(T.1)

Missing Functionalities V.1 Are there any features missing which make app
less usable?

<missing feature>
(V.1)

< featur> (V.1)
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Table 5: Evaluation Results for 30 Apps and Top-5 Explicit and
Top-5 Implicit Usability Features

Usability Fea-
ture

App
ID

App Cate-
gory

User Evaluta-
tion Score

Expert Evalu-
ation Score

Match

K4

8 Utility Positive 5 TRUE
17 Utility Positive 4 TRUE
22 Utility Positive 4 TRUE
30 Health Positive 5 TRUE
33 Finance Negative 5 FALSE
38 Utility Positive 5 TRUE
40 Weather Positive 5 TRUE
42 Business Positive 5 TRUE
73 Health Positive 5 TRUE
95 References Positive 4 TRUE

E1

8 Utility Positive 3 FALSE
23 Business Positive 5 TRUE
37 References Neutral 3 TRUE
40 Weather Positive 5 TRUE
48 Business Positive 5 TRUE
65 Food&Drink Positive 5 TRUE
73 Health Positive 5 TRUE
75 Health Positive 5 TRUE
84 Sport Positive 4 TRUE
95 References Positive 3 FALSE

I1

12 Productivity Positive 3 TRUE
37 References Positive 5 FALSE
48 Business Neutral 3 FALSE
64 Food&Drink Positive 5 TRUE
65 Food&Drink Positive 5 FALSE
75 Health Positive 5 FALSE
78 Music Positive 5 TRUE
91 References Positive 5 TRUE
93 References Positive 4 TRUE
95 References Positive 3 TRUE

V1

11 Productivity Positive 4 TRUE
12 Productivity Positive 4 TRUE
40 Weather Positive 4 TRUE
47 Business Positive 4 TRUE
48 Business Negative 4 FALSE
65 Food&Drink Positive 4 TRUE
73 Health Positive 4 TRUE
75 Health Positive 4 TRUE
78 Music Positive 4 TRUE
87 Photo Positive 2 FALSE

N5

11 Productivity Positive 2 FALSE
17 Utility Positive 5 TRUE
40 Weather Neutral 3 FALSE
48 Business Negative 4 FALSE
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65 Food&Drink Positive 4 TRUE
73 Health Positive 4 TRUE
75 Health Positive 5 TRUE
78 Music Negative 3 TRUE
87 Photo Positive 4 TRUE
95 References Positive 3 FALSE

K1

11 Productivity Positive 5 TRUE
17 Utility Positive 5 TRUE
39 Weather Positive 5 TRUE
40 Weather Positive 5 TRUE
48 Business Positive 5 TRUE
65 Food&Drink Negative 5 FALSE
73 Health Positive 5 TRUE
75 Health Positive 5 TRUE
87 Music Positive 4 TRUE
95 Photo Positive 4 TRUE

C5

8 Utility Positive 5 TRUE
37 References Negative 5 FALSE
39 Weather Positive 5 TRUE
40 Weather Positive 4 TRUE
47 Business Negative 5 FALSE
48 Business Negative 5 FALSE
49 Business Negative 4 FALSE
75 Health Positive 5 TRUE
87 Photo Positive 4 TRUE
95 References Positive 3 FALSE

S1

37 References Negative 3 FALSE
47 Business Negative 4 FALSE
48 Business Negative 5 FALSE
49 Business Negative 5 FALSE
56 Productivity Neutral 4 FALSE
73 Health Positive 5 TRUE
78 Music Positive 4 TRUE
84 Music Negative 4 FALSE
87 Photo Neutral 4 FALSE
95 References Positive 5 TRUE

L6

8 Utility Positive 4 TRUE
17 Utility Neutral 4 FALSE
39 Weather Positive 5 TRUE
40 Weather Positive 4 TRUE
48 Business Negative 5 FALSE
49 Business Positive 5 TRUE
73 Health Positive 5 TRUE
75 Health Positive 5 TRUE
87 Photo Positive 4 TRUE
88 Photo Positive 4 TRUE

N3

12 Productivity Positive 5 TRUE
39 Weather Positive 5 TRUE
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40 Weather Positive 5 TRUE
47 Business Negative 5 FALSE
48 Business Positive 5 FALSE
49 Business Positive 4 TRUE
78 Music Negative 4 FALSE
83 Music Positive 4 TRUE
87 Photo Positive 4 TRUE
88 Photo Positive 4 FALSE

Table 6: Evaluation Results for Top and Lowest Rated 25 Apps and
Top-10 Explicit Usability Terms

Usability Fea-
ture

App
ID

App Cate-
gory

User Evaluta-
tion Score

Expert Evalu-
ation Score

Match

K4
21 Productivity Positive 1 FALSE
37 Utility Positive 5 TRUE
48 Business Negative 5 FALSE

E1
39 Business Positive 1 FALSE
19 Business Positive 5 TRUE

I1
8 Utility Positive 1 FALSE
10 Business Negative 5 FALSE

V1
26 Business Positive 2 FALSE
9 Business Positive 5 TRUE

N5
23 Business Positive 1 FALSE
80 Business Positive 5 TRUE

K1
25 Business Positive 1 FALSE
33 Business Positive 5 TRUE
91 Business Positive 5 TRUE

C5
21 Utility Positive 2 FALSE
12 Business Positive 5 TRUE
56 Business Positive 5 TRUE

S1
1 Utility Negative 1 TRUE
61 Business Positive 5 TRUE
95 Business Positive 5 TRUE

L6
41 Utility Positive 2 FALSE
2 Business Positive 5 TRUE
54 Business Positive 5 TRUE

N3
5 Utility Negative 1 TRUE
80 Business Positive 5 TRUE
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