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Développement d’un automate cellulaire pour I’étude de I’effet de voisinage dans les
champs de contrainte des polycristaux.

Rémy BRETIN

RESUME

L'objectif de ce projet de these consistait a développer un modele analytique capable de prédire
les hétérogénéités des champs micromécaniques au sein de polycristaux pour un faible colit
de calcul afin d’évaluer la probabilité de vie en fatigue du matériau. De nombreux modeles
analytiques existent déja a cet égard, mais ils présentent des désavantages : soit ils ne sont pas
assez efficaces pour générer rapidement une large base de données et effectuer une analyse
statique, soit les impacts de certaines hétérogénéités sur les champs de contrainte, tel que I’effet
de voisinage, sont négligés. Les mécanismes a la base de 1’effet de voisinage, a savoir les
variations de contrainte des grains dues a un environnement donné, sont méconnus ou mal
compris.

Une analyse par éléments finis a été réalisée sur cette question dans le cas de polycristaux
orientés de maniere aléatoire avec une seule phase soumise a une charge élastique. L’étude a
révélé que le niveau de contrainte au sein d’un grain est tout autant dépendant de I’orientation
cristallographique de ce dernier que de I’effet de voisinage. Des approximations ont été tirées
de cette analyse qui a conduit a la mise au point d’un modele analytique, 1’automate cellulaire.
Le modele s’applique aux structures polycristallines régulieres a grains sphériques et son
développement s’est déroulé en deux étapes: en €lasticité puis en élasto-plasticité.

En élasticité, le modele a montré d’excellentes prédictions des champs micromécaniques par
rapport aux éléments finis. Le modele a ensuite été utilisé pour évaluer les pires configurations
de grain-voisinage et leur probabilité de se produire. Il a ét€ démontré dans le cas du cristal de
fer que certaines configurations de voisinage peuvent augmenter de 2 fois le niveau de contrainte
d’un grain.

En élasto-plasticité, le modele sous-estime la plasticité des grains par rapport aux éléments finis.
Néanmoins, le modele a prouvé sa capacité a identifier les pires configurations de grain-voisinage
conduisant a une importante plasticité localisée. Il a ét€ démontré que le comportement élastique
des grains détermine la localisation et le niveau de plasticité au sein des polycristaux dans le
contexte de la fatigue a grand nombre de cycles.

Une étude statistique de I’effet de voisinage a été menée pour évaluer la probabilité de la limite
d’élasticité réelle (niveau de contrainte appliqué au matériau pour lequel le premier signe de
plasticité se produirait dans un grain). L’étude a révélé, dans le cas de I’acier 316L., une différence
significative entre la limite élastique réelle a 99% et 1% de probabilité, ce qui pourrait étre
I’une des causes de la dispersion de la durée de fatigue souvent observée expérimentalement en
fatigue a grand nombre de cycles.
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Des études complémentaires sur I’effet d’une surface libre et la morphologie des grains ont
été réalisées. L'étude a montré qu’une surface libre avait pour effet d’étendre encore plus la
distribution de la contrainte des grains. Les approximations de I’effet de voisinage utilisées
dans le modele se sont avérées non affectées par une surface libre. La morphologie des grains a
également un impact important sur les champs de contraintes. Il a ét€ montré que dans le cas
d’un rapport de morphologie €levé, les variations de contraintes induites par la morphologie des
grains sont aussi importantes que celles induites par I’effet de voisinage.

Mots-clés: Automate cellulaire, Fatigue, Effet de voisinage, Polycrystaux, Eléments finis,
Schéma auto-cohérent, Inclusion d’Eshelby



Cellular Automaton Development for the Study of the Neighborhood Effect within
Polycrystals Stress-Fields.

Rémy BRETIN

ABSTRACT

The objective of this Ph.D. project was to develop an analytical model able to predict the
heterogeneous micromechanical fields within polycrystals for a very low computational cost in
order to evaluate a material fatigue life probability. Many analytical models already exist for
that matter, but they have disadvantages: either they are not efficient enough to rapidly generate
a large database and perform a static analysis, or the impacts of certain heterogeneities on the
stress fields, such as the neighborhood effect, are neglected. The mechanisms underlying the
neighborhood effect, which is the grain stress variations due to a given close environment, are
unheralded or misunderstood.

A finite element analysis has been carried out on this question in the case of polycrystals
oriented randomly with a single phase submitted to an elastic loading. The study revealed that a
grain stress level is as much dependent on the crystallographic orientation of the grain as the
neighborhood effect. Approximations were drawn from this analysis leading to the development
of an analytical model, the cellular automaton. The model applies to regular polycrystalline
structures with spherical grains and its development was conducted in two steps: first in elasticity
then in elasto-plasticity.

In elasticity, the model showed excellent predictions of micromechanical in comparison to the
finite element predictions. The model was then used to evaluate the worst grain-neighborhood
configurations and their probability to occur. It has been shown in the case of the iron crystal
that certain neighborhood configurations can increase by 2 times a grain stress level.

In elasto-plasticity, the model underestimates the grains plasticity in comparison to the finite
element predictions. Nonetheless, the model proved its capacity to identify the worst grain-
neighborhood configurations leading important localized plasticity. It has been shown that
grains elastic behaviors determine the location and the level of plasticity within polycrystals in
the context of high cycle fatigue regime. The grains undergoing the highest resolved shear stress
in elasticity are the grains plastifying the most in high cycle fatigue regime.

A statistical study of the neighborhood effect was conducted to evaluate the probability of the
true yield stress (stress level applied to the material for which the first sign of plasticity would
occur in a grain). The study revealed, in the case of the 316L steel, a significant difference
between the true elastic limit at 99% and 1% probability, which could be one of the causes of
the fatigue life scatter often observed experimentally in high cycle fatigue regime.

Further studies on the effect of a free surface and the morphology of the grains were carried
out. The study showed that a free surface have the effect to spread even more the grains stress
levels distributions. The neighborhood effect approximations used in the developed model were



unaffected by a free area. The grains morphology also has shown to have a significant impact
on the stress fields. It has been shown that in the case of a high morphology ratio, the stress
variations induced by the morphology of the grains are as important as those induced by the
neighborhood effect.

Keywords: Cellular automaton, Fatigue, Neighborhood effect, Polycrystals, Finite element,
Self-consistent scheme, Eshelby’s inclusion
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INTRODUCTION

Many different kinds of heterogeneities can be found within polycrystals such as metallurgical
phases, grains morphology, inclusions, residual stresses, crystal anisotropy, etc. These hetero-
geneities are responsible for local stress concentrations that can lead to early crack initiations.
The random character of heterogeneities makes difficult to evaluate their impact on materials
fatigue life and thus requires a systematic statistical study. Performing experimentally a statistical
analysis of a material fatigue life is expensive and time-consuming. For that reason, predictive

tools are of significant interest.

Several numerical models exist to predict materials stress-fields which can be roughly divided
into two groups: the full-field models that are accurate but computationally expensive and
the mean-field models that are fast and efficient but sometimes lack of accuracy. In order to
capture the full range of the stress heterogeneities within a material, all the microstructural
heterogeneities must be considered, which are often disregarded by mean-field models, and a
very large number of configurations of heterogeneities must be studied, which is too much time

consuming with full-field models.

In order to accelerate the computation time, approximations are necessary and some hetero-
geneities have to be ignored. A phenomenon that is often disregarded is the grains stress
variations in polycrystals due to their close environment mechanical properties, the so-called
neighborhood effect. This phenomenon can generate large stress concentrations that must be
predicted for a better understanding of fatigue damage. This work is an attempt to develop an
analytical model with the purpose to quantify polycrystals micromechanical behavior accounting
for the neighborhood effect based on simplifying assumptions for a low computational cost in

order to study a large amount of heterogeneities distributions.

As a first step toward this goal, the present work is divided as follow: Chapter 1 presents the

fundamental tools necessary to predict polycrystals’ micromechanical behavior and the state of



the art on that matter. Chapter 2 presents the rationales and objectives of the thesis. Chapter 3
displays a finite element study of the neighborhood effect within polycrystals under an elastic
loading, as it was presented in a first article published in the International Journal of Solids and
Structures. A better understanding of the grains interactions is acquired from this study, leading
in Chapter 4 to the development of an analytical model, as it was presented in a second article
published in the International Journal of Solids and Structures. The model, based on a cellular
automaton and using a regular aggregate structure, accounts for the neighborhood effect in the
elastic micromechanical stress fields predictions. The model predictions are compared to the
finite element method ones and showed excellent performance to predict the grains resolved
shear stresses and identify the specific microstructures leading to la