

Extracting rules to help in the conversion of a relational
database to NoSQL (column-oriented) database technology

by

Rafik OUANOUKI

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
IN PARTIAL FULFILLMENT FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY.
Ph.D.

MONTREAL, FEBRUARY 01, 2020

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

 (Rafik Ouanouki, 2020)

This Creative Commons licence allows readers to download this work and share it with others as long as the

author is credited. The content of this work can’t be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED
BY THE FOLLOWING BOARD OF EXAMINERS

Professor Alain April, Thesis Supervisor
Department of Software Engineering and IT, École de Technologie Supérieure

Professor Alain Abran, Member of the Jury
Department of Software Engineering and IT, École de Technologie Supérieure

Professor Jean-Marc Desharnais, Member of the Jury
Department of Software Engineering and IT, École de Technologie Supérieure

Professor Tony Wong, President of the Board of Examiners
Department of Automated Manufacturing Engineering, École de Technolopgie Supérieure

Mr. David Déry, PhD, external evaluator
IT Project manager – cloud computing, Canadian Securities Administrators

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

DECEMBER 09, 2019

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGMENTS

Praise be to God, who answers my prayers during times of doubt and who gave me the strength

to keep pushing myself and never give up.

I dedicate this thesis to my mother, currently in a late phase of dementia, who has supported

me since the beginning. There is nothing I can do as a son to repay her sacrifices, support and

love. Mom, I know the sickness took your mind away but I would not have done it without

you. I am simply the reflection of your endless love and education.

I am very grateful to my thesis director Dr. Alain April, who has been an amazing mentor, who

has helped me overcome both academic and personal obstacles. My life has taken a massive

turn since meeting Alain in the Quality Assurance course back in 2005. Thank you, Alain, for

believing in me and for all your support.

I am also greatly thankful to Dr. Alain Abran and Dr. Jean-Marc Desharnais for all the time

and support given to help me with my thesis.

I am deeply grateful to my wife Imane Harrache for her support and patient and continuous

motivations in time of doubt.

Much thanks to Damien Sygusch, an old-time student roommate and long-time friend who

gave a lot of his time helping me brainstorm, debate and browse new technologies. Your

support has never failed me.

Last but not least, thanks to the members of my board of examiners for their time and effort

reviewing my thesis and providing their feedback.

VI

Extraction des règles d’aide à la conversion de base de données relationnelles vers une
technologie de base de données NoSQL (orientées colonnes)

Rafik OUANOUKI

RESUMÉ

Cette thèse vise à aider les ingénieurs logiciels lors d’une première conversion de bases de
données relationnelles vers une technologie de base de données émergente reconnue pour être
mieux adaptée à l’infonuagique, c’est-à-dire la technologie NoSQL. Pour ce faire, une
première activité de recherche vise à comprendre et à clarifier les notions de caractéristiques
essentielles et optionnelles de la définition du terme infonuagique. Cette discussion est abordée
sous l’angle de cette recherche (c’est-à-dire lors d’une conversion de base de données
relationnelle vers le NoSQL). Par la suite, la contribution principale de cette recherche explore
la possibilité d’extraire des règles de conversion de base de données relationnelle vers une base
de données non-relationnelle (NoSQL), plus précisément la technologie HBase.

Deux expérimentations ont été effectuées afin d’identifier une liste de règles de conversion :

1. La première expérimentation consistait à demander à des participants de convertir un

schéma relationnel particulier sans l’utilisation de règles de conversions. Plusieurs
questionnaires ont étés complétés par les participants durant l’expérimentation. L’objectif
principal de cette première expérimentation était d’évaluer s’il y avait un besoin d’avoir
accès à des règles de conversions afin d’aider les ingénieurs logiciels lors de la conversion
de schémas relationnels vers des schémas non-relationnels ;

2. La deuxième expérimentation consistait à composer des groupes parmi les participants.
Chaque groupe a eu comme tâche d’effectuer la conversion d’une relation simple, c.à.d.
une à une, vers un des schémas possibles en HBase. L’objectif était de tester les résultats
d’une relation SQL vers tous les schémas possibles dans HBase, une base de données non-
relationnelle, afin d’extraire les règles de conversions. Cette expérimentation a permis de
démontrer pourquoi un schéma particulier est meilleur qu’un autre et a aussi permis
l’extraction de règles de conversion basés sur des faits (ex. mesure de performance d’une
requête sur chacun des schémas résultants).

Les contributions principales de cette thèse sont:

1. Une liste de règles de conversion d’un schéma relationnel vers un schéma non relationnel:
a. Des règles portant sur la proximité des données ;
b. Des règles portant sur les familles de colonnes ;
c. Des règles portant sur la quantité de données ;
d. Des règles portant sur les modèles d’accès.

2. Une clarification de la définition du terme infonuagique proposée à l’aide de notions de
caractéristiques obligatoires et d’éléments facultatifs exclus de la définition.

VIII

Mots-clés : règles de conversion de bases de données relationnelle, NoSQL, définition
infonuagique, mégadonnées.

Extracting rules to help in the conversion of a relational database to NoSQL (Column-
oriented) database technology

Rafik OUANOUKI

ABSTRACT

This research aims to support software engineers in their first attempt at a conversion of
relational databases to a database technology recognized as better suited to cloud computing
(NoSQL), which in this particular case study is HBase. To do this, an initial research activity
aims to understand and clarify the notions of essential and optional characteristics in the cloud
computing definition. This discussion is considered by taking the perspective of this research
(i.e. a database conversion from RDB to NoSQL). Subsequently, the main contribution of this
research explores the possibility of extracting database conversion rules.

Two experiments were carried out to identify an initial list of conversion rules:
1. The first experiment consisted of asking participants (engineers from École de technologie

supérieure) to convert a particular schema, without the use of a guide or conversion rules.
Several questionnaires were completed by the participants during the experiment. The
main goal of this experiment was to evaluate the need for conversion rules to help software
engineers in the conversion of relational schemas to non-relational schemas.

2. The second experiment consisted of dividing the participants into sub-groups tasked to
convert a single RDB relation (i.e. one-to-one) to a possible schema in HBase. The goal
was to test the results of a basic relationship compared with all the schematic conversion
possibilities in HBase, a particular non-relational database, and then extract the conversion
rules. This experiment would show why one particular schema is better than another and
would allow for the identification of conversion rules based on facts (e.g., performance
measurement of a query on each of the resulting schemas).

The main contributions of this thesis are:
1. A list of rules for converting relational database schemas to the schema of a non-relational

database:
a. Rules on data proximity;
b. Rules on column families;
c. Rules on data quantity;
d. Rules on access patterns.

2. Clarification to the term cloud computing is also proposed by introducing the notion of
mandatory and optional characteristics excluded from the most popular definition.

Keywords: relational database conversion rules, NoSQL, cloud computing definition,
database conversion, Big Data.

TABLE OF CONTENTS

INTRODUCTION ...1

CHAPTER 1 OVERVIEW OF THE CLOUD COMPUTING CONCEPT AND
DEFINITION ..5

1.1 Cloud Computing Definition ...5
1.2 Cloud Computing Usage Model: Computer Utilities ..8
1.3 Cloud Computing Types ..9
1.4 Cloud Computing and Other Similar Concepts ...10

1.4.1 Cloud Computing and Grid Computing .. 10
1.4.2 SaaS and Cloud Computing .. 12

1.5 Conclusion ...13

CHAPTER 2 INTRODUCTION TO BIG DATA TECHNOLOGIES THAT ARE
PROMOTED BY CLOUD COMPUTING TECHNOLOGIES15

2.1 Relational vs. Non-Relational Database ..15
2.1.1 The Relational Database Model .. 15
2.1.2 Relational Database Limitations ... 16
2.1.3 Distributed Database Model ... 17

2.2 Hadoop Project...18
2.2.1 The Initial Need that Led to the Creation of Hadoop 20
2.2.2 Does Hadoop Offer an Alternative to the Use of RDBMS? 20
2.2.3 Hadoop and Volunteer Computing ... 21

2.3 HBase Characteristics ..22
2.3.1 Associative Table (a MAP) ... 22
2.3.2 Persistent ... 23
2.3.3 Distributed... 23
2.3.4 Sparse .. 25
2.3.5 Column Oriented ... 25
2.3.6 High Availability and High Performance ... 26

2.4 Why HBase? ..26
2.5 HBase Architecture ..26
2.6 HBase Accessibility ...28
2.7 Conclusion ...28

CHAPTER 3 LITERATURE REVIEW OF DATABASE CONVERSION BETWEEN
RELATIONAL AND NON-RELATIONAL DATABASES31

3.1 Introduction ..31
3.2 Overview of Typical RDB to NoSQL Conversion Steps ..31
3.3 Database Conversion State of the Art ..34
3.4 Books, Blogs and Web Discussions...40
3.5 Conclusion ...42

XII

CHAPTER 4 RESEARCH METHODOLOGY, ACTIVITIES AND
EXPECTED RESULTS ... 43

4.1 Research Methodology ... 43
4.2 Definition Phase .. 43
4.3 Planning phase .. 43
4.4 Operation Phase .. 46
4.5 Interpretation Phase .. 48
4.6 Summary of the Research Methodology ... 49

CHAPTER 5 CLARIFYING THE CLOUD COMPUTING DEFINITION FOR OUR
RESEARCH ... 51

5.1 Introduction ... 51
5.2 ISO and NIST Cloud Computing Definitions ... 51
5.3 The Car Analogy ... 55

5.3.1 Common Factors Observed when Converting to Cloud Computing 56
5.3.2 NIST Definition Clarifications for this Research 58

5.4 Conclusion .. 62

CHAPTER 6 RDB TO NOSQL CONVERSION PROBLEM ... 65
6.1 Background ... 65
6.2 HBase Schema Basics and Design Fundamentals .. 66

6.2.1 Row Key Design in HBase ... 66
6.2.2 Columns and Column Family in HBase ... 67
6.2.3 HBase Design Fundamentals .. 67

6.3 Experiment Description and Results ... 69
6.3.1 Experiment 1 ... 69
6.3.2 Conversion Design Patterns .. 77
6.3.3 Experiment 2 ... 80
6.3.4 Rules Extraction .. 87

6.4 Conclusions and Future Research ... 91

CONCLUSION ... 93

APPENDIX I THE NIST DEFINTION OF CLOUD COMPUTING 97

APPENDIX II ISO/IEC JTC 1 N9687 – A STANDARDIZATION INITIATIVE
 FOR CLOUD COMPUTING .. 101

APPENDIX III EXPERIMENT 1 – SURVEY .. 105

APPENDIX IV EXPERIMENT 2 – ASSIGNMENT DESCRIPTION 109

BIBLIOGRAPHY ... 128

LIST OF TABLES

Page

Table 1.1 A Sampling of Cloud Computing Definitions ...6

Table 1.2 NIST Definition ...8

Table 1.3 Comparison between Cloud and Grid Computing ...11

Table 2.1 Differences between RDBMS and Hadoop MapReduce21

Table 2.2 Differences Between Hadoop and Voluntary Computing22

Table 2.3 Contact table ...23

Table 2.4 Contact table (ordered) ...23

Table 2.5 Multidimensional Table ...24

Table 2.6 Multidimensional Table with Time Dimension ...25

Table 4.1 Definition Phase ...44

Table 4.2 Planning Phase: Cloud Computing Definition ...45

Table 4.3 Planning Phase: RDB to NoSQL Conversion ..45

Table 4.4 Operation Phase: Proposition of a Revised Version of the Cloud Computing
Definition ...47

Table 4.5 Operation Phase: Creation of a List of Conversion Rules47

Table 4.6 Interpretation Phase ..48

Table 5.1 Cloud Computing Key Characteristics (ISO/IEC, 2009)51

Table 5.2 NIST Essential Characteristics ...54

Table 5.3 Essential Characteristics of Cloud Computing Derived from Case Studies58

Table 5.4 The Car vs. Cloud Computing Analogy for a Reduced Set of Essential
Characteristics ..59

Table 5.5 The Car vs. Cloud Computing Analogy for Optional Characteristics60

Table 5.6 NIST vs. Proposed Enhancements ...61

XIV

Table 6.1 Educational Level of the Participants (N=18) (Gomez et al., 2014) 73

Table 6.2 Work Area of the Participants (Gomez et al., 2014) ... 73

Table 6.3 Level of Experience in DB (Gomez et al., 2014) .. 73

Table 6.4 Level of Coverage in Different DB Aspects (Gomez et al., 2014) 77

LIST OF FIGURES

Page

Figure 1.1 The Move of Technology to the Cloud as a Service ..9

Figure 1.2 Types of Cloud Computing (Anderson, 2016) ...10

Figure 1.3 The Layout of Cloud Computing Components (Youseff et al., 2008)12

Figure 2.1 The Components of the Hadoop Project ..19

Figure 2.2 HBase Infrastructure (J. Cryans et al., 2008) ...27

Figure 3.1 Database Conversion Process ..33

Figure 3.2 Literature Review Discussion Summary ..39

Figure 3.3 RDBMS Normalized Service Order Database ...41

Figure 3.4 HBase Schema for the Service Order Database ...41

Figure 4.1 Summary of the Research Methodology ..49

Figure 5.1 Illustration of the Essential Characteristics of a Car based on its Definition56

Figure 6.1 The Scope of this Research vs. the Overall Research Objective65

Figure 6.2 Relational Schema Given to the Participants (Gomez et al., 2014)70

Figure 6.3 First Step in the Conversion Process (Gomez et al., 2014)74

Figure 6.4 Level of Difficulty in the Conversion Process (Gomez et al., 2014)74

Figure 6.5 Level of Confusion During the Conversion Process ..75

Figure 6.6 Participant Opinion about using Guidelines during the Conversion Process
(Gomez et al., 2014) ...76

Figure 6.7 One-to-One Relationship in a Relational Database (Ouanouki et al., 2017)78

Figure 6.8 One HTable with Two Column Families (Ouanouki et al., 2017)79

Figure 6.9 One-to-Many Relations between ngs_hg18_position and ngs_position
(Ouanouki et al., 2017) ...83

Figure 6.10 Overall Experimentation Steps (Ouanouki et al., 2017)83

XVI

Figure 6.11 One HTable with One Column Family Use Case (Ouanouki et al., 2017) 84

Figure 6.12 Two HTables with One Column Family Use Case (Ouanouki et al., 2017) 85

Figure 6.13 One HTable with Two Column Families Use Case (Ouanouki et al., 2017) 86

LIST OF ABREVIATIONS

ACID Atomicity, Consistency, Isolation, Durability

API Application programming interface

CAAS Communication as a Service

CER Comité d'éthique de la recherche

CPU Central Processing Unit
CRUD create, read, update, and delete
DAAS Database as a Service
DAL Data Access Layer
DAPS Distributed Application Platform
DB Database
DBMS Database Management System
DDI Denormalization, Duplication, and Intelligent keys
DSL Domain Specific Language
EAAS Everything as a Service
ERP Enterprise Resource Planning
ETL Extract, Transform and Load
ÉTS École de Technologie Supérieure
FK Foreign Key
GFS Google File System
GIMPS Great Internet Mersenne Prime Search
HAAS Hardware as a Service
Hadoop High Availability Distributed Object-Oriented Platform
HBASE Hadoop Database
HDFS Hadoop Distributed File System
HTABLE HBase Table
IAAS Infrastructure as a Service
ISO International Organization for Standardization
IT Information Technology
JTC1 Joint technical committee 1
MAPREDUCE Hadoop programming model

XVIII

MSSQL Microsoft SQL
NAS Network-Attached Storage
NIST National Institute of Standards and Technology
NoSQL Not Only SQL
PAAS Platform As A Service
PDA Personal Digital Assistant
PK Primary Key
QL Query Language
RDBMS Relational Database Management system
REST Representational State Transfer
SAAS Software as a Service
SC38 Sub Committee 38
SDO Standards Development Organization
SQL Structured Query Language
UML Unified Modeling Language
UPS Uninterruptible power supply
URL Uniform Resource Locator
VOIP Voice over IP
WG Working Group

INTRODUCTION

Investment in information technology (IT) is considered a driver for firm performance and is

covered in many firms' strategy (Teekasap, 2016). Nowadays, it is common for companies to

invest large portions of their budgets on IT infrastructure, software and other IT services.

According to Susilawati (Susilawati and Surendro, 2017), “in order to improve their

performance, organizations are investing an ever-increasing amount of money in IT.”

Cloud computing technology presents companies with an opportunity to limit the large upfront

investments in software and main IT infrastructure. With cloud computing, companies are

promised to be able to evolve their core business with a limited and progressive pay-per-use

for IT infrastructure and software.

According to Pescholl (Pescholl, 2018), even if there are an insufficient quantitative studies, a

useful argument can be made about the suitability and economic viability of using cloud

computing. Companies today, whether small, medium or large, are generally looking for

rapidly exploitable solutions and will therefore benefit from the reduced cost of IT

infrastructure by using the ‘pay-per-use’ cloud approach. Cloud computing can reduce

investing large amounts of the capital budget upfront to acquire equipment that are not always

used at full capacity.

However, cloud computing continues its evolution (Dunno, 2019), a continuous evolution that

is reflected in its ambiguous definition. This creates a lot of questioning and confusion about

what it really is and how it can be used in the current IT market. As with every hyped

technology, vendors hurry to promote cloud-based products without clearly explaining to their

customers what this technology is all about (Plummer, 2009).

It is Google, the current world leader in cloud-based software services, with its search engine

totalling more than 2.4 trillions searches a year as of October 2019 (Internet Live Stats, 2019),

which revealed the use of a new, powerful and inexpensive technology enabling cloud

2

computing to be effectively implemented on a very large scale with robust production

characteristics. In 2003, Google presented its proprietary file system named GFS (Google File

System) (Ghemawat, Gobioff and Leung, 2003), its distributed database named BIGTABLE

(Fay et al., 2006) as well as the use of a new programming model and language for access to

distributed data named MapReduce (J. Dean & Ghemawat, 2004). These technological

innovations allowed Google to manipulate petabytes of data in both batch and real-time

processing by operating reliable cloud services on a large number of inexpensive computers

clustered together. This cloud computing architecture promotes parallel processing and has a

mechanism to manage equipment failures without impacting the end-users.

The success of Google's cloud computing services and technologies has sparked interest from

several companies and researchers as well as from the open source community, leading them

to develop a set of similar technologies.

Open source software projects that imitate Google’s technologies include, but are not limited

to:

• Apache with HBase, a BigTable like database that provides random, real time

read/write access to Big Data;

• Zvent with Hypertable, designed to manage and process large sets of data on a large

cluster of commodity servers;

• Apache Accumulo, built on top of Hadoop, ZooKeeper, and Thrift, has cell-level

access labels and a server-side programming mechanism;

• Facebook with Cassandra technology;

• LinkedIn with Vold'mot technology;

• Kai, a free software implementation of Dynamo from Amazon.

These technologies have one common goal: to be able to process a massive amount of data

(i.e. several terabits or even petabytes of data) in a reliable and efficient way to meet the needs

of cloud computing applications. During this same period, large software companies such as

3

IBM, Oracle, Microsoft and Amazon (DeCandia et al., 2007) also started developing their

proprietary cloud computing technologies to compete with Google.

Google also published (Fay et al., 2006) a number of case studies presenting many services

using their new cloud computing technology: Google Analytics, Google Finance, Orkut,

Personalized Search, Writely and Google Earth (Ghemawat et al., 2003). However, Google

specified that these new technologies, in particular the BIGTABLE database, do not support

the relational model and therefore cannot be exploited with Structured Query Language (SQL),

a language that allows the manipulation of relational databases (Fay et al., 2006). On the other

hand, these new database technologies require software engineers to design databases

differently in columnar data structures and use the MapReduce programming language to

rapidly access large amounts of data (J. Dean & Ghemawat, 2004).

Using or moving towards this new database technology is a real challenge for software

engineers for several reasons:

• Difficulty using and design non-relational databases;

• Difficulty re-engineering existing applications that work with relational DBMSs for

cloud computing technologies;

• Difficulty installing an environment conducive to the use of these new technologies;

• Absence of courses explaining this new technology in universities.

Two research problems have emerged from this situation. The first is the difficulty of having

a cloud computing definition that withstands the test of time and is based on real use cases

rather than an enterprise’s need. The second research opportunity addresses the difficulty in

understanding how to convert an existing information

system from current database technology to take advantage of Google's columnar database

technologies (Fay et al., 2006).

The following section presents an overview of the cloud computing concept and its definition.

CHAPTER 1

OVERVIEW OF THE CLOUD COMPUTING CONCEPT AND DEFINITION

This chapter presents a review of the literature with regards to the cloud computing concept

and its definition. First, many cloud computing definitions are presented, highlighting the NIST

definition as a broadly adopted definition (Bohn, Messina, Liu, Tong and Mao, 2011). Then

the cloud computing usage model and types are introduced followed by a comparison of some

competing technologies that are similar to cloud computing.

1.1 Cloud Computing Definition

Cloud computing as concept have gained a lot of attention in both industry and academia

(Donno, 2019). It has become more confusing due to the fact that it is a “perfect marketing

buzzword” (Wayner, 2008), or as Weiss labeled it—“a buzzword almost designed to be vague”

(Weiss, 2007). Cloud computing is undoubtedly a neologism that must be added to the

knowledge of every person working in the field of information technology—a neologism that

is also very popular for its various and ambiguous definitions (Rimal & Choi, 2009). From a

reading of the cloud computing literature, various companies or IT industry professionals

define cloud computing in ways that reflect their own views, understanding and business goals.

As Donno (Donno, 2019) mentions, a clear and neat definition of the cloud computing

paradigms is hard to find in the literature. This makes it difficult for researchers new to this

area to get a concrete picture of the paradigm.

According to Liming (Liming, 2008), cloud computing is a delivery of a resource and a usage

pattern, in other words, it is getting a resource (hardware or software) through a network. The

network in this particular case is called “Cloud”. The hardware resource in the network seems

extensible to infinity and can be used anytime and anywhere.

6

Another proposed definition of cloud computing comes from Foster (Foster, Yong, Raicu and

Lu, 2008): “Cloud computing is a large-scale distributed technology that is driven mainly by

economies of scale, where a group of services such as storage, platforms, and computing power

are dynamically scalable and delivered on demand to external customers through the internet”.

Table 1.1 A Sampling of Cloud Computing Definitions

Authors/Organization Definition
Gartner (Gartner, 2019) Gartner defines cloud computing as a style of computing in

which scalable and elastic IT-enabled capabilities are
delivered as a service using Internet technologies.

National Institute of
Standards and Technology
(NIST) (Mell & Grance,
2011)

Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal
management effort or service provider interaction.
This cloud model is composed of five essential characteristics,
three service models, and four deployment models.

ISO/IEC JTC 1 (ISO/IEC,
2009)

Cloud Computing provides IT infrastructure and environment
to develop/host/run services and applications, on demand, with
pay-as-you-go pricing, as a service. It also provides resources
and services to store data and run applications, on any device,
anytime, anywhere, as a service.

The basic concepts expressed by the term are quite simple. The word computing refers to any

activity that involves computer processing or storage (Shackelford et al., 2006). A computer

manipulates and stores data, which commonly resides on the hard drive of a computer, or in

other hardware such as NAS (network-attached storage), commodity hardware (affordable and

readily available hardware), the mainframe, etc. The hard drive can store anything, including

structured data, unstructured data, software, databases, etc. In cloud computing terminology,

these capabilities are designed as services, and these services are offered in a cloud, from and

to any place where an Internet network is available. In other words, its location does not matter.

7

Where the confusion begins, and why so many different definitions were generated, is if those

definitions try to include: 1) different perspectives (i.e. Infrastructure versus Software

Engineering); 2) too many technical details; 3) a specific technology point of view. For

example, some definitions include concepts like billing features, type of access, security issues,

ownership of data, and even quality features associated with the technology. Since these

concepts vary depending on the technology and can evolve, the definition of cloud computing

can become broader and fuzzier over time.

One of the broadly adopted definitions (Bohn et al., 2011) for cloud computing has been

proposed by the National Institute of Standards and Technology (NIST): “Cloud computing is

a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or service

provider interaction. This cloud model promotes availability, and is composed of five essential
characteristics, three service models, and four deployment models” (Mell & Grance, 2011).

The NIST definition (Mell & Grance, 2011) implies that the terminology of the essential

characteristics, service models, and deployment models must also be precisely defined. Table

1.2 shows how these three concepts are defined in the NIST proposal.

8

Table 1.2 NIST Definition of Cloud Computing (Mell & Grance, 2011)

Essential characteristics

• On-demand self service
• Multi network access
• Resource pooling
• Rapid elasticity
• Measured service

Service models
• Cloud Software as a service (SaaS)
• Cloud Platform as a Service (PaaS)
• Cloud Infrastructure as a Service (IaaS)

Deployment models

• Private Cloud
• Community Cloud
• Public Cloud
• Hybrid Cloud

The NIST definition shown in Table 1.2 was initially intended to serve as a means for broad

comparisons of cloud services and deployment strategies, and to provide a baseline for

discussion—from what cloud computing is, to how best to use it. The NIST definition raises a

key issue. Cloud computing is complex, especially considering the nature of its components.

Defining it requires that every essential characteristic, service model, and deployment model

be well defined and that these elements do not change over time.

1.2 Cloud Computing Usage Model: Computer Utilities

Utility computing is not a new paradigm according to Foster (Foster et al., 2008); rather it is a

supply model for which a computer resource such as software or storage is packaged in a

measurable service similar to a utility such as electricity, water or natural gas. In other words,

utility computing is the means of billing services on demand offered by cloud computing.

This usage model has the advantage of having no, or very low, initial cost. A cloud user can

therefore lease services through cloud computing as shown in Figure 1.1 and only pay-per-use

with the computer utility. It can thus respond to a peak of IT needs without investing in the

purchase of new hardware.

9

Figure 1.1 The Move of Technology to the Cloud as a Service

1.3 Cloud Computing Types

Rimal (Rimal et al., 2009) describes three models for the use of cloud computing:

1. Public cloud computing, where companies are served by cloud computing providers

directly from the Internet, are also called Web services. This model allows companies

to access a dynamic supply without having to invest in expensive hardware or to

maintain hardware and software.

2. Private cloud computing allows companies to manage their own cloud computing. In

other words, there are no more suppliers: companies must implement their own services

based on cloud computing locally (on their premises with their own infrastructure).

This model allows companies to manage their own data and processes without any

restrictions on network speed, security or legal requirements of suppliers.

3. Hybrid cloud computing consists of a combination of the first two models, namely: the

use of public and private cloud computing at the same time, as described in Figure 1.2.

10

Figure 1.2 Types of Cloud Computing (Anderson, 2016)

1.4 Cloud Computing and Other Similar Concepts

Cloud computing is often compared with other similar concepts or technologies such as Grid

Computing (Fiore et al., 2011). However, cloud computing can be implemented using different

architectures, one of which is the computer grid. There are differences between cloud

computing and the computer grid. The following section summarizes these differences.

1.4.1 Cloud Computing and Grid Computing

The computer grid is a grouping of powerful computers that are weakly dependent (computers

can act independently of each other) and are brought together in order to offer a solution, most

often, to a scientific problem of scale with many calculations. The entire grid is made available

to a user for a predetermined period of time, which is different from cloud computing that

shares its resources with multiple users at the same time. In addition, computers that form the

computer grid are geographically dispersed most of the time in contrast to cloud computing

which groups its data center in one place (Ghemawat et al., 2003). Cloud computing by Google

11

AppEngine (Barrett, 2009) is perhaps the exception in attempting to divide their computers

into two geographically separate data centers.

In addition to the difference in the location of the infrastructure, there are other elements that

differentiate cloud computing from the computer grid. These differences are summarized in

Table 1.3 (Foster et al., 2008).

Table 1.3 Comparison between Cloud and Grid Computing (Foster et al., 2008)

Elements of
comparison

Cloud Computing Grid Computing

Business
Model

Utility computing

Project-oriented model: The computer grid
community gathers its clusters of computers
to have a greater capacity and computational
power. The computer grid generally does not
have a billing model; in return each user
contributes with a predetermined number of
computers and is given access to all or part of
the resources of the computer grid.

Architecture Cluster of convenience
computers located in one
physical location

Powerful and costly computers, also called
super computers, shared across the network
for multiple users scattered around the world.
Each organization is called a virtual
organization because of its available power of
calculation in remote places.

Protocol Depends on the
architecture with which
cloud computing is
implemented. Each
implementation of the
concept of cloud
computing has its own
communication protocol

To allow sharing of resources across the
network, the grid has several protocols. Ian
(Foster et al., 2008) states: "The computer
grid defined and provided a set of standard
protocols, middleware, tools and services
based on these protocols. Interoperability and
security are the main concerns of the IT grid
infrastructure because of the resources
coming from different domains, and has both
global and local use resource policies,
configuration of hardware, software and
platform. These may vary in availability and
capacity."

In summary, Table 1.3 highlights the differences between cloud computing and the grid

computer. Cloud computing provides services over the Internet using a distributed architecture

composed of convenience computers in order to be highly scalable and it supports data loads

12

and calculations from a heavy load of potential users. The computer grid, on the other hand,

aims to bring together computers from several institutions to solve large-scale scientific

problems by giving access to the computing power of these combined supercomputers for one

user at a time.

1.4.2 SaaS and Cloud Computing

SaaS is a component of cloud computing; it is a software distribution model through which

applications are accessible via the Internet and on demand as described in Figure 1.3. Youseff

(Youseff, Butrico and Da Silva, 2008) describes a layered representation of the services offered

by cloud computing and places SaaS at the top. This component, or service layer, is the cloud

computing service that this research is focused upon.

SaaS is primarily an online application that uses a database. This database can either be a

relational database managed by an RDBMS and the SQL language for data access, or a

distributed, non-relational database, which is the subject of this research.

Figure 1.3 The Layout of Cloud Computing Components (Youseff et al., 2008)

13

1.5 Conclusion

This first chapter has presented an overview of the cloud computing concepts and definitions.

Multiple definitions were presented including the broadly adopted NIST definition that defines

the overall cloud computing concept as well as the essential characteristics of cloud computing

and the various forms it can take in terms of both delivery and deployment models.

The next chapter presents a literature review of the Big Data technologies that are becoming a

standard for many organizations, as cloud computing offers an easy way to process very large

quantities of data. The technical descriptions of Big Data database technologies are also needed

to help the reader understand the motivation for the main research contribution of this thesis,

which is finding a list of rules for converting relational database schemas to the schema of a

non-relational database and to clarify the cloud computing.

CHAPTER 2

INTRODUCTION TO BIG DATA TECHNOLOGIES THAT ARE PROMOTED BY
CLOUD COMPUTING TECHNOLOGIES

This chapter introduces the distributed database technologies that are powering the concept of

Big Data. First, we present the well-known relational database model and its limitation when

used to implement a large-scale cloud-based solution. Then we introduce the NoSQL model

used by Big Data applications. An overview of a specific NoSQL technology used by the

Hadoop open source project follows, which introduces the Hadoop distributed database named

HBase that is used in the research case studies.

2.1 Relational vs. Non-Relational Database

2.1.1 The Relational Database Model

Relational databases are databases structured according to the principles of relational algebra.

They are essentially composed of tables; tables are composed of rows and columns. The

relational term refers to the relationships and constraints defined between the tables. Accessing

a relational database is performed using the SQL language and consists of queries that access

data from one or more tables. A join is a query that accesses one or more tables. Normalization

is the data structure used to ensure data consistency. Relational databases are implemented

using RDBMS (Relational database management systems) that are still significantly more

common than NoSQL databases (Shay, 2018). They are the most deployed in enterprises

(TechTarget, 2017) with databases such as Oracle, SQL Server, Postgre SQL, MySQL and

many others.

Relational databases have been and are still very popular due to their ease of use. However,

even if their use is simple (declarative and non-procedural), the internal evaluation of queries

remains very complex because SQL queries specify the what and not the how (Godin, 2006).

16

For example, the internal operation of the RDBMS for a basic SQL query of type SELECT can

have an execution path that contains hundreds or thousands of queries invisible to the user.

2.1.2 Relational Database Limitations

Relational databases offer many benefits including robustness, simplicity, flexibility,

scalability, compatibility, and more. But it is not necessarily the best compared with a solution

that focuses only on few benefits such as fault tolerance and scalability. The latter has become

a primary need, especially after the emergence of cloud computing which dramatically

increases the number of users who deposit, transit and move data permanently on a SaaS

application. Data from a cloud-based application can double their data loads and calculations

in a matter of days, as was the case for YouTube (J. Cryans, A. April and A. Abran, 2008), and

this is difficult to manage with a relational database that is hosted on a single server.

Relational databases evolve very well as long as the database remains in a single server. When

it reaches limits in computational power and space, distribution on several servers becomes

inevitable and this is where this technology shows its limits. Distributing a relational database

over several hundred or thousands of servers is not an easy task. The distribution adds a lot of

complexity to the data model because of the relationships between the tables and the

characteristics that allowed the databases to be robust, simple to use, etc., dramatically

reducing its ability to manage a large amount of data and calculations across a vast pool of

interconnected servers. There are a number of challenges that a relational database will face

when attempting to scale:

• If the service grows in popularity, too many reads will hit the database and cached

memory will have to be added to the common queries. Reads will no longer have the

ACID (Atomicity, Consistency, Isolation and Durability) proprieties;

• If the service continues to gain in popularity, and too many writes are hitting the

database, a vertical scale (a server upgrade) will be required, which means that the cost

will rise because new hardware will have to be purchased;

17

• New features mean higher query complexity, which leads to many more joins, and data

denormalization has to be performed to reduce them;

• Increasing usage can swamp the server, and it will begin to operate too slowly. A

solution might be to stop performing any server-side computations;

• If some queries are still being processed too slowly, one solution would be to determine

the most complex ones and try to stop joining in these cases;

• If writes become slower, one solution might be to drop secondary indices and triggers.

A next step could be to remove indices altogether.

At this point, scaling horizontally (adding more servers) is needed with attempts to build some

sort of partitioning on the largest tables, or looking into some of the commercial solutions that

provide multiple master capabilities. Ultimately, the conversion from a single or sharded

relational database to a shared, remotely hosted relational database using a NoSQL schema

may be considered. Many examples of this progression are provided in the literature: for

instance, the YouTube example. YouTube first used a relational database (i.e. MySQL) with a

master-slave replication, but eventually arrived at a point where the writes were using all the

capacity of the slaves. Like many other organizations facing this situation, they tried

partitioning their tables into shards so that the sets of machines hosting the various databases

were optimized for their tasks (J.-D. Cryans, A. April and A. Abran, 2008). Ultimately they had

to convert from relational database technology to NoSQL database technology. The next

section provides an overview of the NoSQL distributed database model.

2.1.3 Distributed Database Model

Relational databases and distributed databases are fundamentally different because distributed

databases used for Big Data situations often do not use relational models and therefore do not

use the foundations of relational algebra and the SQL language to access data in the Cloud.

This is not to say that relational databases are not used in cloud computing applications. It is

simply a matter of using the right technology depending on the need and both relational and

non-relational databases address different needs. Relational databases are used in cloud

18

computing for parts of applications with a limited amount of data in a hybrid mode whereas

recent distributed databases developed to address Big Data problems in the cloud are becoming

very popular for fast growing SaaS applications and for applications with very large volumes

of data and computations.

The choice of one of the distributed databases is typically motivated by the following needs:

• Data is large (several gigabits or terabits);

• SaaS type application with the objective of being highly extensible;

• Expand infrastructure quickly and inexpensively.

Two different database options were introduced when implementing the concept of cloud

computing or, more precisely, SaaS which is a component of cloud computing or a leading

layer according to Youseff (Youseff et al., 2008). Relational databases can therefore implement

cloud computing technology, but with growing difficulty when a SaaS-type application

processes large amounts of data and calculations.

2.2 Hadoop Project

Hadoop is an open source software project consisting of a distributed infrastructure for batch

processing of large amounts of data (several gigabits, terabits or even petabytes). Even if

Hadoop can be used on a single computer, its true strength lies in its ability to process

distributed data on a large number of computers.

This free software project came into being following the failure of Apache's Nutch project,

which aimed to create a search engine capable of indexing and processing all of the Web data

in an effective way (White, 2009b).

The Hadoop project consists of several interrelated sub-projects whose objective is to offer a

free software solution allowing for an effective implementation of the concept of cloud

computing. These sub-projects are presented in Figure 2.1.

19

Figure 2.1 The Components of the Hadoop Project

At the bottom of Figure 2.1, the Hadoop HDFS (Hadoop Distributed File System), which is a

file system in a distributed architecture that processes unstructured, index-free data.

HBase, the Hadoop database, relies on HDFS and thus benefits from all the properties of the

HDFS in addition to being structured with an Index.

Hive is a data warehouse built on top of HDFS, with simple tools to give structure to the data

in the HDFS. Hive has a language called QL (Query Language) that resembles standard SQL,

allowing programmers familiar with the SQL language to use the Hadoop infrastructure.

MapReduce, whose name has not changed since its appearance in Google publications (J. Dean

& Ghemawat, 2004), is a programming model that allows for the processing of distributed

data. MapReduce is used in several Hadoop products including HDFS, HBase, and Hive. It

provides different functionalities depending on the product used.

In summary, Hadoop offers a shared storage environment, as well as analysis of the elements

stored through a programming model named MapReduce.

20

2.2.1 The Initial Need that Led to the Creation of Hadoop

Disk storage capacity has been in constant evolution. If the storage standard was megabit in

the 1990s, gigabits and terabits are the standards at the time of this research.

The speed of access, or the speed at which the data can be read from the disks, has not changed

in a manner comparable to that of the evolution in storage capacity. Tom White (White, 2009b)

states that a typical hard drive of the 1990s could store 1370 megabits of data with a transfer

rate of 4.4 megabits per second, which resulted in reading the entire disk in less than 5 minutes.

Ten years later, a hard disk of a terabit with a transfer speed of 100 megabits per second, takes

more than two and a half hours to read data from the entire disc.

The solution of reading several disks at the same time seemed to solve this problem; in fact,

reading large amounts of data on multiple disks in parallel is actually faster than reading this

same data from a single computer. On the other hand, parallelism generates new problems,

such as fault tolerance and the combination of data read in parallel. Hadoop excels in solving

these problems by offering a distributed environment for data storage, enabling faster reads

and writes. Hadoop uses the MapReduce programming model that provides an abstraction of

parallel manipulations to programmers.

2.2.2 Does Hadoop Offer an Alternative to the Use of RDBMS?

Hadoop and MapReduce are not an alternative to RDBMS; Hadoop software engineers

consider it a complement to RDBMS. When it is a small amount of data (typically less than

one gigabit), RDBMSs are more recommended than Hadoop, but for a massive amount of data

(several gigabits or terabits), MapReduce by Hadoop gives excellent results (White, 2009b).

Table 2.1 below shows the differences between RDBMS and the MapReduce of Hadoop.

21

Table 2.1 Differences between RDBMS and Hadoop MapReduce

 RDBMS HADOOP MapReduce
Quantity of data Gigabits Gigabits, Petabytes and

Terabits
Access Interactive and batch Batch
Update Read/Write multiple times One writing, several readings
Structure Static schema Dynamic schema
Integrity High Low
Course Non-linear Linear

Nowadays, more and more RDBMSs such as Aster Data and Greenplum offer features that

resemble those of MapReduce for processing large amounts of data (White, 2009b).

Distributed non-relational databases like HBase or Hive offer options found in RDBMSs such

as a high level of query language that is more familiar to programmers with RDBMS

knowledge.

2.2.3 Hadoop and Volunteer Computing

The Hadoop project is often compared with volunteer computing (White, 2009b) because

MapReduce processes the data in a distributed way. Voluntary computing is a concept of CPU

time shares: volunteers give access to their CPU for research organizations such as SETI @

home (an organization whose goal is to seek all forms of intelligence external to planet Earth)

or GIMPS (Great Internet Mersenne Prime Search) to perform intensive calculations.

Voluntary computing divides a problem into several small tasks; they are then sent in the form

of computations to computers that are located all over the world. These computers share their

CPU times voluntarily. The calculations can take hours or even days to complete and the results

are finally returned to the organization that requires resolution of the problem. Once this

resolution is completed, computers that share their CPU times voluntarily receive other small

tasks to solve.

22

Voluntary computing can be very similar to the calculations made by MapReduce of Hadoop;

however, there are also great differences between them. Table 2.2 summarizes these

differences.

Table 2.2 Differences Between Hadoop and Voluntary Computing

 Hadoop Volunteer computing
Physical architecture Cluster of convenience

computers in the same data
center

Computers around the world
(personal computers)

Type of calculations On demand, as required Intensive calculations
(requiring a lot of time)

Problem solving Several minutes or days on
dedicated and secure
computers

Several days or years on
non-dedicated and non-
secure computers

Network speed Powerful network Variable (depends on each
network, each volunteer)

In this sub-section, the Hadoop project has been presented along with its components and what

motivates the use of this technology, as well as its position in relation to existing technologies

such as voluntary computing and RDBMS. The next sub-section presents the detailed

characteristics of HBase that need to be fully understood before a software engineer decides to

undertake a database conversion effort.

2.3 HBase Characteristics

2.3.1 Associative Table (a MAP)

HBase is a database that contains sorted association tables. An association table is an abstract

data type consisting of a list of unique keys and a list of values; each key is associated with

one or more values. The operation of finding the value(s) associated with a key is called

indexing, which is the most important operation in an association table. Table 2.3 shows an

association table made up of three keys (names) associated with three values (telephone

number):

23

Table 2.3 Contact table

Name Telephone #
Fabien 5146656676
Vincent 5140097887
François 4162228989

2.3.2 Persistent

HBase allows for data persistence. A database is said to be persistent when it retains previous

versions of its data as they are changed (Driscoll, Sarnak, Sleator and Tarjan, 1986). The

operations underlying the data stored in HBase do not actually modify this data, rather they

create other versions of that data (Jimbojw, 2008). HBase, by default, keeps three versions of

the same data when it is modified, but this figure can be changed in the HBase configuration.

2.3.3 Distributed

HBase is designed on the Hadoop file system, the HDFS. Each piece of data is divided into a

64-megabit block and is stored in several computers in the HDFS computer cluster. Each data

is also replicated several times in different computers in order to resist a possible hardware

failure. The key sets and values stored in HBase are ordered alphabetically. Using the example

in Table 2.3, the data in HBase would be ordered as displayed in Table 2.4.

Table 2.4 Contact table (ordered)

Name Number
Fabien 5146656676
François 4162228989
Vincent 5140097887

Thus, when one accesses the data, similar elements like Fabien and François are closer. This

sorting is particularly important because it allows a user to choose the keys in a way to obtain

a good locality (the data sought are next to each other) to access the data.

24

In (Fay et al., 2006), Google mentions that for storing web pages, pages with the same domain

names must be grouped together to achieve increased performance of data reads. The choice

of the reverse URL key of the websites 'com.google.maps/index.htm' instead of

'maps.google.com/index.html' allows for having the data of websites of the same domain stored

close to each other. This is a way to ensure that fewer computers are used to perform the

subsequent analyzes. For example, 'mail.google.com' will be closer to 'www.google.com' than

to 'mail.yahoo.com' and will be more likely to be on the same computer than if the data was

stored a few thousand records later. It should be noted here that the sorting is done on the keys

and not on the values associated with the keys. HBase is a multidimensional database; each

line key points to multiple association tables with multiple keys. Table 2.5 illustrates an

example of such a table.

Table 2.5 Multidimensional Table

Line key:
(#product)

Column: ‘Feature’ Column: ‘Price’

123001 ‘feature: weight’ 230kg ‘price: buying’ 1231$

‘feature: volume’ 12pi ‘price: wholesale’ 930$

123002 … … … …

The characteristic features and prices are called column families. Weight, volume, buying and

wholesale are called qualifiers. Thus, each key that is the product number in Table 2.5 has

several column families. These are created at the beginning of table creation and are hardly

ever changed. Each column families can have several qualifiers or none at all. Qualifiers can

be added after the tables have been created.

Note: To lighten the text, we refer to qualifiers to designate a column under a column family.

A qualifier is associated with a column family but is not required. A column family can exist

without a qualifier.

Each column in a family column can keep a predefined number of versions of its data. In Table

2.6, T1 represents the price of a product at a time T1 and T2 represents the same price modified

25

at time T2. HBase allows access to the data versions by specifying the time stamp associated

with each cell (Line key, column family: qualifier).

Table 2.6 Multidimensional Table with Time Dimension

Line key:
(#product)

Column : ‘Feature’ Column: ‘Price’

123001 ‘feature : weight’ 230kg ‘price: sale’ T2 1231$
‘price: sale’ T1 1291$

‘feature: column’ 12pi ‘price:
wholesale’

930$

123002 … … … …

2.3.4 Sparse

HBase is a sparse database because you can have a different number of columns in the family

columns for each line (J. Cryans et al., 2008).

2.3.5 Column Oriented

For reading performance requirements, the data stored in HBase is column-oriented instead of

line-oriented. A table created in a database is actually stored in memory as a sequence of bytes.

The storage of column-oriented Table 2.4 would look like this in memory:

Fabien, François, Vincent; 5146656676, 4162228989, 5140097887

instead of line-oriented storage:

Fabien, 5146656676; François, 4162228989; Vincent, 5140097887

26

2.3.6 High Availability and High Performance

HBase shares the same properties as the Hadoop file system as it was created over it. HBase is

highly available thanks to high-performance data block replication in HDFS and the

implementation of MapReduce in HBase.

2.4 Why HBase?

The use of HBase is mainly due to the desire to use the Hadoop HDFS properties for semi-

structured data (J. Cryans et al., 2008). The Hadoop file system, HDFS, was created to process

unstructured data with sequential readings (one data in succession). According to White

(White, 2009b), the creation of HBase was motivated by the need to use the Hadoop

architecture, namely the cluster of convenience computers, the power of parallel computing of

MapReduce for applications which often make random reads and writes, and finally the

reliability and availability of data generated by data replication.

It is the limitations of relational databases to process large amounts of data that actually

motivated the development of HBase. Indeed, according to Cryans (J. Cryans et al., 2008), for

a relational database to handle a large volume of data, companies often resort to replication, as

was the case for YouTube (J. Cryans et al., 2008). The latter used MySQL's master-slave

replication to the point where the writes on the disks were fully utilizing the capacity of the

computers. Other companies have also used similar solutions, partitioning their RDB database

tables so that subsets of computers become hosts to different databases optimized for specific

tasks. After several iterations, this solution quickly reached its limit and the relational model

became totally denormalized, which makes keeping them very difficult.

2.5 HBase Architecture

As HBase is built on HDFS, it also shares its architecture. HBase data is distributed across a

cluster of convenience computers. The tables are automatically partitioned horizontally into

27

regions. Each region includes a subset of rows in a table. A region is, by design, the HBase

distribution unit across the cluster. Depending on the size of a table, it may be composed of

several regions; these regions are distributed across several hundred convenience computers

with a replication of regions.

Figure 2.2 illustrates the HBase architecture, composed of a model similar to that of HDFS

with a master-slave architecture (Hadoop Master and several Hadoop Datanodes) residing in a

Linux operating system. HBase is written and used in Java language, a Hadoop Job Tracker

and a Hadoop Task Tracker to manage the Map and Reduce functions. The machines 1 to n

represent the Datanodes of HDFS. Each Datanode has an HBase Region Server that will

contain the regions of the partitioned tables. Region servers can contain zero or more regions

serving clients and also handle partitioning of regions so that the HBase Master is informed of

a new region to be managed.

The HBase Master coordinates the Datanode Region Server by assigning regions to the right

servers and restoring servers after a breakdown.

Figure 2.2 HBase Infrastructure (J. Cryans et al., 2008)

28

2.6 HBase Accessibility

HBase is a database written in Java and is therefore accessible from API (Application

Programming Interface). It offers the standard CRUD operations that are: create, read, update

and delete and tools for managing the cluster.

HBase is also accessible by using the Representational State Transfer (REST) gateway and

offers operations such as Get, Put, Post, or Delete. Finally, HBase is accessible with the Thrift

framework, which allows procedural calls with different languages such as C++, Ruby, PHP

as well as several other languages.

HBase is a non-relational database that gathers several characteristics from several existing

concepts and forms a technology capable of addressing quantities of data of the order of

terabits. HBase is new because it does not use the SQL language and the design of the tables

is different from that of relational databases.

2.7 Conclusion

In this chapter we presented Hadoop technologies, the Hadoop file system, the MapReduce

programming model and the HBase database. This chapter helped in understanding 1) the

concept of cloud computing, and 2) the technologies of Hadoop considered as technologies

that effectively implement the concept of cloud computing. It demonstrates that these database

technologies are quite different than what software engineers use daily, mainly relational

database management system.

For the reader, the important elements to retain and that will be presented next are mainly the

HBase distributed database characteristics and architecture, especially the fact that it requires

the understanding of a novel concept, the columnar database model. As well, the data in a

columnar database is not always accessed using the SQL language that is so common and

widely used by software engineers today. This Big Data database technology requires a new

29

way of designing databases and creates new challenges for software engineers that would like

to convert their current systems to this technology.

The next chapter presents a literature review of database conversions for relational databases

to non-relational database technologies.

CHAPTER 3

LITERATURE REVIEW OF DATABASE CONVERSION BETWEEN
RELATIONAL AND NON-RELATIONAL DATABASES

3.1 Introduction

The previous chapter introduced NoSQL database technology, which is used when very large

quantities of data need to be accessed. In order for software engineers to consider converting

their current system to the Cloud using Big Data infrastructure, there will be a need to convert

their existing relational database to this type of new technology. Database conversion is the

activity of identifying how a database can be translated into another database type/paradigm

or technology. Database conversion is not a new research topic. It started interesting

researchers and the industry in the 1960’s when hierarchical and network databases fell out of

favour and were massively replaced with relational databases (Joseph Fong & Bloor, 1994) (J.

Fong & Huang, 1997) (Hudicka, 1998). For this research, which concerns converting relational

databases to columnar databases, the focus is on initiatives that convert relational databases to

NoSQL database technologies. This chapter summarizes the state of converting relational

databases to columnar databases. The first section provides an overview of the conversion steps

required.

3.2 Overview of Typical RDB to NoSQL Conversion Steps

This research is interested in how a relational database can be converted to a columnar database

such as HBase. To understand which steps are required for such a conversion, a step back is

needed to review what makes a columnar, cloud and NoSQL database, such as HBase, different

from the well-known relational databases. Key HBase characteristics have been introduced by

White as follows (White, 2009a):

• There are no real indexes: because the rows are stored sequentially, as are the columns

within each row, there is no index bloating (dead tuple as a results of delete queries in

32

relational database) and the insert performance is independent of table size;

• There is automatic partitioning: as the tables grow, they are automatically split into

regions and distributed across all the available nodes;

• There is linear and automatic scaling with new nodes: when you add a node, point it

towards the existing cluster and run the region server. The regions automatically

rebalance and the load is spread evenly across servers;

• It can operate on commodity hardware: computer clusters of a private Cloud can be

built at a cost as low as $1,000 to $5,000 per node. Alternatively, when using RDBMS

technologies, they have been shown to have a higher consumption of input/output

hardware, which is the most costly type of hardware in a cluster;

• It offers fault tolerance by default: using a large number of nodes with a distributed file

system means that each node becomes relatively less critical, and there is no need to

worry about individual node downtime since there is automatic replication.

Since a HBase database is completely different from a relational database, a conversion process

in this case will require that all components (i.e. schema, data, application programs and

queries) of the source database application be converted into their equivalents in the target

database environment (Maatuk, Ali and Rossiter, 2008).

To represent an overview of the database conversion process, Figure 3.1 highlights four steps

required in such a conversion. It starts with a source database assessment and analysis, which

consists in deciding what part of the database needs to be converted (when in the presence of

a hybrid database) or if the entire database will need to be converted. Once the source database

assessment is done, it is followed by the creation of a target schema using the assessment and

analysis findings. The second step is key and requires identifying a list of the most

used/important queries and especially the ones that consume the most resources when they

execute. This important step aims at discovering and ensuring that the most efficient target

database schema possible, in HBase, will be designed. Identifying access patterns of the source

33

database is a very important step since it defines how the data is accessed and how to replicate

the data access logic in a different database technology, in this case, the HBase target database.

Figure 3.1 Database Conversion Process

Existing publications on this topic discuss the many ways to achieve a schema conversion.

They will be discussed in the next section. The third step, the data conversion, is often named

the extract, transforms and loads (ETL) step. Once a target schema is available, the data of the

source database needs to be extracted, denormalized if needed, converted into the new schema

layout, then loaded into the new target schema. Once the new database schema and data is

determined, the final database conversion step will consist of converting the existing queries

of the source database into queries that can be used with the target database technology.

Now that an overview of the conversion process has been described, the following section

presents the database conversion literature review. For this research, which concerns

converting a relational database to a columnar database, the review intends to present a

synthesis of the database conversion publications that describe how to convert relational

databases to NoSQL database technologies.

34

3.3 Database Conversion Literature Review

There are only few research papers published that present case studies of conversion from

relational databases to NoSQL databases. Most proposals found share the same goal: how to

efficiently convert an existing relational database to a NoSQL database.

Given that RDB technology is rooted in mathematical theory, it should be easy to convert any

specific relational database implementation, such as a MySQL database for example, to any

other relational database such as Oracle or MSSQL (Li, Xu, Zhao and Deng, 2011). NoSQL

databases on the other hand, like HBase, do not use relational algebra and have a completely

different schema design (Lars, 2013b). Another author highlights that NoSQL databases are

typically designed considering a specific use case: queries and access patterns rather than using

a general relation and normalization process.

There is very little information available in the literature on how to conduct schema translation.

In this research, a schema translation uses an existing relational data model as an input and a

non-relational (e.g., NoSQL) data model as an output. NoSQL databases are categorized by

many types such as: Wide Column Store/Column Families, Document Store, and Key

Value/Tuple Store among many others. The focus of this research has been set on a Wide

Column Store/Column Families category, more specifically the popular Hadoop database

called HBase.

It has also been reported in the literature that there is a difficulty when the time comes to

convert an existing legacy system based on RDB technology to NoSQL database technologies

for RDB-trained software engineers.

According to Maatuk, this specific problem of database conversion is typically solved using

four steps (Maatuk et al., 2008):

1. Schema translation;

2. Data transformation;

35

3. Data conversion;

4. Data operations.

These steps are similar to the ones presented in Figure 3.1 with the exception that step 1 is

missing in the Maatuk conversion steps. Step 1, in Figure 3.1, as mentioned earlier, consists of

a source database assessment and analysis, which is an essential step since the subsequent steps

(schema translation, data transformation, data conversion and operation) are based on the

findings of the database assessment.

Another author reports that many tools and open source projects offer help with step 2 data

transformation, step 3 data conversion, and step 4 data operation (Biswapesh Chattopadhyay,

2011). He highlights that there is little help or guidance for executing the schema translation.

Other authors (Hanine, Bendarag, and Boutkhoum, 2015) propose a data conversion

methodology, from a relational to a NoSQL database, that suits most NoSQL database designs

using only two steps. The first step identifies the logic of the source database, which aims at

extracting the relationships by proposing an automated tool to load that logic using the table

names, their attributes, as well as primary and foreign key constraints. The second step

proposed is a mapping between the RDB and NoSQL database, which identifies which

attributes of the RDB in the source database will be linked to the attributes of the target NoSQL

database.

In addition, these authors (Hanine, Bendarag, and Boutkhoum, 2015) suggest aggregating

related data within a single data structure in the target NoSQL database and eliminating the

joins between tables as opposed to SQL, where the data is normalized by creating joins. The

main reason for this solution is that the resulting NoSQL database does not need joins when

the application has to retrieve a complete record. Even if the schema translation can be

automated in this way, this proposal raises many issues and limitations; for example, it only

considers converting a portion of the database and thus the resulting schema could be very

different if the whole database is to be converted. Also, the proposed methodology is only

suitable for a specific NoSQL database technology, in this case MongoDB, which is a

36

document-based database and not a columnar one. As observed earlier, this conversion

methodology does not address the application queries as it assumes they can be converted

automatically. Lastly, this conversion proposal does not address which data is currently

accessed together and which is not, for example Order_details or Order and Product together.

This has a major impact on the target schema design.

Other authors (Zhao, Lin, Li, and Li, 2014) propose a much simpler schema conversion process

between RDB and NoSQL databases based on the concept of a nested table. A nested table is

basically a table within a table (Koopmann, 2008). The conversion proposal here aims at

storing the structured data from an RDB into a NoSQL database using the concept of

references. References, in NoSQL technology, are similar to relationships between tables in

RDB with the exception that in a NoSQL database, these references are between parent and

child layers. Layer concepts are simply the notion of smaller tables inside of bigger tables. In

other words, when two tables in an RDB are related using a relationship, they need to be

replicated in a NoSQL database as one table within another. The authors called this notion of

layers semi-structured data in the target NoSQL database. The resulting NoSQL database in

this model will have the same number of tables as the source relational database which

somehow defeats the purpose of using a NoSQL database because relational properties such

as ACID (Atomicity, Consistency, Isolation and Durability) are not maintained.

However, this conversion proposal has the advantage of converting any relational database into

a non-relational database quickly and automatically. On the other hand, the resulting

conversion approach has no conversion consideration for the application code that will be using

this new database and more importantly, all the queries. The main issue with this proposal is

that once the conversion is done, it does not ensure an optimal conversion. A second issue with

this approach is that in most cases, keeping all the tables and references in a NoSQL database

is not required or desired. For example, if we have two tables in an existing RDB that are

related but the main query we want to convert and ensure its optimal performance only accesses

a single table, then the new schema in a NoSQL database should be to keep these two tables

37

separate (this means no notion of a nested table). A good point is that the proposal will work

for column-oriented NoSQL databases such as HBase, Cassandra and Hypertable.

With the same goal of converting RDB to NoSQL database technology, other authors (Rocha,

Vale, Cirilo, Barbosa and Mourão, 2015) propose a conversion approach composed of two

modules, a conversion module and a mapping module. The proposed conversion module is

responsible for automatically identifying all elements of the source database (tables, attributes,

relationships, etc.) in order to create a target schema and a mapping module to act as an

interface between the application, the source and target database. It intercepts all SQL

transactions from the application, translates and redirects them to the target database. The

conversion module will replicate the source database, mainly the table, into the target database

and replace relationships from source database with references in the target database. In other

words, the target NoSQL database will be identical to the source relational database but in a

NoSQL format. More precisely, the framework will only work with a document-oriented

database, MongoDB. The reason is that with the document-based database, each table in the

RDB can be represented as a single document. This is a characteristic of MongoDB and not of

all types of NoSQL databases. If we pick a column-oriented database, we would have to use a

different approach, as recreating the same RDB structure in NoSQL is doable but not optimal.

No consideration of access patterns has been studied nor any MongoDB specifications and

limitations. The framework should be named to be a schema replicator from MySQL to

MongoDB.

Next, Lee and Zheng (Lee & Zheng, 2015a) proposed an automatic SQL-to-NoSQL schema

transformation approach using a MySQL to HBase database conversion as an example. The

main objective of the proposed solution was to avoid cross-table queries. In this proposal, all

tables that have a relationship were converted into a single HBase table. This approach breaks

down the complexity of the conversion but it is hard to imagine that a large and complex RDB

would practically fit into a single HBase table without affecting the performance of its queries.

HBase is, after all, a ‘query first’ type of schema designed database.

38

The same authors (Lee & Zheng, 2015b) later propose an autonomous schema denormalization

and conversion process demonstrated in the case study of a conversion involving a content

management system to HBase. Again, the same objective of avoiding cross-table queries

appears. In this paper, all the RDB tables that have a relationship were converted into a single

HBase table. Once again, this is a simple solution to the conversion problem but it is hard to

consider a solution that avoids the study of the access patterns of the application queries. Even

if better performance is obtained using the target database technology over the RDB

technology, as shown in the case study, the resulting schema cannot be optimal for all

application queries that would have different requirements in terms of performance.

Another proposal found in the literature, by Serrano et al. (Serrano, Han and Stroulia, 2015),

describes a conversion methodology in four steps. First, it proposes to convert every one-to-

one and one-to-many relationship into a single merged HBase table. Second, it applies a

recursive method to merge neighbouring tables. Third, it requires the design of a row key in

HBase, and fourth, it creates views for different access patterns needed. In this proposal, an

additional step is performed that consists of the extraction of access patterns using the query

logs. This last step could have been considered an essential fifth step since access pattern

extraction is a key step in a typical conversion process (as presented in the first step of Figure

3.1).

Lastly, Babu and Surendran (Babu & Surendran, 2017) proposed an overview of different

methodologies to convert from RDB to NoSQL, each with different challenges and NoSQL

database target. These conversion methodologies have already been presented and discussed

above.

In summary, Figure 3.2 maps all the papers presented in this chapter to the conversion steps

each article proposes. Most of the authors address the 3rd and 4th steps (i.e. data conversion

ETL and DAL conversion) but they lack information about the first two steps of the conversion,

which consists of the source database assessment and the schema conversion.

39

Figure 3.2 Literature Review Discussion Summary

As discussed previously, these conversion propositions have many pros and cons while they

all missed many schema technology limitations. Even when some authors did consider some

of these aspects, they only applied to their specific case study and technology. Finally, it would

be very useful to have a generic conversion methodology that applies to all NoSQL database

technologies.

One conclusion following this summary of conversion approaches is that a set of conversion

rules would be useful and could encompass more situations. For example, these rules could be

used as guidelines that would help to make the right decisions when creating the target schema.

These rules would also be a guide to software engineers and database specialists to ensure they

methodically consider all the conversion activities presented in Figure 3.1.

40

Many pertinent articles and discussions about this topic may not necessarily be published in

academic conferences. The next section is dedicated to summarizing what is discussed about

this topic in specialized books, blogs and popular web discussion sites regarding the conversion

process from RDB to NoSQL.

3.4 Books, Blogs and Web Discussions

Many blogs, web discussions and slideshare presentations provide quick hints and high-level

information on how to proceed with an RDB to HBase conversion. In most cases the

knowledge proposed is domain specific and is not reusable at large. Cinnamond (Cinnamond,

2013) proposes 5 steps, where the third step is an HBase table mapping:

1. Model Creation: reverse engineer the source database UML

2. Code Generation: provision persistence and query-DSL java code

3. HBase Table Mapping: map data graphs and row keys to table(s)

4. Data Migration: MySQL to HBase

5. Services/App Creation: Build services, web app

The third step, HBase table mapping, consists of a configuration of a delimited, hashed, salted,

formatted composite row key with xpath into the target data graphs and then mapping data

graph roots to HBase tables.

This proposal applies to the lexical analysis of text, which is a very specialized use case. In

addition, it was not mentioned how HBase tables were created.

The book Hadoop for Dummies (deRoos, 2014) includes a section entitled “transitioning from

an RDBMS model to HBASE” where deRoos explains that this transitioning, meaning

conversion, process requires denormalization, duplication and identifying intelligent keys.

41

Figure 3.3 RDBMS Normalized Service Order Database (deRoos, 2014)

As shown in Figure 3.3, deRoos proposes an example where he states: “following the rules of

RDBMS normalization, set up the sample Customer Contact Information table so that it is

separate from the service order table in order to avoid losing customer data when service orders

are closed and possibly deleted. Take the same approach for the Products table, which means

that new products can be added to the fictional company database independently of service

orders.” The next figure illustrates a possible HBase schema—one that follows the DDI design

pattern.

Figure 3.4 HBase Schema for the Service Order Database (deRoos, 2014)

In this proposed solution to the problem, the Customer Contact Information table has been

denormalized by including the customer name and contact info in place of the previously used

foreign keys. Also, as illustrated in Figure 3.4, the data is duplicated by keeping the Customer

Contact Information table as is. Now, joins across the Service Order table and the Customer

Contact Information table are not necessary. Additionally, an intelligent row key design has

42

been employed that combines the product number with the customer number to form the

service order number (A100|00001, for example). Using this intelligent key, the service order

table can provide vital reports about product deficiencies and customers who are currently

experiencing product issues.

The example provided by deRoos (deRoos, 2014) illustrates the need for conversion rules. He

showed that each use case has to be studied and that for one use case, multiple schema can

result, as shown in Figure 3.3 and Figure 3.4. The resulting schema depends on many factors

as described in step 1 of Figure 3.1.

3.5 Conclusion

In summary, there are many proposals to resolve the schema conversion problem between

relational and non-relational databases. Yet most, if not all, lack focus in explaining the steps

to get the best conversion possible that benefits from the NoSQL features and specifications.

Instead, they tend to propose keeping the same RDB structure or having the same type of

database schema for each and every database conversion. In addition, almost all propositions

missed the source database assessment and analysis step and therefore were not able to apply

this information in the creation of the target schema database. In our view, we believe there is

an opportunity for better conversion instructions of a database schema that ensures the best use

of the different NoSQL database characteristics.

The main contribution of this thesis is to propose a list of rules for converting relational

database schemas to the schema of a non-relational database, namely we have chosen HBase

for our case studies.

The next chapter will present the methodology and activities associated with our research

proposal to uncover these conversion rules.

CHAPTER 4

RESEARCH METHODOLOGY, ACTIVITIES AND EXPECTED RESULTS

4.1 Research Methodology

The research methodology used to tackle the research problems described in the Introduction

uses empirical research in software engineering (Abran, Laframboise and Bourque, 2003).

The framework is composed of four phases: definition, planning, operation and

interpretation.

4.2 Definition Phase

The definition phase, depicted in Table 4.1, is composed of the following activities:

• The problem is identified and understood;

• A research topic where an original contribution to knowledge can be made within the

timetable of a doctoral program is defined;

• The research question and research sub-questions are formulated;

• A potential solution to the problem is envisioned; and

• The beneficiaries of the research results are identified.

4.3 Planning phase

In the planning phase, a literature review was conducted, covering:

• The cloud computing concept and definitions;

• The state of the art of cloud computing technologies;

• The non-relational, distributed database called HBase state of the art;

• The database conversion between relational and non-relational state of the art.

44

Table 4.1 Definition Phase

Motivation Objective Proposal Research Users

Clarify the cloud
computing
definition for our
research purposes
and how to help
software engineers
in their first
conversion effort
to convert a
relational database
to a non-relational
database (NoSQL)

First, to clarify the
essential and optional
characteristics of cloud
computing.

Second, to contribute
to a methodology that
helps engineers in an
RDB database
conversion to NoSQL
database.

• Clarify the types and
components in the
term cloud
computing;

• Extract a set of
conversion rules that
can be used to help
software engineers
in their first effort to
convert an existing
RDB to HBase.

Students,
researchers and
professionals in
the information
technology field
who are
interested in
cloud computing
and its
technologies.

An initial research activity aims at clarifying the definitions of the term cloud computing for

our research use. The objective is to better describe its essential and optional characteristics

as perceived in our research.

The main research objective considers the technology used to implement a cloud computing

solution. First, an introduction about the use of non-relational databases, also known as NoSQL

database technology, especially HBase, to implement a cloud computing solution is presented.

Following this introduction, a second overview chapter is developed to discuss a major issue

reported with using this new paradigm technology, i.e. how to convert current relational

database applications to a NoSQL technology such as HBase. During this phase, the research

methodology for achieving the research objectives and answering the research sub-questions

is planned and documented. This includes the research methods and validation activities.

The summary of the planning phase is presented in two parts:

1. Table 4.2 for the cloud computing definition; and
2. Table 4.3 for the RDB to NoSQL conversion rules

45

Table 4.2 Planning Phase: Cloud Computing Definition

Projects steps Inputs Deliverables
Research the
different
definitions of
the term cloud
computing

Literature review of:
• Best known and available

definition of cloud computing
• Cloud computing usage

model
• Types of cloud computing
• Other concepts similar to

cloud computing (e.g., Grid
Computing)

• A list of different definitions of
cloud computing and the
confirmation that the subject is
still an active research topic

• Study the optional and essential
characteristics of cloud computing

• Comparison with other concepts
similar to cloud computing.
Analogy with a definition of a car

Clarify the
cloud
computing
definition

• Cloud computing properties
• Cloud computing services
• Essentials characteristics of

cloud computing derived
from case studies

• Clarified definition of cloud
computing for our research

• Publication in the Journal of
Cloud Computing

• Publication in the Encyclopedia of
Information Science and
Technology

Table 4.3 Planning Phase: RDB to NoSQL Conversion

Projects steps Inputs Deliverables
Review of Big
Data
technologies
suitable to
implement a
cloud
computing
solution

Introduction to concepts and
technologies:
• Relational vs. non-relational

database comparison
• Review of the Hadoop

project, a known cloud
computing database

• Review of HBase, the
Hadoop column-oriented
database

• Main strengths and weaknesses of
the traditional relational database

• Review of the new distributed,
non-relational database known to
overcome RDB limitations

Review the
state of the art
on relational
database
conversion to
NoSQL
database

Literature review of:
• Overview of typical RDB to

NoSQL conversion steps
• Database conversion state of

the art
• Other opinions: books, blogs

and Web discussions related
to recent conversion attempts
between RDB and NoSQL
databases

• RDB to NoSQL database
conversion process

• List of conversion attempts
between RDB and NoSQL with
their evaluation

• Literature review discussion
summary

• Few examples of promising case
studies from blogs and Web
discussion

46

The design of a methodology requires the participation of human beings. Therefore, a

research protocol for the research activities to be conducted in order to evaluate the a priori

version of the conversion rules (with and without the conversion rules) was elaborated and

presented to the ÉTS Ethics Committee for Research (CÉR) for its evaluation within the

ethics domain.

4.4 Operation Phase

This phase represents the core of the research work and consists of executing the research

plan which includes two parts, one for each main deliverable:

1. The proposition of a revised version of the cloud computing definition;

2. The creation of a list of conversion rules.

Each of these parts includes the following steps:

• A validation of the deliverables;

• An analysis of the obtained results (refer to Table 4.4 and

• Table 4.5)

The development of an improved version of the cloud computing definition is based on 1) a

review of the literature of the existing definitions, mainly: published articles, websites, cloud

service providers and the National Institute of Standards and Technology, 2) the participation

at ISO Joint Technical Committee 1, Subcommittee 38 (ISO/JTC/SC38) and 3) the usage of

an analogy to support the proposed new cloud computing definition. The analogy used to

simplify the cloud computing definition is the definition of a car. This analogy helped clarify

the essential and optional characteristics of cloud computing. As stated by Arango et al.

(Arango, Domingues, Policarpo and Hermeto, 2002), “the analogy is a powerful tool that

enhances our insight. With a single flash, our comprehension of both concepts is

instantaneously revealed.”

47

Table 4.4 Operation Phase: Proposition of a Revised Version of the Cloud Computing
Definition

Development of a
definition

Validation Analysis

Development of an
initial version of the
cloud computing
definition

Validation process is based on
an analogy with a simple
object. Going back to what is
mandatory for a simple
object’s definition, an analogy
is used to apply the same
principle of mandatory vs.
optional for the cloud
computing concept.

Submission to various journals
and ISO working groups for
validation and publication

Development of a
reviewed and
validated improved
version of the cloud
computing definition

The reviewed version of the
cloud computing definition is
validated by a peer review of
the cloud computing journal

Minor adjustments completed
before final publication of the
improved version of the cloud
computing definition.

Table 4.5 Operation Phase: Creation of a List of Conversion Rules

Development of a set
of conversion rules

Validation Analysis

Development of a
baseline for the
conversion rules

The baseline version of
conversion rules is validated
by conducting an experiment
using a heuristic approach. A
survey is used after
participants achieve a schema
conversion without the use of
conversion rules.

• Baseline for conversion rules.
• Conclusion from the survey

about the need to use or not
to use a set of conversion
rules to help with the
conversion problem.

• Publication

Rules extraction
experiments

Rule extraction is validated
by conducting an experiment
with participants. A task is
assigned to participants to
achieve a schema conversion
using all possible schema
conversions for a single
relation.

• Experiment results including
new schemas and a set of
timed executions for each
schema.

• A set of rules extracted by
analysing the new schemas
produced and the execution
time.

48

4.5 Interpretation Phase

Finally, an interpretation will be based on the analysis of all of the findings, in this case the

set of conversion rules. This section will also include revision of the research questions by

providing a summary of the experimental results, as well as the identification of future work.

This phase is summarized in Table 4.6.

Table 4.6 Interpretation Phase

Context Extrapolation Future Work
• The revised

version of the
cloud computing
definition
contributed to the
effort of creating
an internationally
approved
definition

• The revised
version of the
definition of
cloud computing
identifies what is
and what isn’t a
cloud computing
solution

• The list of
conversion rules
helps
professionals in
their conversion
process

• The participants found the
usage of the conversion
rules helpful to conduct a
schema conversion from a
relational to non-relational
database

• Several ÉTS students
collaborated with the
project

• The revised version of the
definition of cloud
computing as well as the
schema conversion rules
have been well received
by journals for
publications

• Further publications of the
results in journals

• Improve the revised
version of the cloud
computing definition for
an internationally accepted
definition

• Conduct another
experiment using the list of
conversion rules for
validation and compare
with the baseline

• Conduct more surveys
with the list of conversion
rules

• Add and improve the list
of conversion rules

• Test the list of conversion
rules with non-relational
databases other than
Hadoop HBase database

• Generalize the list of
conversion rules to be
applied to all column-
oriented databases

49

4.6 Summary of the Research Methodology

In this chapter, the research methodology was detailed using an empirical research approach

in software engineering (Abran et al., 2003), explaining each step with the input and output of

each activity as shown in Figure 4.1.

Figure 4.1 Summary of the Research Methodology

Chapter 5 describes the research activities conducted to clarify the cloud computing definition

for our research by using an analogy with the definition of a car to highlight the notions of

standard and optional features.

50

Chapter 6 presents the main research activities of this thesis, extracting, through

experimentation, a list of conversion rules to help software engineers with their first database

schema conversion (from a relational database to a NoSQL columnar database). Two

experiments are conducted, the first aims at validating that there is indeed a need for such

conversion rules and a second to uncover an initial version of these conversion rules.

CHAPTER 5

THE CLOUD COMPUTING DEFINITION

5.1 Introduction

This chapter first discusses the ISO and NIST international definition of cloud computing and

its notion of key and essential characteristics. Second, a discussion is presented about the

essential and optional characteristics raised by the perspective of this research (i.e. database

conversion from RDB to NoSQL). Finally, an analogy is used to present useful clarifications

of this term.

5.2 ISO and NIST Cloud Computing Definitions

The ISO Joint Technical Committee 1, Subcommittee 38 (ISO/JTC/SC38), is focused on

Distributed Application Platforms and Services (DAPS) including a working group (WG3)

which is responsible for identifying, developing, and maintaining Joint Technical Committee

(JTC 1) deliverables in the field of cloud computing and is working with many Standards

Development Organizations (SDO’s) such as the National Institute of Standards and

Technology (NIST). The first ISO/JTC1 report defined cloud computing as follows: “Cloud

computing provides IT infrastructure and environment to develop/host/run services and

applications, on demand, with pay-as-you-go pricing, as a service. It also provides resources

and services to store data and run applications, on any device, anytime, anywhere, as a service.”

(ISO/IEC, 2009) It also provided a list of what should be considered as key characteristics

presented in Table 5.1.

Table 5.1 Cloud Computing Key Characteristics (ISO/IEC, 2009)

Key Characteristics Description

Agility Agility improves with users who are able to rapidly and
inexpensively re-provision technological infrastructure resources.
The cost of overall computing is unchanged, however, and the
providers will merely absorb upfront costs and spread costs over a
longer period.

52

Table 5.1 Cloud Computing Key Characteristics (ISO/IEC, 2009) (Continued)

Key Characteristics Description

Cost Cost is claimed to be greatly reduced and capital expenditure is
converted to operational expenditure. This ostensibly lowers barriers
to entry, as infrastructure is typically provided by a third-party and
does not need to be purchased for one-time or infrequent intensive
computing tasks. Pricing on a utility computing basis is fine-grained
with usage-based options and fewer IT skills are required for
implementation (in-house). Some would argue that given the low
cost of computing resources, the IT burden merely shifts the cost
from in-house to outsourced providers. Furthermore, any cost
reduction benefit must be weighed against a corresponding loss of
control, access and security risks.

Device and location
independence

Device and location independence enable users to access systems
using a Web browser regardless of their location or what device they
are using (e.g., PC, mobile). As infrastructure is off-site (typically
provided by a third-party) and accessed via the Internet, users can
connect from anywhere.

Multi-tenancy Multi-tenancy enables sharing of resources and costs across a large
pool of users thus allowing for:

• Centralization of infrastructure in locations with lower costs
(such as real estate, electricity, etc.)

• Increase of Peak-load capacity (users need not engineer for
highest possible load-levels)

Utilization and efficiency improvements for systems that are often

only 10–20% utilized.

Reliability Reliability improves through the use of multiple redundant sites,
which makes Cloud computing suitable for business continuity and
disaster recovery. Nonetheless, many major Cloud computing
services have suffered outages, and IT and business managers can at
times do little when they are affected.

Scalability Scalability via dynamic ("on-demand") provisioning of resources on
a fine-grained, self-service basis near real-time, does not impose
users to engineer for peak loads. Performance is monitored and
consistent and loosely-coupled architectures are constructed using
Web services as the system interface.

53

Table 5.1 Cloud Computing Key Characteristics (ISO/IEC, 2009) (Continued)

Key Characteristics Description
Security Security typically improves due to centralization of data, increased

security-focused resources, etc., but concerns can persist about loss
of control over certain sensitive data and verification of users’
identity. Security is often as good as or better than traditional
systems, in part because providers are able to devote resources to
solving security issues that many customers cannot afford.
Providers typically log accesses, but accessing the audit logs
themselves can be difficult or impossible. Ownership, control and
access to data controlled by "Cloud" providers may be made more
difficult, just as it is sometimes difficult to gain access to "live"
support with current utilities. Under the Cloud paradigm,
management of sensitive data and other security-related functions
(e.g., user’s enrollment and verification of user’s identity) could be
placed in the hands of Cloud providers and third parties.

Sustainability Sustainability comes about through improved resource utilization,
more efficient systems, and carbon neutrality. Nonetheless,
computers and associated infrastructure are major consumers of
energy. A given (server-based) computing task will use X amount
of energy whether it is on-, or off-site.

The ISO definition of Cloud computing must have all the key characteristics listed in Table

5.1 to be considered as such. As described in Chapter 1, the NIST definition of Cloud

Computing follows the same description pattern as the one proposed by ISO, i.e. it starts with

a short and quite dense description of what cloud computing is. The description is mainly

composed of essential characteristics that are listed in some level of detail and concludes by

presenting a list of service models, for example, everything as a service where any service can

be offered on the cloud. This definition is described as follows: “Cloud computing is a model

for enabling ubiquitous, convenient, on-demand network access to a shared pool of

configurable computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or service

provider interaction. This cloud model promotes availability and is composed of five essential

characteristics, three service models, and four deployment models.” (Mell & Grance, 2011).

Similar to the ISO/JTC1 report, NIST has defined a set of essential characteristics as defined

in Table 5.1.

54

Table 5.2 NIST Essential Characteristics

Essential characteristics Description
On-demand self-service A consumer can unilaterally provision computing capabilities,

such as server time and network storage, as needed
automatically without requiring human interaction with each
service’s provider.

Broad network access Capabilities are available over the network and accessed
through standard mechanisms that promote use by
heterogeneous thin or thick client platforms (e.g., mobile
phones, laptops, and PDAs).

Resource pooling The provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different
physical and virtual resources dynamically assigned and
reassigned according to consumer demand. There is a sense of
location independence in that the customer generally has no
control or knowledge over the exact location of the provided
resources but may be able to specify location at a higher level
of abstraction (e.g., country, state, or datacenter). Examples of
resources include storage, processing, memory, network
bandwidth, and virtual machines.

Rapid elasticity Capabilities can be rapidly and elastically provisioned, in some
cases automatically, to quickly scale out, and rapidly released to
quickly scale in. To the consumer, the capabilities available for
provisioning often appear to be unlimited and can be purchased
in any quantity at any time.

Measured service Cloud systems automatically control and optimize resource use
by leveraging a metering capability1 at some level of abstraction
appropriate to the type of service (e.g., storage, processing,
bandwidth, and active user accounts). Resource usage can be
monitored, controlled, and reported, providing transparency for
both the provider and consumer of the utilized service.

The authors of the NIST cloud computing definition underline the difficulty in clearly defining

this term, stating that “cloud computing is still an evolving paradigm” (Mell & Grance, 2011)

and later concluding that the definition, its attributes and characteristics will evolve over time

(Mell & Grance, 2011).

The intended NIST definition audience is people adopting the cloud computing model or

providing cloud services that have highlighted, similar to the ISO/JTC1 report, the difficulty

in establishing a clear and consensual list of essential characteristics based on real use cases.

55

The main weakness of this first ISO/JTC1 report (ISO/IEC, 2009) was the absence of use case

and justifications regarding why each characteristic should be considered as essential.

The next section presents a clarification of the NIST definition as well as an analogy to

practically show each proposed characteristic (mandatory and optional) as perceived when

converting a relational database to a NoSQL database.

5.3 The Car Analogy

When reviewing the ISO definition (ISO/IEC, 2009) and the NIST definition of cloud

computing (Mell & Grance, 2011), we notice that these two proposals have something in

common; the quest to find an international consensus on which characteristics are either

mandatory or optional. This section attempts to answer the question using the analogy of a

long-time established definition, that of a car.

The automobile, which is referred to as a car today, is defined by Fowler (Fowler, 2001) as “a

wheeled motor vehicle used for transporting passengers, which also carries its own engine or

motor.” Most existing definitions of a car agree on the following characteristic: “The car is

designed to run primarily on roads, to have seating for one to 8 people, and to be constructed

principally for the transport of people rather than goods.”

Analyzing the above definition, in connection with the challenge of defining a clearer cloud

computing definition, we note that the car, as described by Fowler, did not include any options,

such as air conditioner, warranty, equipment features, financing modes, etc. The definition is

restricted to the car’s essential characteristics, such as wheels, motor, and seats for transporting

people, as shown in Figure 5.1. Could this analogy be used to clarify the current NIST

definition of cloud computing in our research context?

56

Figure 5.1 Illustration of the Essential Characteristics of a Car based on its Definition

As with the car, by identifying the essential and optional characteristics of cloud computing,

we could, for example, study why organizations have recently converted existing applications

to cloud computing technology, and, in particular, why they did not use another competing or

existing technology instead. This approach may help us identify optional characteristics

currently listed in the NIST definition.

5.3.1 Common Factors Observed when Converting to Cloud Computing

After considering many software engineering case studies that have been published involving

the conversion by organizations of their applications to cloud computing technology, the main

objective has mostly been to continue serving their constantly growing number of customers.

In this study, we are looking for the factors in the conversion process that are common to all

of these organizations based on their answers to the following questions: What problems had

they been experiencing with their current technology? What limitations forced them to convert

to the cloud? What essential characteristic were they looking for in a cloud computing

technology?

Vendors like Google, Amazon, and others claim that their cloud computing technology

provides many advantages like scalability, maintainability, performance, and reliability. Cloud

computing technologies have been designed for growth, low latency, and robustness against

failures (Jeffrey Dean, 2009). Cost is also raised as an important factor. For example, a great

57

deal of attention has been paid to the low cost of running Google server hardware, with its

built-in batteries that eliminate the need for a huge, centralized uninterrupted power supply

(UPS), and their customized 12-volt power supplies that deliver energy efficiency.

Let’s first discuss the requirements for converting to cloud computing technology as seen in

the literature. In the case of YouTube, the challenge mostly had to do with scalability and

performance, since keeping up with website growth was a day-to-day battle for them before

the company was bought by Google and their technology was converted to the cloud (i.e.

Google proprietary technology (BigTable)). BigTable is a non-relational, high performance

database that is fault tolerant over large sets of data, which solves the famous YouTube

thumbnails issue as described by Cordes (Cordes, 2007). A second case study reveals how

Twitter described how they scaled horizontally using cloud computing technologies

(Higginbotham, 2011) and how they have managed to make their service 10,000 times faster

than it was before (Cook, 2009). According to database pioneer Michael Stonebreaker (Harris,

2011), Facebook was stuck using its current technology, especially its relational database,

which was rapidly growing to 4,000 shards and becoming extremely complex to manage.

Database sharding is a partitioning scheme for large databases across a number of servers,

enabling new levels of database performance and scalability (Agildata, 2011). Stonebreaker

adds that this is fairly common practice, especially among start-ups, that start small and grow

to epic proportions, and use Web-based applications where users can upload whatever they

want. Most of the case studies we found involve organizations that offer or use services that

had to convert to cloud computing because of their growing scalability, performance, or

maintainability issues.

When forced to convert out of an existing technology, organizations look carefully at all the

possible alternatives. Target technologies are typically assessed for each of the key non-

functional requirements: scalability, maintainability, performance, and reliability. As Harris

(Harris, 2011) points out, relational database technology is struggling to scale to handle

petabyte-sized tables where NoSQL technology is an increasingly attractive solution to

relational database scalability issues.

58

These case studies reveal that cloud computing is not only concerned with hosting software

elsewhere, but also with networking computers to distribute processing power in newer ways.

Table 5.3 summarizes the essential characteristics that are common in the publications

mentioned in this section and are key in the decision to convert to cloud computing technology

for each non-functional requirement that presents a serious problem.

Table 5.3 Essential Characteristics of Cloud Computing Derived from Case Studies (Jeffrey

Dean, 2009)

Non-functional
requirement

Problem with the use of
current technology

Case Study Solution provided
by cloud computing technology

Scalability Limits database growth across
servers

Plug and Play of new equipment
with distributed, horizontally
scalable NoSQL or hybrid
database using both non-
relational and relational
database.

Maintainability Managing the sharded
clusters of server table
requires a great deal of
manpower

Minimal management effort
required to change
software/hardware components

Performance Limit to affordable
performance offered by
database and IT

Good performance of NoSQL
database accommodating
petabytes of data on a shared
pool of computers

Reliability Limits to available and
affordable recovery option in
current IT infrastructure

Task replication and continuity
ensured by cloud computing

Using these essential characteristics, a clarification of the current NIST definition is considered

for our research purposes.

5.3.2 NIST Definition Clarifications for this Research

Section 5.3 show the definition of a car that includes only its essential characteristics and none

of the optional ones. In a car, an option can be purchased and added to the base product, and

59

so is not considered as part of its definition. Options are typically similar for a type of vehicle,

a vendor, or in the car industry as a whole. The same approach is used to improve the NIST

cloud computing definition. Table 5.4 displays our attempt to draw a parallel between the

definition of a car and that of cloud computing, including the smallest possible set of essential

characteristics.

Table 5.4 The Car vs. Cloud Computing Analogy for a Reduced Set of Essential
Characteristics

Car definition Proposed Cloud Computing definition
A car is a wheeled motor
vehicle used for
transporting passengers

Cloud computing is an approach to IT designed to deliver
services reliably.

A car incorporates its own
engine or motor.

Cloud computing operates on a scalable and shared pool of
resources that can be rapidly and elastically provisioned.
These resources are perceived to be exclusive when
consumed by multiple cloud computing tenants.

A car is designed primarily
to run on roads.

Cloud computing is designed primarily to be delivered over a
network.

A car has seating for 1 to 8
people.

Cloud computing ensures good performance, even with
petabytes of data.

A car is constructed
principally for the transport
of people rather than
goods.

Cloud computing is designed principally to serve a growing
and theoretically unlimited number of users.

Given a proposal for essential characteristics, the same approach is used for determining

optional characteristics, as presented in Table 5.5. In some cases, optional characteristics may

be required by the client and their selection depends upon what the organization is looking for

as it converts its applications to cloud computing. In this proposal, optional characteristics are

distinguished from essential characteristics only in the fact that they should not be included in

the main definition of the term. Table 5.5 identifies the concepts (i.e. characteristics) currently

included in the NIST definition that could be considered as optional characteristics in this

research.

60

Table 5.5 The Car vs. Cloud Computing Analogy for Optional Characteristics

Concepts
excluded from

the car
definition

Concepts to
exclude from the
cloud computing

definition

Concepts that could be excluded from the
list of NIST essential characteristics

Financing model,
leases, loans, and
rentals

Payment model or
billing method used
by the cloud
computing provider

Measured service: Resource usage that is
monitored, controlled, and reported,
providing transparency for both the provider
and the consumer of the service

Options On-demand options On-demand self-service: Computing
capability, such as server time and network
storage, unilaterally provisioned by a
consumer as needed, and provided
automatically, without human interaction
with the service provider

Accessibility Thin client access
through any browser

Broad network access: including the use of
cloud computing by heterogeneous thin or
thick client platforms, such as mobile phones,
laptops, and PDAs

Post-sale service,
type of vehicle

Services and
deployment models

Service models, such as SaaS, PaaS, and
IaaS, and deployment models, such as
private, community, public, and hybrid
clouds

Table 5.4 and Table 5.5 propose to separate essential and optional cloud computing

characteristics. Revisiting the NIST cloud computing definition with this new perspective, it is

noted that some of the proposed essential characteristics may be not essential in our context,

based on this car analogy and the perspectives of the case studies of Table 5.5. For example,

the broad network access presented in the NIST definition that introduces the notions of the

thick client and the thin client (i.e. mobile phone, laptop, PDA) could be optional for many

organizations, as their needs may not be focused on the way they access a cloud service. It

goes without saying that service access can evolve over time, as new devices appear and gain

in popularity. In contrast, scalability seems to be a common expectation that organizations have

of cloud computing services, as described in Table 5.3, and so it should be kept in the main

definition.

The proposed clarified definition for this research is described as follows: “Cloud computing

is an approach to IT designed to deliver services reliably and operates on a scalable and shared

61

pool of resources that can be rapidly and elastically provisioned. These resources are perceived

to be exclusive when consumed by multiple cloud computing tenants. Cloud computing is

designed primarily to be delivered over a network and ensures good performance even with

petabytes of data because it’s designed principally to serve a growing and theoretically

unlimited number of users.” The enhancements are displayed in Table 5.6.

Table 5.6 NIST vs. Proposed Enhancements

NIST definition of cloud
computing

Clarifications of cloud
computing concepts for

this research
Discussion

Cloud computing is a
model

Cloud computing is an
approach to IT

Models are defined by NIST as
SAAS, PAAS and IAAS; these
services can evolve and multiply
with technology advancement
where an approach is stable once
defined.

Designed to enable
ubiquitous, convenient,
on-demand network
access to a shared pool of
configurable computing
resources (e.g., networks,
servers, storage,
applications, and
services)

Designed to deliver
services reliably and
operates on a scalable
and shared pool of
resources

Ubiquitous and convenient can be
left as optional since a cloud
service can be offered on a limited
type of devices. Reliable and
scalable are found to be essentials
in use cases where organization
opt to convert to cloud computing.

that can be rapidly
provisioned and released
with minimal
management effort or
service provider
interaction.

that can be rapidly and
elastically provisioned.

Minimal management effort or
service provider interaction can be
mentioned as an optional
characteristic as none of the use
cases in the literature mention key
characteristics.

62

Table 5.6 NIST vs. Proposed Enhancements (Continued)

NIST definition of
cloud computing

Clarifications of cloud
computing concepts for this

research

Discussion

This cloud model
promotes availability
and is composed of five
essential characteristics,
three service
models, and four
deployment models.

These resources are perceived
to be exclusive when
consumed by multiple cloud
computing tenants. Cloud
computing is designed
primarily to be delivered over a
network and ensures good
performance even with
petabytes of data because it’s
designed principally to serve a
growing and theoretically
unlimited number of users.

Service models can be
described as optional (as
discussed in the first row of
this table) and three service
models should be mentioned
as three examples of service
models since these services
can evolve and new ones can
appear with technology
advancement. Essential
characteristics as described by
NIST and in Table 5.2 are
included in the NIST
definition except for
‘Measured Service’. This
characteristic can also be
described as optional since
cloud service can be offered
without limit. An unlimited
number of users, on the other
hand, should be included as a
mandatory characteristic as it
is critical for customers not to
be limited in the number of
users as per the use cases
described in section 5.3.1.

5.4 Conclusion

This chapter considers the NIST definition of cloud computing from the research point of view

of relational database conversion to NoSQL, using a car analogy to reassess its essential and

optional characteristics. The ISO and NIST definitions were presented and discussed. Finally,

using an analogy with the definition of a car and with the help of multiple use cases, a clarified

version of the NIST definition that is better suited for this research is proposed.

63

In the next chapter, the first and main contribution of this thesis is presented; how to convert

an application to cloud computing. More specifically, how to convert a relational database to

a NoSQL database—a technology known to be suitable for cloud computing applications.

CHAPTER 6

RDB TO NOSQL CONVERSION PROBLEM

6.1 Background

The main research contribution of this thesis is to extract and propose a set of conversion rules

that can be used to help software engineers in their first effort to convert an existing RDB to

HBase, and in particular the column-oriented database named HBase. First, an experiment is

conducted to justify the need for conversion rules by asking participants to convert an existing

application to HBase without any guidelines. This first experiment served as a baseline for

experiment 2. The second experiment is conducted to uncover an initial list of conversion rules

by having participants conduct an actual conversion of an existing application to HBase using

three possible conversion design patterns (mainly one-to-one and one-to-many relationships)

as shown in Figure 6.1.

Figure 6.1 The Scope of this Research vs. the Overall Research Objective

66

Chapter 6 is structured as follows. Section 6.2 presents the HBase schema basics and design

fundamentals. Section 6.3 describes the experiments: the first experiment with participants

performing a conversion simply based on their experience tries to simulate how an individual

would go about such a conversion without any guidelines; next, three RDB to HBase

conversion design patterns are presented and offered for use in the second conversion

experiment. Finally, Section 6.4 presents the main conclusions and future improvements.

6.2 HBase Schema Basics and Design Fundamentals

This section presents some of the key terms and concepts as well as some design fundamentals

about HBase technology.

An RDB schema is composed of tables, columns and relationships between the tables: one-to-

one, one-to-many and many-to-many. Such relationships do not exist in an HBase schema

(Lars, 2013b). The HBase terminology refers to a row key, a column and a column family. To

facilitate the understanding of this paper, the term “HTable” will refer to an HBase Table and

the term “Table” will refer to any relational database table.

6.2.1 Row Key Design in HBase

The selection of the row key in an HTable is one of the most critical activities for a successful

schema design (Lars, 2013a). A row key is used to fetch data, which means that when a row

key is carefully selected, its rows are sorted in a way that regroups the data so as to be accessed

together, ensuring a more efficient query (Lars, 2013a). A badly chosen row key could spread

the data across the HTable and make fetching of the data time consuming and result in poor

performance. Therefore, the selection of a row key is always based on the context of the table,

as opposed to the relational model, where the primary key plays this important role. Typically,

the primary key is unique in a table but this does not usually allow for grouping of data.

Grouping can be performed using SQL statements such as ORDER BY on data contained in

other columns (e.g., SELECT * FROM BOOKS ORDER BY AUTHORS).

67

6.2.2 Columns and Column Family in HBase

One of the first comparisons that can be made when converting a table to an HTable is the use

of columns. The notion of a column in an HTable is quite different from that of a column in an

RDB table. In an RDB table, a column is meant to hold a single piece of data type whereas a

column, or rather a column family, in an HTable can contain multiple pieces of data via a key-

value pair. A column family in an HTable should be considered as a container of key-value

pairs. The column family is determined by the information in each row and it regroups key-

value pairs of related data. For example, the column family “address” contains the following

columns: house number, street name, city, province, country and postal code. One of the major

differences between columns in an RDB and an HBase column family is that there is no strict

definition for HBase columns and they can be added dynamically when needed. Therefore, if

the address is different from one country to another, new columns can be added to the column

family when needed. This flexibility would be very hard to build into an address table using

relational databases, as we would need to modify the table in the future if new columns were

needed. The nature of a column family lends itself well to this type of situation since the

HTable will not need modifications to accommodate the differences in addresses. However,

this imposes a restriction on the conversion of an RDB table, as it cannot be faithfully recreated

in NoSQL.

6.2.3 HBase Design Fundamentals

RDB use three types of relationships between tables: one-to-one, one-to-many and many-to-

many. The first two are designed using one table containing a foreign key that references the

second table. As for the many-to-many relationship, it requires a third intermediate table that

holds references to the other two tables, which can ultimately be broken down into two one-

to-many relationships between the first and third table and between the second and third table.

Therefore, the many-to-many relationship is simply a combination of one-to-many relations

between three tables, which also means that there is no direct link between the first and second

68

table as opposed to the one-to-one and one-to-many relationships. Thus, for conversion

purposes, we can only consider a relation that has a direct link between two tables.

In HBase, it is quite different since such relationships do not exist. Without relations, the focus

when creating or converting an RDB schema to HBase is to define the access pattern upfront

and ask the important questions (also known as “what is your use case”), namely what is

accessed, how is it accessed and when is it accessed. The following are well-known methods

to convert a single RDB relationship: converted to either a one HTable or a two HTable design.

A one HTable design results in two possible conversions: the first would be a merge of both

RDB tables into one column family and the other would be to create two column families, one

for each RDB table. The two HTable design conversion closely resembles its RDB table

counterpart, as each HTable will hold one column family for each RDB table.

An HBase design schema can be summarized as follows:

1. Generally, all the data that are accessed at the same time should be grouped into a single

column family to ensure that searching is efficient. Therefore, this would be

represented in a single table containing a single column family. Otherwise, if the data

being accessed that need to be close together are accessed at different points in time, it

could be represented with a single table but with two column families.

2. If the data are related to each other but can be accessed independently, then two HBase

tables having one column family each should be created.

3. Physically, column families are stored on a per-column family basis. Therefore, when

accessing two column families in the same HTable, HBase will access two separate

physical files.

4. Lastly, it is recommended to limit the number of column families within a table. Only

introduce a second or third in the case where data access in usually column scoped.

69

6.3 Experiment Description and Results

6.3.1 Experiment 1

6.3.1.1 Experiment 1 Goal

The first experiment was conducted to investigate the need for schema conversion rules by

asking participants to convert an existing RDB database to HBase without any guidelines

(Gomez, Ouanouki, April and Abran, 2014).

6.3.1.2 Experiment 1 Description

This subsection describes the experimental design used according to the structure

recommended by the following authors: (Easterbrook, Singer, Storey and Damian, 2008),

(Marcos, 2005), and (Zelkowitz, Wallace and Binkley, 2012). This first experiment was

conducted using a heuristic approach; the participants use their experience, educated guesses

or plain common sense to do the conversion. The material provided to the participant for the

execution of the experiment was:

1. A tutorial session and document (See Appendix I);

2. Participant’s instructions guide (See Appendix VI);

3. An RDB schema to be converted (Figure 6.2);

4. A survey questionnaire (See Appendix III).

The tutorial session included a training document, which summarized the content of the tutorial

session. These documents were distributed to each participant beforehand and included a

summary of RDB and NoSQL concepts with practical examples of each. Then a 2-hour tutorial

was conducted, going through the document step-by-step and answering questions.

70

Figure 6.2 Relational Schema Given to the Participants

The participant guide included instructions and booklets of worksheets that the participant used

during the experiment. One of these worksheets is entitled “The NoSQL solution” where the

participant was asked to draw a representation of his proposed HBase schema (the target

schema) for the conversion.

Figure 6.2 shows the RDB schema that had to be converted to NoSQL by the participants. This

schema is the one already used in Singh’s experiment (Tarandeep & Parvinder, 2011) and is

composed of seven relational tables, where:

• Four are large tables (e.g., City, Department, Doctor and Hospital), and

• Three are junction tables (e.g., DoctorDeparment, HospitalCity and

HospitalDepartment,).

The City, Department, Doctor and Hospital tables have an “Id, Name” structure, with “Id” as

the primary key. The “Doctor” table contains “Id, Name, Age, Sex and BornIn”. The last field

is the “Id” of the city where the doctor was born. The junction tables allow for the expression

71

of the “many-to-many” relationships indicated by each junction table’s title. It is important to

note that each participant was offered the opportunity to choose between several sub-schemas

from the main schema. For instance, a participant could choose only to convert the sub-schema

composed of the entities Hospital – HospitalDepartment – Department or the sub-schema

Doctor – DoctorDepartment – Department or the participant could select the entire schema.

The five key aspects of this RDB conversion that best represent the items that must undergo

conversion are: Tables, Constraints, Primary Keys (PK), Foreign Keys (FK) and other elements

(such as fields, types of relationships, views, indexes, procedures and triggers).

Finally, a survey form was given to each participant after the experiment. The survey was

designed and validated following the recommendations of Kasunic (Kasunic, 2005) and

Lethbridge (Lethbridge, 1998). It contained 9 questions where the first four questions were

oriented toward the “experience” of the participants:

1. The first question established the academic background with 4 possible answers:

Graduate with PhD, Graduate with Master, Graduate with Bachelor or Undergraduate

Student;

2. The second question enquired about the working status of the participant and had only

2 possible responses: working in industry or currently in academia;

3. The third question collected data about the number of years of work experience using

RDB technology with 4 possible answers: no experience, little or low level of

experience (e.g., a few days to one year), average amount of experience (categorized

as from 2 to 5 years), and advanced experience (e.g., very good knowledge with more

than 5 years of use);

4. The fourth question asked if the participant had any NoSQL experience and captured

their answer using the same 4 answer choices as above;

5. The fifth question concerned the conversion process and was especially focused on

reporting the first step that was used to initiate the conversion process;

6. The sixth question asked to report the amount of effort needed to perform the

conversion (without the use of rules to guide the process). This question could be

answered using values from 1 to 5, where 1 indicated that the process was easy to

72

achieve without major effort, a value of 3 indicated that it was achieved using a large

amount of effort and a value of 5 meant that no matter how much effort was put in, it

was not possible for the participant to successfully perform the conversion;

7. The seventh question was designed to evaluate the level of confusion experienced by

the participant during the conversion process (e.g., no idea where to start or what the

next step was). This question had 5 possible answers: 1) always confused during the

process, 2) very often confused, 3) sometimes confused, 4) rarely confused, and 5)

never confused;

8. The eighth question was presented in the form of a matrix to assess the conversion

percentage achieved of the proposed solution regarding each of the relational aspects

mentioned earlier (e.g., Table, Constraint, PK, and FK);

9. The ninth and last question asked the participant if having access to conversion

guidelines would have improved the conversion process. This question had five

possible answers: 1) strongly agree, 2) agree, 3) undecided, 4) disagree, and 5) strongly

disagree.

Finally, eighteen participants participated in the conversion experiment, filled out a NoSQL

solution sheet and expressed their opinions by completing the survey.

6.3.1.3 Experiment 1: Data and Analysis

Table 6.1 presents the educational level of the participants who were mostly working in

industry and enrolled part-time in software engineering university programs: 6% of

participants were taking an undergraduate course and 89% of participants were taking graduate

courses (39% at the Bachelor level and 50% at the Master level).

73

Table 6.1 Educational Level of the
Participants (N=18)

Educational Level

Classification
Response in
percentage

Response in
number

PhD 5% 1

Master 50% 9

Bachelor 39% 7

Undergraduate 6% 1

Table 6.2 shows that 83% of the participants were currently working in industry: this is aligned

with our goal in trying to simulate what actual software engineers, in the industry, would

experience during such a conversion.

Table 6.2 Work Area of the Participants
Work Area

Classification
Response in
percentage

Industry 83%

Academic 17%

It can also be observed, in Table 6.3, that a great number of participants had previous

experience with RDB technology and that 45% of them had more than 5 years of experience

with RDB technology. As expected, Table 6.3 also shows that 94% of the participants had no

previous knowledge of NoSQL database technology.

Table 6.3 Level of Experience in DB

Type of
DB

Experience in years
No
Exp

Low Exp
(< 1 Year)

Middle Exp
(2-5 Years)

Advanced Exp
(>5 Years)

RDB 22% 11% 22% 45%

NoSQL 94% 0% 6% 0%

The experience profile of the participants indicates that a set of guidelines could be a valuable

tool for practitioners in such conversion processes. Figure 6.3 shows the different approaches

taken by the participants for the first step of their conversion. Considering that most

participants had industry experience, Figure 6.3 indicates that 61% (i.e. 33% + 28%) of the

participants chose to begin with the RDBMS “tables” element for the conversion.

74

Figure 6.3 First Step in the Conversion Process
The next criterion analyzed is the perceived difficulty encountered during this conversion

process. Depicted in Figure 6.4, the initial perception that this conversion is difficult was

reported by 78% of the participants (i.e. 39% + 39%). The participants were of the opinion that

this conversion process demanded a considerable amount of effort. This result is consistent

with individuals who had very little exposure to NoSQL concepts beforehand (as reported in

Table 6.3).

Figure 6.4 Level of Difficulty in the Conversion Process

5%

39%

39%

11%

6%

Level of difficulty in the conversion
process Indicates that the process was easy to

achieve without effort

Indicates that it required a medium
effort to achieve it

Indicates that it required a maximum
effort to achieve it

Extra effort to achieve it but without
results

75

Finally, Figure 6.5 evaluates the level of confusion experienced by the participants during this

conversion process. It reports that the majority of the participants (56%) had felt sometimes or

always confused, i.e. not knowing how to go about the process.

Figure 6.5 Level of Confusion During the Conversion Process

Figure 6.6 provides the opinion of the participants regarding whether the process would have

been easier if a set of guidelines had been provided: 28% strongly agreed with their usefulness

and 44% agreed with the relevance of this kind of tool to help in this conversion process. This

was to be expected and was observed.

76

Figure 6.6 Participant Opinion about using Guidelines during the Conversion Process

Concerning the five key aspects of RDB that were studied in this conversion experiment:

Tables, Constraints, Primary Keys (PK), Foreign Keys (FK) and other elements (fields, types

of relationships, views, indexes, procedures and triggers), Table 6.4 summarizes, for each of

these RDB aspects, the participants’ reported percentage of coverage in intervals: 0%-24%,

25%-49%, 50%-74%, 75%-99% and 100%.

For example: 50% of the participants reported that their conversion solution proposal

adequately covered the relational aspect “Tables” by 100%. In contrast, 22% considered that

their proposed solution did not cover this aspect at all (0%). Moreover, Table 6.4 shows that

28% of the participants feel that their proposed solution covered 100% of the relational aspect

“Constraints”. On the other hand, 39% of the participants think that their solution did not cover

this aspect at all (0%). Furthermore, Table 6.4 shows that 41% of the participants think that

their proposed solution covers 100% of the relational aspect PK. However, 29% report that

their solution did not cover this aspect at all (0%). Table 6.4 also reveals that 39% of the

participants believe their solution covers 100% of the relational aspect FK. Conversely, 28%

consider that their solution did not cover this aspect (0%). Other RDB elements aspects such

as fields, store procedures or triggers were aggregated in the “others” category and 94% of the

participants felt they had not fully covered these aspects during the conversion (see last row of

Table 6.4).

28%

44%

17%

5% 6%

Participant opinion about using
guidlines during the conversion process

Strongly agree

Agree

Undecided

Disagree

Strongly disagree

77

Table 6.4 Level of Coverage in Different
DB Aspects

Relational
aspect covered

Percentage of coverage
0% 25% 50% 75% 100%

Table 22% 0% 6% 22% 50%

Constraint 39% 11% 17% 5% 28%

PK 29% 0% 18% 12% 41%

FK 28% 0% 11% 22% 39%

Others 94% 0% 0% 0% 6%

The next sub-section discusses the second experiment that followed this heuristic approach to

the conversion.

6.3.2 Conversion Design Patterns

The approach selected to identify a preliminary list of conversion rules was to use a few

samples of a relational schema and see how they could be converted into an HBase schema;

the outcomes of this step will be called conversion designs patterns. This was prepared in a

research lab by the author of the this thesis before initiating a second experiment with the other

participants. These steps aimed at identifying the best corresponding HBase schema for each

sample relational schema and next, extract/generalize rules to be used in experiment 2 that

could help participants with the schema conversion. Through a number of iterations, three

conversion design patterns were identified for each relationship as described in sections 6.3.2.1

and 6.3.2.2.

6.3.2.1 One-to-One Relationships

For the conversion of a one-to-one relationship, there are three possible ways to convert it into

HBase (i.e. as described in 1a, 1b or 2):

1. Create One HTable: After merging the two RDB tables together into one HTable, the

resulting HTable could have two resulting designs:

78

a. Two-column family: One column family to store the first RDB table columns

and a second column family to store the second RDB table columns.

b. Single column family: This design pattern is recommended due to HBase

limitations (Lars, 2013c).

2. Create Two HTables: The third possible design pattern is to create two HTables where

each HTable contains one column family which contains all RDB columns. Finally,

insert the row key of each HTable into both HTables.

The question that remains is how to choose one design over another. This is determined

primarily by the context of the data access. If the original intent is to save space to optimize

the caching of pages in an RDB, then this is no longer a consideration in HBase as the columns

in the column family are dynamic and only added when needed. In this instance, merging two

tables into one would be valid since saving space is no longer a concern in HBase given that

null values are not saved.

An additional consideration would be whether there are two tables that contain information

that becomes irrelevant when they are disconnected; for example, the relationship between a

person and a passport as in Figure 6.7. This relationship is of no value when considered

individually as a Passport needs to be attached to a Person to be valid and a Person needs to be

attached to a Passport. For the purpose of this example, only a valid passport is considered.

Figure 6.7 One-to-One Relationship in a Relational Database

79

As a result, a Person can only have one valid Passport. Two tables represent this relationship:

one that holds Person information and the second that holds Passport information.

When converting this relationship into an HTable, the Person table would include another

column family that would hold the passport information that belongs to a Person, thus reducing

the two-table design in a relational database to one HTable as shown in Figure 6.8.

Figure 6.8 One HTable with Two Column Families

The reason for the inclusion of the Passport Number in the Person table is due to the context

in which the information is usually accessed. To find the Passport number of an individual, a

lookup of the Person is always required. A Passport number is meaningless without the Person

information that accompanies it. In contrast, Person information is meaningful even without a

Passport.

Another architectural decision to consider is whether to keep the design of two tables. This

would happen if the secondary table contains information that is meaningful, in and of itself.

Consider a relationship between an employee and a workstation and assume that an employee

can only have one workstation. This relationship between the two tables should be represented

in HBase as two tables as well. The reason for this is again context dependent since information

about the workstation is relevant even without needing to know the employee information.

Suppose that the address of the computer changes, an access to the workstation table would be

required to update the address information. If the employee to whom the computer belongs is

also required information, it will put an unreasonable burden on the lookup of the location of

80

the workstation. In addition, a one table design would assume that every workstation is

assigned to an employee although a company can have unused workstations that are not

assigned to anyone and therefore would not be entered in the database.

6.3.2.2 One-to-Many Relationships

In the conversion of a one-to-many relationship, there are three possible ways to convert it into

HBase:

1. Create One HTable with Two column families: This requires merging the information

from the two related RDB tables. Each RDB table would be stored in a separate column

family within the same HTable.

2. Create One HTable with a Single column family: This would entail that both RDB

tables be merged into a single column family.

3. Create Two HTables: In this design, each RDB table would be added to a separate

HTable with a single column family. The first HTable contains the source of the

relationship and a second column family is added that contains the referenced Row

Keys from the second HTable.

Once the conversion design patterns defined, the second experiment were ready to begin.

6.3.3 Experiment 2

6.3.3.1 Experiment 2 Goal

In experiment 2, the participants were divided into groups with each group assigned a distinct

HBase conversion design pattern presented in section 6.3.2. The goal of assigning these

conversion design patterns was to expose participants to different schema and thus avoid

having the majority of participants using a similar design by following a trial and error method.

Another objective was to build a body of knowledge by analysing the impact of all possible

81

schemas, good and bad. Finally, having many participants helped ensure that every design

pattern would be used.

6.3.3.2 Experiment 2 Use Case Description

A use case was developed for the experiment where participants were asked to convert a one-

to-many relationship using the conversion patterns provided as presented in section 6.3.2. To

accomplish this second experiment, a case study had to be developed simulating real life

situations and characteristics as described below:

1. A large relational database currently experiencing performance issues that would

benefit from a conversion to NoSQL technology.

2. An unknown industry domain to eliminate the experience factor in the experiment.

3. A population similar to experiment 1 to ensure valid and meaningful results.

A large RDB with such characteristics from the bioinformatics domain was available in our

research lab. It originated from a hospital research laboratory where doctors and researchers

were working on genomics and cancer research. This laboratory uses an RDB database with

major performance issues. An ÉTS student, Anna Klos (Klos, 2012), had successfully solved

this performance issue by converting the very large RDB tables to HBase.

a. RDB for experiment 2: The genomic database mainly stores information about human

chromosomes and focuses primarily on the chromosome relationship with diseases that

affect the brain and nervous system. The researchers investigated 13 tables in this RDB

to locate the performance issues. In this experiment, two specific tables were found to

create most of these issues as shown in Figure 6.9.

b. Participants: This time, the participants were also ÉTS students, with different

education and experience levels enrolled in the undergraduate course “Introduction to

Big Data”. The course objective was to introduce students to Big Data technologies

including NoSQL databases. The class included 36 students that were divided into 9

teams.

82

c. Experiment 2: The experiment was introduced in the form of practical class

assignments. The three assignments were as follows:

i. Assignment 1: First replicate a portion of this genomic database using the same

RDB technology (participants were asked to use PostgreSQL) as shown in

Algorithm 6.1; then load the data provided (very large), execute the SQL query

provided by the hospital lab that experienced performance problems and

capture execution time (see Algorithm 6.1).

ii. Assignment 2: Convert the PostgreSQL database schema created in assignment

1 to HBase, then load the same data into HBase and convert the same SQL

query that was earlier provided to generate the same results. This resulting

query should typically be a scan function in HBase, as described in section

6.3.3.3 (Design 1).

iii. Assignment 3: Run the query created in assignment 2 on HBase; make sure it

obtains the same results as previously with PostgreSQL and capture the

execution time of the HBase implementation.

Each team was assigned a specific conversion design pattern as presented in section 6.3.2. The

overall steps that were followed during this experiment are described in Figure 6.10.

Algorithm 6.1 SQL ngs_hg18_potion and ngs_position

The chosen relationship to be converted is located between table ngs_hg18_position and the

table ngs_position as shown in Figure 6.9. These tables were chosen because of their large

83

data size (1.1GB and 1.3GB respectively). When ignoring the multiple queries related to a

specific schema, it is difficult to predict the most efficient schema design. However, the query

in Algorithm 6.1 was provided as one that is frequently run against these particular tables. The

query includes a join between the two tables as well as a selection of rows based on some

simple criteria as shown in Algorithm 6.1.

Figure 6.9 One-to-Many Relations between ngs_hg18_position and ngs_position

Figure 6.10 Overall Experimentation Steps

84

6.3.3.3 Experiment 2: Data

This subsection presents the data from the participants’ attempts to convert the SQL query (see

Algorithm 6.1) using the three conversion design patterns described in section 6.3.2.

Design 1 - One HTable and One Column Family
Using the first schema of one HTable and one column family as shown in Figure 6.11, the

participants converted the data and created the query below, which returned the same data as

the originating SQL query in Algorithm 6.1.

Algorithm 6.2 Scan Query of ngs_hg18_and_position_t2_m1

Scan 'ngs_hg18_and_position_t2_m1',

(Kasunic, 2005 ENDROW=>'010000000', FILTER

=>"SingleColumnValueFilter('hg18_and_position_family','ngs_hg19_position_id',>,

'binary:0')")

The HBase scan that was executed yielded a query that returned 900,001 rows in 878 seconds.

Figure 6.11 One HTable with One Column Family Use Case

Design 2 - Two HTables with One Column Family per Table
In the two HTable design shown in Figure 6.12, data must be fetched from both HTables and

then used in a comparison to filter out the wanted data to complete the SQL query requested

in Algorithm 6.2. A join clause between the two HTables is necessary to accomplish this filter.

Since HBase does not use relations in its design (Lars, 2013d), the concept of a query with a

join is not possible. Therefore, none of the participants was able to find a matching query.

85

Figure 6.12 Two HTables with One Column Family Use Case

Design 3 - One HTable with Two Column Families

The participants in this group created an HTable as shown in Figure 6.13 and attempted to

replicate the SQL query. The results obtained, using the scan below, timed out after a long

execution period. We should state here that the infrastructure used in the experiment has not

yet been described. The distribution and parallel processing of HBase was not taken into

account since the lab infrastructure for the experiment was a single virtual machine running on

the same server as experiment 1 (i.e. attempting to replicate the previous PostgresSQL

environment). This query would not time out if it was executed in a multi-server, distributed

environment. Nevertheless, this approach performed poorly in comparison with other schema

design patterns, as we will see.

86

Algorithme 6.3 Scan Query t2_2:position

scan't2',{COLUMNS=>['t2_2:chromosome_id','t2_2:position','t2_1:
hg18_id','t2_1:hg19_id'],
FITER=>FilterList.new([SingleColumnValueFilter.new(Bytes.toBytes('t2_1'),Bytes.t
oBytes('hg18_id'),
CompareFilter::CompareOp.valueOf('GREATER'),Bytes.toBytes('100000')),
SingleColumnValueFilter.new(Bytes.toBytes('t2_1'),Bytes.toBytes('hg18_id'),
CompareFilter::CompareOp.valueOf('LESS'),Bytes.toBytes('1000000')),
SingleColumnValueFilter.new(Bytes.toBytes('t2_1'),
Bytes.toBytes('hg19_id'),CompareFilter:
:CompareOp.valueOf('GREATER'),Bytes.toBytes('0'))]) }

Figure 6.13 One HTable with Two Column Families Use Case (Ouanouki et al., 2017)

6.3.3.4 Experiment 2: Analysis

Design 1, which is “one HTable and one column family” yielded the requested data (of about

900k rows) in 878 seconds. A disadvantage of using a single column family per HTable is that

if too many columns are used, the size needed to store one row will increase. Due to the HBase

distributed architecture, each column family is broken up into files of a specific size that split

when the column family reaches the size limit (Lars, 2013c). This means that the larger the

data stored in a column family of a row, the fewer rows there will be per column family file.

This in turn makes the scan time longer as more files could potentially be needed to complete

the query.

87

Design 2, the reason why no group was able to fetch data when using two HTables is that joins

are not inherently possible as in a traditional RDB approach. Since HBase is not a relational

database, any relation between the information had to be made manually at the application

level (Lars, 2013e). This translates into the need to write two queries. The first query would

get the data from the ngs_position table and would use the returned result set as a filter with

the second query on the ngs_hg18_position table. Therefore, this would call for extra logic to

be added at the application level and would require more time to execute. Given that this SQL

query is run very often, it would add extra time for the fetching of data.

For the third design, one HTable with two column families, the issues with this pattern are

related to the limitations in the design of HBase itself. In HBase, a column family is stored in

a single file split across HDFS (Lars, 2013c), which means that when accessing a row there is

the potential of accessing two physical files. Considering the distributed nature of HBase, this

implies that each column family file is not necessarily stored on the same server. Consequently,

access time can be greatly increased if a scan needs to access both column families of the same

table.

The result set that was obtained clearly points to the proper solution for this type of access

pattern. Design 1 is the only situation that can provide meaningful results. Designs 2 and 3

were unable to yield any data, which demonstrates that the HBase schema is closely linked to

the access patterns of the database. Therefore, this shows that when converting an RDB- based

application to HBase, an access pattern analysis is required to avoid proposing an HBase design

that would potentially include weaknesses that would need further refactoring and costs.

6.3.4 Rules Extraction

Using the knowledge gained from these two experiments and the three conversion design

patterns experimented, we extracted considerations that should be taken into account when

planning the conversion of an existing information system that uses RDB technology to the

HBase technology.

88

6.3.4.1 Rule on Data Proximity

Firstly, every conversion will differ and depends heavily on the data access patterns currently

used. Since HBase does not have any steadfast rules, it needs to have an understanding of how

each data field relates to another. One of the most important rules that requires serious

consideration is how the data will be accessed by the application. For that reason, the distance

between frequently accessed data, in one scan, will definitely affect the query performance.

Therefore, the data needs to be stored in the same column family, as much as possible, so as

not to require multiple scans to obtain the desired information. This goes as far as maintaining

a minimum amount of information pertaining to a secondary table and removing the need to

go into the secondary table to get the information that is required. This rule can be inferred

from the results of the two HTable design pattern of our use case. Since HBase has no implicit

way of creating relationships when performing a scan (Biswapesh Chattopadhyay, 2011;

Marcos, 2005), the application itself will need to complete this action. This introduces extra

complexity/effort that could be avoided by using a more optimal schema designed specifically

for the data access patterns.

Rule 1.1: The more the information is accessed at one time, the closer the data needs to be

stored. More specifically, when the same data is often accessed together, it should go into a

one HTable design within the same column family.

6.3.4.2 Rules on Column Families

The concept of RDB columns does not implicitly translate to a column family in HBase. As

presented above, having many column families in one HTable can be detrimental to the schema

translation due to the physical design limitations (Lars, 2013c) of HBase. Since each column

family is stored in its own separate file and then stored in a distributed manner, the larger the

distribution, the less likely that the physical column family files will be stored in the same

region server (Lars, 2013c). Thus, the second rule inferred from these experiments is not to

89

store information in column families that are of vastly different sizes (Lars, 2013c). As a

column family is broken up into different files and distributed in the database, the larger each

row is, the smaller the number of rows that will be stored within the same file and therein

creates the need for more files. This in turn will require the scan to access even more files to

fetch the information wanted. However, the larger the network, the less impact this will have

as the information will be read on each node and aggregated together by the master (Lars,

2013c).

One major concern when designing an HTable is that the information will be distributed as

evenly as possible. If there is a disparity in the number of rows needed to store information

between two column families, this could lead to longer scans of the smaller column family as

there are fewer records in the column and therefore, more empty space between rows

(Chongxin, 2010).

Rule 2.1: The number of column families defined in each row should be no more than 2 or 3;

otherwise, the performance will degrade due to the physical design of HBase. Specifically,

because flushing and compression are done on a per region basis, if one column family is

carrying the bulk of the data bringing on flushes, the adjacent families will also be flushed

though the amount of data they carry is small. With many column families, the flushing and

compression interaction can make for a number of needless I/O loading (Lars, 2013c).

Rule 2.2: The number of rows in each column family needs to be roughly the same; then the

columns should be split and references placed in each column family to allow data to be linked.

6.3.4.3 Rules on Data Quantity

HBase is designed to handle large amounts of data. HBase was modelled on Google’s own

BigTable (Fay et al., 2006) for that purpose. It has incorporated the ability to handle large data

requests and by doing so, also incorporated some physical limitations on how the data is stored.

These limitations need to be considered when converting an RDB schema as the expected

90

performance gains may be mitigated given the limitations. The limitations impose two design

considerations. The first is with respect to the size of the column families in a single row. Each

column family needs to be of relatively similar size as they are stored in separate physical files

of a maximum defined size. Once the maximum file size is reached, it is split and then

dispersed. This means that when data stored in one column family is significantly larger than

the other, it will create a situation where fewer rows are stored per physical file and again cause

longer scans (Lars, 2013a). The second consideration is that column families should generally

have the same access pattern. Otherwise, when fetching data, the scan could take much longer

if the access pattern to each column family is vastly different.

Rule 3.1: Data size between columns families, in one row, need to be of similar size, otherwise,

the column family needs to be split into two separate HTables, each containing a column

family.

Rule 3.2: Column families in the same HTable should generally have the same access patterns.

6.3.4.4 Rules on Access Patterns

The context in which the data is accessed in the application defines the access patterns and the

accessibility requirements. These will be the foundation upon which the HBase database will

be created. As shown in section 6.3.3.3 (Design 1), this conversion was able to fulfil the

required access pattern defined by the use case. Understanding the data access patterns and the

data flow models of the application will assist in the design, especially since there are no

steadfast rules when converting to HBase. The resulting schema will depend heavily on the

context in which the data is accessed.

Subsequently, an analysis of the most used access patterns and of the heavy queries regularly

performed is also needed before attempting a conversion.

91

Rule 4.1: Access patterns will define the conversion and need to be defined and understood;

an analysis is needed before a conversion.

Rule 4.2: Analysis of heavy queries is required to obtain a proper design.

6.4 Conclusions and Future Research

This chapter has identified and explored a set of rules to assist in the conversion of a relational

database to one type of NoSQL database—the column-oriented database named HBase. It

described a first experiment designed to evaluate if there was a need for a set of conversion

rules. In this experiment, it was demonstrated that not all RDB practitioners could easily carry

out such a conversion. Next, a second experiment showed how the replicated query reacted

depending on the design pattern used. This second experiment provided an opportunity to

uncover a first set of schema translation rules for this particular conversion. Future research

could explore a conversion experiment using these conversion rules with the goal to expand

this initial body of knowledge and further validate the conversion rules, patterns and

guidelines.

CONCLUSION

This thesis has presented a clarification to the cloud computing definition that is better suited

for this research purpose: the conversion of relational databases to NoSQL database

technology. Two experiments where conducted to extract conversion rules specific to the

research topic:

1. The first experiment consisted of asking participants (engineers from École de technologie

supérieure) to convert a particular schema, without the use of a guide or conversion rules.

Several questionnaires were completed by the participants during the experiment. The

main goal was to evaluate the need for conversion rules to help software engineers with

the conversion of relational schemas to non-relational schemas;

2. The second experiment consisted of having multiple groups of participants, with each

group tasked to convert a single RDB relation to a possible schema in HBase. The goal

was to test the results of a single RDB relationship to all schematic conversion possibilities

in HBase, a particular non-relational database, and then extract the conversion rules. This

experiment showed why a particular schema is better than another and allowed for the

identification of conversion rules based on facts (e.g., performance measurement of a

query on each of the resulting schemas).

Main contribution and outcomes

1. A list of conversion rules that help software engineers in their attempt at a conversion was

established, more specifically, the database schema conversion. A first experiment

confirmed that there is a need for conversion guidelines (or conversion rules) to help

software engineers, especially because of the nature of the target schema, which does not

support relationships between tables like a relational database. The second experiment

helped in identifying conversion rules using a trial and error approach. The experiment

engaged multiple groups in converting different possible schemas to unveil which

resulting converted schema was more suitable and why. The outcome of this experiment

94

and the resulting conversion rules were published in the following journals and

conferences:

a. Ouanouki, R., April, A., Abran, A., Gomez, A. and Desharnais, J. M. (2017). Toward

building RDB to HBase conversion rules. Journal of Big Data, 4(1).

doi:10.1186/s40537-017-0071-x

b. Ouanouki R, G. A. (2014). Building an Experiment Baseline in the Migration Process

from SQL Databases to Column Oriented No-SQL Databases. Journal of Information

Technology & Software Engineering, 04(02). doi:10.4172/2165-7866.1000137

c. Gomez, A., Ouanouki, R., Ravanello, A., April, A. and Abran, A. (2015).

Experimental Validation as Support in the Migration from SQL Databases to NoSQL

Databases presented in CLOUD COMPUTING 2015: The Sixth International

Conference on Cloud Computing, GRIDs, and Virtualization.

doi: 978-1-61208-388-9

2. A second, smaller contribution was to clarify the cloud computing definition in the context

of database conversion by considering the mandatory and optional characteristics of cloud

computing in this specific research context. Two publications resulted from this research

activity; one as a book chapter in an encyclopedia and one in a journal paper:

a. Ouanouki, R., Morales, A. and April, A. (2014). Rationalizing the Cloud Computing

Concept: An Analogy with the Car. Journal of Cloud Computing, 1–8.

doi:10.5171/2014.901075

b. Rafik, O., Abraham Gomez, M. and Alain, A. (2015). Should the Cloud Computing

Definition Include a Big Data Perspective? Dans D. B. A. Mehdi Khosrow-Pour (Éd.),

Encyclopedia of Information Science and Technology, Third Edition (pp. 1088-1095).

Hershey, PA, USA: IGI Global. doi: 10.4018/978-1-4666-5888-2.ch104

Limitations
Some limitations have been identified in this thesis. An overview of these limitations is

presented as follows:

95

• More experimentation would help to create an improved list of conversion rules.

Additional experiments would be required to further validate the effectiveness of these

conversion rules.

• This list of conversion rules is limited to a specific type of NoSQL database, Wide

Column Store/Column Families and for some conversion rules, limited to Hadoop

HBase. Additional research could consider the applicability of these rules to other

NoSQL database technologies;

• The conversion rules were developed and extracted from single database relation such

as one to one and one to many relations. Research could be initiated to understand the

effect of larger database schemas on these conversion rules;

• The conversion rules could also need to be adjusted if this NoSQL technology evolves

or changes.

In conclusion, when this research started, we asked the NoSQL developer community if there

was a best way to convert a relational database to NoSQL? The response was often that it

depends on the way the data is accessed in the current relational database. This answer

motivated this research work for the discovery of conversion rules based on data access. This

thesis has proposed a set of conversion rules that can be used to help software engineers in

their conversion effort to convert an existing RDB to HBase.

APPENDIX I

THE NIST DEFINTION OF CLOUD COMPUTING

1.1 Authority

The National Institute of Standards and Technology (NIST) developed this document in

furtherance of its statutory responsibilities under the Federal Information Security

Management Act (FISMA) of 2002, Public Law 107-347.

NIST is responsible for developing standards and guidelines, including minimum

requirements, for providing adequate information security for all agency operations and assets;

but such standards and guidelines shall not apply to national security systems. This guideline

is consistent with the requirements of the Office of Management and Budget (OMB) Circular

A-130, Section 8b(3), “Securing Agency Information Systems,” as analyzed in A-130,

Appendix IV: Analysis of Key Sections. Supplemental information is provided in A-130,

Appendix III.

This guideline has been prepared for use by Federal agencies. It may be used by

nongovernmental organizations on a voluntary basis and is not subject to copyright, though

attribution is desired.

Nothing in this document should be taken to contradict standards and guidelines made

mandatory and binding on Federal agencies by the Secretary of Commerce under statutory

authority, nor should these guidelines be interpreted as altering or superseding the existing

authorities of the Secretary of Commerce, Director of the OMB, or any other Federal official.

1.2 Purpose and Scope

The purpose of this publication is to provide the NIST definition of cloud computing. NIST

intends this informal definition to enhance and inform the public debate on cloud computing.

Cloud computing is still an evolving paradigm. Its definition, use cases, underlying

technologies, issues, risks, and benefits will be refined and better understood with a spirited

98

debate by the public and private sectors. This definition, its attributes, characteristics, and

underlying rationale will evolve over time.

1.3 Audience

The intended audience is people adopting the cloud computing model or providing cloud

services.

The NIST Definition of Cloud Computing

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access

to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction. This cloud model promotes availability and

is composed of five essential characteristics, three service models, and four deployment

models.

Essential Characteristics:

• On-demand self-service. A consumer can unilaterally provision computing capabilities,

such as server time and network storage, as needed automatically without requiring

human interaction with each service’s provider.

• Broad network access. Capabilities are available over the network and accessed

through standard mechanisms that promote use by heterogeneous thin or thick client

platforms (e.g., mobile phones, laptops, and PDAs).

• Resource pooling. The provider’s computing resources are pooled to serve multiple

consumers using a multi-tenant model, with different physical and virtual resources

dynamically assigned and reassigned according to consumer demand. There is a sense

of location independence in that the customer generally has no control or knowledge

over the exact location of the provided resources but may be able to specify location at

a higher level of abstraction (e.g., country, state, or datacenter). Examples of resources

include storage, processing, memory, network bandwidth, and virtual machines.

99

• Rapid elasticity. Capabilities can be rapidly and elastically provisioned, in some cases

automatically, to quickly scale out, and rapidly released to quickly scale in. To the

consumer, the capabilities available for provisioning often appear to be unlimited and

can be purchased in any quantity at any time.

• Measured Service. Cloud systems automatically control and optimize resource use by

leveraging a metering capability1 at some level of abstraction appropriate to the type

of service (e.g., storage, processing, bandwidth, and active user accounts). Resource

usage can be monitored, controlled, and reported, providing transparency for both the

provider and consumer of the utilized service.

Service Models:

• Cloud Software as a Service (SaaS). The capability provided to the consumer is to use

the provider’s applications running on a cloud infrastructure. The applications are

accessible from various client devices through a thin client interface such as a Web

browser (e.g., web-based email). The consumer does not manage or control the

underlying cloud infrastructure including network, servers, operating systems, storage,

or even individual application capabilities, with the possible exception of limited user-

specific application configuration settings.

• Cloud Platform as a Service (PaaS). The capability provided to the consumer is to

deploy onto the cloud infrastructure consumer-created or acquired applications created

using programming languages and tools supported by the provider. The consumer does

not manage or control the underlying cloud infrastructure including network, servers,

operating systems, or storage, but has control over the deployed applications and

possibly application hosting environment configurations.

• Cloud Infrastructure as a Service (IaaS). The capability provided to the consumer is to

provision processing, storage, networks, and other fundamental computing resources

where the consumer is able to deploy and run arbitrary software, which can include

operating systems and applications. The consumer does not manage or control the

underlying cloud infrastructure but has control over operating systems, storage,

100

deployed applications, and possibly limited control of select networking components

(e.g., host firewalls).

Deployment Models:

• Private cloud. The cloud infrastructure is operated solely for an organization. It may be

managed by the organization or a third party and may exist on premise or off premise.

• Community cloud. The cloud infrastructure is shared by several organizations and

supports a specific community that has shared concerns (e.g., mission, security

requirements, policy, and compliance considerations). It may be managed by the

organizations or a third party and may exist on premise or off premise.

• Public cloud. The cloud infrastructure is made available to the general public or a large

industry group and is owned by an organization selling cloud services.

• Hybrid cloud. The cloud infrastructure is a composition of two or more clouds (private,

community, or public) that remain unique entities but are bound together by

standardized or proprietary technology that enables data and application portability

(e.g., cloud bursting for load balancing between clouds).

APPENDIX II

ISO/IEC JTC 1 N9687 – A STANDARDIZATION INITIATIVE FOR CLOUD
COMPUTING

1. Introduction to Cloud computing

1.1. General concept and characteristics of Cloud computing

The concept of Cloud Computing is drawing a great attention from the Information and

Communication Technology (ICT) community, thanks to the appearance of a set of services

with common characteristics, provided by important industry players. However, some of the

existing technologies that the Cloud Computing concept draws on (such as virtualization,

utility computing or distributed computing) are not new.

The term Cloud is used as a metaphor for the Internet, based on how the Internet is depicted in

computer network diagrams and is an abstraction for the complex infrastructure it conceals.

The followings are the key characteristics of Cloud computing.

• Agility improves with users who are able to rapidly and inexpensively re-provision

technological infrastructure resources. The cost of overall computing is unchanged,

however, and the providers will merely absorb upfront costs and spread costs over a

longer period.

• Cost is claimed to be greatly reduced and capital expenditure is converted to

operational expenditure. This ostensibly lowers barriers to entry, as infrastructure is

typically provided by a third-party and does not need to be purchased for one-time or

infrequent intensive computing tasks. Pricing on a utility computing basis is fine-

grained with usage-based options and fewer IT skills are required for implementation

(in-house). Some would argue that given the low cost of computing resources, the IT

burden merely shifts the cost from in-house to outsourced providers. Furthermore, any

102

cost reduction benefit must be weighed against a corresponding loss of control, access

and security risks.

• Device and location independence enable users to access systems using a Web

browser regardless of their location or what device they are using (e.g., PC, mobile).

As infrastructure is off-site (typically provided by a third-party) and accessed via the

Internet, users can connect from anywhere.

• Multi-tenancy enables sharing of resources and costs across a large pool of users thus

allowing for:

o Centralization of infrastructure in locations with lower costs (such as real estate,

electricity, etc.)

o Increase of Peak-load capacity (users need not engineer for highest possible

load-levels)

o Utilization and efficiency improvements for systems that are often only 10–

20% utilized.

• Reliability improves through the use of multiple redundant sites, which makes Cloud

computing suitable for business continuity and disaster recovery. Nonetheless, many

major Cloud computing services have suffered outages, and IT and business managers

can at times do little when they are affected.

• Scalability via dynamic ("on-demand") provisioning of resources on a fine-grained,

self-service basis near real-time, does not impose users to engineer for peak loads.

Performance is monitored and consistent and loosely-coupled architectures are

constructed using Web services as the system interface.

• Security typically improves due to centralization of data, increased security-focused

resources, etc., but concerns can persist about loss of control over certain sensitive data

and verification of users’ identity. Security is often as good as or better than traditional

systems, in part because providers are able to devote resources to solving security issues

that many customers cannot afford. Providers typically log accesses, but accessing the

audit logs themselves can be difficult or impossible. Ownership, control and access to

data controlled by "Cloud" providers may be made more difficult, just as it is

sometimes difficult to gain access to "live" support with current utilities. Under the

103

Cloud paradigm, management of sensitive data and other security-related functions

(e.g., user’s enrolment and verification of users’ identity) could be placed in the hands

of Cloud providers and third parties.

• Sustainability comes about through improved resource utilization, more efficient

systems, and carbon neutrality. Nonetheless, computers and associated infrastructure

are major consumers of energy. A given (server-based) computing task will use X

amount of energy whether it is on, or off-site.

1.2. Definition of Cloud computing

There are many definitions of Cloud Computing, but they all seem to focus on just certain

aspects of the technology. So, more than 20 definitions of Cloud computing have been

developed allowing for the extraction of a consensus definition as well as a minimum definition

containing the essential characteristics. The following are the remarkable definitions and

descriptions of Cloud Computing.

• A pool of abstracted, highly scalable, and managed compute infrastructure capable of

hosting end-customer applications and billed by consumption.

• A style of computing in which dynamically scalable and often virtualized resources are

provided as a service over the Internet. Users need not have knowledge of, expertise in,

or control over the technology infrastructure in the "Cloud" that supports them.

• Cloud computing is an approach to shared infrastructure in which large pools of

systems are linked together to provide IT services (Press release on “Blue Cloud”,

IBM).

• A paradigm in which information is permanently stored in servers on the Internet and

temporarily cached on clients that include desktops, entertainment centers, table

computers, notebooks, wall computers, handhelds, etc. (ORGs for Scalable, Robust,

Privacy-Friendly Client Cloud computing, IEEE Internet Computing).

In conclusion, for the business perspective, Cloud computing is providing IT infrastructure and

environment to develop/host/run services and applications, on demand, with pay-as-you-go

104

pricing, as a service. And, from the users point of view, Cloud computing is providing resource

and services to store data and run application, in any devices, anytime, anywhere, as a service.

Nowadays, the usage of Cloud computing is extended for many domain-specific areas

including network services, mobile services, media service etc. So, it is expected that there will

be lots of variations for future Cloud service and related standardisation issues as well.

APPENDIX III

EXPERIMENT 1 – SURVEY

RDB to No-SQL Survey

Participant Code: ___________________________

Experience Classification: Please fill with an “X” in the answer column.

1. You are:

Question Answer
Graduate with PhD
Graduate with Master
Graduate
Undergraduate Student

2. You work in:

Question Answer
Industry
Academic
Research Center

3. How many experience years do you have working in relational database environment or
programming?

Question Answer
No Experience
Low Experience (<1
Year)

Middle Experience
(2-5 Years)

Advanced
Experience (>5
Years)

4. How many experience years do you have working in or related to any No-SQL database?

Question Answer
No Experience
Low Experience
(<1 Year)

106

Middle
Experience (2-5
Years)

Advanced
Experience (>5
Years)

5. Migration process: Please fill with an “X” in the answer column.

Question Answer
Did you try migrate each table in the source
and obtaining one corresponding table in the
target?

Did you try to mix some tables of the source
and obtain one corresponding table in the
target?

Did you try to migrate in some way the
relationships from the source to target?

Another option? Which one? (Please fill out
in print, rather than handwritten)

6. Please rate how easy is to carry out the entire migration process, without a well-
established method? A value of 1 indicates that the process was easy to achieve without
effort, a value of 3 indicates that it was required a maximum effort to achieve it and a
value of 5 means that no matter how comprehensive the effort, it was no possible to
achieve it.

1 2 3 4 5

7. Did you feel confused (e.g. no idea where to start or what the next step was) on how to
carry out the entire migration process?

1 2 3 4 5
Always
confused

Very often
confused

Sometimes
confused

Rarely confused Never confused

8. In your opinion, your solution (No-SQL Schema in the green sheet) is covering all
aspects developed by the relational schema? Please fill with an “X” the percentage that
you think was covered for your solution schema.

Percentage
of
coverage

0% 25% 50% 75% 100%

Relational
aspect
covered

Table

107

Constraint
PK
FK
Other
Other

9. In your opinion, if you had received guidelines about how to make the
conversion/migration process, this had improved your task?

1 2 3 4 5
Strongly
agree

Agree Undecided Disagree Strongly
disagree

108

109

APPENDIX IV

EXPERIMENT 2 – ASSIGNMENT DESCRIPTION

• Introduction

L'objectif de ce second laboratoire est de vous familiariser avec les bases de données
HBase, ainsi que le processus de migration de données d'une base de données relationnelle
vers une base de données HBASE. HBase est une base de données non-relationnelle, en
logiciel libre, utilisant Java. Elle a été conçue à partir des spécifications de la base de
données BigTable de Google. HBase fait partie du projet Apache Hadoop. Ce laboratoire
introduit quelques concepts de HBase tels que : les tables, les « get » et les « scan ». En
particulier, ce travail pratique se concentrera sur l'utilisation d'HBase comme solution
potentielle aux problèmes observés lors de l’utilisation de la base de données relationnelle
(PostgreSQL) de l'application de Bio-Bigdata. L'ensemble des travaux pratiques réalisés
ici s’inspire des travaux effectués dans le laboratoire précédent. Ainsi, la base de données
relationnelle sera utile pour élaborer un nouveau schéma pour HBase.

• Tables et relations
Pour ce deuxième TP, nous allons seulement tenir compte de relations présentes dans les
schémas suivants.

Figure 1: Schéma de la base de données – Pipeline et Algorithme

110

Figure 2: Schéma de la base de données – Chromosome, HG 18, HG19 et Position

Figure 3: Schéma de la base de données – Variation et Coverage

111

• Travail à réaliser :

• Tâche 1: Expérimenter avec les types de migration d’un schéma relationnel vers

HBase
La première tâche est pour vous familiariser avec les différentes techniques de
migration SQL à NoSQL. Pour cette tâche vous devez sélectionner 2 tables de la Figure
1 « Pipeline et Algorithme » et effectuer leur migration de PostgreSQL vers HBase en
utilisant les 3 techniques de migration décrites à l’annexe A de ce document. L’annexe
A contient également des informations techniques concernant l’importation.

Réalisation attendue :
D’abord, sélectionner 2 tables du schéma 1 qui partage une relation « 1 à plusieurs »
dans le schéma relationnel. Par exemple, les tables « Sequencer » et « Screening
Pipeline ». Indiquer les tables sélectionnées.

Ensuite, pour chacune des 3 techniques :

1. Pour les méthodes 1 et 3, créer 1 vue dans PostgreSQL qui combine les données
de ces tables. Pour la méthode 2, deux vues seront nécessaires (1 vue pour
chaque table). Indiquez le code pour les vues. La définition du RowKey de
HBase est laissé à votre discrétion.

2. Importer les données des vues dans HBASE à l’aide de Sqoop. Indiquez le
code pour l’import.

3. Faire un scan d’une rangée des valeurs dans HBASE. Indiquez le code pour
scan ainsi que le résultat (capture d’écran du résultat).

• Tâche 2: Migration de 2 larges tables avec une technique particulière

Pour cette tâche, chaque équipe utilisera une méthode de migration différente pour
importer dans HBase les tables « NGS_position » et « NGS_hg18_position », ainsi
que leur relation. Voici la liste des équipes qui sont assignées à chacune des méthodes :

• Méthode 1. Le résultat attendu est : une table HBase avec une famille de

colonnes.
Équipe 1 Équipe 2 Équipe 3
Julien Béliveau Ronald Lessage Cédric St-Onge
Danny Boyer Vincent Larose Francis Gagnon-Tessier
David Lafrance Alex Lévesque Reda Benhsaïn
Riad Chebli Thanh Lam Hoang Guy Hounsa

• Méthode 2. Le résultat attendu est : deux tables HBase.

Équipe 4 Équipe 5 Équipe 6
Sébastien Bonami Francis Olivier Laporte Stéphane Nganyo

Noulala
Olivier Rivard Yan Vigeant Bruyère Jonathan Hallée
Francis Poirier Simon Larose Gabriel Forget

112

Bunpa-Henri Tan Oualid Ben Yahia Karen Fitzpatrick

• Méthode 3. Le résultat attendu est : une table HBase avec deux familles de
colonnes.

Équipe 7 Équipe 8 Équipe 9
Guillaume Lépine Gontran Segue Nzouba Francis Bonneau
Robin Caron Pier-Olivier Clément Vincent Beausoleil
Bogdan Alexandru
Marinescu

Fabrice Houle Raby Chaabani

Alix Pedneault-Plourde Pierre-Mary Bien-Aimé

Réalisations attendues :
1. En utilisant la méthode de migration demandée à votre équipe, créer une table

HBASE permettant de répondre le plus efficacement possible à une requête
HBase Scan équivalente au code SQL suivant :
SELECT hg18.chromosome_id, hg18.position
FROM ngs_hg18_position hg18, ngs_position p
WHERE hg18.id = p.hg18_id AND p.hg18_id > @range1 AND p.hg18_id
< @range2 AND p.hg19_id > 0;

Note 1: @range1 et @range2 sont des valeurs qui peuvent être choisies par
l’utilisateur.

2. Créer la ou les vues SQL nécessaires pour combiner les données de ces tables
(selon la méthode qui est assignée à votre équipe). Indiquez le code pour les
vues. Indiquez le RowKey que vous avez choisi et pourquoi.

Note : vous pouvez utiliser une technique alternative à des vues SQL. Dans
ce cas expliquez pourquoi, et expliquez en détails votre technique.

3. Importer les données dans HBASE à partir des vues (ou de la technique
alternative). Indiquez le code pour l’import.

4. Faire un scan des valeurs dans HBASE pour les valeurs de range : @range1 =
100000 et @range2 = 1000000. Afin de sauvegarder vos résultats dans hbase
shell utiliser :
echo "<requête de hbase shell>" | hbase shell > test.txt

5. Indiquez le code pour scan, le nombre de résultats, ainsi que le temps
d’exécution de la requête.

• Tâche 3: Optimisation d’une requête SQL à l’aide d’HBase.

Vous devez réaliser un schéma de table(s) HBASE permettant de solutionner la requête
suivante :

SELECT v.id, v.variant_class, v.strand, v.variant_genotype, v.dbSNP_rs,

113

v.variant_type_id as s2d_type, v.gene, v.freq_1000g, v.Sift_score,
qvp.chromosome_name as chromosome, qvp.hg18_position as
hg18_chrom_position, qvp.hg19_position as hg19_chrom_position
FROM NGS_variant v, NGS_queryVariantPosition qvp
WHERE v.position_id = qvp.position_id AND v.id in (@resultSet) AND
v.variant_type_id = @variantType
GROUP BY v.id

Les variables : @variantType est une constante fournie, @resultSet est une liste
fournie. L’objectif est de pouvoir exécuter l’équivalent de la requête SQL le plus
rapidement possible dans HBASE.

Réalisations Attendues :

1. Utiliser la ou les méthode(s) de migration de votre choix. Décrivez pourquoi
vous pensez que cette méthode est la plus efficace.

2. Faire un diagramme du schéma de(s) table(s) HBASE que vous avez créé pour
cette tâche. Ce diagramme doit montrer clairement le nom des tables, les
familles de colonnes, et leurs colonnes. La composition de la RowKey doit
être précisée également.

3. Documenter la méthode d’importation des données dans HBase. Si vous utilisez
Sqoop, indiquez le code pour les vues SQL créées, ansi que le code Sqoop
pour l’importation. Si vous n’utilisez pas Sqoop, documenter votre méthode
d’importation de façon détaillée.

4. Faite un / des scans dans HBASE pour les valeurs suivantes :
@variantType = 4
@resultSet =
494121,494122,494123,494124,494125,494128,494129,494130,494131,
494132,494133,494134,494136,494137,494138,494139,494140,494141

5. Indiquez le code de la requête Scan, le temps total pris pour l’exécuter,
ainsi qu’une capture d’écran des 5 premiers résultats.

• Instructions pour la soumission du rapport

• Remettez votre rapport papier avant de commencer le deuxième laboratoire sur le
comptoir du chargé de laboratoire.

• Les documents électroniques à remettre sont : le rapport ainsi que tous les scripts
générés lors du laboratoire (les commandes HBase, les vues PostgreSQL et les
commandes Sqoop). Envoyer tous les documents à l'adresse
gti780.e2014@gmail.com.

• Note 5 : Tous les fichiers doivent être compressés et être nommés GTI780-Labo 2-
ÉquipeX, où X est le numéro de votre équipe. Vous allez perdre des points si vous
ne suivez pas ces consignes.

• Conseils techniques

114

Voici des références utiles pour le laboratoire 2:
• Pour configurer votre machine / VM de l’école voir le document GTI780

Instructions, partie LABO 2.
• Créer le schéma relationnel et les tables. Le document de contexte explique les

schémas. Le site officiel de HBase contient la documentation à l’adresse
http://hbase.apache.org/book/quickstart.html.

• Pour charger les données, l'outil de Sqoop doit être utilisé http://sqoop.apache.org/.
• Chargement des données: Les données complètes sont disponibles à l’adresse

http://10.194.32.150/datadb. Il est possible d'utiliser des scripts pour charger les
données.

• Grille d’évaluation

Toutes les informations relatives à l'évaluation du rapport et de la façon dont cette
évaluation sera menée sont disponibles dans le fichier Grille de correction GTI780 BigData
TP 2.

• Pénalités de retard

Une pénalité de 10% par jour, y compris les jours de week-end, sera appliquée à tous les
travaux soumis en retard. Ceci ne s’applique que pour le premier jour de retard. Dès le
deuxième jour, tout rapport non soumis aura automatiquement une note de 0.

Méthodes de migration de SQL vers NoSQL
Exemple :

Il y a 3 méthodes de migrations que nous allons utiliser dans ce laboratoire :

• Méthode 1 : une table avec 1 famille de colonnes (dénormalisation classique)
• Méthode 2 : 2 tables
• Méthode 3 : une table avec 2 (ou plus) familles de colonnes.

Afin de mieux illustrer les techniques nous allons assumer le schéma relationnel suivant :

Une commande est identifiée de façon unique (clef primaire) avec le champs Commande.ID .

Le UserID est l’identifiant de l’acheteur, alors que la date est la date d’achat. Une commande

est composée de plusieurs lignes de commandes.

115

Une Ligne de Commande est identifiée de façon unique avec le champ

LigneDeCommande.ID et peut être reliée à sa Commande à l’aide de CommandeID. Pour

simplifier l’exemple, tous les champs ont été retirés à l’exception du Prix.

Dans notre cas d’utilisation, on connaît toujours le UserID lorsqu’on veut accéder à une

commande ou une ligne de commande.

Méthodes de migrations :
Méthode 1 : Dénormalisation classique
La 1ière méthode consiste à combiner 2+ tables relationnelles pour créer une table HBase
avec une famille de colonnes. Voici ce qu’on obtiendrait si on combinait les 2 tables
Commande et LigneDeCommande de l’exemple.

Le RowKey est une combinaison des champs Commande.USER_ID, Commande.ID, et
LigneDeCommande.ID . Remarquez que la partie USER_ID de la RowKey est paddé avec
des zéros pour que HBase stocke les données triées par RowKey. Vous devez faire les
paddings nécessaire dans vos vues SQL pour vous assurez que la taille des données de
chaque colonnes est la même.

Méthode 2 : Deux tables relationnelles donnent 2 tables dans HBase
La 2éme méthode consiste à créer deux tables HBase avec le même nombre de colonnes que
les tables Postgres. L’idée est d’intégrer la relation dans le RowKey. Si on prend les tables
initiales de l’exemple, on obtiendrait :

116

Comme vous pouvez le constater la première partie du RowKey de HLigneDeCommade est le
id de commande. Donc si vous voulez que toutes les lignes de commande d’une commande en
particulier, c’est facile de l’obtenir avec un objet scan. Par exemple, pour obtenir toutes les
lignes de commande de la commande #1, on peut faire un Scan dans HBase sur les RowKey
entre « 1-00 » et « 1-99 ».

Méthode 3 : Une table HBase avec 2 familles de colonnes
La 3ème méthode consiste à combiner les deux tables Postgres en une table HBase qui a deux
familles de colonnes, 1 famille de colonne par table SQL. Voici le résultat dans HBase :

Normalement, on regroupe les colonnes dans les familles de colonnes pour des raisons de
performance. Cependant, pour ce laboratoire veuillez utiliser 1 famille de colonne par table
SQL.

Note : Avez-vous constatez que les données de la table Commande sont répétées plusieurs fois
dans la méthode 1 et 3? Il existe une variante qui permet de contourner ce problème et de
minimiser le nombre de rangées en incluant le LC_ID dans le nom de la colonne (HBase permet
de créer un nombre variable de colonnes pour chaque rangée). Voici un exemple :

En regardant la famille 2, on remarque que la ligne 1 a deux lignes de commandes, et 1 seule
pour la ligne 2. Toutefois, vous n’êtes pas tenu d’utiliser cette variante car elle est un peu plus
complexe à migrer. Pour plus d’information, voir le document
« How_To_Migrate_SQL_to_NoSQL.pdf ».

Comment migrer les données de PostgreSQL vers HBASE:

117

a. Créez une vue ou une table dans POSTGRES créez une vue qui combine les données (voir
http://www.postgresql.org/docs/9.1/static/sql-createview.html) pour la doc.

Exemple de création de vue pour la table screening_pipeline (avec padding sur les champs
id et sequencer_id):

CREATE VIEW david4 AS
SELECT
 CONCAT(
 lpad(id::text, 3, '0'),
 '-',
 lpad(sequencer_id::text, 3, '0')
) AS pipeline_sequencer_id,
 *
FROM screening_pipeline;

Cela nous permet de générer facilement le champ pipeline_sequencer_id qu’on désire
utiliser comme RowKey dans HBase. Le fait de « padder » les champs id et sequencer_id
avec des zero permet de conserver les données triées dans l’ordre avec HBase. Lorsqu’on
fera une opération scan, les données retournées seront triées par RowKey.

Avant de faire une vue, il est recommandé de tester si votre fonction de padding fonctionne
correctement. Par exemple :

SELECT CONCAT(lpad(id::text, 3, '0'), '-', lpad(sequencer_id::text, 3, '0')) AS
pipeline_sequencer_id, *
FROM screening_pipeline
LIMIT 10;

IMPORTANT: Si vous trouver que les vues sont trop lentes, vous pouvez créer une
autre table en utilisant : SELECT INTO … , Voir
http://www.postgresql.org/docs/9.1/static/sql-selectinto.html pour plus d’info.

b. Pour sqoop :
i. Assurez vous que vous êtes loggués en tant que hduser :

sudo su - hduser

ii. Tapez jps pour vous assurer que tous les processus Hadoop sont activés :
13864 HMaster
13074 JobTracker
13325 TaskTracker
14137 HRegionServer
12484 NameNode
12993 SecondaryNameNode
12727 DataNode

118

20245 Jps
13801 HQuorumPeer
Sinon démarrer hadoop et hbase :
start-dfs.sh
start-mapred.sh
start-hbase.sh

iii. Si vous avez suivi le document technique vous avez créer l’utilisateur hduser
dans Postgres. Rendez le SUPERUSER :
psql --host=127.0.0.1 --username=dbadmin postgres
Pass: bonjour@123
ALTER ROLE hduser WITH SUPERUSER;

iv. Tester l’importation des dans HBase à l’aide de Sqoop

sqoop import --connect jdbc:postgresql://localhost:5432/postgres --username
hduser --password ChangeIt --table david4 --target-dir /hbase/ --hbase-table
david4b --columns
pipeline_sequencer_id,id,sequencer_id,sequence_aligner_algorithm_id,variant_de
tection_algorithm_id,variant_annotation_algorithm_id --hbase-row-key
pipeline_sequencer_id --split-by pipeline_sequencer_id --column-family d --
hbase-create-table –verbose

Explications :
--connect la dernière partie à la fin indique le nom de la BD. Dans notre cas c’est
postgres
--username : Utilisateur dans postgres
--password : Pass du utilisateur dans postgres
--table : table / vues dans la bd
--target-dir : Répertoire racine de HBase dans HDFS. Ne pas changer.
--hbase-table : Nom de la table dans HBASE
--columns : colonnes qu’on veut importer dans HBASE
--split-by : La colonne à utiliser comme RowKey dans HBase
--column-family : Le nom de la column family dans lesquels les colonnes vont
être ajoutées.

Note 1 : Vous pouvez spécifier un seul column family par import. (Si vous avez
2 familles de colonnes vous faites 2 import).
Note 2 : Attention aux espaces en trop. Scoop à de la misère à s’exécuter.

--hbase-create-table : mettez ce flag si vous voulez créer la table dans HBASE
quand vous

Pour plus d’informations :
http://sqoop.apache.org/docs/1.4.4/SqoopUserGuide.html

119

c. Tester que ça fonctionne:

hbase shell
scan 'david4', {STARTROW => '001', ENDROW => '005'}

Résultat :

001-003 column=d:id, timestamp=1400823152974, value=1

001-003 column=d:sequence_aligner_algorithm_id, timestamp=1400823152974, value=5

001-003 column=d:sequencer_id, timestamp=1400823152974, value=3

001-003 column=d:variant_annotation_algorithm_id,timestamp=1400823152974, value=3

001-003 column=d:variant_detection_algorithm_id, timestamp=1400823152974, value=7

002-004 column=d:id, timestamp=1400823152974, value=2

002-004 column=d:sequence_aligner_algorithm_id, timestamp=1400823152974, value=5

002-004 column=d:sequencer_id, timestamp=1400823152974, value=4

002-004 column=d:variant_annotation_algorithm_id, timestamp=1400823152974, value=3

002-004 column=d:variant_detection_algorithm_id, timestamp=1400823152974, value=7

120

APPENDIX V

TRAINING DOCUMENT

Migration from relational databases to no-sql databases Prepared by: Abraham GÓMEZ

RELATIONAL DATABASES

Overview
A relational database is a database that has a collection of tables of data items, all of which is formally

described and org nized according to the relational model.

In the relational model, each table schema must identify a primary column used for identifying a row called

the primary key. Tables can relate by using a foreign key that points to the primary key of another table.

The relational model offers various levels of refinement of the table relati ns called database normalization.

The database management system (DBMS) of a relational database is called an RDBMS, and is the

software of a relational database. Here a figure of this model:

Tables
A table is defined as a set of tuples that have the same attributes. A tuple usually represents an object and

information about that object. Objects are typically physical objects or concepts. The tables are organized

into rows and columns. All the data referenced by an attribute are in the same domain and conform to the

same constraints. The relational model specifies that the tuples of a table have no specific order and that the

tuples, in turn, impose no order on the attributes. Applications access data by specifying queries, which use

operations such as select to identify tuples, project to identify attributes, and join to combine tables. Tables

can be modified using the insert, delete, and update operators.

Constraints

121

Constraints make it possible to further restrict the domain of an attribute. For instance, a constraint can

restrict a given integer attribute to values between 1 and 10. Constraints provide one method of

implementing business rules in the database. SQL implements constraint functionality in the form of check

constraints.

Primary keys
A primary key uniquely specifies a tuple within a table. In order for an attribute to be a good primary key it

must not repeat. While natural attributes (attributes used to describe the data being entered) are sometimes

good primary keys, surrogate keys are often used instead. A surrogate key is an artificial attribute assigned

to an object

Foreign key
A foreign key is a field in a relational table that matches the primary key column of another table. The

foreign key can be used to cross-reference tables. Foreign keys need not have unique values in the

referencing relation.

Stored procedures
A stored procedure is executable code that is associated with, and generally stored in, the database. Stored

procedures usually collect and customize common operations, like inserting a tuple into a relation,

gathering statistical information about usage patterns, or encapsulating complex business logic and

calculations.

Index
An index is one way of providing quicker access to data. Indices can be created on any combination of

attributes on a relation. Queries that filter using those attributes can find matching tuples randomly using

the index, without having to check each tuple in turn. This is analogous to using the index of a book to go

directly to the page on which the information you are looking for is found, so that you do not have to read

the entire book to find what you are looking for.

Cardinality
The cardinality of one data table with respect to another data table is a critical aspect of database design.

Relationships between data tables define cardinality when explaining how each table links to another.

In the relational model, tables can be related as any of: one-to-one, many-to-one (or one-to- many), and

many-to-many.

122

For example, consider a database designed to keep track of hospital records. Such a database could have

many tables like:

• A Doctor table full of doctor information

• A Patient table with patient information

• And a Department table with an entry for each department of the hospital. In that model:

• There is a many-to-many relationship between the records in the doctor table and records in the

patient table (Doctors have many patients, and a patient could have several doctors);

• A one-to-many relation between the department table and the doctor table (each doctor works for

one department, but one department could have many doctors).

The one-to-one relationship is mostly used to split a table in two in order to optimize access or limit the

visibility of some information. In the hospital example, such a relationship could be used to keep apart

doctors' personal or administrative information.

No-SQL Databases: HBase

Overview
HBase is an open-source, non-relational, distributed database modeled after Google's BigTable and is

written in Java. It is developed as part of Apache Software Foundation's Apache Hadoop project and runs

on top of HDFS (Hadoop Distributed Filesystem), providing BigTable-like capabilities for Hadoop. That is,

it provides a fault-tolerant way of storing large quantities of sparse data. Since HBase is a distributed

database the main database will be in the master server and the others server will be called region servers.

HBase is column oriented
A regular SQL schema can be designed as follows:

Student Table

student_ID
varchar(2) PK

name
varchar(30)

age
integer

Sex
char(1)

1 John 25 M

2 Mike 32 M

3 Anna 19 F

4 Steve 28 M

The relational databases have row-oriented storage (they are organized by rows):

123

How does HBase work?
HBase has two types of nodes: the master and the region server. HBase only can have one master at a time.

The master manages the cluster operations, the assignment, the load balancing and the splitting. It does not

part of the read/write operation.

HBase can have one or more region servers. They host the tables; performs the reads, manage the buffers

writes. Also, the clients can talk directly to them for reads/writes.

HBase schema design
HBase is a big sorted map and to obtain a cell value, you have to enter the Row Key+ Column Key +

timestamp.

124

125

126

127

APPENDIX VI

GENERAL INSTRUCTIONS FOR THE PARTICIPANTS

Instructions to follow during the session:

• The participation in the experimentation is a volunteer work. If you decide, for any reason, to leave the

session, please inform to the organizer in order to return back all documents related with the experiment
and destroy them.

Please do not communicate with other participants during the session.

1. All the experiment will have four parts: Introduction, training session, experiment and survey.

2. Introduction: The goal of the initial introduction is to provide the context.

3. The training session: Listen carefully all the instructions provided by the session organizer. If you have
any questions, do not hesitate to ask. In the training session you will receive an overview about relation
DB, No-SQL database and an example of the migration process (at schema’s level).

4. The experiment: At the beginning of the experiment each participant will receive:

o A “participant code”, please write this code in all your documents that you are going to
receive.

o A yellow envelope with four types of documents:
o The document with the training example (white sheets).
o One blue sheet with the synthetic relational schema that will be migrated to No-SQL. This

database schema is totally different to the other database schema, presented in the previous
training document.

o One green sheet where the participant will write the No-SQL schema resulting from the
conversion/migration process.

o Several yellow sheets that can be used as drafts.

The first recommended step is to read the document “training document: migration from relational databases to
no-SQL databases”.

• Analyze how the example in the document was used to make the migration from the relational
database to No-SQL environment.

• After finishing the migration process and design your response schema in the green sheet, please make
sure that your “participant code” is written in all the documents used in the experiment.

• Besides, return all the documents used and not used in the experimentation to the organizer into the
yellow envelope.

5. Survey: After finishing the experiment part, please fill the “participant experience survey” form.

• If you have questions about this experiment, please contact: Abraham Gomez: abraham-

segundo.gomez.1@ens.etsmtl.ca
• This experiment has been designed in accordance with the policies of the ETS Ethics committee.

BIBLIOGRAPHY

Abran, A., Laframboise, L., & Bourque, P. (2003). A Risk Assessment Method and Grid for

Software Measurement Programs.

Agildata. (2011). DATABASE SHARDING: The Rise Of DataBase Sharding. Retrieved on

September 5, from http://www.agildata.com/database-sharding/

Anderson, A., Anthonio, S. (2016). Benefits and disadvantages of Cloud-Computing.

Retrieved from https://www.linkedin.com/pulse

Arango, H., Domingues, E. G., Policarpo, G. A. J., & Hermeto, A. E. (2002). Analogies

between quality improvement in multiphase electrical systems and financial markets.
Dans 10th International Conference on Harmonics and Quality of Power. Proceedings
(Cat. No.02EX630) (Vol. 1, pp. 301-303 vol.301). doi: 10.1109/ICHQP.2002.1221449

Babu, A., & Surendran, S. (2017). Relational to NoSQL Database Migration présentée à

National Conference on Advanced Computing, Communication and Electrical Systems
- (NCACCES'17), KMEA Engineering College, Kerala- 683561, India. Retrieved from
https://www.ijirset.com/upload/2017/ncacces/11_CAMERA%20RAEDY%20PAPER
-TK001-004-PC04.pdf

Barrett, R. (2009). Transaction accross Datacenters - App Engine Track [Conference].

Retrieved on 2009 from https://snarfed.org/transactions_across_datacenters_io.html

Biswapesh Chattopadhyay, L. L., Weiran Liu, Sagar Mittal, Prathyusha Aragonda, Vera

Lychagina, Younghee Kwon, Michael Wong (2011). Tenzing A SQL Implementation
On The MapReduce Framework Dans (pp. pp. 1318-1327). VLDB Endowment.
Repéré à http://research.google.com/pubs/pub37200.html

Bohn, R. B., Messina, J., Liu, F., Tong, J., & Mao, J. (2011). NIST Cloud Computing

Reference Architecture. Dans 2011 IEEE World Congress on Services (pp. 594-596).
doi: 10.1109/SERVICES.2011.105

Chongxin, L. (2010). Transforming relational database into HBase: A case study. Dans

Software Engineering and Service Sciences (ICSESS), 2010 IEEE International
Conference on (pp. 683-687). doi: 10.1109/icsess.2010.5552465

Cinnamond, S. (Producteur). (2013, January 2017). MySql to HBase in 5 steps. TerraMeta

Software inc. Retrieved from https://www.slideshare.net/scinnamond/wordnet-hbase

ComScore. (2016). Global Search Market Draws More than 100 Billion Searches per Month.

Retrieved from https://www.comscore.com/por/Insights

129

Cook, B. (2009). Scaling Twitter: Making Twitter 10000 Percent Faster. Retrieved on

September 5 from http://highscalability.com

Cordes, K. (2007). Google Tech Talk on scalability: YouTube Scalability Talk. Retrieved on

September 5, from https://kylecordes.com/2007/youtube-scalability

Cryans, J.-D., April, A., & Abran, A. (2008). Criteria to compare cloud computing with current

database technology. Dans International Workshop on Software Measurement, IWSM
2008, DASMA Software Metrics Congress, MetriKon 2008, and International
Conference on Software Process and Product Measurement, Mensura 2008, November
18, 2008 - November 19, 2008 (Vol. 5338 LNCS, pp. 114-126). Springer Verlag.
Retrieved from http://dx.doi.org/10.1007/978-3-540-89403-2-11

Cryans, J., April, A., & Abran, A. (2008). Criteria to Compare Cloud Computing with Current

Database Technology IWSM / MetriKon / Mensura 2008, LNCS 5338, 114-168.

Dean, J. (2009). Designs, Lessons and Advice from Building Large Distributed Systems.

Retrieved from http://www.cs.cornell.edu/projects/ladis2009

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large Clusters

Proceedings of the 6th conference on Symposium on Operating Systems Design &
Implementation, San Francisco, CA, 1-13.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., . . .

Vogels, W. (2007). Dynamo: amazon's highly available key-value store. SIGOPS Oper.
Syst. Rev., 41(6), 205-220.

deRoos, D. (2014). Hadoop For Dummies. Wiley. Retrieved on September 5, 2017 from

https://books.google.ca/books?id=wJApAgAAQBAJ

Donno, M. D., Tange, K., & Dragoni, N. (2019). Foundations and Evolution of Modern

Computing Paradigms: Cloud, IoT, Edge, and Fog. IEEE Access, 7, 150936-150948.
doi: 10.1109/ACCESS.2019.2947652

Driscoll, J., Sarnak, N., Sleator, D., & Tarjan, R. (1986). Making data structures persistent.

Proceedings of the eighteenth annual ACM symposium on Theory of computing. doi:
http://doi.acm.org/10.1145/12130.12142

Easterbrook, S., Singer, J., Storey, M.-A., & Damian, D. (2008). Selecting Empirical Methods

for Software Engineering Research. Dans F. Shull, J. Singer & D. I. K. Sjøberg (Éds.),
Guide to Advanced Empirical Software Engineering (pp. 285-311). London: Springer
London. doi: 10.1007/978-1-84800-044-5_11. Retrieved from 10.1007

130

Fay, C., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., . . . Robert., G. (2006,
Seattle, Novembre 2006). Bigtable: A Distributed Storage System for Structured Data
présentée à OSDI 06, 7th USENIX Symposium on Operating Systems Design and
Implementation, Seattle, WA, Seattle, WA.

Fong, J., & Bloor, C. (1994). Data conversion rules from network to relational databases.

Information and Software Technology, 36(3), 141-153. doi: 10.1016. Retrieved from
http://www.sciencedirect.com/science/article/pii/0950584994900531

Fong, J., & Huang, S. M. (1997). Information Systems Reengineering. Singapore:Springer-

Verlag Singapore Pte. Ltd.

Foster, I., Yong, Z., Raicu, I., & Lu, S. (2008). Cloud Computing and Grid Computing 360-

Degree Compared. Grid Computing Environments Workshop, 2008. GCE '08, 1-10.

Fowler, H. W. (2001). The New Pocket Oxford Dictionary. Dans. Oxford, United Kingdom:

Oxford University Press.

Fiore, S., & Aloisio, G. (2011). Grid and Cloud Database Management. Springer. Retrieved
from http://books.google.ca/books?id=7iD4gPDke6IC

Gartner. (2019). Cloud Computing. Retrieved from https://www.gartner.com/

Ghemawat, S., Gobioff, H., & Leung, S. (2003). The Google File System. 19th ACM

Symposium on Operating Systems Principles, New York, USA, 15.

Godin, R. (2006). Systèmes de gestion de bases de données par l'exemple. 2.

Gomez, A., Ouanouki, R., April, A., & Abran, A. (2014). Building an Experiment Baseline in

Migration Process from SQL Databases to Column Oriented No-SQL Databases.
Journal of Information Technology & Software Engineering.

Hanine, M., Bendarag, A., & Boutkhoum, O. (2015). Data Migration Methodology from

Relational to NoSQL Databases. International Journal of Computer and Information
Engineering, 9(12).Retrieved from https://waset.org/publications/10004179/data-
migration-methodology-from-relational-to-nosql-databases

Harris, D. (2011). Facebook trapped in MySQL ‘fate worse than death’. Retrieved from

https://gigaom.com/2011/07/07/facebook-trapped-in-mysql-fate-worse-than-death/

Higginbotham, S. (2011, 2011). Once Again, See How Twitter Scales. Retrieved on September

5 from https://gigaom.com/2011/05/03/once-again-see-how-twitter-scales/

Hudicka, J. R. (1998). An Overview of Data Migration Methodology. Retrieved from

http://dulcian.com/articles/overview_data_migration_methodology.htm

131

ISO/IEC. (2009). A standardization initiative for Cloud computing. Initiative.

Jimbojw. (2008). Understanding HBase and BigTable. Retrieved on September 5, 2015 from

http://sandmann.sdf.org/toledo/bigdata/2015/lib/HBase%20-%20Modeling.pdf

Kasunic, M. (2005). Designing an Effective Survey. Retrieved from http://www.dtic.mil

Klos, A. (2012). Optimisation de recherche grâce à Hbase sous Hadoop.

ETS University. Retrieved from http://publicationslist.org/data/a.april

Koopmann, J. (2008). Si what is an Oracle Nested Table? Retrieved on September 5, 2009

from https://www.databasejournal.com/features/oracle/article.php/3788331/So-what-
is-an-Oracle-Nested-Table.htm

Lars, G. (2013a). The Apache HBase Reference Guide [Online]. Retrieved from

http://hbase.apache.org/book/rowkey.design.html

Lars, G. (2013b). The Apache HBase Reference Guide #1 [Online]. Retrieved on March 11th,

2013 from http://hbase.apache.org/book.html#schema

Lars, G. (2013c). The Apache HBase Reference Guide #2 [Online]. Retrieved from March

11th, 2013 from http://hbase.apache.org/book/columnfamily.html

Lars, G. (2013d). The Apache HBase Reference Guide #3 [Online]. Retrieved from 11th, 2013

from http://hbase.apache.org/book.html#ops.capacity

Lars, G. (2013e). The Apache HBase Reference Guide #4 [Online]. Retrieved from 11th, 2013

from http://hbase.apache.org/book.html#schema.joins

Lee, C. H., & Zheng, Y. L. (2015a). Automatic SQL-to-NoSQL schema transformation over

the MySQL and HBase databases. Dans 2015 IEEE International Conference on
Consumer Electronics - Taiwan (pp. 426-427). doi: 10.1109/ICCE-TW.2015.7216979

Lee, C. H., & Zheng, Y. L. (2015b). SQL-to-NoSQL Schema Denormalization and Migration:

A Study on Content Management Systems. Dans 2015 IEEE International Conference
on Systems, Man, and Cybernetics (pp. 2022-2026). doi: 10.1109/SMC.2015.353.
Retrieved from http://ieeexplore.ieee.org/document/7379485/

Lethbridge, T. C. (1998). A Survey of the Relevance of Computer Science and Software

Engineering Education présentée à Proceedings of the 11th Conference on Software
Engineering Education and Training.

132

Li, N., Xu, B., Zhao, X., & Deng, Z. (2011). Database Conversion Based on Relationship
Schema Mapping. Dans 2011 International Conference on Internet Technology and
Applications (pp. 1-5). doi: 10.1109/ITAP.2011.6006302

Liming, L. (2008). Introduction To The Cloud Computing.

Maatuk, A., Ali, A., & Rossiter, N. (2008). Relational Database Migration: A Perspective

présentée à Proceedings of the 19th international conference on Database and Expert
Systems Applications, Turin, Italy. doi: 10.1007/978-3-540-85654-2_58

Marcos, E. (2005). Software engineering research versus software development. SIGSOFT

Softw. Eng. Notes, 30(4), 1-7. doi: 10.1145/1082983.1083005

Mell, P., & Grance, T. (2011). The NIST Definition of Cloud Computing (Draft).

Recommendations of the National Institute of Standards and Technology, 1-3.
Retrieved from http://csrc.nist.gov/groups/SNS/cloud-computing/

Ouanouki, R., April, A., Abran, A., Gomez, A., & Desharnais, J. M. (2017). Toward building

RDB to HBase conversion rules. Journal of Big Data, 4(1), 10. doi: 10.1186/s40537-
017-0071-x. Retrieved from https://doi.org/10.1186/s40537-017-0071-x

Pescholl, A. (2018). Proposal for Economic Analysis of Cloud Computing in the Technical

Wholesale. Dans 2018 International Conference on Information Technologies
(InfoTech) (pp. 1-4). doi: 10.1109/InfoTech.2018.8510729

Plummer, D. (2009). Cloud Computing: Enginnering the Requirements for "Everything as a

Service". Gartner Summit Event. Retrieved from http://reqmon.cis.gsu.edu

Rimal, B., & Choi, E. (2009). A Conceptual Approach for Taxonomical Spectrum of Cloud

Computing. Ubiquitous Information Technologies & Applications, 2009. ICUT '09.
Proceedings of the 4th International Conference on Digital Object Identifier, 1-6.

Rimal, B., Eunmi, C., & Lumb, I. (2009). A Taxonomy and Survey of Cloud Computing

Systems. INC, IMS and IDC, 2009. NCM '09. Fifth International Joint Conference on
Digital Object Identifier, 44-51.

Rocha, L., Vale, F., Cirilo, E., Barbosa, D., & Mourão, F. (2015). A Framework for Migrating

Relational Datasets to NoSQL1. Procedia Computer Science, 51, 2593-2602. doi:
10.1016. Retrieved from http://www.sciencedirect.com

Serrano, D., Han, D., & Stroulia, E. (2015). From Relations to Multi-dimensional Maps:

Towards an SQL-to-HBase Transformation Methodology. Dans 2015 IEEE 8th
International Conference on Cloud Computing (pp. 81-89). doi: 10.1109

133

Shackelford, R., McGettrick, A., Sloan, R., Topi, H., Davies, G., Kamali, R., . . . Lunt, B.
(2006). Computing Curricula 2005: The Overview Report présentée à Proceedings of
the 37th SIGCSE technical symposium on Computer science education, Houston,
Texas, USA. doi: 10.1145/1121341.1121482

Shay, T. (2018). Most popular databases in 2018 according to StackOverflow survey.

Retrieved from https://www.eversql.com/most-popular-databases-in-2018-according-
to-stackoverflow-survey/

Susilawati, E., & Surendro, K. (2017). A model design of information technology investment

for the government sector (Case study: Government institutions in Indonesia). Dans
2017 International Conference on Information Technology Systems and Innovation
(ICITSI) (pp. 32-37). doi: 10.1109/ICITSI.2017.8267914

Stats, I. L. (2020). Real Time Statistics Project. Retrieved from https://internetlivestats.com

Tarandeep, S., & Parvinder, S. (2011). Cloud Computing Databases: Latest Trends and

Architectural Concepts. International Journal of Computer, Electrical, Automation,
Control and Information Engineering, 5, 85-89. Retrieved from http://waset.org

TechTarget. (2017). Relational database management system guide: RDBMS still on top.

Retrieved from SearchDataManagement.com

Teekasap, P. (2016). Information technology investment and firm performance. Dans 2016

Management and Innovation Technology International Conference (MITicon) (pp.
MIT-157-MIT-160). doi: 10.1109/MITICON.2016.8025226

Vaquero, L., Rodero-Marino, L., Caceres, J., & Lindner, M. (2008). A break in the clouds:

towards a cloud definition. SIGCOMM Comput. Commun. Rev., pp. 50-55. doi:
10.1145/1496091.1496100

Wayner, P. (2008). Tour of Amazon, Google, AppNexus and GoGrid. Retrieved from

https://mis-asia.com/resource/internet/internet-search/tour-of-amazon-google-
appnexus-and-gogrid/

Weiss, A. (2007). Computing in the clouds. netWorker, 11(4), 16-25. doi: 10.1145

White, T. (2009a). Hadoop: The Definitive Guide. O'Reilly.

White, T. (2009b). MapReduce for the Cloud - Hadoop. Yahoo! press, 500.

Youseff, L., Butrico, M., & Da Silva, D. (2008). Toward a Unified Ontology of Cloud

Computing. Grid Computing Environments Workshop, 2008. GCE '08, 1-10.

134

Zelkowitz, M. V., Wallace, D. R., & Binkley, D. W. (2012). Experimental Validation of New
Software Technology. Dans Lecture Notes on Empirical Software Engineering (pp.
229-263). WORLD SCIENTIFIC. doi: 10.1142/9789812795588_0006. Retrieved from
http://www.worldscientific.com/doi/abs/10.1142/9789812795588_0006

Zhao, G., Lin, Q., Li, L., & Li, Z. (2014). Schema Conversion Model of SQL Database to

NoSQL. Dans 2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and
Internet Computing (pp. 355-362). doi: 10.1109/3PGCIC.2014.137. Retrieved from
http://ieeexplore.ieee.org/document/7024609/

