
Privacy-preserving Algorithm for Outsourcing Matrix
Multiplication Based on Strassen’s Algorithm

by

Moeedreza Mostafavi Toroqi

THESIS PRESENTED TO ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT OF A MASTER’S DEGREE

WITH THESIS, INFORMATION TECHNOLOGY

M.A.Sc.

MONTREAL, "FEBRUARY 4TH, 20 "

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

Moeed Reza Mostafavi Toroqi, 2020

This Creative Commons license allows readers to download this work and share it with others as long as the

author is credited. The content of this work cannot be modified in any way or used commercially.

BOARD OF EXAMINERS

THIS THESIS HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

M. Jean-Marc Robert, Memorandum Supervisor

Département de génie logiciel et des TI, ÉTS

M. Patrick Cardinal, President of the Board of Examiners

Département de génie logiciel et des TI, ÉTS

M. Chamseddine Talhi, External Examiner

Département de génie logiciel et des TI, ÉTS

THIS THESIS WAS PRESENTED AND DEFENDED

IN THE PRESENCE OF A BOARD OF EXAMINERS AND THE PUBLIC

ON "JANUARY 10TH, 2020"

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisor, Prof. Jean-Marc

Robert who means more than an university adviser for me during my master’s. The door of his

office was always open whenever I faced a problem in my thesis and his helpful and valuable

supports conduct me to complete this thesis.

My parents deserve special thanks for their continued support and encouragement during all

my life. I would especially like to thank my wife, Sadina has been extremely supportive of me

throughout this entire process and has made countless sacrifices to help me get to this point.

Also my lovely son, Liam for providing cheerful atmosphere at home.

Without such a team behind me, I doubt that I would be in this place today.

Algorithme distribué efficace pour la multiplication matricielle protégeant la
confidentialité des données

Moeedreza Mostafavi Toroqi

RÉSUMÉ

La multiplication de matrices est un outil mathématique fondamental et un problème de base

dans de nombreux domaines tels que l’ingénierie et l’informatique. Fréquemment, les clients

dont les ressources sont limitées ne peuvent supporter le coût de ce type de calcul et doivent

externaliser les informations et les calculs vers un système infonuagique puissant et efficace.

Dans cet échange de données, la sécurité et la confidentialité deviennent un problème important

en raison de la valeur de certaines données sensibles telles que des informations personnelles

privées ou des données industrielles. Les serveurs infonuagiques non fiables représentent tou-

jours un risque important pour les clients et augmentent le risque de fuite d’informations lors de

l’externalisation des données. Il existe de nombreux algorithmes sécurisés avec des méthodes

de chiffrement de données qui sont déjà utilisés dans l’industrie, mais en raison de nombreux

modèles de système et de traitement et de l’importance du niveau de sécurité, de nouveaux

algorithmes apparaissent toujours pour améliorer les schémas existants.

Dans ce mémoire, nous proposons quatre algorithmes préservant la confidentialité des données

basés sur le schéma de Strassen afin de fournir le résultat souhaité aux clients qui ne sont pas

en mesure d’effectuer ce type de calcul par manque de ressources.

Mots-clés: La Multiplication de Matrices, Le Schéma de Strassen

Privacy-preserving Algorithm for Outsourcing Matrix Multiplication Based on
Strassen’s Algorithm

Moeedreza Mostafavi Toroqi

ABSTRACT

Matrix Multiplication is a fundamental mathematical tool and basic problem with various ap-

plications in many domains such as data mining and data analyzing. Most of the time, limited-

resource clients cannot afford the cost of heavy computations and needs to outsource the in-

formation and computations to a powerful and efficient cloud system. In this data exchanging,

security and privacy concerning become a significant issue due to the value of some sensitive

data such as private personal information or industrial data. The untrusted cloud servers beside

malicious adversaries are always a kind of hazard for the clients and increase the risk of in-

formation leakage in data outsourcing. There exist many secure algorithms with creative data

masking methods which are already usable in the industry, but due to numerous system and

treat models, and the importance of the level of the security, new algorithms always emerge to

improve the existing schemes.

In this thesis, we propose four privacy-preserving algorithms based on Strassen’s scheme to

provide the desirable result of matrix multiplication for the clients who are not able to process

the regular matrix multiplication algorithms because of lake of powerful resources.

Keywords: Matrix Multiplication, Private/Secure, Outsource Computation, Strassen’s Algo-

rithm

TABLE OF CONTENTS

Page

INTRODUCTION . 1

CHAPTER 1 PROBLEM STATEMENT . 3

1.1 Problem definition . 3

1.2 Security Model . 4

CHAPTER 2 LITERATURE REVIEW .. 9

2.1 Cryptographic Tools . 9

2.2 Vector Multiplication . 12

2.2.1 Two Data Owners . 12

2.2.2 Multi Data Owners . 15

2.3 Matrix Multiplication . 21

2.3.1 Secure/Private Matrix Multiplication . 22

CHAPTER 3 PRIVATELY SECURE MATRIX MULTIPLICATION . 35

3.1 Encrypted Strassen’s Algorithm: EStrassen . 35

3.2 Private Secure Algorithm Involving Two Trusted Parties . 36

3.3 Privately secure algorithms involving only one trusted party . 40

3.3.1 Preliminaries . 40

3.3.2 First Algorithm . 43

3.3.3 Second Algorithm . 44

3.3.4 Third Algorithm . 45

CHAPTER 4 COMPARISON WITH THE RECENTLY INTRODUCED

ALGORITHM .. 47

4.1 Dumas et al Algorithm Definition . 47

CONCLUSION AND RECOMMENDATIONS . 53

BIBLIOGRAPHY . 55

LIST OF FIGURES

Page

Figure 1.1 Communication Flow Between Parties . 5

Figure 1.2 Different Characterization for the Participants behavior . 6

Figure 1.3 Collusion Probability in Different Participants . 7

Figure 2.1 Communications Between two participants . 16

Figure 2.2 DSDP Algorithm Schematic . 17

Figure 2.3 YTP Algorithm Schematic . 18

Figure 2.4 Strassen’s Algorithm Initializing . 22

Figure 2.5 Strassen([A], [B], [AB], t) . 23

Figure 2.6 Communications Between Included Parties . 24

(a) One Round Communications. 24

(b) Two Rounds Communications . 24

Figure 2.7 Interactive Protocol . 26

Figure 2.8 The System Model of the Proposed Algorithm. 30

Figure 2.9 Preprocessing on Ac . 31

Figure 2.10 Preprocessing on Bc . 32

Figure 2.11 Computing the public key . 32

Figure 3.1 The System Model of the secure algorithm including two trusted

parties. 38

Figure 3.2 The System Model of the Proposed algorithms . 42

Figure 4.1 Recursive splitting of the location and key sequences of the input

and output operands in Strassen-Winograd algorithm . 48

Figure 4.2 Initialization Phase of Strassen’s Algorithm. 48

Figure 4.3 Multiparty Copy Protocol . 49

Figure 4.4 Multiparty MAT-Copy Protocol . 50

XIV

Figure 4.5 Scheduling for Strassen’s Algorithm. 51

Figure 4.6 Finalization Step . 52

LIST OF ALGORITHMS

1 EStrassen(HEO(A),B,HEO(AB), t) . 37

2 Multiplying two matrices with two trusted third parties. 39

3 Multiplication with a permuted matrix PT B. 43

4 Multiplication with a matrix B split into two matrices with one random matrix

and two permutation matrices. 44

5 Multiplication with a matrix B split into two matrices with two random matrices

and two permutation matrices . 45

INTRODUCTION

Due to the availability of increasing number of high technology devices generating large amount

of personal data, highly intensive computational requirements and storage become crucial.

Then, data outsourcing emerged as a universal solution to decrease the computation cost on the

client side and transfer it to external powerful cloud systems.

Matrix multiplication as an important tool for data analysis requires important resources which

are too costly in terms of time and space for data owners. But data outsourcing, on the other

hand, brings many security and privacy concerns for the clients. Usually such matrices contain

sensitive information (i.e. private information of banks’ clients, insurance holders or industrial

manufacture, etc.) Thus, such processing should be protected from leaking on a public cloud

side.

Many research has been done in the recent years to improve the privacy of the outsourcing

matrix multiplication while the malicious adversaries are developing new methods and tech-

niques as well. The clients as the data owners try to hide all the matrix elements using some

encryption process before sending them to the cloud systems since the communication chan-

nel, or the cloud systems themselves are exposed to adversaries attacks. On the other hand,

the cost of masking input data and deriving the desired result from receiving values should not

be computationally high for the clients. It means that every proposed schemes for outsourcing

matrix multiplication must be appropriate for specific goals. Some data owners prefer to stick

to the highest security requirements for their sensitive information while others may trust their

cloud systems in order to reduce their costs of encryption and decryption of their data.

In this thesis, we propose four privacy-preserving algorithms based on Strassen’s scheme to

provide the desirable result of matrix multiplication for the clients who are not able to process

the regular matrix multiplication algorithms because of lake of powerful resources.

CHAPTER 1

PROBLEM STATEMENT

In this section, the family of problems tackled in this thesis is presented. In the following

section, the family of problems is formally defined. In the second section, the actors involved

in the problem-solving process and the security model used to evaluate the proposed solutions

are described.

1.1 Problem definition

As mentioned in the introduction, the family of problems considered in this thesis consists

in the secure computation of the multiplication of two matrices. In this context, the secure

property refers to the protection of the privacy of the information, when possible.

Consider the following two compatible matrices:

- the matrix A = [ai, j], for 1 ≤ i ≤ r and 1 ≤ j ≤ s;

- the matrix B = [bi, j], for 1 ≤ i ≤ s and 1 ≤ j ≤ t.

The objective is to obtain the resulting matrix C = [ci, j], for 1 ≤ i ≤ r and 1 ≤ j ≤ t defined as

follows

ci, j =
s

∑
k=1

ai,k ·bk, j. (1.1)

In the degenerate case, the problem can simply be the dot product of two vectors A=(a1, · · · ,as)

and Bt = (b1, · · · ,bs).

Obviously, this family of problems should be defined in distributed setup to be interesting.

In the first step, the elements of the matrices may be distributed among different actors. For

4

example, the matrices A and B can be owned by two different parties A and B, respectively.

Even worst, the matrix B can be shared by s× t parties. Ultimately, the resulting matrix C

should only be obtained by the identified party. In the second step, the computation may be

done by some unreliable third parties.

In this thesis, the goal is to propose a solution for a powerful outsourcing entity to do a matrix

multiplication, using an efficient divide-and-conquer algorithm (Strassen’s algorithm) when the

matrices are distributed among different independent data owners. The goal of this solution is

calculating the product of these matrices while the privacy of the data owners is protected. For

example, when a financial institute ask his clients to contribute in a survey, the most significant

issue for the clients is the protection of their information. On the other hand, the financial

institute needs the final result in a protected form as well.

1.2 Security Model

The security model defines the behaviour of the actors involved in the matrix multiplication

process. It is used to demonstrate the security level and possible attacks on the proposed

solutions. According to the actors’ behaviours and contributions to the matrix multiplication

process, different states are assigned to the actors. First of all, we define three actors in the

process:

- Data Owners: Data owners are the participants who have one or more elements of matrices.

They just know their own data, without any information about other elements even in the

same matrix. Moreover, they know the public key of the third parties and the result owner,

if such keys are needed in a proposed solution.

- Result Owner: This single owner wants to obtain the resulting information of the matrix

multiplication process. However, he shall not obtain any information on the primary matri-

ces, even if he knows the algorithms and the protocols used by the different parties.

5

- Third Parties: The third parties do not own any element of matrices, neither the result of

the computation. They are intermediate nodes who receive some masked data, encrypted or

randomized, process, and send them to the targeted actors. They should not get any detail

about the product matrix or the primary matrices. Depending on the protocols, there may

be one or more third parties.

Figure 1.1 Communication Flow

Between Parties

Ideally, the communication flow between these parties is one way. The data owners send their

masked values to the third parties which send them to the result owner after processing. There

is no interactive communication between parties.

Depending on the behaviour of the participants, they are categorized in different groups: hon-

est, semi-honest or malicious Hazay & Lindell (2010)

6

- An honest participant: Such a participant follows trustfully a protocol with no extra activity

to find any other information. This behaviour guaranties the correctness of the result.

- A semi-honest participant: Such a participant follows a protocol and performs his assigned

duties, but may also tries to find out some extra information that he would not know oth-

erwise. These semi-honest parties do alter the result. So the result should be correct and

valid, but some private information may leak in the process. Sometimes, such a participant

is referred to as honest-but-curious.

- A malicious participant: Such a participant does not necessarily follows the protocol, may

send bogus information to other participants, or may try to impersonate another participant.

Consequently, the result of process is not reliable and some private information may leak in

the process.

The following figure characterizes the different possibilities for the secure matrix multiplica-

tion protocols presented in this thesis. The result owner does not contribute to the computations

and the protocol exchanges. This actor just receives the end result of the process. Therefore,

he should not have to be characterized.

Actors

Data Owners

Malicious Semi-honest Honest

Result Owners Third Party

Malicious Semi-honest Honest

Figure 1.2 Different Characterization for

the Participants behavior

According to the parties cooperating in the execution of an algorithm, they may collude to get

private information or work alone. In a collusion, two or more participants may work together,

reveal their private information to each other, or even to the other participants. Their goal is

to get some extra private information, which they could not obtain otherwise. They may send

7

bogus values to victims, or process the receiving data on their own to find out some private

information. The collusion may occur among semi-honest participants or malicious parties.

Actors

Malicious

Collusion Not Collusion

Semi-honest

Collusion Not Collusion

Figure 1.3 Collusion Probability in Different Participants

CHAPTER 2

LITERATURE REVIEW

2.1 Cryptographic Tools

In order to transfer over a public channel data securely and privately, some cryptographic sys-

tems have to be used. In this section, the basic cryptographic primitives are presented. The

objective is to ensure that the description of the protocols in this thesis are self-contained.

This is particularly important for the homomorphic properties of the cryptographic systems on

which these protocols rely upon.

In a public/private key cryptographic system, each party has a unique public key pk used by the

other parties to encrypt messages intended for this party. On the other hand, this party owns

the corresponding private key sk used to decrypt receiving messages. Let m be a plain-text

message and c be the corresponding ciphertext message. The public encryption algorithm Epk

and the corresponding private decryption algorithm Dsk are such that, for any message m, :

- Epk(m) = c

- Dsk(c) = m

An homomorphic encryption is a form of encryption that allows computations on ciphertexts

to correspond to some desired computations on plaintexts. For example, the multiplication of

two ciphertexts may give the sum of the corresponding plaintexts once decrypted.

Generally speaking, two different operations are usually required: (i) the additions of two

plaintexts and (ii) the multiplications of two plaintext. If a cryptographic system provides both

unrestricted operations, it is said to be fully homomorphic. There are many variants of fully

homomorphic cryptographic systems but they are very costly and are not appropriate to solve

the problems considered in this thesis Gentry (2009), Kaosar et al. (2012).

10

To obtain better performances, some cryptographic systems support unrestrictedly only one of

the two classical operations (e. g., the addition of the plaintexts). For the other operation, they

support only some limited cases. For example, the multiplication of an encrypted plaintext

with an unencrypted one. Or, only few multiplications of the encrypted plaintexts.

Homomorphic Properties

For any proper messages m1 and m2,

1. Epk(m1)×Epk(m2)≡ Epk(m1 +m2) mod n2

2. Epk(m1)
m2 ≡ Epk(m1 ×m2)

There exist several semi-homomorphic cryptographic systems. Here we propose to use the

specific encryption scheme proposed by Paillier (1999) to illustrate the main properties of

these cryptographic systems.

Paillier Crypto-system

The Paillier crypto-system is based on the problem of computing nth residue classes, which is

believed to be computationally difficult. Here we recall this scheme in details:

Key generation

1. Choose two large random prime numbers p and q, independently, such that the greatest

common divisor gcd(pq,(p− 1)(q− 1)) = 1. If the primes have the same length, this

property is always fulfilled.

2. Compute n = pq and λ = lcm(p− 1,q− 1), knowing that lcm(·) is the least common

multiple function.

3. Select a random integer g where g ∈ Z∗
n2 .

4. Compute μ = (L(gλ mod n2))−1, knowing that L(x) = x−1
n

11

The public encryption key is (n,g) and the corresponding private decryption key is (λ ,μ).

Encryption

To encrypt a plaintext message m, we should pick a random number r such that 0 < r < n and

r ∈ Z∗
n2 , and compute the ciphertext message as follows: c = gm × rn mod n2.

Decryption:

To decrypt a ciphertext message c, we should retrieve the corresponding plaintext massage as

follows: m = L(cλ mod n2)×μ mod n.

The most interesting property of Paillier scheme is the fact that the encryption algorithm is

additive homomorphic (or semi-homomorphic). This means that knowing the encryption of

two messages Epk(m1) and Epk(m2), anyone can compute the encryption of the sum of the two

messages Epk(m1 +m2), without any further information on the cryptographic system proper-

ties or the underlying messages. This can be simply achieved by multiplying both ciphertexts.

Furthermore, the multiplication of a message Epk(m1) with a cleartext message m2 can also be

done efficiently. In this specific case, the ciphertext Epk(m1 ·m2) can simply be obtained by

exponentiating the value of Epk(m1) by m2.

The other semi-homomorphic system which is frequently used in secure computation algo-

rithms is Naccache-stern cryptosystemNaccache & Stern (1998).

Negative numbers

Let us assume that the messages represent integers. It is then possible to manipulate negative

integers. By convention, let us assume that if m ∈ Z∗
n2 is smaller than n2

2 , m is positive integer.

On the other hand, if m ∈ Z∗
n2 is greater than n2

2 , m represents the negative number m−n2.

With such a convention, if a,r ∈ Z∗
n2 and a,r ≤ n2

2 then:

Epk(a+ r)
Epk(r)

= Epk(a+ r)×Epk(−r) = Epk(a).

12

Other semi-homomorphic cryptographic schemes have been presented: Benaloh (1994), Nac-

cache & Stern (1998) and Okamoto & Uchiyama (1998).All these systems can be used inter-

changeably in the different protocols presented in this thesis.

2.2 Vector Multiplication

In this classical problem, there are two vectors �U = [u1,u2, ...,ut] and �V = [v1,v2, ...,vt] of

the same length. The goal is to compute the dot product of these vectors. No matter how the

elements are distributed among the different parties, the corresponding elements of two vectors

should be multiplied. The result is the sum of these products:

�U ·�V =
t

∑
i=1

uivi.

This can be seen as a basic tool for the classical matrix multiplication.

Secure/private Vector Multiplication

This problem is discussed in the different system models and element distributions. The el-

ements of initial vectors may be distributed in different parties, or one party has a complete

vector. Moreover, the presence or absence or a third party affects the algorithm. All possible

set-ups are illustrated below.

2.2.1 Two Data Owners

First of all, assume there are only two parties. Each one of them owns a complete vector

of length t, and their goal is to compute the dot product of these vectors securely, without

the assistance of third party. One of these two parties, say A , is the result owner as well.

Therefore,

- the party A owns the vector �A = [a1,a2, ...,at];

- the party B owns the vector �B = [b1,b2, ...,bt].

13

In the first step, A encrypts all the elements individually with his public key and send them

to B. Any semi-homomorphic encryption scheme can be used in this algorithm. Then, B

raises the received data to the power of the corresponding elements, multiplies the intermediate

results, and sends the result back to A . Here, A decrypts the received value with his private

key and gets the end result corresponding to the dot product of the two original vectors:

1. A : EA (a1),EA (a2), ...,EA (at) =⇒ B

2. B : EA (a1)
b1 ×EA (a2)

b2 × . . .×EA (at)
bt = EA (a1b1 +a2b2 + . . .+atbt) =⇒ A

3. A : DA [EA (a1b1 +a2b2 + . . .+atbt)] = ∑t
i=1 aibi

The computation cost of this algorithm is t(Cenc +Cexp)+ (t − 1)Cmul +Cdec. There are just

two parties, who are also data owners in this approach. Here, no malicious collusion is pos-

sible. This algorithm is secure against semi-honest adversaries. Nevertheless, if A sends n

different vectors to B and gets the corresponding results, he should obtain t linear independent

equations, and would be able to find the vector �B. Technically, B should refuse to answer to

more than one dot product request nevertheless. Moreover, if A send specific vectors to B, he

may get some information but not all:

- if A sends �A = [0,0, ...,ai = 1, ...,0], he would learn bi;

- if A sends �A = [1,1, ...,1], he would learn ∑t
i=1 bi.

The other approach is in presence of a third party, which would also be the result owner. Here,

there are two parties A and B, as before, and a result owner P who wants to obtain the dot

product of the two vectors. The goal is to compute the dot product, without revealing any

information to the data owners and even to the result owner.

First of all, A picks some random numbers ri, adds them to his elements, encrypts the results

individually with P public key, and sends them to B. Then, he encrypts the random numbers

rn with B public key and sends them to B. Thus, A computes the following values for B:

14

1. EP(a1 + r1),EP(a2 + r2), ...,EP(at + rt)

2. EB(r1),EB(r2), ...,EB(rt)

Here, B decrypts the random numbers, reencrypts them with P public key, and computes the

following equations and sends the result to the result owner P:

1. EP(r1),EP(r2), . . . ,EP(rn)

2. EP(−r1),EPP(−r2), . . . ,EP(−rn)

3. {EP(a1 + r1)×EP(−r1)}b1 × . . .×{EP(at + rt)×EP(−rt)}bt = EP (∑t
i=1 aibi)

The result owner P , decrypts the received value to get the dot product. This algorithm is

secure against semi-honest attackers but in case of collusion between B and P , they get the

elements of vector �A.

Next we discuss an algorithm in which both participants are semi-honest Ioannidis et al. (2002).

Assume that one of the parties, say A , is interested in the dot product �A ·�B. The other party is

assumed to be cooperative as long as he is assured that A would not get any other information

while following the protocol - even if he is only semi-honest. Unfortunately, no third party

can be used in this case. Nevertheless, let assume that a public s× s random matrix is publicly

known to both participants.

In the first step, the participant B computes (or defines) the following values:

- a s× s random matrix Q - for some security parameter s ≥ 2

- a s× (t +1) random matrix X such that a random row 1 ≤ r ≤ s of the matrix is composed

of the vector �B - note that the extra component t +1 of this row is simply set to 1

- a value b = ∑s
i=1 Qi,r

- a vector of dimension t +1 c = ∑s
i=1,i�=r Xi, ·×∑s

j=1 Q j,i

15

- a random vector of dimension t +1 f

- three random values R1, R2, and R3

Once these values have been computed, B sends to A the following values:

1. the s× (t +1) matrix QX - encoding the vector �B in the row r of X

2. the (t +1)-dimensional vector c′ = c+(R1 ×R2) · f

3. the (t +1)-dimensional vector g = f +(R1 ×R3) · f

Upon the reception of all these values, A first computes the following values:

- the s-dimensional vector y = QXv - where v is the extended vector �A where the extra com-

ponent t +1 of this vector is simply set to the random value α

- the value z = sums
i=1yi

Once these values have been computed, A sends to B the following values:

1. the value a = z− c′ · v

2. the value h = g · v

Finally, B computes β =
a+h R1

R2
b and returns this value to A . From this value, the dot product

�A ·�B is simply equal to β −α .

The communication flows between both participants are illustrated in Figure 2.1.

2.2.2 Multi Data Owners

Let us consider a different problem. One party A has an entire vector �A, and the second vector

is distributed among t different parties Bi, in the worst case. Each of these parties would own

16

Figure 2.1 Communications Between

two participants

a unique element bi. These elements would form the vector �B. The goal is to compute the

dot product without revealing any value. In the same way, it will be discussed in the presence

of a third party or the absence of it. For this set-up, four different algorithms are presented

in details. These solutions have been proposed by Dumas et al. (2017). In all these solutions,

Paillier cryptosystem is used, however any other semi-homomorphic cryptosystem can be used,

but this may lead to different overall costs.

In the first algorithm, called DSDP, the participant A and Bi parties follow the steps as follow.

All the parties, except A , encrypt their element with their own public key, and send it to A .

Thus, the party Bi would send to A , the encrypted message EBi(bi), for 1 ≤ i ≤ t. Then, A

would multiply the receiving values by the corresponding elements of the vector �A homomor-

phically, and masks these values with some random numbers, ri. Thus, A would compute the

following values

- EBi(bi)
ai ×EBi(ri) = EBi(biai + ri), for 1 ≤ i ≤ t

17

Figure 2.2 DSDP Algorithm Schematic

and send all these values to the first participant B1, as shown in Figure 2.2. This party would

decrypt the first value using his own private key, re-encrypts it with the next party B2 public

key, and add it to the second equation homomorphically. Thus, B1 would compute

1. DB1
[EB1

(b1a1 + r1)] = b1a1 + r1

2. EB2
(b1a1 + r1)×EB2

(b2a2 + r2) = EB2
(b1a1 + r1 +b2a2 + r2)

sends the last result to the next participant B2.

This process continues till the last participant Bt , who would send the result to the result owner

A , encrypted with A public key. The party A knows the random numbers, so he is able to

eliminate these values, and get the dot product of the two vectors.

18

It is secure against semi-honest attackers but not against colluding ones. Obviously, if A , Bi

and Bi+2 collude together, they can get the information of Bi+1. Therefore, the best mitigation

of this attack is to use a random ring order.

The total computation cost of this algorithm is 3t ×Cenc + t ×Cdec +2t ×Cmul + t ×Cexp. The

participant A has to do t ×Cenc + t ×Cmul + t ×Cexp + 1×Cdec. On the other hand, each

participant Bi has to do 2×Cenc +1×Cmul +1×Cdec.

The second algorithm in the same set-up is called YTP (Dumas et al., 2017). The first partici-

pant A has as entire vector �A and some parties Bi own elements of the second vector bi. The

algorithm goal is finding the dot product of these vectors in a secure way.

Figure 2.3 YTP Algorithm Schematic

First, A encrypts all the elements of the first vector individually by his public key and send

them to corresponding parties.

- A : EA (a1) =⇒ B1,EA (a2) =⇒ B2, · · · ,EA (at) =⇒ Bt

19

Then, the other participants picks a random number to mask their data and calculate the fol-

lowing equation homomorphically and sent it back to A . Thus,

- Bi : EA(ai)
bi ×EA(ri) = EA(aibi + ri) =⇒ A .

After this first phase, the participant A has the value of ∑aibi +∑i ri. The latter summation

should be removed in order to obtain the desired result.. So far, the computation cost of this

algorithm is 2t ×Cenc + t ×Cmul . T All the parties contribute in a classical salary summation

to calculate the random number securely and send it to A . This algorithm uses also Paillier’s

crypto-system and it is secure against semi-honest attackers, but can be improved to be secure

against malicious adversaries. The original salary summation goes as follows:

1. The first participant B1 selects a random value s and send to the send participant the

encrypted value of EB2
(r1 + s).

2. The second participant B2 decrypts the value of r1 + s, adds its own random value r2, and

re-encrypts the resulting value with the key of the next participants EB2
(r1 + r2 + s).

3. The last participant does the same operations but send it to the initial participant B1. Since

this participant knows the original value of s, he can retrieve the sum of ∑i ri to send to the

participant A .

Thus, all these participants add t ×Cenc + t ×Cdec.

Naturally, this classical protocol does not resist to colluding adversaries. One elegant solution

has been proposed by Dumas et al. (2017). They proposed to repeat the dot product for k iter-

ations - k depending on the number of potential colluding adversaries. Hence, the participants

determine a random permutation in which the classical salary protocol would be done, for a

given iteration. This permutation should be determined with the help of a cryptographically

robust hashing function. Hence, for a given participant Bi, this participant would partition his

random value ri into k parts such that ri = ∑ j ri, j. In the worst case, in a given iteration, a pair

20

of colluding adversaries would only get one element of the partition, which is useless without

the other parts. Dumas et al. (2017) present the implementation and the optimization of such a

resistant and secure protocol.

The third algorithm proposed here is called MPWP Dolev et al. (2010). First, the participant

A encrypts all the elements of his t-dimensional vector �A individually and forms a new vector

�T . The master also creates a (t × t)- matrix Z whose all elements are initialized to 1 and a

variable A = 1. All these values are sent to the first participant B1. Once the participant Bi

has received the values (Z,T,A), he would update these values as follows before to send them

to the participant Bi+1:

1. Bi picks a random value ri and update A = A×EA (ai)
bi ×EA (ri)

2. Bi would partition his value ri into t elements ri, j such that ri = ∑ j ri, j.

3. The column vector (ri,1, · · · ,ri,t) would be encrypted in replace the column i of Z. Hence,

the element ri, j is encrypted with the public key of the participant B j - important: the

encryption does not have to be homomorphic.

At the end, the last participant Bt sends all the values to A who can retrieve the masked result

∑i aibi + ri.

In the second phase of this algorithm, the matrix Z is sent to all the participants. Hence, the

participant Bi can retrieve all the partition values encrypted with his own key. The values are

the row i of the matrix Z. By decrypting these values, Bi can sum these elements and return

this value back to A - encrypted with A public key. When A has received all the encrypted

values of ∑ j ri, j, he would be able to unmask the dot product of �A ·�B.

Dumas et al. (2017) proposed a slight improvement on the last algorithm. Instead of transfer-

ring back and forth the matrix Z, a given participant Bi would simply sends his part EB j ri, j

encrypted directly to the participant B j. During this protocol, all the participants would col-

lect the received values. At the end, they would simply send back to the participant A the

21

encrypted sum of the received value. This optimization simply reduces the communication

flows between the participants. Otherwise, the protocol is the same.

2.3 Matrix Multiplication

Among the most common tools in computer science and engineering, matrices stand out. In

many time-sensitive engineering applications, matrix multiplications represent a major bur-

den. To respond to this problem, numerous solutions have been proposed to reduce the time

complexity of the matrix multiplication.

Naive Algorithm

This approach is used to compute the multiplication of two matrices of compatible sizes (the

number of columns of the first matrix should be the equal to the number of rows of the second

matrix). This algorithm is the easiest but the most expensive one. Its computation cost is

O(n3), for n× n matrices. It is mainly used for simple small matrices in non time-sensitive

applications.

Strassen’s algorithm

The first divide-and-conquer algorithm has been proposed by Strassen (1969). It is much faster

algorithm than the naive algorithm. It decreases the complexity from O(n3) to O(nlog2 7),

which is considerable for n > 100 (Deng & Ramanan, 2017).

Strassen’s algorithm works on square matrices with equal sizes. Then, both matrices are di-

vided into four equal size quadrants as shown in the next figure. Assume there are two square

matrices [A]2k×2k and [B]2k×2k , finding the product of these two matrices [C]2k×2k = [A]× [B] is

the goal. The details are given in Algorithm 2.1.

Many more algorithms were introduced for matrix multiplication since the seminal work of

Strassen with less computation costs over time such as Bini & Lotti (1980), Schönhage (1981),

22

Figure 2.4 Strassen’s Algorithm Initializing

Coppersmith & Winograd (1990) and finally the least costly algorithm introduced by Stothers

(2010).

2.3.1 Secure/Private Matrix Multiplication

In parallel with the development of the classical matrix multiplication algorithms, researchers

have been proposed solutions to distribute such algorithms in cloud environments. As men-

tioned in the introduction, their objectives are mainly to take advantage of massive computa-

tional resources. However, this represents a major threat against the privacy of the data.

In this section, many private/secure matrix multiplication algorithms are presented. Our choices

have been done based on the relatedness with our solution presented in the next chapter and

their practicality.

Fully distributed set-ups: Bultel et al. (2017) solutions

First we describe algorithms which were introduced by Bultel et al. (2017). The different

parties and communication rounds are illustrated in Figure 2.6.

In the worst case scenario for the matrix multiplication problem, all the elements of initial

matrices are distributed in different nodes. Thus, there would be 2n2 data owners - in the

remaining of this chapter, we would only consider square n× n matrices. More over, two

intermediate trusted nodes, R and Q, are introduced. They do not have any data but just have

enough resources to help in the algorithm process. The last actor of this algorithm is the result

23

Data: Two 2t ×2t matrices: [A], [B].
Result: The product [C] = [A]× [B].
if t ≥ 2 then

Divide both matrices into four submatrices, for 1 ≤ α,β ≤ 2:

Aα,β = [a(α−1)2t−1+i,(β−1)2t−1+ j],

Bα,β = [b(α−1)2t−1+i,(β−1)2t−1+ j], for 1 ≤ i, j ≤ 2t−1

Compute the following submatrices:

S1 ← A2,1 +A2,2 S2 ← S1 −A1,1

S3 ← A1,1 −A2,1 S4 ← A1,2 −S2

T1 ← B1,2 −B1,1 T2 ← B2,2 −T1

T3 ← B2,2 −B1,2 T4 ← T2 −B2,1

Call this procedure recursively:

Strassen(A1,1),B1,1,(R1), t −1) Strassen((A1,2),B2,1,(R2), t −1)
Strassen((S4), B2,2,(R3), t −1) Strassen((A2,2),T4, (R4), t −1)
Strassen((S1), T1, (R5), t −1) Strassen((S2), T2, (R6), t −1)
Strassen((S3), T3, (R7), t −1)

Compute the following submatrices:

(U1) = (R1)+(R2) (U2) = (R1)+(R6)
(U3) = (U2)+(R7) (U4) = (U2)+(R5)
(U5) = (U4)+(R3) (U6) = (U3)− (R4)
(U7) = (U3)+(R5)

return (AB) = [(U1)||(U5),(U6)||(U7)]
else

(r1,1) = (a1,1)(b1,1)+(a1,2)(b2,1)
(r1,2) = (a1,1)(b1,2)+(a1,2)(b2,2)
(r2,1) = (a2,1)(b1,1)+(a2,2)(b2,1)
(r2,2) = (a2,1)(b1,1)+(a2,2)(b2,2)
return (AB) = (R)

Figure 2.5 Strassen([A], [B], [AB], t)

owner P who needs the product. The goal of the participants is to compute the product of two

matrices securely, without leaking information to third parties.

SP-2Rounds

The first step of this algorithm is to mask the elements of the matrices. All the elements of the

first matrix A are encrypted with the public key of P. The elements of the second matrix B are

24

a) One Round Communications b) Two Rounds Communications

Figure 2.6 Communications Between Included Parties

masked with random numbers ri, j picked by the data owners. These values are encrypted with

the public key of the second third party Q and send to him. In summary:

- First matrix element owners: EP(ai j)−→ R,Q

- Second matrix element owners: pick r jk , b jk + r jk −→ R , EQ(r jk)−→ Q

Then, R computes the multiplication of corresponding elements homomorphically and send the

result to next party, Q.

- R : EP(ai j)
(b jk+r jk) = EP(ai jb jk)+EP(ai jr jk)−→ Q

At this point, Q decrypts the random numbers and deletes them from the result. Then, he com-

putes the summations homomorphically and forms the product to send it the user P encrypted.

25

- Q :
EP(ai j)

(b jk+r jk)

EP(ai j)
r jk = EP(ai j)

b jk = EP(ai jb jk) and the encrypted resulting element is given by

EP(Σ j(ai jb jk)) = Π jEP(ai jb jk).

This algorithm uses Paillier’s cryptoystem and it is secure against semi-honest attackers but not

secure against malicious attackers so it is not collision resistant. The algorithm complexity is

(Csum +2CE)n2 +(2Cmul +2Cexp+CD)n3.

The complexity of this solution can be easily reduced if only one of the matrix has to be

kept secret. In such a case, only one trusted party is necessary. Thus, R can receive the en-

crypted elements of A and the elements of B and computes each element EP(Σ j(ai jb jk)) =

Π jEP(ai j)
b jk −→ P.

CRSP-One Round

If the previous algorithm was secure against semi-honest participants, it could not resist to

malicious colluding participants. Hence, if data owners of the second matrix and the second

trusted party R collude, R would be able to obtain too much information. In the next solution,

the algorithm has been designed to thwart this problem.

First, all the elements of both matrices are encrypted with the public key of P and sent to the

third party R.

- Data owners: EP(ai j)−→ R , EP(b jk)−→ R

Then, R computes the multiplication of corresponding elements using the interactive protocol

presented in Figure 2.7. Hence, R would be able to obtain EP(ai jb jk) with the help of P without

giving any information to P. This can be achieved by increasing the communication complexity

of the overall protocol.

Knowing the result of elements’ multiplication EP(ai jb jk), R can easily compute the summa-

tions homomorphically and send these results to the user P

26

Figure 2.7 Interactive Protocol

- R : EP(Σ j(ai jb jk)) = Π jEP(ai j)
b jk −→ P.

This algorithm uses Paillier’s cryptosystem and it is secure against semi-honest attackers and

maliciously colluding third party R.

Outsourcing Large Matrix Computation to a Malicious Cloud (Lei et al., 2014)

In this context, only one resource-limited data owner has both matrices. This entity wants to

obtain from a potentially malicious cloud service the product of his two matrices. The com-

putation of the product of two input matrices A and B by the following algorithm is based on

five functions: KeyGen, MMCEnc, MMCSolve, MMCDec, Result Verify, which are described

in details below. For this algorithm, the dimensions of the matrices should be compatible but

otherwise unrestricted. Thus, A has dimension n×m and B has dimension m× s .

KeyGen: The data/result owner selects three sets of non-zero random numbers from the same

domain as the matrix elements: {α1,α2, ...,αm}, {β1,β2, ...,βn} and {γ1,γ2, ...,γs} Then, he

selects three random permutations π1 ← RandP(1, ...,m), π2 ← RandP(1, ...,n) and π3 ←
RandP(1, ...,s). These informations can be seen as the secret keys of the data owner.

MMCEnc: In this process the owner generates three invertible permuted diagonal matrices

P1,P2 and P3, where P1(i, j) = αiδπ1(i), j, P2(i, j) = βiδπ2(i), j and P3(i, j) = γiδπ3(i), j - where

δ (i, j) = 1, if and only if i = j (Kronecker delta function). Then, the owner computes A′ =

27

P1AP−1
2 and B′ = P2BP−1

3 and sends them to the cloud system. The inverse matrices for

P1,P2,P3 can be easily calculated as follows:

- P−1
1 (i, j) = (α j)

−1δπ−1
1 (i), j

- P−1
2 (i, j) = (β j)

−1δπ−1
2 (i), j

- P−1
3 (i, j) = (γ j)

−1δπ−1
3 (i), j

MMCSolve: The cloud computes C′ = A′B′ = P1ABP−1
3 using any internal efficient matrix

multiplication algorithm and sends back C′ to thes owner.

MMCDec: The owner simply computes C = P−1
1 C′P3 = AB to retrieve the desired value.

Result Verify:The owner can verify the correctness of the returned result by computing P =

A×(B×r)−C×r, where r is a random vector. The correct result should lead to P= (0, ...,0)T .

This algorithm masks the input values from the cloud system (without any encryption). How-

ever, the number of zero elements are revealed but not necessarily their positions.

The Privacy Preserving Scheme for Outsourcing MMC (Fu et al., 2017)

As just mentioned for the previous algorithm, the number of zero values in the resulting matrix

is revealed to the cloud system. This may represent a major disadvantage in some cases. The

following protocol addresses this problem.

A Privacy-preserving process is added to the aforementioned five functions to hide the input

values. This transformation helps the data owner to mask his information from the cloud

system. Let assume that all the elements of a r×c-dimensional input matrices X are within the

range [−K,K], for some K = 2l(l > 0). The data owner can hide the privacy of these values by

adding a random matrix to his input value X ′ = X +R. This matrix R can be defined as R=UV ,

where U is a (m×k)-matrix with random entries in [−2p, · · · ,2p] and V is a (k×n)-matrix with

random entries in [−2l, · · · ,2l+q], for some 2 ≤ k � r,c. This matrix can be computed in time

28

O(nmk), hence the importance of selecting k� r,c. Otherwise, the all process would be useless

since the data owner would have to compute an expansive matrix multiplication himself.

The remaining of the algorithm is somehow similar to the previous solution.

KeyGen: The data owner specifies a positive integer k (2 ≤ k � min(m,n,s)) and builds two

random matrices R1 = U1V1 and R2 = U2V2 as described in the Privacy-preserving process.

Thus, A′ = A+R1 and B′ = B+R2.

MMCSolve: The cloud system must calculate the product of two received randomized matrices

and send back the result C = A′B′ = (A+R1)(B+R2) to the data owner.

MMCDec: The result is AB = C − S where S = AR2 + R1B + R1R2 = (A + R1)R2 + R1B.

Fortunately, the two matrix multiplications can be done more efficiently due to the construc-

tion of these random matrices. Thus, (A+R1)R2 = (A+R1)U2V2, which can be computed

in O(nmk + nsk) with the naive matrix multiplication. Similarly, R1B can be computed in

O(msk+nsk). Assuming that k � n,m,s is therefore crucial.

The cost of this algorithm is very important compared to the previous one. The data owner

has to do at least two expensive matrix multiplications – not with the full size but nevertheless

expensive. There is therefore a trade-off between this solution and the previous one leaking the

number of zero entries.

Private and Cheat-free Outsourcing of Algebraic Computations (Benjamin & Atallah,

2008)

Assume that a data owner A has two n×n input matrices A and B and because of his limited

computation resources cannot execute more than O(n2) computations nor the expensive public

key encryptions of all input values. The goal is obtaining the product matrix AB using two un-

trusted third parties, let say cloud system S1 and S2, with enough computational resources. As

usual, there should not be any information leakage about the input matrices or their product to

29

the cloud systems. Moreover, any malicious behavior of any cloud system should be detectable

with high probability by A .

The first step of this algorithm is hiding the input matrices. So the owner A generates two

random matrices R1 and R2 and computes A′ = A−R1 and B′ = B−R2. He also generates two

other random matrices U and V and computes their Schur product R=U
V - this corresponds

to the multiplication of the corresponding pairs of elements (i.e., ui, j × vi, j). Then, A sends

R1, R2 and U to the cloud S1, and A′, B′ and V to the cloud S2. He also sends some temporary

public and private keys of a semi-homomorphic cryptographic system to S1.

Now, S1 computes R1R2, EncA (R1), EncA (R2) and EncA (U) and sends them back to A . On

his side, S2 computes A′B′ and sends it back to A . Then, A sends the values just received

from S1 i.e., R1R2, EncA (R1), EncA (R2) and EncA (R′) to S2.

Here, S2 computes EncA (R1B′), Enc(A′R2) and EncA (U
V) = EncA (R). This can be done

due to the homomorphic property of the cryptographic system and the fact that S2 has always

the second element in cleartext. Finally, S2 computes and sends back to A the following

matrix: EncA (R1B′)
EncA (A′R2)
EncA (R) = EncA (R1B′ +A′R2 +R). The owner A

sends the received matrix to S1 who decrypts it and send it back in plaintext. A subtracts R

and gets R1B′+A′R2. Finally, he adds this value with the value of A′B′ −R1R2, which has been

received previously, to obtain the desired result AB.

The above protocol is vulnerable to any malicious behavior of the cloud systems S1 and S2.

They can easily return wrong results. By modifying this scheme, A can catch any incorrect

result by high probability. He simply needs to generates a random n× 1 vector matrix V and

computes (AB)V and A(BV), if the equations are equal, the cloud systems are honest with high

probability otherwise they did not follow the instructions.

Efficient Secure Outsourcing Computation of Matrix Multiplication in Cloud Computing

Zhang et al. (2016)

30

The last solution presented in the chapter is a bit different than the other ones. It has a par-

ticipant who plays a new role in the solution. It is also based on a different cryptographic

paradigm.

Three parties are included in this scheme: the data owner A (also referred to as the client of

the system), the cloud system and the verification party. It is based on five functions: Key

generation, Preprocessing, Requesting, Computation, Verification, Decryption. The system

model is shown in Figure 2.8.

The new actor has an important role. His task is to verify the correctness of the encrypted

computations done by the cloud system.

Figure 2.8 The System Model of the Proposed Algorithm

KeyGen: The cloud generates the parameters of bi-linear groups: param=(q,g1,g2,gt ,G1,G2,Gt ,e).

The cloud publishes param as well as the hash of his secret key SK.

This solution is the first one that is not using a semi-homomorphic cryptosystem. It is based on

bilinear pairings, which is a powerful concept. It has been used extensively in the past. In this

31

context, only one example is given. Fiore & Gennaro (2012) proposed to use bilinear-pairings

to develop a solution for the matrix multiplication allowing an external verifier to check the

computations done by a third party.

Preprocessing: This is the masking phase done by the data owner. The input matrices A and

B, which have dimension n1 × n2 and n2 × n3, respectively, would have two different prepro-

cessings. Using the secret key and random vectors, A would compute DA and DB as shown in

Figure 2.9 and Figure 2.10, respectively. Once these matrices would be masked they would be

send to the cloud system.

Figure 2.9 Preprocessing on Ac

In both cases, the input matrices are randomized with a random matrix, which is produced by

multiplying two random vectors. Furthermore, for the first matrix A, a matrix W is generated

(on a line per line basis). This matrix is the verification key that would have to be used later on

in this solution. For the second matrix B, a public key PK2 is generated (also on a line per line

basis).

Requesting: Here, the data owner A requests the result of multiplication of the two matrices

A and B by sending the IDs of matrices. He also computes and publishes PKT . This is the

32

Figure 2.10 Preprocessing on Bc

second part of the public key associated to the two matrices to be multiplied. The details are

described in Figure 2.11.

Figure 2.11 Computing the public key

Computation: The cloud computes the result of two received matrices according to the IDs

and the verification key as well as shown below:

33

˜Res = Ã.B̃ = (A+RA)(B+RB)

V K = (πi, j)n1×n3
= (

n2

∏
k=1

(w̃i,k)
b̃k, j)n1×n3

The value of w̃i,k is the verification key entry of the corresponding randomized element of the

matrix A (see Figure 2.9). The value of b̃k, j is simply the corresponding randomized element

of the matrix B.

The result and verification key will be sent to the verification party. This step is crucial if the

cloud system can not be fully trusted.

Verification: The verification party judges the correctness of ˜Res by computing the equation

below:

e(πi, j, pk2 j) = (pkti, j)
˜Resi, j

If all the conditions are true, then he send the results to the client.

Decryption: The client recovers the final result be subtracting R from verified ˜Res where R is

defined as below:

R = (Aαb)β T
b +αa(β T

a B)+αa(β T
a αb)β T

b

CHAPTER 3

PRIVATELY SECURE MATRIX MULTIPLICATION

In this chapter we discuss about four privately secure algorithms for matrix multiplication

based on Strassen’s algorithm. In the next section, we propose the basic encrypted Strassen’s

algorithm, called EStrassen, which is applied on one input matrix encrypted under public key

semi-homomorphic cryptosystem and the other one may be simply masked or not with random

values. Then, in the following sections, a privately secure matrix multiplication is described

with two trusted party and, finally, improved versions of the algorithm using only one trusted

third party are presented.

3.1 Encrypted Strassen’s Algorithm: EStrassen

To develop this privately secure algorithm ,we need to encrypt the first input matrix A with

an additive semi-homomorphic public-key cryptosystem. This means that the addition of the

clairtexts can be done effectively by doing some computations on their cyphertext. This process

encrypts each element of the matrix independently. The second input matrix should be in plain

text but could be randomized, permuted or rotated. The final result is therefore encrypted.

Algorithm 3.1 shows the details of EStrassen when the second matrix is not masked. Since

the second input matrix B is not masked in this process, the trusted party will learn all the

elements of B, while the information of matrix A remain secure since its entries are encrypted.

Practically we do not use this algorithm as an independent algorithm for matrix one, but use it

as a subroutine to provide privately secure algorithms in the following sections.

Remember the context of the problem considered in this thesis:

- Different data owners are involved in this algorithm since the input matrix are distributed

among different participants;

36

- One or two trusted third parties are needed to do the computationally intensive multiplica-

tions. These participants are semi-honest. They will follow the protocols but if they have

the opportunity to discover the data they will exploit this security breach;

- The result owner (or the client) for who the computation is done. His public key should be

available to any participant - in a trusted manner.

Proposing an algorithm involving two trusted parties is straightforward. Unfortunately, it does

not seem to have a simple solution involving only trusted party. Some compromises have to be

done. In the two trusted party solution, the risk of collusion is considerable and should be paid

attention while having one trusted party decreases the possible attacks.

3.2 Private Secure Algorithm Involving Two Trusted Parties

System Model

The main problem discussed in this section is to securely multiply two square 2t ×2t matrices,

say A and B, while protecting the privacy of their elements. Data owner parties may know

one or more elements, row, column or even a complete input matrix, but in the most general

set-up, we consider that all the elements are distributed among independent nodes. Hence, the

elements of matrix A are distributed in different 22t nodes (called Ai j) and the elements of

matrix B are distributed in different 22t nodes (called Bi j) , so there are 22t+1 data owners.

Also there are two intermediate trusted parties, T1 and T2 (third parties) who perform the

computations but do not have any information about the input matrices. The client O , stands

out of the system, needs the product of two matrices, C = A×B. The described system model

is illustrated in Figure 3.1 including communication channels.

The algorithm should meet the following properties:

- The user O , cannot learn any information about input matrices, A and B

- None of the nodes of A can learn any information about B and C.

37

Data: Two 2t ×2t matrices: HEO(A),B and the public keys of O.

Result: The encrypted product HEO(AB).
if t ≥ 2 then

Divide both matrices into four submatrices, for 1 ≤ α,β ≤ 2:

HEO(Aα,β) = [HEO(a(α−1)2t−1+i,(β−1)2t−1+ j)],

Bα,β = [b(α−1)2t−1+i,(β−1)2t−1+ j], for 1 ≤ i, j ≤ 2t−1

Compute the following submatrices:

HEO(S1)← HEO(A2,1)
HEO(A2,2)

HEO(S2)← HEO(S1)
HEO(A1,1)
−1

HEO(S3)← HEO(A1,1)
HEO(A2,1)
−1

HEO(S4)← HEO(A1,2)
HEO(S2)
−1

T1 ← B1,2 −B1,1

T2 ← B2,2 −T1

T3 ← B2,2 −B1,2

T4 ← T2 −B2,1

Call this procedure recursively:

Strassen(HEO(A1,1),B1,1,HEO(R1), t −1)
Strassen(HEO(A1,2),B2,1,HEO(R2), t −1)
Strassen(HEO(S4), B2,2,HEO(R3), t −1)
Strassen(HEO(A2,2),T4, HEO(R4), t −1)
Strassen(HEO(S1), T1, HEO(R5), t −1)
Strassen(HEO(S2), T2, HEO(R6), t −1)
Strassen(HEO(S3), T3, HEO(R7), t −1)

Compute the following submatrices:

HEO(U1) = HEO(R1)
HEO(R2)
HEO(U2) = HEO(R1)
HEO(R6)
HEO(U3) = HEO(U2)
HEO(R7)
HEO(U4) = HEO(U2)
HEO(R5)
HEO(U5) = HEO(U4)
HEO(R3)

HEO(U6) = HEO(U3)
HEO(R4)
−1

HEO(U7) = HEO(U3)
HEO(R5)
return HEO(AB) = [HEO(U1)||HEO(U5),HEO(U6)||HEO(U7)]

else
HEO(r1,1) = HEO(a1,1)

b1,1
HEO(a1,2)
b2,1

HEO(r1,2) = HEO(a1,1)
b1,2
HEO(a1,2)

b2,2

HEO(r2,1) = HEO(a2,1)
b1,1
HEO(a2,2)

b2,1

HEO(r2,2) = HEO(a2,1)
b1,1
HEO(a2,2)

b2,2

return HEO(AB) = HEO(R)
Procedure 1: EStrassen(HEO(A),B,HEO(AB), t)

38

Figure 3.1 The System Model of the secure algorithm including

two trusted parties.

- None of the nodes of B can learn any information about A and C.

- None of the intermediate nodes,T1 and T2, can learn any information about A, B and C.

In the algorithm presented here, first of all, each individual entry of the matrix A is encrypted

with an additive semi-homomorphic cryptographic system (e.g., Paillier’s cryptosystem pre-

sented in Chapter 2), and the matrix B is masked by random 2t ×2t matrix R (this can be seen

as a one-time pad encryption process) The encryption of the matrix A used the result owner

public key, which has been distributed to all participants. Both encrypted matrix are sent to the

first trusted party T1. On the other hand, the encrypted random matrix HET2
(R) is sent to T2

as well.Remember the goal is to send encrypted result of the matrix multiplication to the result

39

owner O . The participant can be seen as the client of this process. He will decrypt the received

matrix with his private key and obtain the product.

Data: Two 2t ×2t matrices: HEO(A), B+R and HET2
(R).

Result: The encrypted product HEO(AB).

T1 receives HEO(A) and B+R from the data owners

T1 calls EStrassen(HEO(A),B+R,HEO(A(B+R)), t) and sends the result to T2

T2 receives HEO(A) and HET2
(R) from the data owners, and HEO(A(B+R)) from T1

T2 computes HEO(AB) = HEO(A(B+R))
HEO(A)R

return HEO(AB) to the result owner O
Procedure 2: Multiplying two matrices with two trusted third parties

Security Analysis

The aforementioned algorithm is secure against the semi-honest adversaries. This means that

if all the parties follow the algorithm but anyone tries to obtain more information about the

initial data or the result, there is no success since the input matrices are either encrypted or

randomized using long enough random number or keys.

However, we have to consider that the communications with the two trusted parties take place

over secure channels (in system communications). Otherwise, the result owner would be able

to retrieve easily the matrix A, which is simply encrypted with his own public key. Once this

first matrix is known, it can be inverted and the matrix B will be readily obtained from the

resulting matrix AB - since A−1(AB) = B).

Unfortunately, if there are some collusion among the participants, the different matrices are

at risk. In the case of a collusion between T1 and T2, they would obtain easily the matrix B.

T2 would need to decrypt the random matrix R and share it with T1. This latter participant

would then retrieve easily the values of the matrix B. On the other hand, since all the entries

of the matrix A are encrypted with the public key of the result owner O , there will not be any

information leakage of this matrix even in case of collusion between the third parties. But if

40

one of them colludes with O , everything falls apart. Just too much information is shared among

these malicious participants.

Finally, if the result owner O can pretend to be one of the data owners and send some input

matrices to the trusted parties, again the all protocol falls apart. For example, if O pretends to

own the matrix A and sends it T1, he would be able to retrieve easily the matrix B without any

more effort. He would simply send the identity matrix I and would obtain back form T2 the

resulting matrix IB = B.

3.3 Privately secure algorithms involving only one trusted party

In this section, we describe three different solutions based on ESreassen involving only one

trusted party - reducing the needs of finding two independent but cooperating trusted parties

and obviously reducing the opportunities of collusion. We begin to present all the common

hypotheses which are considered for the next three proposed algorithms.

3.3.1 Preliminaries

Recalling Basic Matrix Properties:

In the following algorithms, some basic matrix concepts in linear algebra are used. They are

recalled here:

1. Identity Matrix : An Identity or Unit matrix is a square matrix which all the values on the

main diagonal are one and rest of the values are zero. This matrix is denoted I

2. Transposed Matrix: The transpose of a matrix is an operator which flips a matrix over its

main diagonal, that is it switches the row and column indices of the matrix by producing

another matrix, which is denoted as MT . Hence, this row i of the matrix M becomes the

column i of the corresponding matrix MT .

41

3. Inverse Matrix: The right inverse of a matrix M, which is denoted M−1, is such that

MM−1 = I. Similarly, the left inverse of a matrix M is such that M−1M = I. Remark

that if M is a square matrix, its right inverse is also its left inverse. This means that

MM−1 = M−1M = I.

4. Orthogonal Matrix: An orthogonal matrix is a square matrix whose columns and rows are

orthogonal unit vectors. Such a matrix Q must respect the following properties:

- QT Q = QQT = I

- QT = Q−1

5. Permutation Matrix: It is a square binary matrix which has only one entry of 1 in each row

and each column. Each such matrix can be obtained by permuting the rows (or equivalently

the columns) of the identity matrix I. If P is such a matrix, the multiplication PA simply

permutes the rows of the matrix A. Similarly, the multiplication AP simply permutes its

columns.

System Model:

Assume there are some data owners with limited computational resources which need the prod-

uct of their two matrices A2t×2t and B2t×2t . Each independent participant Pi knows the ith col-

umn of the matrix A and the corresponding ith row of the matrix B. Also, there is a trusted third

party (a cloud system) with powerful and fast resources who would follow any the proposed

matrix multiplication algorithm but would try at the same time to obtain as much as informa-

tion about the input matrices and the resulting one. Figure 3.2 shows the included parties and

the communication flow between them.

Hypotheses:

1. An orthogonal permutation matrix P is defined and distributed secretly between the in-

volved participants such that:

42

Figure 3.2 The System Model of the Proposed algorithms

- pi only has to know his corresponding value πi of the underlying permutation π used

to define the permutation matrix P.

- The trusted party T does not have any information on the initial matrix distribution.

This means that the participant pi knowing the ith column of matrix A2t×2t and the ith

row of matrix B2t×2t pretends to know the πth
i column of matrix [AP]2t×2t and the πth

i

row of matrix [PT B]2t×2t where [PT] is the transpose of matrix P.

2. The encrypted components of HEO(A) should be sent anonymously to T1 somehow to

preserve the privacy of the owners. It means T1 should not be able to distinguish which

data owner pi knows which row or column of the input matrices. To perform this commu-

nication we propose two solutions:

- There is an anonymized/secure channel between the data owners and the trusted party,

which would prevent T1 to learn about the identity of the data owners. Each participant

should send an anonymized matrix HEO(A) to T1 which is filled with zeros except for

the appropriate row. Then, T1 would simply need to sum the received matrices to

43

derive the desired matrix. This follows from the semi-homomorphic property of the

underlying cryptosystem.

- The first data owner p1 makes a 2t ×2t matrix which filled by zeros except for the row

π1 and sends it to P2. This second participant replaces the zeros in the row π2 with his

encrypted data and send it to the next data owner. This process continues till the full

matrix is formed by all the participants. The finalized matrix is sent to T1.

There is naturally some trade-offs between the two solutions. The first one is very costly from

the computational point of view. The trusted third party T1 would have to do 2t − 1 matrix

additions. Each of them necessitates a quadratic number of homomorphic operations. On the

other hand, the second solution would require more coordination among the participant. The

encrypted matrix would have to be exchanged among all of them. Each participant would

receive a matrix and would send a matrix. This method doubles the among of information

exchanged for any participant.

3.3.2 First Algorithm

The trusted party T1 receives HEO(AP) and PT B anonymously and calls EStrassen to provide

the result. Algorithm 3.3 illustrates the calculations and the communications between parties.

Data: Two 2t ×2t matrices: HEO[AP] and PT B.

Result: The encrypted product HEO(AB).

T1 receives HEO[AP] and PT B anonymously from the participants Pi

T1 calls EStrassen(HEO(AP),PT B,HEO(AP×PT B), t)

return HEO(AB) = HEO(AP×PT B) to the result owner O
Procedure 3: Multiplication with a permuted matrix PT B.

Security Analyze

Since the first matrix A is encrypted with the result owner public key, the other participants

and the trusted party will not get any information about it. But the second matrix B is just

permuted. This means that the trusted party would obtain the permuted columns of the matrix

44

B, obtaining some information. For example, if the sum of the elements of a column represents

any significant information, it would be considered as an information leakage. Thus, this first

solution leads to an information leakage on the second matrix B.

3.3.3 Second Algorithm

To improve the privacy protection of the input matrix B in this algorithm, we split into two

random matrices. Let assume that B = B1 +B2. For example, a totally random matrix R can

be used to obtain these two matrices. B1 = B−R and B2 = R. Naturally, each participant Pi

would simply have to know the corresponding column i of the random matrix to transform his

column of B. Let assume also there are two independent permutation matrices P1 and P2 dis-

tributed securely between the participants Pi. The data are then sent to T1 in two steps by the

participants. Obviously, the anonymisation process described earlier is very important. Oth-

erwise, this splitting solution is totally useless. The trusted party T1 would know the relation

between these two matrices B1 and B2. The following algorithm describes how T1 computes

the result securely.

Data: Four 2t ×2t matrices: HEO[AP1], [PT
1 B1], HEO[AP2] and [PT

2 B2].

Result: The encrypted product HEO(AB).

T1 receives HEO[AP1] and [PT
1 B1] anonymously from the participants Pi

T1 calls EStrassen(HEO(AP1), [PT
1 B1],HEO(AP1 ×PT

1 B1), t)

T1 receives HEO[AP2] and [PT
2 B2] anonymously from the participants Pi

T1 calls EStrassen(HEO(AP2), [PT
2 B2],HEO(AP2 ×PT

2 B2), t)

return HEO(AB1)
HEO(AB2) = HEO(AB1 +AB2) = HEO(AB)
Procedure 4: Multiplication with a matrix B split into two matrices with one random matrix

and two permutation matrices.

Security Analyze

As mentioned before, the security of the first encrypted matrix is preserved. If the trusted party

tries to obtain some information on the second matrix B, he should permute the columns of

matrices B1 and B2 to retrieve B = B1 +B2, which needs 2 · 2t! tries. If there is no collusion

45

between participants and the trusted party, no values of the input and result matrices would

leak.

Another interesting point, if we take a given column of PT
1 B1 and add it to all the columns

of PT
2 B2, one of the resulting 2t columns would be a column of the original matrix B. Some

information is leaking in this process. This particular aspect would be considered in our last

solution presented in the following section.

3.3.4 Third Algorithm

Now we improve upon the second algorithm presented in the previous section by randomizing

further the second matrix B . Assume B = B1 +B2 and there are two permutation matrices

P1,P2. Each data owner pick two random vectors R1 and R2 and apply it two B1 and B2 respec-

tively. As mentioned earlier, these participants would have to know only their own columns of

these random matrices. Then, the permutation matrices PT
1 and PT

2 would mask the randomized

data before sending to T1. They also send R1+R2 and HEOA to T1. The following Algorithm

3.5 shows how T1 calculate the result securely.

Data: Five 2t ×2t matrices: HEO[AP1], [PT
1 (B1 +R1)], HEO[AP2], [PT

2 (B2 +R2)] and R1 +R2.

Result: The encrypted product HEO(AB).

T1 receives HEO[AP1] and [PT
1 (B1 +R1)] anonymously from the participants Pi

T1 calls EStrassen(HEO(AP1), [PT
1 (B1 +R1)],HEO(AP1 ×PT

1 (B1 +R1)), t)

T1 receives HEO[AP2] and [PT
2 (B2 +R2)] anonymously from the participants Pi

T1 calls EStrassen(HEO(AP2), [PT
2 (B2 +R2)],HEO(AP2 ×PT

2 (B2 +R2)), t)

T1 receives HEOA and R1 +R2 anonymously from the participants Pi

T1 calls EStrassen(HEOA,−(R1 +R2),HEO[−A(R1 +R2), t]

return HEO(AB) = HEO[A(B1 +R1)]
HEO[A(B2 +R2)]
HEO[−A(R1 +R2)]
Procedure 5: Multiplication with a matrix B split into two matrices with two random matrices

and two permutation matrices

Security Analyze

46

Trying 2 · 2t! permutations, the trusted party T1 will get the B+(R1 +R2). Since he knows

R1+R2 in plain text he gets the second input matrix. If we delegate the third and forth steps to

the data owner to eliminate the random number, then the privacy of this algorithm is improved,

however, it leads to some computation costs on the result owner. This can be considered

somehow as going back to a two trusted party algorithm.

The approach can be more parametrized, Instead of splitting B into B1 +B2, it can be split

into three or more matrices, then more permutations are needed as well and more EStrassen

multiplication has to be called. Depending on the priority of the preserving security or cost of

the computations a Trade-off can be set for the numbers of the portions. However, this does

not improved a lot the protection.

In the recent three proposed algorithms, the data owners only encrypt/decrypt the first matrix

and the cost of operations on the second matrix is neglectable. All the other heavy computations

are performed by the powerful cloud resources which makes the aforementioned algorithms

more efficient than executing the matrix multiplication algorithm by the data owners.

CHAPTER 4

COMPARISON WITH THE RECENTLY INTRODUCED ALGORITHM

4.1 Dumas et al Algorithm Definition

In April 2019, a new secure approach for matrix multiplication based on strassen’s algorithm

was introduced by Dumas et al. In this approach, we assumed that there are two t × t square

matrices, called A and B and the goal is calculating the product matrix C securely. In this

system model there are t parties that each one has one row of the first matrix A and the

corresponding row of the second matrix B, at the end, each one will learn one row of the result

C . First of all, they agree on the location sequences L = {l1, l2, ..., lt} and the key sequence

K = {k1,k2, ...,kt}, then generate the secret key and publish the public keys. It means player

Pli stores row i of matrix A, that was encrypted with the public key pkki of player Pki for

all 1 ≤ i ≤ t. Since the Strassen’s algorithm divides the matrices into four equal quadrants,

the location and key sequence should be splitted into sub-sequences: for X ∈ {A,B,C},LX =

(LXU ,LXL) and KX = (KXU ,KXL) such that (LXU ,KXU) are the location and key sequences for

the upper half of X and (LXL ,KXL) are the location and key sequences for the lower half of X .

These notations are illustrated in figure 4.1

The semi-homomorphic Naccache-stern cryptosystem Naccache & Stern (1998) is used in this

algorithm to encrypt and decrypt data.

Here we describe the algorithm in details:

Initialization Phase

As mentioned above, before the computations related to the algorithm, the involved parties

should agree on the sequences L and K and share their public key and encrypted data as well.

Figure 4.2 shows the data exchanging based on the sequences.

48

Figure 4.1 Recursive splitting of the location

and key sequences of the input and output

operands in Strassen-Winograd algorithm

Figure 4.2 Initialization Phase of Strassen’s Algorithm

At the end, the encrypted data are sent to the party designated by the location sequence. If the

initial matrices are t × t, then 2t2 communication will be done in this phase.

Multiparty Copy

49

Somewhere in this algorithm we need to copy and recipher a vector from one party to another

following location and key sequence. MP-COPY protocol is described in the figure 4.3, per-

forming this very operation for a given ciphered element x hosted by Bob and encrypted for

Dan, to its new location at Alice and encrypted for Charlie. Dan is the party how does the de-

cryption and re-encrcyption. To avoid leaking information, Bob mask the data with the random

value. Totally 3 communication is needed to perform this protocol.

Figure 4.3 Multiparty Copy Protocol

Additions and Subtractions

When two values, x and y are encrypted by the same public key, c, addition and subtraction

will be performed by homomorphic property of the cryptosystem:

Ec{x+ y}= Ec{x}×Ec{x}

Ec{x− y}= Ec{x}/Ec{x}

But if the values are encrypted by different parties public key, stored in the others party, then

multiparty addition and multiparty subtraction known as MP-ADD and MP-SUB are computed

by applying MP-COPY and homomorphic addition or subtraction.

50

Totally 15 matrix addition and 7 recursive calls are used in Strassen’s algorithm. All the ma-

trix additions are performed by component-wise homomorphic additions, HOM-MAT-ADD in

which each player homomorphically adds the two rows of the two input operands that she owns.

In the same way homomorphic subtraction is performed, HOM-MAT-SUB, however requires

that the two operands share the same key and location sequences. To meet this, some matrices

should be translated from one key-location sequence to the other one using MP-MAT-COPY

which is archived by t2 instance of MP-COPY protocol as shown in protocol 3.

Figure 4.4 Multiparty MAT-Copy Protocol

Then in protocol 4, the scheduling the operands and data exchanging for the secure matrix

multiplication based on Strassen’s algorithm is defined.

Finalization Step

Finally the involved parties should decrypt and distribute each row of the product matrix to the

corresponding nodes. This step is described in figure 4.6 using t2 communications.

Based on the security analysis, this algorithm is secure against semi-honest parties, but in case

of malicious attackers or any collusion between participant according to the location and key

sequences, some data may leak.

51

Figure 4.5 Scheduling for Strassen’s Algorithm

52

Figure 4.6 Finalization Step

A brief comparison:

As mentioned before, the system model which is used in this approach is completely different

of the model we used in this thesis. Moreover, in our algorithm, the data owner will not learn

any information about the final product but in Dumas et al approach every data owner get one

row of the dot product. The other dissimilarity is the number of cryptographic keys. here, in

our algorithm, we considered couple of public keys just for intermediate parties plus the user

public key while in the other approach every data owner should store other parties public key

to encrypt data in case of calling which leads to occupy a bigger storage size.

CONCLUSION AND RECOMMENDATIONS

In the real world, designing a privacy-preserving algorithm for mathematical computation is of-

ten very complex with the presence of different sorts of adversaries and attackers. In this thesis,

we have presented some algorithms for different system models, which satisfy the definitions

of a secure algorithm. Each one preserves (partially or totally) the privacy of the information.

The applications of the proposed algorithms are big-data mining and analysis. In such cases,

the importance of assuring the privacy of the results is crucial. Since the adversaries are usually

malicious and have more and more resources, keeping the private information of the clients se-

cure is more and more costly in terms of time and money. However, there should always be

a trade-off between the costs and the level of privacy provided by the outsourcing algorithms.

Although the proposed algorithms are not fully secure, they can be applied in most of matrix

multiplication outsourcing set-ups because the information leakage is mathematically negligi-

ble. Moreover, in term of efficiency, we tried to decrease the computation costs on the client

side and delegate the most expensive computations to the powerful cloud systems. The only

significant computation which should be carry out by the client is the encryption of a matrix

which is much cheaper than performing a regular matrix multiplication by himself. Addition-

ally these algorithms avoid the data owners to obtain the product of the matrices which is an

important consequence for outsourcing schemes.

Future Work

There are a couple of ways and directions to improve the privacy and efficiency of proposed

algorithms. The following is a possible list of future related research direction that could be

carried out to extend and improve this work:

54

- masking the both input matrices by public-key cryptosystem to increase the security of

initial matrices which leads to interactive communications between the cloud server and the

data owners.

- Masking the both input matrices by permutation or randomization to decrease the com-

putation costs of the clients. Eliminating the random numbers in the product is the main

challenge of this method.

- Using the other public-key cryptosystem and matrix multiplication methods to increase the

efficiency.

- As mentioned before in the last algorithm, protecting the security of the algorithm needs

delegating the last two steps to the result owner, which means more computation costs for

him. Optimizing that algorithm and solving aforementioned problem could be considered

as research for future.

BIBLIOGRAPHY

Benaloh, J. (1994). Dense probabilistic encryption. Proceedings of the Workshop on Selected
Areas of Cryptography, pp. 120–128.

Benjamin, D. & Atallah, M. J. (2008). Private and cheating-free outsourcing of algebraic

computations. Proceedings of the Sixth Annual Conference on Privacy, Security and
Trust, pp. 240–245.

Bini, D. & Lotti, G. (1980). Stability of fast algorithms for matrix multiplication. Numerische
Mathematik, 36(1), 63–72.

Björck, Å. (1994). Numerics of gram-schmidt orthogonalization. Linear Algebra and Its
Applications, 197, 297–316.

Bultel, X., Ciucanu, R., Giraud, M. & Lafourcade, P. (2017). Secure Matrix Multiplication

with MapReduce. Proceedings of the 12th International Conference on Availability,
Reliability and Security, pp. 11:1 – 11:10.

Coppersmith, D. & Winograd, S. (1990). Matrix multiplication via arithmetic progressions.

Journal of Symbolic Computation, 9(3), 251–280.

Deng, M. & Ramanan, P. (2017). MapReduce Implementation of Strassen’s Algorithm for

Matrix Multiplication. Proceedings of the 4th Algorithms and Systems on MapReduce
and Beyond, pp. 7:1 – 7:10.

Dolev, S., Gilboa, N. & Kopeetsky, M. (2010). Computing multi-party trust privately: in O(n)
time units sending one (possibly large) message at a time. Proceedings of the 2010 ACM
Symposium on Applied Computing, pp. 1460–1465.

Dumas, J.-G., Lafourcade, P., Orfila, J.-B. & Puys, M. (2017). Dual protocols for private

multi-party matrix multiplication and trust computations. Computers & Security, 71,

51–70.

Dumas, J.-G., Lafourcade, P., Fenner, J., Lucas, D., Orfila, J.-B., Pernet, C. & Puys, M. (2019).

Secure Multi-Party Matrix Multiplication Based on Strassen-Winograd Algorithm. Pro-
ceedings of the 14th International Workshop on Security (IWSEC), pp. 67–88.

Fiore, D. & Gennaro, R. (2012). Publicly verifiable delegation of large polynomials and matrix

computations, with applications. Proceedings of the 2012 ACM conference on Computer
and communications security, pp. 501–512.

Fu, S., Yu, Y. & Xu, M. (2017). A Secure Algorithm for Outsourcing Matrix Multiplication

Computation in the Cloud. Proceedings of the Fifth ACM International Workshop on
Security in Cloud Computing, pp. 27–33.

Gentry, C. (2009). Fully Homomorphic Encryption Using Ideal Lattices. Proceedings of the
Forty-first Annual ACM Symposium on Theory of Computing, pp. 169–178.

56

Hazay, C. & Lindell, Y. (2010). Efficient secure two-party protocols: Techniques and con-
structions. Springer Science & Business Media.

Ioannidis, I., Grama, A. & Atallah, M. (2002). A secure protocol for computing dot-products

in clustered and distributed environments. Proceedings of the International Conference
on Parallel Processing, pp. 379–384.

Kaosar, M. G., Paulet, R. & Yi, X. (2012). Fully homomorphic encryption based two-party

association rule mining. Data & Knowledge Engineering, 76, 1–15.

Lei, X., Liao, X., Huang, T. & Heriniaina, F. (2014). Achieving security, robust cheating

resistance, and high-efficiency for outsourcing large matrix multiplication computation

to a malicious cloud. Information sciences, 280, 205–217.

Naccache, D. & Stern, J. (1998). A new public key cryptosystem based on higher residues.

Proceedings of the 5th ACM conference on Computer and Communications Cecurity,

pp. 59–66.

Okamoto, T. & Uchiyama, S. (1998). A new public-key cryptosystem as secure as factoring.

Proceedings of Advances in Cryptology - EUROCRYPT’98, pp. 308–318.

Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity classes.

Proceedings of Advances in Cryptology - EUROCRYPT’99, pp. 223–238.

Schönhage, A. (1981). Partial and total matrix multiplication. SIAM Journal on Computing,

10(3), 434–455.

Stothers, A. J. (2010). On the complexity of matrix multiplication. (Ph.D. thesis, The University

of Edinburgh).

Strassen, V. (1969). Gaussian elimination is not optimal. Numerische mathematik, 13(4),

354–356.

Zhang, S., Li, H., Jia, K., Dai, Y. & Zhao, L. (2016). Efficient secure outsourcing compu-

tation of matrix multiplication in cloud computing. Proccedings of 2016 IEEE Global
Communications Conference (GLOBECOM), pp. 1–6.

