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Détection d’émotions audio et vidéo profondes

Masih AMINBEIDOKHTI

RÉSUMÉ

Les êtres humains utilisent principalement deux méthodes de communication pour réussir leurs

interactions sociales Cowie et al. (2001). La première, la plus évidente, la parole permet de

transmettre explicitement les messages pour une grande variété de situations, l’autre, l’emotion

humaine, est plus subtile et transmet des messages implicites sur les personnes eux-mêmes. Au

cours des dernières années, avec l’avancement de la technologie, l’interprétation du premier

canal est devenue de plus en plus facile. Par exemple, les systèmes de traitement de la parole

peuvent facilement convertir la parole en texte ou les systèmes de vision par ordinateur peuvent

détecter un visage dans une image. Le deuxième canal de communication n’est pas encore

aussi bien maîtrisé. L’un des éléments clés de l’exploitation de la communication implicite est

l’interprétation de l’émotion humaine, qui une tâche assez difficile, même pour les humains.

Pour résoudre ce problème, les travaux antérieurs sur la reconnaissance des émotions se sont

appuyés sur des caractéristiques faites à la main en incorporant la connaissance du domaine

dans le système sous-jacent. Cependant, au cours des dernières années, les réseaux neuronaux

profonds se sont avérés être des modèles efficaces pour s’attaquer à une variété de tâches.

Dans cette thèse, nous explorons les effets de l’application de méthodes d’apprentissages pro-

fonds à la tâche de la reconnaissance des émotions. Nous démontrons ces méthodes en mon-

trant que les représentations obtenus sont plus riches et atteignent une précision supérieure à

celle des techniques traditionnelles. De plus, nous démontrons que nos méthodes ne sont pas

liées aux tâches de reconnaissance des émotions et que d’autres catégories de tâches telles que

la classification multi-étiquettes peuvent aussi bénéficier de nos approches.

La première partie de ce travail se concentre uniquement sur la tâche de la reconnaissance

des émotions par la vidéo en utilisant uniquement des entrées visuelles. Nous montrons qu’en

exploitant l’information des aspects spatiaux et temporels des données d’entrée, nous pouvons

obtenir des résultats prometteurs. Dans la deuxième partie, nous portons notre attention sur les

données multimodales. Nous nous concentrons en particulier sur la manière de fusionner les

données multimodales. Nous introduisons ensuite une nouvelle architecture qui incorpore les

meilleures caractéristiques des architectures de fusion précoce et tardive.

Mots-clés : Informatique Affective, Reconnaissance des Emotions, Mécanismes d’Attention,

Réseaux Neuronaux Convolutionnels, Fusion Multimodale





Deep audio and video emotion detection

Masih AMINBEIDOKHTI

ABSTRACT

Human beings rely on two capacities for successful social interactions Cowie et al. (2001). The

first is more obvious and explicitly conveys messages which may be about anything or nothing

and the other is more subtle and transmits implicit messages about the speakers themselves.

In the last few years with the advancement of technology, interpretation of the first channel

becomes more feasible. For instance, speech processing systems can easily convert a voice to

text or computer vision systems can detect a face in an image. The second channel is still not as

well understood. One of the key elements for exploiting the second one is interpreting human

emotion. To solve the problem, earlier works in emotion recognition have relied on hand-

crafted features by incorporating domain knowledge into the underlying system. However,

in the last few years, deep neural networks have proven to be effective models for tackling a

variety of tasks.

In this dissertation, we explore the effects of applying deep learning methods to the emotion

recognition task. We demonstrate these methods by learning rich representations achieve su-

perior accuracy over traditional techniques. Moreover, we demonstrate our methods are not

bound to emotion recognition task and other classes of tasks such as multi-label classification

can get benefit from our approaches.

The first part of this work focuses only on the task of video-based emotion recognition using

only visual inputs. We show that by exploiting information from the spatial and temporal

aspects of input data we can get promising results. In the second part, we move our attention to

multimodal data. Particularly we focus on how to fuse multimodal data. We introduce a new

architecture that incorporates the best features from early and late fusion architecture.

Keywords: Affective Computing, Emotion Recognition, Attention Mechanisms, Convolu-

tional Neural Networks, Multimodal Fusion
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INTRODUCTION

Motivation

Would it be helpful if the computer could have the ability to respond to your frustration and

sadness? Or your smartphone comfort you if you got upset after getting a call? Or your smart

home adjusts the mood around you after you have had a bad day at work — without being

asked?

It may seem absurd, but the idea that humans and computers must learn to coexist and interact

is nothing new. Human-Computer Interaction (HCI) surfaced in the 1980s with the advent of

personal computing, just as personal computers in homes and offices in society-changing num-

bers. Since then as technological systems become more sophisticated, the need for including

human interaction during the process has become more apparent. One way to improve this in-

teraction is by designing accurate emotion recognition systems. Emotion is a key ingredient to

human experience and widely affects human decision-making, yet technologists have largely

ignored emotion and created an often frustrating experience for people.

Generally, an emotion recognition system is constructed from two major components as follow:

1. An interface between the system and the human for capturing the required information.

2. Processing the input information and make decision.

The first component is a bridge between a system and a human. Its role is to capture the

human current state. This state comprises information such as facial expressions, gestures,

voice and physiological behavior of humans to name a few. Each of the devices from which

this information is extracted has its own sophistication. The details about these devices are out

of the scope of this dissertation and we assume that we have access to the required information.
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The second component is more of interest to us. Here we are given the raw inputs from the

previous component and we have to manipulate them to achieve our goal. We call each of the

input, a modality (e.g. audio signals) hence the system which processes them is a multimodal

system. Based on (Baltrušaitis et al. (2018)) work, for constructing a successful multimodal

emotion recognition system, the five following challenges need to be tackled:

1. Representation The first fundamental challenge is to find an efficient and effective way

to represent each of the multimodal data. The encoded representations have to carry a

sufficient amount of redundancy of multiple modalities (effectiveness), yet not too much

that could lead to frustration of the system (efficiency). The heterogeneity of multimodal

data makes it challenging to construct such representations. For example, language is often

symbolic while audio and visual modalities will be represented as signals.

2. Translation The second challenge relates to the mapping between each modality. Because

there may be multiple correct ways to represent a modality, it is challenging or sometimes

not possible to find one perfect translation.

3. Alignment The third one is because there is a temporal dimension in the input data.

The extracted information from the users is gathered sequentially through time, therefore,

there is an extra dependency within sub-elements of each modality. This inter-relationship

makes it more challenging to identify the direct intra-relations between sub-elements from

two or more different modalities.

4. Fusion The fourth challenge addresses the ways multiple modalities combine together.

The information coming from different modalities may have varying predictive power and

noise topology, with possibly missing data in at least one of the modalities.

5. Co-learning The last challenge only accounts for learning systems. In the learning sys-

tems, the ultimate goal is to improve the performance of the system through data with



3

respect to some criterion Goodfellow et al. (2016). In the multimodal system, the learned

knowledge should be transferable to other modalities so that learning from one modality

can help a computational model trained on a different modality.

Throughout this dissertation, we try to address a few of these challenges using deep learning

techniques. In chapter 2 we address the representation and the alignment challenge by intro-

ducing two components to the convolutional neural network architecture. In chapter 3 we try

to tackle the fusion and co-learning challenge by presenting a new method to combine features

from different modalities and train the whole system end to end.

Contributions

In this dissertation, we highlight how deep learning methods, when applied to emotion recog-

nition, by learning rich representations achieve superior accuracy over traditional techniques

(Wöllmer et al. (2013)). Moreover, we show that our methods are not bound to emotion recog-

nition and in other tasks such as multi-label classification can be utilized to get better perfor-

mance.

Our contributions are twofold. First, we consider the task of video-based emotion recognition

using only visual inputs. We train a convolutional neural network (CNN) on a facial-expression

database and present two simple strategies to improve the performance of emotion recognition

in video sequences. We demonstrate visually that using our approach, one can detect the most

important regions of an image that contributed to the particular emotion. We address the tem-

poral aspect of the input data by introducing a simple method for aggregating frames over time.

In contrast to more complex approaches such as recurrent neural networks for the temporal fu-

sion of the data, our temporal pooling method achieves not only incorporate the relationship

between each frame but also select most important frame of a video. This work is based on our
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publication (Aminbeidokhti et al. (2019)) which was selected as the best paper at ICIAR 2019

conference.

Second, we focus our attention on multimodal inputs. In particular, we design a multimodal

fusion mechanism that incorporates best practices from well-known fusion models including

early and late fusion. We also show that this method is not only useful for the emotion recog-

nition task and can be applied to other problems as well.

Organization

The rest of this dissertation is organized as follows: Chapter 1 describes the relevant back-

ground on different representations of emotion as well as previous work on hand-crafted fea-

ture representations. We give a brief overview of deep learning architectures particularly con-

volutional neural network (CNN) and recurrent neural networks (RNN) and training methods

associated with deep learning models. In chapter 2, we address the sequential data and demon-

strate how reducing the complexity of the model in terms of architecture can lead to better per-

formance and interpretability. In chapter 3, we utilize the existing approaches for multimodal

fusion by applying a simple trick and demonstrate the improved performance on different tasks.

Finally, chapter 4 concludes the dissertation and presents directions for future work.



CHAPTER 1

BACKGROUND

1.1 Emotion Representation

Models of emotion are typically divided into two main groups, namely discrete (or categorical)

and dimensional (continuous) ones (Stevenson et al. (2007)) Discrete models are built around

particular sets of emotional categories deemed fundamental and universal. Ekman et al. Ekman

(1992) propose to classify the human facial expression resulting from an emotion into six basic

classes (happiness, sadness, anger, disgust, surprise and fear). These emotions were selected

because they have unambiguous meaning across cultures.

In contrast, dimensional models consider emotions to be composed out of several low-dimensional

signals (mainly two or three). The two most commonly used dimensions are referred to as Va-

lence (how positive or negative a subject appears), Arousal (represents the excitation rate). A

third dimension has been added by Mehrabian (1996), the dominance, which depends on the

degree of control exerted by a stimulus.

Russell (1980) suggests that all Ekman’s emotions (Ekman (1992)) and compound emotions

could be mapped in the circumplex model of affect. Furthermore, this two-dimensional ap-

proach allows a more accurate specification of the emotional state, especially by taking its

intensity into account. This relationship is shown visually in Figure 1.1.

Several large databases of face images have been collected and annotated according to the

emotional state of the person. The RECOLA database (Ringeval et al. (2013)) was recorded

to study socio-affective behaviors from multimodal data in the context of remote collaborative

work, for the development of computer-mediated communication tools. In addition to these

recordings, 6 annotators measured emotion continuously on two dimensions: arousal and va-

lence, as well as social behavior labels on five dimensions. SFEW Dhall et al. (2011), FER-13

Goodfellow et al. (2013) and RAF Li et al. (2017) propose images in the wild annotated in
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Figure 1.1 Circumplex of affect with the six basic emotions displayed (adapted from

Buechel & Hahn (2016)). Affective space spanned by the Valence, Arousal and

Dominance, together with the position of six Basic Emotions. Ratings are taken from

Russell et al. (1977, p. 14)

basic emotions; AFEW Dhall et al. (2012) is a dynamic temporal facial expressions data cor-

pus consisting of close to real-world environment extracted from movies annotated in discrete

emotions.

1.2 Problem Statement

For defining the emotion recognition problem, we define the pattern recognition problem in

general. A pattern is a representative signature of data by which we can take actions such as

classifying the data into different categories (Bishop (2006)). Pattern recognition refers to the

automatic discovery of regularities in data through the use of computer algorithms. Occasion-

ally, a pattern is represented by a vector containing data features. Given the general definition
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Figure 1.2 Basic steps of an emotion recognition system. For generality and avoiding

targeting one specific task, we call the last step decision step

of pattern recognition, we can define the task of recognizing the emotion as discovering regu-

larities in the psychological and the physical state of the human. In general, an emotion recog-

nition system can be described by three fundamental steps, namely, Pre-Processing, Feature

Extraction, and Decision. Figure 1.2 provides a general scheme for pattern recognition.

In emotion recognition tasks, we usually deal with raw data such as raw video inputs or static

images. Given the emotional state of the human mind is expressed in different modes including

facial, voice, gesture, posture, and biopotential signals, the raw data carries some unnecessary

information. This extra information not only confuses the model but sometimes can lead to a

nonoptimal result. In the Pre-Processing step, we extract useful cues from the raw data before

applying further steps. For example, facial expression–based emotion recognition requires the

extraction of the bounding box around the face. The Feature Extraction process involves trans-

forming the raw features into some new space of variables where the pattern is expected to be

easier to recognize. In general, the main goal of the Decision component is to map the Feature

Extraction results in the designated output space. For instance, for the emotion recognition

task, based on the previous section we saw that there exists more than one representation for

emotions. For recognizing categorical emotion which contains a finite number of discrete cat-

egories, the Decision module simply classifies the extracted features into one of several object

classes. Whereas for the dimensional representation of emotion, the Decision module does a

regression task and outputs a continuous value.

Next, we define the task of emotion recognition in a learning algorithm framework. The

focus of the emotion recognition task is on the problem of prediction: given a sample of
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training examples (x1,y1), . . . ,(xn,yn) from R
d → {1, . . . ,K}, the model learns a predictor

hθ : Rd → {1, . . . ,K} defined by parameters θ , that is used to predict the label y of a new

point x, unseen in training. The input feature, xi, has D dimensions and for each label, yi,

there are K number of classes. The predictor hn is commonly chosen from some function class

H , such as neural networks with a certain architecture, optimized with empirical risk mini-

mization (ERM) and its variants. In ERM, the predictor is a function hθ ∈ H that minimizes

the empirical (or training) risk 1
n ∑n

i=1 �(h(xi;θ),yi)+Ω(θ), where Ω(θ) is a regularizer over

model parameters, � is a loss function; negative cross entropy loss �(y ′,y) =−y logy ′ in case

of classification. Here y ′ is the predicted value from the model. The goal of machine learning

is to find hn that performs well on new data, unseen in training. To study performance on new

data (known as generalization) we typically assume the training examples are sampled ran-

domly from a probability distribution P over Rd → R, and evaluate hn on a new test example

(x,y) drawn independently from P. The challenge stems from the mismatch between the goals

of minimizing the empirical risk 1
n ∑n

i=1 �(h(xi;θ),yi)+Ω(θ) (the explicit goal of ERM algo-

rithms, optimization) and minimizing the true (or test) risk E(x,y)∼Ptrue [�(h(x;θ),y)] (the goal

of machine learning). Intuitively, when the number of samples in the empirical risk is high, it

can approximate well the true risk.

So far we defined the task of emotion recognition in terms of a classification problem. As

we described in section 1.1, there is another model for mapping the emotional state which is

continuous. I such cases we usually cast the task as a regression problem. The regression task

has two major differences compared to the classification task. Firstly, the learning algorithm

is asked to output a predictor hθ : Rd → R defined by parameters θ , that is used to predict the

numerical value given some input. Secondly, the loss function that usually is minimized is the

squared loss �(y ′,y) = (y ′ − y)2. The same architectures and learning procedures can apply to

both of the tasks.
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1.3 Deep Learning

In this work, we use special class of machine learning models to approximate a predictor for

the emotion recognition task called deep learning methods. We begin by describing the deep

feedforward networks also known as feedforward neural networks, or multilayer perceptrons

(MLPs) (Goodfellow et al. (2016)). These models are called feedforward because there are

no feedback connections in which outputs of the model are fed back into itself and informa-

tion flows directly from the input through the intermediate layers and the output. The goal

of a feedforward network is to approximate some unknown function f ∗. A feedforward net-

work learns a mapping y = f ∗(x;θ) by optimizing the value of the parameters θ that best

describes the true underling function f . A deep neural network is usually represented as the

composition of multiple nonlinear functions. Therefore, f (x) can be expressed in the form of

f (x) = f 3( f 2( f 1(x))). Each of f i is the layer of the neural network, in this case, f 1 is called

the first layer of the network and so on. The depth of the network is given by the overall length

of the chain. Consider some input x ∈ R
N and its corresponding output h ∈ R

M, the equation

for one layer of the network is defined as:

h = g(W T x+b) (1.1)

the network using weights matrix W ∈ R
M×N and bias vector b ∈ R

M first linearly transform

the input to the new representation and then apply nonlinear function g often rectified linear

unit (ReLU). The premise of a feedforward network is at the end of the learning process each

layer captures a meaningful aspect of the data and by combining them together the model can

make a decision. Figure 1.3 provides a general view for one layer of a neural networks.

Among several architectures of a neural network, there are two specialized architectures which

are more common in the field: Convolutional Neural Networks (CNNs) (LeCun et al. (1998))

and Recurrent Neural Networks (RNNs) (Rumelhart et al. (1988)).
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Figure 1.3 Left: A 2-layer Neural Network (one hidden layer of 3 neurons (or units) and

one output layer with 1 neuron), and two inputs. Right: Mathematical model of one

neuron from a hidden layer

Convolutional neural networks are a specialized kind of neural network which makes the net-

work more suitable for tasks specific to the grid-like topology. Examples include images that

can be seen as a 2-D grid of pixels and also time-series data which can be thought of as 1-D

data acquired through time intervals. A convolutional network uses a convolution operation in

place of the affine transformation in neural network layers. Instead of regular matrix weights

for each layers, a convolutional network takes advantage of the grid-like topology of the data

and defines sets of weights as a filter (or a kernel), that is convolved with the input. The way

the kernels are defined is especially important. It turns out that we can dramatically reduce

the number of parameters by making two reasonable assumptions. Firstly, parameter sharing

which states that a feature detector (such as vertical edge in case of image data) that is useful

in one part of an image is probably useful in other parts of the image as well. Secondly, sparse

connectivity. This is accomplished by defining the kernel smaller than the input. As a result, in

each layer, the output value in the hidden layer depends only on a few input values. Reducing

the number of parameters helps in training with smaller training sets, and also it is less prone

to overfitting. Figure 1.4 provides a general architecture of a convolutional neural networks for

an image input.

Recurrent neural networks are a family of neural networks for processing sequential data. Con-

sider a sequence of inputs of length T (x1, . . . ,xT ). RNNs have a state at each time point t,ht ,

which captures all of the information of previous inputs (x1, . . . ,xt). Then, when considering
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Figure 1.4 LeNet-5 architecture as published in the

original paper Lecun et al. (1998, p. 7)

the input at the next time point, xt+1 , a new state, ht+1 , is computed using the new input xt+1

and the previous state ht . At each time point t, the hidden state ht can be used to compute

an output ot . Figure 1.5 provides a general architecture of a recurrent neural network. One

drawback of the RNNs networks is the problem of the long-term dependencies (Bengio et al.

(1994)). In cases where the gap between the relevant information and the place that it is needed

is very large, RNNs become unable to learn how to connect the information. Long Short Term

Memory networks (LSTM) Hochreiter & Schmidhuber (1997) has been proposed to mitigate

the problem of long-term dependencies. LSTM units include a memory cell that can maintain

information in memory for long periods of time. The LSTM does have the ability to remove or

add information to the cell state, carefully regulated by structures called gates.

Figure 1.5 A recurrent neural network taken from Goodfellow et al. (2016). This

recurrent network process the information from input x by incorporating it into the state h
that is passed through time. On the left you can see the unfolded version of the network

through time



12

One common criticism of deep learning methods is its requirement of a very large amount of

data to perform better than other techniques. In practice, it is relatively rare to have a dataset

of sufficient size for every task. Fortunately, there is a technique called transfer learning that

helps to address the problem to some extent. The way that usually deep networks are used is to

initialize the parameters of the network to some random number; usually, these initializations

follow the carefully constructed procedures (Glorot & Bengio (2010)). It turns out the feature

that the network learns during the training process can sometimes be used for other tasks as

well. For instance, Zeiler & Fergus (2014) trained a large convolutional neural network model

for image classification task and demonstrated that the learned features to be far from random,

uninterpretable patterns. Figure 1.6 provides visualization on some of the learned features. As

a result of these findings, it is common to pretrain a deep network, particularly CNN, on a

very large dataset (e.g. ImageNet Deng et al. (2009), which contains 1.2 million images with

1000 categories), and then use the network either as an initialization or a fixed feature extractor

for the task of interest. Transfer learning is not only useful for computer vision tasks, natural

language processing tasks which usually models based on RNNs, are also take advantage of

pretrained features from other datasets (Mikolov et al. (2013)).

Figure 1.6 Visualization of features in a fully trained model taken from Zeiler et al.

(2014, p. 4). For a random subset of feature maps, show the top 9 activations from the

validation set. Each 9 activations projected back to pixel space using the deconvolutional

method. The figure also shows the corresponding image patches for each feature map
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1.4 Network Training: Optimization

After selecting the model based on the problem domain, the next step is to identify the pa-

rameter of the model by minimizing a certain cost function based on the training data. One

important note is that compare to the traditional optimization algorithms, machine learning

usually acts indirectly. In most machine learning scenarios, the final goal is to maximize the

performance of the model on test data, by reducing the cost function as a proxy. Whereas

in pure optimization the final goal is finding the minimum of the cost function itself. There

are many estimation methods for identifying the model parameters. Maximum likelihood es-

timation (MLE) is one of the well-known principles for solving machine learning tasks. In

Maximum Likelihood Estimation (MLE), we wish to make the model distribution to match the

empirical distribution defined by training data.

Consider a set of m examples X= {x1, . . . ,xm} drawn independently from the true but unknown

data-generating distribution pdata(x). Let pmodel(x;θ) be the probability distribution defined

by neural network parameterized by θ . The MLE for θ is then defined as:

θ ∗ = argmax
θ

m

∏
i=1

pmodel(xi;θ) (1.2)

Because logarithm is monotonous therefore does not change its argmax, we can further sim-

plify this product by taking the logarithm from the likelihood function and convert it to a sum:

θ ∗ = argmax
θ

m

∑
i=1

log pmodel(xi;θ) (1.3)

Based on the MLE, we iteratively update the parameters θ using gradient descent:

θt+1 = θt −η
1

m

m

∑
i=1

∇θ log pmodel(xi;θ) (1.4)
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where η denotes the learning rate. Gradient descent is an iterative algorithm, that starts from

a random point on a function and travels down its slope in steps (learning rate) until it reaches

the lowest point of that function. Computing this summation exactly is very expensive because

it requires evaluating the model on every example in the entire dataset. In practice, we can

compute these summation by randomly sampling a small number of examples from the dataset,

then taking the average over only those examples. This method is called minibatch stochastic

gradient descent (SGD). In the context of deep learning, it has been observed in practice that

when using a larger batch there is a degradation in the quality of the model, as measured by

its ability to generalize (Keskar et al. (2016)). Based on the evidence they show that large-

batch methods tend to converge to sharp minimizers of the training and testing functions and

therefore sharp minima lead to poorer generalization.

1.5 Related Work

1.5.1 Emotion Recognition

The majority of traditional methods have used handcrafted features in emotion recognition sys-

tems. For instance, the spectrum, energy, and Mel-Frequency Cepstrum Coefficients (MFCCs)

are widely exploited to encode the cues in the audio modality, while Local Binary Patterns

(LBP) (Shan et al. (2009)), Histogram of Oriented Gradients (HOG) (Chen et al. (2014)),

and Local Phase Quantization from Three Orthogonal Planes (LPQ-TOP) (Zhao & Pietikainen

(2007)) are the representative ones to describe the facial characteristics in the video modality.

They are designed based on the knowledge of human beings in the specific domain.

Since CNNs enjoy great success in image classification (Krizhevsky et al. (2012)) they have

also been applied to emotion recognition tasks. In Kim et al. (2015) using an ensemble of mul-

tiple deep convolutional neural networks won the EmotiW 2015 challenge and surpassed the

baseline with significant gains. If enough data is available, deep neural networks can generate

more powerful features than hand-crafted methods.
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Recurrent neural networks (RNN), particularly long short-term memory (LSTM) (Hochre-

iter & Schmidhuber (1997)), one of the state-of-art sequence modeling techniques, has also

been applied in emotion recognition. Wöllmer et al. (2013) presented a fully automatic au-

diovisual recognition approach based on LSTM-RNN modeling word-level audio and visual

features. Wöllmer et al. (2013) showed that compared to other models such as Support Vector

Machine (SVM) (Schuller et al. (2011)) and Conditional Random Field (CRF) (Ramirez et al.

(2011)), LSTM achieved a higher prediction quality due to its capability of modelling long

range temporal dependencies.

Meanwhile, other techniques based on deep neural networks (DNN) have been successfully

applied in extracting emotional related features. For speech-based emotion recognition, Xia

et al. (2014) adds gender information to train auto-encoders and extracts the hidden layer as

audio features to improves the unweighted emotion recognition accuracy. In Huang et al.

(2014), convolutional neural networks (CNN) are applied in speech emotion task with novel

loss functions to extract features.

Multi-task learning may also improve dimensional emotion prediction performance due to the

correlation between arousal and valence. In Ringeval et al. (2015), two types of multi-task

learning are introduced: one by learning each rater’s individual track and the other by learning

both dimensions simultaneously. Although it did not help for the audio feature based system,

it improved the visual feature based system performance significantly.

Previous studies Ringeval et al. (2015) also provide some common insights:

1. It’s highly agreed that arousal is learned more easily than valence. One reason is that the

perception of arousal is more universal than is the perception of valence;

2. Audio modality is suitable for arousal prediction, but much less accurate for valence pre-

diction;

3. Valence appears to be more stable than arousal using facial expression modality. Bio-

signals are also good for valence assessment;
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1.5.2 Attention and Sequence Modeling

The intuition behind attention is, to some extent, motivated by human visual attention. Human

visual attention enables us to focus on a certain region with “high resolution” while perceiving

the surrounding image in “low resolution”, and then adjust the focal point or do the inference

accordingly. Similarly, during reading, we can explain the relationship between words in a

sentence. In the same way attention in deep learning by providing a vector of importance

weights, allows the model to focus on the important part of the input.

Attention was first introduced in the context of neural machine translation. Before that, the

dominant way to process a sentence for machine translation was using the vanilla LSTM net-

work. The problem with this method is, LSTM summarizes the whole input sequence into the

fixed-length context vector with a relatively small dimension, therefore the context vector was

not a good representation of the long sentences. Bahdanau et al. (2014) introduces the attention

mechanism to mitigate this problem. The idea is, in the encoder-decoder model Sutskever et al.

(2014) instead of having a single vector as the representation of the whole sequence, we can

train a network to output the weighted sum over the recurrent network’s context vectors over

the whole input sequence. Figure 1.7 provides a graphical illustration of the proposed attention

model.

With the success of attention in neural machine translation, people started exploring attention

in different domains such as image captioning (Xu et al. (2015)), visual question answering

(Chen et al. (2015)). Various forms of attention emerge as well. Vaswani et al. (2017) intro-

duced a self-attention network that completely replaces recurrent networks with the attention

mechanism. Jetley et al. (2018) deployed attention as a separate end-to-end-trainable mod-

ule for convolutional neural network architectures. They proposed a model that highlights

where and in what proportion a network attends to different regions of the input image for

the task of classification. Parkhi et al. (2015), Cheng et al. (2016) introduced self-attention,

also called intra-attention, that calculates the response at a position in a sequence by attending

to all positions within the same sequence. Parmar et al. (2018) proposed an Image Trans-
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Figure 1.7 Additive attention

mechanism. Taken from Bahdanau et al.

(2014, p. 3)

former model to add self-attention into an autoregressive model for image generation. Wang

et al. (2018) formalized self-attention as a non-local operation to model the spatial-temporal

dependencies in video sequences. Zhang et al. (2018) proposed attention based on fully con-

volutional neural network for audio emotion recognition which helped the model to focus on

the emotion-relevant regions in speech spectrogram.

For capturing temporal dependencies between video frames in video classification, LSTM have

been frequently used in the literature (Chen & Jin (2015), Liu et al. (2018a), Lu et al. (2018).

Sharma et al. (2015)) proposed a soft attention LSTM model to selectively focus on parts of the

video frames and classify videos after taking a few glimpses. However, the accuracy on video

classification with these RNN-based methods were the same or worse than simpler methods,

which may indicate that long-term temporal interactions are not crucial for video classification.

Karpathy et al. (2014) explored multiple approaches based on pooling local spatio-temporal
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features extracted by CNNs from video frames. However, their models display only a modest

improvement compared to single-frame models. In the EmotiW 2017 challenge Dhall et al.

(2017), Knyazev et al. (2018) exploited several aggregation functions (e.g., mean, standard

deviation) allowing the incorporation of temporal features. Long et al. (2018) proposed a new

architecture based on attention clusters with a shifting operation to explore the potential of pure

attention networks to integrate local feature sets for video classification.

1.5.3 Multimodal Learning

Modalities fusion is another important issue in emotion recognition. A conventional multi-

modal model receives as input two or more modalities that describe a particular concept. The

most common multimodal sources are video, audio, images and text. Multimodal combina-

tion seeks to generate a single representation that makes easier automatic analysis tasks when

building classifiers or other predictors. There are different methods for combining multiple

modalities. One of the focuses is on building the best possible fusion models e.g. by finding

at which depths the unimodal layers should be fused (typically early vs. late fusion). In early

fusion, after extracting the features from each unimodal systems, we usually concatenate dif-

ferent modalities and feed it to the new model for the final prediction. Late fusion is often

defined by the combination of the final scores of each unimodal branch (Lahat et al. (2015)).

Late fusion is often defined by the combination of the final scores of each unimodal branch.

For audiovisual emotion recognition, Brady et al. (2016) achieved the best result on AVEC16

challenge (Valstar et al. (2016)) by using late fusion to combine the estimates from individual

modalities and exploit the time-series nature of the data, while Chen et al. (2017) followed

an early fusion hard-gated approach for textual-visual sentiment analysis and achieved state-

of-the-art sentiment classification and regression results on Multimodal Corpus of Sentiment

Intensity and Subjectivity Analysis (CMU-MOSI) dataset (Zadeh et al. (2016)). To take advan-

tage for both worlds, Vielzeuf et al. (2018) introduced a central network linking the unimodal

networks. Pérez-Rúa et al. (2019) reformulated the problem as a network architure search and

proposed multimodal search space and exploration algorithm to solve the task in an efficient
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yet effective manner. In Arevalo et al. (2017) the author proposed the Gated Multimodal Unit

model whose purpose is to find an intermediate representation based on an expert network for

a given input.

However, more fine-grained multimodal fusion models have been extensively explored and

validated in visual and language multimodal learning. Shan et al. (2007) have studied synchro-

nization between multimodal cues to support feature-level fusion and report greater overall

accuracy compared to decision-level fusion. Bilinear models were first introduced by Tenen-

baum & Freeman (2000) to separate style and content. Bilinear pooling computes the outer

product between two vectors, which allows, in contrast to element-wise product, a multiplica-

tive interaction between all elements of both vectors. As the outer product is typically infeasible

due to its high dimensionality, Fukui et al. (2016), Kim et al. (2016), Yu et al. (2017) improved

bilinear pooling method to overcome the issue.





CHAPTER 2

EMOTION RECOGNITION WITH SPATIAL ATTENTION AND TEMPORAL
SOFTMAX POOLING

2.1 Introduction

Designing a system capable of encoding discriminant features for video-based emotion recog-

nition is challenging because the appearance of faces may vary considerably according to the

specific subject, capture conditions (pose, illumination, blur), and sensors. It is difficult to en-

code common and discriminant spatio-temporal features of emotions while suppressing these

context and subject-specific facial variations.

Recently, emotion recognition has attracted attention from the computer vision community be-

cause state-of-the-art methods are finally providing results that are comparable with human

performance. Thus, these methods are now becoming more reliable, are beginning to be de-

ployed in real-world applications (Cowie et al. (2001)). However, at this point, it is not yet

clear what is the right recipe of success in terms of machine learning architectures. Several

state-of-the-art methods (Knyazev et al. (2018), Liu et al. (2018a)) originating from challenges

in which multiple teams provide results on the same benchmark without having access training-

set annotations. Although these challenges measure improvements in the field. one a drawback

of challenges is that result focuses mostly on final accuracy of approaches, without taking into

account other factors such as their computational cost, architectural complexity, quantity of

hyper-parameters to tune, versatility, generality of the approach, etc. As a consequence, there

is no clear cost-benefit analysis for component appearing in top-performing methods and often

represent complex deep learning architectures.

In this chapter, we aim to shed some light on these issues by proposing a simple approach for

emotion recognition that i) is based on the very well-known VGG16 network which is pre-

trained on face images; ii) has a very simple yet performing mechanism to aggregate temporal

information; and iii) uses an attention model to select which part of the face is the most im-
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portant to recognize a certain emotion. For the selection of the approach to use, we show that

a basic convolutional neural network such as VGG can perform as well or even better than

more complex models when pre-trained on clean data. For temporal aggregation, we show

that softmax pooling is an excellent way to select information from different frames because

it is a generalization of max and average pooling. Additionally, in contrast to more complex

techniques (e.g. attention), it does not require additional sub-networks and therefore additional

parameters to train, which can easily lead to overfitting when dealing with relatively small

datasets, a common problem in affect computing. Finally, we show that for the selection of

the most discriminative parts of a face for recognizing an emotion, an attention mechanism

is necessary to improve performance. For doing that, we built a small network with multiple

attention heads (Lin et al. (2017)) that can simultaneously focus on different parts of a human

face.

The rest of the chapter is organized as follows. In the next section our methods based on

spatial attention and temporal softmax are presented. Finally, in our experimental evaluation,

we show the importance of our three system components and compare them with other similar

approaches.

2.2 Proposed Model

We now describe our method based on spatial attention and temporal softmax pooling for the

task of emotion recognition in videos. We broadly consider three major parts: local feature

extraction, local feature aggregation and global feature classification. The local feature extrac-

tor takes the video frame as its input and produces local features. Using the local features,

the multi-head attention network computes the weight importance of each local image feature.

The aggregated representation is computed by multiplying multi-head attention output and the

local image features. This representation is then propagates through temporal softmax pooling

to extract global features over the entire video. The overall model architecture is shown in Fig-

ure 2.1. The local feature extraction uses a pre-trained CNN, the spatial feature aggregation is

implemented using an attention network, and the temporal feature classification uses a softmax
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Figure 2.1 The Overview of the model pipeline

pooling layer. Given a video sample Si and its associated emotion yi ∈ R
E , we represent the

video as a sequence of F frames [X0,i,X1,i, ..,XF,i] of size W ×H ×3.

2.2.1 Local Feature Extraction

We use the VGG-16 architecture with the pre-trained VGG-Face Model (Parkhi et al. (2015))

for extracting an independent description of a face on each frame in the video. For a detailed

procedure of face extraction, see the experimental results in section 2.3. For a given frame X of

a video, we consider the feature map produced by the last convolutional layer of the network as

representation. This feature map has spatial resolution of L = H/16×W/16 and D channels.

We discard the spatial resolution and reshape the feature map as a matrix R composed of L

D-dimensional local descriptors (row vectors).

R =V GG16(X) (2.1)

These descriptors will be associated to a corresponding weight and used for the attention mech-

anism.
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2.2.2 Spatial Attention

For the spatial attention we rely on the self-attention mechanism (Vaswani et al. (2017)), which

aggregates a set of local frame descriptors R into a single weighted sum v that summarizes the

most important regions of a given video frame:

v = aR, (2.2)

where a is a row vector of dimension L, which defines the importance of each frame region.

The weights a are generated by a two-layers fully connected network that associates each local

feature (row of R) to a corresponding weight:

a = so f tmax(ws2tanh(Ws1R�)). (2.3)

Ws1 is a weight matrix of learned parameters with shape U ×D and ws2 is a vector of parame-

ters with size U . The softmax function ensures that the computed weights are normalized, i.e.

sum up to 1.

This vector representation usually focuses on a specific region in the facial feature, like the

mouth. However, it is possible that multiple regions of the face contain different type of infor-

mation that can be combined to obtain a better idea of the person emotional state. Based on Lin

et al. (2017), in order to represent the overall emotion of the facial feature, we need multiple

attention units that focus on different parts of the image. For doing that, we transform ws2 into

a matrix Ws2 of size R×L, in which every row represents a different attention:

A = so f tmax(Ws2tanh(Ws1R�)). (2.4)
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Here the softmax is performed along the second dimension of its input. In the case of multiple

attention units, the aggregated vector v becomes a matrix D×N in which each row represents

a different attention. This matrix will be then flattened back to a vector v by concatenating the

rows in a single vector. Thus, with this approach, a video is now represented as a F × (ND)

matrix V in which every row is the attention based description of a video frame. To reduce the

possible overfitting of the multiple attentions, similarly to Lin et al. (2017) we regularize A by

computing L2 norm of matrix (AA�− I) and adding it to the final loss. This enforces diversity

among the attentions and shown to be very important in our experiments for good results.

2.2.3 Temporal Pooling

After extracting the local features and aggregating them using the attention mechanism for each

individual frame, we have to take into account frame features over the whole video. As the

length of a video can be different for each example, we need an approach that support different

input lengths. The most commonly used approaches are average and max pooling; however,

these techniques assume that every frame of the video has the same importance in the final

decision (average pooling) or that only a single frame is considered as a general representation

of the video (max pooling). In order to use the best of both techniques, we use an aggregation

based on softmax. In practice, instead of performing the classical softmax on the class scores,

to transform them in probabilities to be used with cross-entropy loss, we compute the softmax

on the class probabilities and the video frames jointly. Given a video sample S, after feature

extraction and spatial attention we obtain a matrix V in which each row represents the features

of a frame. These features are converted into class scores thorough a final fully connected layer

O = WsmV. In this way O is a F ×E matrix in which an element oc, f is the score for class c

of the frame f . We then transform the scores over frames and classes in probabilities with a

softmax:

p(c, f |S) = exp(oc, f )

∑ j,k exp(o j,k)
. (2.5)
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Figure 2.2 Sample images from AFEW database

In this way, we obtain a joint probability on class c and frame f . From this, we can marginalize

over frames p(c|S) = ∑ f p(c, f |S) and obtain a classification score that can be used in the

training process using cross-entropy loss:

LCE = ∑
i
− log(p(yi|Si)). (2.6)

On the other hand, the same representation can be marginalized over classes p( f |S)=∑c p(c, f |S).
In this case, it will give us information about the most important frames of a given video. This

mechanism looks very similar to attention, but it has the advantage to not require an additional

network to compute the attention weights. This can be important in cases for which the train-

ing data is limited and adding a sub-network with additional parameters to learn could lead to

overfitting. In this case, the weight associated to each frame and each class are computed as

a softmax of the score obtained. Figure 2.3(d) shows the temporal importance of the selected

frames. To make those values more meaningful they have been re-normalized between 0 and

100
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2.3 Experiments

2.3.1 Data Preparation

We evaluate our models based on AFEW database, which is used in the audio-video sub-

challenge of the EmotiW (Dhall et al. (2012)). AFEW is collected from movies and TV reality

shows, which contains 773 video clips for training and 383 for validation with 7 various emo-

tions: anger, disgust, fear, happiness, sadness, surprise and neutral. Sample images from the

dataset are illustrated in Fig 2.2. We extract the frame faces using the dlib (King (2009)) detec-

tor for achieving effective facial images. Then faces are aligned to a frontal position and stored

in a resolution of 256×256 pixels, ready to be passed to VGG16.

2.3.2 Training Details

Although hyperparameters selection is an essential part of the learning task, it is resource-

intensive. We selected our hyperparameters according to the (Liu et al. (2018a)), and grad-

ually changed them to meet our criterion. To overcome overfitting during training we sam-

pled 16 random frames form the video clips. Before feeding the facial image to the network

we applied data augmentation: flipping, mirroring and random cropping of the original im-

age. We set weight decay penalty to 0.00005 and use SGD with momentum and warm restart

(Loshchilov & Hutter (2016)) as optimization algorithm. All models are fine-tuned for 30

epochs, but we use a learning rate of 0.00001 for the backbone CNN parameters and 0.1 for

the rest of the parameters.

2.3.3 Spatial Attention

Table 2.1 reports the accuracy (third column) based on the AFEW validation dataset. We com-

pare our softmax-based temporal pooling with different configurations of attention by varying

the number of attention units (second column) and the used regularization (third column) as

described in sec. 2.3.2. Using just one attention unit does not helps to improve the overall per-
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Figure 2.3 Video frames for a few time-steps for an example of sadness and anger. (a)

Original video frames. (b) Image regions attended by the spatial attention mechanism. (c)

Emotion probability for each frame. The red bar shows the selected emotion. (d)

Temporal importance for selected frames

formance. This is probably due to the fact that a single attention usually focuses on a specific

part of the face, like a mouth. However, there can be multiple regions in a face that together

forms the overall emotion of the person. Thus, we evaluate our model with 2 and 4 attention

units. The best results are obtained with 2 attention units and a strong regularization that en-

forces the models to focus on different parts of the face. We observe that, adding more than two

attention units do not improve the overall performance. This is probably due overfitting. We

also compare with our re-implementation of cluster attention with shifting operation (SHIFT)

(Long et al. (2018)), but results are lower than our approach. Figure 2.3(b) demonstrate im-
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age regions attended by the spatial attention mechanism. Brighter regions represent the most

important parts of the face to recognize a certain emotion for the attention. We show that the

throughout the frames, model not only captures the mouth, which in this case is the most im-

portant part for detecting the emotion but also in the last three frames focuses on the eyes as

well.

Table 2.1 Performance report of the proposed spatial attention block.

TP is our temporal softmax, while SA is the spatial attention

Model # Att. Reg. ACC
VGG16 +T P - - 46.4%

VGG16 +T P+SHIFT 2 - 45.0%

VGG16 +T P+SA 1 0 47.6%

VGG16 +T P+SA 2 0.1 48.9%

VGG16 +T P+SA 2 1 49.0%

VGG16 +T P+SA 4 0.1 48.3%

VGG16 +T P+SA 4 1 48.6%

2.3.4 Temporal Pooling

In this section we compare the performance of different kind of temporal pooling. The sim-

plest approach is to consider each video sample i frame independent of the others p(c|Si) =

∏ f p(c, f |X f ,i) and associating the emotion class c of a video to all its frames. In this case the

loss becomes:

LCE = ∑
i
− log(p(c|Si)) = ∑

i
∑

f
−log(p(c, f |X f ,i)), (2.7)

which can be computed independently from each frame. In this way we can avoid keeping all

the frames of a video in memory at the same. However, assuming that each frame of the same

video is independent of the others is a very restrictive assumption and it is in contrast with

the common assumption used in learning of identically independently distributed samples. We

notice that this approach is equivalent to perform an average pooling (VGG+AVG) on the

scoring function before the softmax normalization. This can explain the lower performance of

this kind of pooling.
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In Table 2.2 we report results of different pooling approaches. We report results for Liu et al.

(2018a) in which they use VGG16 with an LSTM model to aggregate frames (LSTM). We

compare it with a VGG16 model trained with average pooling (AVG) and our softmax tem-

poral pooling (TP). Finally we also consider the model with our temporal pooling and spatial

attention (TP+SP). Our temporal pooling performs slightly better than a more complex ap-

proach based on a recurrent network that keeps the memory of the past frames. We can further

obtain a gain of almost 3 points by adding a spatial attention block (VGG+TP+SA). It is inter-

esting to note that our model, even if not explicitly reasoning on the temporal scale, (i.e every

frame is still computed independently, but then the scores are normalized with the softmax)

outperforms a model based on LSTM, a state-of-the-art recurrent neural network. This suggest

that for emotion recognition it is not really important the sequentiality of the facial postures,

but the presence of certain key patterns.

Table 2.2 Performance report of the softmax

temporal aggregation block

Model ACC
VGG16 +LST M Liu et al. (2018a) 46.2%

VGG16 +AV G 46.0%

VGG16 +T P 46.4%

VGG16 +T P+SA 49.0%

2.4 Conclusion

In this chapter, we have presented two simple strategies to improve the performance of emo-

tion recognition in video sequences. In contrast to previous approaches using recurrent neural

networks for the temporal fusion of the data, in this chapter we have shown that a simple soft-

max pooling over the emotion probabilities, that selects the most important frames of a video,

can lead to promising results. Also, to obtain more reliable results, instead of fusing multiple

sources of information or multiple learning models (e.g. CNN+C3D), we have used a multi-

attention mechanism to spatially select the most important regions of an image. For future

work we plan to use similar techniques to integrate other sources of information such as audio.



CHAPTER 3

AUGMENTING ENSEMBLE OF EARLY AND LATE FUSION USING
CONTEXT GATING

3.1 Introduction

Our perception of the world is through multiple senses. We see objects, hear sounds, feel

texture, smell odors, and taste flavors. Modality refers to the way in which something happens

or is experienced and multimodality refers to the fact that the same real-world concept can be

described by different views or data types.

Multimodal approaches are key elements for many application domains, including video clas-

sification (Liu et al. (2018b)), emotion recognition (Brady et al. (2016)), visual question an-

swering (Fukui et al. (2016)) and action recognition (Simonyan & Zisserman (2014)), to name

a few. The main motivation for such approaches is to extract and combine relevant information

from the different sources and hence make better decisions than using only one.

Existing multimodal approaches usually have three stages: (1) representing the inputs as se-

mantically meaningful features; (2) combining these multimodal features; (3) using the inte-

grated features to learn the model and to predict the best decision with respect to the task.

Given the effectiveness and flexibility of deep neural networks (DNNs), many existing ap-

proaches model the three stages in one DNN model and train the model in an end-to-end fash-

ion through back-propagation. The focus of this chapter is particularly on the second stage, i.e

multimodal fusion.

Most existing approaches simply use linear models for multimodal feature fusion (e.g., con-

catenation or element-wise addition) at one specific layer (e.g., early layer or latest layer) to

integrate multiple inputs feature. Since multimodal features distributions may vary dramat-

ically, the integrated representations obtained by such linear models may not be necessarily

the most optimal way to solve a given multimodal problem. In this chapter, we argue that
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considering features combination from all the hidden layers of independent modalities could

potentially increase performance compared to only using a single combination of late (or early)

features. Hence, this work tackles the problem of finding good ways to integrate multimodal

features to better exploit the information embedded at different layers in deep learning models

with respect to the task in hand.

In order to achieve this goal, we propose a new architecture that simultaneously trains a late

and early fusion augmented with interconnected hidden layers. Our method not only gains

from the flexibility of late fusion through designing individual models for each modality but

also takes advantage of the joint representation of the low-level input through early fusion.

The rest of this chapter is organized as follows. In the next section, we provide the more formal

definition of multimodal fusion, including early and late fusion technique. Next, we explain our

architecture and methodology. In section 3.4, we present experimental results on two different

tasks, i.e., multi-label classification and dimensional emotion recognition. Finally, we give

final comments and conclusions.

3.2 Prerequisite

We first present the relevant work upon which our multimodal fusion approach is built. This

section also establishes the notations used throughout the chapter.

As many others addressing multimodal fusion, we start from the assumption of having an off-

the-shelf feature extractor for each of the involved modalities. Our proposed method is based

on two existing types of popular multimodal approaches: early and late fusion. Therefore we

begin first with notations and then describe the early and late fusion models followed by our

new hybrid architecture. Early and late fusion are illustrated in Figure 3.1. Our proposed

model is related to CentralNet (Vielzeuf et al. (2018)) in the sense that CentralNet also has

mixed architecture of early and late fusion; However, the mechanism they use for interaction

between two models is different.
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Figure 3.1 Early and late fusion block diagram. In this figure for simplicity, we show

only one output but it can be generalized for multi-class classification as well

3.2.1 Notations

We use M as the total number of our modalities. Without loss of generality, in this chapter

we assume that we use two modalities. One can easily apply the same method on more than

two modalities. For each input modality we denote the extracted feature using an off-the-shelf

feature extractor as a dense vector vm ∈R
dm with dimension dm, ∀m= 1,2, · · · ,M. For instance,

given M = 2 modalities in the video classification task, v1 and v2 are the extracted features of

the frames and the encoded audio information from the targeted video accordingly.

3.2.2 Early Fusion

Early fusion methods create a joint representation of features from multiple modalities. In this

method first, each unimodal system encodes the input feature to an intermediate representation.

Next, the aggregation method F , combine unimodal representations into a single model. Then

the single model is trained to learn the interactions between these intermediate representations

of each modality. We denote the single model as h. The final prediction can be written as:
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p = h(F(v1,v2)) (3.1)

The aggregation function F can be a simple or weighted sum, bilinear product (Yu et al. (2017))

or concatenation. In the early fusion, the training pipeline is simple as only one model is

involved. It usually requires the features from different modalities to be highly engineered

and preprocessed so that they align well or are similar in their semantics. Furthermore, it

uses a single model to make predictions, which assumes that the model is well suited for all

modalities.

3.2.3 Late Fusion

In the late fusion methods, the combination happens only after getting scores from each uni-

modal systems. Then the model fuses the decision values using a fusion mechanism F such

as simple or weighted score average (Natarajan et al. (2012)), rank minimization (Ye et al.

(2012)) or Mixture-of-Experts models (Jordan & Jacobs (1994)). We denote each unimodal

systems as hi, i ∈ 1,2. The final prediction for late fusion can be written as:

p = F(h1(v1),h2(v2)) (3.2)

Late fusion allows the use of different models on different modalities, thus allowing more

flexibility. It is easier to handle a missing modality as the predictions are made separately.

However, because late fusion operates on scores and not on the raw inputs, it is not effective at

modeling signal-level interactions between modalities.

3.3 Proposed Model

In this section, we introduce our hybrid multimodal fusion architecture. We call it the Aug-

mented Ensemble network because of the way it incorporates unimodal features into the early
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Figure 3.2 Block level diagram of the Augmented Ensemble multimodal method. The

brightness of each neuron shows the strength of each feature before and after applying the

context gating layer

fusion network features. Our multimodal fusion architecture for two modalities, i.e audio and

video, is illustrated in Figure 3.2.

3.3.1 Augmented Ensemble Network

The model is essentially an ensemble of early and late fusion augmented by intermediate rep-

resentations. First, for each modality, based on section 3.2 an early and late fusion network is

constructed. For the early fusion input, we use concatenation of unimodals output representa-

tion. Next, at each layer for each unimodal network, the intermediate feature is enhanced by

the Context Gating layer (3.3.2). Before feeding the extracted information to the early fusion

network, we use attention mechanism to aggregate enhanced unimodal features and features

generated by the previous layer of the early fusion network. The attention network focuses on

learning the relationship between modalities. We hypothese that correlation between multiple

modalities can be nontrivial and having a separate network to learn those lead to the overall

improvement of the performance. Finally, the late fusion network processes the combined fea-
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tures. The final score is based on the sum of late fusion and early fusion score. The equations

governing one layer of the proposed model can be written as:

si
1 = γ(vi

1;θ i
1) (3.3)

si
2 = γ(vi

2;θ i
2) (3.4)

si
1,2 = [si

1,s
i
2] (3.5)

gi = Att([si
1,2,v

i
e];θ i

att) (3.6)

si
e = gi

0 ∗ vi
e +gi

1 ∗ si
1,2 (3.7)

where i is the layer number, γ refers to the context gating module with θ i
1,θ

i
2 as the trainable

parameters, Att with trainable parameter θ i
att refers to the attention network used in the early

fusion network. It is worth noting that, because we use concatenation throughout our early

fusion network, the size of each hidden unit in early fusion is equal to the sum of each unimodal

network hidden unit.

The CentralNet (Vielzeuf et al. (2018)) constructs a new network by taking the weighted sum

of each unimodal hidden units and the early fusion hidden layer. Compared to our proposed

model, in the CentralNet architecture, authors used scalar trainable weights to capture the cor-

relation between different modalities. We argue that in each modality, some of the features are

more important than the others for capturing this correlation, therefore a single scalar weight

is not sufficient to capture the relationship between different modalities.
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Figure 3.3 One layer of the Augmented Ensemble architecture

3.3.2 Context Gating

The context gating module transforms the input feature representation x into a new representa-

tion s as:

s = σ(W2δ (W1x))◦x (3.8)

where x ∈ R
n is the input feature vector, σ is the elementwise sigmoid activation, δ refers to

the ReLU function, and ◦ is the element-wise multiplication. W1 ∈ R
C
r ×C and W2 ∈ R

C×C
r

are trainable parameters. The vector of weights σ(W2δ (W1x)) ∈ [0,1] represents a set of

learned gates applied to the individual dimensions of the input feature x. Same as Hu et al.

(2018), reduction ratio r is chosen to limit model complexity and aid generalization. The

motivation behind this transformation is to recalibrate the strengths of different activations of

the input representation through a self-gating mechanism. To fulfil this objective, it must learn
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a non-mutually-exclusive relationship since we would like to ensure that multiple features are

allowed to be emphasised, opposed to one-hot activation. One layer of the model using the

context gating layer is depicted in Figure 3.3.

3.4 Experiments

To demonstrate the capability of our multimodal fusion method, we conducted experiments

on two different tasks. The first task is multi-label video classification on Youtube-8M v2

dataset (Abu-El-Haija et al. (2016)) and the second task is dimensional, continuous, emotion

recognition on RECOLA dataset (Ringeval et al. (2013)). On each task, the performance of the

proposed method is compared to 5 different baselines. We fist conduct two comparative tests

with single-modality input (only video or audio), to prove that the improvement of performance

does not come from increasing parameters on each modality. We also implement vanilla late

and early fusion based on the details provided in section 3.2. We verify the effectiveness of the

Context Gating layer by comparing its performance with the ensemble of early and late fusion

without augmented features. Finally, we compare out model with the CentralNet as well.

3.4.1 Youtube-8M v2 Dataset

We conduct experiments on the recently updated Youtube-8M v2 dataset (Abu-El-Haija et al.

(2016)) with improved machine-generated labels and higher-quality videos. It contains a to-

tal of 6.1 million videos, 3862 classes, 3 labels per video averagely. Youtube-8M v2 dataset

provides two sets of features, frame level and video level. Throughout the experiment we use

video level features. Visual and audio features are pre-extracted per frame and averaged to a

fixed-length representation (at the video-level). Visual features are obtained by Google Incep-

tion pretrained on ImageNet (Deng et al. (2009)), followed by PCA-compression to generate

a vector with 1024 dimensions. The audio features are extracted from a VGG-inspired acous-

tic model described in (Hershey et al. (2017)). In the official split, training, validataion and

test have equal 3844 tfrecord shards. In practice, we follow the same settings as (Liu et al.

(2018b)), we use 3844 training shards and 3000 validation shards for training. We randomly
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select 200 shards from the rest of 844 validation shards (around 243 337 videos) to evaluate

our model every 1000 training steps. Results are evaluated using the Global Average Precision

(GAP) metric using the following expression:

GAP =
N

∑
i=1

p(i)Δr(i) (3.9)

where N is the number of final predictions, p(i) is the precision, and r(i) is the recall.

We implement our model using Pytorch (Paszke et al. (2017)) with the Google starter code1.

All models are trained using Adam optimizer (Kingma & Ba (2014)) with an initial learning

rate set to 0.01 and learning rate decay of 0.9 every 400000 training steps. The mini-batch size

is set to 1024. We set the reduction ratio r to 4. We use cross entropy loss for maximizing

the Global Average Precision (GAP). All models are trained for 10 epochs with early stopping.

In order to observe timely model prediction, we evaluate the model on a subset of validate set

every 1000 training steps.

Table 3.1 Performance comparison of our models

versus other baseline models evaluated on the

Youtube-8M v2 dataset

Model GAP
Audio Only 40.1%

Video Only 71.1%

Early Fusion 83.8%

Late Fusion 83.2%

Ensemble 84.0%

CentralNet Vielzeuf et al. (2018) 83.9%

Augmented Ensemble (Ours) 85.1%

The detailed results of mutlimodal fusion on Youtube-8M v2 dataset are shown in Table 3.1.

Firstly, the GAP performance of multimodal networks is far superior to single modality input

1 https://github.com/google/youtube-8m
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(Video Only or Audio Only). Secondly, we can observe the same performance for the early

fusion and late fusion. Finally, the Augmented Ensemble method achieves 1.1% higher GAP

compared with the simple fusion Ensemble baseline. The main reason is probably that the

simple fusion Ensemble can not leverage high-order information across modalities. Our model

achieves better performance compared to the CentralNet model. This suggests that the simple

mechanism used in CentralNet for capturing the relationship between unimodal networks and

the early fusion network is not sufficient.

3.4.2 RECOLA Dataset

The Remote Collaborative and Affective Interactions (RECOLA) dataset (Ringeval et al. (2013))

was recorded to study socio-affective behaviours from multimodal data in the context of com-

puter supported collaborative work. Spontaneous and naturalistic interactions were collected

during the resolution of a collaborative task that was performed in dyads and remotely through

video conference. Multimodal signals, i.e., audio, video, electro-cardiogram (ECG) and electro-

dermal activity (EDA), were synchronously recorded from 27 French-speaking subjects. Even

though all subjects speak French fluently, they have different nationalities (i.e., French, Italian

or German), which thus provides some diversity in the expression of emotion. The dataset

contains two types of dimensional labels (arousal and valence) which were annotated by six

people. Each dimensional label ranges from [−1,1]. The dataset is partitioned into three sets:

train, development, and test, each containing nine subjects. The Audio-Visual Emotion Recog-

nition Challenge 2016 (AVEC16) Valstar et al. (2016) uses data from RECOLA dataset.

The challenge organizers provide pre-extracted features for all of the modalities but in practice

we use only features from audio and video modals. For video appearance and geometric based

features are extracted. 84 appearance features are obtained using Local Gabor Binary Patterns

from Three Orthogonal Planes (LGBP-TOP) (Almaev & Valstar (2013)) followed by PCA. 316

geometric features are obtained by tracking 49 facial landmarks with the Supervised Descent

Method (SDM) (Xiong & De la Torre (2013)). Both appearance and geometric feature sets are

interpolated by a piecewise cubic Hermite polynomial to cope with dropped frames. Finally,
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the arithmetic mean and the standard-deviation are computed on all features using a sliding

window, which is shifted forward at a rate of 40ms. The audio features are extracted using the

extended Geneva minimalistic acoustic feature set (eGeMAPS) (Eyben et al. (2015)). They

also extract the acoustic low-level descriptors (LLD) with the openSMILE toolkit (Eyben et al.

(2010)). Overall, the acoustic baseline features set contains 88 features.

In this experiments, we focus on predicting the arousal level.

We evaluate our methods by computing Concordance Correlation Coefficient (CCC) (Lawrence & Lin

(1992)). The CCC tries to measure the agreement between two variables using the following

expression:

ρc =
2ρσxσy

σ2
x +σ2

y +(μx −μy)2
(3.10)

where ρ is the Pearson correlation coefficient (PCC), σ2
x and σ2

y are the variance of the pre-

dicted and ground truth values respectively and μx and μy are their means, respectively. The

strongest method is selected based on whichever obtains the highest CCC value. Compared

with PCC, the CCC considers not only the shape similarity between the two series but also the

value precision. This is especially relevant for estimating the performance of time-continuous

emotion prediction models, as both the trends as well as absolute prediction values are relevant

for describing the performance of a model. Figure 3.4 shows two sets of bi-vartiated, (x,y),

data where in both of the sets PCC is equal to 1 but in only of them CCC is 1. The CCC metric

falls in the range of [−1,1], where +1 represents perfect concordance, −1 total discordance,

and 0 no concordance at all.

We implement our model using Pytorch framework. All models are trained using SGD opti-

mizer with an initial learning rate set to 0.1. The mini-batch size is set to 256. We use mean

square error loss for maximizing the CCC. All models are trained for 50 epochs. We evaluate

all of our experiments on the development set. For all investigated methods, we follow (Trige-
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Figure 3.4 Coders A & B: PCC = 1.0, CCC = 1.0. Coders A & C: PCC = 1.0, CCC =

.67. PCC provides a measure of linear covariation between set of scores, without

specifying any degree of correspondence between the set.

orgis et al. (2016)) and a chain of post-processing is applied to the predictions obtained on the

development set.

Table 3.2 Performance comparison of our models

versus other baseline models evaluated on the

RECOLA dataset. The reported CCC scores are for

the arousal

Model CCC
Audio Only 0.772

Video Only 0.444

Early Fusion 0.794

Late Fusion 0.783

Ensemble 0.802

CentralNet Vielzeuf et al. (2018) 0.820

Augmented Ensemble (Ours) 0.823

The detailed results of our experiments on the RECOLA dataset are shown in Table 3.2. Same

as the previous experiments on the Youtube-8M v2 dataset, the multimodal methods achieve
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Figure 3.5 Activation produces by the context gating layer in the unimodal networks

and attention unit in the early fusion network

superior performance compared to single modal techniques. We also demonstrate that our

proposed model outperforms the rest of the baselines. Our model achieves comparable results

with the CentralNet model.

3.4.3 Visualization

To better understand the behavior of the context gating layer and attention unit, in this section

we study example activations from our proposed model applied on Youtube-8M v2 Dataset

and examine their distribution for different classes. We choose Youtube-8M v2 Dataset due to

variations in its target classes. We sample images from the dataset that contains four classes

that exhibit from the dataset and appearance diversity, namely game, string instrument, racing,

and concert. We then draw fifty samples within each class from the validation set. For the
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context gating layers, we compute the average activations for each feature. For the attention

unit used in the early fusion network, we compare the probability of choosing the late fusion

features over the features coming from the previous layer of the early fusion network. The

attention unit activation for video and audio network and the probability of the features coming

from the previous layer of early fusion network are illustrated in Figure 3.5.

We make the following observations. First, in the audio network, it is clear that the classes

which are more sensitive to audio e.g concert and string instrument on average, have bigger ac-

tivations. Interestingly, the activations for each feature are different. This suggests that having

one unit per feature in the context gating layer is crucial and implies one of the improvement

factors over CentralNet which has only one scalar trainable parameter associated with each uni-

modal network. Second, in the early fusion network, compared to its previous layer features,

the audio network activations have more contributions. This suggests that unimodal features

can help to compensate for information loss. For the other two classes e.g game and racing,

the effect is reversed. In the audio network, the activations corresponding to these classes are

higher and their contribution to the early fusion network is lower. For the video network, even

though the picks of the activations are almost the same as the audio network, the effect of the

context gating layer is not as clear as the audio network.

3.5 Conclusion

This chapter investigates a novel approach for the fusion of multimodal information. It intends

firstly to have the flexibility of the late fusion architecture by applying different models on

different modalities, secondly, to learn rich features from a joint representation of the low-level

signal feature through early fusion architecture. We also demonstrate the superior performance

of the network compared to the baseline models by applying on two different tasks, i.e multi-

class classification problem on the Youtube-8M dataset and dimensional emotion recognition

on the RECOLA dataset.



CONCLUSION AND RECOMMENDATIONS

Summary

In this dissertation, we highlighted how deep learning methods, when applied to emotion recog-

nition, by learning rich representations achieve superior accuracy over traditional techniques.

Moreover, we demonstrated our methods are not bound to emotion recognition task and other

classes of tasks such as multi-label classification can get benefit from our approaches.

First, we focused only on one modality and considered the task of video-based emotion recog-

nition using only visual inputs. We addressed the spatial and temporal aspects of the input data

using two mechanisms. For spatial dimension, we replaced the global pooling layer of CNN

with a multi-head attention network. We demonstrated visually the multi-head attention can

help the performance by selecting the most important regions of an image. For the temporal

aspect of the data, we introduced the temporal softmax pooling layer which jointly learns the

correlation among the frames and most predictive frames among the other frames within one

video. We showed that, compare to the more complex mechanism such as RNN, the temporal

softmax pooling over the emotion probabilities, that selects the most important frames of a

video, can lead to promising results.

Second, we moved our attention to the multimodal data. Particularly we focused on multimodal

fusion. By incorporating the best features from early and late fusion architecture, we introduced

a new fusion method. We compared our method with different fusion approaches and noticed

improvement across different tasks.

Future Work

In practice datasets related to affective computing, e.g. RECOLA Ringeval et al. (2013) and

AFEW Dhall et al. (2012), are small and deep learning methods usually require vast amount of
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data to generalize well. Therefore, using pretrained networks always help to improve the final

result. It is a good idea to pick a dataset that is related to the task in hand and use a previously

trained deep modal on that dataset. For instance, in chapter 2, we used VGG-FACE network

weights which previously trained to recognize celebrity’s faces and noticed great boost in the

final performance. One can further use other emotion recognition datasets as well.

In chapter 2, while we only demonstrated our result for visual features. It is possible by slightly

changing the architecture configuration, make the network compatible with other modalities as

well. Specify one can adopt CNN for inputs represented as signals such as audio and apply the

same multi-head attention and temporal pooling mechanism on the extracted features.

In chapter 3, for multimodal fusion, we used off-the-shelf feature extractor. While these meth-

ods help to minimize the footprint of the model, their representations are fixed and the mul-

timodal system is bounded to those extracted features. One can insert one learnable feature

extractor for each unimodal system and train the multimodal system in the end-to-end fashion.

This approach improves the flexibility of each unimodal system and also can take advantage of

all of the best practices in deep models.
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