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Utilisation de Grands Ensembles de Modèles Climatiques pour Étudier L’impact du
Changement Climatique sur les Futures Sécheresses Extrêmes

Cha ZHAO

RÉSUMÉ

L’évolution des sécheresses dans un climat en évolution a reçu une attention croissante de

la communauté scientifique et du public. Des études récentes qui ont examiné l’évolution

des futures sécheresses ont montré que ces dernières devraient devenir plus graves et plus

fréquentes. L’océan est le principal moteur de la variabilité climatique interne, et la variabilité

hydroclimatique régionale peut être liée à des oscillations climatiques à grande échelle. Cette

étude vise à explorer l’évolution de la fréquence des sécheresses extrêmes à court et long termes

aux échelles mondiale et continentale, et à étudier la relation entre la variabilité climatique

future et les modes d’oscillation à grande échelle. Meilleures compréhensions de l’évolution

des sécheresses extrêmes futures et de la relation avec la variabilité climatique sont essentielle

pour mieux s’adapter au changement climatique.

Deux grands ensembles de modèles climatiques, le grand ensemble de 50 membres du modè-

le du système terrestre canadien (CanESM2) et celui de 40 membres du modèle du système

terrestre communautaire (CESM1), tous deux sous le scénario RCP8.5 ont été utilisés dans

ce travail. Les précipitations mensuelles ont été utilisées pour calculer l’indice de précipita-

tion standardisé (SPI) afin de quantifier les sécheresses météorologiques aux échelles mondiale

et nord-américaine pour les périodes futures proches (2036-2065) et lointaines (2070-2099).

Dans un deuxième temps, l’évolution des sécheresses hydrologiques sur 4521 bassins versants

nord-américains a été évaluée à l’aide de l’indice de sécheresse hydrologique (SDI). Dans une

dernière étape, la contribution à la variabilité interne de trois indices climatiques à grande

échelle a été étudiée. L’impact de l’oscillation australe El Niño (ENSO), de l’oscillation dé-

cennale du Pacifique (PDO) et de l’oscillation multidécennale de l’Atlantique (AMO) sur les

anomalies climatiques à l’échelle du bassin versant a été étudié. Les interactions construc-

tives et destructives entre ces trois indices ont également été étudiées au cours de la période

historique 1961-2010.

Par rapport aux observations, les deux ensembles font un travail raisonnable pour reproduire

les profils de précipitations annuelles moyennes et de variabilité interannuelle au cours de la

période de référence 1981-2010. Les changements prévus des précipitations pour les deux

modèles sont conformes aux tendances prévues par le GIEC. Les deux modèles climatiques

prévoient une augmentation de la fréquence des sécheresses météorologiques extrêmes dans de

nombreuses régions du monde. Les schémas spatiaux des régions où la sécheresse s’aggrave

correspondent à ceux du changement prévu des précipitations annuelles moyennes, bien que

le premier soit plus étendu. Ceci qui indique que les changements de la variabilité interne

augmenteront la fréquence des sécheresses, même dans certaines régions qui devraient voir une

augmentation des précipitations annuelles moyennes. L’augmentation prévue de la fréquence

des sécheresses météorologiques est plus importante pour les sécheresses à court terme de juin-
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juillet-août (JJA) et pour les périodes de retour plus importantes. De grandes augmentations de

fréquence sont observées dans de nombreuses régions, jusqu’à 20 fois pendant la sécheresse

de 100 ans de JJA, indiquant un changement de période de retour de 100 à 5 ans.

Les résultats montrent des schémas très différents pour les changements futurs des séche-

resses hydrologiques extrêmes par rapport aux changements des sécheresses météorologiques.

Les sécheresses hydrologiques, qui combinent l’effet des précipitations et des changements

de température, montrent un schéma généralement uniforme d’augmentations importantes à

très importantes de la fréquence des sécheresses. Cela montre que l’augmentation prévue de

la température est un des principaux moteurs des futures sécheresses hydrologiques extrêmes,

suffisante pour surmonter l’augmentation prévue des précipitations estivales moyennes prévues

pour de nombreux bassins versants nord-américains. Les changements prévus pour les séche-

resses météorologiques et hydrologiques s’aggravent constamment pour les périodes de retour

considérées plus longues. En d’autres termes, les changements de fréquence pour les séche-

resses de 100 ans sont plus importants que ceux attendus pour les sécheresses de 2 et 20 ans.

En ce qui concerne le contrôle des oscillations à grande échelle sur les anomalies climatiques à

l’échelle du bassin versant, il a été constaté que l’ENSO domine la variabilité des précipitations

annuelles alors que la température annuelle moyenne est principalement influencée par l’AMO

sur la majeure partie de l’Amérique du Nord. L’impact de PDO est relativement plus faible.

Les rôles dominants de l’ENSO sur les précipitations et de l’AMO sur la température sont

préservés mais renforcés ou diminués par les fortes interactions entre les oscillations. Un

ENSO négatif (La Niña) couplé à un AMO positif apporte des conditions climatiques favo-

rables aux sécheresses.

Cette thèse illustre l’impact du forçage anthropique et de la variabilité interne sur la fréquence

future des sécheresses. Les résultats fournissent des connaissances indispensables nécessaires

pour mieux s’adapter au changement climatique.

Mots-clés: changement climatique; modèles climatiques; grands ensembles; sécheresses ex-

trêmes; analyse de fréquence; oscillations à grande échelle



Use of Climate Model Large Ensembles to Study the Impact of Climate Change on
Future Extreme Droughts

Cha ZHAO

ABSTRACT
The evolution of droughts in a changing climate has received increasing attention from the

scientific community and the public. Recent studies looking at the evolution of future droughts

have found that droughts are expected to become more severe. The ocean is the main driver

of internal climate variability, and regional hydroclimatic variability can be related to large-

scale climate oscillations. This study explored the evolution of the frequency of short- and

long-term extreme droughts at the global and continental scales, and studied the relationship

between future climate variability and large-scale oscillations. A better understanding of the

evolution of future extreme droughts and their relationship with climate variability is the key

to better adapt to the changing climate.

Two climate model large ensembles, the 50-member Canadian Earth System Model (CanESM2)

and the 40-member Community Earth System Model (CESM1), both under the Representative

Concentration Pathway 8.5 were used in this work. Monthly precipitation outputs were used

to calculate the Standard Precipitation Index (SPI) to quantify meteorological droughts at the

global and North American scales for the near- (2036-2065) and far-future (2070-2099) pe-

riods. In a second step, the evolution of hydrological droughts over 4521 North American

catchments was assessed using the Streamflow Drought Index (SDI). In the last step, the con-

tribution to internal variability of three large-scale climatic indices was studied. The impact

of the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic

Multidecadal Oscillation (AMO) on climate anomalies at the catchment scale was studied. The

constructive and destructive interactions between those three indices were also studied over the

1961-2010 historical period.

Compared against observations, both ensembles do a reasonable job at replicating patterns

of mean annual precipitation and interannual variability over the 1981-2010 reference period.

The projected changes in precipitation for both models are consistent with the predicted IPCC

trends. Both climate models project increases in extreme meteorological drought frequency

over many of the world’s regions. The spatial patterns of regions with worsening droughts

match those of projected change in mean annual precipitation, although the former is more

extensive, indicating that changes in internal variability will increase drought frequency even

in some regions projected to see increased mean annual precipitation. The projected increase

in meteorological drought frequency is more significant for short-term June-July-August (JJA)

droughts and for the larger return periods. Large increases in frequency are observed in many

regions, all the way up to 20 times for the 100-year JJA drought indicating a return period shift

from 100 to 5 years.

Results show widely different patterns for future changes in extreme hydrological droughts

compared to meteorological ones. Hydrological droughts, which combine the effect of preci-
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pitation and temperature changes, show a mostly uniform pattern of large to very large in-

creases in drought frequency. This shows that the projected increase in temperature is a main

driver of future extreme hydrological droughts, sufficient to overcome the projected increase in

mean summer precipitation projected for many North American catchments. Predicted changes

for both meteorological and hydrological droughts get consistently worse for the longer con-

sidered return periods. In other words, frequency changes for the 100-year droughts are more

important than those expected for the 2- and 20-year droughts.

As to the control of large-scale oscillations on climatic anomalies at the catchment scale, it

was found that ENSO dominates annual precipitation variability over North America whereas

mean annual temperature is mostly influenced by AMO over most of North America. The

impact of PDO is comparatively weaker. The dominant roles of ENSO on precipitation and

AMO on temperature are preserved but reinforced or diminished by the strong interactions

between oscillations. A negative ENSO (La Niña) coupled with a positive AMO brings climate

conditions favorable to droughts.

This Thesis illustrates the impact of anthropogenic forcing and internal variability on future

drought frequency under changing climate. The results provide much-needed knowledge nec-

essary to better adapt to a changing climate.

Keywords: climate change; climate models; large ensembles; extreme droughts; frequency

analysis; large-scale oscillations
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INTRODUCTION

The increase in greenhouse gases concentration is affecting local climates all over the world.

Over the past 20 years, climate change impacts studies have shown this at an ever-increasing

rate. The globally averaged combined land and ocean surface temperature has experienced

a warming of 0.85◦C [0.65 to 1.06◦C] over the 1880 to 2012 period. Since 1950, unprece-

dented changes have been observed, compared to the recent past tens of thousands of years

(IPCC, 2013b). The global climate will continue to change over the 21st century and beyond.

This warming trend is expected to have many impacts on the earth’s environment. With the

increasing global mean surface temperature, the onset of spring snowmelt will be earlier than

usual, and the frost-free season will be extended. In the meantime, the amount of sea ice has

decreased while the mean sea level has steadily increased, threatening the economy and en-

vironment of coastal regions (Wuebbles, D., Fahey, D. & Hibbard, K., 2016). It has become

clear that the future potential effect of climate change needs to be quantified to make efficient

strategic adaptation decisions.

It is now widely accepted and recognized that climate change is likely to have significant im-

pacts on the hydrological cycle, posing a threat to water resources systems throughout the

world (Arnell, N. W. & Gosling, S. N., 2016; Haddeland, I., Heinke, J., Biemans, H., Eis-

ner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J. et al.,

2014; Hegerl, G. C., Black, E., Allan, R. P., Ingram, W. J., Polson, D., Trenberth, K. E.,

Chadwick, R. S., Arkin, P. A., Sarojini, B. B., Becker, A. et al., 2018). A warming climate

will result in the intensification of the hydrological cycle amplifying the difference between

dry and wet regions and leading to more extreme precipitation events (Donat, M. G., Lowry,

A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N., 2016). High-latitude regions have been

shown to be more vulnerable to the changing climate because of the change of surface albedo,

an additional mechanism of water vapor transpiration and feedback from the ocean and sea-

ice (Barnett, T. P., Adam, J. C. & Lettenmaier, D. P., 2005; Swann, A. L., Fung, I. Y., Levis,
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S., Bonan, G. B. & Doney, S. C., 2010). The continued warming could drive changes in the

seasonality of streamflow, such as earlier spring freshet, reduced summer flows (Bonsal,B.R.,

P. D. S. F. R. A. & Berg, A., 2019). The impacts of climate change on hydrological regimes

vary with regions and time scales, because the temporal and spatial patterns of temperature

and precipitation, which are key factors at the regional and local scales, are both affected by

climate change. Climate change can also affect water balance by intensifying evapotranspira-

tion, mainly through increasing temperature, change of rainfall patterns and by affecting the

fraction of solid/liquid precipitation, and therefore affecting the snowpack storage dynamics

(Boyer, C., Chaumont, D., Chartier, I. & Roy, A. G., 2010).

The hydrological response to global warming is expected to result in an increase in the fre-

quency of extreme hydrological events. Changes in extreme events are expected to have more

impacts on human safety, infrastructure, agriculture, and natural ecosystems than changes in

mean values (Wuebbles et al., 2016). Droughts, for example, are a recurring extreme event

that can last several weeks to a few years and are arguably the most severe natural disaster, due

to their pronounced societal and economic impacts, especially in semi-arid and arid areas. For

example, droughts can lead to reduced crop productivity, diminished water resources, along

with an increase in wildfires and poor soil quality. Furthermore, droughts can be a catalyst

for water rights conflicts in many countries (Alahdin, S., Ghafouri, H. & Haghighi, A., 2018;

Burrows, K. & Kinney, P., 2016).

Droughts always come with below-average precipitation, above-average temperature, low rel-

ative humidity and diminished cloud cover over a significant time period (Dai, A., 2011). A

drought is a temporary natural phenomenon and is periodic, and can be characterized by its

intensity, duration, and probability of occurrence. Droughts are typically classified into four

main classes: meteorological droughts, agricultural droughts, hydrological droughts and socio-

economic droughts (Dracup, J. A., Lee, K. S. & Paulson Jr, E. G., 1980; Wilhite, D. A. & Glantz,
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M. H., 1985). Meteorological droughts are related to an abnormal precipitation deficit, over

a given time period. Since all droughts ultimately result from a precipitation deficit, monthly

precipitation data has been commonly applied to analyze droughts (Dai, 2011; Marengo, J. A.,

Tomasella, J., Alves, L. M., Soares, W. R. & Rodriguez, D. A., 2011; Vicente-Serrano, S. M.,

Beguería, S. & López-Moreno, J. I., 2010). Meteorological droughts impact industrial and

domestic water supply as well as agricultural production. Below-average precipitation is not

only the primary cause of meteorological droughts, but also a main driver for other types of

droughts.

Agricultural droughts are related to low soil moisture conditions that cannot meet the water

demand for crop growth. Low soil moisture content restricts crop growth, decreases yields

and may ultimately lead to total crop failure. Several drought indices combining temperature,

precipitation and soil moisture have been widely applied to study agricultural droughts (Mishra,

A. K. & Singh, V. P., 2010). The onset of agricultural droughts may lag that of meteorological

droughts, depending on prior surface soil moisture status and the type of precipitation at the

end of the meteorological droughts (Heim, J. & Richard, R., 2002).

Hydrological droughts are the results of river streamflows being insufficient to support a wa-

ter resource management system over a given period (Dai, 2011). Hydrological droughts are

always analyzed by using streamflow data (Clausen, B. & Pearson, C., 1995; McCarthy, J. J.,

Canziani, O. F., Leary, N. A., Dokken, D. J. & White, K. S., 2001; Zelenhasić, E. & Salvai, A.,

1987).

Socio-economic droughts are different from the other three types of droughts. Its occurrence is

due to the unbalance between the supply and demand of economic goods associated with the

weather-related shortage of water supply.
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Even though hydrological droughts are always related to meteorological droughts, there can

be significant differences in the magnitude and duration of both types of droughts, and the

former may persist well past the end of the latter depending on watershed size, usage and

non-linear impacts between precipitation and other meteorological variables such as tempera-

ture (Heim & Richard, 2002). Meteorological droughts play an important role in subsequent

droughts formation and propagation across different droughts types (Potop, V., 2011). The

commonly accepted drought types and sequences of droughts are shown in Figure 0.1 (NDMC,

2020; Wilhite, D., 2006).

Figure 0.1 Type of droughts and sequence of drought occurrence

Taken from NDMC, 2020
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There are many recent examples of severe droughts resulting in significant socio-economic im-

pacts. Droughts are considered among the costliest natural disasters over United States (U.S.)

on the sole basis of economic losses (NOAA/NCEI, 2019). The 2015 California droughts,

the fourth consecutive year with severe droughts, led to a $2.7 billion total economic impact

and 21,000 job losses across the state (Howitt, R., MacEwan, D., Medellín-Azuara, J., Lund,

J. R. & Sumner, D., 2015). The duration of droughts in California during 2012 to 2015 period

was unprecedented and was estimated as a 10,000-year event (Robeson, S. M., 2015). The

exceptional 2017 droughts over the northern High Plains in U.S. caused $2.5 billion of eco-

nomic losses and also led to an unprecedented wildfire (Wang, H., Schubert, S. D., Koster,

R. D. & Chang, Y., 2019a). Droughts that occurred in 2018 in the Southwest U.S. and South-

ern US Plains affected the growth of field crops, increased cattle feeding costs, and led to $3

billion economic losses (NOAA/NCEI, 2019). Many recurrent major droughts have also af-

fected Canada and particularly in Western Canada. Regions, like British Columbia’s interior

valley and the Prairies are often affected, because they are on the leeside of large mountain

ranges and subject to high precipitation variability (Bonsal, B. R., Wheaton, E. E., Chipanshi,

A. C., Lin, C., Sauchyn, D. J. & Wen, L., 2011; Masud, M., Khaliq, N., Wheater, H. & Zilefac,

E., 2015). Forest fires linked to an exceptionally dry winter completely destroyed the town of

Fort McMurray in May 2016, causing damages nearing $5 billion (McDonald, C., 2016). The

provincial government of British Columbia relocated 2800 cattle and paid around $2 million to

replace the damaged fencing due to the droughts in 2017 (Cherneski, P., 2018). Eastern North

American droughts typically affect smaller areas and have a shorter duration than their Cen-

tral and Western counterparts, but are nonetheless susceptible to significant economic impacts

(Barrie Bonsal,Grace Koshida, E. T. O. E. W., 2004). The Canadian Prairies and northern Cen-

tral Canada are the two well-defined drought regions with a 8 to 40 months periodicity (Asong,

Z. E., Wheater, H. S., Bonsal, B., Razavi, S. & Kurkute, S., 2018).
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Rare extreme events tend to cause a disproportionate amount of damage, despite their low

probability of occurrence (Leng, G., Tang, Q. & Rayburg, S., 2015; Wuebbles et al., 2016).

There are several reasons for this, the most important likely being that adaptation measures

that have been put in place to deal with the more frequent events are not sufficient to deal with

the rarer ones. However, most of the previous work on droughts under a changing climate has

focused on those frequent droughts and comparatively little has been done on changes of rare

and very rare droughts.

Potential changes in drought occurrence is an important consequence of climate change. Cli-

mate change refers to a change in the state of the climate that can be characterized by changes

in its mean and/or variability (IPCC, 2007). Global warming is not only caused by external

forcing, but also due to the internal interactions within the chaotic and complex non-linear

climate system. There are two main components driving climate change: anthropogenic forc-

ing and natural climate variability (IPCC, 2001). Anthropogenic climate change, also called

human-induced climate change, as its name suggests, is the result of the increase in greenhouse

gases concentration in the atmosphere, due to human activities. Human influence has been the

dominant driver of the observed warming since the mid-twentieth century (IPCC, 2013a; Lins,

H. F. & Cohn, T. A., 2011). Human activities alter the energy balance at the Earth’s surface

and destabilize the climate system. The effects of human-induced climate change are likely to

be insidious, with a gradual increase in the number and intensity of many extremes, including

floods, droughts, heatwaves and heavy precipitation over a number of decades (IPCC, 2001).

Natural (or internal or unforced) climate variability is the manifestation of the chaotic behavior

of the climate system. The impact of natural climate variability on global temperature change

is weaker than anthropogenic forcing over a long enough period (Martel, J.-L., Mailhot, A.,

Brissette, F. & Caya, D., 2018). The characteristics of climate variability are easier to capture

in regions with low natural variability. At the catchment scale, the impacts of natural variability

may be greater even over a multi-decadal time span (Hulme, M., Barrow, E. M., Arnell, N. W.,
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Harrison, P. A., Johns, T. C. & Downing, T. E., 1999). Due to its non-linear nature, the climate

system displays a quite large variability at different time scales. The importance of natural

climate variability increases with shorter time scales and smaller spatial scales (Matthews, R.,

Kropff, M., Horie, T. & Bachelet, D., 1997).

There are several natural dynamic processes at the decadal time scale affecting the climate

in addition to sources of high-frequency variability. The North Atlantic and Pacific Oceans

are the key drivers of the internal multidecadal variability of Northern Hemisphere temper-

atures. Pacific- and Atlantic-based internal multidecadal variability were found to explain a

large proportion of the Northern Hemisphere internal variability of mean annual temperatures

(Steinman, B. A., Mann, M. E. & Miller, S. K., 2015). Decadal fluctuations modulate the re-

gional climate and also account for 20-40% of the annual precipitation variance (Cayan, D. R.,

Dettinger, M. D., Diaz, H. F. & Graham, N. E., 1998; Newman, M., Alexander, M. A., Ault,

T. R., Cobb, K. M., Deser, C., Di Lorenzo, E., Mantua, N. J., Miller, A. J., Minobe, S., Naka-

mura, H. et al., 2016; Valdés-Pineda, R., Cañón, J. & Valdés, J. B., 2018; Yang, Q., Ma, Z.,

Fan, X., Yang, Z.-L., Xu, Z. & Wu, P., 2017). Natural climate variability may introduce some

inherent limitations to climate projection and adaptation guidance in some places, and it is

unlikely to be mitigated through model improvement and increasingly certain greenhouse gas

trajectories (Deser, C., Knutti, R., Solomon, S. & Phillips, A. S., 2012a). The effect of natural

variability could still be larger than the human-induced climate change until the mid-late 21st

century over some regions (Dai, A. & Bloecker, C. E., 2019; Martel et al., 2018). Lack of

considering the effect of natural climate variability can lead to poor climate projections (He,

J., Valeo, C. & Bouchart, F.-C., 2006; Lins & Cohn, 2011). A better understanding of natural

climate variability in the present and future climate will help us better understand its contri-

bution to variability and especially how it impacts climate extremes (Pierce, D., Barnett, T.,

Schneider, N., Saravanan, R., Dommenget, D. & Latif, M., 2001).
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This thesis consists of five parts: an introduction, a literature review, the main body of the

thesis, a general discussion and a conclusion. The introduction covered the background and

main scientific problems. The literature review presents relevant scientific articles published

on climate change impacts on droughts and role of natural climate variability. The objectives of

the thesis are presented at the end of the literature review. The main body of the thesis consists

of three research articles. A general discussion describing the main limitations of this work and

presenting recommendations for further work follows. A general conclusion closes this thesis.

Three research articles are presented in Chapters 2, 3 and 4. The frequency change of future

extreme meteorological droughts is first assessed at the global scale in Chapter 2. The fre-

quency change of future extreme meteorological and hydrological droughts are then assessed

at the watershed scale over 5797 North American catchments in Chapter 3. Finally, in order to

better understand the contributions of natural climate variability to North American droughts,

the relationship between three large-scale oscillations and climate variability is explored in

Chapter 4. The flow chart of this research is presented in Figure 0.2.
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Figure 0.2 Flow chart of this work





LITERATURE REVIEW

This section describes the relevant recent body of work on the impact of climate change and

natural climate variability on drought frequency and magnitude.

1.1 Droughts under a changing climate

The most recent Intergovernmental Panel on Climate Change (IPCC) report described an in-

crease in drought frequency and intensity in some parts of the world. Nowadays dry regions

are likely to experience increased agricultural droughts by the end of this century under Rep-

resentative Concentration Pathway (RCP) 8.5 scenario (IPCC, 2013b).

In general, drought assessments are focused on the frequent events and less attention has been

paid to their extreme counterpart. Extreme droughts can be defined by their frequency, intensity

or duration. The United States Drought Monitor uses a percentile approach to classify the

magnitude of droughts into five categories, from abnormally dry to exceptionally dry (Svoboda,

M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippey, B., Tinker, R., Palecki,

M., Stooksbury, D. et al., 2002). This is based on the percentile chance of occurrence in

any given year out of 100 years. Extreme droughts are ranked within the fourth class of the

drought monitor and are defined as having less than a 5% chance of occurring. The Canadian

Drought Monitor classifies droughts into five classes based on the return period, and extreme

droughts are characterized with a return period larger than 20 years, which is equivalent to the

US definition albeit defined in return period instead of a probability. Extreme droughts can also

be defined by their magnitude. For example, in some studies, extreme droughts are identified

when the Standardized Precipitation Index (SPI) is less than -2.0 (Livada, I. & Assimakopoulos,

V., 2007; Lloyd-Hughes, B. & Saunders, M. A., 2002; Zhang, Q., Li, J., Singh, V. P. & Bai,

Y., 2012). This threshold could be interpreted as an extreme event that occurs two or three

times in a 100-year period (Hayes, M. J., Svoboda, M. D., Wiihite, D. A. & Vanyarkho, O. V.,

1999). Extreme droughts can also be defined by their duration. For example, megadroughts

are prolonged droughts lasting a decade or even longer.
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1.1.1 Climate change impacts on meteorological droughts

Many researches have looked at the changes in droughts from a purely meteorological per-

spective. Meteorological droughts express the precipitation’s departure from normal over some

period of time (Wilhite & Glantz, 1985). Relative to current conditions, at the global scale, the

frequency and duration of many droughts are expected to increase by the second half of the

21st century (Burke, E. J., Brown, S. J. & Christidis, N., 2006; Sheffield, J. & Wood, E. F.,

2008). Zarch, M. A. A., Sivakumar, B. & Sharma, A. (2015) assessed the global annual meteo-

rological droughts in a warming climate for the periods 1850-2005 and 2006-2100 based on the

CSIRO Mk 3.6 climate model under the RCP8.5 scenario. The results showed that the tropical

and subtropical regions would turn drier while the droughts over the middle to high latitudes

would see a downward trend in the future. Touma, D., Ashfaq, M., Nayak, M. A., Kao, S.-

C. & Diffenbaugh, N. S. (2015) analyzed the global meteorological drought characteristics of

15 general circulation models (GCM) from the Coupled Model Intercomparison Project Phase

5 (CMIP5, Taylor, K. E., Stouffer, R. J. & Meehl, G. A., 2012) in the early (2010-2054) and late

(2055-2099) 21st century under RCP8.5 relative to the 1961-2005 baseline period. They found

no noticeable changes in the spatial extent of 6-month exceptional meteorological droughts in

nearly all regions, with the exception of the Mediterranean, Southern South America, and Cen-

tral America in the future periods. In the latter half of the 21st century, the number of drought

events and their duration were found to increase, with the exception of some high-latitude

regions (e.g., Alaska, Greenland).

Some studies about meteorological droughts in a changing climate were conducted at the re-

gional scale. Sushama, L., Khaliq, N. & Laprise, R. (2010) studied dry spell characteristics

across Canada, over three time periods (1971-2000, 2041-2070, and 2071-2100) using a re-

gional climate model. Results showed an increase in the mean number of dry days in southern

Canada, and a decrease over the rest of Canada. Penalba, O. C. & Rivera, J. A. (2016) assessed

the change of future meteorological droughts based on 15 GCMs from CMIP5 under RCP4.5

and RCP8.5 scenarios for the 2011-2040 and 2071-2100 periods over Southern South America.

A large increase in the number of events and a decrease in the mean duration were found in
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both 3-month and 12-month meteorological droughts. Tam, B. Y., Szeto, K., Bonsal, B., Flato,

G., Cannon, A. J. & Rong, R. (2018) studied future meteorological droughts over Canada using

29 GCMs under three emission scenarios. The results showed that drought frequency would

increase in Southwestern Canada and the Prairies in the latter half of the 21st century, largely

due to a larger interannual variability of precipitation and temperature.

A comparatively much smaller number of researches have focused on extreme meteorologi-

cal droughts and over the historical period. Livada & Assimakopoulos (2007) found that the

frequency of extreme 12-month meteorological droughts (defined as having a SPI inferior to

-2) was very low over the whole of Greece during the 1950-2000 period. The same definition

of extreme droughts was also adopted by Ayala, J. J. H. & Heslar, M. (2019) to identify the

seasonal extreme meteorological drought events in the Caribbeans for the 1981-2018 period.

1.1.2 Climate change impacts on agricultural droughts

Agricultural droughts are usually expressed in terms of needed soil moisture of a particular

crop over a particular time period (Hisdal, H. & Tallaksen, L., 2000; Wilhite & Glantz, 1985).

Sheffield & Wood (2008) used soil moisture data from eight Atmosphere-Ocean General Circu-

lation Models (AOGCMs) under SRES B1, A1B and A2 emission scenarios to analyze changes

in agricultural droughts occurrence. The results showed that the AOGCMs could represent the

occurrence of large-scale agricultural droughts very well, although long-term droughts (dura-

tion exceeding 12 months) were overestimated. By the end of the 21st century, the frequency of

short-term droughts (4-6 months duration) would experience a two-fold increase while long-

term droughts would be three times more common when compared to the pre-industrial control

period. Leng et al. (2015) used the soil moisture data generated by the Variable Infiltration

Capacity (VIC) hydrological model forced by five climate models under RCP8.5 scenario to

assess the severity, duration and frequency of future agricultural droughts in China. Results

showed that China would experience more frequent droughts over the 2020-2049 period (1.5

times more frequent on average) relative to the 1971-2000 period, with the exception of parts of

northern and northeastern China. Drought duration was predicted to become longer, compared
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to the same reference horizon. Results indicated that agricultural droughts would experience

the largest changes compared to their meteorological and hydrological counterparts. In addi-

tion, long-term droughts (duration longer than 4 months) would experience larger frequency

increases than for short-term ones (duration shorter than 4 months).

Various criteria have been used in the literature to study extreme agricultural droughts. Yu,

C., Huang, X., Chen, H., Huang, G., Ni, S., Wright, J. S., Hall, J., Ciais, P., Zhang, J., Xiao,

Y. et al. (2018) assessed the impacts of extreme agricultural droughts in China based on nine

GCMs under three RCPs (2.6, 4.5 and 8.5) during the past (1955-2014) and future (2006-2100)

periods. The frequency of agricultural droughts was estimated by using historical yield loss

data fitted with a General Extreme Value (GEV) distribution. Future frequency of agricultural

droughts was projected to increase under all examined RCPs. The current 100-year drought is

expected to become a 30-year drought under RCP2.6, 13-year under RCP4.5 and 5-year under

RCP8.5. Grillakis, M. G. (2019) assessed the severe and extreme 7-month agricultural droughts

based on the Joint UK Land Environment Simulator simulations forced by four CMIP5 GCMs

under the RCP2.6 and RCP6.0 scenarios for near- (2020-2059) and far-future (2060-2099)

periods. Severe and extreme droughts were defined by a Soil Moisture Index inferior to -3.

They projected an increasing trend in European extreme agricultural droughts. The frequency

of future agricultural droughts was expected to increase from 11 to 28 times depending on the

emission scenarios and analysis periods compared to the historical 1961-2005 period.

1.1.3 Climate change impacts on hydrological droughts

Hydrological droughts are usually expressed by the deficiencies in surface and subsurface wa-

ter supplies (Hisdal & Tallaksen, 2000; Wilhite & Glantz, 1985). Hydrological droughts are

more complex since in addition to precipitation deficit, they result from the combination of

several hydroclimatic variables, such as cloud cover, humidity, and temperature which all im-

pact evapotranspiration. Lehner, B., Döll, P., Alcamo, J., Henrichs, T. & Kaspar, F. (2006)

explored an integrated global water model (Water-Global Assessment and Prognosis) with two

GCMs (ECHAM4 and HadCM3) to compute time series of river flows. The results showed
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that southern and southeastern Europe would experience significant increases in hydrological

drought frequencies. The 100-year drought would be 2 to 10 times more frequent by the end of

the century, compared to the 1901-1995 historical period. Hirabayashi, Y., Kanae, S., Emori,

S., Oki, T. & Kimoto, M. (2008) used daily runoff simulated by the MIROC GCM to project

future hydrological droughts under the SRES A1B scenario. Results showed that future hydro-

logical drought frequency was mostly expected to increase globally over the 2071-2100 period

although northern high latitudes, eastern Australia, and eastern Eurasia showed a small de-

crease or no change. Prudhomme, C., Giuntoli, I., Robinson, E. L., Clark, D. B., Arnell, N. W.,

Dankers, R., Fekete, B. M., Franssen, W., Gerten, D., Gosling, S. N. et al. (2014) used seven

global impact models (GIM) and five GCMs under four RCPs to study hydrological droughts

in projected future climates. They predicted a likely increase in the severity of hydrological

droughts (measured by Global Deficit Index) at the global scale by the end of the 21st century

(2070-2099). Wanders, N., Wada, Y. & Van Lanen, H. (2015) applied a global hydrologi-

cal model (PCR-GLOBEWB) forced by five GCMs under four RCPs to simulate global daily

streamflows at a 0.5 grid resolution from 1971 to 2099. Droughts in this study were defined by

conventional (based on a static reference period) and transient (based on the previous 30 years)

thresholds respectively. Results showed that roughly half of all land areas would experience

a negative trend of future low flows. Drought duration was projected to increase in 27% of

global land area. Leng et al. (2015) fed the VIC hydrological model with bias-corrected cli-

mate outputs from five GCMs under the RCP8.5 to project the changes of future hydrological

droughts in China. Results showed that the intensity of severe hydrological droughts over the

2020-2049 period would be three times larger than over the 1971-2000 reference period.

A few researches specifically looked at the impact of climate change on extreme hydrological

droughts. Huang, S., Krysanova, V. & Hattermann, F. (2015b) used sixteen regional climate

change simulations to project future floods and droughts in Germany. They found that in the

Rhine basin, the current 50-year extreme hydrological droughts would be twice as frequent in

the future 2061-2100 period. Roudier, P., Andersson, J. C., Donnelly, C., Feyen, L., Greuell,

W. & Ludwig, F. (2016) used eleven bias-corrected climate model outputs from the CMIP5
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ensemble and three hydrological models to study the impacts of a 2◦C temperature increase on

hydrological droughts in Europe. Extreme droughts in this study were defined as those with 10-

year and 100-year return periods. Results showed that the magnitude of extreme hydrological

droughts would increase compare with the 1971-2000 baseline period, especially in southern

France, parts of Spain, Portugal and Greece.

1.1.4 Uncertainty in future drought assessment

Several sources of uncertainties are typically found in drought assessment studies, similar to

those existing in hydrological impacts studies. The uncertainties are likely to come from the

climate models, downscaling methods, natural climate variability, emission scenarios, impact

models, and the selection of drought indices (Chen, J., Brissette, F. P., Poulin, A. & Leconte,

R., 2011b; Clark, M. P., Wilby, R. L., Gutmann, E. D., Vano, J. A., Gangopadhyay, S., Wood,

A. W., Fowler, H. J., Prudhomme, C., Arnold, J. R. & Brekke, L. D., 2016; Dai, A. & Zhao, T.,

2017; Troin, M., Arsenault, R., Martel, J.-L. & Brissette, F., 2018; Zhao, T. & Dai, A., 2017).

The exception is that the uncertainty originating from downscaling methods or impact models

(e.g., hydrological model) typically does not exist for meteorological droughts. Therefore, the

sources of uncertainty depend on the type of droughts considered.

Burke, E. J. & Brown, S. J. (2008) explored the uncertainties in the parameter space of the

HadCM3 climate model and inter-model uncertainty in a multimodel ensemble, respectively,

using four drought indices and two greenhouse gases emission scenarios (GGES). Results

showed that the selection of drought indices introduces significant uncertainties in the drought

impact studies, affecting the magnitude of droughts. Different indices consider different pro-

cesses (e.g., water input, water demand) thus affecting the quantification of droughts. Those

indices that take atmospheric demand for moisture into consideration will lead to more se-

vere future drought conditions (Spinoni, J., Barbosa, P., De Jager, A., McCormick, N., Nau-

mann, G., Vogt, J. V., Magni, D., Masante, D. & Mazzeschi, M., 2019). Chen, J., Brissette,

F. P. & Leconte, R. (2011a) explored the uncertainty introduced by different downscaling meth-

ods in the quantification of the impacts of climate change on hydrology. Results showed that
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the uncertainty envelope produced by downscaling methods is large, and, in some cases, sim-

ilar to that produced by climate models. Climate scenarios issued from different downscaling

methods would therefore translate to additional uncertainty of simulated discharge. Chen et al.

(2011b) studied the relative uncertainty of all components of the hydroclimatic modeling chain

of a hydrological impact study. Two GGES, six GCMs, five GCM initial conditions, four

downscaling methods, three hydrological model structures, and ten sets of hydrological model

parameters were considered. They found that the largest uncertainty comes from GCMs, fol-

lowed by downscaling methods, natural climate variability, GGES and hydrological model

structure. The hydrological model parameter sets play the least important role in the uncer-

tainty envelope. Orlowsky, B. & Seneviratne, S. I. (2013) separated the different sources of

uncertainty in projections of meteorological and hydrological droughts. They found that in-

ternal climate variability was the main source of uncertainty for the near future while GCMs

became the dominant source of uncertainty by the end of the 21st century. Prudhomme et al.

(2014) explored the uncertainty related to hydrological drought studies by using bias-corrected

outputs from three GCMs, seven GIMs and four RCPs. They found that the uncertainty from

the GIMs is greater than that from GCMs. Diverse GIMs should therefore be considered to

better capture the uncertainties. Zhao & Dai (2017) assessed the agricultural droughts simu-

lated from CMIP3 and CMIP5 climate model outputs during historical and future periods. A

large uncertainty was found to result from the internal climate variability at the regional scale.

In a companion paper (Dai & Zhao, 2017), they also found that the choice of meteorological

forcing datasets (e.g., precipitation) and chosen calibration period for the definition of drought

indices also contribute to significant uncertainties in estimating historical drying trends. Troin

et al. (2018) generated a 105-member ensemble by combining seven snow models, five po-

tential evapotranspiration (PET) calculation methods, and three hydrological model structures

to assess structural uncertainty over two snowmelt-dominated watersheds in Canada. The un-

certainty introduced by natural climate variability was also evaluated in their study. Results

showed that the largest source of uncertainty comes from hydrological model components, fol-

lowed by PET and natural variability. Snow models only make a very small contribution to

the uncertainty envelope. There are numerous different formulas used to calculate PET based
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on different climatic variables (temperature-based, radiation-based and physically based), thus

bringing large uncertainties to the drought assessment studies, especially in semi-arid and arid

regions (Dai & Zhao, 2017; Kay, A. & Davies, H., 2008).

1.2 The impact of natural variability

1.2.1 The impact of natural variability on climate change

The climate is affected by sea surface temperature anomalies resulting from the normal thermo-

haline ocean circulation. This variability is represented at many time scales, from the seasonal

to the multi-decadal scales. The representation of sea surface temperature (SST) anomalies is

typically characterized by the computation of large-scale oscillations. Many such oscillations

affecting the North American climate have been described in the literature, the most important

being the El Niño-Southern Oscillation (ENSO), the Pacific North American pattern (PNA),

the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO) and the Atlantic

Multi-decadal Oscillation (AMO) (Barlow, M., Nigam, S. & Berbery, E. H., 2001; Cayan,

D. R., Redmond, K. T. & Riddle, L. G., 1999; Déry, S. J. & Wood, E. F., 2004; Enfield, D. B.,

Mestas-Nuñez, A. M. & Trimble, P. J., 2001; Rogers, J. C. & Coleman, J. S., 2003; Stewart,

I. T., Cayan, D. R. & Dettinger, M. D., 2005). It is generally acknowledged that El Niño has the

strongest impact and leads to reduced precipitation in the Midwest, increased precipitation and

higher streamflow in the Gulf of Mexico region in the U.S. (Kurtzman, D. & Scanlon, B. R.,

2007; Schmidt, N., Lipp, E., Rose, J. & Luther, M., 2001; Trenberth, K. E. & Guillemot, C. J.,

1996). The PDO is the dominant pattern of Northern Pacific Decadal Variability (Mantua, N. J.,

Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C., 1997). The impacts of PDO on winter

precipitation are however mostly significant only in the southern Central United States (Tren-

berth & Guillemot, 1996). The AMO is known to have an influence on precipitation in North

America (Enfield et al., 2001; McCabe, G. J., Palecki, M. A. & Betancourt, J. L., 2004). The

correlation between precipitation and AMO is mostly negative in the Southeast U.S. (Enfield

et al., 2001; Maleski, J. J. & Martinez, C. J., 2018).
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The coupled effect of dominant oscillations on hydroclimatic variability has also been studied.

Precipitation in North America is affected by both ENSO and AMO and interactions between

the two are likely. For example, a negative AMO could help increase the correlation between

ENSO and precipitation in the Southeast (Enfield et al., 2001). The interaction between the

North Pacific Index (NPI, area-weighted sea level pressure over the region 30◦N-65◦S, 160◦E-

140◦W) and ENSO results in a larger amplitude of surface temperature anomalies over North

America when they are out of phase compared to their in-phase combinations (Yu, B., Shabbar,

A. & Zwiers, F., 2007). In addition, ENSO phases tend to be stronger and more stable during a

positive PDO (Yu et al., 2007). The combination of these two modes of variability has implica-

tions for future climate projections over North America (Gershunov, A. & Barnett, T. P., 1998;

Mantua et al., 1997). When PDO and ENSO are in phase, typical ENSO conditions are in

effect over the U.S., whereas the signal is less clear for out of phase or neutral conditions (Dai,

A., 2013b; Kurtzman & Scanlon, 2007). El Niño coupled with positive PDO or AMO would

lead to below-normal precipitation, whereas the impact of La Niña on temperature and pre-

cipitation (increased temperature and decreased precipitation) is significantly increased during

positive AMO and PDO phases in the Southeast U.S. (Maleski & Martinez, 2018).

Different methods have been applied to study the coupled effects of climatic indices. Kurtz-

man & Scanlon (2007) used a statistical descriptive analysis of ENSO and PDO impacts

on winter precipitation throughout the entire Southern U.S. The relationship between pre-

cipitation, temperature and ENSO, NAO, AMO and PDO was evaluated using a canonical

correlation analysis (Stevens, K., 2008). Nonparametric ranks-sum tests were used to learn

about the individual and coupled effects of ENSO, AMO and PDO on temperature, precip-

itation (Maleski & Martinez, 2018) and streamflow (Johnson, N. T., Martinez, C. J., Kiker,

G. A. & Leitman, S., 2013) over Southeast U.S. river basins during the 1895-2009 period. Re-

sults showed that the AMO has a significant effect on the precipitation and temperature. The

effect of ENSO on precipitation would be intensified when PDO and AMO are in their positive

phases.
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Some researches have linked changes in drought frequency to the variance of oscillations di-

rectly, because precipitation deficit is usually related to the anomalous atmospheric circulation

caused by persistent sea surface temperature anomalies in the Pacific and Atlantic Oceans (Dai,

A., Zhao, T. & Chen, J., 2018; Hoerling, M., Eischeid, J., Kumar, A., Leung, R., Mariotti, A.,

Mo, K., Schubert, S. & Seager, R., 2014; Liu, Z., 2012). More frequent droughts were recorded

in Southern Europe when NAO was in its positive phase. When NAO went to its negative phase,

drought conditions were relieved (López-Moreno, J. I. & Vicente-Serrano, S. M., 2008; Trigo,

R. M., Osborn, T. J. & Corte-Real, J. M., 2002). Santos, J. F., Pulido-Calvo, I. & Portela, M. M.

(2010) extracted monthly precipitation over the 1910 to 2004 period to study the spatial and

temporal variability of droughts in Portugal. The results showed that NAO had an immediate

and significant influence on drought patterns, especially in the south where drought conditions

had a 3 to 4-year periodicity. Espinoza, J. C., Ronchail, J., Guyot, J. L., Junquas, C., Vauchel,

P., Lavado, W., Drapeau, G. & Pombosa, R. (2011) found that precipitation deficit and very

low flow in the western Amazon basin were associated with positive SST anomalies in the

tropical North Atlantic (Marengo, J. A. & Espinoza, J., 2016). Furthermore, Jiménez-Muñoz,

J. C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino,

J. A. & Van Der Schrier, G. (2016) found that extreme droughts in Amazonia in 2015-2016 was

associated with ENSO. The most severe Iranian droughts occurred between 1998 and 2001 and

coincided with a prolonged La Niña (Golian, S., Mazdiyasni, O. & AghaKouchak, A., 2015).

Dai & Zhao (2017) found that regional drying trends are related to multi-decadal oscillations

in Pacific SSTs. Rojas, O. (2018) found that agricultural droughts are often associated with

ENSO at the global level. Jiang, P., Yu, Z. & Acharya, K. (2019) explored the connections be-

tween leading drought indicators and large-scale oceanic oscillations in the Western U.S. over

the 2003-2016 period. They showed that the spatial pattern of winter droughts was related to

ENSO, PDO and AMO, while PDO controlled the spatial pattern of summer droughts. ENSO

was also found to be the main large-scale driver for hydrological droughts over many regions,

while the Ocean Indian Dipole and NAO were also found to have regional influences (Fo-

rootan, E., Khaki, M., Schumacher, M., Wulfmeyer, V., Mehrnegar, N., van Dijk, A., Brocca,

L., Farzaneh, S., Akinluyi, F., Ramillien, G. et al., 2019).
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1.2.2 Methods for studying natural climate variability

We can study natural climate variability by either looking at the historical record or by using

climate models.

A long historical record documents the evolution of the past climate and can reveal important

modes of natural climate variability. Long historical records can be analyzed by looking at

the main frequency of modes of variability, using a spectrum of wavelet analysis (Torrence,

C. & Compo, G. P., 1998). Alternatively, the historical records can be divided into several time

slices, with natural climate variability accounting for differences between the different peri-

ods. In the latter approach, detrending may be needed to remove the impact of anthropogenic

forcing. However, many countries or regions lack long-enough observational records to enable

researchers to bring to light the impact of natural climate variability. Paleoclimatic studies may

provide long proxy records useful to study multidecadal variability, but the proxies (e.g., tree

rings, ice cores) are often only imperfectly related to the physical process under study (e.g.,

droughts), and may not be adequate to study the impacts at shorter time scales.

Climate model outputs can also be used to study natural variability but most simulations also

cover relatively short periods for the historical past, and suffer from a strong anthropogenic

forcing component in future periods. Alternatively, natural climate variability can also be

studied by using a multi-member ensemble originating from a single climate model. Such

ensembles consist of multiple climate projections from the same climate model under the same

forcing, using only slightly different initial conditions. Also known as large ensembles, these

simulations provide a unique opportunity to investigate questions related to the linearity of an

externally forced signal and how the characteristics of the internal variability of the coupled

system may be changing in a warmer climate (Hu, Z.-Z., Kumar, A., Jha, B. & Huang, B.,

2012). Large ensembles allow for the study of natural climate variability and enable researchers

to study the relationship between natural climate variability and anthropogenic climate change.

Such ensembles are now more widely used to learn about natural climate variability and its

impact on the climate (von Trentini, F., Schmid, J., Wood, R., Willkofer, F., Leduc, M., Frigon,
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A. & Ludwig, R., 2018). In her seminal paper, Deser et al. (2012a) studied the range of internal

climate variability over North America using a 40-member ensemble from the Community

Climate System Model Version 3 (CCSM3) forced by the A1B emission scenario over the

2000-2060 period. von Trentini et al. (2018) compared the natural variability of the 50-member

ensemble from the second generation Canadian Earth System Model (CanESM2) under the

RCP8.5 scenario against that of EURO-CORDEX models. They found that natural variability

plays an important role in climate projections, and that the variability within a multi-model

ensemble is significantly larger than that in the multi-member ensemble from CanESM2. Chen,

J. & Brissette, F. P. (2018) assessed the reliability of multi-member ensembles at estimating

internal variability, by comparing it to CRU data over the historical period. They found that

multi-member ensembles represent multi-decadal natural variability well, at both the global

and regional scales.

1.3 Summary and work objectives

Severe drouhts are the greatest recurring natural disaster (Cook, E. R., Seager, R., Cane,

M. A. & Stahle, D. W., 2007). Large drying trends have been observed over many low-latitude

regions since the 1950s (Dai, 2011), and most land areas are projected to experience increasing

droughts by the end of the 21st century (Dai, A., 2013a; Dai et al., 2018; Sheffield & Wood,

2008). However, most previous drought assessment studies have been confined to relatively

small areas (Lehner et al., 2006). Drought studies over North America have mostly been con-

centrated on the southern Canadian Prairies, western and southeastern U.S. (Barrie Bonsal,

2004; Gan, T. Y., 2000; Miskus, D., 2017; Quiring, S. M. & Papakryiakou, T. N., 2003). Little

attention has been paid to the evolution of extreme droughts. Extreme droughts are of particular

concern since they carry a disproportionate part of economic losses associated to droughts.

Regional drying patterns associated with precipitation change in North America are thought to

be related to multi-decadal oscillations in Pacific SSTs (Dai & Zhao, 2017). Accordingly, the

impact of natural climate variability on droughts is also an important study area. As of now,
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despite a large number of studies on droughts, there are comparatively much fewer studies that

have looked at the impact of both climate change and natural variability on extreme droughts.

The primary goal of this Thesis is therefore to explore the impact of climate change on future

extreme droughts at the global scale, but also with an emphasis over North America. This work

is especially concerned with extreme droughts, defined in this work as having a return period

larger than 20 years. The specific objectives of this thesis are therefore to:

1) assess the impacts of climate change on meteorological droughts at the global scale;

2) assess the impacts of climate change on hydrological droughts over a large number of North

American watersheds;

3) explore the relationship between large-scale oscillations and climate variability over North

America.

A better understanding of droughts in a changing climate is required to implement successful

adaptation strategies and/or mitigate future impacts.
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2.1 Abstract

Several studies have looked at the evolution of droughts in a changing climate in various lo-

cations and have typically found that droughts are expected to become more severe in the

future. However, relatively little work has been done on extreme droughts. This study focuses

on the evolution of extreme meteorological droughts over near- (2036-2065) and far- (2071-

2100) future time periods. Monthly precipitation from two large multi-member climate model

ensembles: the 50-member Canadian Earth System Model (CanESM2) and the 40-member

Community Earth System Model (CESM1), was used to calculate the Standard Precipitation

Index (SPI) to quantify and explore the evolution of future meteorological droughts. The use of

these large ensembles allows for the very precise calculation of the 20- and 100-year droughts

return period, and offer a unique perspective into those rare events.

Both climate models project increases in extreme meteorological drought frequency over many

of the world’s regions. South America, Oceania and the Mediterranean basin are predicted by

both models to be the most affected regions. The spatial patterns of regions with worsening

meteorological droughts generally match those of projected change in mean annual precipita-

tion, although the former is more extensive, indicating that changes in internal variability will

increase drought frequency even in some regions projected to see increasing mean annual pre-
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cipitation. The projected increase in meteorological drought frequency is more important for

short-term June-July-August (JJA) droughts, and for the larger return periods. Larger increases

in frequency are observed in many regions, all the way up to 20 times for the 100-year JJA

drought indicating a return period shift from 100 to 5 years.

Keywords: climate change; extreme meteorological droughts; Standardized Precipitation In-

dex; large ensemble

2.2 Introduction

It is now widely accepted and recognized that climate change will have significant impacts

on the hydrologic cycle (Arnell & Gosling, 2016; Feng, D., Beighley, E., Raoufi, R., Melack,

J., Zhao, Y., Iacobellis, S. & Cayan, D., 2019; Hegerl et al., 2018; Mukherjee, S., Mishra,

A. & Trenberth, K. E., 2018; Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D.,

Barichivich, J., Briffa, K. R. & Sheffield, J., 2014). Climate change will affect the distribution

and frequency of precipitation events (Mauger, G., Casola, J., Morgan, H., Strauch, R., Jones,

B., Curry, B., Busch Isaksen, T., Whitely Binder, L., Krosby, M. & Snover, A., 2005). At

one end of the spectrum, changes in extreme precipitation frequency are expected to result in

ever increasing damages to infrastructures and to affect populations in most parts of the world

(Mailhot, A. & Duchesne, S., 2009; Rosenberg, E. A., Keys, P. W., Booth, D. B., Hartley, D.,

Burkey, J., Steinemann, A. C. & Lettenmaier, D. P., 2010; Wilhelmi, O. V. & Morss, R. E.,

2013). However, at the other end of the spectrum, lack of precipitation is also a critical issue

in many regions of the world.

Droughts are recurring extreme events which can last from a few days to a few years and

arguably constitute the most severe natural disaster, due to their pronounced socio-economic

impacts, especially in semi-arid and arid areas. They are typically classified into four main

classes: meteorological droughts, hydrological droughts, agricultural droughts and socio-economic

droughts (Dracup et al., 1980; Wilhite & Glantz, 1985).
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Protection from droughts is complex and substantial structural adaptation measures are typ-

ically required. In this context, a better understanding of the potential impacts of climate

change on drought is essential to any drought mitigation strategy. Many studies have shown

an increasing drought risk over the 21st century (e.g., Burke & Brown, 2008; Cook, B. I., Ault,

T. R. & Smerdon, J. E., 2015; Dai, 2011; Grillakis, 2019; Sheffield & Wood, 2008; Teuling,

A. J., 2018; Zhao, P., Lü, H., Yang, H., Wang, W. & Fu, G., 2019). Most of these studies con-

cluded that more regions would experience more severe and long-duration droughts, especially

in the summer. With temperature increases predicted by all climate projections, water demand

is expected to exceed water supply in many regions of the world and to lead to more severe wa-

ter deficit and droughts afterward. Dai (2011) assessed changes in droughts by calculating the

Palmer Drought Severity Index (PDSI) using the CMIP3 (Meehl, G. A., Covey, C., Delworth,

T., Latif, M., McAvaney, B., Mitchell, J. F., Stouffer, R. J. & Taylor, K. E., 2007) multi-model

ensemble mean monthly climate data, and found that severe droughts (−3.99≤PDSI ≤−3.00)

would likely occur in the latter half of this century over most continents. This assessment was

confirmed for the United States by Cook et al. (2015). Zarch et al. (2015) assessed global

droughts in a warming climate with and without considering the impact of PET, using the

Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI), respectively.

Both indices were calculated based on the CSIRO Mark 3.6 climate model simulation for the

1850-2005 and 2006-2100 periods. The results point to more severe droughts by the end of

this century. The areal extent of droughts would increase with global warming and the most

affected regions would mostly be in the low- to mid-latitude regions.

However, most of the previous work has focused on frequent droughts and comparatively little

has been done on changes in rare and very large droughts. As is the case for most types of

extremes events, the consequences of such events do not scale linearly with their probability

of occurrence. In other words, rare extremes events (defined here as having a return period

T � 20 years) cause a disproportionate amount of damages, despite their low probability of

occurrence. There are several reasons for this, the most important likely being that adaptation

measures that have been put in place to deal with the more frequent extreme events are not
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sufficient to deal with the rare ones. Since meteorological droughts are the primary driver

of subsequent formation and propagation across different droughts types (Potop, 2011). This

work therefore focuses specifically on extreme meteorological droughts (T � 20 years) and

contrast future frequency changes in extreme droughts against those in average droughts.

The rest of this paper is organized as follows. Section 2.3 and 2.4 describes the different

datasets and the methodology used in this study. Results are shown in section 2.5. A discussion

and a conclusion follow in section 2.6.

2.3 Data

Daily precipitation data from two Earth System Model (ESM) large ensembles were selected to

analyze extreme meteorological droughts over the historical (1981-2010), near- (2036-2065)

and far- (2071-2100) future periods. The Canadian Earth System Model (CanESM2) large

ensemble (spatial resolution of 2.8◦ × 2.8◦) covers the 1950-2100 period. To produce the 50-

member ensemble, 5 simulations of the ocean state were performed over 1850 to 1950, from

which 10 runs with small random atmospheric perturbations were initialized over the remaining

1950-2100 period. From 2006 on, the representative concentration pathway (RCP8.5) was used

as the forcing scenario (Arora, V., Scinocca, J., Boer, G., Christian, J., Denman, K., Flato, G.,

Kharin, V., Lee, W. & Merryfield, W., 2011; Sigmond, M. & Fyfe, J. C., 2016; von Salzen,

K., Scinocca, J. F., McFarlane, N. A., Li, J., Cole, J. N., Plummer, D., Verseghy, D., Reader,

M. C., Ma, X., Lazare, M. et al., 2013). This large ensemble results in 1500 equivalent years

(30 years × 50 members) for each period considered. The Community Earth System Model

(CESM1) is a coupled climate model for simulating Earth’s climate system (spatial resolution

of 1◦×1◦), which covers the 1920-2100 period. The CESM1 large ensemble has 40 members,

each obtained from random atmospheric perturbations (Kay, J., Deser, C., Phillips, A., Mai,

A., Hannay, C., Strand, G., Arblaster, J., Bates, S., Danabasoglu, G., Edwards, J. et al., 2015).

This results in 1200 equivalent years for each considered period (30 years× 40 members).

Considering the large computational cost of running these large ensembles, both ensembles are
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only available for the RCP8.5 scenario. At the time of conducting this work, these were the

only two global large ensembles readily available to the scientific community.

Since this is a study solely based on climate models, some level of validation against obser-

vation is therefore necessary. Although many climate change studies are only concerned with

climate model data, it is nonetheless always preferable to validate some climate characteris-

tics relevant to a specific study. This is especially the case when a small number of climate

models are used, as is the case in the present study. Since droughts originate from temporal

variability in precipitation fields, there is also a need to validate some measure of variability in

the models. To this end, mean annual and inter-annual standard deviation of total annual and

seasonal precipitation were chosen as validation metrics. The metrics were calculated for all

climate model members and each grid point. The 0.5◦, 2018 monthly version from Global Pre-

cipitation Climatology Centre (GPCC) was used as the reference dataset. This dataset covers

the period 1891-2016 over land areas (Schneider, U., Becker, A., Finger, P., Meyer-Christoffer,

A. & Ziese, M., 2018). The GPCC dataset was first upscaled to the respective resolution of

both climate models ( 1◦ and 2.8◦ respectively) prior to computing the differences between

metrics.

2.4 Methodology

There are several potential indices that can be used to quantify droughts (Dai, 2011). In

this study on extreme meteorological droughts, SPI was chosen because of its simplicity and

widespread use. It is also recommended by World Meteorological Organization (WMO) as the

main meteorological drought index. The SPI is a dimensionless indicator, which represents

the precipitation deficit (or excess) relative to a long-term mean at a given location and time

scale (McKee, T. B., 1995; McKee, T. B., Doesken, N. J., Kleist, J. et al., 1993). The SPI

is normalized by its mean and standard deviation, typically after fitting a 2-parameter gamma

distribution to monthly precipitation values, followed by a transformation to a Gaussian distri-

bution (Guttman, N. B., 1999). Positive SPI values indicate precipitation above average, while

negative values are representative of a rainfall deficit over a given time duration. The SPI has
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been widely used to quantify meteorological droughts over different time scales, typically rang-

ing from 1 month to 24 months (Hayes, M., Svoboda, M., Wall, N. & Widhalm, M., 2011; Mo,

K. C., 2008). In this study, SPI values were calculated every month for both 1 month (SPI-1,

representing short-term droughts) and 24 months (SPI-24, representing multi-year droughts).

Monthly SPI-24 values represent the water deficit (or surplus) over the previous 24 months.

Both indices were calculated over the reference and future periods.

The study looked at both the annual and seasonal scales. At the annual scale, the smallest value

of SPI-1 and SPI-24 (out of 12 monthly values) was selected for the extreme value analysis, ir-

respective of the month associated with its occurrence. This follows the guidelines used in flood

frequency analysis (Hamed, K. & Rao, A. R., 2019). A threshold approach, in which a drought

is defined by a given SPI value, could also have been used, therefore allowing multiple droughts

in a single year. For seasonal (June-July-August (JJA) and December-January-February (DJF))

droughts, the lowest SPI-1 value associated with these months was chosen.

In hydrological terminology, a return period refers to a recurrence interval of some specified

hydrological events, and is usually used to express the frequency of an extreme event (Sharma,

T. & Panu, U., 2015; Sigdel, M. & Ikeda, M., 2010). For both ensembles, the very large number

of available equivalent-years allows for the calculation of large return period events without

having to resort to fit a theoretical distribution as is typically done in the analysis of extreme

events to extrapolate toward larger quantiles. Different probability density distributions (PDF)

have differences mainly at the tail level and estimating large quantiles always result in large

sampling uncertainties. Since both ensembles provide respectively 1500 and 1200 years for

each 30-year period, the estimation of the 100-year return period can reliably be estimated

from the empirical distribution. This paper will look at droughts with a 2-, 20- and 100-year

return periods. The 2-year drought represents a typical drought that should be exceeded every

other year on average (referred to as a moderate drought), while the 20- and 100-year droughts

represent extreme droughts that are only to be exceeded every 20 and 100 years on average

(respectively referred to as severe and extremely severe droughts). The empirical return period

T of future SPI values was calculated based on the Cunnane’s formula (1978). Considering
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the large sample size, the use of other estimators would have essentially yielded the same

result, since different plotting formulas give very similar results except at the very end of the

distribution (Rakhecha, P. & Singh, V. P., 2009). To sum up, for both ensembles, the 2-, 20-

and 100-year meteorological droughts were characterized by their 1 and 24-months SPI values

at both the annual and seasonal (DJF and JJA) scales.

In order to better display changes at the regional scale, all land areas in the world (with the

exception of Antarctica) were divided into 21 regions defined by Giorgi & Francisco (2000).

Table 2.1 and Figure 2.1 present details of each of the 21 individual regions.

Table 2.1 List of the 21 geographical regions

Adapted from Giorgi & Francisco, 2000, p. 172

Continent ID Region Acronym Latitude(◦) Longitude(◦)
Oceania (OC) 1 Australia AUS 45-11S 110-155E

South America
(SA)

2 Amazon Basin AMZ 20S-12N 82-34W

3 Southern South America SSA 56-20S 76-40W

4 Central America CAM 10-30N 116-83W

North America
(NA)

5 Western North America WNA 30-60N 130-103W

6 Central North America CNA 30-50N 103-85W

7 Eastern North America ENA 25-50N 85-60W

8 Alaska ALA 60-72N 170-103W

9 Greenland GRL 50-85N 103-10W

Europe (EU) 10 Mediterranean Basin MED 30-48N 10W-40E

11 Northern Europe NEU 48-75N 10W-40E

Africa (AF)

12 Western Africa WAF 12S-18N 20W-22E

13 Eastern Africa EAF 12S-18N 22-52E

14 Southern Africa SAF 35-12S 10W-52E

15 Sahara SAH 18-30N 20W-65E

Asia (AS)

16 Southeast Asia SEA 11S-20N 95-155E

17 East Asia EAS 20-50N 100-145E

18 South Asia SAS 5-30N 65-100E

19 Central Asia CAS 30-50N 40-75E

20 Tibet TIB 30-50N 75-100E

21 North Asia NAS 50-70N 40-180E
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Figure 2.1 The spatial distribution of 21 regions over the world

Taken from Giorgi & Francisco, 2000, p. 172

2.5 Results

2.5.1 Comparison of model outputs against observations

Figure 2.2 presents maps of mean annual and seasonal (DJF and JJA) precipitation for the

1981-2010 reference period for both ensembles and for the GPCC dataset. The ensemble mean

(mean of all members for each ensemble) is used to represent both ensembles. The spatial

distribution of precipitation is very well represented by both climate models at both the annual

and seasonal scales. However, both climate models are generally wetter than observation over

the reference period. This is especially the case for North America, South Africa, Australia,

and Central Asia. Only in Northern South America and Southeast Asia are model simulations

drier. CESM1 is generally wetter than CanESM2 over the reference period.

Once again, the global spatial patterns are very similar in Figure 2.3, indicating that both cli-

mate models do a reasonably good job at representing the inter-annual variability of precipi-

tation. Overall, the variability tends to be larger in climate models in most parts of the world,
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with the exception of Southeast Asia and the northern end of South America. To further explore

climate model performance in simulating total precipitation amounts and standard deviation,

differences between both models and observations are shown in Figure 2.10 and 2.11. Both

models underestimate precipitation amounts and interannual variability in South America, parts

of Africa at the annual, JJA and DJF temporal scales. Both models underestimate precipitation

amounts over the Mediterranean Basin and North America in JJA, and during the DJF over

North Africa and North Australia. In all cases discussed above, model performance is best in

DJF, when variability is lower.

Figure 2.2 Mean annual precipitation in observations (A. GPCC), and two large climate

model ensembles, CanESM2 (B) and CESM1 (C) in the reference period (1980-2010). In

the second and third rows are mean summer JJA (D. GPCC, E. CanESM2, F. CESM1)

and mean winter DJF (G. GPCC, H. CanESM2, I. CESM1) total precipitations
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In the following section, Figures 2.4 to 2.7 present results for short-term meteorological droughts

(with accompanying Tables 2.2, 2.3 and 2.4). Section 2.5.3 presents results for long-term

droughts within Figures 2.8, 2.9 and Table 2.4. Change patterns are very similar between the

near- and far-future periods, and are essentially more pronounced for the latter. Accordingly,

only results from the far future are shown in the main body of the paper. Results for the near-

future period are presented in the supplementary material section 2.8.

2.5.2 Short-term droughts

Figure 2.4 presents annual frequency changes for the moderate (2-year), severe (20-year) and

extremely severe (100-year) droughts for both ensembles in the far-future period (results for

the near future are shown in Figure 2.12). These figures do not display absolute values of

drought severity, but rather, show changes in the frequency of occurrence, as done by Martel

et al. (2018). For example, for the 20-year drought, a future value of 10 years indicates a

doubling in frequency, and a value of 5 years means a four-fold increase in frequency. Warm

colors indicate an increase in frequency whereas cold colors show a decrease.

Results from both climate ensembles display similar spatial patterns for all three return periods.

Increases in drought frequency are particularly noticeable for the Southern Hemisphere, espe-

cially for the CanESM2 model. Patterns are similar for all three return periods, but changes

in drought frequency become more severe for larger return periods. Moderate meteorolo-

gical droughts become less severe for all of the Northern Hemisphere with the exception of

the Mediterranean basin, whereas this pattern progressively reverses over some northern re-

gions for larger return-period droughts. CESM1 generally predicts a larger increase of extreme

droughts frequency, as compared to CanESM2. This is especially clear for North America,

Asia and Australia. The changes in SPI values behind these results were found to be statisti-

cally significant (α = 0.05) at the annual scale for more than 80% of all land grid points for

both climate models (80.5% for CanESM2 and 86.41% for CESM1).
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Figure 2.3 Standard deviation of mean annual precipitation (mm) in observations (A.

GPCC) and climate model ensembles (B. CanESM2 and C. CESM1) over the reference

period (1981-2010). The Second row (D to F) shows the standard deviation in seasonal

precipitation (mm) in JJA (D. GPCC, E. CanESM2, F. CESM1) and the third row (G to I)

for DJF (G. GPCC, H. CanESM2, I. CESM1). Red in the map means low standard

deviation, while green means large standard deviation

Despite the general agreement between both climate models, there are some regional diffe-

rences. In order to better summarize these differences, Figure 2.5 presents boxplots of the

100-year drought frequency change at the annual scale for each region of Figure 2.3 (the co-

rresponding figure for the 20-year drought is shown in Figure 2.13). Each boxplot is comprised

of all grid points within each region. The boxplots show the median and interquartile range

(centered box) while the lower and upper whiskers respectively display the grid point with

the most and least dramatic change in drought frequency. Quantiles below the horizontal line
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indicate a worsening in the recurrence of 100-year droughts (decreasing return period/increas-

ing drought frequency), whereas quantiles above the horizontal line indicate increasing return

periods.

Figure 2.4 Change in the mean annual 1-month SPI drought frequency in the far future

relative to the reference period. The upper panel (A-C) is for the 2-year, 20-year, and

100-year return period changes relative to the reference period in CanESM2. The

bottom panel (D-F) presents changes in frequency for 2-, 20- and 100-year

return periods in CESM1. Red means an increase in drought frequency

while cooler colors indicate a decrease

Results show that CESM1 consistently predicts larger drought frequency increases, as com-

pared to CanESM2 with the exception of South America (SA) and West Africa (WAF). The

regions of South America (SA), Oceania (OC) and the Mediterranean basin (MED) show the

clearest signature of worsening extreme droughts for most of the grid points, and for both mo-

dels. Asia (AS), North America (NA) and Northern Europe (NEU) are the regions least affected

by a worsening of extreme meteorological droughts, although there is significant variability

within sub-regions within NA and AS.
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Figure 2.5 Drought frequency change of future short-term extremely severe droughts

(drought with 100-year return period in the reference period) in 21 regions over the

annual scale in the far future

The main similarities and differences between both climate models are summarized in Ta-

ble 2.2. Regions in which more than 55% of grid points experience increasing (decreasing)

drought frequency are labeled with an increasing (decreasing) trend. The 55% value was semi-

quantitatively chosen as the best threshold to contrast regional behavior. The probability of

having more than 55% of positive trends in a random sample is less than 5% for a region con-

taining 300 grid points. Both climate ensembles project opposite trends for only 4 out of 21

regions. There are 13 regions where both models project trends in the same direction and only

four regions where models predict opposite trends. These regions correspond to regions iden-

tified by the IPCC as having large internal variability compared to the expected climate change

signal.
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Table 2.2 Agreements and disagreements between CanESM2 and CESM1

large ensembles for short-term extremely severe droughts over

annual scale in the far-future

Regions with the same trend Regions with the different trend

Increase Decrease
No change in

ensembles
Opposite trend

No change in

one ensemble

AUS, AMZ

CAM, MED

SAF, CAS

ALA, GRL

EAF, SAS

TIB, NAS

NEU
WNA, CNA

SAH, SEA

SSA, ENA

WAF, EAS

Note: ’Regions with the same trend’ means that two large ensembles predicted the same

change direction of extreme droughts of 3 different return periods. ‘Regions with the dif-

ferent trend’ means that two large ensembles predicted reverse trends, for example, region

A was predicted to be with increasing drought frequency in CanESM2 while CESM1 pro-

jected a decreasing trend, or CanESM2 and/or CESM1 predicted the no change in the

drought frequency

Figure 2.6 shows the changes in the return periods of moderate, severe and extremely severe

droughts in JJA for the far-future period for both ensembles (Figure 2.14 presents results for the

near-future period). Compared to the annual scale, the patterns are more severe for all regions

and particularly so for the Northern Hemisphere. East Asia (EAS), Tibet (TIB), Alaska (ALA),

Greenland (GRL), Southern US and part of Sahara (SAH) and Eastern Africa (EAF) are the

only regions with a projected decrease in extreme meteorological droughts. The amplitude of

changes gets progressively larger for the larger return period.

Figure 2.7 displays regional changes for the far-future JJA extremely severe droughts. Results

are similar for the 20-year droughts presented in Figure 2.15. The regional changes are ex-

tremely similar to those presented in Figure 2.5, with the difference being that JJA increases in

drought frequencies are consistently more severe than at the annual scale. This is particularly

striking for the Europe domain, where increases in 100-year frequency are now observed over

almost all grid points. Both climate models predict opposite trends for only 2 out of 21 regions

(Table 2.3).
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Figure 2.6 Same as Figure 2.4, but for the mean JJA 1-month SPI drought frequency

Changes in drought frequency for DJF are presented in Figures 2.16 to 2.18 and Table 2.5.

Patterns are similar between both climate models and frequency changes are noticeably smaller

than for JJA, even for the Southern Hemisphere.

Figure 2.7 Same as Figure 2.5, but for the short-term extremely

severe droughts in far-future JJA
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Table 2.4 presents a summary of the regions most affected by a frequency increase in extreme

meteorological droughts at the yearly and seasonal (JJA, DJF) scales. These regions are listed

under two categories: highest percentage of grid points experiencing frequency increases, and

highest mean magnitude of grid points with increasing extreme drought frequency at the re-

gional scale. Results show that four regions are particularly affected by increases in extreme

meteorological droughts. They are all mid-latitude regions located either in South America or

around the Mediterranean Sea. The largest frequency increases are found in the Amazon basin

(AMZ) with a mean frequency increase of 19.72 (CanESM2) and 9.32 (CESM1) for extremely

severe droughts in JJA. These respectively correspond to future return periods of roughly 5 and

11 years for the current 100-year droughts.

2.5.3 Long-term droughts

Long-term droughts are represented in this work by the 24-month SPI index as a representa-

tion of multi-year droughts. Figure 2.8 presents future changes in the frequency of long-term

droughts for both climate model ensembles. The results are more consistent across both climate

model ensembles than they were for short-term droughts. A much smaller percentage of land

areas is affected by a worsening of droughts, compared to short-term droughts. In particular,

most of Asia and North America are expected to see a decrease in the frequency of long-term

droughts. In the Northern Hemisphere, the Mediterranean Basin (MED) and Western Africa

are the only areas to see a worsening in long-term droughts. In the South Hemisphere, South

America (SA), Southern Africa (SAF) and South Australia all see an increase in the severity

of long-term meteorological droughts. CanESM2 predicts the worst future extreme droughts

conditions.

The above results are well emphasized in the regional plots presented in Figure 2.9. The agree-

ment between both climate models is also quite clear from this figure. There are only two re-

gions where both climate models differ on the direction of the trend (WAF and CAS), and both

of these regions encompass zones with significant variability. Overall, those results indicate

that future frequency increases will be more important for short-term meteorological droughts
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(and especially in the future JJAs), as compared to long-term meteorological droughts. In both

cases, the changes in frequency are more important for larger return period, emphasizing the

amplification of extremes.

Table 2.3 Agreements and disagreements between CanESM2 and CESM1 large ensembles

for short-term extremely severe droughts in far-future JJA

Regions with the same trend Regions with the different trend

increase Decrease
No change in

ensembles
Opposite trend

No change in

one ensemble

AUS, AMZ,

CAM, ENA, MED,

NEU, WAF, SAF, CAS

ALA, EAS,

TIB
– WNA, GRL

SSA, CNA,

EAF, SAH,

SEA, SAS, NAS

Note: ’Regions with the same trend’ means that two large ensembles predicted the same change direc-

tion of extreme droughts of 3 different return periods. ‘Regions with the different trend’ means that

two large ensembles predicted reverse trends, for example, region A was predicted to be with increas-

ing drought frequency in CanESM2 while CESM1 projected a decreasing trend, or CanESM2 and/or

CESM1 predicted the no change in the drought frequency

Table 2.4 The worst region influenced by more frequent extreme droughts and the

regions with the largest change of short-term extreme drought frequency

over different time scales

Change
Severe drought(20-year) Extremely severe drought(100-year)

Most affected

region (%)

Region with the

largest change in

frequency (times)

Most affected

region (%)

Region with the

largest change in

frequency (times)

Annual

CanESM2 MED (89.36) AMZ (6.32) AMZ (84.41) AMZ (10.35)

CESM1 MED (96.53) AMZ (4.28) MED (93.47) AMZ (6.41)

June-July-August

CanESM2 MED (87.61) AMZ (8.52) MED (87.97) AMZ (19.72)

CESM1 CAM (84.96) CAM (4.88) CAM (86.02) AMZ (9.32)

December-January-February

CanESM2 CAM (85.19) AMZ (4.99) CAM (79.20) AMZ (8.28)

CESM1 SAH (93.31) AMZ (5.27) SAH (95.0) AMZ (9.01)

Note:‘MED (89.36)’ means that 89.36% in MED would be with increasing frequency of severe

droughts in the far future. A 4 times change indicates that the drought would become 4 times more

frequent in the far future. The 20-year (100-year) drought would therefore become a 5-year drought

(25-year)



42

Figure 2.8 Same as Figure 2.4, but for the mean annual 24-month SPI drought frequency

Figure 2.9 Same as Figure 2.5, but for the long-term extremely

severe drought over annual scale
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2.6 Discussion and Conclusion

2.6.1 Discussion

The results presented in this paper indicate a worsening of extreme meteorological droughts

in many regions of the world, and particularly so for seasonal short-term droughts. These re-

sults are based on two large ensembles from two different climate models. The use of two

large ensembles provides the important advantage of allowing a study extreme events with lit-

tle uncertainty. The disadvantage of using large ensembles is that such use does not allow a

proper sampling of GCM/ESM uncertainty as would be the case if using a global (CMIP5, Tay-

lor et al., 2012) or regional (e.g., NARCCAP, Mearns, L. O., Arritt, R., Biner, S., Bukovsky,

M. S., McGinnis, S., Sain, S., Caya, D., Correia Jr, J., Flory, D., Gutowski, W. et al., 2012)

multi-model ensemble. Using large ensemble therefore provides a unique opportunity to look

at extremely rare events with minimal uncertainty, whereas multi-model ensembles are specifi-

cally used to investigate model structural uncertainty. The CMIP6 (Eyring, V., Bony, S., Meehl,

G. A., Senior, C. A., Stevens, B., Stouffer, R. J. & Taylor, K. E., 2016) ensemble should provide

the opportunity to do both, as all climate model will provide a minimum number of members

for the core simulation. Since we only used two climate models, it is therefore important to

frame our results in comparison to others, even though little previous work has been dedicated

to extreme droughts.

In Sheffield & Wood’s work (2008), soil moisture data from 8 GCMs (from IPCC AR4, forced

by SRES A2, A1B and B1 scenarios) was used to study global drought occurrence under fu-

ture warming (2070-2099). In this study, droughts were defined as the sequence of consecutive

months with soil moisture quantiles lower than a threshold corresponding to a 10-year re-

turn period in the historical period (1961-1990). Results showed that the Mediterranean, West

African, Central Asia and Central American regions showed large increases in drought fre-

quency, and particularly for long-term droughts (more than 12-month duration). A doubling in

the frequency of short-term droughts (4-6 months duration) was observed by Sheffield & Wood

(2008), as compared to the mid-twentieth century, under the future projections. Zhao & Dai
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(2017) used the outputs from 12 CMIP3 models under the A1B scenario and 14 CMIP5 models

under RCP4.5 to project changes in the frequency of future agricultural droughts for the 2070-

2099 period. Moderate to severe droughts were defined as having respective anomalies below

the 20th and 10th percentiles, based on the reference period (1970-1999). Both ensembles

project an increase over almost all land areas, with severe droughts seeing a larger frequency

increase than their moderate counterparts. This amplification of extremes is consistent with the

results presented in this paper. Overall, the spatial extent of warming future droughts was more

expansive than presented in this study, because they both considered agricultural droughts, a

point that will be discussed later. The results presented in this paper are also mostly consis-

tent with those of Dai (2011). The general distribution of areas affected by increasing drought

frequency is also in line with areas where mean annual precipitation is expected to decrease,

and particularly in tropical and subtropical zones (IPCC, 2013b). To further this point, the JJA

relationship between the frequency change of extreme droughts and mean total precipitation

was also explored. Unsurprisingly, there is a good spatial correlation between future mean JJA

precipitation changes and increases in future meteorological drought frequency. The projected

change for JJA total precipitation for both models is shown in Figure 2.22. Areas affected by

an increase in meteorological droughts are however larger than those affected by decreases in

mean JJA precipitation, indicating that many regions where mean JJA precipitation is expected

to increase will nonetheless see worsening drought conditions. For example, this is especially

clear for Northern Russia in CanESM2, and in many regions of South America in CESM1.

There is also a clear link with drought return periods, with more extreme droughts more likely

to increase in regions with increasing mean JJA precipitation than for more common droughts.

This observed tendency in drought frequency to increase in regions getting wetter can only be

explained by changes in temporal precipitation variability.

Overall, results obtained from both climate ensembles are fairly consistent, with only some

regional differences. In all cases, the observed differences correspond to regions already iden-

tified by the IPCC as having low inter-model agreement. These regions are typically cha-

racterized by high internal variability compared to the expected climate change signal. For
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example, two regions WNA and GRL, see different trends (depending on the climate model)

for the far-future JJA. Both of those regions are characterized by a lot of variability and both

barely exceed the 55% cutoff to declare a regional trend. Slightly changing the region bound-

aries could reverse the trends. Better agreement was found at the seasonal scale for short-term

extreme droughts, and especially in future DJFs, which corresponds to the season in which

inter-annual variability is lower. This lower inter-annual variability is also likely the reason

why JJA extreme droughts will see a greater frequency increase than will DJF.

As with any studies dealing with climate change in future horizons, this work is impacted by

many sources of uncertainty. The work focused on meteorological droughts using a single

index, and with only two climate models under the pessimistic RCP8.5 scenario. The choice

of models and scenario was imposed by the main objective of focusing on extreme droughts.

The focus on large ensembles was dictated by the need to reduce statistical uncertainty for

large return period droughts, and this led to the use of the only two global large ensembles

available: CanESM2 and CESM1. Large ensembles are expected to become more common

in the future, and this will help better frame extreme drought-related inter-model uncertainty.

Such ensembles are now available at the regional scale (Leduc, M., Mailhot, A., Frigon, A.,

Martel, J.-L., Ludwig, R., Brietzke, G. B., Giguére, M., Brissette, F., Turcotte, R., Braun,

M. et al., 2019). Droughts were only assessed under the RCP8.5 scenario because no other

RCPs were available for the two existing (at the time of starting this work) large ensembles.

The use of different drought indices has been shown to potentially have an influence on the

magnitude and sign of the change of drought (Burke & Brown, 2008). The SPI was chosen

especially because of its simplicity and its widespread use. However, the use of this index

will likely result in an underestimation of the severity of future droughts under climate change

because it ignores the role of temperature, a critical contributor (Marcos-Garcia, P., Lopez-

Nicolas, A. & Pulido-Velazquez, M., 2017). Some drought indices (e.g., PDSI and SPEI),

also categorized as meteorological drought indices (Svoboda, M., Fuchs, B. et al., 2016), con-

sider water supply and demand simultaneously, thus showing more severe drought conditions

under a warming climate (Burke & Brown, 2008; Sheffield & Wood, 2008). Since surface
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moisture/water balance is related to agricultural droughts, some researches have explored the

characteristics of agricultural droughts based on those same indices (Dai, 2011; Touma et al.,

2015).

This study has only looked at meteorological droughts since precipitation deficit is the main

driver of all other types of droughts. Considering the complexity of using large ensembles, the

focus was therefore to exploit their ability at looking extremely rare events rather than look at

the propagation of meteorological droughts into other types of droughts. Clearly, agricultural

and hydrological droughts are also affected by other climate variables, such as wind, humidity

and temperature, which control evapotranspiration and may worsen the impact of meteorologi-

cal droughts. Global surface temperatures have been steadily on the rise over the past decades,

and the observed changes have already been larger than internal variability for most of the

world’s regions, and sharp increases are expected everywhere, especially at high latitudes, by

the end of the century (Fischer, E. M. & Knutti, R., 2015). While this study did not look

at agricultural and hydrological droughts, it can be inferred with good confidence that results

presented in this paper for meteorological droughts, however dire they are for many regions

of the world, will pale in comparison to the combined impact of higher temperatures with the

increasing frequency of extreme precipitation deficit.

Further studies should focus on a better understanding of these combined effects and the inter-

play between anthropogenic forcing and climate’s internal variability. Studies on hydrological

and agricultural droughts could easily be carried out using the methodological approach pre-

sented in this paper. However, runoff and soil moisture outputs from climate models should be

treated with caution, because there is lack of suitable observation to verify (Burke & Brown,

2008). Ultimately, developing a better ability to forecast droughts will become critical to

the development of adaptation strategies to cope with the increase frequency and severity of

droughts.
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2.6.2 Conclusion

This study has explored the evolution of the frequency of future extreme meteorological droughts

at the global scale using precipitation outputs from two large climate ensembles (CESM1 and

CanESM2) under the RCP8.5 emission scenario. The major findings are summarized as fol-

lows:

1) The very large number of simulated years from two climate model large ensembles (CanESM2-

7550 years; CESM1-7240 years) were used to study extreme meteorological droughts, de-

fined here as having a return period exceeding 20 years. Such extreme droughts have not

received much attention in previous work.

2) Both ensembles do a good job at replicating spatial patterns and magnitude of annual total

precipitation and interannual variability over the reference period (1981-2010). This pro-

vides confidence in each model’s ability to adequately represent short-term (1-month) and

long-term (24-month) drought frequency.

3) Projected increases in future extreme meteorological drought frequency are mostly consis-

tent across both climate ensembles, although there are many regional differences, mostly in

regions that have already been labeled as having high internal variability by the IPCC.

4) The projected increases in meteorological drought frequency are much more severe for

short-term droughts than for long-term droughts.

5) The patterns of increasing extreme meteorological drought frequency are consistent with

those of future changes in mean annual precipitation, indicating that regions with decrea-

sing precipitation are, unsurprisingly, more at risk. However, the extent of the drought

frequency increase patterns is larger than those for mean annual precipitation, indicating a

worsening of extreme droughts in some regions projected to see an increase in mean annual

precipitation.
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6) The total area affected by a worsening of droughts gets larger with the drought return

periods. In other words, the frequency increase of the 100-year drought is more important

than for the 20-year drought. For the most vulnerable region, the JJA short-term drought

frequency could increase by up to 20 times for the 100-year drought, and by 9 times for the

20-year drought. This means that the future return periods of the current 20 and 100-year

droughts, would become 2 and 5 years in the future, for the most affected region.

7) The amplification of the impact of climate change toward more extreme droughts has been

observed in other studies, but the frequency changes are much larger in this study, likely

the result of looking at droughts with a much larger return period.
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2.8 Supplementary materials

Figure 2.10 Difference in total annual (JJA/DJF) precipitation amount between

CanESM2 (upper row, A to C) or CESM1 (lower row, D to F) and observation. Red

represents underestimation while blue means overestimation of the precipitation amount

Figure 2.11 Difference in standard deviation of annual (JJA/DJF) precipitation between

CanESM2 (upper row, A to C) or CESM1 (lower row, D to F) and observation. Red

represents underestimation while blue means overestimation of the standard deviation
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Figure 2.12 Same as Figure 2.4, but for the mean annual 1-month SPI drought

frequency in the near-future period

Figure 2.13 Drought frequency change of short-term severe drought over the annual

scale in the far future
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Figure 2.14 Same as Figure 2.6, but for the mean JJA 1-month SPI drought frequency in

the near-future period

Figure 2.15 Drought frequency change of short-term severe drought

in the far future JJAs
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Figure 2.16 Change in the mean DJF 1-month SPI drought frequency in the near future

relative to the reference period. The upper panel (A-C) is for the 2-year, 20-year, and

100-year return period change relative to the reference period in CanESM2. The bottom

panel (D-F) presents changes in frequency for 2, 20 and 100-year return periods in

CESM1. Red means an increase in drought frequency while cooler colors indicate a

decrease. The unit of color scales is year

Figure 2.17 Same as Figure 2.14, but for the far-future period
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Figure 2.18 Drought frequency chagne of short-term severe drought

in the far future DJFs

Figure 2.19 Drought frequency change of short-term extremely severe drought in the

far-future DJFs
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Table 2.5 Agreements and disagreements between CanESM2 and CESM1 large

ensembles for short-term droughts in future DJFs

Regions with the same trend Regions with the different trend

increase Decrease
No change in

ensembles
Opposite trend

No change in

one ensemble

AMZ, SSA

CAM, SAH

WAF

WNA, CNA

ENA, ALA

GRL, NEU

EAF, SAS

TIB, NAS

MED, EAS

CAS

AUS, SAF

SEA

Note:’Regions with the same trend’ means that two large ensembles predicted the same

change direction of extreme droughts of 3 different return periods. ‘Regions with the dif-

ferent trend’ means that two large ensembles predicted reverse trends, for example, region

A was predicted to be with increasing drought frequency in CanESM2 while CESM1 pro-

jected a decreasing trend. or CanESM2 or CESM1 predicted the no change in the drought

frequency

Figure 2.20 Change in the mean annual 24-month SPI drought frequency in the near

future relative to the reference period. The upper panel (A-C) is for the 2-year, 20-year,

and 100-year return period changes relative to the reference period in CanESM2. The

bottom panel (D-F) presents changes in frequency for 2-, 20- and 100-year return

periods in CESM1. Red means an increase in drought frequency while

cooler colors indicate a decrease
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Figure 2.21 Drought frequency change of long-term severe drought

over annual scale in the far future

Figure 2.22 Relative change of far-future JJA precipitation in two large ensembles
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3.1 Abstract

This paper describes projected frequency changes in extreme summer meteorological and hy-

drological droughts over North American catchments. It uses two large ensemble climate mod-

els (50-member CanESM2 and 40-member CESM1) under the RCP8.5 scenario to robustly

assess frequency changes up to the 100-year drought, relative to the 1980-2009 reference pe-

riod. Meteorological droughts, linked solely to precipitation deficit, are represented by the

1-month Standardized Precipitation Index (SPI), whereas hydrological droughts are character-

ized by the 1-month Streamflow Drought Index (SDI), based on hydrological simulation using

a lumped hydrological model. Results show widely different patterns for future changes in

extreme meteorological versus hydrological droughts. Future meteorological droughts show

patterns of increasing and decreasing frequency that roughly match future expected changes of

mean summer precipitation, although some regions are nonetheless projected to see more fre-

quent extreme meteorological droughts despite increases in mean summer precipitation. The

frequency changes for the 100-year meteorological droughts can be quite severe, with up to a

20-fold increase observed over some watersheds. On the other hand, hydrological droughts,

which combine the effect of precipitation and temperature changes, show a mostly uniform
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pattern of large to very large increases in drought frequency. This shows that the projected

temperature increase is a main driver of future extreme hydrological droughts, enough to over-

come the projected increase in mean summer precipitation for many North American catch-

ments. Projected changes in both meteorological and hydrological droughts get consistently

worse for the longer considered return periods. In other words, frequency changes for the 100-

year droughts are more significant than those expected for the 2- and 20-year droughts. This

gradual worsening toward larger extremes has potentially large societal and economic impacts.

The large projected increases in the frequency of extreme hydrological drought frequency (up

to 27 times) are likely to severely stress water management systems across North America.

Keywords: climate change; large ensemble climate models; extreme droughts; North Ame-

rica; frequency analysis

3.2 Introduction

The frequency of many extreme natural hazards, such as floods and droughts, is expected to

increase as global temperatures rise due to the increasing concentration of greenhouse gases

in the atmosphere (Cai, W., Wang, G., Santoso, A., McPhaden, M. J., Wu, L., Jin, F.-F., Tim-

mermann, A., Collins, M., Vecchi, G., Lengaigne, M. et al., 2015; Fischer & Knutti, 2015;

Lelieveld, J., Proestos, Y., Hadjinicolaou, P., Tanarhte, M., Tyrlis, E. & Zittis, G., 2016; Martel

et al., 2018; Martel, J.-L., Mailhot, A. & Brissette, F., 2020; Rupp, D. E., Li, S., Mote, P. W.,

Massey, N., Sparrow, S. N. & Wallom, D. C., 2017). Droughts have often been regarded as

the most severe natural disaster because other catastrophes, such as floods, are typically re-

stricted to relatively localized areas and over a well-defined time interval (Vicente-Serrano,

S. M., López-Moreno, J. I., Beguería, S., Lorenzo-Lacruz, J., Azorin-Molina, C. & Morán-

Tejeda, E., 2011). Droughts are responsible for land degradation, famine and epidemics in

emerging nations and for large economic losses in developed regions (Nicholson, S. E., 2001).

Drought is defined as a temporary and periodic natural phenomenon which is characterized by

below-normal precipitation, above-normal temperature, low relative humidity, below-average

cloud cover, or any combination thereof (Dai, 2011). Droughts can be classified into four pri-
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mary categories: meteorological droughts, agricultural droughts, hydrological droughts, and

socio-economic droughts. Meteorological droughts are characterized by a precipitation deficit,

and are closely related to other types of droughts (Hannaford, J., Lloyd-Hughes, B., Keef,

C., Parry, S. & Prudhomme, C., 2011). The onset of agricultural droughts depends on an-

tecedent soil moisture conditions, and may therefore lag the start of meteorological droughts

(Heim & Richard, 2002). Hydrological droughts occur when a precipitation deficit propagates

to the surface or subsurface water level, resulting in difficulties supporting normal water usage

(Dai, 2011; Wilhite & Glantz, 1985). Socio-economic droughts for their part occur when water

shortage starts to affect people, supply and demand for economic goods (Hayes et al., 2011).

There are many recent examples of severe North American droughts resulting in significant

socio-economic impacts. In recent years, droughts in the United States (U.S.) have led to

nearly $9 billion in annual losses (NCDC, 2013). In California, the economic impacts of

droughts on agriculture led to nearly 4700 job losses, and to a $604 million gross sales deficit

in 2016 alone (Medellín-Azuara, J., MacEwan, D., Howitt, R. E., Sumner, D. A., Lund, J. R.,

Scheer, J., Gailey, R., Hart, Q., Alexander, N. D., Arnold, B. et al., 2016). In Canada, recurrent

major droughts affect the interior valley of British Columbia (BC) and the Prairies (Bonsal

et al., 2011; Masud et al., 2015). The provincial government of BC relocated 2800 cattle and

paid around $2 million to replace damaged fencing due to the droughts in 2017 (Cherneski,

2018). Eastern North American droughts typically affect smaller areas, and have a shorter du-

ration than their Central and Western counterparts, but are nonetheless liable to have significant

economic impacts (Barrie Bonsal, 2004).

Understanding the evolution of future droughts in a changing climate is of great economic im-

portance in terms of the capacity to implement efficient adaptation measures. Anchukaitis, K.,

Cook, B. & Cook, E. (2016) used climate model data from the Coupled Model Intercompari-

son Project Phase 5 (CMIP5) ensemble (Taylor et al., 2012) as well as paleoclimatic data (Last

Millennium Ensemble, LME), to assess past, current and future droughts in western North

America. They found that precipitation played a dominant role in controlling the occurrence

and characteristics of past droughts in paleoclimate records, whereas evapotranspiration asso-
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ciated with the future increasing temperature would dominate the trends for future droughts.

Tam et al. (2018) projected future changes in meteorological droughts by using 29 Global Cir-

culation Models (GCMs) under three emission scenarios in Canada, and found that drought

frequency would increase in South-west Canada and the Prairies, with larger inter-annual vari-

ability in the latter half of the 21st century. Prudhomme et al. (2014) used 7 global impact

models (GIMs), 5 GCMs under 4 Representative Concentration Pathways (RCPs) to study

future hydrological droughts. They predicted a postive trend in the severity of hydrological

droughts at the global scale by the end of the 21st century (2070-2099). Wanders et al. (2015)

applied a global hydrological model (PCR-GLOBEWB) forced by 5 GCMs under 4 RCPs to

simulate global daily streamflow at a 0.5 grid resolution from 1971 to 2099. Droughts in this

study were defined by conventional (based on the reference period) and transient (based on

the previous 30 years) thresholds, respectively. Results showed that roughly half of total land

surface would experience a decreasing trend in low flows.

Other studies have looked at megadroughts, which can have multi-decadal to century-long du-

rations, and can have lasting impacts on water availability and even lead to population migra-

tions. Using tree-ring records starting from A.D. 600, Helama, S., Meriläinen, J. & Tuomen-

virta, H. (2009) explored impacts of ENSO anomalies on precipitation deficit during the me-

dieval anomaly. Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D’Arrigo, R. D., Jacoby,

G. C. & Wright, W. E. (2010) also used tree rings to generate a 700-year reconstruction of

monsoon patterns over Asia. This reconstruction outlined monsoon failures and megadroughts.

Comparatively, much fewer studies have looked at extreme droughts, defined herein as having

a longer return period (T � 20 years), rather than by the extreme magnitude of drought indices

(Marengo & Espinoza, 2016; Roudier et al., 2016). Extreme droughts, despite their low proba-

bility of occurrence, typically carry a much larger proportion of the expectancy of drought

losses across the entire drought spectrum (Coumou, D. & Rahmstorf, S., 2012). This is be-

cause adaptation measures, that are typically in place to deal with those frequent droughts are

largely ineffective against their more extreme counterparts. Extreme droughts are also more

difficult to study due to the large statistical uncertainty related to short historical data series.
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The focus of this work is therefore on the study of the evolution of future extreme summer

meteorological and hydrological droughts and on comparing trends to those of more frequent

droughts.

This paper is organized as follows: sections 3.3 and 3.4 respectively describe the datasets used

in this work and the methodological aspects. Results are shown in section 3.5. The discussion

and conclusions are respectively presented in sections 3.6 and 3.7.

3.3 Data

The watershed data used in this study comes from a combination of Canadian and U.S. databases.

For Canada, hydrometeorological data and boundaries (of 532 watersheds) come from the

Canadian model parameter experiment (CANOPEX) database (Arsenault, R., Bazile, R., Ouel-

let Dallaire, C. & Brissette, F., 2016). Observed precipitation and temperature data are basin-

averaged. The Canadian watersheds are well-distributed over Canada, with the exception of

the prairie areas. For the U.S., meteorological data comes from gridded dataset of Maurer,

E. P., Wood, A., Adam, J., Lettenmaier, D. P. & Nijssen, B. (2002). This dataset is interpolated

to a 0.125◦ × 0.125◦ grid, and has been widely used in drought and climate change impact

studies (Liu, C., Ikeda, K., Rasmussen, R., Barlage, M., Newman, A. J., Prein, A. F., Chen,

F., Chen, L., Clark, M., Dai, A. et al., 2017; Mazrooei, A. & Sankarasubramanian, A., 2019;

Sheffield, J., Goteti, G., Wen, F. & Wood, E. F., 2004). There are now several other interpo-

lated gridded climate datasets available over the continental United States (e.g., Abatzoglou,

J. T., 2013; Livneh, B., Rosenberg, E. A., Lin, C., Nijssen, B., Mishra, V., Andreadis, K. M.,

Maurer, E. P. & Lettenmaier, D. P., 2013). Despite minor differences between these existing

datasets, Essou, G. R., Arsenault, R. & Brissette, F. P. (2016) showed that they were statisti-

cally equivalent with respect to their performance in lumped hydrological modeling over most

U.S. catchments. Streamflow and watershed boundary data in the U.S. were extracted from the

United States Geological Survey (USGS) database for 5265 watersheds. The combination of

the Canadian and US datasets lead to a total of 5797 watersheds. Ninety percent of all water-

sheds have a size ranging between 536 and 35,000 km2. The U.S. was divided into six regions



62

(from west to east: West US, High Plains, South, Midwest, Southeast, Northeast) and Canada

into 4 regions, for easier comparison. The choice of these 6 regions in the U.S. was based on

the US drought monitor (https://droughtmonitor.unl.edu/). A map showing the centroid of all

North American watersheds and ten regions is shown in Figure 3.1.

Figure 3.1 Distributions of the 5797 watersheds used in this study. The watersheds were

divided into 6 regions for U.S. and 4 regions for Canada

To assess the future climate, two climate model large ensembles were used in this study. The

Canadian Earth System Model (CanESM2) is a 50-member ensemble run at a spatial resolution

of 2.8◦ × 2.8◦. To produce the 50-member ensemble, historical forcing was applied to five

different members to obtain different ocean states over the 1850-1950 period. Five members

were perturbed 10 times, using historical forcing to 2005 and by the RCP8.5 afterward, leading

to a total of 50 members over the 1950-2100 period (Arora et al., 2011; Sigmond & Fyfe,

2016). The Community Earth System Model (CESM1) is a 40-member ensemble run at a

spatial resolution of 1◦ × 1◦, covering the 1920-2100 period. Each member is obtained from

random atmospheric perturbations using historical forcing to 2005 and the RCP8.5 afterward

until 2100. Details can be found in Kay et al. (2015).
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3.4 Methodology

In this paper, meteorological and hydrological droughts are analyzed for 5797 North American

watersheds over the 1980-2009 historical period, as well as for the near- (2036-2065) and far-

future (2070-2099) periods.

The results presented in this paper for future droughts are based on climate model outputs.

To evaluate the potential differences between climate model-simulated and observed drought

patterns, some level of validation against observations is required. While climate models have

shown their ability to simulate the current climate and its variability at the global scale (Flato,

G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W. J., Cox, P., Driouech,

F., Emori, S. & Eyring, V., 2013), there may be significant differences at the regional scale.

Simulated meteorological outputs (precipitation, maximum and minimum daily temperature)

for each watershed were averaged from a minimum of the four grid points closest to its cen-

troid. Climate model precipitation was first compared against observation over the 1980-2009

reference period. The ensemble mean of total summer precipitation was used as a first com-

parison criterion. Since droughts originate from temporal variability in precipitation fields, the

standard deviation of total summer precipitation was used as a second comparison criterion

(standard deviation of 30 × 50 values).

To perform the climate change impact analysis at the watershed scale, climate model outputs

were bias-corrected to account for spatial differences and model structural errors (Maraun,

D., Wetterhall, F., Ireson, A., Chandler, R., Kendon, E., Widmann, M., Brienen, S., Rust, H.,

Sauter, T., Themeßl, M. et al., 2010; Seager, R. & Vecchi, G. A., 2010). Failing to correct for

these biases may result in unrealistic streamflow simulations over the reference period, as well

as over the future periods. Specifically, the daily bias correction method (DBC) of Chen et

al. (2013; 2019) was adopted in this work. The DBC is a combination of the daily translation

method, which is a quantile mapping approach (Mpelasoka, F. S. & Chiew, F. H., 2009), and

the local intensity scaling (LOCI) approach. LOCI is used to correct the occurrence of precipi-

tation to keep the wet-day frequencies identical to observations for the reference period (Chen
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et al., 2013; Schmidli, J., Frei, C. & Vidale, P. L., 2006). This study was performed at the wa-

tershed scale using a lumped hydrological model (see below). All meteorological inputs were

therefore averaged to the watershed scale. Bias correction factors were consequently computed

between climate model- and watershed-averaged precipitation and temperature, with no prior

downscaling step. The factors were kept the same for each member.

Bias-corrected climate model precipitation and temperature data were used as inputs to a hy-

drological model to simulate streamflows over the reference and future periods. Simulated

streamflows were analyzed to assess changes in hydrological droughts. Daily streamflows

were computed using the GR4J hydrological model (Perrin, C., Michel, C. & Andréassian,

V., 2003), coupled with the CemaNeige snow module (Valéry, A., Andréassian, V. & Perrin,

C., 2014). GR4J-CemaNeige is a reservoir-based, lumped rainfall-runoff model. The required

inputs for this coupled model are temperature, precipitation, and potential evapotranspiration

(PET). The PET is calculated using the Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréas-

sian, V., Anctil, F. & Loumagne, C. (2005) formula, which is a simple, yet highly optimized,

temperature-based PET model. There are several equations for calculating PET, including

mass-transfer, radiation and temperature-based methods, and the relative performance of these

equations has been shown to be dependent on the study area (Xu, C.-Y. & Singh, V., 2002).

The Penman-Monteith equation is recommended by Food and Agriculture Organization (FAO)

as its preferred and most reliable approach. In addition, it is generally agreed that a more

physically-based PET formula should be preferred for climate change impact studies. How-

ever, such formulas rely on additional climate variables (such as humidity, radiation and wind

speed) that are not widely available for large-scale studies such as this one. This brings sig-

nificant limitations to its applicability in most areas (Rojas, J. P. & Sheffield, R. E., 2013).

Oudin et al. (2005) assessed the impact of using various PET formulas on the outflows simu-

lated by a daily rainfall-runoff model over 308 catchments in different climatic zones. Results

showed that temperature- and radiation-based equations performed similarly with the chosen

lumped hydrological model. Based on these results, the proposed Oudin et al. (2005) formula

was found to be the most efficient for use with the GR4J hydrological model, also used in this
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work. This hydrological model has also been successfully used in several studies over North

America (Arsenault, R., Gatien, P., Renaud, B., Brissette, F. & Martel, J.-L., 2015; Troin,

M., Arsenault, R. & Brissette, F., 2015; Troin et al., 2018; Velázquez, J. A., Troin, M., Caya,

D. & Brissette, F., 2015). To calibrate the hydrological model, daily streamflow data over the

1950-2010 period was used, and the Kling-Gupta Efficiency (KGE, Gupta, H. V., Kling, H.,

Yilmaz, K. K. & Martinez, G. F., 2009) was taken as the optimal function. Following cali-

bration, watersheds with KGE calibration value below 0.3 were removed. This cutoff resulted

in 4521 watersheds being retained. The performance of GR4J-CemaNeige-Oudin is shown in

Figure 3.2.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
KGE

Figure 3.2 Calibration results for all 5797 watersheds over North America using the

KGE as the optimal criterion

In order to study meteorological droughts over different climatological periods, drought indices

must be chosen. Several drought indices are typically applied in practice to assess meteorolog-

ical droughts. In this study, the Standardized Precipitation Index (SPI) was chosen based on the

recommendation of the World Meteorological Organization that it could be used as a standard

index for tracking meteorological droughts. It has also been widely used in many studies (Kat-

telus, M., Salmivaara, A., Mellin, I., Varis, O. & Kummu, M., 2016; Kumar, R., Musuuza, J. L.,
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Loon, A. F. V., Teuling, A. J., Barthel, R., Ten Broek, J., Mai, J., Samaniego, L. & Attinger, S.,

2016; Kwon, M., Kwon, H.-H. & Han, D., 2019; Preethi, B., Ramya, R., Patwardhan, S., Mu-

jumdar, M. & Kripalani, R., 2019). It is a robust, sensitive index which can be used to monitor

precipitation deficit at various temporal scales (Pai, D., Sridhar, L., Guhathakurta, P. & Hatwar,

H., 2011; Stricevic, R., Djurovic, N. & Djurovic, Z., 2011). The SPI is a dimensionless indica-

tor, which characterizes precipitation deficit relative to the long-term mean at a given location

and for a given time scale (McKee, 1995; McKee et al., 1993). A positive SPI index indicates

above-average precipitation over a given time scale. The SPI is typically computed at time

scales ranging from 1 to 24 months. This work focused on the 1-month SPI. Since the latter is

computed over a short-term window, it is most often associated with meteorological droughts

(Svoboda, M., Hayes, M. & Wood, D., 2012), although it can also be the end result of much

longer dry sequences affecting soil moisture. In temperate climates, short-term hydrological

droughts are typically the most problematic and drought durations as small as 7 days are often

used to characterize their magnitude. Meteorological droughts, on the other hand, are often

defined by durations of one to several months. The 1-month duration was therefore found to

be a good compromise to bridge the gap between short-term hydrological and meteorological

droughts. The procedure for computing SPI values consists in fitting an appropriate distribu-

tion (typically the 2-parameter gamma distribution) to precipitation data and mapping it to a

normal distribution. The index represents the normal deviates of this normal distribution. More

details can be found in Guttman, N. B. (1998). SPI values with return periods ranging from 2 to

100 years were estimated to assess the influence of climate change on extreme meteorological

drought frequency in future periods.

A standardized drought indicator is also required for the analysis of the potential evolution of

future hydrological droughts over a given time period (Vicente-Serrano et al., 2011). The 1-

month streamflow drought index (SDI) was chosen for hydrological droughts analysis, because

it is sensitive to a wide range of drought conditions (Nalbantis, I. & Tsakiris, G., 2009). It

is also region-independent, and analogous to the SPI. Similar to the SPI index computation,

a distribution function is fitted to the monthly streamflow data. In this work, six potential
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distributions were considered: Generalized Pareto, log-logistic, lognormal, Pearson Type III,

General Extreme Value (GEV) and Weibull distributions (Nalbantis, I., 2008; Vicente-Serrano

et al., 2011). The choice of the most appropriate distribution for each watershed was based on

the best monthly fit approach (BMF) approach of Siegel, S. (1956).

This study was concerned with extreme droughts. The use of simulations from two climate

model large ensembles allowed for the computation of a very large number of years for all con-

sidered 30-year periods. For each 30-year time period, CanESM2 provides a sample of 1500

equivalent years (50× 30) due to the ergodic properties of the climate system. For CESM1,

the number of equivalent years for each period is 1200 years (40× 30). This allows for the

computation of large return periods (up to 100 years) using directly obtained empirical distri-

butions. In the real world, the analysis of extremes is typically based on a small number of

years. A distribution (e.g., the GEV distribution) is fitted to this small sample, with subse-

quent extrapolation to larger return periods. This extrapolation results in progressively larger

confidence intervals as the return period increases. In this work, the empirical return period of

future drought was calculated using Cunnane’s formula (1978):

T =
N +0.2

m−0.4
(3.1)

where N is the number of years and m is the rank (the mth smallest value). The Cunnane

plotting formula provides an unbiased estimate of quantiles, and has commonly been used in

hydrological studies (Ehmele, F. & Kunz, M., 2019; Wang, L., Yu, H., Yang, M., Yang, R.,

Gao, R. & Wang, Y., 2019b; Zhang, L. & Singh, V., 2006).

For both climate ensembles and three 30-year periods, drought return periods were calculated

by picking the smallest summer SPI (or SDI) value for each of the 1500 (CanESM2) and 1200

(CESM1) years, thus allowing for the precise evaluation of rare droughts. Return periods of 2-,

20- and 100-year droughts were computed based on the reference period distribution. The 2-

year drought represents a typical drought that should be exceeded every other year, on average,

with a probability of exceedance of 0.5. The 20- and 100-year droughts represent extreme



68

droughts that are only to be exceeded every 20 and 100 years, on average. This translates into

a probability of exceedance respectively equal to 0.05 and 0.01.

3.5 Results

3.5.1 Climate model validation

Figure 3.3 and Figure 3.4 show the ensemble mean of total summer precipitation, as well as

its standard deviation, for observation and for both climate model large ensembles over the

reference period. Results are presented for each watershed (and not at the grid point scale), and

as such, are consistent and comparable with the upcoming results for hydrological droughts

patterns. Although there are differences between all three datasets at the local scale, both

models are in agreement with respect to the representation of the spatial patterns of mean total

summer precipitation and inter-annual variability over North America. CESM1 tends to be

closer to observations than CanESM2, and especially over the U.S. Midwest.

As shown in Figure 3.4, CanESM2 generally underestimates the mean total summer preci-

pitation for most watersheds over the reference period, while CESM1 performs very well for

most watersheds, with the exception of the driest ones. Neither climate models shows obvious

biases when simulating the standard deviation of total summer precipitation.

To further explore the models’ performance in simulating the standard deviation of summer

precipitation, differences between the models and observations are shown in Figure 3.5. Both

models overestimate the standard deviation in the Canadian prairies and the Western U.S.

(northwest and south), and underestimate the standard deviation in East Canada. In addition,

CESM1 overestimates the standard deviation in the Northeast and Southest U.S., and under-

estimates it in the Midwest, and South. CanESM2 underestimates the standard deviation of

summer precipitation in the Midwest, Northeast and Southeast, and overestimates the standard

deviation in the South. In general, the difference between the observations and climate models

was smaller in CESM1.
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Figure 3.3 Mean summer precipitation (top) and its standard deviation (bottom) in the

reference period (1980-2009) in observation (left), CESM1 (middle) and

CanESM2 (right) large ensembles
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Figure 3.4 Correlation between the observation and CanESM2 (blue dots) or CESM1

(orange dots) for total summer precipitation (left) and standard deviation (right)
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The climate models’ temperature outputs were also validated, similarly to summer precipita-

tion. The results are shown in Supplementary Figure 3.11 to Figure 3.13. Summer tempera-

ture is well represented by both climate model ensembles. Inter-model differences are much

smaller for temperature than for precipitation. Spatial variability is reproduced slightly be-

tter by CESM1. Summer temperature is overestimated in the western part of North America

and underestimated in the eastern part in CESM1, while CanESM2 overestimates the standard

deviation over most of North America with the exception of Central CA.

<-30 -30 -20 -15 -10 -5 0 5 10 15 20 30 >30
Difference of standard deviation (%)

CESM1 CanESM2

Figure 3.5 Difference in summer precipitation standard deviation between CESM1 (left)

or CanESM2 (right) and observation. Blue represents underestimation while red means

overestimation of the standard deviation

3.5.2 Future meteorological droughts

This paper looked at 2-, 20-, and 100-year droughts for two future time periods. Patterns were

found to be very similar for both horizons and return periods, with the only difference being

the change of magnitude in the more distant future. Accordingly, the main body of this paper

will focus on the 100-year droughts over the more distant time horizon (2070-2099). The 2-

year drought patterns are also shown to outline any potential difference between frequent and

extreme drought patterns in the future. Results for the 20-year droughts and the 2036-2065

period are presented in the Supplementary Material (Figures 3.14 and 3.15).
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Figure 3.6 presents the expected frequency change of future 2-year and 100-year meteorologi-

cal droughts (deficit in precipitation) for both ensembles. These figures only show the relative

change of future drought frequency, rather than the drought severity, similarly to what Mar-

tel et al. (2018) did. The spatial pattern for the 2- and 100-year droughts are very similar,

indicating that changes in moderate and extreme meteorological droughts head in the same

direction for each climate model. There are, however, obvious differences between the two

climate models in both the direction and magnitude of the changes.

Figure 3.6 Change in the mean summer 1-month meteorological drought frequency in

the far future (2070-2099) relative to the reference period (1980-2009). 2-year (top) and

100-year (bottom) droughts for the CESM1 (left) and CanESM2 (right) ensembles. Red

(blue) colors indicate an increase (decrease) in the drought frequency
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Both climate models predict a worsening of summer meteorological droughts over most of

Canada (West and Central Canada), Midwest and over the coast in the Southeast U.S. along the

Gulf of Mexico. There are large differences over the High Plains and the East Canada. CESM1

consistently predicts direr future meteorological droughts, with the exception of Southern

Texas and the Northeast. The worst changes in the 100-year meteorological drought frequency

are observed in Florida, with up to a ten-fold increase for CanESM2 (the current 100-year me-

teorological drought becoming a 10-year drought in the distant future) and a 20-fold increase

for CESM1.

Since meteorological droughts were assessed based on precipitation deficit alone, it is impor-

tant to assess changes in future summer precipitation to better understand the link between

mean and extreme changes in droughts. Figure 3.7 presents the relative change of total sum-

mer precipitation for both climate models for the distant future relative to the historical period.

The precipitation change patterns for both climate models indicate a broadly similar pattern of

decreasing summer precipitation in the North, with an increasing trend in most of the U.S. A

comparison of Figures 3.6 and 3.7 shows that the spatial patterns are very similar, indicating

a strong correlation between changes in extreme summer meteorological drought frequency

and relative changes in mean total summer precipitation. Changes in future summer precipita-

tion explain most of the differences in meteorological drought patterns observed in Figure 3.6.

There are, however, minor regional differences, such as the Western U.S. coast for CESM1,

where the 100-year droughts become less frequent despite projected decreases in summer pre-

cipitation.

3.5.3 Future hydrological droughts

Meteorological droughts are due mainly to precipitation deficit, while the process leading to

hydrological droughts are more complex because they are the results of the non-linear interac-

tions between climatic variables.
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Figure 3.7 Relative change of ensemble mean future summer precipitation in the far

future (2070-2099) for CESM1 (left) and CanESM2 (right)

Figure 3.8 presents changes for the 2- and 100-year hydrological droughts for the 2070-2099

period. Changes for the 20-year hydrological droughts and for the 2036-2065 period are shown

in Figures 3.16 and 3.17, respectively. In comparison to meteorological droughts, results are

much more consistent between climate models. Both models show large increases of frequency

in hydrological droughts over almost all North American watersheds, including areas with in-

creasing summer precipitation. The situation gets worse at the larger return periods. Increases

in the 100-year drought frequencies can be as large as 22 times, in CanESM2, and 27 times,

in CESM1, relative to the reference period. The Rocky Mountains (parts in West U.S and

High Plains), and the Canadian West Coast are the only regions where a few watersheds do not

see increases in hydrological drought frequency. The increasing frequency of future extreme

hydrological droughts is clearly larger than that for future meteorological droughts.
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Figure 3.8 Same as Figure 3.6, but for 1-month summer hydrological droughts

3.6 Discussion

This paper assessed the climate change impacts on the change of future droughts, with 2-,

20- and 100-year return periods. Results showed that spatial patterns of changes are similar

for all three return periods. However, changes in magnitude get larger for the longer return

period. This progressively larger increase for longer return periods has equally been noted

by others (e.g., Martel et al. (2020) for precipitation ranging from 1 hour to 5 days and Boo,
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K.-O., Kwon, W.-T. & Baek, H.-J. (2006) for temperature), and results from changes in future

inter-annual climate variability. Changes for longer return periods are important since extreme

events almost always lead to the largest socio-economic losses.

As has been observed in many other studies (Cook, B. I., Smerdon, J. E., Seager, R. & Coats,

S., 2014; IPCC, 2013b; Lelieveld et al., 2016; Tam et al., 2018), projected changes are ge-

nerally more important for the more distant future periods. This is especially the case in this

study, where projected changes for hydrological droughts in the far future are more signifi-

cant than those for meteorological droughts. This is likely because the former represents the

non-linear combination of precipitation and temperature. Future changes in precipitation vary

depending on the region (See Figure 3.7), sometimes helping to relieve drought problems,

whereas temperature is consistently increasing over the entire North American domain (Figure

3.9). Projected mean summer temperature changes are very similar for both climate models,

with a south-to-north gradient of progressively larger increases. CanESM2 projects the largest

increases, and especially over Canada. Temperature changes have no direct link with meteoro-

logical droughts, but are an important driver of evapotranspiration, thus impacting soil moisture

and hydrological droughts, in addition to the precipitation deficit. By the end of the century,

the increase in temperature becomes the main driver of the hydrological drought process, thus

resulting in larger changes, as compared to precipitation-only-driven changes for meteorolo-

gical droughts. The same factors can also explain the differences in spatial areas affected by

meteorological and hydrological droughts. Spatial patterns of future extreme meteorological

and hydrological droughts for both future periods are shown in Figures 3.14 (3.15) and 3.16

(3.17), respectively, while the changes in magnitude are shown in Figures 3.18 and 3.19, along

with Table 3.1.
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Figure 3.9 Relative change of ensemble mean future summer temperature in the far

future (2070-2099) for CESM1 (left) and CanESM2 (right)

While the general conclusions apply to results of both large ensemble climate models used in

this study, there are nonetheless notable differences in spatial patterns for the meteorological

and hydrological droughts, and especially for meteorological droughts. Precipitation, which

is the main driver of the meteorological droughts, presents larger inter-model variability than

temperature, and this translates into large inter-model uncertainty. In addition, the Southern

U.S. is a known region with large inter-annual variability (Wang, H., Fu, R., Kumar, A. & Li,

W., 2010), and so it is expected to see large differences in spatial patterns of meteorological

droughts between the two climate models. For extreme hydrological droughts, the increasing

temperature is likely to be responsible for the intensified evapotranspiration, resulting in drier

summer conditions. Since temperature displays less inter-model variability, the spatial patterns

of extreme hydrological droughts are more consistent for both climate models. In addition,

since CESM1 performed better against observed data over the reference period (for both mean

summer precipitation and inter-annual variability), it could be inferred that results based on

this model are more reliable, possibly in part due to its finer spatial resolution.
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Since precipitation deficit is the main driver of meteorological droughts, it is perhaps intuitive

to expect that more future precipitation would bring fewer droughts, and vice-versa. However,

changes in variability may impact extremes differently. Figures 3.6 and 3.7 indicated that the

main driver behind spatial patterns of extreme meteorological droughts appeared to result from

the future changes in summer precipitation amounts. Figure 3.10 further explores this by map-

ping the direction of the changes between precipitation and meteorological droughts. Four pa-

tterns are therefore mapped. Regions in blue (decrease in precipitation and increase in drought,

noted (P-/D+) and red (P+/D-) are consistent with this intuitive understanding of changes. Re-

gions in green (P+/D+) show watersheds where an increase in precipitation nonetheless results

in increasing meteorological drought frequencies. These watersheds are usually located in

the transition area between blue and red zones, and become more common for the extreme

droughts, showing how increasing inter-annual variability affecting extremes more than mean

values. The number of watersheds in purple (P-/D-), indicating a decrease in extreme meteoro-

logical droughts despite a decrease in mean precipitation, is very small. Purple areas are only

found in dry areas of the Southern U.S. for 2-year droughts and in the Northwestern U.S. for

100-year droughts. Northwestern U.S. is more sensitive to climate variability, and these gray

regions might possibly see lower variability in future summer precipitation.

In opposition to meteorological droughts, changes in hydrological droughts result from a com-

bination of more than one variable, and are more difficult to infer simply by looking at changes

in precipitation and temperature alone. As discussed above, temperature increases appear to be

the dominant factor in driving the large increases in hydrological drought frequency predicted

for most of North America. The process by which these changes affect droughts have not been

systematically studied, although they vary depending on watershed latitudes. The projected

decrease in summer precipitation will amplify this water shortage, thus explaining the large

increases in extreme drought frequency observed for those watersheds. In the South, increased

evapotranspiration is somewhat overcome by the projected increase in summer precipitation,

thus resulting in less severe increases in drought frequency.
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The hydrological drought frequency increase predictions over North American watersheds are

in line with the findings of other studies (Burke & Brown, 2008; Cook et al., 2014,1; Prud-

homme et al., 2014; Tam et al., 2018). Increases in evapotranspiration driven by higher tem-

peratures have been shown to have pronounced effects on droughts over the Central Plains

(these cover parts of south, High Plains and West Canada in this work) and Western U.S. (An-

chukaitis et al., 2016; Cook et al., 2014).

Figure 3.10 Agreement and disagreement of the change direction between far future

(2070-2099) summer meteorological droughts and precipitation in CESM1. Only CESM1

was shown as it is more reliable with a better performance and finer resolution. The

change direction is defined by the change of future precipitation or meteorological

droughts in the more distant future compared to the reference period. ‘P+/D-’ means

more precipitation leads to fewer droughts; ‘P-/D+’ means more future droughts result

from less precipitation; ‘P+/D+’ means more precipitation but more droughts; ‘P-/D-’

means less future precipitation and fewer summer droughts

It is important to stress that several limitations may affect the results presented in this work.

Two GCMs are likely to be insufficient to robustly assess precipitation change over the U.S.,

where there is large inter-model variability, and especially so in the South (Wuebbles et al.,

2016). This is especially true for meteorological droughts. However, by choosing these two

available large ensembles, we were able to remove the uncertainty in the statistical estimation

of extremes. Using many single-member GCMs would reduce the structural uncertainty, at
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the expense of increasing the uncertainty of extreme computation. Droughts were only as-

sessed under the RCP8.5 emission scenario, which is a pessimistic scenario corresponding to

a pathway with the higher emissions of greenhouse gases (Riahi, K., Rao, S., Krey, V., Cho,

C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N. & Rafaj, P., 2011), because no

other RCPs were available for those large ensembles. The world is currently on an extreme

scenario pathway, but this may change in the next decades. This uncertainty is therefore more

important for the more distant future period. Only two drought indices were used in this study:

SPI for meteorological droughts and SDI for hydrological droughts. The use of other indices

may have led to different frequency increases since drought assessment is largely dependent

on selection of indices (Burke & Brown, 2008; Diffenbaugh, N. S., Swain, D. L. & Touma, D.,

2015). Finally, a single hydrological model was used to compute projected future streamflows.

The hydrological model structure (particularly for processes driving evapotranspiration) may

impact the computation of low flows (Chen et al., 2011b; Troin et al., 2018; Wilby, R. L. & Har-

ris, I., 2006).

This work has not focused on the physical processes leading to the above changes and how

they propagate between both types of droughts. More work should therefore focus on be-

tter understanding the factors controlling the onset, duration, and severity of agricultural and

hydrological droughts. This better understanding will lead to better adaptation to changing

drought conditions (Diffenbaugh et al., 2015; Wanders, N. & Wada, Y., 2015; Wang, W., Ert-

sen, M. W., Svoboda, M. D. & Hafeez, M., 2016). The likelihood of droughts can be related to

sea surface temperature anomalies (Cook et al., 2007; Jiménez-Muñoz et al., 2016; Wang, S.,

Yuan, X. & Li, Y., 2017). A full grasp of the potential linkage between the teleconnections and

prolonged droughts conditions could allow for early warnings and preventive actions for wa-

ter conservation and agricultural planning (Okumura, Y. M., DiNezio, P. & Deser, C., 2017).

Last but not least, the uncertainty envelop related to the modeling chain (GCM/ESM, RCP,

downscaling, impact model/drought index) as discussed in other studies (Chen et al., 2011a,1;

Minville, M., Brissette, F. & Leconte, R., 2008; Wilby & Harris, 2006) could be better deli-

neated.
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3.7 Conclusion

This work looked at future trends of extreme short-term meteorological and hydrological drou-

ghts over North America, using two climate model (CanESM2 and CESM1) large ensembles.

The use of large ensembles allows for the robust estimation of 100-year droughts. Hydrological

droughts were studied over 4521 watersheds by using bias-corrected climate model precipita-

tion and temperature as inputs to the GR4J-CemaNeige-Oudin lumped hydrological model.

The Standardized Precipitation Index and Standardized Drought Index were used to respec-

tively assess meteorological and hydrological future summer droughts. The main conclusions

of this work are as follows:

1) Both climate models performed well at reproducing observed mean summer precipitation

and inter-annual variability over the reference period. CESM1 in particular displayed little

to no bias for summer precipitation on all watersheds, with the exception of some arid wa-

tersheds. This gives confidence in the models’ ability to adequately project future droughts.

2) Trends for meteorological droughts, which are mainly linked to precipitation deficit, showed

varying spatial patterns, with some regions seeing increases (West and Central Canada,

Midwest and Southeast coast) and others seeing decreases, in drought frequency. The evo-

lution of meteorological drought patterns matched future expected changes for mean sum-

mer precipitation. Because of changes in variability, some regions (e.g., Southeast U.S.)

will nonetheless see increasing meteorological drought frequency despite increases in mean

summer precipitation. This is especially notable for the larger 100-year return period. The

median increase in meteorological droughts over North America would be roughly 2-fold

in the far future.

3) Hydrological droughts, which combine the effect of precipitation and temperature changes,

show a very uniform pattern of worsening droughts, and that increases in temperature over-

come the expected increasing mean summer precipitation in some regions. The few wa-

tersheds escaping this trend are either located in colder climates (Canadian West Coast,

Rocky Mountains) or in regions with the largest projected increase in precipitation, such as
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Southern Texas. The frequency changes for the 100-year hydrological drought are quite se-

vere for several watersheds, with 4.3-fold median increase (the 100-year drought becomes

a 23-year drought), but up to a 27-fold increase for the most affected watersheds.

4) Predicted changes for both meteorological and hydrological droughts get consistently worse

for the longer considered return periods. In other words, frequency changes for the 100-

year droughts are more significant than those expected for the 2- and 20-year droughts.

This gradual worsening toward larger extremes has been noted in other studies, and is an

economically important consequence of a changing climate.
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3.9 Supplementary materials

Figure 3.11 Mean summer temperature (top) and its standard deviation (bottom) in the

reference period (1980-2009) in observation (left), CESM1 (middle) and CanESM2

(right) large ensembles
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Figure 3.12 Correlation between the observation and CanESM2 (blue dots) for total

summer temperature (left) and standard deviation (right)
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Figure 3.13 Difference in summer temperature standard deviation between CESM1

(left) or CanESM2 (right) and observation. Blue represents underestimation while red

means overestimation of the standard deviation

Table 3.1 The largest change amplitude in the frequency of the extreme

meteorological and hydrological droughts in two climate model large ensembles

Type Period
Meteorological

droughts
Hydrological

droughts
CanESM2 CESM1 CanESM2 CESM1

Max
Dry

range
Max

Dry

range
Max

Dry

range
Max

Dry

range

20-

year

Near

future
2.8 1.0-

2.1

3.0 1.0-

2.0

16.5 1.3-

4.0

15.1 1.1-

4.4

Far

future
6.4 1.0-

3.0

8.3 1.0-

3.9

19.9 1.2-

9.2

19.7 1.3-

10.2

100-

year

Near

future
4.3 1.0-

3.1

4.7 1.0-

3.0

46.3 1.3-

6.7

67.5 1.1-

8.1

Far

future
9.6 1.0-

4.0

20.5 1.0-

7.2

90.7 1.2-

21.8

97.3 1.5-

26.7

Note:‘2.8’ in the table means that the 20-year droughts in the near future would be 2.8

times frequent than the reference period in CanESM2. The Dry range is calculated based

on the watersheds with the increasing drought frequency trend only, 5th to 95th quantile.
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Figure 3.14 Change in the mean summer1-month SPI drought frequency in the near

(left column) and far (right column) future relative to the reference period for CESM1.

The upper panel is for the 2-year return period change relative to the reference period.

The middle and bottom panel present changes in frequency for both the 20 and

100-year return periods. Red means an increase in drought frequency

while cooler colors indicate a decrease
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Figure 3.15 Same as Figure 3.14, but for mean summer 1-month SPI for CanESM2
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Figure 3.16 Same as Figure 3.14, but for mean summer 1-month SDI

drought frequency for CESM1
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Figure 3.17 Same as Figure 3.14, but for mean summer 1-month SDI

drought frequency for CanESM2



88

Figure 3.18 The changing amplitude in meteorological droughts in near- and far-future

periods in two climate models. The largest change amplitude could reach 20.5 times in

CESM1 in the far-future period, but the x-axis was limited to 15 for easier comparison

Figure 3.19 Change amplitude in hydrological droughts in near- and far- future periods

in two climate models. The largest change amplitude could reach 90.7 times in CanESM2

and 97.3 times in CESM1 respectively in the far-future period, the x-axis was

limited to 50 for easier comparison
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4.1 Abstract

The ocean is the main driver of internal climate variability. Therefore, a lot of work has been

done to link regional hydroclimatic variability to large-scale oscillations representing the state

of the combined ocean and atmosphere. However, the relatively short length of the historical

record limits our ability to study the impact of these oscillations on the regional climate, and

in particular, with respect to the interactions between the various ocean states represented by

those oscillations. This work uses outputs from the Canadian Earth System Model large en-

semble (CanESM2-LE) to study the impact of three large-scale oscillations on temperature and

precipitation anomalies over 5797 North American catchments. The 50-member ensemble pro-

vides data series covering 2500 years to study the interactions between the El Niño Southern

Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation

(AMO) over the 1961-2010 period.

The main characteristics of all three oscillations were well reproduced by CanESM2-LE. The

impact of each oscillation was considered independently (with the others in their neutral phases),

as well as combined with the other two (e.g., all three in non-neutral phases). The results out-

line a dominant role of ENSO in annual precipitation and of AMO in annual temperature over

most of North America. The impact of ENSO on temperature was only significant along the

West coast.
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PDO does not have a significant impact on precipitation and temperature. The dominant roles

of ENSO on precipitation and AMO on temperature are enhanced by interactions between

these indices. These impact of interactions are consistent with their independent ones. At the

regional scale, Western US was the most sensitive to variations in large-scale patterns.

Even though this study is conducted in a modeled world, the interactions are consistent with

our understanding derived from observations. The results therefore extend our understanding

of the relationship between large-scale oscillations and climate variability over North America

and highlight the importance of considering the interactions between oscillations in order to

better understand internal hydroclimatic variability.

Keywords: climate variability; teleconnection; individual effect; coupled effect; North Amer-

ica

4.2 Introduction

The Earth’s mean average temperature increased by 0.85◦C over the 1880 to 2012 period

(IPCC, 2013b). This rate of warming, unprecedented in the geological record, has an im-

pact on all components of the climate system (Tingley, M. P. & Huybers, P., 2013). To address

the many potential effects of global warming, accurate climate projections at higher resolution

are needed. However, climate change is due not only to human activities, but also to internal

climate variability (Ahn, K.-H., Merwade, V., Ojha, C. & Palmer, R. N., 2016; Hulme et al.,

1999; IPCC, 2001). Therefore, a better understanding of the concept is crucial because the

variability limits the predictability of future climate by adding additional uncertainty to that

related to climate sensitivity. In addition, internal variability is unlikely to be reduced by im-

provements to climate models and emission scenarios (Deser et al., 2012a). Patterns of internal

variability are complex, and vary by location and spatial and temporal scales. Future impacts of

anthropogenic forcing can be more easily evaluated in regions with lower internal variability.

Regional hydroclimatic variability is typically related to large-scale oscillations in atmospheric

and oceanic patterns (Cayan, D. R., Dettinger, M. D., Pierce, D., Das, T., Knowles, N., Ralph,
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F. M. & Sumargo, E., 2016). Long-term (multi-year, decadal or longer) climate anomalies

can have considerable impacts on ecosystems and societies (Mantua, N. J. & Hare, S. R.,

2002). A better understanding of the impact of large-scale oscillations on climate variability

therefore represents an important research area. Climate indices are commonly used to char-

acterize atmospheric and oceanic circulation patterns. Indices can be calculated as station or

region average (e.g., Southern Oscillation Index) or by extracting leading patterns using the

empirical orthogonal function, such as in the case of the Pacific Decadal Oscillation Index

(PDO). Climatic indices are based on a single variable (e.g., sea surface temperature (SST)

or sea level pressure (SLP)) or on a combination thereof (e.g., temperature and precipitation)

(NCAR, 2019).

Some of these indices have been shown to influence hydroclimatic variability over North Amer-

ica. The main indices that are explored in the scientific literature are the El Niño-Southern

Oscillation (ENSO), the Pacific/North American pattern (PNA), the North Atlantic Oscilla-

tion (NAO), the Pacific Decadal Oscillation (PDO) and the Atlantic Multi-decadal Oscillation

(AMO) (Barlow et al., 2001; Cayan et al., 1999; Déry & Wood, 2004; Enfield et al., 2001;

Rogers & Coleman, 2003; Stewart et al., 2005). Most of the literature focuses on these indices

mostly by looking at their independent contribution to hydroclimatic variability at the water-

shed or state level (Cayan et al., 1999; Gan, Z., Guan, X., Kong, X., Guo, R., Huang, H., Huang,

W. & Xu, Y., 2019; McCabe et al., 2004; Schmidt et al., 2001). Kurtzman & Scanlon (2007),

Schmidt et al. (2001), and Trenberth & Guillemot (1996) found that El Niño has a strong impact

in this context, and leads to reduced precipitation in the Midwest and increased precipitation

and streamflow in the Gulf of Mexico regions. PDO is the dominant pattern of decadal variabil-

ity in the Northern Pacific (Mantua et al., 1997). Initially, it was believed that PDO was driven

by ENSO (Knutson, T. R. & Manabe, S., 1998; Newman, M., Compo, G. P. & Alexander,

M. A., 2003), but other researchers suggested that they were mainly independent processes

that can potentially interact with one another (Vimont, D. J., 2005). Trenberth & Guillemot

(1996) found the impact of PDO on winter precipitation to be significant only in the Southern

Central United States (U.S.). AMO is known to have an influence on precipitation in North
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America (Enfield et al., 2001; McCabe et al., 2004). Precipitation and AMO have a negative

correlation over the U.S., especially in the Southeast (Enfield et al., 2001; Maleski & Martinez,

2018).

The coupled effect of dominant indices on hydroclimatic variability has been the focus of a

much smaller number of studies (e.g., Coats, S., Smerdon, J. E., Cook, B., Seager, R., Cook,

E. R. & Anchukaitis, K., 2016; Enfield et al., 2001; Maleski & Martinez, 2018). These studies

aim to better understand the potential constructive/destructive impact of the interactions be-

tween oscillations on the regional and local hydroclimatic variabilities. It has been found that

while precipitation in North America is affected by both ENSO and AMO, a negative AMO

could, however, help increase the correlation between ENSO and precipitation in the southeast

(Enfield et al., 2001). The North Pacific Index can interact with ENSO, resulting in a greater

degree of surface temperature anomalies over North America, when they are out of phase (Yu et

al., 2007). In addition, ENSO phases tend to be stronger and more stable during a positive PDO

(Yu et al., 2007). The combination of these two modes of variability has implications for future

climate projections over North America (Gershunov & Barnett, 1998; Mantua et al., 1997). For

example, El Niño coupled with a positive PDO or AMO would lead to below-normal precipi-

tation, whereas the impact of La Niña on temperature and precipitation (increased temperature

and decreased precipitation) is increased during a positive AMO and PDO in the Southeast

U.S. (Maleski & Martinez, 2018). Kurtzman & Scanlon (2007) used a statistical analysis of

ENSO and PDO impacts on winter precipitation throughout the entire Southern U.S. at the

climate-division resolution. The link between ENSO, NAO, AMO, and PDO on precipitation

and temperature was evaluated by Stevens (2008), using a canonical correlation analysis. Non-

parametric ranks-sum tests were used to better understand the individual and coupled impacts

of ENSO, AMO and PDO on temperature and precipitation by Maleski & Martinez (2018) and

on streamflows by Johnson et al. (2013).

The above studies consider the individual and coupled impacts of large-scale oscillations based

on observations over the historical period. The length of the observation record leads to sig-

nificant limitations in the exploration of the interactions between the various teleconnections,
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especially when considering the decadal-to-multidecadal scale of some of these indices. The-

ses limitations may also be overcome by using a large ensemble obtained from a single climate

model. In this context, the climate model must however be able to generate sea surface tem-

perature anomalies similar to those seen in the real world. Many of the main oscillations are

reproduced by climate models, although the frequency and magnitude may differ (Flato et al.,

2013). More recent climate models (from the CMIP5 ensemble) have seen an improvement in

the representation of ENSO, for example Bellenger, H., Guilyardi, É., Leloup, J., Lengaigne,

M. & Vialard, J. (2014). Improvements have also been seen in the representation of the linkage

between ENSO and observed precipitation anomalies over North America in CMIP5 (Langen-

brunner, B. & Neelin, J. D., 2013). The constructive interference between ENSO and PDO is

generally well reproduced in the CMIP5 ensemble (Fuentes-Franco, R., Giorgi, F., Coppola,

E. & Kucharski, F., 2016). In addition, the second generation of the Canadian Earth System

Model (CanESM2) skillfully represents AMO patterns at the multidecadal scale (Chylek, P.,

Li, J., Dubey, M., Wang, M. & Lesins, G., 2011).

A detailed and large-scale analysis of the coupled effect of the main large-scale oscillations on

climate variability over North America is, however, still lacking. The aim of this study is there-

fore to improve the understanding of the coupled impacts of large-scale patterns on the North

American climate, and how they affect temperature and precipitation. A better understanding

of the interactions between ENSO, AMO and PDO may enhance the accuracy of empirical

North American climate forecasts (Gershunov & Barnett, 1998; Maleski & Martinez, 2018;

McCabe et al., 2004). This study will also allow a comparison with other studies and lead to a

more robust conclusion regarding the relationship between large-scale patterns and the North

American climate.

4.3 Data

A total of 5797 watersheds are selected over North America for this work. In this corpus,

532 of the catchments are located in Canada, with the rest (5265) being in the contiguous

U.S. The Canadian watershed boundaries are taken from the Canadian model parameter ex-
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periment CANOPEX database (Arsenault et al., 2016) (https://sites.google.com/a/etsmtl.net/

canopex/). The Canadian basins are spatially well distributed, with the exception of those

in the Prairies. The boundaries of the U.S. catchments considered are extracted from the

USGS database. The network of streamflow gauges is less dense over Canada and the av-

erage catchment area is larger. The median size of these watersheds is 1815km2, and ninety

percent of all of the watersheds range in size from 536 to 35,000km2 (min.area = 302km2,

max.area = 1.0741×106km2). The U.S. is divided into six regions, as presented in the United

States Drought Monitor (https://droughtmonitor.unl.edu/), and from west to east, are: West

US, High Plains, South, Midwest, Southeast, Northeast. Canada for its part is divided into 3

regions (no watershed data in the north in CANOPEX). Figure 4.1 presents a map showing the

centroid of all North American watersheds and nine separate regions.

Figure 4.1 Distributions of the 5797 watersheds used in this study. The watersheds were

divided into 6 regions in the U.S. and 3 regions in Canada

Precipitation, maximum and minimum temperature data, as well as sea surface temperature

(SST), covering the 1961-2010 period were extracted from the Canadian Earth System Model

large ensemble (CanESM2-LE). This work was conducted entirely in the context of a climate
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model, with the watershed boundaries representing the only real-world data. CanESM2-LE

was run at a spatial resolution of 2.8◦ × 2.8◦. Five original members derived from small at-

mospheric perturbations were computed over the 1850-1950 period to obtain 5 different ocean

states. From 1950 to 2100, 10 random atmospheric perturbations were applied to each of the

oceanic states, for a total of 50 members over the period. Historical forcing was used until

2005, and thereafter, was replaced by the Representative Concentration Pathway (RCP) 8.5

(Arora et al., 2011; Sigmond & Fyfe, 2016; von Salzen et al., 2013). The data for the model

simulation covered the 1950-2100 period. Large ensembles generally allow the study of inter-

nal variability, and provide a better understanding of how the climate varies in the model world

irrespective of any anthropogenic forcing present (Deser et al., 2012a). For the 1961-2010

50-year selected period, the use of the CanESM2-LE resulted in 2500 years (50×50) to study

the interactions between the different large-scale patterns. Monthly watershed precipitation

and temperature were averaged from a minimum of four CanESM2 grid points closest to each

watershed’s centroid.

In the present study, the coupled impacts of large-scale oscillations are only analyzed in the cli-

mate world, and therefore, validation against observations is required. The characteristics of the

CanESM2-LE simulated ENSO were compared with those of the computed NINO 3.4 index

from the National Oceanic and Atmospheric Administration (NOAA) based on HadISST1 data

(Rayner, N., Parker, D. E., Horton, E., Folland, C., Alexander, L., Rowell, D., Kent, E. & Ka-

plan, A., 2003). NOAA’s Extended Reconstructed Sea Surface Temperature V4 database was

used to validate the model performance in terms of simulating PDO and of the variability of

SST in the North Atlantic (Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W.,

Peterson, T. C., Smith, T. M., Thorne, P. W., Woodruff, S. D. & Zhang, H.-M., 2015a; Huang,

B., Thorne, P. W., Smith, T. M., Liu, W., Lawrimore, J., Banzon, V. F., Zhang, H.-M., Peterson,

T. C. & Menne, M., 2016; Liu, W., Huang, B., Thorne, P. W., Banzon, V. F., Zhang, H.-M.,

Freeman, E., Lawrimore, J., Peterson, T. C., Smith, T. M. & Woodruff, S. D., 2015). This

dataset covers the period from 1854 to the present at the monthly time scale, with a spatial

resolution of 2◦ ×2◦.
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4.4 Methodology

The NINO 3.4, AMO and PDO indices were calculated by using CanESM2 monthly SST data.

The computation procedure of each index is described below.

The NINO 3.4 index is most commonly used to define El Niño and La Niña events. SST data

were extracted over the NINO 3.4 region [5◦N-5◦S, 120◦-170◦W]. The mean climatology over

the reference period (1981-2010) was first subtracted from monthly mean SST at the grid point

scale. The SST anomaly was then area-averaged and a 5-month moving window was applied

to smooth the NINO 3.4 index (Trenberth, K. E., 1997; Trenberth, K. E. & Stepaniak, D. P.,

2001)

The AMO index was calculated similarly to NINO 3.4, with the difference that the global mean

SST anomaly was subtracted from SST time series over the North Atlantic region [0-70◦N, 0-

80◦W] in order to remove the global warming trend and leave internal variability untouched

(Trenberth, K. E. & Shea, D. J., 2006). SST anomalies were then calculated relative to the

monthly mean over the reference period and area-averaged over the North Atlantic region.

Finally, the SST anomaly was smoothed with a 10-year (121-month) moving window (Enfield

et al., 2001).

The PDO is often regarded as a long-lived El Niño-like pattern in the North Pacific (Deser, C.,

Phillips, A. S. & Hurrell, J. W., 2004; Linsley, B., Wellington, G., Schrag, D., Ren, L., Salinger,

M. & Tudhope, A., 2004; Mantua et al., 1997; Newman et al., 2003). It is represented by the

leading pattern from an un-rotated Empirical Orthogonal Function (EOF) analysis of Novem-

ber through March monthly residual North Pacific SST anomalies (Hare, S. R., 1996; Mantua

et al., 1997; Zhang, Y., 1996). EOF is a statistical technique used to reduce the dimensionality

of a dataset to reveal key temporal and spatial variability features (Weare, B. C. & Nasstrom,

J. S., 1982). The empirical functions are often amenable to physical interpretation giving sub-

stantial insights into complex processes (Weare, B. C., 1979). The global mean SST anomaly

was subtracted from the raw SST series for each North Pacific grid point [20◦-70◦N, 100◦E-

100◦W] relative to the reference period. Then the seasonal cycle for each grid point was re-
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moved to obtain the regional SST anomaly. Finally, the EOF analysis was applied to find the

first principal component (PC) of the SST anomaly over the North Pacific. The PDO index

is the score of the first component smoothed with a 10-year moving window. The locations

of Tropical Pacific (TPSST), North Pacific (NPSST) and North Atlantic (NASST) SSTs are

shown in the Figure 4.2.

Figure 4.2 Locations of TPSST (red box), NPSST (blue box),

and NASST (black box) regions

The ability of CanESM2 to reproduce the frequency and magnitude of SST anomalies must be

assessed for results to be significant in the real world. In this validation step, the first member

of the climate model large ensemble was used. A wavelet analysis was performed to compare

ENSO characteristics. Wavelet analysis is commonly used to analyze the temporal variation of

the power frequency spectrum over a given time period. It is a powerful tool for assessing the

periodicity of a signal (Torrence & Compo, 1998). The wavelet validation focused on ENSO,

considering that it is the only index whose frequency is significantly shorter than the chosen 50-
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year study period. The validation of PDO and AMO follows a simpler graphical comparison

since the 50-year segments from each member are not long enough to properly capture the

periodicity of both indices.

To look at interactions between the indices, anomalies were separated into three groups using

quantiles. Each index (positive, neutral or negative) was therefore considered based on this

classification. The positive state was defined with an index value larger than the 75th quantile.

The negative state was defined with values below the 25th quantile, while the neutral state used

the 2nd tercile between the 33rd and 66th quantiles. Each index was therefore considered neutral

33 percent of the time. Based on this classification, 27 combinations in all of all three possible

states for each index were obtained.

The individual and coupled effects were analyzed at the annual time scale. The individual im-

pact consisted of years in which one index was either positive or negative, while the other two

were in a neutral phase. The coupled effect looked at the 8 possible combinations of positive

and negative states in order to study the constructive and destructive interactions between all

3 patterns (e.g., +++, +–, etc.). For any given combination of index states, results were pre-

sented as precipitation and temperature anomalies. The watershed baseline climate upon which

anomalies were computed consists of the reference period years during which all three indices

are in a neutral state.

4.5 Results

4.5.1 Climate model validation

Figure 4.3 presents the ENSO wavelet spectrum for both CanESM2 (member 1) and real-world

observed data. The 50-year 1961-2010 period is used in both cases. Both wavelet spectrums

are very similar indicating that CanESM2 simulates an ENSO-like oscillation similar to the

observed one. Both spectrums are characterized by a prominent 2- to 7-year power band.
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b) Global Wavelet Spectrum d) Simulated ENSO (monthly)
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e) Global Wavelet Spectrum

Figure 4.3 Comparison between observed and simulated monthly NINO 3.4 index. c)

and f) are the wavelet power spectrums of observed and simulated ENSO

Figure 4.4 presents the PDO pattern corresponding to the first principal component for both

observation and CanESM2. The spatial patterns are very similar, with only some minor dif-

ferences in the western North Pacific. The percentage of explained variance is nearly identi-

cal. The sea surface temperature contrast between cold and warm regions is however slightly

stronger in CanESM2.

Because of the long-term periodicity of SST in the North Atlantic Ocean, the validation of the

characteristics of AMO is difficult with only 50 continuous years. A comparison of interannual

variability was chosen to provide some degree of validation of the climate model’s ability in the

North Atlantic. Figure 4.5 presents the standard deviations of SST in the North Atlantic over

the 1961-2010 period for observations and CanESM2. The spatial pattern of SST variability

in the North Atlantic, with the increasing variance from the equator toward higher latitudes, is

generally well represented by CanESM2. There are, however, some regional differences. The

high-variability region along the eastern coast of North America exists in both datasets, but

differs in magnitude and location.
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Figure 4.4 EOF map (left) and its corresponding principal component (right) of the first

mode of North Pacific SST in observation (upper row) and CanESM2 (lower row). The

percentage is the explained variance of the first leading pattern

Figure 4.5 Standard deviation of sea surface temperature in North Atlantic

during the 1961-2010 analysis period
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4.5.2 Individual impact of large-scale oscillations

The individual impact of each oscillation is first examined. As earlier discussed, the individual

impact is defined based on each index being in a positive or negative phase with the other two

in a neutral state. The number of years selected (out of 2500 years) for each index is presented

in Table 4.1.

Table 4.1 Number of years used for the individual

effect of ENSO, AMO and PDO

ENSO or AMO or PDO Number of years
PDO+ 95

PDO- 69

AMO+ 77

AMO- 94

ENSO+ 33

ENSO- 61

Figure 4.6 presents the CanESM2 precipitation anomalies associated with each oscillation,

with the other two being in a neutral phase. The figure shows a strong impact of ENSO on

annual precipitation over North America, and particularly over the U.S. Annual precipitation is

below average during La Niña events and above normal during El Niño years over a large part

of North America. The influence of ENSO is most prominent over the Southern West US and

Western High Plains. The impact over British Columbia and Washington State is reversed, but

weaker. Most of Eastern Canada is only very weekly affected by ENSO. The impact of AMO is

comparatively weaker. It controls part of the precipitation variability in West and East Canada.

Over the U.S., the spatial pattern is roughly similar to that of ENSO, but reversed, with the

potential for destructive interference. PDO has the weakest impact of all on precipitation. A

positive PDO matches the ENSO pattern quite well, showing the potential for a constructive

effect with ENSO in some regions.
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Figure 4.6 Individual effects of ENSO, AMO, and PDO in different phase on the change

of annual precipitation in CanESM2. Blue means an increase in annual precipitation,

while red means a decrease in annual precipitation at the scale of each studied watershed

Figure 4.7 presents the individual impact of each index on annual temperature anomalies. It

shows a very strong influence of AMO at modulating temperatures over all of North Amer-

ica. A positive AMO correlates with higher temperature across the continent. The opposite

is observed for the negative phase, albeit with a slightly weaker magnitude. The impact of

both phases is stronger on the eastern half of North America and weaker on the West Coast.

The impact of ENSO on temperature anomalies is only felt on the Northwestern part of North

America, and especially during an El Niño phase. PDO exerts minimal influence on tempera-

ture anomalies, and only along the Northwestern coast.
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Figure 4.7 Same as Figure 4.6, but for annual temperature. Blue means a decrease,

while red indicates an increase at the scale of each studied watershed

4.5.3 Coupled impact of large-scale oscillations

The number of years for the combinations of non-neutral states for the three patterns is shown

in Table 4.2. The coupled impacts of ENSO, AMO and PDO on annual precipitation anoma-

lies are shown in Figure 4.8. The eight graphs represent the eight possible combinations of

the three indices in their non-neutral phases. Figure 4.8 clearly shows that ENSO remains

the main source of precipitation variability over most of North America. As was the case for

the individual impact, El Niño is largely associated with a precipitation increase whereas the

La Niña phase comes with decreased precipitation. However, the interactions with PDO and

AMO create more complex regional patterns especially in Northwestern North America. The
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magnitude of the precipitation anomalies increases, as compared to Figure 4.6, thus showing a

clear constructive interference consistent with the individual impacts. For example, La Niña is

clearly enhanced by a positive AMO, whereas the impact of El Niño in the U.S. is emphasized

by a negative AMO. The influence of oscillations in Northwestern N.A. is the greatest when an

out-of-phase AMO encounters the in-phase ENSO and PDO (Figure 4.8.3 and Figure 4.8.6).

The constructive impact of an out-of-phase ENSO and AMO plays an important role in con-

trolling precipitation in this area, while precipitation in Central Canada primarily follows the

change patterns of AMO.

Table 4.2 Number of years used for the coupled effect

of ENSO, AMO and PDO

Coupled effect Number of years
ENSO+ & AMO+ & PDO+ 54

ENSO- & AMO+ & PDO+ 10

ENSO+ & AMO- & PDO+ 20

ENSO- & AMO- & PDO+ 31

ENSO+ & AMO+ & PDO- 53

ENSO- & AMO+ & PDO- 23

ENSO+ & AMO- & PDO- 8

ENSO- & AMO- & PDO- 62

In order to better summarize the variability at the regional scale, Figure 4.9 presents boxplots

of the annual precipitation anomalies for the eight combinations of the three indices. All wa-

tersheds within a region are represented by a boxplot, showing the median and interquartile

range, largest and smallest values. Figure 4.9 shows that the interactions at the regional scale

are especially significant over the U.S. domain. The western U.S. is the most sensitive region

to interactions, followed by the High Plains region.
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Figure 4.8 Coupled effect of the PDO, AMO and ENSO

on annual precipitation in CanESM2
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Figure 4.9 Regional variance of annual precipitation under the

coupled effect of large-scale oscillations

Figure 4.10 presents the coupled effect of ENSO, AMO and PDO on annual temperature

anomalies. The spatial patterns are much more homogenous than for precipitation. The role of

AMO is still prominent over contiguous North America, but the magnitude of the temperature

anomalies is amplified or damped as a result of the interactions with ENSO and PDO. These

interactions can be largely inferred from individual impacts. For example, positive temperature

anomalies are maximal over Northwestern North America when all three indices are in their

positive phase. Negative anomalies are strongest in the Central U.S., where the impact of a

negative AMO is amplified by El Niño. The impact of PDO is mostly seen in the Western re-

gions (West Canada, West US). This is made clearer in Figure 4.11, which shows the regional

variance of temperature anomalies.
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Figure 4.10 Coupled effect of ENSO, AMO and PDO on the annual temperature in

CanESM2. Blue means a decrease in annual temperature, while red indicates an increase

in annual temperature at the scale of each studied watershed
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Figure 4.11 Regional variance of annual temperature under the

coupled effect of large-scale oscillations

4.6 Discussion

This paper assessed the individual and coupled impacts of three large-scale oscillations on

temperature and precipitation anomalies over North America, using climate model data from

the CanESM2 large ensemble. Results showed a dominant impact of ENSO on mean annual

precipitation, and of AMO, on mean annual temperature.

Since this study was performed entirely with outputs from a single climate model, it is impor-

tant to compare our results with those of real-world studies. The significant dominant impact

of ENSO on annual precipitation and AMO on annual temperature have been shown by other

studies using observations (Goly, A. & Teegavarapu, R. S., 2014; Maleski & Martinez, 2018;
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McCabe et al., 2004; Stevens, K. A. & Ruscher, P. H., 2014). The Northern Hemisphere mean

surface temperature warmed over the 20th century, and a departure from the monotonic in-

creasing trend was found to be associated with variability in the Atlantic (Zhang, R., Delworth,

T. L. & Held, I. M., 2007), which suggests that AMO plays an important role in temperature

variation. The minimal impact of PDO on precipitation is also in line with the findings of

Kurtzman & Scanlon (2007), Johnson et al. (2013) and Maleski & Martinez (2018).

The constructive interference of in-phase ENSO and PDO documented by Hu, Z.-Z. & Huang,

B. (2009) is well preserved by CanESM2 (Figure 4.8.6), while the destructive effect is not

as well simulated (Figures 4.8.3 and 4.8.7). These findings are in line with the conclusion of

Fuentes-Franco et al. (2016), drawn from 11 CMIP5 GCMs.

Maleski & Martinez (2018) studied the impact of the interactions of ENSO, AMO and PDO on

climate in the Southeastern US. They found that a positive AMO leads to decreased precipita-

tion, while its negative counterpart was associated with increased precipitation, in line with our

results. However, our results on the impact of ENSO on temperature are different from what

Maleski & Martinez (2018) found. In our study, the individual impact of ENSO on temperature

is not clear in this region although it amplifies the effect of AMO on temperature. Some of the

differences seen may be attributed to different definitions of ENSO (based on the October to

September water year) and AMO (leading pattern of detrended North Atlantic SST anomaly).

Furthermore, although the authors explored the impact of all three oscillations, the combined

effect was only based on the combination of two modes, versus three in the present work.

To further explore the validity of the results presented in this paper, we looked at the 2011-

2015 California droughts. The Southern West US has been proven to be particularly sensitive

to the studied oscillations. The fall 2011 to fall 2015 period was the driest on record since

monitoring started in 1895 in California (Ellen, H., Jeffrey, M. & Caitrin, C., 2015). During

that span, California mostly experienced negative ENSO, negative PDO and positive AMO

(ENSO- & AMO+ & PDO-). Based on our results (Figures 4.8.6 and 4.9.6), this combination

simultaneously leads to less precipitation and higher temperature, which are the two key ele-
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ments leading to droughts. Since 2014, there have been a few El Niño events, which relieved

drought conditions to a certain extent.

As is the case for all studies, this work comes with several limitations and uncertainties. The

mean climate was defined based on the 1981-2010 period and no post-processing was per-

formed on the climate model data over the 1961-2010 analysis period. No detrending was

performed, even though some variables, especially temperature, do have significant trends at

the catchment scale. Detrending is not a simple task, especially when it should be done at the

regional scale to overcome the local impact of internal variability. As well, it may introduce

significant uncertainty. Linear and polynomial trends have been suggested to represent the

human-induced climate warming trend (Meehl, G. A., Hu, A., Santer, B. D. & Xie, S.-P., 2016;

Messié, M. & Chavez, F., 2011; Messié & Chavez, 2011). A more intrinsic trend, decomposed

from the signal itself, rather than pre-determined, was also produced by using ensemble em-

pirical mode decomposition (EEMD, Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih,

H. H., Zheng, Q., Yen, N.-C., Tung, C. C. & Liu, H. H., 1998). There is no scientific consen-

sus on how this should be done, on how to take into account internal variability at the local

and regional scales, and on how much an uncertainty introduced by trend removal in climate

change impact studies. Even though CanESM2 data was available until 2100, we restricted

our analysis to the 1961-2010 period to avoid the detrending issue, while still keeping our data

sample large enough. Our results are also constrained by CanESM2 SST data. While a valida-

tion was performed on its ability, it was far from exhaustive. Although recent climate models

have shown significant improvement in SST modeling, there are still large errors in the mid-

and high-latitude regions (Flato et al., 2013). A cold bias of more than 1◦C in the zonal mean

near-surface ocean temperature was found in the high latitudes of the North Hemisphere. A

cold tongue error in the tropical Pacific was reduced by 30% in CMIP5 and the cold bias in the

Atlantic was found to be related to errors in the thermocline depth (Flato et al., 2013).

The time period considered in hydroclimatological studies is also important because it deter-

mines the potential number of warm and cold phases of oscillations within the analysis period

(Kurtzman & Scanlon, 2007). The time-period selection also constrains comparisons with
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other studies. The analysis period in this study is from 1961 to 2010, a 50-year period. This

is not long enough to capture a full cycle of multi-decadal scale oscillations such as AMO.

While this is not necessarily a problem with a climate model large ensemble, it is however an

important limitation in observations. In the limited observational records, El Niño often shares

common periods with non-neutral AMO and/or PDO, making it hard to distinguish the individ-

ual effect of each mode of variability (Maleski & Martinez, 2018). There are strong interactions

between the oscillations. If these three indices were truly individual, there should be roughly

70 years for combinations in Table 4.1 (individual effect, 0.33× 0.33× 0.25× 2500) and 39

years for those in Table 4.2 (coupled effect, 0.25×0.25×0.25×2500). However, the number

of common years (Tables 4.1 and 4.2) suggests that the three indices are somewhat correlated.

ENSO and PDO are often in phase, resulting in a larger number of common years. Analyses

based on short time series can lead to an overconfident estimation of the role of oscillations

(McCabe, G. J. & Dettinger, M. D., 1999). Furthermore, our work only focused on 14 out

of 27 possible combinations. The two-by-two combinations were not looked at in this work.

The thresholds used to define negative, neutral and positive phases are somewhat arbitrary, and

may influence the results. Moreover, only three oscillations were selected in this study, chosen

because of their documented impact on the North American climate.

Finally, this study focused solely on precipitation and temperature anomalies. Future work

should look at streamflow and droughts resulting from non-linear interactions between precip-

itation and temperature. ENSO has been shown to impact flooding, for example, although its

role is quite complex (Emerton, R., Cloke, H., Stephens, E., Zsoter, E., Woolnough, S. & Pap-

penberger, F., 2017). The large sample provided by CanESM2-LE may help clarify the impact

of SSTs on droughts and floods. Another interesting avenue would be to look at climate model

millennium simulations, which consist of continuous pre-industrial simulations, and thus allow

an examination of complete low-frequency oscillation cycles.
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4.7 Conclusions

This study explored the individual and coupled impacts of the El Niño-Southern Oscillation,

Pacific Decadal Oscillation, and Atlantic Multidecadal Oscillation on North American climate

variability at the watershed scale, using sea surface temperature data from the CanESM2 large

ensemble. The use of a climate model large ensemble allows the sampling of a very large

number of years in order to study the interactions between the three oscillations. The main

conclusions of this work are as follows:

1) The CanESM2 climate model performed well in representing the main characteristics of

the chosen climate oscillations. The 2- to 7-year periodicity of ENSO, the spatial pattern

of PDO and SST variability in the North Atlantic were well reproduced by the model. This

provides confidence in our ability to draw conclusions applicable to the real world.

2) The individual impact of each oscillation was assessed by selecting years during which the

other two oscillations were in their neutral phases. Results indicate that annual precipi-

tation anomalies are mainly controlled by ENSO, while AMO plays the dominant role in

temperature variability over most of North America. ENSO only affects the temperature

anomalies along the Canadian and US West coasts. PDO only had a minimal impact on

precipitation and temperature.

3) Regarding interactions, the dominant role of ENSO in driving precipitation anomalies re-

mains. El Niño is stronger when PDO is in-phase and AMO is out-of-phase, and vice versa.

The role of AMO in driving temperature anomalies remains fundamental even when con-

sidering interactions. A positive AMO is reinforced by El Niño on the West Coast and a

negative PDO, in the East. The impact of a negative AMO is enhanced by a negative PDO

mainly over the Central and Southern U.S., and damped by El Niño along the Canadian

and US West coasts.
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4) Results demonstrate the constructive and destructive impacts of interactions between oscil-

lations and outline the complexity of the processes controlling internal climate variability

at the regional scale.

We believe that this work demonstrates the potential of using climate model simulations to

investigate the role of sea surface temperature in driving the regional climate under the absence

of anthropogenic forcing.
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GENERAL DISCUSSION

In this chapter, the main results of this thesis are synthesized in light of the main objective of

this work which was to explore the impacts of climate change on meteorological and hydrolog-

ical droughts, globally, but with an emphasis over North America. Following the discussion,

some limitations of this work and some recommendations for further researches are outlined.

5.1 Frequency change of future extreme droughts

The frequency change of meteorological droughts at the global scale, and hydrological droughts

over 5797 North American watersheds was projected for 2, 20, and 100-year return periods.

This work was performed using two climate model large ensembles.

Annual and seasonal extreme meteorological droughts were first assessed at the global scale

for both short-term (1-month) and long-term (24-month) durations. The results showed a wors-

ening pattern of extreme meteorological droughts largely associated to the projected change in

mean annual precipitation. This is particularly striking in tropical and subtropical areas. Future

summer (JJA) extreme meteorological droughts are projected to get worse compared to their

winter (DJF) counterpart. The spatial distribution of affected areas is consistent with other

studies (e.g., Dai, 2011; IPCC, 2013b; Sheffield & Wood, 2008), with the exception of Western

Africa. Some of those studies projected even larger increases, with differences likely related

to drought type and chosen drought indices. Climate change affects the temporal variability of

precipitation, which may lead to increases in extreme meteorological drought frequency, even

in regions with increasing mean annual precipitation. This is especially the case for droughts

with larger return periods. The results obtained from the two large ensembles are fairly con-

sistent with differences typically originating in regions where the internal variability of pre-

cipitation is large. These regions were also identified by the IPCC as having low inter-model

agreement.
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Over North America, the frequency change of future hydrological droughts is consistently more

severe compared to meteorological droughts. This is because hydrological droughts combine

the effect of precipitation deficit and increased temperature which pushes evapotranspiration

toward larger rates. The intensified evapotranspiration creates additional stress in regions with

decreased mean annual precipitation, and even offsets the projected increase of mean annual

precipitation over some watersheds. It therefore suggests that increased evapotranspiration is

the key driver in the evolution of future hydrological droughts over North America. Spatial

trends are similar for both studied periods, with the more distant future experiencing more

severe changes of extreme droughts.

5.2 Limitations of droughts assessment in this work

There are however many uncertainties related to our work, which partly limit our conclusions

on the frequency evolution of future meteorological and hydrological droughts. As is the case

for most scientific studies, methodological choices may affect the results of this work. The

main limitations of this study can be separated as follows: drought definitions, evaluation

envelope and representation of physical processes. These limitations are discussed separately

in the following paragraphs.

Different drought definitions may result in slightly different conclusions about the impact of

climate change on droughts. In our study, meteorological droughts were assessed using the

SPI, which is solely driven by precipitation. Some drought indices (e.g., PDSI and SPEI), also

categorized as meteorological drought indices (Svoboda et al., 2016), consider water supply

and demand simultaneously, thus showing more severe drought conditions under a warming

climate (Burke & Brown, 2008; Sheffield & Wood, 2008). Since surface moisture/water bal-

ance is related to agricultural droughts, some researches have explored the characteristics of

agricultural droughts based on those same indices (Dai, 2011; Keyantash, J. & Dracup, J. A.,

2002; Touma et al., 2015). Different drought indices projected for the near future showed small
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but consistent drying trends in the future. However, for the more distant future, larger differ-

ences were found to emerge (Feng, S., Trnka, M., Hayes, M. & Zhang, Y., 2017) depending on

drought definition.

A different selection of duration, frequency and intensity of droughts can also lead to slightly

different projections of change and limit the inter-comparison between researches. Drought

indices can be calculated at 1-, 3-, 6-, 12-month or even longer time intervals. As we know

that changes in future climate variability are dependent on both spatial and temporal scales,

this also renders the intercomparison between different studies more difficult. In our work,

short-term meteorological and hydrological droughts were defined with a 1-month duration.

This was a compromise between the full spectrum of droughts which can be as short as 7 days

for hydrological droughts in a temperate climate all the way to the seasonal or annual scales

in drier or strongly seasonal climates. In other studies, short-term droughts are often defined

at the seasonal scale. In addition, hydrological and meteorological droughts typically have

a different response time. It has been shown that streamflows respond rapidly to short-term

meteorological droughts whereas reservoir storage deficit is associated with meteorological

droughts of a much longer duration (Vicente-Serrano, S. M. & López-Moreno, J. I., 2005).

Three levels of droughts frequency (2, 20 and 100-year return periods) were assessed in this

work. Even though this work covers a wide range of return periods, it is possible that looking

at more return periods could yield somewhat different results. Our results indicate a worsening

of droughts for shorter durations and longer return periods, which is in line with some other

studies for precipitation, meteorological and hydrological droughts (Feyen, L. & Dankers, R.,

2009; Leng et al., 2015; Martel et al., 2020; Sheffield & Wood, 2008).

The experiment design in this Thesis offers a narrow window into future hydrological droughts

conditions. Only two climate models (CanESM2 and CESM1) were used to analyze the fre-

quency change of future droughts. The focus of this work was extreme droughts, and large-
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ensemble are especially well suited for this task. At the beginning of this work, these were the

only two climate models for which large-ensemble was available, and it is still the case today

although climate model runs with limited ensembles (3 to 10 members) are becoming more

and more available. It would therefore be important to compare the climate sensitivity of these

two climate models against other IPCC climate models. For the same reasons of availability,

the RCP8.5 was the only scenario analyzed. The RCP8.5 combines assumptions about high

population and relatively slow income growth with modest rates of technological change and

energy intensity improvements (Riahi et al., 2011). It is considered a pessimistic scenario, but

it has the advantage of emphasizing the climate change signal with respect to internal variabil-

ity which is an important asset when looking at precipitation which has a weak anthropogenic

forcing to internal variability ratio (e.g., Martel et al., 2018). A single bias correction method

was used for the hydrological drought climate scenarios and the impact of this source of uncer-

tainty was therefore not studied.

The representation of physical processes also brings limitations to droughts assessments. Dif-

ferent climate models have different model structures and parameter sets that lead to different

realizations of the future climate system. Hydrological droughts result from the complex com-

bination of dynamical processes, with only some of which represented in the impact models,

and sometimes in a very simplified way. In this study, only one hydrological model was adopted

to simulate streamflows over North American watersheds. Most simple hydrological models

like the one used in this work depend on the estimation of potential evapotranspiration. Due

to limitations in data availability, temperature-based formulas are often used, many of which

have a high sensitivity to changes in temperature. While physically-based formula may be bet-

ter suited for a study like this one, the input data to calibrate the evapotranspiration equation

over the reference period are generally unavailable.
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Finally, this work only took climate change impacts into consideration. The spatial extent

and/or frequency change of future droughts may be underestimated because future water use

was not considered. With increasing population and water demand, future droughts may be-

come more severe.

5.3 The impacts of natural climate variability

In the first part, we used large ensembles to create large samples to explore the future frequency

of extreme droughts. In Chapter 4, we explicitly looked at the impacts of natural climate

variability on precipitation and temperature by using three climatic indices (ENSO, AMO and

PDO). ENSO was used to represent the tropical Pacific Ocean, PDO for the North Pacific, and

AMO for the North Atlantic.

The contributions of natural climate variability to the North American climate was assessed in

term of large-scale oscillations at the interannual and multidecadal scales over the 1961-2010

period. Because of the large sample size provided by the CanESM2 large ensemble, specific

attention was given to the interactions between the oscillations, something that is not possible

to do in the real world. Our results confirmed the dominant role of ENSO in controlling the

variability of precipitation, and the important impact of AMO on annual temperature. These

were also observed by Goly & Teegavarapu (2014), Maleski & Martinez (2018) and McCabe

et al. (2004).

The constructive effect of ENSO and PDO is well simulated by the climate model while the de-

structive effect is less accurately represented, a finding in line with the work of Fuentes-Franco

et al. (2016). The influence of PDO is not significant compared with the other two patterns,

which is the main difference between this work and other studies which only considered the

single pattern or the combination of two patterns over the Pacific Ocean (Kurtzman & Scanlon,

2007; Maleski & Martinez, 2018).
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There are several other limitations affecting this work. In this study, the selected three oscilla-

tions are all coupled modes of variability. Climate variability should also be affected by other

atmospheric or oceanic circulations. The selected indices only range from annual to the mul-

tidecadal time scale, but there are many other oscillations having local or global impacts on

climate over different time scales (a couple of weeks to a few months, to decades). This study

used climate model outputs without any post-processing. This implies the possible presence

of trends in the data, and especially so for temperature. The 1960-2010 period is the only one

analyzed to limit the impact of trends. The anthropogenic climate change is often removed

through detrending in recent researches (Cai, W., Borlace, S., Lengaigne, M., Van Rensch,

P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L. et al.,

2014; Lim, Y.-K., Schubert, S. D., Kovach, R., Molod, A. M. & Pawson, S., 2018). However,

the detrending process itself has large uncertainties. In current scientific communities, linear

and polynomial trends are suggested to represent the human-induced climate warming trend

(Meehl et al., 2016; van Oldenborgh, G. J., Doblas-Reyes, F. J., Wouters, B. & Hazeleger, W.,

2012). A more intrinsic trend is also produced by using ensemble empirical mode decompo-

sition (EEMD) method (Huang et al., 1998). But there’s not enough evidence to show which

trend is the most realistic and how much uncertainty it introduces to climate studies and how

internal variability affects the trend removal process. There are also additional concerns with

respect to detrending ensembles. All members of the ensemble should be detrended identically

since subject to the same forcing. This implies pooling all members together prior to the de-

trending process, similarly to what has been suggested for bias correction (e.g., Chen et al.,

2019).

In addition, the results are also constrained by the quality of model-simulated SST data. There

are still large SST errors in mid- and high-latitude regions in climate model outputs. Although

the basic spatial structure is well captured by climate models, persistent biases with large lo-

cal impacts may remain in the mean state of the tropical Pacific Ocean (Ackerley, D., High-
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wood, E. J. & Frame, D. J., 2009; Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell,

J. & Shelly, A., 2012; Guilyardi, E., Wittenberg, A., Fedorov, A., Collins, M., Wang, C., Capo-

tondi, A., Van Oldenborgh, G. J. & Stockdale, T., 2009; Randall, D. A., Wood, R. A., Bony,

S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J. et al.,

2007). A cold tongue error still exists in the tropical Pacific in CMIP5, and there are still some

important SST errors in the Atlantic (Flato et al., 2013). The spatial pattern of observed tele-

connections in the Pacific are well represented in some GCMs when ENSO and PDO are in

phase, but the out-of-phase variance is less accurate (Fuentes-Franco et al., 2016).

Finally, the time period considered in hydroclimatological studies is of importance because it

determines the number of warm and cold phases within the analysis period (Kurtzman & Scan-

lon, 2007). The analysis period for this study is from 1961 to 2010, and only covers a 50-year

period. The length of the analysis period is too short to capture a full cycle of the multi-decadal

ocean-atmospheric oscillations. Even though the climate model large ensemble provides 50

members (leading to 50 × 50 = 2500 years), the number of common years under different

combinations of phases for each index is still limited to less than 50 years. Analysis based

on short time series could lead to an overconfident estimation of the role of oscillations (Mc-

Cabe & Dettinger, 1999).

5.4 Recommendations for future work

Many of the limitations discussed above can be addressed in future work. This would extend

and strengthen the results obtained through this thesis, and help further the body of knowledge

required for future droughts adaptation.
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5.4.1 Climate change impacts on droughts

The frequency changes of meteorological and hydrological droughts were projected separately

in this thesis with no consideration on the propagation from one type to the other. Drought

propagation in the current and future climate should be studied to further our understanding of

future impacts and current vulnerability. In addition to future frequency, future work should

concentrate on the onset and duration of droughts, since minor meteorological droughts can de-

velop into comparatively much more severe hydrological droughts (Van Lanen, H. A., 2006).

The droughts durations considered in this thesis started at the monthly time scale. In temper-

ate climate catchments, hydrological droughts duration is commonly smaller than 1-month,

and especially so on small catchments. However, simulating smaller catchments using climate

models brings additional challenges, including the ability to accurately simulate sub-daily pre-

cipitation.

The evolution of the combined role of precipitation deficit and increased potential evapotran-

spiration in the development and propagation of hydrological droughts is also an area that

should be further explored. Precipitation deficit is the main driver of all types of droughts, but

potential evapotranspiration will play an increasingly significant role in a warmer climate. Con-

sequently, in the future, changes in hydrological droughts frequency may be mostly driven by

temperature increases, although the change in mean precipitation and precipitation variability

are also likely to remain important.

A complete uncertainty envelop should be assessed for hydrological droughts in future re-

searches. As mentioned in the literature review section, hydrological drought uncertainty

comes from six main sources: GGES, GCM, natural climate variability, downscaling meth-

ods, impact models, and impact model parametric uncertainty. This uncertainty should be

assessed for each studied drought index. The need to evaluate GCM uncertainty requires the

use of multiple GCMs and this implies that extreme droughts would be limited to smaller re-
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turn periods than the one considered in this study, since large ensembles are not available for

multiple climate models. Additional climate model large ensembles should be added when

they become available. The upcoming CMIP6 ensemble will in principle provide 5-member

ensembles for most GCMs which would allow a much better delineation of uncertainty. Other

emission scenarios should also be added to the analysis. If a complete uncertainty study is ex-

pected or deemed necessary, other downscaling methods would also need to be added. The use

of additional hydrological models should be considered to learn about the uncertainties intro-

duced by the impact model, since model structure, underlying physics and dynamical process,

as well as spatial configuration which are all important (Clark et al., 2016). This is especially

important for droughts that are often not well simulated by hydrological models. This last point

underlines the important point that most hydrological models struggle at representing low flows

compared to floods for example. It is therefore likely that inter-model variability, and therefore

contribution to uncertainty is large.

5.4.2 Natural climate variability

The final aim of this thesis was to assess the influence of natural climate variability on the future

climate and variability of future droughts. Results showed that some regions will experience

increasing extreme droughts even though the mean annual precipitation is projected to increase.

Such changes are not in contradiction and originate from changes in internal variability. This

should be studied further.

Many long-duration droughts which occurred before the mid-20th century (e.g., the 1930s Dust

Bowl), are not well documented because weather stations were not widely available. A better

understanding of the past may yield significant clues as to the future of our planet. Recon-

structed paleoclimatic data can preserve the signal of internal variability and allow for the

exploration of how the climate system changes across various time scales. This data should

be of a long enough duration to capture the characteristics of internal variability, without the
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anthropogenic forcing. There is a large ensemble that could be used for that purpose. The

CESM1 Last Millennium Ensemble, covers a 1156-year period from 850 to 2006. The ensem-

ble has 36 members, reconstructed by using the transient evolution of solar intensity, volcanic

emissions, greenhouse gases, aerosols, land use conditions, and orbital parameters. The data

is available at the monthly, daily and 6-hourly time scales (Otto-Bliesner, B. L., Brady, E. C.,

Fasullo, J., Jahn, A., Landrum, L., Stevenson, S., Rosenbloom, N., Mai, A. & Strand, G.,

2016). This ensemble would be very well suited to the study of low-frequency patterns of nat-

ural climate variability. Such work would help us better understand the linkage between high

and low-frequency components of internal variability and how they impact regional and local

climates.



CONCLUSION

The impact of climate change on future extreme droughts was explored in this work. Two

GCMs with a large ensemble (CanESM2 and CESM1) were used to assess the impact of cli-

mate change on droughts. The future frequency change of meteorological droughts was as-

sessed by using the SPI while future change of hydrological droughts was assessed by using

the SDI. The impacts of large-scale oscillations on North American climate variability were

also studied to try to link conditions leading to droughts with indices of internal climate vari-

ability. The large sample size of GCM large ensembles allows for the direct calculation of

droughts with very large return periods. It also allows the study of climatic anomalies linked

to the rare combination of distinct phases of various climatic indices. The main conclusions of

this work are summarized as follows:

Both climate models project increases of extreme meteorological drought frequency over many

of the world’s regions, including Central America, Northern South America, Northern and

southern Africa, the Mediterranean region, and parts of Australia. The spatial pattern of areas

affected by an increasing frequency of extreme meteorological droughts generally matches the

change patterns of future annual mean precipitation. Short-term (1-month) droughts would

be at least 2 times more frequent for most low- to mid-latitude regions, while long-term (24-

month) droughts would be at least 3 times more frequent in future periods. Changes in future

extreme meteorological drought frequency are more significant for short-term summer (June-

July-August) droughts and get progressively worse for larger return periods.

Over North America, the evolution of future summer meteorological drought patterns generally

match the expected changes in mean summer precipitation. Trends for meteorological droughts

display a complex spatial pattern with some regions seeing increases (West and Central Canada,

Mid-west and Southeast coast) and others seeing decreases in drought frequency. Because
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of changes in variability, some regions (e.g., Southeast U.S.) will nonetheless see increasing

meteorological drought frequency despite increases in mean summer precipitation.

Changes of future extreme hydrological droughts are significantly more severe than their mete-

orological counterparts, showing a very uniform pattern across North America. This suggests

that increases in temperature overcome the expected increasing mean summer precipitation

observed in many regions. The few watersheds escaping this trend are either located in colder

climates (North of West Canada, Rocky Mountains) or in regions with the largest projected

increase in precipitation, like Southern Texas. Predicted changes for both meteorological and

hydrological droughts get consistently worse for the longer considered return periods.

The CanESM2-LE is able to represent characteristics of the three studied climate oscillations

during the 1961-2010 analysis period. The 2 to 7-year periodicity of ENSO, the spatial pattern

of PDO and the variability of SST in the North Atlantic are all well reproduced by CanESM2.

This provides a confidence in the ability of using the model to better understand the individ-

ual and combined impacts of large-scale oscillations on climate variability. Results show that

annual precipitation anomalies are mostly influenced by ENSO whereas temperature anoma-

lies are mostly controlled by AMO over most of North America. El Niño only has a minor

impact on temperature anomalies along the eastern coast. A positive AMO is associated with

higher temperatures over most of North America and increased precipitation in northern wa-

tersheds. The effect of PDO on climate variability is comparatively weaker than ENSO and

AMO. The results indicate that North American climate variability is mainly affected by the

tropical Pacific Ocean and the Northern Atlantic Ocean. The regions most affected by large-

scale variability are mostly close to the Pacific Ocean, including the Western US, High Plains

and Western Canada. The patterns of constructive and destructive interference between the

three studied indices outline the need to take into account these interactions to better under-

stand internal climate variability and its impact on precipitation and temperature anomalies.



APPENDIX I

CALCULATION RECIPE FOR STANDARDIZED PRECIPITATION INDEX IN
MATLAB

1 function [Index]=SPI(data,scale,nm)

2 % Input data

3 % data : Monthly precipitation in 'mm' (column vector)

4 % scale : Accumulation period,e.g.,1,3,12,48, in months

5 % nm : Number of months (1-month SPI, nm=12; 3-month SPI, nm=4)

6 % Output data

7 % Index: SPI Index, starts from the second year of analysis period

8

9 data1=[];

10 for i=1:scale

11 data1=[data1,data(i:length(data)-scale+i)];

12 end %each row is the accumulation months

13

14 data2=sum(data1,2);

15 if(scale>1)

16 data2(1:nm*ceil(scale/12)-scale+1)=[];

17 end %exclude the first year

18

19 for i=1:nm

20 Data=data2(i:nm:length(data2));

21 [zeroa]=find(Data==0);

22 Data_nozero=Data;

23 Data_nozero(zero)=[];

24 q=length(zero)/length(Data);

25 p=gamfit(Data_nozero);

26 Gam=q+(1-q)*gamcdf(Data,p(1),p(2));

27 Index(Xn)=norminv(Gam);

28 end





APPENDIX II

CALCULATION RECIPE FOR LARGE-SCALE OSCILLATIONS INDICES IN
MATLAB

1 %% This function is used to extract the SST data and calculate the ...

NINO 3.4 index

2

3 function [NINO_index]=NINO_34_Calculation(lat,lon,sst,analysis_sta,...

4 analysis_fin,base_sta, base_fin,dates)

5 %Input data

6 % lat (lon): latitude (longitude), column vector

7 % dates: monthly calendar

8 % sst: sea surface temperature, 3-D matrix (lon*lat*months)

9 % analysis_sta: the start year of analysis period

10 % analysis_fin: the end year of analysis period

11 % base_sta: the start year of reference period

12 % base_fin: the end year of reference period

13

14 a1=find(dates(:,1)==analysis_sta&dates(:,2)==1);

15 b1=find(dates(:,1)==analysis_fin&dates(:,2)==12);

16 ny=analysis_fin-analysis_sta+1;

17 year=analysis_sta:analysis_fin;

18 dates1=dates(a1:b1,:);

19

20 %extract sst data in NINO 3.4 region [5N-5S 120-170W]

21 [X,Y]=meshgrid(lat,lon);

22 a=find(lat>-5&lat<5);

23 b=find(lon>190&lon<240);

24 Region_Nino_lat=X(b,a);

25 Region_Nino_lon=Y(b,a);

26 sst1=sst(b,a,a1:b1);%sea surface temperature in NINO 3.4 region ...

in selected analysis period

27
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28 a2=find(dates1(:,1)==base_sta&dates1(:,2)==1);

29 b2=find(dates1(:,1)==base_fin&dates1(:,2)==12);

30

31 for ii=1:length(b)

32 for jj=1:length(a)

33 sst_anomaly(ii,jj,:)=anomaly_making(squeeze(sst1(ii,jj,:)),...

34 year,base_sta,base_fin,ny,12,1);

35 end

36 end %SST anomaly in grid scale

37

38 %area-averaged SST anomaly in NINO 3.4 region

39 X=area_average(sst_anomaly,dates1,lon(b),lat(a));

40

41 %5-month running mean

42 NINO_index=zscore(moving_average_extend(X));

43 end
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1 % SST anomalies averaged over field [0-70N, 0-80W] with the global ...

mean SST was removed.

2 % This function was used to calculate the PDO index

3 function [Index, expv]= PDO_Calculation(lat, lon, sst, analysis_sta, ...

analysis_fin, base_sta, base_fin, dates)

4 % Input data

5 % lat (lon): latitude (longitude), column vector

6 % dates: monthly calendar

7 % sst: sea surface temperature, 3D matrix (lon*lat*months)

8 % analysis_sta: the start year of analysis period

9 % analysis_fin: the end year of analysis period

10 % base_sta: the start year of reference period

11 % base_fin: the end year of reference period

12 % Output data

13 % Index: monthly Pacific Decadal Index

14 % expv: the explained variance by the first EOF

15

16 % Extend the period to minimize the effect of 10-year moving average

17 analysis_sta=analysis_sta-10;

18 analysis_fin=analysis_fin+10;

19

20 year=analysis_sta:analysis_fin;

21 ny=length(year);

22 a1=find(dates(:,1)==analysis_sta&dates(:,2)==1);

23 b1=find(dates(:,1)==analysis_fin&dates(:,2)==12);

24 dates1=dates(a1:b1,:);

25 [X,Y]=meshgrid(lat,lon);

26 a=find(lat≥20&lat<70);

27 b=find(lon>110&lon<260);

28 Region_PDO_lat=X(b,a);

29 Region_PDO_lon=Y(b,a);

30 sst1=sst(b,a,a1:b1);
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31

32 % Calculate the global mean SST anomalies

33 sst_global_average=area_average(sst(:,:,a1:b1),dates1,lon,lat);

34 b1=find(dates1(:,1)==base_sta&dates1(:,2)==1);

35 b2=find(dates1(:,1)==base_fin&dates1(:,2)==12);

36

37 sst_global_anomaly=anomaly_making(sst_global_average,analysis_sta:

38 analysis_fin,base_sta,base_fin,ny,12,1);

39

40 % Remove the global mean SST anomaly from SST series

41 for ii=1:length(b)

42 for jj=1:length(a)

43 data=squeeze(sst1(ii,jj,:));

44 A=isnan(data);

45 if numel(data(A))==length(dates1)

46 sst2(ii,jj,:)=NaN(length(dates1),1);

47 continue

48 else

49 sst2(ii,jj,:)=data-sst_global_anomaly;

50 end

51 end

52 end

53

54 % Calculate the anomaly over the reference period

55 for ii=1:length(b)

56 for jj=1:length(a)

57 sst_anomaly(ii,jj,:)=anomaly_making(squeeze(sst2(ii,jj,:)),

58 year,base_sta,base_fin,ny,12,1);

59 end

60 end

61

62 % Pick the data in November through March

63 c1=find(dates1(:,2)==11|dates1(:,2)==12|dates1(:,2)==1| ...

dates1(:,2)==2|dates1(:,2)==3);

64 sst_anomaly_Win=sst_anomaly(:,:,c1);
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65 dates2=dates1(c1,:);

66

67 sst_anomaly_win=permute(sst_anomaly_Win,[2,1,3]);

68 Region_PDO_lat=Region_PDO_lat';

69 Region_PDO_lon=Region_PDO_lon';

70

71 % Calculate the EOFs

72 [eof_maps,pc,expvar] = eof(sst_anomaly_win);

73

74 % Find the index of the maximum value in the time series:

75 [maxval,ind] = max(abs(pc(1,:)));

76

77 % Divide the time series by its maximum value:

78 PC = pc(1,:)/maxval;

79

80 % Multiply the corresponding EOF map:

81 eof_maps = eof_maps(:,:,1)*maxval;

82

83 T1=analysis_sta:1/12:analysis_fin+1;

84 T1(length(T1))=[];

85 T2=T1(1,c1);

86 Z=interp1(T2,PC,T1);

87 S=moving_average_extend(Z,121);

88 clear Z

89

90 Z=S(12*10+1:12*60);

91 % Standize the amplitude

92 T3=analysis_sta+10:1/12:analysis_fin-9;

93 T3(length(T3))=[];

94 c1=find(T3==analysis_sta+10);

95 c2=length(T3);

96

97 Index=(Z-mean(Z(c1:c2,1)))/std(Z(c1:c2,1));

98 expv=expvar(1,1);

99 end
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1 % This function is used to calculate the Atlantic Multidecadal ...

Oscillation Index

2 % SST anomalies averaged over field [0-70N, 0-80W] with the global ...

mean SST was removed.

3

4 function [Index]=AMO_Calculation(date_sta, date_fin, analysis_sta, ...

analysis_fin, lat, lon, sst, base_sta, base_fin )

5 % Input:

6 %date_sta/date_fin: start/end year of sst data

7 %analysis_sta/analysis_fin: start/end year of analysis period

8 %base_sta/base_fin: start/end year of reference period

9

10 month=date_sta:1/12:date_fin+1;

11 month(:,length(month))=[];

12

13 % Extend the length of analysis period to minimize the effect of ...

10-year moving average

14 cal_sta=analysis_sta-10;

15 cal_fin=analysis_fin+10;

16 a1=find(month==cal_sta);

17 a2=find(month==cal_fin+1)-1;

18 dates=Calendar_making(cal_sta,cal_fin,2);

19 ny=cal_fin-cal_sta+1;

20

21 [X,Y]=meshgrid(lat,lon);

22 a=find(lat≥0&lat≤70);

23 b=find(lon≥280&lon≤360);

24

25 Region_AMO_lat=X(b,a);

26 Region_AMO_lon=Y(b,a);

27 sst_region=sst(b,a,a1:a2);%original regional series

28 lat1=lat(a);
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29 lon1=lon(b);

30

31 % Calculate the global mean SST anomalies

32 sst_global_average=area_average(sst(:,:,a1:a2),dates,lon,lat);

33 b1=find(dates(:,1)==base_sta&dates(:,2)==1);

34 b2=find(dates(:,1)==base_fin&dates(:,2)==12);

35

36 sst_global_anomaly=anomaly_making(sst_global_average,cal_sta:cal_fin,

37 base_sta,base_fin,ny,12,1);

38

39 % Remove the global mean SST anomaly from SST series

40 for ii=1:length(b)

41 for jj=1:length(a)

42 data=squeeze(sst_region(ii,jj,:));

43 A=isnan(data);

44 if numel(data(A))==length(dates)

45 sst2(ii,jj,:)=NaN(length(dates),1);

46 continue

47 else

48 sst2(ii,jj,:)=data-sst_global_anomaly;

49 end

50 end

51 end

52

53 % Compute the area average

54 sst_area_average=area_average(sst2,dates,lon1,lat1);

55

56 % Calculate the anomaly over the reference period

57 sst_AMO_anomaly=anomaly_making(sst_area_average,cal_sta:cal_fin,...

58 base_sta,base_fin,ny,12,1);

59

60 % 10-year (121-month) moving average

61 sst_anomaly_smooth=moving_average_extend(sst_AMO_anomaly,121);

62 Index=sst_anomaly_smooth(12*10+1:12*60);

63 end
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